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E. T.JAYNES



PREFACE

The first six chapters of this volume present the author’s ‘predictive’ or
information theoretic’ approach to statistical mechanics, in which the basic
probability distributions over microstates are obtained as distributions of
maximum entropy (i.e., as distributions that are most non-committal with
regard to missing information among all those satisfying the macroscopically
given constraints). There is then no need to make additional assumptions of
ergodicity or metric transitivity; the theory proceeds entirely by inference
from macroscopic measurements and the underlying dynamical assumptions.
Moreover, the method of maximizing the entropy is completely general and
applies, in particular, to irreversible processes as well as to reversible ones.
The next three chapters provide a broader framework — at once Bayesian
and objective — for maximum entropy inference. The basic principles of
inference, including the usual axioms of probability, are seen to rest on
nothing more than requirements of consistency, above all, the requirement
that in two problems where we have the same information we must assign
the same probabilities. Thus, statistical mechanics is viewed as a branch of
a general theory of inference, and the latter as an extension of the ordinary
logic of consistency. Those who are familiar with the literature of statistics
and statistical mechanics will recognize in both of these steps a genuine
‘scientific revolution’ — a complete reversal of earlier conceptions — and one
of no small significance. Indeed, the interplay between physics, probability
and logic one finds here gives the work a wider import permeating down to
the foundations of our knowledge in a way that is reminiscent of relativity or
the quantum theory. But, unlike the quantum theory, which purports to
set limits to what we can know, a major thrust of Jaynes’ work is to liberate
us from the imagined limits imposed by a frequency conception of probability.
Although Jaynes erects no artificial barriers to understanding — I know of
no writer on technical subjects whose style is more to the point, incisive, or
stimulating — some of the papers place heavy technical demands on the reader.
And, in general, the rich ore in these hills is not to be tapped without some
hard digging! The editor’s introduction, which provides a brief overview of
the leading ideas and some of the many interconnections between them, may
help to guide those readers who have little previous acquaintance with these
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viii PREFACE

papers. The index — somewhere between a subject index and a ‘synoptikon’
— will also help you to locate ideas discussed in the introduction. Works
referred to there are among those listed in the supplementary bibliography
at the end of the book. The latter is divided into four sections as follows:
background works, technical contributions and critical discussions of the
entropy formalism and related methods of inference, a brief sampler (really,
the tip of the iceberg) of papers applying the maximum entropy method in
diverse fields of current research, and, finally, a short list of papers by Jaynes
not included here, especially those dealing with the neoclassical theory of
electrodynamics.

While the papers are reprinted in the order written, the better to portray
the unfolding of an idea, there is no necessity that they be read in that order.
Nearly everyone will find the first two chapters a good place to start, but
readers primarily interested in statistics or the foundations of probability
may want to pass directly to chapter seven. The M.I.T. paper (Chapter 10)
is the pivotal piece of the collection, summing up all the papers that go
before it and broaching new ideas taken up in the remaining chapters and
still in process of development. This paper is an absolute leviathan! Reverber-
ating with history and personal recollection and occasionally exploding with
well-aimed critical bursts, it sweeps you up like a great tidal wave and carries
you along for over one hundred pages at an accelerating tempo, leaving you
at the end with a sense that its driving energy has still not spent itself (as, in
fact, it had not). In the course of this voyage, Jaynes manages, among other
things, to weave together the parallel histories of probability and statistical
physics, to answer his critics, and to present, in the final section, the fullest
account yet available of the Maxent treatment of irreversible processes.

I would like to express my gratitude to Mrs. J. C. Kuipers and others at
D. Reidel for their help and patience in this enterprise and to the editor of
this series, Jaakko Hintikka, for his encouragement to undertake it. Finally,
I want to thank E.T. Jaynes for his splendid cooperation at every stage
of the work. The introductory comments he has added to the volume and to
the individual selections are especially valuable and welcome. But, even
more than that, I want to thank Jaynes for writing these papers in the first
place. The problems with which he has grappled — the Bertrand paradoxes,
the marginalization paradoxes of statistical theory, and the seemingly intract-
able problems of irreversible thermodynamics — have withstood the efforts of
many powerful minds (and given many others an attack of vertigo!). These
are not puzzles that beckon one with a promise of easy gold at the hand of
fay or elf. One must plunge into murky deeps and risk lying suspended in-
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definitely in an agony of confusion. Yet, in every case, Jaynes has managed to
lay hold of a constructive principle that can steer us towards the light. The
fruits of such hard-won gains always go beyond the mere harvesting of new
scientific findings or the forging of powerful new instruments of inquiry;
rather, advances at this fundamental level advance our understanding of
thinking itself.
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EDITOR’S INTRODUCTION

When methods successfully applied in science appear discredited, a creative
tension is generated: one must either obtain the relevant results some other
way or else place the methods in question on a more secure footing. Both
sorts of effort have been visible throughout this century in the two related
fields of statistics and statistical mechanics. For by 1900, the classical theory
of probability, so fruitfully applied by Laplace to celestial mechanics and by
the early workers in statistical mechanics, was faced with seemingly fatal
paradoxes and contradictions — a situation not unlike that which then pre-
vailed in set theory. There was a general turning away from the methods of
Bayes and Laplace and attempts were made to ground both statistics and
statistical mechanics on a frequency conception of probability. Although
never wholly successful, these efforts dominated work in probability theory
and its applications until quite recently. True, the important dissenting work
of Harold Jeffreys (1939) showed how to derive the standard significance
tests of the frequentist school almost effortlessly by Bayes’ theorem, using an
‘uninformative’ prior probability distribution, and Jeffreys’ methods were,
moreover, of wider scope. Unfortunately, his uninformative priors, though
intuitively appealing, lacked a compelling rationale, and were even widely
believed to rest on nothing more solid than the discredited Laplacian principle
of indifference.

The papers by E. T. Jaynes collected here stem, in part, from a desire to
supply the missing rationale and, in part, from a growing realization that the
methods of Jeffreys could be extended to provide a more satisfactory basis
for statistical mechanics. Claude Shannon’s development of information
theory, which makes essential use of a measure of uncertainty he labelled
‘entropy’, pointed the way to the required extension of Jeffreys’ methods.
In attacking the problem of a most efficient encoding of English text, it was
necessary to assign probabilities to all conceivable messages that might be
sent. Of course, we can never know the ‘true’ probabilities in question; our
statistical knowledge is both incomplete and unmanageably complex. Shannon
is thus led to consider ‘the source with the maximum entropy subject to the

xiii
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statistical conditions we wish to retain’. In writing down the solution to
Shannon’s problem, Jaynes found himself staring at Gibbs’ canonical distribu-
tion. And it soon became evident that all of the distributions found by Gibbs
could be derived in this way, without recourse to additional, ergodic assump-
tions. Jaynes’ position at this point was like that of Jeffreys: he had a method
that undoubtedly works, and one that is also simpler and of wider scope.
In attempting to extend the method to continuous distributions, he was led
back to the problem that Bayes and Laplace and Jeffreys had all run up
against: how to represent ignorance of a parameter.

II

Jeffreys’ uninformative priors are meant to provide “a formal way of ex-
pressing ignorance of the value of the parameter over the range permitted”,
and he argued that the same uninformative priors should be used for param-
eters with the same formal properties. Thus, he advocated a uniform prior
for parameters ranging over the whole real line and a log-uniform prior (the
logarithm of the parameter uniformly distributed) for positive parameters. But
use of the uniform prior to represent ‘complete ignorance’ seemed open to
the same charge of inconsistency once levelled at Bayes and Laplace. For if
we are ignorant of @, the argument runs, then, equally, we are ignorant of
T(). But if T is a non-linear function, like 7(8) = 8%, a uniform distribution
of T(6) induces a non-uniform distribution of @, and we have an obvious
contradiction.

Of course, one can deny the crucial premiss that any transformation of the
parameter is admissible, but to make this convincing requires a systematic
way of determining the group of admissible transformations. A short paper
by R. T. Cox (1946) pointed the way. Cox obtained the basic ‘addition’ and
‘multiplication’ rules of probability calculus by imposing the requirement
that different allowable ways of applying the calculus to a problem should
yield the same answer. In particular, recasting the evidence in an equivalent
form should not lead us to alter our probabilities. Jaynes then saw how to
base Jeffreys’ uninformative priors on a variant of the consistency principle,
namely: in two problems where we have the same information, we should
assign the same probabilities.

To illustrate, assume we are sampling a normal distribution of known
(unit) variance. Then the density is a function, /(X —u) of X —u, so that u
is a location parameter. A translation of coordinates, X "= X+b,u =u+b,
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leaves the normal form and spread of the density unaltered, and so “we have
the same information” in two versions of the problem that differ by a transla-
tion of coordinates. (Certain other reparametrizations, like a change of scale,
would change either the form or spread of the distribution and so conflict
with the information already at hand.) If f and g are the prior densities of
pand u' in two equivalent versions of the problem, the consistency principle
forces f = g, and this leads straight to the functional equation, f(u) = f(u+b),
expressing translation-invariance of f. The unique solution is, of course, the
uniform prior advocated by Jeffreys.

One arrives similarly at the Jeffreys prior, f(0)do = da/o, for 0> 0, but
the rationale Jaynes offers is, not that o is positive, but that o is a scale param-
eter, so that two versions of the problem which differ in the scale units em-
ployed are equivalent.

An amusing example is provided by “the anomalous law of first digits”,
often cited to illustrate the dangers of selecting an empirical distribution
‘a priori’ without recourse to observed frequencies. We are asked for the
probability p, that k (k =1, ..., 9) is the first digit of a random entry from
a table of numerical data. Naive application of the principle of indifference
at the level of ‘indifferent events’ leads to a uniform distribution, p; = 1/9,
but the distribution obtained empirically is log-uniform: p; = log(k+1) —
log(k), with logarithms to base 10. On the other hand, nothing has been
said about the scale units employed, and if the problem has a definite solu-
tion, it must not depend on this unspecified information. And scale invariance
does lead to a log-uniform distribution. Indeed, the present derivation shows
why the logarithmic law holds for data that are ratio-scaled and that it need
not hold for ordinal data, like street addresses.

The history of statistical physics is replete with empirically correct distribu-
tions obtained perforce by applying the principle of indifference, for one
could not directly observe microstates, much less tabulate the frequencies
with which a system enters different microstates. Jaynes’ thesis is that success-
ful applications of thissort are just the ones that can be rephrased as appealing
to ‘indifference between problems’ rather than ‘indifference between events’.

The consistency argument is by no means confined to location and scale
parameters. In Chapter 8, Jaynes uses it to resolve the notorious Bertrand
paradox, which asks for the probability that a random chord of a circle ex-
ceeds a side of the inscribed equilateral triangle. Applying the principle of
indifference to different geometric constructions of the chord, different an-
swers are obtained, and most writers who discuss the problem profess them-
selves unable to say which, if any, of these solutions would correctly describe
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a real experiment. Starting at the other end, Jaynes invites us to look at an
actual experiment in which broom straws are tossed onto a circle from a
height great enough to preclude even the skill needed to make the broom
straws fall across the circle. This certainly gives a good sense to ‘random
chord’. But nothing has been said about the exact size and position of the
circle, and the implied invariances are sufficient to single out a unique distribu-
tion for the center of a chord determined by a broom straw which does fall
across the circle. We may not conclude, of course, that experimentally ob-
served frequencies must agree with those predicted by the invariant distribu-
tion, but we can conclude that any exceptional experiment will produce
different distributions on circles that differ only slightly in size or position
from the given circle. Invariance under the admissible group of transforma-
tions is just a mathematical expression of the lack of skill or microscopic
control needed to produce different frequencies when the initial conditions
are slightly varied, and so we may even think of the invariant distribution
as the ‘objective chance distribution’ of the ‘random phenomenon’ in ques-
tion.

1

Uninformative priors are invariant under variation of unspecified details,
but it is not always feasible to carry out the requisite group theoretical
analysis. In such cases we do the next best thing: we find the distribution
that is maximally non-committal with respect to missing information. (Any
other distribution would pretend to knowledge we really lack.) So of all
the distributions satisfying the given constraints (typically, mean value con-
straints), we choose the one that maximizes uncertainty, as measured by
Shannon’s entropy function. Entropy maximizing distributions thus enter
the picture as a practical substitute for invariant distributions. They can also
be used when the transformation group uncovered by our analysis is too
sparse to single out a unique distribution, or to modify an uninformative
prior in the light of experimentally given constraints.

This leaves open the question why maximize entropy, why not some
other measure of uncertainty? Jaynes gives several answers. First, ‘deduc-
tions made from any other information measure ... will eventually lead to
contradictions’ (see Chapter 2, appendix). Second, entropy maximizing
distributions are obtained asymptotically by conditioning on given mean
value constraints. And, third, the maximum entropy distribution is realized
experimentally by an overwhelming majority of the trial sequences satisfying
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the given constraints. Its deep connections with consistency, conditionaliza-
tion and observed frequency behavior all suggest that entropy maximization
is a fundamental principle of probability theory.

Jaynes’ first answer has been more fully articulated in the recent paper by
Shore and Johnson (1980). They translate Shannon’s desiderata for a measure
of uncertainty into conditions of consistency for an abstract inferential
operator that combines a prior p with mean value constraints D to yield a
posterior distribution, ¢ = pe D. Their axioms assert that the result should
not depend on the coordinate system, or on whether we account for in-
dependent items of information separately or in terms of a joint density,
etc.. In short, their axioms embody R.T. Cox’s aforementioned require-
ment that different allowed ways of applying the inferential apparatus must
lead to the same result. The only operator meeting their requirements assigns
the pair (p, D) a posterior density, g = p o D, which among all those satisfying
D, minimizes the cross (or relative) entropy with respect to p, defined in the
discrete case by:

I(q,p) = Z q; log(4ilp)
withp =(p,, ...,Pp)and ¢ =(qy, ..., q,)- The entropy of q is:
H(g) = ~Z q;108(q)- "

Obviously, an entropy maximizing g is cross entropy minimizing with respect
to a uniform prior, and so entropy maximization is a special case of cross
entropy minimization. (Actually, either may be viewed as a special case of
the other.) Cross entropy is an interesting function in its own right. Kullback
(1959) exhibited its power as a unifying principle in statistics, and it enters
Jaynes’ work in the problem of extending the entropy function invariantly
to continuous distributions (Chapter 7, Section VI).

Suppose now that the new information D confines the outcome of an
experiment to a proper subset £ — the ‘conditioning event’. Cross entropy
minimization subject to q(£) = 1 yields the renormalization of the prior
p to E, as required by Bayesian conditionalization. Similarly, if we impose
the weaker (more realistic) constraint that the observation raises the probabil-
ity of E to a value short of one, cross entropy minimization yields the gener-
alization of Bayes’ rule proposed by Jeffrey (1965). This rule depends on the
order in which the observational inputs occur, but the modification Field
(1978) has put forward to remove that blemish also pops right out as a special
case of cross entropy minimization (see Domotor, 1980). Seen in this light,
cross entropy minimization appears as a very general rule of minimal belief
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change, incorporating the various forms of Bayesian conditioning and entropy
maximization as special cases.

Conversely, cross entropy minimization results asymptotically from
Bayesian conditioning. As Jaynes notes (Chapter 10, p. 250), this is just the
well-known Darin—Fowler method for obtaining the canonical distribution
maximizing the entropy yields for a sample space S by conditioning on the
product space S" of repeated trials. The derivation is given in detail for both
discrete and continuous distributions in van Campenhout and Cover (1981).

To see what is being asserted, consider # independent tosses of a die. We
eliminate all possible outcome sequences whose associated 6-tuple of fre-
quencies for the six faces fails to satisfy the given mean value constraint and
then renormalize the original uniform distribution to the surviving ‘admissible’
sequences. The average of the frequency distributions {fy, ..., f¢) of these
admissible sequences yields the conditioned distribution, p* = (pg, ..., p¢),
and as n increases, p* tends to the maximum entropy distribution. This
happens because an increasing proportion of the admissible sequences give
rise to frequency 6-tuples whose entropy is close to the maximum (the
‘concentration theorem’ of Chapter 11 allows one to approximate this propor-
tion), and all of these ‘high entropy’ frequency distributions differ inappre-
ciably from the maximum entropy distribution. (The derivation of a cross
entropy minimizing distribution is just the same.)

This is the ‘correspondence with frequencies’ alluded to earlier, and it is
interesting to note that the first maximum entropy distributions were found
in this way. Thus, Ludwig Boltzmann found his famous energy distribution
for the molecules in a conservative force field by dividing the phase space into
small cells Ry each small enough for the energy to be a constant £} over
the molecules within it and yet big enough to contain a large number N, of
molecules. The total number N of molecules and the total energy £ are con-
stants of the molecular motion, and Boltzmann argued that the ‘most proba-
ble’ distribution, (N, /N, ..., Ng/N), is the one, among all those satisfying
the constraints Ny + -+ Ny=Nand N, E, + .- + NgE = E, whichis realized
by the greatest number of microstates. But this number is given by the multi-
nomial coefficient, W = N!/N;! ... Ny!, and this is a maximum when
N7 log W = —Z (Ni/N) log(Ny/N) is a maximum (where we have used
Stirling’s approximation to the log factorials). The latter expression is just
the entropy of the frequency distribution, and so Boltzmann’s ‘most probable’
distribution is the maximum entropy distribution satisfying the given con-
straints.

Boltzmann’s law is a powerful one; it contains Clerk Maxwell’s velocity
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distribution for the molecules of a gas at a given temperature as a special
case. Yet, Boltzmann’s derivation appears to ignore the dynamics altogether
(to get something for nothing), and that is why Jaynes has taken such pains
to explain clearly why the method delivers accurate predictions of thermo-
dynamic quantities — provided the assumed mean value constraints and
microscopic laws of motion embodied in the Hamiltonian of the system are
empirically correct. (The point is discussed in Chapter 2, pp. 10—13, Chapter
3, pp. 19-20, and again in Chapter 10, pp. 227, 239-240, 281-282,
296-298.)

To begin with, Boltzmann’s derivation does make use of the dynamics,
both in the assumed energy conservation and in the fact that the volumes of
the small cells Ry are invariants of the motion (Liouville’s theorem). The
empirical success of the law shows that none of the other myriad dynamical
details are truly relevant. (This would not be so, of course, if the predic-
tions were time-dependent.)

Since maximum entropy inference uses the broadest distribution compatible
with the assumed constraints, the macroscopic quantities for which it yields
sharp predictions must be characteristic of the great majority of the micro-
states to which it attaches appreciable probability, and the features of the
system that are experimentally reproducible are precisely those which are
characteristic of most of the states compatible with the conditions of the
experiment. Sharp maximum entropy predictions can fail, then, only if
there are new constraints not contained in the previously known laws of
physics. A noteworthy historical case of this sort was the failure of Gibbs’
canonical distribution to predict heat capacities and equations of state,
a failure which pointed to the previously unsuspected discreteness of the
energy levels. At a more mundane level, Jaynes uses Rudolf Wolf’s data
on dice to show how observed deviations from a maximum entropy distribu-
tion can suggest new physical constraints. Indeed, by comparing the entropy
of the observed frequency distribution with the maximum entropy attainable
with the assumed constraints, Jaynes is led to a new goodness-of-fit test that
improves on the more usual chi squared test in several respects (see Chapter
11).

Jaynes’ informational approach views the laws of statistical mechanics as
inferences based entirely on the laws of mechanics; additional hypotheses
of ergodicity or metric transitivity are not needed. Yet, it would be a mistake
to think that the case for the information theoretic approach rests solely on
its greater simplicity. Even complete success in proving the needed ergodic
theorems would legitimize Gibbsian phase averaging only in the equilibrium
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case. Entropy maximization is subject to no such restriction; it applies equally
well to irreversible processes, and it is here, most of all, that the theory gener-
ates new and testable predictions (see Chapter 10, Section D for the treat-
ment of irreversible processes). In addition, Jaynes offers cogent criticism of
the ergodic approach (Chapter 6, Section 2.3).

v

Jaynes makes consistency the very cornerstone of an objectivist philosophy.
The subjectivist or personalist school of Bayesian thought has also emphasized
consistent (or ‘coherent’) degrees of belief, demonstrating that inconsistent
betting odds open one to sure loss —a ‘dutch book’. But within the wide
limits set by coherence, subjectivists allow that two men in possession of the
same information may reasonably differ in their probability assignments.
While the accumulating data will tend to bring their subjective probabilities
into alignment, logic does not force them to agree. Indeed, subjectivist doc-
trine does not even compel one to heed the evidence, for the thin conception
of rationality subjectivists offer requires only that the beliefs held at any one
time be coherent. Bayes’ theorem enters solely as a means of ascertaining
whether the beliefs one holds at different times are mutually consistent
(de Finetti, 1972, pp. 144—145). But what are we to say of a man who
alters his beliefs without any change in the evidence? We may think of him
as conditioning on the null evidence (a tautology), and this will lead to credal
probabilities no different from his initial probabilities. If now he finds him-
self with different beliefs, then, on the subjectivist’s own showing, he is being
inconsistent. And it is but a short step from this conclusion to the consistency
principle by which Jaynes derives uninformative priors. In effect, Jaynes
carries the consistency argument of the subjectivists a step farther and arrives
at an ‘impersonalism’ that makes no use of anybody’s personal opinions,
but only of the data on which these are based (see Chapter 7, Section I).
Jaynes was impelled towards objectivism from another direction as well.
If one obtains the canonical distribution of Gibbs by entropy maximization,
one can no longer interpret that distribution as giving the frequencies with
which a thermodynamic system enters different microstates. Instead, the
distribution represents no more than the partial information about micro-
states contained in the macroscopic measurements. In this way, the distribu-
tions of statistical mechanics become credal or epistemic and entropy becomes
a measure of ignorance rather than of disorder. As Jaynes recounts (Chapter
10, pp. 237-238) the reaction of Professor G. Uhlenbeck was to deny that
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entropy can measure amounts of ignorance, for different people have different
amounts of ignorance, while entropy is a definite physical quantity that can
be measured in the laboratory using thermometers and calorimeters. The
answer to this little paradox is clear, but only if you view the credal probabili-
ties in question as objective, for then entropy is a measure, not of this or that
person’s ignorance, but of the partial knowledge embodied in those laboratory
measurements and objectively reflected in the assigned probability distribu-
tion. Nevertheless, entropy (like an uninformative prior) is anthropomorphic
to this extent: it depends on what experiment we choose to perform on a
given system (see Chapter 5). In the same way, the second law of thermo-
dynamics becomes a statement about the loss of information regarding a
system on which no new measurements are taken.

The objectivist finds unwonted support in the near coincidence of fiducial
or confidence intervals based on a sufficient statistic with highest density
intervals of a posterior distribution based on an uninformative prior, for the
former attempt, in R. A. Fisher’s words, ‘to allow the data to speak for
themselves’. At the same time, the Bayesian intervals are far easier to com-
pute, for the (often ad hoc) choice of a test statistic and subsequent deriva-
tion of its sampling distribution are steps the Bayesian avoids. Mathematical
equivalence of Bayesian and orthodox intervals cannot be achieved, however,
where sufficient statistics are lacking, and it is Jaynes’ contention (Chapter
9) that in such cases the differences can be magnified up to where common
sense can clearly perceive the superiority of the Bayesian result (as when a
confidence interval lies outside the allowed range of the parameter it esti-
mates!). Jaynes shows how the information necessarily lost by a confidence
interval in such cases (in his example, the half-range of two observations from
a Cauchy distribution) can always be used to pick out a recognizable ‘bad’
subclass of samples in which the confidence interval fails to cover the true
value as frequently as indicated by the stated confidence level, and a ‘good’
subclass on which the confidence interval is wider than it needs to be. Being
of fixed width, the confidence interval is forced to rob Peter to pay Paul,
making up for the ‘bad’ samples of very wide range at which it cannot possibly
deliver the advertised reliability by giving us a needlessly wide interval in the
great majority of ‘good’ samples.

Inevitably, some of Jaynes’ points have been made by others, but his
examples have a force that is wholly lacking in abstract discussions of these
matters. I was present at the Western Ontario address on which Chapter 9
is based and can vividly recall the outcries it provoked. Jaynes’ scrutiny of
the actual performance of the rival methods should have appealed to ortho-
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doxians of Neyman—Pearson persuasion, who base their entire approach on
the demonstrable error characteristics of a test or a rejection rule, yet, to my
knowledge, the only orthodox rebuttals that have since appeared are those by
Margaret Maxfield and Oscar Kempthorne which follow Jaynes’ paper in the
Conference Proceedings. It did not seem appropriate to reprint the entire
lengthy exchange here, but the reader is certainly urged to read it and judge
for himself how many of the points raised by Maxfield and Kempthorne
address the issue of actual performance.

I have reprinted, however, some portions of Jaynes’ reply to Kempthorne,
including his invaluable defense of ‘impropriety’. The uninformative priors
for location and scale parameters of unrestricted range are non-integrable, and
such ‘improper priors’ have been thought to cause consistency problems. I
can recall Dennis Lindley acknowledging this criticism at the same Western
Ontario Conference and intoning solemn last rites for improper priors. That
they come to grief is, perhaps, a conclusion not wholly unwelcome to those
who remain sceptical of all attempts to objectify prior information. Yet, even
subjectivists have a stake in impropriety, inasmuch as diffuse states of knowl-
edge are often most naturally and most conveniently represented by an im-
proper, uninformative prior (in particular, the improper beta prior for binomial
sampling which Jaynes obtains group theoretically in Chapter 7 seems in-
escapably right). And we have already remarked on the near coincidence of
Bayesian intervals based on improper priors with confidence intervals. In
short, while Bayesian inference can doutbtless proceed without improper
priors, their loss would rob the theory of much of its appeal, and so Jaynes
has taken up the cudgels on their behalf.

He shows (Chapter 12) that the ‘marginalization paradox’ of Dawid, Stone,
and Zidek, which occasioned all the fuss, has nothing to do with impropriety
per se, but turns on a difference in the assumed prior knowledge, one that is
hidden by a faulty notation. In characteristic fashion, Jaynes then uses the
alleged paradox to initiate a new approach to uninformative priors, which
yields, for example, Jeffreys’ log-uniform prior for a scale parameter as the
only prior that is ‘uninformative’ in the sense that ‘it leads us to the same
conclusion about other parameters @ as if the parameter o had been removed
from the model’. This argument appears to be of wider scope than the group
theoretic method and appeals only to the usual axioms of probability.

The comments on impropriety in Jaynes’ reply to Kempthorne (Chapter
9, pp. 205ff.) are also quite illuminating. Where the posterior distribution
based on an improper prior integrates, we would obtain essentially the same
posterior distribution using any truncated proper prior that is reasonably
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diffuse in the region of appreciable likelihood. (L. J. Savage called this the
‘principle of stable estimation’.) Where, on the other hand, the posterior
density based on an improper prior is itself improper, the theory is effectively
warning us that the experiment is so uninformative that the exact limits of
truncation do matter. Jaynes illustrates this with a reliability test in which
the chosen test time is much longer than the desired lifetime of the machine.
The failure of all tested items then conveys essentially no information, and
the non-integrable posterior density expresses this by failing to impose a
lower bound below which the mean lifetime is practically certain not to lie.
Jaynes then notes that the improper prior in question gives inferences that
agree with those of a standard significance test in the usual range of interest
where the test time is relatively short and few failures are observed. But these
significance tests break down completely when all tested items fail, rejecting
the hypothesis that the mean lifetime exceeds any specified value at all
levels of significance! And so he concludes, “it is the orthodoxian, and not
the Bayesian, who is going to be in trouble in cases where ‘improper priors’
cannot be used”.

Not all of the problems involving uninformative priors have been solved,
as Jaynes himself is at pains to point out in several places. More needs to be
said, in particular, about the sometimes disconcerting degree to which an
uninformative prior depends on the experiment planned or the question
posed. (On this, see Chapter 13 of this volume, pp. 379ff. and the paper
by John Skilling listed in the supplementary bibliography.) It is, neverthe-
less, a safe prediction that further progress in the representation of prior
information will follow the paths Jaynes has so clearly delineated.

The other great challenge his work poses is to separate substantive assump-
tion from mere inference in the principles of any theory. Jaynes’ own papers
on the neo-classical theory of electrodynamics, a number of which are listed
in the supplementary bibliography, pose this question for the quantum theory
in an acute form (see p. 231). The technique of entropy maximization has
definitely widened our inferential horizons and is proving invaluable when-
ever it is a question of extracting what is relevant from a complex mass of
data. It is well known that many of the most useful models of applied proba-
bility — the normal and truncated normal, the Poisson and exponential, etc.
— can be directly and easily obtained by maximizing entropy subject to dis-
tributional constraints. The small sample of papers listed in Section C of the
supplementary bibliography will convey an idea of the vast and growing
applications of the technique in diverse areas of current research. One might
almost say that whenever a model seemingly based on substantive assump-
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tions is delivering greater accuracy than the rather unrealistic character of the
underlying assumptions would lead one to expect, there is probably an entropy
argument lurking just under the surface.



1. INTRODUCTORY REMARKS

In a quantitative science, the mathematics exists as a kind of superstructure
resting on a set of conceptual notions thought of as fundamental. Therefore,
while the introduction of new mathematics takes place more or less contin-
uously without much trauma, a major upheaval is required to replace one con-
ceptual foundation with another. As a result, the acceptance of new concepts
takes place only in widely separated jumps, preceded by controversy.

The writer does not know of any logical reason why science should be
perceived in this way. Would it not be just as reasonable to take the opposite
stance — dogmatic adherence to one mathematical system, while freely
admitting new concepts? After all, the empirical success of a theory confirms
only its mathematics, not the ideas you or I associate with it. Yet the history
of science, from Ptolemy to Schwinger, shows that it is always a conceptual
idea — even one having only the loosest of logical association with the suc-
cessful mathematics — that gets elevated to the status of unassailable dogma.

This psychological phenomenon is just as much an obstacle to progress for
us as for Copernicus. Progress in science requires the continual introduction
and testing of new concepts, just as much as new mathematics. But in physics
since Newton, a cyclic component in conceptual advances, with a period of
about seventy years, is clearly discernible, as noted more fully in the Delaware
Lecture (1967) reprinted here.

Thermodynamics and Statistical Mechanics occupy a rather special place in
this scheme, because from the day Clausius discovered entropy there has been
unremitting confusion, and resulting controversy, over conceptual questions
that it raised. In 1951, a Century later, there was still unfinished business
here; a viewpoint simple enough and broad enough to unify these fields and
resolve their paradoxes had not been found, and various schools of thought —
each subscribing to a different set of concepts — coexisted almost indepen-
dently of each other. Yet all had adopted the same name, ‘Statistical Mechan-
ics’, that Gibbs had coined for his program.

This book collects together a series of articles, written over a span of
nearly thirty years, recording the gradual evolution of a ‘new’ and much more
general viewpoint about these problems. The quotes seem appropriate,
because the literature is so huge that almost every imaginable idea can be

1
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found, mentioned briefly and then forgotten, somewhere in the history of the
subject. We are continually discovering old works that anticipate parts of
what follows; doubtless, many more remain to be found.

Belatedly, it was realized that to put still another corpus of ideas under the
umbrella of ‘Statistical Mechanics’ made an overcrowded terminology even
more so. Accordingly, the name ‘Predictive Statistical Mechanics’ was coined
for the particular line of thought expounded here, to distinguish it from all
others. It will help to reduce confusion if others will adopt this name, which
has a good basis in the current terminology of statistical inference. Indeed,
our major break with the past is that our goal is not to ‘explain irreversibility’,
but to predict observable facts.

It appeared that the following collection would be useful not only to
scientists as a kind of textbook on Predictive Statistical Mechanics until
something better is available; but also to philosophers as a case history for the
development of new scientific concepts, in spite of the controversy they
immediately stir up. And, critics need no longer attack article V ignorant of
what is in article N + 1.

Of course, Predictive Statistical Mechanics did not spring out fully formed
in the first work. In most cases, the writing of article V was the stimulation of
the further thinking that resulted in article N + 1. For this reason, they are
reprinted in chronological order; even though the subject matter may appear
to wander back and forth between Predictive Statistical Mechanics and Statis-
tical Inference, there is a logical thread connecting them in that order.

Indeed, I do not see Predictive Statistical Mechanics and Statistical
Inference as different subjects at all; the former is only a particular realization
of the latter, and it applies equally well in any ‘generalized inverse’ problem
in which we have prior information about multiplicities that needs to be
taken into account. There is no necessary connection with thermodynamics,
other than the fact that thermodynamics provided, historically, the first
example of such a problem. The recent major advances in Spectral Analysis
(Childers, 1978; Currie, 1980) and Image Reconstruction (Frieden, 1980;
Gull and Daniell, 1978, 1980) are straightforward applications of the
‘Maximum Entropy Formalism’ set forth in the first article below. Before
long, we hope to have analyses of economic time series by methods developed
in the later articles.

A brief commentary precedes each reprinted article, with background
remarks, noting where critics or hindsight have functioned, relations to other
works, etc. Not all of my articles in this field are reproduced here, only those
which made some contribution to the development of the general thinking
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and whose writing had been completed by the end of 1980. Various articles
by me and others, mentioned in commentaries but not referenced in the
immediately following article, are referenced in the collection at the end of
the book.

In summary, the following articles and commentaries trace the history of a
conceptual innovation that started thirty years ago, only as a reinterpretation
of Gibbs’ canonical ensemble. But it survived the stern disapproval of the
Establishment and the often bitter controversy that new ideas always provoke,
and led finally to important new applications (Irreversible Statistical Mechan-
ics, Image Reconstruction, Spectrum Analysis) far beyond the purview of
1951. Today, not only do Statistical Mechanics and Statistical Inference
not appear as two different fields, even the term ‘statistical’ is not entirely
appropriate. Both are special cases of a simple and general procedure that
ought to be called, simply, ‘inference’. Of course, the most important non-
trivial applications do get involved in much technical detail, which will
appear in further articles still being written.

I express my thanks to the Editor of this volume, Roger D. Rosenkrantz,
who approached me with the suggestion that these works ought to be col-
lected and reprinted; and who then performed the many necessary but thank-
less tasks dealing with the business side of this enterprise, which left me free
to concentrate on the subject-matter. It is a major understatement to say that
without this initiative and help this book would never have appeared.

St. Louis, MO E.T. JAYNES
December 1981



2. INFORMATION THEORY AND
STATISTICAL MECHANICS I (1957)

The background of this work is explained in Where Do We Stand? (1978),
also reprinted below. It started in 1951 as a private communication, the
original purpose being only to convey the new ideas of Information Theory
to Professor G. Uhlenbeck, in hope of enlisting his support and getting his
constructive suggestions as to how these ideas might be implemented in
Statistical Mechanics.

Just seventy years earlier — in nice correspondence with our theory of
periodicity — a young man named Max Planck had tried to convey some new
ideas about entropy to the Establishment Figures of that time, Kirchhoff and
Clausius, with the same hope and the same success. Planck recalled the
incident (which inspired his famous comment about the mechanism of scien-
tific progress) in his Scientific Autobiography (1949).

In rereading ITSM (I) after many years, it does not appear to contain any
actual misstatement of demonstrable fact, although the emphasis and
language would be very different if I were writing it today. It is embarrassing
to see the word ‘bias’ used in its colloquial sense, when it is also a technical
term of statistics. This must have confused many readers.

I no longer subscribe to the views about ‘subjectivist’ and ‘objectivist’
probability theory on page 8. Further experience has taught me and other
Bayesians that a single theory of probability suffices for all problems. Con-
nections between probability and frequency appear automatically in Bayesian
calculations whenever they are relevant. The remarks about ‘objective statis-
tical mechanics’ on page 13 would, therefore, be deleted today.

It is now clear that the discussion of ergodicity and the ‘principle of
macroscopic uniformity’ on pages 10—13 should have been amplified and
emphasized much more strongly. This material is crucial to understanding
why the method works, and why appeal to ergodicity would not help us in
thermodynamic predictions. That is, a proof of ergodicity would not in any
way affect the predictions that we have already by direct maximization of
entropy. Only a proof of non-ergodicity, plus information about which
subspace of our present one is actually used by Nature, could alter our
predictions.

4
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Conversely, while the success of maximum-entropy predictions does not
constitute proof of ergodicity, failure of those predictions would give us
strong evidence for non-ergodicity and a clue as to which subspace Nature is
using. For this reason, entropy maximizers do not have the same ‘fear of
failure’ that often inhibits other users of statistics — instead we look eagerly
for it. It is only when our predictions fail that we obtain new evidence about
Nature’s workings. Most of the criticisms of this work are from persons who
did not comprehend a word of these too brief attempts to explain the logical
situation.

A further embarrassment is that in 1956 I knew about the Einstein-de
Haas experiment, but not about Barnett’s, and so predicted an effect that was
already known. But amends were made in the review article with Steve Heims
(1962), which extended this crude calculation to a realistic and unified treat-
ment of gyromagnetic effects. It was a particular pleasure that we could
vindicate completely Gibbs’ rotationally canonical ensemble, which had been
rejected fifty years earlier in the Ehrenfest review article (1912).



E.T.JAYNES

Information Theory and Statistical Mechanics

E. T. Javnes
Depariment of Physics, Stanford Universily, Stanford, California
(Received September 4, 1956; revised manuscript received March 4, 1957)

Information theory provides a constructive criterion for lemng
up probability distributions on the basis of putnl

or not t.he results agree with experiment, they still represent the
best that could have been made on the basis of the

and leads to a type of statistical inference which is called “the

information available.

ropy It is the least biased
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing inf ion. If one id
statistical mechanics as a form of statistical inference rather thm

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric tnnsmvny, equzl o priori probabilities,

as a physical theory, it is found that the usual
rules, ing with the di ination of the pamuon hmcuon,
arean i di q of the i

In the resulting “subjective statistical mechanics,” lhe usual rnlel

etc ). Furth , it is possibl a sharp distinction
between its physwll and suusncll aspects The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of

are thus yusuﬁed mdependently of any phyncal arg and
in particular pendently of exp venﬁuuon, whether

1. INTRODUCTION

HE recent_appearance of a very comprehensive
survey' of past attempts to justify the methods

of statistical mechanics in terms of mechanics, classical
or quantum, has helped greatly, and at a very opportune
time, to emphasize the unsolved problems in this field.

! D. ter Haar, Revs. Modern Phys. 27, 289 (1955).

Although the subject has been under development for
many years, we still do not have a complete and
satisfactory theory, in the sense that there is no line
of argument proceeding from the laws of microscopic
mechanics to macroscopic ph thatis g Ity
regarded by physicists as convincing in all respects.
Such an argument should (a) be free from objection on
mathematical grounds, (b) involve no additional arbi-
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trary assumptions, and (c) automatically include an
explanation of nonequilibrium conditions and irre-
versible processes as well as those of conventional
thermodynamics, since equilibrium thermodynamics is
merely an ideal limiting case of the behavior of matter.
It might appear that condition (b) is too severe,
since we expect that a physical theory will involve
certain unproved assumptions, whose consequences are
deduced and compared with experiment. For example,
in the statistical mechanics of Gibbs? there were several
difficulties which could not be understood in terms of
classical mechanics, and before the models which he
constructed could be made to correspond to the observed
facts, it was necessary to incorporate into them addi-
tional restrictions not contained in the laws of classical
mechanics. First was the “freezing up” of certain
degrees of freedom, which caused the specific heat of
diatomic gases to be only § of the expected value.
Secondly, the paradox regarding the entropy of com-
bined systems, which was resolved only by adoption of
the generic instead of the specific definition of phase,
an assumption which seems impossible to justify in
terms of classical notions.? Thirdly, in order to account
for the actual values of vapor pressures and equilibrium
constants, an additional assumption about a natural
unit of volume (#¥) of phase space was needed.
However, with the development of quantum mechanics
the originally arbitrary assumptions are now seen as
necessary consequences of the laws of physics. This
suggests the possibility that we have now reached a
state where statistical mechanics is no longer dependent
on physical hypotheses, but may become merely an
example of statistical inference '
That the present may be an opportune time to
re-examine these questions is due to two recent de-
velopments. Statistical methods are being applied to a
variety of specific phenomena involving irreversible
processes, and the mathematical methods which have
proven successful have not yet been incorporated into
the basic apparatus of statistical mechanics. In addition,
the development of information theory* has been felt
by many people to be of great significance for statistical
mechanics, although the exact way in which it should
be applied has remained obscure. In this connection it

?J. W. Gibbs, Elementary Principles in Statistical Mechawics
(Longmans Green and Company, New York, 1928), Vol. IT of
collected works.

We may note here that although Gibbs (reference 2, Chap.
XV) started his discussion of this question by saying that the
generic definition “seems in accordance with the spirit of the
statistical method,” he concluded it with, “The perfect similarity
of several particles of a system will not in the least interfere with
the identification of a particular particle in one case with a
particular particle in another. The question is one to be decided
In accordance with the requirements of practical convenience in
the discussion of the problems with which we are engaged.”

¢C. E. Shannon, Bell System Tech. J. 27, 379, 623 (1948);
these papers are reprinted in C. E. Shannon and W. Weaver,
The Mathematicad Theory of Communication (University of
Illinois Press, Urbana, 1949).

is essential to note the following. The mere fact that
the same mathematical expression —3_ p, logp, occurs
both in statistical mechanics and in information theory
does not in itself establish any connection between
these fields. This can be done only by finding new
viewpoints from which thermodynamic entropy and
information-theory entropy appear as the same concept.
In this paper we suggest a reinterpretation of statistical
mechanics which accomplishes this, so that information
theory can be applied to the problem of justification of
statistical mechanics. We shall be concerned with the
prediction of equilibrium thermodynamic properties,
by an elementary treatment which involves only the
probabilities assigned to stationary states. Refinements
obtainable by use of the density matrix and discussion
of irreversible processes will be taken up in later papers.

Section 2 defines and establishes some of the ele-
mentary properties of maximum-entropy inference, and
in Secs. 3 and 4 the application to statistical mechanics
is discussed. The mathematical facts concerning maxi-
mization of entropy, as given in Sec. 2, were pointed
out long ago by Gibbs. In the past, however, these
properties were given the status of side remarks not
essential to the theory and not providing in themselves
any justification for the methods of statistical me-
chanics. The feature which was missing has been
supplied only recently by Shannon* in the demon-
stration that the expression for entropy has a deeper
meaning, quite independent of thermodynamics. This
makes possible a reversal of the usual line of reasoning in
statistical mechanics. Previously, one constructed a
theory based on the equations of motion, supplemented
by additional hypotheses of ergodicity, metric transi-
tivity, or equal a priori probabilities, and the identifi-
cation of entropy was made only at the end, by com-
parison of the resulting equations with the laws of
phenomenological thermodynamics. Now, however, we
can take entropy as our starting concept, and the fact
that a probability distribution maximizes the entropy
subject to certain constraints becomes the essential fact
which justifies use of that distribution for inference.

The most important consequence of this reversal of
viewpoint is not, however, the conceptual and mathe-
matical simplification which results. In freeing the
theory from its apparent dependence on physical
hypotheses of the above type, we make it possible to
see statistical mechanics in a much more general light.
Its principles and mathematical methods become
available for treatment of many new physical problems.
Two examples are provided by the derivation of Siegert’s
“pressure ensemble” and treatment of a nuclear polari-
zation effect, in Sec. S.

2. MAXIMUM-ENTROPY ESTIMATES

The quantity x is capable of assuming the discrete
values z, (i=1,2 --- ,n). We are not given the corre-
sponding probabilities p,; all we know is the expectation
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value of the function f(x):

Y@= T pfe). @1

On the basis of this information, what is the expectation
value of the functior z(x)? At first glance, the problem
seems insolublc because the given information is insuffi-
cient to determine the probabilities p,.* Equation (2-1)
and the normalization condition

Zp=1 (-2

would have to be supplemented by (12— 2) more condi-
tions before (g(x)) could be found.

This problem of specification of probabilities in cases
where little or no information is available, is as old as
the theory of probability. Laplace’s “Principle of
Insufficient Reason” was an attempt to supply a
criterion of choice, in which one said that two events
are to be assigned equal probabilities if there is no
reason to think otherwise. However, except in cases
where there is an evident element of symmetry that
clearly renders the events “equally possible,” this
assumption may appear just as arbitrary as any other
that might be made. Furthermore, it has been very
fertile in generating paradoxes in the case of continu-
ously variable random quantities,® since intuitive
notions of “‘equally possible” are altered by a change of
variables.” Since the time of Laplace, this way of
formulating problems has been largely abandoned,
owing to the lack of any constructive principle which
would give us a reason for preferring one probability
distribution over another in cases where both agree
equally well with the available information.

For further discussion of this problem, one must
recognize the fact that probability theory has developed
in two very different directions as regards fundamental
notions. The ‘““objective” school of thought®® regards
the probability of an event as an objective property of
that event, always capable in principle of empirical
measurement by observation of frequency ratios in a
random experiment. In calculating a probability distri-
bution the objectivist behieves that he 1s making

$ Yet this is precisely the problem confronting us in statistical
mechanics, on the basis of information which 1s grossly inadequate
to determine any assignment of probabilities to individual
quantum states, we are asked to estimate the pressure, specific
heat, intensity of magnetization, chemical potentials, etc, of a
macroscopic system. Furthermore, slatislicafmechamcs 1s amaz-
ingly successful in providing accurate estimates of these quantities.
Evidently there must be other reasons for this success, that go
beyond 2 mere correct statistical treatment of the problem as
stated above

¢ The problems associated with the continuous case are funda-
mentally more complicated than those encountered with discrete
random variables, only the discrete case will be considered here

7 For several examples, see E. P. Northrop, Riddles 1n Mathe-
&(:l;c: 8(D Van Nostrand Company, Inc, New York, 1944),

p.

8H Cramer, Mathematical Methods of Statsstscs (Princeton
University Press, Princeton, 1946)

*W Feller, An Introduction to Probabisty Theory and sis
Applications (John Wiley and Sons, Inc, New York, 1950)

predictions which are in principle verifiable in every
detail, just as are those of classical mechanics. The
test of a good objective probability distribution p(z) is:
does it correctly represent the observable fluctuations
of x?

On the other hand, the ‘“subjective” school of
thought®-!! regards probabilities as expressions of
human ignorance; the probability of an event is merely
a formal expression of our expectation that the event
will or did occur, based on whatever information is
available. To the subjectivist, the purpose of proba-
bility theory is to help us in forming plausible conclu-
sions in cases where there is not enough information
available to lead to certain conclusions; thus detailed
verification is not expected. The test of a good subjec-
tive probability distribution is does it correctly repre-
sent our state of knowledge as to the value of z?

Although the theories of subjective and objective
probability are mathematically identical, the concepts
themselves refuse to be united. In the various statistical
problems presented to us by physics, both viewpoints
are required. Needless controversy has resulted from
attempts to uphold one or the other in all cases. The
subjective view is evidently the broader one, since it is
always possible to interpret frequency ratios in this
way ; furthermore, the subjectivist will admit as legiti-
mate objects of inquiry many questions which the
objectivist considers meaningless. The problem posed
at the beginning of this section is of this type, and
therefore in considering it we are necessarily adopting
the subjective point of view.

Just as in applied statistics the crux of a problem is
often the devising of some method of sampling that
avoids bias, our problem is that of finding a probability
assignment which avoids bias, while agreeing with
whatever information is given. The great advance
provided by information theory hes in the d:scovery
that there is a unique, unambiguous criterion for the
“amount of uncertainty” represented by a discrete
probability distribution, which agrees with our intuitive
notions that a broad distribution represents more
uncertainty than does a sharply peaked one, and
satisfies all other conditions which make it reasonable ¢
In Appendix A we sketch Shannon’s proof that the
quantity which s positive, which increases with
increasing uncertainty, and 1s additive for independent
sources of uncertainty, 1s

H(pr-- p)=—KZ,p.1np, (2-3)

where K 1s a positive constant. Since this 1s just the
expression for entropy as found in statistical mechanics,
it will be called the entropy of the probability distri-
bution p,, henceforth we will consider the terms
‘“‘entropy” and “uncertainty” as synonymous.

107 M Keynes, 4 Treatsseon Probabisty (MacMillan Company,
London, 1921).

U H Jeffreys, Theory of Probabilsty (Oxford Umiversity Press,
London, 1939)
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It is now evident how to solve our problem; in making
inferences on the basis of partial information we must
use that probability distribution which has maximum
entropy subject to whatever is known. This is the only
unbiased assignment we can make; to use any other
would amount to arbitrary assumption of information
which by hypothesis we do not have. To maximize
(2-3) subject to the constrants (2-1) and (2-2), one
introduces Lagrangian multipliers A, u, in the usual

way, and obtains the result
P'=e—l—ul(:-). (2—4)

The constants A, u are determined by substituting into
(2-1) and (2-2). The result may be written in the form

a
{(f(x))=——InZ(u), (2-5)
o

A=InZ(n),
Z()=X,* e

will be called the partition function
This may be generalized to any number of functions
f(x): given the averages

Se@N=2 pfr(x),
form the partition function
Z(A\y o A
=X.ep{-Mfilx)+-- FAafnlx)]}). (2-9)

Then the maximum-entropy probability distribution 1s
given by

(2-6)
(1)

where

(2-8)

p=exp{—otAifi(z)+ - +Anfm(x)]}, (2-10)
n which the constants are determined from
a
{fe(x)y=——1InZ, (2-11)
2
Mo=InZ. (2-12)

The entropy of the distribution (2-10) then reduces to
Smax=NoHM{f1(@)+ - FAn(fm(x)), (2-13)

where the constant X in (2-3) has been set equal to
unity. The variance of the distribution of f,(x) is found
to be

2

Bfe=(fR—=foy=

(InZ). (2-18)

N2

In addition to its dependence on x, the function f, may
contain other parameters ai, asz, ---, and it is easily
shown that the maximum-entropy estimates of the
derivatives are given by

af.

dan:

19
=———1InZ.
A, Oay

(2-15)

The principle of maximum entropy may be regarded
as an extension of the principle of insufficient reason
(to which it reduces in case no information is given
except enumeration of the possibilities x,), with the
following essential difference. The maximum-entropy
distribution may be asserted for the positive reason
that it is uniquely determined as the one which is
maximally noncommittal with regard to missing infor-
mation, instead of the negative one that there was no
reason to think otherwise. Thus the concept of entropy
supplies the missing criterion of choice which Laplace
needed to remove the apparent arbitrariness of the
principle of insufficient reason, and in addition it shows
precisely how this principle is to be modified in case
there are reasons for ‘“‘thinking otherwise.”

Mathematically, the maximum-entropy distribution
has the important property that no possibility is
ignored; it assigns positive weight to every situation
that is not absolutely excluded by the given information.
This is quite similar in effect to an ergodic property.
1in this connection it is interesting to note that prior to
the work of Shannon other information measures had
been proposed'*®® and used in statistical inference,
although in a different way than in the present paper.
In particular, the quantity —3 p? has many of the
qualitative properties of Shannon’s information meas-
ure, and in many cases leads to substantially the same
results. However, it is much more difficult to apply in
practice. Conditional maxima of —3_ $2 cannot be
found by a stationary property involving Lagrangian
multipliers, because the distribution which makes this
quantity stationary subject to prescribed averages does
not in general satisfy the condition p,2 0. A much more
important reason for preferring the Shannon measure
is that it is the only one which satisfies the condition of
consistency represented by the composition law (Ap-
pendix A). Therefore one expects that deductions made
from any other information measure, if carried far
enough, will eventually lead to contradictions.

3. APPLICATION TO STATISTICAL MECHANICS

It will be apparent from the equations in the pre-
ceding section that the theory of maximum-entropy
inference is identical in mathematical form with the
rules of calculation provided by statistical mechanics.
Specifically, let the energy levels of a system be

E.(aya, ),

where the external parameters a, may include the
volume, strain tensor applied electric or magnetic
fields, gravitational potential, etc. Then if we know
only the average energy (E), the maximum-entropy
probabilities of the levels E, are given by a special case
of (2-10), which we recognize as the Boltzmann distn-
bution. This observation really completes our derivation

12 R. A Fisher, Proc Cambridge Phil Soc. 22, 700 (1925)
1] L. Doob, Trans Am. Math. Soc 39, 410 (1936).
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of the conventional rules of statistical mechanics as an
example of statistical inference; the identification of
temperature, free energy, etc., proceeds in a familiar
manner, with results summarized as

\=(1/kT), (3-1)
U—-TS=F(T,ana,--)=—kT InZ(T,ar,a3,- - -), (3-2)
oF IS (3-3)
= T == - #:Inp,, s
a
B=kT— InZ. (3-4)
da,

The thermodynamic entropy is identical with the
information-theory entropy of the probability distri-
bution except for the presence of Boltzmann's con-
stant.!* The “forces” B, include pressure, stress tensor,
electric or magnetic moment, etc., and Egs. (3-2),
(3-3), (3-4) then give a complete description of the
thermodynamic properties of the system, in which the
forces are given by special cases of (2-15); ie., as
maximum-entropy estimates of the derivatives
(aE./aﬂg).

In the above relations we have assumed the number of
molecules of each type to be fixed. Now let , be the
number of molecules of type 1, n, the number of type
2, etc. If the », are not known, then a possible “state”
of the system requires a specification of all the n, as well
s a particular energy level E (aa;: - - [mins- - -). If we
are given the expectation values

(E)y (”l)y ("1)v T

then in order to make maximum-entropy inferences,
we need to form, according to (2-9), the partition
function
AT L

Aae- 8= L T exp(—[um+rm,

npngeee t

+---+BE (ax|n.)]},

and the corresponding maximum-entropy distribution
(2-10) is that of the ‘‘quantum-mechanical grand
canonical ensemble;” the Eqgs. (2-11) fixing the con-
stants, are recognized as giving the relation between
the chemical potentials

mo=—kT\,,

WE Schrod St ! Thermod ics
University Press, Cambndge. 1948).

18 Boltzmann's constant may be regarded as a correction factor
necessitated by our custom of measuring temperature in arbitrary
units derived from the freezing and botling points of water Since
the product TS must have the dimensions of cnergy, the units in
which entropy is measured depend on those chosen for tempera-
ture It would be convenient in general arguments to define an
“absolute cgs unit” of temperature such that Boltzmann’s
constant lS made equal to unity Then entropy would become

(as the iderations of Sec 2 indicate it should be),
and the temperature would be equal to twice the average energy
;écr degree of frecdom, 1t is, of course, just the “modulus” © of

ibbs.

(-5

(3-6)
(Cambnidge
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and the (»,):
(”l)= dF/ap,, (3‘7)

where the free-energy function F=—kT\,, and Ao=InZ
is called the “grand potential.”'* Writing out (2-13)
for this case and rearranging, we have the usual
expression
F(T\aaz: - ppz- - +)

=(E)— TS+u(m)+us(n)+---. (3-8)

It is interesting to note the ease with which these
rules of calculation are set up when we make entropy
the primitive concept. Conventional arguments, which
exploit all that is known about the laws of physics, in
particular the constants of the motion, lead to exactly
the same predictions that one obtains directly from
maximizing the entropy. In the light of information
theory, this can be recognized as telling us a simple
but important fact: there 1s nothing in the general laws
of motion that can provide us with any additional infor-
mation about the state of a system beyond wha! we have
obtasned from measurement. This refers to interpretation
of the state of a system at time ¢ on the basis of meas-
urements carried out at time f. For predicting the course
of time-dependent phenomena, knowledge of the equa-
tions of motion is of course needed. By restricting our
attention to the prediction of equilibrium properties as
in the present paper, we are in effect deciding at the
outset that the only type of initial information allowed
will be values of quantities which are observed to be
constant in time. Any prior knowledge that these
quantities would be constant (within macroscopic
experimental error) in consequence of the laws of
physics, is then redundant and cannot help us in
assigning probabilities.

This principle has interesting consequences. Suppose
that a super-mathematician were to discover a new
class of uniform integrals of the motion, hitherto
unsuspected. In view of the importance ascribed to
uniform integrals of the motion in conventional sta-
tistical mechanics, and the assumed nonexistence of
new ones, one might expect that our equations would
be completely changed by this development. This would
not be the case, however, unless we also supplemented
our prediction problem with new experimental data
which provided us with some information as to the
likely values of these new constants. Even if we had a
clear proof that a system is not metrically transitive, we
would still have no rational basis for excludmg any ngmn
of phase space that is allowed by the informati
to us. In its effect on our ultimate predictions, this fact
is equivalent to an ergodic hypothesis, quite independ-
ently of whether physical systems are in fact ergodic.

This shows the great practical convenience of the
subjective point of view. If we were attempting to
establish the probabilities of different states in the

D ter Haar, Elements of Statsstscal Mechanics (Rinehart and
Company, New York, 1954), Chap. 7.
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objective sense, questions of metric transitivity would
be crucial, and unless it could be shown that the system
whs metrically transitive, we would not be able to find
any solution at all. If we are content with the more
modest aim of finding subjective probabilities, metric
transitivity is irrelevant. Nevertheless, the subjective
theory leads to exactly the same predictions that one
has attempted to justify in the objective sense. The
only place where subjective statistical mechanics makes
contact with the laws of physics is in the enumeration
of the different possible, mutually exclusive states in
which the system might be. Unless a new advance in
knowledge affects this enumeration, it cannot alter
the equations which we use for inference.

If the subject were dropped at this point, however,
it would remain very difficult to understand why the
above rules of calculation are so uniformly successful
in predicting the behavior of individual systems. In
stripping the statistical part of the argument to its
bare essentials, we have revealed how little content it
really has; the amount of information available in
practical situations is so minute that it alone could
never suffice for making reliable predictions. Without
further conditions arising from the physical nature of
macroscopic systems, one would expect such great
uncertainty in prediction of quantities such as pressure
that we would have no definite theory which could be
compared with experiments. It might also be questioned
whether it is not the most probable, rather than the
average, value over the maximum-entropy distribution
that should be compared with experiment, since the
average might be the average of two peaks and itself
correspond to an impossible value.

It is well known that the answer to both of these
questions lies in the fact that for systems of very large
number of degrees of freedom, the probability distri-
butions of the usual macroscopic quantities determined
from the equations above, possess a single extremely
sharp peak which includes practically all the “mass” of
the distribution. Thus for all practical purposes average,
most probable, median, or any other type of estimate
are one and the same. It is instructive to see how, in
spite of the small amount of information given, maxi-
mum-entropy estimates of certain functions g(x) can
approach practical certainty because of the way the
possible values of x are distributed. We illustrate this
by a model in which the possible values z, are defined
as follows: let # be a non-negative integer, and ¢ a
small positive number. Then we take
i=1,2,- -

n"tH=¢,

(3-9)

According to this law, the x, increase without limit as
1— o, but become closer together at a rate determined
by n. By choosing e sufficiently small we can make the
density of points z, in the neighborhood of any partic-
ular value of x as high as we please, and therefore for a
continuous function f(x) we can approximate a sum as
closely as we please by an integral taken over a corre-

T1— L, =¢/2,",

sponding range of values of z,
1) [ flalptasas,

where, from (3-9), we have
p(x)=

This approximation is not at all essential,
simplifies the mathematics.

Now consider the problem: (A) Given (x), estimate
#%. Using our general rules, as developed in Sec. II,
we first obtain the partition function

x~/e.

but it

A+

Z0)= f p(:)e‘"dx——i

with A determined from (2-11),

9 nt+1
(D)=——InZ=—o.
oA

Then we find, for the maximum-entropy estimate of 22,
- n+2

NN =2 [ Salaerde=" G (310)
) nt1

Next we invert the problem: (B) Given (2?), estimate
z. The solution is

Z(A)=f-p(x) exp(—As?)dz

’ xin! 1
=m'¢)\u.ﬂ)'

+1

ZX

()= inz=
o

@) =2 j p(2) exp(—Aa)dz
()1

(n+l
B+

The solutions are plotted in Fig. 1 for the case n=1.
The upper “regression line” represents Eq. (3-10), and
the lower one Eq. (3-11). For other values of 7, the
slopes of the regression lines are plotted in Fig. 2. As
n—o, both regression lines approach the line at 45°,
and thus for large #, there is for all practical purposes
a definite functional relationship between (x) and (%),
independently of which one is considered “given,” and
which one “estimated.” Furthermore, as n increases
the distributions become sharper; in problem (A) we
find for the variance of x,

(&)= (@)= (2)/ (n+1).

(. (3-11)

(3-12)
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Similar results hold in this model for the maximum-
entropy estimate of any sufficiently well-behaved
function g(x). If g(x) can be expanded in a power series
in a sufficiently wide region about the point x=(x), we
obtain, using the distribution of problem A above, the
following expressions for the expectation value and

variance of g:
5+o()
A’(g)=(§'(x))—(g(x))’

J 1
=[g'((=)) F—(x) +o(—). (3-14)
n+1 n?

(g(=)=g((=N+g" ((x)) (3-13)

Conversely, a sufficient condition for z to be well
determined by knowledge of (g(z)) is that z be a
sufficiently smooth monotonic function of g. The ap-
parent lack of symmetry, in that reasoning from (x)
to g does not require monotonicity of g(x), is due to
the fact that the distribution of possible values has
been specified in terms of x rather than g.

As n increases, the relative standard deviations of all
sufficiently well-behaved functions go down like n~}, it
1s in this way that definite laws of thermodynamics,
essentially independent of the type of information given,
emerge from a statistical treatment that at first appears
incapable of giving reliable predictions The parameter
n is to be compared with the number of degrees of
freedom of a macroscopic system.

4. SUBJECTIVE AND OBJECTIVE
STATISTICAL MECHANICS

Many of the propositions of statistical mechanics are
capable of two different interpretations. The Max-
wellian distribution of velocities in a gas 1s, on the one
hand, the distribution that can be realized in the
greatest number of ways for a given total energy; on
the other hand, it is a well-verified experimental fact
Fluctuations in quantities such as the density of a gas
or the voltage across a resistor represent on the one
hand the uncertainty of our predictions, on the other
a measurable physical phenomenon. Entropy as a con-
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cept may be regarded as a measure of our degree of
ignorance as to the state of a system; on the other
hand, for equilibrium conditions it is an experimentally
measurable quantity, whose most important properties
were first found empirically. It is this last circumstance
that is most often advanced as an argument against
the subjective interpretation of entropy.

The relation between maximum-entropy inference
and experimental facts may be clarified as follows. We
frankly recognize that the probabilities involved in
prediction based on partial information can have only
a subjective significance, and that the situation cannot
be altered by the device of inventing a fictitious
ensemble, even though this enables us to give the
probabilities a frequency interpretation. One might
then ask how such probabilities could be in any way
relevant to the behavior of actual physical systems A
good answer to tuis is Laplace’s famous remark that
probability theory is nothing but ‘“‘common sense
reduced to calculation.” If we have little or no infor-

V]
tis} Fic 2 Slope of
§ . regression lines as a
Are L function of n
2 K x
B N SR S R
n—»

mation relevant to a certain question, common sense
tells us that no strong conclusions either way are
justified. The same thing must happen in statistical
inference, the appearance of a brod probability distri-
bution signifying the verdict, “no definite conclusion.”
On the other hand, whenever the available information
is sufficient to justify fairly strong opinions, maximum-
entropy inference gives sharp probability distributions
indicating the favored alternative. Thus, the theory
makes definite predictions as lo experimental behavior
only when, and lo the extent thal, il leads to sharp distri-
butions.

When our distributions broaden, the predictions
become indefinite and it becomes less and less meaning-
ful to speak of experimental verification. As the avail-
able information decreases to zero, maximum-entropy
inference (as well as common sense) shades continuously
into nonsense and eventually becomes useless Never-
theless, at each stage it still represents the best that
could have been done with the given information.

Phenomena in which the predictions of statistical
mechanics are well verified experimentally are always
those in which our probability distributions, for the
macroscopic quantities actually measured, have enor-
mously sharp peaks. But the process of maximum-
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entropy inference is one in which we choose the broadest
pessible probability distribution over the microscopic
states, compatible with the initial data. Evidently, such
sharp distributions for macroscopic quantities can
emerge only if it is true that for each of the overwhelm-
ing majority of those states to which appreciable weight
is assigned, we would have the same macroscopic
behavior. We regard this, not merely as an interesting
side remark, but as the essential fact without which
statistical mechanics could have no experimental va-
lidity, and indeed without which matter would have no
definite macroscopic properties, and experimental
physics would be impossible. It is this principle of
“‘macroscopic uniformity”” which provides the objective
content of the calculations, not the probabilities per se.
Because of it, the predictions of the theory are to a
large extent independent of the probability distributions
over microstates. For example, if we choose at random
one out of each 10" of the possible states and arbi-
trarily assign zero probability to all the others, this
would in most cases have no discernible effect on the
macroscopic predictions.

Consider now the case where the theory makes
definite predictions and they are not borne out by
experiment. This situation cannot be explained away
by concluding that the imtial information was not
sufficient to lead to the correct prediction; if that were
the case the theory would not have given a sharp
distribution at all The most reasonable conclusion in
this case 1s that the enumeration of the different
possible states (i.e, the part of the theory which
involves our knowledge of the laws of physics) was not
correctly given Thus, experimental proof that a definite
prediction 1s incorrect grves evidence of the existence of new
laws of physics The failures of classical statistical
mechanics, and their resolution by quantum theory,
provide several examples of this phenomenen.

Although the principle of maximum-entropy inference
appears capable of handling most of the prediction
problems of statistical mechanics, it is to be noted that
prediction is only one of the functions of statistical
mechanics. Equally important is the problem of inter-
pretation; given certain observed behavior of a system,
what conclusions can we draw as to the microscopic
causes of that behavior? To treat this problem and
others like it, a different theory, which we may call
objective statistical mechanics, is needed. Considerable
semantic confusion has resulted from failure to distin-
guish between the prediction and interpretation prob-
lems, and attempting to make a single formalism do
for both.

In the problem of interpretation, one will, of course,
consider the probabilities of different states in the
objective sense; i.e, the probability of state n is the
fraction of the time that the system spends in state #.
It is readily seen that one can never deduce the ob-
jective probabilities of individual states from macro-
scopic measurements. There will be a great number of
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different probability assignments that are indistin-
guishable experimentally; very severe unknown con-
straints on the possible states could exist. We see that,
although it is now a relevant question, metric transi-
tivity is far from necessary, either for justifying the
rules of calculation used in prediction, or for interpreting
observed behavior. Bohm and Schutzer!’ have come to
similar tonclusions on the basis of entirely different
arguments.

5. GENERALIZED STATISTICAL MECHANICS

In conventional statistical mechanics the energy
plays a preferred role among all dynamical quantities
because it is conserved both in the time development
of isolated systems and in the interaction of different
systems. Since, however, the principles of maximum-
entropy inference are independent of any physical
properties, it appears that in subjective statistical
mechanics all measurable quantities may be treated on
the same basis, subject to certain precautions. To
exhibit this equivalence, we return to the general
problem of maximum-entropy inference of Sec. 2, and
consider the effect of a small change in the problem.
Suppose we vary the functions fi(x) whose expectation
values are given, in an arbitrary way; 3f:(z,) may be
specified independently for each value of % and ¢. In
addition we change the expectation values of the fi in
a manner independent of the &fi; ie., there is no
relation between &f.) and (5f:). We thus pass from
one maximum-entropy probability distribution to a
slightly different one, the variations in probabilities §p,
and in the Lagrangian multipliers §\: being determined
from the 5(fi) and &fi(x.) by the relations of Sec. 2.
How does this affect the entropy? The change in the
partition function (2-9) is given by

o=38 InZ= =3 :[A(f)+Nul8f)], ¢ (5-1)
and therefore, using (2-13),
85=2 2 M[&(f)—(4fu)]
=21 MidQs. (5-2)
The quantity
80u=5(f)— (/1) (5-3)

provides a generalization of the notion of infinitesimal
heat supplied to the system, and might be called the
“heat of the kth type.” If fi is the energy, 8Q; is the
heat in the ordinary sense. We see that the Lagrangian
multiplier Ax is the integrating factor for the kth type
of heat, and therefore it is possible to speak of the kth
type of temperature. However, we shall refer to A, as
the quantity “statistically conjugate” to fi, and use
the terms ‘“‘heat” and “temperature” only in their
conventional sense. Up to this point, the theory is
completely symmetrical with respect to all quantities f;.

"D Bohm and W Schutzer, Nuovo cimento, Suppl II, 1004
(1955).
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In all the foregoing discussions, the idea has been
implicit that the (fi) on which we base our probability
distributions represent the results of measurements of
various quantities. If the energy is included among the
fi, the resulting equations are identical with those of
conventional statistical mechanics. However, in practice
a measurement of energy is rarely part of the initial
information available; it is the temperature that is
easily measurable. In order to treat the experimental
measurement of temperature from the present point of
view, it is necessary to consider not only the system o,
under investigation, but also another system ¢.. We
introduce several definitions:

A heat bath is a system o3 such that

(a) The separation of energy levels of o2 is much
smaller than any macroscopically measurable energy
difference, so that the possible energies E;, form, from
the macroscopic point of view, a continuum.

(b) The entropy S of the maximum-entropy proba-
bility distribution for given (Ej) is a definite monotonic
function of (E,); i.e., o: contains no “mechanical
parameters” which can be varied independently of its
energy.

(c) o2 can be placed in interaction with another
system o, in such a way that only energy can be trans-
ferred between them (i.e., no mass, momentum, etc.),
and in the total energy E= E;+ E,+ E,,, the interaction
term E;» is small compared to either E, or Ei. This
state of interaction will be called thermal contact.

A thermometer is a heat-bath o, equipped with a
pointer which reads its average energy. The scale is,
however, calibrated so as to give a number T, called
the lemperature, defined by

1/T=dS,/d(Ey). (54)

In a measurement of temperature, we place the
thermometer in thermal contact with the system o, of
interest. We are now uncertain not only of the state of
the system ¢, but also of the state of the thermometer
a2, and so in making inferences, we must find the
maximum-entropy probability distribution of the total
system Z =003, subject to the available information.
A state of Z is defined by specifying simultaneously a
state 1 of 0, and a state j of o2 to which we assign a
probability p,,, Now however we have an additional
piece of information, of a type not previously con-
sidered ; we know that the interaction of ¢, and o, may
allow transitions to take place between states (i) and
(mn) if the total energy is conserved:

E\ +E,,= E\+Es,.

In the absence of detailed knowledge of the matrix
elements of E,; responsible for these transitions (which
in practice is never available), we have no rational basis
for excluding the possibility of any transition of this
type. Therefore all states of = having a given total
energy must be considered equivalent; the probability
2., in its dependence on energy may contain only
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(Ey+E,,), not E,, and E,, separately.!® Therefore, the
maximum-entropy probability distribution, based on
knowledge of (E;) and the conservation of energy, is
associated with the partition function

Z\)=X exp[—A(Es+Es,)]=Z1(A)Z3(A), (5-5)

which factors into separate partition functions for the
two systems

Zi(N\)=X. exp(—AEy), Z:(\)=1, exp(—\AEz,), (5-6)

with A determined as before by
-]
(Ey=——1InZ;(A); (C)
a
or, solving for A by use of (2-13), we find that the
quantity statistically conjugate to the energy is the
reciprocal temperature:

A=dS:/d(E)=1/T. (58

More generally, this factorization is always possible if
the information available consists of certain properties
of o1 by itself and certain properties of o2 by itself.
The probability distribution then factors into two
independent distributions

B Pu=20.(1)$,(2), (-9
and the total entropy is additive:
S(@)=81+S.. (5-10)

We conclude that the function of the thermometer is
merely to tell us what value of the parameter X should
be used in specifying the probability distribution of
system ¢,. Given this value and the above factorization
property, it is no longer necessary to consider the
properties of the thermometer in detail when incorpo-
rating temperature measurements into our probability
distributions; the mathematical processes used 1n
setting up probability distributions based on energy or
temperature measurements are exactly the same but
only interpreted differently.

It is clear that any quantity which can be inter-
changed between two systems in such a way that the
total amount is conserved, may be used in place of
energy in arguments of the above type, and the funda-
mental symmetry of the theory with respect to such
quantities is preserved. Thus, we may define a ‘“‘volume
bath,” “particle bath,” ‘“momentum bath,” etc., and
the probability distribution which gives the most
unbiased representation of our knowledge of the state
of a system is obtained by the same mathematical
procedure whether the available information consists
of a measurement of (f.) or its statistically conjugate
quantity Ax.

18 This argument admittedly lacks ngor, which can be supplied
only by consideration of phase coherence properties between the

various states by means of the density matrix formahsm. This,
however, leads to the result given.
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We now give two elementary examples of the treat-
ment of problems using this generalized form of sta-
tistical mechanics.

The pressure ensemble.—Consider a gas with energy
levels E,(V) dependent on the volume. If we are given
macroscopic measurements of the energy (E) and the
volume (V), the appropriate partition function is

zo\,,.)=f dvV T, exp[—AE(V)—uV],

where X\, p are Lagrangian multipliers. A short calcu-
lation shows that the pressure is given by

= —QE(V)/aV)=p/\,

so that the quantity statistically conjugate to the
volume is
u=AP=P/kT.

Thus, when the available information consists of either
of the quantities (T(E)), plus either of the quantities
(P/T(V)), the probability distribution which describes
this information, without assuming anything else, is
proportional to

E(V)+PV
exP{ -[ kT ”

This is the distribution of the “pressure ensemble” of
Lewis and Siegert.?

A nuclear polarization effect.—Consider a macroscopic
system which consists of ¢ (a nucleus with spin I), and
o2 (the rest of the system). The nuclear spin is very
loosely coupled to its environment, and they can
exchange angular momentum n such a way that the
total amount is conserved; thus ¢, is an angular mo-
mentum bath On the other hand they cannot exchange
energy, since all states of o) have the same energy.
Suppose we are given the temperature, and in addition
are told that the system o2 is rotating about a certain
axis, which we choose as the z axis, with a macroscopi-
cally measured angular velocity w. Does that provide
any evidence for expecting that the nuclear spin [ is
polarized along the same axis? Let m, be the angular
momentum quantum number of o, and denote by n
all other quantum numbers necessary to specify a
state of o2. Then we form the partition function

Zy(BA)= X exp[—BEa(n,ms)—Ama], (5-12)

(5-11)

where 8=1/kT, and X is determined by

] Bw
(my)=——1InZ,=—, (5-13)
22 ]

where B is the moment of inertia of o2. Then, our most
unbiased guess is that the rotation of the molecular

M. B.Lewisand A J. F Siegert, Phys. Rev. 101, 1227 (1956).
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surroundings should produce on the average a nuclear
polarization {(m:)=(I.), equal to the Brillouin function

a
(m)=——1InZ:(A), (5-14)
oA
where
ZN= é e, (5-15)
me—T
In the case =1, the polarization reduces to
(mi)=—4 tanh(})). (5-16)

If the angular velocity w is small, (5-12) may be ap-
proximated by a power series in A:

Z3(BN) = Z2(8,0)[1—NMma)o+1N¥mst)ot-- - - ],

where ( )o stands for an expectation value in the
nonrotating state. In the absence of a magnetic field
(m2)o=0, #¥m2?)o=kTB, so that (5-13) reduces to

= —tuw/kT. (5-17)

Thus, the predicted polarization is just what would be
produced by a magnetic field of such strength that the
Larmor frequency wz=w. If |A|<1, the result may be
described by a “dragging coefficient”

wI(I+1
( )(mz)-

—_— (5-18
3kTB )

B (my)=

There is every reason to believe that this effect actually
exists, it is closely related to' the Einstein-de Haas
effect. It is especially interesting that it can be predicted
in some detail by a form of statistical mechanics which
does not involve the energy of the spin system, and
makes no reference to the mechanism causing the
polarization. As a numerical example, if a sample of
water is rotated at 36 000 rpm, this should polarize the
protons to the same extent as would a magnetic field
of about 1/7 gauss. This should be accessible to experi-
ment. A straightforward extension of these calculations
would reveal how the effect is modified by nuclear
quadrupole coupling, in the case of higher spin values.

6. CONCLUSION

The essential point in the arguments presented above
is that we accept the von-Neumann—Shannon expres-
sion for entropy, very literally, as a measure of the
amount of uncertainty represented by a probability
distribution; thus entropy becomes the primitive con-
cept with which we work, more fundamental even than
energy. If in addition we reinterpret the prediction
problem of statistical mechanics in the subjective sense,
we can derive the usual relations in a very elementary
way without any consideration of ensembles or appeal
to the usual arguments concerning ergodicity or equal
a priors probabilities. The principles and mathemauical
methods of statistical mechanics are seen to be of much
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more general applicability than conventional arguments
would lead one to suppose. In the problem of prediction,
the maximization of entropy is not an application of a
law of physics, but merely a method of reasoning which
ensures that no unconscious arbitrary assumptions
have been introduced.

APPENDIX A. ENTROPY OF A PROBABILITY
DISTRIBUTION

The variable x can assume the discrete values
(%1, * - Za). Our partial understanding of the processes
which determine the value of x can be represented by
assigning corresponding probabilities (py,---,pa). We
ask, with Shannon,* whether it is possible to find any
quantity H(p;- - - pa) which measures in a unique way
the amount of uncertainty represented by this proba-
bility distribution. It might at first seem very difficult
to specify conditions for such a measure which would
ensure both uniqueness and consistency, to say nothing
of usefulness Accordingly it is a very remarkable fact
that the most elementary conditions of consistency,
amounting really to only one composition law, already
determines the function H(p:---p,) to within a con-
stant factor. The three conditions are:

(1) H 1s a continuous function of the ..

(2) If all p, are equal, the quantity A(n)
=H(1/n,---,1/n) is a monotonic increasing function
of n.

(3) The composition law. Instead of giving the
probabilities of the events (z;: - -z,) directly, we might
group the first & of them together as a single event, and
give its probability wy= (p1+-- -+ ps); then the next
m possibilities are assigned the total probability
W= (Pry1+ - - -+ Prsm), €tc. When this much has been
specified, the amount of uncertainty as to the composite
events is H(w,---w,). Then we give the conditional
probabilities (p1/wy,- - -,px/w1) of the ultimate events
(21+-x), given that the first composite event had
occurred, the conditional probabilities for the second
composite event, and so on. We arrive ultimately at
the same state of knowledge as if the (p:---pa.) had
been given directly, therefore if our information measure
is to be consistent, we must obtain the same ultimate
uncertainty no matter how the choices were broken
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down in this way. Thus, we must have

H(pr - pa)=H(w - -wo)+wH(pr/wy, - -, p1/w1)
FwoH (prsr/wa," - Ppram/w)+ - (A-1)

The weighting factor w, appears in the second term
because the additional uncertainty H(p1/wy,- -+, px w1)
is encountered only with probability w,. For example,
H(1/2,1/3,1/6)=H(1/2, 1/2)+3H(2/3, 1/3).

From condition (1), it is sufficient to determine H
for all rational values

p=n/L n,

with n, integers. But then condition (3) implies that H
is determined already from the symmetrical quantities
A (n). For we can regard a choice of one of the alter-
natives (x,---x,) as a first step in the choice of one of
T n
-l
equally likely alternatives, the second step of which is
also a choice between 7, equally likely alternatives.
As an example, with n=3, we mught choose (n,n2,3)
= (3,4,2). For this case the composition law becomes

342y 3 4 2
H(—,—,—)+—A @) +-AD)+-4(2)=4(9).
999/ 9 9 9

In gem;ral, it could be written
H(?l"'Pn)"'Z- P-A("-)=A(Z-“t)~ (A-D)

In particular, we could choose all #, equal to m, where-
upon (A-2) reduces to

A(m)+A(n)=A(mn). (A-3)
Evidently this is solved by setting
A(n)=K Inn, (A-4)

where, by condition (2), K>0. For a proof that (A-4)
is the only solution of (A-3), we refer the reader to
Shannon’s paper.‘ Substituting (A-4) into (A-2), we
have the desired result,

H(py--pa)=KIn(X n)—K X p,Inn,

=—K3Y,p np. (A-5)



3. INFORMATION THEORY AND
STATISTICAL MECHANICS II (1957)

This sequel had the primary purpose of extending the Maxent formalism to
the density matrix, but it also went much more deeply into conceptual
matters. Its weakness was in trying to do too much. A single article commu-
nicates best if it confines itself to a single topic, but this one touched lightly
on a dozen matters, each of which needs a full article to do it justice. In par-
ticular, all the ramifications of the ‘Information Game’ and its relation to
stochastic theory, could easily fill a book. The article remains, to this day, a
source of unfinished fragments of ideas in need of development.

The factorization property of the density matrix, Eq. (10.18), was at the
time new and startling; for me this consistency in the handling of several
independent pieces of information, in an area undreamt of in the original
Information Theory of Shannon, was important evidence that we were on the
right track. )

The material on array probabilities and the hierarchy of unitary transfor-
mations under which the density matrix is invariant, has implications for
quantum theory beyond statistical mechanics, not yet brought out. In fact,
the remarks of Sections 7—9 do not hint at the great ferment of thought that
went on in the years 1951—1956 when this article was being written. Some of
it is recorded in the Stanford Thesis of Ray Nelson (1956).

The discussion of irreversible processes at the end is incomplete. The inten-
tion was to rectify this with a third article, built in the image of quantum
electrodynamics; but my views on that topic started to change, and there
followed a long search for a better basis for nonequilibrium theory, in which
the partition functional generalization emerged as the only satisfactory
approach. Finally, with the theory of macroscopic sources of Wm. C. Mitchell
(1967), the original plan seemed altogether crude and unnecessary, and the
third article was never written.

The reaction of some readers to my use of the word ‘subjective’ in these
articles, was astonishing. Thereafter I derived a certain amount of malicious
pleasure from sitting back to enjoy the spectacle. There is something so
patently ridiculous in the sight of a grown man recoiling in horror from
something so harmless as a three-syllable word. ‘Subjective’ must surely
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be the most effective scare word yet invented. Yet it was used in what still
seems a valid sense: ‘depending on the observer’.

In Euclidean geometry the coordinates of a point are ‘subjective’ in the
sense that they depend on the orientation of the observer’s coordinate sys-
tem; while the distance between two points is ‘objective’ in the sense that it
is independent of the observer’s orientation. That is all I ever meant by the
term; yet twenty-five years later the shock waves are still arriving.

While this was being written there appeared the article of Denbigh (1981),
attacking my statement that thermodynamic entropy is ‘subjective’ in the
sense that it depends on which macroscopic coordinates we use to define the
thermodynamic state. Of course, he does not deny that entropy does so
depend. As far as I can see, there is no disagreement between us on any ques-
tion of fact, and I am reduced to conjecturing what the word ‘subjective’
must mean to him; evidently it is something too terrible to divulge.
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Treatment of the predictive aspect of statistical mechanics as
a form of statistical inference is extended to the density-matrix
formalism and applied to a discussion of the relation between
nrrcverslblhty and |n(ormatmn loss A principle of ‘statistical
arity” 1s pointed out, according to which the empin-
cally venfiable probabllmes of statistical mechanics necessanly
correspond to incomplete predictions A preliminary discussion 1s
given of the second law of thermodynamics and of a certain class
of irreversible processes, in an approximation equivalent to that
of the semiclassical theory of radiation.
It is shown that a density matrix does not in general contain

all the information about a system that is relevant for predicting
its behavior In the case of a system perturbed by random fluctu-
ating fields, the density matrix cannot satisfy any differential
equation because §(¢) does not depend only on p(¢), but also on
past conditions The ngorous theory involves stochastic equations
in the type p(t) =G(£,0)p(0), where the operator G is a functional
of conditions during the entire interval (0—¢) Therefore a general
theory of irreversible processes cannot be based on differential
rate equations corresponding to time-proportional transition
probabilities However, such equations often represent useful
approximations.

INTRODUCTION

N a previous paper' the prediction of equilibrium
thermodynamic properties was developed as a form
of statistical inference, based on the Shannon? concept
of entropy as an information measure, and the sub-
jective interpretation of probabilities. The guiding prin-
cipleis that the probability distribution over microscopic
states which has maximum entropy subject to whatever
is known, provides the most unbiased representation of
our knowledge of the state of the system. The maxi-
mum-entropy distribution is the broadest one com-
patible with the given information; it assigns positive
weight to every possibility that is not ruled out by
the initial data.

This method of inference is extended in the following
sections (numbered consecutively from those of I), to
the density-matrix formalism, which makes possible the
treatment of time-dependent phenomena. It is then
applied to a discussion of the relation of information
loss and irreversibility, and to a treatment of relaxation
processes in an approximation equivalent to that of
the semiclassical theory of radiation. The more rigorous
treatment, corresponding to quantum electrodynamics,
will be taken up in a later paper.

Our picture of a prediction process is as follows. At
the initial time ¢=0 certain measurements are made.
In practice, these will always represent far less than
the maximum observation which would enable us to
determine a definite pure state. Therefore, we must
have recourse to maximum-entropy inference in order
to represent our degree of knowledge about the system
in a way free of arbitrary assumptions with regard to
missing information.? As time goes on, each state of

'E ’l‘ Jaynes, Phys Rev 106, 620 (1957) Herenafter referred
toasI

2 C E. Shannon, Bell System Tech J 27, 379, 623 (1948)
These papers are reprinted n C E Shannon and W Weaver,
The Mathematical Theory of C. on (Umiversity of Ilinois
Press, Urbana, 1949)

3 A very interesting quotation from ] W Gibbs [Collected
Works (Longmans, Green and Company, New York, 1928), Vol
II, p 180] suggests the same basic idea. In dnscussmg the inter-

the maximum-evtropy distribution changes due to
perturbations that are in general unknown; thus it
““spreads out” into several possibilities, and our initial
knowledge as to the state of the system is gradually
lost. In the ‘“‘semiclassical” approximation considered
here, the final state of affairs is usually one in which the
initial information is completely lost, the density matrix
relaxing into a multiple of the unit matrix. The pre-
diction of thermal equilibrium, in which the limiting
form of the density matrix is that of the Boltzmann
distribution with finite temperature, is found only by
using a better approximation which takes into account
the quantum nature of the surroundings.

It is of the greatest importance to recognize that in
all of this semiclassical theory 1t is possible to maintain
the view that the system is at all times in some definite
but unknown pure state, which changes because of
definite but unknown external forces, the probabilities
represent only our ignorance as to the true state. With
such an interpretation the expression ‘‘irreversible
process” represents a semantic confusion; it is not the
physical process that is irreversible, but rather our
ability to follow it. The second law of thermodynamics
then becomes merely the statement that although our
information as to the state of a system may be lost in a
variety of ways, the only way in which it can be ganed
is by carrying out further measurements. Essential for
this is the fact, analogous to Liouville’s theorem, that
in semiclassical approximation the laws of physics do
not provide any tendency for systems initially m
different states to “accumulate” in certain final states
in preference to others; i.e., the time-development
matrix is unitary.

In opposition to the foregoing views, one may assert

action of a body and a heat-bath, he says “The series of phases
through which the whole system runs in the course of time may
not be entirely determined by the energy, but may depend on
the initial phase in other respects In such cases the ensemble
obtained by the microcanonical dlsmhuuon of the whole system,
which 1ncludes all bie ti 1 1n the
proportion which seems least arbitrary, w lll bener represent
than any one time-ensemble the effect of the bath ”
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that irreversibility is not merely a loss of human
aformation; it is an experimental fact, well recognized
long before the development of statistical mechanics.
Furthermore, the relaxation times calculated below are
not merely measures of the rate at which we lose
information ; they are experimentally measurable quan-
tities expressing the rate at which physical systems
approach equilibrium. Therefore, the probabilities in-
volved in our calculations must be ascribed some
objective meaning independent of human knowledge.

Objections of this type have already been answered
in large part in I, particularly Sec. 4. However, we wish
to indicate briefly how those arguments apply to the
case of time-dependent phenomena. The essential fact
is again the “principle of macroscopic uniformity.” In
the first place, 1t has been shown that the only quantities
for which maximum-entropy inference makes definite
predictions are those for which we obtain sharp proba-
bility distributions. Since maximum-entropy inference
uses the broadest distribution compatible with the
initial data, the predictable properties must be char-
acteristic of the great majority of those states to which
appreciable weight is assigned. Maximum-entropy in-
ference can never lead us astray, for any quantity
which it 1s incapable of predicting will betray that fact
by yielding a broad probability distribution

We can, however, say much more than this. We take
it as self-evident that the features of irreversible
processes which are experimentally reproducible are
precisely those characteristic of most of the states
compatible with the conditions of the experiment
Suppose that maximum-entropy inference based on
knowledge of the experimentally imposed conditions
makes a definite prediction of some phenomenon, and
it is found experimentally that no such phenomenon
exists Then the predicted property is characteristic of
most of the states appearing in the subjective maximum-
entropy distribution, but 1t is not characteristic of most
of the states physically allowed by the experimental
conditions. Consider, on the other hand, the possibihty
that a phenomenon might be found which is experi-
mentally reproducible but rof predictable by maximum-
entropy inference This phenomenon must be character-
istic of most of the states allowed by the experimental
conditions, but it is not characteristic of most of the
states in the maximum-entropy distribution. In either
case, there must exist new physical states, or new con-
siraints on the physically accessible states, not con-
tained in the presently known laws of physics.

In summary, we assert that 1f 1 can be shown that the
class of phenomena predictable by maximum-eniropy 1n-
ference differs in any way from the class of ex perimentally
reproducible phenomena, that fact would demonsirate the
existence of new laws of physics, not presently known.
Assuming that this occurs, and the new laws of physics
are eventually worked out, then maximum-entropy -
ference based on the new laws will again have this

property.

From this we see that adoption of subjective proba-
bilities in no way weakens the theory in its ability to
give reliable and useful results. On the contrary, the
full power of statistical mechanics cannot be seen
until one makes this distinction between its subjective
and objective aspects. Once this is done, its mathe-
matical rules become a methodology for a very general
type of scientific reasoning.

7. REPRESENTATION OF A QUANTUM-
MECHANICAL SYSTEM

We now develop a method of representing any state
of knowledge of a quantum-mechanical system, leaving
aside for the moment any consideration of how this
knowledge might have been obtained Suppose that on
the basis of the information available we conclude that
the system may be in the ‘“‘pure state” ¥, with proba-
bility wy, or it may be 1n the state Y, with probability
w,, etc. The various alternative possibilities ¥, are not
necessarily mutually orthogonal, but each may be
expanded in terms of a complete orthonormal set of
functions u;:

Vo= 2k #iGin. (7.1)

This state of knowledge may be visualized 1n a geo-
metrical fashion by considering a complex function
space, whose dimensionality may be finite or infinite,
in which the state ¥, is represented by a point P, with
coordinates a, k=1, 2, - --. At P,, place a weight w,;
thus the state of knowledge is described by a set (which
may be discrete or continuous) of weighted points,
such a set will be called an array. Since each of the
possible wave functions is normalized to unity,

W= [ oulrar=1,

we have

Tilanl?=1, 1.2

and all points P, are at unit “distance” from the origin,
on the surface of the unit hypersphere.

If each of the possible states y, satisfies the same
Schrodinger equation,

ihy=Hy,

then as time goes on the function space as a whole is
subjected to a unitary transformation, so that all
“distances” and scalar products

W)= fwrvs

remain invariant, and the entire motion of the array
may be visualized as a ‘‘rigid rotation” of the hyper-
sphere. An array with this behavior will be called
simple. A simple array is conceptually somewhat hke a
microcanonical ensemble; it consists of points lying on
a closed surface which are subjected, in consequence of
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the equations of motion, to a measure-preserving
transformation which continually unfolds as ¢ increases.

The transformation with time may be of a different
type; much more interesting is the case where the
initial information is of the form: “The system may be
in state Y, with probability w,, and in this case the
Hamiltonian will be H,.” Then different parts of the
array are subjected to different rotations, and separa-
tions or interpenetrations occur. Such an array will be
called compound. It arises, for example, when we have
a system consisting of two coupled spins in a strong
magnetic field, and we wish to describe our knowledge
of the state of one of them.

Consider a measurable quantity represented by a
Hermitian operator F; in state y, its expectation value is

(F)v= (YFY) =T in 01:8n*F o, (7.3)

where Fi= (#.,Fu;) are the matrix elements of F in
the u, representation. The average of (7.3) over the
array is

(FY=2%, w{F)="Tr(oF), (74)
where

Pen= 2\ W\Bks8n.* = (B184*) (7.5)

is the density matrix. The probability p(f) that a
measurement of F will yield the particular eigenvalue f,
1s also expressible as an expectation value; define the
projection operator O by Oy = (p,¥) ¢, where ¢ is the
corresponding normalized eigenfunction of F: Fo= f¢.
Then

2()={(0)=Tr(p0). (7.6)

From (7.5) 1t is seen that in general an infinite
number of different arrays, representing different mix-
tures of pure states, all lead to the same density matrix
The most general discrete array which leads to a given
density matnx p corresponds to the most general
matrix 4 (not necessarily square) for which

p=AAY, 1.7

the dagger denoting the Hermitian conjugate. An array
is uniquely determined by A4, for from (7.2) and (7.5)
we have

ZilAn|*=w,.

To find another array with the same density matrix,
insert a matrix U:

p=(AU)(U~'4).

This has the form BB! with B=AU if and only if U
is unitary; thus the group of transformations from one
array of n states to another of # states is isomorphic
with the group of unitary transformations in # dimen-
sions. These are not, however, transformations of the
wave functions ¥, but of the prodability-normalized
wave functions

An=arw,

Y, =yal. (7.8)
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If we carry out the unitary transformation

®,=3,vU,, (7.9
and write

®,= ¢1Pi'v

where ¢; is normalized to unity, then the array n
which state ¢, has probability p, leads to the same
density matnix as the original array {y,,w,} Evidently
an array 1s determined uniquely by specifying a set
{¥.} of probability-normalized states.

From an array {¥,} of n states we can construct new
arrays of (n+1) states. Define ¥,.1=0, then new
transformations of the form (7.9) are possible, in which
U is a unitary matrix of dimensionality (n+1). These
generate an nfinite number of new arrays for which,
in general, all (n+1) states &, are different from each
other and from zero. The inverse process of confracting
an array to one of fewer states is possible if any linear
combination of the y, vanishes.

An array of n states will be called minimal with
respect to its density matrix p if no array exists which
leads to p with fewer than n states. The states of an
array are linearly independent if and only if the array
is minimal.

In general, a given density matrix can be represented
m only one way as a mixture of orthogonal states
Since p 1s Hermitian, there always exists a unitary
matrix U which diagonalizes it,

d=UplU-1,

With dma=dmdmn. If the eigenvalues d,, of p are non-
degenerate, only one such matrnix U exists The basis
functions of the new representation m which p 1s
diagonal,

(7 10)

tm=2_k Uk, (7.11)

are the orthogonal states which, when mived with
probabulities d.,, lead to the given density matrix

Suppose we have a density matrx p and a state ¢
which is considered a ‘“‘candidate” for inclusion in a
minimal array which will lead to p What 1s the proba-
bility p4() which should be assigned to ¢ in such an
array? To answer this, we first construct the orthogonal
array {vm,dm), and expand

¢=2m tmCnm

If this 1s to be equivalent to one of the columns of
(7.9), it is necessary that

(712)

This 15 uniquely determined by the density matrix and
the state ¢, regardless of which other states ¢, might
also appear 1n the array The array probability p4 is
n general different from the measurement probabihity
(7.6), which 1s equal to

Pu(0)=2Lmdm|Cnl® (7.13)
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It is readily shown that pu> p,, with equality if and
oply if ¢ is an eigenstate of p.

The representation in terms of orthogonal states is
important in connection with the entropy which meas-
ures our knowledge of the system It might be thought
that for an array {¥,,%,} we could define an entropy by

Sa=—2 . w, e, (7.14)

This, however, would not be satisfactory because the
w, are not in general the probabilities of mutually
exclusive events. According to quantum mechanics, if
the state is known to be y,, then the probability of
finding it upon measurement to be y,, is |(¥,¥.)]%
Thus, the probabilities , refer to independent, mutu-
ally exclusive events only when the states ¥, of the
array are orthogonal to each other, and only in this
case is the expression (7.14) for entropy satisfactory.
This array of orthogonal states has another important
properly; consider the totality of all possible arrays
which lead to a given density matrix, and the corre-
sponding expressions (7.14). The array for which (7.14)
attains its minimum value is the orthogonal one, which
therefore provides, in the sense of information content,
the most economical description of the freedom of
choice implied by a density matrnix (Appendix A).

For the orthogonal array, the w, in (7.14) are
identical with the eigenvalues d, of the density matrix,
so for numerical calculation of entropy given p, one
would find the eigenvalues and use the formula

S=-Y.d.Ind.. (1.15)
In general discussions 1t is convenient to express this
= —Tr(p Inp). (7.16)

Since this could also be written as S=—(Inp), 1t is
the natural extension to quantum mechamcs of the
Gibbs definition of entropy.

Equation (7.16) assigns zero entropy to any pure
state, whether stationary or not. It has been criticized
on the grounds that according to the Schrodinger
equation of motion it would be constant in time, and
thus one could not account for the second law of
thermodynamics; this has led some authors*® to propose
instead the expression

S=—=3 1 prs Inpss, (717)

which involves only diagonal elements of p in the
energy representation, for which a “quantum-mechan-
ical spreading’ phenomenon can be demonstrated. It
will be shown in detail below how the objections to
(7.16) may be answered. With regard to (7.17), we
note that it does not assign the same entropy to all
pure states, but von Neumann® has shown that any

4R C. Tolman, The Principles of Statistical Mechanscs (Claren-
don Press, Oxford, 1938)

*D ter Haar, Flements of Statsstscal Alechanics (Rinehart and
Company, Inc, New York, 1954)

¢J. von Neumann, Mathematische Grundlugen der Quanten-
mechanik (Dover Pubhcations, New York, 1943), Chap V
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pure state may be converted reversibly and adiabati-
cally into any other pure state.

Since, according to (7.4), knowledge of p enables one
to calculate the expectation value of any Hermitian
operator, it is tempting to conclude that the density
matrix contains all of our information as to the objective
state of the system. Thus, although many different
arrays would all lead to the same density matrix, the
differences between them would be considered physi-
cally meaningless, only their second moments (7.5)
corresponding to any physical predictions. The concept
of any array as something separate and distinct from a
density matrix might then appear superfluous. That
this is not the case, however, will be seen in Sec. 13
below, where it is shown that the resolution of a
compound array into independent simple arrays may
represent useful information which cannot be expressed
in terms of the resultant density matrix.

8. SUFFICIENCY AND COMPLETENESS OF
THE DENSITY MATRIX

If a density matrix provides a definite probability
assignment for each possible outcome of a certain
experiment, in a way that makes full use of all of the
available relevant information, we shall say that p is
sufficient for that experiment. A density matrix that is
sufficient for all conceivable experiments on a system
will be called complete for that system. Strictly speaking,
we should always describe a density matrix as sufficient
or complete relative to certain initial information.

The assertion that complete density matrices exist
involves several assumptions, in particular that all
measurable quantities may be represented by Hermitian
operators, and that all experimental measurements may
be expressed in terms of expectation values. We do not
wish to go into these questions, but only to note the
following. Even if it be granted that it is always possible
in principle to operate with a complete density matrix,
it would often be extremely awkward and inconvenient
to do so In practice, because it would require us to
consider the density matrix and dynamical quantities
as operators 1n a much larger function space than we
wish to use.

To see this by a simple example, consider a “molecular
beam” experiment in which particles of spin } are
prepared by apparatus 4, then sent into a detection
system B which determines whether the spin is up or
down with respect to some chosen z axis. Assume, for
simplicity, that only one particle at a time is processed
in this way. A particle thus has, for our purposes, two
possible states %, and u_; our knowledge of the nature
of the apparatus 4 could be incorporated into an array
and its corresponding (2X2) density matrix, from
which we can calculate the probability of finding the
spin aligned in any particular direction. Thus, the
(2X2) density matrix adequately represents our state
of knowledge as to the outcome of any spin measure-
ment made on a single particle; i.e, it is a sufficient
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statistic for any such measurement. The question is,
does it also adequately represent our knowledge of the
ensemble of particles (assuming that the apparatus 4 is
““stationary,” so that each particle, considered by itself,
would be represented by the same density matrix).
More specifically, is it possible for apparatus A to
produce a physical situation which can be measured in
our detection apparatus, but for which the (2X2)
density matrix gives no probability assignment? One
such property is easily found; the detecting apparatus
tells us not only the fraction of spins aligned along the
+z axis, but also the order in which spin up and spin
down occurred, so that correlations between spin states
of successive particles can be observed. Now all possible
such correlations can be described only by considering
the entire ensemble of NV particles as a single quantum-
mechanical system with 2¥ possible states, and therefore
a density matrix which is a sufficient statistic for all
conceivable measurements on the spin system must
have 2% rows and columns.” This, however, would
completely destroy the simplicity of the theory, and
in practice we would probably prefer to retain the
original (2X2) density matrix for predicting the results
of measurements on single particles, while recognizing
its insufficiency for other measurements which the same
apparatus could perform.

9. SUBJECTIVE AND OBJECTIVE
INTERPRETATIONS

The topic of Sec. 8 is closely related to some of the
most fundamental questions in physics. According to
quantum mechanics, if a system is known to be in state
¥., then the probability that measurement of the
quantity F will result in the particular eigenvalue f, is
{0),, where O is the projection operator of Eq. (7.6).
Are we to interpret this probability in the objective or
subjective sense, i e., are the probability statements of
quantum mechanics expressions of empirically verifiable
laws of physics or merely expressions of our incomplete
ability to predict, whether due to a defect in the theory
or to incomplete initial information? The current
interpretation of quantum mechanics favors the first
view, but it is important to note that the whole content
of the theory depends critically on just what we mean
by “probability.” In calling a probability objective,
we do not mean that it is necessarily “correct,” but
only that a conceivable experiment exists by which its
correctness or incorrectness could be empirically deter-
mined. In calling a probability assignment subjective,
we mean that it is not a physical property of any
system, but only a means of describing our information
about the system; therefore it is meaningless to speak
of verifying 1t empirically.

Is there any operational meaning to the statement

"This 1s a very conservative statement It would be more
reahstic to assume that all the coordinates of apparatus A must
also be included in the space upon which this complete density
matnx operates
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that the probabilities of quantum mechanics are objec-
tive? If so, we should be able to devise an experiment
which will measure these probabilities, for example the
probability that a measurement of the quantity F will
give the result f. In order to do this, we will need to
repeat a measurement of F an indefinitely large number
N of times, with systems that have all been prepared
in exactly the same way, and record the fraction of
cases in which the particular result f was obtained.
Which density matrix should we use to predict the result
of this experiment? In principle, we should always use
the one which contains the greatest amount of infor-
mation about the ensemble of N systems; i.e., which is
complete. The apparatus which prepares them may be
producing correlations, thus the ensemble of N systems
should be considered as a single large quantum-
mechanical system. The probability statements which
come from the cheory are then of the form, “the
probability that system 1 will yield the result f,, and
system 2 will yield the value f;, ---, is p(fi--- fn).”
But then measurement of F in each of the N small
systems 1s not N repetitions of an experiment; it is
only a single experiment from the standpoint of the
total system Clearly, no probability assignment can
be verified by a single measurement. Note that the
question whether correlations were in fact present
between different systems is irrelevant to the question
of principle involved; even if the distribution factors

p(f - ) =pr(f)pa(f2)-- - pn(fn)  (90)

it remains a joint distribution, not one for a single
system. We can, of course, always obtain the single-
system probabilities by summation:

n(N= T p(fifa--1v), 9.2)
f1 N

but p1(f1) now refers specifically to system 1, and the
results of measurements on the other systems are
irrelevant to the question whether p,(fi) was verified.
We cannot avoid the difficulty by repeating all this M
times, because for that experiment the complete density
matrix would refer to all VM systems, and we would be
in exactly the same situation. Thus, the probability
statements obtained from a complete density matrix
cannot be verified.

In practice, of course, one will never bother with
such considerations, but will find a density matrix
which operates only on the space of a single system and
incorporates as much information as possible subject
to that limitation. The probability (f) computed from
this density matrix is presumably equal to p,(f) in
(9 2). If the result f is obtained approximately Np(f)
times, one says that the predictions have been verified,
and p(f) is correct in an objective sense. This result is
obtained, however, only by renouncing the possibility
of predicting any mutual properties of different systems,
and the record of the experiment contains some infor-
mation about those mutual properties.
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Thus, we enunciate as a general principle: Empirical
verifiability of a probability asssignment, and compleleness
of the densily matrix from whick the probabilities were
oblained, are incompatible conditrons Whenever we use
a density matrix whose probabilities are verifiable by
certain measurements, we necessarily renounce the
possibility of predicting the results of other measure-
ments which can be made on the same apparatus.

This principle of “‘statistical complementarity’ 1s not
restricted to quantum mechanics, but holds in any
application of probabihty theory, in a very funda-
mental sense no experiment can ever be repeated, and
the most comprehensive probability assignments are
necessarily incapable of verification

If an operational viewpoint®='% 1s to be upheld con-
sistently, 1t appears that the probabilities computed
from<a completc density matrix must be interpreted in
the subjective sense Smce this complete density matrix
might be a projection operator corresponding to a pure
state, one 1s led very close to the views of Einstemn'
and Bohm' as to the interpretation of quantum
mechanics

Entirely different considerations suggest the same
conclusion. A density matrix represents a fusion of two
ifferent statistical aspects; those inherent in a pure
state and those representing our uncertainty as to
which pure state 1s present. If the former probabilities
are mterpreted in the objective sense, while the latter
are clearly subjective, we have a very puzzling situation
Many different arrays, representing different combi-
nations of subjective and objective aspects, all lead to
the same density matrix, and thus to the same predic-
tions Ilowever, if the statement, “‘only certain specific
aspects of the probabihties are objective,” 1s to have
any operational meaning, we must demand that some
evperiment he produced which will distinguish between
these arrays

10. MAXIMUM-ENTROPY INFERENCE

The methods of maximum-entropy inference de-
scribed in I may be generalized immediately to the
density-matrix formalism. Suppose we are given the
expectation values of the operators F,- - - F,; then the
density matrix which represents the most unbiased
picture of the state of the system on the basis of this
much information 1s the one which maximizes the
entropy subject to these constraints. As bcioie, this 1s
accomplished by finding the density matrix which

*P W Bndgman, The Logic of odern Plysics (The Mac-
Mlllnn Compnn) New York, 1927)

‘PAM I)nrnc The I’nnnples of Quantum Mechanics (Claren-
don Press, Oxford, 1935), second edition, Chap I

1 Hans Reichenbach. Plulosoplnc Foundatrons of Quantum
Mechanics (University of Califormia Press, Berkeley, 1946)

W Albert Fanstein Pinlosopher-Scientsst, cdlted by P A Schilpp
ék:br.u! of Living Phiosophers, Inc, Evanston, 1919), pp

D Bohm, Phys Rev 85, 166, 180 (1952), 89, 458 (1953)
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unconditionally maximizes
S=M(F1)= -+ - =An(Fam), (10.1)

in which the A, are Lagrangian multipliers The result
may be described in terms of the partition function

Z(\- Am)=Trlexp(=MF1—- - =A\aFm)], (10.2)
with the A, determined by
Fo= -i InZ. (10.3)
N
The maximum-entropy density matrix is then
p=exp[ Aol =MF1— -+ —AnFnm] (10.4)
which is correctly normalized (Trp=1) by setting
Xo=InZ, (10.5)
and the corresponding entropy becomes
S=hotA(Fi)+ - - - +An{Fom)- (10.6)

Use of (105) and (10.6) enables us to solve (10.3) for
the A

Ae=08S/0(Fy). (10.7)

If the operator F, contains parameters a,, we find as
before that the maximum-entropy estimates of the
derivatives are given by

oF 1 9
(Cy=--—mz

a(n Xk 00.
For an infinitesimal change in the problem, A 1s the
integrating factor for the kth analog of infinitesimal

heat;
85=2"k \idQs,

3Qr=58(F1)—(oF ). (10.10)

All of these relations except (10.2) and (10.4) are
formally identical with those found in I, the F, now
being interpreted as matrices instead of functions of a
discrete variable x.

The definitions of heat bath and thermometer given
in I remain applicable, and the discussion of experi-
mental measurement of temperature proceeds as before
with the difference that maximization of entropy of the
combined system now automatically takes care of the
question of phase relations. We have two systems o;
and o2, with complete orthonormal basis functions
u,(1), v:(2), respectively. A state ¢, of the combined
system o=0,X ¢ is then some linear combination

¥.(1,2) =Zh 1 (1)24(2)@nis.

(10 8)

(10.9)
with

If ¢, occurs with probability w,, the density matrix is

(nk|p|n'E) =X, 0,0a0s8nrir* = (Gns@uar®).
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An operator G(1,2) has matrix elements
IRy [ PROIICE (R PROINCHE

and its expectation value is

(Q)=Tr(pGQ) = ;“'(nk |p|n' k) ('R | G| nk).

An operator F; which operates only on the coordinates
of system 1 1s represented 1n the space of the combined
system by a direct product matnx,® §i=F,X1, with
matrix elements

(nk| Talw'k') = (n| Fr|n))8us.

Similarly, for an operator F, of system 2, we obtain
B2=1XF;, and

(nk| B2l #'E)=bnn (k| Fo| k).

Consider, as before, the system of interest ¢, and a
thermometer o,. Let their Hamiltonians be H,, H,,
respectively. In the function space of the combined
system o, these Hamiltonians are represented by

Si=H,X1, $9=1XH,. (10 11)

The available information now consists of a given
(measured) value of (I;), and the knowledge that
energy may be transferred between oy and o7 1n such a
way that the total amount 1s conserved. In practice
we never have detailed knowledge of the weak-inter-
action Hamiltoman ), of a type that would tell us
which transitions may in fact take place and which
will not. Therefore we have no rational basis for
excluding the possibility of any transition between
states of ¢ with a given total energy, and the most
unbiased representation of our state of knowledge must
treat all such states as equivalent, in their dependence
on energy. Any other procedure would amount to
arbitrarily favoring some states at the expense of others,
in a way not warranted by any of the available infor-
mation. Therefore only the total energy may appear in
our density matrnx, and we have to find that matnx
which maximizes

S—MO1+92), (10.12)

subject to the observed value of (fI;) The matnx
involved 1n (10 2) and (10 4) now factors into a direct
product:

exp[ =M (D1+ D) ]= ()X (), (10.13)
so that the partition function reduces to
ZN)=2Z:(N)Z2(A), (10.14)
with
Zi(\)="Tr exp(—\H),),
1 p( ) (10 15)

Z:(A\)=Trexp(—AH>).

3P R Halmos, Finile Dimenstonal Vector Spuaces (Princeton
University Press, P'rinceton, 1948), Appendix 11
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Similarly, the density matrix (10.4) is the direct product

_ [e\’p( -)‘H,)]X [exp(—)\H,)
Lz 2,0\

]=m><pz. (10.16)

Because of the absence of correlations between the two
systems, it is true once again that the function of the
thermometer is merely to tell us the value of the
parameter A in py, and the properties of the thermometer
need not be considered in detail when incorporating
temperature measurements into our theory.

An important feature of this theory is that measure-
ment of averages of several noncommuting quantities
may be treated simultaneously without interference.
Consider, for example, three interacting systems c=a,
Xo2Xa3, where oy 1s the system of interest, and o2 is 2
thermometer. Some physical quantity F, represented
in the space of o, by the operator Fy, and in o3 by F3,
can be transferred between ¢; and o3 in such a way that
the total amount is conserved. F, could stand for
angular momentum, volume, etc., and need not com-
mute with H;. In addition suppose that a quantity
(Gy) 1s measured directly in o1, where Gi does not
necessarily commute with either H, or F; Now the
available information consists of the measured values
of (G1), (H2), and (F3), plus the conservation laws of ¥
and H The various operators are now represcnted in
the space o by direct product matrices as follows-

33|=111X1X1, T\,=1"|X1>(1,
-\.‘z= lezX l, R;= !>< 1 XF;,
®,=G X 1X1,
and the density matrin that provides the most unbiased

picture of the state of the total system is the one that
maximizes

S—AOH ) =Rt day—w(Gh).  (10.17)
We now find the factorization property
exp[ — A1+ 92) —u(dr1+ 85— v®]
=[e- b= )X [¢7]X [e#F3],  (10.18)

so that once again the partition function and density
matnix factor into independent parts for the three
systems

Z(\ ) =Z1(Aup)Z2(N)Z3(w),

and the pieces of information obtained from o2, 5 are
transferred into p, without nterference.

p=p1Xp2Xps,

11. INFORMATION LOSS AND IRREVERSIBILITY

In classical statistical mechanics the appearance of
irreversibiity can always be traced either to the
replacement of a fine-grained probability distribution
by a coarse-grained one, or to a projection of a joint
probability distribution of two systems onto the sub-
space of one of them. Both processes amount to a loss,
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whether voluntary or not, of some of the information
which is in principle available. The former is often
justified by the very persuasive argument that the
mathematics would otherwise be too comphcated. But
mathematical difficulties, however great, have no
bearing on matters of principle, and this way of looking
at it causes one to lose sight of a much more important
positive reason for discarding information. After suth-
cient “stirring” has occurred, two different fine-grained
distributions will lead to predictions that are macro-
scopically the same, differing only 1n microscopic
details. Thus, even if we were good enough mathema-
ticians to deal with a fine-grained distribution, its
replacement by a coarse-grained one would still be the
elegant method of treating the prediction of macro-
scopic properties, because in this way one ehminates
irrelevant details at an early stage of the calculation.

In quantum mechanics, as in classical theory, the
increase in entropy charactenistic of irreversibihity
always signifies, and is identical with, a loss of infor-
mation. It 1s important to reahize that the tendency of
entropy to ncrease 1s not a consequence of the laws of
physics as such, for the motion of points of an array 1s
a unitary transformation prescribed by the Schrodinger
equation in a manner just as ‘‘deterministic” as 1s the
motion of phase points 1n classical theory. An entropy
increase may occur unavoidably, due to our incomplete
knowledge of the forces acting on a system, or 1t may
be an entirely voluntary act on our part. In the latter
case, an entropy increase is the means by which we
simphfy a prediction problem by discarding parts of
the available information which are irrelevant, or nearly
so, for the particular predictions desired. It 1s very
similar to the statistician’s practice of “finding a suffi-
cient statistic.” The price we must pay for this simplifi-
cation 1s that the possibility of predicting other proper-
ties with the resulting equations 1s thereby lost

The natural way of classifying theories of irreversible
processes 1s accordmg to the mechanism by which
mformation 1s lost or discarded In most of the existing
theories we find that this consists of the repetition, at
regular ntervals, of one of the following procedures.
Suppose we wish to find the expectation value of the
quantity F;n the representation in which F 1s diagonal
it reduces to

(F)=Tr(pF)=2n prnFnn. (11.1)

Since only the diagonal elements of p contnibute, (F)
can be calculated as well by using the density matrix
p', where

Pk’ = Pnnbns (112)

The process of replacing p by p" will be called removing
coherences, and 1s clearly permissible whenever all the
quantities which we wish to calculate are diagonal
simultaneously It 1s readily venlied that removal ot
coherences represents loss of information: S(p’) > S(p),
with equality if and only if p=p'.
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The second procedure by which information may be
discarded 1s an invanant operation, exactly analogous
to its classical counterpart. Consider two interacting
systems o; and ¢, As already noted, an operator F,
which operates only on the variables of o, 1s represented
in the space of the combined system ¢=01Xo2 by the
direct product matrix {;=F;X1. The expectation
value of any such operator reduces to a trace involving
only the space of o;:

(F)=Tr(pF1)="Tr(pF1), (11.3)

where p; 1s the “projection” of the complete density
matrix p onto the subspace o, with matrix elements

(nlpi|n") =2 u(nk|p|n'k). (114)
Similarly, we can project p onto a2, with the result
(klp2| k') =L n(nk|p| k')

and for any operator I'; of system 2 we can define
2= 1XF,, whereupon (Fz)="Tr(p{2)=Tr(psF2).

In the projection onto ¢, the parts of p that are
summed out contain information about the state of
system o, and about correlations between possible
states of ¢; and o2, both of which are irrelevant for
predicting the average of F,

The operation of removing correlations consists of
replacing p by the direct product piXpz, with matrix
elements

(nk|p1Xpo|n'k')= (n]p1|n) (k] p| k'), (11.5)

and the expectation value of any operator composed
additively of terms which operate on ¢, alone or on o
alone, 1s found as well from (p;Xp2) as from p. The
removal of correlations also involves a loss of informa-
tion, the entropy after removal of correlations is addi-
tive and never less than the original entropy .

S(p1Xp2)=S(p1)+S(p2) 2 S(p),

with equality if and only if p=p1Xp2

These remarks generahize in an obvious way to the
case of any number of subsystems, to remove correla-
tions from a density matrix p operating on the space of
three systems o=0;Xd2X g3, project 1t onto each of the
a,,and replace p by the direct product of the projections.

(11.6)

p—p1Xp2Xps.

If an operator F» operates only on the space of o3, its
matrnix representation in the o space and expectation
value are given by

A=1XF:X1, (Fy=Tr(p3)=Tr(p:F>)

Most treatments of irreversible processes in the past
have been based on the removal of coherences in the
energy representation, and the resulting concept of
“‘occupation numbers” Vi, proportional to the diagonal
elements py in this representation One then introduces
a transition probability per umit time Ax,, which usually,
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but not always,!* conforms to the assumption of
“microscopic reversibility” Axn=X\as, and equations of
the form

AN /dt=3 m(NemNm—AmiN ) (11.7)

are the starting point of the theory. The existence of
time-proportional transition probabilities is not, how-
ever, a general consequence of quantum mechanics, but
involves assumptions about the type of perturbing
forces responsible for the transitions, and mathematical
approximations which represent a loss of information.
That information is lost somewhere is seen from the fact
the entropy, as calculated from (11.7), is in general an
increasing function of the time, while that obtained from
rigorous integration of a Schrodinger equation is neces-
sarily constant The nature of the information-discard-
ing process in (11.7), as well as a clear statement of the
type of physical problems to which equations of this
form are applicable, can be appreciated only by starting
from a more fundamental viewpoint.

12. SUBJECTIVE H THEOREM

In the remainder of this paper, we consider a certain
approximation, which might be called the ‘“‘semi-
classical theory of irreversible processes,” since 1t is
related to a complete theory in the same way that the
semiclassical theory of radiation'® 1s related to quantum
electrodynamics. The system of interest o is treated as
a quantum-mechanical system, but outside influences
are treated classically, their effect on s being represented
by perturbing terms in the Hamiltonian which are
considered definite if unknown functions of the time.
It 1s of interest to see which aspects of irreversible
processes are found in this approximation, and which
ones depend essentially on the quantum nature of the
surroundings.

Let the Hamiltonian of the system be

H=Ho+V (), (12.1)

where H, is stationary and defines the “energy levels”
of the system, and ¥V (¢) represents the perturbing effect
of the environment. Suppose that at time ¢ we are
given information which leads (by maximum-entropy
inference, if needed) to the density matrix p(¢). At
other times, the effect of the Hamiltonian (12.1) is to
carry out a unitary transformation

p)=UW)p (YU L)
=UW U Y), (122)

w}‘xere the time-development matrix U(4,') 1s deter-
mined from the Schrédinger equation (with z=1)

a
—UH=HOUL), (123)

] S Thomsen, Phys Rev 91, 1263 (1953)

¥R T Cox, Statistical Vechancs of Irreversible Change (Johns
Hopkins Press, Baltimore, 1955)

L I Schiff, Quantum Mechanics (McGraw Hill Book Com-
pany, Inc, New York, 1949)
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with U(t,t)=1. The entropy
S(#)=—Trlp(1) Inp(9)] (12.9)

is unchanged by a unitary transformation, and therefore
remains constant regardless of the magnitude or time
variations of V (¢). Consider, however, the circumstance
that V(¢) may not be known with certainty; during
the time interval (¢'—¢) it may have been the operator
VW (1) with probability P, or it may have been V® ()
with probability P, - - -, etc. Then our state of knowl-
edge of the system must be represented by a compound
array, which is a fusion of several simple arrays corre-
sponding to the different V(@ (¢), and which are subject
to different rotations. At time ¢, the density matrix
will be the average of the matrices that would result
from each of the possible interactions:

()= a PU@ (YU (LY,  (12.5)

and the transformation p(¢)—p(¢) is no longer unitary.
We might also have a continuous distribution of
unknown interactions, and therefore an integration
over a, or more generally there might be several
parameters (a;---a,) in V(¢), with probability distri-
bution P(a:- - -as)da; - -da,. We will understand the
notation in (12.5) to include such possibilities. Our
uncertainty as to V(¢) will be reflected in increased
uncertainty, as measured by the entropy, mn our
knowledge of the state of system o. It is shown m
Appendix A that, in case a 1s discrete, there is an upper
limit to this increase, given by the following mequality :

SNSSHLSE)+S(Pa), (12.6)
where
S(Pa)=~X.P.InP, (127)

Equation (12 6) has an evident intuitive content,
the entropy of a system is a measure of our uncertainty
as to its true state, and by applying an unknown signal
to it, this uncertainty will increase, but not by more
than our uncertainty as to the signal The maximum
increase in entropy can occur only in the following
rather exceptional circumstances. The totality of all
possible states of the system forms a function space S.
Suppose that our initial state of knowledge 1s that the
system is in a certain subspace So of § If the pertur-
bation V')(¢) 1s applied, this 1s transformed into some
other subspace

Sa=U8,,

and the maximum increase of entropy can occur
only if the different subspaces S. are disjoint, 1e,
every state m S, must be orthogonal to every state
in 84 1f a#“B From this we see two reasons why the
increase 1s usually less than the maximum possible
amount, (a) 1t may be that even though V(= (r) and
V® (1) are different functions, they nevertheless produce
the same, or nearly the same, net transformation U in
time ({—{), so that our knowledge of the final state
does not suffer from the uncertainty in the perturbation,
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vin
(a)

S(o) ¢ S(Pa)

t—>

Fic 1 Tllustration of the subjective H theorem
(a) The array (b) The resulting entropy curve

and (b) our initial uncertainty may be so great that no
such disjoint subspaces exist regardless of the nature
of the V(). The extreme case 1s that of complete
initial ignorance; p(!') is a multiple of the unit matrix.
Then, no matter what is done to the system we cannot
acquire any additional uncertainty, and the entropy
does not change at all.

Equation (12 6) corresponds closely to relations that
have been used to demonstrate the second law of
thermodynamics in the past, and it will be called the
“subjective H theorem.” The inequalties hold for all
times, positive or negative, given the density matrix at
time ¢'= 0, our uncertainty as to the perturbing signal
V(1) affects our knowledge of the past state of the
system just as much as it does the future state. We
cannot conclude from (12.6) that ‘“‘entropy always
increases.” It may fluctuate up and down 1n any way
as long as 1t remains within the prescribed bounds On
the other hand, 1t is true without exceptron that the
entropy can at no time be less than its value at the
instant ¢’ for which the density matrix was given

Figure 1 represents an attempt to illustrate several
of the foregoing remarks by picturing the array. The
diagram represents a portion of the surface of the umt
hypersphere upon which all points of the array lie
The mterior of a circle represents a certain subspace
8,(f) which moves in accordance with the Schrodinger
equation. Separated circles represent disjoint subspaces,
while if two circles overlap, the subspaces have a
certain linear manifold of states in common. The infor-
mation given to us at time =0 locates the system
somewhere in the subspace §; The two possible inter-
acuons V@ (¢f), V@ (t) would induce rigid rotations of
the hypersphere which would carry S along two differ-
ent trajectories as shown. The lower part of the diagram
represents the resulting entropy curve S(¢). If the
subspaces §;, §; coincide at some time ¢, then S(f)

" The representation 1s necessarily very crude, since a con-
tinuous 1:1 mapping of a regon of high dimensionahty onto a
region of lower d ionahity 1s topologically impossible Never-
theless such diagrams represent enough of the truth to be very
helpful, and there seems to be httle danger of drawing funda-
mentally incorrect conclusions from them
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=5(0). At times when they are completely separated,
we have S(1)=S(0)+S(P.), and in case of partial
overlapping the entropy assumes intermediate values.

13. INFORMATION GAME

A typical process by which the subjective H theorem
can lead to a continual increase of entropy, and which
illustrates the essential nature of irreversibility, may
be described in terms of a game. We have a sequence of
observers 0,, 03, 0, - -+, who play as follows. At the
beginning of the game they are given the possible
Hamiltonians H,=Ho+ V() and the corresponding
probabilities P,. At time {,, observer 0, is given a
density matrix pi(f). He computes from (12.5) the
density matrix pi(f) which represents his state of
knowledge at all other times on this basis, and the
corresponding entropy curve Si(¢). He then tells ob-
server O, the value which the density matrix p;(f2)
assumes at time /3, and gives no other information.

0, now computes a density matrix ps(¢) which
represents his state of knowledge at all times, on the
basis of the information given him, and a corresponding
entropy curve S3(f). He will, of course, have pa(ts)
=p1(t2), but in general there will be no other time at
which these density matrices are equal. The reason for
this is seen in Fig. 2, in which we assume that there are
only two possible perturbations V®, V@, The infor-
mation given to O locates the system somewhere in
the subspace 8o at time #. At a different time ¢, this
will be separated into two subspaces $;(f2) and 8;(t2),
corresponding to the two possible perturbations. For
simplicity of the diagram, we assume that they are
disjoint. At any other time ¢, the array of 0, 1s still
represented by two possible subspaces Si(ts), Sa(fs).
Observer 0, however, is not in as advantageous a
position as O,; although he is given the same density
matrix at time f,, and therefore can locate the subspaces
81(t2) and 8:(f2), he does not know that 8,(/2) 1s associ-
ated only with the perturbation V®, 8,(t;) only with
V@, Therefore, he can only assume that either pertur-
bation may be associated with either subspace, and the
array representing the state of knowledge of O, for
general times consists of four subspaces.

Fic 2 The informa-
tion game The array
of observer 1 at times
h, 12, £ 1s represented by
sohd circles The array
of observer 2 includes
also the portion 1n
dashed hines
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The game continues; O tells ©; what the density
matrix pa(ls) is, and O, calculates his density matrix
p3(8) (which, at general times other than ¢;, must be
represented by eight possible subspaces), and the
entropy curve Ss(#), ‘- -, and so on.

The subjective H theorem applied to the nth observer
gives

Sa(ta) SSa() SSa(ta)+S(Pa), (13.1)
while from the rules of the game,
Sn1(tn)=Sa(ta). (132)
Therefore, we have
S1()SS:(t) < Ss ()< -+ - (13.3)

Note that no such inequality as 6 <t;<¢;< -+ - need
be assumed, since the subjective H theorem works as
well backwards as forwards; the order of increasing
enlropy is the order in which information was transferred,
and has nothing to do with any temporal order.

An important conclusion from this game is that a
density matrix does not in general contain all of the
information about a system which is relevant for pre-
dicting its behavior; even though O, and O, had the
same knowledge about possible perturbations, and
represented the system by the same density matrix at
time {z, they were nevertheless in very different positions
as regards the ability to predict its behavior at other
times. The information which was lost when ©, com-
municated with 0. consisted of correlations between
possible perturbing forces and the different simple
arrays which are contained in the total compound
array. The effect of this information loss on an ob-
server’s knowledge of the system was not immediate,
but required time to “develop.” Thus, it is not only
the entire density matrix, but also the particular
resolution (12.5) into parts arising from different simple
arrays, that is relevant for the prediction problem.

For these and other reasons, an array must be
considered as a more fundamental and meaningful
concept than the density matrix; even though many
different arrays lead to the same density matrix, they
are not equivalent in all respects. In problems where
the entropy varies with time, the array which at each
instant represents the density matrix as a mixture of
orthogonal states is difficult to obtain, and without
any particular significance. The one which is resolved
into simple arrays, each representing the unfolding of
a possible unitary transformation, provides a clearer
picture of what is happening, and may contain more
information relevant to predictions.

The density matrices p.(f) determined by the succes-
sive observers in the information game may be repre-
sented in a compact way as follows. Consider first the
case where there 1s only a single possible perturbation,
and therefore p undergoes a unitary transformation

p()= U (t)U-1(LY). (13.4)
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This could also be written in another kind of matrix
notation as

pan ()= (nn' |G(1,t') |k )pre (),  (13.5)
I7g
or,
(=G (t), (13.6)
where
(! |G(LE) | kR )= Ui (LY U wn* () (13.7)
is the direct product matrix
G=UXU*. (13.8)

In (13.4) p is considered as an (N X N) matrix, while in
(13.6) it is a vector with N? components, and G 1s an
(N*X N?) matrix. It is readily verified that G has the
group property

CLOGE L )=G(L") (13.9)

in consequence of the same property possessed by U.

The advantage of writing the transformation law in
the form (13.6) is that, in the case where there are
several possible perturbations V'@ (/), the transforma-
tion with time (12.5) cannot be written as a similanity
transformation with any ‘“averaged U matrix,” but it
is expressible by a G matrix averaged over the distri-
bution P, "

p()=G(L)e(V), (13 10)

S()=La PG (L)

The essential feature of the irreversibility found m the
information game is that G(4¢') does no! possess the
group property (139).

SGW ) #Gt"),

for on one side we have the product of two averages,
on the other the average of a product. If (13 12) were
an equality valid for all times, it would imply that G
has an inverse G7!(4,t')=G(,), whereupon (13.10)
could be solved for p(t'),

p(£)=S("p()).

But then, the subjective H theorem would give

where
(13.11)

(13.12)

(13.13)

S®)>S(¢), from (13.10);
SE)>S(), from (13.13).
In the genera! case G(f,¢') may be singular.
The density matrices of the successive observers are
now given by
p1()=G(L1)m(h),
p2(8) = G(4,2) G(t2,t1)p:1 (1),
pa(t)=G(4,1) G(ta,b2) Gt 1)pr (1),

in which the information game is exhibited as a Markov

(13.14)
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chain,’®1® the ordering index giving the sequence of
information transfer rather than a time sequence.

14. STEP-RELAXATION PROCESS

In the preceding section, the information game was
interpreted in the ‘‘passive’” sense; i.e., we assumed
that a certain one of the perturbations V(@ (¢) was the
one in fact present, and this same one persisted for all
time. The different observers then represent different
ways of looking at what is in reality only one physical
situation, their increasing uncertainty as to the true
state being due only to the incomplete transmission of
information from one observer to the next.

The game may equally well be interpreted in the
“active” sense, in which there is only one observer,
but at each of the times #, #, £, - - -, the perturbation
is interrupted and a new choice of one of the V(@ (¢)
made in accordance with the probability distribution
P,. Although it is not required by the equations, it is
perhaps best at this point, merely to avoid certain
teleological distractions, to assume that

O<hH<HS - (141)

At each of these times the observer loses exactly the
same information that was lost in the communication
process of the passive interpretation, and his knowledge
of the state of the system progressively deteriorates
according to the same Eqs. (13.14) as before. The
density matnx which represents the best physical
predictions he 1s able to make is then

Jp.(t). L<i<t,
p(n=4P20: hSISh (14.2)
on(t), taSt<inpr.

This 1s a continuous function of time, since

Pn(ln)=P»-l(l-)-
In the following we consider only the case where p

operates on a function space o of finite dimensionahty
N. The maximum possible entropy of such a system is

Smax=InN, (14 3)

which is attained if and only if p is a multiple of the
unit matrix:
(14.4)

From this fact and (13.3), it follows that the sequence
of values S(¢,) must converge to some definite final

entropy :
(14.5)

par=N""%us.

im S(23) = S0 < Smax-

To investigate the limiting form of the density matrix
as t— o, some spectral properties of the transformation
matrices are needed. Let G stand for any one of the

s ] L Doob, Anr Math 43, 351 (1942)
YW Feller, An Introduction to Probabisty Theory and ils
A pplications (John Wiley and Sons, Inc , New York, 1950).
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(N*X N?) step transformations G(fn,fa—1) Operating in
the direct product space ¢Xo=0? and z,y be any
vectors of N? components upon which G can operate.
Instead of denoting the components of x, y by a single
index running from 1 to N?, we use two indices each
running from 1 to IV, so that x, y may also be interpreted
as (NXN) matrices operating in the space s. We
define inner products in the usual way by
N

(x,y)= Zk: ,x,g‘y.g=Tr(x'y). (14.6)
Since G is not a normal matrix (i.e., it does not com-
mute with its Hermitian conjugate), we may not assume
the orthogonality, or even the existence of a complete
set, of its eigenvectors. However, every square matrix
has at least one eigenvector belonging to each eigen-
value, so that as x varies over all possible directions,
the set of numbers

g(x)= (x,G2)/(z,x)
includes all the eigenvalues of G. Writing
Zo= U@z @1

it is readily shown that (z.r.)=(x,2). From (12.5)
we have

Gr=3 4 Paxa,
and therefore

| @82 = | Pa(z,22) | SE Pal (z,22)]
SZ Pa[(’vx) (x.,x.)]‘= (x,z),

where the Schwarz inequality has been used. We
conclude that for all z,

e <1, (14.7)

with equality if and only if z.=x for all a. This is
evidently the case if x is a multiple of the unit matrix;
thus (14.4) is always an eigenvector of G with the
eigenvalue unity. Only in exceptional circumstances
could G have any other eigenvalue of magnitude unity;
this would require that some x other than (14.4) must
exist which is invariant under all the unitary transfor-
mations U,

By a similar argument, one can derive a slightly
weaker inequality than (14.7):

(82,87 < (2,9), (14.8)

which shows that Tr[p*(¢s)]is 2 non-increasing function
of n, which must converge to some definite final value.

From these relations several features of the long-time
behavior may be inferred. First consider G to be
brought, by similarity transformations, to the canonical
form

A
Az

TQT-'= o R (14.9)
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where each 4, contains all those, and only those, terms
which arise from the eigenvalue \,. If ), is nondegener-
ate, A, is simply the number \,. If A, is an m-fold
multiple root of |G—A1|=0, then 4, may be the
(mXm) diagonal matrix A,1, or it may have one or
more “superdiagonal” terms?

P. 1 00 ]
_o a1 0
4=15 0 x 0 J (14.10)

The simplest type of step-relaxation process to describe
is the one in which all of the matrices G(fn,ln-1) are
equal; i.e., ta=n7, and each of the possible pertur-
bations V(®(¢) is periodic with period 7. The general
conclusions will be the same regardless of whether this
is the case. We now have

p(ta)=G"(0), (14.11)

and those parts of the canonical form TG*T—! arising
from the eigenvalue A=0 are annihilated in a finite
number of steps, while the sections A4,* for which
0<|A] <1 are exponentially attenuated. Thus, the
situation as n— depends only on those 4," for which
|A:| = 1. There are two possibilities:

(a) The ergodic case. If G has only one eigenvalue
with |A,| =1 [which must therefore correspond to the
eigenvector (14.4)], the sequence {G") converges to the
projection onto (14.4); i.e.,

lim p(ta)=N"11, (14.12)
ey
independently of p(0). The information contained in
the imtial distribution becomes completely lost, and
the himiting entropy is the maximum possible value
(14.3) In practice, this would be the usual situation.

(b) If G has more than one eigenvalue with |A\,| =1,
the density matrix does not necessarily approach any
fixed limit. Nevertheless, the entropy S(¢.) must do so
Therefore, by an argument lhike that of Appendix A,
the ultimate behavior must be one in which a certain
similarity transformation is repeated indefinitely. For
example, this ulimate transformation could consist of
a permutation of the rows and columns of p In this
case, traces of the initial information are never lost,
and the limiting entropy 1s less than InV.

These results correspond closely to those of the theory
of long-range order in crystals,??? in which one intro-
duces a stochastic matnix which relates the probability
distribution of one crystal layer to that of an adjacent
one The existence or nonexistence of probability
mnfluences over arbitranly long distances depends on
the degeneracy (in magnitude) of the greatest eigen-
value of this matnix

%S Lefschetz, Lectures on lhﬁercnual Equations (Princeton
Lmvcrsx!v Press, Princeton, 1946), Chap 1

2 ] \shhin and W E Lamb Jr, Phys Rev 64, 159 (1943)

2 (G I’ Newell and E W Montroll, Revs Modern Phys 25,
333 (1933)
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15. PERTURBATION BY A STATIONARY
STOCHASTIC PROCESS

We now 1nvestigate the change m our knowledge of
the state of a system for which the perturbing Hamil-
tonian V (/) is a stationary random function of time.
Certain aspects of irreversible processes may be de-
scribed in terms of such a model, although we will find
that other essential features, such as the mechamsm by
which thermal equilibrium is established, require better
approximations in which the quantum nature of the
perturbing forces is taken into account

In classical statistical mechanics an ergodic hypoth-
esis facilitated the mathematiis by allowing one to
replace time averages by ensemble averages. We now
find the reverse situation; that calculation of G(4¢) is
faciitated by an ergochc princdiple that enables us to
replace the ‘“‘ensemble average” (13.11) by a time
average, and then to make use of correlation func-
tions and the Wiener-Khmtchine theorem. In Eq.
(13 10), G'@(1,¢) may be regarded as a certam func-
tional F[V@®@(H] of V@(), which depends on the
values assumed by this operator in the time mterval
(f'—t). The statement that V' (2) 1s a stationary sto-
chastic process implies that the average of this func-
tional

=3 o P} (0]

is not affected by which particular sample of the
function V@ (1) is involved m (15 1),1¢, if we were to
insert instead the values assumed by 1@ (/) m some
other equal time nterval ('+r—t4-7), the average

Foa=Y , P F[V@(+7)] (152)
would be independent of = Conversely, 1f
P'a= ]7‘oa

(15.1)

for all functionals and all values of 7, this imples that
V(?) has exactly the same statistical properties after
any time translation, so that ¥ (¢) must be a4 stationary
stochastic process Under these conditions the c\pres-
sion (13.1) will not be affected by averagmg it over all
time translations,

Fa=Far= hm—f S PV (4 dr  (153)
T—x 2T

Our ergodic assumption 1s that m this formula the
averaging over /’, 1s redundant 1€,

1 T
fa=Fr= hm—f FLV(t+7)], 154
mar) [v+n)] (15 4)

in which the parameter a may be dropped.

The preceding paragraph was written m a conven-
tonal kind of language which made it appear that a
substantial assumption has been introduced, one whose
correctness should be demonstrated 1if the resulting
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theory is to be valid. Such conventional modes of
expression, however, do not do full justice to the
situation as it is presented to us in practice. To see this,
we need only ask, “What do we really mean by the
functions V(2 (f) and the probabilities P,?”’ In most
cases there is only one function V (¢). Knowledge of the
statistical properties of V cannot then be obtained by
observing the frequency with which the particular
function V(@(¢) appears in an ensemble of similar
situations, because no such ensemble exists. By the
probability P, we could mean only the average fre-
quency, over long periods of time, with which a con-
figuration locally hke V(® occurs in the single function
V (8). The means by which the probabilities P are defined
already involve a lime-averaging procedure. Therefore
(15.4) is not an assumption at all; 1t is merely the
natural way of stating a fact which is expressed only
awkwardly by (15.1). Equation (15.4) carries out in a
single step both the averaging procedure in (15.1) and
the process by which the V@ and P, are determined.

The problem 1s thus reduced toa calculation of
G(L)=g(t—1'), where

1 T
S)= ;T”E;'[T[U(I+TY )X U*(t+7, 7)Jdr.  (15.5)

The exact evaluation of G() would require a rigorous
solution of the Schrodinger ecuation (12.3) for arbitrary
V(¢). In practice one must resort to approximate solu-
tions at this point, and 1t is fortunate that in many
practical situations G(f) 1s determined to a good
approximation by the use of second-order perturbation
theory The charactenstic feature of such problems is
found by noting that although G(1,¢') does not in
general possess the group property (13 12), an equahty
of this form may be approximately correct for certain
chowces of tumes, provided the perturbation 1s weak
and has a short correlation time Thus, suppose that
{'<1' <t and we try 1o represent G(4,”’) by a product

GUI=G(LE)G ") (15.6)

The approumation involved in (15.6) consists of the
discarding, at time ¢/, of mutual correlations which
were built up m the ume mnterval (#"—¢’) belween
possible functions 1 (¢) and the corresponding simple
arrays If 17(Z) 1s a weak perturbation, 1t can change
the state of the system only slowly, and a long tune 1s
required for any strong correlations to develop How-
ever, if the time 7. over which appreciable autocorre-
lations persist in | (#) 1s very short compared to (¢'—¢"'),
the mutual correlations discarded were actually accumu-
lated only during an mterval r. just prior to ¢/, and will
be relatively unimportant, thus (15 6) may be a very
good approximation On the other hand, 1t will never
be an exact equality, because the values of V(f) just
prior to ¢ will necessarily have some influence on 1ts
behavior just after ¢/, whose effect is lost 1n the approxi-
mation.
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These considerations lead to a means for approximate
calculation of G(t—¢'). Divide the time interval (¥'—¢)
into # equal intervals: (t—#)=nr, and set

gt—¢)>~[g(n)]" (15.7)

If >>r., thisis a good approximation, and if in addition
it is possible to choose 7 short enough so that the change
of state during time 7 is given adequately by second-
order perturbation theory, this leads to a feasible
method of calculation. With this approximation, the
theory is reduced in its essentials to that of the step-
relaxation process of the preceding section.

The most important feature of the final solution can
be seen directly from (15.7). The change of state with
time has a simple ‘stroboscopic” property: if we
observe the density matrix only at the instants {,,=mr,
we see the approach to equilibrium take place in a
stepwise exponential fashion, describable by relaxation
times. This result is already guaranteed by the nature
of the approximation in (15 7) quite independently of
any further details, and in particular independently of
any assumptions concerning the level spacings of the
system. However, the level spacings are important in
determining the appropriate form of the solution. For
example, if the correlation time 7. is extremely short
compared to all characteristic imes of the system, we
may, while satisfying the condition 7>>r., still have
|wi| 7K1 for all transitions frequencies wi. In this
case, the change 1n p during time r is very small, and
(15 7) may be replaced by a hnear differential equation
with constant coefficients. Thus, defining K, by

Ki=[g(r)—1]/r,
we have approximately

dp/di~K p.

(15.8)

(15 9)

K, has .V? eigenvalues A,, one of which nwust be zero
since K; annihlates (14 4). By an argument hke that
leading to (14.7) one shows that Re(A,) <0. Thus each
element of p will relax to a final state according to a
superposition of exponentials exp(A#), with several
different relaxation times in general

The right-hand side of (15.9) is generally a poor
approximation to the instantaneous time derivative of
p, but gives only the average rate of change over the
period 7. Similarly, the matrix K, resembles a time
denivative of G; in the following section we present
reasons for expecting that a slightly different definition
of K, will render (15.9) more accurate as far as giving
the long-term drift 1s concerned.

16. EXACTLY SOLUBLE CASE

In the case where the perturbation V(f) commutes
with Ho, it is possible to evaluate (15 5) exactly without
use of perturbation theory This case is a very special
one, since the perturbation causes no transitions but
only a loss of coherences, nevertheless it has found some
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applications in the theory of pressure-broadening of
spectral lines?# and exchange narrowing® in para-
magnetic resonance.

The perturbing forces represented by V(f) often
anse as a superposition of many small independent
effects, and m this case the central limit theorem of
probability theory shows that the distribution of V()
will be Gaussian. Furthermore, in most apphcations
one will not have enough information about V() to
determine any unique objective probability distribu-
tion; we may know, for example, only the average
energy density, therefore the mean-square value, of the
perturbing fields, plus a few features of their spectral
density. Maximum-entropy inference would then be
needed in order to represent our knowledge of V' (f) in
a way free of arbitrary assumptions. Since a Gaussian
distnibution has maximum entropy for a given variance,
one should always use a Gaussian distribution 1if the
available information consists only of the first and
second moments. In the following we consider only the
Ganssian case

The Hamiltonian has matrix elements

H()=[wetVi(t) Jora

The solution of (12.3) for the time-development matnx
1s substituted into (15 4) to give

(kE'| G

t
=6Azﬂyz'c"‘""““"<exp[i f f“u")d:"]) (16 2)
p

where wi i =wi—wyi, and
SinN=Ve ()= 1) (16.3)
15 a real Gaussian random function with mean value

cero (by defintion, since any constant part of V' may
be included in Ho). So also, therefore, 1s the function

(16 1)

£ = f fwyar, (16.4)

where we have dropped the subscripts for brevity.
The probability distribution of g(f) 1s determined by
its second moment

o () =(g ()= f ar f A fE)
0 L]

= arl dr’ ot —1" .
fo fo (1), (16.5)
where
. 1 T
e@=tm—f jetnsou ase

2P, W. Anderson, Phys Rev 76, 647 (1949). Earlier references
are given in this paper

'S Rloom and H Margenau, Phys Rev 90, 791 (1953)

2P W Anderson and P R Weiss, Revs Modern Phys 25,
269 (1953)
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Fic. 3. Region of inte-
gration in Eq. (165)
Appreciable  contribu-
tions to the integral
come only from shaded
part.

/\@

is the autocorrelation function of f(¢). A short calcu-
lation shows that for a Gaussian function with variance
o(#), the average required in (16 2) 1s

(e)=¢"ie0, (16.7)

and thus the exact solution (13.10) of the relaxation

problem is
ek (1) = €1k ktp 4 (0)emdonrao, (16.8)

Since o4 =0, the diagonal elements of p are unchanged,
but the off-diagonal elements relax to zero in a manner
described by (16.5) *¢

We assume that there exists a correlation time 7.
such that the correlation function (16 6) is essentially
zero whenever |r|>7.. The region of integration in
(16.5) may be represented by a square as in Fig. 3,
and it is seen that although o () necessarily starts out
proportional to # for small ¢, it approximates a linear
function of time when ¢> .. The function o (¢) therefore
has the form of Iig 4, and for ¢> 7. 1t reduces to

o (=2x1(0)[t—11]. (16.9)
The quanuty

‘ 3
D= [ weretd 16 10
’()z,f..,(')’ : (16 10)

o't
Fic 4 The function
a(t)

4
7

! z({__l__. -

n v 1

|
|

]

26 In some cascs 1t may be possible to evaluate (16 7) directly
even though (¢?) does not eust For cxample, we may have
/(1) = constant, with probabihity distribution p(/)d/ Then (167)
is a Fourier transform, and with Lorentzian p(f) wc obtain a
decay law exactly exponential for all times
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/ Fic 5 Shp effect
/ caused by discarding
ot / correlations. The ap-

/ proximate solution is
/ represented by the
/ solid line, while the
/ dashed hne 1s the
5 exact solution

is the spectral density of f(¢) for frequency w, and 7, is
a short ime somewhat less than 7, indicated on Fig. 4.
Thus when > 7., the relaxation process goes into an
exponential damping, the element px having a relax-
ation time T, where

1/Trr=nl14(0). (16.11)

Note that although the final formulas involve only the
spectral densily at zero frequency, the condition that
¢(2) should be very small for [¢|>r. implies certain
conditions on I(w) at other frequencies It is required
not only that /(w) be large over a band width ~7.7!
of frequencies, but also that 1t be a sufficiently smooth
function of frequency. Discontinuities in /(w) produce
oscillations 1n ¢(¢) and o(¢) which may persist for long
periods, rendering (16.9) inaccurate.

It is of interest to compare the exact solution (16.8)
with thc one which would be obtained using the
approximation of (15 7). Here we stop the integration
process of (16 5) after each interval 7, throw away
mutual correlations between p and V (¢), and use the
density matrix thus obtamed as the nutial condition
for the next period The resulting o(¢) 1s illustrated in
I'ig 5 Ttis seen that the approximation “slips behind”
the evact solution by a time delay 7, each time the
mutual correlations are discarded

There is an apparent paradox 1n this result It seems
natural to suppose that any mathematical approxima-
tion must “lose mformation,” and therefore increase
the entropy However, we find the relaxation process
taking place more rapidly m the exact treatment than
in the approximate one. Sexact(f)2> Sepprox () Thus, the
approximation has not “lost information,” but has
“injected false information ” The reason for this can be
visualized as follows Suppose that at time ¢=0 the
array consisted of a single point, i e, a pure state. At
later times 1t will consist of a continuous distribution of
points fillimg a certam volume, which continvally
expands as / increases It 1s very much like an expanding
sphere of gas, where strong correlations will develop
between position and velocity, a molecule near the
edge of the sphere 1s very likely to be moving away
from the center. This corresponds roughly to the
correlations between different states of the array and
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different possible perturbing signals V (f). Now suppose
that in an expanding gas sphere these correlations are
suddenly lost ; the set of velocities existing at time 7 is
suddenly redistributed among the molecules at random.
Then a molecule near the edge is equally likely to be
moving toward or away from the center. The general
expansion is momentarily interrupted, but soon resumes
its former rate.

This paradox shows that “‘information” is an unfortu-
nate choice of word to describe entropy expressions.
Furthermore, one can easily invent situations where
acquisition of a new piece of information (that an
event previously considered improbable had in fact
occurred) can cause an increase in the entropy. The
terms ‘“uncertainty” or ‘“apparent uncertainty” come
closer to carrying the right connotations.

Note that, if we were to use the slope of the approxi-
mate curve in Fig. 5 just before time , instead of the
average drift over period 7, to caiculate the relaxation
time, we would obtain a more accurate value whenever
> 7.

17. PERTURBATION THEORY APPROXIMATION

Returning to the general case, we conjecture that a
similar situation to that just found will occur: i.e., that
the differential equation

- dp/dt=Kp,

where
k(5.
l-.v_

will give a shghtly more accurate long-term solution
than will (15.9). The evaluation of G(r) using pertur-
bation theory is in essence identical with the treatments
of nuclear spin relaxation given by Wangsness and
Bloch,” Fano,?, Ayant,? and Bloch.*#! Only a brief
sketch of the calculations is given here, although we
wish to point out certain hmitations on the applica-
bility of previous treatments.

One solves the equation of motion (12 3) by use of
time-dependent perturbation theory, retaning terms
through the second order. The result of substituting
this solution into (15.5) is expressed compactly as
follows. Define a matrix ¢(¢) whose elements consist of
all correlation functions of Vi, Vi :

(B | (=) W)=V u®)Ver* (), (17.3)

in which the average 1s taken over all time translations.
¢(#) has the symmetry properties

(k' | o (D)= | o () 1REY =Ll (=D K'E) (17.4)

We assume again that there exists a correlation tume

(17.1)

(17.2)

37 R K Wangsness and F Bloch, Ph)s Rev 89, 728 (1953)
U Fano, Phys Rev 96, 869 (19!

®»Yy Ayant ] phys radium 16 411 (1955)

© F Bloch, Phys Rev 102, 104 (1956)

% F Bloch, Phys Rev 105, 1206 (1957)
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7e such that all components of ¢(¢) are essentially zero
whenever (>7.. In this case the ‘“partial Fourier
transforms” of ¢, defined by

®(w) =f e wlp(t)dt (173)
[

are independent of . Finally, we mtroduce the symbols
(kR [nn') = (kE'1®(wnrr) | mn')= (nn' | RE)*.  (17.6)
In terms of these quanuties, we obtain
(BE' | G(r) [mn')= 1o (81nbirm
'—6""‘1(“’»"’)2;1(??‘b’”’)"‘sl"\'q(wkn)Zp(k"I pp)
+g(win—win)[ (R |nn')+ (W'n|k'R)]}, (17.7)
where
@)= (e~ 1)/1w.
In the case of extremely short correlation time, so that
|wiar[<K1, as assumed in (15.9) and (17.1), g(wia)=7

for all transition frequencies wia, and (17.7) leads to
the differential equation

Pt iwreparr = Z, ([(RE | nn')+ ('n | k'k) Jpmn-

— (nn| k0 )prn— (kn|W'n')par}. (17 8)

This case of perturbation by extremely wide-band
“white noise” applies to many cases of nuclear spin
relaxation in liquids,® its condition of valdity bemng
that the correlation time (roughly, period of molecular
rotation) is short compared 1o the Larmor precession
periods.

In the approximation of (17.8) the quanuties
(kk'|nn') are real if o(f) is real, as will usually be the
case:

(kk'lnn’)zf cos(wawt) (R | @(8) [nm')dt.  (17.9)
[

The neglected term is small, since by hypothesis ¢(t)
is very small before sin(wai#) attains an appreciable
magnitude. Equation (17.9) is » times the “mxed
spectral density,” at frequency wa4r, of Via(f) and
Vin(8). To interpret (17.8) we transfer all terms
containing px to the left-hand side

1
i’w+(}—‘}-ﬁ»n')pw=“driving forces.” (17.10)
kk’

The relaxation times T4, are given by

VTw=ve+ve—vax, (17.11)

o= (k[ pp),
vaw= (kR | kE)+ (K k| K'R).
If the correlation time 7. is not short compared to
the periods (wka)™, then the time of integration r must
T # Bloembergen, Purcell, and Pound, Phys Rev. 73, 679 (1948)

where

(17.12)

35

be chosen so long that the formulation (17.8) m terms
of a differential equation breaks down. In this case a
different approach, used by Wangsness and Bloch,”
may be attempted. Here one removes the rapid time
vanations of p due to I, by transforming to the inter-
action representation, in which the density matrix 1s

5(8)=erHotp (t)e=Hot, (17.13)

and attempts to describe the relaxation process by a
linear differential equation with constant coetficients,
satisfied by the slowly varymng 5(f). This is not always
possible, however, for Eqs (15.5) and (15 7) hold only
in the original Schrodinger representation If I, is
diagonal, the matnix G which gives the change of state
in the interaction representation,

p)=Gr(1)B(), (17.14)
1s related to the previous G by
(kR | Gr(t+7, )| nn’)
= g wWkn—wk'n’) ‘e""“"(kk'| S(T) l nn'), (17_15)

so that although G is a function only of (1—=/'), this is
not m general true of G; Consequently an approxi-
mation of the form (15.7) cannot be valid 1 gencial
for Gr However, 1t 1s seen that those elements of Gr
for which

. Win=Wirnr (17 16)

depend only on (¢—¢'). Therefore, if by any means
one can justify chscarding clements of G; not satisfying
(17.16), this method will work. Referrmg to (17 7), 1t
1s seen that the elements which satisfy (17 16) arc just
the “secular terms” which increase proportional to 7,
while the unwanted terms are the oscillating ones.
Therefore if the time 7 1s sufficiently long, and the
level spacings are such, that the quantities

.
| Wkn— Wk | T

are either large compared to unity, or zero, for all
combinations of levels, the secular terms will be much
larger than the oscillating ones and we obtamn the
approximate differential equation

b
at

= Z,(s(“’kn_wk'n')[(kk'|nu')

+ (55| k'k) Jonn — 8 (wrrnr) (01| 1) imr
—8(win) (k8| n'n ) parr}.  (17.17)

If there is no degeneracy and the density matrix is
initially diagonal, (17.17) reduces to

Apar/0=2wbsr 3 Lin(wnk) (Ban—prx), (17.18)
where

1 @
Ik..(w)=2—<f e (kk| p(t) | nn)dt  (17.19)
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is the spectral density, at frequency w, of Via(f).
Equation (17.18) is to be compared to (11.7); we have
a time-proportional transition probability satisfying the
condition of microscopic reversibility. Note, however,
that this result depends entirely on the assumptions as
to spectral properties of V' (f) and the various approxi-
mations made, which ensured that off-diagonal elements
of p would not appear. From the definition (15.5) of G
it follows that, in the case that p(0) is diagonal, the
rigorous expression for diagonal elements at time ¢ 1s

Pri() =X a{l Usa(4,0)]2)pan(0)
=3 Min(f)pan(0), (17.20)

so that i general the transition probabilities Axa(f) are
neither time proportional nor symmetric® On the
other hand, the so-called A-hypothesis,' if stated in the
form

T daa() =X a hen(h)=1,

1s always satisfied in this semiclassical theory, in
conscquence of the unitary character of U.%

In (17.17) we may again transfer all terms containing
B to the left-hand side®s:

purr
at

1 .
+[—+i(&.,.—.sw,,)]5“,
TH"

=*“dnving forces,” (17.21)

where (17 11} holds, but 1n place of (17.12) we now have

Yitidwr=3_,(kk|pp). (17.22)

The quantities yx and éw, are defined to be real. We
mterpret these relations as follows. In consequence of
the random perturbations, the energy of state % is
uncertamn by an amount v, (in frequency units), and
n addition its average position is shifted by an amount
dwi. Because of this uncertainty 1n energy, different
possible states of the array drift out of phase with each
other, and the off-diagonal element 54 tends to relax
to cero with a relaxation time Txy. The term

Yewr = (ke | RE')+ (K'E| k)

=f (Vi) Vi (0))dr  (17.23)

corrects for the fact that there may be correlations
between the “instantaneous level shifts” V. (), Vs (f)

# A trivial exception occurs if the system has only two linearly
independent states, for a (2X2) unitary matrix necessarily
s:lltisﬁcs jUs2|*=|Un|*. This s not true in any higher dimension-
ahty

 The possibility that Aga 1s not proportional to ¢ may lead in
some cases to a differential equation for 5 with time-dependent
coeflicients, analogous to Eq (2 24) of reference 31

3 If there 1s no degeneracy and the level spacing 1s the most
general type for which there 1s no relation of the form wia=wsn:
for k>1’, the right-hand side of (17 21) 1s zero for all off -diagonal
elements puar.
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so that the contributions of the level widths v., 74 to
the rate of relaxation are not independent. Due to the
terms v the uncertainty in energy 7. is different from
the reciprocal of the mean hfetime of state £ against
transitions. The predicted line widths are, of course,
the reciprocals of the relaxation times T .

The symbols (kk[pp) may be expressed in terms of
the spectral density of Vi,(f). Inverting the Fourer
transform (17.19) and substituting the result into
(17.5), (17.6), we obtain

©f k,(w)dw
(kk|pp)=wTip(wpn)+iP f -

W—Wpk

(17.24)

where P stands for the Cauchy principal value. Thus
the level widths depend on the spectral density at the
transition frequencies, while the level shifts depend
mainly on the manner in which the spectral density
varies near the transition frequencies. This can be
stated in simpler form in the usual case where V., (/)
=Qipf(t), where Qi, is constant, and f(f) is a real
random function. Let ¢(#) be the autocorrelation func-
tion of f(¢); then the level widths and level shifts are
proportional to the cosine and sine transforms of o(#):

 n=ZI0ul [ costardet
i’ ¢ (17 25)
bor=Z 100l [ sin(un)e(at.
» (]

From this we see that the level shifts will be small
compared to the level widths if ¢(f) becomes vamsh-
ingly small before sin(wi,¢) reaches its first maximum.
This, however, 1s just the condition for valdity of
(17.8). Thus, whenever the correlation time 7. 1s so
long that (17.17) is required instead of (17.8) one may
expect appreciable level shifts.

If the quantities wia7 are of order unity, neither of
the differential Eqs. (17.17), (17.8) 1s applicable. In
fact, it is clear already from the rigorous expression
p())=G(4¢)p(¢) that in general a relaxation process
cannot be described by any differential equation, for
the rate of change of p does not depend only on its
momentary value, but is a functional of past conditions
during the entire interval (¢—¢). Thus, the formulation
in terms of differential equations is fundamentally
inappropriate. It is convenient in those special cases
where it can be justified, because of the easy interpre-
tation in terms of relaxation times and level shifts.
However, the quantities necessary for comparison with
experiment can always be inferred directly from (17.7),
the validity of which -does not depend on the magni-
tudes of the quantities wyar.%

The symmetry of the transition probabilities given
by (17.18) arises only because the V..(f) are here
considered numbers. If in better approximation one
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takes into account the quantum nature of the sur-
roundings, they must be considered as operators which
operate on the state vector of the perturbing system o,
(the “heat bath”). Then, as shown by Ayant,?® the
definition of correlation functions (17.5) remains vahd,
provided the brackets are now interpreted as standing
for the expectation value taken over the system o3,
and the differential Eq. (17.8) or (17.17) then repre-
sents an approximation in which mutual correlations
between the two systems are discarded at intervals r,
in the manner of (11.5). One now finds that the proba-
bilities of upward and downward transitions are no
longer equal. In the treatment of Ayant, the question
of equality of these transition probabilities 1s reduced
to the question whether the spectral density of the
perturbing forces is the same at frequencies (+w) and
(—w). This is correct provided one always defines the
perturbing terms to be real, as in (17.25); note, how-
ever, that the symmetry of transition probabilities in
(17.18) does not require that the spectral density of
Via(2) be an even function of frequency. It is sufficient
if the spectral density of Via at frequency (+w) is
equal to that of V. at (—w), and this is always the
case if V is Hermitian.

If one assumes a Boltzmann distribution for the heat
bath and neglects the effect of the system of interest o,
in modifying this distribution, the solution of (17.17)
tends to another Boltzmann distribution corresponding
to the same temperature.?”-®® Treatment of this case
and that of “secular equilibrium” from the subjective
point of view will be considered in a later paper.

18. CONCLUSION

The foregoing represents the first stage of an attempt
to provide a new foundation for the predictive aspect
of statistical mechanics, 1n which a single basic principle
and method applies toall cases, equilibrium or otherwise.

The phenomenon of nuclear spin relaxation is a
particularly good one to serve as a guide to a general
theory of irreversible processes. It 1s complicated enough
to require most of the techniques of a general theory,
but at the same time it is simple enough so that in
many cases the calculations can be carried out explicitly.
Nuclear induction experiments, in which the predictions
of the Bloch-Wangsness theory?”-3.3 are verified down
to fine details,*® provide a good illustration of many of
the above remarks. Here the experiments are performed
on samples containing of the order of 10?° nuclei, and
one measures the time dependence of their total mag-
netic moment when subject to various applied fields
In the theory, however, one usually calculates a density
matrix p,(¢#) which operates only in the function space
of a single spin, or of some small aggregate of spins such
as those attached to a single molecule The possibility
of predicting mutual properties of different spin umts
is therefore lost.

3 J. T. Arnold, Phys Rev. 102, 136 (1956), W A. Anderson,
Phys Rev. 102, 151 (1956).
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It would, however, always be better in principle to
adopt the “global” view m which the entire assemblage
of spins in the sample is the system treated To the
extent that different molecular units behave mdepend-
ently, the complete density matrix p thus obtamed
would be a direct product of a very large number of
matrices. However, this would hardly ever be true
because some correlations between different spin units
would be expected. Thus, the question is raised whether,
and to what extent, predictions made only from p,
can be trusted. At first glance it seems that they could
not be, for 1n most cases the density matrix p;(f) differs
only very slightly from a muluple of the unit matny,
and thus represents a very “‘broad” probability distri-
bution. According to the discussions of maxumum-
entropy inference in I and the introduction to the
present paper, it would appear that this s a case where
the theory fails o make any definite predictions, so
that unless the probabilitics m p; could be established
in the objective sense, the calculations of Sec. 17 would
be devoid of physical content.

The thing which rescues us from tlus situation 1s, of
course, the fact that the experiments refer not to a single
spin unit, but to a very large number of them. We must
not, however, jump to the obvious conclusion that the
“law of large numbers,” or the central hmit theorem,'®
automatically restores rehabihity to our predictions
To do so would be to make the logical error of the
experimenter who thought that he could add three
significant figures to s measurcments merely by
repeating them a milhon times The correctness of the
usual calculations can be demonstrated without exphcit
reference to the laws of large numbers, by application
of the principles of Sec. 11. This is, m fact, the example
par excellence of how much a prediction problem can be
simplified by discarding irrelevant information.

Suppose that we had solved the problem from the
global viewpoint, obtained the complete density matrix
p(4), and demonstrated that it gave a sharp distribution,
and therefore rehiable predictions, for the total magnetic
moment M=M,+M;+-- +My. Then the only thing
of further interest would be the value of (M). According
to Sec. 11, this can be calculated as well from the direct
product matrix

aXpeX - Xpn,

where p; 1s the projection of p onto the space of the £th
system. If the small systems are equivalent, the (Mi)
are all equal, and thus we obtain

(M)="Tr(pM)=N Tr(p:M)).

This equation is exact regardless of whether correlations
exist. Thus, if p, embodies all of the available informairon
about a single spin system, the predictions of toial momeni
of N systems oblained from 1t are just as reliable as are
those obtained from the global density malrix p. We cannot
estimate this rehability from p, alone; loss of that
information is part of the price we had to pay for
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simplification of the problem. If correlations between
different spin units are strong, it will of course be very
difficult to obtain p, without first solving a larger
problem. Thus, in practice one will obtain only an
approximate value of p;; however, a one percent error
in the calculated value of (M;) leads only to a one
percent error in (M).

APPENDIX A. SUBJECTIVE H THEOREM

Consider the density matrix (12.5) with #=0; at
any particular time there exists a unitary matrix V (¢)
which diagonalizes p(f), so that (12.5) may be written
in terms of the diagonal matrices,

d)=X o P.WAO)W., (A1)

W=V ) U@(:,0)V-1(0) (A2)

is a unitary matrix. The eigenvalues d.(f) of p(¢) are
thus related to the eigenvalues of p(0) by

dn(8)=1 n Bmada(0), (A3)

where the quantities B, form a doubly stochastic
matrix:

where

T mBaa=2aBan=1. (A.4)

The first of the inequalities (12.6) is then proved as
follows:

S(t)—S(0)=3"n da(0) Ndn(0)— 3 m du () Indm(8)
=3 mn Bmada(0) In[da(0)/dm(¥)]
>3 Bua[da(0)—du($)]=0. (A.S)
Here use has been made of the fact that Inx> (1—271),
with equality if and only if x=1. Thus, the equality
sign in (A.5) holds if and only if Bu..=0 for each
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combination of m, n for which d.(0)>d.(¢). If p(0) is
nondegenerate, this means that the eigenvalues d,.(¢)
must be a permutation of the d,(0).

The second of the inequalities (12.6) follows from
the fact that for any given density matrix p, the “array
entropy” S4 of Eq. (7.14) attains its minimum value,
equal to S=—Tr(pInp) for the orthogonal array. To
prove this, let the orthogonal array be the one with V
states, where the state v, has probability d,, and let
{¥mwm) be any other array with M states, where
M >V, which leads to the same density matrix. The
two arrays are related by a transformation of the form
(1.9)

Vottm! =23 0 UadpdU nm,

where U am is an (M X M) unitary matrix, and we define
d,=0, N<n<M. From this and the orthogonality of
the v, it follows that

Wn=2_n Crndn, (A.6)

where Can=|Una|? is 2 doubly stochastic matrix, and
thus by the previous argument (A.5),

S<Sa. (A7)

Now in the case considered here, let p(0) be represented
by its orthogonal array {v.(0),d.(0)}. At time ¢, the
density matrix (12.5) is represented by the array in
which the state

Van ()= U= (1,0)2,(0)
has probability waa= P.d.(0). The array entropy is thus
Sa()=—3 an Wan Inwan=S(0)+S(P.)=const, (A.8)
which, together with (A.7), proves the theorem.



4. BRANDEIS LECTURES (1963)

These lectures, delivered at Brandeis University in July 1962, mark the end of
an evolutionary phase in which, still misguided by the thinking of the past, I
believed that the treatment of irreversible processes must be fundamentally
different from equilibrium theory. But there is an advance in that the distinc-
tion between information entropy Sy and experimental entropy Sg, not yet
clearly seen in the 1957 papers, is now recognized and stressed. Of course,
this step was crucial for any rational discussion of irreversibility and the
second law. The beginning of the next phase is recalled in ‘Where do we
Stand?’ reprinted elsewhere in this volume.

The Brandeis lectures have also the recognition that the continuous infor-
mation measure as given by Shannon was not derived by him from any
desideratum, but only written down by analogy with the discrete measure;
and if we derive it by a limiting process from the discrete case there is an
extra term m(x). Of course, expressions of this type had been given three
years earlier by Kullback, and sixty years earlier by Gibbs; but they were not
given this motivation. Recognition of m(x) restored the invariance of the
theory under parameter changes, which had been a minor problem for
Shannon but a major one for us.

The most important result of this work is the demonstration that, contrary
to what had been asserted endlessly in the literature of Statistical Mechanics,
the constancy of von Neumann’s entropy expression S; = — Tr(p log p)
does not conflict with the Clausius adiabatic form of the second law, S¢inai
= Sinitial- Quite the opposite; the second law is an elementary consequence
of that constancy. It is only after it has been maximized that the von
Neumann information entropy S; corresponds to the experimental entropy
Sg of Clausius. To the best of my knowledge, however, this demonstration
has been totally ignored, and the traditional false statement continues to be
repeated throughout the literature of Statistical Mechanics.

While the important result was being ignored, the trivial illustrative
example of dice in the opening remarks acquired a world-wide notoriety.
About a dozen articles have now been written attacking or defending this
example, and they are still appearing. We return to the topic in ‘Where do we
Stand?’ and in ‘Concentration of Distributions at Entropy Maxima’.
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1. INTRODUCTION

At the beginning of every problem in probability theory, there
arises a need to assign some initial probability distribution; or
what is the same thing, to "'set up an ensemble.”" This is a prob-
lem which cannot be evaded, and for which the laws of physics
give us no help. For example, the laws of physics tell us that a
density matrix p(t) must vary with time according toihp = [H,p],
but they do not tell us what function p(0) should be put in at the
start. Assignment of p(0) is, of course, a matter of free choice
on our part—it is for us to say which problem we want to solve.

The assignment of initial probabilities must, in order to be
useful, agree with the imitial information we have (i.e., the re-
sults of measurements of certain parameters). For example, we
might know that at time t = 0, a nuclear spin system having total
(measured) magnetic moment M(0), is placed in a magnetic field
H, and the problem is to predict the subsequent variation M(t),
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which presumably tends to an equilibrium value M(m) = y,H after a
long time. What initial density matrix for the spin system p(0),
should we use? Evidently, we shall want it to satisfy, at the very
least,

Tr (p(0)M,p) = M(0) (1)

where M.z is the operator corresponding to total magnetic moment.
But Eq. l1)) is very far from uniquely specifying p(0). Out of the
infinite number of density matrices satisfying (1), which should we
choose as the starting point of our calculation to predict M(t)?

Conventional quantum theory has provided an answer to the
problem of setting up initial state descriptions only in the limiting
case where measurements of a ""complete set of commuting ob-
servables' have been made, the density matrix p(0) then reducing
to the projection operator onto a pure state ¥(0) which is the ap-
propriate simultaneous eigenstate of all the measured quantities.
But there is almost no experimental situation in which we really
have all this information, and before we have a theory able to treat
actual experimental situations, existing quantum theory must be
supplemented with some principle that tells us how to translate, or
encode, the results of measurements into a definite state descrip-
tion p(0). Note that the proolem is not to find the p(0) which cor-
rectly describes the ""true physical situation.” That is unknown,
and always remains so, because of incomplete information. In
order to have a usable theory we must ask the much more modest
question: "What p(0) best describes our state of knowledge about
the physical situation?"

In order to emphasize that this problem really has nothing to
do with the laws of physics (and, as a corollary, that its solution
will have applications outside the field of physics), consider the
following problem. A die has been tossed a very large number N
of times, and we are told that the average number of spots up per
toss was not 3.5, as we might expect from an honest die, but 4.5.
Translate this information into a probability assignment P, n=
1,2,...,6, for the n-th face to come up on the next toss.

To explain more fully what is meant by this, note that we are
not asking for an estimate of the fraction (i. e., the relative fre-
quency) of tosses which give n spots. There is, indeed, a connec-
tion between the probability and the frequency, which we will de-
rive later. But the problem stated is to reason as best we can
about the individual case. The probability P, must therefore be
interpreted in the so-called ''subjective" sense; it is only a means
of describing how strongly we believe that the n-th face will come
up in the next toss.

To state the problem more drastically, imagine that we are
offered several bets, at various odds, on various values of n, and
we are compelled to accept one of these bets. The probabilities
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P, are the basic raw material from which we decide which one to
accept. This is typical of many practical problems faced by the
scientist, the engineer, the statistician, the politician; and indeed
all of us. We are continually faced with situations where some de-
finite decision must be made now, even though we do not have all
the information we might like.

Conventional probability theory does not provide any principle
for assigning the probabilities P,; so let us think about it a little.
We must, evidently, choose the P, such that

% P=1 (2)
n=1

8
Zlnpn = 4.5 (3
n=

where (3) is analogous to (1). A pgssible solution of (2) and (3) is
indicated in Fig. 1; we could take P, = P; = 1/2, all other P, = 0.
This agrees with all the given data. But our common sense tells
us it is not a reasonable assignment. The assignment of Fig. 2 is

1}
P, 0.5
0o 1 2 4 5 6
n—.
Fig. 1
1.0t
P, St
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evidently a more honest description of what we know. But even
this is not reasonable—nothing in the data tells us that n= 1,2 are
impossible events. In Fig. 2, we are still jumping to conclusions
not warranted by the available evidence. Evidently, it is unrea-
sonable to assign probability zero to any situation unless our data
really rules out that case. If we assign P, > 0, P, > 0, then in
order to keep the average at 4.5, we shall have to give some in-
creased weight to the cases n=5,6. Figure 3 shows an assign-
ment that agrees with the data and does not ignore any possibility.
But it still seems unreasonable to give the case n = 6 such excep-
tional treatment. Figure 4 represents what we should probably

0.51
0.41
0.3¢1
0.2

"L | |

Fig. 4

call a backward step—nothing in the data of the problem indicates
any reason for such an uneven treatment. A reasonable assign-
ment P, must not only agree with the data and must not ignore any
possibility—but it must also not give undue emphasis to any possi-
bility. The P, should vary as smoothly as possible, in some
sense. One criterion of "'smoothness' might be that adjacent dif-
ferences F,,, - B, should be constant; and, indeed, there is a so-
lution with that property. It is given by P, = (12n - 7)/210 and is
shown in Fig. 5. This is evidently the most reasonable probabili-



44 E.T.JAYNES
0.5+
0471

0371
027

017 | |

Fig. 5

ty assignment so far. But there is a limit to how high an average
you can get with this linea:r variation of B,. If we took the extreme
case, P, = (const.)(n - 1), we should again violate one_of our prin-
ciples because P, = 0, and the average would be only Z,nPn = 70/15
= 4.67. Suppose the data of the problem had been changed so that
the average is to be 4.7 instead of 4.5. Then there is no straight-
line solution satisfying P, = 0. The P, must lie on some concave
curve, as in Fig. 6. But the principles by which we reason surely

Fig. 6

are the same whether the data specify 4.5 or 4.7; so it appears
that a result qualitatively such as Fig. 6 should be used also when
n= 4.5,

This is about as far as qualitative reasoning can take us, and
I have carried the argument through on that basis in order to show
how ordinary common sense leads us to a result that has all the
important features of the quantitative solution given below. The
probability assignment B, which most honestly describes what we
know is the one that is as smooth and "'spread out" as possible sub-
ject to the data. It is the most conservative assignment in the
sense that it does not permit one to draw any conclusions not war-
ranted by the data.



BRANDEIS LECTURES 45

This suggests that the problem is a variational one; we need a
measure of the ""spread' of a probability distribution which we can
maximize, subject to constraints which represent the available in-
formation. It is by now amply demonstrated by many workers that
the "information measure' introduced by Shannon! has special
properties of consistency and uniqueness which make it the cor-
rect measure of ""amount of uncertainty' in a probability distribu-
tion. This is, of course, the expression

8 = -Zilpilog P, 4)

which, for some distributions and in some physical situations, has
long been recognized as representing entropy. However, we have
to emphasize that "information-theory entropy' Sy and the experi-
mental thermodynamic entropy S, are entirely different concepts.
Our job cannot be to postulate any relation between them,; it is
rather to deduce whatever relations we can from known mathemat-
ical and physical facts. Confusion about the relation between en-
tropy and probability has been one of the main stumbling blocks in
developing a general theory of irreversibility.

2. THE GENERAL MAXIMUM-ENTROPY FORMALISM

To generalize the above problem somewhat, suppose that the
quantity x can take on the values (x,, x,,..., xn) where n can be
finite or infinite, and that the average values of several functions
f,(x), f,(x),..., f(x) are given, where m < n. The problem is to
find the probability assignment p; = p(x;) which satisfies the given
data: p; >0,

p;=1 (5)

S

1

pifk(xi)z (fk(x)) =F, k= ,2,...,m (6)

v

1

and, subject to (5) and (6), maximizes the information theory en-
tropy

n
S,=-), p logp 4))
1 i=1i i
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The solution to this- mathematical problem can be found immedi-
ately by the method of Lagrangian multipliers, and special cases
are given in every statistical mechanics textbook. This method
has the merit that it leads immediately to the answer, but the
weakness that it does not make it obvious whether one obtains a
true absolute maximum of S;. The following argument establishes
this important result more rigorously.

Let (p,...p,) and (u,...u,) be any two possible probability
distributions over the x;; i.e., p; =0, u;=0, i=1,2,...nand

Zl"i ) élu‘ -1 ©

Then, by using the fact that log x = (1 — x~1), with equality if and
only if x = 1, we find the following:

Lemma
Pi & Yy
ip. log— =),p(1-=)=0 (9)
=11 Y% =1t By

with equality if and only if p; = uj, i=1,2,...n. Now make the
choice

- 1
T ) explafi(x) - oo AL () (10)

where );...x, are fixed constants, and

n
Z(n. .o A) = iZJl explafy(x) = oo -a 1 (X)) (11)

will be called the "partition function.” Substituting (10) into (9) re-
sults in the inequality

n n n
Z p; log p, = Z p; logu, = -Z p; Mty (x,) +. ..
K i iT i i K i i
i=1 i=1 i=1
+ap i (x)] — log Z(31...Am)

or
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m
S; = log Z(...a )+ D A () (12)
k=1

Now let the distribution p; vary over the class of all possible dis-
tributions that satisfy (6). The right-hand side of (12) remains
fixed, and (12) shows that Sy attains itsmaximum possible value

(S, =log Z + A, (i) (13)
P max zlk(k

if and only if p; is taken as the generalized canonical distribution
(10). It only remains to choose the unspecified constants x) so
that (6) is satisfied. This is the case, as one readily verifies, if
the A} are determined in terms of the given data Fy = (fy) by

) =--5:—l-‘logz(xl...xm) k=1,2,...,m (14)

We now survey rapidly the main formal properties of the distribu-
tion found. The maximum attainable entropy (13) is some function
of the given data:

(5P pax = SEEDs .. . (f)) (15)

and, by using (13) and (14), we find

-a-i’(f—k)—ﬂk k=1,2,...,m (16)

Regarding, in (14), the (fy) expressed as functions of (A;...Am),
we find, on differentiating, the reciprocity law

9ty ALy

_ o8
axj - axk T aak axj amn

log Z = Ajk

while by the same argument, if we regard L in (16) expressed as
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a function of (f,)... {(fm), we find a corresponding law

o o,
k _ i S _
T "3 T I 3 T ik (18)

Comparing (17) and (18) and remembering the chain rule for dif-
ferentiating,

3¢k 5 ()
Tho [ By (o Ok

we see that the second derivatives of S and of log Z yield inverse
matrices:

A=8"1 (19)

The functions log Z(A,...xp) and S((f,)...(fy)) are equivalent in
the sense that each gives full information about the probability dis-
tribution; indeed (13) is just the Legendre transformation that
takes us from one representative function to the other.

The reciprocity law (17) acquires a deeper meaning when we
consider the "fluctuations' in our probability distribution. Using
the distribution (10), a short calculation shows that the second
central moments of the distribution of the fk(x) are given by

(Ui - (TN (fg - (£9)) = (ficfp) - (fi) (10
(20)

a’
=mlogz

and so, comparing with (17), there is a universal relation between
the "fluctuations” of the f). and the "compliance coefficients"

A (fk)/ oAg:

9 (f] o
fikfD - (fi)(fp) = _a_ilkl - . a()qt) @1

Likewise, higher derivatives of log Z(),...1,) yield higher central
moments of the fy, in a manner analogous to (20), and a hierarchy
of fluctuation laws similar to (21).
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In addition to their dependence on x, the functions fx may de-
pend on another parameter, a. The partition function will then al-
so have an explicit'dependence on a:

Z(x,. .. Am;a) = f, exp(-x,f,(xi;a) - -xmfm(xi;a)) (22)
i=1

and a short calculation shows that the expected derivatives

@

satisfy the relations

of
k | aS
Rk<’§"{> " %a logZ = - 7a (23)

If several parameters q,...a, are present, a relation of this form
will hold for each of them.

Finally, we note an important variational property which gen-
eralizes (16) to the case where we have also variations in the par-
ameters a,...ay. Let Z= Z(,...2p;a.--ap), and consider an
arbitrary small change in the problem, where the given data (fy)
and the parameters q; are changed by small amounts 6(fk), an
This will lead to a change &) in Agx. From (13), the maximumi at-
tainable entropy is changed by

o8
—

+ O, + A, 8 (f
51 (fk> Kk fl Kk (k)

The first and third terms cancel by virtue of (14). Then, using
(23), we have

b ¥ <af" Z t) (25)
6S = - A Ba, + ), A8 (f 25
ek aa>° k° Yk
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Now we can write

r fof r of
D <3—;‘> ba, = <Z —;,a—“oaj> = (ot (26)

=1\ =17
and so finally
m
6S = kgl}‘k Bt - (ofi)] (27
or
m
8S = ké)lxkoqk (28)
where
6Qy = 5(f) - (of) (29)

In general 5Qy is not an exact differential; i.e., there is no func-
tion Qu(A;. . . A3y - . @p) Which yields 8Qy by differentiation. But
(28) shows that A) is an integrating factor such that %k"k“qk is
the exact differential of some "state function" S(x,...Am;a;.--ay)-

All the above relations, (10) to (29), are elementary conse-
quences of maximizing the information theory entropy subject to
constraints on average values of certain quantities. Although they
bear a strong formal resemblance to the rules of calculation pro-
vided by statistical mechanics, they make no reference to physics,
and, therefore, they must apply equally well to any problem, in or
out of physics, where the situation can be described by (1) enum-
erating a discrete set of possibilities and by (2) specifying average
values of various quantities. The above formalism has been ap-
plied also to problems in engineering® and economics.?

In most problems, interest centers on making the best pos-
sible predictions for a specific situation, and we are not really in-
terested in properties of any ensemble, real or imaginary. (For
example, we want to predict the magnetization M(t) of the particu-
lar spin system that exists in the laboratory.) In this case, as al-
ready emphasized, the maximum-entropy probability assignment
p; cannot be regarded as describing any objectively existing state
of affairs; it is only a means of describing a state of knowledge in
a way that is "maximally noncommital'’ by a certain criterion.
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The above equations then represent simply the best predictions we
are able to make on the given information. We are not entitled to
assert that the predictions must be ""right," only that to make any
better ones, we should need more information than was given.
However, in cases where it makes sense to imagine x; as being
the result of some random experiment which can be repeated many
times, a somewhat more "'objective' interepretation of this for-
malism is possible, which in its essentials was given already by
Boltzmann. We are given the same average values (fi(x)) as be-
fore, but we are now asked a different question. If the random ex-
periment is repeated N times, the result x; will be obtained m;
times, i =1,2,...,n. We are to make the best estimates of the
numbers mj on the basis of this much information. The knowledge
of average values tells us that

o]

my
_l—ﬁfk(xi)= (fi) k=12,...,m (30)

W

and, of course,

i O (31)

=1 N

Equations (30) and (31) do not uniquely determine the m if

m < n - 1, and so again it is necessary to introduce some addi-
tional principle, which now amounts to stating what we mean by
the ""best' estimate. The following criterion seems reasonable,
In N repetitions of the random experiment, there are a priori n
conceivable results, since each trial could give independently any
of the results &,,x,,...,x,}. But for given m;j, there are only W
of these possible, where

. N1 N1 2
W= myl...m ! (Ng,)(Ngz)!...(Ng )! (32)
and
oy
‘iE—N- i=1,2,...,n (33)

is the relative frequency with which the result x; is obtained.
Which choice of the g; can happen in the greatest number of
ways? If we have to guess the frequencies on the basis of no more
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information than (30), it seems that a reasonable criterion is to
ask what choice will maximize (32) while agreeing with (30). Now
in the limit of large N, we have by the Stirling formula,

lim 1 _ lim 1 v N1
N—oN 18V =N _ N 198 | mg)T.. . (Ne. J l]

g (34)
=-1glogg
e} 1

and so, if we are to estimate limiting frequencies in an indefinite-
ly large number of trials, we have in (30) and (34) formulated ex-
actly the same mathematical problem as in (6) and (7). The same
solution (10) and formal properties, Egs. (11) to (29), follow im-
mediately, and we have an alternative interpretation of the maxi-
mum-entropy formalism: the probability p; which information
theory assigns to the event x; at a single trial is numerically equal
to an estimate of the relative frequency g; of this result in an in-
definitely large number of trials, obtained by enumerating all
cases consistent with our knowledge, and placing our bets on the
situation that can happen in the greatest number of ways. Thus,
for example, the fluctuation laws (21) describe, on the one hand,
our uncertainty as to the unknown true values of fy(x) in a specific
instance; on the other hand, they give the best estimates we can
make of the average departures from (fy) in many repetitions of
the experiment, by the criterion of placing our bets on the situa-
tion that can happen in the greatest number of ways.

Two points about these interpretations should be noted:

1. In most practical problems, repeated repetition of the ex-
periment is either impossible or not relevant to the real problem,
which is to do the best we can with the individual case. Thus if
one were to insist, as has sometimes been done, that only the sec-
ond interpretation is valid, the result would be to deny ourselves
the use of this formalism in most of the problems where it is help-
ful.

2. The argument leading from the averages (30) to the esti-
mate of frequencies g; was not deductive reasoning, but only plau-
sible reasoning. Consequently, we are not entitled to assert that
the estimates g; must be right; only that, in order to make any
better estimates, we should need more information. Thus the ap-
parently greater ''objectivity' of the second interpretation is to a
large extent illusory.
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3. APPLICATION TO EQUILIBRIUM THERMODYNAMICS

We apply the formalism of the preceding section to the follow-
ing situation: m = 1, f,(x;,a) = E{(V). The parameter V (volume)
and the expectation value of the energy of the system (E) are giv-
en. The partition function is

Z(, V) = fe"‘Ei(V) (35)
=1

Then, by (14), A is determined from
(E) = -2 log Z (36)
a o8
and, as a special case of (23), we have
oE 0
A W> =- 57 log 2 - (37)

But - (E/aV) = (P) is the maximum-entropy estinmte of pres-
sure, and so the predicted equation of state is

P) = -5% log Z (38)

> |t

To identify the temperature and entropy, we use the general vari-
ational property (28). A small change §V in volume will change
the energy levels by 6E; = (3E;/3V) 8V, and if this is carried out
infinitely slowly (i. e., reversibly), the "adiabatic theorem" of
quantum mechanics tells us that the probabilities p; will not be
changed. So, the maximum-entropy estimate of the work done is

8W = - (OE) (39)

Of course; the given (E) is interpreted as the thermodynamic en-
ergy function U. In additior. to the change 6V, we allow a small
reversible heat flow §Q, and by the first law, the net change in
energy is §U = 5Q - W, or

8Q = § (E) - (0E) (40)
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Thus, if fy is the energy, then the Q) defined by (29) is the pre-
dicted heat flow in the ordinary sense. Equation (28) shows that
for any quantity fy, there is a quantity §Qy formally analogous to
heat.

In the present case (28) reduces to

OS(E), V) = A 86Q (41)

Now the Kelvin temperature is defined by the condition that (1/T)
is the integrating factor for infinitesimal reversible heat in closed
systems and the experimental entropy S, is defined as the result-
ing state function. So from (41) the predicted temperature T' and
experimental entropy Sg are given by

A= E’ll“ (42)

8. = kS((E), V) = k(sl)max (43)

The presence of Boltzmann's constant k merely indicates the par-
ticular practical units in which we choose to measure temperature
and entropy. For theoretical discussions, we may as well adopt
units such that k= 1.

All that we have shown so far is that the general maximum-
entropy formalism leads automatically to definitions of quantities
analogous to those of thermodynamics. This is, of course, as far
as any mathematical theory can go; no amount of mathematics can
prove anything about experimental facts. To put it differently, be-
fore we can establish any connection between our theoretical en-
tropy S¢ and the experimentally measured quantity Se, we have to
introduce some physical assumption about what the result of an ex-
periment would in fact be:

Physical assumption: The equilibrium thermody-
namic properties of a system, as measured experimen-
tally, agree with the results calculated by the usual meth- (44)
ods of statistical mechanics; i.e., from the canonical or
grand canonical ensemble appropriate to the problem,

This assumption has proved correct in every case where one
has succeeded in carrying out the calculations, and its universal
validity is taken so much for granted nowadays that authors of
textbooks no longer list it as an assumption. But strictly speaking,
all we can prove here is that systems conforming to this assump-
tion will also conform to various other statements made below.
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If we accept (44), then the identification of entropy is com-
plete, and connection between information theory entropy and ex-
perimental entropy for the present problem can be stated as a the-
orem.

Theorem: Let p; = prob(E; ) be any probability assignment

which conforms to the data in the sense that (E) = LiPiE; is the
measured energy. Let Sy= pj log pj be the correspondmg in-

formation theory entropy, d Se be the experimentally measured
entropy for the system. The additive constant is chosen so that at
zero temperature S = log n, where n is the degeneracy of the
ground state, and let S, be expressed in units such that Boltz-
mann's constant k = 1. Then

SI = Se (45)

with equality if and only if P is chosen as the canonical distribu-
tion

1
=7 exp(-AEi(V)) (46)

This is the physical meaning, for the present problem, of the
general inequality (12). Obviously, the above statement can be
greatly generalized; we can introduce more degrees of freedom in
addition to V, we can consider open systems, where the number of
molecules can change, and we can use the grand canonical ensem-
ble, etc. The corresponding statement will still hold; over all
probability assignments that agree with the data in the aforemen-
tioned sense, the information theory entropy attains an absolute
maximum, equal to the experimental entropy, if and only if p; is
taken as the appropriate canonical or grand canonical distribution.

Remarks: 1. We have taken (E) as the given quantity. In
practice, it is usually the temperature that is measured. To treat
the temperature as the observable, one must regard the system of
interest to be in contact with a heat reservoir, with which it may
exchange energy and which acts as a thermometer. Detailed anal-
ysis of the resulting system (given in reference*) leads to the
same probability assignments as we have found with (E) as the
given datum.

2. I« not only (E) is known, but also the accuracy of the
measurement, as given for example by (E 2y, then this informa-
tion may be incorporated into the problem by taking f,(x;,a) =
E{(V), fy(x;,a) = E}(V). The partition function (11) becomes
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ZOy A5 V) = 213 exp[-1,E,(V) - 3E}(V))] 47)
and from (14),
) )
(E) = o log Z (E® = o log 2 (48)

The fluctuation theorem (21) then gives the relation

®) - (B @) = - 50 - - A (49)

In principle, whenever information of this sort is available, it
should be incorporated into the problem. In practice, however,
we find that for the macroscopic systems that exhibit reproducible
thermodynamic properties, the variance (E? - (E)? as calcula-
ted from (46) is already very small compared to any reasonable
mean-square experimental error, and so the additional informa-
tion about accuracy of the measurement did not lead to any differ-
ence in the predictions. This is, of course, the basic reason for
the success of the Gibbs canonical ensemble formalism.

3. The theory as developed here has, in principle, an addi-
tional freedom of choice not present in conventional statistical me-
chanics. The statement that a system has a definite, reproducible
equation of state means, for example, that if we fix experimental-
ly any two of the parameters P, V, T, then the third is deter-
mined. Correspondingly, in the theory it should be true that in-
formation about any two of these quantities should suffice to enable
us to predict the third; there is no basic reason for constructing
our ensembles always in terms of energy rather than any other
measurable quantities. Use of energy has the mathematical con-
venience that energy is a constant of the motion, and so the state-
ment that the system is in equilibrium (i. e., measurable para-
meters are not time-dependent) requires no additional constraint.
With an ensemble based on some quantity, such as pressure or
magnetization, which is not an intrinsic constant of the motion, if
we wish to predict equilibrium properties we need to incorporate
into the theory an additional statement, involving the equations of
motion, which specifies that these quantities are constant. To do
t™is requires no new principles of ré€asoning beyond those given
above; we merely include the values of such a quantity f(ti) at
many different times (or in the limit, at all times) into the set of
quantities fk whose expectation values are given. In the limit, the
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partition function thus becomes a partition functional:

Zh(®)] = ; exp[- A(B)(x,, ) dt] (50)

and the relations (14) determining the A's go into the correspond-
ing functional derivative relations

W) = gfm log Z[\(®)] (51)

which determine the function A(t).

We have not found any general proof that the predicted equa-
tion of state is independent of the type of information used, but a
special case is proved in the 1961 Stanford thesis of Dr. Douglas
Scalapino. There it is shown that the same equation of state of a
paramagnetic substance with spin-spin interaction is obtained
whatever the input information. We conjecture that this is true
for any system that exhibits an experimentally reproducible equa-
tion of state.

It is doubtful whether this new degree of freedom in applying
the theory will prove useful in calculations pertaining to the equi-
librium state, since it is more complicated than the usual proce-
dure. However, it is just this extra freedom that makes it possi-
ble to develop a general formalism for irreversible processes; in-
deed, prediction of time-dependent phenomena is obviously impos-
sible as long as our probability distributions depend only on con-
stants of the motion. Equations (50) and (51) form the starting
point for a general theory of the nonequilibrium steady state, the
Scalapino thesis providing an example of the calculation of trans-
port coefficients from them.

4. GENERALIZATION

For most applications of interest, the foregoing formalism
needs to be generalized to the case of (a) systems described by a
density matrix or (b) continuous probability distributions as occur
in classical theory. We indicate briefly how this is done.
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a. Density Matrix

The expectation value of an operator Fi of a system described
by the density matrix p is

(F©) = Tr (oF)) (52)

where Tr stands for the trace. The information theory entropy
corresponding to p is

§=-Tr (p log p) (53)

(See reference® for the arguments that lead to this definition of Sy
and discussion of other expressions which have been proposed.)
Maximizing Sy subject to the constraints imposed by knowledge of
the (Fx) yields

1
p= expt-),F; -...-x_F. ) (54)
Z0- - A ) m m
where
Z(r,ye - - xm) = Tr expi-),F, -... -AmFm) (55)

To prove (54), use the lemma
Tr (p log p) = Tr (p log o) (56)

analogous to (9). Here p is any density matrix satisfying (52), and
o is the canonical density matrix (54). All the formal relations
(12) to (29) still hold, except that when the Fi do not all commute,
the fluctuation law (21) must be generalized to

- = - ——= [(F e F.) dx
2 “k ’{ . j (57)
- (F(Fp
where
A ‘f F (58)
=), A
2 Kk
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For all p that agree with the data in the sense of (52), we have
Sp(p) = S, with equality if and only if p is the canonical matrix
(54).

b. Continuous Distributions

Shannon's fundamental uniqueness theorem (reference,? theo-
rem 3) which establishes -Zpi log p; as the correct information.
measure, goes through only for discrete probability distributions.
At the present time, the only criterion we have for finding the
analogous expression for the continuous case is to pass to the lim-
it from a discrete one; presumably, future study will give a more
elegant approach. The following argument can be made as rigor-
ous as we please, but at considerable sacrifice of clarity. In the
discrete entropy expression

(d)
s = -élpi log p, (59)

we suppose that the discrete points x;, i=1,2,...,n, become
more and more numerous, in such a way that, in the limit n—co,
the density of points approaches a definite function m(x):

lim 1 . b
n—ea -!—I(number of points in a <x <b) = a{m(x) dx (60)

If this passage to the limit is sufficiently well behaved, it will also
be true that adjacent differences (x;, ; - x;) in the neighborhood of
any particular value of x will tend to zero so that

l_i.m [n(x, , - x)]= [m(xi)]'1 (1)

The discrete probability distribution p; will go over into a continu-
ous probability density w(x), according to the limiting form of

Py = wix)(x, ;- x)

or, from (61),

p;—wix) [nm(x)]" 1 (62)
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Consequently, the discrete entropy (59) goes over into the integral

5{9. - fwix) ax log [—‘"i’(‘l;]

In the limit, this contains an infinite term log n; but if we subtract
this off, the difference will, in the cases of interest, approach a
definite limit which we take as the continuous information measure:

The expression (63) is invariant under parameter changes; i.e.,
instead of x another quantity y(x) could be used as the independent
variable. The probability density and measure function m(x)
transform as

w,(y) dy = w(x) dx
m,(y) dy = m(x) dx

so that (63) goes into

5{9) - - fw,(y) dy log [,“,’,—*‘%] (64)

To achieve this invariance it is necessary that the ""measure"
m(x) be introduced. I stress this point because one still finds, in
the literature, statements to the effect that the entropy of a con-
tinuous probability distribution is not an invariant. This is due to
the historical accident that in his orlgmal papers, Shannon! as-
sumed, without calculating, that the analog of ),p; log p; was

w log w dx, and got into trouble for lack of invanance Only re-
cently have we realized that mathematical deduction from the
uniqueness theorem, instead of guesswork, yields the invariant
information measure (63).

In many cases it is more natural to pass from the discrete
distribution to a continuous distribution of several variables,
Xye oo Xpj in this case the results readily generalize to

SI(C)=-f...fw(x,. .X )log[.‘%(ﬁ_ﬁ;]dx,...dxr (65)

ee X
r
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We apply this to the Liouville function of classical mechanics.
For a system of N particles, Wy(x,p,. .. X;py;t) dx,...dPpy is the
probability that at time t the system is in the element &x,. .. d°py
of 6N-dimensional phase space. Before we can set up the infor-
mation measure for this case, we must decide on a basic measure
m(x,. ..py) for phase space. In classical statistical mechanics,
one has always taken uniform measure: m = const., largely be-
cause one couldn't think of anything else to do. However, the
more careful writers have all stressed the fact that within the con-
text of classical theory, no real justification of this has ever been
produced. For the present, I propose to dodge this issue by re-
garding classical statistical mechanics merely as a limiting form
of the (presumably more fundamental) discrete quantum statistical
mechanics. In other words, the well-known proposition that each
discrete quantum state corresponds to a volume hN of classical
phase space, will determine our uniform measure as resulting
from equal weighting of all orthogonal quantum states, and passing
to the limit h—0. Thus, apart from an irrelevant additive con-
stant which we drop, our information measure will be just the neg-
ative of the Gibbs H-function, HG:

-S;= Hg = [Wy log W dr (66)

where d7 = d°%,...d%py.

With this continuous probability distribution, we are able to
incorporate into the theory a more detailed kind of macroscopic
information than we have considered up till now. Suppose we are
given the macroscopic density p(x) as a function of position. We
interpret this as specifying at each point of space, the expectation
value of a certain quantity:

(& (x,p,. . . prN;x)) =f Wyt dr = p(x) (67)
where the phase function f, is given by
f,(x,p,.. - X\PpiX) = glm B(xi - x) (68)

The position x now plays the same role as the index k in the ele-
mentary version of the formalism, Egs. (10) to (29), and so in
place of the sum )\kfk(xi) in the exponent of the probability dis-
tribution, this information will place the integral
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a1, ¢x

into the exponent of Wy. The partition function then becomes a
partition functional of the function A(x).

In general, we might have several phase functions of this kind,
whose expectation values are given at each point of space:

(% .. pyp¥) = [Wy 1, dr
e e .. (69)
(f m(x,. .. pN;x)) = WN fm dr

Maximization of S; subject to these constraints gives the partition
functional

Zhy(x), ..oy A ()] = far exp{—‘g1 Iy

(70)
X fg(Xy. o . PyiX) d’x}

The Lagrange multiplier functions A (x) are determined by rela-
tions analogous to (14), but now involving the functional deriva-
tives:

(. . Ppsx)) = 3{%;‘) log Z[M(®),...,x @] (TD)

and the other properties, Egs. (16) to (29), are likewise easily
generalized.

Example: Suppose the macroscopic density of mass, momen-
tum, and kinetic energy are given at the initial time. This corre-
sponds to expectation values of (68), and

N
(fa(X,. . . PpX)) = < leils(xi - x> = P(x) (72)
j=
N p;
(X, . . ppx) = <-2175 alx, - x> = K(x) (13)
i=

Since all the given data are formed additively from contributions
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of each particle, the maximum-entropy Liouville function factors:

Wy = w,(xi, p) (74)

(this would not be the case if the given information concerned mu-
tual properties of different particles, such as the potential en-
ergy), and the exponential in the partition functional (70) reduces

to
-f dx [A,(X)Em 6(x; - x) + A (x) « Zp 5(x, - x)
i i i i i

p’
+ l:(x)ZFin 8(x; - x)]

N P
g [, (x) + p; - Aalx) + 5 x,(x )

so that

log Z = N log [ {exp[- ma,(X) - p - A5(%)
(75)

B ax a'p

Application of (71) now yields the physical meaning of the Lagrange
multipliers: defining the ""mass velocity" u(x) by P(x) = p(x)u(x),
and the "local temperature' T(x) by the mean-square velocity as

seen by an observer moving at velocity u(x), we find
As(x) = ‘T(’—d B(x)
Ax(x) = p(x)u(x) (76)

m),(x) = 1/2 mu?(x)8(x) - 3/2 log B(x) - log p(x) + (const.)

and the single-particle distribution function w, of (74) reduces to

Wy, B) = 2 e

mMNEZrmkTx)P7? &P mKT(x
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In this rather trivial example we merely recover a well-known
result; but from a different viewpoint than the usual one, which
leads us to interpret (77) differently, and regard it as a very spe-
cial case. The method used enables us to translate other kinds of
macroscopic information into definite probability distributions. In
other words, we suggest that the maximum-entropy formalism
provides the general solution to the problem of ""setting up an en-
semble" to describe an arbitrary macroscopic situation, equilibri-
um or nonequilibrium.

The distributions found in the above way, of course, describe
the situation only at the initial time for which the macroscopic in-
formation is given. For predictions referring to other times, one
should, in principle, solve the equations of motion, or Liouville
equation,

Wy + [W,H] =0 (78)

where H is the Hamiltonian and [Wy, H], the Poisson bracket. In
practice, the history of irreversible statistical mechanics has
been one of unceasing efforts to replace this impossibly difficult
calculation by a simpler one, in which we try to reduce (78) to an
"irreversible" equation variously termed Boltzmann equation, rate
equation, or master equation. Although considerable progress has
been made in this direction in recent years, we are still far from
really bridging the gap between these two methods of description.

As a preliminary step in this direction, it is necessary that
we understand clearly the physical meaning of the Liouville func-
tion Wy and the various reduced distribution functions derived
from it. The following section surveys these questions.

5. DISTRIBUTION FUNCTIONS

A recent review of transport theory by Dresden® (hereafter
referred to as MD) illustrates that attempts to bridge the gap be-
tween phenomenological rate equations and fundamentals (equations
of Liouville and Gibbs) have been largely frustrated because basic
conceptual difficulties, dating from the time of Boltzmann, are
still unresolved. This section is intended as a supplement to the
discussion of these problems given to MD, Sec. I.B.

Early attempts to base transport theory on the BBGKY hier-
archy of distribution functions made no distinction between the
Boltzmann distribution function f(x, p, t) and the single-particle
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function w,(xpt) of the hierarchy. In MD this distinction is pointed
out without, however, stating any precise relation between them.
To do this requires, first of all, precise definitions of f and the
Liouville function Wy. Boltzmann originally defined f as giving
the actual number of particles in various cells of six-dimensional
phase space; thus if R is the set of phase points comprising a cell,
the number of particles in R is *

np = Jf; f(x, p, t) d* d*p (79)

The well-known paradoxes involving the H-theorem led to a feeling
that this definition should be modified; but the exact way seems
never to have been stated. Here we retain the definition (79),
which has at least the merit of being a precise statement, and ac-
cept the consequence that the Boltzmann collision equation cannot
be strictly correct, for reasons given by Zermelo and Loschmidt.

From (79) it is immediately clear that Boltzmann's { is not a
probability distribution at all, but a ""random variable." In other
words, instead of saying that f gives the probability of various
conditions, we should ask, '""What is the probability that f takes on
various values?"

Establishment of a precise connection between Boltzmann's £
and the single-particle function of the hierarchy,

wy(x,, Py, t) = [ Wy &%, . dpy (80)

requires no coarse-graining, time-smoothing, or any other muti-
lation of the hierarchy. If we agree that a particle will be consid-
ered "in R" if its center of gravity is in R, and that the Liouville
function Wy is symmetric under permutations of particle labels,
then from HQ) and (80) the exact connection between them is sim-
ply,

(0 = Nw, (81)

where the angular brackets denote an average over the Liouville
function WN. The only "statistical notion" which needs to be ad-
Joined to it is the usual one that Wy dr shall be interpreted as the
probability that the individual system is in the phase region dr. To
say that WN refers to number density in a fictitious ensemble is
only to say the same thing in different words; this cannot be empha-
sized too strongly. Indeed, the notion of an ensemble is merely a
device that enables us to speak of probabilities on the Gibbs, or
global level, as if they were frequencies, in some larger system

* Same as Unlenbeck, in M. Kac, "Probability and
Related Topics in Physical Sciences", Appendix I,
p. 192 (Interscience, 1959).
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which is defined for just that purpose.

The reason why it was felt necessary to introduce the notion
of an ensemble is that the development of equilibrium statistical
mechanics took place entirely in a period when the frequency theo-
ry of probability was the only one considered respectable. It has
been taken for granted that any probability distributions used must
be, in principle, empirically measurable frequencies, and that the
fundamental problem of statistical mechanics is to justify these
distributions in the frequency sense.

The statistical practice of physicists has tended to lag about
20 years behind current developments in the field of basic proba-
bility and statistics. I hope to shorten that gap to about 10 years
by pointing out that a revolution in statistical thought has recently
taken place, brought about largely by the development of statisti-
cal decision theory. Two brief summaries of these developments
have been published®:” and a detailed analysis of the present situa-
tion® will soon be available. The net result is a vindication of the
viewpoint of Laplace, and of Jeffreys,? that probability theory is
properly regarded as an extension of logic to the case of inductive,
or plausible, reasoning, the probabilities denoting basically a "'de-
gree of reasonable belief," rather than limiting frequencies. This
does not mean that there are no longer any connections between
probability and frequency; the situation is rather that every con-
nection between probability and frequency which is actually used in
applications is deducible as a mathematical consequence of the
"inductive logic'' theory of probability.® Equation (81), and others
given below, provide examples of the kind of connections that exist.

Use of probability in this "modern" (actually the original)
sense is, of course, essential to the maximum-entropy formalism;
for the frequencies with which different microscopic states are oc-
cupied are manifestly not given, in general, by a distribution ca-
nonical in the observed quantities; indeed, for a time-dependent
problem the notion of occupation frequency is meaningless. Nev-
ertheless, in a problem where frequencies are meaningful, if our
job is to estimate those frequencies, our best estimate on the ba-
sis of the information available wili be numerically equal to the
probabilities. One example of this was given in the "objective" in-
terpretation of the maximum-entropy formalism in Sec. 2, and we
now give another example which clarifies the meaning of the dis-
tribution functions.

From Egs. (79) and (81) one sees that the single-particle func-
tion w, does not contain full information about the distribution of
particles in six-dimensional phase space. Integrating (81) over
the cell R, we see that it determines only the expectation value of
particle occupation numbers:

(ng) = N wa,(x, p,t) d*x d°p (82)
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In words: the integral in (82) represents the probability that any
specified particle is in the phase cell R. This is not the same as
the fraction of particles in that cell but represents only the expec-
tation value of that fraction, over the Liouville distribution Wy.
Before we are justified in the usual interpretation which identifies
(82) with the actual number of particles in R, it must be shown
that the variance of the ng distribution is small:

2y _ 2
(nR )<nR§nR) « 1 (83)

Unless (83) is satisfied, the Liouville function is making no defi-
nate prediction about the number of particles in R. But we are not
allowed to postulate (83) on the grounds of any "law of large num-
bers'' even for a cell R of macroscopic size, because the two-par-
ticle distribution function of the hierarchy,

W3(X,D,, X202, t) = [ Wy &% . . Py (84)

completely determines whether (83) is or is not satisfied. To see
this, introduce the characteristic function of the set R:

=1L, x,pinR
M(x, p) = {0, otherwise] (85)
Then
N

(ng") = i§=1 (M(x,, p)M(x;, p))) = NI, + NN - DI, (86)
where

) i{wl(x, p) &x &®p (87)

L= £ d*x, dspalj; d®x, d°p, w(x,p,, X;P,) (88)

The measure of dispersion (83) then reduces to

!gx- n + IIN-I L (89)



68 E.T.JAYNES

Thus, when N » 1 and (ng) > 1, the necessary and sufficient
condition for validity of (83) becomes

I%- 1«1 (90)

Usually one omits gravitational forces from the Hamiltonian
and chooses a Liouville function which makes w, independent of
position. If we then describe thermal equilibribrium by Wy ~
exp(-gH) and choose a cell R consisting of all of momentum space,
and a region VR of ordinary space of macroscopic size, Eq. (90)
becomes the necessary and sufficient condition that the Liouville
function makes a sharp prediction of the density of the fluid; i.e.,
it predicts that only one phase is present in Vg. Thus the condi-
tion for condensation, or more precisely for the coexistence of
more than one phase, is that (90) fails to hold. Equation (82) then
gives only a weighted average of the density of the various possible
phases.

Similarly, in the problem of deriving the laws of hydrodynam-
ics from the Liouville equation, one needs to find the predicted
momentum density. In terms of the Boltzmann distribution func-
tion, the total momentum in any phase cell R is

P = [pi(x,p,t) d°x d°p (91)
R

and we choose R to consist of all momentum space plus a cell S' of
ordinary space that is ""microscopically large but macroscopically
small." Again, the single-particle function gives only the expec-
tation value,

(P) = Nfpw,(x,p, t) d*x &p (92)
R

but w, gives no information at all as to whether this is a reliable
prediction. To answer this, we must appeal to the two-particle
function:

(P?) = N[ p*w, dx dp + N(N - 1) [ dx dp [ dx' dp'
xp . p' wy(x,p,x',p')

If the variance of P is everywhere small, then the Liouville func-
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tion is making a definite prediction of a flow pattern; i.e., it pre-
dicts laminar flow. But if the last term of (93) is large, the
single-particle function gives only a weighted average of several
possible flows. In this case, the information put into the Liouville
function was not sufficient to determine any definite mass motion
of the fluid. But if we incorporated into Wy all the information
about the experimentally imposed conditions, the theory is now
telling us that under these conditions the flow will not be experi-
mentally reproducible. In other words, the theory is predicting
turbulent flow.

These examples show that the proper physical interpretation
of the distributions (i. e., their exact relation to physical quanti-
ties) is not an obscure philosophical point. Failure to distinguish
between w; and f as given in (79) means failare to distinguish be-
tween expectation values and actual values, and amounts to the
same thing as simply postulating that ensemble averages are equal
to observed values of physical quantities. This is not only unjusti-
fied because of the probability nature of Wy; it would mean loss of
the correct criterion for phase changes and of the criterion which
distinguishes between laminar and turbulent flow.

On the other hand, we can see no basis for any distinction be-
tween equilibrium and nonequilibrium situations here. One of the
most elementary theorems of probability theory assures us that,
for any phase function Q and any probability assignment Wy what-
soever, the expectation value (Q), denoted by Q,pg in MD, is the
best estimate of Q in the sense that it minimizes the expected
square of the error. Whether the information put into Wy permits
an accurate estimate (i. e., whether the expected square of the
error is small), can be neither postulated nor denied arbitrarily;
it is determined by Wy. In all cases, equilibrium or otherwise,
the test is to calculate (Q?) = f Q*Wy dv, and see whether it is
sufficiently close to (Q? in the sense of (83). If calculation of
(Q requires knowledge of the function wg of the hierarchy, but
not W, 10 and 2s < N, then information about the reliability of the
ensemb}e average (Q as an estimate of Q appears for the first
time in the function w,g, and is, of course, retained in all higher-
order functions.

Any system of "'kinetic equations,” such as the Boltzmann or
Bogoliubov scheme, which attempts to write the higher-order func-
tions in terms of w,, throws away information about the reliability
of the predictions. This, however, may represent a net advantage
if it simplifies the mathematics without greatly affecting the actual
predictions; consequently the search for such kinetic equations is
a major objective of current theoretical effort. If the particles
move under the influence of a potential energy function V(x,...xy),
the exact differential equation satisfied by w,(x,, p,, t) may be writ-
ten compactly
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ow, Pz ow a
-&l+———'&:+—a‘p—"a'fpaw‘]=° (94)
where
Fy=- f v (x x,p,) d%x d%p (95)
(F)= ™, 2+ Pyy| XaP)) @°%;. . . dpyy

is the conditional expectation value of the force seen by particle 1,
given that it has position and momentum (x,, p,). Here (x,... pNI
x,p,) is the conditional probability density for the other particles,
defined by Wy(x,. ..pN) = (X,...pNIX,p) W, (X,p)).

Although direct calculation of (F,) would be very difficult,
the form of (94) should prove useful in two respects. In the first
place, it shows that, although the basic ideas may be stated in en-
tirely different terms, any proposed equation for w,, such as the
Boltzmann, the Fokker-Planck, or the Bogoliubov equation, is
equivalent to some assumption about the expected force (Fg) .
The physical reasonableness of any proposed equation may, there-
fore, be judged by comparing it to (94), and seeing what explicit
assumption it makes about ¢ F,>. Second, (94) shows that all the
complications of this subject reduce ultimately to the determina-
tion of one quantity, ( F,>. Therefore, a phenomenological theo-
ry should be feasible in which (F,) is determined from appropri-
ate experiments. In situations close to equilibrium, one finds in
this way that in first approximation { F,> is proportional to the
density gradient, and independent of p,. The condition for conden-
sation, which is a particular kind of hydrodynamic instability, is
then that this proportionality coefficient exceeds a certain critical
value.

6. ENTROPY AND PROBABILITY

Now we turn to what is perhaps the most serious confusion of
all in current irreversible statistical mechanics—the interpreta-
tion of entropy in terms of probability distributions. As recent
literature gives ample testimony, even the issue of Boltzmann's
versus Gibbs' H functions to represent entropy has not been re-
solved in any commonly agreed way. For example, in MD it is
stated that the Boltzmann H,

Hp = [flogfdx & (96)

* G. E. Uhlenbeck, Physics Today, July 1960, pp. 17-21,
together with remark in Kac book (see p. 65 here).
Think of the problem of "setting up an ensemble"

solved by Bogoliubov.
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is "directly related" to the entropy, whereas the Gibbs expression
H.=1[W_log W, dv (97
G=NJ N8N

is rejected with the statement: ''There is, however, no possibility
of identifying or relating Hg to the macroscopic entropy, for one
proves directly from (23) and (18) that Hg is constant in time,
whereas the macroscopic entropy always increases in a nonequi-
librium situation.” Similar statements appeared in the Ehrenfest?®
review article of 1912, when the work of Gibhs had not yet been
understood. From the frequency with which this objection to
Gibbs' H has been repeated in the literature since then, it is clear
that the nature of Gibbs' contribution has not been fully apprecia-
ted to this day.

We wish to point out that the mathematical relations proved by
Gibbs, plus one physical assumption which is universally accepted
today (although it had hardly been formulated at the time of the
Ehrenfest article) are sufficient to prove, on the contrary, the fol-
lowing four statements:

(I) The Gibbs H has a simple and universally valid connection
with the entropy; for all probability assignments that agree with
the measured thermodynamic parameters we have S > -kHg, with
equality if and only if Hg is computed from the appropriate canoni-
cal or grand canonical probabijlity assignment.

(I) The Boltzmann H is related to the entropy in only one
case, the nonexistent ideal Boltzmann (i. e., not Bose or Fermi)
gas. In general, Hg =<.Hg, and the entropy can be either greater
or less than -kHp. ’

(II) The constancy of Gibbs' H, far from conflicting with the
increase of entropy, is the sole dynamical property needed to
demonstrate that increase.

IV) The Gibbs H provides a generalized definition of entropy
for nonequilibrium cases, in such a way that the usual statement
of the second law remains valid. It gives, therefore, a new rule
telling which nonequilibrium states are accessible from others in
adiabatic processes.

The fourth statement is a nontrivial extension of the second
law which is capable of being tested experimentally, and whose
finding required only a careful reading of Gibbs. Since the second
law is a statement of experimental fact, it cannot be "proved"
mathematically without some assumption about what the result of
an experiment would be. The assumption we need is just the
statement (44) which we appealed to before.

Before turning to the proofs, some preliminary remarks are
needed. We are still faced with the ambiguity in the definition of f.
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The function defined by (79) is singular in such a way that the inte-
gral (96) diverges; thus before we can introduce a Boltzmann H at
all, we have to abandon Boltzmann's definition of f in favor of
some other, unspecified one. In MD it is stated that f gives an
''average'' occupation number, and that this can be made more
precise by reference to an equation which is indeed an average ov-
er an undefined probability distribution P. If we suppose that, in
going to fundamentals, this would eventually become an average
over the Liouville function Wy, we have a definition of Hg for
which exact relations can be proved. In other words, we mean to
use the single-particle function w, of the hierarchy to define a
Boltzmann H:

Hp = [w, log w, d° dp (98)

There is really no other way of doing it if we are ever to prove
precise statements about Boltzmann's H, because eventually this
will have to depend on precise properties of the dynamics, and the
Liouville hierarchy is just the precise expression of the dynamics.

Another point is that, strictly speaking, all this should be re-
stated in terms of quantum theory using the density matrix formal-
ism. This will introduce the N! permutation factor, a natural ze-
ro for entropy, alteration of numerical values if discreteness of
energy levels becomes comparable to kT, etc. But there seems
to be complete agreement as to how this transcription is to be
made, and it will affect the Boltzmann and Gibbs expressions in
the same way. We shall first attempt to define the Boltzmann H as
H' = Tr (¢ log o), where ¢ is the "molecular" density matrix oper-
ating in the Hilbert space of a single molecule and gives occupation
numbers. The Gibbs H will become H¢ = N-1Tr (p log p), wherep
is the "'global" density matrix with an enormously greater number
of rows and columns, operating in the entire Hilbert space of the
system. On closer examination, we shall wonder whether the di-
agonal elements of ¢ are to represent the actual values, probable
values, average values, etc. of the occupation numbers, and H'
will peter out in ambiguities until we note that, if it is to have any
precisely provable properties, it must be precisely related to the
dynamics; i. e., out of all possible definitions of o, we decide to
use p,, the projection of p onto the subspace of a single molecule,
as defined in reference,® Sec. 11. Its diagonal elements are ex-
pectation values, over the global density matrix p, of occupation
fractions. Then with H§ and Hj = Tr (p, log p,) we can prove ex-
actly the same inequalities as for the classical case. Thus, the
issue of Boltzmann versus Gibbs entropy expressions does not in-
volve quantum theory, and we continue to use classical terminolo-
gy for brevity.
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Statement (I) is now just the theorem (45) already proved, if
one grants the physical assumption (44), for the quantum theory

case.
Statement (II) quotes a well-known mathematical theorem,

HG > HB (99)

with equality if and only if the Liouville function factors "almost
everywhere''

N
WN(x,. .. pN) = ir_jlw,(xi, pi) (100)

which corresponds, in quantum theory, to the condition that the
global density matrix is a direct product®

p=pxxpzxo-- xpN (101)

where p; is the projection of p onto the Hilbert space of the i-th
molecule. The final part of statement I then follows from the fact
that the canonical distribution Wy ~ exp(- H) has the factorized
form (100) only in the case of an ideal Boltzmann gas. In this case
the "Boltzmann entropy," Sg = -kHp, is equal to the experimental
entropy; in all other cases, if w, is constructed from the appropri-
ate canonical distribution Wy, we shall have Sg > Sg.

Statement II is likewise an immediate consequence of state-
ment I and the well-known fact that Hg is, in consequence of the
equations of motion, constant in time in either classical or quan-
tum theory. To make this clearer, consider the following experi-
ment. At time t = 0, we measure the values of various parame-
ters X,...X, adequate to determine the state of a thermodynamic
system of n degrees of freedom. The experimental entropy is, of
course, some function Se(X,...X,) of the measured quantities; and
not primarily related to any probability distribution. But we have
shown that the maximum attainable information theory entropy Sj,
corresponding to the appropriate canonical distribution based on
the values of X,...X;, is equal to Se. At some later time t, a new
measurement of the thermodynamic state yields different values,
X}, ..., X,, and a different experimental entropy Se(X]...X;). But
the inequality Sy = S, still holds; and so the statement that Sy (or
what is the same thing, Hg) is constant, then gives us S§ = S,.

There is still an apparent paradox hiding here; for suppose we
choose t negative. It looks as if this argument then says that the
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experimental entropy in the past was greater than at the time of
the measuremerts X,...X,. Actually, the explanation of this par-
adox has been given before.® We have, of course, assumed in the
above that forward integration of the equations of motion does, in
fact, yield the correct predictions at time t; i.e., the measured
X} are equal to ensemble averages calculated from the time-devel-
oped Liouville function obeying (78), or the time-developed global
density matrix obeying ihp = [H,p]. In reference,® it is shown that
this is the case if the observed change Xj — X! is an experimental-
ly reproducible one. But we know that many past macroscopic
states X} would all relax into the same state X; at time t = 0.

Thus, we suggest that the correct statement of the second law is
that spontaneous decreases in the experimental entropy, although
not absolutely prohibited by the laws of physics, cannot occur in an
experimentally reproducible process.

Statement IV now follows trom the fact that nothing in the
above reasoning restricts us to equilibrium states. In convention-
al thermodynamics, the experimental entropy is defined only for
equilibrium states; however, our definition Sg = [max Sj over all
probability distributions that agree with the data in the sense of
(52)] defines a function Sg(X,. .. Xy) of the experimentally mea-
sured parameters for the equilibrium or nonequilibrium case,
which by the above arguments cannot spontaneously decrease in an
experimentally reproducible process. It can no longer be found by
numerical integration of dQ/T over a reversible path; but the con-
tent of statement IV is that a function S, still exists, such that the
usual statement of the second law remains valid. It requires a
great deal more analysis, to be given elsewhere, before we can
reduce this to a suggestion of a definite experiment that could test
statement IV; I am trying here only to point out in the briefest
terms why it is that an extension of the second law is predicted by
theory as soon as we have understood everything revealed by Gibbs
about the connection between entropy and probability.

Finally, we note that the Boltzmann H-theorem, whether cor-
rect or not, cannot have any real relevance to the second law.

For, summarizing the above inequalities,

-kHB =-kH.=<S (102)

G e

where the first inequality becomes an equality if and only if there
are no interparticle correlations (i. e., ideal Boltzmann gas), the
second if and only if Hg is computed from the appropriate canoni-
cal distribution. Obviously, whether Hg increases or decreases
allows us to infer nothing about Sg. The situation is even worse
than that; for the Boltzmann H-theorem was based on incorrect
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equations of motion, and whether Hp increases or decreases de-
pends on the form of the distribution and the force taw. To see
this, note that from (98) and the exact equation of motion (94), the
exact rate of change of Hp is just the negative of the expected di-
vergence in momentum space of the molecular force (F,):

"~ _ . 8<F
Hy = < p:>_> (103)

and this can have either sign. For example, if (F, ) is dominated
by a "'dragging'’ term as in the Langevin equation: CED = -Kpy +
..., then we find that the exact equations give us an "anti-H-theo-
rem,"” Hg > 0.

7. CONCLUSION

We have seen that the principle of maximum entropy leads
immediately to the same final rules of calculation that convention-
al statistical mechanics had provided only after long and inconclu-
sive discussion of phase space, ergodicity, metric transitivity,
etc. ; and then only for the equilibrium case. The viewpoint advo-
cated here thus represents, from the pedagogical standpoint, a
considerable simplification of the subject. But this agreement al-
so means that, from a pragmatic standpoint, if there is any new
content in this principle, we must look for it in the extension to
the statistical mechanics of irreversible processes, where there
does not exist at present any general formal theory, and ask
whether the principle of maximum entropy provides such a basis.
Over the past several years, my students and I have verified that
all the commonly accepted principles of irreversible statistical
mechanics can be derived from this formalism; that is, of course,
a minimum requirement that any proposed new theory must pass.
The real test of these ideas can come only through their applica-
tion to problems that have resisted solution by older methods. Al-
though a few results along this line are now in,* and a few others
have been hinted at in these talks, a final settlement of the ques-
tions raised still lies rather far in the future.
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5. GIBBS vs BOLTZMANN ENTROPIES (1965)

In the 1950’s and early 1960’s there was a great deal of activity trying to
develop a theory of irreversible processes in terms of the notion of local
entropy production. For a time it appeared that this conception might be
justified in statistical theory. However, these arguments (de Groot and Mazur,
1962) used the Boltzmann H-function definition of entropy, Sg = —kHp
based on the single-particle distribution function. Recognition of the difficul-
ties caused by this was slow in coming.

Dresden (1961) asserted that S was ‘directly related to the entropy’,
while the Gibbs S based on the full N-particle distribution function was
rejected with the statement that there was ‘no possibility of relating it to the
entropy’. Prigogine (1963) questioned the validity of the Gibbs relation
TdS=dU + PdV — Z y; dn; and the Kubo expressions for transport coeffi-
cients because derivations based on Sg did not support them.

However, to others it appeared that the Gibbs relation, properly used, was
not a physical hypothesis, but the definition of y;; and the Kubo formulas
had been derived directly from first principles. Failure to confirm either
could signify only faulty reasoning or faulty premises, and it seemed that the
difficulty lay in use of an incorrect entropy expression.

Spurred by this discrepancy and following a lengthy discussion with E. P.
Wigner on these problems, I wrote the following article analyzing the entropy
question in detail. It demonstrated explicitly what had long been known
implicitly by some; for arbitrary interparticle forces the Gibbs entropy
S¢ = —kHg using the canonical ensemble gives the correct thermodynamic
relations, while Sp is correct only for an ideal gas at thermal equilibrium.

The point was amplified further in a note (Jaynes, 1971) pointing out that
when attractive forces are present, use of Sp would make some well-known
experimental facts appear to be violations of the second law (if the approach
to equilibrium takes place via conversion of kinetic energy into potential
energy, Sp decreases rather than increases).

The demonstration of the Clausius adiabatic form of the second law in the
Brandeis lectures was repeated in classical form here, but again to no avail.
It remains unnoticed.

As a former student of Eugene Wigner, I had been invited to contribute

77
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an article to the October 1962 issue of Reviews of Modern Physics, planried
as a kind of Festschrift for his 60°’th birthday. I wrote a paper entitled ‘Con-
ceptual Problems in Statistical Mechanics’ but at the last minute felt that it
was not of high enough quality for that occasion and withdrew it, a decision
deeply regretted on seeing some of the articles that did appear. However,
some portions of it that appeared sound enough to stand the test of time
(the ‘anthropomorphic’ remarks) were retrieved and built into the following
article. More portions appear in the Delaware lecture reprinted below, but
most of it is still unpublished.

But it is just those anthropomorphic remarks that have aroused the most ire,
most recently in the article of Denbigh (1981). Accordingly, let me state here
that I stand by those remarks, and believe they are correct as presented
below. Indeed, they state only what had been well recognized by Boltzmann,
Gibbs, G. N. Lewis, J. von Neumann, and E. P. Wigner lpng before.

Denbigh objects that my arguments on the nature of entropy would apply
as well to energy. Not so! The difference is that energy is a property of the
microstate, and so all observers, whatever macroscopic variables they may
choose to define their thermodynamic states, must ascribe the same energy to
a system in a given microstate. But they will ascribe different entropies to
that microstate, because entropy is not a property of the microstate, but
rather of the reference class in which it is embedded. As we learned from
Boltzmann, Planck, and Einstein, the entropy of a thermodynamic state is a
measure of the number of microstates compatible with the macroscopic quan-
tities that you or I use to define the thermodynamic state.

It is a sad commentary on the state of conceptual progress here that these
facts are still not grasped by prominent workers in the field, although they
were demonstrated very cogently over 100 years ago by Gibbs (1876) in his
discussion of gas diffusion. We can hardly blame students for being as con-
fused as their teachers, in a field that ought to have become, long ago, just as
clear and rational as mechanics or optics. In my opinion, this would have
happened if Gibbs and Einstein had been read more assiduously.

Needless to say, it was just this property of entropy — that it measures
our degree of information about the microstate, that is conveyed by data on
the macroscopic thermodynamic variables — that made information theory
such a powerful tool in showing us how to generalize Gibbs’ equilibrium
ensembles to nonequilibrium ones. The generalization could never have been
found by those who thought that entropy was, like energy, a physical proper-
ty of the microstate.
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The status of the Gibbs and Boltzmann expressions for entropy has been a matter of some
confusion in the literature. We show that: (1) the Gibbs H function yields the correct entropy
as defined in phenomenological thermodynamics; (2) the Boltzmann H yields an “entropy” that
is in error by a nonnegligible amount whenever interparticle forces affect thermodynamic
properties; (3) Boltzmann's other interpretation of entropy, S=%k log W, is consistent with the
Gibbs H, and derivable from it, (4) the Boltzmann H theorem does not constitute a demon-
stration of the second law for dilute gases, (5) the dynamical invariance of the Gibbs H gives
a simple proof of the second law for arbitrary interparticle forces; (6) the second law is a special
case of a general requirement for any macroscopic process to be experimentally reproducible.
Finally, the “‘anthropomorphic” nature of entropy, on both the statistical and phenomeno-

logical levels, is stressed.

1. INTRODUCTION

N the writer’s 1962 Brandeis lectures! on sta-
tistical mechanics, the Gibbs and Boltzmann
expressions for entropy were compared briefly,
and it was stated that the Gibbs formula gives
the correct entropy, as defined in phenomeno-
logical thermodynamics, while the Boltzmann H
expression is correct only in the case of an ideal
gas. However, there is a school of thought which
holds that the Boltzmann expression is directly
related to the entropy, and the Gibbs' one simply
erroneous. This belief can be traced back to the
famous Ehrenfest review article,? which severely
criticized Gibbs' methods.

'Sué’ported by the National Science Foundation Grant
NSF G23778.

! Statsstrcal Physics (1962 Brandeis Theoretical Physics
Lectures, Vol 3), edited by K. W. Ford (W. A. Benjamin,
Inc, New York, 1963), Cha?. 4. Note that typographical
errors occur 1n Eqgs. 20, 49, 74, 78, 94, and the inequality
preceding Eq. 90.

2 P. Ehrenfest and T. Ehrenfest, Encykl Math. Wiss.,
1V 2, II, Issue 6 (1912). Reprinted in Paul Ehrenfest,
Collected Scientsfic Papers, edited by M. J Klein (North-
Holland Press, Amsterdam, 1959). English translation by
M. ]. Moravcsik, The Conceptual Foundations of the
Statsstical Approach in Mechanics (Cornell University
Press, 1thaca, New York. 1959).

While it takes very little thought to see that
objections to the Gibbs H are immediately re-
futed by the fact that the Gibbs canonical en-
semble does yield correct thermodynamic pre-
dictions, discussion with a number of physicists
has disclosed a more subtle, but more wide-
spread, misconception. The basic inequality of the
Gibbs and Boltzmann H functions, to be derived
in Sec. II, was accepted as mathematically cor-
rect; but it was thought that, in consequence of
the “laws of large numbers’ the difference be-
tween them would be practically negligible in
the limit of large systems.

Now it is true that there are many different
entropy expressions that go into substantially
the same thing in this limit; several examples
were given by Gibbs. However, the Boltzmann
expression is not one of them; as we prove in
Sec. 111, the difference 1s a direct measure of the
effect of interparticle forces on the potential
energy and pressure, and increases proportionally
to the size of the system.

Failure to recognize the fundamental role of
the Gibbs H function is closely related to a much
deeper confusion about entropy, probability,
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and irreversibility in general. For example, the
Boltzmann H theorem is almost universally
equated to a demonstration of the second law of
thermodynamics for dilute gases, while ever
since the Ehrenfest criticisms, it has been
claimed repeatedly that the Gibbs H cannot be
related to the entropy because it i1s constant in
time.

Closer inspection reveals that the situation is
very different. Merely to exhibit a mathematical
quantity which tends to increase is not relevant
to the second law unless one demonstrates that
this quantity is related to the entropy as meas-
ured experimentally. But neither the Gibbs nor
the Boltzmann H is so related for any distribu-
tion other than the equilibrium (i.e, canonical)
one. Consequently, although Boltzmann's H
theorem does show the tendency of a gas to go
into a Maxwellian velocity distribution, this is
not the same thing as the second law, which is a
statement of experimental fact about the direc-
tion 1n which the observed macroscopic quantities
(P,V,T) change.

Past attempts to demonstrate the second law
for systems other than dilute gases have generally
tried to retain the basic idea of the Boltzmann
H theorem. Since the Gibbs H is dynamically
constant, one has resorted to some kind of coarse-
g_raining operation, resulting in a new quantity
H, which tends to decrease. Such attempts can-
not achieve their purpose, because (a) mathe-
matically, the decrease in H is due only to the
artificial coarse-graining operation and it cannot,
therefore have any physical significance; (b) as
in the Boltzmann H theorem, the quantity whose
increase is demonstrated 1s not the same thing
as the entropy. For the fine-grained and coarse-
grained probability distributions lead to just the
same predictions for the observed macroscopic
quantities, which alone determine the experi-
mental entropy ; the difference between H and A
is characteristic, not of the macroscopic state,
but of the particular way in which we choose to
coarse-grain. Any really satisfactory demonstra-
tion of the second law must therefore be based on
a different approach than coarse-graining.

Actually, a demonstration of the second law,
in the rather specialized situation visualized in
the aforementioned attempts, is much simpler
than any H theorem. Once we accept the well-
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established proposition that the Gibbs canonical
ensemble does yield the correct equilibrium
thermodynamics, then there is logically no room
for any assumption about which quantity repre-
sents entropy ; 1t is a question of mathematically
demonstrable fact. But as soon as we have under-
stood the relation between Gibbs' H and the
experimental entropy, Eq. (17) below, it is
immediately obvious that the constancy of
Gibbs' H, far from creating difficulties, is pre-
cisely the dynamical property we need for the
proof.

It is igteresting that, although this field has
long been regarded as one of the most puzzling
and controversial parts of physics, the difficulties
have not been mathematical. Each of the above
assertions is proved below or in the Brandeis
lectures, using only a few lines of elementary
mathematics, all of which was given by Gibbs.
It is the enormous conceptual difficulty of this
field which has retarded progress for so long.
Readers not familiar with recent developments
may, | hope, be pleasantly surprised to see how
clear and basically simple these problems have
now become, in several respects. However, as we
will see, there are still many complications and
unsolved problems.

Inspection of several statistical mechanics
textbooks showed that, while most state the
formal relations correctly, their full implications
are never noted. Indeed, while all textbooks give
extensive discussions of Boltzmann’s H, some
recent ones fail to mention even the existence of
the Gibbs H.3 I was unable to find any explicit
mathematical demonstration of their difference.
It appeared, therefore, that the following note
might be pedagogically useful.

II. THE BASIC INEQUALITY

We consider, as usual, a monoatomic fluid of N
particles. The ensemble is defined by the N-
particle distribution function, or Liouville func-

the probability density in the full phase space of

3 A notable exception is the monumental work of R. C.
Tolman, The Principles of Statistical Mechanics (Oxford
University Press, London, 1938) Tolman repeatedly
stresses the superiority of Gibbs' approach, although he
still attempts to base the second law on coarse-graining.



GIBBS VS BOLTZMANN ENTROPIES 81

the system. The Gibbs H is then

HG=/WN logWydr 1)
and the corresponding Boltzmann H is

Hpy =N/w, logw,dry, )

where w,(x1,p1;¢) is the single-particle proba-
bility density

wy (x1,01; 8) =/W~dr_.. 3)

Here and in the following, we use the notation:
dr=d’x,- - -&@*pn,dr1=dx\d*py, dr_ =d%y- - - PPN
to stand for phase-volume elements in the full
phase space, the space of one particle, and the
space of all particles except one, respectively.

Both the Gibbs and Boltzmann H functions
are often defined in slightly different ways, in
which one uses distribution functions with differ-
ent normalizations. This changes the numerical
values by additive constants which, for fixed N,
are independent of the thermodynamic state and
therefore not relevant to the present discussion.
These additive constants are important, however,
in connection with the “Gibbs paradox’ about
entropy of mixing, and the resolution of this
paradox by quantum statistics is well known.
The distribution functions used above are under-
stood to be probability densities; i.e., normalized
according to S Wydr= fwdr,=1.

Using (3) and the fact that Wy is symmetric
under permutations of particle labels, we can
write Hp in a more symmetrical form

HB-—-N/WN logw, (x1,p1)dr

=/WN log[wi(1) - - -wy (V) Vdr,

where we use the abbreviation: () = (x,,p,). We
have, then,

wi (1) -wi(N)
—Hg= | Wy log| ————— |dr.
Hpg G / N 0g|: Wall ) ]d (4)

Now on the positive real axis, logx < (x—1), with

equality if and only if x=1. Therefore

w1 (1) - - -w (N)
HB—HC.S/WN[———-——l]d‘r=0.
Wx(1---N)

and we have proved
Theorem 1: The Gibbs and Boltzmann H func-
tions satisfy the inequality

Hy<Hg, (5)

with equality if and only if Wy factors “almost
everywhere”” into a product of single-particle
functions

WN(l' . -N)=-w1(1)~ . -wl(N).

III. CANONICAL ENSEMBLE

Theorem 1 holds for any symmetrical Wy. The
magnitude of the difference (Hg— Hpg) depends
on the distribution function, and we are particu-
larly interested in the case of thermal equilib-
rium, represented by the canonical distribution
Wy ~exp(—BH), where 8= (kT)" and H is the
Hamiltonian, taken of the form

N opl
H=3% —+V(x, - -xn), (6)
w1 2m

where the potential-energy function V(x,- - -x»)
is a symmetrical function of the particle coordi-
nates, which we suppose for simplicity depends
only the relative coordinates (relaxing this
restriction by adding gravitational potential
energy leads to a number of interesting results,
but does not change the conclusions of this
section). More explicitly, we have

o)

2xm

2
Xexp[—ﬁV(x;-“xu)—sz— , (D
v 2m

where

Q(8,9) E/exp(rﬂV)d’x,- cedixy
Q

=9/ exp(—8V)d*,---d*xn  (8)
2

is the “configuration integral,” and in the last
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expression we have made use of the fact that V
depends only on relative coordinates, and
supposed the range of interparticle forces negh-
gibly small compared to the size of the container,
so that the final integration supplies only a
factor Q. From (3), the corresponding single-
particle function is then

wy(x,p) = (B/27m)**Q~" exp(—Bp*/2m). (9)
We therefore have
[wr(1)- - - (N)J/Wa(1---N)= Q2 ¥e?,
and (4) reduces to
Hy—Hg=1logQ—N logQ+8(V), (10)

where the angular brackets ( ) denote the
canonical ensemble average. It is also true that

(V)= —2alogQ/B, (11a)
B(P)=24 logQ/aq, (11b)

where P is the pressure; Eq. (11) are well-known
identities of the canonical ensemble. From (10),
(11), we thus find that on an infinitesimal change
of state,

d(Hs—~Hg) =Bd(V)+B[(P)—PoJd2, (12)

where Po=NkT/Q is the pressure of an ideal gas
with the same temperature and density. Intro-
ducing the ‘“‘entropies’” S,= —kH, and integrat-
ing (12) over a reversible path (i.e., a locus of
equilibrium states), we see that the difference
varies according to

(Sa—Ss)2— (S — S
2 d(V)+[(P)—Po)d2
::/ _E__.g_._ (13)
1 T
Now from (9), using (p?)=3mkT, we find that
Su=3Nklog(2xmkT)+ Nk logQ+ 3Nk,
from which
A 3 NkdT d(K)
(-2
T /q 2 T T

aSs Nt P2
(~> dQ=—d=—0
02 /7

where (K)=3NkT is the total kinetic energy.
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Over the reversible path (13) the Boltzmann
entropy therefore varies according to

?d(K)+Podl

(S8):— (Sehr= 7 ,

1

(14)

and from (13), (14) we finally have for the Gibbs
entropy

(Se)a—(Sa)1= f

1
2dQ
T

*d(K + V)+(P)dQ

(15)

Equations (14), (15) are the main results
sought. From them it is clear that (a) the
“Boltzmann entropy’’ is the entropy of a fluid
with the same density and temperature, but
without interparticle forces; it completely ne-
glects both the potential energy and the effect of
interparticle forces on the pressure; (b) the
Gibbs entropy is the correct entropy as defined
in phenomenological thermodynamics, which
takes into account all the energy and the total
pressure, and is therefore equally valid for the
gas-or condensed phases; (c) the difference be-
tween them is not negligible for any system in
which interparticle forces have any observable
effect on the thermodynamic properties. If the
system exhibits an equation of state or heat
capacity different from those of an ideal gas, the
Boltzmann entropy will be 1n error by a corre-
sponding amount.

IV. THE SECOND LAW

We can now demonstrate the second law very
easily, for the specialized case usually considered.
The following argument can be greatly general-
ized, although we do not do so here.

It is well known® that the canonical distribu-
tion (7) is uniquely determined by a variational
property; over all distributions Wy that agree
with the experimental energy U, in the sense that
the mean value of the Hamiltonian 1s

<H>E/w~mr= U, (16)

the Gibbs H attains an absolute minimum for the
canonical distribution. For this case, we have
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just shown that, if the arbitrary additive con-
stant is properly adjusted at a single point, then
the Gibbs entropy Sg= —kHg will be the same
as the experimental entropy at all points. There-
fore, the general relation between Sg and the
experimental entropy S, is: over all distributions
Wy that agree with the experimental energy in
the sense of (16), we have

Sa<S. 17)

with equality if, and only if, Sg is computed from
the canonical distribution (7).

At time t=0, let our system be in complete
thermal equilibrium so that all its reproducible
macroscopic properties are represented by the
canonical distribution; then the equality holds
in (17). Now force the system to carry out an
adiabatic change of state (i.e., one involving no
heat flow to or from its environment), by appyl-
ing some time-dependent term in the Hamil-
tonian (such as moving a piston or varying a
magnetic field). It is well known that the N-
particle distribution function varies according
to the Liouville equation Wy = {H ({), Wx} where
the right-hand side is the Poisson bracket; and
in consequence Hg remains constant.

At a later time ¢/, the system is allowed to come
once more, but still adiabatically, to equilibrium
(which means experimentally that macroscopic
quantities such as pressure or magnetization are
no longer varying), so that a new experimental
entropy S, can be defined. If the time-developed
distribution function Wy (¢') leads to a correct
prediction of the new energy U’ in the sense of
(16), then the inequality (17) still holds. The
fact that Hg is a constant of the motion then
gives S,<S,’, which is the second law.

V. INTUITIVE MEANING OF THE SECOND LAW

The above proof has the merit of being almost
unbelievably short, but partly for that reason,
the physical basis of the second law is not made
clear. In the following we are not trying to give
a rigorous mathematical demonstration ; that has
just been done. We are trying rather to exhibit
the basic intuitive reason for the second law. We
recall Boltzmann's original conception of entropy
as measuring the logarithm of phase volume
associated with a macroscopic state. If Boltz-
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mann's interpretation S=k logW¥ is to be com-
patible with Gibbs’ S= —kHg, it must be true
that the quantity W=exp(—Hs) measures, in
some sense, the phase volume of ‘‘reasonably
probable’’ microstates.

Such a connection can be established as
follows. Define a “high-probability’’ region R of
phase space, consisting of all points where
Wy > C, and choose the constant C so that the
total probability of finding the system somewhere
in this region is (1 —e¢), where 0 <e¢<1. Call the
phase volume of this region W(e); in equations,

/ Whdr=1—c¢,
R

/R dr=W(e).

Evidently, with a continuously varying proba-
bility density Wy, it is not strictly meaningful
to speak of the “phase volume of an ensemble,”
without qualifications; but the “minimum phase
volume of 509, probability” or the “minimum
phase volume of 999, probability” do have
precise meanings.

A remarkable limit theorem first noted by
Shannon® shows that for most purposes the
particular probability level ¢ is unimportant. We
quote the result without proof; it is an adapta-
tion of the fundamental ‘‘asymptotic equi-
partition property’’ (AEP) of Information
Theory.® We suppose that the distribution func-
tion Wy from which Hq and W (e) are computed
is either a canonical distribution or a time-
developed version of one resulting from some
dynamical perturbation; and that the system is
such that the canonical ensemble predicts rela-
tive fluctuations in energy which tend to zero as
N-12 in the “thermodynamic limit”" as N — «
at constant density. The Gibbs H per particle,
Hg/N, then approaches a definite limit, and

lim {[Ho+logW()]/N} =0 (18)

¢ E. T. Jaynes, Phys. Rev. 108, 171 (1957).

8 C. E. Shannon, Bell Syst. Tech. J. 27, 379, 623 (1948);
reprinted in C. E. Shannon and W. Weaver, The Mathe-
matical Theory of Communicatson (University of Illinois
Press, Urbana, lllinois, 1949). See, icularly, Sec. 21.

¢ A. Feinstein, Fou: sons of Informalion Theory

B::zevhﬂill Book Company, Inc.,, New York, 1958),
p. 6.
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provided e is not zero or unity. The principal
feature of this theorem, at first sight astonishing,
is that the result is independent of e. Changing ¢
does, of course, change W(e); and generally by
an enormous factor. But the change in logW (¢)
grows less rapidly than N, and in the himit it
makes no difference.

The intuitive meaning of this theorem is that
the Gibbs H does measure the logarithm of phase
volume of reasonably probable microstates and,
remarkably, for a large system the amount per
particle, logW(e)/N, becomes independent of
just what we mean by ‘‘reasonably probable.”
We are thus able to retain Boltzmann's original
formula, S=% logW, which is seen to be precisely
related to the Gibbs H, not the Boltzmann one.

With this interpretation of entropy, let us re-
consider the above experiment. At time ¢=0, we
measure a number of macroscopic parameters
{X1(0), - ,X.(0)} adequate to define the ther-
modynamic state. The corresponding canonical
distribution determines a high-probability region
R,, of phase volume W, The aforementioned
variational property of the canonical ensemble
now implies that, of all ensembles agreeing with
this initial data in the sense of (16), the canonical
one defines the largest high-probability region.
The phase volume W, therefore describes the full
range of possible initial microstates; and not
some arbitrary subset of them; this is the basic
justification for using the canonical distribution
to describe partial information.

On the “subjective’’ side, we can therefore say
that Wy measures our degree of ignorance as to the
true unknown microstate, when the only in-
formation we have consists of the macroscopic
thermodynamic parameters; a remark first made
by Boltzmann.

But, and perhaps more pertinent, we can also
say on the ‘“‘objective’ side, that W, measures
the degree of control of the experimenter over the
microstate, when the only parameters he can
manipulate are the usual macroscopic ones. On
successive repetitions of the experiment, the
initial microstate will surely not be repeated; it
will vary at random over the high-probability
region Ro.

When we carry out an adiabatic change of
state, the region R, is transformed, by the equa-
tions of motion, into a new region R, From
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either the constancy of Hg, or directly from
Liouville’s theorem, the phase volume remains
unchanged ; W = W,. Each possible initial micro-
state 1n Ro uniquely determines a possible final
one in R,, and on successive repetitions of the
experiment, the final state varies over R, at
random.

At the end of this experiment, under the new
equilibrium conditions, we note the new values
{X.1(t), - -, Xa(t)} of the thermodynamic quanti-
ties. Now consider the region R', consisting of all
microstates that are compatible with these new
X.(t), whether or not they could have resulted
from the experiment just described; i.e., whether
or not they also lie in R.. By (17) and (18), the
final experimental entropy is S.' =k logW’, where
W’ is the phase volume of R'; the experimental
entropy is a measure of all conceivable ways in
which the final macrostate can be realized, and
not merely of all ways in which it could be
produced in one particular experiment.

Now it is obvious that, if the observed change
of state X,(0) — X,(¢) is to be experimentally
reproducible, the region R, resulting from the
experiment must be totally contained in R’. But
this is possible only if the phase volumes satisfy
W.< W', which is again the second law!

At this point, we finally see the real reason for
the second law ; since phase volume is conserved
in the dynamical evolution, ¢ is a fundamental
requirement on any reproducible process that the
phase volume W' compatible with the final state
cannot be less than the phase volume Wo which de-
scribes our ability to reproduce the initial state.

But this argument has given us more than the
second law; in the past the notion ‘‘experimental
entropy”’ has been defined, in conventional
thermodynamics, only for equilibrium states. It
is suddenly clear that the second law is only a
very special case of a general restriction on the
direction of any reproducible process, whether
or not the initial and final states are describable
in the language of thermodynamics; the expres-
sion S=klogW gives a generalized definition of
entropy applicable to arbitrary nonequilibrium
states, which still has the property that it can
only increase in a reproducible experiment. This
can be shown directly from Liouville’s theorem,
without any consideration of canonical distribu-
tions or the asymptotic equipartition theorem.
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Finally, it is clear that this extension of the
second law can be subjected to experimental
tests.

Returning to the case of equilibrium thermo-
dynamics, these considerations (which are easily
extended! to quantum statistics) lead us to state
the conventional second law in the form: The
experimental entropy cannot decrease in a repro-
ducible adiabatic process that starts from a state of
complete thermal equilibrium.

The necessity of the last proviso is clear from
a logical standpoint in our derivation of the
second law in Sec. IV for if the preparation of
the system just before :=0 imposes any con-
straints other than those implied by the canon-
ical distribution, the manifold of possible initial
states will be reduced below W, and we shall not
have an equality in Eq. (17) initially. This
necessity is also shown strikingly from an experi-
mental standpoint in the phenomenon of spin
echos,”-® which is a gross violation of any state-
ment of the second law that fails to specify
anything about the past history of the system.
This proviso has not been particularly empha-
sized before, but it has always been obvious that
some such condition would be needed before we
had a really air-tight statement of the second
law, which could not be violated by a clever
experimenter. The future behavior of the system
is uniquely determined, according to the laws of
mechanics, only when one has specified perhaps
1024 microscopic coordinates and momenta; it
could not possibly be determined merely by the
values of the three or four quantities measured
in typical thermodynamic experiments.

Specifying “complete thermal equilibrium” is
still not as precise a statement as we might wish.
Experimentally, the only criterion as to whether
it is satisfied seems to be that the system is
‘“‘aged,” i.e., that it is quiescent, the macroscopic
quantities X, unchanging, for a sufficiently long
time; and only experience can tell the experi-
menter how long is “sufficiently long.”

Theoretically, we can understand this require-
ment as meaning that, for purposes of prediction,
lack of knowledge of the present microstate can
be, in part, compensated by knowledge of the
past history of the macroscopic state. As we

7E. L. Hahn, Phys. Rev 80, 580 (1950)
8 A. L. Bloom, Phys. Rev. 98, 1!04 (1955).
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observe the system to be quiescent for a longer
and longer time, we become more and more
confident that it is not in an atypical microstate
that will lead to ‘‘abnormal” behavior in the
future. In Hahn’s experiment’ the spin system,
having no observable net magnetization at time
t=0, 1s nevertheless able to develop, spontane-
ously and almost magically, a large and repro-
ducible magnetization at a later time only
because it ‘“remembers’” some very atypical
things that were done to it before ¢=0.

In this observation lies the clue that shows how
to extend the mathematical methods of Gibbs to
a general formalism for predicting irreversible
phenomena, we must learn how to construct
ensembles which describe not only the present
values of macroscopic quantities, but also what-
ever information we have about their past
behavior. The details of this generalization will
be given elsewhere.

VI. THE “ANTHROPOMORPHIC” NATURE
OF ENTROPY

After the above insistence that any demonstra-
tion of the second law must involve the entropy
as measured experimentally, it may come as a
shock to realize that, nevertheless, thermo-
dynamics knows of no such notion as the ‘“‘en-
tropy of a physical system.” Thermodynamics
does have the concept of the entropy of a thermo-
dynamic system; but a given physical system
corresponds to many different thermodynamic
systems.

Consider, for example, a crystal of Rochelle
salt. For one set of experiments on it, we work
with temperature, pressure, and volume. The
entropy can be expressed as some function
S.(T,P). For another set of experiments on the
same crystal, we work with temperature, the
component e,, of the strain tensor, and the
component P, of electric polarization; the en-
tropy as found in these experiments is a function
Se(T\e2,Ps). It is clearly meaningless to ask,
“What is the entropy of the crystal?’’ unless we
first specify the set of parameters which define
its thermodynamic state.

One might reply that in each of the experi-
ments cited, we have used only part of the
degrees of freedom of the system, and there is a
‘“true” entropy which is a function of all these
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parameters simultaneously. However, we can
always introduce as many new degrees of freedom
as we please. For example, we might expand
each element of the strain tensor in a complete
orthogonal set of functions ¢x(x,y,2)

€y (xry,z) = Zk Gk Pk (xnylz)

and by a sufficiently complicated system of
levels, we could vary each of the first 1000 ex-
pansion coefficients a,,, independently. Our
crystal is now a thermodynamic system of over
1000 degrees of freedom ; but we still believe that
the laws of thermodynamics would hold. So, the
entropy must be a function of over 1000 inde-
pendent variables. There is no end to this search
for the ultimate “true” entropy until we have
reached the point where we control the location
of each atom independently. But just at that
point the notion of entropy collapses, and we are
no longer talking thermodynamics!

From this we see that entropy is an anthropo-
morphic concept, not only in the well-known
statistical sense that it measures the extent of
human ignorance as to the microstate. Even at
the purely phemomenological level, entropy is an
anthropomorphic concept. For it is a property, not
of the physical system, but of the particular
experiments you or I choose to perform on it.

This points up still another qualification
on the statement of the second law without
which it is, strictly speaking, no law at all. If we
work with a thermodynamic system of n degrees
of freedom, the experimental entropy is a func-
tion S,(X,;---X,.) of n independent variables.
But the physical system has any number of
additional degrees of freedom Xy, Xa42, etc.
We have to understand that these additional
degrees of freedom are not to be tampered with
during the experiments on the 7z degrees of
interest; otherwise one could easily produce
apparent violations of the second law.

For example, the engineers have their “‘steam
tables,” which give measured values of the en-
tropy of superheated steam at various tempera-
tures and pressures But the H,O molecule has
a large electric dipole moment; and so the en-
tropy of steam depends appreciably on the
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electric field strength present. It must always be
understood implicitly (because it is never stated
explicitly) that this extra thermodynamic degree
of freedom was not tampered with during the
experiments on which the steam tables are based ;
which means, 1n this case, that the electric field
was not inadvertently varied from one measure-
ment to the next.

Recognition that the “entropy of a physical
system’’ is not meaningful without further quali-
fications 1s important in clarifying many ques-
tions concerning irreversibility and the second
law For example, I have been asked several
times whether, in my opinion, a biological
system, say a cat, which converts inanimate food
into a highly organized structure and behavior,
represents a violation of the second law. The
answer [ always give is that, until we specify the
set of parameters which define the thermodynamic
state of the cat, no definite question has been
asked!

It seems apparent, in view of complications
which we have encountered in the attempt to
give a complete statement of the second law, that
much more work needs to be done in this field.
Glib, unqualified statements to the effect that
‘“‘entropy measures randomness’’ are in my
opinion totally meaningless, and present a serious
barrier to any real understanding of these
problems. A full resolution of all the questions
that can be raised requires a much more careful
analysis than any that has been attempted thus
far. Perhaps the most difficult problem of all is
to learn how to state clearly what is the specific
question we are trying to answer? However, |
believe that in the above arguments we have been
able to report some progress in this direction.
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6. DELAWARE LECTURE (1967)

The invitation to participate in the Delaware Seminar provided an oppor-
tunity to put on record quite a collection of thoughts that had accumulated
in my notes for several Colloquium talks given at various Unijversities since
the Brandeis lectures. So they were assembled into one manuscript for the
following lecture delivered at the University of Delaware on March 9, 1965.

On first reading, it appears to be three lectures on three different topics:
the theory of Periodicity in Scientific Creation, the interpretation of Quan-
tum Theory, and the foundations of Statistical Mechanics. If any common
thread can be said to connect them, it is that we are observing three different
consequences of the standard psychological reaction to conceptual problems
of science: to try to sweep them under the rug instead of bringing them out
into the open and discussing them.

As we now realize, Statistical Mechanics was held up for decades by con-
ceptual misunderstandings, leading to a misplaced emphasis in research. That
is, almost everybody took it for granted that the Gibbs rules of calculation
must be justified as an application of the laws of mechanics; whereas the
Gibbs rules were expressing only the laws of inference. Today, this is so
clear to anyone who uses those rules in maximum entropy image reconstruc-
tion or spectral analysis, that it is hard to understand how the confusion
could have persisted so long in Statistical Mechanics.

The unceasing confusion that swirls about the Copenhagen interpretation
of Quantum Theory is, in my opinion, the direct result of a very similar, but
more subtle, misplaced emphasis. The mathematical rules of present Quantum
Theory, like the Gibbs rules, are highly succesful and clearly contain a great
deal of very fundamental truth. But nobody knows what they mean; they are
in part expressions of laws of Nature, in part expressions of principles of
human inference, and we have not yet learned how to disentangle them. The
positivist Copenhagen philosophy has prevented solution of the problem by
denying that there is any distinction between reality and our knowledge of
reality. That this leads to such absurdities as prediction of psychokinesis was
recognized by Schrodinger and Einstein; a specific example of this arising in
current Quantum Optics is pointed out in Jaynes (1980).

The historical analysis of the work of Gibbs, and the remarks about

87
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the relation of ensembles to real systems, were taken from the earlier work
planned for the Wigner Festschrift. The main theme of that discussion — that
imprecisely defined concepts place a limit on the development of a theory,
that no amount of mathematical prowess can overcome, found another
confirmation in the attempts to extend Onsager’s irreversible thermodynam-
ics, as noted in ‘The Minimum Entropy Production Principle’ reprinted here.
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Foundations of Probability Theory
and Statistical Mechanics

EpwiN T. JAYNES

Department of Physics, Washington University
St. Louis, Missouri

1. What Makes Theories Grow?

Scientific theories are invented and cared for by people; and so have
the properties of any other human institution — vigorous growth when
all the factors are right; stagnation, decadence, and even retrograde
progress when they are not. And the factors that determine which it
will be are seldom the ones (such as the state of experimental or mathe-
matical techniques) that one might at first expect. Among factors that
have seemed, historically, to be more important are practical considera-
tions, accidents of birth or personality of individual people; and above
all, the general philosophical climate in which the scientist lives, which
determines whether efforts in a certain direction will be approved or
deprecated by the scientific community as a whole.

However much the ‘‘ pure” scientist may deplore it, the fact remains
that military or engineering applications of science have, over and over
again, provided the impetus without which a field would have remained
stagnant. We know, for example, that ARCHIMEDES’ work in mechanics
was at the forefront of efforts to defend Syracuse against the Romans;
and that RUMFORD’s experiments which led eventually to the first law
of thermodynamics were performed in the course of boring cannon. The
development of microwave theory and techniques during World War
II, and the present high level of activity in plasma physics are more
recent examples of this kind of interaction; and it is clear that the past
decade of unprecedented advances in solid-state physics is not entirely
unrelated to commercial applications, particularly in electronics.

Another factor, more important historically but probably not today,
is simply a matter of chance. Often, the development of a field of
knowledge has been dependent on neither matters of logic nor practical
applications. The peculiar vision, or blindness, of individual persons can
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be decisive for the direction a field takes; and the views of one man can
persist for centuries whether right or wrong. It seems incredible to us
today that the views of Aristotle and Ptolemy could have dominated
thought in mechanics and astronomy for a millenium, until GALILEO and
others pointed out that we are all surrounded daily by factual evidence
to the contrary; and equally incredible that, although thermometers
(or rather, thermoscopes) were made by GALILEO before 1600, it required
another 160 years before the distinction between temperature and heat
was clearly recognized, by JosepH BrAck. (Even here, however, the
practical applications were never out of sight; for GALILEO’S thermos-
copes were immediately used by his colleagues in the medical school at
Padua for diagnosing fever; and JosEPH BLACK'’s prize pupil was named
JamEs WATT). In an age averse to any speculation, FRESNEL was never-
theless able, through pure speculation about elastic vibrations, to find
the correct mathematical relations governing the propagation, reflection,
and refraction of polarized light a half-century before MAXWELL’S
electromagnetic theory; while at the same time the blindness of a few
others delayed recognition of the first law of thermodynamics for forty
years.

Of far greater importance than these, however, is the general philo-
sophical climate that determines the “official” views and standards of
value of the scientific community, and the degree of pressure toward
conformity with those views that the community exerts on those with a
tendency to originality. The reality and effectiveness of this factor are
no less great because, by its very ndture, individual cases are more
difficult to document ; its effects ““in the large”’ are easily seen as follows.

If you make a list of what you regard as the major advances in
physical theory throughout the history of science, look up the date of
each, and plot a histogram showing their distribution by decades, you
will be struck immediately by the fact that advances in theory do not
take place independently and randomly; they have a strong tendency
to appear in small close clusters, spaced about sixty to seventy years
apart. What we are observing here is the result of an interesting social
phenomenon; this pressure toward conformity with certain officially
proclaimed views, and away from free speculation, is subject to large
periodic fluctuation. The last three cycles can be followed very easily,
and the pressure maxima and minima can be dated rather precisely.

At the point of the cycle where the pressure is least, conditions are
ideal for the creation of new theories. At these times, no one feels very
sure just where the truth lies, and so free speculation is encouraged. New
ideas of any kind are welcomed, and judged as all theories ought to be
judged; on grounds of their logical consistency and agreement with
experiment. Of course, we are only human; and so we also have a strong
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preference for theories which have a beautiful simplicity of concept.
However, as stressed by many thinkers from Occam to EINSTEIN, this
instinct seldom leads us away from the truth, and usually leads us
toward it.

Eventually, one of these theories proves to be so much more success-
ful than its competitors that, in a remarkably short time the pressure
starts rising, all effective opposition ceases, and only one voice is heard.
A well-known human frailty — overeagerness of the fresh convert —
rides rough-shod over all lingering doubts, and the successful theory
hardens into an unassailable official dogma, whose absolute, universal,
and final validity is proclaimed independently of the factual evidence
that led to it. We have then reached the peak of the pressure cycle; a
High Priesthood arises whose members believe very sincerely that they
are, at last, in possession of Absolute Truth, and this gives them the
right and duty to combat errors of opinion with all the forces at their
command. Exactly the same attitude was responsible, in still earlier
times, for the Spanish Inquisition and the burning of witches.

At times of a pressure maximum, all free exercise of the imagination
is frowned upon, and if one persists, severely punished. New ideas are
judged, not on grounds of logic or fact, but on grounds of ideological
conformity with the official dogma. To openly advocate ideas which do
not conform is to be branded a crackpot and to place one’s professional
career in jeopardy; and very few have the courage to do this. Those who
are students at such a time are taught only one view; and they miss out
on the give and take, the argument and rational counter-argument, which
is an essential ingredient in scientific progress. A tragic result is that
many fine talents are wasted, through the misfortune of being born at
the wrong time.

This high-pressure phase starts to break up when new facts are
discovered, which clearly contradict the official dogma. As soon as one
such fact is known, then we are no longer sure just what the range of
validity of the official theory is; and we usually have enough clues by
then so that additional disconcerting facts can be found without dif-
ficulty. The voice of the High Priests fades, and soon we have again
reached a pressure minimum, in which nobody feels very sure where
the truth lies and new suggestions are again given a fair hearing, so that
creation of new theories is again socially possible.

Let us trace a few cycles of this pressure fluctuation (see Fig. 1).
The pressure minimum that occurred at the end of the eighteenth
century is now known as the ‘““Age of Reason”.

During a fairly short period many important advances in physical
theory were made by such persons as LAPLACE, LAGRANGE, LAVOISIER,
and FourieR. Then a pressure maximum occurred in the first half of the
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nineteenth century, which is well described in some thermodynamics
textbooks, particularly that of EpsTEIN [I]. This period of hostility
toward free speculation seems to have been brought about, in part, by
the collapse of SCHELLING’S Naturphilosophie, and its chief effect was to
delay recognition of the first law of thermodynamics for several decades.
As already noted, FRESNEL was one of the very few physicists who
escaped this influence sufficiently to make important advances in theory.

Another pressure minimum was reached during the third quarter of
the nineteenth century, when a new spurt of advances took place in a
period of only fifteen years (1855—1870), in the hands of MAXWELL,
KeLviN, HEertz, HELMHOLTZ, CLAUSIUS, BOLTZMANN, and several
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Fig. 1. Some recent fluctuations in social pressure in science

others. During this short period thermodynamics, electromagnetic
theory, and kinetic theory were developed nearly to their present form;
but the very success of these efforts led to another of the inevitable
pressure maxima, which we recognize as being in full flower in the period
1885—1900. One of the tragedies (at least from the standpoint of physics)
caused by this was the virtual loss of the talents of PoiNCARE. While
his contributions to physical theory are considerable, still they are
hardly commensurate with what we know of his enormous abilities. This
was recognized and explained by E. T. BELL [2] in these words: “He
had the misfortune to be in his prime just when physics had reached
one of its recurrent periods of senility.” The official dogma at that time
was that all the facts of physics are to be explained in terms of Newtonian
mechanics; particularly that of particles interacting through central
forces. Herculean efforts were made to explain away MAXWELL’s electro-
magnetic theory by more and more complicated mechanical models of
the ether — efforts which remind us very much of the earlier single-
minded insistence that all the facts of astronomy must be explained by
adding more and more Ptolemaic epicycles.

An interesting manifestation toward the end of this period was the
rise of the school of “ Energetics”’, championed by MacH and OSTWALD,
which represents an early attempt of the positivist philosophy to limit
the scope of science. This school held that, to use modern terminology,
the atom was not an “‘observable”’, and that physical theories should
not, therefore, make use of the concept. The demise of this school was
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brought about rapidly by PERRIN’s quantitative measurements on the
Brownian motion, which verified EINSTEIN’S predictions and provided
an experimental value for AVOGADRO’S number.

The last “ Golden Age of Theory” brought about by the ensuing pres-
sure minimum, lasted from about 1910 to 1930, and produced our present
general realitivity and quantum theories. Again, the spectacular success
of the latter — literally thousands of quantitatively correct predictions
which could not be matched by any competing theory — brought
about the inevitable pressure rise, and for twenty-five years (1935 —1960)
theoretical physics was paralyzed by one of the most intense and pro-
longed high-pressure periods yet recorded. During this period the of-
ficial dogma has been that all of physics is now to be explained by pre-
scribing initial and final state vectors in a Hilbert space, and computing
transition matrix elements between them. Any attempt to find a more
detailed description than this stood in conflict with the official ideology,
and was quickly suppressed without any attempt to exhibit a logical
inconsistency or a conflict with experiment; this time, a few individual
cases can be documented [3].

There are now many signs that the pressure has started down again;
several of the supposedly universal principles of quantum theory have
been confronted with new facts, or new investigations, which make us
unsure of their exact range of validity. In particular, one of the funda-
mental tasks of any theory is to prescribe the class of physical states
allowed by Nature. In MAXWELL'’S electromagnetic theory, for example,
any mathematical solution of MAXWELL’S equations is held to represent
a possible physical state, which could in principle be produced in the
laboratory. In quantum theory, we were taught for many years that the
class of possible physical states is in 1:1 correspondence with solutions
of the Schrédinger equation that are either symmetric or antisymmetric
under permutations of identical particles. Our confidence in the uni-
versal validity of this rule has, recently, been shaken in two respects.
In the first place, study of ‘‘parastatistics’’ has shown that much more
general types of symmetry in configuration space can also be described
by the machinery of quantized wavefunctions, and these new possibilities
are not ruled out by experimental evidence. Secondly, the superposition
principle (which may be regarded as a consequence of the above-men-
tioned rule, although it is usually considered in a still more general
sense) holds that, if g, and y, are any two possible physical states, then
any linear combination y=a, y;+a,y, is also a possible physical state.
But with the appearance of superselection rules, we are no longer sure
what the range of validity of the superposition principle is.

The discovery of parity nonconservation was a great psychological
shock; a principle which had been taught to a generation of physicists
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as a universally valid physical law, so firmly established that it could be
used to rule out a priori certain theoretical possibilities, such as WEYL'’s
twocomponent relativistic wave equation, was found not to be uni-
versally valid after all; and again we are unsure as to its exact range of
validity, and WEYL’s equation has been resurrected.

Several quantum mechanics textbooks assure us that the pheno-
menon of spontaneous emission places a fundamental irreducible mini-
mum value on the width of spectral lines. Such statements are now
confronted with the laser, which — in instruments now commercially
available, and as simple to operate as a sixty-watt light bulb — produce
spectral lines over a million times narrower than the supposedly funda-
mental limit! Thus, all around the edges of quantum theory we see the
familiar kind of crumbling which, historically, has always signalled the
incipient breakdown of the theory itself.

I hasten to add that, of course, none of these developments affects
the basic ‘““hard core” of quantum theory in any way; they show only
that certain gratuitous additions to quantum theory (which had, how-
ever, become very closely associated with the basic theory) were un-
sound in the sense that they were not of wniversal validity. But it is
inevitable that, faced these developments, more and more physicists
will ask themselves how many other principles are destined to crumble
a little at the edges, so that they can again be considered valid objects
for inquiry; and not articles of faith to be asserted dogmatically for the
purpose of discouraging inquiry.

In particular, the uncertainty principle has stood for a generation,
barring the way to more detailed descriptions of nature; and yet, with
the lesson of parity still fresh in our minds, how can anyone be quite so
sure of its universal validity when we note that, to this day, it has
never been subjected to even one direct experimental test?

Today, elementary particle theorists are busily questioning and re-
examining all the foundations of quantum field theory, in a way that
would have been regarded as utter heresy ten years ago; and some
have suggested that perhaps the whole apparatus of fields and Hamil-
tonians ought to be simply abandoned in favor of more abstract ap-
proaches. It would be quite inconsistent with the present mood of
theoretical physics if we failed to question and re-examine all of the
supposedly sacred principles of quantum theory.

For all these reasons, I think we are going to see a rapid decrease in
pressure in the immediate future, and another period of great theoretical
advances will again be socially possible in perhaps ten years. And I
think we can predict with confidence that some of the clues which will
lead to the next round of advances are to be found in the many suggestions
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already made by dissenters from the Copenhagen theory — suggestions
which have, thus far, been met only by sneers and attacks, which no
attempt to study their real potentialities.

2. Statistical Mechanics

At this point, I see that you are looking about anxiously and wonder-
ing if you are in the right room; for the announced title of this talk was,
“Foundations of Probability Theory and Statistical Mechanics”’. What
has all this to do with statistical mechanics? Well, I wanted to say a
few things first about general properties of physical theories because
statistical mechanics is, in several respects, an exceptional case. Statisti-
cal methods exist independently of physical theories, and so statistical
mechanics is subject to additional outside interactions from other
fields. The field of probability and statistics is also subject to periodic
fluctuations, but they are not in phase with the fluctuations taking
place in physics (they are right now at a deep pressure minimum); and
so the history of statistical mechanics is more complicated.

In particular, statistical mechanics missed out on the latest pressure
minimum in physics, because it coincided with a pressure maximum in
statistics; the transition to quantum statistics took place quietly and
uneventfully without any real change in the basic formalism of GiBBS,
and without any extension of the range of applicability of the theory.
There was no advance in understanding, as witnessed by the fact that
debates about irreversibility continue to this day, repeating exactly the
same arguments and counter-arguments that were used in the time of
BoLTzMANN; and the newest and oldest textbooks you can find hardly
differ at all in their presentation of fundamentals. In short, statistical
mechanics has suffered a period of stagnation and decadence that makes
it unique in the recent history of science.

A new era of active work in statistical mechanics started, however,
about 1955, in phase with a revolution in statistical thought but not
at first directly influenced by it. This was caused, in part, by practical
needs; an understanding of irreversible processes became increasingly
necessary in chemical and mechanical engineering as one demanded
more efficient industrial processing plants, stronger and more reliable
materials, and bigger and better bombs. There is always a movement of
scientific talent into areas where generous financial support is there for
the taking. Another cause was the appearance of a few people who
were genuinely interested in the field for its own sake; and perhaps it
helped to reflect that, since it had been virtually abandoned for decades,
one might be able to work in this field free of the kind of pressure noted
above, which was paralyzing creative thought in other areas of physics.
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Regardless of the reasons for this renewed activity, we have now
made considerable progress in theoretical treatment of irreversible
processes; at least in the sense of successful calculation of a number of
particular cases. It is an opportune time to ask whether this has been
accompanied by any better understanding, and whether the foundations
of the subject can now be put into some kind of order, in contrast to the
chaos that has persisted for almost a century. I hope to show now that
the answer to both of these questions is yes; and that recent develop-
ments teach us an important lesson about scientific methodology in
general.

Let me state the lesson first, and then illustrate it by examples from
statistical mechanics. It is simply this: You cannot base a general mathe-
matical theory on imprecisely defined concepts. You can make some
progress that way; but sooner or later the theory is bound to dissolve in
ambiguities which prevent you from extending it further. Failure to re-
cognize this fact has another unfortunate consequence which is, in a
practical sense, even more disastrous: Unless the conceptual problems
of a field have been clearly resolved, you cannot say which mathematical
problems are the relevant ones worth working on, and your efforts are more
than likely to be wasted. 1 believe that, in this century, thousands of
man-years of our finest mathematical talent have been lost through
failure to understand this simple principle of methodology; and this
remark applies with equal force to physics and to statistics.

2.1. BoLtzMANN’s Collision Equation

Let us consider some case histories. BOLTZMANN sought to describe
the approach to equilibrium in a gas in terms of the distribution f(x, 2, ¢).
In his first work, this function was defined as giving the actual number
of particles in various cells of phase space; thus if R denotes the set of
points comprising a region of six-dimensional phase space, the number of
particles in R is to be computed from

nkzkff(x,p, Hyddx d3p. (1)

After some physical arguments which need not concern us here, BoLTz-
MANN concluded that the time evolution of the gas should be described
by his famous “collision equation”,
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where F, is the a-component of external force acting on a particle; and
the right-hand side represents the effects of collisions in redistributing
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particles in phase space, in a way familiar to physicists. As a consequence
of this equation, it is easily shown that the quantity

Hp= [flogfd*xd’p (3)

can only decrease (in this equation we integrate over all the accessible
phase space) ; and so BoLTzMANN sought to identify the quantity

Sp=—hH, (4

with the entropy, making the second law of thermodynamics a conse-
quence of the dynamical laws, as expressed by (2). As we know, this was
challenged by ZErRMELO and LoscHMIDT who produced two counter-
examples, based on time-reversal and on the POINCARE recurrence theo-
rem, showing that Eq. (2) could not possibly be an exact expression of
the dynamical equations of motion, and thereby placing the range of
validity of Boltzmann's theory in doubt.

At this point, confusion entered the subject; and it has never left it.
For BorLTzMANN then retreated from his original position, and said
that he did not intend that f(x, p, f) should represent necessarily the
exact number of particles in various regions [indeed, it is clear that the
only function f which has exactly the property of Eq. (1) is a sum of
delta-functions: f(x, p, f)=2, 6(x— x,) 6(p—p,), where x;(t), p;(¢) are
the position and momentum of the ¢-th particle]. It represents only the
probable number of particles; or perhaps the average number of particles;
or perhaps it gives the probability that a given particle is to be found in
various regions. The decrease in Hp is then not something which must
happen every time; but only what will most probably happen; or perhaps
what will happen on the average, etc.

Unfortunately, neither BoLTzZMANN nor anybody else has ever become
more explicit than this about just what BoLTzMANN’S f; and therefore
BoL1zMANN’s H-theorem, means. When our concepts are not precisely
defined, they are bound to end up meaning different things to different
people, thus creating rooom for endless and fruitless debate, of exactly
the type that has been going on ever since. Furthermore, when we
debate about imprecise concepts, we can never be sure whether we are
arguing about a question of fact; or only a question about the meaning
of words. From BoLTzZMANN’s day to this, the debate has never been
able to rise above this level.

If you think my characterization of the situation has been too laconic,
and unfair to many honest seekers after the truth, I invite you to
examine a recent review article on transport theory [£]. On page 271,
the author states that “The Boltzmana distribution function — is the
(probable) number of particles in the positional range d%®x and the
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velocity range d3v — . On page 274 this is altered to: ‘“The quantity
/, the Boltzmann distribution function — is, roughly speaking, the
average number of particles in a cell in the x— v space (the u-space).
f refers to a single system. A more precise definition of f can be obtained
through the use of the master function P.” Consulting this master
function, we find that neither the definition of P, nor its connection
with /, is ever given. This, furthermore, is not a particularly bad example;
it is typical of what one finds in discussions of BOLTZMANN'S theory.

Let us note some of the difficulties that face the practical physicist
because of this state of utter confusion with regard to basic concepts.
Suppose we try to assess the validity of BOLTZMANN'S equation (2) for
some particular problem; or we try to extend it to higher powers in the
density, where higher order collisions will become important in addition
to the binary ones that are taken into account, in some sense, in (2). If
we agree that f represents an average number of particles, we must still
specify what this average is to be taken over. Is it an average over the
particles, an average over time for a single system, an average over
many copies of the single system, or an average over some probability
distribution ? Different answers to this question are going to carry dif-
ferent implications about the range of validity of (2), and about the
correct way of extending it to more general situations. Even without
answering it at all, however, we can still see the kind of difficulties that
are going to face us. For if f(x, p, ¢) is an average over something, then
the left-hand side of (2) is also an average over this same something. So
also, therefore, is the right-hand side if the equation is correct. But on
the right-hand side we see the product of two f’s; the product of two
averages.

If you meditate about this for a moment, I think you will find it
hard to avoid concluding that, if f is an average, then the right-hand side
ought to contain the average of a product, not the product of the averages.
These quantities are surely different; but we cannot say how different
until we say what we are averaging over. Until this ambiguity in the
definition of Boltzmann’s f is cleared up, we cannot assess the range of
validity of Eq. (2), and we cannot say how it should be extended to more
general problems. Because of imprecise concepts, the theory reaches an
impasse at the stage where it has barely scratched the surface of any
real treatment of irreversible processes!

2.2. Method of GiBBS

For our second case history, we turn to the work of Gisss. This was
done some thirty years after the aforementioned work of BOLTZMANN,
and the difficulties noted above, plus many others for which we do
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not have time here, were surely clear to GiBBs, who was extremely
careful in matters of logic, detail, and definitions.

All important advances have their precursors, the full significance of
which is realized only later; and the innovations of GIBBS were not
entirely new. For example, considerations of the full phase space (I -space)
appear already in the works of MAXWELL and BoLTzMANN; and GI1BBS’
canonical ensemble is clearly only a small step removed from the distribu-
tion laws of MAXWELL and BoLTzMANN. However, GIBBs applied these
ideas in a way which was unprecedented ; so much so that his work was
almost totally rejected ten years later in the famous Ehrenfest review
article [5], which has had a dominating influence on thought in statistical
mechanics for fifty years. In this article, the methods of GIBBS are
attacked repeatedly, and the physical superiority of BOLTZMANN’S ap-
proach is proclaimed over and over again. For example, GIBBs’ canonical
and grand canonical ensembles are dismissed as mere ‘‘analytical
tricks”’, which do not solve the problem; but only enable GiBBs to
evade what the authors consider to be real problems of the subject!

Since then, of course, the mathematical superiority of GiBBS’ methods
for calculating equilibrium thermodynamic properties has become firmly
established ; and so statistical mechanics has become a queer hybrid, in
which the practical calculations are always based on the methods of
GiBBs; while in the pedagogy virtually all one’s attention is given to
repeating the arguments of BOLTZMANN.

This hybrid nature — the attempt to graft together two quite in-
compatible philosophies — is nowhere more clearly shown than in the
fact that the ‘“‘official” commentary on GiBBS’ work [6] devotes a
major amount of space to discussion of ergodic theories. Now, it is a
curious fact that if you study GiBBs’ work, you will not find the word
‘““ergodic”’ or the concept of ergodicity, at any point. Recalling that
ergodic theorems, or hypotheses, had been actively discussed by other
writers for over thirty years, and recalling GIBBS’ extremely meticulous
attention to detail, I think the only possible conclusion we can draw
is that GiBBS simply did not consider ergodicity as relevant to the founda-
tions of the subject. Of course, he was far too polite a man to say so openly;
and so he made the point simply by developing his theory without
making any use of it. Unfortunately, this tactic was too subtle to be
appreciated by most readers; and the few who did notice it took it to
be a defect in GIBBS’ presentation, in need of correction by others.

This situation has had very unfortunate consequences, in that the
work of GiBBs has been persistently misunderstood; and in particular,
the full power and generality of the methods he introduced have not yet
been recognized in any existing textbook. However, it is not a question
of placing blame on anyone; for we can understand and sympathize
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with the position of everyone involved. I think that a historical study
will convince you, as it has convinced me, that all of this is the more or
less inevitable result of the fact that GiBBs did not live long enough to
complete his work. The principle he had discovered was so completely
new, and the method of thinking so completely different from what had
gone before, that it was not possible to explain it fully, or to explore its
consequences for irreversible phenomena, in the time that was granted
to him.

GiBBs was in rapidly failing health at the time he wrote his work
on statistical mechanics, and he lapsed into his final illness very soon
after the manuscript was sent to the publisher. In studying his book, it
is clear that it was never really finished; and we can locate very ac-
curately the place where time and energy ran out on him. The first
eleven chapters are written in his familiar style — extremely meticulous
attention to detail, while unfolding a carefully thought out logical
development. At Chapter 12, entitled, **On the Motion of Systems and
Ensembles of Systems Through Long Periods of Time”, we see an
abrupt change of style; the treatment becomes sketchy, and amounts
to little more than a random collection of observations, trying to state
in words what he had not yet been able to reduce to equations. On
pages 143 —144 he tries to explain the methodology which led him to his
canonical and grand canonical ensembles, as well as the ensemble
canonical in the angular momenta which was presented in Chapter 4
but not applied to any problem [7]. However, he devotes only two sen-
tences to this; and the principle he states is what we would recognize
today as the principle of maximum entropy! To the best of my knowl-
edge, this passage has never been noted or quoted by any other author
(it is rather well hidden among discussions of other topics); and I discov-
ered it myself only by accident, three years after I had written some
papers [8] advocating this principle as a general foundation for statistical
mechanics. This discovery convinced me that there was much more to
the history of this subject than one finds in any textbook, and induced
me to study it from the original sources; some of the resulting con-
clusions are being presented in this talk.

GiBBs’ discussion of irreversibility in this chapter does not advance
beyond pointing to a qualitative analogy with the stirring of colored
ink in water; and this forms the basis for another of the EHRENFEST’S
criticisms of his work. I think that, had GiBBs been granted a few more
years of vigorous health, this would have been replaced by a simple
and rige-sas demonstration of the second law based on other ideas. For
it turns out that all the clues necessary to point the way to this, and all
the mathematical material needed for the proof, were already present in
the first eleven chapters of his book; it requires only a little more
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physical reasoning to see that introduction of coarse-grained distributions
does not advance our understanding of irreversibility and the second law,
for the simple reason that the latter are experimentally observed macro-
scopic properties; and the fine-grained and coarse-grained distributions
lead to just the same predictions for all macroscopic quantities. Thus,
the difference between the fine-grained and coarse-grained H-functions
has nothing to do with the experimentally observed entropy; it depends
only on the particular way in which we choose to coarse-grain.

On the other hand, the variational (maximum entropy) property
noted by GiBBs does lead us immediately to a proof, not only of the second
law, but of an extension of the second law to nonequilibrium states. I
have recently pointed this out [9] and supplied the very simple proof,
which I think is just the argument GiBBs would have given if he had
been able to complete his work. However, this is not the main point I
wish to discuss tonight, so let us turn back to other topics.

In defense of the EHRENFEST’s position, it has to be admitted that,
through no fault of his own, GiBBs did fail to present any clear descrip-
tion of the motivation behind his work. I believe that it was virtually
impossible to understand what GiBB’s methods amounted to, and there-
fore how great was their generality and range of validity, until the ap-
pearance of SHANNON’S work on Information Theory, in our own time
(10]. Finally, until recently the situation in probability theory itself,
which was in a high-pressure phase completely dominated by the fre-
quency theory, which only sneers and attacks on the theories of LAPLACE
and JEFFREYS, has made it impossible even to discuss, much less publish,
the viewpoint and approach which I believe has now solved these
problems.

Now, in order to lend a little more substance to these remarks, let’s
examine some equations, the net result of GiBBs’ work. Considering a
closed system (i.e., no particles enter or leave), the thermodynamic
properties are to be calculated from the Hamiltonian H(g;, p,) as follows.
First, we define the partition function

Z(B, V)= [exp(—pH)dq dp, ... dq,dp,, (5)

where we integrate over all the accessible phase space, and the dependence
on the volume V arises because the range of integration over the co-
ordinates ¢; depends on V. If we succeed in evaluating this function,
then all thermodynamic properties are known; for the energy function
(which determines the thermal properties) is given by

2

U=—28

log Z (6)
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in which we interpret § as (7)1, where % is BOLTZMANN’S constant and
T the KELVIN temperature; and the equation of state is

P= % aiv log Z. (7)
Now, isn’t this a beautifully simple and neat prescription ? For the first
time in what has always been a rather messy subject, one had a glimpse
of the kind of formal elegance that we have in mechanics, where a
single equation (HAMILTON’s principle) summarizes everything that
needs to be said. Of all the founders of statistical mechanics, only
G1BBs gives us this formal simplicity, generality, and as it turned out,
a technique for practical calculation which the labors of another sixty
years have not been able to improve on. The transition to quantum
statistics took place so quietly and uneventfully because it consisted
simply in the replacement of the integral in (5) by the corresponding
discrete sum; and nothing else in the formalism was altered.

In the history of science, whenever a field has reached such a stage,
in which thousands of separate details can be summarized by, and deduced
from, a single formal rule — then an extremely important synthesis has
been accomplished. Furthermore, by understanding the basis of this
rule it has always been possible to extend its application far beyond the
original set of facts for which it was designed. And yet, this did not
happen in the case of GiBBS’ formal rule. With only a few exceptions,
writers on statistical mechanics since GiBBS have tried to snatch away
this formal elegance by grafting GiBBs’ method onto the substrate of
BoLTzMANN’s ideas, for which GiBBs himself had no need. However, a
few, including ToLMAN and SCHRODINGER, have seen GIBBS’ work in a
different light — as something that can stand by itself without having
to lean on unproved ergodic hypotheses, intricate but arbitrarily defined
cells in phase space, Z-stars, and the like. Thus, while a detailed study
will show that there are as many different opinions as to the reason for
G1BBS’ rules as there are writers on the subject, a more coarse-grained
view shows that these writers are split into two basic camps; those who
hold that the ultimate justification of GiBBs’ rules must be found in
ergodic theorems; and those who hold that a principle for assigning a
priori probabilities will provide a sufficient justification. Basically, the
confusion that still exists in this field arises from the fact that, while the
mathematical content of GIBBS’ formalism can be set forth in a few lines,
as we have just seen, the conceptual basis underlying it has never been
agreed upon.

Now, while G1BBs’ formalism has a great generality — in particular,
it holds equally well for gas and condensed phases, while BOLTZMANN’S
results apply only to dilute gases — it nevertheless fails to give us many
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things that BOLTZMANN’s “‘collision equation’’ does yield, however
imperfectly. For BOLTZMANN’S equation can be applied to irreversible
processes; and it gives definite theoretical expressions for transport
coefficients (viscosity, diffusion, heat conductivity), while GIBBS’ rules
refer only to thermal equilibrium, and one has not seen how to extend
them beyond that domain. Furthermore, in spite of all my carping about
the imprecision of BOLTZMANN’S equation, the fact remains that it has
been very successful in giving good numerical values for these transport
coefficients; and it does so even for fairly dense gases, where we really
have no right to expect such success. So, my adulation of Gibbs must not
be carried to the point of rejecting BoLTZMANN’S work; it appears that
we need both approaches!

All right. I have now posed the problem as it appeared to me a
number of years ago. Can’t we learn how to combine the best features
of both approaches, into a new theory that retains the unity and formal
simplicity of GiBBS’ work with the ability to describe irreversible proc-
esses (hopefully, a better ability) of BoLTzMANN’S work ? This question
must have occurred to almost every physicist who has made a serious
study of statistical mechanics, for the past sixty years. And yet, it has
seemed to many a hopelessly difficult task; or even an impossible one.
For example, at the 1956 International Congress on Theoretical Physics,
L. van Hove [11] remarked, ““ In contrast to the case of thermodynamical
equilibrium, no general set of equations is known to describe the behavior
of many-particle systems whenever their state is different from the
equilibrium state and, in view of the unlimited diversity of possible
nonequilibrium situations, the existence of such a set of equations
seems rather doubtful”’.

Now, while I hesitate to say so at a symposium devoted to Philo-
sophy of Science, the injection of philosophical considerations into
science has usually proved fruitless, in the sense that it does not, of
itself, lead to any advances in the science. But there is one extremely
important exception to this; and it is in exactly the situation now before
us. At the stage in development of a theory where we already have a
formalism successful in one domain, and we are trying to extend it to a
wider one, some kind of philosophy about what the formalism ‘“means”’
is absolutely essential to provide us with a sense of direction. And it
need not even be a ‘““true” philosophy — whatever that may mean — for
its real justification will not lie in whether it is ‘“true”, but in whether
it does point the way to a successful extension of the theory.

In the construction of theories, a philosophy plays somewhat the
same role as scaffolding does in the construction of buildings; you need
it desperately at a certain phase of the operation, but when the con-
struction is completed you can remove if it you wish; and the structure
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will still stand of its own accord. This analogy is imperfect, however,
because in the case of theories, the scaffolding is rarely ugly, and many
will wish to retain it as an integral part of the final structure. At the
opposite extreme to this conservative attitude stands the radical posi-
tivist, who in his zeal to remove every trace of scaffolding, also tears down
part of the building. Almost always, the wisest course will lie somewhere
between these extremes.

The point which I am trying to make, in this rather cryptic way, is
just the one which we have already noted in the attempt to evaluate and
extend BoLTZMANN's collision equation. Different philosophies of what
that equation means carry different implications as to its range of
validity, and the correct way of extending it. And we are now at just
the same impasse with regard to GIBBS’ equations; because their con-
ceptual basis has not been precisely defined, the theory dissolves in ambigui-
ties which have precented us, for sixty years, from extending to new domains.

2.3. Conceptual Problems of the Ensemble

The fact that two different camps exist, with diametrically opposed
views as to the justification of GIBBS’ methods, is simply the reflection
of two diametrically opposed philosophies about the real meaning of the
GI1BBs ensemble; and this in turn arises from two different philosophies
about the meaning of any probability distribution. Thus, the foundations
of probability theory itself are involved in the problem of extending
Gi1BBS’ methods.

Statistical mechanics has always been troubled with questions
concerning the relation between the ensemble and the individual system,
even apart from possible extensions to nonequilibrium cases. In the
theory, we calculate numbers to compare with experiment by taking
ensemble averages; that is what we are doing in Egs. (6) and (7). And yet,
our experiments to check these predictions are not performed on en-
sembles; they are performed on the one individual system that exists in
the laboratory. Nevertheless, we find that the predictions are verified
accurately; a rather astonishing result, but one without which we would
have little interest in ensembles. For if it were necessary to repeat a
thermodynamic measurement 1,000 times and average the results before
any regularities (laws of thermodynamics) began to appear, both thermo-
dynamics and statistical mechanics would be virtually useless to us;
and they would not appear in our physics curriculum. Thus, it appears
that a major problem is to explain why GIBBs’ rules work in practice;
and not only why they work so well, but why they work at all!

We can make this dilemma appear still worse by noting that the
relation between the ensemble and the individual system is usually
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described by supposing that the individual system can be regarded as
having been drawn ‘“at random”’ from the ensemble. I personally have
never been able to comprehend what ““at random” means; for I ask
myself: What is the criterion, what is the test, by which we could decide
whether it was or was not really ““random’’ ? Does it make sense to ask
whether it was exactly random, or approximately random ? — and neither
the literature nor my introspection give me any answer. However, even
without understanding this point, the real difficulty is obvious; for the
same individual system may surely, and with equal justice, be regarded
as having been drawn ‘“at random’’ from any one of an infinite number
of different ensembles! But the measured properties of an individual
system depend on the state of the system; and not on which ensemble you
or I regard it as having been ‘“drawn from”. How, then is it possible
that ensemble averages coincide with experimental values ?

The two different philosophical camps try to extricate themselves
from this dilemma in two entirely different ways. The ‘‘ergodic’’ camp,
of course, is composed of those who believe that a probability distribution
describes an objectively real physical situation; that it stands for an
assertion about experimentally measurable frequencies; that it is there-
fore either correct or incorrect; and that this can, in principle, be decided
by performing ‘“random experiments’’. They note that what we measure
in any experiment is necessarily a time average over a time that is long
on the atomic scale of things; and so the success of GIBBS’ methods will
be accounted for if we can prove, from the microscopic equations of
motion, that the ¢ime average for an individual system is equal to the
ensemble average over the particular ensembles given by GIBBs.

This viewpoint has much to recommend it. In the first place, physi-
cists haveanatural tendency to believe that, since the observed properties
of matter ““in the large” are simply the resultant of its properties ““in
the small” multiplied many times over, it ought to be possible to obtain
the macroscopic behavior by strict logical deduction from the micro-
scopic laws of physics; and the ““ergodic”’ approach gives promise of
being able to do this. Secondly, while the necessary theorems have not
been established rigorously and universally, the work done on this
problem thus far has made it highly plausible that, in a system inter-
acting with a large heat bath, the frequencies with which various micro-
scopic conditions are realized in the long run are indeed given correctly
by the G1BBs canonical ensemble. This has been rendered so extremely
plausible that I think no reasonable person can seriously doubt that it is
true, although we cannot rule out the possibility of occasional ‘‘ patho-
logical”’ exceptions. Thus the ‘““ergodic’’ school of thought has, in my
opinion, very nearly succeeded in its aim of establishing equality of time
averages and ensemble averages for the particular case of Gibbs’ canonical
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ensemble; and in the following I am simply going to grant, for the sake
of the argument, that this program has succeeded entirely.

Nevertheless, the “ergodic’’ school of thought still faces a fundamen-
tal difficulty; and one that was first pointed out by BOLTZMANN himself,
and stressed in the EHRENFEST review article. Curiously, there exists to
this day a group of workers in Europe who refuse to recognize the
seriousness of this difficulty, and deny that it invalidates their ap-
proach. The difficulty is that, even if one had succeeded in proving these
ergodic theorems rigorously and universally, the result would have
been established only for time averages over infinite tmes; whereas the
experiments which verify GIBBS’ rules measure time averages only over
finite times. Thus, a further mathematical demonstration would in any
event be necessary, to show that these finite time averages have suf-
ficiently approximated their limits for infinite times.

Now we can give simple and general counter-examples proving that
such an additional demonstration cannot be given; and indeed that any
macroscopic system, given a time millions of times the age of the uni-
verse, still could not ““sample’’ more than an infinitesimal fraction of all
the microscopic states which have high probability in the canonical
emsemble; and thus any assertion about the frequencies with which dif-
ferent microscopic states are realized in an individual system, is com-
pletely devoid of operational meaning.

The easiest way of seeing this is just to note that, if a macroscopic
system could sample all microscopic states in the time in which measure-
ments are made, so that the measured time averages would be equal to
ensemble averages, then the measured values would necessarily always
be the equilibrium values; we would not even know about irreversible
processes! The fact that we can measure the rate of an irreversible process
already proves that the time requirved for a representative sampling of
microstates must be much longer than the time required to make our meas-
urements. Thus, any purported proof that time averages over the finite
times involved in actual measurements are equal to canonical ensemble
averages would, far from justifying statistical mechanics, stand in clear
conflict with the very experimental facts about irreversibility that we are
trying to account for by extending GiBBs’ methods!

The thing which has to be explained is, not that ensemble averages
are equal to time averages; but the much stronger statement that
ensemble averages are equal to experimental values. The most that
ergodic theorems could possibly establish is that ensemble averages are
equal to time averages over infinite time, and so the ‘‘ergodic’’ approach
cannot even justify equilibrium statistical mechanics without contradict-
ing experimental facts. Obviously, such an approach cannot be extended
to irreversible processes where, in order for ensemble theory to be of
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any use, the ensemble averages must still be equal to experimental
values; but the very phenomena to be explained consist of the fact that
these are not equal to time averages.

The above line of reasoning convinced me, ten years ago, that further
advances in the basic formulation of statistical mechanics cannot be made
within the framework of the “ergodic’’ viewpoint ; and, rightly or wrong-
ly, it seemed equally clear to me that the really fundamental trouble
which was preventing further advances, both in statistical mechanics
and in the field of statistics in general, was this dogmatic, single-minded
insistence on the frequency theory of probability which had dominated
the field for so many years. At that time, virtually every writer on
probability theory felt impelled to insert an introductory paragraph or
two, expressing his denunciation and total rejection of the so-called
““subjective”’ interpretation of probability, as advocated by LAPLACE,
DE MORGAN, PoINCARE, KEYNES, and JEFFREYS; and this was done,
invariably, without any attempt to understand the arguments and
results which these people — particularly LAPLACE and JEFFREYS —
had advanced. The situation was, psychologically, exactly like the one
which has dominated American Politics since about 1930; the Republicans
continually analyze the statements of Democrats and issue counter-
arguments, which the Democrats contemptuously dismiss without any
attempt to understand them or answer them.

On the other hand, I had taken the trouble to read all of JEFFREYS’
work, and much of LAPLACE’s, on probability theory; and was unable
to find any of the terrible things about which the ‘‘frequentist” writers
had warned us. On the philosophical side I found their arguments to be,
far from irresponsible and useless, so eminently sound and reasonable
that I could not imagine any sane person disputing them. On the mathe-
matical side, I found that in problems of statistical estimation and
hypothesis testing, any problem for which the ‘‘frequentist’’ offered any
solution at all was also solved with ease by the methods of LAPLACE and
JEFFREYS; and their results were either the same or demonstrably
superior to the ones found by the frequentists. Furthermore, the methods
of LAPLACE and JEFFREYS (which were, of course, based on BAYES’
theorem as the fundamental tool of statistics) were applied with equal
ease to many problems which, according to the frequentist, did not
belong to the field of probability theory at all; and they still yielded
perfectly reasonable, and scientifically useful, results!

I don’t want to dwell at length on the situation in probability theory,
because time is running short and a rather large exposition of this,with
full mathematical details, is being readied for publication elsewhere. But
let me just mention one example of what one finds if he takes the trouble
to go beyond polemics and study the mathematical facts of the matter.
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In problems of interval estimation of unknown parameters, the fre-
quentist has rejected the method of LAPLACE and JEFFREYS, on grounds
that I can only describe as ideological, and has advocated vigorously
the method of confidence intervals. Now it is a matter of straightforward
mathematics to show that, whenever the frequentist’s ‘‘estimator” is
not a sufficient statistic (in the terminology of FISHER), there is always a
class of possible samples for which the method of confidence intervals
leads to absurd or dangerously misleading results, in the sense that it
yields a wrong answer far more frequently (or, if one prefers, with far
higher probability) than one would suppose from the stated confidence
level. The confidence interval can, in some cases, contradict what can
be proved on strict deductive reasoning from the observed sample. One
can even invent problems, which are not at all unrealistic, in which the
probability of this happening is greater than the stated confidence level!

This is something which, to the best of my knowledge, you cannot
find mentioned in any of the ““orthodox” statistical literature; and I
shudder to think of some of the possible consequences, if important
decisions are being made on the basis of confidence interval analyses.
The method of LAPLACE and JEFFREYS is demonstrably free from this
defect; it cannot contradict deductive reasoning and, in the case of the
aforementioned ‘‘bad’’ class of samples, it automatically detects them
and yields a wider interval, so that the probability of a correct decision
remains equal to the stated value. Once one is aware of such facts, the
arguments advanced against the method of LAPLACE and JEFFREYS and
in favor of confidence intervals (i.e. that it is meaningless to speak of the
probability that 6 lies in a certain interval, because 8 is not a ‘‘random
variable,” but only an unknown constant) appear very much like those
of the 17th century scholar who claimed his theology had proved there
could be #o moons on Jupiter, and steadfastly refused to look through
GALILEO’s telescope.

Since the reasoning by which the ‘“‘frequentist’”’ has rejected La-
PLACE’S methods is so patently unsound, and since attempts to extend,
or even justify, GiBBs’ methods in terms of the frequency theory of
probability have met with an impasse, it would appear that we ought to
explore the possibilities of applying LAPLACE’s ‘““subjective’ theory of
probability to this problem. At any rate, to reject this procedure without
bothering to explore its potentialities, is hardly what we mean by a
‘““scientific”’ attitude! So, I undertook to think through statistical
mechanics all over again, using the concept of ‘“subjective” probability.

It became clear, very quickly, that to do this makes all the unsolved
problems of the theory appear in a very different light; and possibilities
for extension of GIBBS’ methods are seen in entirely different directions.
Once we clearly and explicitly free ourselves from the delusion that an



DELAWARE LECTURE 109

ensemble describes an ‘‘objectively real” physical situation, and re-
cognize that it describes only a certain sfafe of knowledge, then it is
clear that, in the case of irreversible processes, the knowledge which we
have is of a different nature than in the case of equilibrium. We can then
see the problem as one which cannot even be formulated in terms of the
frequency theory of probability. It is simply this: What probability
assignment to microstates correctly describes the state of knowledge which
we have, in practice, about a nonequilibrium state? Such a question just
doesn’t make sense in terms of the frequency theory; but, thanks to the
work of GiBBs and SHANNON, I believe that it makes extremely good
sense, and in fact has a very general and mathematically unambiguous
solution in terms of subjective probabilities.

3. The General Maximum-Entropy Formalism

If we accept SHANNON’s interpretation (which can be justified by
other mathematical arguments entirely independent of the ones given
by SHANNON) that the quantity

H=—3p.logp; ®)

is an “information measure’ for any probability distribution p,; i.e.
that it measures the ““amount of uncertainty’’ as to the true value of 7,
then an ancient principle of wisdom — that one ought to acknowledge
frankly the full extent of his ignorance — tells us that the distribution
that maximizes H subject to constraints which represent whatever in-
formation we have, provides the most honest description of what we
know. The probability is, by this process, “spread out” as widely as
possible without contradicting the available information.

But recognition of this simple principle suddenly makes all the
maximum-minimum properties given by GiBBs in his Chapter XI — what
I believe to be the climax of GiBBS’ work, and just the place where time
and energy ran out on him — acquire a much deeper meaning. If we
specify the expectation value of the energy, this principle uniquely
determines G1BBS’ canonical ensemble. If we specify the expectations
of energy and mole numbers, it uniquely determines GiBBs’ grand
canonical ensemble [8]. If we specify the expectations of energy and
angular momentum, it uniquely determines GiBBs’ rotational ensemble
(7]. Thus, all the results of GIBBs on statistical mechanics follow im-
mediately from the principle of maximum entropy; and their derivation
is astonishingly short and simple compared to the arguments usually
found in textbooks.

But the generalization of GiBs’ formalism to nonequilibrium prob-
lems also follows immediately (although I have to confess that I spent

7 Studies in the Foundations, Vol. 1
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six years trying to do this by introducing new and more complicated
principles, before I finally saw how simple the problem was). For this
principle in no way depends on the physical meaning of the quantities
we specify; there is nothing unique about energy, mole numbers, or
angular momentum. If we grant that it represents a valid method of
reasoning at all, then we must also grant that it applies equally well to
any physical quantity whatsoever. So, let us jump immediately, in view
of the time, to the most sweeping generalization of G1BBs’ formalism.

We have a number of physical quantities about which we have some
experimental information. Let them be represented by the Heisenberg
operators F|(x,t), F,(x,¢),... F,(x,t). In general they will depend on
the position x and, through the equations of motion, on the time ¢.
For example, F, might be the particle density, F, the density of kinetic
energy, F; the ‘““mass velocity’’ of the fluid, F, the (yz)-component of the
stress tensor, F; the intensity of magnetization, ..., and so on; whatever
information of this type is available, represents our definition of the
nonequilibrium state.

Now we wish to construct a density matrix ¢ which incorporates all
this information. When I say that a density matrix ““contains’’ certain
information, I mean by this simply that, if we apply the usual rule for
prediction; i.e. calculate the expectation values

CFy(x, ) =Tr[e B(x, 1)) )

we must be able to recover this information from the density matrix.
Thus, the mathematical constraints on the problem are that the ex-
pectation values (9) must agree with the experimental information:

hz)=Tr[eF(x, 9], #%tin R, (10)

where f,(x, f) represent the experimental values, and R, is the space-
time region in which we have information about f,; in general it may be
different for different k. Subject to these constraints, we are to maximize
the “information entropy”’

S;=—Tr(glog o) (11)

which is the appropriate generalization of (8), as found many years ago
by voN NEUMANN. The solution of this variational problem is:

0= %exp{él R{ Bxdt A (% 1) F,(x, t)} (12)

where the A, (x, ¢) are a set of real functions to be determined presently
(they arise mathematically as Lagrange multipliers in solving the
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variational problem with constraints), and for normalization the partition
function of GiBBs has been generalized to the partition functional:

Z[h(x, 0] =Trexp] S [dxdt i (x, 1) Fy(x, t)}. (13)

k=1 Ry
The 4, (%, t) are now to be found from the conditions (10), which reduce to

he, )= 50 log Z (14)
which is a generalization of GIBBS’ equation (6); where § denotes the
functional derivative. Mathematical analysis shows that (14) is just
sufficient to determine uniquely the integrals in the exponent of (12);
it does not necessarily determine the functions 4,(x,f), but it does
determine the only property of those functions which is needed in the
theory; a very interesting example of mathematical economy.

The density matrix having been thus found, prediction of any other
quantity J(x, f) in its space-time dependence is then found by applying
the usual rule:

J& 9>=TreJ(x 9] (15)

In Eqgs. (12) to (15) we have the generalization of GIBBS’ algorithm to
arbitrary nonequilibrium problems. From this point on, it is simply a
question of mathematics to apply the theory to any problem you wish.

Of course, it requires a great deal of nontrivial mathematics to
carry out these steps explicitly for any nontrivial problem! If GiBBs’
original formalism was somewhat deceptive, in that its formal simplicity
conceals an enormous amount of intricate detail, the same is true with
a vengeance for this generalization. Nevertheless, it is still only mathe-
matics; and if it were important enough to get a certain result, one could
always hire a building full of mathematicians and computers to grind
it out; there are no further questions of principle to worry about.

For the past three years, my students and I have been exploring
these mathematical problems, and we have a large mass of results that
will be reported in due course. Without going into further details, let
me just say that all the previously known results in theory of irreversible
processes can be derived easily from this algorithm. Dissipative effects
such as viscosity, diffusion, heat conductivity are obtained by direct
quadratures using (15), with no need for the forward integration and
coarse-graining operations characteristic of previous treatments. For
static transport coefficients we obtain formulas essentially equivalent to
those of KuBo; we can exhibit certain ensembles for which KuBo’s
results, originally obtained by perturbation theory, are in fact exact.

7*
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Because we are freed from the need for time-smoothing and other
coarse-graining operations, the theory is no longer restricted to the
quasi-stationary, long-wavelength limit. It gives, with equal ease, general
formulas for such things as ultrasonic attenuation and for nonlinear
effects, such as those due to extremely large temperature or concentra-
tion gradients, for which previously no unambiguous theory existed.
Because of these results, I feel quite confident that we are on the right
track, and that this generalization will prove to be the final form of
nonequilibrium statistical mechanics.

Let me close with a couple of philosophical remarks, relating this
development to things I mentioned earlier in this talk. In seeking to
extend a theory to new domains, some kind of philosophy about what
the theory ‘““means’ is absolutely essential. The philosophy which led
me to this generalization was, as already indicated, my conviction that
the ““subjective’” theory of probability has been subjected to grossly
unfair attacks from people who have never made the slightest attempt
to examine its potentialities; and that if one does take the trouble to
rise above ideology and study the facts, he will find that ‘““subjective”
probability is not only perfectly sound philosophically; it is a far more
powerful tool for solving practical problems than the frequency theory.
I am, moreover, not alone in thinking this, as those familiar with the
rise of the ““neo-Bayesian’’ school of thought in statistics are well aware.

Nevertheless, that philosophy of mine was only scaffolding, which
served the purpose of telling me in what specific way the formalism of
G1BBs was to be generalized. Once a philosophy has led to a definite,
unambiguous mathematical formalism by which practical calculations
may be carried out, then the issue is no longer one of philosophy; but of
fact. The formalism either will or will not prove adequate in practice;
and it will be judged, quite properly, not by the philosophy which led
to it, but by the results which its gives. If you do not like my philosophy,
but you find that the formalism, nevertheless, does give useful results,
then I am quite sure that you will be able to invent some other philosophy
by which that formalism can be justified! And, perhaps, that other
philosophy will lead to still further generalizations and extensions, to
which my own philosophy makes me blind. That is, after all, just the
process by which all progress in theoretical physics has been made.
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7. PRIOR PROBABILITIES (1968)

The fundamentally different problems of doing maximum entropy with
continuous variables, noted already in a footnote in ITSM I, continued to
plague the theory after the recognition of the proper continuous entropy
expression in Brandeis. Introducing the ‘measure’ m(x) achieved the needed
invariance of the results with respect to parameter changes, but left the prac-
tical problem untouched. Given m(x) in one parameter space, the mathemat-
ics tells us how to transform it to any other; but first we need a principle to
find it in one space. If there is no obvious limiting process from some discrete
set, what defines this measure?

It was clear that m(x) was, essentially, what had been called previously
‘the prior distribution expressing complete ignorance’. But this took us back
to just what Jacob Bernoulli and Laplace had struggled with but had not
solved except on finite discrete sets: what do we mean by ‘complete igno-
rance’ and what distribution represents it? It seemed that we were back to
Square One, from whence it had all started.

But before the mathematical problem could be treated, we had to deal
with the semantic one. The phrase ‘complete ignorance’ is too vague to define
any particular mathematical problem; can we state what we really want here
in terms that do make mathematical sense?

In 1965 it occurred to me that one very reasonable interpretation of
‘complete ignorance’ was group invariance. It is in retrospect incredible that
it could have required so long to see this, since my thesis advisor had been
Eugene Wigner, ‘Mr. Group Theory’ of theoretical physics. I attended his
course and that of Hermann Weyl in Princeton, and had for fifteen years
been an enthusiastic teacher of group theory methods in problems of mathe-
matical physics. But better late than never.

Applying this idea in just the way Wigner and Weyl had taught me, I found
immediately a much deeper understanding of the Jeffreys prior du do/o in
the location-scale parameter problem. This rule had been rejected in my
Socony—Mobil Lectures (1958) because Jeffreys’ argument in favor of it
seemed ad hoc and arbitrary. But now it was clear that the point was not
merely that o was positive, the rationale that Jeffreys had given. The point
was that o was a scale parameter, complete ignorance of which meant
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invariance under the group of scale changes. I immediately became an advo-
cate, rather than a critic, of the Jeffreys rule, and the nice numerical results
that it gives (noted wistfully in the Socony—Mobil lectures as something for-
bidden to me) were now mine to use after all, with the sanction of a clear
rational justification.

This work, which was for me a major advance in thinking, suffered the
standard fate. It was submitted to a well-known statistical journal in 1966,
and was indignantly rejected. The editor (whom I had thought to be a
Bayesian) took the trouble to write me a letter requesting that I never again
send him anything like it. But quickly I received an invitation to contribute
an article to this IEEE journal’s special issue on Decision Theory, and so with
the addition of a few introductory pages it became the article which follows.

Although, as noted, group invariance arguments had appeared before this
article and have appeared many times in the literature since 1968, to the best
of my knowledge no other writer since Poincaré has recognized the ‘Desider-
atum of Consistency’ as providing the basic justification for imposing group
invariance. Most writers simply dive into the mathematics without saying why
they are doing it. I therefore stress this desideratum as something that appears
to me not only a necessary axiom for any rational theory of inference, but
also of much greater generality than the application to groups given here.

Group invariance arguments are carried further in The Well-Posed Problem
and in the Appendix to Marginalization.
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Prior Probabilities
EDWIN T. JAYNES

Abstract~In d

ysis shows that
once the and sample are
specified, the only remaining basis for a choice among different
admissible decigions lies in the prior probabilities. Therefore, the
logical foundations of decision theory cmnot be put in fully satis-

theory, h 1 1

factory Iorm until the old problem of arbi ( called
“‘subj ”)in prior probabilities is resolved.
The principle of entropy rep one step in this

direction. Its use is ill and & correspond property
between maximum-entropy probabilities and frequencies is dem-

d. The of this principle with the principles of
conventional ‘‘direct probability’’ analysis is ill d by showing

confidence intervals can break down and leave no definite
procedure for inference in the presence of this kind of prior
information. Further examples of this phenomenon are
given by Kendall and Stuart [1]

With more “gentle” kinds of prior information, which
do not absolutely exclude any interval for 8 but only render
certain intervals highly unlikely, the difficulty 1s less
drastic but still present. Such cases are even more dan-
gerous in practice because the shortcomings of orthodox

that many known results may be derived by either method. How-
ever, an ambiguity remains in setting up a prior on a continuous
parameter space because the results lack invariance under a change
of parameters; thus a further principle is needed.

It is shown that in many problems, including some of the most
imp: in p this ambiguity can be d by applying
thods of group th ical ning which have long been
used in theoretical physics. By ﬂndm; the group of transformations
on the parameter space which convert the problem into an equivalent
one, a basic desideratum of consistency can be stated in the form of
functional equations which impose conditions on, and in some cases
fully determine, an ‘‘invariant measure’’ on the parameter space.
The method is illustrated for the case of location and scale param-
eters, rate constants, and in Bernoulli trials with unknown prob-

ability of success.
In realistic p both the f ion group lysis and
the principle of i py are needed to determune the prior.

The distributions thus found are uniquely determined by the prior
information, independently of the choice of parameters. In a certain
class of problems, therefore, the prior distributions may now be
claimed to be fully as ‘‘objective’’ as the sampling distributions.

I. BACKGROUND OF THE PROBLEM

INCE THE time of Laplace, applications of probability
theory have been hampered by difficulties in the treat-
ment of prior information. In realistic problems of decision
or inference, we often have pnor information which is
highly relevant to the question being asked; to fail to take
it into account 1s to commut the most obvious incon-
sistency of reasoning and may lead to absurd or dan-
gerously misleading results
As an extreme example, we might know 1n advance that
a certain parameter § < 6 If we fail to incorporate that
fact into the equations, then a conventional statistical
analysis might easily lead to the conclusion that the “‘best’’
estimate of 8 is 6* = 8, and a shortest 90-percent con-
fidence interval1s (7 < 8 < 9)
Few people will accept an estimate of a parameter which
lies outside the parameter space, and so ‘‘orthodox’
statistical principles such as efficient estimators or shortest
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principles, while just as real, are no longer obvious.

The Bayesian approach to statistics offers some hopc
of overcoming such difficulties since, of course, both the
prior and posterior distributions of § will vanish outside
the parameter space, and so the results cannot conflict
with deductive reasoning. However, what determines the
prior within the parameter space? After nearly two cen-
turies of discussion and debate, we still do not seem to have
the principles needed to translate prior information into s
definite prior probability assignment.

For many years the orthodox school of thought, repre-
sented by most statisticians, has sought to avoid this
problem by rejecting the use of prnor probabilities alto-
gether, except in the case where the prior information con-
sists of frequency data However, as the preceding example
shows, this places a great restriction on the class of
problems which can be treated Usually the prior informa-
tion does not consist of frequency data, but 1t 1s nonethe-
less cogent. As Kendall and Stuart [1] point out, this1s a
major weakness of the principle of confidence intervals

With the rise of decision theory, this problem has
assumed new importance. As we know, this development
was started by Wald [2] with the express purpose of find-
ing a new foundation for statistics which would have the
generality, but avoid the supposed mistakes, of the work
of Bayes and Laplace. But after monumental labors, the
mathematical situation uncovered by Wald finally led to a
realization that the only consistent procedure for digesting
information into the decision process 1s identical with ap-
plication of Bayes’ theorem, and that, once the loss func-
tion, sampling distribution, and sample are given, the only
rational basis for choice among different admissible de-
asions hes 1n the prior probabilities.

Thus 1In modern decision theory, 1t appears that sta-
tistical practice has reached a level where the problem of
prior probabilities can no longer be 1gnored or belittled.
In current problems of engineering design, quality con-
trol, operations research, and irreversible statistical me-
chanics, we cannot translate the full problem into mathe-
matical terms until we learn how to find the prior proba-
bility assignment which deseribes the prior information.
In fact, as shown later, in some of the most mmportant
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problems the prior information 1s the only nformation
available, and so decisions must be based entirely on it. In
the absence of any principle for setting up prior distribu-
tions, such problems cannot be treated mathematically at
all.

The “personalistic” school of thought (Savage [3], [4])
recognizes this deficiency, but proceeds to overcompensate
it by offering us many different priors for a given state of
prior knowledge. Surely, the most elementary requirement
of consistency demands that two persons with the same
relevant prior information should assign the same prior
probabilities. Personalistic doctrine makes no attempt to
meet this requirement, but instead attacks 1t as represent-
ng a naive “necessary’’ view of probability, and even pro-
claims as one of its fundamental tenets ([3], p. 3) that we
are free to violate it without being unreasonable Con-
sequently, the theory of personahstic probability has come
under severe criticism from orthodox statisticians who
have seen in it an attempt to destroy the ‘“‘objectivity” of
statistical inference by injecting the user’s personal
opinions into it

Of course, no one denies that personal opinions are en-
titled to consideration and respect if they are based on
factual evidence. For example, the judgment of a compe-
tent engineer as to the reliability of a machine, based on
calculation of stresses, rate of wear, etc., 1s fully as cogent
as anything we can learn from a random expeniment, and
methods of reliability testing which fail to take such in-
formation 1nto account are not only logically inconsistent,
but economically wasteful Nevertheless, the author must
agree with the conclusions of orthodox statisticians, that
the notion of personalistic probabihity belongs to the field
of psychology and has no place 1n apphed statistics Or, to
state this more constructively, objectivity requires that a
statistical analysis should make use, not of anybody’s
personal opinions, but rather the specific factual data on
which those opinions are based.

An unfortunate impression has been created that re-
jection of personahstic probability automatically means
the rejection of Bayesian methods in general It will
hopefully be shown here that this is not the case; the
problem of achieving objectivity for prior probability
assignments is not one of psychology or philosophy, but
one of proper defimtions and mathematical techmques,
which 1s capable of rational analysis. Furthermore, re-
sults already obtained from this analysis are sufficient for
many important problems of practice, and encourage the
belief that with further theoretical development prior
probabilities can be made fully as ‘“objective” as direct
probabilities

It is sometimes held that this evident difference 1n the
nature of direct and prior probabilities arises from the fact
that the former have a clear frequency interpretation
usually lacking in the latter. However, there 1s almost no
situation of practice in which the direct probabilities are
actually verified experimentally in the frequency sense.
In such cases 1t is hard to see how the mere possibility of
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thinking about direct probabilities as frequencies in a non-
existent experiment can really be essential, or even rele-
vant, to the problem.

Perhaps the real difference between the manifestly
“public” nature of direct probabilities and the “private”
nature of prior probabilities lies in the fact that in one case
there 1s an estabhished theory, accepted by all (e,
Bernoulli trials, etc.), which tells how to calculate them,
while in the case of prior probabilities, no umversally

"accepted theory exists as yet. If this view is correct, we

would expect that with further development of probability
theory, the distinction will tend to disappear. The two
principles—maximum  entropy and  transformation
groups—discussed 1n the following sections represent
methods for calculating probabilities which apply indif-
ferently to either

1I THE Basic DESIDERATUM

To elaborate the point just made, a prior probability
assignment not based on frequencies is necessarily ‘“‘sub-
jective” in the sense that 1t describes a state of knowledge,
rather than anything which could be measured in an ex-
periment. But if the methods are to have any relevance to
science, the prior distribution must be completely “ob-
jective” in the sense that 1t 1s independent of the per-
sonality of the user. On this point, 1t is beheved that even
the most ardent Bayesian must agree with orthodox stat-
isticians  The measure of success in producing an objec-
tive theory of decision or inference is just the extent to
which we are able to eliminate all personalistic elements
and create a completely “‘impersonalistic” theory

Evidently, then, we need to find a middle ground be-
tween the orthodox and personalistic approaches, which
will give us just one prior distribution for a given state of
prior knowledge. Historically, orthodox rejection of
Bayesian methods was not based at first on any 1deological
dogma about the ‘‘meaning of probability” and certainly
not on any failure to recogmze the importance of prior in-
formation; this has been noted by Kendall and Stuart
(1), Lehmann [5), and many other orthodox writers. The
really fundamental objection (stressed particularly in the
remarks of Pearson in Savage [4]) was the lack of any
pnnciple by which the prior probabilities could be made
objective 1n the aforementioned sense Bayesian methods,
for all their advantages, will not be entirely satisfactory
until we face the problem squarely and show how this re-
quirement may be met.

For later purposes 1t will be convenient to state this
basic desideratum as follows. in two problems where we
have the same prior wnformation, we should assign the
same prior probabilities This 1s stated 1n such a way that
it seems psychologically impossible to quarrel with it,
indeed, 1t may appear so trivial as to be without useful
content A major purpose of the present paper is to show
that 1n many cases, in spite of first appearances, this
desideratum may be formulated mathematically in a way
which has nontrivial consequences
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Some kinds of prior information seem too vague to be
translatable into mathematical terms. If we are told that,
“Jones was very pleased at the suggestion that # might be
greater than 100,” we have to concede that this does con-
stitute prior information about 6; if we have great respect
for Jones' sagacity, it might be relevant for inferences
about 6. But how can this be incorporated into a mathe-
matical theory of inference? There is a rather definite
minimum requirement which the prior information must
satisfy before it can be used by any presently known
methods.

Definition 1: A piece of information I concerning a
parameter 8 will be called testable if, given any proposed
prior probability assignment f(6) df, there is a procedure
which will determine unambiguously whether f(6) does or
does not agree with the information I.

As examples, consider the following statements.

I “9<6.”

I.: “The mean value of tanh—! (1 — 6%) in previous
measurements was 1.37.”

I;: “In the eighteenth century, Laplace summarized
his analysis of the mass of Saturn by writing, ‘It is a
bet of 11 000:1 that the error of this estimate is not
1/100 of its value ’ He estimated this mass as 1/3512
of the sun’s mass.”

I: “There is at least a 90-percent probability that
8>10."

Statements 7, and I clearly constitute testable informa-
tion; they can be used immediately to restrict the form of
a prior probability assignment. Statement I, becomes
testable if we understand the exact meaning of Laplace’s
words, and very easily so if we know the additional
historical fact that Laplace’s calculations were based on
the incomplete beta distribution. I is also clearly testable,
but it is perhaps less clear how it could lead to any unique
prior probability assignment.

Perhaps in the future others will discover new principles
by which nontestable prior information could be used in a
mathematical theory of inference For the present, how-
ever, we restrict ourselves to a search for formal principles
by which testable information can be converted into a
unique prior probability assignment.

Fortunately, we are not without clues as to how this
uniqueness problem might be solved. The principle of
maximum entropy (i.e., the prior probability assignment
should be the one with the maximum entropy consistent
with the prior knowledge) gives a definite rule for setting
up priors. The rule is impersonal and has an evident intui-
tive appeal (6}-[11] as the distribution which “‘assumes
the least” about the unknown parameter. In applications
1t has a number of advantages, but also some shortcomings
which prevent its being regarded as a complete solution
to the problem.

We now survey these briefly and aim to supplement the
principle in a way that retains the advantages, while cor-
recting the shortcomings

E.T.JAYNES

III. Maximum EnTrROPY

We illustrate this method by a simple example which
occurred in a physical problem (distribution of impurities
in a crystal lattice), and for simplicity consider only a one-
dimensional version. An impurity atom may occupy any
of n different positions {z; - z,}, where z, = jL and L is
a fixed length. From experiments on scattering of X rays, it
has been determined that there is a moderate tendency to
prefer sites at which cos(kz,) > 0, the specific datum being
that 1n many previous instances the average valuc of
cos kx; was

(cos kz;) = 0.3. (1)

This is clearly testable information, and it is desired to find
a probability assignment p, for occupation of the jth site
which incorporates this information, but assumes nothing
further, from which statistical predictions about future
instances can be made.

The mathematical problem is then to find the p, which
will maximize the entropy

H = —Tplogp, @
1=
subject to the constraints p; > 0, and
lel =1 3)
2, cos(kz,) = 0.3. @)
The solution is well known, and in this case takes the form
1
= — n
Py ) exp(\ cos kz,] (%)
where Z()) is the partition function
Z(\) = Y exp|\ cos kz,) (6)
J=1
and the value of A 1s to be determined from (4)
(cos kz,) = a—ilog Z(\) = 0.3. )

In the case where ka << 1, nka >> 1, we may approxi-
mate the discrete sums sufficiently well by integrals, lead-
ing to

Z(\) == nl(\) )
1)
(cos mkz) >~ ) 9)

where I.(\) are the modified Bessel functions From ),
and (9) in the case m = 1, we find A = 0.63

Having found the distribution p,, we can now use it as
the prior from which further information about the im-
purity location can be incorporated via Bayes' theorem.
For example, suppose that if the impurity 1s at site 7,
the probability that a neutron meident on the crystal will
be reflected 1s proportional to sin*z, We acquire the new
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data. “n neutrons wecident, r reflected.” The posterior
probability for the impurity to be at site 7 would then be

Ap,p(rin, )
B exp{\ cos kz,} {sin?kz,}" {costkz,}*~" (10)

p(z,ln, r) =

where A, B are normalizing constants.

Alternatively, and representative of a large class of im-
portant problems which includes statistical mechanics,
the prior distribution p; may be used directly for certain
kinds of decision or inference For example, suppose that
before the neutron reflection experiment, we wish to esti-
mate the probability of reflection of r neutrons from n
incident Conditional only on the pror information (1),
this probability is

p(rln) = ;l 1)(1"1!, Dr,

- (") (sintke) {eostha}™—) (1)

the expectation value being taken over the prior distribu-

tion (5). In the casen = r = 1, it reduces to the probabulity

of reflection at a single trial; using (9), we find

I, — I.
21,

(sinkzr) = = A Xcos kz) = 048  (12)
which is only slightly below the value 0.50 corresponding
to a uniform prior distribution p,; thus, in agreement with
our intuition, the moderate constraint (1) is by no means
sufficient to inhibit appreciably the occupation of sites for
which |sin kz| < 1. On the other hand, if the prior in-
formation had given (cos kz) = 095, 1epetition of the
argument would yield (sin%kz) = 0.09, indicating now a
very appreciable inhibition.

The values of (sin?kz) thus calculated represent esti-
mates of sin%kz which are “optimal” in the sense that 1)
they arc “maximally noncommittal’” with regard to all
nformation except the specific datum given, and 2) they
mimmize the expected square of the error. Of course, 1n a
problem as rudimentary as this, one does not expect that
these estimates can be highly reliable; the information
available 1s far too meager to permit such a thing But this
fact, too, is automatically incorporated into the maximum-
entropy formalism; a measure of the reliability of the esti-
mate 1s given by the expected “loss function,” which in
this case is Just the variance of sin*z over the maximum-
entropy distribution

I — 217 + L,

o? = (sin‘kz) — (sin%*z)? = SI7

(13)
from which we find, m the cases (cos kz) = 0.3, 0.95, the
values ¢ = 0.35, ¢ = 0 12, respectively. Thus, if (cos kz)
= 0.3, no accurate estimate of sin?*z 1s possible; we can
say only that 1t is reasonably likely to lie in the interval
(0.13, 0 83) With the prior datum (cos kz) = 095, we are
1n a somewhat better position, and can say that sinz 1s
reasonably likely to be less than 0 21.
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Evidently the principle of maximum entropy can yield
reliable predictions only of those quantities for which it
leads to a sharply peaked distnibution. If, for example, we
find that a maximum-entropy distribution concentrates
99.99 percent of the probability on those values of z for
which 6.72 <f(z) < 6 73, we shall feel justified in predicting
that f(z) lies in that interval, and in attributing a very high
(but not necessarily 99.99 percent) reliability to our pre-
diction Mathematically, both equilibrium and non-
equilibrium statistical mechanics are equivalent to apply-
ing the principle of maximum entropy in just this way;
and their success derives from the enormous number of
possible microstates, which leads to very sharply peaked
distributions (typically of relative width 10-'%) for the
quantities of interest.

Let us now try to understand some conceptual problems
arising from the principle of maximum entropy. A com-
mon objection to it is that the probabilities thus obtained
have no frequency interpretation, and therefore cannot be
relevant to physical applications; there is no reason to be-
lieve that distributions observed experimentally would
agree with the ones found by maximum entropy. We wish
to show that the situation is a great deal more subtle than
that by demonstrating that 1) there is a sense in which
maximum-entropy distributions do have a precise cor-
respondence with frequencies; 2) in most realistic problems,
however, this frequency connection is unnecessary for the
usefulness of the principle; and 3) in fact, the principle is
most useful in just those cases where the empirical distri-
bution fails to agree with the one predicted by maximum
entropy

IV. THE CORRESPONDENCE PROPERTY

Application of the principle of maximum entropy does
not require that the distribution sought be the result of
any random experiment (in fact, its main purpose was to
extend the range of application of Bayesian methods to
problems where the prior probabilities have no reasonable
frequency interpretation, such problems being by far the
most often encountered in practice) Nevertheless, nothing
prevents us from applying 1t also in cases where the prior
distribution is the result of some random experiment, and
one would hope that there is some close correspondence
between the maximum-entropy distribution and observ-
able frequencies in such cases; indeed, any principle for
assigning priors which lacked this correspondence property
would surely contain logical inconsistencies.

We give a general proof for the discrete case. The
quantity z can take on the values [z.‘- z.} where n
may be finite or countably infinite, and the z, may be
specified arbitrarily. The available information about z
places a number of constraints on the probability distribu-
tion p, = p(z,) We assume for convenience, although 1t 1s
in no way necessary for our argument, that these take the
form of mean values of several functions [fi(z),---,
fm(z)}, wherem < n The probability distnbution p, which
incorporates this information, but is free from all other
assumptions, is then the one which maximizes
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H=- 21 . log p, (14)

subject to the constraints
Toi=1 (15)
ZtPJt(It) = Fh k= 1,2 (16)

where the F, are the prescribed mean values. Again, the
well-known solution is

s,m

P = expMfi(z) + -+ Aafm(z)] (17)

__ 1
L )

with the partition function

Z(x

20 - A =T expfi@) + -+ Mfalz)] (18)
in which the real constants A, are to be determined from
the constraints (16), which reduce to the relations

F, = 2 log Z(\

W An):

(19)
The distribution (17) is the one which is, 1n a certain sense,
spread out as uniformly as possible without contradicting
the given information, i.e., it gives free rein to all possible
vanability of z allowed by the constraints. Thus it ac-
complishes, in at least one sense, the intuitive purpose of
assigning a prior distribution; it agrees with what is known,
but expresses a ‘‘maximum uncertainty” with respect to
all other matters, and thus leaves a maximum possible
freedom for our final decisions to be influenced by the sub-
sequent sample data.

Suppose now that the value of z is determined by some
random experiment; at each repetition of the experiment
the final result is one of the values z,. On the basis of the
given information, what can we say about the frequencies
with which the various z, will occur? Let the experiment be
repeated M times (we are particularly interested in the
limit M — o, because that is the situation referred to in
the usual frequency theory of probability), and let every
conceivable sequence of results be analyzed. Each trial
could give, independently, any one of the results {z, - - -
z,.}, and so there are a priori n¥ conceivable detailed out-
comes. However, many of these will be incompatible with
the given information about mean values of the fi(z). We
will, of course, assume that the result of the random ex-
periment agrees with this information (if it did not, then
the given information was false and we are doing the wrong
problem). In the M repetitions of the experiment, the re-
sult z; will be obtained m; times, z, will be obtained ma
times, etc. Of course,

im‘=M

t=1

(20)

and if the specified mean values are in fact verified, we
have the additional relations

n

2 m(z) = MFy,

1=l

(21

k=1 -, m

E.T.JAYNES

If m < n — 1, the constraints (20) and (21) are 1nsuf-
ficient to determine the relative frequencies f; = m,/M.
Nevertheless, we have strong grounds for preferring some
choices of the f; to others. For out of the original n* con-
ceivable results, how many would lead to a given set of
sample numbers {m. ~~-m.}? The answer 1s, of course,
the multinomual coefficient

M
ma! (Mf)!

M
- (Mf)!

and so the set of frequencies {f; - f.] which can be
realized 1n the greatest number of ways is the one which
maximizes (22) subject to the constraints (20) and (21).
We may, equally well, maximize any monotonic increasing
function of W, in particular M ~' log W, but as M — o we
have immediately from the Stirling approximation,

W=

my! @2

M-'log W— — Zl filog i = H, (23)
1t is now evident that, in (20)-(23) we have formulated
exactly the same mathematical problem as in (14)-(16).
and that this identity will persist whether or not the con-
straints take the form of mean values. Given any testable
prior information, the probability distribution which
maximizes the entropy is numerically identical with the
frequency distribution which can be realized in the greatest
number of ways.
~ The maximum in W is, furthermore, enormously sharp;
to investigate this, let {f,} be the set of frequencies which
maximizes W and has entropy H,, and {f.'} be any other
set of frequencies which agrees with the constraints (20)
and (21) and has entropy H,” < H, The ratio [(number of
ways 1n which { 1.} could be realized)/(number of ways in
which {f.’} could be reahzed) | grows asymptotically as

w
o~ M(H, — H/) (24

w

and passes all bounds as M —« Therefore, the distribu-
tion predicted by maximum entropy can be reahzed ex-
perimentally in overwhelmingly more ways than can any
other. This is the precise connection between maximum-
entropy distributions and frequencies promised 1n Section
111

Now, does this property justify a prediction that the
maximum-entropy distribution will, in fact, be observed in
a real experiment? Clearly not, in the sense of deductive
proof, for different people may have different amounts of
information, which will lead them to set up different
maximum-entropy distributions. Consider a specific case:
Mr. A knows the mean values (fi(z)), (f2(z)); but Mr. B
knows in addition (f3(z)). Each sets up a maximum-
entropy distribution conditional on his information, and
since Mr. B’s entropy Hjp is maximized subject to one
further constraint, we will have

Hp < Ha. (25)
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We note two properties, easily verified from the fore-
gong equations 1f Mr. B’s additional information 18 re-
dundant (in the sense that it 1s only what Mr. A would
have predicted from his distribution), then A; = 0, and
the distribution 1s unchanged. In this case, and only in
this case, we have equality in (25). Because of this prop-
erty (which holds generally), it 1s never necessary when
setting up a maximum-entropy problem to determine
whether the different pieces of information used are inde-
pendent, any redundant information will drop out of the
equations automatically.

On the other hand, if the given pieces of information
are logically contradictory (for example, if 1t turns out
that f;(z) = fi(z) + 2 fo(z), but the given mean values
fail to satisfy () = {(fi) + 2(f»), then it will be found that
(19) has no simultaneous solution with real \; In this case,
the method of maximum entropy breaks down, as it
should, giving us no distribution at all.

In general, Mr. B’s extra information will be neither
redundant nor contradictory, and so he will find a maxi-
mum-entropy distribution different from that of Mr. A.
The nequality will then hold in (25), indicating that Mr.
B’s extra information was “useful’” in further narrowing
down the range of possibilities Suppose now that we start
performung the random experiment with Mr. A and Mr. B
watching. Since Mr. A predicts a mean value (f;) different
from the correct one known to Mr. B, 1t is clear that the
experimental distnbution cannot agree in all respects
withMr A’s prediction. We cannot be sure 1n advance that
1t will agree with Mr. B’s prediction either, for there may
be still further constraints fy(z), fs(z),: - - , etc., operating
in the experiment but unknown to Mr B.

However, the property demonstrated above does justify
the following weaker statement of frequency correspon-
dence. If the information incorporated into the maximum-
entropy analysis includes all the constraints actually
operative in the random experiment, then the distribution
predicted by maximum entropy is overwhelmingly the
most likely to be observed experimentally, because it can
he realized in overwhelmingly the greatest number of
ways.

Conversely, if the experiment faills to confirm the
maximum-entropy prediction, and this disagreement per-
sists on indefinite repetition of the expernment, then we
will conclude that the physical mechamsm of the expen-
ment must contain additional constraints which were not
taken into account 1n the maximum-entropy calculation.
The observed deviations then provide a clue as to the
nature of these new constraints. In this way, Mr. A can
discover empirically that his information was incomplete.

Now the little scenano just described is an accurate
model of just what did happen in one of the most important
applications of statistical analysis, carried out by Gibbs.
By the year 1900 it was known that in classical statistical
mechanics, use of the canonical ensemble (which Gibbs de-
rived as the maximum-entropy distribution over classical
phase volume, based on a specified mean value of the
energy) failed to predict thermodynamic properties (heat
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capacities, equations of state, equilibrium constants, etc.)
correctly. Analysis of the data showed that the entropy of
a real physical system was always less than the value pre-
dicted At that time, therefore, Gibbs was in just the posi-
tion of Mr. A in the scenario, and the conclusion was
drawn that the microscopic laws of physics must involve
an additional constraint not contained in the laws of
classical mechames.

In due course, the nature of this constraint was found;
first by Planck 1n the case of radiation, then by Einstein
and Debye for solds, and finally by Bohr for isolated
atoms The constraint consisted in the discreteness of the
possible energy values, thenceforth called energy levels.
By 1927, the mathematical theory by which these could
be calculated was developed nearly to its present form.

Thus it 1s an historical fact that the first clues indicating
the need for the quantum theory, and indicating some
necessary features of the new theory, were uncovered by
a seemingly ‘“‘unsuccessful” application of the principle of
maximum entropy. We may expect that such things will
happen again in the future, and this is the basis of the re-
mark that the principle of maximum entropy is most useful
to us in just those cases where it fails to predict the correct
experimental facts.

Since the history of this development is not well known
(a fuller account 1s given elsewhere [12]), the following
brief remarks seem appropriate here. Gibbs [13] wrote his
probability density in phase space in the form

w(gr - - ga; P10 Pa) = expln(qy - pa)]  (26)
and called his function » the “index of probability of
phase ”’ He derived his canonical and grand canonical en-
sembles ([13], ch. 11) from constraints on average energy,
and average energy and particle numbers, respectively, as
([13), p. 143) ‘““the distribution in phase which without
violating this condition gives the least value of the average
index of probability of phase " This is, of course,
just what we would describe today as maximizing the
entropy subject to constraints.

Unfortunately, Gibbs did not give any clear explana-
tion, and we can only conjecture whether he possessed one,
as to why this particular function is to be minimized on
the average, in preference to all others. Consequently,
his procedure appeared arbitrary to many, and for sixty
years there was controversy over the validity and justifica-
tion of Gibbs’ method In spite of its enormous practical
success when adapted to quantum statistics, few attempts
were made to extend it beyond problems of thermal
equilibrium.

It was not until the work of Shannon in our own time
that the full significance and generality of Gibbs’ method
could be appreciated. Once we had Shannon’s theorem
establishing the uniqueness of entropy as an “information
measure,” it was clear that Gibbs’ procedure was an ex-
ample of a general method for inductive inference, whose
applicability is in no way restricted to equilibrium thermo-
dynamics or to physics.
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V. CoNNECTION wiTH DIRECT PROBABILITY NODELS

Another important conceptual point 1s brought out by
comparing the frequency correspondence property of
maximum-entropy distributions with those obtained from
other theoretical models, for example, the standard model
of Bernoulh trials We wish to show that this difference is
far less than 1s often supposed

As noted previously, we are not entitled to assert that
the distribution predicted by maximum entropy must be
observed 1n a real experiment, we can say only that this
distribution is by far the most likely to be observed, pro-
vided that the information used includes all the constraints
actually operating in the experiment. This requirement,
while sufficient, 1s not always necessary; from the fact that
the predicted distnbution has been observed, we rannot
conclude that no further constraints exist beyond those
taken into account We can conclude only that further
constraints, if present, must be of such a nature that they
do not affect the relative frequencies (although they might
affect other observable things such as correlations)

Now what are we entitled to assert about frequency
correspondence of probabilities calculated from the theory
of Bernoulli trials? Clearly no probability calculation,
whether based on maximum entropy or any other prnnciple,
can predict with certainty what the result of a real ex-
periment must be, if the information available were suf-
ficient to permit such a thing, we would have no need of
probability theory at all.

In the theory of Bernoulli tnals, we calculate the
probability that we shall obtain r successes 1n n trals as

plrln) = (") P —p) @

in which p is regarded as a given numberin0 < p < 1. For
finite %, there 1s no 7 in 0 < r < n which is absolutely ex-
cluded by this, and so the observed frequency of success
f == r/n cannot be predicted with certainty Nevertheless,
we infer from (27) that, as n becomes very large, the
frequency f = p becomes overwhelmingly the most hkely
to be observed, provided that the assumptions which
went into the derivation of (27) (numenecal value of p, 1n-
dependence of different trials) correctly describe the con-
ditions operative in the real experiment.

Conversely, if the observed frequency fails to agree with
the predictions (and this tendency persists on indefimite
repetitions of the experiment), we will conclude that the
physical mechanism of the experiment is different from
that assumed 1n the calculation, and the nature of the
observed deviation gives a clue as to what 1s wrong in our
assumptions

On comparing these statements of probability—fre-
quency correspondence, we see that there is virtually no
difference in the logical situation between the principles
of maximum entropy and of Bernoulli tmals. In both
cases, and in every other application of probability theory,
the onus is on the user to make sure that all the informa-
tion, which his common sense tells him 1s relevant to the
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problem, 1s actually incorporated into the equations.
There 1s nothing 1n the mathematical theory which can
determine whether this has been, m fact, accomplished;
success can be known only a posterior1 from agreement
with experiment But in both cases, failure to confirm the
predictions gives us an opportunity to learn more about the
physical mechanism of the experiment

For these reasons, we are entitled to claim that proba-
bilities calculated by maximum entropy have just as much
and just as httle correspondence with frequencies as those
calculated from any other principle of probability theory

We can make this point still more strongly by exhibiting
a mathematical connection between these two methods of
calculation, showing that in many cases we can obtain
identical results from use of either method. For this
purpose, it 1s convenient to introduce some more of the
vocabulary usually associated with information theory.
Any random experiment may be regarded as a ‘“message”’
transmutted to us by nature The “alphabet” consists of
the set of all possible outcomes of a single trial; on each
repetition of the experiment, nature transmits to us one
more letter of the message In the case of Bernoulli trals,
we are concerned with a message on a binary alphabet
Define the “random variables”

={1.
] Y= 0,

On n repetitions of the experiment, we recerve the message

if the 1th tnal yields success}

. (28)
if the ith tnial yields failure

M=lyy: ) (29)
and the total number of suceesses obtamer 15
r(M) =% v, 30

From (27) we find that, for any »n, the expected number
of successes is

(r) = np. @31
Suppose now that we reverse our viewpomt, regard (31) ax
the primary given datum, and seek the probability of
obtaining r successes 1n 7 trials by maximum entropy A
full probability analysis of the experiment requires that we
consider, not just the probabilities on the 2-pont sample
space of a single tral, but rather the probabilities

(32)

Pu=plw il

on the 2*-point sample space of all possible messages. The
problem is then to find the distribution P, which maxi-
mizes the entropy

H= -3 Pylog Py (33)
]
subject to the constraint (31). The result is
P, = 1 M (34)
MZW ‘
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with the partition function

Z0) =X & = (@ + 1)~ (35)
o
The value of \ is determined, as always, by (19)*
=2 = ne= + 1
(r) = o logZ = n(e ™ +1)
or
" P
= = log ——.
N logn o og - (36)

Using (35) and (36), the maximum-entropy distribution
(34) reduces to

Py =p'(1 = p*". @7
This 1s the probability of obtaining a specific message, with
successes at specified trials. The probability of obtaining r
successes regardless of the order then requires the addi-
tional binomial coefficient, and so we obtain precisely the
result (27) of the Bernoull model.

From a mathematical standpoint, therefore, 1t 1s 1m-
material whether we approach the theory of Bernoull
trials in the conventional way, or whether we regard it is as
an example of maximum-entropy inference on a “higher
manifold”’ than the sample space of a single trial, 1n which
the only information available is the mean value (31).

In a similar way, many other of the so-called “direct
probability”” calculations may be regarded equally well as
the result of applying the principle of maximum entropy on
a higher mamifold. If we had considered a random experi-
ment with m possible outcomes at a single tnal, we would
be concerned with messages on an alphabet of m symbols
{4, - Am}, and repetition of the preceding argument
leads immedaately to the usual multinomial distribution.

We may, perhaps, feel that this result gives us a new
insight mto the nature of Bernoull trials. The “indepen-
dence of different trials” evident already from (34) arises
here from the fact that the given information consisted
only of statements about individual tnals and said nothing
about mutual properties of different trials The principle of
maximum entropy thus tells us that, if no information 1s
available concerning correlations between different tnals,
then we should not assume any such correlations to exist.
To do so would reduce the entropy of the distnibution P,
and thus reduce the range of variability of different mes-
sagesbelow that permitted by the data, i.e., it would amount
to introducing new arbitrary assumptions not warranted by
the given information. The precise nature of this reduction
is described by the asymptotic equipartition theorem [14].
The principle of maximum entropy 1s just the formal device
which ensures that no such hidden arbitrary assumptions
have been introduced, and 8o we are taking into account
the full range of possibilities permitted by the information
at hand.

If definite information concerning correlations is avail-
able, the maximum-entropy method readily digests this
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information The usual theory of discrete stochastic
processes can be derived by this same application of maxi-
mum entropy on a higher manifold, for particular kinds of
information about correlations. To give only the simplest
example, suppose that 1n our random experiment with m
possible outcomes per trial, we are given information fixing
the mean values not only of the “single-letter frequencies”
(f.), but also the ‘“digram frequencies” (f,,). The maximum-
entropy distribution over messages will then take the form

Pu= yop| Srsin + Erasiin | 69

where n f((M) 1s the number of times the letter A, occurs in
the message M, and (n — 1) f,,(M) is the number of times
the digram A4, occurs in M. The partition function Z 1s
determined by normalization of (38). Calculation of the
X¢ and the X\, from (19) is no longer trivial, however, we
find the problem to be exactly solvable [15] For messages
of finite length, there are small “end effects,” but in the
limit of long messages the maximum-entropy distribution
(38) reduces to the distribution of a Markov chain with
transition probabilities py; = (f;)/(f), in agreement with
the results of conventional methods

In a similar way, 1If the given information includes ex-
pectations of trigram frequencies (f,), we obtain the dis-
tribution of a higher type stochastic process, in which the
probability of the outcome A, at any tnal depends on the
results of the previous two trials, etc.

To point out the possibility of deriving so much of con-
ventional ‘“direct probability” analysis from maximum
entropy on a higher manifold is, of course, in no way to
suggest that conventional methods of analysis be aban-
doned in favor of maximum entropy (although this would
bring a higher degree of unity into the field), because in
these applications the conventional methods usually lead to
shorter calculations. The pragmatic usefulness of maximum
entropy lies rather in the fact that 1t is readily applied in
many problems (in particular, setting up prior probability
assignments) where conventional methods do not apply.

It 1s, however, important to realize the possibiity of
deriving much of conventional probability theory from the
principle of maximum entropy, firstly, because it shows
that this principle fits in neatly and consistently with the
other principles of probability theory. Secondly, we still
see from time to time some doubts expressed as to the
uniqueness of the expression (— p log p), 1t has even been
asserted that the results of maximizing this quantity have
no more significance than those obtained by maximizing
any other convex function. In pointing out the correspon-
dence with frequencies and the fact that many other stan-
dard results of probability theory follow from the maximum-
entropy principle, we have given a constructive answer to
such objections. Any alternative expression to (— p log p)
must surely reproduce all these desirable properties before
it could be taken seriously. It seems to the author impossi-
ble that any alternative quantity could do so, and likely
that a rigorous proof of this could now be given.
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VI. CoNTINUOUB DISTRIBUTIONS

Thus far we have considered the principle of maximum
entropy only for the discrete case and have seen that if the
distribution sought can be regarded as produced by a ran-
dom experiment, there is a correspondence property be-
tween probability and frequency, and the results are con-
sistent with other principles of probability theory. How-
ever, nothing in the mathematics requires that any random
experiment be in fact performed or conceivable; and so we
interpret the principle in the broadest sense which gives it
the widest range of applicability, i.e., whether or not any
random experiment is involved, the maximum-entropy
distribution still represents the most “honest”” description
of our state of knowledge.

In such applications, the principle is easy to apply and
leads to the kind of results we should want and expect.
For example, in Jaynes [16] a sequence of problems of
decision making under uncertainty (essentially, of inven-
tory control) of a type which arises constantly 1n practice
was analyzed. Here the state of nature was not the result of
any random experiment; there was no sampling distribu-
tion and no sample. Thus it might be thought to be a “no
data” decision problem, in the sense of Chernoff and Moses
[17]). However, in successive stages of the sequence, there
were available more and more pieces of prior information,
and digesting them by maximum entropy led to a sequence
of prior distributions in which the range of possibilities was
successively narrowed down. They led to a sequence of
decisions, each representing the rational one on the basis of
the information available at that stage, which corre-
sponded to ntuitive common-sense judgments in the early
stages where intuition was able to see the answer. It is
difficult to see how this problem could have been treated at
all without use of the principle of maximum entropy, or
some 6ther device that turns out in the end to be equivalent
toit.

In several years of routine application of this principle in
problems of physics and engineering, we have yet to find
a case Involving a discrete prior where it fails to produce a
useful and intuitively reasonable result. To the best of the
author’s knowledge, no other general method for setting up
discrete priors has been proposed It appears, then, that
the principle of maximum entropy may prove to be the
final solution to the problem of assigning discrete priors.

Use of this principle in setting up continuous prior
distributions, however, requires considerably more analysis
‘because at first glance the results appear to depend on the
choice of parameters. We do not refer here to the well-
known fact that the quantity

H' = —fp(z)log p(z) dz (39)
lacks invariance under a change of variables r—y(z), for
(39) is not the result of any derivation, and it turns out not
to be the correct information measure for a continuous
distribution. Shannon’s theorem estabhshing (14) as an
information measure goes through only for discrete distri-
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butions; but to find the corresponding expression in the
continuous case we can (in the absence of any more direct
argument) pass to the limit from a discrete distribution.
As shown previously [7], this leads instead to the quantity

H. = — Jp() log[p(z)/m(z)) dz (40)

where m(z) is an “invariant measure” function, propor-
tional to the limiting density of discrete points. (In all
applications so far studied, m(z) is a well-behaved contin-
uous function, and 8o we continue to use the notation of
Riemann integrals; we call m(z) a “measure” only to sug-
gest the appropriate generalization, readily supplied if a
practical problem should ever require it.) Since p(z) and
m(z) transform in the same way under a change of vari-
ables, H. is invariant. We examine the form of maximum-
entropy inference based on this information measure, in
which we may regard z as being either a one-dimensional or
multidimensional parameter.

We seek a probability density p(z) which is to be nor-
malized :

fr@dz =1

(we understand the range of integration to be the full
parameter space) ; and we have information fixing the mean
values of m different functions f(z):

Py = fp@) filx) dz, k=12,

where the F, are the given numerical values. Subject to
these constraints, we are to maximize (40). The solution is
again elementary :

p(z) = Z7' m(z) expMfi(2) + -+ + Afu(@)]

(41)

Lmo (42)

(43)
with the partition function

M) =S m(z) expMfi(@) + -+ Afu(z)] dz
(44)

Z(\, -

and the Lagrange multipliers ), are determined once again
by (19). Our “best” estimate (by quadratic loss function)
of any other quantity ¢(z) is then

@ =S q@) p@) dz.

It is evident from these equations that when we use (40)
rather than (39) as our information measure not only our
final conclusions (45), but also the partition function and
Lagrange multipliers are all invariant under a change of
parameters z — y(z). In applications, these quantities
acquire definite physical meanings.

There remains, however, a practical difficulty. If the
parameter space is not the result of any obvious limiting
process, what determines the proper measure m(z)? The
conclusions, evidently, will depend on which measure we
adopt. This is the shortcoming from which the maximum-
entropy principle has suffered heretofore, and which must
be cleared up before we can regard 1t as a full solution to the
prior probability problem.

45)
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Let us note the intuitive 1g of this
Consider the one-dimensional case, and suppose it is
known that @ < z < b but we have no other prior informa-
tion. Then there are no Lagrange multipliers \,, and (43)
reduces to

p(a) = [fm(z) d::]‘l m@z), a<z<b (46)

Except for a constant factor, the measure m(z) is also
the prior distribution describing ‘“‘complete ignorance” of
z. The ambiguity is, therefore, just the ancient one which
has always plagued Bayesian statistics; how do we find the
prior representing ‘‘complete ignorance?”’ Once this prob-
lem is solved, the maximum-entropy principle will lead
to a definite, parameter-independent method for setting up
prior distributions based on any testable prior information.
Since this problem has been the subject of so much dis-
cussion and controversy for 200 years, we wish to state
what appears to us a constructive attitude toward it.

To reject the question, as some have done, on the
grounds that the state of complete ignorance does not
“exist”” would be just as absurd as to reject Euclidean
geometry on the grounds that a physical point does not
exist. In the study of inductive inference, the notion of
complete ignorance intrudes itself into the theory just as
naturally and inevitably as the concept of zero in arith-
metic.

If one rejects the consideration of complete ignorance on
the grounds that the notion 1s vague and ill-defined, the
reply 15 that the notion cannot be evaded in any full theory
of inference. So if it is still ill-defined, then a major and
immediate objective must be to find a precise definition
which will agree with intuitive requirements and be of
constructive use in a mathematical theory.

With this in mind, let us survey some previous thought
on the problem Bayes suggested, in one particular case,
that we express complete ignorance by assigning a uniform
prior probability density; and the domain of useful applca-
tion of this rule is certainly not zero, for Laplace was led to
some of the most important discoveries in celestial me-
chanics by using it 1n analysis of astronomical data. How-
ever, Bayes’ rule has the obvious difficulty that it is not
invariant under a change of parameters, and there seems to
be no criterion telling us which parametenzation to use.
(We note in passing that the notions of an unbiased esti-
mator, an efficient estimator, and a shortest confidence
interval are all subject to just the same ambiguity with
equally serious consequences, and so orthodox statistics
cannot claim to have solved this problem any better than
Bayes did.)

Jeffreys [18], [19] suggested that we assign a prior
do/o to a continuous parameter o known to be positive, on
the grounds that we are then saying the same thing whether
we use the parameter o or ¢™. Such a desideratum 1s surely
a step in the night direction; however, it cannot be ex-
tended to more general parameter changes. We do not
want (and obviously cannot have) invariance of the form
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of the prior under all parameter changes; what we want 18
invariance of content, but the rules of probability theory
already determine how the prior must transform, under any
parameter changes, so a8 to achieve this.

The real problem, therefore, must be stated rather dif-
ferently; we suggest that the proper question to ask is:
“For which choice of parameters does a given form such as
that of Bayes or Jefireys apply?’ Our parameter spaces
seem to have a mollusk-like quality that prevents us from
answering this, unless we can find a new principle that gives
them a property of “‘rigidity.”

Stated in this way, we recognize that problems of just
this type have already appeared and have been solved in
other branches of mathematics In Riemannian geometry
and general relativity theory, we allow arbitrary contin-
uous coordinate transformations; yet the property of
rigidity is maintained by the concept of the invarnant line
element, which enables us to make statements of definite
geometrical and physical meaning independently of the
choice of coordinates. In the theory of continuous groups,
the group parameter space had just this mollusk-hike
quahty until the mtroduction of invanant group measure
by Hurwitz [20] and Haar [21], [22]. We seek to do some-
thing very similar to this for the parameter spaces of
statistics.

The 1dea of utilizing groups of transformations in prob-
lems related to this was discussed by Poincaré [23] and
more recently by Fraser [24], Hartigan [25], and Stone
[26]. In the following section we give three examples of a
different group theoretical method of reasoning developed
largely by Weyl and Wigner [20], which has met with great
success in physical problems and seems unmquely adapted
to our problem.

VII TransrorMATION GROUPS—EXAMPLES

The method of reasoning is best illustrated by a simple
example, which also happens to be one of the most im-
portant 1n practice We sample from a continuous two-
parameter distnibution

’_“)d—’ )
o

[

plda] u, o) = h(

where h(y) is a non-negative and normahzed function, and
consider the following problem.

Problem 1: Given a sample {7, - - -z.}, estimate » and
o. The problem 1s indeterminate, both mathematically and
conceptually, until we introduce a definite prior distribu-
tion

flu, o) du do 48)

but if we merely specify ‘‘complete initial ignorance,” this
does not seem to tell us which function f(u, o) to use.

Now what do we mean by the statement that we are
completely ignorant of x and o, except for the knowledge
that 4 1s a location parameter and o a scale parameter?
If we know the sampling distribution (47), we can hardly
be ignorant of at least that much To answer this, we might
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reason as follows. If a change of scale can make the problem
appear in any way different to us, then we were not com-
pletely ignorant; we must have had some kind of prior
knowledge about the absolute scale of the problem Like-
wise, if a shift of location can make the problem appear in
any way different, then it must be that we had some kind of
prior knowledge about location. In other words, complete
1gnorance of a location and scale parameter 1s a state of
knowledge such that a change of scale and a shift of loca-
tion does not change that state of knowledge. Suppose,
therefore, that we carry out a change of variables (z, y, o)
- (z’, 4, 0’) according to

W =p+b
o' = ao “9)
' —p' =a(x — p)

where 0 <@ < @, — ©< b < ®. The distnbution (47)
expressed in the new variables is unchanged:
2 — w\ de’
pdzlu’, o) = h (—-—“) = (50)

o o

but the prior distribution is changed to g(u’, ¢’) du’ do’
where from the Jacobian of the transformation (49)

9’y ') = a7 f(y, o).

Now let us consider a second problem.

Problem 2: Given asample {z,’~ -- z,'}, estimate ' and
o’. If we are completely ignorant in the preceding sense,
then we must consider Problems 1 and 2 as entirely equiva-
lent, for they have identical sampling distributions and our
state of prior knowledge about 4’ and ¢’ in Problem 2 1s
exactly the same as for 4 and ¢ in Problem 1. But our basic
desideratum of consistency demands that in two problems
where we have the same prior information, we should as-
sign the same prior probabilities. Therefore, f and ¢ must be
the same function:

I, o) = gy, o) (52)

whatever the values of (a,b). But the form of the prior 1s
now umquely determined, for combimmng (49), (51), and
(52), we sec that f(u, o) must satisfy the functional cqua-
tion

(51)

S, 0) =af(u+ b ad) (53)

whose gencral solution is
fu, o) = )

which is the Jeffreys rule.

As another example, not very different mathematically
but differently verbalized, consider a Poisson process. The
probability that exactly n events will occur in a time inter-
valtis

- (A"

Pl N9 = e
"

(55)
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and by observing the number of events we wish to estimate
the rate constant \. We are initially completely ignorant of
X except for the knowledge that it is a rate constant of
physical dimensions (seconds)~!, i.e., we are completely
ignorant of the absolute time scale of the process

Suppose, then, that two observers, Mr. X and Mr. X’,
whose watches run at different rates so their measurements
of a given interval are related by ¢ = g/, conduct this ex-
periment. Since they are observing the same physical ex-
periment, their rate constants must be related by At/ =
A, or A’ = gz They assign prior distributions

PENX) = f(\) dA
P@N|X’) = g(\") aN’

(56)
(67

and if these are mutually consistent (1.e., they have the
same content), it must be that f(A\) d\ = g(\’) d\’, or
f(A) = gg(1’). Butif Mr. X and Mr. X’ are both completely
ignorant, then they are in the same state of knowledge, and
80 f and g must be the same function: f(\) = g(\). Combin-
ing these relations gives the functional equation f(\) =
qf (g0 or

p(d\X) ~ A1 dn. (58)

To use any other prior than this will have the consequence
that a change in the time scale will lead to a change in the
form of -the prior, which would imply a different state of
prior knowledge, but if we are completely ignorant of the
time scale, then all time scales should appear equivalent.

As a third and less trivial example, where intuition did
not anticipate the result, consider Bernoulli trials with an
unknown probability of success Here the probability of
success 1s itself the parameter 6 to be estimated. Given 6,
the probability that we shall observe r successes in »
trials is

plrln, ) = (:') o1 —om 9

and again the question is: What prior distnbution f(8) d8
describes ‘‘complete mitial ignorance” of §?

In discussing this problem, Laplace followed the example
of Bayes and answered the question with that famous
sentence: “When the probability of a simple event 1s un-
known, we may suppose all values between 0 and 1 as
equally likely ”” In other words, Bayes and Laplace used
the uniform prnior fp (6) = 1. However, Jeffreys [18] and
Carnap [27] have noted that the resulting rule of succes-
sion does not seem to correspond well with the inductive
reasoning which we all carry out intwitively. Jeffreys sug-
gested that f(6) ought to give greater weight to the end-
pomnts 6 = 0,1 if the theory is to account for the kind of
inferences made by a scientist.

For example, in a chemical laboratory we find a jar
containing an unknown and unlabeled compound. We are
at first completely 1gnorant as to whether a small sample of
this compound will dissolve 1 water or not. But having
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observed that one small sample does dissolve, we infer
immediately that all samples of this compound are water
soluble, and although this conclusion does not carry quite
the force of deductive proof, we feel strongly that the
inference was justified. Yet the Bayes-Laplace rule leads
to a negligibly small probability of this being true, and
yields only a probabihty of 2/3 that the next sample tested
will dissolve.

Now let us examine this problem from the standpoint of
transformation groups. There is a conceptual difficulty
here, since f(6) df is a “probability of a probability.”
However, it can be removed by carrying the notion of a
split personality to extremes; instead of supposing that
f(6) describes the state of knowledge of any one person,
imagine that we have a large population of individuals who
hold varying beliefs about the probability of success, and
that f(6) describes the distribution of their beliefs. Is it
possible that, although each individual holds a definite
opinion, the population as a whole is completely ignorant
of 6? What distribution f(8) describes a population in a
state of total confusion on the 1ssue?

Since we are concerned with a consistent extension of
probability theory, we must suppose that each individual
reasons according to the mathematical rules (Bayes’
theorem, etc.) of probability theory. The reason they hold
different beliefs is, therefore, that they have been given
different and conflicting information; one man has read
the editorials of the St. Louis Post-Dispatch, another the
Los Angeles Times, one has read the Daily Worker,
another the National Review, etc., and nothing in prob-
ability theory tells one to doubt the truth of what he has
been told in the statement of a problem.

Now suppose that, before the experiment is performed,
one more definite piece of evidence E is given simultane-
ously to all of them. Each individual will change his state of
belief according to Bayes’ theorem, Mr. X, who had pre-
viously held the probability of success to be

0 = p(S|X) (60)

will change it to

p(8|X) p(EISX)
p(E|SX) p(S|X) + p(E|FX) p(F|X)
(61)

o =pSE X) =

where p(F|X) = 1 — p(8|X) is his prior belief in probabil-
ity of failure. This new evidence thus generates a mapping
of the parameter space 0 < 6 < 1 onto itself, given from
(61) by

af

YT a @
where
SX
o= p(E|SX) ©3)

~ n(EIFX)
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If the population as a whole can learn nothing from this
new evidence, then it would seem reasonable to say that
the population has been reduced, by conflicting propaganda,
to a state of total confusion on the issue. We therefore
define the state of “total fusion” or ‘“‘complete igno-
rance” by the condition that after the transformation (62),
the number of individuals who hold belefs in any given
range 6 < 6 < 6;18 the same as before.

The mathematical problem is again straightforward. The
original distribution of beliefs f(6) is shifted by the trans-
formation (62) to a new distribution g(8’) with

1(6) do = g(¢) db’

(64)

and, if the population as a whole learned nothing, then f
and ¢ must be the same function:

1) = g(6). (65)
Combining, (62), (64), and (65), we find that f() must
satisfy the functional equation

ad
—_ V= _ 2
af(1—0+a0) (1 -6+ ab)?f(0). (66)
This may be solved directly by eli ting the a b
(62) and (66) or, in the more usual manner, by differentiat-
ing with respect to a and setting @ = 1. This leads to the

differential equation
6(1 — ) f'(6) = (20 — 1) f(6) (67)
whose solution is
_ (const) S
16) = ) (68)

which has the qualitative property anticipated by Jeffreys.
Now that the imaginary population of individuals has
served its purpose of revealing the transformation group
(62) of the problem, let them coalesce again into a single
mind (that of the statistician who wishes to estimate 6),
and let us of using (68) as our
prior distribution.

If we have observed r successes in n trials, then from
(59) and (68) the posterior distribution of 6 is (provided
thatr > 1, n —r2>1)

(n—1)!

the conseq

= - - —f)—T—1
p(dslr,n) = el AT (69
This distribution has expectation value and variance

@="=7 (70)
n
a-yn
= 71
a? k1’ (71)

Thus the “best” estimate of the probability of success, by
the cnternon of quadratic loss function, is just equal to the
observed frequency of success f; and this is also equal to
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the probability of success at the next tnal, in agreement
with the intuition of everybody who has studied Bernoulli
trials On the other hand, the Bayes-Laplace uniform
prior would lead mstead to the mean value (8)s = (r + 1)/
(n + 2) of the rule of succession, which has always seemed
a bit peculiar.

For interval estimation, numencal analysis shows that
the conclusions drawn from (69) are for all practical pur-
poses the same as those based on confidence ntervals
[re., the shortest 90-percent confidence interval for 6 1s
nearly equal to the shortest 90-percent posterior probability
interval determined from (69)]. If r > 1 and (n — r) > 1,
the normal approximation to (71) will be vahd, and the
100P percent posterior probabihity interval is simply
(f £ go), where q1s the (1 + P)/2 percentile of the normal
distribution, for the 90-, 95-, and 99-percent levels, ¢ =
1.645, 1960, and 2.576, respectively. Under conditions
where this normal approximation is vahd, differences be-
tween this result and the exact confidence intervals are
generally less than the differences between various pub-
hished confidence interval tables, which have been calcu-
lated from different approximation schemes.

If r = (n — r) = 1, (69) reduces to p(dalr, n) = db, the
uniform distribution which Bayes and Laplace took as
their prior Therefore, we can now interpret the Bayes—
Laplace prior as describing not a state of complete igno-
‘rance, but the state of knowledge in which we have observed
one success and one failure. It thus appears that the
Bayes-Laplace choice will be the appropnate prior if the
prior information assures us that 1t is physically possible
for the experiment to yield either a success or a failure, while
the distnibution of complete ignorance (68) describes a
‘““pre-prior” state of knowledge in which we are not even sure
of that.

If r = 0 or r = n, the derivation of (69) breaks down and
the posterior distribution remains unnormahzable, pro-
portional to 6=! (1 — 6)"~ or "~ (1 — 6)~', respec-
tively. The weight 1s concentrated overwhelmingly on the
values 8 = 0 or § = 1 The prior (68) thus accounts for
the kind of inductive inferences noted 1n the case of the
chemical, which we all make intuitively However, once
we have seen at least one success and one failure, then we
know that the experiment is a true binary one, in the sense
of physical possibility, and from that point on all posterior
distributions (69) remain normalhized, permitting definite
inferences about 6.

The transformation group method therefore ylelds a
prior which appears to meet the common objections raised
against the Laplace rule of st ion, but we also see that
whether (68) or the Bayes-Laplace prior is appropriate
depends on the exact prior information available.

To summarize the above results- if we merely specify
complete mitial 1gnorance, we cannot hope to obtamn any
defimite prior distribution, because such a statement 1s too
vague to define any mathematically well-posed problem
We are defining what we mean by complete ignorance far
more precisely if we can specify a set of operations which
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we recognize as transforming the problem into an equiva-
lent one, and the desideratum of consistency then places
nontrivial restrictions on the form of the prior.

VIII TransrorMATION GROUPS—DIscussiON

Further analysis shows that, if the number of indepen-
dent parameters in the transformation group is equal to the
number of parametersin the statistical problem, the “fun-
damental domain” of the group [20] reduces to a point,
and the form of the prior 1s umquely determined; thus
specification of such a transformation group 1s an exhaus-
tive description of a state of knowledge.

If the number of parameters in the transformation group
is less than the number of statistical parameters, the funda-
mental domain 1s of higher dimensionality, and the prior
will be only partially determined For example, if in the
group (49) we had specified only the change of scale opera-
tion and not the shift of location, repetition of the argu-
ment would lead to the prior f(s, ¢) = o~ k(u), where k(u)
18 an arbitrary function.

It is also readily venfied that the transformation group
method is consistent with the desideratum of invariance
under parameter changes mentioned 1n Section VI, 1e.,
that while the form of the prior cannot be invariant under
all parameter changes, 1ts content should be. If the trans-
formation group (49) had been specified 1n terms of some
other choice of parameters (a, ), the form of the trans-
formation equations and functional equations would, of
course, be different, but the prior to which they would lead
in the (a, B) space would be just the one that we obtain by
solving the problem in the (u, o) space and transforming
the result to the (a, 8) space by the usual Jacobian rule

The method of reasoning illustrated here 1s somewhat
remumscent of Laplace’s “principle of indifference.” How-
ever, we are concerned here with indifference between prob-
lems, rather than indifference between events. The
distinction is essential, for indifference between events is a
matter of intuitive judgment on which our intuition often
fails even when there is some obvious geometrical symmetry
(as Bertrand’s paradox shows). However, 1if a problem 1s
formulated in a sufficiently careful way, indifference be-
tween problems is a matter that is determined by the state-
ment of a problem, independently of our intuition, none of
the preceding transformation groups corresponded to any
particularly obvious geometrical symmetry.

More generally, if we approach a problem with the chari-
table presumption that it has a defimite solution, then every
circumstance left unspecified 1n the statement of the prob-
lem defines an invariance property (1e, a transformation
to an equivalent problem) which that solution must have.
Recognition of this leads t a resolution of the Bertrand
paradox, here we draw straight lines “‘at random’ inter-
secting a circle and ask for the distribution of chord lengths.
But the statement of the problem does not specify the exact
position of the circle, therefore, if there 15 any defimite
solution, it must not depend on this circumstance The
condition that the solution be invanant under infimtesimal
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displacements of the circle relative to the random straight
lines uniquely determines the solution

In such problems, furthermore, the transformation
group method 1s found to have a frequency correspondence
property rather like that of the maximum-entropy princi-
ple. If (as in the Bertrand problem) the distribution sought
can be regarded as the result of a random experiment, then
the distribution predicted by invariance under the trans-
formation group 1s by far the most hkely to be observed
expenmentally, because 1t requires by far the least “skill,”
consistently to produce any other would require a ‘“rmcro-
scopic’’ degree of control over the exact conditions of the
experiment Proof of the statements in the last two para-
graphs will be deferred to a later article

The transformation group derivation enables us to see
the Jeffreys prior probability rule in a new hght It has,
perhaps, always been obvious that the real justification of
the Jeffreys rule cannot hie merely in the fact that the pa-
rameter 1s positive As a simple example, suppose that u1s
known to be a location parameter, then both intuition and
the preceding analysis agree that a uniform prior density 1s
the proper way to express complete 1gnorance of u. The
relation y = @ — 67! defines a 1.1 mapping of the region
(— ®» < u < «) onto the region (0 < § < =), but the
Jeffreys rule cannot apply to the parameter 6, consistency
demamgmg that its prior density be taken proportional to

(1 + 6-2) d¢ It appears that the fundamental justi-
ﬁcatlon of the Jeffreys rule 1s not merely that a parameter
is positive, but that 1t 1s a scale parameter.

The fact that the distributions representing complete
ignorance found by transformation groups cannot be nor-
malized may be interpreted 1n two ways One can say that
1t arises simply from the fact that our formulation of the
notion of complete ignorance was an 1dealization that does
not strictly apply n any realistic problem A shift of loca-
tion from a point in St Louis to a point in the Andromeda
nebula, or a change of scale from the size of an atom to the
size of our galaxy, does not transform any problem of
earthly concern nto a completely equivalent one. In
practice we will always have some kind of prior knowledge
about location and scale, and 1n consequence the group
parameters (a, b) cannot vary over a truly infinite range
Therefore, the transformations (49) do not, strictly speak-
ing, form a group However, over the range which does ex-
press our prior 1gnorance, the above kind of arguments sull
apply Within this range, the functional equations and the
resulting form of the prior must still hold

However, our discussion of maximum entropy shows a
more constructive way of looking at this. Finding the
distribution representing complete ignorance 1s only the
first step 1n finding the prior for any realistic problem The
pre-prior distribution resulting from a transformation
group does not strictly represent any realstic state of
knowledge, but 1t does define the invarnant measure for our
parameter space, without which the problem of finding a
reahistic prior by maximum entropy is mathematically
indeterminate.
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1X. ConcLusiON

The analysis given here provides no reason to think that
specifying a transformation group is the only way in which
complete 1gnorance may be precisely defined, or that the
principle of maximum entropy 1s the only way of convert-
Ing testable information 1nto a prior distribution. Further-
more, the procedures described here are not necessanly
applicable 1n all problems, and so it remains an open ques-
tion whether other approaches may be as good or better.
However, before we would be in a position to make any
comparative judgments, 1t would be necessary that some
definte alternative procedure be suggested.

At present, lacking this, one can only point out some
properties of the methods here suggested. The class of
problems in which they can be applied is that in which 1)
the prior information 1s testable, and 2) in the case of a
continuous parameter space, the statement of the problem
suggests some definite transformation group which estab-
hshes the invanant measure We note that satisfying
these conditions 1s, to a large extent, simply a matter of
formulating the problem more completely than is usually
done.

If these conditions are met, then we have the means for
incorporating prior information into our problem, which 1s
independent of our choice of parameters and is completely
impersonal, allowing no arbitrary choice on the part of the
user. Few orthodox procedures and, to the best of the
author’s knowledge, no other Bayesian procedures, enjoy
this complete objectivity. Thus while the above cnticisms
are undoubtedly valid, it seems apparent that this analysis
does constitute an advance in the precision with which we
are able to formulate statistical problems, as well as an
extension of the class of problems in which statistical
methods can be used. The fact that this has proved possible
gives hope that further work along these lines—in partic-
ular, directed toward learning how to formulate problems
so that condition 2) 1s satisfied—may yet lead to the final
solution of this ancient but vital puzzle, and thus achieve
full objectivity for Bayesian methods.
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8. THE WELL-POSED PROBLEM (1973)

The idea of assigning probabilities by the principle of group invariance
developed in a way parallel to that of the principle of maximum entropy. In
both cases the original motivation (at least for me) was that the principle
expressed in mathematical terms what seemed intuitively the ‘most honest’
description of a state of knowledge. In neither case was there any connection
with frequencies — or indeed any reference to a repetitive ‘random experi-
ment’.

But in the case of maximum entropy a frequency connection appeared at
once. Maxent on the space S of any experiment corresponds closely to a com-
binatorial theorem on the extension space S™ of n repetitions of the experi-
ment, the probabilities on S which have maximum entropy subject to any
constraints being numerically equal to the frequencies on S” which could be
realizedin the greatest number of ways subject to the same constraints.

We could state the situation as follows. The Maxent probability distribu-
tion is at the same time the frequency distribution most likely to be realized,
in the sense that to produce appreciably different frequencies would require
additional physical constraints in the experiment, beyond those taken into
account in the Maxent calculation.

On further meditation it was realized that probabilities determined by
group invariance on a space S also have a frequency connection on the
extension space S”. They are numerically equal to the frequencies that
require the least ‘skill’ to produce. That is, to produce frequencies appreciably
different from the invariant ones would require some degree of control over
the initial conditions of the experiment.

This statement, almost a trivial tautology on first reading, becomes non-
trivial when we realize that in many cases an extremely large amount of skill,
or control, would be required; and so in those cases group invariance already
suffices to make quite reliable predictions of frequencies. Of course, those
who spin roulette wheels or drive golf balls are well aware of this. But from
the standpoint of principle it seemed important to show that, even though
probabilities are not defined as frequencies, they often acquire frequency
connections, which may be of several different kinds.

At the purely pragmatic level, there also appears to be something of value
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here. From the way in which group invariance arguments were able to deal
with the Bertrand problem, one may expect that there are many problems
in which group invariance can lead us to useful predictions of observable
facts.

For readers who may wish to try their hand at this kind of reasoning, here
is the String Problem, calling out for solution: A perfectly flexible string of
length L is tossed, very unskillfully, onto the floor. What is the probability
distribution of the distance between its ends? Please do not cheat by doing
the experiment first.
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Many statistical problems, including some of the most important for physical
applications, have long been regarded as underdetermined from the standpoint
of a strict frequency definition of probability; yet they may appear wellposed
or even overdetermined by the principles of maximum entropy and transforma-
tion groups. Furthermore, the distributions found by these methods turn out
to have a definite frequency correspondence; the distribution obtained by
invariance under a transformation group is by far the most likely to be observed
experimentally, in the sense that it requires by far the least “skill.” These
properties are illustrated by analyzing the famous Bertrand paradox. On the
viewpoint advocated here, Bertrand’s problem turns out to be well posed after
all, and the unique solution has been verified experimentally. We conclude that
probability theory has a wider range of useful applications than would be
supposed from the standpoint of the usual frequency definitions.

1. BACKGROUND

In a previous article® we discussed two formal principles—maximum
entropy and transformation groups—that are available for setting up
probability distributions in the absence of frequency data. The resulting
distributions may be used as prior distributions in Bayesian inference; or
they may be used directly for certain physical predictions. The exact sense
in which distributions found by maximum entropy correspond to observable
frequencies was given in the previous article; here we demonstrate a similar
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correspondence property for distributions obtained from transformation
groups, using as our main example the famous paradox of Bertrand.

Bertrand’s problem‘® was stated originally in terms of drawing a straight
line ““at random” intersecting a circle. It will be helpful to think of this in
a more concrete way; presumably, we do no violence to the problem (i.e., it
is still just as “random”) if we suppose that we are tossing straws onto the
circle, without specifying how they are tossed. We therefore formulate the
problem as follows.

A long straw is tossed at random onto a circle; given that it falls so that
it intersects the circle, what is the probability that the chord thus defined is
longer than a side of the inscribed equilateral triangle? Since Bertrand
proposed it in 1889 this problem has been cited to generations of students
to demonstrate that Laplace’s “principle of indifference” contains logical
inconsistencies. For, there appear to be many ways of defining “equally
possible” situations, and they lead to different results. Three of these are:
Assign uniform probability density to (A) the linear distance between centers
of chord and circle, (B) angles of intersections of the chord on the circum-
ference, (C) the center of the chord over the interior area of the circle. These
assignments lead to the results p, = 1/2, p; = 1/3, and pc = 1/4, respectively.

Which solution is correct? Of the ten authors cited,?-1% with short
quotations, in the appendix only Borel is willing to express a definite
preference, although he does not support it by any proof. Von Mises takes
the opposite extreme, declaring that such problems (including the similar
Buffon needle problem) do not belong to the field of probability theory at all.
The others, including Bertrand, take the intermediate position of saying
simply that the problem has no definite solution because it is ill posed, the
phrase “at random” being undefined.

In works on probability theory this state of affairs has been interpreted,
almost universally, as showing that the principle of indifference must be
totally rejected. Usually, there is the further conclusion that the only valid
basis for assigning probabilities is frequency in some random experiment.
It would appear, then, that the only way of answering Bertrand’s question
is to perform the experiment.

But do we really believe that it is beyond our power to predict by
“pure thought” the result of such a simple experiment? The point at issue
is far more important than merely resolving a geometric puzzle; for, as
discussed further in Section 7, applications of probability theory to physical
experiments usually lead to problems of just this type; i.e., they appear at
first to be underdetermined, allowing many different solutions with nothing
to choose among them. For example, given the average particle density and
total energy of a gas, predict its viscosity. The answer, evidently, depends on
the exact spatial and velocity distributions of the molecules (in fact, it depends
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critically on position—velocity correlations), and nothing in the given data
seems to tell us which distribution to assume. Yet physicists have made
definite choices, guided by the principle of indifference, and they have led us
to correct and nontrivial predictions of viscosity and many other physical
phenomena.

Thus, while in some problems the principle of indifference has led us to
paradoxes, in others it has produced some of the most important and
successful applications of probability theory. To reject the principle without
having anything better to put in its place would lead to consequences so
unacceptable that for many years even those who profess the most faithful
adherence to the strict frequency definition of probability have managed
to overlook these logical difficulties in order to preserve some very useful
solutions.

Evidently, we ought to examine the apparent paradoxes such as
Bertrand’s more closely; there is an important point to be learned about the
application of probability theory to real physical situations.

It is evident that if the circle becomes sufficiently large, and the tosser
sufficiently skilled, various results could be obtained at will. However, in
the limit where the skill of the tosser must be described by a ‘“region of
uncertainty” large compared to the circle, the distribution of chord lengths
must surely go into one unique function obtainable by ‘“pure thought.”
A viewpoint toward probability theory which cannot show us how to calculate
this function from first principles, or even denies the possibility of doing
this, would imply severe—and, to a physicist, intolerable —restrictions on
the range of useful applications of probability theory.

An invariance argument was applied to problems of this type by
Poincaré,® and cited more recently by Kendall and Moran.® In this treat-
ment we consider straight lines drawn ‘“‘at random” in the xy plane. Each
line is located by specifying two parameters (u, v) such that the equation of
the line is ux 4+ vy = 1, and one can ask: Which probability density p(u, v)
du dv has the property that it is invariant in form under the group of Euclidean
transformations (rotations and translations) of the plane? This is a readily
solvable problem,® with the answer p(u, v) = (u? + v?)%/2,

Yet evidently this has not seemed convincing; for later authors have
ignored Poincaré’s invariance argument, and adhered to Bertrand’s original
judgment that the problem has no definite solution. This is understandable,
for the statement of the problem does not specify that the distribution of
straight lines is to have this invariance property, and we do not see any
compelling reason to expect that a rain of straws produced in a real experi-
ment would have it. To assume this would seem to be an intuitive judgment
resting on no stronger grounds than the ones which led to the three different
solutions above. All of these amount to trying to guess what properties a
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“random” rain of straws should have, by specifying the intuitively “equally
possible” events; and the fact remains that different intuitive judgments
lead to different results.

The viewpoint just expressed, which is by far the most common in the
literature, clearly represents one valid way of interpreting the problem. If
we can find another viewpoint according to which such problems do have
definite solutions, and define the conditions under which these solutions are
experimentally verifiable, then while it would perhaps be overstating the case
to say that this new viewpoint is more “correct” in principle than the con-
ventional one, it will surely be more useful in practice.

We now suggest such a viewpoint, and we understand from the start that
we are not concerned at this stage with frequencies of various events. We ask
rather: Which probability distribution describes our state of knowledge
when the only information available is that given in the above statement of
the problem? Such a distribution must conform to the desideratum of
consistency formulated previously®: In two problems where we have the
same state of knowledge we must assign the same subjective probabilities.
The essential point is this: If we start with the presumption that Bertrand’s
problem has a definite solution in spite of the many things left unspecified,
then the statement of the problem automatically implies certain invariance
properties, which in no way depend on our intuitive judgments. After the
subjective solution is found, it may be used as a prior for Bayesian inference
whether or not it has any correspondence with frequencies; any frequency
connections that may emerge will be regarded as an additional bonus, which
justify its use also for direct physical prediction.

Bertrand’s problem has an obvious element of rotational symmetry,
recognized in all the proposed solutions; however, this symmetry is irrelevant
to the distribution of chord lengths. There are two other ‘“‘symmetries’”
which are highly relevant: Neither Bertrand’s original statement nor our
restatement in terms of straws specifies the exact size of the circle, or its
exact location. If, therefore, the problem is to have any definite solution at
all, it must be “indifferent” to these circumstances; i.e., it must be unchanged
by a small change in the size or position of the circle. This seemingly trivial
statement, as we will see, fully determines the solution.

It would be possible to consider all these invariance requirements
simultaneously by defining a four-parameter transformation group, where-
upon the complete solution would appear suddenly, as if by magic. However,
it will be more instructive to analyze the effects of these invariances separately,
and see how each places its own restriction on the form of the solution.
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2. ROTATIONAL INVARIANCE

Let the circle have radius R. The position of the chord is determined
by giving the polar coordinates (r, 8) of its center. We seek to answer a more
detailed question than Bertrand’s: What probability density f(r, §) d4 =
f(r, 8) rdr dd should we assign over the interior area of the circle? The
dependence on 8 is actually irrelevant to Bertrand’s question, since the
distribution of chord lengths depends only on the radial distribution

2m
g(r) = f., f(r, 6)do

However, intuition suggests that f(r, ) should be independent of 6, and the
formal transformation group argument deals with the rotational symmetry
as follows.

The starting point is the observation that the statement of the problem
does not specify whether the observer is facing north or east; therefore if
there is a definite solution, it must not depend on the direction of the
observer’s line of sight. Suppose, therefore, that two different observers,
Mr. X and Mr. Y, are watching this experiment. They view the experiment
from different directions, their lines of sight making an angle «. Each uses
a coordinate system oriented along his line of sight. Mr. X assigns the
probability density f(r, 6) in his coordinate system S; and Mr. Y assigns
g(r, 6) in his system S, . Evidently, if they are describing the same situation,
then it must be true that

f(r:o):g(ryg'—o‘) (1)

which expresses a simple change of variables, transforming a fixed distribution
f to a new coordinate system; this relation will hold whether or not the
problem has rotational symmetry.

But now we recognize that, because of the rotational symmetry, the
problem appears exactly the same to Mr. X in his coordinate system as it
does to Mr. Y in his. Since they are in the same state of knowledge, our
desideratum of consistency demands that they assign the same probability
distribution; and so fand g must be the same function:

f(r, ) = g(r. 6) @

These relations must held for all xin 0 < « < 27; and so the only possibility
isf(r, 6) = f(r).

This formal argument may appear cumbersome when compared to our
obvious flash of intuition; and of course it is, when applied to such a trivial
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problem. However, as Wigner’® and Weyl®# have shown in other physical
problems, it is this cumbersome argument that generalizes at once to non-
trivial cases where our intuition fails us. It always consists of two steps:
We first find a transformation equation like (1) which shows how two
problems are related to each other, irrespective of symmetry; then a symmetry
relation like (2) which states that we have formulated two equivalent problems.
Combining them leads in most cases to a functional equation which imposes
some restriction on the form of the distribution.

3. SCALE INVARIANCE

The problem is reduced, by rotational symmetry, to determining a
function f(r), normalized according to

f:” fok F(ryrdrdd =1 ®)

Again, we consider two different problems; concentric with a circle of radius
R, there is a circle of radius aR, 0 < a < 1. Within the smaller circle there is
a probability h(r) r dr df which answers the question: Given that a straw
intersects the smaller circle, what is the probability that the center of its
chord lies in the area d4 = r dr d0?

Any straw that intersects the small circle will also define a chord on the
large one; and so, within the small circle f(r) must be proportional to A(r).
This proportionality is, of course, given by the standard formula for a
conditional probability, which in this case takes the form

£) = 2nhir) “fryrdn O<a<l, 0<r<aR (4

This transformation equation will hold whether or not the problem has scale
invariance.

But we now invoke scale invariance; to two different observers with
different size eyeballs, the problems of the large and small circles would
appear exactly the same. If there is any unique solution independent of the
size of the circle, there must be another relation between f(r) and A(r), which
expresses the fact that one problem is merely a scaled-down version of the
other. Two elements of area r dr df and (ar) d(ar) df are related to the large
and small circles respectively in the same way; and so they must be assigned
the same probabilities by the distributions f(r) and h(r), respectively:

h(ar)ar) d(ar) d0 = f(r) r dr d6
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or

a*h(ar) = f(r) )

which is the symmetry equation. Combining (4) and (5), we see that invariance
under change of scale requires that the probability density satisfy the
functional equation

@ (ar) = wa(r)jakf(u)udu, 0<a<l, 0<r<R (6

Differentiating with respect to a, setting @ = 1, and solving the resulting
differential equation, we find that the most general solution of (6) satisfying
the normalization condition (3) is

f(r) = gre*2nR? ™

where ¢ is a constant in the range 0 < g < oo, not further determined by
scale invariance.

We note that the proposed solution B in the introduction has now been
eliminated, for it corresponds to the choice f(r) ~ (R® — r%)~'/%, which is
not of the form (7). This means that if the intersections of chords on the
circumference were distributed in angle uniformly and independently on
one circle, this would not be true for a smaller circle inscribed in it; i.e., the
probability assignment of B could be true for, at most, only one size of circle.
However, solutions A and C are still compatible with scale invariance,
corresponding to the choices ¢ = 1 and g = 2 respectively.

4. TRANSLATIONAL INVARIANCE

We now investigate the consequences of the fact that a given straw S
can intersect two circles C, C’ of the same radius R, but with a relative
displacement b. Referring to Fig. 1, the midpoint of the chord with respect
to circle C is the point P, with coordinates (r, §); while the same straw
defines a midpoint of the chord with respect to C’ at the point P’ whose
coordinates are (r’, 8). From Fig. 1 the coordinate transformation (r, 6) —
(r', ) is given by

r'=|r—bcos#t| 8)

0, r>bcosb

¥ = 0+ m, r <bcosf

)

As P variés over the region I', P’ vaires over I, and vice versa; thus the
straws define a 1:1 mapping of I" onto I"".
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Fig. 1. A straw S intersects two slightly displaced
circles Cand C'.

Now we note the translational symmetry; since the statement of the
problem gave no information about the location of the circle, the problems
of C and C’ appear exactly the same to two slightly displaced observers O
and O’. Our desideratum of consistency then demands that they assign
probability densities in C and C’ respectively which have the same form (7)
with the same value of g.

It is further necessary that these two observers assign equal probabilities
to the regions I" and I, respectively, since (a) they are probabilities of the
same event, and (b) the probability that a straw which intersects one circle
will also intersect the other, thus setting up this correspondence, is also the
same in the two problems. Let us see whether these two requirements are
compatible.

The probability that a chord intersecting C will have its midpoint in I"is

j f(r)rdrdé = (g/2mRv) j re-1 dr df (10)
r r

The probability that a chord intersecting C’ will have its midpoint in I" is

s | ) dr d0 = 5T [ | r—beosfiidrds (1)
where we have transformed the integral back to the variables (r, ) by use of
(8) and (9), noting that the Jacobian is unity. Evidently, (10) and (11) will
be equal for arbitrary I' if and only if ¢ = 1; and so our distribution f(r)
is now uniquely determined.

The proposed solution C in the introduction is thus eliminated for lack
of translational invariance; a rain of straws which had the property assumed
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with respect to one circle, could not have the same property with respect to
a slightly displaced one.

5. FINAL RESULTS

We have found that invariance requirements determine the probability
density

f(r,0) =12nRr, O0<r<R 0<0<2nm (12)

corresponding to solution A in the introduction. It is interesting that this
has a singularity at the center, the need for which can be understood as
follows. The condition that the midpoint (r, 8) falls within a small region 4
imposes restrictions on the possible directions of the chord. But as 4 moves
inward, as soon as it includes the center of the circle all angles are suddenly
allowed. Thus there is an infinitely rapid change in the “manifold of possi-
bilities.”

Further analysis (almost obvious from contemplation of Fig. 1) shows
that the requirement of translational invariance is so stringent that it already
determines the result (12) uniquely; thus the proposed solution B is incom-
patible with either scale or translational invariance, and in order to find (12),
it was not really necessary to consider scale invariance. However, the solution
(12) would in any event have to be tested for scale invariance, and if it failed
to pass that test, we would conclude that the problem as stated has no
solution; i.e., although at first glance it appears underdetermined, it would
have to be regarded, from the standpoint of transformation groups, as
overdetermined. As luck would have it, these requirements are compatible;
and so the problem has one unique solution.

The distribution of chord lengths follows at once from (12). A chord
whose midpoint is at (r, §) has a length L = 2(R? — r?)/2, In terms of the
reduced chord lengths, x = L/2R, we obtain the universal distribution law

d
p(x)dx=(1f—x’§)1,;, o<x<1 (13)

in agreement with Borel’s conjecture.‘®

6. FREQUENCY CORRESPONDENCE

From the manner of its derivation, the distribution (13) would appear
to have only a subjective meaning; while it describes the only possible state
of knowledge corresponding to a unique solution in view of the many things
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left unspecified in the statement of Bertrand’s problem, we have as yet given
no reason to suppose that it has any relation to frequencies observed in the
actual experiment. In general, of course, no such claim can be made; the
mere fact that my state of knowledge gives me no reason to prefer one event
over another is not enough to make them occur equally often! Indeed, it is
clear that no “pure thought” argument, whether based on transformation
groups or any other principle, can predict with certainty what must happen
in a real experiment. And we can easily imagine a very precise machine which
tosses straws in such a way as to produce any distribution of chord lengths
we please on a given circle.

Nevertheless, we are entitled to claim a definite frequency correspondence
for the result (13). For there is one “objective fact” which has been proved
by the above derivation: Any rain of straws which does not produce a
frequency distribution agreeing with (13) will necessarily produce different
distributions on different circles.

But this is all we need in order to predict with confidence that the
distribution (13) will be observed in any experiment where the “region of
uncertainty” is large compared to the circle. For, if we lack the skill to toss
straws so that, with certainty, they intersect a given circle, then surely we lack
a fortiori the skill consistently to produce differént distributions on different
circles within this region of uncertainty!

It is for this reason that distributions predicted by the method of trans-
formation groups turn out to have a frequency correspondence after all.
Strictly speaking, this result holds only in the limiting case of “zero skill,”
but as a moment’s thought will show, the skill required to produce any
appreciable deviation from (13) is so great that in practice it would be
difficult to achieve even with a machine.

Of course, the above arguments have demonstrated this frequency
correspondence in only one case. In the following section we adduce
arguments indicating that it is a general property of the transformation group
method.

These conclusions seem to be in direct contradiction to those of von
Mises, 101 who denied that such problems belong to the field of probability
theory at all. It appears to us that if we were to adopt von Mises’ philosophy
of probability theory strictly and consistently, the range of legitimate physical
applications of probability theory would be reduced almost to the vanishing
point. Since we have made a definite, unequivocal prediction, this issue has
now been removed from the realm of philosophy into that of verifiable fact.
The predictive power of the transformation group method can be put to
the test quite easily in this and other problems by performing the experiments.

The Bertrand experiment has, in fact, been performed by the writer
and Dr. Charles E. Tyler, tossing broom straws from a standing position
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onto a 5-in.-diameter circle drawn on the floor. Grouping the range of chord
lengths into ten categories, 128 successful tosses confirmed Eq. (13) with
an embarrassingly low value of chi-squared. However, experimental results
will no doubt be more convincing if reported by others.

7. DISCUSSION

Bertrand’s paradox has a greater importance than appears at first
glance, because it is a simple crystallization of a deeper paradox which has
permeated much of probability theory from its beginning. In *“real” physical
applications when we try to formulate the problem of interest in probability
terms we find almost always that a statement emerges which, like Bertrand’s,
appears too vague to determine any definite solution, because apparen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>