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PREFACE 

The first six chapters of this volume present the author's 'predictive' or 
information theoretic' approach to statistical mechanics, in which the basic 
probability distributions over microstates are obtained as distributions of 
maximum entropy (Le., as distributions that are most non-committal with 
regard to missing information among all those satisfying the macroscopically 
given constraints). There is then no need to make additional assumptions of 
ergodicity or metric transitivity; the theory proceeds entirely by inference 
from macroscopic measurements and the underlying dynamical assumptions. 
Moreover, the method of maximizing the entropy is completely general and 
applies, in particular, to irreversible processes as well as to reversible ones. 

The next three chapters provide a broader framework - at once Bayesian 
and objective - for maximum entropy inference. The basic principles of 
inference, including the usual axioms of probability, are seen to rest on 
nothing more than requirements of consistency, above all, the requirement 
that in two problems where we have the same information we must assign 
the same probabilities. Thus, statistical mechanics is viewed as a branch of 
a general theory of inference, and the latter as an extension of the ordinary 
logic of consistency. Those who are familiar with the literature of statistics 
and statistical mechanics will recognize in both of these steps a genuine 
'scientific revolution' - a complete reversal of earlier conceptions - and one 
of no small significance. Indeed, the interplay between physics, probability 
and logic one fmds here gives the work a wider import permeating down to 
the foundations of our knowledge in a way that is reminiscent of relativity or 
the quantum theory. But, unlike the quantum theory, which purports to 
set limits to what we can know, a major thrust of Jaynes' work is to liberate 
us from the imagined limits imposed by a frequency conception of probability. 

Although Jaynes erects no artificial barriers to understanding - I know of 
no writer on technical subjects whose style is more to the point, incisive, or 
stimulating - some of the papers place heavy technical demands on the reader. 
And, in general, the rich ore in these hills is not to be tapped without some 
hard digging! The editor's introduction, which provides a brief overview of 
the leading ideas and some of the many interconnections between them, may 
help to guide those readers who have little previous acquaintance with these 
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papers. The index - somewhere between a subject index and a 'synoptikon' 
- will also help you to locate ideas discussed in the introduction. Works 
referred to there are among those listed in the supplementary bibliography 
at the end of the book. The latter is divided into four sections as follows: 
background works, technical contributions and critical discussions of the 
entropy formalism and related methods of inference, a brief sampler (really, 
the tip of the iceberg) of papers applying the maximum entropy method in 
diverse fields of current research, and, finally, a short list of papers by Jaynes 
not included here, especially those dealing with the neoclassical theory of 
electrodynamics. 

While the papers are reprinted in the order written, the better to portray 
the unfolding of an idea, there is no necessity that they be read in that order. 
Nearly everyone will find the first two chapters a good place to start, but 
readers primarily interested in statistics or the foundations of probability 
may want to pass directly to chapter seven. The M.LT. paper (Chapter 10) 
is the pivotal piece of the collection, summing up all the papers that go 
before it and broaching new ideas taken up in the remaining chapters and 
still in process of development. This paper is an absolute leviathan! Reverber­
ating with history and personal recollection and occasionally exploding with 
well-aimed critical bursts, it sweeps you up like a great tidal wave and carries 
you along for over one hundred pages at an accelerating tempo, leaving you 
at the end with a sense that its driving energy has still not spent itself (as, in 
fact, it had not). In the course of this voyage, Jaynes manages, among other 
things, to weave together the parallel histories of probability and statistical 
physics, to answer his critics, and to present, in the final section, the fullest 
account yet available of the Maxent treatment of irreversible processes. 

I would like to express my gratitude to Mrs. J. C. Kuipers and others at 
D. Reidel for their help and patience in this enterprise and to the editor of 
this series, Jaakko Hintikka, for his encouragement to undertake it. Finally, 
I want to thank E. T. Jaynes for his splendid cooperation at every stage 
of the work. The introductory comments he has added to the volume and to 
the individual selections are especially valuable and welcome. But, even 
more than that, I want to thank Jaynes for writing these papers in the first 
place. The problems with which he has grappled - the Bertrand paradoxes, 
the marginalization paradoxes of statistical theory, and the seemingly intract­
able problems of irreversible thermodynamics - have withstood the efforts of 
many powerful minds (and given many others an attack of vertigo!). These 
are not puzzles that beckon one with a promise of easy gold at the hand of 
fay or elf. One must plunge into murky deeps and risk lying suspended in-
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definitely in an agony of confusion. Yet, in every case, Jaynes has managed to 
lay hold of a constructive principle that can steer us towards the light. The 
fruits of such hard-won gains always go beyond the mere harvesting of new 
scientific findings or the forging of powerful new instruments of inquiry; 
rather, advances at this fundamental level advance our understanding of 
thinking itself. 



ACKNOWLEDGEMENTS 

The editor wishes to thank the publishers mentioned below for permission 
to reprint the following papers: 

'Information Theory and Statistical Mechanics, I, II', Physical Review 106 
(1957),620-630, 108 (I957), 171-190. 

Reprinted by permission of the American Physical Society. 

'Information Theory and Statistical Mechanics', 1962 Brandeis Summer 
Institute in Theoretical Physics, K. Ford, Editor, Benjamin, 1963. 

Reprinted by permission of Benjamin-Cummings Publishing Company. 

'Gibbs VS. Boltzmann Entropies', American Journal of Physics 33 (I965), 
391-398. 

Reprinted by permission of the American Journal of Physics. 

'Foundations of Probability Theory and Statistical Mechanics', in Delaware 
Seminar in the Foundations of Physics, M. Bunge, Editor, Springer-Verlag, 
Berlin, 1967. 

Reprinted by permission of Springer-Verlag, Inc., New York. 

'Prior Probabilities', IEEE Transactions on Systems Science and Cybernetics, 
SSC-4, Sept. 1968, 227-24l. 

Reprinted by permission of the Institute of Electrical and Electronics 
Engineers, Inc., New York. 

'The Well-Posed Problem', Foundations of Physics 3 (1973), 477-493. 
Reprinted by permission of Plenum Press, New York. 

'Confidence Intervals vs. Bayesian Intervals', in Foundations of Probability 
Theory, Statistical Inference. and Statistical Theories of Science, W. L. 
Harper and C. A. Hooker, Editors, D. Reidel Publishing Company, Dordrecht, 
Holland, 1976. 

Reprinted by permission of D. Reidel Publishing Company. 

'Where Do We Stand on Maximum Entropy?', in The Maximum Entropy 
Formalism, R. D. Levine and M. Tribus, Editors, M.I.T. Press, Cambridge, 
Massachusetts, 1978. 

Reprinted by persmission of the M.l.T. Press. 

xi 



xii ACKNOWLEDGEMENTS 

'Marginalization and Prior Probabilities', in Bayesian Analysis in Econo­
metrics and Statistics, A. Zellner, Editor, North-Holland Publishing Company, 
Amsterdam, 1980. 

Reprinted by permission of North-Holland, Amsterdam. 

'What is the Question?', in Bayesian Statistics, J. M. Bernardo et al., Editors, 
Valencia University Press, Valencia, Spain, 1980. 

Reprinted by permission of Valencia University Press. 

'The Minimum Entropy Production Principle', in Annual Review of Physical 
Chemistry, S. Rabinovitch, Editor, Annual Reviews, Inc., Palo Alto, California, 
1980. 

Reprinted by permission of Annual Reviews, Inc., Palo Alto. 



EDITOR'S INTRODUCTION 

When methods successfully applied in science appear discredited, a creative 
tension is generated: one must either obtain the relevant results some other 
way or else place the methods in question on a more secure footing. Both 
sorts of effort have been visible throughout this century in the two related 
fields of statistics and statistical mechanics. For by 1900, the classical theory 
of probability, so fruitfully applied by Laplace to celestial mechanics and by 
the early workers in statistical mechanics, was faced with seemingly fatal 
paradoxes and contradictions - a situation not unlike that which then pre­
vailed in set theory. There was a general turning away from the methods of 
Bayes and Laplace and attempts were made to ground both statistics and 
statistical mechanics on a frequency conception of probability. Although 
never wholly successful, these efforts dominate~ work in probability theory 
and its applications until quite recently. True, the important dissenting work 
of Harold Jeffreys (1939) showed how to derive the standard significance 
tests of the frequentist school almost effortlessly by Bayes' theorem, using an 
'uninformative' prior probability distribution, and Jeffreys' methods were, 
moreover, of wider scope. Unfortunately, his uninformative priors, though 
intuitively appealing, lacked a compelling rationale, and were even widely 
believed to rest on nothing more solid than the discredited Laplacian principle 
of indifference. 

The papers by E. T. Jaynes collected here stem, in part, from a desire to 
supply the missing rationale and, in part, from a growing realization that the 
methods of Jeffreys could be extended to provide a more satisfactory basis 
for statistical mechanics. Claude Shannon's development of information 
theory, which makes essential use of a measure of uncertainty he labelled 
'entropy', pointed the way to the required extension of Jeffreys' methods. 
In attacking the problem of a most efficient encoding of English text, it was 
necessary to assign probabilities to all conceivable messages that might be 
sent. Of course, we can never know the 'true' probabilities in question; our 
statistical knowledge is both incomplete and unmanageably complex. Shannon 
is thus led to consider 'the source with the maximum entropy subject to the 
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xiv EDITORS INTRODUCTION 

statistical conditions we wish to retain'. In writing down the solution to 
Shannon's problem, Jaynes found himself staring at Gibbs' canonical distribu­
tion. And it soon became evident that all of the distributions found by Gibbs 
could be derived in this way, without recourse to additional, ergodic assump­
tions. Jaynes' position at this point was like that of Jeffreys: he had a method 
that undoubtedly works, and one that is also simpler and of wider scope. 
In attempting to extend the method to continuous distributions, he was led 
back to the problem that Bayes and Laplace and Jeffreys had all run up 
against: how to represent ignorance of a parameter. 

II 

Jeffreys' uninformative priors are meant to provide "a formal way of ex­
pressing ignorance of the value of the parameter over the range permitted", 
and he argued that the same uninformative priors should be used for param­
eters with the same formal properties. Thus, he advocated a uniform prior 
for parameters ranging over the whole real line and a log-uniform prior (the 
logarithm of the parameter uniformly distributed) for positive parameters. But 
use of the uniform prior to represent 'complete ignorance' seemed open to 
the same charge of inconsistency once levelled at Bayes and Laplace. For if 
we are ignorant of 0, the argument runs, then, equally, we are ignorant of 
T(O). But if T is a non-linear function, like T(O) = Ok, a uniform distribution 
of T(O) induces a non-uniform distribution of 0, and we have an obvious 
contradiction. 

Of course, one can deny the crucial premiss that any transformation of the 
parameter is admissible, but to make this convincing requires a systematic 
way of determining the group of admissible transformations. A short paper 
by R. T. Cox (1946) pOinted the way. Cox obtained the basic 'addition' and 
'multiplication' rules of probability calculus by imposing the requirement 
that different allowable ways of applying the calculus to a problem should 
yield the same answer. In particular, recasting the evidence in an equivalent 
form should not lead us to alter our probabilities. Jaynes then saw how to 
base Jeffreys' uninformative priors on a variant of the consistency principle, 
namely: in two problems where we have the same information, we should 
assign the same probabilities. 

To illustrate, assume we are sampling a normal distribution of known 
(unit) variance. Then the density is a function, heX -/.l) of X -/.l, so that /.l 
is a location parameter. A translation of coordinates, X' = X + b, /.l' = /.l + b, 
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leaves the normal form and spread of the density unaltered, and so ''we have 
the same information" in two versions of the problem that differ by a transla­
tion of coordinates_ (Certain other reparametrizations, like a change of scale, 
would change either the form or spread of the distribution and so conflict 
with the information already at hand.) If f and g are the prior densities of 
p. and p.' in two equivalent versions of the problem, the consistency principle 
forces f = g, and this leads straight to the functional equationJ(p.) = f(p. + b), 
expressing translation-invariance of f. The unique solution is, of course, the 
uniform prior advocated by Jeffreys. 

One arrives similarly at the Jeffreys prior, f(a)da = da/a, for a> 0, but 
the rationale Jaynes offers is, not that a is positive, but that a is a scale param­
eter, SO that two versions of the problem which differ in the scale units em­
ployed are equivalent. 

An amusing example is provided by "the anomalous law of first digits", 
often cited to illustrate the dangers of selecting an empirical distribution 
'a priori' without recourse to observed frequencies. We are asked for the 
probability Pk that k (k = 1, ... , 9) is the first digit of a random entry from 
a table of numerical data. Naive application of the principle of indifference 
at the level of 'indifferent events' leads to a uniform distribution, Pk = 1/9, 
but the distribution obtained empirically is log-uniform: Pk = log(k + 1) -
log(k), with logarithms to base 10. On the other hand, nothing has been 
said about the scale units employed, and if the problem has a defmite solu­
tion, it must not depend on this unspecified information. And scale invariance 
does lead to a log-uniform distribution. Indeed, the present derivation shows 
why the logarithmic law holds for data that are ratio-scaled and that it need 
not hold for ordinal data, like street addresses. 

The history of statistical physics is replete with empirically correct distribu­
tions obtained perforce by applying the principle of indifference, for one 
could not directly observe microstates, much less tabulate the frequencies 
with which a system enters different microstates. Jaynes' thesis is that success­
ful applications of this sort are just the ones that can be rephrased as appealing 
to 'indifference between problems' rather than 'indifference between events'. 

The consistency argument is by no means confined to location and scale 
parameters. In Chapter 8, Jaynes uses it to resolve the notorious Bertrand 
paradox, which asks for the probability that a random chord of a circle ex­
ceeds a side of the inscribed equilateral triangle. Applying the principle of 
indifference to different geometric constructions of the chord, different an­
swers are obtained, and most writers who discuss the problem profess them­
selves unable to say which, if any, of these solutions would correctly describe 
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a real experiment. Starting at the other end, Jaynes invites us to look at an 
actual experiment in which broom straws are tossed onto a circle from a 
height great enough to preclude even the skill needed to make the broom 
straws fall across the circle. This certainly gives a good sense to 'random 
chord'. But nothing has been said about the exact size and position of the 
circle, and the implied invariances are sufficient to single out a unique distribu­
tion for the center of a chord determined by a broom straw which does fall 
across the circle. We may not conclude, of course, that experimentally ob­
served frequencies must agree with those predicted by the invariant distribu­
tion, but we can conclude that any exceptional experiment will produce 
different distributions on circles that differ only slightly in size or position 
from the given circle. Invariance under the admissible group of transforma­
tions is just a mathematical expression of the lack of skill or microscopic 
control needed to produce different frequencies when the initial conditions 
are slightly varied, and so we may even think of the invariant distribution 
as the 'objective chance distribution' of the 'random phenomenon' in ques­
tion. 

III 

Uninformative priors are invariant under variation of unspecified details, 
but it is not always feasible to carry out the requisite group theoretical 
analysis. In such cases we do the next best thing: we find the distribution 
that is maximally non-committal with respect to missing information. (Any 
other distribution would pretend to knowledge we really lack.) So of all 
the distributions satisfying the given constraints (typically, mean value con­
straints), we choose the one that maximizes uncertainty, as measured by 
Shannon's entropy function. Entropy maximizing distributions thus enter 
the picture as a practical substitute for invariant distributions. They can also 
be used when the transformation group uncovered by our analysis is too 
sparse to single out a unique distribution, or to modify an uninformative 
prior in the light of experimentally given constraints. 

This leaves open the question why maximize entropy, why not some 
other measure of uncertainty? Jaynes gives several answers. First, 'deduc­
tions made from any other information measure ... will eventually lead to 
contradictions' (see Chapter 2, appendix). Second, entropy maximizing 
distributions are obtained asymptotically by conditioning on given mean 
value constraints. And, third, the maximum entropy distribution is realized 
experimentally by an overwhelming majority of the trial sequences satisfying 
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the given constraints. Its deep connections with consistency, conditionaliza­
tion and observed frequency behavior all suggest that entropy maximization 
is a fundamental principle of probability theory. 

Jaynes' fIrst answer has been more fully articulated in the recent paper by 
Shore and Johnson (1980). They translate Shannon's desiderata for a measure 
of uncertainty into conditions of consistency for an abstract inferential 
operator that combines a prior p with mean value constraints D to yield a 
posterior distribution, q = poD. Their axioms assert that the result should 
not depend on the coordinate system, or on whether we account for in­
dependent items of information separately or in terms of a jOint density, 
etc .. In short, their axioms embody R. T. Cox's aforementioned require­
ment that different allowed ways of applying the inferential apparatus must 
lead to the same result. The only operator meeting their requirements assigns 
the pair (p, D) a posterior density, q = poD, which among all those satisfying 
D, minimizes the cross (or relative) entropy with respect to p, defmed in the 
discrete case by: 

I(q, p) = ~ qj log(qj/pj) 
I 

with p = (Pt , ... , Pn) and q = (q b ... , qn)· The entropy of q is: 

H(q) = -~ qj log(qj). 
I 

Obviously, an entropy maximizing q is cross entropy minimizing with respect 
to a uniform prior, and so entropy maximization is a special case of cross 
entropy minimization. (Actually, either may be viewed as a special case of 
the other.) Cross entropy is an interesting function in its own right. Kullback 
(1959) exhibited its power as a unifying prinCiple in statistics, and it enters 
Jaynes' work in the problem of extending the entropy function invariantly 
to continuous distributions (Chapter 7, Section VI). 

Suppose now that the new information D confmes the outcome of an 
experiment to a proper subset E - the 'conditioning event'. Cross entropy 
minimization subject to q(E) = 1 yields the renormalization of the prior 
p to E, as required by Bayesian conditionalization. Similarly, if we impose 
the weaker (more realistic) constraint that the observation raises the probabil­
ity of E to a value short of one, cross entropy minimization yields the gener­
alization of Bayes' rule proposed by Jeffrey (1965). This rule depends on the 
order in which the observational inputs occur, but the modifIcation Field 
(1978) has put forward to remove that blemish also pops right out as a special 
case of cross entropy minimization (see Domotor, 1980). Seen in this light, 
cross entropy minimization appears as a very general rule of minimal belief 
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change, incorporating the various fonns of Bayesian conditioning and entropy 
maximization as special cases. 

Conversely, cross entropy minimization results asymptotically from 
Bayesian conditioning. As Jaynes notes (Chapter 10, p. 250), this is just the 
well-known Darin-Fowler method for obtaining the canonical distribution 
maximizing the entropy yields for a sample space S by conditioning on the 
product space Sn of repeated trials. The derivation is given in detail for both 
discrete and continuous distributions in van Carnpenhout and Cover (1981). 

To see what is being asserted, consider n independent tosses of a die. We 
eliminate all possible outcome sequences whose associated 6-tuple of fre­
quencies for the six faces fails to satisfy the given mean value constraint and 
then renonnalize the original unifonn distribution to the sUlViving 'admissible' 
sequences. The average of the frequency distributions if., ... , f6) of these 
admissible sequences yields the conditioned distribution, p. = (Pi, ... , P6)' 
and as n increases, p. tends to the maximum entropy distribution. This 
happens because an increasing proportion of the admissible sequences give 
rise to frequency 6-tuples whose entropy is close to the maximum (the 
'concentration theorem' of Chapter 11 allows one to approximate this propor­
tion), and all of these 'high entropy' frequency distributions differ inappre­
ciably from the maximum entropy distribution. (The derivation of a cross 
entropy minimizing distribution is just the same.) 

This is the 'correspondence with frequencies' alluded to earlier, and it is 
interesting to note that the rust maximum entropy distributions were found 
in this way. Thus, Ludwig Boltzmann found his famous energy distribution 
for the molecules in a conselVative force field by dividing the phase space into 
small cells Rk each small enough for the energy to be a constant Ek over 
the molecules within it and yet big enough to contain a large number N k of 
molecules. The total number N of molecules and the total energy E are con­
stants of the molecular motion, and Boltzmann argued that the 'most proba­
ble' distribution, (Nl IN, ... , NsIN), is the one, among all those satisfying 
the constraintsNl + ... + Ns =N and Nl El + ... + NsEs =E, which is realized 
by the greatest number of microstates. But this number is given by the multi­
nomial coefficient, W = N!INl! ... Ns!, and this is a maximum when 
N- l log W = -1; (Nk/N) 10g(Nk/N) is a maximum (where we have used 
Stirling's approximation to the log factorials). The latter expression is just 
the entropy of the frequency distribution, and so Boltzmann's 'most probable' 
distribution is the maximum entropy distribution satisfying the given con­
straints. 

Boltzmann's law is a powerful one; it contains Clerk Maxwell's velocity 
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distribution for the molecules of a gas at a given temperature as a special 
case. Yet, Boltzmann's derivation appears to ignore the dynamics altogether 
(to get something for nothing), and that is why Jaynes has taken such pains 
to explain clearly why the method delivers accurate predictions of thermo­
dynamic quantities - provided the assumed mean value constraints and 
microscopic laws of motion embodied in the Hamiltonian of the system are 
empirically correct. (The point is discussed in Chapter 2, pp. 10-13, Chapter 
3, pp. 19-20, and again in Chapter 10, pp. 227, 239-240, 281-282, 
296-298.) 

To begin with, Boltzmann's derivation does make use of the dynamics, 
both in the assumed energy conservation and in the fact that the volumes of 
the small cells Rk are invariants of the motion (Liouville's theorem). The 
empirical success of the law shows that none of the other myriad dynamical 
details are truly relevant. (This would not be so, of course, if the predic­
tions were time-dependent.) 

Since maximum entropy inference uses the broadest distribution compatible 
with the assumed constraints, the macroscopic quantities for which it yields 
sharp predictions must be characteristic of the great majority of the micro­
states to which it attaches appreciable probability, and the features of the 
system that are experimentally reproducible are precisely those which are 
characteristic of most of the states compatible with the conditions of the 
experiment. Sharp maximum entropy predictions can fail, then, only if 
there are new constraints not contained in the previously known laws of 
physics. A noteworthy historical case of this sort was the failure of Gibbs' 
canonical distribution to predict heat capacities and equations of state, 
a failure which pointed to the previously unsuspected discreteness of the 
energy levels. At a more mundane level, Jaynes uses Rudolf Wolfs data 
on dice to show how observed deviations from a maximum entropy distribu­
tion can suggest new physical constraints. Indeed, by comparing the entropy 
of the observed frequency distribution with the maximum entropy attainable 
with the assumed constraints, Jaynes is led to a new goodness-of-fit test that 
improves on the more usual chi squared test in several respects (see Chapter 
11). 

Jaynes' informational approach views the laws of statistical mechanics as 
inferences based entirely on the laws of mechanics; additional hypotheses 
of ergodicity or metric transitivity are not needed. Yet, it would be a mistake 
to think that the case for the information theoretic approach rests solely on 
its greater simplicity. Even complete success in proving the needed ergodic 
theorems would legitimize Gibbsian phase averaging only in the equilibrium 
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case. Entropy maximization is subject to no such restriction; it applies equally 
well to irreversible processes, and it is here, most of all, that the theory gener­
ates new and testable predictions (see Chapter 10, Section D for the treat­
ment of irreversible processes). In addition, Jaynes offers cogent criticism of 
the ergodic approach (Chapter 6, Section 2.3). 

IV 

Jaynes makes consistency the very cornerstone of an objectivist philosophy. 
The subjectivist or personalist school of Bayesian thought has also emphasized 
consistent (or 'coherent'} degrees of belief, demonstrating that inconsistent 
betting odds open one to sure loss - a 'dutch book'. But within the wide 
limits set by coherence, subjectivists allow that two men in possession of the 
same information may reasonably differ in their probability assignments. 
While the accumulating data will tend to bring their subjective probabilities 
into alignment, logic does not force them to agree. Indeed, subjectivist doc­
trine does not even compel one to heed the eVidence, for the thin conception 
of rationality subjectivists offer requires only that the beliefs held at anyone 
time be coherent. Bayes' theorem enters solely as a means of ascertaining 
whether the beliefs one holds at different times are mutually consistent 
(de Finetti, 1972, pp. 144-145). But what are we to say of a man who 
alters his beliefs without any change in the evidence? We may think of him 
as conditioning on the null evidence (a tautology), and this will lead to credal 
probabilities no different from his initial probabilities. If now he fmds him­
self with different beliefs, then, on the subjectivist's own showing, he is being 
inconsistent. And it is but a short step from this conclusion to the consistency 
principle by which Jaynes derives uninformative priors. In effect, Jaynes 
carries the consistency argument of the subjectivists a step farther and arrives 
at an 'impersonalism' that makes no use of anybody's personal opinions, 
but only of the data on which these are based (see Chapter 7, Section I). 

Jaynes was impelled towards objectivism from another direction as well. 
If one obtains the canonical distribution of Gibbs by entropy maximization, 
one can no longer interpret that distribution as giving the frequencies with 
which a thermodynamic system enters different microstates. Instead, the 
distribution represents no more than the partial information about micro­
states contained in the macroscopic measurements. In this way, the distribu­
tions of statistical mechanics become credal or epistemic and entropy becomes 
a measure of ignorance rather than of disorder. As Jaynes recounts (Chapter 
10, pp. 237-238) the reaction of Professor G. Uhlenbeck was to deny that 
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entropy can measure amounts of ignorance, for different people have different 
amounts of ignorance, while entropy is a definite physical quantity that can 
be measured in the laboratory using thermometers and calorimeters. The 
answer to this little paradox is clear, but only if you view the credal probabili­
ties in question as objective, for then entropy is a measure, not of this or that 
person's ignorance, but of the partial knowledge embodied in those laboratory 
measurements and objectively reflected in the assigned probability distribu­
tion. Nevertheless, entropy (like an uninformative prior) is anthropomorphic 
to this extent: it depends on what experiment we choose to perform on a 
given system (see Chapter 5). In the same way, the second law of thermo­
dynamics becomes a statement about the loss of information regarding a 
system on which no new measurements are taken. 

The objectivist fmds unwonted support in the near coincidence of fiducial 
or confidence intervals based on a sufficient statistic with highest density 
intervals of a posterior distribution based on an uninformative prior, for the 
former attempt, in R. A. Fisher's words, 'to allow the data to speak for 
themselves'. At the same time, the Bayesian intervals are far easier to com­
pute, for the (often ad hoc) choice of a test statistic and subsequent deriva­
tion of its sampling distribution are steps the Bayesian avoids. Mathematical 
equivalence of Bayesian and orthodox intervals cannot be achieved, however, 
where sufficient statistics are lacking, and it is Jaynes' contention (Chapter 
9) that in such cases the differences can be magnified up to where common 
sense can clearly perceive the superiority of the Bayesian result (as when a 
confidence interval lies outside the allowed range of the parameter it esti­
mates!). Jaynes shows how the information necessarily lost by a confidence 
interval in such cases (in his example, the half-range of two observations from 
a Cauchy distribution) can always be used to pick out a recognizable 'bad' 
subclass of samples in which the confidence interval fails to cover the true 
value as frequently as indicated by the stated confidence level, and a 'good' 
subclass on which the confidence interval is wider than it needs to be. Being 
of fixed width, the confidence interval is forced to rob Peter to pay Paul, 
making up for the 'bad' samples of very wide range at which it cannot possibly 
deliver the advertised reliability by giving us a needlessly wide interval in the 
great majority of 'good' samples. 

Ine.vitably, some of Jaynes' points have been made by others, but his 
examples have a force that is wholly lacking in abstract discussions of these 
matters. I was present at the Western Ontario address on which Chapter 9 
is based and can vividly recall the outcries it provoked. Jaynes' scrutiny of 
the actual performance of the rival methods should have appealed to ortho-
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doxians of Neyman-Pearson persuasion, who base their entire approach on 
the demonstrable error characteristics of a test or a rejection rule, yet, to my 
knowledge, the only orthodox rebuttals that have since appeared are those by 
Margaret Maxfield and Oscar Kempthorne which follow Jaynes' paper in the 
Conference Proceedings. It did not seem appropriate to reprint the entire 
lengthy exchange here, but the reader is certainly urged to read it and judge 
for himself how many of the points raised by Maxfield and Kempthorne 
address the issue of actual performance. 

I have reprinted, however, some portions of Jaynes' reply to Kempthorne, 
including his invaluable defense of 'impropriety'. The uninformative priors 
for location and scale parameters of unrestricted range are non-integrable, and 
such 'improper priors' have been thought to cause consistency problems. I 
can recall Dennis Lindley acknowledging this criticism at the same Western 
Ontario Conference and intoning solemn last rites for improper priors. That 
they come to grief is, perhaps, a conclusion not wholly unwelcome to those 
who remain sceptical of all attempts to objectify prior information. Yet, even 
subjectivists have a stake in impropriety, inasmuch as diffuse states of knowl­
edge are often most naturally and most conveniently represented by an im­
proper, uninformative prior (in particular, the improper beta prior for binomial 
sampling which Jaynes obtains group theoretically in Chapter 7 seems in­
escapably right). And we have already remarked on the near coincidence of 
Bayesian intervals based on improper priors with confidence intervals. In 
short, while Bayesian inference can doutbtless proceed without improper 
priors, their loss would rob the theory of much of its appeal, and so Jaynes 
has taken up the cudgels on their behalf. 

He shows (Chapter 12) that the 'marginalization paradox' of Dawid, Stone, 
and Zidek, which occasioned all the fuss, has nothing to do with impropriety 
per se, but turns on a difference in the assumed prior knowledge, one that is 
hidden by a faulty notation. In characteristic fashion, Jaynes then uses the 
alleged paradox to initiate a new approach to uninformative priors, which 
yields, for example, Jeffreys' log-uniform prior for a scale parameter as the 
only prior that is 'uninformative' in the sense that 'it leads us to the same 
conclusion about other parameters () as if the parameter a had been removed 
from the model'. This argument appears to be of wider scope than the group 
theoretic method and appeals only to the usual axioms of probability. 

The comments on impropriety in Jaynes' reply to Kempthorne (Chapter 
9, pp. 205ff.) are also quite illuminating. Where the posterior distribution 
based on an improper prior integrates, we would obtain essentially the same 
posterior distribution using any truncated proper prior that is reasonably 
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diffuse in the region of appreciable likelihood. (L. J. Savage called this the 
'principle of stable estimation'.) Where, on the other hand, the posterior 
density based on an improper prior is itself improper, the theory is effectively 
warning us that the experiment is so uninformative that the exact limits of 
truncation do matter. Jaynes illustrates this with a reliability test in which 
the chosen test time is much longer than the desired lifetime of the machine. 
The failure of all tested items then conveys essentially no information, and 
the non-integrable posterior density expresses this by failing to impose a 
lower bound below which the mean lifetime is practically certain not to lie. 
Jaynes then notes that the improper prior in question gives inferences that 
agree with those of a standard significance test in the usual range of interest 
where the test time is relatively short and few failures are observed. But these 
significance tests break down completely when all tested items fail, rejecting 
the hypothesis that the mean lifetime exceeds any specified value at all 
levels of significance! And so he concludes, "it is the orthodoxian, and not 
the Bayesian, who is going to be in trouble in cases where 'improper priors' 
cannot be used". 

Not all of the problems involving uninformative priors have been solved, 
as Jaynes himself is at pains to point out in several places. More needs to be 
said, in particular, about the sometimes disconcerting degree to which an 
uninformative prior depends on the experiment planned or the question 
posed. (On this, see Chapter 13 of this volume, pp. 379ff. and the paper 
by John Skilling listed in the supplementary bibliography.) It is, neverthe­
less, a safe prediction that further progress in the representation of prior 
information will follow the paths Jaynes has so clearly delineated. 

The other great challenge his work poses is to separate substantive assump­
tion from mere inference in the principles of any theory. Jaynes' own papers 
on the neo-classical theory of electrodynamics, a number of which are listed 
in the supplementary bibliography, pose this question for the quantum theory 
in an acute form (see p. 231). The technique of entropy maximization has 
definitely widened our inferential horizons and is proving invaluable when­
ever it is a question of extracting what is relevant from a complex mass of 
data. It is well known that many of the most useful models of applied proba­
bility - the normal and truncated normal, the Poisson and exponential, etc. 
- can be directly and easily obtained by maximizing entropy subject to dis­
tributional constraints. The small sample of papers listed in Section C of the 
supplementary bibliography will convey an idea of the vast and growing 
applications of the technique in diverse areas of current research. One might 
almost say that whenever a model seemingly based on substantive assump-
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tions is delivering greater accuracy than the rather unrealistic character of the 
underlying assumptions would lead one to expect, there is probably an entropy 
argument lurking just under the surface. 



1. INTRODUCTORY REMARKS 

In a quantitative science, the mathematics exists as a kind of superstructure 
resting on a set of conceptual notions thought of as fundamental: Therefore , 
while the introduction of new mathematics takes place more or less contin­
uously without much trauma, a major upheaval is required to replace one con­
ceptual foundation with another. As a result, the acceptance of new concepts 
takes place only in widely separated jumps, preceded by controversy. 

The writer does not know of any logical reason why science should be 
perceived in this way. Would it not be just as reasonable to take the opposite 
stance - dogmatic adherence to one mathematical system, while freely 
admitting new concepts? After all, the empirical success of a theory confirms 
only its mathematics, not the ideas you or I associate with it. Yet the history 
of science, from Ptolemy to Schwinger, shows that it is always a conceptual 
idea - even one having only the loosest of logical association with the suc­
~ssful mathematics - that gets elevated to the status of unassailable dogma. 

This psychological phenomenon is just as much an obstacle to progress for 
us as for Copernicus. Progress in science requires the continual introduction 
and testing of new concepts, just as much as new mathematics. But in physics 
since Newton, a cyclic component in conceptual advances, with a period of 
about seventy years, is clearly discernible, as noted more fully in the Delaware 
Lecture (I 967) reprinted here. 

Thermodynamics and Statistical Mechanics occupy a rather special place in 
this scheme, because from the day Clausius discovered entropy there has been 
unremitting confusion, and resulting controversy, over conceptual questions 
that it raised. In 1951, a Century later, there was still unfinished business 
here; a viewpoint simple enough and broad enough to unify these fields and 
resolve their paradoxes had not been found, and various schools of thought -
each subscribing to a different set of concepts - coexisted almost indepen­
dently of each other. Yet all had adopted the same name, 'Statistical Mechan· 
ics', that Gibbs had coined for his program. 

This book collects together a series of articles, written over a span of 
nearly thirty years, recording the gradual evolution of a 'new' and much more 
general viewpoint about these problems. The quotes seem appropriate, 
because the literature is so huge that almost every imaginable idea can be 

1 
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found, mentioned briefly and then forgotten, somewhere in the history of the 
subject. We are continually discovering old works that anticipate parts of 
what follows; doubtless, many more remain to be found. 

Belatedly, it was realized that to put still another corpus of ideas under the 
umbrella of 'Statistical Mechanics' made an overcrowded terminology even 
more so. Accordingly, the name 'Predictive Statistical Mechanics' was coined 
for the particular line of thought expounded here, to distinguish it from all 
others. It will help to reduce confusion if others will adopt this name, which 
has a good basis in the current terminology of statistical inference. Indeed, 
our major break with the past is that our goal is not to 'explain irreversibility', 
but to predict observable facts. 

It appeared that the following collection would be useful not only to 
scientists as a kind of textbook on Predictive Statistical Mechanics until 
something better is available; but also to philosophers as a case history for the 
development of new scientific concepts, in spite of the controversy they 
immediately stir up. And, critics need no longer attack article N ignorant of 
what is in article N + 1. 

Of course, Predictive Statistical Mechanics did not spring out fully formed 
in the frrst work. In most cases, the writing of article N was the stimulation of 
the further thinking that resulted in article N + 1. For this reason, they are 
reprinted in chronological order; even though the subject matter may appear 
to wander back and forth between Predictive Statistical Mechanics and Statis­
tical Inference, there is a logical thread connecting them in that order. 

Indeed, I do not see Predictive Statistical Mechanics and Statistical 
Inference as different subjects at aU; the former is only a particular realization 
of the latter, and it applies equally well in any 'generalized inverse' problem 
in which we have prior information about multiplicities that needs to be 
taken into account. There is no necessary connection with thermodynamics, 
other than the fact that thermodynamics provided, historically, the frrst 
example of such a problem. The recent major advances in Spectral Analysis 
(Childers, 1978; Currie, 1980) and Image Reconstruction (Frieden, 1980; 
Gull and Daniell, 1978, 1980) are straightforward applications of the 
'Maximum Entropy Formalism' set forth in the frrst article below. Before 
long, we hope to have analyses of economic time series by methods developed 
in the later articles. 

A brief commentary precedes each reprinted article, with background 
remarks, noting where critics or hindsight have functioned, relations to other 
works, etc. Not all of my articles in this field are reproduced here, only those 
which made some contribution to the development of the general thinking 
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and whose writing had been completed by the end of 1980. Various articles 
by me and others, mentioned in commentaries but not referenced in the 
immediately following article, are referenced in the collection at the end of 
the book. 

In summary, the following articles and commentaries trace the history of a 
conceptual innovation that started thirty years ago, only as a reinterpretation 
of Gibbs' canonical ensemble. But it survived the stem disapproval of the 
Establishment and the often bitter controversy that new ideas always provoke, 
and led fmally to important new applications (Irreversible Statistical Mechan­
ics, Image Reconstruction, Spectrum Analysis) far beyond the purview of 
1951. Today, not only do Statistical Mechanics and Statistical Inference 
not appear as two different fields, even the term 'statistical' is not entirely 
appropriate. Both are special cases of a simple and general procedure that 
ought to be called, simply, 'inference'. Of course, the most important non­
trivial applications do get involved in much technical detail, which will 
appear in further articles still being written. 

I express my thanks to the Editor of this volume, Roger D. Rosenkrantz, 
who approached me with the suggestion that these works ought to be col­
lected and reprinted; and who then performed the many necessary but thank­
less tasks dealing with the business side of this enterprise, which left me free 
to concentrate on the subject-matter. It is a major understatement to say that 
without this initiative and help this book would never have appeared. 

St. Louis, MO 
December 1981 

E.T.JAYNES 



2. INFORMATION THEORY AND 

STATISTICAL MECHANICS I (1957) 

The background of this work is explained in Where Do We Stand? (1978), 
also reprinted below. It started in 1951 as a private communication, the 
original purpose being only to convey the new ideas of Information Theory 
to Professor G. Uhlenbeck, in hope of enlisting his support and getting his 
constructive suggestions as to how these ideas might be implemented in 
Statistical Mechanics. 

Just seventy years earlier - in nice correspondence with our theory of 
periodicity - a young man named Max Planck had tried to convey some new 
ideas about entropy to the Establishment Figures of that time, Kirchhoff and 
Clausius, with the same hope and the same success. Planck recalled the 
incident (which inspired his famous comment about the mechanism of scien­
tific progress) in his Scientific Autobiography (1949). 

In rereading ITSM (I) after many years, it does not appear to contain any 
actual misstatement of demonstrable fact, although the emphasis and 
language would be very different if I were writing it today. It is embarrassing 
to see the word 'bias' used in its colloquial sense, when it is also a technical 
term of statistics. This must have confused many readers. 

I no longer subscribe to the views about 'subjectivist' and 'objectivist' 
probability theory on page 8. Further experience has taught me and other 
Bayesians that a single theory of probability suffices for all problems. Con­
nections between probability and frequency appear automatically in Bayesian 
calculations whenever they are relevant. The remarks about 'objective statis­
tical mechanics' on page 13 would, therefore, be deleted today. 

It is now clear that the discussion of ergodicity and the 'principle of 
macroscopic uniformity' on pages 10-13 should have been amplified and 
emphasized much more strongly. This material is crucial to understanding 
why the method works, and why appeal to ergodicity would not help us in 
thermodynamic predictions. That is, a proof of ergodicity would not in any 
way affect the predictions that we have already by direct maximization of 
entropy. Only a proof of non-ergodicity, plus information about which 
subspace of our present one is actually used by Nature, could alter our 
predictions. 

4 
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Conversely, while the success of maximum-entropy predictions does not 
constitute proof of ergodicity, failure of those predictions would give us 
strong evidence for non-ergodicity and a clue as to which subspace Nature is 
using. For this reason, entropy maximizers do not have the same 'fear of 
failure' that often inhibits other users of statistics - instead we look eagerly 
for it. It is only when our predictions fail that we obtain new evidence about 
Nature's workings. Most of the criticisms of this work are from persons who 
did not comprehend a word of these too brief attempts to explain the logical 
situation. 

A further embarrassment is that in 1956 I knew about the Einstein-de 
Haas experiment, but not about Barnett's, and so predicted an effect that was 
already known. But amends were made in the review article with Steve Heims 
(I962), which extended this crude calculation to a realistic and unified treat­
ment of gyromagnetic effects. It was a particular pleasure that we could 
vindicate completely Gibbs' rotationally canonical ensemble, which had been 
rejected fifty years earlier in the Ehrenfest review article (I912). 
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Information Theory and Statistical Mechanics 

E. T. JAYNItS 

0.,.",_ DI Pllynu, S"""/.,4 u .... sily,SIaj0r4, Cali/tmti4 
(Received September 4, 1956; revioed manuocript received March 4, 1957) 

Information theory provides & constructive criterion for .. tting 
up probability distributions on the basis of partial knowledge, 
and leads to & type of It&tistical inference which is called tbe 
muimum-entropy estimate. It is the least biued estimate 
possible on the given informationj Le., it is maximaJly Doncom· 
mittal with regard to miuing information. If one c:onsiden 
statistical mechanics as a form of statistical inference rather than 
.. a pbyoical theory, it is found that the uouaI computational 
rules, starting with the determination of the partition function. 
are an immediate conJequence of the muimum-entropy principle. 
In the resulting "subjective statistical mecbanica," the usual rules 
are thul jUitilied independently of any phyoical argument, and 
in particular independently of experimental verification; whether 

I. INTRODUCTION 

T HE recent,appearance of a very comprehensive 
surveyl of past attempts to justify the methods 

of statistical mechanics in terms of mechanics, classical 
or quantum, has helped greatly, and at a very opportune 
time, to emphasize the unsolved problems in this field. 

I D. tor Haar, Rev •. Modern Phys. 27, 289 (1955). 

or not the results agree with experiment, they still represent the 
best estimates that could bave been made on the basis of the 
information available. 

It is concluded that statistical mechanics need not be regarded 
as a physical theory dependent for its validity on the truth of 
additional assumptions not contained in tbe laws of mechaniCi 
(such &I ergodicit)', metric transitivity. equal (I /Jriori probabilities, 
etc). Furthennore, it is possible to maintain a sharp distinction 
between its pbysical and statistical aspects The former consists 
only of the correct enumeration of the states of a system and 
their properties; the latter is a straightforward example of 
statistical inference. 

Although the subject has been under development for 
many years, we still do not have a complete and 
satisfactory theory, in the sense that there is no line 
of argument proceeding from the laws of microscopic 
mechanics to macroscopic phenomena, that is generally 
regarded by physicists as convincing in all respects. 
Such an argument should <a) be free from objection on 
mathematical grounds, (b) involve no additional ubi-



INFORMATION THEORY AND STATISTICAL MECHANICS I 7 

trary assumptions, and (c) automatically include an 
explanation of nonequilibrium conditions and irre­
versible processes as well as those of conventional 
thermodynamics, since equilibrium thermodynamics is 
merely an ideal limiting case of the behavior of matter. 

It might appear that condition (b) is too severe, 
since we expect that a physical theory will involve 
certain unproved assumptions, whose consequences are 
deduced and compared with experiment. For example, 
in the statistical mechanics of GIbbs' there were several 
difficulties which could not be understood in terms of 
classical mechanics, and before the models which he 
constructed could be made to correspond to the observed 
facts, it was necessary to Incorporate into them addi­
tional restrictions not contained in the laws of classical 
mechanics. First was the "freezing up" of certain 
degrees of freedom, which caused the specific heat of 
diatomic gases to be only i of the expected value. 
Secondly, the paradox regarding the entropy of com­
bined systems, which was resolved only by adoption of 
the generic instead of the specific definition of phase, 
an assumption which seems impossible to justify in 
terms of classical notions' Thirdly, in order to account 
for the actual values of vapor pressures and equilibrium 
constants, an additional assumption about a natural 
unit of volume (h'N) of phase space was needed. 
However, with the development of quantum mechanics 
the originally arbitrary assumptions are now seen as 
necessary consequences of the laws of physics. This 
suggests the possibility that we have now reached a 
state where statistical mechanics is no longer dependent 
on physical hypotheses, but may become merely an 
example of statistical inference 

That the present may be an opportune time to 
re-examine these questions is due to two recent de­
velopments. Statistical methods are being applied to a 
variety of specific phenomena involving irreversible 
processes, and the mathematical methods which have 
proven successful have not yet been incorporated into 
the basic apparatus of statistical mechanics. In addition, 
the development of information theory' has been felt 
by many people to be of great significance for statistical 
mechanics, although the exact way in which it should 
be applied has remained obscure. In this connection it 

• J. W. Gibbs, Ekm_y Pri""i pIes in S/alislical M ",,/umics 
(Longmans Green and Company, New York, 1928), Vol. II of 
collected works. 

S We may note here that although Gibbs (reference 2, Chap. 
XV) started his discusslOn of this question by saying that tbe 
generic definition "seems in accordance WIth tbe spirit of the 
statistical method," he concluded it with, "The perfe(:t similarity 
of several particles of a system will not in the lI;ast interfere Wltb 
the identification 01 a particular particle in one case with a 
particular particle in another. The question is one to be: decided 
In accordance with the requirements of practical convenience in 
the discussion of the problems witb which we iLre engaged." 

• C. E. Shannon, Bell System Tech. J. 27, 379, 623 (1948); 
these papers are reprinted in C. E. Shannon and W. Weaver, 
Tire M aJ/aemtJtil;al T/uory of Commufl.itaJiOfl (Univenity of 
Dlinois Press, Urbana, 1949). 

is essential to note the following. The mere fact that 
the same mathematical expression - 'E p, logp, occurs 
both in statistical mechanics and in information theory 
does not in itself establish any connection between 
these fields. This can be done only by finding new 
viewpoints from which thermodynamic entropy and 
information-theory entropy appear as the same concept. 
In this paper we suggest a reinterpretation of statistical 
mechanics which accomplishes this, so that infonnation 
theory can be applied to the problem of justification of 
statistical mechanics. We shall be concerned with the 
prediction of equilibrium thermodynamic properties, 
by an elementary treatment which involves only the 
probabilities assigned to stationary states. Refinements 
obtainable by use of the density matrix and discussion 
of Irreversible processes will be taken up in later papers. 

Section 2 defines and establishes some of the ele­
mentary properties of maximum-entropy inference, and 
in Secs. 3 and 4 the application to statistical mechanics 
is discussed. The mathematical facts concerning maxi­
mization of entropy, as given in Sec. 2, were pointed 
out long ago by Gibbs. In the past, however, these 
properties were given the status of side remarks not 
essential to the theory and not providing in themselves 
any justification for the methods of statistical me­
chanics. The feature which was missing has been 
supplied only recently by Shannon' in the demon­
stration that the expression for entropy has a deeper 
meaning, quite independent of thermodynamics. This 
makes possible a reversal of the usual line of reasoning in 
statistical mechanics. Previously, one constructed a 
theory based on the equations of motion, supplemented 
by additional hypotheses of ergodicity, metric transi­
tivity, or equal a priori prohabilities, and the identifi­
cation of entropy was made only at the end, by com­
parison of the resulting equations with the laws of 
phenomenological thermodynamics. Now, however, we 
can take entropy as our starting concept, and the fact 
that a probability distribution maximizes the entropy 
subject to certain constraints becomes the essential fact 
which justifies use of that distribution for inference. 

The most important consequence of this reversal of 
viewpoint is not, however, the conceptual and mathe­
matical simplification which results. In freeing the 
theory from its apparent dependence on physical 
hypotheses of the above type, we make it possible to 
see statistical mechanics in a much more general light . 
Its principles and mathematical methods become 
available for treatment of many new physical problems. 
Two examples are provided by the derivation of Siegert's 
"pressure ensemble" and treatment of a nuclear polari­
zation effect, in Sec. 5. 

2. MAXIMUM-ENTROPY ESTIMATES 

The quantity % is capable of assuming the discrete 
values %. (i= 1,2 ... ,n). We are not given the corre­
sponding probabilities P.; all we know is the expectation 
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value of the function fez) : . 
(J(:r»= ~ P.l(z.). (2-1) .-, 

On the basis of this information, what is the expectation 
value of the functio .. ~ lZ)? At first glance, the problem 
seems insoluhle because the given information is insuffi­
CIent tv determine the probabilities p •. ' Equation (2-1) 
and the normalization condition 

1: P.= 1 (2-2) 

would have to be supplemented by (n- 2) more condi­
tions before (g(z» could be found. 

This problem of specification of probabilities in cases 
where little or no information is available, is as old as 
the theory of probability. Laplace's "Principle of 
Insufficient Reason" was an attempt to supply a 
criterion of choice, in which one said that two events 
are to be assigned equal probabilities if there is no 
reason to think otherwise. However, except in cases 
where there is an evident element of symmetry that 
clearly renders the events "equally possible," this 
assumption may appear just as arbitrary as any other 
that might be made. Furthermore, it has been very 
fertile in generating paradoxes in the case of continu­
ously variable random quantities,' since intuitive 
notions of "equally possible" are altered by a change of 
variables.7 Since the time of Laplace, this way of 
formulating problems has been largely abandoned, 
owing to the lack of any constructive principle which 
would give us a reason ior preferring one probability 
distribution over another in cases where both agree 
equally well with the available information. 

For further discussion of thIS problem, one must 
recognize the fact that probability theory has developed 
in two very different directions as regards fundamental 
notions. The "objective" school of thoughtS., regards 
the probability of an event as an objective property of 
that event, always capable in principle of empirical 
measurement by observation of frequency ratios in a 
random experiment. In calculating a probability distn­
bution the objectivist beheves that he IS making 

'Yet this is precisely t~e probJe!f1 confronting us I~ statistical 
mechanics on the baSIS of mfonnatlOn which 15 grossly Inadequate 
to determ'ine any assignment of probabilities to Individual 
quantum states, we are a~ke~ to estlm:--te the pr~5Sure, speCific 
heat, intensity of magnehzatlon. che~I(;~1 potentlals, etc I of a 
macroscopic system. Furthermore, statlStlcal mechamcs IS am.az· 
ingly successful in provldmg accurate estimates of these quantities. 
EVldently there must be other reasons for this success, that go 
beyond a mere correct statistical treatment of the problem as 
stated above 

• The problems assoCiated With the contmuous case are funda­
mentally more comphcated than those encountered ~lIth discrete 
random variables, only the discrete ca~ Will be conSidered here 

7 For several examples, see E. P. Northrop, RuJdIes ,n Mathe­
malus (D Van Nostrand Company, Inc, New York, 1944), 

C~lf' 8eramer, MathemaluaJ Methods of Slalaslu:s (Pnnceton 
University Press, Pnnceton, 1946) 

• W Feller An Introduction to P,obabJdy TJuory aM us 
Applical,01U (lohn \\-Iley and Sons, Inc, New York., 1950) 

predictions which are in principl~ verifiable ~ every 
detail, just as are those of classIcal mechamcs. The 
test of a good objective probability distribution P(z~ is: 
does it correctly represent the observable fluctuations 
of z? 

On the other hand, the "subjective" school of 
thought,o.ll regards probabilities as expressions of 
human ignorance; the probability of an event is merely 
a formal expression of our expectation ~hat the .eve~t 
will or did occur, based on whatever mformatlOn IS 
available. To the subjectivist, the purpose of proba­
bility theory is to help us in forming plausible condu­
sions in cases where there is not enough Informatlon 
available to lead to certain conclusions; thus detailed 
verification is not expected. The test of a good subjec­
tive probability distribution is does it correctly repre­
sent our state of knowledge as to the value of x? 

Although the theories of subjectIve and objectIve 
probability are mathematically identical! the co~ce.pts 
themselves refuse to be united. In the vanous statIstlc .. 1 
problems presented to us by physics, both viewpomts 
are required. Needless controversy has resulted from 
attempts to uphold one or the other in all cases. !he 
subjective view is evidently the broader one! sm.ce It ~s 
always possible to interpret freque~cy rat~os In t~~s 
way; furthermore, the subjectivist wllladmlt a~ legItI­
mate objects of inquiry many questIOns whIch the 
objectivist considers meaningless. The problem posed 
at the beginning 'of this section is of thi~ type, ,,:nd 
therefore in considering it we are necessanly adoptmg 
the subjective point of view. . 

Just as in applied statistics the crux of a pr?blem IS 
often the devising of some method of samplmg that 
avoids bIas, our problem is Ihat of f.nding a probabihlY 
assIgnment whIch avoids bias, whIle agreemg wllh 
whatever informal ion is given. The great advance 
provided by information theory hes m .the d:scovery 
that there is a unique, unambIguous crllenon f?r the 
'4amount of uncertainty" represented by a discrete 
probability d,slnbution, which agrees with our intUllive 
notions that a broad distnbution represents more 
uncertainty than does a sharply peaked one, and 
satisfies all other rondlllons which make ,t reasonable' 
In Appendix A we sketch Shannon's proof that the 
quantity which ,s positive, whICh mcreases WIth 
increaSIng uncertaInty, and IS additive for mdependent 
sources of uncertainty, 15 

H (p, .. p.) = - K L p. lnp.. (2-3) 

where K IS a positIve constant. Since thIS IS just the 
expression for entropy as found In statistical mechanics, 
it will be called the entropy of the probablhty dlstn­
bution p., henceforth we wIll consider the terms 
"entropy" and "uncertainty" as synonymous. 

~(ynes, A T,~,seon ProbabJaly (MacMillan Company, 

L~~'lfn)~~~1~~, Theory of Probalnllly (Oxford Unlverslty Press, 
LODdoD, 1939) 
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It is now evident how to solve our problem; in making 
i.verences on the basis of partial information we must 
use that probability distribution which has maximum 
entropy subject to whatever is known. This is the only 
unbiased assignment we can make; to use any other 
would amount to arbitrary assumption of information 
which by hypothesis we do not have. To maximize 
(2-3) subject to the constramts (2-1) and (2-2), one 
introduces Lagrangian multipliers >., 1', in the usual 
way, and obtains the result 

(2-4) 

The constants X, I' are determined by substituting into 
(2-1) and (2-2). The result may be written in the form 

il 
(j(x» = --lnZ(I'), (2-5) 

ill' 

where 
X=lnZ(I'), (2-6) 

Z (1') = 2:, .-.f(%.) (2-7) 

will be called the partition function 
This may be generalized to any number of functions 

j(x) : given the averages 

(j.(x»= L p.j.(x,). 

form the partition function 

Z(X,,· . ,Am) 

(2-8) 

=Lexp(-[A,f,(X.)+·· Hmjm(x.)J). (2-9) 

Then the maximum-entropy probability distribution IS 
given by 

p.= exp( - [Xo+A,j,(X.)+· .. +Xmjm(X.)J)' (2-10) 

m which the constants are determined from 

a 
(j.(x» = --lnZ, 

ax. 
Xo=lnZ. 

(2-11) 

(2-12) 

The entropy of the distribution (2-10) then reduces to 

Sm .. =AO+A,(j,(X»+· .. +Am(jm(X», (2-13) 

where the constant K in (2-3) has been set equal to 
unity. The variance of the distribution of j.(x) is found 
to be 

il' 
A'j.=(j.')-(j.}'=-(InZ). 

(J>'.' 
(2-14) 

In addition to its dependence on x, the function j. may 
contain other parameters a" a" ... , and it is easily 
shown that the maximum-entropy estimates of the 
derivatives are given by 

(2-15) 

The principle of maximum entropy may be regarded 
as an extension of the principle of insufficient reason 
(to which it reduces in case no information is given 
except enumeration of the possibilities x.), with the 
following essential difference. The maximum-entropy 
distribution may be asserted for the positive reason 
that it is uniquely determined as the one which is 
maximally noncommittal with regard to missing infor­
mation, instead of the negative one that there was no 
reason to think otherwise. Thus the concept of entropy 
supplies the missing criterion of choice which Laplace 
needed to remove the apparent arbitrariness of the 
principle of insufficient reason, and in addition it shows 
precisely how this principle is to be modified in case 
there are reasons for "thinking otherwise." 

Mathematically, the maximum-entropy distribution 
has the important property that no possibility is 
ignored; it assigns positive weight to every situation 
that is not absolutely excluded by the given information. 
This is quite similar in effect to an ergodic property. 
in this connection it is interesting to note that pnor to 
the work of Shannon other information measures had 
been proposed"·l1 and used in statistical inference, 
although in a different way than in the present paper. 
In particular, the quantity - 2: P.' has many of the 
qualitative properties of Shannon's informat·ion meas­
ure, and in many cases leads to substantially the same 
results: However, it is much more difficult to apply in 
practice. Conditional maxima of - E pl cannot be 
found by a stationary property involving Lagrangian 
multipliers, because the distribution which makes this 
quantity stationary subject to prescribed averages does 
not in general satisfy the condition p.:;: O. A much more 
Important reason for preferring the Shannon measure 
is that it is Ihe only one which satisfies the condition of 
consistency represented by the composition law (Ap­
pendix A). Therefore one expects that deductions made 
from any other informatIon measure, if carried far 
enough, will eventually lead to contradICtions. 

3. APPLICATION TO STATISTICAL MECHANICS 

It will be apparent from the equations in the pre­
ceding section that the theory of maximum-entropy 
inference is identical in mathematical form with the 
rules of calculation provided by statistical mechanics. 
Specifically, let the energy levels of a system be 

E.(a"a,,· .), 

where the external parameters a. may include the 
volume. strain tensor applied electric or magnetlc 
fields, gravitational potential. etc. Then if we know 
only the average energy (E), the maximum-entropy 
probabilities of the levels 1';, are gIven by a special case 
of (2-10), which we recogmze as the Boltzmann d,stn­
bution. This observation really completes our denvation 

"R. A F,sher. Pro< Cambndge Phil Soc. 22. 700 (1925J 
"J L. Doob. Trans Am. Math. Soc 39, 4tO (1936). 
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of the conventional rules of statistical mechanics as an 
example of statistical inference; the identification of 
temperature, free energy, etc., proceeds in a familiar 
manner," with results summarized as 

(3-1) 

u- TS=F(T,a"a.,···)= -kT InZ(T,at,a.,···), (3-2) 

iW 
S=--=-kr: p,lnp .. 

iJT • 

iJ 
fJ.=kT-lnZ. 

iJa, 

(3-3) 

(3-4) 

The thermodynamic entropy is identical with the 
information·theory entropy of the probability distri· 
bution except for the presence of Boltzmann's con­
stant." The "forces" fJ. include pressure, stress tensor, 
electric or magnetic moment, etc., and Eqs. (3·2), 
(3-3), (3-4) then give a complete description of the 
thermodynamic properties of the system, in which the 
forces are given by special cases of (2-1S); i.e., as 
maximum-entropy estimates of the derivatives 
(iJE./iJa.). 

In the above relations we have assumed the number of 
molecules of each type to be fixed. Now let n, be the 
number of molecules of type I, n, the number of type 
2, etc. If the n. are not known, then a possible "state" 
of the system requires a specification of all the n. as well 
lls a particular energy level E.(a,a.·· ·1 n,n,···). If we 
are given the expectation values 

(E), (n,), (n.), 

then in order to make maximum-entropy inferences, 
we need to form, according to (2-9), the partition 
function 

+···+tJE.(a.ln.)]I, (3-5) 

and the corresponding maximum-entropy distribution 
(2-10) is that of the "quantum-mechanical grand 
canonical ensemble;" the Eqs. (2-11) fixing the con­
stants, are recognized as giving the relation between 
the chemical potentials 

/l.= -kTh.. (3-6) 

14 E Schrodmger. SlaJultcal T kermodyM-",ics (Camhndge 
Unlversdy Press, Cambndge, 1948). 

II Boltzmann's constant may be regarded as a correction factor 
necessitated by our custom of measunng temperature in arbitrary 
units derived from the freezmg and bOlhng points of water SlOce 
the product TS must have the dimenSions of (.nergy. the UnltSlD 
which entropy is measured depend on those chosen for tempera­
tUfe It would be convenient tn general arguments to define an 
Uabsolute cgs unit" of temperature such that Boltzmann's 
constant is made equal to unity Then entropy would become 
dimensionless (as the considerations of Sec 2 indicate it should be), 
and the temperature would be equal to tWice the average energy 
per degree of freedom, It is, of course, Just the "modulus" e of 
Gibbs. 

and the (n.): 
(n.}=iJF/iJ/l .. (3-7) 

where the f~-energy function F= - kIA., and X.= InZ 
is called the "grand potentia!."" Writing out (2-13) 
for this case and rearranging, we have the usual 
expression 

F(T,a,a,· .. ,/l1J"" .) 
=(E)- TS+/l,(n,}+/l,(n.)+···. (3-8) 

It is interesting to note the ease with which these 
rules of calculation are set up when we make entropy 
the pTlmitive concept. Conventional arguments, which 
exploit all that is known about the laws of physics, in 
particular the constants of the motion, lead to exactly 
the same predictions that one obtains directly from 
maximizing the entropy. In the light of information 
theory, this can be recognized as telling us a simple 
but important fact: there u nothing in the getlet'ai laws 
of motton that can /WlJIJide us with any additional infor­
mation about the state of a system beyond what we have 
obtamed from measurement. This refers to interpretation 
of the state of a system at time t on the basis of meas­
urements carried out at time t. For predicting the course 
of time-dependent phenomena, knowledge of the equa­
tions of motion is of course needed. By restricting our 
attention to the prediction of equilibrium properties as 
in the present paper, we are in effect deciding at the 
outset that the only type of initial information allowed 
will be values of quantities which are observed to be 
constant in time. Any prior knowledge that these 
quantities would be constant (within macroscopic 
experimental error) in consequence of the laws of 
physics, is then redundant and cannot help us in 
assigning probabilities. 

This principle has interesting consequences. Suppose 
that a super-mathematician were to discover a new 
class of uniform integrals of the motion, hitherto 
unsuspected. In view of the importance ascribed to 
uniform integrals of the motion in conventional sta­
tistical mechanics, and the assumed nonexistence of 
new ones, one might expect that our equations would 
be completely changed by this development. This would 
not be the case, however, unless we also supplemented 
our prediction problem with new experimental data 
which provided us with some information as to the 
likely values of these new constants. Even if we had a 
clea, /Woof that a system is not metrically transitive, we 
would still /wve no rational basis for excluding any regwn 
of phase space t/wt is allo-uMd by the information available 
to us. In its effect on our ultimate predictions, this fact 
is equivalent to an ergodic hypothesis, quite independ­
ently of whether physical systems are in fact ergodic. 

This shows the great practical convenience of the 
subjective point of view. If we were attempting to 
establish the probabilities of different states in the 

II D ter Haar, Elemmls of SWhsllCiJl Mechanics (Rmehart and 
Company, New York, 1954), Chap. 7. 
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objective sense, questions of metric transitivity would 
be crucial, and unless it could be shown that the system 
was metrically transitive, we would not be able to find 
any solution at all. If we are content with the more 
modest aim of finding subjective probabilities, metric 
transitivity is irrelevant. Nevertheless, the subjective 
theory leads to exactly the same predictions that one 
has attempted to justify in the objective sense. The 
only place where subjective statistical mechanics makes 
contact with the laws of physics is in the enumeration 
of the different possible, mutually exclusive states in 
which the system might be. Unless a new advance in 
knowledge affects this enumeration, it cannot alter 
the equations which we use for inference. 

If the subject were dropped at this point, however, 
it would remain very difficult to understand why the 
above rules of calculation are so uniformly successful 
in predicting the behavior of individual systems. In 
stripping the statistical part of the argument to its 
bare essentials, we have revealed how little content it 
really has; the amount of information available in 
practical situations is so minute that it alone could 
never suffice for making reliable predictions. Without 
further conditions arising from the physical nature of 
macroscopic systems, one would expect such great 
uncertainty in prediction of quantities such as pressure 
that we would have no definite theory which could be 
compared with experiments. It might also be questioned 
whether it is not the most probable, rather than the 
average, value over the maximum-entropy distribution 
that should be compared with experiment, since the 
average might be the average of two peaks and itself 
correspond to an impossible value. , 

It is well known that the answer to both of these 
questions lies in the fact that for systems of very large 
number of degrees of freedom, the probability distri­
butions of the usual macroscopic quantities determined 
from the equations above, possess a single extremely 
sharp peak which includes practically all the "mass" of 
the distribution. Thus for all practical purposes average, 
most probable, median, or any other type of estimate 
are one and the same. It is instructive to see how, in 
spite of the small amount of information given, maxi­
mum-entropy estimates of certain functions g(%) can 
approach practical certainty because of the way the 
possibll: values of % are distributed. We illustrate this 
by a model in which the possible values %, are defined 
as follows: let n be a non.negative integer, and • a 
small positive number. Then we take 

X.Jt+I= II!, %,+1-%,= E/X t ", i= 1,2" ". (3-9) 

According to this law, the %, increase without limit as 
,-> 00, but become closer together at a rate determined 
by n. By choosing. sufficiently small we can make the 
density of points %, in the neighborhood of any partic­
ular value of x as high as we please, and therefore for a 
continuous function i(%) we can approximate a sum as 
closely as we please by an integral taken over a corre-

sponding range of values of x, 

where, from (3-9), we have 

p(%)=%"/ •. 

This approximation is not at all essential, but it 
simplifies the mathematics. 

Now consider the problem: (A) Given (x), estimate 
i'. Using our general rules, as developed in Sec. II, 
we first obtain the partition function 

with >. determined from (2-11), 

iJ ,,+1 
(x)= --lnZ=-. 

iJ>. >. 

Then we find, for the maximum-entropy estimate of i', 

I.e n+2 
(x'}(x)} =Z-I i'p(%)e-hd%=-(:x}'. 

o ,,+1 
(3-10) 

Next we invert the problem: (B) Given (i'), estimate 
x. The solution is 

Z(>') = f.·P(x) exp(->.i')dx 

,..I,,! 

= 20+1(,,/2)!' 0>.1<0+1)' 

iJ ,,+1 
(i')=--lnZ=-, 

iJ>. 2>' 

(x}(i')) =Z-IJ
e 

px(x) exp( ->'i')dx 
o 

( "+1)1 (i,,)! 
= - (i')I. 

2 [Hn+l)J! 
(3-11) 

The solutions are plotted in Fig. 1 for the case n= 1. 
The upper "regression line" represents Eq. (3-10), and 
the lower one Eq. (3-11). For other values of n, the 
slopes of the regression lines are plotted in Fig. 2. As 
n->oo, both regression lines approach the line at 45°, 
and thus for large ", there is for all practical purposes 
a definite functional relationship between (x) and (i'), 
independently of which one is considered "given," and 
which one "estimated." Furthermore, as n increases 
the distributions become sharper; in problem (Al we 
find for the variance of %, 

(i')- (x)'= (%)'/ (n+ I). (3-12) 
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FIG I Regression 
of % and rI (or state 
density increasing 

~:dr;he w~~i~u~~ 
entropy estimate 01 
either quantity given 
the exrctation va.l­
ue 0 the other, 
Collow the arrows 

Similar results hold in this model for the maximum­
entropy estimate of any sufficiently well-behaved 
function g(x). If g(x) can be expanded in a power series 
in a sufficiently wide region about the point x= (x), we 
obtain, using the distribution of problem A above, the 
following expressions for the expectation value and 
variance of g: 

(x)' (1) 
(g(x»=g«x»+g"«x»--+O - , 

2(,.+ 1) ,.' 
(3-13) 

4'(g) = (g'(x»- (g(x»' 

(x)' ( 1 ) 
=[g'«x»)'-+O - . 

10+1 10' 
(3-14) 

Conversely, a sufficient condition for x to be well 
detennined by knowledge of (g(x)} is that x be a 
sufficiently smooth monotonic function of g. The ap­
parent lack of symmetry, in that reasoning from (x) 
to g does not require monotonicity of g(x), is due to 
the fact that the distribution of possible values has 
been specified in terms of x rather than g. 

As 10 increases, the relative standard deviations of all 
sufficiently well-behaved functions go down like 10-1 , it 
IS in this way that defimte laws of thermodynamics, 
essentially independent of the type of information given, 
emerge from a statistical treatment that at first appears 
incapable of giving reliable predictions The parameter 
n is to be compared with the number of degrees of 
freedom of a macroscopic system. 

4. SUBJECTIVE AND OBJECTIVE 
STATISTICAL MECHANICS 

Many of the propositions of statistical mechanics are 
capable of two different interpretations. The Max­
wellian distribution of velOCities in a gas IS, on the one 
hand, the distribution that can be realized in the 
greatest number of ways for a given total energy; on 
the other hand, it is a well-verified experimental fact 
Fluctuations in quantities such as the density of a gas 
or the voltage across a resistor represent on the one 
hand the uncertamty of our predictions, on the other 
a measurable physical phenomenon. Entropy as a con-

cept may be regarded as a measure of our degree of 
ignorance as to the state of a system; on the other 
hand, for equilibrium conditions it is an experimentally 
measurable quantity, whose most important properties 
were first found empirically. It is this last circumstance 
that is most often advanced as an argument against 
the subjective interpretation of entropy. 

The relation between maximum-entropy inference 
and experimental facts may be clarified as follows. We 
frankly recognize that tbe probabilities involved in 
prediction based on partial information can have only 
a subjective significance, and that the situation cannot 
be altered by the device of inventing a fictitious 
ensemble, even though this enables us to give the 
probabilities a frequency interpretation. One might 
then ask how such probabilities could be in any way 
relevant to the behavior of actual physical systems A 
good answer to t;,is is Laplace's famous remark that 
probability theory is nothing but "common sense 
reduced to calculation." If we have httle or no mfor-

10 12 14 

FIG 2 Slope of 
regression lines as a 
funchon of n 

mation relevant to a certain questIOn, common sense 
tells us that no strong conclusions eit her way are 
justified. The same thing must happen in statistical 
inference, the appearance of a bro?d probability distri­
bution signifying the verdict, "no definite conclusion." 
On the other hand, whenever the available information 
is sufficient to justify fairly strong opinions, maximum­
entropy inference gives sharp probability distrIbutIOns 
indicatir,g the favored alternative. Thus, the theory 
makes definite predictions as to expenmentai behavior 
only when, and to the .xtent that, it leads 10 sharp dos/ri­
butions. 

When our distributions broaden, the predictions 
become indefinite and it becomes less and less meaning­
ful to speak of experimental verification. As the avail­
able information decreases to zero, maximum-entropy 
inference (as well as common sense) shades continuously 
into nonsense and eventually becomes useless Never­
theless, at each stage it still represents the best that 
could have been done with the given information. 

Pbenomena in which the predictions of statistical 
mechanics are well verified experimentally are always 
those in which our probability distributIons, for the 
macroscopic quantities actually measured, have enor­
mously sharp peaks. But the process of maximum-
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entropy inference is one in which we choose the broiJiksl 
~ble probability distribution over the microscopic 
states, compatible with the initial data. Evidently, such 
sharp distributions for macroscopic quantities can 
emerge only if it is true that for each of the overwhelm­
ing majority of those states to which appreciable weight 
is assigned, we would have the same macroscopic 
behavior. We regard this, not merely as an interesting 
side remark, but as the essential fact without which 
statistical mechanics could have no experimental va­
lidity, and indeed without which matter would have no 
definite macroscopic properties, and experimental 
physics would be Impossible. It is this principle of 
"macroscopic uniformity" which provides the objective 
content of the calculations, not the probabilities per St. 

Because of it, the predictions of the theory are to a 
large extent independent of the probability distributions 
over microstates. For example, if we choose at random 
one out of each 1010" of the possible states and arbi­
tranly assign zero probability to all the others, thiS 
would in most cases have no discernible effect on the 
macroscopic predictIOns. 

Consider now the case where the theory makes 
definite predictions and they are not borne out by 
experiment. ThiS situatIOn cannot be explained away 
by concluding that the mltial infonnation was not 
suffiCient to lead to the correct prediction; if that were 
the case the theory would not have given a sharp 
distribution at all The most reasonable conclusion in 
this case IS that the enumeration of the different 
posnble states (i.e, the part of the theory which 
mvolves our knowledge of the laws of physics) was not 
correctly gIven Thus, expenmmtal proof that a definite 
predict.o .. os .ncorred g .. es evidence of the existence of new 
laws of phystCS The failures of classical statistical 
mechanics, and their resolution by quantum theory, 
provide several examples of this phenomenon. 

Although the principle of maximum-entropy mference 
appears capable of handling most of the prediction 
problems of statistical mechanics, it is to be noted that 
prediction is only one of the functions of statistical 
mechanics. Equally Important is the problem of inter­
pretation; given certain observed behavior of a system, 
what conclusions can we draw as to the microscopic 
causes of that behavior? To treat this problem and 
others like it, a different theory, which we may call 
objective statistical mechanics, is needed. Considerable 
semantic confusion has resulted from failure to distin­
guish between the prediction and interpretatIOn prob­
lems, and attempting to make a single formalism do 
for both. 

In the problem of interpretation, one Will, of course, 
consider the probabihties of different states in the 
objective sense; i.e, the probabihty of state " is the 
fractlon of the time that the system spends in state n. 
It is readily seen that one can never deduce the ob­
jective probabihtles of individual states from macro­
scopic measurements. There will be a great number of 

different probability assignments that are indistin­
guishable experimentally; very severe unknown con­
straints on the possible states could exist. We see that, 
although it is now a relevant question, metric transi­
tivity is far from necessary, either for justifying the 
rules of calculation used in prediction, or for interpreting 
observed behavior. Bohm and Schutzer" have come to 
similar tonclusions on the basis of entirely different 
arguments. 

5. GENERALIZED STATISTICAL MECHANICS 

In conventional statistical mechanics the energy 
plays a preferred role among all dynamical quantities 
because it is conserved both in the time development 
of isolated systems and m the interaction of different 
systems. Since, however, the principles of maximum­
entropy inference are independent of any physical 
properties, it appears that in subjective statistical 
mechanics all measurable quantities may be treated on 
the same basis, subject to certain precautions. To 
exhibit this equivalence, we return to the general 
problem of maximum-entropy inference of Sec. 2, and 
conSider the effect of a small change in the problem. 
Suppose we vary the functions f.(x) whose expectation 
values are given, in an arbitrary way; ~j.(x,) may be 
specified independently for each value of k and •. In 
addition we change the expectation values of the f. in 
a manner independent of the of.; i.e., there is no 
relation between MJ.) and (of.). We thus pass from 
one maximum-entropy probabihty distribution to a 
slightly different one, the variations in probabilities op, 
and in the Lagrangian multipliers OA. being detennined 
from the 6(f.) and of. (x,) by the relations of Sec. 2. 
How does this affect the entropy? The change in the 
partition function (2-9) is given by 

oAo=6InZ= - 4:.[6A.(f»+A.(6f,)], ' (S-1) 

and therefore, using (2-13), 

The quantity 

6S= 4:. A.[o(j.)-(6f.)] 
=4:. A.OQ •. (5-2) 

(5-3) 

provides a generalization of the notion of infinitesimal 
heat supplied to the system, and might be called the 
"heat of the kth type." If f. is the energy, OQ. is the 
heat in the ordinary sense. We see that the Lagrangian 
multiplier A. is the integrating factor for the kth type 
of heat, and therefore it is possible to speak of the kth 
type of temperature. However, we shall refer to A. as 
the quantity "statistically conjugate" to f., and use 
the tenns '4heat" and "temperature" only in their 
conventional sense. Up to this point, the theory is 
completely symmetrical with respect to all quantities f,. 

U D Bohm and W Schutzer, Nuovo Clmento, Suppl II, 1004 
(1955). 
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In all the foregoing discussions, the idea has been 
implicit that the (j.) on which we base our probability 
distributions represent the results of measurements of 
various quantities. If the energy is included among the 
f., the resulting equations are identical with those of 
conventional statistical mechanics. However, in practice 
a measurement of energy is rarely part of the initial 
information available; it is the temperature that is 
easily measurable. In order to treat the experimental 
measurement of temperature from the present point of 
view, it is necessary to consider not only the system tT, 

under investigation, but also another system tT •• We 
introduce several definitions: 

A huU bath is a system tT. such that 
(a) The separation of energy levels of tT. is much 

smaller than any macroscopically measurable energy 
difierence, so that the possible energies E •• form, from 
the macroscopic poiRt of view, a continuum. 

(b) The entropy S. of the maximum~ntropy proba­
bility distribution for given (E.) is a definite monotonic 
function of (E2); i.e., tT, contains no "mechanical 
parameters" which can be varied independently of its 
energy. 

(c) tT, can be placed in interaction with another 
system tT, in such a way that only energy can be trans­
ferred between them (i.e., no mass, momentum, etc.), 
and in the total energy E=E,+E,+E", the interaction 
term E" is small compared to either E, or E,. This 
state of interaction will be called thermal contact. 

A thermomder is a heat-bath tT, equipped with a 
pointer which reads its average energy. The scale is, 
however, calibrated so as to give a number T, calleJ 
the temperature, defined by 

IITadS,/d(E,}. (5-4) 

In a measurement of temperature, we place the 
thermometer in thermal contact with the system 0', of 
interest. We are now uncertam not only of the state of 
the system 0', but also of the state of the thermometer 
0'" and so in making inferences, we must find the 
maximum-entropy probability distribution of the total 
system 1: = 0',+0'" subject to the available information. 
A st"te of X is defined by specifying simultaneously a 
stale, of 11, and a state j of 0', to which we assign a 
probability p". Now however we have an additional 
piece of information, of a type not previously con­
sidered; we know that the interaction of 0', and 0', may 
allow transitions to take place between states (ij) and 
(mn) if the total energy is conserved: 

E .. +E,,= E,~+E, •. 

In the absence of detailed knowledge of the matrix 
elements of E" responsible for these transitions (which 
in practice is never available), we have no rational basis 
for excluding the possibility of any transition of this 
type. Therefore all states of X having a given total 
energy must be considered equivalent; the probability 
P., in its dependence on energy may contain only 

(E .. +E,,), not E .. and E,., separately.'· Therefore, the 
maximum~ntropy probability distribution, based on 
knowledge of (E,.) and the conservation of energy, is 
associated with the partition function 

Z(A)=L; exp[ -A(E .. +E,,)]=Z,(A)Z.(A), (5-5) ., 
which factors into separate partition functions for the 
two systems 

Z,(A)=L;.exp(-AE .. ), Z,(A)=Lexp(-AE,,), (5-6) 

with X determined as before by 

a 
(E,) = --lnZ,(A); 

ax 
(5-7) 

or, solving for X by use of (2-13), we find that the 
quantity statistically conjugate to the energy is the 
reciprocal temperature: 

>.=dS,ld(E.}= liT. (5-8) 

More generally, this factorization is always possible if 
the information available consists of certain properties 
of tT, by itself and certain properties of 0', by itself. 
The probability distribution then factors into t"o 
independent distributions 

P.,= P.(1)p,(2), 

and the total entropy is additive: 

S(X)=S,+S,. 

(5-9) 

(5-10) 

We conclude that the function of the thermometer is 
merely to tell us what value of the parameter A should 
be used in specifying the probability d,stribution of 
system tT,. Given this value and the above factonzat ion 
property, it is no longer necessary to conSider the 
properties of the thermometer in deta,l \\ hen lIllorl'O­
rating temperature measurements into our probability 
distributions; the mathematical processes used In 

setting up probability distributions based on energy or 
temperature measurements are exactly the same but 
only interpreted differently. 

It is clear that any quantity which can be inter­
changed between two systems in such a way that the 
total amount is conserved, may be used In place of 
energy in arguments of the above type, and the funda­
mental symmetry of the theory with respect to such 
quantities is preserved. Thus, we may defme a "volume 
bath," "particle bath," "momentum bath," etc., and 
the probability distribution which gives the most 
unbiased representation of our knowledge of the state 
of a system is obtained by the same mathemallcal 
procedure whether the available information consists 
of a measurement of (j.) or its statistically conjugate 
quantity A •. 

I. This argument admittedly lacks ngof, which can be supplied 
only by consideration of phase coherence properties between the 
various states by means of the density matru: formal1sm. This, 
however J leads to the result riven. 
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We now give two elementary examples of the treat­
ment of problems using this generalized form of sta­
tistical mechanics. 

The pressure ensemblt.-Consider a gas with energy 
levels E.( V) dependent on the volume. If we are given 
macroscopic measurements of the energy (E) and the 
volume (V), the appropriate partition function is 

Z("h,/l) = fmdV L exp[ -"hE.(V)-/lV], 
o 

where "h, /l are Lagrangian multipliers. A short calcu­
lation shows that the pressure is given by 

P= -(~E.(V)/av)=/l/"h, 

so that the quantity statistically conjugate to the 
volume is 

/l="hP=P/kT. 

Thus, when the available information consists of either 
of the quantities (T,(E», plus either of the quantitIes 
(P/T,(V», the probability distribution which describes 
this information, without assuming anythmg else, is 
proportional to 

expl_[E.(V~:PVJl. (5-11) 

This is the distribution of the "pressure ensemble" of 
Lewis and Siegert" 

A nuclear polarization effect.-Consider a macroscopic 
system which consists of 11, (a nucleus with spin I), and 
<T, (the rest of the system). The nuclear spin is very 
loosely coupled to its environment, and they can 
exchange angular momentum m such a way that the 
total amount is conserved; thus <T, is an angular mo­
mentum bath On the other hand they cannot exchange 
energy, since all states of 111 have the same energy. 
Suppose we are gIven the temperature, and in addition 
are told that the system 11, is rotating about a certain 
axis, which we choose as the z axis, with a macroscop'­
cally measured angular velocity w. Does that provide 
any eVIdence for expecting that the nuclear spin I is 
polarized along the same axis? Let m, be the angular 
momentum quantum number of C1z, and denote by n 
all other quantum numbers necessary to specify a 
state of <T,. Then we form the partition functIOn 

Z,(fj."h) = L exp[ -fjE,(n,m,)->'m,], (5-12) 

where /3= l/kT, and "h is determined by 

o Bw 
(m,) = -- InZ,=-, 

0>. h 
(5-13) 

where B is the moment of inertia of 11,. Then, our most 
unbiased guess is that the rotation of the molecular 

" M. B. Lew,s and A J. F S,egert, Phys. Rev. 101, 1227 (1956). 

surroundings should produce on the average a nuclear 
polarization (m,)=(I.), equal to the Brillouin function 

where 

iI 
(m,)= --lnZ,(>.), 

iI>. 

1 

Z,(>')= L .-'-. __ 1 

In the case I=!, the polarization reduces to 

(111,)= -! tanh(!"h). 

(5-14) 

(5-15) 

(5-16) 

If the angular velocity", is small, (5-12) may be ap­
proximated by a power series in >. : 

Z.(P,>-) = Z,(P,O)[I->-(m.).+!>-'(I11,·).+· .. ], 
where ( ). stands for an expectation value in the 
nonrotating state. In the absence of a magnetic field 
(m,).=O, "'(m,').= kTB, so that (5-13) reduces to 

>-= -hw/kT. (5-17) 

Thus, the predicted polarization is just what would be 
produced by a magnetic field of such strength that the 
Larmor frequency WL=W. If 1>-1«1, the result may be 
described by a "dragging coefficient" 

"'/(1+1) 
(m,)=~miJ. 

3kTB 
(5-18) 

There is every reason to believe that this effect actually 
exists, it is closely related to' the Einstein-de Haas 
effect. It is especially int~resting that it can be predicted 
in some detail by a form of statistical mechanics which 
does not involve the energy of the spin system, and 
makes no reference to the mechanism causing the 
polarization, As a numerical example, if a sample of 
water is rotated at 36 000 rpm, this should polarize the 
protons to the same extent as would a magnetic field 
of about 1/7 gauss. This should be accessible to experi­
ment. A straightforward extension of these calculations 
would reveal how the effect is modified by nuclear 
quadrupole coupling, in the case of higher spin values. 

6. CONCLUSION 

The essential point in the arguments presented above 
is that we accept the von-Neumann-Shannon expres­
sion for entropy, very literally, as a measure of the 
amount of uncertainty represented by a probability 
distribution; thus entropy becomes the primitive con­
cept with which we work, more fundamental even than 
energy. If in addition we reinterpret the prediction 
problem of statistical mechanics in the subjective sense, 
we can derive the usual relations in a very elementary 
way without any consideration of ensembles or appeal 
to the usual arguments concerning ergodicity or equal 
a prior> probabilities, The principles and mathemalical 
methods of statistical mechanics are seen to be of much 



16 E. T. JAYNES 

more general applicability than conventional arguments 
would lead one to suppose. In the problem of prediction, 
the maXImIzation of entropy is not an application of a 
law of phYSICS, but merely a method of reasoning which 
ensures that no unconscious arbitrary assumptions 
have been introduced. 

APPENDIX A. ENTROPY OF A PROBABILITY 
DISTRIBUTION 

The variable x can assume the discrete values 
(x,,·· ·x.). Our partial understanding of the processes 
which determine the value of x can be represented by 
assigning corresponding probabilities (P,,·· ,p.). We 
ask, with Shannon,' whether it is possible to find any 
quantity H (P,' .. p.) which measures in a unique way 
the amount of uncertainty represented by this proba­
bility distribution. It might at first seem very difficult 
to specify conditions for such a measure which would 
ensure both uniqueness and consistency, to say nothing 
of usefulness Accordmgly it is a very remarkable fact 
that the most elementary' conditions of consistency, 
amounting really to only one composition law, already 
determines the function H(pl" .p.) to within a con­
stant factor. The three conditions are: 

(I) H IS a continuous function of the p •. 
(2) If all p, are equal, the quantity A (n) 

=H(1/n,.·· ,I/n) is a monotonic increasing function 
of n. 

(3) The composition law. Instead of giving the 
probabilities of the events (XI' •• x.) directly, we might -

down in this way. Thus, we must have 

H (p, . .. p.) = H (w,· .. w,)+w,H (P,/w" .. ,p./w,) 
+w,H (PHI/W" .. ,PH./W,) + .. '. (A·I) 

The weighting factor W, appears in the second term 
because the additIOnal uncertainty H(p,/w", .. ,p. I",,) 
is encountered only with probability w,. For example, 
H(1/2, 1/3, 1/6)=H(I/2, 1/2HW(2/3, 1/3). 

From condition (I), it is sufficient to determme H 
for all rational values 

p.=n'/"£ n .. 

with n. mtegers. But then conditIOn (3) implies that H 
is determined already from the symmetncal quantilJes 
A (n). For we can regard a choice of one of the alter· 
natives (x,· .. x.) as a first step in the choice of one of . 

"£ n. 

equally likely alternatives, the second step of \\ hich is 
also a choice between n. equally likely alternati\es. 
As an example, WIth n= 3, we mIght choose (II loll ,,/I,) 
= (3,4,2). For this case the composJlion law becomes 

( 342) 3 4 2 
H -,-,- +-A(3H-A(4H-A(2)~A(9). 

999 9 9 9 

In general, it could be written 

H (PI' .. p.)+ L P.A (n.) = A ("£. II.). (A·2) 

group the first k of them together as a single event, and In particular, we could choose all n. equal 10111, where· 
give its probability w,= (PI+" '+p.); then the next upon (A·2) reduces to 
m possibilities are assigned the total probability 
w,= (P'+I+" ·+PH.), etc. When this much has been A (m)+A (n)=A (mn). (A-3) 

specified, the amount of uncertainty as to the composite Evidently this is solved by setting 
events is H(wl" ·w.). Then we give the conditional 
probabilities (pl/W"", ,p./w,) of the ultimate events A (n) = K Inn, (A·-l) 
(x,· .. x.), given that the first composite event had where, by condition (2), K>O. For a proof thut (A--l) 
occurred, the conditional probabilities for the second is the only solution of (A-3) , we refer the reader 10 

composite event, and so on. We arrive ultimately at Shannon's paper.' Substituting (A-4) into (A·2), \\e 
the same state of knowledge as if the (pI'" p.) had have the desired result, 
been given directly, therefore if our information measure 
is to be consistent, we must obtain the same ultimate 
uncertainty no matter how the choices were broken 

H(P," .p.)=K In("£ n.)-K"£ p.lnn. 
= - K "£. p.lnp •. (A.5) 



3. INFORMATION THEORY AND 

STATISTICAL MECHANICS II (1957) 

This sequel had the primary purpose of extending the Maxent formalism to 
the density matrix, but it also went much more deeply into conceptual 
matters. Its weakness was in trying to do too much. A single article commu­
nicates best if it confmes itself to a single topic, but this one touched lightly 
on a dozen matters, each of which needs a full article to do it justice. In par­
ticular, all the ramifications of the 'Information Game' and its relation to 
stochastic theory, could easily fill a book. The article remains, to this day, a 
source of unfinished fragments of ideas in need of development. 

The factorization property of the density matrix, Eq. (10.18), was at the 
time new and startling; for me this consistency in the handling of several 
independent pieces of information, in an area undreamt of in the original 
Information Theory of Sharmon, was important evidence that we were on the 
right track. 

The material on array probabilities and the hierarchy of unitary transfor­
mations under which the density matrix is invariant, has implications for 
quantum theory beyond statistical mechanics, not yet brought out. In fact, 
the remarks of Sections 7-9 do not hint at the great ferment of thought that 
went on in the years 1951-1956 when this article was being written. Some of 
it is recorded in the Stanford Thesis of Ray Nelson (1956). 

The discussion of irreversible processes at the end is incomplete. The inten­
tion was to rectify this with a third article, built in the image of quantum 
electrodynamics; but my views on that topic started to change, and there 
followed a long search for a better basis for nonequilibrium theory, in which 
the partition functional generalization emerged as the only satisfactory 
approach. Finally, with the theory of macroscopic sources of Wm. C. Mitchell 
(1967), the original plan seemed altogether crude and unnecessary, and the 
third article was never written. 

The reaction of some readers to my use of the word 'subjective' in these 
articles, was astonishing. Thereafter I derived a certain amount of malicious 
pleasure from sitting back to enjoy the spectacle. There is something so 
patently ridiculous in the sight of a grown man recoiling in horror from 
something so harmless as a three-syllable word. 'Subjective' must surely 

17 
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be the most effective scare word yet invented. Yet it was used in what still 
seems a valid sense: 'depending on the observer'. 

In Euclidean geometry the coordinates of a point are 'subjective' in the 
sense that they depend on the orientation of the observer's coordinate sys­
tem; while the distance between two points is 'objective' in the sense that it 
is independent of the observer's orientation. That is all I ever meant by the 
term; yet twenty-five years later the shock waves are still arriving. 

While this was being written there appeared the article of Denbigh (1981), 
attacking my statement that thermodynamic entropy is 'subjective' in the 
sense that it depends on which macroscopic coordinates we use to derme the 
thermodynamic state. Of course, he does not deny that entropy does so 
depend. As far as I can see, there is no disagreement between us on any ques­
tion of fact, and I am reduced to conjecturing what the word 'subjective' 
must mean to him; evidently it is something too terrible to divulge. 
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Information Theory and Statistical Mechanics. II 
E. T. JAYNES 

Dep,,'m...t oj Physics, S/4JJJord U,.ivusily, Cal'JO",i4 
(Rece,ved March IS, 1957) 

Treatment of the predictive aspect of statistical mechanics as 
a fonn of statistical inference is extended to the density· matrix 
formalism and applied to a discussion of the relation between 
irreverSIbility and mformatlon loss A pnnClple of "statlstlCal 
complementarity" 15 pointed out, accordmg to which the empm­
cally ventiable probabilities of statistical mechamcs necessanly 
correspond to incomplete predictions A prehminary diSCUSSion IS 
given of the second law of thermodynamics and of a certam class 
of irreversible processes, ill an apprOXlInatlOn eqwvalent to that 
01 the semiclassical theory 01 radiation. 

It is shown that a density matrix does not 10 general con tam 

INTRODUCTION 

I N a previous paper' the prediction of equilibrium 
thermodynamic properties was developed as a fonn 

of statistical inference, based on the Shannon' concept 
of entropy as an infonnation measure, and the sub­
jective interpretation of probabilities. The guidmg prin­
ciple is that the probability distribution over microscopic 
states which has maximum entropy subject to whatever 
is known, provides the most unbiased representation of 
our knowledge of the state of the system. The maxi­
mum-entropy distribution is the broadest one com­
patible with the given information; it assigns positive 
weight to every possibility that is not ruled out by 
the initial data. 

This method of inference is extended in the following 
sections (numbered consecutively from those of I), to 
the density-matrix fonnalism, which makes possible the 
treatment of time-dependent phenomena. It is then 
applied to a discussion of the relation of infonnation 
loss and irreversibility, and to a treatment of relaxation 
processes in an approximation equivalent to that of 
the semiclassical theory of radiation. The more rigorous 
t~tment, corresponding to quantum electrodynamics, 
will be taken up in a later paper. 

Our picture of a prediction process is as follows. At 
the initial time t= 0 certain measurements are made. 
In practice, these will always represent far less than 
the maximum observation which would enable us to 
detennine a definite pure state. Therefore, we must 
have recourse to maximum-entropy inference in order 
to represent our degree of knowledge about the system 
in a way free of arbitrary assumptions With regard to 
missing information.' As time goes on, each state of 

• E T Jaynes, Phys Rev 106,620 (1957) Heremafter relerrtJ 
to as I 

• C E. Shannon, B~ll System Tech J 27, 379, 623 (1948) 
These papers are reprinted 10 C E Shannon and W Weaver 
The M allttmalical TI,eo,y of COlflmunuahon (UmverSity of nhnOl~ 
Press, Urbana, 1949) 

I A very interesting quotauon from J W Gibbs [Colluted 
Worh (Longmans, Green and Company, New York, 1928), Vol 
II, P 180J suggests the same basiC Idea. In dlSCUSSlDg the mter-

aU the information about a system that is relevant for predicting 
its behavior In the case of a system perturbed by random fluctu­
atang fields, the density matrix cannot satisfy any differentl&1 
equation because ;'(1) does not depend only on p(I), but also on 
past condillons Tbe ngorous theory involves stochastic equations 
In the type p(t)-S(I,O)p(O), where the operator S is a /uncl1onai 
of conditions during the entire interval (O-t) Therefore a general 
theory of irreversible processes cannot be based on differential 
rate equations correspondmg to time-proportional transition 
probabilities However, such equatIOns often represent useful 
approximations. 

the maximum-el.tropy distribution changes due to 
perturbations that are in general unknown; thus it 
"spreads out" into several possibilities, and our initial 
knowledge as to the state of the system is gradually 
lost. In the "semiclassical" approximation considered 
here, the final state of affairs is usually one in which the 
initial information is completely lost, the density matrix 
relaxing into a multiple of the unit matrix. The pre­
diction of thermal equilibrium, in which the limiting 
fonn of the density matrix is that of the Boltzmann 
distribution with finite temperature, is found only by 
using a better approximatlon which takes into account 
the quantum nature of the surroundings. 

It is of the greatest importance to recognize that in 
all of this semiclassical theory It is possible to mamtain 
the view that the system is at all times in some definite 
but unknown pure state, which lhanges belause of 
definite but unknown external forces, the probabilities 
represent only our igllorance as to the true state. With 
such an interpretation the expression "irreversible 
process" represents a semantic confusion; it is not the 
physical process that is irreversible, but rather our 
ability to follow it. The second law of thermodynamics 
then becomes merely the statement that although our 
information as to the state of a system may be lost in a 
variety of ways, the only way in which it can be gamed 
is by carrying out further measurements. Essential for 
this is the fact, analogous to Liouville's theorem, that 
in semiclassical approximation the laws of physlLs do 
not provide any tendency for systems initially m 
different states to "accumulate" in certain fmal states 
in preference to others; i.e., the time-development 
matrix is unitary. 

In opposition to the foregoing views, one may assert 

action of a body and a heat-bath, he says "The series of phases 
through which the \\ hole system runs an the course of tIme may 
not be entirely cletermmed by the energy. hut may depend on 
the initial phase In other respects In such cases the ensemble 
obtained by the microcanomcal distrihutlon of the whole system 
"hlch Includes all pOSSible time-ensemhlcs combined In th~ 
proportlon which see.ms least arlntrary, \\lU better represent 
than anyone time-ensemble the effect of the bath" 
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that irreversibility is not merely a loss of human 
mformation; it is an experimental fact, well recognized 
long before the development of statistical mechanics. 
Furthermore, the relaxation times calculated below are 
not merely measures of the rate at which we lose 
informatIOn; they are experimentally measurable quan­
tities expressing the rate at which physical systems 
approach equilibrium. Therefore, the probabilities in­
volved in our calculations must be ascribed some 
objective m~aning independent of human knowledge. 

Objections of this type have already been answered 
In large part in I, particularly Sec. 4. However, we wish 
to indicate briefly how those arguments apply to the 
case of time-dependent phenomena. The essential fact 
is a)!ain the "principle of macroscopIc uniformity." In 
the first place, It has been shown that the only quantities 
for which maximum-entropy mference makes definite 
predictIons are those for which we obtain sharp proba­
bility distributions. Since maxImum-entropy Inference 
uses the broadest distribution compatihle with the 
initial data, the predictable properties must be char­
acteristic of the great majority of those states to which 
appreciable weight is assigned. Maximum-entropy in­
ference can never lead us astray, for any quantity 
whICh it IS incapable of predIcting WIll betray that fact 
by yieldlllg a broad probablhty distnbutlon 

We can, however, say much more than thIS. We take 
it as self-evident that the features of irreversible 
processes which are experimentally reproducible are 
preCIsely those characteristic of most of the states 
wmpatible with the conditions of the expenment 
Suppose that maximum-entropy inference based on 
knowledge of the e'perimentally imposed conditions 
makes a definite predictIOn of some phenomenon, and 
it is found expenmentally that no such phenomenon 
eXISts Then the predicted property is characteristIc of 
most of the states appeanng in the subjective maximum­
entropy dIstribution, but It is not characteristic of most 
of the states physically allowed by the experimental 
lOndilions. ConSider, on the other hand, the possibihty 
that a phenomenon might be found whICh is experi­
mentally reproducible but not predictable by maximum­
entropy inference This phenomenon must be character­
istic of most of the states allowed by the experimental 
conditions, but it is not characteristic of most of the 
states in the maximum-entropy dlstnbutlOn. In either 
case, there must eXist new physkal states, or new COIl­

slramls on the physically aCLessible states, not con­
tained in the presently knO\,n laws of physics. 

In summary, \\e assert that 1-111 call be shown thaI lite 
class of plzCllnme1la prediclable by maxlmum-tIIlropy 'n­
ferwce dIffers ill allY way from Ihe class of e>perttnentaliy 
reproducible phel/omella, Ihal facl would demonstrale lhe 
<xlSlmet of /lew laws of physics, "01 presenlly kllo"m. 
Assuming that this OLLurs, and the new laws of phYSICS 
are eventually worked out, then maximum-entropy m­
ference based on the new laws will again have this 
property. 

From this we see that adoption of subjective proba­
bilities in no way weakens the theory in its ability to 
give reliable and useful results. On the contrary, the 
full power of statistical mechanics cannot be seen 
until one makes this distinction between its subjective 
and objective aspects. Once this is done, its mathe­
matical rules become a methodology for a very general 
type of scientific reasoning. 

7. REPRESENTATION OF A QUANTUM­
MECHANICAL SYSTEM 

We now develop a method of representing any state 
of knowledge of a quantum-mechanical system, leaving 
aside for the moment any consideration of how this 
knowledge might have been obtained Suppose that on 
the basis of the information available we conclude that 
the system may be in the "pure state" y,. With proba­
bility w" or it may be m the state y" with probabihty 
W2, etc. The vanous alternative possibihties y" are not 
necessarily mutually orthogonal, but each may be 
expanded in terms of a complete orthonormal set of 
functions u. : 

(7.1) 

This state of knowledge may be visualized In a geo­
metrical fashion by considering a complex function 
space, whose dimensionality may be finite or infinite, 
in which the state >f, is represented by a point P, WIth 
coordinates a." k= 1, 2, .. '. At P" place a weight w,; 
thus the state of knowledge is described by a set (which 
may be discrete or contmuous) of weighted points, 
such a set will be called an array. Since each of the 
possible wave functions is normalized to umty, 

(f"f,) = Jlf,12dr =l, 

we have 
(7.2) 

and all points P, are at unit "dIstance" from the origin, 
on the surface of the unit hypersphere. 

lf each of the possible states >f, satisfies the same 
Schrodinger equation, 

i""'=Hy" 

then as time goes on the function space as a whole is 
subjected to a unitary transformation, so that all 
"distances" and scalar products 

remain invariant, and the entire motion of the array 
may be visuahzed as a "rigid rotation" of the hyper­
sphere. An array with thIS behavior will be called 
.. mple. A simple array is conceptually somewhat hke a 
microcanonical ensemble; it consists of points lying on 
a closed surface which are subjected, in consequence of 
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the equations of motion, to a measure-preserving 
transformation which continually unfolds as I increases. 

The transformation with time may be of a different 
type; much more interesting is the case where the 
initial information is of the form: "The system may be 
in state ",. with probahility w" and in this case the 
Hamiltonian will be H •. " Then different parts of the 
array are subjected to different rotations, and separa­
tions or interpenetrations occur. Such an array will be 
called compIX/wi. It arises, for example, when we have 
a system consisting of two coupled spins in a strong 
magnetic field, and we wish to describe our knowledge 
of the state of one of them. 

Consider a measurable quantity represented by a 
Hermitian operator F; in state"" its expectation value is 

(F).= ("'"F",,) = L •• a.,a.,'F •• , (7.3) 

where F •• = (u.,Fu.) are the matrix elements of Fin 
the u. representation. The average of (7.3) over the 
array is 

(F)= L w,{F).= Tr (pF), (i 4) 
where 

P .. = L, w.a.,a.,*= (a.a. *) (7.5) 

is the density matrix. The probability p(f) that a 
measurement of F will yield the particular eigenvalue j, 
IS also expressible as an expectation value; define the 
projectIOn operator ° by 0",= (cp,"')cp, where cp is the 
corresponding normalized eigenfunction of F: Fcp= jcp. 
Then 

p(f)= (0)= Tr(pO). (7.6) 

From (7.5) It is seen that in general an mfimte 
number of dIfferent arrays, representing dIfferent mix­
tures of pure states, all lead to the same denSIty matrix 
The most general discrete array whIch leads to a given 
denSIty matnx p corresponds to the most general 
matrIX A (not necessarily square) for whIch 

p=AAt, (7.7) 

the dagger denoting the HermItian conjugate. An array 
is uniquely determined by A, for from (7.2) and (7.5) 
we have 

A.,=a.,w.l , L.iA •• i'=w •. 
To find another array with the same density matrix, 
insert a matrix U: 

p= (A U)(U-1A t). 

This has the form BBt with B= A U if and only if U 
is unitary; thus the group of transformations from one 
array of n states to another of n states is isomorphIc 
with the group of unitary transformatlons lo n dImen­
sions. These are not, however, transformatlOns of the 
wave functIOns "'.. but of the probabtltty-normalized 
wave functions 

'II.=>/t,w. l • (7.8) 

If we carry out the unitary transformation 

<I>,=L.'II.U", 
and write 

<1>,= cp,p;l, 

(7.9) 

where cp; is normahzed to unity, then the array lo 

which state cp, has probability p, leads to the same 
density matnx as the original array {"' .. '".l EVIdently 
an array IS determined uniquely by specifying a set 
{'II ,I of probability-normalized states. 

From an array ('II.1 of n states we can construct new 
arrays of (n+l) states. Define '1'.+1=0, then new 
transformations of the form (7.9) are possible, lo which 
U is a unitary matrix of dimensionality (n+l). These 
generate an lOfinite number of new arrays for which, 
in general, all (n+ I) states <1>, are dIfferent from each 
other and from zero. The inverse process of contracting 
an array to one "f fewer states is possible If any linear 
combination of the "', vanishes. 

An array of n states will be called minimal WIth 
respect to its density matrix p if no array eXIsts winch 
leads to p WIth fewer than n states. The states of an 
array are linearly independent If and only if the array 
is minimal. 

In general, a given density matrix can be represented 
lo only one way as a mIxture of orthogonal states 
Since p IS Hermitian, there alwa'ys eXists a umtary 
matTlX U whIch diagonahzes it, 

(7 Ill) 

with d",,. = Ii"/),,.,.o If the eigenvalues d,n of pare non­
degenerate, only one such matflx U eXIsts The baSIS 
functIOns of the new representatIOn 111 WIHCh P IS 

diagonal, 
(7.11) 

are the orthogonal states which, when lOl\ed with 
probabIlitIes dM , lead to the gIven denSIty matnx 

Suppose we have a denSIty matnx p and a state cp 
which is considered a "candidate" for inclUSIon In a 
minimal array which WIll lead to p What IS the proba­
bility fA (cp) which should be aSSIgned to cp in such an 
array? To answer thIS, we first construct the orthogonal 
array {'m,dm}, and e.xpand 

cp= Lm vmCm 

If this IS to be equivalent to one of the columns of 
(7.9), it is necessary that 

I iCmi' 
~=L-. 
PA dm 

(7 12) 

This IS uniquely determIned by the denSIty matrix and 
the state cp, regardless of whIch other states cp, mIght 
also appear lo the array The array probahlhty PA is 
In general dIfferent from the measurement probablhty 
(7.6), which IS equal to 

P,,(cp)=LmdmiCmi'. (7.13) 
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It is readily shown that p 11 ~ PA, with equality if and 
o~ly if rp is an eigenstate of p. 

The representation in terms of orthogonal states is 
important in connection with the entropy which meas­
ures our knowledge of the system It might be thought 
that for an array (1f .. It',) we could define an entropy by 

(7.14) 

This, however, would not be satISfactory because the 
w. are not in general the probabihties of mutually 
exclusive events. According to quantum mechanics, if 
the state is known to he If .. then the probability of 
finding it upon measurement to be If" is I (lfl''''') I". 
Thus. the probabilit ies w. refer to independent, mutu­
ally exclusive events only when the states "'. of the 
array are orthogonal to each other, and only in this 
case is the expression (7.14) for entropy satisfactory. 
This array of orthogonal states has another important 
properly; conSider the totality of all possible arrays 
which lead to a given density matrix, and the corre­
sponding expressions (7.14). The array for which (7.14) 
attains its minimum value is the orthogonal one, which 
therefore provides, in the sense of mformation content, 
the most economical desctlptlon of the freedom of 
chOice implied by a density mattlx (Appendix A). 

For the orthogonal array, the w. in (7.14) are 
identical With the eigenvalues d. of the density matrix, 
so for numerical calculation of entropy given p, one 
would find the eigenvalues and use the formula 

s= - 1:. d.lnd.. (7.15) 

In general discussions It is convenient to express this 

s= - Tr(p Inp). (7.16) 

Since this could also be written as S= -(lop), It is 
the natural extension to quantum mechamcs of the 
Gibbs definition of entropy. 

Equation (7.16) assigns zero entropy to any pure 
state, whether stationary or not. It has been criticized 
on the grounds that according to the Schnidinger 
equation of motion it would he constant in time, and 
thus one could not account for the second law of 
thermodynamics; this has led some authors'" to propose 
instead the expression 

S= -1:. p •• lop •• , (717) 

which involves only diagonal elements of p in the 
energy representation, for which a "quantum-mechan­
ical spreading" phenomenon can be demonstrated. It 
will be shown in detail below how the objections to 
(7.16) may be answered. With regard to (7.17), we 
note that it does not assign the same entropy to all 
pure states, but von Neumann' has shown that any 

• R C. Tolman. TI,. Pfi""iJ>/ .. .if Slolislkol 31 .. 1, ... "" (Claren' 
don Pr .... O.ford. 1938) 

• D ter Haar. El ... "", .1 SldIul",aJ Al.cI,a~ics (Rinehart and 
Con'J>&n). Inc. N." Vorl. 1954) 

t J. von Neumann, ~l/aJ"emalis,"e CrundJaRen d" Qrunde,,­
rncchartii (Dover Pubhcahonl, New Vorl, 1943), Chap V 

pure state may be converted reversibly and adiabati­
cally into any other pure state. 

Since, according to (7.4), knowledge of p enables one 
to calculate the expectation value of any Hermitian 
operator, it is tempting to conclude that the density 
matrix contains all of our information as to the objective 
state of the system. Thus, although many different 
arrays would all lead to the same density matrix, the 
differences between them would be considered physi­
cally meaningless, only their second moments (7.5) 
corresponding to any physical predictions. The concept 
of any array as something separate and distinct from a 
density matrix might then appear superftuous. That 
this is not the case, however, will be seen in Sec. 13 
below, where it is shown that the resolution of a 
compound array into independent simple arrays may 
represent useful information which cannot be expressed 
in terms of the resultant density matrix. 

8. SUFFICIENCY AND COMPLETENESS OF 
THE DENSITY MATRIX 

If a density matrix provides a definite probability 
assignment for each possible outcome of a certain 
experiment, in a way that makes full use of all of the 
available relevant information, we shall say that p is 
su.fficiml for that experiment. A density matrix that is 
sufficient for all conceivable experiments on a system 
will be called complele for that system. Strictly speaking, 
we should always describe a density matrix as sufficient 
or complete ,elaIil1e to certain initial information. 

The assertion that complete denSity matrices exist 
involves several assumptions. in particular that all 
measurable quantities may be represented by Hermitian 
operators, and that all experimental measurements may 
be expressed in terms of expectation values. We do not 
wish to go into these questions, but only to note the 
following. Even if it be granted that it is always possible 
in principle to operate with a complete density matrix. 
it would often be extremely awkward and mconvenient 
to do so m pracllce, because it would require us to 
consider the density matrix and dynamical quantities 
as operators m a much larger functIOn space than we 
wish to use. 

To see this by a simple example, consider a "molecular 
beam" experiment in which particles of spin 1 are 
prepared by apparatus A, then sent into a detection 
system B which determines whether the spin is up or 
down with respect to some chosen % axis. Assume, for 
simplicity, that only one particle at a time is processed 
in this way. A particle thus has, for our purposes, two 
possible states "+ and .... ; our knowledge oI the nature 
of the apparatus A could be incorporated mto an array 
and its corresponding (2X 2) density matrix, from 
which we can calculate the probability of finding the 
spin aligned in any particular direction. Thus, the 
(2X2) density matrix adequately represents our state 
of knowledge as to the outcome of any spin measure­
ment made on a single particle; i.e., it is a suffiCient 
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statistic for any such measurement. The question is, 
does it also adequately represent our knowledge of the 
msemblt of particles (assuming that the apparatus A is 
"stationary," so that each particle, considered by itself, 
would be represented by the same density matrix). 
More specifically, is it possible for apparatus A to 
produce a physical situation which can be measured in 
our detection apparatus, but for which the (2X 2) 
density matrix gives no probability assignment? One 
such property is easily found; the detecting apparatus 
tells us not only the fraction of spins aligned along the 
+z axis, but also the order in which spin up and spin 
down occurred, so that correlations between spin states 
of successive particles can be observed. Now all possible 
such correlations can be described only by considering 
the entire ensemble of N particles as a single quantum­
mechanical system with 2N possible states, and therefore 
a density matrix which is a sufficient statistic for all 
conceivable measurements on the spin system must 
have 2N rows and columns.' This, however, would 
completely destroy the simplicity of the theory, and 
in practice we would probably prefer to retain the 
original (2X 2) density matrix for predicting the results 
of measurements on single particles, while recognizing 
its insufficiency for other measurements which the same 
apparatus could perform. 

9_ SUBJECTIVE AND OBJECTIVE 
INTERPRETATIONS 

The topic of Sec. 8 is closely related to some of the 
most fundamental questions in physics. According to 
quantum mechanics, if a system is known to be in state 
1/1.. then the probability that measurement of the 
quantity F will result in the particular eigenvalue f, is 
(O) .. where 0 is the projection operator of Eq. (7.6). 
Are we to interpret this probability in the objective or 
subjective sense, i e., are the probability statements of 
quantum mechanics expressions of empirically verifiable 
laws of physics or merely expressions of our incomplete 
ability to predict, whether due to a defect in the theory 
or to incomplete initial information? The current 
interpretation of quantum mechanics favors the first 
view, but it is important to note that the whole content 
of the theory depends critically on just what we mean 
by "probability." In calling a probability objective, 
we do not mean that it is necessarily "correct," but 
only that a conceivable experiment exists by which its 
correctness or incorrectness could be empirically deter­
mined. In calling a probability assignment subjective, 
we mean that it is not a physical property of any 
system, but only a means of describing our information 
about the system; therefore it is meaningless to speak 
of verifying It empirically. 

Is there any operational meaning to the statement 

, ThiS IS a very consen'atlVe statement It \\-ould be more 
reahstlc to a~ume that all the coordmates of apparatus A must 
also be mcluded 10 the space upon which thiS complete denSity 
matnx operates 

that the probabilities of quantum mechanics are objec­
tive? If so, we should be able to devise an experiment 
which will measure these probabilities, for example the 
probability that a measurement of the quantity F will 
give the result f. In order to do this, we will need to 
repeat a measurement of F an indefinitely large number 
N of times, with systems that have all been prepared 
in exact! y the same way, and record the fraction of 
cases in which the particular result f was obtained. 
Which density matrix should we use to predict the result 
of this experiment? In principle, we should always use 
the one which contains the greatest amount of infor­
mation about the ensemble of N systems; i.e., which is 
complete. The apparatus which prepares them may be 
producing correlations, thus the ensemble of N systems 
should be considered as a single large quantum­
mechanical system. The probability statements which 
come from the ,hoory are then of the form, "the 
probability that system 1 will YIeld the result flo and 
system 2 will yield the value j" ... , is t(j.- .. f N)." 
But then measurement of F m each of the N small 
systems IS not N repetitions of an e'\.periment; it is 
only a smgle experiment from the standpoint of the 
total system Clearly, no probability assignment can 
be verified by a smgle measurement. Note that the 
question whether correlations were in fact present 
between different systems is irrelevant to the question 
of principle involved; even if the distribution factors 

it remains a joint distrihution, not one for a single 
system. We can, of course, always obtain the single­
system probabilitIes by summation: 

PI(j')=L L p(hh'" ,,), (9.2) 
II IN 

but PI(fI) now refers specifically to system 1, and the 
results of measurements on the other systems are 
irrelevant to the questIon whether pI(h) was verified. 
We cannot avoid the difficulty by repeating all this M 
times, because for that experiment the complete density 
matrix would refer to all N M systems, and we would be 
in exactly the same SItuation. Thus, the probability 
statements obtained from a complete density matrix 
cannot be verified. 

In practice, of course, one will never bother with 
such considerations, but will find a density matrix 
which operates only on the space of a single system and 
incorporates as much information as possible subject 
to that limitation. The probability p(f) computed from 
this density matrix is presumably equal to PI (f) in 
(92). If the result f is obtained approximately Np(j) 
tImes, one says that the predictions have been verified, 
and p(f) is correct in an objective sense. This result is 
obtained, however, only by renouncing the possibility 
of predicting any mutual properties of different systems, 
and the record of the experiment contains some infor­
mation about those mutual properties. 
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Thus, we enunCiate as a general principle: Empirical 
,'~ifiabi/ily oj a probabiltty asngnmenl, and compleleness 
oj Ihe denstly matrix jrom which Ihe probabiltlies were 
oblained, are lncompalibie cond,"ons Whenever we use 
a density mat n, whose probabilities are verifiable by 
certam measurements, we necessarily renounce the 
possibihty of precht tmg the results of other measure­
ments v.lllch tan be made Oil the same apparatus. 

Th,s prlllnple of "statl'tical complementanty" IS not 
restncted to quantum mechanics, but holds In any 
application of probabIlIty theory, In a very funda­
mental sense no c'<periment can ever be repeated, and 
the most comprehensive probability assignments are 
necessanly lIll apable of venlicatlOn 

If an operatlOnal vlewpollltHO IS to be upheld con­
sIstently, Jl appears that the probabIlitIes computed 
from"" complete density matrix must be mterpreted in 
the subjelllve sellse Slllce thIS complete density matri, 
might be a projection operator correspondmg to a pure 
state, one IS led very close to the vle"s of Emstem" 
and llohm" as to the mterpretatlon of quantum 
mClhanl<.s 

Entirely (lJITerent wnslderatlOns sugge.t the same 
wnciuslOn. A density matrix represents a fUSIOn of two 
(hfferent stallstical aspects; those inherent m a pure 
state and those representlnl': our uncertamty as to 
Wllllh pure state IS present. If the former probablhties 
are lllterpreted m the objective sense, while the latter 
are (learly SUlljCl tl\C, \\e have a very puzzlmg Situation 

1fany dlffen'nt arrays, representing different combi­
nations of suhjectlve and objecllve aspects, all lead to 
the same denSIty matrix, and thus to the same pred,c­
tions l[O\\cvcr, If the statement, "only certam specltic 
a~pCt 1s of 1 he prohabliitles are objective," IS to have 
any operational meal1lng, we must demand that some 
c\permlcnl he pro<iuleu which will dlstmguish between 
these arrays 

10. MAXIMUM-ENTROPY INFERENCE 

The methods of maxImum-entropy mference ue­
swberl in I may be generahzed immedIately to the 
denslty-malnx formahsm. Suppose we are given the 
expectation values of the operators Fl" ·Fm ; then the 
denSIty matTlx whICh represents the most unbIased 
picture of the state of the system on the basis of tIllS 
much mformatIon IS the one whIch maximIzes the 
entropy subject to these constraints. As be:'Jle, thIS IS 
accomplished by finding the denSIty matrix which 

I P W Bndgman, TIle Logic of l!()d~m Plt\,SlCS (The Z\lac­
MIlian Companr, Ne" Yorl..., 1927) 

• P A 1\1 Dirac, Tlte Prmnples of QuanJulIl .tlechatucs (Claren­
<Ion Press, O\ford, 1935), second C(lJtlOn, Chap I 

10 Hans RelChenhach. PlultJsaplllc FomuiatJons 4 Quantum 
'uufralllcs (Umverslty of California Press, Berkeley, 19-46) 

II 1111"1 F.lItste:ft Phr/lIsuplte,-SClcnlul, edited by P A Schtlrr 
(LlbrdrY of Llvmg Philosophers, lnc, Evanston, 1919), pp 
665-684 

IS D Bohlll. Ph)" Rev 85. 166. 180 (19.12),89.458 (1953) 

uncondltJonally maximizes 

(10.1) 

in whIch the X, are Lagrangian multipliers The result 
may be described in terms of the partition function 

Z(AI' 'Am)= Tr[exp( -A,Fl - ... -A.F.)], (10.2) 

WIth the A, determined by 

iI 
(F,)= -- InZ. 

(lA, 

The maximum-entropy density matTlx is then 

p=exp[ -AoI-A IF l -· .. -AmFm] 

(10.3) 

(10.4) 

which is correctly normah,cd (Trp= 1) by setting 

Ao=lnZ, 

and the corresponding entropy becomes 

S=Ao+AI(F l )+··· +Xm(Fm). 

(10.5) 

(10.6) 

Use of (105) and (10.6) enables us to solve (10.3) for 
the A •. 

(10.7) 

If the operator F, contains parameters a" we find as 
before _ that the maximum-entropy estimates of the 
derivatives are given by 

<OF,) I a 
- =---lnZ. 
aa, ;\.,1: da l 

(108) 

For an infimteslmal change in the problem, A. IS the 
mtegratmg factor for the kth analog of infiniteSImal 
heat; 

with 
.S=~,A.oQ., 

aQ.=6(F.)-{.F.). 

(10.9) 

(10.10) 

All of these relations except (10.2) and (10.4) are 
formally identical with those found in I, the F. now 
being mterpreted as matrices instead of functions of a 
dIscrete vanable x. 

The definitJons of heat bath and thermometer given 
in I remam apphLable, and the discussion of experi­
mental measurement of temperature proceeds as before 
with the difference that maximization of entropy of the 
combined system now automatically takes care of the 
question of phase relations. We have two systems 0'1 

and "2, with complete orthonormal basis functions 
u.(I), •• (2), respectively. A state !/t, of the combined 
system ,,= "IX"., is then some linear combination 

",,(1,2) = ~ u.(I)v.(2)a •• ,. 
"l 

If "', occurs with probability w" the density matrix is 

(nk I P I n'k') = L, w,a •• ,a., •. ,*= (a •• a ••• ,'). 
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An operator 9(1,2) has matrix elements 

and its expectation value is 

(S)=Tr(pg)= L ("klpl n'k')(n'k'i Sink). 
nn'LIe' 

An operator F, which operates only on the coordinates 
of system 1 IS represented m the space of the combmed 
system by a direct product matrlX," t\J=l'\Xl, wIth 
matrix elements 

(nk Ill"d n'k') = (nl F,I n')~ ••.. 

SImilarly, for an operator F, of system 2, we obtain 
fI,= lXF" and 

(nkl \\,1 n'k') =~ •• '(kl F,I k'). 

Consider, as before, the system of interest 0'" and a 
thermometer IT,. Let their Hamiltonians be H" H" 
respectively. In the function space of the combined 
system 0', the!of Hamiltomans are represented by 

(10 11) 

The available information now consists of a given 
(measured) value of (ll,), and the knowledge that 
energy may be transferred between (Jl and (12 m such a 
way that the total amount IS conserved. In practICe 
we never have detailed knowledge of the weak·mter­
action Hamiltoman -'")12 of a type that would tell us 
which transitions may in fact take place and whICh 
Will not. Therefore we have no ratIOnal baSIS for 
excluding the pOSSibilIty of any transitIOn between 
states of " with a given total energy, and the most 
unbmsed representation of our state of knowledge must 
treat all such states as eqUivalent, m their dependence 
on energy. Any other procedure would amount to 
arbitrarily favonng some states at the expense of others, 
in a way not warranted by any of the available infor· 
matlOn. Therefore only the total energy may appear ill 
our density matnx, and "e have to find that matnx 
whICh maXimizes 

(10.12) 

subject to the observed value of (ll,) The matnx 
involved III (102) and (10 4) now factors mto a direct 
product: 

exp[ ->'(.I),+.\),)J= (,-'"')X (,-HI,), (10.13) 

so that the partltlon function reduces to 

with 
Z(>')=Z,(>')Z,(>.), 

Z,(>') = Tr exp( ->.H,), 

Z,(>.) = Tr e,p( ->.H,). 

(10.14) 

(1015) 

13 P H. Ilaimos, h11lle D'llltIlSW'hZl rectur 'lPIJCCS (Pllflccton 
Ulllvcrslty Press. Pnnceton, 1948), Appenulx II 

Similarly, the density matrix (10.4) is the direct product 

[
e,p( ->.H,)] [exp( ->.H,)] 

p= X =p,XP1' 
Z,(>.) Z,(>') 

(10.16) 

Because of the absence of correlations between the two 
systems, it is true once again that the functIOn of the 
thermometer is merely to tell us the value of the 
parameter>. in PI, and the properties of the thermometer 
need not be conSidered in detail when incorporating 
temperature measurements into our theory. 

An important feature of thiS theory IS that measure­
ment of averages of several noncommuting quantities 
may be treated simultaneously without interference. 
Consider, for example, three interacting systems ,,= "I 
X",X"" where 0', IS the syste:n of interest, and '" is a 
thermometer. Some physical quantity P, represented 
in the space of 0'1 by the operator F .. and in '" by F" 
can be transferred between ", and '" in such a way that 
the total amount is conserved. F, could stand for 
angular momentum, volume, etc.~ and need not com­
mute With H ,. In addition suppose that a quantity 
(G,) IS measured directly III "" where G, does not 
necessarily commute With either H, or F, Now the 
available Information consists of the measured values 
of (G,), (H,), and (F,), plus the conservatIOn laws of P 
and H The various operators are now represented III 

the space" by direct product matnces as follows' 

~:1,=IJ,XIXI, 

,\),=IXH,Xl, 

C'>J,=G,XIXI, 

ii,=}'\XIXl, 

ii,=IXIXP" 

and the denSity matr" t hat proVides the most unbiased 
picture of the state of the total syst em is the one that 
maXimizes 

We now fmd the factonzatlon property 

exp[ -).(.\:),+,\),) -I'(ii,+ iiJ) - "(\),J 
= [e-w.-.,,-.G,]X [,-W']X[e-"'J, (10.18) 

so that once agam the partitIOn function and denSity 
matnx factor mto Illdependent parts for the three 
systems 

and the pieces of mformation obtained from U2, U3 are 
transferred into p, Without mterference. 

11. INFORMATION LOSS AND IRREVERSIBILITY 

In classical statistical mechanics the appearance of 
irreverslbihty can always be traced either to the 
replacement of a fine.grained probabilIty distributIOn 
by a coarse.gramed one, or to a projectIOn of a jomt 
probabihty distributIOn of two systems onto the sub­
space of one of them. Both processes amount to a loss, 
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whether voluntary or not. of some of the information 
"Ihich is in principle available. The former is often 
justified by the very persuasive argument that the 
mathematics would otherwise be too comphcated. But 
mathematical difficulties. however great. have no 
bearing on matters of principle. and this way of looking 
at it causes one to lose Sight of a much more Important 
positive reason for discarding mformatlon. After sUlli­
dent "stirring" has octurred, two different fine-grained 
distributIOns Will lead to predltllons that are macro­
scopically the same. differing only m mICroscopIc 
detaIls. Thus. even if we were good enough mathema­
ticians to deal with a fine-grained distrIbutIOn. its 
replacement by a coarse-grained one would still be the 
elegant method of treating the predictIOn of macro­
SLOplL properties. belause in this \\ay one ehmmates 
irrelevant details at an early stage of the l •• lculallon. 

In quantum mechanics. as in classical theory. the 
increase in entropy LharacterIstic of IrreversibilIty 
always signifies. and is identical with. a loss of mfor­
mallon. It IS Important to reahze that the tendenlY of 
entropy to mcrease IS not a consequence of the laws of 
physICs as such. for the motion of pomts of an array IS 
a unitary transformation prescTlbed by the Schrooinger 
equation in a manner just as "deterministl<.." as IS the 
motion of phase POllltS m classical theory. An entropy 
increase may occur unavOIdably. due to our mcomplete 
knowledge of the forces acting on a system. or It may 
be an entirely voluntary act on our part. In the latter 
case. an entropy increase IS the means by which we 
simplIfy a predictIOn problem by discardmg parts of 
the available mformatlOn whiLh are Irrelevant. or nearly 
so, for the parllcular predICtIOns deSired. It IS very 
similar to the stallstlcian's practlte of "findmg a suffi­
cient statlsllc." The prILe we must pay for this SImplIfi­
cation IS that the possibilIty of predlctmg other proper­
tIes wlIh the resultlllg equJ.llOllS IS thereby lost 

The natural way of dasslfymg theories of Irreversible 
processes IS a<cordmg to the mechanIsm by which 
mformallon IS lost or discarded In most of the eXlstmg 
theorIes we find that this consists of the repetitIOn. at 
regular mtervals. of one of the followmg procedures. 
Suppose we ,\Ish to lind the expectatlon value of the 
quanllly F; m the representation m whICh F IS diagonal 
it reduces to 

(F)= Tr(pF) = L. PnnF ••. ( 11.1) 

Smce only the diagonal elements of p contTlbute. (F) 
can be calculated as well by usmg the density matrix 
p', where 

(11 2) 

The proless of replaCing p by p' Will be called removlIlg 
(ohercnas, and IS dearly penmsslu!e ",henever all the 
quantities \dlldl we WIsh to L.tlculate are diagonal 
simultaneously Jt I!:I rea<hh \enlied that rcmovJ.! ot 
coherences represents loss of IllformatlOn: S(p') ~ S(p), 
With equahty If and only If p=p'. 

The second procedure by which information may be 
dIscarded IS an Invanant operation, exaLtly analogous 
to its classical counterpart. Consider two interactmg 
systems 0', and a, As already noted. an operator F, 
which operates only on the variables of 0', IS represented 
m the space of the combined system O'=u,Xu, by the 
dIrect product matrix !),=F,XI. The expectatIOn 
value of any such operator reduces to a trace involving 
only the space of 0',: 

(F,)=Tr(p 5',) = Tr(p,F,). (11.3) 

where PI IS the "projection" of the complete density 
matrix p onto the subspace 0'1. With matrix elements 

(nlp,ln') = L.(nklpl n'k). (11 4) 

Similarly. we can project ponto 0',. with the result 

(klp,1 k') = L.(nklp Ink') 

and for any operator F, of system 2 we can define 
;\.= lXI',. whereupon (F,)=Tr(p~.)=Tr(p,F,). 

In the projectIOn onto 0'" the parts of p that are 
summed out contain mformation about the state of 
system 0', and about correlations between possible 
states of 0', and 0',. both of Wh'llh are Irrelevant for 
predictmg the average of F, 

The operation of removing correlations consists of 
replacing p by the direct product p,Xp" with matrix 
elements 

(nklp,Xp,ln'k')= (nlpdn')(klp,lk'), (11.5) 

and the expectatIOn value of any operator composed 
additively of term~ which operate on 0'1 alone or on 0', 
alone, IS found as well from (p,Xp,) as from p. The 
removal of correlatIOns also involves a loss of mforma­
tion, the entropy after removal of correlatIOns is addi­
tive and never less than the ongmal entropy. 

S(p,Xp,) = S(p,)+S(p,)?: S(p). (11.6) 

with equahty if and only If p=p,Xp, 
These remarks generalIZe m an obvIOUS way to the 

case of any number of subsystems I to remove correla­
tions from a denSity matrix p operatmg on the space of 
three systems (1= OIXa2X(T3, project It onto each of the 
0'" and replale p by the direct product of the proJections. 

p-+p,Xp,Xp,. 

If an operator F, operates only on the space of 0',. its 
matn>.. representatIOn In the a space and expectation 
value are given by 

i'i=IXF,XI. (F,)= Tr(Pll) = Tr(p,F,) 

~lost treatments of lTreversible processes III the past 
have been based on the removal of coherences m the 
energy representation, and the resuitmg conl ept of 
"ocLupatiOn numbers" ~Vk) proportional to the dIagonal 
elements PH m thIS representatlOn One then mtroduces 
a tranSitIOn probabilIty per unit ume A ••• which usually, 
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but not always,"·I. conforms to the assumption of with U(I,I)= I. The entropy 
"microscopic reversibility" At. = A. i , and equations of 
the form 5(1)= -Tr[p(I) lop(I)] (12.4) 

(11.7) 

are the starting point of the theory. The existence of 
time-proportional transition probabilities is not, how­
ever, a general consequence of quantum mechanics, but 
involves assumptions about the type of perturbing 
forces responsible for the transitions, and mathematical 
approximations which represent a loss of information. 
That information is lost somewhere is seen from the fact 
the entropy, as calculated from (11.7), is in general an 
increasing function of the time, while that obtained from 
rigorous integration of a Schrodinger equatIon is neces­
sarily constant The nature of the information-discard­
ing process in (11.7), as well as a clear statement of the 
type of physical problems to which equations of tillS 
form are applicable, can be appreciated only by starting 
from a more fundamental viewpoint. 

12. SUBJECTIVE H THEOREM 

In the remainder of this paper, we consider a certain 
approximation, which might be called the "semi­
classical theory of irreversible processes," since It is 
related to a complete theory in the same way that the 
semiclassical ~heory of radiation" IS related to quantum 
electrodynamIcs. The system of interest u is treated as 
a quantum-mechanical system, but outside influences 
are treated classically, their effect on u being represented 
by perturbing terms in the Hamiltonian whIch are 
considered defimte if unknown functions of the time. 
It IS of interest to see which aspects of Irreversible 
processes are found in th,s approximatIOn, and which 
ones depend essentially on the quantum nature of the 
surroundmgs. 

Let the Hamiltonian of the system be 

H= H.+ V(I), (12.1) 

where H. is stationary and defines the "energy levels" 
of the syste.m, and V (I) represents the perturbing effect 
of the env,ronment. Suppose that at time I' we are 
given information which leads (by max1mum-entropy 
,nference, If needed) to the dens'ty matrix p(I'). At 
other times, the effect of the Ham11tonian (12.1) is to 
carry out a umtary transformatIOn 

p(t) = U (1,1')p(I') U(I 1')-1 
= U(I,I')p (I') U(I',I), (12 2) 

w~ere the time-development matrix U (t,I') IS deter­
mmed from the SchrOdmger equation (with t. = 1) 

a 
'aeU(I,I')=ll(t)U(I,t'), (123) 

:: J S Thomsen, Ph}s Rev 91, 1263 (l953) 
R T Cox, Slaltshcai 'fechan~cs vi lrreurslble Chanl!,t: (johns 

Hopkms Press, BaltImore 1955) 
11 L I Schiff, Qtlantu~ .llechanu:s (McGra\\ HIli Bool.. CUIIl­

pany, Inc, Ne" York, 1949) 

is unchanged by a unitary transformation, and therefore 
remams constant regardless of the magnitude or time 
variations of V(I). Consider, however, the circumstance 
that V(I) may not be known with certainty; during 
the time interval (1'-+1) it may have been the operator 
V(IJ(I) with probabihty PI, or it may have been VI')(t) 
with probability P" .. " etc. Then our state of k.nowl­
edge of the system must be represented by a compound 
array, which is a fusion of several simple arrays corre­
sponding to the different VI·)(I), and which are subject 
to different rotations. At time I, the density matrix 
will be the average of the matrices that would result 
from each of the possible interactions; 

p(l) = L • P .UI.) (1,1')p(I') UI.) (1',1), (12.S) 

and the: transformation p(I') ...... p(t) is no longer unitary. 
We m'ght also have a continuous distribution of 
unknown interactions, and therefore an integration 
over ex, or more generally there might be several 
parameters (a,·· ·a.) in V (I), with probability distri­
bullon P(al" ·a.)dal . ·da •. We will understand the 
notatIOn in (12.S) to mclude such poss,bJiities. Our 
uncertainty as to V (I) w,ll be reflected in increased 
uncertainty, as measured by the entropy, m our 
knowledge of the state of system u. It is shown III 

Appendix A that, in case" 1S discrete, there is an upper 
lim1t to this increase, g,ven by the followlllg Illequallty: 

where 
5(1') :SS(I):S S(I')+S(P .), 

S(P.)=- -L. P.lnP. 

(12.6) 

(127) 

Equallon (126) has an ev,dent mtuIlive content 
the entropy of a system is a measure of our uncertamt; 
as to its true state, and-by applymg an unknown s'gnal 
to it, this uncertainty WIll in< .. rease, but not by more 
than our uncertainty as to the SIgnal The maxImum 
1IIcrease in entropy can occur only 111 the followllll( 
rather except,onal CIrcumstances. The totality of all 
posslbl~ states of the system forms a functIOn space S. 
Suppose that our m1l1al state of knowledge ,s that the 
system is 111 a certa1ll subspace s. of S If the pertur­
batlon V") (I) IS applied, this IS transformed mto some 
other subspace 

Sa= U(a)So, 

and the maximum ifllrease of entropy lan OlLur 
only ,f the different subspaces i>. are d,sjomt, Ie, 
~very slal~ m Sa must be orthogonal to every stale 
111 S6 1f ,,?"{3 From th,s we see two reasons why the 
mcrease IS usually less than the maximum pos"ble 
amount, (a) ,t may be that even though VI.) (I) and 
V'6) (I) are d,fferent functIOns, they nevertheless produce 
the same, or nearly the same, net transformation U In 

time (1-1'1, so that our knowledge of the final state 
does not suffer from the uncertamty in the perturbation, 
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,-0 ,_ I 

, .... 
FIe 1 Illustration oC the subjective H theorem 
(a) The array (b) The resulting entropy curve 

and (b) our initial uncertainty may be so great that no 
such disJomt subspaces exist regardless of the nature 
of the V'Q)(I). The extreme case IS that of complete 
initial ignorance; p(I') is a multiple of the unit matrix. 
Then, no matter what is dOlle to the system we cannot 
acquire any additIOnal uncertamty, and the entropy 
does not change at all. 

Equation (126) corresponds closely to relations that 
have been used to demonstrate the second law of 
thermodynamics in the past, and it will be called the 
"subjective H theorem." The inequahties hold for all 
times, positive or negative, given the density matrix at 
time I' = 0, our uncertainty as to the perturbing signal 
1'(1) affects our knowledge of the past state of the 
system just as much as it docs the future state. We 
cannot conclude from (12.6) that "entropy always 
increases." It may fluctuate up and down m any way 
as long as It remams withm the prescnbed bounds On 
the other hand, It is true w,lIlOul exceptIOn that the 
entropy can at no time be less than its value at the 
instant I' for winch the density matnx was given 

Figure 1 represents an attempt to illustrate several 
of the foregomg remarks by picturing the array. The 
diagram represents a portion of the surface of the umt 
hypersphere upon whICh all points of the array lie 17 

The mterior of a circle represents a certain subspace 
S,(t) which moves in accordance With the Schrodmger 
equation. Separated circles represent diSjoint subspaces, 
while If two circles overlap, the subspace. have a 
certain linear manifold of states m common. The infor· 
matlon given to us at time I' = 0 locates the system 
somewhere in the subspace So The two pOSSible mter· 
aellons V"' (I), V'" (I) would mduee rigid rotations of 
the hypersphere which would carry So along two differ· 
ent trajectories as shown. The lower part of the diagram 
represents the resulting entropy curve S(I). If the 
subspaces Sh S, coincide at some time I" then S(t,) 

17 The representation IS nccess.1.rliy vcry cruue, since a can· 
tinuous 1: 1 mappmg of a region of high dtlllenSiOnahty onto a 
regIon of Jo\H'r dlmensionahty IS topologically ImpoSSible Xever­
theJess such diagrams represent enough of the truth to be very 
helpful, and there seems to be httle danger of drawmg funda­
mentally incorrect conclUSions from them 

= S(O). At times when they are completely separated, 
we have S(I) = S(O)+S(P .), and in case of partial 
overlapping the entropy assumes intermediate values. 

13. INFORMATION GAME 

A typical process by which the subjective B theorem 
can lead to a continual increase of entropy, and which 
illustrates the essential nature of irreversibility, may 
be described in terms of a game. We have a sequence of 
observers 0 .. 0., e., ... , who playas follows. At the 
beginning of the game they are given the possible 
Hamiltonians B.=B.+V(Q'(I) and the corresponding 
probabilities P G' At time I" observer 0, is given a 
density matrix PI(lI). He computes from (12.5) the 
density matrix PI(t) which represents his state of 
knowledge at all other times on this basis, and the 
corresponding entropy curve S,(I). He then tells ob· 
server 0, the value which the density matrix PI(t,) 
assumes at time I" and gives no other information. 

0, now computes a density matrix p,(I) which 
represents his state of knowledge at all times, on the 
basis of the information given him, and a corresponding 
entropy curve S,(I). He will, of course, have p,(I,) 
= p,(I,), but in general there will be no other time at 
which these density matrices are equal. The reason for 
this is seen in Fig. 2, in which we assume that there are 
only JWo possible perturbations V'I), V(2). The infor· 
mation given to e, locates the system somewhere in 
the subspace So at time II. At a different time I" this 
Will be separated into two subspaces S,(I,) and S,(I,) , 
corresponding to the two possible perturbations. For 
simplicity of the diagram, we assume that they are 
dlsJomt. At any other time I" the array of 0, IS still 
represented by two pOSSible subspaces S,(I,), S,(I,). 
Observer e" however, is not in as advantageous a 
positIOn as e,; although he is given the same denSity 
matn, at time I" and therefore can locale the subspaces 
S,(I,) and S,(I,), he does not know that S,(I,) IS associ· 
ated only with the perturbation VlI), S,(t,) only with 
V(2). Therefore, he can only assume that either pertur· 
bation may be associated with either subspace, and the 
array representing the state of knowledge of e, for 
general times consists of four subspaces. 

v' 

/'--"'\..-"--, , 
""oi-...... _/J 

I=t, 

--.(}-

fiG 2 The mforma­
tlon game The array 
of obsen er 1 at times 
II, t2. tJ IS represented by 
50111..1 CI relu The array 
of observer 2 Includes 
also the portion In 

dashed lines 
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The game continues; O. tells o. what the density 
matrix P2(I,) is, and 0, calculates his density matrix 
p,(t) (which, at general times other than I" must be 
represented by eight possible subspaces), and the 
entropy curve S.(t), "', and so on. 

The subjective H theorem applied to the nth observer 
gives 

S.(t.) ~S. (I) ~S.(t.)+S(P .), 

while from the rules of the game, 

S~l(t.)=S.(t.). 

Therefore, we have 

S,(t.)~S,(t,)~S.(I.)~·· '. 

(13.1) 

(13.2) 

(13.3) 

Note that no such inequality as t,~ t.~ t.~ ... need 
be assumed, since the subjective H theorem works as 
well backwards as forwards; tire order of increasing 
enlropy is the order in which informalion was Iransferred, 
and Itas nothing 10 do wilh any lemporal order. 

An important conclusion from this game is that a 
density matrix does not in general contain all of the 
information ahout a system which is relevant for pre­
dicting its behavior; even though 0, and 0, had the 
same knowledge about possible perturbatIOns, and 
represented the system by the same density matnx at 
time I" they were nevertheless in very different positions 
as regards the ablltty to predict its behaVIOr at other 
times. The information which was lost when 0, com­
municated with 0, consisted of correlations between 
pOSSible perturbing forces and the different simple 
arrays which are contained in the total compound 
array. The effect of thiS information loss on an ob­
server's knowledge of the system was not immediate, 
but required time to "develop." Thus, it is not only 
the entire density matrix, but also the particular 
resolution (12.5) into parts arising from different simple 
arrays, that is relevant for the prediction problem. 

For these and other reasons, an array must be 
considered as a more fundamental and meaningful 
concept than the density matrix; even though many 
different arrays lead to the same density matrix, they 
are not equivalent in all respects. In problems where 
the entropy varies with time, the array which at each 
instant represents the density matrix as a mixture of 
orthogonal states is difficult to obtain, and without 
any particular significance. The one which is resolved 
into simple arrays, each representing the unfolding of 
a possible unitary transformation, provides a clearer 
picture of what is happening, and may contain more 
information relevant to predictions. 

The density matrices p.(I) determined by the succes­
sive observers in the information game may be repre­
sented in a compact way as follows. Consider first the 
case where there IS only a single possible perturbation, 
and therefore p undergoes a unitary transformation 

This could also be written in another kind of matrix 
notation as 

p •• ,(I)= L(nn' IG(I,I') I kk')pu' (t'), (13.5) 
U' 

or, 
p(I)= G(I,t')p(I'), (13.6) 

where 
(nn' IG(I,I') I kk')= U •• (I,I')U., .,"(t,I') (13.7) 

is the direct product matrix 

G=UXU', (13.8) 

In (13.4) p is considered as an (NXN) matrix, while in 
(13.6) it is a vector With N' components, and G IS an 
(N'XN') matrix. It is readily verified that G has the 
group property 

('(t,I')G(I',I") = G(I,I") (13.9) 

in consequence of the same property possessed by U. 
The advantage of writing the transformatIOn law in 

the form (13.6) is that, in the case where there are 
several possible perturbations V(·J(t), the transforma­
tion WIth time (12.5) cannot be wntten as a sllnilanly 
transformation with any "averaged U matrix," but it 
is expressible by a G matrix averaged over the distri­
bution p.' 

where 
p(t)= S(I,I')p(l'), 

S(I,I')= L. P .G(o) (1,1'). 

(13 10) 

(13.11) 

The essential feature of the irreverslbihty found III the 
information game is that S(I,I') does not possess the 
group property (139). 

S(I,I') S(I',I");o' S(I,I"), (13.12) 

for on one side we have the product of two averages, 
on the other the average of a product. If (Ll 12) were 
an equality valid for all times, it would imply that S 
has an inverse (1'(1,1')= S(I',I), whereupon (13.10) 
could be solved for p(I'), 

p(t') = g(I',I)p(I). 

But then, the subjective H theorem would give 

S(l)~S(I'), from (13.10); 

S(I')~S(I), from (13.13). 

In the general case S(I/) may be singular. 

(13.13) 

The density matrices of the successive observers are 
now given by 

p,(I)= S(t,t.)p,(l,), 

p,(I) = S(t,t,)S(I"I,)p.(t,), (13.14) 

p,(I) = S(I,I,) S(t"I,)S(I,,t,)p, (I,), 

p(l) = U(t,t')p(I')U-'(I,I'). (13.4) in which the information game is exhibited as a Markov 
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chain,"'" the ordering mdex giving the sequence of 
informa tion transfer rather than a time sequence. 

14. STEP-RELAXATION PROCESS 

In the preceding section, the mformation game was 
interpreted in the "passive" sense; i.e.! we assumed 
that a certain one of the perturbations V'·) (I) was the 
one in fact present, and this same one persisted for all 
time. The different observers then represent different 
ways of looking at what is in reality only one physical 
situation, their increasing uncertainty as to the true 
state being due only to the incomplete transmission of 
mformation from one observer to the next. 

The game may equally well be interpreted in the 
"active" sense, in which there is only one observer, 
but at each of the times I" I" I" ... , the perturbation 
is interrupted and a new choice of one of the V'·) (I) 
made in accordance with the probability distribution 
p •. Although it is not required by the equations, it is 
perhaps best at this point, merely to avoid certain 
teleological distractions, to assume that 

(141) 

At eaLh of these times the observer loses exactly the 
same information that was lost in the communication 
process of the passive interpretation, and his knowledge 
of the state of the system progressively deteriorates 
according to the same Eqs. (13.14) as before. The 
density matnx which represents the best physical 
predictions he IS able to make is then 

JPI(t), 
p(t)= p,(I), 

lp.(l), 

I,"'!" I"'!" I, 
I,"'!" I"'!" I. 

This IS a contllluollS fUllctJOn of time, since 

P.(t.) = P~I (I.). 

(14.2) 

In the following we consider only the case where P 
operates on a functIOn space u of finite dimensionahty 
N. The maximum possible entropy of such a system is 

Sm .. x=lnN, (143) 

which is attained if and only If p is a multiple of the 
unit matrix: 

(14.4) 

From this fact and (13.3), it follows that th~ sequence 
of values S(t.) must converge to some definite final 
entropy: 

(14.5) 

To investigate the limiting form of the density matrix 
as 1-> 00 , some spectral properties of the transformation 
matrices are needed. Let S stand for anyone of the 

"J L Doob, Anr Math 43,351 (1942) 
It W Feller, An /nlroduclum to Probabddy TIt~lWY and ils 

Ap;liealUms (John Wiley and Sons, Inc I New York, 1950). 

(N'X N') step transformations SU.,I_I) operating in 
the direct product space .. Xu=u', and :., y be any 
vectors of N' components upon which S can operate. 
Instead of denoting the components of :., y by a single 
index running from 1 to N', we use two indices each 
running from 1 to N, so that :., y may also be interpreted 
as (NXN) matrices operatmg in the space u. We 
define inner products in the usual way by 

N 

(x,y) = I: :""Y.' = Tr(xty). (14.6) 
n . .I:_1 

Since S is not a normal matrix (i.e., it does not com­
mute with its Hermitian conjugate), we may not assume 
the orthogonality, or even the existence of a complete 
set, of its eigenvectors. However, every square matrix 
has at least one eigenvector belonging to each eigen­
value, so that as % varies over all possible directions, 
the set of numbers 

g(%) ... (%,S%)/(%,:.) 

includes all the eigenvalues of S. Writing 
%.= U(g>xU<a)-l 

it is readily shown that (x.,x.) = (%,x). From (12.5) 
we have 

Sx=I:. PoX., 
and therefore 

I (%,Sx) I = II: P.(%,%.) I "'!"L P.I (%,%.) I 
"'!"I: P.[(%,%)(%.,%.)]I= (%,%), 

where the Schwarz inequality has been used. We 
conclude that for all %, 

I g(%) I "'!" I, (14.7) 

with equality if and only if %.= % for all a. This is 
evidently the case if % is a multiple of the unit matrix; 
tbus (14.4) is always an eigenvector of S with the 
eIgenvalue unity. Only in exceptional circumstances 
could S have any other eigenvalue of magnitude unity; 
this would require that some % other than (14.4) must 
exist which is invariant under all the unitary transfor­
mations U(·). 

By a similar argument, one can derive a slightly 
weaker inequality tban (14.7): 

(S%,S%)"'!" (%,%), (14.8) 

which shows that Tr(p'(I.)] is a non-increasing functioll 
of n, which must converge to some definite final value. 

From these relations several features of the long-time 
behavior may be inferred. First consider S to be 
brougbt, by similarity transformations, to the canonical 
form 

A, 

TST-'= (14.9) 

A, 
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where each A. contains all those, and only those, terms 
which arise from the eigenvalue >. •. If >.. is nondegener­
ate, A. is simply the number >. •. If >., is an m-fold 
multIple root of IS->.1I=O, then.4. may be the 
(mX m) diagonal matrix >..1. or it may have one or 
more "superdiagonal" terms20 

[>.. 1 0 0 : 1. 
A _ 0 >.. 1 0 

'-l~ ~ ~. 0 : J 
(14.10) 

The simplest type of step-relaxation process to describe 
is the one in which all of the matrices S(t •• t.- I) are 
equal; i.e., I. = nT, and each of the possible pertur­
bations V'o)(t) is periodic with period T. The general 
conclusIOns will be the same regardless of whether this 
is the case. We now have 

p(I.) = S"p(O), (14.11) 

and those parts of the canonical form TS"T-I arising 
from the eigenvalue >.=0 are annihilated in a finite 
number of steps, while the sections A." for which 
0< 1 >'.1 < 1 are exponentially attenuated. Thus, the 
situation as n--+oo depends only on those A." for which 
1 >..1 = 1. There are two possibilities: 

(a) The ergodic case. If S has only one eigenvalue 
with 1 >..1 = 1 [whIch must therefore correspond to the 
eigenvector (14.4)J, the sequence (S·' converges to the 
projection onto (14.4); i.e., 

(14.12) 

independently of p(O). The mformatlOn contamed in 
the mit ml distributIOn becomes completely lost, and 
the hmitmg entropy is the maximum possible value 
(14.3) In practice, thiS would be the usual situation. 

(b) If S has more than one eigenvalue with 1>..1 = I, 
the qensity matrix does not necessarily approach any 
fixed limit. Nevertheless, the entropy S(I.) must do so 
Therefore, by an argument hke that of Appendix A, 
t he ultimate behaVIOr must be one in which a certam 
slmilanty transformatIOn is repeated mdefinitely. For 
example, thiS ull!mate transformation could consist of 
a permutation of the rows and columns of p In this 
case, traces of the imtlal informatIOn are never lost, 
and the limiting entropy IS less than InN. 

These results correspond closely to those of the theory 
of long-range order in crystals,n . ., m winch one mtro­
duces a stochasl!c matrix which relates the probablhty 
distributIOn of one crystal layer to that of an adjacent 
one The eXistence or noneXIstence of probab'hty 
mfluences over arbitrarily long dIstances depends on 
\ he degeneracy (m magmtude) of the greatest eigen­
value of this matn'!: 

~ ~ Lcfschetz, Lectures on Dl1fertml~aI EqllaJlfIns (Pnnceton 
C'llIvt'rslt V Press, Prmceton, 1946), Chap I 

"J Ishl-m and ". E Lamb. Jr ,Phys Rev 64, 159 (l9~3) 
Zl! C. r !\'c\\ell and E W Montroll, Revs Modern Ph)s 25, 

353 119;3) 

IS. PERTURBATION BY A STATIONARY 
STOCHASTIC PROCESS 

We now Investigate the <:"hange III our knowledge of 
the state of a syslem for which Ihe perlurbing Hamil­
tonian V(!) is a slalionary random funllion of lime. 
Certain aspect s of Irreversible prolesses may be de­
scnbed in terms of stich a model, although we WIll find 
that olher essential fealures, such as the mechamsm by 
which thermal equihbrium is established, require beller 
approximations in which the qtlan1um nalure of Ihe 
perl urbing forces is taken inlo account 

In claSSical statlsl1<.11 mechanilS an ergodiC hypoth­
esis facilitated Ihe mathematlls Ly alll)\\ing one to 
replace time averages Ly ensemble averages. We now 
find the reverse situallon; that talculation of ~;(I/) is 
faClhtated by an ergodiC prin,iple 11 ... 1 enables tiS 10 
replace I he "ensemble average" (1.1.11) by a lime 
average, and thul to make use of correl~lli()n func­
lions and the Wiener-Khllllchlllc Iheorem. In Eq. 
(1310), G'a)(I,1') may be regarded as a cerl,lIn ftlnc­
IlOnal F[V'o)(IlJ of I',o)(t), ",I",h depends on the 
values assumed by thiS OpCf.1tor in the time mlerval 
(1'--+1). The statemenl Ih,lt \'(1) IS ,l st.ltion,lr), 51<.>­
chaSlIC prOless ImpiJes that the avcr.lgc of tillS fUlH..­
tlOnal 

F'oo= 'E.o PoF[1 'o'(IlJ (15.1) 

is not affected by \\ hlch pari i, tll.1f sample of I he 
funcllon V'·)(I) is involved \\I (15 I), Ie, If \\e \\ere 10 
insert instead the values assumed by rio) (I) III some 
other equal time mlerval (I'+T-->I+T), the avcr.'ge 

P,o='E..l'.F[V'·)(I+r)J (I~ 2) 

would be mdependent of T Conversely, If 

for all funcllonals and all values of T, thIS Imphes Ihat 
V(I) has exactly Ihe same statlstlc.1i properties afler 
any time translatIOn, ~o IhJ.t lret) must be.l sl.tllOll,lry 
stochastll process tTnllcr these (Onclltlons the l''\prcs~ 
sian (15.1) will not be "ffeclCCl by avera~\II~ it o\'cr all 
time translations) 

1 IT po=po,= lim- 'E. p.F[V'a)(I+T)JdT 
T-~ 2T -T 

(IS 3) 

Our ergodiC assumptIOn IS that III Iins formula the 
averagmg over P Q IS redundant, 1 e , 

1 IT po= P'= hm - F[V(t+T)J. 
T~. 2T -T 

(IS -i) 

m whlLh the parameler " may be dropped. 
The preceding paragraph W:lS \\ fit ten 111 a conven­

tional kllld of language Whllh made it appe,lr Ihat " 
substantIa! assumptIon has been mtrouuled I une whose 
correctness should be demonslrated If the resulting 
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theory is to be valid. Such conventional modes of 
efPression, however, do not do full justice to the 
situation as it is presented to us in practice. To see this, 
we need only ask, "What do we really mean by the 
functions V(a)(I) and the probabilities Pa?" In most 
cases there is only one function V(I). Knowledge of the 
statistical properties of V cannot then be obtained by 
observing the frequency with which the particular 
function V(a) (I) appears in an ensemble of similar 
situations, because no such ensemble exists. By the 
probability P a we could mean only the average fre­
quency, over long periods of time, with which a con­
figuratlOn locally hke V(a) occurs in the single function 
V (I). The means by which the probab:lilles P a are defined 
already involve a lime-averag,ng procedure. Therefore 
(15.4) is not an assumption at all; It is merely the 
natural way of stat ing a fact which is expressed only 
awkwardly by (15.1). Equation (15.4) carries out in a 
single step both the averaging procedure in (15.1) and 
the proless by whilh the V(a) and P a are detennined. 

The problem IS thus reduced to a calculation of 
S(I/)= S(I-t'), where 

1 IT S(t)= hm - [U(t+T, T)X U*(t+T, T)]dT. (15.5) 
1'-~ 2T -T 

The exact evalUatIOn of Set) would require a ngorous 
;olution of the Slhrodmger equatIon (12.3) for arbItrary 
I' (I). In praLtICe one must resort to approximate solu­
tIOns al thiS point, and It is fortunate that in many 
practIcal situations S(I) IS determined to a good 
approximation by the use of second·order perturbation 
theory The characterIstic feature of such problems is 
found by notln~ that although g(/,1') does not in 
general possess the group property (13 12), an e<Juahty 
of thiS form may be approximately correct for certam 
ciHn(eS of tunes, prOVided the perturbation IS weak 
,llld has a short correlation time Thus, suppose that 
1"<1'<1, and \Ie try to represent S(t,t") by a product 

S(I,J")"" g(l,I') g(/',I") (15.6) 

The apl'ro,ullallon involveel in (15.6) consists of the 
chs(,\nling-, ,It time t', of mutual correlations which 
were Inuit up lTl t he tune 1Il1ervai (tlt-+l') between 
pOSSIble functIOns I (I) and the correspondlllg Simple 
am.ys If I' (t) IS a weak perturbation, It can change 
the state of the S)stCll1 only slO\dy, and a long tune IS 
re<Juired for any st rong correlat ions to de"elop How­
ever, 1f the time T~ over whICh appreClable autocorre~ 
!allOns perslsIlll I (I) IS very shorllOmpared to (/'-/"), 
the mutual correia tlOns discarded" ere actually accumu­
lated only elunng an mterval T, just [lnor to 1', and Will 
be retalively ummpOllanl, Ihus (15 6) may be a very 
good approximatIOn On Ihe olher hand, It will never 
be an exacl equ,lhty, because the v.!lues of V(t) just 
pnor to t' will necessanly have some mfluence on Its 
behaVIOr just after 1', whose effect is lost m the approxI­
maHon. 

These considerations lead to a means for approximate 
calculation of g(l- I'). Divide the time interval (1'--+1) 
into n equal intervals: (t-t') = nT, and set 

S(I-/')"""[S(T)]-. (15.7) 

If r»rc, this is a good approximation, and if in addition 
it is possible to choose r short enough so that the change 
of state during time T is given adequately by second­
order perturbation theory, this leads to a feasible 
method of calculation. WIth this approximation, the 
theory is reduced in its essentials to that of the step­
relaxation process of the precedmg section. 

The most important feature of the final solution can 
be seen directly from (15.7). The change of state with 
time has a simple "stroboscopic" property: if we 
observe the density matrix only at the Instants 1.,=mT, 
we see the approach to equilibrium take place in a 
stepwise exponential fashion, describable by relaxation 
times. ThiS result is already guaranteed by the nnture 
of the approximation in (15 7) quite independelltly of 
any further details, and in partIcular mdependent ly of 
any assumptions concerning the level spacmgs of the 
system. However, the level spacmgs are important in 
determining the appropriate fonn of the solution. For 
example, if the correlation lime T, is extremely short 
compared to all characteristic limes of the system, we 
may, while satisfying the condition T»T" still have 
I w.d r<:(1 for all tranSitions frequencies Wk!. In this 
case, the change In p durmg lime T is very small, and 
(15 7) may be replaced by a Itnear differential e'lualLon 
with constant coeffiCIents. Thus, defimng K I by 

we have approximately 

dp/dt"""K,P· 

(15.8) 

(15 9) 

K I has .v' eigenvalues X" one of which IhUSt be ~ero 
smce K, annihtlates (U 4). lJy an argument hke that 
leading to (14.7) onc shows that Re(A.) $0. Thus each 
element of P Will relax to a final state accordmg to a 
superposItion of exponentials exp(X,/), With several 
different relaxat ion tImes in general 

The right-hand side of (15.9) is generally a poor 
approximation to the instantaneous time derivatIve of 
p, but gives only the average rate of lhange over the 
period T. SimIlarly, the matrix KI resembles a time 
denvatlve of S; in the following section we present 
reasons for expecting that a slightly different definition 
of K, Will render (15.9) more accurate as far as gIVIng 
the long.term drift IS concerned. 

16. EXACTLY SOLUBLE CASE 

In the case where the perturbation r (I) commutes 
wlth lIo, it is pOSSIble to evaluate (15 5) exactly without 
use of perturbatIOn theory ThiS lase is a very special 
one1 smce the perturbatlon causes no tr.lnsitJons but 
only a loss of coherences, nevertheless It has found some 
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applications in the theory of pressure-broadening of 
spectral lines"·" and exchange narrowing" in para­
magnetic resonance. 

The perturbing forces represented by V (t) often 
arise as a superpositIOn of many small independent 
effects, and m this case the central limit theorem of 
probability lheory shows that the distribution of V (I) 
will be G,tUssian. Furt hermore, in most apphcations 
one WIll not have enough informatIOn about V (I) to 
determine any unique objectIVe probability distribu­
tIon; we may know, for example, only the average 
energy denSIty, therefore the mean-square value, of the 
perturbmg fields, plus a few features of their spectral 
densIty. !lfaximmn-cntropy inference would then be 
needed in order to represent our knowledge of I' (I) in 
a way free of arhltrary assumpl1ons. Smce a Gaussian 
distnbutiotl has ma>.,mum entropy for a given variance, 
one should always tlse a Gaussian distribution If the 
available lllformation ;:onsists only of the first and 
second moments. In the following we consider only the 
G.t11SSlan case 

The HamlitOl1l,ln has ma trIX elements 

(16 I) 

The solutlOl1 of (11.3) for the tIme-development matnx 
IS substituted into (154) to give 

(kk'i g(/,!,) Ill') 

=1l,j<\,."C'"'·'''-'''( CXP[i f.'f., , (I")dt" ]), (162) 

\\ here WA'I =Wk'-Wk, and 

(16.3) 

IS " real Gaussian random functIOn wuh mean value 
tero (by delinnion, since any constant part of V may 
be included in Ho). So also, therefore, IS the functIon 

~(/)= {f(t')dt'. 
o 

(16.4) 

where \\'e h.lve <\ropped the subscripts for brevity. 
The probabIlIty ,hstnbutlOn of g(t) IS determllled by 
its second moment 

u(t) = (g'(t»= J 'dt'f'dt"{f(t')f(t"» 
o 0 

(16.5) 

where 
1 f T 

",(T)= lim- f(l+T)f(l)d/ 
T_ 2T -T 

(166) 

2l P. W. Anderson, Phys Rev 76,64-7 (1949). Earher references 
arc given In thiS paper 

21 t.; Bloom and H ~1argenau, Phys Rev 90, 791 (1953) 
26~ r19~~) \nderson and P R \\'eiss, Revs Modern Phys 25, 

FIG. 3. Region of mte­
gration in Eq. (165). 
Appreciable contribu· 
t1On9 to the integral 
come only from shaded 
part. 

is the autocorrelatIOn functIOn of f(tl. A short call1l­
latlon sho\\'s that for a Gaussian function with vari,lIlte 
u(I), the average required in (16 2) 15 

(16.7) 

and thus the exact solutIon (13.10) of the relaxation 
problem is 

P'" (I) = e'"""Pll' (O)e- I .. ·.<<). (16.8) 

Since .... =0, the diagonal elements of P are unchanged, 
but the off-diagonal elements relax to zero in a manner 
described by (16.5) " 

\\'e assume that there eXIsts a correlation tlme Tc 

such that the correlation functIon (166) is essentially 
zero ;vhenever ITI >r,. The region of integration in 
(16.5) may be represented by a SfJuare as in Fig. 3, 
and it is seen that although u(t) necessarily starts out 
proportional to (l for small t. it approximates a line,\[ 
function of time when /> T,. The function u(t) therefore 
has the form of FIg -I, ,lnd for I> T, It re<luces to 

The '!uanwy 
I ~ 

I(w)=-f .. (1)'-'"',/1 
2 ... -110 

FIG 4 The function 
6(1) 

o'n I 

(16.9) 

(16 10) 

21 In some cases It may he posslhk to eVd.luate (167) dtrectly 
even though <.1:2) does n(lt C'\lst Fllr (\ample, \\e nMy have 
f(l)=constant, \\lth pro!;J.lJlhty lh ... lnhutlOn p(f)df lhcli (167) 
is a FOUrier transform, and" Ith Lorcntzlan p(f) \I,C ohtain a 
decay law exactly exponential for all times 
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FIG 5 Shp effect 
caused by discarding 
correla.hons. The ap· 
proximate solution is 

:~de~:!~dw~re ~~: 
dashed hne' IS the 
exact solution 

is the spectral density of ]{I} for frequency w, and TI is 
a short lIme somewhat less than To. indicated on Fig. 4. 
Thus when I> T" the relaxation process goes into an 
exponential damp1Og, the element P .. • having a relax­
atIOn time T H', where 

(16.11) 

Note that all hough the final formulas involve only the 
speclral denSIty at zero frequency, the condition that 
'P(t} should be very small for I II> T, implies certam 
condillons on lew) at other frequencies It is required 
not only that l{w} be large over a band WIdth ~T,-l 
of frequel1ues, but also that It be a sufficiently smooth 
function of frequency. DisLOntmuities in lew) produce 
oscillations 10 'P{I) and ,,(I) which may persist for long 
periods, rendering (16.9) inaccurate. 

It is of mtcrest to compare the exact solution (16.8) 
with the one which would be obtained using the 
approxlI1Jallon of (IS 7). Here we stop the lI1tegration 
process of (165) after each interval T, throwaway 
mUlual UJrreialions betlleen p and F(t), and use the 
dellsIly mdln, Ihus oblamed as Ihe lllltial conrutlon 
for I he l1e,1 penod The resultmg ,,(t) IS Illustrated in 
hg :; It IS seen that the approxlmaUon "shps behmd" 
the e,aLl solutlOl1 by a lIme delay TI each lime the 
mutual (OrreiallOlls arc dlslarded 

There is .m apparent paradox m t Ius result It seems 
IMtur," to suppose that any mathemallcal approAima-
110n must "lose mformallon," and therefore mcrease 
the entropy H()\\ever, we find the relaxation process 
taking place 1110re rapIdly III the exact treatment than 
in the appro,nnate one. S .... ,(t):2:S..,Pro,(I) Thus, the 
appro,,(lmat Ion has not "lost mformation," but has 
"injet..ted false informallon " The reason for this can be 
v,sual,l.ed as follows Suppose that at time 1=0 the 
array consIsted of a smgle point, ie, a pure state. At 
later I1mes II ",II consIst of a conllnuous d,slTlbution of 
points filling a cerlam volume, "h,ch continJally 
expands as t increases It IS very much like an expanding 
sphere of gas, where strong correlations will develop 
between posl\lOn and velocIty, a molecule near the 
edge of the sphere IS very likely to be movmg .!way 
from the cenler. Th,s corresponds roughly to the 
correia lions between ddlerent states of the array and 

different possible perturbing signals V(I). Now suppose 
that in an expanding gas sphere these correlations are 
suddenly lost; the set of velocities existing at time T is 
suddenly redistributed among the molecules at random. 
Then a molecule near the edge is equally likely to be 
moving toward or a wa y from the center. The general 
expansion is momentarily interrupted, but soon resumes 
its fonner rate. 

This paradox shows that "infonnation" is an unfortu­
nate choice of word to describe entropy expressions. 
Furthennore, one can easily invent situations where 
acquisition of a new piece of infonnation (that an 
event preVIOusly considered improbable had in fact 
occurred) can cause an increase in the entropy. The 
terms "uncertainty" or "apparent uncertainty" come 
closer to carrying the right connotations. 

Note that, If we were to use the slope of the approxi­
mate curve in Fig. 5 just before time T, instead of the 
average drift over period T, to caiculate the relaxation 
time, we would obtain a more accurate value whenever 
T>Tc . 

17. PERTUltBATION THEORY APPROXIMATION 

Returning to the general case, we conjecture that a 
similar situation to that just found will occur: i.e" that 
the differential equation 

dp/dl=K,p, (17.1) 
where 

(17.2) 

will give a shghtly more accurate long-term solution 
than will (15.9). The evaluation of g(r) using pertur­
bation theory is in essence identical with the treatments 
of nuclear spm relaxation given by Wangsness and 
Bloch," Fano,", Ayant," and Bloch,'"," Only a brief 
sketch of the calculations is given here, although we 
wish to pomt out certain limitations on the applica­
bility of preVIOUS treatments. 

One solves the equation of motion (123) by use of 
tlffie-dependent perturbation theory, retaming terms 
through the second order. The result of substituting 
this solutIOn mto (15.5) is expressed compactly as 
follows. Define a matrix 'P(I) whose elements consist of 
all correlatIOn functIOns of V kI, V.",: 

(kk'i 'P(l- t') Ill') = (V .. (t)V .",*(I')}, (17.3) 

in whIch the average IS taken over all time translations. 
'P(t) has the symmetry properties 

(kk'i 'P(l) I U')= (II' I 'P(I)! kk')*= (I'll 'P( -I) I k'k) (17.4) 

We assume agam that there exists a correlatIon tune 

"R K Wang.ness and F Bloch, Phys Rev 89, 128 (1953) 
.. U Fano, Phys Rev %, 869 (1954) 
"Y Ayant, J phy. radIum 16, 411 (1955) 
.. F Bloch, Phys Rev 102, 104 (1956) 
.. F Bloch, Phy. Rev 105, 1206 (1957) 
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T. such that all components of <p(I) are essentIally zero 
whenever t> 't:. In this case the "partial Fourier 
transforms" of <p, defined by 

(175) 

are independent of T. Fmally, we mtroduce the symbols 

(kk' I 'III') = (kk' 1<1>(", •. ,.) I , ... ') = (IUI'I kk')*. (17.6) 

In terms of these quanlltles, we obtam 

(kk'i g( T) Inn') = .-'·""'{5,.5"., 
-5,.q(w •. " )"£..(pp I k'"')-5,,.'q(w,.)"£. .(klll pp) 

+q(w .. -w".,)[(kk' i ,,,,')+ (,,'nl k'k)]}, (17.7) 
where 

q(",) = (.'·'-I)/iw. 

In the case of extremely short correlation time, so that 
IWhTI«I, as assumed in (15.9) and (17.1), q(W,,)=T 
for all transition frequencies Wh, and (17.7) leads to 
the differential equation 

Pu,+iw..,p..,= "£. ([Ckk'lnn')+Cn'nlk'k)]p •• , 
>I.n' 

- (nn I k',,')p,.,- (kn I ,,'I")P.,". (17 8) 

This case of perturbation by extremely wlde-b.tnd 
"white noise" applies to many cases of nuclear spm 
relaxation in liquids," its condition of vahdity bemg 
that the correlation time (roughly, period of molecular 
rotatIon) is short compared to the Larmor precession 
penods. 

In the approXlmation of (17.8) the quantIties 
(kk' I nn') are real if <p(t) is real, as will usually be the 
case: 

(kk'i nn')= f~ cos(w.,.,I)(kk' I <p(I) I .. n')d/. (17.9) 
• 

The neglected term is small, since by hypothesIs <p(t) 
is very small before sin(w.",,) attains an appreciable 
magnitude. Equation (17.9) is 1r times the "mIxed 
spectral density," at frequency W,"', of J! .. (I) and 
V.'.' (I), To interpret (17.8) we transfer all terms 
containing pu' to the left-hand side 

pU'+(_l_+iw",)pH'="driving forces." (17.10) 
T .. , 

The relaxation times T '" are given by 

lIT",='Y'+'Y"-'Yu', 
where 

'Y.= L.(kkl pp), 

'Yu'= (kk'lkk')+(k'klk'k). 

(17.11) 

(17.12) 

If the correlation tIme T. is not short compared to 
the periods (w")-,', then the time of integration T must 

• BJoembergen, Purcell, and Pound, Phys Rev. 73, 679 (1948) 

be chosen so long that the formulation (17.8) m terms 
of a differential equatIon breaks down. In thIS case a 
dIfferent approach, used by Wangsness and Bloch," 
may be attempted. Here one removes the rapId tnne 
variations of p due to II. by transforming to the inter­
actlon representation, in WhICh the denSity Inatrix IS 

(17.13) 

and attempts to describe the relaxat ion proce" by a 
hnear differential equatIOn with constant coelhoents, 
satisfied by the slo\\'ly varymg pet). Th,s is not always 
poSSIble, however, for Eqs (15.5) and (15 7) hold only 
in the original Schrodmger representatIOn If II 0 is 
dIagonal, the matrIX S' which gIves the lh,mge of state 
in the interaltion representation, 

p(t) = g,(t,t')p(t'), (17.14) 

IS related to the ~,evlous S by 

(H'I SI(t+T, t) Ilw') 
= .,( ... -."".) 'e'·""(kk' I S( T) 11m'), (17.15) 

so that although S is a funlllon only of (1- 1'), tillS IS 
not III general t rue of Sf ('Ol1Sf>quent ly an approxi­
mation of the form (IS.7) lannot he v"li<l 111 genel,t1 
for ~jJ However, It IS seen th.!l those clements of £:, 
for whIch 

(17 16) 

depend only on (I-I'). Therefore, If by any means 
one can justify <hscarding clements of SI not satisfyin~ 
(17.16), lh,s method wIll work. ReferrIng to (17 7), It 
IS seen that t he elements whilh satisfy (17 16) arc just 
the "secular terms" which increase proportional 10 T, 

while the unwanted terms are the oSClllatmg ones. 
Therefore if the time T IS sutliciently long, and the 
level spacings are such, that the quantities 

are either large compared to unity, or zero, for all 
combmations of levels, the secular terms will be much 
larger than the oscillating ones and \\ e obtam the 
approximate differenllal equatIon 

Cip ... 
--= "£. {~(w"-OI.,.')[{kk'I''''') 

iJt .. ,ft' 

+ (n'n I k'k)]p •• ,-o(w.,.,) (nn I k'n')p •• , 

-5(w •• )(knln'n')p •• ". (17.17) 

If there is no degeneracy and the density matrix is 
initIally diagonal, (17.17) reduces to 

Cip .. ,/Cil= 2"0", "£.. 1..(w.,)(P •• - p,,), (17.18) 

where 
1 ~ 

I •• (OI)=-J .-'·'(kkl.pCt)llm)dl 
2,.. -CIO 

(17.19) 
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i. the spectral density, at frequency 0., of V .. (I). 
Equation (17.18) is to be compared to (11.7); we have 
a time-proportional transition probability satisfying the 
condition of microscopic reversibility. Note, however, 
that this result depends entirely on the assumptions as 
to spectral properties of J!(I) and the various approxi­
matIOns made, which ensured that off-dlagonal elements 
of p would not appear. From the definition (15.5) of g 
it follows that, in the case that prO) is diagonal, the 
rigorous expression for diagonal elements at time I IS 

P .. (I)=L.(I U .. (I,O)i')p •• (O) 
=L.A .. (I)p •• (O), (17.20) 

so that 111 general the transition probabilities A •• (/) are 
nelt her lime proport ional nor symmetric." On the 
other hand, the so-called A-hypothesis," If stated in the 
form 

L. >-.. (I)=L. >-•• (1)= I, 

IS always satisfied In this semiclassical theory, in 
LOIlscquenLe of the unitary character of U." 

In (17.17) we may again transfer all terms containmg 
p". to the left-hand side": 

iJpa' [ 1 .] --+ -+i(&W,-&w,.) p,,' 
ill T ... 

="dnvmg forces," (17.21) 

\I here (li 11) holds, but m place of (17.12) we now have 

(17.22) 

The qualltllles "Y, and &wi are defined to be real. We 
interpret these relations as follows. In consequence of 
the random perturbations, the energy of state k is 
Ullcrrtalll by an amount "Y. (Ill frequency units), and 
In addu ion its average posinon is shifted by an amount 
&W,. Because of thiS uncertainty m energy, different 
possible states of the array drift out of phase with each 
other, and the off-dtagonal element p". tends to relax 
to ~ero wit h a rel.uation time T ••.. The term 

"Y ... = (kk'lkk')+(k'klk'k) 

= L:(V •• (t) V •.•. (O»)dl (17.23) 

corrects for the fact that there may he rorrelations 
hetween the "instantaneous level shifts" V,,(I), V •.•• (/) 

» A trivial exception occurs if the system has only two linearly 
independent states, for a (2X2) unitary matrix necessarily 
satisfies i U,II'"., IU,l l'. This 15 not true in any higher dimenSlon­
ahtv 

a4 The possibilIty that AlA IS not proportional to l may lead in 
some cases to a differential equation for p \\ith hme-de~ndent 
C'oetllclC."nts. analOltous to Eq (224) or referenre 3J 

,JI If there IS no clegenemcy and the level Ipacmg 15 the most 
general t) pe for ",Jucb there IS no relation of the form "' .. -w •.•. 
for k""k·. the right·band std. of (1721) IS zero for all off.<fiagonal 
elements p"". 

so that the contributions of the level widths "Y., "Y.' to 
the rate of relaxation are not independent. Due to the 
terms"yw the uncertainty in energy"Y. is different from 
the reciprocal of the mean lIfetime of state II against 
transitions. The predicted line widths are, of course, 
the reciprocals of the relaxation times T .... 

The symbols (kklpp) may be expressed in terms of 
the spectral density of l' •• (1). Inverting the Founer 
transform (17.19) and substituting the result into 
(17.5), (17.6), we obtain 

f" I.,(w)dw 
(kklpp)="I •• (w •• )+iP ---, 

_ W-Wpi 
(17.24) 

where P stands for the Cauchy principal value. Thus 
the level Widths depend on the spectral density at the 
transition frequencies, while the level shifts depend 
mainly on the manner in which the spectral denSIty 
varies near the transition frequencies. This can be 
stated in simpler form in the usual case where V.,(I) 
= Q.,f(l), where Q., is constant, and f(l) is a real 
random functIOn. Let \p(I) be the autocorrelation func­
tion of f(l); then the level widths and level shifts are 
proportional to the cosine and SlOe transforms of \P(I): 

"Y. = L I Q •• 12f" cos(w.,.l) '(>(/)d/, 
• G 

(1725) 

&w. = L I Q •• 121" sin (0..,1) \p(I)dt. , . 
From thIS we see that the level shifts will be small 
compared to the level widths if '(>(1) becomes vantsh. 
ingly small before sin(w •• /) reaches its first maximum. 
This, however, IS just the condition for valIdity of 
(17.8). Thus, whenever the correlation time T, IS so 
long that (17.17) is required mstead of (17.8) one may 
expect appreciable level shifts. 

If the quantities W,.T are of order unity, neither of 
the differential Eqs. (17.17), (17.8) IS applicable. In 
fact, it is clear already from the rigorous expression 
p(/) = g(/,I')p(l') that in general a relaxation process 
cannot be described by any differential equation, for 
the rate of change of p does not depend only on its 
momentary value, but is a functional of past conditions 
during the entire interval (1'-1). Thus, the formulation 
in terms of differential equations is fundamentally 
inappropriate. It is convenient in those special cases 
where it can be justified, because of the easy interpre­
tation in terms of relaxation times and level shIfts. 
However, the quantities necessary for comparison with 
experiment can always be inferred directly from (17.7), 
the validity of which -does not depend on the magni­
tudes of the quantities WhT." 

The symmetry of the tranSition probabilities given 
by (17.18) arises only because the V •• (I) are here 
considered numbers. If in better approximation one 
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takes into account the quantum nature of the sur­
roundings, they must be considered as operators which 
operate on the state vector of the perturbing system CT, 

(the "heat bath"). Then, as shown by Ayant," the 
definition of correlation functions (17.5) remains vahd, 
provided the brackets are now interpreted as standmg 
for the expectation value taken over the system CT" 
and the differential Eq. (17.8) or (17.17) then repre­
sents an approximation in whIch mutual correlations 
between the two systems are dIscarded at intervals T, 

in the manner of (11.5). One now finds that the proba­
bilities of upward and downward transttlons are no 
longer equal. In the treatment of Ayant, the question 
of equality of these transition probabihues IS reduced 
to the question whether the spectral density of the 
perturbmg forces is the same at frequencIes (+w) and 
(-w). This is correct provided one always defines the 
perturbing terms to be real, as in (17.25); note, how· 
ever, that the symmetry of transition probabilities in 
(17.18) does not require that the spectral denstty of 
V .. (t) be an even function of frequency. It is suffiCIent 
if the spectral density of V' ft at frequency (+w) is 
equal to that of V ft' at (-w), and thIS is always the 
case if V is Hermitian. 

If one assumes a Boltzmann distribution for the heat 
bath and neglects the effect of the system of interest CTI 

in modifying this distribution, the solution of (17.17) 
tends to another Boltzmann dlstnbution corresponding 
to the same temperature." ". Treatment of this case 
and that of "secular equilibrium" from the subjective 
pomt of view will be considered in a later paper. 

18. CONCLUSION 

The foregoing represents the first stage of an attempt 
to provide a new foundation for the predictive aspect 
of statIstical mechanics, III which a single baSIC principle 
and method applies to all cases, equilibrium or otherWIse. 

The phenomenon of nuclear spin relaxation is a 
particularly good one to serve as a guide to a general 
theory of irreversible processes. It IS complicated enough 
to require most of the techniques of a general theory, 
but at the same time it is simple enough so that m 
many cases the calculations can be carried out explicitly. 
Nuclear induction experiments, in which the predictIOns 
of the Bloch· Wangsness theory" ,3.,11 are verified down 
to fine details," provide a good illustration of many of 
the above remarks, Here tbe experiments are performed 
on samples con taming of the order of 1(},· nuclei, and 
one measures the time dependence of their total mag­
netIc moment when subject to various applied fields 
In the theory, however, one usually calculates a density 
matrix p, (I) which operates only in the function space 
of a single spin, or of some small aggregate of spins such 
as those attached to a single molecule The possibility 
of predictmg mutual properties of dIfferent spm umts 
is therefore lost. 

"]. T. Arnold, Phys Rev. 102, 136 (1956), W A. Anderson, 
Phys Rev. 102, 151 (1956). 

It would, however, always be beller In principle to 
adopt the "global" vIew III whIch the entire asscmblagp. 
of spins in the sample is the system tre,Hed To the 
extent that different molecular umts behave mdepend­
ently, the complete denSIty matrix p thus obtamed 
would be a direct product of a very luge number of 
matrices, However, thIS would hardly ever be true 
because some correlatlOlls between dlfTerent spm units 
would be expected. Thus, the <]uestion is raised whether, 
and to what extent, predilllons made only from p, 

can be trusted. At first glance it seems that they could 
not be, for 111 most cases the density matrix p,(t) differs 
only very slightly from a mulaple of the unit m,llrIX, 
and thus represents a very "hro,HI" prob"bdity ,hstri· 
bution, According to the diSlusslOns of ma<unum­
entropy inference in 1 and the int ro<luLllon to the 
present paper, it would appear that this IS a case where 
the theory fails 0 make any dcti1l1te predictIons, so 
that unless the probabilitIes 111 p, could be established 
in the objective sense, the (,t1cuiations of Sel. 17 would 
be devoid of physical contenl. 

The thmg which rescues us from tillS situation IS, of 
course, the fact that the experimen ts refer not to a single 
spin unit, but to a very large number of them. We must 
not, however, jump to the obvious con<iuslOn that the 
"law of large numbers," or the central hmit theorem,lg 
automatically restores rehablhty to our predlctlOlls 
To do 50 would be to make the logical error of the 
experimenter who thought that he could ad,\ three 
significant figures to h,s measurements merely by 
repeating them a mllhon times The correctness of the 
usual calculations can be demonstrated without expheit 
reference to the laws of large numbers, by applicatIOn 
of the prinCIples of Sec. 11. This is, m fact, the example 
par excellenet of how much a prediction problem can be 
simplified by dlscardmg irrelevant mformation. 

Suppose that we had solved the problem from the 
global viewpoint, obtained the complete denSIty matrix 
pet), and demonstrated that it gave a sharp dlstribuaon, 
and therefore rehable predictions, for the total magnet\( 
moment M=M,+M,+·, +M N • Then the only thmg 
of further interest would be the value of (M). Acconlmg 
to Sec. 11, this can be calculated as well from the d,rect 
product matnx 

p,Xp,X,' XPN, 

where p. IS the projectIOn of p onto the space of the kth 
system. If the small systems are equivalent, the (M.) 
are all equal, and thus we obtam 

(M)=Tr(pM)=N Tr(p,M,). 

This equation is exact regardless of whether correlatIOns 
eXIst. Thus, if p, embodies all of the available mformatwn 
about a single spin system, the predichons of lotal moment 
of N systems obta.ned from tt are Just as relwble as are 
those obtained from the global dennty matrix p. We cannot 
estimate thIS relIability from p, alone; loss of that 
information is part of the pnce we had to pay for 
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simplification of the problem. If correlations between 
different spin units are strong., it will of course be very 
difficult to obtain PI without first solving a larger 
problem. Thus, in practice one will obtain only an 
approximate value of PI; however, a one percent error 
in the calculated value of (M,) leads only to a one 
percent error in (M). 

APPENDIX A. SUBJECTIVE H THEOREM 

Consider the density matrix (12.5) with I' = 0; at 
any particular time there exists a unitary matrix V (I) 
which diagonalizes p(I), so that (12.5) may be written 
in terms of the diagonal matrices, 

d(l)=I:. p.W.d(O)W.-', (A. I) 
where 

W.= V (I)U<·) (I,O)V-' (0) (A.2) 

is a unitary matrix. The eigenvalues d.(I) of p(l) are 
thus related to the eigenvalues of prO) by 

(A.3) 

where the quantities B •• form a doubly stochastic 
matrix: 

(A.4) 

The first of the inequalities (12.6) is then proved as 
follows: 

S(I)-S(O)= I:. d.(O) lnd.(O)-I:. d.(t) lnd.(J) 
= I: •• B •• d.(O) lo[d.(O)/d.(t)] 

2:I: B •• [d.(O)-d.(I)]=O. (A.5) 

combination of m, n for which d.(O)¢d.(I). If prO) is 
nondegenerate, this means that the eigenvalues d.(t) 
must be a permutation of the d.(O). 

The second of the inequalities (12.6) follows from 
the fact that for any given denSity matrix p, the "array 
entropy" SA of Eq. (7.14) attains its minimum value, 
equal to S= - Tr(p lnp) for the orthogonal array. To 
prove this, let the orthogonal array be the one with N 
states, where the state •• has probability d., and let 
(",.,w.: be any other array with M states, where 
M2: .Y, which leads to the same density matrix. The 
two arrays are related by a transformatlon of the form 
(7.9) 

where V •• is an (MXM) unitary matrix, and we define 
d.=O, N < n5, M. From thIS and the orthogonality of 
the •• it follows that 

(A.6) 

where C •• = I V •• I' is a doubly stochastic matrix, and 
thus by the previous argument (A.S), 

(A.7) 

Now in the case considered here,let prO) be represented 
by its orthogonal array ( •• (O),d.(O»). At time t, the 
density matrix (12.5) is represented by the array in 
which the state 

"' •• (1)= V<o)(I,O) •• (O) 

has probability w •• = P.d. (0). The array entropy is thus 

Here use has been made of the fact that In%2: (1-:.-1), SA (t)= _ I: •• w •• lnwo.=S(O)+S(P .)= const, (A.B) 
with equality if and only if %= I. Thus, the equality 
sign in (A.S) holds if and only if B •• =O for each which, together with (A.7), proves the theorem. 



4. BRANDEIS LECTURES (1963) 

These lectures, delivered at Brandeis University in July 1962, mark the end of 
an evolutionary phase in which, still misguided by the thinking of the past, I 
believed that the treatment of irreversible processes must be fundamentally 
different from equilibrium theory. But there is an advance in that the distinc­
tion between information entropy S1 and experimental entropy SE, not yet 
clearly seen in the 1957 papers, is now recognized and stressed. Of course, 
this step was crucial for any rational discussion of irreversibility and the 
second law. The beginning of the next phase is recalled in 'Where do we 
Stand?' reprinted elsewhere in this volume. 

The Brandeis lectures have also the recognition that the continuous infor­
mation measure as given by Shannon was not derived by him from any 
desideratum, but only written down by analogy with the discrete measure; 
and if we derive it by a limiting process from the discrete case there is an 
extra term m(x). Of course, expressions of this type had been given three 
years earlier by Kullback, and sixty years earlier by Gibbs; but they were not 
given this motivation. Recognition of m(x) restored the invariance of the 
theory under parameter changes, which had been a minor problem for 
Shannon but a major one for us. 

The most important result of this work is the demonstration that, contrary 
to what had been asserted endlessly in the literature of Statistical Mechanics, 
the constancy of von Neumann's entropy expression S1 = - Tr(p log p) 
does not conflict with the Clausius adiabatic form of the second law, Sfinal 

;;.: Sinitial. Quite the opposite; the second law is an elementary consequence 
of that constancy. It is only after it has been maximized that the von 
Neumann information entropy S1 corresponds to the experimental entropy 
SE of Clausius. To the best of my knowledge, however, this demonstration 
has been totally ignored, and the traditional false statement continues to be 
repeated throughout the literature of Statistical Mechanics. 

While the important result was being ignored, the trivial illustrative 
example of dice in the opening remarks acquired a world-wide notoriety. 
About a dozen articles have now been written attacking or defending this 
example, and they are still appearing. We return to the topic in 'Where do we 
Stand?' and in 'Concentration of Distributions at Entropy Maxima'. 
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1. INTRODUCTION 

At the beginning of every problem in probability theory, there 
arises a need to assign some initial probability distribution; or 
what is the same thing, to "set up an ensemble." This is a prob­
lem which cannot be evaded, and for which the laws of physics 
give us no help. For example, the laws of physics tell us that a 
density matrix p( t) must vary with time according to i11,O '" [H, p) I 
but they do not tell us what function p(O) should be put in at the 
start. Assignment of p(O) is, of course, a matter of free choice 
on our part- it is for us to say which problem we want to solve. 

The assignment of initial probabilities must, in order to be 
useful, agree with the imtial information we have (i. e., the re­
sults of measurements of certain parameters). For example, we 
might know that at time t '" 0, a nuclear spin system having total 
(measured) magnetic moment M(O), is placed in a magnetic field 
H, and the problem is to predict the subsequent variation M(t), 
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which presumably tends to an equilibrium value M(co) = ~()H after a 
long time. What initial density matriX for the spin system p(O), 
should we use? Evidently, we shall want it to satisfy, at the very 
least, 

Tr (P(O)Mop) = M(O) (1) 

where Mop is the operator corresponding to total magnetic moment. 
But Eq. (1) is very far from uniquely specifying p(O). Out of the 
infinite number of density matrices satisfying (1), which should we 
choose as the starting point of our calculation to predict M(t)? 

Conventional quantum theory has provided an an&wer to the 
problem of setting up initial state descriptions only in the limiting 
case where measurements of a "complete set of commuting ob­
servables" have been made, the density matrix p(O) then reducing 
to the projection operator onto a pure state 1/1(0) which is the ap­
propriate simultaneous eigenstate of all the measured quantities. 
But there is almost no experimental situation in which we really 
have all this information, and before we have a theory able to treat 
actual experimental situations, existing quantum theory must be 
supplemented with some principle that tells us how to translate, or 
encode, the results of measurements into _a definite state descrip­
tion p(O). Note that the problem is not to find the p(O) which cor­
rectly describes the "true physical situation." That is unknown, 
and always remains so, because of incomplete information. In 
order to have a usable theory we must ask the much more modest 
question: "What p(O) best describes our state of knowledge about 
the physical situation?" 

In order to emphasize that this problem really has nothing to 
do with the laws of physics (and, as a corollary, that its solution 
will have applications outside the field of physics), consider the 
follOwing problem. A die has been tossed a very large number N 
of times, and we are told that the average number of spots up per 
toss was not 3.5, as we might expp.ct from an honest die, but 4.5. 
Translate this information into a probability assignment P n' n = 
1,2, ••. ,6, for the n-th face to come up on the next toss. 

To explain more fully what is meant by this, note that we are 
not asking for an estimate of the fraction (i. e., the relative fre­
quency) of tosses which give n spots. There is, indeed, a connec­
tion between the probability and the frequency, which we will de­
rive later. But the problem stated is to reason as best we can 
about the individual case. The probability Pn must therefore be 
interpreted in the so-called "subjective" sense; it is only a means 
of describing how strongly we believe that the n-th face will come 
up in the next toss. 

To state the problem more drastically, imagine that we are 
offered several bets, at various odds, on various values of n, and 
we are compelled to accept one of these bets. The probabilities 
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Pn are the basic raw material from which we decide which one to 
accept. This is typical of many practical problems faced by the 
scientist, the engineer, the statistician, the politician; and indeed 
all of us. We are continually faced with situations where some de­
finite decision must be made now, even though we do not have all 
the information we might like-.-

Conventional probability theory does not provide any principle 
for assigning the probabilities Pn; so let us think about it a little. 
We must, evidently, choose the Pn such that 

6 
L Pn= 1 
n=1 

6 
L nPn = 4.5 
n=1 

(2) 

(3) 

where (3) is analogous to (1). A pqssible solution of (2) and (3) is 
indicated in Fig. 1; we could take Pc = Ps = 1/2, all other Pn = O. 
This agrees with all the given data. But our common sense tells 
us it is not a reasonable asSignment. The assignment of Fig. 2 i8 

1 

Pn 0.5 

o 1 2 3 4 5 6 
n-

Fig. 1 

1.0 

o 1 2 
n 

Fig. 2 
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evidently a more honest description of what we know. But even 
this is not reasonable-nothing in the data tells us that n = 1,2 are 
impossible events. In Fig. 2, we are still jumping to conclusions 
not warranted by the available evidence. Evidently, it is unrea­
sonable to assign probability zero to any situation unless our data 
really rules out that case. If we assign Pi > 0, P 2 > 0, then in 
order to keep the average at 4.5, we shall have to give some in­
creased weight to the cases n = 5,6. Figure 3 shows an assign­
ment that agrees with the data and does not ignore any possibility. 
But it still seems unreasonable to give the case n = 6 such excep­
tional treatment. Figure 4 represents what we should probably 

0.5 

0.4 

0.3 
0.2 

0.1 

0L--4--~--+-~L-~--~ 

Fig. 3 

0.1 

0~-+--~--~-+--4-~~ 
1 2 3 4 5 6 

Flg. 4 

call a backward step-nothing in the data of the problem indicates 
any reason for such an uneven treatment. A reasonable assign­
ment Pn must not only agree with the data and must not ignore any 
possibility- but it must also not give undue emphasiS to any possi­
bility. The Pn should vary as smoothly as possible, in some 
sense. One criterion of "smoothness" might be that adjacent dif­
ferences Pn+l - Pn Should be constant; and, indeed, there is a so­
lution with that property. It is given by Pn = (12n - 7)/210 and is 
shown in Fig. 5. This is evidently the most reasonable probabili-
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0.5 

0.4 

0.3 
0.2 

0.1 

o 1 2 5 6 

Fig. 5 

ty assignment so far. But there is a limit to how high an average 
you can get with this lineal variation of Pn• If we took the extreme 
case, Pn = (const.)(n - 1), we should again violate one of our prin­
ciples because PI = 0, and the average would be only l:nPn = 70/15 
= 4.67. Suppose the data of the problem had been changed so that 
the average is to be 4.7 instead of 4.5. Then there is no straight­
line solution satisfying Pn ~ O. The Pn must lie on some concave 
curve, as in Fig. 6. But the principles by which we reason surely 

1 2 3 

Fig. 6 

4 5 6 
n 

are the same whether the data specify 4.5 or 4.7; so it appears 
that a result qualitatively such as Fig. 6 should be used also when 
n = 4.5. 

This is about as far as qualitative reasoning can take us, and 
I have carried the argument through on that basis in order to show 
how ordinary common sense leads us to a result that has all the 
important features of the quantitative solution given below. The 
probability assignment Pn which most honestly describes what we 
know is the one that is as smooth and "spread out" as possible sub­
ject to the data. It is the most conservative assignment in the 
sense that it does not permit one to draw any conclusions not war­
ranted by the data. 



BRANDEIS LECTURES 45 

This suggests that the problem is a variational one; we need a 
measure of the "spread" of a probability distribution which we can 
maximize, subject to constraints which represent the available in­
formation. It is by now amply demonstrated by many workers that 
the "information measure" introduced by Shannonl has special 
properties of consistency and uniqueness which make it the cor­
rect measure of "amount of uncertainty" in a probability distribu­
tion. This is, of course, the expression 

SI = - LP.log p. 
ill 

(4) 

which, for some distributions and in some physical situations, has 
long been recognized as representing entropy. However, we have 
to emphasize that "information-theory entropy" SI and the experi­
mental thermodynamic entropy Se are entirely different concepts. 
Our job cannot be to postulate any relati on between them; it is 
rather to deduce whatever relations we can from known mathemat­
ical and physical facts. Confusion about the relation between en­
tropy and probability has been one of the main stumbling blocks in 
developing a general theory of irreversibility. 

2. THE GENERAL MAXIMUM-ENTROPY FORMALISM 

To generalize the above problem somewhat, suppose that the 
quantity x can take on the values (xu x2, ••• , xn) where n can be 
finite or infinite, and that the average values of several functions 
flex), f2(x), ... , fm(x) are given, where m < n. The problem is to 
find the probability assignment Pi = P(Xi) which satisfies the given 
data: Pi ~ 0, 

(5) 

k = 1,2, ••. , m (6) 

and, subject to (5) and (6), maximizes the information theory en­
tropy 

n 
SI'" - L Pi log p. 

1=1 1 

(7) 
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The solution to this' mathematical problem can be found immedi­
ately by the method of Lagrangian multipliers, and special cases 
are given in every statistical mechanics.textbook. This method 
has the merit that it leads immediately to the answer, but the 
weakness that it does not make it obvious whether one obtains a 
true absolute maximum of SI' The following argument establishes 
this important result more rigorously. 

Let (PI' , . Pn) and (u l ••• un) be any two possible probability 
distributions over the Xi; i. e., Pi ~ 0, ul ~ 0, i = 1, 2, ••• n and 

(8) 

Then, by using the fact that log x ~ (I - x-I), with equality if and 
only if x = 1, we find the following: 

Lemma 

.A p. n u1 
Lp. log...! ~ LP.(1 - -) == 0 
i=1 1 ui 1=1 1 Pi 

with equality if and only if Pi = ui, i = 1, 2, •.. n. Now make the 
choice 

where AI" . Am are fixed constants, and 

(9) 

(11) . 
will be called the "partition function." Substituting (10) into (9) re­
sults in the inequality 

n n n 
L: Pi log p, ~ L p. log u. = - L Pi [Al f1(Xi ) + ••• 
i=1 • i=1 1 1 i=1 

or 
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(12) 

Now let the distribution Pi vary over the class of all possible dis­
tributions that satisfy (6). The right-hand side of (12) remains 
fixed, and (12) shows that SI attains its maximum possible value 

(Sl) = log Z + ~ ~k (fk> 
max k=1 

(13) 

if and only if Pi is taken as the generalized canonical distribution 
(10). It only remains to choose the unspecified constants ~k so 
that (6) is satisfied. This is the case, as one readily verifies, if 
the ~k are determined in terms of the given data Fk = (fk> by 

a 
(fk> = -~ log Z(;\lo. 0 ~ ) 

a"k m 
k = 1,2, o •• , m (14) 

We now survey rapidly the main formal properties of the distribu­
tion found. The maximum attainable entropy (13) is some function 
of the given data: 

(~)max = S«fJ, 00 ° (fm» 

and, by using (13) and (14), we find 

as 
it (fIe) "" ~k k = 1, 2, ° 0 0 , m 

(15) 

(16) 

Regarding, in (14), the (fk> expressed as functions of (~lo •• ;\m)' 
we find, on differentiating, the reciprocity law 

(17) 

while by the same argument, if we regard Ak 1n (16) expressed as 
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a function of (f l ) ••• (fm), we find a corresponding law 

(18) 

Comparing (17) and (18) and remembering the chain rule for dif­
ferentiating, 

we see that the second derivatives of S and of log Z yield inverse 
matrices: 

(19) 

The functions log Z(AI' •• An> and S«fl ) ••• (fn» are equivalent in 
the sense that each gives full information about the probability dis­
tribution; indeed (13) is just the Legendre transformation that 
takes us from one representative function to the other. 

The reciprocity law (17) acquires a deeper meaning when we 
consider the "fluctuations" in our probability distribution. Using 
the distribution (10), a short calculation shows that the second 
central moments of the distribution of the fk(X) are given by 

(20) 

and so, comparing with (17), there is a universal relation between 
the "fluctuations" of the fk and the "compliance coefficients" 
~ (fk>/aAl: 

(21) 

Likewise, higher derivatives of log ZeAl' .. An) yield higher central 
moments of the fk' in a manner analogous to (20), and a hierarchy 
of fluctuation laws similar to (21). 
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In addition to their dependence on x, the functions fk may de­
pend on another parameter, a. The partition function will then al­
so have an explicit· dependence on a: 

and a short calculation shows that the expected derivatives 

satisfy the relations 

m (Ofk) a as L Ak"d,; = -~ log Z = -a 
k=l a oa a 

(23) 

If several parameters al ... ar are present, a relation of this form 
will hold for each of them. 

Finally, we note an important variational property which gen­
eralizes (16) to the case where we have also variations in the par­
ameters Ql ... ar· Let Z = Z(Al •.• Am;Ql •.• ar), and consider an 
arbitrary small change in the problem, where the given data (fk> 
and the parameters aj are changed by small amounts 6 (fk), 6aj. 
This will lead to a change fiAk in Ak. From (13), the maximum at­
tainable entropy is changed by 

m r 
as = L a log Z ~A + L ~ log Z 6a. 

k=l iJAk k j=l aaj J 
(24) 

The first and third terms cancel by virtue of (14). Then, using 
(23), we have 

(25) 
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Now we can write 

and so finally 

or 

where 

m 
oS = L:).k [0 (fk> - (OfIt>] 

k=1 

(26) 

(27) 

(28) 

(29) 

In general O~ is not an exact differential; i. e., there is no func­
tion ~().1' •• ).m;al' .. a r ) which yields I5Qk by differ~tiation. But 
(28) shows that ).k is an integrating factor such that l.,k).kll~ is 
the exact differential of some "state function" S().l" . ).m;al" • arlo 

All the above relations, (10) to (29), are elementary conse­
quences of maximizing the information theory entropy subject to 
constraints on average values of certain quantities. Although they 
bear a strong formal resemblance to the rules of calculation pro­
vided by statistical mechaniCS, they make no reference to physics, 
and, therefore, they must apply equally well to any problem, in or 
out of physics, where the situation can be described by (1) enum­
erating a discrete set of possibilities and by (2) specifying average 
values of various quantities. The above formalism has been ap­
plied also to problems in engineeringl and economics.a 

In most problems, interest centers on making the best pos­
sible predictions for a specific situation, and we are not really in­
terested in properties of any ensemble, real or imaginary. (For 
example, we want to predict the magnetization M(t) of the particu­
lar spin system that exists in the laboratory.) In this case, as al­
ready emphasized, the maximum- entropy probability assignment 
Pi cannot be regarded as describing any objectively existing state 
of affairs; it is only a means of describing a state of knowledge in 
a way that is "maximally noncommital" by a certain criterion. 
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The above equations then represent simply the best predictions we 
are able to make on the given information. We are not entitled to 
assert that the predictions must be "right," only that to make any 
better ones, we should need more information than was given. 
However, in cases where it makes sense to imagine xi as being 
the result of some random experiment which can be repeated many 
times, a somewhat more "objective" interepretation of this for­
malism is possible, which in its essentials was given already by 
Boltzmann. We are given the same average values (fk(X) as be­
fore, but we are now asked a different question. If the random ex­
periment is repeated N times, the result Xi will be obtained mi 
times, i = 1,2, ... ,n. We are to make the best estimates of the 
numbers mi on the basis of this much information. The knowledge 
of average values tells us that 

k = 1, 2, •.• , m (30) 

and, of course, 

(31) 

Equations (30) and (31) do not uniquely determine the mi if 
m < n - 1, and so again 'it is necessary to introduce some addi­
tional principle, which now amounts to stating what we mean by 
the "best" estimate. The following criterion seems reasonable. 
In N repetitions of the random experiment, there are a priori nN 
conceivable results, since each trial could give independently any 
of the results {xl> x2, ••• , xn}. But for given mi, there are only W 
of these possible, where 

(32) 

and 

i-I, 2, ... , n (33) 

is the relative frequency with which the result Xi is obtained. 
Which choice of the gi can happen in the greatest number of 

ways? If we have to guess the frequencies on the basis of no more 
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information than (30), it seems that a reasonable criterion Is to 
ask what choice will maximize (32) while agreeing with (30). Now 
in the limit of large N, we have by the Stirling formula, 

11m 1 lim 1 r Nt] 
N-oo N log W = N-oo N log L<Ng1) I ••• (Ngn) I 

=-fgiIOggi 
i=1 

(34) 

and so, if we are to estimate limiting frequencies in an indefinite­
ly large number of trials, we have in (30) and (34) formulated ex­
actly the same mathematical problem as in (6) and (7). The same 
solution (10) and formal properties, Eqs. (11) to (29), follow im­
mediately, and we have an alternative interpretation of the maxi­
mum-entropy formalism: the probability Pi which information 
theory assigns to the event Xi at a single trial is numerically equal 
to an estimate of the relative frequency gi of this result in an in­
definitely large number of trials, obtained by enumerating all 
cases consistent with our knowledge, and plaCing our bets on the 
situation that can happen in the greatest number of ways. Thus, 
for example, the fluctuation laws (21) describe, on the one hand, 
our uncertainty as to the unknown true values of fk(x) in a specific 
instance; on the other hand, they give the best estimates we can 
make of the average departures from (fk> in many repetitions of 
the experiment, by the criterion of placing our bets on the situa­
tion that can happen in the greatest number of ways. 

Two points about these interpretations should be noted: 
1. In most practical problems, repeated repetition of the ex­

periment is either impossible or not relevant to the real problem, 
which is to do the best we can with the individual case. Thus if 
one were to insist, as has sometimes been done, that only the sec­
ond interpr~tation is valid, the result would be to deny ourselves 
the use of this formalism in most of the problems where it is help­
ful. 

2. The argument leading from the averages (30) to the esti­
mate of frequencies gi was not deductive reasoning, but only plau­
sible reasoning. Consequently, we are not entitled to assert that 
the estimates gi must be right; only that, in order to make any 
better estimates, we should need more information. Thus the ap­
parently greater "objectivity" of the second interpretation is to a 
large extent illusory. 
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3. APPLICATION TO EQUILIBRIUM THERMODYNAMICS 

We apply the formalism of the preceding section to the follow­
ing situation: m = 1, f1{xi, a) = Ei{V). The parameter V (volume) 
and the expectation value of the energy of the system (E) are giv­
en. The partition function is 

Zb., V);: r e-xEi(V) 
i=1 

Then, by (14), X is determined from 

a 
(E) = - ax log Z 

and, as a special case of (23), we have 

/'fJE\ a 
X\W/ =- av log Z 

But - (oE/oV) = (P) is the maximum-entropy estinl1te of pres­
sure, and so the predicted equation of state is 

1 'fJ 
(P) ==):w log Z 

(35) 

(36) 

(37) 

(38) 

To identify the temperature and entropy, we use the general vari­
ational property (28). A small change cW in volume will change 
the energy levels by liEi = ('fJEi/aV) liV, and if this is carried out 
infinitely slowly (1. e., reversibly), the "adiabatic theorem" of 
quantum mechanics tells us that the probabilities Pi will not be 
changed. So, the maximum-entropy estimate of the work done is 

tJW = - (tJE) (39) 

Of coursej the given (E) is interpreted as the thermodynamic en­
ergy function U. In additior. to the change liV, we allow a small 
reversible heat flow liQ, and by the first law, the net change in 
energy is liU = liQ - OW, or 

tJQ == tJ (E) - (tJE) (40) 
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Thus, if fk is the energy, then the ~Qk defined by (29) is the pre­
dicted heat flow in the ordinary sense. Equation (28) shows that 
for any quantity fk' there is a quantity ~Qk formally analogous to 
heat. 

In the present case (28) reduces to 

6S«E), V) = X r.Q (41) 

Now the Kelvin temperature is defined by the condition that (liT) 
is the integrating factor for infinitesimal reversible heat in closed 
systems and the experimental entropy Se is defined as the result­
ing state function. So from (41) the predicted temperature T' and 
experimental entropy S~ are given by 

(42) 

(43) 

The presence of Boltzmann's constant k merely indicates the par­
ticular practical units in which we choose to measure temperature 
and entropy. For theoretical discussions, we may as well adopt 
units such that k E 1. 

All that we have shown so far is that the general maximum­
entropy formalism leads automatically to definitions of quantities 
analogous to those of thermodynamiCS. This is, of course, as far 
as any mathematical theory can go; no amount of mathematics can 
prove anything about experimental facts. To put it differently, be­
fore we can establish any connection between our theoretical en­
tropy S~ and the experimentally measured quantity Se' we have to 
introduce some physical assumption about what the result of an ex­
periment would in fact be: 

Physical assumption: The equilibrium thermody­
namic properties of a system, as measured experimen-
tally, agree with the results calculated by the usual meth- (44) 
ods of statistical mechanics; i. e., from the canonical or 
grand canonical ensemble appropriate to the problem. 

This assumption has proved correct in every case where one 
has succeeded in carrying out the calculations, and its universal 
validity is taken so much for granted nowadays that authors of 
textbooks no longer list it as an assumption. But strictly speaking, 
all we can prove here is that systems conforming to this assump­
tion will also conform to various other statements made below. 
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H we accept (44), then the identification of entropy is com­
plete, and connection between information theory entropy and ex­
perimental entropy for the-present problem can be stated as a the-
orem. ; 

Theorem: Let Pi :: prob(E.) be any probability ~ssignment 
which conforms to the data in the sense that (E) = LiPiEi is the 
measured energy. Let SI:: - L:Pi log Pi be the corresponding in­
formation theory entropy, and Se be the experimentally measured 
entropy for the system. The additive constant is chosen so that at 
zero temperature Se = log n, where n is the degeneracy of the 
ground state, and let Se be expressed in units such that Boltz­
mann's constant k!: 1. Then 

(45) 

:~ equality if and only if Pi is chosen as the canonical distribu-

(46) 

This is the physical meaning, for the present problem, of the 
general inequality (12). Obviously, the above statement can be 
greatly generalized; we can introduce more degrees of freedom in 
addition to V, we can consider open systems, where the number of 
molecules can change, and we can use the grand canonical ensem­
ble, etc. The corresponding statement will still hold; over all 
probability assignments that agree with the data in the aforemen­
tioned sense, the information theory entropy attains an absolute 
maximum, equal to the experimental entropy, if and only if Pi is 
taken as the appropriate canonical or grand canonical distribution. 

Remarks: 1. We have taken (E) as the given quantity. In 
practice, it is usually the temperature that is measured. To treat 
the temperature as the observable, one must regard the system of 
interest to be in contact with a heat reservoir, with which it may 
exchange energy and which acts as a thermometer. Detailed anal­
ysis of the resulting system (given in reference"') leads to the 
same probability aSSignments as we have found with (E) as the 
given datum. 

2. H not only (E) is known, but also the accuracy of the 
measurement, as given for example by (E2), then this informa­
tion may be incorporated into the problem by taking fl(xi' a) = 
E1(V), (,(xt, a) .. EI(V). The partition function (11) becomes 
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and from (14), 

(E) = - a3 log Z 
~I 

(E~ = --i; log Z 

The fluctuation theorem (21) then gives the relation 

(47) 

(48) 

(49) 

In principle, whenever information of this sort is available, it 
should be incorporated into the problem. In practice, however, 
we find that for the macroscopic systems that exhibit reproducible 
thermodynamic properties, the variance (Ez) - (E)z as calcula­
ted from (46) is already very small compared to any reasonable 
mean-square experimental error, and so the additional informa­
tion about accuracy of the measurement did not lead to any differ­
ence in the predictions. This is. of course, the basic reason for 
the success of the Gibbs canonical ensemble formalism. 

3. The theory as developed here has, in prinCiple, an addi­
tional freedom of choice not present in conventional statistical me­
chanics. The statement that a system has a definite, reproducible 
equation of state means, for example, that if we fix experimental­
!r any two of the parameters P, V, T, then the third is deter­
mined. Correspondingly, in the theory it should be true that in­
formation about any two of these quantities should suffice to enable 
us to predict the third; there is no basic reason for constructing 
our ensembles always in terms of energy rather than any other 
measurable quantities. Use of energy has the mathematical con­
venience that energy is a constant of the motion, and so the state­
ment that the system is in equilibrium (i. e., measurable para­
meters are not time-dependent) requires no additional constraint. 
With an ensemble based on some quantity, such as pressure or 
magnetization, which is not an intrinsic constant of the motion, if 
we wish to predict equilibrium properties we need to incorporate 
into the theory an additional statement, involving the equations of 
motion, which specifies that these quantities are constant. To do 
t"1S requires no new prinCiples of rl!'asoning beyond those given 
above; we merely include the values of such a quantity f(ti) at 
many different times (or in the limit, at all times) into the set of 
quantities fk whose expectation values are given. In the limit, the 
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J)artition function thus becomes a partition functional: 

Z[,.(t)]= L: exp[-!x(t)f(x.,t) dt] 
i 1 

(50) 

and the relations (14) determining the X' s go into the correspond­
ing functional derivative relations 

(f(t» = - o>.~t) log Z[x(t)] (51) 

which determine the function X(t). 
We have not found any general proof that the predicted equa­

tion of state is independent of the type of information used, but a 
special case is proved in the 1961 Stanford thesis of Dr. Douglas 
Scalapino. There it is shown that the same equation of state of a 
paramagnetic substance with spin- spin interaction is obtained 
whatever the input information. We conjecture that this is true 
for any system that exhibits an experimentally reproducible equa­
tion of state. 

It is doubtful whether this new degree- of freedom in applying 
the theory will prove useful in calculations pertaining to the equi­
librium state, since it is more complicated than the usual proce­
dure. However, it is just this extra freedom that makes it possi­
ble to develop a gener31 formalism for irreversible processes; in­
deed, prediction of time- dependent phenomena is obviously impos­
sible as long as our probability distributions depend only on con­
stants of the motion. Equations (50) and (51) form the starting 
point for a general theory of the nonequilibrium steady state, the 
Scalapino thesis providing an example of the calculation of trans­
port coefficients from them. 

4. GENERALIZA TlON 

For most applications of interest, the foregoing formalism 
needs to be generalized to the case of (a) systems described by a 
denSity matrix or (b) continuous probability distributions as occur 
in classical theory. We indicate briefly how this is done. 
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a. Density MatriX 

The expectation value of an operato!: Fk of a system described 
by the density matrix p is 

(Fk> '" Tr (PF~ (52) 

where Tr stands for the trace. The information theory entropy 
corresponding to p is 

SI'" -Tr (p log p) (53) 

(See references for the arguments that lead to this definition of St 
and discussion of other expressions which have been proposed.) 
Maximizing SI subject to the constraints imposed by knowledge of 
the (F'k) yields 

(54) 

where 

(55) 

To prove (54), use the lemma 

Tr (p log p) ~ Tr (p log (7) (56) 

analogous to (9). Here p is any density matrix satisfying (52), and 
(1 is the canonical density matrix (54). All the formal relations 
(12) to (29) still hold, except that when the Fk rio not all commute, 
the fluctuation law (21) must be generalized to 

(57) 

where 

(58) 
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For all p that agree with the data in the sense of (52), we have 
SI(P) ~ Se' with equality if and only if P is the canonical matrix 
(54). 

b. Continuous Distributions 

Shannon's fundamental uniqueness theorem (reference,1 theo­
rem 3) which establishes - LPi log Pi as the correct information. 
measure, goes through only for discrete probability distributions. 
At the present ti~, the only criterion we have for finding the 
analogous expression for the continuous case is to pass to the lim­
it from a discrete one; presumably, future study will give a more 
elegant approach. The following argument can be made as rigor­
ous as we please, but at considerable sacrifice of clarity. In the 
discrete entropy expression 

Sled) ::: - f p. log p. 
1:::1 1 1 

(59) 

we suppose that the discrete points Xi' i::: 1, 2, ••• , n, become 
more and more numerous, in such a way that, in the limit n-CD, 
the density of points approaches a definite function m(x): 

lim 1 . fb 
CD -(number of pomts in a < x < b)::: m(x) dx n- n a 

(60) 

If this passage to the limit is sufficiently well behaved, it will also 
be true that adjacent differences (xi+ 1 - Xi) in the neighborhood of 
any particular value of x will tend to zero so that 

(61) 

The discrete probability distribution Pi will go over into a continu­
ous probability density w(x), according to the limiting form of 

or, from (61), 

(62) 
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Consequently, the discrete entropy (59) goes over into the integral 

In the limit, this contains an infinite term log nj but if we subtract 
this off, the difference will, in the cases of interest, approach a 
definite limit which we take as the continuous information measure: 

sic) .. lim[sl(d) - logn] = -fw(x) IOg~~~~ dx (63) 

The expression (63) is invariant under parameter changes; 1. e. , 
instead of x another quantity y(x) could be used as the independent 
variable. The probability density and measure function m(x) 
transform as 

w,(y) dy = w(x) <:Ix 
m,(y) dy = m(x) dx 

so that (63) goes into 

(64) 

To achieve this invariance it is necessary that the "measure" 
m(x) be introduced. I stress this point because one still finds, in 
the literature, statements to the effect that the entropy of a con­
tinuous probability distribution is not an invariant. This is due to 
the historical accident that in his original papers, Shannon' as­
sumed, without calculating, that the analog of L:Pi log Pi was 
f w log w dx, and got into trouble for lack of invariance. Only re­
cently have we realized that mathematical deduction from the 
uniqueness theorem, instead of guesswork, yields the invariant 
information measure (63). 

In many cases it is more natural to pass from the discrete 
distribution to a continuous distribution of several variables, 
Xl' •• xr ; in this case the results readily generalize to 
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We apply this to the Liouville function of classical mechanics. 
For a system of N particles, WN(x1Pp .. x2Px;t) d'Xl"' . d'PN is the 
probability that at time t the system is in the element d'x1 ... d3PN 
of 6N-dimensional phase space. Before we can set up the infor­
mation measure for this case, we must decide on a basic measure 
m(x1 ... PN) for phase space. In classical statistical mechanics, 
one has always taken uniform measure: m = const., largely be­
cause one couldn't think of anything else to do. However, the 
more careful writers have all stressed the fact that within the con­
text of classical theory, no real justification of this has ever been 
produced. For the present, I propose to dodge this issue by re­
garding classical statistical mechanics merely as a limiting form 
of the (presumably more fundamental) discrete quantum statistical 
mechanics. In other words, the well-known proposition that each 
discrete quantum state corresponds to a volume h3N of classical 
phase space, will determine our uniform measure as resulting 
from equal weighting of all orthogonal quantum states, and passing 
to the limit h-O. Thus, apart from an irrelevant additive con­
stant which we drop, our information measure will be just the neg­
ative of the Gibbs H- function, HG: 

(66) 

where dT = cf3x1 .•. d3PN' 
With this continuous probability distribution, we are able to 

incorporate into the theory a more detailed kind of macroscopic 
information than we have considered up till now. Suppose we are 
given the macroscopic density p(x) as a function of position. We 
interpret this as specifying at each point of space, the expectation 
value of a certain quantity: 

(67) 

where the phase function f, is given by 

N 
fl (X1Pl" •• xNPN;x) = 6 m ~(x. - x) 

i=1 1 
(68) 

The position x now plays the same role as the index k in the ele­
mentary version of the formalism, Eqs. (10) to (29), and so in 
place of the sum L>'kfk(Xi) in the exponent of the probability dis­
tribution, this information will place the integral 
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into the exponent of WN. The partition function then becomes a 
partition functional of the function ).(x). 

In general, we might have several phase functions of this kind, 
whose expectation values are given at each point of space: 

(69) 

Maximization of SI subject to these constraints gives the partition 
functional 

Z[).l(X), ... ,). (x)] = JdTexp{-r J).k(X) 
m lc=1 

x fk~Xl'" PN;x) d'x} 

(70) 

The Lagrange multiplier functions ).k(x) are determined by rela­
tions analogous to (14), but now involving the functional deriva­
tives: 

and the other properties, Eqs. (16) to (29), are likewise easily 
generalized. 

Example: Suppose the macroscopic density of mass, momen­
tum, and kinetic energy are given at the initial time. This corre­
sponds to expectation values of (68), and 

(72) 

(73) 

Since all the given data are formed additively from contributions 
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of each particle, the maximum-entropy Liouville function factors: 

(74) 

(this would not be the case if the given information concerned mu­
tual properties of different particles, such as the potential en­
ergy), and the exponential in the partition functional (70) reduces 
to 

so that 

log Z = N log! {exp [ -lIlAl (x) - P • Aa(x) 
(75) 

Application of (71) now yields the physical meaning of the Lagrange 
multipliers: defining the "mass velocity" u(x) by P(x) = p(x)u(x), 
and the "local temperature" T(x) by the mean- square velocity as 
seen by an observer moving at velocity u{x), we find 

1 
A,(x) = kT(x) = p(x) 

Aa(x} = p(x)u(x} (76) 

IDAI(X} = 1/2 mul (x}I3(X) - 3/2 log l3(x) -log p(x) + (const.) 

and the single-particle distribution function WI of (74) reduces to 

() p(x) { fp - mU(X)]2} () 
WI x, P = mN[21TmkT(x)]3/a exp - 2mkT(x) 77 
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In this rather trivial example we merely recover a well-known 
result; but from a different viewpoint than the usual one, which 
leads us to interpret (77) differently, and regard it as a very spe­
cial case. The method used enables us to translate other kinds of 
macroscopic information into definite probability distributions. In 
other words, we suggest that the maximum-entropy formalism 
provides the g('neral solution to the problem of "setting up an en­
semble" to describe an arbitrary macroscopic Situation, equilibri­
um or nonequilibrium. 

The distributions found in the above way, of course, describe 
the situation only at the initial time for which the macroscopic in­
formation is given. For predictions referring to other times, one 
should, in principle, solve the equations of motion, or Liouville 
equation, 

(78) 

where H is the Hamiltonian and [WN' H], the Poisson bracket. In 
practice, the history of irreversible statistical mechanics has 
been one of unceasing efforts to replace this impossibly difficult 
calculation by a simpler one, in which we try to reduce (78) to an 
"irreversible" equation variously termed Boltzmann equation, rate 
equation, or master equation. Although considerable progress has 
been made in this direction in recent years, we are still far from 
really bridging the gap between these two methods of description. 

As a preliminary step in this direction, it is necessary that 
we understand clearly the physical meaning of the Liouville func­
tion WN and the various reduced distribution functions derived 
from it. The following section surveys these questions. 

5. DISTRIBUTION FUNCTIONS 

A recent review of transport theory by Dresden' (hereafter 
referred to as MD) illustrates that attempts to bridge the gap be­
tween phenomenological rate equations and fundamentals (equations 
of Liouville and Gibbs) have been largely frustrated because basic 
conceptual difficulties, dating from the time of Boltzmann, are 
still unresolved. This section is intended as a supplement to the 
discussion of these problems given to MD, Sec. I. B. 

Early attempts to base transport theory on the BBGKY hier­
archy of distribution functions made no distinction between the 
Boltzmann distribution function f{x, p, t) and the single- particle 
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function w1(xpt) of the hierarchy. In MD this distinction is pOinted 
out without, however, stating any precise relation between them. 
To do this requires, first of all, precise definitions of f and the 
Liouville function WN• Boltzmann originally defined f as giving 
the actual number of particles in various cells of six-dimensional 
phase space; thus if R is the set of phase points comprising a cell, 
the number of particles in R is * 

nR = J f(x, p, t) d:Jx d3p (79) 
R 

The well-known paradoxes involving the H-theorem led to a feeling 
that this definition should be modified; but the exact way seems 
never to have been stated. Here we retain the definition (79), 
which has at least the merit of being a precise statement, and ac­
cept the consequence that the Boltzmann collision equation cannot 
be strictly correct, for reasons given by Zermelo and Loschmidt. 

From (79) it is immediately clear that Boltzmann's f is not a 
probability distribution at all, but a "random variable." In other 
words, instead of saying that f gives the probability of various 
conditions, we should ask, "What is the probability that f takes on 
various values?" 

Establishment of a precise connection between Boltzmann' os f 
and the single-particle function of the hierarchy, 

W1(X1,Pl' t) = JWN~'" d'PN (80) 

requires no coarse-graining, time-smoothing, or any other muti­
lation of the hierarchy. If we agree that a particle will be consid­
ered "in R" if its center of gravity is in R, and that the Liouville 
function WN is symmetriC under permutations of particle labels, 
then from (79) and (80) the exact connection between them is sim­
ply, 

(81) 

where the angular brackets denote an average over the Liouville 
function WN' The only "statistical notion" which needs to be ad­
joined to it is the usual one that WN dT shall be interpreted as the 
probability that the individual system is in the phase region dT. To 
say that WN refers to number density in a fictitious ensemble is 
only to say the same thing in different words; this cannot be empha­
sized too strongly. Indeed, the notion of an ensemble is merely a 
device that enables us to speak of probabilities on the Gibbs, or 
global level, as if they were frequencies, in some larger system 

* Same as UhZenheck .. in M. Kac .. "ProbabiUty and 
Related Topics in PhysicaZ Sciences" .. Appendix I .. 
p. 192 (Interscience .. 1959). 
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which is defined for just that purpose. 
The reason why it was felt necessary to introduce the notion 

of an ensemble is that the development of equilibrium statistical 
mechanics took place entirely in a period when the frequency theo­
ry of probability was the only one considered respectable. It has 
been taken for granted that any probability distributions used must 
be, in principle, empirically measurable frequencies, and that the 
fundamental problem of statistical mechanics is to justify these 
distributions in the frequency sense. 

The statistical practice of physiCists has tended to lag about 
20 years behind current developments in the field of basic proba­
bility and statistics. I hope to shorten that gap to about 10 years 
by pointing out that a revolution in statistical thought has recently 
taken place, brought about largely by the development of statisti­
cal decision theory. Two brief summaries of these developments 
have been published3 ,7 and a detailed analysis of the present situa­
tionl will soon be available. The net result is a vindication of the 
viewpoint of Laplace, and of Jeffreys/ that probability theory is 
properly regarded as an extension of logic to the case of inductive, 
or plaUSible, reasoning, the probabilities denoting basically a "de­
gree of reasonable belief," rather than limiting frequencies. This 
does not mean that there are no longer any connections between 
probability and frequency; the situation is rather that every con­
nection between probability and frequency which is actually used in 
applications is dedUCible as a mathematical consequence of the 
"inductive logic" theory of probability.8 Equation (81), and others 
given below, provide examples of the kind of connections that exist. 

Use of probability in this "modern" (actually the original) 
sense is, of course, essential to the maximum-entropy formalism; 
for the frequencies with which different microscopic states are oc­
cupied are manifestly not given, in general, by a distribution ca­
nonical in the observed quantities; indeed, for a time-dependent 
problem the notion of occupation frequency is meaningless. Nev­
ertheless, in a problem where frequencies are meaningful, if our 
job is to estimate those frequencies, our best estimate on the ba­
sis of the information available will be numerically equal to the 
probabilities. One example of this was given in the "objective" in­
terpretation of the maximum- entropy formalism in Sec. 2, and we 
now give another example which clarifies the meaning of the dis­
tribution functions. 

From Eqs. (79) and (81) one sees that the single-particle func­
tion w1 does not contaiq full information about the distribution of 
particles in six-dimensional phase space. Integrating (81) over 
the cell R, we see that it determines only the expectation value of 
particle occupation numbers: 

(82) 
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In words: the integral in (82) represents the probability that any 
specified particle is in the phase cell R. This is not the same as 
the fraction of particles in that cell but represents only the expec­
tation value of that fraction, over the Liouville distribution WN. 
Before we are justified in the usual interpretation which ide~tifies 
(82) with the actual number of particles in R, it must be shown 
that the variance of the nR distribution is small: 

(nRa) - (nR? a 

(nR?z 
« I (83) 

Unless (83) is satisfied, the Liouville function is making no defi­
nate prediction about the number of particles in R. But we are not 
allowed to postulate (83) on the grounds of any "law of large num­
bers" even for a cell R of macroscopic size, because the two-par­
ticle distribution function of the hierarchy, 

(84) 

completely determines whether (83) is or is not satisfied. To see 
this, introduce the characteristic function of the set R: 

Then 

M(x ):; {I, x, pin R } 
, P - 0, otherwise 

N 

(85) 

(nRa):: ~ (M(xi , p.)M(x., p.» :: NIl + N(N - 1)12 (86) 
i, j=l 1 J J 

where 

(87) 

(88) 

The measure of dispersion (83) then reduces to 

(89) 
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Thus, when N » 1 and (n~ » 1, the necessary and sufficient 
condition for validity of (83) becomes 

(90) 

Usually one omits gravitational forces from the Hamiltonian 
and chooses a Liouville function which makes w1 independent of 
position. If we then describe thermal equilibribrium by WN -
exp( - /3H) and choose a cell R consisting of all of momentum space, 
and a region VR of ordinary space of macroscopic size, Eq. (90) 
becomes the necessary and sufficient condition that the Liouville 
function makes a sharp prediction of the density of the fluid; i. e. , 
it predicts that only one phase is present in YR. Thus the condi­
tion for condensation, or more precisely for the coexistence of 
more than one phase, is that (90) fails to hold. Equation (82) then 
gives only a weighted average of the density of the various possible 
phases. 

Similarly, in the problem of deriving the laws of hydrodynam­
ics from the Liouville equation, one needs to find the predicted 
momentum density. In terms of the Boltzmann distribution func­
tion, the total momentum in any phase cell R is 

P = J pf(x, p, t) d3x d'lp 
R 

(91) 

and we choose R to consist of all momentum space plus a cell S' of 
ordinary space that is "microscopically large but macroscopically 
small." Again, the single-particle function gives only the expec­
tation value, 

(p) = N J PWl (x, p, ti d3x dlIp 
R 

(92) 

but w1 gives no information at all as to whether this is a reliable 
prediction. To answer this, we must appeal to the two-particle 
function: 

(pZ) = NJ p2Wl dx dp + N(N - I)J dx dPJ dx' dp' 
R R R (93) 

x p . p' wz(x, p, x', p') 

If the variance of P is everywhere small, then the Liouville func-
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Hon is making a definite prediction of a flow pattern; i. e., it pre­
dicts laminar flow. But if the last term of (93) is large, the 
single-particle function gives only a weighted average of several 
possible flows. In this case, the information put into the Liouville 
function was not sufficient to determine any definite mass motion 
of the fluid. But if we incorporated into WN all the information 
about the experimentally imposed conditions, the theory is now 
telling us that under these conditions the flow will not be experi­
mentally reproducible. In other words, the theory is predicting 
turbulent flow. 

These examples show that the proper physical interpretation 
of the distributions (1. e., their exact relation to physical quanti­
ties) is not an obscure philosophical pOint. Failure to distinguish 
between WI and f as given in (79) means failare to distinguish be­
tween expectation values and actual values, and amounts to the 
same thing as simply postulating that ensemble averages are equal 
to observed values of physical quantities. This is not only unjusti­
fied because of the probability nature of WN; it would mean loss of 
the correct criterion for phase changes and of the criterion which 
distinguishes between laminar and turbulent flow. 

On the other hand, we can see no basis for any distinction be­
tween equilibrium and nonequilibrium situations here. One of the 
most elementary theorems of probability -theory assures us that, 
for any phase function Q and any probability assignment WN what­
soever, the expectation value (Q), denoted by Qobs in MD, is the 
best estimate of Q in the sense that it minimizes the expected 
square of the error. Whether the information put into WN permits 
an accurate estimate (i. e., whether the expected square of the 
error is small), can be neither postulated nor denied arbitrarily; 
it is determined by WN' In all cases, equilibrium or otherwise, 
the test is to calculate (Q2) = J Q2WN dv, and see whether it is 
sufficiently close to (Q)2 in the sense of (83). If calculation of 
(Q) requires knowledge of the function Ws of the hierarchy, but 
not wS+l' and 2s < N, then information about the reliability of the 
ensemble average (Q) as an estimate of Q appears for the first 
time in the function w2s' and is, of course, retained in all higher­
order functions. 

Any system of "kinetic equations," such as the Boltzmann or 
Bogoliubov scheme, which attempts to write the higher-order func­
tions in terms of WI' throws away information about the reliability 
of the predictions. This, however, may represent a net advantage 
if it simplifies the mathematics without greatly affecting the actual 
predictions; consequently the search for such kinetic equations is 
a major objective of current theoretical effort. If the particles 
move under the influence of a potential energy function V(xl ... xN), 
the exact differential equation satisfied by wl(XU Pu t) may be writ­
ten compactly 
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(94) 

where 

J oV < F > = - ~ (Xz" • PN I XIPI) dSXz• •• d'pN 
a la 

(95) 

is the conditional expectation value of the force seen by particle 1, 
given that it has position and momentum (XII Pl)' Here (x2 ••• PN r 
XlPl) is the conditional probability density for the other particles, 
defined by WN(xl", PN) = (x2 ••• PNlx1Pl)Wl(XlPI)' 

Although direct calculation of < Fa) would be very difficult, 
the form of (94) should prove useful in two respects. In the first 
place, it shows that, although the basic ideas may be stated in en­
tirely different terms; any proposed equation for WI' such as the 
Boltzmann, the Fokker- Planck, or the Bogoliubov equation, is 
equivalent to some assumption about the expected force (Fa) • 
The physical reasonableness of any proposed equation may, there­
fore, be judged by comparing it to (94), and seeing what explicit 
assumption it makes about < Fa)' Second, (94) shows that all the 
complications of this subject reduce ultimately to the determina­
tion of one quantity, < Fa)' Therefore, a phenomenological theo­
ry should be feasible in which < F a-> is determined from appropri­
ate experiments. In situations close to equilibrium, one finds in 
this way that in first approximation < Fa> is proportional to the 
density gradient, and independent of Pl' The condition for conden­
sation, which is a particular kind of hydrodynamic instability, is 
then that this proportionality coefficient exceeds a certain critical 
value. 

6. ENTROPY AND PROBABllJTY 

Now we turn to what is perhaps the most serious confusion of 
all in current irreversible statistical mechanics-the interpreta­
tion of entropy in terms of probability distributions. As recent 
literature gives ample testimony, e\'en the issue of Boltzmann's 
versus Gibbs' H functions to represent entropy has not been re­
solved in any commonly agreed way. For example, in MD it is 
stated that the Boltzmann H, 

HB = J flog f d'x d'p (96) 

* G. E. Uhlenbeck~ Physics Today~ July 1960, pp. 17-21, 
together with remark in Kac book (see p. 65 here). 
Think of the problem of "setting up an ensemble" 
solved by Bogoliubov. 
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is "directly related" to the entropy, whereas the Gibbs expression 

(97) 

is rejected with the statement: "There is, however, no possibility 
of identifying or relating HG to the macroscopic entropy, for one 
proves directly from (23) and (18) that HG is constant in time, 
whereas the macroscopic entropy always increases in a nonequi­
librium situation." Similar state ments appeared in the Ehrenfest10 

review article of 1912, when the work of Gibbs had not yet been 
understood. From the frequency with which this objection to 
Gibbs' H has been repeated in the literature since then, it is clear 
that the nature of Gibbs' contribution has not been fully apprecia­
ted to this day. 

We wish to point out that the mathematical relations proved by 
Gibbs, plus one physical assumption which is universally accepted 
today (although it had hardly been formulated at the time of the 
Ehrenfest article) are sufficient to prove, on the contrary, the fol­
lowing four statements: 

(I) The Gibbs H has a simple and universally valid connection 
with the entropy; for all probability aSSignments that agree with 
the measured thermodynamic parameters we have S ~ -kHG, with 
equality if and only if HG is computed from the appropriate canoni­
cal or grand canonical probabi lity assignment. 

(n) The Boltzmann H is related to the entropy in only one 
case, the nonexistent ideal Boltzmann {i. e., not Bose or Fermi) 
gas. In general, HB:S' HG, and the entropy can be either greater 
or less than -kHB• . 

(m) The constancy of Gibbs' H, far from conflicting with the 
increase of entropy, is the sole dynamical property needed to 
demonstrate that increase. 

(IV) The Gibbs H provides a generalized definition of entropy 
for nonequilibrium cases, in such a way that the usual statement 
of the second law remains valid. It gives, therefore, a new rule 
telling which nonequilibrium states are accessible from others in 
adiabatic processes. 

The fourth statement is a nontrivial extension of the second 
law which is capable of being tested experimentally, and whose 
finding required only a careful reading of Gibbs. Since the second 
law is a statement of experimental fact, it cannot be "proved" 
mathematically without some assumption about what the result of 
an experiment would be. The assumption we need is just the 
statement (44) which we appealed to before. 

Before turning to the proofs, some preliminary remarks are 
needed. We are still faced with the ambiguity in the definition of f. 
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The function defined by (79) is singular in such a way that the inte­
gral (96) diverges; thus before we can introduce a Boltzmann H at 
all, we have to abandon Boltzmann's definition of f in favor of 
some other, unspecified one. In MD it is stated that f gives an 
"average" occupation number, and that this can be made more 
precise by reference to an equation which is indeed an average ov­
er an undefined probability distribution P. If we suppose that, in 
going to fundamentals, this would eventually become an average 
over the Liouville function WN, we have a definition of HB for 
which exact relations can be proved. In other words, we mean to 
use the single-particle function WI of the hierarchy to define a 
Boltzmann H: 

(98) 

There is really no other way of doing it if we are ever to prove 
precise statements about Boltzmann's H, because eventually this 
will have to depend on precise properties of Ute dynamiCS, and the 
Liouville hierarchy is just the precise expression of the dynamiCS. 

Another point is that, strictly speaking, all this should be re­
stated in terms of quantum theory using the density matrix formal­
ism. This will introduce the N! permutation factor, a natural ze­
ro for entropy, alteration of numerical values if discreteness of 
energy levels becomes comparable to kT, etc. But there seems 
to be complete agreement as to how this transcription is to be 
made, and it will affect the Boltzmann and Gibbs expressions in 
the same way. We shall first attempt to define the Boltzmann H as 
H' = Tr (C] log C]), where C] is the "molecular" denSity matrix oper­
ating in the Hilbert space of a Single molecule and gives occupation 
numbers. The Gibbs H will become Hd = N-ITr (p log p), where P 
is the "global" density matrix with an enormously greater number 
of rows and columns, operating in the entire Hilbert space of the 
system. On closer examination, we shall wonder whether the di­
agonal elements of (T are to represent the actual values, probable 
values, average values, etc. of the occupation numbers, and H' 
will peter out in ambiguities until we note that, if it is to have any 
precisely provable properties, it must be precisely related to the 
dynamics; i. e., out of all possible definitions of C], we decide to 
use Pll the projection of p onto the subspace of a single molecule, 
as defined in reference,5 Sec. 11. Its diagonal elements are ex­
pectation values, over the global density matrix p, of occupation 
fractions. Then with He and Hg = Tr (Pl log Pl) we can prove ex­
actly the same inequalities as for the classical case. Thus, the 
issue of Boltzmann versus Gibbs entropy expressions does not in­
volve quantum theory, and we continue to use claSSical terminolo­
gy for brevity. 
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Statement (I) is now just the theorem (45) already proved, if 
one grants the physical assumption (44), for the quantum theory 
case. 

Statement (n) quotes a well-known mathematical theorem, 

(99) 

with equality if and only if the Liouville function factors "almost 
everywhere" 

N 
WN(x1·.·PN) = i~lwl(xi'Pi) (100) 

which corresponds, in quantum theory, to the condition' that the 
global density matrix is a direct productS 

(101) 

where Pi is the projection of P onto the Hilbert space of the i-th 
molecule. The final part of statement IT then follows from the fact 
that the canonical distribution WN - exp( - j3H) has the factorized 
form (100) only in the case of an ideal Boltzmann gas. In this case 
the "Boltzmann entropy," SB = -kHB' is equal to the experimental 
entropy; in all other cases, if WI is cons!ructed from the appropri­
ate canonical distribution WN, we shall have SB > Se. 

Statement ill is likewise an immediate consequence of state­
ment I and the well-known fact that HG is, in consequence of the 
equations of motion, constant in time in either classical or quan­
tum theory. To make this clearer, consider the following experi­
ment. At time t = 0, we measure the values of various parame­
ters Xl' •. Xn adequate to determine the state of a thermodynamic 
system of n degrees of freedom. The experimental entropy is, of 
course, some function Se(Xl , .. Xn) of the measured quantities; and 
not primarily related to any probability distribution. But we have 
shown that the maximum attainable information theory entropy SI, 
corresponding to the appropriate canonical distribution based on 
the values of Xl' •. Xn, is equal to Se. At some later time t, a new 
measurement of the thermodynamic state yields different values, 
X;, •.• , X~, and a different experimental entropy Se(X~ •.• Xu), But 
the inequality SI ~ Se still holds; and so the statement that SI (or 
what is the same thing, HG) is constant, then gives us Se ~ Se' 

There is still an apparent paradox hiding here; for suppose we 
choose t negative. It looks as if this argument then says that the 
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experimental entropy in the past was greater than at the time of 
the measurements Xl' .. Xn. Actually, the explanation of this par­
adox has been given before.' We have, of course, assumed in the 
above that forward integration of the equations of motion does, in 
fact, yield the correct predictions at time t; i. e., the measured 
Xi are equal to ensemble averages calculated from the time-devel­
oped Liouville function obE'ying (78), or the time-developed global 
density matrix obeying i11,o = [H, p]. In reference,5 it is shown that 
this is the case if the observed change Xi - Xi is an expE'rimental­
ly reproducible one. But we know that many past macroscopic 
states Xi' would all relax into the same state Xi at time t = O. 
Thus, we suggest that the correct statement of the second law is 
that spontaneous decreases in the experimental entropy, although 
not absolutely prohibited by the laws of physics, cannot occur in an 
experimentally reproducible process. 

Statement IV now follows from the fact that nothing in the 
above reasoning restricts us to equilibrium states. In convention­
al thermodynamiCS, the experimental entropy is defined only for 
equilibrium states; however, our definition Se == [max Slover all 
probability distributions that agree with the data in the sense of 
(52)] defines a function Se(X1 , •• Xn) of the experimentally mea­
sured parameters for ~he equilibrium or nonequilibrium case, 
which by the above arguments cannot spontaneously decrease in an 
experimentally reproducible process. It can no longer be found by 
numerical integration of dQ/T over a reversible path; but the con­
tent of statement IV is that a function Se still eXists, such that the 
usual statement of the second law remains valid. It requires a 
great deal more analysis, to be given elsewhere, before we can 
reduce this to a suggestion of a definite experiment that could test 
statement IV; I am trying here only to point out in the briefest 
terms why it is that an extension of the second law is predicted by 
theory as soon as we have understood everything revealed by Gibbs 
about the connection between entropy and probability. 

Finally, we note that the Boltzmann H-theorem, whether cor­
rect or not, cannot have any real relevance to the second law. 
For, summarizing the above inequalities, 

(102) 

where the first inequality becomes an equality if and only if there 
are no interparticle correlations (i. e., ideal Boltzmann gas), the 
second if and only if HG is computed from the appropriate canoni­
cal distribution. Obviously, whether HB increases or decreases 
allows us to infer nothing about Se. The situation is even worse 
than that; for the Boltzmann H-theorem was based on incorrect 



BRANDEIS LECTURES 75 

equations of motion, and whether HS increases or decreases de­
pends on the form of the distribution and the force law. To see 
this, note that from (98) and the exact equation of motion (94), the 
exact rate of change of HS is just the negative of the expected di­
vergence in momentum space of the molecular force < Fa): 

(103) 

and this can have either sign. For example, if < Fa> is dominated 
by a "dragging" term as in the Langevin equation: (Fa> = -KPa + 
••• , then we find that the exact equations give us an "anti-H-theo­
rem," HB > O. 

7. CONCLUSION 

We have seen that the principle of maximum entropy leads 
immediately to the same final rules of calculation that convention­
al statistical mechanics had provided only after long and inconclu­
sive discussion of phase space, ergodicity, metric transitivity, 
etc.; and then only for the equilibrium case. The viewpoint advo­
cated here thus represents, from the pedagogical s~andpoint, a 
considerable Simplification of the subject. Sut this agreement al­
so means that, from a pragmatic standpoint, if there is any new 
content in this principle, we must look for it in the extension to 
the statistical mechanics of irreversible processes, where there 
does not exist at present any general formal theory, and ask 
whether the principle of maximum entropy provides such a basis. 
Over the past several years, my students and I have verified that 
all the commonly accepted principles of irreversible statistical 
mechanics can be derived from this formalism; that is, of course, 
a minimum requirement that any proposed new theory must pass. 
The real test of these ideas can come only through their applica­
tion to problems that have resisted solution by older methods. Al­
though a few results along this line are now in,ll and a few others 
have been hinted at in these talks, a final settlement of the ques­
tions raised still lies rather far in the future. 
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5. GIBBS vs BOLTZMANN ENTROPIES (1965) 

In the 1950's and early 1960's there was a great deal of activity trying to 
develop a theory of irreversible processes in terms of the notion of local 
entropy production. For a time it appeared that this conception might be 
justified in statistical theory. However, these arguments (de Groot and Mazur, 
1962) used the Boltzmann H-function definition of entropy, SB = -kHB 
based on the single-particle distribution function. Recognition of the difficul­
ties caused by this was slow in corning. 

Dresden (1961) asserted that S B was 'directly related to the entropy', 
while the Gibbs SG based on the full N-particle distribution function was 
rejected with the statement that there was 'no possibility of relating it to the 
entropy'. Prigogine (1963) questioned the validity of the Gibbs relation 
T dS = d U + P d V - L p; dn; and the Kubo expressions for transport coeffi­
cients because derivations based on S B did not support them. 

However, to others it appeared that the Gibbs relation, properly used, was 
not a physical hypothesis, but the defmition of /J.;; and the Kubo formulas 
had been derived directly from first principles. Failure to confirm either 
could signify only faulty reasoning or faulty premises, and it seemed that the 
difficulty lay in use of an incorrect entropy expression. 

Spurred by this discrepancy and following a lengthy discussion with E. P. 
Wigner on these problems, I wrote the following article analyzing the entropy 
question in detail. It demonstrated explicitly what had long been known 
implicitly by some; for arbitrary interparticle forces the Gibbs entropy 
SG = -kH G using the canonical ensemble gives the correct thermodynamic 
relations, while SB is correct only for an ideal gas at thermal equilibrium. 

The point was amplified further in a note (Jaynes, 1971) pointing out that 
when attractive forces are present, use of S B would make some well-known 
experimental facts appear to be violations of the second law (if the approach 
to equilibrium takes place via conversion of kinetic energy into potential 
energy, SB decreases rather than increases). 

The demonstration of the Clausius adiabatic form of the second law in the 
Brandeis lectures was repeated in classical form here, but again to no avail. 
It remains unnoticed. 

As a former student of Eugene Wigner, I had been invited to contribute 
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an article to the October 1962 issue of Reviews of Modern Physics, planned 
as a kind of Festschrift for his 60'th birthday. I wrote a paper entitled 'Con­
ceptual Problems in Statistical Mechanics' but at the last minute felt that it 
was not of high enough quality for that occasion and withdrew it, a decision 
deeply regretted on seeing some of the articles that did appear. However, 
some portions of it that appeared sound enough to stand the test of time 
(the 'anthropomorphic' remarks) were retrieved and built into the following 
article. More portions appear in the Delaware lecture reprinted below, but 
most of it is still unpublished. 

But it is just those anthropOmorphic remarks that have aroused the most ire, 
most recently in the article of Denbigh (1981). Accordingly, let me state here 
that I stand by those remarks, and believe they are correct as presented 
below. Indeed, they state only what had been well recognized by Boltzmann, 
Gibbs, G. N. Lewis, J. von Neumann, and E. P. Wigner lpng before. 

Denbigh objects that my arguments on the nature of entropy would apply 
as well to energy. Not so! The difference is that energy is a property of the 
microstate, and so all observers, whatever macroscopic variables they may 
choose to defme their thermodynamic states, must ascribe the same energy to 
a system in a given microstate. But they will ascribe different entropies to 
that microstate, because entropy is riot a property of the microstate, but 
rather of the reference class in which it is embedded. As we learned from 
Boltzmann, Planck, and Einstein, the entropy of a thermodynamic state is a 
measure of the number of microstates compatible with the macroscopic quan­
tities that you or I use to defme the thermodynamic state. 

It is a sad commentary on the state of conceptual progress here that these 
facts are still not grasped by 'prominent workers in the field, although they 
were demonstrated very cogently over 100 years ago by Gibbs (1876) in his 
discussion of gas diffusion. We can hardly blame students for being as con­
fused as their teachers, in a field that ought to have become, long ago, just as 
clear and rational as mechanics or optics. In my opinion, this would have 
happened if Gibbs and Einstein had been read more assiduously. 

Needless to say, it was just this property of entropy - that it measures 
our degree of information about the microstate, that is conveyed by data on 
the macroscopic thermodynamic variables - that made information theory 
such a powerful tool in showing us how to generalize Gibbs' eqUilibrium 
ensembles to nonequilibrium ones. The generalization could never have been 
found by those who thought that entropy was, like energy, a physical proper­
ty of the microstate. 
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The status of the GIbbs and Boltzmann expressions for entropy has been a matter of some 
confusion in the literature. We show that: (1) the Gibbs H (unction yields the correct entropy 
as defined in phenomenological thermodynamics i (2) the Boltzmann H yields an "entropy" that 
is in error by a nonnegligible amount whenever interparticle forces affect thermodynamic 
properties; (3) Boltzmann's other interpretation of entropy, S ... k log W, is consistent with the 
GIbbs H, and derivable from it I (4) the Boltzmann H theorem does not constltute a demon~ 
stratJOn of the second law for dIlute gases, (5) the dynamical invanance of the Gibbs H gives 
a simple proof of the second law for arbitrary mterpartIcle forces; (6) the second law is a special 
case of a general requirement for any macroscopIc process to be experimentally reproducIble. 
Finally, the "anthropomorphic" nature of entropy, on both the statistical and phenomeno. 
logical levels, is stressed. 

I. INTRODUCTION 

I N the writer's 1962 Brandeis lectures l on sta­
tistical mechanics, the Gibbs and Boltzmann 

expressions for entropy were compared brielly, 
and it was stated that the Gibbs formula gives 
the correct entropy, as defined in phenomeno­
logical thermodynamics, while the Boltzmann H 
expression is correct only in the case of an ideal 
gas. However, there is a school of thought which 
holds that the Boltzmann expression is directly 
related to the entropy, and the Gibbs' one simply 
erroneous. This belief can be traced back to the 
famous Ehrenfest review article,' which severely 
criticized Gibbs' methods. 

• Supported by the National Science FoundatIOn Grant 
NSF G2J778. 

I Slalul""l PhysJes (1962 Brandeis Theoretical Physics 
Lectures, Vol J), edIted by K. W. Ford (W. A. Benjamin, 
Inc, New York, 1963), Chap. 4. Note that typographical 
errors occur m Eqs. 20, 49, 74, 78, 94, and the mequallty 
preceding Eq. 90. 

2 P. Ehrenfest and T. Ehrenfest, Encykl Math. Wiss., 
IV 2, II, Issue 6 (1912). ReprInted In Paul Ehren!est, 
Collecled Snenhfic Papers, edited by M. J Klein (North­
Holland Press, Amsterdam, 1959). English translation Ly 
M. J. Moravcslk, The Canc;eptual Foundalt.ons of the 
Statutual Approach fn Mec;hans.(.s (Cornell University 
Press, Ithaca, New York. 19SQ). 

While It takes very little thought to see that 
objections to the Gibbs H are immediately re­
futed by the fact that the Gibbs canonical en­
semble does yield correct thermodynamic pre­
dictions, discussion with a number of physicists 
has dIsclosed a more subtle, but more wide­
spread, misconception. The basic inequahty of the 
Gibbs and Boltzmann H functions, to be derived 
in Sec. II, was accepted as mathematically cor­
rect; but it was thought that, in consequence of 
the "laws of large numbers" the difference be­
tween them would be practically negligible in 
the limit of large systems. 

Now it is true that there are many different 
entropy expressions that go into substantially 
the same thing in this limit; several examples 
were given by Gibbs. However, the Boltzmann 
expression is not one of them; as we prove in 
Sec. I II, the difference IS a direct measure of the 
effect of interparticle forces on the potential 
energy and pressure, and increases proportIOnally 
to the size of the system. 

Failure to recogntze the fundamental role of 
the Gibbs H function is closely related to a much 
deeper confusion about entropy, probability, 
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and irreversibility in general. For example, the 
Boltzmann H theorem is almost universally 
equated to a demonstration of the second law of 
thermodynamics for dilute gases, while ever 
since the Ehrenfest criticisms, it has been 
claimed repeatedly that the GIbbs H cannot be 
related to the entropy because it IS constant in 
time. 

Closer inspection reveals that the situation is 
very dIfferent. Merely to exhibit a mathematical 
quantity which tends to increase is not relevant 
to the second law unless one demonstrates that 
this quantity is related to the entropy as meas· 
ured experimentally. But neither the Gibbs nor 
the Boltzmann H is so related for any distribu· 
tion other than the equilibrium (i.e, canonical) 
one. Consequently, although Boltzmann's H 
theorem does show the tendency of a gas to go 
into a Maxwellian velocity distribution, this is 
not the same thing as the second law, which is a 
statement of experimental fact about the direc­
tIOn In which the observed macroscofnc quantities 
(P, V,T) change. 

Past attempts to demonstrate the second law 
for systems other than dilute gases have generally 
tried to retain the basic idea of the Bol tzmann 
H theorem. Since the Gibbs H is dynamically 
constant, one has resorted to some kmd of coarse­
graining operation, resulting in a new quantity 
ii, which tends to decrease. Such attempts can­
not achieve their purpose, because (a) mathe­
matically, the decrease in ii is due only to the 
artificial coarse-graining operation and it cannot, 
therefore have any physical significance; (b) as 
in the Boltzmann H theorem, the quantity whose 
increase is demonstrated IS not the same thing 
as the entropy. For the fine-grained and coar.e­
gramed probability distributions lead to just the 
same predictions for the observed macroscopic 
quantities, whIch alone determine the experi­
mental entropy; the difference between Hand ii 
is characteristic, not of the macroscopic state, 
but of the partIcular way in which we choose to 
coarse-grain. Any really satisfactory demonstra­
tIon of the second law must therefore be based on 
a different approach than coarse-graining. 

Actually, a demonstration of the second law, 
in the rather specialized situation visualized m 
the aforementioned attempts, is much simpler 
than any H theorem. Once we accept the well-

established proposition that the Gibbs canonical 
ensemble does yield the correct equilibrium 
thermodynamics, then there is logically no room 
for any assumption about which quantity repre­
sents entropy; It is a question of mathematically 
demonstrable fact. But as soon as we have under­
stood the relatIOn between Gibbs' H and the 
experimental entropy, Eq. (17) below, it is 
immediately obvious that the constancy of 
Gibbs' H, far from creating difficulties, is pre­
cisely the dynamIcal property we need for the 
proof. 

It is iijteresting that, although this field has 
long been regarded as one of the most puzzling 
and controversial parts of physics, the difficulties 
have not been mathematical. Each of the above 
assertions is proved below or in the Brandeis 
lectures, using only a few lines of elementary 
mathematics, all of which was given by Gibbs. 
It is the enormous conceptual difficulty of this 
field which has retarded progress for so long. 
Readers not familiar with recent developments 
may, I hope, be pleasantly surprised to see how 
clear and basically simple these problems have 
now become, in several respects. However, as we 
will see, there are still many complications and 
unsolved problems. 

Inspection of several statistical mechanics 
textbooks showed that, while most state the 
formal relations correctly, their full implications 
are never noted. Indeed, while all textbooks give 
extensive discussions of Boltzmann's H, some 
recent ones fail to mention even the existence of 
the Gibbs H.' I was unable to find any explicit 
mathematical demonstration of their difference. 
It appeared, therefore, that the following note 
might be pedagogically useful. 

II. THE BASIC INEQUALITY 

We consider, as usual, a monoatomic flUId of N 
particles. The ensemble is defined by the N­
particle distribution function, or Liouville func­
tion, WN(x"P,; x"p,; ... ; XN,PN; t) which gives 
the probability density in the full phase space of 

a A notable exception is the monumental work or R. C. 
Tolman, The Pnnciples of Slatistuai MecluJnus (Oxford 
UniverSity Press, London, 1938) Tolman repeatedly 
stresses the superiority of Gibbs' approach, alth~ugh he 
still attempts to base the second law on coarse-gram mg. 
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the system. The Gibbs H is then equality if and only if x = 1. Therefore 

(I) 

and the correspondmg Boltzmann II is and we have proved 

HB=N f w,logw,dTlo 

Theorem 1: The Gibbs and Boltzmann H func­
(2) tions satisfy the inequality 

where w, (x"p,; I) is the single-particle proba­
bility density 

W, (X\,P, ; t) = f WNdLI. (3) 

Here and in the following, we use the notation: 
dT =d'x,· . ·d'PN, dT 1 =d'x,d'p 10 dT _, =d'x.· . ·d'PN 
to stand for phase-volume elements in the full 
phase space, the space of one particle, and the 
space of all particles except one, respectively. 

Both the Gibbs and Boltzmann H functions 
are often defined in slightly different ways, in 
which one uses distribution functions with differ­
ent normalizations. This changes the numerical 
values by additive constants which, for fixed N, 
are independent of the thermodynamic state and 
therefore not relevant to the present discussion. 
These additive constants are important, however, 
in connection with the "Gibbs paradox" about 
entropy of mixing, and the resolution of this 
paradox by quantum statistics is well known. 
The distribution functions used above are under­
stood to be probability denSt/;es; i.e., normalized 
according to JWNdr= Jw,dr, = 1. 

Using (3) and the fact that WN is symmetric 
under permutations of part,cle labels, we can 
write HB in a more symmetrical form 

= f W N 10g[-",,(I)·· ·w,(N)ldr, 

where we use the abbreviation: (i) = (x"P.). We 
have, then, 

(4) 

(5) 

with equality if and only if WN factors "almost 
everywhere" into a product of single-particle 
functions 

m. CANONICAL ENSEMBLE 

Theorem 1 holds for any symmetrical WN. The 
magnitude of the difference (Ho-HB) depends 
on the distribution function, and we are particu­
larly interested in the case of thermal equilib­
rium, represented by the canonical distribution 
WN-exp( -PH), where .11= (kT)-' and H is the 
Hamiltonian, taken of the form 

where the potential-energy function V(Xl·· ·XN) 
is a symmetrical function of the particle coordi­
nates, which we suppose for simplicity depends 
only the relative coordinates (relaxing this 
restriction by adding gravitational potential 
energy leads to a number of interesting results, 
but does not change the conclusions of this 
section). More explicitly, we have 

W N = (_8_)'N12 (r' 
27fm 

where 

xexP!-pV(X1 .. ·xN)-8 ~ P"). (7) 
, 2m 

Q(8,fl) == In exp( .... 8 V)d'Xl· . ·d'XN 

= fl In exp ( - 8 V)d'x,· .. d'XN (1I) 

Now on the positive real axis, 10gxS (x-I), with is the "configuration integral," and in the last 
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expression we have made use of the fact that V 
depends only on relative coordinates, and 
supposed the range of interpartIcle forces neglt­
gibly small compared to the size of the container, 
so that the final integration suppltes only a 
factor 1l. From (3), the corresponding single­
particle function is then 

WI (x,p) = «(3/21rm)"'1l-1 exp( -fJP'!2m). (9) 

We therefore have 

and (4) reduces to 

H.-Ho =logQ-Nlog1l+fJ(V}, (10) 

where the angular brackets ( ) denote the 
canontcal ensemble average. It is also true that 

(V)= -0 logQ/ofJ, (l1a) 

fJ(P) =0 logQ/ii1l, (11 b) 

where P is the pressure; Eq. (11) are well-known 
identities of the canonical ensemble. From (10), 
(11), we thus find that on an infinitesimal change 
of state, 

d(HB -Ho) =fJd( V)+fJ[(P}-Po]dfl, (12) 

where P o=NkT/1l is the pressure of an ideal gas 
with the same temperature and density. Intro­
ducing the "entropies" S. = - kH. and integrat­
ing (12) over a reversible path (i.e., a locus of 
eqUIlibrium states), we see that the difference 
vanes according to 

(So -5.),- (So -5.), 

--f' d( V)+[(P)-Po]d1l. 

I T 
(13) 

Now from (9), using (p') = 3mkT, we find that 

S. = iNk log (2,..mkTH Nk 10g1l+tNk, 

from which 

(iiSB)dT=~NkdT=d(K) 
aT a 2 T T' 

Over the reversible path (13) the Boltzmann 
entropy therefore varies according to 

(14) 

and from (13). (14) we finally have for the Gibbs 
entropy 

f' d(K + V)+ (P)d1l 
(So), - (50), = 

I T 

=f'dQ. 
, T 

(15) 

Equations (14). (IS) are the main results 
sought. From them it is clear that (a) the 
"Boltzmann entropy" is the entropy of a fluid 
with the same density and temperature. but 
without interparticle forces; it completely ne­
glects both the potential energy and the effect of 
10 terparticle forces on the pressure; (b) the 
Gibbs en tropy is the correct en tropy as defined 
in phenomenological thermodynamics, which 
takes into account all the energy and the total 
pressure, and is therefore equally valid for the 
gas'or condensed phases; (c) the difference be­
tween them is not negligible for any system in 
which interparticle forces have any observable 
effect on the thermodynamic properties. If the 
system exhibits an equation of state or heat 
capacity different from those of an ideal gas, the 
Boltzmann entropy will be 10 error by a corre­
sponding amount. 

IV. THE SECOND LAW 

We can now demonstrate the second law very 
easily, for the specialized case usually conSIdered. 
The following argument can be greatly general­
ized, although we do not do so here. 

It is well known 1 that the canonical distribu­
tion (7) is uniquely determined by a variatIonal 
property; over all distributions W N that agree 
With the experimental energy U, in the sense that 
the mean value of the Hamiltonian IS 

(16) 

the Gibbs H attalOs an absolute minimum for the 
where (K) = iNkT is the total kinetic energy. canonical distributIOn. For this case, we have 
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just shown that, if the arbitrary additive con­
stant is properly adjusted at a single point, then 
the Gibbs entropy So = - kHo will be the same 
as the experimental entropy at all points. There­
fore, the general relation between SG and the 
experimental entropy S. is: over all distributions 
W N that agree with the experimental energy in 
the sense of (16), we have 

So5.S. (17) 

with equality if, and only if, So is computed from 
the canonical distribution (7). 

At time 1=0, let our system be in complete 
thermal equilibrium so that all its reproducible 
macroscopic properties are represented by the 
canonical distribution; then the equality holds 
in (17). Now force the system to carry out an 
adiabatic change of state (i.e., one involving no 
heat flow to or from its environment), by appyl­
ing some time-dependent term in the Hamil­
tonian (such as moving a piston or varying a 
magnetic field). It is well known that the N­
particle distribution function varies according 
to the Liouville equation 'IV N = (H(/), WH } where 
the right-hand side is the Poisson bracket; and 
in consequence Ho remains constant. 

At a later time I', the system is allowed to corne 
once more, but still adiabatically, to equilibrium 
(which means experimentally that macroscopic 
quantities such as pressure or magnetization are 
no longer varying), so that a new experimental 
entropy So' can be defined. If the time-developed 
distribution function WH(t') leads to a correct 
prediction of the new energy U' in the sense of 
(16), then the inequality (17) still holds. The 
fact that Ho is a constant of the motion then 
gives S.5.S.', which is the second law. 

V. INTUITIVE MEANING OF THE SECOND LAW 

The above proof has the merit of being almost 
unbelievably short, but partly for that reason, 
the physical basis of the second law is not made 
clear. In the following we are not trying to give 
a rigorous mathematical demonstration; that has 
just been done. We are trying rather to exhibit 
the basic intuitive reason for the second law. We 
recall Boltzmann's original conception of entropy 
as measuring the logarithm of phase volume 
associated with a macroscopic state. If Boltz-

mann's interpretation S=k 10gW is to be com­
patible with Gibbs' S= -kHG, it must be true 
that the quantity W=exp( -HG) measures, in 
some sense, the phase volume of "reasonably 
probable" microstates. 

Such a connection can be established as 
follows. Define a "high-probability" region R of 
phase space, ('onsisting of all points where 
WH~C, and choose the constant C so that the 
total probability of finding the system somewhere 
in this region is (1-.), where 0<.<1. Call the 
phase volume of this region W(.); in equations, 

i dr= W(.). 

Evidently, with a continuously varying proba­
bility density WN , it is not strictly meaningful 
to speak of the "phase volume of an ensemble," 
without qualifications; but the "minimum phase 
volume of 50% probability" or the "minimum 
phase volume of 99% probability" do have 
precise meanings. 

A remarkable limit theorem first noted by 
Shannon' shows that for most purposes the 
particular probability level. is unimportant. We 
quote the result without proof; it is an adapta­
tion of the fundamental "asymptotic equi­
partition property" (AEP) of Information 
Theory.' We suppose that the distribution func­
tion WN from which Ho and W(.) are computed 
is either a canonical distribution or a time­
developed version of one resulting from some 
dynamical perturbation; and that the system is 
such that the canonical ensemble predicts rela­
tive fluctuations in energy which tend to zero as 
N-11' in the "thermodynamic limit" as N -> DO 

at constant density. The Gibbs H per particle, 
Hal N, then approaches a definite limit, and 

lim I [Ho+logW(.)]/Nj =0 (18) 
N~~ 

• E. T. Jaynes. Phys. Rev. 108. 171 (1957). 
'C. E. Shannon, Ben Syot. Tech. J. 27. 379. 623 (1948); 

reprinted in C. E. Shannon and W. W!",ver, The M~­
malical Theory of Com ... ",,""" .... (UmverSlty of Uhnm. 
Pr .... Urbana. Illinois, 1949). See'rrticularly• Sec. 21. 

• A. Feinstein. FOfIndali<ms 0 b.fOTmalton Theory 
(McGraw-Hill Book Company, Inc., New York, 1958), 
Chap. 6. 
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provided. is not zero or unity. The pnncipal 
feature of this theorem, at first sight astonishing, 
is that the result is independent of •. Changmg • 
does, of course, change W(.); and generally by 
an enormous factor. But the change in log W(.) 
grows less rapidly than N, and in the I1mlt it 
makes no difference. 

The intuitive meaning of thIS theorem is that 
the Gibbs H does measure the logarithm of phase 
volume of reasonably probable microstates and, 
remarkably, for a large system the amount per 
particle, log W(.)/ N, becomes independent of 
just what we mean by "reasonably probable." 
We are thus able to retain Boltzmann's original 
formula, S = k log W, which is seen to be precIsely 
related to the Gibbs H, not the Boltzmann one. 

With this interpretation of entropy, let us re­
consider the above experiment. At time t=O, we 
measure a number of macroscopic parameters 
(X,{O)," ,x.{O») adequate to define the ther­
modynamIC state. The corresponding canonical 
distribution determines a high-probability region 
Ro, of phase volume Woo The aforementioned 
Vllriational property of the canonical ensemble 
now implies that, of all ensembles agreeing with 
this initial data III the sense of (16), the canonical 
one defines the largest high-probability region. 
The phase volume Wo therefore describes the full 
range of possible initial microstates; and not 
some arbitrary subset of them; this is the basic 
justification for using the canonical distribution 
to describe partial information. 

On the "subjective" side, we can therefore say 
that Wo measures our degree of ignorance as to the 
true unknown microstate, when the only in­
formation we have consists of the macroscopic 
thermodynamic parameters; a remark first made 
by Boltzmann. 

But, and perhaps more pertinent, we can also 
say on the "objective" side, that W. measures 
the degree of control of the exper.menter qoer the 
microstate, when the only parameters he can 
manipulate are the usual macroscopic ones. On 
successive repetitions of the experiment, the 
initial microstate will surely not be repeated; it 
will vary at random over the high-probability 
region R •. 

When we carry out an adiabatic change of 
state, the region R. is transformed, by the equa­
tions of motion. into a new region R,. From 

either the constancy of H G , or directly from 
Liouville's theorem, the phase volume remains 
unchanged; W, = Woo Each possible initial micro­
state III Ro uniquely determines a possible final 
one in R" and on successive repetitions of the 
experiment, the final state vaTles over R, at 
random. 

At the end of thiR experiment, under the new 
equilibr;um conditions, we note the new values 
(X.(t),··· ,X .(t») of the thermodynamic quanti­
ties. Now consider the region R' , consisting of all 
microstates that are compatible with these new 
X. (t), whether or not they could have resulted 
from the experiment just described; i.e., whether 
or not they also lie in R,. By (17) and (18), the 
final experimental entropy is So' =k 10gW', where 
W' is the phase volume of R'; the experimental 
entropy is a measure of all conceivable ways in 
which the final macrostate can be realized, and 
not merely of all ways in which it could be 
produced in one particular experiment. 

Now it is obvious that, if the observed change 
of state X.(O) --> X,{t) is to be experimentally 
reproducible, the region R, resulting from the 
experiment must be totally contained in R'. But 
this IS possible only if the phase volumes satisfy 
W,$W', which is again the second law! 

At this point, we finally see the real reason for 
the second law; since phase volume is conserved 
in the dynamical evolution, it is a fundamental 
requirement on any reproducible process that the 
phase volume W' compatible with the final state 
cannot be less than the phas~ fJOlume W. which de­
scribes our ability to reproduce the initial state. 

But this argument has given us more than the 
second law; in the past the notion "experimental 
entropy" has been defined, in conventional 
thermodynamics, only for equilibnum states. It 
is suddenly clear that the second law is only a 
very special case of a general restriction on the 
direction of any reproducible process, whether 
or not the initial and final states are describable 
in the language of thermodynamics; the expres­
sion S=k 10gW gives a generalized definition of 
entropy applicable to arbitrary nonequilibrium 
states, which still has the property that it can 
only increase in a reproducible experiment. This 
can be shown directly from Liouville's theorem, 
without any consideration of canonical distribu­
tions or the asymptotic eQuipartition theorem. 
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Finally, it is clear that this extension of the 
second law can be subjected to experimental 
tests. 

Returning to the case of equilibrium thermo­
dynamics, these considerations (which are easily 
extended' to quantum statistics) lead us to state 
the conventional second law in the form: The 
experimental entropy cannot decrease .n a repro­
dunble adwbat<c process that starts from a state of 
complete thermal equilibrium. 

The necessity of the last proviso is clear from 
a logical standpoint in our deTlvation of the 
second law in Sec. IV; for if the preparation of 
the system just before t = 0 imposes any con­
straints other than those implied by the canon­
ical distribution, the manifold of possible initial 
states will be reduced below W o, and we shall not 
have an equality in Eq. (17) initially. ThiS 
necessity is also shown strikingly from an experi­
mental standpoint in the phenomenon of spin 
echos,7.8 which is a gross violation of any state­
ment of the second law that faIls to specify 
anything about the past history of the system. 
This proviso has not been particularly empha­
sized before, but it has always been obvious that 
some such condition would be needed before we 
had a really air-tight statement of the second 
law, which could not be violated by a clever 
experimenter. The future behavior of the system 
is uniquely determined, according to the laws of 
mechanics, only when one has specified perhaps 
10" microscopic coordinates and momenta; it 
could not possibly be determined merely by the 
values of the three or four quantities measured 
in typical thermodynamic experiments. 

Specifying "complete thermal equilibrium" is 
still not as precise a statement as we might wish. 
Experimentally, the only criterion as to whether 
it is satisfied seems to be that the system is 
"aged," i.e., that it is quiescent, the macroscopic 
quantities X. unchanging, for a sufficiently long 
time; and only experience can tell the experi­
menter how long is "sufficiently long." 

Theoretically, we can understand this require­
ment as meaning that, for purposes of prediction, 
lack of knowledge of the present microstate can 
be, in part, compensated by knowledge of the 
past history of the macroscopic state. As we 

'E. L. Hahn, Phys. Rev 80, 580 (1950) 
• A. L. Bloom, Phys. Rev. 98, 1104 (1955). 

observe the system to be quiescent for a longer 
and longer time, we become more and more 
confident that it is not in an atypical microstate 
that will lead to "abnormal" behavior in the 
future. In Hahn's experiment' the spin system, 
having no observable net magnetization at time 
t = 0, IS nevertheless able to develop, spontane­
ously and almost magically, a large and repro­
ducible magnetization at a later time only 
because it "remembers" some very atypical 
things that were done to it before t = O. 

In this observation lies the clue that shows how 
to extend the mathematical methods of Gibbs to 
a general formalism for predicting irreversible 
phenomena, we must learn how to construct 
ensembles which describe not only the present 
values of macroscopic quantities, but also what­
ever information we have about their past 
behavior. The details of this generalization will 
be given elsewhere. 

VI. THE "ANTHROPOMORPHIC" NATURE 
OF ENTROPY 

After the above insistence that any demonstra­
tion of the second law must involve the entropy 
as measured experimentally, it may come as a 
shock to realize that, nevertheless, thermo­
dynamics knows of no such notion as the "en­
tropy of a physical system." Thermodynamics 
does have the concept of the entropy of a thermo­
dynamic system; but a given physical system 
corresponds to many different thermodynamic 
systems. 

Consider, for example, a crystal of Rochelle 
salt. For one set of experiments on it, we work 
with temperature, pressure, and volume. The 
en tropy can be expressed as some function 
S.(T,P). For another set of experiments on the 
same crystal, we work with temperature, the 
component e.. of the strain tensor, and the 
component p. of electric polarization; the en­
tropy as found in these experiments is a function 
S.(T,e •• ,P.). It is clearly meaningless to ask, 
"What is the entropy of the crystal?" unless we 
first specify the set of parameters which define 
its thermodynamic state. 

One might reply that in each of the experi­
ments cited, we have used only part of the 
degrees of freedom of the system, and there is a 
"true" entropy which is a function of all these 
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parameters simultaneously. However, we can 
always introduce as many new degrees of freedom 
as we please. For example, we might expand 
each element of the strain tensor in a com plete 
orthogonal set of functions 1'" (x,y,z) 

e,,(x,y,z) = L;. a".¥,. (x,y,z) 

and by a sufficiently complicated system of 
levels, we could vary each of the first 1000 ex­
pansion coefficients a". independently. Our 
crystal is now a thermodynamic system of over 
1000 degrees of freedom; but we still believe that 
the laws of thermodynamics would hold. So, the 
en tropy must be a function of over 1000 inde­
pendent variables. There is no end to this search 
for the ultimate "true" entropy untt! we have 
reached the pomt where we control the location 
of each atom independently. But just at that 
point the notion of entropy collapses, and we are 
no longer talking thermodynamics! 

From this we see that en tropy is an an thropo­
morphic concept, not only in the well-known 
statistical sense that it measures the extent of 
human ignorance as to the microstate. Even at 
the purely phenomenological level, entropy is an 
anthropomorphic concept. For it is a property, not 
of the physical system, but of the particular 
experiments you or I choose to perform on it. 

This points up still another qualification 
on the statement of the second law without 
which it is, strictly speaking, no law at all. If we 
work with a thermodynamtc system of n degrees 
of freedom, the experimental entropy is a func­
tion S.(X.·· ·X.) of n 'independent variables. 
But the physical system has any number of 
additional degrees of freedom X .+., X .+2, etc. 
We have to understand that these additional 
degrees of freedom are not to be tampered with 
during the experiments on the n degrees of 
interest; otherwise one could easily produce 
apparent violations of the second law. 

For example, the engineers have their "steam 
tables," which give measured values of the en­
tropy of superheated steam at various tempera­
tures and pressures But the H.o molecule has 
a large electric dipole moment; and so the en­
tropy of steam depends appreciably on the 

electric field strength present. It must always be 
understood implicitly (because it is never stated 
explicitly) that this extra thermodynamic degree 
of freedom was not tampered with during the 
expenmen ts on which the steam tables are based; 
wh.ch means, In this case, that the electric field 
was not inadvertently vaned from one measure­
men t to the next. 

Recognition that the "entropy of a physical 
system" is not meaningful without further quali­
fications .s important in clarifying many ques­
tions concerning irreversibility and the second 
law For example, J have been asked several 
times whether, in my opinion, a biological 
system, say a cat, which converts inanimate food 
into a highly organized structure and behavior, 
represents a violation of the second law. The 
answer I always give is that, until we specify the 
set of parameters which define the thermodynamic 
state of the cat, no definite question has been 
asked! 

I t seems apparent, in view of complications 
whIch we have encountered in the attempt to 
give a complete statement of the second law, that 
much more work needs to be done in this field. 
Glib, unqualified statements to the effect that 
"entropy measures randomness" are in my 
opinion totally meaningless, and present a serious 
barrier to any real understanding of these 
problems. A full resolution of all the questions 
that can be raised requires a much more careful 
analysis than any that has been attempted thus 
far. Perhaps the most difficult problem of all is 
to learn how to state clearly what is the specific 
question we are trymg to answer? However, I 
believe that in the above arguments we have been 
able to report some progress in this direction. 
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6. DELAWARE LECTURE (1967) 

The invitation to participate in the Delaware Seminar provided an oppor­
tunity to put on record quite a collection of thoughts that had accumulated 
in my notes for several Colloquium talks given at various Universities since 
the Brandeis lectures. So they were assembled into one manuscript for the 
following lecture delivered at the University of Delaware on March 9, 1965. 

On first reading, it appears to be three lectures on three different topics: 
the theory of Periodicity in Scientific Creation, the interpretation of Quan­
tum Theory, and the foundations of Statistical Mechanics. If any common 
thread can be said to connect them, it is that we are observing three different 
consequences of the standard psychological reaction to conceptual problems 
of science: to try to sweep them under the rug instead of bringing them out 
into the open and discussing them. 

As we now realize, Statistical Mechanics was held up for decades by con­
ceptual misunderstandings, leading to a misplaced emphasis in research. That 
is, almost everybody took it for granted that the Gibbs rules of calculation 
must be justified as an application of the laws of mechanics; whereas the 
Gibbs rules were expressing only the laws of inference. Today, this is so 
clear to anyone who uses those rules in maximum entropy image reconstruc­
tion or spectral analysis, that it is hard to understand how the confusion 
could have persisted so long in Statistical Mechanics. 

The unceasing confusion that swirls about the Copenhagen interpretation 
of Quantum Theory is, in my opinion, the direct result of a very similar, but 
more subtle, misplaced emphasis. The mathematical rules of present Quantum 
Theory, like the Gibbs rules, are highly succesful and clearly contain a great 
deal of very fundamental truth. But nobody knows what they mean; they are 
in part expressions of laws of Nature, in part expressions of principles of 
human inference, and we have not yet learned how to disentangle them. The 
positivist Copenhagen philosophy has prevented solution of the problem by 
denying that there is any distinction between reality and our knowledge of 
reality. That this leads to such absurdities as prediction of psychokinesis was 
recognized by Schrodinger and Einstein; a specific example of this arising in 
current Quantum Optics is pointed out in Jaynes (1980). 

The historical analysis of the work of Gibbs, and the remarks about 
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the relation of ensembles to real systems, were taken from the earlier work 
planned for the Wigner Festschrift. The main theme of that discussion - that 
imprecisely defmed concepts place a limit on the development of a theory, 
that no amount of mathematical prowess can overcome, found another 
confrrmation in the attempts to extend Onsager's irreversible thermodynam­
ics, as noted in 'The Minimum Entropy Production Principle' reprinted here. 
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Scientific theories are invented and cared for by people; and so have 
the properties of any other human institution - vigorous growth when 
all the factors are right; stagnation, decadence, and even retrograde 
progress when they are not. And the factors that determine which it 
will be are seldom the ones (such as the state of experimental or mathe­
matical techniques) that one might at first expect. Among factors that 
have seemed, historically, to be more important are practical considera­
tions, accidents of birth or personality of individual people; and above 
all, the general philosophical climate in which the scientist lives, which 
determines whether efforts in a certain direction will be approved or 
deprecated by the scientific community as a whole. 

However much the" pure" scientist may deplore it, the fact remains 
that military or engineering applications of science have, over and over 
again, provided the impetus without which a field would have remained 
stagnant. We know, for example, that ARCHIMEDES' work in mechanics 
was at the forefront of efforts to defend Syracuse against the Romans; 
and that RUMFORD'S experiments which led eventually to the first law 
of thermodynamics were performed in the course of boring cannon. The 
development of microwave theory and techniques during World War 
II, and the present high level of activity in plasma physics are more 
recent examples of this kind of interaction; and it is clear that the past 
decade of unprecedented advances in solid-state physics is not entirely 
unrelated to commercial applications, particularly in electronics. 

Another factor, more important historically but probably not today, 
is simply a matter of chance. Often, the development of a field of 
knowledge has been dependent on neither matters of logic nor practical 
applications. The peculiar vision, or blindness, of individual persons can 
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be decisive for the direction a field takes; and the views of one man can 
persist for centuries whether right or wrong. It seems incredible to us 
today that the views of Aristotle and Ptolemy could have dominated 
thought in mechanics and astronomy for a millenium, until GALILEO and 
others pointed out that we are all surrounded daily by factual evidence 
to the contrary; and equally incredible that, although thermometers 
(or rather, thermoscopes) were made by GALILEO before 1600, it required 
another 160 years before the distinction between temperature and heat 
was clearly recognized, by JOSEPH BLACK. (Even here, however, the 
practical applications were never out of sight; for GALILEO'S thermos­
copes were immediately used by his colleagues in the medical school at 
Padua for diagnosing fever; and JOSEPH BLACK'S prize pupil was named 
JAMES WATT). In an age averse to any speculation, FRESNEL was never­
theless able, through pure speculation about elastic vibrations, to find 
the correct mathematical relations governing the propagation, reflection, 
and refraction of polarized light a half-century before MAXWELL'S 

electromagnetic theory; while at the same time the blindness of a few 
others delayed recogniNon of the first law of thermodynamics for forty 
years. 

Of far greater importance than these, however, is the general philo­
sophical climate that determines the" official" views and standards of 
value of the scientific community, and the degree of pressure toward 
conformity with those views that the community exerts on those with a 
tendency to originality. The reality and effectiveness of this factor are 
no less great because, by its very nature, individual cases are more 
difficult to document; its effects" in the large" are easily seen as follows. 

If you make a list of what you regard as the major advances in 
physical theory throughout the history of science, look up the date of 
each, and plot a histogram showing their distribution by decades, you 
will be struck immediately by the fact that advances in theory do not 
take place independently and randomly; they have a strong tendency 
to appear in small close clusters, spaced about sixty to seventy years 
apart. What we are observing here is the result of an interesting social 
phenomenon; this pressure toward conformity with certain officially 
proclaimed views, and away from free speCUlation, is subject to large 
periodic fluctuation. The last three cycles can be followed very easily. 
and the pressure maxima and minima can be dated rather precisely. 

At the point of the cycle where the pressure is least, conditions are 
ideal for the creation of new theories. At these times, no one feels very 
sure just where the truth lies. and so free speculation is encouraged. New 
ideas of any kind are welcomed, and judged as all theories ought to be 
judged; on grounds of their logical consistency and agreement with 
experiment. Of course, we are only human; and so we also have a strong 
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pleference for theories which have a beautiful simplicity of concept. 
However, as stressed by many thinkers from OCCAM to EINSTEIN, this 
instinct seldom leads us away from the truth, and usually leads us 
toward it. 

Eventually, one of these theories proves to be so much more success­
ful than its competitors that, in a remarkably short time the pressure 
starts rising, all effective opposition ceases, and only one voice is heard. 
A well-known human frailty - overeagerness of the fresh convert -
rides rough-shod over all lingering doubts, and the successful theory 
hardens into an unassailable official dogma, whose absolute, universal, 
and final validity is proclaimed independently of the factual evidence 
that led to it. We have then reached the peak of the pressure cycle; a 
High Priesthood arises whose members believe very sincerely that they 
are, at last, in possession of Absolute Truth, and this gives them the 
right and duty to combat errors of opinion with all the forces at their 
command. Exactly the same attitude was responsible, in still earlier 
times, for the Spanish Inquisition and the burning of witches. 

At times of a pressure maximum, all free exercise of the imagination 
is frowned upon, and if one persists, severely punished. New ideas are 
judged, not on grounds of logic or fact, but on grounds of ideological 
conformity with the official dogma. To openly advocate ideas which do 
not conform is to be branded a crackpot and to place one's professional 
career in jeopardy; and very few have the courage to do this. Those who 
are students at such a time are taught only one view; and they miss out 
on the give and take, the argument and rational counter-argument, which 
is an essential ingredient in scientific progress. A tragic result is that 
many fine talents are wasted, through the misfortune of being born at 
the wrong time. 

This high-pressure phase starts to break up when new facts are 
discovered, which clearly contradict the official dogma. As soon as one 
such fact is known, then we are no longer sure just what the range of 
validity of the official theory is; and we usually have enough clues by 
then so that addItional disconcerting facts can be found without dif­
ficulty. The voice of the High Priests fades, and soon we have again 
reached a pressure minimum, in which nobody feels very sure where 
the truth lies and new suggestions are again given a fair hearing, so that 
creation of new theories is again socially possible. 

Let us trace a few cycles of this pressure fluctuation (see Fig. 1). 
The pressure minimum that occurred at the end of the eighteenth 
century is now known as the "Age of Reason". 

During a fairly short period many important advances in physical 
theory were made by such persons as LAPLACE, LAGRANGE, LAVOISIER, 
and FOURIER. Then a pressure maximum occurred in the first half of the 
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nineteenth century, which is well described in some thermodynamics 
textbooks, particularly that of EpSTEIN [1]. This period of hostility 
toward free speculation seems to have been brought about, in part, by 
the collapse of SCHELLING'S Naturphilosophie, and its chief effect was to 
delay recognition of the first law of thermodynamics for several decades. 
As already noted, FRESNEL was one of the very few physicists who 
escaped this influence sufficiently to make important advances in theory. 

Another pressure minimum was reached during the third quarter of 
the nineteenth century, when a new spurt of advances took place in a 
period of only fifteen years (1855-1870), in the hands of MAXWELL, 
KELVIN, HERTZ, HELMHOLTZ, CLAUSIUS, BOLTZMANN, and several 

, 
\ 
\ 
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Fig. 1. Some recent fluctuations in social pressure in science 

others. During this short period. thermodynamics, electromagnetic 
theory, and kinetic theory were developed nearly to their present form; 
but the very success of these efforts led to another of the inevitable 
pressure maxima, which we recognize as being in full flower in the period 
1885-1900. One of the tragedies (at least from the standpoint of physics) 
caused by this was the virtual loss of the talents of POINCARE. While 
his contributions to physical theory are considerable, still they are 
hardly commensurate with what we know of his enormous abilities. This 
was recognized and explained by E. T. BELL [2J in these words: "He 
had the misfortune to be in his prime just when physics had reached 
one of its recurrent periods of senility." The official dogma at that time 
was that all the facts of physics are to be explained in terms of Newtonian 
mechanics; particularly that of particles interacting through central 
forces. Herculean efforts were made to explain away MAXWELL'S electro­
magnetic theory by more and more complicated mechanical models of 
the ether - efforts which remind us very much of the earlier single­
minded insistence that all the facts of astronomy must be explained by 
adding more and more Ptolemaic epicycles. 

An interesting manifestation toward the end of this period was the 
rise of the school of "Energetics", championed by MACH and OSTWALD, 
which represents an early attempt of the positivist philosophy to limit 
the scope of science. This school held that, to use modern terminology, 
the atom was not an "observable", and that physical theories should 
not, therefore, make use of the concept. The demise of this school was 
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brought about rapidly by PERRIN'S quantitative measurements on the 
Brownian motion, which verified EINSTEIN'S predictions and provided 
an experimental value for AVOGADRO'S number. 

The last" Golden Age of Theory" brought about by the ensuing pres­
sure minimum, lasted from about 1910 to 1930, and produced our present 
general realitivity and quantum theories. Again, the spectacular success 
of the latter - literally thousands of quantitatively correct predictions 
which could not be matched by any competing theory - brought 
about the inevitable pressure rise, and for twenty-five years (1935 -1960) 
theoretical physics was paralyzed by one of the most intense and pro­
longed high-pressure periods yet recorded. During this period the of­
ficial dogma has been that all of physics is now to be explained by pre­
scribing initial and final state vectors in a Hilbert space, and computing 
transition matrix elements between them. Any attempt to find a more 
detailed description than this stood in conflict with the official ideology, 
and was quickly suppressed without any attempt to exhibit a logical 
inconsistency or a conflict with experiment; this time, a few individual 
cases can be documented [3]. 

There are now many signs that the pressure has started down again; 
several of the supposedly universal principles of quantum theory have 
been confronted with new facts, or new investigations, which make us 
unsure of their exact range of validity. In particular, one of the funda­
mental tasks of any theory is to prescribe the class of physical states 
allowed by Nature. In MAXWELL'S electromagnetic theory, for example, 
any mathematical solution of MAXWELL'S equations is held to represent 
a possible physical state, which could in principle be produced in the 
laboratory. In quantum theory, we were taught for many years that the 
class of possible physical states is in 1 : 1 correspondence with solutions 
of the Schrodinger equation that are either symmetric or antisymmetric 
under permutations of identical particles. Our confidence in the uni­
versal validity of this rule has, recently, been shaken in two respects. 
In the first place, study of "parastatistics" has shown that much more 
general types of symmetry in configuration space can also be described 
by the machinery of quantized wavefunctions, and these new possibilities 
are not ruled out by experimental evidence. Secondly, the superposition 
principle (which may be regarded as a consequence of the above-men­
tioned rule, although it is usually considered in a still more general 
sense) holds that, if "Pl and "Pz are any two possible physical states, then 
any linear combination "P== tlt "Pl + az"Pz is also a possible physical state. 
But with the appearance of superselection rules, we are no longer sure 
what the range of validity of the superposition principle is. 

The discovery of parity nonconservation was a great psychological 
shock; a principle which had been taught to a generation of physicists 
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as a universally valid physical law, so firmly established that it could be 
used to rule out a priori certain theoretical possibilities, such as WEYL'S 

twocomponent relativistic wave equation, was found not to be uni­
versally valid after all; and again we are unsure as to its exact range of 
validity, and WEYL'S equation has been resurrected. 

Several quantum mechanics textbooks assure us that the pheno­
menon of spontaneous emission places a fundamental irreducible mini­
mum value on the width of spectral lines. Such statements are now 
confronted with the laser, which - in instruments now commercially 
available, and as simple to operate as a sixty-watt light bulb - produce 
spectral lines over a million times narrower than the supposedly funda­
mental limit ! Thus, all around the edges of quantum theory we see the 
familiar kind of crumbling which, historically, has always signalled the 
incipient breakdown of the theory itself. 

I hasten to add that, of course, none of these developments affects 
the basic" hard core" of quantum theory in any way; they show only 
that certain gratuitous additions to quantum theory (which had, how­
ever, become very closely associated with the basic theory) were un­
sound in the sense that they were not of universal validity. But it is 
inevitable that, faced these developments, more and more physicists 
will ask themselves how many other principles are destined to crumble 
a little at the edges, so that they can again be considered valid objects 
for inquiry; and not articles of faith to be asserted dogmatically for the 
purpose of discouraging inquiry. 

In particular, the uncertainty principle has stood for a generation, 
barring the way to more detailed descriptions of nature; and yet, with 
the lesson of parity still fresh in our minds, how can anyone be quite so 
sure of its universal validity when we note that, to this day, it has 
never been subjected to even one direct experimental test? 

Today, elementary particle theorists are busily questioning and re­
examining all the foundations of quantum field theory, in a way that 
would have been regarded as utter heresy ten years ago; and some 
have suggested that perhaps the whole apparatus of fields and Hamil­
tonians ought to be simply abandoned in favor of more abstract ap­
proaches. It would be quite inconsistent with the present mood of 
theoretical physics if we failed to question and re-examine all of the 
supposedly sacred principles of quantum theory. 

For all these reasons, I think we are going to see a rapid decrease in 
pressure in the immediate future, and another period of great theoretical 
advances will again be socially possible in perhaps ten years. And I 
think we can predict with confidence that some of the clues which will 
lead to the next round of ad vances are to be found in the many suggestions 
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already made by dissenters from the Copenhagen theory - suggestions 
which have, thus far, been met only by sneers and attacks, which no 
attempt to study their real potentialities. 

2. Statistical Mechanics 

At this point, I see that you are looking about anxiously and wonder­
ing if you are in the right room; for the announced title of this talk was, 
"Foundations of Probability Theory and Statistical Mechanics". What 
has all this to do with statistical mechanics? Well, I wanted to say a 
few things first about general properties of physical theories because 
statistical mechanics is, in several respects, an exceptional case. Statisti­
cal methods exist independently of physical theories, and so statistical 
mechanics is subject to additional outside interactions from other 
fields. The field of probability and statistics is also subject to periodic 
fluctuations, but they are not in phase with the fluctuations taking 
place in physics (they are right now at a deep pressure minimum); and 
so the history of statistical mechanics is more complicated. 

In particular, statistical mechanics missed out on the latest pressure 
minimum in physics, because it coincided with a pressure maximum in 
statistics; the transition to quantum statistics took place quietly and 
uneventfully without any real change in the basic formalism of GIBBS, 

and without any extension of the range of applicability of the theory. 
There was no advance in understanding, as witnessed by the fact that 
debates about irreversibility continue to this day,'repeating exactly the 
same arguments and counter-arguments that were used in the time of 
BOLTZMANN; and the newest and oldest textbooks you can find hardly 
differ at all in their presentation of fundamentals. In short, statistical 
mechanics has suffered a period of stagnation and decadence that makes 
it unique in the recent history of science. 

A new era of active work in statistical mechanics started, however, 
about 1955, in phase with a revolution in statistical thought but not 
at first directly influenced by it. This was caused, in part, by practical 
needs; an understanding of irreversible processes became increasingly 
necessary in chemical and mechanical engineering as one demanded 
more efficient industrial processing plants, stronger and more reliable 
materials, and bigger and better bombs. There is always a movement of 
scientific talent into areas where generous financial support is there for 
the taking. Another cause was the appearance of a few people who 
were genuinely interested in the field for its own sake; and perhaps it 
helped to reflect that, since it had been virtually abandoned for decades, 
one might be able to work in this field free of the kind of pressure noted 
above, which was paralyzing creative thought in other areas of physics. 
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Regardless of the reasons for this renewed activity, we have now 
made considerable progress in theoretical treatment of irreversible 
processes; at least in the sense of successful calculation of a number of 
particular cases. It is an opportune time to ask whether this has been 
accompanied by any better understanding, and whether the foundations 
of the subject can now be put into some kind of order, in contrast to the 
chaos that has persisted for almost a century. I hope to show now that 
the answer to both of these questions is yes; and that recent develop­
ments teach us an important lesson about scientific methodology in 
general. 

Let me state the lesson first, and then illustrate it by examples from 
statistical mechanics. It is simply this: You cannot base a general mathe­
matical theory on imprecisely defined concepts. You can make some 
progress that way; but sooner or later the theory is bound to dissolve in 
ambiguities which prevent you from extending it further. Failure to re­
cognize this fact has another unfortunate consequence which is, in a 
practical sense, even more disastrous: Unless the conceptual problems 
of a field have been clearly resolved, you cannot say which mathematical 
problems are the relevant ones worth working on; and your elforts are more 
than likely to be wasted. I believe that, in this century, thousands of 
man-years of our finest mathematical talent have been lost through 
failure to understand this simple principle of methodology; and this 
remark applies with equal force to physics and to statistics. 

2.1. BOLTZMANN'S Collision Equation 

Let us consider some case histories. BOLTZMANN sought to describe 
the approach to equilibrium in a gas in terms of the distribution f (x, p, t). 
In his first work, this function was defined as giving the actual number 
of particles in various cells of phase space; thus if R denotes the set of 
points comprising a region of six-dimensional phase space, the number of 
particles in R is to be computed from 

nR = J t(x, p, t)d3 x d3 p. (1 ) 
R 

After some physical arguments which need not concern us here, BOLTZ­

MANN concluded that the time evolution of the gas should be described 
by his famous "collision equation", 

\vhere Fa. is the <x-component of external force acting on a particle; and 
the right-hand side represents the effects of collisions in redistributing 
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particles in phase space, in a way familiar to physicists. As a consequence 
of this equation, it is easily shown that the quantity 

can only decrease (in this equation we integrate over all the accessible 
phase space); and so BOLTZMANN sought to identify the quantity 

(4) 

with the entropy, making the second law of thermodynamics a conse­
quence of the dynamical laws, as expressed by (2). As we know, this was 
challenged by ZERMELO and LOSCHMIDT who produced two counter­
examples, based on time-reversal and on the POINCARE recurrence theo­
rem, showing that Eq. (2) could not possibly be an exact expression of 
the dynamical equations of motion, and thereby placing the range of 
validity 01 Boltzmann's theory in doubt. 

At this point, confusion entered the subject; and it has never left it. 
For BOLTZMANN then retreated from his original position, and said 
that he did not intend that I (x, p, t) should represent necessarily the 
exact number of particles in various regions [indeed, it is clear that the 
only function I which has exactly the property of Eq. (1) is a sum of 
delta-functions: l(x,p,t)=E,lJ(x-x,) lJ(p-P,), where x;(t), P.(t) are 
the position and momentum of the i-th particle]. It represents only the 
probable number of particles; or perhaps the average number of particles; 
or perhaps it gives the probability that a given particle is to be found in 
various regions. The decrease in HB is then not something which must 
happen every time; but only what will most probably happen; or perhaps 
what will happen on the average, etc. 

Unfortunately, neither BOLTZMANN nor anybody else has ever become 
more explicit than this about just what BOLTZMANN'S I; and therefore 
BOLTZMANN'S H-theorem, means. When our concepts are not precisely 
defined, they are bound to end up meaning different things to different 
people, thus creating rooom for endless and fruitless debate, of exactly 
the type that has been going on ever since. Furthermore, when we 
debate about imprecise concepts, we can never be sure whether we are 
arguing about a question of fact; or only a question about the meaning 
of words. From BOLTZMANN'S day to this, the debate has never been 
able to rise above this level. 

If you think my characterization of the situation has been too laconic, 
and unfair to many honest seekers after the truth, I invite you to 
examine a recent review article on transport theory [4]. On page 271, 
the author states that "The Boltzmann distribution function - is the 
(probable) number of particles in the positional range dB x and the 
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velocity range d3 v -". On page 274 this is altered to: "The quantity 
I, the Boltzmann distribution function - is, roughly speaking, the 
average number of particles in a cell in the x- v space (the ,a-space). 
1 refers to a single system. A more precise definition of 1 can be obtained 
through the use of the master function P." Consulting this master 
function, we find that neither the definition of P, nor its connection 
with I, is ever given. This, furthermore, is not a particularly bad example; 
it is typical of what one finds in discussions of BOLTZMANN'S theory. 

Let us note some of the difficulties that face the practical physicist 
because of this state of utter confusion with regard to basic concepts. 
Suppose we try to assess the validity of BOLTZMANN'S equation (2) for 
some particular problem; or we try to extend it to higher powers in the 
density, where higher order collisions will become important in addition 
to the binary ones that are taken into account, in some sense, in (2). If 
we agree that 1 represents an average number of particles, we must still 
specify what this average is to be taken over. Is it an average over the 
particles, an average over time for a single system, an average over 
many copies of the single system, or an average over some probability 
distribution? Different answers to this question are going to carry dif­
ferent implications about the range of validity of (2), and about the 
correct way of extending it to more general situations. Even without 
answering it at all, however, we can still see the kind of difficulties that 
are going to face us. For if 1 (x, p, t) is an average over something, then 
the left-hand side of (2) is also an average over this same something. So 
also, therefore, is the right-hand side if the equation is correct. But on 
the right-hand side we see the product of two /,s; the product of two 
averages. 

If you meditate about this for a moment, I think you will find it 
hard to avoid concluding that, if 1 is an average, then the right-hand side 
ought to contain the average of a product, not the product of the averages. 
These quantities are surely different; but we cannot say how different 
until we say what we are averaging over. Until this ambiguity in the 
definition 01 Boltzmann's 1 is cleared up, we cannot assess the range of 
validity 01 Eq. (2), and we cannot say how it should be extended to more 
general problems. Because of imprecise concepts, the theory reaches an 
impasse at the stage where it has barely scratched the surface of any 
real treatment of irreversible processes! 

2.2. Method of GIBBS 

For our second case history, we turn to the work of GIBBS. This was 
done some thirty years after the aforementioned work of BOLTZMANN, 

and the difficulties noted above, plus many others for which we do 
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not have time here, were surely clear to GIBBS, who was extremely 
careful in matters of logic, detail, and definitions. 

All important advances have their precursors, the full significance of 
which is realized only later; and the innovations of GIBBS were not 
entirely new. For example, considerations of the full phase space (T-space) 
appear already in the works of MAXWELL and BOLTZMANN; and GIBBS' 

canonical ensemble is clearly only a small step removed from the distribu­
tion laws of MAXWELL and BOLTZMANN. However, GIBBS applied these 
ideas in a way which was unprecedented; so much so that his work was 
almost totally rejected ten years later in the famous Ehrenfest review 
article [5], which has had a dominating influence on thought in statistical 
mechanics for fifty years. In this article, the methods of GIBBS are 
attacked repeatedly, and the physical superiority of BOLTZMANN'S ap­
proach is proclaimed over and over again. For example, GIBBS' canonical 
and grand canonical ensembles are dismissed as mere "analytical 
tricks", which do not solve the problem; but only enable GIBBS to 
evade what the authors consider to be real problems of the subject! 

Since then, of course, the mathematical superiority of GIBBS' methods 
for calculating equilibrium thermodynamic properties has become firmly 
established; and so statistical mechanics has become a queer hybrid, in 
which the practical calculations are always based on the methods of 
GIBBS; while in the pedagogy virtually all one's attention is given to 
repeating the arguments of BOLTZMANN. 

This hybrid nature - the attempt to graft together two quite in­
compatible philosophies - is nowhere more clearly shown than in the 
fact that the "official" commentary on GIBBS' work [6J devotes a 
major amount of space to discussion of ergodic theories. Now, it is a 
curious fact that if you study GIBBS' work, you will not find the word 
"ergodic" or the concept of ergodicity, at any point. Recalling that 
ergodic theorems, or hypotheses, had been actively discussed by other 
writers for over thirty years, and recalling GIBBS' extremely meticulous 
attention to detail, I think the only possible conclusion we can draw 
is that GIBBS simply did not consider ergodicity as relevant to the founda­
tions of the subiect. Of course, he was far too polite a man to say so openly; 
and so he made the point simply by developing his theory without 
making any use of it. Unfortunately, this tactic was too subtle to be 
appreciated by most readers; and the few who did notice it took it to 
be a defect in GIBBS' presentation, in need of correction by others. 

This situation has had very unfortunate consequences, in that the 
work of GIBBS has been persistently misunderstood; and in particular, 
the full power and generality of the methods he introduced have not yet 
been recognized in any existing textbook. However, it is not a question 
of placing blame on anyone; for we can understand and sympathize 
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with the position of everyone involved. I think that a historical study 
will convince you, as it has convinced me, that all of this is the more or 
less inevitable result of the fact that GIBBS did not live long enough to 
complete his work. The principle he had discovered was so completely 
new, and the method of thinking so completely different from what had 
gone before, that it was not possible to explain it fully, or to explore its 
consequences for irreversible phenomena, in the time that was granted 
to him. 

GIBBS was in rapidly failing health at the time he wrote his work 
on statistical mechanics, and he lapsed into his final illness very soon 
after the manuscript was sent to the publisher. In studying his book, it 
is clear that it was never really finished; and we can locate very ac­
curately the place where time and energy ran out on him. The first 
eleven chapters are written in his familiar style - extremely meticulous 
attention to detail, while unfolding a carefully thought out logical 
development. At Chapter 12, entitled, "On the Motion of Systems and 
Ensembles of Systems Through Long Periods of Time", we see an 
abrupt change of style; the treatment becomes sketchy, and amounts 
to little more than a random collection of observations, trying to state 
in words what he had not yet been able to reduce to equations. On 
pages 143 -144 he tries to explain the methodology which led him to his 
canonical and grand canonical ensembles, as well as the ensemble 
canonical in the angular momenta which was presented in Chapter 4 
but not applied to any problem [7]. However, he devotes only two sen­
tences to this; and the principle he states is what we would recognize 
today as the principle of maximum entropy! To the best of my knowl­
edge, this passage has never been noted or quoted by any other author 
(it is rather well hidden among discussions of other topics) ; and I discov­
ered it myself only by accident, three years after I had written some 
papers [8J advocating this principle as a general foundation for statistical 
mechanics. This discovery convinced me that there was much more to 
the history of this subject than one finds in any textbook, and induced 
me to study it from the original sources; some of the resulting con­
clusions are being presented in this talk. 

GIBBS' discussion of irreversibility in this chapter does not advance 
beyond pointing to a qualitative analogy with the stirring of colored 
ink in water; and this forms the basis for another of the EHRENFEsT's 
criticisms of his work. I think that, had GIBBS been granted a few more 
years of vigorous health, this would have been replaced by a simple 
and rigr-Jl1s demonstration of the second law based on other ideas. For 
it turns out that all the clues necessary to point the way to this, and all 
the mathematical material needed for the proof, were already present in 
the first eleven chapters of his book; it requires only a little more 
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physical reasoning to see that introduction of coarse-grained distributions 
does not advance our understanding of irreversibility and the second law, 
for the simple reason that the latter are experimentally observed macro­
scopic properties; and the fine-grained and coarse-grained distributions 
lead to just the same predictions for all macroscopic quantities. Thus, 
the difference between the fine-grained and coarse-grained H-functions 
has nothing to do with the experimentally observed entropy; it depends 
only on the particular way in which we choose to coarse-grain. 

On the other hand, the variational (maximum entropy) property 
noted by GIBBS does lead us immediately to a proof, not only of the second 
law, but of an extension of the second law to nonequilibrium states. I 
have recently pointed this out [9J and supplied the very simple proof, 
which I think is just the argument GIBBS would have given if he had 
been able to complete his work. However, this is not the main point I 
wish to discuss tonight, so let us turn back to other topics. 

In defense of the EHRENFEST'S position, it has to be admitted that, 
through no fault of his own, GIBBS did fail to present any clear descrip­
tion of the motivation behind his work. I believe that it was virtually 
impossible to understand what GIBB'S methods amounted to, and there­
lore how great was their generality and range 01 validity, until the ap­
pearance of SHANNON'S work on Information Theory, in our own time 
[10J. Finally, until recently the situation in probability theory itself, 
which was in a high-pressure phase completely dominated by the fre­
quency theory, which only sneers and attacks on the theories of LAPLACE 

and JEFFREYS, has made it impossible even to discuss, much less publish, 
the viewpoint and approach which I believe has now solved these 
problems. 

Now, in order to lend a little more substance to these remarks, let's 
examine some equations, the net result of GIBBS' work. Considering a 
closed system (i.e., no particles enter or leave), the thermodynamic 
properties are to be calculated from the Hamiltonian H(qi, P,) as follows. 
First, we define the partition lunction 

(5) 

where we integrate over all the accessible phase space, and the dependence 
on the volume V arises because the range of integration over the co­
ordinates qi depends on V. If we succeed in evaluating this function, 
then all thermodynamic properties are known; for the energy function 
(which determines the thermal properties) is given by 

8 U=- -logZ 
8{J 

(6) 
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in which we interpret fJ as (kT)-l, where k is BOLTZMANN'S constant and 
T the KELVIN temperature; and the equation of state is 

1 a 
p= 7f av- IogZ . (7) 

Now, isn't this a beautifully simple and neat prescription? For the first 
time in what has always been a rather messy subject, one had a glimpse 
of the kind of formal elegance that we have in mechanics, where a 
single equation (HAMILTON'S principle) summarizes everything that 
needs to be said. Of all the founders of statistical mechanics, only 
GIBBS gives us this formal simplicity, generality, and as it turned out, 
a technique for practical calculation which the labors of another sixty 
years have not been able to improve on. The transition to quantum 
statistics took place so quietly and uneventfully because it consisted 
simply in the replacement of the integral in (5) by the corresponding 
discrete sum; and nothing else in the formalism was altered. 

In the history of science, whenever a field has reached such a stage, 
in which thousands of separate details can be summarized by, and deduced 
from, a single formal rule - then an extremely important synthesis has 
been accomplished. Furthermore, by understanding the basis of this 
rule it has always been possible to extend its application far beyond the 
original set of facts for which it was designed. And yet, this did not 
happen in the case of GIBBS' formal rule. With only a few exceptions, 
writers on statistical mechanics since GIBBS have tried to snatch away 
this formal elegance by grafting GIBBS' method onto the substrate of 
BOLTZMANN'S ideas, for which GIBBS himself had no need. However, a 
few, including TOLMAN and SCHRODINGER, have seen GIBBS' work in a 
different light - as something that can stand by itself without having 
to lean on unproved ergodic hypotheses, intricate but arbitrarily defined 
cells in phase space, Z-stars, and the like. Thus, while a detailed study 
will show that there are as many different opinions as to the reason for 
GIBBS' rules as there are writers on the subject, a more coarse-grained 
view shows that these writers are split into two basic camps; those who 
hold that the ultimate justification of GIBBS' rules must be found in 
ergodic theorems; and those who hold that a principle for assigning a 
priori probabilities will provide a sufficient justification. Basically, the 
confusion that still exists in this field arises from the fact that, while the 
mathematical content of GIBBS' formalism can be set forth in a few lines, 
as we have just seen, the conceptual basis underlying it has never been 
agreed upon. 

Now, while GIBBS' formalism has a great generality - in particular, 
it holds equally well for gas and condensed phases, while BOLTZMANN'S 
results apply only to dilute gases - it nevertheless fails to give us many 
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things that BOLTZMANN'S "collision equation" does yield, however 
imperfectly. For BOLTZMANN'S equation can be applied to irreversible 
processes; and it gives definite theoretical expressions for transport 
coefficients (viscosity, diffusion, heat conductivity), while GIBBS' rules 
refer only to thermal equilibrium, and one has not seen how to extend 
them beyond that domain. Furthermore, in spite of all my carping about 
the imprecision of BOLTZMANN'S equation, the fact remains that it has 
been very successful in giving good numerical values for these transport 
coefficients; and it does so even for fairly dense gases, where we really 
have no right to expect such success. So, my adulation of Gibbs must not 
be carried to the point of rejecting BOLTZMANN'S work; it appears that 
we need both approaches! 

All right. I have now posed the problem as it appeared to me a 
number of years ago. Can't we learn how to combine the best features 
of both approaches, into a new theory that retains the unity and formal 
simplicity of GIBBS' work with the ability to describe irreversible proc­
esses (hopefully, a better ability) of BOLTZMANN'S work? This question 
must have occurred to almost every physicist who has made a serious 
study of statistical mechanics, for the past sixty years. And yet, it has 
seemed to many a hopelessly difficult task; or even an impossible one. 
For example, at the 1956 International Congress on Theoretical Physics, 
L. VAN HOVE [11] remarked, "In contrast to the case of thermodynamical 
equilibrium, no general set of equations is known to describe the behavior 
of many-particle systems whenever their state is different from the 
equilibrium state and, in view of the unlimited diversity of possible 
non equilibrium situations, the existence of such a set of equations 
seems rather doubtful". 

Now, while I hesitate to say so at a symposium devoted to Philo­
sophy of Science, the injection of philosophical considerations into 
science has usually proved fruitless, in the sense that it does not, of 
itself, lead to any advances in the science. But there is one extremely 
important exception to this; and it is in exactly the situation now before 
us. At the stage in development of a theory where we already have a 
formalism successful in one domain, and we are trying to extend it to a 
wider one, some kind of philosophy about what the formalism" means" 
is absolutely essential to provide us with a sense of direction. And it 
need not even be a "true" philosophy - whatever that may mean - for 
its real justification will not lie in whether it is "true", but in whether 
it does point the way to a successful extension of the theory. 

In the construction of theories, a philosophy plays somewhat the 
same role as scaffolding does in the construction of buildings; you need 
it desperately at a certain phase of the operation, but when the con­
struction is completed you can remove if it you wish; and the structure 
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will still stand of its own accord. This analogy is imperfect, however, 
because in the case of theories, the scaffolding is rarely ugly, and many 
will wish to retain it as an integral part of the final structure. At the 
opposite extreme to this conservative attitude stands the radical posi­
tivist, who in his zeal to remove every trace of scaffolding, also tears down 
part of the building. Almost always, the wisest course will lie somewhere 
between these extremes. 

The point which I am trying to make, in this rather cryptic way, is 
just the one which we have already noted in the attempt to evaluate and 
extend BOLTZMANN'S collision equation. Different philosophies of what 
that equation means carry different implications as to its range of 
validity, and the correct way of extending it. And we are now at just 
the same impasse with regard to GIBBS' equations; because their con­
ceptual basis has not been precisely defined, the theory dissolves in ambigui­
ties which have precented us, for sixty years, from extending to new domains. 

2.3. Conceptual Problems of the Ensemble 

The fact that two different camps exist, with diametrically opposed 
views as to the justification of GIBBS' methods, is simply the reflection 
of two diametrically opposed philosophies about the real meaning of the 
GIBBS ensemble; and this in turn arises from two different philosophies 
about the meaning of any probability distribution. Thus, the foundations 
of probability theory itself are involved in the problem of extending 
GIBBS' methods. 

Statistical mechanics has always been troubled with questions 
concerning the relation between the ensemble and the individual system, 
even apart from possible extensions to non equilibrium cases. In the 
theory, we calculate numbers to compare with experiment by taking 
ensemble averages; that is what we are doing in Eqs. (6) and (7). And yet, 
our experiments to check these predictions are not performed on en­
sembles; they are performed on the one individual system that exists in 
the laboratory. Nevertheless, we find that the predictions are verified 
accurately; a rather astonishing result, but one without which we would 
have little interest in ensembles. For if it were necessary to repeat a 
thermodynamic measurement 1,000 times and average the results before 
any regularities (laws of thermodynamics) began to appear, both thermo­
dynamics and statistical mechanics would be virtually useless to us; 
and they would not appear in our physics curriculum. Thus, it appears 
that a major problem is to explain why GIBBS' rules work in practice; 
and not only why they work so well, but why they work at all! 

We can make this dilemma appear still worse by noting that the 
relation between the ensemble and the individual system is usually 
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described by supposing that the individual system can be regarded as 
having been drawn" at random" from the ensemble. I personally have 
never been able to comprehend what "at random" means; for I ask 
myself: What is the criterion, what is the test, by which we could decide 
whether it was or was not really" random"? Does it make sense to ask 
whether it was exactly random, or approximately random? - and neither 
the literature nor my introspection give me any answer. However, even 
without understanding this point, the real difficulty is obvious; for the 
same individual system may surely, and with equal justice, be regarded 
as having been drawn" at random" from anyone of an infinite number 
of different ensembles! But the measured properties of an individual 
system depend on the state oj the system; and not on which ensemble you 
or I regard it as having been "drawn from". How, then is it possible 
that ensemble averages coincide with experimental values? 

The two different philosophical camps try to extricate themselves 
from this dilemma in two entirely different ways. The" ergodic" camp, 
of course, is composed of those who believe that a probability distribution 
describes an objectively real physical situation; that it stands for an 
assertion about experimentally measurable frequencies; that it is there­
fore either correct or incorrect; and that this can, in principle, be decided 
by performing" random experiments". They note that what we measure 
in any experiment is necessarily a time average over a time that is long 
on the atomic scale of things; and so the success of GIBBS' methods will 
be accounted for if we can prove, from the microscopic equations of 
motion, that the time average for an individual system is t;qual to the 
ensemble average over the particular ensembles given by GIBBS. 

This viewpoint has much to recommend it. In the first place, physi­
cists have a natural tendency to believe that, since the observed properties 
of matter" in the large" are simply the resultant of its properties" in 
the small" multiplied many times over, it ought to be possible to obtain 
the macroscopic behavior by strict logical deduction from the micro­
scopic laws of physics; and the "ergodic" approach gives promise of 
being able to do this. Secondly, while the necessary theorems have not 
been established rigorously and universally, the work done on this 
problem thus far has made it highly plausible that, in a system inter­
acting with a large heat bath, the frequencies with which various micro­
scopic conditions are realized in the long run are indeed given correctly 
by the GIBBS canonical ensemble. This has been rendered so extremely 
plausible that I think no reasonable person can seriously doubt that it is 
true, although we cannot rule out the possibility of occasional" patho­
logical" exceptions. Thus the "ergodic" school of thought has, in my 
opinion, very nearly succeeded in its aim of establishing equality of time 
averages and ensemble averages for the particular case oj Gibbs' canonical 
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ensemble; and in the following I am simply going to grant, for the sake 
of the argument, that this program has succeeded entirely. 

Nevertheless, the" ergodic" school of thought still faces a fundamen­
tal difficulty; and one that was first pointed out by BOLTZMANN himself, 
and stressed in the EHRENFEST review article. Curiously, there exists to 
this day a group of workers in Europe who refuse to recognize the 
seriousness of this difficulty, and deny that it invalidates their ap­
proach. The difficulty is that, even if one had succeeded in proving these 
ergodic theorems rigorously and universally, the result would have 
been established only for time averages over infinite times; whereas the 
experiments which verify GIBBS' rules measure time averages only over 
finite times. Thus, a further mathematical demonstration would in any 
event be necessary, to show that these finite time averages have suf­
ficiently approximated their limits for infinite times. 

Now we can give simple and general counter-examples proving that 
such an additional demonstration cannot be given; and indeed that any 
macroscopic system, given a time millions of times the age of the uni­
verse, still could not" sample" more than an infinitesimal fraction of all 
the microscopic states which have high probability in the canonical 
emsemble; and thus any assertion about the frequencies with which dif­
ferent microscopic states are realized in an individual system, is com­
pletely devoid of operational meaning. 

The easiest way of seeing this is just to note that, if a macroscopic 
system could sample all microscopic states in the time in which measure­
ments are made, so that the measured time averages would be equal to 
ensemble averages, then the measured values would necessarily always 
be the equilibrium values; we would not even know about irreversible 
processes! The jact that we can measure the rate oj an irreversible process 
already proves that the time required jar a representative sampling oj 
microstates must be much longer than the time required to make our meas­
urements. Thus, any purported proof that time averages over the finite 
times involved in actual measurements are equal to canonical ensemble 
averages would, far from justifying statistical mechanics, stand in clear 
conflict with the very experimental facts about irreversibility that we are 
trying to account for by extending GIBBS' methods! 

The thing which has to be explained is, not that ensemble averages 
are equal to time averages; but the much stronger statement that 
ensemble ;tverages are equal to experimental values. The most that 
ergodic theorems could possibly establish is that ensemble averages are 
equal to time averages over infinite time, and so the" ergodic" approach 
cannot even justify equilibrium statistical mechanics without contradict­
ing experimental facts. Obviously, such an approach cannot be extended 
to irreversible processes where, in order for ensemble theory to be of 
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any use, the ensemble averages must still be equal to experimental 
values; but the very phenomena to be explained consist of the fact that 
these are not equal to time averages. 

The above line of reasoning convinced me, ten years ago, that further 
advances in the basic formulation of statistical mechanics cannot be made 
within the framework of the" ergodic" viewpoint; and, rightly or wrong­
ly, it seemed equally clear to me that the really fundamental trouble 
which was preventing further advances, both in statistical mechanics 
and in the field of statistics in general, was this dogmatic, single-minded 
insistence on the frequency theory of probability which had dominated 
the field for so many years. At that time, virtually every writer on 
probability theory felt impelled to insert an introductory paragraph or 
two, expressing his denunciation and total rejection of the so-called 
"subjective" interpretation of probability, as advocated by LAPLACE, 
DE MORGAN, POINCARE, KEYNES, and JEFFREYS; and this was done, 
invariably, without any attempt to understand the arguments and 
results which these people - particularly LAPLACE and JEFFREYS -
had advanced. The situation was, psychologically, exactly like the one 
which has dominated American Politics since about 1930; the Republicans 
continually analyze the statements of Democrats and issue counter­
arguments, which the Democrats contemptuously dismiss without any 
attempt to understand them or answer them. 

On the other hand, I had taken the trouble to read all of JEFFREYS' 
work, and much of LAPLACE'S, on probability theory; and was unable 
to find any of the terrible things about which the" frequentist" writers 
had warned us. On the philosophical side I found their arguments to be, 
far from irresponsible and useless, so eminently sound and reasonable 
that I could not imagine any sane person disputing them. On the mathe­
matical side, I found that in problems of statistical estimation and 
hypothesis testing, any problem for which the" frequentist" offered any 
solution at all was also solved with ease by the methods of LAPLACE and 
JEFFREYS; and their results were either the same or demonstrably 
superior to the ones found by the frequentists. Furthermore, the methods 
of LAPLACE and JEFFREYS (which were, of course, based on BAYES' 
theorem as the fundamental tool of statistics) were applied with equal 
ease to many problems which, according to the frequentist, did not 
belong to the field of probability theory at all; and they still yielded 
perfectly reasonable, and scientifically useful, results! 

I don't want to dwell at length on the situation in probability theory, 
because time is running short and a rather large exposition of this,with 
full mathematical details, is being readied for publication elsewhere. But 
let me just mention one example of what one finds if he takes the trouble 
to go beyond polemics and study the mathematical facts of the matter. 
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In problems of interval estimation of unknown parameters, the fre­
quentist has rejected the method of LAPLACE and JEFFREYS, on grounds 
that I can only describe as ideological, and has advocated vigorously 
the method of confidence intervals. Now it is a matter of straightforward 
mathematics to show that, whenever the frequentist's "estimator" is 
not a sufficient statistic (in the terminology of FISHER), there is always a 
class of possible samples for which the method of confidence intervals 
leads to absurd or dangerously misleading results, in the sense that it 
yields a wrong answer far more frequently (or, if one prefers, with far 
higher probability) than one would suppose from the stated confidence 
level. The confidence interval can, in some cases, contradict what can 
be proved on strict deductive reasoning from the observed sample. One 
can even invent problems, which are not at all unrealistic, in which the 
probability of this happening is greater than the stated confidence level! 

This is something which, to the best of my knowledge, you cannot 
find mentioned in any of the "orthodox" statistical literature; and I 
shudder to think of some of the possible consequences, if important 
decisions are being made on the basis of confidence interval analyses. 
The method of LAPLACE and JEFFREYS is demonstrably free from this 
defect; it cannot contradict deductive reasoning and, in the case of the 
aforementioned "bad" class of samples, it automatically detects them 
and yields a wider interval, so that the probability of a correct decision 
remains equal to the stated value. Once one is aware of such facts, the 
arguments advanced against the method of LAPLACE and JEFFREYS and 
in favor of confidence intervals (i.e. that it is meaningless to speak of the 
probability that () lies in a certain interval, because () is not a "random 
variable," but only an unknown constant) appear very much like those 
of the 17th century scholar who claimed his theology had proved there 
could be no moons on Jupiter, and steadfastly refused to look through 
GALILEO'S telescope. 

Since the reasoning by which the "frequentist" has rejected LA­
PLACE'S methods is so patently unsound, and since attempts to extend, 
or even justify, GIBBS' methods in terms of the frequency theory of 
probability have met with an impasse, it would appear that we ought to 
explore the possibilities of applying LAPLACE'S" subjective" theory of 
probability to this problem. At any rate, to reject this procedure without 
bothering to explore its potentialities, is hardly what we mean by a 
"scientific" attitude! So, I undertook to think through statistical 
mechanics all over again, using the concept of "subjective" probability. 

It became clear, very quickly, that to do this makes all the unsolved 
problems of the theory appear in a very different light; and possibilities 
for extension of GIBBS' methods are seen in entirely different directions. 
Once we clearly and explicitly free ourselves from the delusion that an 
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ensemble describes an "objectively real" physical situation, and re­
cognize that it describes only a certain state of knowledge, then it is 
clear that, in the case of irreversible processes, the knowledge which we 
have is of a different nature than in the case of equilibrium. We can then 
see the problem as one which cannot even be formulated in terms of the 
frequency theory of probability. It is simply this: What probability 
assignment to microstates correctly describes the state of knowledge which 
we have, in practice, about a non equilibrium state? Such a question just 
doesn't make sense in terms of the frequency theory; but, thanks to the 
work of GIBBS and SHANNON, I believe that it makes extremely good 
sense, and in fact has a very general and mathematically unambiguous 
solution in terms of SUbjective probabilities. 

3. The General Maximum-Entropy Formalism 

If we accept SHANNON'S interpretation (which can be justified by 
other mathematical arguments entirely independent of the ones given 
by SHANNON) that the quantity 

H=- 'LP. 10gP. 
• 

(8) 

is an "information measure" for any probability distribution P.; i.e. 
that it measures the" amount of uncertainty" as to the true value of i, 
then an ancient principle of wisdom - that one ought to acknowledge 
frankly the full extent of his ignorance - tells us that the distribution 
that maximizes H subject to constraints which represent whatever in­
formation we have, provides the most honest description of what we 
know. The probability is, by this process, "spread out" as widely as 
possible without contradicting the available information. 

But recognition of this simple principle suddenly makes all the 
maximum-minimum properties given by GIBBS in his Chapter XI - what 
I believe to be the climax of GIBBS' work, and just the place where time 
and energy ran out on him - acquire a much deeper meaning. If we 
specify the expectation value of the energy, this principle uniquely 
determines GIBBS' canonical ensemble. If we specify the expectations 
of energy and mole numbers, it uniquely determines GIBBS' grand 
canonical ensemble [8]. If we specify the expectations of energy and 
angular momentum, it uniquely determines GIBBS' rotational ensemble 
[7]. Thus, all the results of GIBBS on statistical mechanics follow im­
mediately from the principle of maximum entropy; and their derivation 
is astonishingly short and simple compared to the arguments usually 
found in textbooks. 

But the generalization of GIBBS' formalism to nonequilibrium prob­
lems also follows immediately (although I have to confess that I spent 

7 Studies in the Foundations, Vol. I 
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six years trying to do this by introducing new and more complicated 
principles, before I finally saw how simple the problem was). For this 
principle in no way depends on the physical meaning of the quantities 
we specify; there is nothing unique about energy, mole numbers, or 
angular momentum. If we grant that it represents a valid method of 
reasoning at all, then we must also grant that it applies equally well to 
any physical quantity whatsoever. So, let us jump immediately, in view 
of the time, to the most sweeping generalization of GIBBS' formalism. 

We have a number of physical quantities about which we have some 
experimental information. Let them be represented by the Heisenberg 
operators .Fi (x, t), Fz (x, t), ... F", (x, t). In general they will depend on 
the position x and, through the equations of motion, on the time t. 
For example, 1\ might be the particle density, F2 the density of kinetic 
energy, Fa the" mass velocity" of the fluid, F4 the (y z)-component of the 
stress tensor, F5 the intensity of magnetization, ... , and so on; whatever 
information of this type is available, represents our definition of the 
nonequilibrium state. 

Now we wish to construct a density matrix (! which incorporates all 
this information. When I say that adensity matrix" contains" certain 
information, I mean by this simply that, if we apply the usual rule for 
prediction; i.e. calculate the expectation values 

(9) 

we must be able to recover this information from the density matrix. 
Thus, the mathematical constraints on the problem are that the ex­
pectation values (9) must agree with the experimental information: 

Ik(x, t) =Tr[(!~(x, t)], x, t in Rk (10) 

where I" (x, t) represent the experimental values, and Rio is the space­
time region in which we have information about I,,; in general it may be 
different for different k. Subject to these constraints, we are to maximize 
the "information entropy" 

(11) 

which is the appropriate generalization of (8), as found many years ago 
by VON NEUMANN. The solution of this variational problem is: 

(12) 

where the Ak (x, t) are a set of real functions to be determined presently 
(they arise mathematically as Lagrange multipliers in solving the 
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variational problem with constraints), and for normalization the partition 
function of GIBBS has been generalized to the partition functional: 

Z[Ak(x,tlJ=Trexp{i: J d3 xdtA,,(x,t) F;.(X,t)}. (13) 
"=1 R~ 

The A" (x, t) are now to be found from the conditions (10), which reduce to 

d 
fk (x, t) = dAk(X, t) log Z (14) 

which is a generalization of GIBBS' equation (6); where lJ denotes the 
functional derivative. Mathematical analysis shows that (14) is just 
sufficient to determine uniquely the integrals in the exponent of (12); 
it does not necessarily determine the functions AI< (x, t), but it does 
determine the only property of those functions which is needed in the 
theory; a very interesting example of mathematical economy. 

The density matrix having been thus found, prediction of any other 
quantity J(x, t) in its space-time dependence is then found by applying 
the usual rule: 

<J(x, t)= Tr [eJ(x, t)]. ( 15) 

In Eqs. (12) to (15) we have the generalization of GIBBS' algorithm to 
arbitrary nonequilibrium problems. From this point on, it is simply a 
question of mathematics to apply the theory to any problem you wish. 

Of course, it requires a great deal of nontrivial mathematics to 
carry out these steps explicitly for any nontrivial problem! If GIBBS' 
original formalism was somewhat deceptive, in that its formal simplicity 
conceals an enormous amount of intricate detail, the same is true with 
a vengeance for this generalization. Nevertheless, it is still only mathe­
matics; and if it were important enough to get a certain result, one could 
always hire a building full of mathematicians and computers to grind 
it out; there are no further questions of principle to worry about. 

For the past three years, my students and I have been exploring 
these mathematical problems, and we have a large mass of results that 
will be reported in due course. Without going into further details, let 
me just say that all the previously known results in theory of irreversible 
processes can be derived easily from this algorithm. Dissipative effects 
such as viscosity, diffusion, heat conductivity are obtained by direct 
quadratures using (15), with no need for the forward integration and 
coarse-graining operations characteristic of previous treatments. For 
static transport coefficients we obtain formulas essentially equivalent to 
those of KUBO; we can exhibit certain ensembles for which KUBO'S 

results, originally obtained by perturbation theory, are in fact exact. 

7· 
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Because we are freed from the need for time-smoothing and other 
coarse-graining operations, the theory is no longer restricted to the 
quasi-stationary, long-wavelength limit. It gives, with equal ease, general 
formulas for such things as ultrasonic attenuation and for nonlinear 
effects, such as those due to extremely large temperature or concentra­
tion gradients, for which previously no unambiguous theory existed. 
Because of these results, I feel quite confident that we are on the right 
track, and that this generalization will prove to be the final form of 
nonequilibrium statistical mechanics. 

Let me close with a couple of philosophical remarks, relating this 
deVelopment to things I mentioned earlier in this talk. In seeking to 
extend a theory to new domains, some kind of philosophy about what 
the theory" means" is absolutely essential. The philosophy which led 
me to this generalization was, as already indicated, my conviction that 
the" sUbjective" theory of probability has been subjected to grossly 
unfair attacks from people who have never made the slightest attempt 
to examine its potentialities; and that if one does take the trouble to 
rise above ideology and study the facts, he will find that" subjective" 
probability is not only perfectly sound philosophically; it is a far more 
powerful tool for solving practical problems than the frequency theory. 
I am, moreover, not alone in thinking this, as those familiar with the 
rise of the" neo-Bayesian" school of thought in statistics are well aware. 

Nevertheless, that philosophy of mine was only scaffolding, which 
served the purpose of telling me in what specific way the formalism of 
GIBBS was to be generalized. Once a philosophy has led to a definite, 
unambiguous mathematical formalism by which practical calculations 
may be carried out, then the issue is no longer one of philosophy; but of 
fact. The formalism either will or will not prove adequate in practice; 
and it will be judged, quite properly, not by the philosophy which led 
to it, but by the results which its gives. If you do not like my philosophy, 
but you find that the formalism, nevertheless, does give useful results, 
then I am quite sure that you will be able to invent some other philosophy 
by which that formalism can be justified! And, perhaps, that othe'r 
philosophy will lead to still further generalizations and extensions, to 
which my own philosophy makes me blind. That is, after all, just the 
process by which all progress in theoretical physics has been made. 
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7. PRIOR PROBABILITIES (1968) 

The fundamentally different problems of doing maximum entropy with 
continuous variables, noted already in a footnote in ITSM I, continued to 
plague the theory after the recognition of the proper continuous entropy 
expression in Brandeis. Introducing the 'measure' m(x) achieved the needed 
invariance of the results with respect to parameter changes, but left the prac­
tical problem untouched. Given m(x) in one parameter space, the mathemat­
ics tells us how to transform it to any other; but fIrst we need a principle to 
fmd it in one space. If there is no obvious limiting process from some discrete 
set, what defmes this measure? 

It was clear that m(x) was, essentially, what had been called previously 
'the prior distribution expressing complete ignorance'. But this took us back 
to just what Jacob Bernoulli and Laplace had struggled with but had not 
solved except on foote discrete sets: what do we mean by 'complete igno­
rance' and what distribution represents it? It seemed that we were back to 
Square One, from whence it had all started. 

But before the mathematical problem could be treated, we had to deal 
with the semantic one. The phrase 'complete ignorance' is too vague to defme 
any particular mathematical problem; can we state what we really want here 
in terms that do make mathematical sense? 

In 1965 it occurred to me that one very reasonable interpretation of 
'complete ignorance' was group invariance. It is in retrospect incredible that 
it could have required so long to see this, since my thesis advisor had been 
Eugene Wigner, 'Mr. Group Theory' of theoretical physics. I attended his 
course and that of Hermarm Weyl in Princeton, and had for fIfteen years 
been an enthusiastic teacher of group theory methods in problems of mathe­
matical physics. But better late than never. 

Applying this idea in just the way Wigner and Weyl had taught me, I found 
immediately a much deeper understanding of the Jeffreys prior dp dolo in 
the location-scale parameter problem. This rule had been rejected in my 
Socony-Mobil Lectures (1958) because Jeffreys' argument in favor of it 
seemed ad hoc and arbitrary. But now it was clear that the point was not 
merely that a was positive, the rationale that Jeffreys had given. The point 
was that a was a scale parameter, complete ignorance of which meant 
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invariance under the group of scale changes. I immediately became an advo­
cate, rather than a critic, of the Jeffreys rule, and the nice numerical results 
that it gives (noted wistfully in the Socony-Mobillectures as something for­
bidden to me) were now mine to use after all, with the sanction of a clear 
rational justification. 

This work, which was for me a major advance in thinking, suffered the 
standard fate. It was submitted to a weD-known statistical journal in 1966, 
and was indignantly rejected. The editor (whom I had thought to be a 
Bayesian) took the trouble to write me a letter requesting that I never again 
send him anything like it. But quickly I received an invitation to contribute 
an article to this IEEE journal's special issue on Decision Theory, and so with 
the addition of a few introductory pages it became the article which follows. 

Although, as noted, group invariance arguments had appeared before this 
article and have appeared many times in the literature since 1968, to the best 
of my knowledge no other writer since Poincare has recognized the 'Desider­
atum of Consistency' as providing the basic justification for imposing group 
invariance. Most writers simply dive into the mathematics without saying why 
they are doing it. I therefore stress this desideratum as something that appears 
to me not only a necessary axiom for any rational theory of inference, but 
also of much greater generality than the application to groups given here. 

Group invariance arguments are carried further in The Well-Posed Problem 
and in the Appendix to MarginaliZation. 
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Prior Probabilities 
EDWIN T. JAYNES 

Ab,ltrat't-In decision theory, mathematical analysis aho •• that 
once the umpling distribution, lou function, and &ample are 
.pecifled, the only remaiDiq buil for a choice among ditfere:at 
admillible decisions ties iD. the prior probabilitiea. Therefore, the 
logical fOUlldationa of decision theory CUlIIot be put i.a tally util­
tactory form until the old problem of arbitrariDeu (aometimes called 
"aubjeetiveneu") in aaigning prior probabilities is resolved. 

The principle of muimum entropy repraenta one Itep in this 
direction. Ita use is iDutrated, and 8 conespoadence property 
between muimum-e:atropy probabllitiea and frequenciea ia dem .. 
ouatraled. The conaillency of Ihia principle with the principl .. of 
cODventionai fldirect probability" analysis is illustrated by showing 
thaI IIWIY kilo,", r_1s may b. deri.ed by eith.r method. How­
ever, aD ambicWty remains in lettmg lIP • prior OD a continuous 
parameter aplce becaae tbe retults Jack: iDvariaDce UIlder a chaDce 
of p&rametera i th. a further principle ia needed. 

It ia Gown that iD maDy problema, iDdudiDg lOme of the mo.t 
importaDt ill praetlee, Ihia ambiguity call be removed by .pplyiDg 
methods of group theoretical reaaoolDg wbleh hay. long b .... 
... ed ill theoretical pbyoics. By f1Ddinc' the group of lnDaformaliODI 
on the parameter .,.ce which convert the problem into an equivaleut 
one, a buic desideratum of condatency can be atated in the form of 
hmctional equation. which impoae COIldiuOJl8 on, and in lome cues 
fully determine, an lIinvariant measure" OD the parameter apace. 
The method ie iDuatrated for the cue of location IIDd Kale param­
eten, rate constants, and in Bernoulh trial. with unknown prob­
ability of .ueeeu. 

In realistic problema, both the transformation group analJBIS md 
the priDciple of maximwn eDtropy are Deeded to detenru.ae the prior. 
The distributions thus found are uniquely detennmed by the prior 
information, independently of the choice of parameters. In • certa1D 
class of problems, therefore. the prior distributions may DOW' be 
c1auned to be fuJly as "objective" as the samplmg diltributlOl1s. 

I. BACKGROUND OF THE PROBLEM 

SINCE THE time of Laplace, applIcations of probability 
theory have been hampered by difficultIes in the treat­

ment of prior information. In realistIC problems of decision 
or inference, we often have pnor infollnatlOn which is 
highly relevant to the question bemg asked; to fall to take 
it into account IS to comrrut the most obvious mcon­
"istency of reasoning and may lead to absurd or dan­
gerously misleading results 

As an extreme example, we might know m advance that 
a certain parameter 8 S 6 If we fatl to incorporate that 
fact into the equations, then a conventIOnal statistical 
analYSIS might easIly lead to the conclusion that the "best" 
estimate of 8 is 9* = S, and a shortest 90-percent con­
fidence interval IS (7 S e S 9) 

Few people will accept an estImate of a parameter whIch 
hes outside the parameter space, and so "orthodox" 
statIstIcal principles such as effiCIent estImators or shortest 

pa~b~~~I}1a=~t!~c~;~n~~onT~,I;d:OG~a~~ GSp~~red In 
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confidence Interval. can bleak down and leave no delinite 
procedure for inference in the presence of this kind of prior 
infonnation. Further examples of this phenomenon are 
given by Kendall and Stuart [1] 

WIth more "gentle" kmds of prior mformation, whlclI 
do not absolutely exclude any interval fore but only render 
certain intervals highly unlikely, the difficulty IS less 
drastic but 8ttll present. Such cases are even more dan­
gerous in practice because the shortcommgs of orthodox 
pnnciples, while just lIS real, are no longer obvious. 

The Bayesian approach to statistics offers some hope 
of overcoming such difficulties since, of course, both the 
prior and posterior distributions of 9 will vanish outside 
the parameter space, and so the results cannot conllict 
with deductive reasoning. However, what determines the 
prior within the parameter space? After nearly two cen­
turies of discussion and debate. we still do not seem to have 
the principles needed to translate prior mformatlon into" 
definite prior probabIlity assignment. 

For ffij),ny years the orthodox school of thought, repl"~ 
sented by most statisticians, has sought to avoid thIS 
problem by rejectmg the Use of pnor probabilItIes alto­
gether, except in the case where the prior information con­
sists of frequency data However, as the preceding example 
shows, this places a great restrICtion on the class of 
problems whICh can be treated Usually the prior informa­
tion does not consist of frequency data, but It IS nonethe­
less cogent. As Kendall and Stuart [1] point out, thIS IS a 
ffij),Jor weakness of the principle of confidence mterval. 

WIth the rise of decISIOn theory, this problem h .. , 
assumed new importance. As we know, thIS development 
was started by Wald [2] with the express purpose of find­
ing a new foundatIOn for statistics which would have the 
generality, but avoid the supposed mistakes, of the work 
of Bayes and Laplace. But after monumental labors, the 
mathematical situatIOn uncovered by Wald finally led to a 
realIzatIon that the only consistent proced ure for dlgestlllg 
informatIOn into the decision process IS IdentICal with ap­
plication of Bayes' theorem, and that, once the loss func­
tion, sampling distribution, and sample are given, the only 
ratIOnal basIS for choice among different admiSSIble de­
CIsions hes m the pnor probabihtles. 

Thus m modern deciSIOn theory, It appears that sta­
tlshcal practIce has reached a level where the problem of 
prIOr probabilItIes can no longer be Ignored or belittled. 
In current problems of engmeering dCSlgn, quality con­
trol, operations research, and Irreverstble statistIcal me­
chanics, we cannot translate the full problem Into mathe­
matical terms until we learn how to find the prior proba­
blhty assignment which describes the prior information. 
In fact, as shown later, in some of the most Important 
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pl1ll>lem. the prIOr mformation IS the ollly mform:ltion 
availlible, and"" decisions mlL,t be based entirely on it. In 
the absence of any principle for setting up prior dlstnbu­
tions, such problems cannot be treated mathematically at 
all. 

The "personalistic" school of thought (Savage [3], [4]) 
recognizes tlus defiCiency, but proceeds to overcompensate 
it by offering us many different pnors for a given state of 
prior knowledge. Surely, the most elementary requirement 
of consistency demands that two persons With the same 
relevant prior informatIOn should assign the same prior 
probabihtJes. Personahstic doctrme makes no attempt to 
meet this requirement, but Instead attacks It as represent­
lUg a naive "necessary" Vlew of probablhty, and even pro­
claims as one of its fundamental tenets ([3], p. 3) that we 
are free to violate it without being unreasonable Con­
sequently, the theory of personahstic probability has come 
under severe critICism from orthodox statisticians who 
have seen in it an attempt to destroy the "objectiVity" of 
statistical inference by injectmg the user's personal 
opinions into it 

Of course, no onc denies that personal opmlOns are en­
titled to consideration and respect If they are based on 
factual eVidence. For example, the judgment of a compe­
tent engineer as to the reliabihty of a machme, based on 
calculatIOn of stresses, rate of wear, etc., IS fully as cogent 
as anythIng we can leanl from a random expenment, and 
methods of reliability testing which fall to take such in­
fonnation mto account are not only logically inconSistent, 
but economically wasteful Nevertheless, the author must 
agree With the conclUSions of orthodox statistiCians, that 
the notion of personalistIC probablhty belongs to the field 
of psychology and has no place In apphed statistICs Or, to 
state thiS more constructively, objectiVity requires that a 
statistical analysl" should make use, not of anybody's 
personal opilllons, but rather the specific factual data on 
which those opllllOns are based. 

An unfortunate impression has been created that re­
jectIOn of personahstlC probability automatICally means 
the rejection of Bayesian methods in general It will 
hopefully be shown here that this is not the case; the 
problem of achievmg objectivity for pnor probabihty 
assignments is not one of psychology or philosophy, but 
one of proper defillltions and mathematical techmques, 
which IS capable of ratIOnal analysis. Furthermore, re­
sults already obtained from thiS analYSIS are suffiCient for 
many Important problems of practIce, and encourage the 
belief that WIth further theoretical development prIOr 
probabilities can be made fully as "objective" as direct 
probabilities 

It is sometimes held that this eVident difference m the 
nature of direct and prior probabihtles arises from the fact 
that the fonner have a clear frequency lllterpretation 
usually lackmg in the latter. However, there IS almost no 
situation of practice in which the direct probabilities are 
actually verified experimentally in the frequency sense. 
In such cases It is hard to see how the mere possibility of 

thmking about direct probabihties as frequenCies in a non­
existent experiment can really be essential, or even rele­
vant, to the problem. 

Perhaps the real difference between the marufestly 
"public" nature of direct probabilities and the "private" 
nature of prior probabilities hes in the fact that in one case 
there IS an estabhshed theory, accepted by all (I.e., 
Bernoulli trials, etc.), which tells how to calculate them, 
while in the case of pnor probablhtles, no uruversally 

. accepted theory exists as yet. If this view is correct, we 
would expect that with further development of probability 
theory, the distmction will tend to disappear. The two 
prinCiples-maximum entropy and transformation 
groups-discussed III the followmg sectIOns represent 
methods for calculating probabilities whICh apply indif­
ferently to either 

II THE BASIC DESIDERATUM 

To elaborate the point just made, a prior probability 
assignment not ba..ed on frequencies is necessarily "sub­
jective" in the sense that It describes a state of knowledge, 
rather than anything wluch could be measured in an ex­
penment. But if the methods are to have any relevance to 
science, the pnor distribution must be completely "ob­
jective" in the sense that It IS mdependent of the per­
sonahty of the user. On this point, It is beheved that even 
the most ardent Bayesian must agree with orthodox stat­
IstiCians The measure of success in producmg an obJec­
tive theory of deciSion or mference is just the extent to 
which we are able to eliminate all personalistIC elements 
and create a completely lIimpersonahstic" theory 

Evidently, then, we need to find a mIddle ground be­
tween the orthodox lind personalistic approaches, whICh 
will give us just one prior distribution for a given state of 
prior knowledge. Hlstoncally, orthodox rejection of 
Bayesian methods was not based at first on any Ideological 
dogma about the "meanmg of probabihty" and certalllly 
not on any failure to recogruze the importance of prior in­
fonnatlon; this has been noted by Kendall and Stuart 
[1], Lehmann [5], and many other orthodox writers. The 
really fundamental objectIOn (stressed particularly m thc 
remarks of Pearson III Savage [4]) was the lack of any 
pnnclple l>y which the prior probabiht,es could be made 
objectIve 111 the aforementIOned sense BayeSian method" 
for all their advantages, Will not be entirely satisfactory 
until we face the problem squarely and show how thIS re­
qUIrement may be met. 

For later purposes It will be convelllent to state thiS 
basiC dCblderatum as follows. in two problems where we 
have the same prwr mformatum, we sho .... ld aS8Zyn the 
same prwr p,..babu,11e8 ThiS IS stated In such a way that 
it seems psychologICally impoSSible to quarrel With It, 
indeed, It may appear so trivial as to be Without useful 
content A major purposc of the present paper is to sho" 
that m many cases, ill spite of first appearances, thiS 
desideratum may be formulated mathematically III " way 
whICh has nontrivial consequences 
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Some kinds of prior infonnation seem too vague to be 
translatable into mathematical terms. If we are told that, 
"Jones was very pleased at the suggestion that 9 might be 
greater than 100," we have to concede that this does con­
stitute prior infonnation about 9; if we have great respect 
for Jones' sagacity, it might be relevant for inferences 
about 9. But how can this be incorporated into a mathe­
matical theory of inference? There is a rather definite 
minimum requirement which the prior information must 
satisfy before it can be used by any presently known 
methods. 

Definition 1: A piece of information I concerrung a 
parameter 9 will be called UJ.14b1£ if, given any proposed 
prior probability &BBignment f(9) dB, there i. a procedure 
which will determine unambiguously whether f(9) does or 
does not agree with the infonnation I. 

As examples, consider the following statements. 

II: (/(1 < 6." 
I,: "The mean value of tanh -1 (I - 9') in previollli 

measurements was 1.37." 
I.: "In the eighteenth century, Laplace summarized 

his analysis of the mass of Saturn by writing, 'It is a 
bet of 11 000: I that the error of this estimate is not 
1/100 of its value' He estimated this mass as 1/3512 
of the sun's mass." 

I.: "There is at least a 9O-percent probability that 
6> 10." 

Statements I, and I, clearly constitute testable informa­
t.ion; they can be used immediately to restrict the fonn of 
a prior probability &BBignment. Statement I. becomes 
testable if we understand the exact meaning of Laplace's 
words, and very easily so if we know the additional 
historical fact that Laplace's calculations were based on 
the incomplete beta distribution. I. is also clearly testable, 
but it is perhaps less clear how it could lead to IIny unique 
prior probability &BBignment. 

Perhaps in the future others will discover new principles 
by which non testable prior information could be used in a 
mathematical theory of inference For the present, how­
ever, we restrict ourselves to a search for fonnal principles 
by which testable infonnation can be converted into a 
unique prior probability assignment. 

Fortunately, we are not without clues as to how this 
uniqueness problem might be solved. The pnnClple of 
maximum entropy (i.e., the prior probability assignment 
should be the one with the maximum entropy consistent 
with the prior knowledge) gives a definite rule for setting 
up priors. The rule is impersonal and has an evident intui­
tive appeal [6 Hill as the distribution which "assumes 
the least" about the unknown parameter. In applications 
It has a number of advantages, but also some shortcomings 
which prevent its being regarded as a complete solution 
to the problem. 

We now survey these briefly and aim to supplement the 
principle in a way that retains the advantages, while cor­
recting the shortcomings 

III. MAXIMUM ENTllon 

We illustrate this method by a simple example which 
occurred in a physical problem (distribution of impurities 
in a crystal lattice), and for simplicity consider only a one­
dlmenslOnal version. An impurity atom may occupy any 
of n different positions {Xl' x.I, where X, = jL and Lis 
a fixed length. From experiments on scattering of X rays, it 
has been determined that there is a moderate tendency to 
prefer sites at which cos(kx,) > 0, the specific datum bemg 
that 111 many previous instance.' the average value ,,[ 
cos kx} Wa>; 

(cos lex}) = 0.3. (1) 

This is clearly testable informatlOn, and it is desired to find 
a probabihty assignment 'P, for occupation of the Jth site 
which incorporates this mformation, but asgumes nothing 
further, from which statistical predictions about future 
instances can be made. 

The mathematlCal problem is then to find the 'P} which 
will maximize the entropy 

H - - t'P} log p, ,_I 
subject to the constraillt.. 'P, ~ 0, and 

2:,'P, = 1 

2:}p, cos(lexl ) = 0.3. 

(2) 

The solution is well known, and in this case takes the form 

I 
PI = Z(X) exp[X cos lex,] 

where Z(A) is the partition [unction . 
Z(>.) == 2: exp[X cos lex,] ,_I 

1111,1 the value ,,[ X " to be determined fl"Om (4) 

(cos lex,) - ~ log Z(X) = O.:l. 
()X 

(5) 

(ti) 

(7) 

In the c""" where ka« I, nka » I, we may approxi­
mate the dIscrete bums suffiment.ly well by int.,grab, lead­
Ingto 

Z(X) "'" nI.(X) 

(cos mkx) "" [.(X) 
[,(X) 

(S) 

(9) 

where I.(X) arc the modified Be."el functlOns From (I), 
and (9) in the CR.'" m = I, we find X = 0.63 

HaVing found the d18tributlOn p" we can now use it as 
the prior from which further information about the im­
purity 10catlOn cr.n be Incorporated vm Bayes' theorem. 
For example, suppose that if the impurity IS at site j, 
the probabihty that a neutron lIlCldent on the crystal will 
be reflected 15 proportIOnal to sin'kx, We acqUlre the new 
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data. "It neuLrons mCldellt, r reflected." The posterior 
pn,bability for the impurity to be at site J would then be 

p(xAn, r) = Ap,p(rln, J) 

= B exp 1 X cos kx, II sin'kx, I' {cos'kx, l--' (10) 

where A, Bare normahzlng constants. 
Alternatively, and representatIve of a large class of im­

portant problems which mcludes statIstIcal mechanics, 
the prior d,stnbutlOn p, muy be used dIrectly for certam 
klllds of decision or inference For example, suppose that 
before the neutron reftectioll experiment, we WIsh to estI­
mate the probabIlity of reftection of r neutrons from n 
incident Cond,tlOlIal only on the pnor mformation (1), 
this probability is 

p(rln) 

= (~) ({sin'kxl'{cos'kxl--') (11) 

the expectatlOlI value being taken over the prior dlstrlbu­
t.ion (5). In the case n = r = 1, it reduces to the probabIlity 
of refieetlOn at a SIngle trial; usmg (9), we find 

(sm'kx) = I. - I, = X -'(cos kx) = 0.48 (12) 
21. 

which is only slightly below the value 0 .. 50 corresponding 
to a uniform pnor d,stributIOn p,; thus, in agreement with 
our intuition, the moderate constraint (1) is by no means 
sufficient to inhibit appreciably the occupation of sites for 
which Isin kxl « 1. On the other hand, if the prior in­
formation had given (cos kx) = 095, lepetition of the 
argument would yield (sin'kx) = 0.09, indlcatmg now a 
very appreciable inhibition. 

Thc values of (sin'kx) thus calculat.ed represent e..ti­
matm; of sm'2kx whIch are "optimal" in the sense that 1) 
they :lrc ('maxlmally noncommittal" With regard to all 
IIlfOrmat.toll except the speCIfic datum gIven, and 2) they 
mimmize the expected square of the error. or course, m a 
problem as rudImentary 88 tins, one does not. expect that 
these estimates can be highly reliable; the information 
available IS far too meager to permit such a thing But this 
fact, too, is automatically incorporated into the maximum­
entropy formalism; a measure of the reliabihty of the esti­
mate IS gIven by the expected Hloss function," which in 
this case is Just the va.riance of sm2kx over the maximum­
cntropy distributIOn 

. I.' - 21,' + I,J, 
u' = (sm'kx) - (sm'kx)' = ---8-1-.'-- (13) 

from whIch we find, m the cases (cos kx) = 0.3,0.95, the 
values u = 0.35, u = 0 12, respectively. Thus, if (cos lex) 
= 0.3, no accurate estimate of sin2kx IS pos·nble; we can 
say only that It is reasonably likely to lie in the interval 
(0.13,083) W,th the prior datum (cos kx) = 095, we are 
In a somewhat better pOSition, and can say that sin2.kx IS 
reasonably hkely to be less than 021. 

Evidently the principle oC maximum entropy can yield 
reliable predictions only of those quantities for which it 
leads to a sharply peaked d,stnbutlOn. If, for example, we 
find that a maximum-entropy distribution concentrates 
99.99 percent of the probability on those values of x for 
which 6.72 <f(x) < 6 73, we shall feel justified in predicting 
thatf(x) lies in that interval, and in attributing a very high 
(but not necessarily 99.99 percent) reliability to our pre­
diction Mathematically, both equilibrium and non­
equihbrium statistical mechanics are equivalent to apply­
ing the principle of maximum entropy in just this way; 
and their success derives from the enormous number of 
possible microstates, which leads to very sharply peaked 
distributions (typically of relative width 10-") Cor the 
quantities of interest. 

Let us now try to understand some conceptual problems 
arising from the principle oC maximum entropy. A com­
mon objection to it is that the probabilities thus obtained 
have no frequency interpretation, and thereCore cannot be 
relevant to physical applicatIOns; there is no reason to be­
lieve that distributions observed experimentally would 
agree WIth the ones found by maximum entropy. We WIsh 
to show th"t the situation is a great deal more subtle than 
that by demonstrating that 1) there is a sense in which 
maximum-entropy distributions do have a precise cor­
respondence with frequenCIes; 2) in most realisbc problems, 
however, this frequency connection is unnecessary for the 
usefulness of the principle; and 3) in fact, the principle is 
most useful in just those cases where the empirical distri­
bution fails to agree with the one predicted by maximum 
entropy 

IV. THE CORRESPONDENCE PROPERTY 

Application of the principle of maximum entropy does 
not require that the dIstribution sought be the result of 
any random experiment (m Cact, its main purpose W88 to 
extend the range of application of BaYCSlan methods to 
problems where the prior probabilIties have no reasonable 
frequency interpretation, such problems being by far the 
most often encountered in practIce) Nevertheless, nothing 
prevents us from applymg It also in cases where the prior 
distribution is the result of some random expenment, and 
one would hope that there is some close correspondence 
between the maximum-entropy distnbution and observ­
able frequenCIes in such cases; indeed, any prinCIple for 
assigning priors whIch lacked this correspondence property 
would surely contain logical inconsistencies. 

We give a gener&l proof for the discrete case. The 
quantity x can take on the values I x," x.l where" 
may be finite or countably mfinite, and the x. may be 
specIfied arbItrarily. The avaIlable informatIOn about x 
places a number of constraints on the probability dlstnbu­
tion p. = p(x.) We assume for convenience, although It '" 
in no way necessary for our argument, that these t"ke the 
form of mean values of several functions Ifl(x),"', 
fm(x) l, where m < n The probability distributIOn P. winch 
mcorporates this information, but is free from all other 
9.ssumptlons, is then the one whiCh maximizes 
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. 
H = - L p, log P. 

• -1 

subject to the constraints 

L,P, = 

L,pJ.(X,) = F .. k = 1,2, " m 

(14) 

(15) 

(16) 

where the F. are the prescnbed me.~n values. Ag,un, the 
well-known solution is 

p, = ZeAl .. , X .. ) exp[A,JI(X,) + 

with the partition functioll 

ZeAl . Am) == L exp[A,J,(X,) + . + AMfm(x,) I (18) .-, 
m which the real cOllstants X, are to be determined from 
t.he constraints (16), which reduce to the relations 

CI 
F, = CIA. log Z(AI . Am). (19) 

The di.tributlOn (17) is the one whieh is, III a certain senbe, 
spread out a.;, uniformly as possible without contradICting 
the gIVen information, i.e., it gives free rein to all possible 
vanabihty of x allowed by the constraints. Thus it ac­
complishes, in at least one sense, the intuitive purpose of 
assigning a prior distribution; it agrees with what is known, 
but expresses a "maximum uncertainty" with respect to 
all other mattern, and thus leaves a maximum possible 
freedom for our final decisions to be influenced by the sub­
sequent sample data. 

Suppose now that the value of x is determined by some 
random experiment; at ea.ch repetition of the experiment 
the final result is one of the values x,. On the basis of the 
gIVen infonnation, what can we say about the frequencies 
with which the various x, will occur? Let the experiment be 
repeated M times (we are particularly interested in the 
limit M -+ m, because that is the s,tuation referred to in 
the usual frequency theory of probabihty), and let every 
conceivable sequence of results be analyzed. Each trial 
could give, independently, anyone of the te3wts I x, ... 
x.1. and 80 there are a priori nj( conceivable detailed out­
comes. However, many of these will be incompatible With 
the given information about mean values of the f,(x). We 
will, of courne, assume that the result of the random ex­
periment agrees with this information (if it did not, then 
the given information was false and we are doing the wrong 
problem). In the M repetItions of the experiment, the re­
sult XI will be obtained m, times, X, will be obtained "'" 
times, etc. Of course, 

L m,=M (20) .-1 
and if the specified mean values are III fact verified, we 
have the additIOnal relation. 

L mJ.(x,) = MF" k = I, "', m. (21) .. , 

If m < n - I, the constraints (20) and (21) are Insuf­
hcient to determine the relatIve frequenCies f, = m,1 M . 
Nevertheless, we have strong grounds for preferring some 
chOICes of thef, to othern. For out of the origlOal nM con­
CC1vable results, how many would lead to a gIven set of 
sample numbers {mi'" mil}? The answer IS, of course, 
the multmonual coeffiCient 

M! 
--------
(Mf,)! . (Mf.)! 

(22) 

and so the set of frequencies If, . f.1 whICh can be 
reahzed In the greatest number of ways is the one which 
maxImizes (22) subject to the constramts (20) and (21). 
We may, equally well, maXimize any monotOniC increa..qing 
function of W, In particular M-' log W, but as M -co Wf' 
hl\ve ImmedIately from the StIrling apprOxImatIOn, 

M-' log W -+ - L f, logf, = Hr (23) ,_I 

It is now eVIdent that, in (20)-(23) we have formulated 
exactly the same mathematICal problem as ill (14)-(16). 
and thl\t this identIty wdl persist whether or 1101. the COll­
stramts take the form of mean values. GIven any testable 
prior information, the probabildy dIstribution which 
maximizes the entropy IS numerically IdentICal with the 
frerruen~ distributIOn which Call be realized In the greatest 
number of ways. 

The maximum ill W is, furthermore, enormously sharp; 
to investigate this, let If, I be the set of frequencies which 
maximizes Wand has entropy H" and If,' I be any other 
set of frequenCies whICh agrees WIth the constraint.. (20) 
and (21) and has entropy H/ < Hr The ratIO [(number of 
ways In whICh If, I could be reahzed)/(number of ways in 
whICh IN I could be reahzed) 1 grows asymptotically ... , 

~ ~ ,M(Hr - H/) (24) 

and passes all bounds as M -+ 00 Therefore, the distribu­
tion predicted by maximum entropy can be reahzed ex­
perimentally in overwhelnungly more ways than can any 
other. This is the precise connection between maximum­
entropy dIstributIOns and frequenCIes promised m Section 
III 

Now, does thIS property justIfy a predictIOn that the 
maximum-entropy distributIOn will, in fact, be observed in 
a =1 experiment? Clearly not, in the sense of deductive 
proof, for different people may have different amounts of 
information, whIch will lead them to set up different 
maximum-entropy distributions. ConsIder a specific case: 
Mr. A knows the mean values (J.{x», !J,(x»; but Mr. B 
knows in addItion !J.(x». Each sets up a maximum­
entropy distribution conditional on his information, and 
since Mr. B's entropy H B is maxlnuzed subject to one 
further constraint, we will have 

(2.';) 
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We note two properties, e"""ly verified from the fore­
gOing equation, If Mr. B's additIOnal Information IS re­
dundant (Ill the sense that it IS only what Mr. A would 
have predICted from his distribution), then X. = 0, and 
the distributIOn IS unchanged. In this C'ISe, and only in 
this case, we have equahty In (25). Because of this prop­
erty (which holds generally), it IS never necessary when 
setting up a maximum-entropy problem to detennine 
whether the different pieces of informatIOn used are inde­
pendent, any redundant lIIformatlOn will drop out of the 
equations automatically. 

On the other hand, If the given pieces of information 
are logICally contradictory (for example, if It tum. out 
that f.(x) = f,(x) + 2 f,(x), hut the given mean values 
fail to satisfy (!o) = (J,) + 2 (f~), then it will be found that 
(19) has no Simultaneous solution with real X. In this case, 
the method of maximum entropy breaks down, as it 
should, giVing us no distribution at all. 

In general, Mr. B's extra information will be neither 
redundant nor contradictory, and so he will find a maxi­
mum-entropy distributIOn different from that of Mr. A. 
The lIlequahty will then hold in (25), lIldlCatlng that Mr. 
B's extra informatIOn was "useful" in further narrowing 
down the range of possibilities Suppose now that we start 
performlllg the random experiment with Mr. A and Mr. B 
watehing. Since Mr. A predicts a mean value (JJ different 
from the correct one known to Mr. B, It is clear that the 
experimental distribution cannot agree in all respects 
wit",Mr A's prediction. We cannot be sure In advance that 
It will agree with Mr. B's prediction either, for there may 
he still further constraints f.(x), f.(x) , ... ,etc., operating 
ill the experiment but unknown to Mr B. 

However, the property demonstrated above does jUhtify 
the followmg weaker statement of frequeney correspon­
dence. If the Information incorporated into the maxlmum­
entropy analysis includes all the constramts actually 
operative in the random experiment, then the distribution 
predicted by maximum entropy is overwhelmingly the 
most hkely to be observed experimentally, because it can 
he realized III overwhelmingly the greatest number of 
ways. 

Conversely, if the experiment falls to confirm the 
maximum-entropy predictIOn, and tillS disagreement per­
Sists on indefimte repetitIOn of the experiment, then we 
will conclude that the physical mechamsm of the expen­
ment must contain additional constraints which were not 
taken into account III the maximum-entropy calculation. 
The observed deviations then provide a clue as to the 
nature of these new constraints. In tlus way, Mr. A can 
discover empirically that hiS information was incomplete. 

Now the little scenario just described is an accurate 
model of just what did happen in one of the most important 
applications of statistical analysis, carried out by Gibbs. 
By the year 1900 it was known that in classical statistical 
mechaDlc8, use of the canonical ensemble (which Gibbs de­
rived as the maximum-entropy distribution over classical 
phase volume, based on a specified mean value of the 
energy) failed to predict thermodynamic properties (heat 

capaCities, equatIOns of state, eqwhbrium constants, etc.) 
correctly. AnalYSIS of the data showed that the entropy of 
a real physical system was always less than the value pre­
dicted At that time, therefore, Gibbs was in just the posi­
tion of Mr. A in the scenario, and the conclusion was 
drawn that the microscopic laws of physics must im:olve 
an additIOnal constraint not contained in the laws of 
clasSICal mecharucs. 

In due course, the nature of thiS constraint was found; 
first by Planck m the case of radiation, then by Einstein 
and Debye for sohds, and finally by Bohr f,'r isolated 
atoms The constramt COllSIOted in the discreteness of the 
possible energy values, thenceforth called energy levels. 
By 1927, the mathematical theory by which these could 
be calculated was developed nearly to its present form. 

Thus it IS an IustoTlcal fact that the first clues indicating 
the need for the quantum theory, and indicating some 
necessary features of the new theory, were uncovered by 
a seemingly "unsuccessful" application of the principle of 
maximum entropy. We may expect that such things will 
happen agam in the future, and this is the basis of the re­
mark that the principle of maximum entropy is most useful 
to US in ju,t those cases where it falls to predict the correct 
experimental facts. 

Since the history of this development is not well known 
(a fuller account IS given elsewhere [12]), the following 
hTlef remarks seem appropriate here. Gibbs [13] wrote his 
probability density in phase space in the form 

w(ql· . q.; PI ... P.) = exp[~(q, ... P.)] (26) 

and called his function ~ the "mdex of probability of 
phase" He derived his canonical and grand canonical en­
sembles ([13], ch. H) from constramts on average energy, 
and average energy and partICle numbers, respectively, as 
([13], p. 143) "the distribution in phase which without 
violating this condition gives the least value of the average 
index of probability of phase ~ . ." This is, of course, 
just what we would describe today as maximizing the 
entropy subject to constraints. 

Unfortunately, Gibbs did not give any clear explan:l­
tion, and we can only conjecture whether he possessed one, 
as to why this partICular function is to be mininuzed on 
the average, in preference to all others. Consequently, 
his procedure appeared arbitrary to many, and for sixty 
years there was controversy over the validity and justifica­
tion of Gibbs' method In spite of its enormous practical 
success when adapted to quantum statistics, few attempts 
were made to extend it beyond problems of thennal 
equilibrium. 

It was not until the work of Shannon in our own time 
that the full significance and generality of Gibbs' method 
could be appreciated. Once we had Shannon's theorem 
establishing the uniqueness of entropy as an "Infonnation 
measure," it was clear that Gibbs' procedure was an ex­
ample of a general method for inductive Inference, whose 
applicability is in no way restricted to equilibrium thenno­
dynamics or to physics. 
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v. CONNECTION WITH DIRECT PROBABILITY l\!ODELS 

Another important conceptual point IS brought out by 
comparing the frequency correspondence property of 
maxImum-entropy dIstributions with those obtamed from 
other theoretIcal models, for example, the standard model 
of Bernoulh tnals We WIsh to show that thIs dIfference is 
far less than IS often supposed 

As noted prevIously, we are not entItled to assert that 
the dIstrIbutIOn predIcted by maximum entropy must be 
observed In a real experiment, we can say only that thIs 
dIstribution is by far the most likely to be observed, pro­
vided that the information used mcludes all the constraints 
actually operatmg m the experIment. ThIS requirement, 
while suffiCIent, IS not always necessary; from the fact that 
the predIcted dlstnbutlon has been observed, we rannot 
conclude that no further constramts eXIst beyond those 
taken into account We can conclude only that further 
constramts, if present, must be of such a nature that they 
do not affect the relative frequencies (although they might 
affect other observable things such as correlatIOns) 

Now what are we entItled to assert about frequency 
correspondence of probabihties calculated from the theory 
of Bernoulli trials. Clearly no probablhty calculatIOn, 
whether based on maximum entropy or any other pnnclple, 
can predIct WIth certainty what the result of a real ex­
periment must be, if the informatIOn avaIlable were suf­
ficient to permIt such a thing, we would have no need of 
probabIlity theory at all. 

In the theory of Bernoulli tnals, we calculate the 
probabIlIty that we shall obtain r successes In n tnals as 

p(r\n) = (~) p'(l - p)O-' (27) 

in wluch p is regarded as a gIven number in 0 < p < 1. For 
firute n, there IS no r in 0 :0; r :0; n whIch is absolutely ex­
cluded by this, and so the observed frequency of success 
f"iEE rln cannot be predIcted with certainty Nevertheless, 
we Infer from (27) that, as n becomes very large, the 
frequency f = p becomes overwhelmingly the most hkely 
to be observed, provided that the assumptIons whIch 
went into the derivation of (27) (numencal valuc of p, in­
dependence of dIfferent trials) correctly describe the con­
dItIOns operative in the real expenment. 

Conversely, if the observed frequency fails to agree WIth 
the predictIOns (and this tendency persISts on mdefirute 
repetitions of the experiment), we will conclude that the 
phYSIcal mecharusm of the expenment is different from 
that assumed In the calculation, and the nature of the 
observed devlatlOn gives a clue as to what IS wrong In our 
assumptIOns 

On comparing these statements of probabIlity-fre­
quency correspondence, we see that there is virtually no 
difference in the logical situation between the principles 
of maximum entropy and of BernoullI tnals. In both 
cases, and in every other applicatIOn of probablhty theory, 
the onus is on the user to make sure that all the informa­
tion, which his common sense tells him 18 relevant to the 

problem, IS actually incorporated into the equations. 
There IS nothIng III the mathematICal theory wluch can 
determIne whether this has been, III fact, accomplished; 
success can be known only a postenon from agreement 
with experiment But In both cases, faIlure to confirm the 
predictions gives us an opportumty to learn more about the 
physical mechamsm of the expenment 

For these reasons, we are entItled to clrum that proba­
bilities calculated by maxImum entropy have just as much 
and Just as httle correspondence WIth frequenCIes as those 
calculated from any other prlllciple of probablhty theory 

We can make thIS pOInt stIli more strongly by exhibltmg 
a mathematIcal connection between these two methods of 
calculatIon, showmg that III many cases we can obtrun 
Identical results from use of eIther method. For thIS 
purpose, it IS convenient to Introduce some more of the 
vocabulary usually assocIated with Information theory. 
Any random experiment may be regarded as a "mesoage" 
transrrutted to us by nature The "alphabet" consISts of 
the set of all pOSSIble outcomes of a SIngle trial; on each 
repetItIon of the experiment, nature transmIts to us one 
more letter of the message In the case of Bernoulli trIals, 
we are concerned with a message on n bll\l\ry i\.lphah~t. 

Define the "random variables" 

f'=" {I, If the lth trial YIelds succe",,} 
y 0, If the lth trIal YIelds faIlure . 

(28) 

On n repetltJOns of the expenment, we receive the message 

(29) 

and t,he t,otu.1 numher of RUCCC .... ..,cs oht.alll('.(ll:-' . 
,.(M) == L: y, (:10) .-, 

}'rom (27) we hnd t,hut, for :Illy 11, the expectrrl number 
of succe,,<;es is 

(r) = TIp. (~1) 

SUPPORC now that we rcvcrxc ollr VlCwpomt, rf"gard (:11) n .... 

the primary given datum, and heek the prohublhty .. r 
obtammg r successes In n trmb by ma.xlmum entropy A 
full probablhty analysis of the experiment reqUIres thllt we 
conslderJ not Just the probabilities on the 2-pomt samplf' 
space of a Single trIal, but rather the proh"hliItu's 

Yo] (:l2) 

on the 2°-pomt sample space of all pOSSIble messages. The 
problem is then to find the dIstrIbutIOn PM whICh maXI­
mIzes the entropy 

"Ihjert to the eon,trnlllt. (~l). The rp,"it i. 

(~4) 
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with the partitIOn funchon 

Z(~) = L e'·(M) = (e' + I)". 
M 

The value of ~ is determined, as always, by (19)' 

or 

(T) = CI_ log Z = n(e -, + n-I 
CIA 

A = log~ = log-P-. 
n - (T) 1 - P 

(35) 

(36) 

Using (35) and (36), the maximum-entropy distrIbutIon 
(34) reduces to 

(37) 

This IS the probabIlity of obtaining a specific message, WIth 
successes at speCIfied trIals. The probabihty of obtaimng T 

successes regardless of the order then requires the addI­
tional binomial coeffiCIent, and so we obtam precisely the 
result (27) of the Bemoulh model. 

From a mathematical standpoint, therefore, It IS Im­
material whether we approach the theory of Bernoulh 
trials in the conventIOnal way, or whether we regard it is as 
an example of maxImum-entropy inference on a "higher 
manifold" than the sample space of a Single trial, m which 
the only information available is the mean value (31). 

In a similar way, many other of the so-called "direct 
probability" calculations may be regarded equally well as 
the result of applying the prmClple of maximum entropy on 
a higher mamfold. If we had considered a random experi­
ment with m possible outcomes at a smgle trIal, we would 
he concerIled WIth messages on an alphabet of m symbols 
{AI' AmI, and repetItion of the precedIng argument 
leads ImmedJately to the usual multinomial dIstribution. 

We may, perhaps, feel that thIS result gives us a new 
insight Into the nature of Bernoulh trials. The "mdepen­
dence of different trIals" eVIdent already from (34) arises 
here from the fact that the given informatIOn consisted 
only of statements about mdlvidual trIals and said nothmg 
about mutual propertIes of different trials The prinCIple of 
maximum entropy thus tells us that, If no informatIOn IS 
avaIlable concerning correlatIOns between different trIals, 
then we should not assume any such correlatIOns to exist. 
To do so would reduce the entropy of the distrIbutIOn P JI 

and thus reduce the range of variablhty of different mes­
sages below that pernutted by the data, i.e., it would amount 
to introducmg new arbitrary assumptions not warranted by 
the given information. The precise nature of this reduction 
is described by the asymptotic equipartition theorem (14]. 
The prInCIple of maximum entropy IS just the formal deVIce 
which ensures that no such hidden arbitrary assumptions 
have been introduced, and so we are taking into account 
the full range of possibilities permitted by the information 
at hand. 

If definite information concerning correlations is avail­
able, the maximum-entropy method readily dIgests this 

informatIon The usual theory of discrete .tochastlc 
processes Can be derIved by thIS same applicatIOn of maxI­
mum entropy on a higher manifold, for partIcular kinds of 
information about correlatIOns. To give only the simplest 
example, suppose that m our random experiment WIth m 
possible outcomes per trial, we are gIven information fixing 
the mean values not only of the "single-letter frequencies" 
Ij.), but also the "digram frequencies" Ij,,). The maxlmum­
entropy dIstrIbutIOn over messages will then take the form 

P JI = 1 exp [ ~ A./.(M) + p .. t/,/M) ] (38) 

where nj.(M) IS the number of limes the letter A. occurs III 
the message M, and (n - 1) j.,(M) is the number of times 
the digram A.A I occurs m M. The partltlOlI fnnctlOn Z IS 
determined by normalization of (38). Calculation of the 
A. and the XI! from (19) is no longer trlvial, however, we 
find the problem to be exactly solvable (15] For messages 
of finite length, there are small "end effects," but in the 
limIt of long messages the maximum-entropy distribution 
(38) reduces to the dlstnbution of a Markov chain WIth 
tranSItIOn probablhties PI! = (]II)/Ij.), in agreement WIth 
the results of conventIOnal methods 

In a SImIlar way, If the gIven informatIOn includes ex­
pectatIOns of trigram frequenCIes (]"'), we obtam the dis­
tribution of a hIgher type stochastic process, ill which the 
probability of the outcome A, at any trIal depends on the 
results of the prevIOus two trials, etc. 

To point out the pOSSIbilIty of derivmg so much of con­
ventional "dIrect probablhty" analysis from maximum 
entropy on a hIgher manifold is, of course, in no way to 
suggest that conventional methods of analysis be aban­
doned in favor of maXImum entropy (although this would 
bring a higher degree of unity into the field), because III 
these apphcations the conventional methods usually lead to 
shorter calculatIOns. The pragmatic usefulness of maximum 
entropy hes rather in the fact that It is readIly applied III 
many problems (m particular, setting np prior probabihty 
assignments) where conventional methods do 1I0t apply. 

It IS, however, Important to reahze the possiblhty of 
denving much of conventional probabihty theory from the 
prinCIple of m9.Xlmum entropy, firstly, because it shows 
that this prinCIple fits in neatly and consIstently with the 
other prinCIples of probability theory. Secondly, we stili 
see from time to time 80me doubts expressed as to the 
uniqueness of the expresSIon (- p log p), It has even been 
BBserted that the results of maximizmg thIS quantity have 
no more significance than those obtained by maximizing 
any other convex function. In poillting out the correspon­
dence with frequenCIes and the fact that many other stall­
dard results of probability theory foUow from the m9.Xlmum­
entropy principle, we have given a constructive answer to 
such objectIOns. Any alternative expressIOn to (- p log p) 
must surely reproduce all these desirable properties before 
it could be taken seriously. It seems to the author impossi­
ble that any alternative quantity could do so, and likely 
that a rigorous proof of this could now be given. 
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VI. CONTINUOUS DISTRIBUTIONS 

Thus far we have considered the principle of maxtmum 
entropy only for the discrete case and have seen that if the 
distributIOn sought can be regarded 8B produced by a ran­
dom experiment, there is a correspondence property be­
tween probability and frequency, and the results are COn­
sistent with other principles of probability theory. How­
ever, nothing in the mathematics requires that any random 
experiment be in fact performed or conceivable; and so we 
interpret the principle in the broadest sense which gIVes it 
the widest range of applicability, i.e., whether or not any 
random expenment is involved, the maximum-entropy 
distribution still represents the most "honest" description 
of our state of knowledge. 

In such applications, the principle is easy to apply and 
leads to the kind of results we should want and expect. 
For example, in Jaynes [16] a sequence of problems of 
decision making under uncertainty (essentially, of inven­
tory control) of a type which arises constantly In practice 
W8B analyzed. Here the state of nature W8B not the result of 
any random experiment; there W8B no sampling distribu­
tion and no sample. Thus it might be thought to be 110 "no 
data" decision problem, in tbe sense of Chernoff and Moses 
[17]. However, in successive stages of the sequence, there 
were available more and more pieces of prior information, 
and digesting them by maximum entropy led to a sequence 
of prior distributions in which the range of possibilities W8B 
successively narrowed down. They led to a sequence of 
decisions, each representing the rational one on the bSBis of 
the information available at that stage, which corre­
sponded to Intuitive common-sense judgments in the early 
stages where intuition W8B able to see the answer. It is 
difficult to see how this problem could have been treated at 
all without use of the principle of maxtmum entropy, or 
some other device that turns out in the end to be equivalent 
to it. 

In several years of routine application of this pnnciple in 
problems of physics and engineering, we have yet to find 
110 case involVIng a discrete prior where it fails to produce a 
useful and intuitively reasonable result. To the best of the 
author's knowledge, no other general method for setting up 
discrete priors has been proposed It appears, then, that 
the principle of mlIolIlmum entropy may prove to be the 
final solutIOn to the problem of 8B8igning discrete pnors. 

Use of th18 principle in setting up continuous prior 
distributions, however, reqUires considerably more analysis 
'because at first glance the results appear to depend on the 
choice of parameters. We do not refer here to the well­
known fact that the quantity 

H' = - f p(x) log p(x) dx (39) 

leeks invariance under a change of variables x-+y(x), for 
(39) is not the result of any derivation, and it turns out not 
to be the correct information me8Bure for a continuous 
distribution. Shannon's theorem establIShing (14) as an 
information measure goes through only for discrete distri-

butions; but to find the corresponding expression in the 
continuous case we can (in the absence of any more direct 
argument) p8B8 to the limit from 110 discrete distribution. 
As shown preVIOusly [7], this leads instead to the quantity 

H, = - f p(x) log[p(x)/m(x)] dx (40) 

where m(.t) is an "mvariant measure" function, propor­
tional to the limiting density of discrete points. (In all 
applications so far studied, m(x) is a well-behaved contin­
uous functIOn, and BO we continue to use the notation of 
Riemann integrals; we call m{x) a "me8Bure" only to BUg­
gest the appropriate generalization, readily supplied if a 
practical problem should ever require it.) Since p{x) and 
m(x) transform in the same way under a change of vari­
ables, H, is invariant. We examine the form of maximum­
entropy inference based on this information me8Bure, in 
which we may regard x 8B being either a one-dimensional or 
multidimensional parameter. 

We seek a probability density p(x) which is to be nor­
malized: 

f p(x) dx = 1 (41) 

(we understand the range of integration to be the full 
parameter space); and we have information fixing the mean 
values of m different functions/.{x): 

. F, = Jp{x) t.(x) dx, k = 1,2, "', m (42) 

where the F. are the given numerical values. Subject to 
these constraints, we are to maximize (40). The solution is 
again elementary : 

p(x) = Z-l m(x) exp[XJ,(x) + ... + X.,f.(x)] (43) 

with the partition function 

+ X.,f.(x)] dx 

(44) 

and the Lagrange multipliers X. are determined once again 
by (19). Our "best" estimate (by quadratic lo"s fUllcl.lon) 
of any other quantity q(x) is then 

(q) = f q(x) p(x) dx. (45) 

It is evident from these equations that when we use (40) 
rather than (39) 8B our information measure not only our 
final conclusions (45), but also the partition function and 
Lagrange multipliers are all invariant under a change of 
parameters x .... Vex). In applications, these quantities 
acqUire definite physical meanings. 

There remains, however, a practical dIfficulty. If the 
parameter space is not the result of any obvious limiting 
process, what determines the proper measure m(x)? The 
conclusions, evidently, will depend on which measure we 
adopt. This is the shortcoming from which the maximum­
entropy principle h8B suffered heretofore, and which must 
be cleared up before we can regard It 8B a full solution to the 
prior probability problem. 
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Let us note the intuitive mearung of this measure. 
Consider the one-dimensional case, and suppose it is 
known that a < z < b hut we have no other prior informa­
tion. Then there are no Lagrange multipliers ~., and (43) 
reduces to 

p(z) = [f.' mix) d:t II m(z), a < x < b. (46) 

Except for a constant factor, the measure m(z) is also 
the prior distribution describing "complete ignorance" of 
x. The ambiguity is, therefore, just the ancient one which 
has always plagued Bayesian statistics; how do we find the 
prior representing "complete ignorance?" Once this prob­
lem is solved, the maximum-entropy principle will lead 
to a defirute, parameter-independent method for setting up 
prior distributions based on any testable prior information. 
Since this problem has been the subject of so much dis­
cussion and controversy for 200 years, we wish to state 
what appears to us a constructive attitude toward it. 

To reject the question, as some have done, on the 
grounds that the state of complete ignorance does not 
"exist" would be just as absurd as to reject Euclidean 
geometry on the grounds that a physical point does not 
exist. In the study of inductive inference, the notion of 
complete ignorance intrudes itself into the theory just as 
naturally and inevitably as the concept of zero in arith­
metic. 

If one rejects the conSIderation of complete ignorance on 
the grounds that the notIOn IS vague and iII-defined, the 
reply IS that the notion cannot be evaded in any full theory 
of inference. So if it is stili ill-defined, then a major and 
immediate objective must be to find a precise definition 
which will agree With intuitive requirements and be of 
constructive use in a mathematical theory. 

With this in nund, let us survey some previous thought 
on the problem Bayes suggested, In one particular case, 
that we express complete ignorance by assigning a uruform 
prior probability density; and the domain of useful applica­
tion of thiS rule is certainly not zeru, for Laplace was led to 
some of the most Important discoveries in celestial me­
chanics by using it In analysis of astronomical data. How­
ever, Bayes' rule has the obvious difficulty that it is not 
invariant under a change of parameters, and there seems to 
be no criterion telling us which parametenzation to use. 
(We note in passing that the notIOns of an unbiased esti­
mator, an efficient estimator, and a shortest confidence 
interval are all subject to Just the same ambiguity with 
equally serious consequences, and so orthodox statistics 
cannot claim to have solved this problem any better than 
Bayes did.) 

Jeffreys (18J, (19J suggested that we &S8ign a pnor 
du/" to a continuous parameter" known to be positive, on 
the grounds that we are then saYing the same thing whether 
we use the parameter u or ,,_. Such a desideratum IS surely 
a step in the nght direction; however, it cannot be ex­
tended to more general parameter changes. We do not 
want (and obviously cannot have) invariance of the form 

of the prior under all parameter changes; what we want IS 
invarianee of content, but the rules of probability theory 
already determine how the prior must transform, under any 
parameter changes, so as to achieve this. 

The real problem, therefore, must be stated rather dif­
ferent�y; we suggest that the proper question to ask is: 
"For which choice of parameters does a given form such as 
that of Bayes or Jeffreys apply?" Our parameter spaces 
seem to have a mollusk-like quality that prevents us from 
8ll8wenng thiS, unless we can find a new prinCiple that gives 
them a property of "rigidity." 

Stated in this way, we recognize that problems of just 
tlus type have already appeared and have been solved in 
other branches of mathematics In Riemanruan geometry 
and general relatiVity theory, we allow arbitrary contin­
uous coordinate transformations; yet the property of 
rigidity is maintained by the concept of the invanant line 
element, whICh enables us to make statements of definite 
geometllcal and phYSical meaning independently of the 
choice of coordinates. In the theory of continuous groups, 
the group parameter space had just thIS mollusk-like 
quality until the mtroduction of invariant group measure 
by HUrWItz (2OJ and Haar (21J, (22J. We seek to do some­
thing very similar to thiS for the parameter spaces of 
statistics. 

The Idea of utiliZing groups of transformations in prob­
lems related to thiS was discussed by Poincare (23 J and 
more recently by Fraser (24 J, Hartigan (25 J, and Stone 
(26 J. In the following sectIOn we give three examples of a 
different group theoretical method of reasoning developed 
largely by Weyland Wlgner (2OJ, which has met with great 
success in physical problems and ROems umquely adapted 
to our problem. 

VII TRANSFORMATION GRoups-EXAMPLES 

The method of reasoning is best illustrated by a simple 
example, which also happens to be one of the most im­
portant In practice We sample from a continuous two­
parameter dlstrlbutlOn 

( X - 1') d:t 
p(dxll" u) = h -u- -;; (17) 

where h(y) is a non-negative and normahzed functIOn, "lid 
conSIder the following problem. 

Problem 1: GIVen a sample t Xl ... x,. }, estImate Jl and 
u. The problem IS indetermmate, both mathematIcally alld 
conceptually, until we introduce a definite prior distribu­
tion 

1(1', u) dl'du (48) 

but if we merely specify "complete initial ignorance," thiS 
does not seem to tell us which functionI(P, ,,) to use. 

Now what do we mean by the statement that we are 
completely ignorant of I' and u, except for the knowledge 
that I' IS a locatIOn parameter and " a scale parameter? 
If we know the sampling distllbutlOn (47), we can hardly 
be ignorant of at least that much To answer thiS, we mIght 
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re'>80n as follows. If a change of scale can make the problem 
appear in any 'way different to us, then we were not com­
pletely ignorant; we must have had some kmd of pnor 
knowledge about the absolute scale of the problem Like­
wise, if a shift of location can make the problem appear in 
any way different, then it must be that we had scme kind of 
prior knowledge about location. In other words, complete 
Ignorance of a location and scale parameter III a state of 
knowledge such that a change of scale and a shift of loca­
tion does not change that state of knowledgtl. Suppose, 
therefore, that we carry out a change of variables (x, ~, .. ) 
-.. (x', p.', u') accordmg to 

,,' =" + b 

fI' = aCT (49) 

x' - ,,' = a(x - ,,) 

where 0 < a < "', - '" < b < "'. The distnbutlOn (47) 
expressed in the new variahles is unchanged: 

p(dx'\,,', u') = h e' ~ "') ~: (SO) 

hut the prior distribution is changed to gv.', u') d~' du' 
where from the J &cobian of the transformation (49) 

IIV.', u') = a-I lV., u). (51) 

Now let us consider a second problem. 
ProbkmS: Glvenaaample IXI"" x.'l,estimate~'and 

u'. If we are completely ignorant in the preceding sense, 
then we must consider Problems 1 and 2 as entirely equiva­
lent, for they have identic&l aampling distributions and our 
state of prior knowledge about ,,' and u' in Problem 2 IS 
exactly the aame as for" and u in Problem 1. But our basic 
desideratum of consistency demands that in two problems 
where we have the same prior information, we should as­
sign the aame prior probabilities. Therefore,! and g must be 
the same function: 

(.12) 

whatever the values of (a,b). But the form of the prIOr IS 
now Uniquely determined, for comhillll1g (49), (iii), and 
(:)2), we sec t.hat/v., q) must, satIsfy t.he fllllel,I011"\ e'l""­
tion 

lV., q) = a IV. + 1>, nu) 

whose general solution is 

lV., u) = (eonst; 
q 

which is the Jeffreys rule. 

(M) 

As another example, not very different mathematIcally 
but differently verbalized, consider a Poisson process. The 
probability that exactly n events will occur in a time inter­
valtis 

1'(11\ x, t) = e- ll ~)' 
,~! 

(Iili) 

and by observing the number of events we wish to estimate 
the rate constant A. We are initially completely ignorant of 
A except for the knowledge that it is a rate constant of 
physical dimensions (seconds)-I, i.e., we are completely 
ignorant of the absolute time scale of the process 

Suppose, then, that two observers, Mr. X and Mr. X', 
whose watches run at different rates so theu measurements 
of a given interval are related by t = qt', conduct this ex­
penment. Since they are ObserVmg the same phYSIcal ex­
penment, their rate constants must be related by A't' 
At, or >'" = qX They assign prior dIstributions 

p(d>..\X) = 1(>") dA 

p(dA'IX') = yeA') d>..' 

(56) 

(57) 

and if these are mutually consistent (I.e., they have the 
&arne content), it must be that 1(>") dA = I/(A') d>..', or 
'(10.) = q 1/(10.'). But if Mr. X and Mr. X' are both completely 
ignorant, then they are in the same state of knowledge, and 
sci and g must be the same function:/(A) = g(A). Combin­
ing these relations glves the functIOnal equation 1(10.) = 

ql(qA) or 

p(dAlx) ~ A -I dA. (58) 

To use any other pnor than this wIll have the consequence 
that a change in the time scale will lead to a change in the 
form of the prior, which would imply a different state of 
prior knowledge, but if we are completely ignorant of the 
time sc&ie, then all time scales should appear equivalent. 

As a third and less trivial example, where intuition did 
not antiCIpate the result, consIder Bernoulli trials with an 
unknown probability of success Here the probabIlity of 
success IS itself the parameter e to be estlmated, G,ven e, 
the probabihty that we shall observe r sucresses in " 
trials is 

perin, e) = (:) e' (I - e)" -, (59) 

and again the question is: What prIor distnhutlon I(e) (Iii 
describes "complete Initial ignorance" of 8? 

In discussing this problem, Laplace followed the example 
of Bayes and answered the questIOn WIth that famous 
sentence: "When the probability of a SImple event IS un­
known, we may suppose all values between 0 and 1 as 
equally ltkely" In other words, Bayes and Laplace used 
the uniform pnor f B (9) = I. However, Jeffreys [18 J and 
Carnap [27 J have noted that the resulting rule of succes­
sIOn does not seem to correspond well WIth the mductive 
reasonmg which we all carry out intUitIvely. Jeffreys sug­
gested that 1(9) ought to give greater weIght to the end­
pomts 9 = 0,1 if the theory is to account for the kmd of 
inferences made by a scIentIst. 

For example, In a chemical laboratory we find a Jar 
contaimng an unknown and unlabeled compound. We are 
at first completely Ignorant as to whether a small sample of 
t.his compound will dIssolve m water or not. But haVlng 
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observed that one sma.ll sa.mple does dissolve, we infer 
immediately that all sa.mples of this compound are water 
soluble, and although this conclusion does not carry quite 
the force of deductive proof, we feel strongly that the 
inference wa.s justified. Yet the Bayes-La.pla.ce rule leads 
to a negligibly small probability of this bemg true, a.nd 
yields only a probabihty of 2/3 that the next sa.mple tested 
will dissolve. 

Now let us examine this problem from the sta.ndpoint of 
transformation groups. There is a conceptua.l difficulty 
here, SlDce f(8) dB is a "probability of a probabIlity." 
However, it can be removed by carrYIng the notion of a 
split personality to extremes; instead of supposing that 
f(8) describes the state of knowledge of anyone person, 
nnagine that we have a large population of mdividuaJs who 
hold varying beliefs about the probabihty of success, and 
that f(8) describes the distribution of their beliefs. Is it 
possible that, a.lthough each individua.l holds a definite 
opiuion, the populatIOn as a whole is completely ignorant 
of 8? What distributIOn f(8) describes a population in a 
state of total confusion on the lSSue? 

Since we are concerned with a consistent extension of 
prohablhty theory, w~ must suppose that ea.ch indlVldua.l 
rea.sons according to the mathematical rule. (Bayes' 
theorem, etc.) of probability theory. The reason they hold 
different beliefs is, therefore, that they have been given 
different and confiictmg information; one man ha.s read 
the editorial. of the St. Louis Post-Dispatch, a.nother the 
Los Angele. Time., one has read the Daily Worker, 
a.oother the National ReVIew, etc., a.nd nothing in prob­
ability theory tells one to doubt the truth of what he ha.s 
been told in the statement of a problem. 

Now suppose that, before the experiment is performed, 
one more definite piece of evidence E i. given simulta.oe­
ously to a.ll of them. Ea.ch individual will change his .ta.te of 
belief according to Bayes' theorem, Mr. X, who had pre­
VIOusly held the probability of success to be 

8 = p(SIX) (60) 

will "hangc it t.o 

, _ ~I' _ p(sjX) p(EISX) 
8 - p (, E., X) - p(EISX) p(SIX) + p'-c:(E::r'I-=-FX=)-p-::(F:Tlx=) 

(61) 

where p(FIX) = 1 - p(SIX) is his pnor belief in probabil­
ity of failure. This new evidence thus generates a mapping 
of the parameter space 0 ::; 8 ::; 1 onto Itself, gtven from 
(61) by 

0' 
aD 

1-8+aD 

p(EjSX) 
a = 1l(E"lFX)" 

(62) 

(63) 

If the population ... a whole can learn nothing from this 
new evidence, then it would seem rea.sonable to say that 
the population has been reduced, by conflicting propa.ga.nda., 
to a .ta.te of totaJ confusion on the issue. We therefore 
define the state of "tota.l confusion" or "complete igno­
rance" by the condition that after the transformation (62), 
the number of individuaJs who hold hehefs in any given 
range" < 8 < 8, IS the sa.me as before. 

The mathematica.l problem is again straightforward. The 
original distribution of belief. f(8) is shifted by the trans­
formation (62) to a new dIStribution g(8') with 

f(8) dB = g(8') dB' (64) 

and, if the population as a whole learned nothing, then f 
and g must be the same function: 

f(8) = g(8). (65) 

Combining, (62), (64), and (65), we find that f(8) must 
satisfy the functional equation 

af(l_~+aD) = (l-8+aD)'f{8). (66) 

This may be solved directly by eliminating the a between 
(62) a.nd (66) or, in the more usual manner, by differentiat­
ing with respect to a and setting a = 1. This leads to the 
differentIal equation 

8(1 - 8) /'(8) = (28 - 1) f(8) 

whose solution is 

(const) 
f(8) = 8(1 - 8) 

(67) 

(6.<;) 

whIch ha.s the qua.lltatlVe property anticipated by Jeffrey •. 
Now that the imagtnary populatIOn of indivldua.l. has 
served its purpose of revealing the tra.o.formation group 
(62) of the problem, let them coa.lesce agam into a single 
mind (that of the statistician who wishes to estimate 8), 
and let us examllle the consequences of using (68) as our 
prior distribution. 

If we have observed r successes III n trials, then from 
(59) and (68) the posterior distribution of 8 is (provided 
that r ~ 1, n - r ~ 1) 

p(d8lr n) = (n - I)! 8'-1 (1_8)"-H ,iii. (Gil) 
, (T - \)! (n - T - I)! 

ThiS distribution has expectatIOn value and VllrIance 

(8) = ': = f 
n 

(70) 

t1,=f(l-f). 
n+1 

(71) 

Thus the "best" estimate of the probabihty of success, by 
the cntenon of quadratIC loss function, is just equal to the 
observed fre'[Utfflcy of success f; "nd this is a.lso equal to 
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the probablhty of success at the next tnal, in agreement 
with the mtUltlOn of everybody who has studIed Bernoulli 
trials On the other hand. the Bayes-Laplace uniform 
prior would lead mstead to the mean value (O)s = (r + 1)/ 
(n + 2) of the rule of successlOn,wtllch has always seemed 
a b,t peculiar. 

For interval estimatIOn, numencal analYSIS shows that 
the conclUSIOns drawn from (69) are for all practICal pur­
poses the same as those based on confidence mtervals 
(I e., the shortest 9O-percent confidence mterval for e IS 
nearly equal to the shortest 9O-percent posterior probabIlity 
Interval determIned from (69) J. If r » 1 and (n - r) » 1, 
the normal approxImation to (71) will be vahd, and the 
lOOP percent postenor probablhty mterval 18 SImply 
Ij ± q"), where q IS the (1 + P)/2 percentile of the normal 
dlstnbutlOn, for the 90-, 95-, and 99-percent levels, q = 

1.645, 1960, and 2.576, respectIvely. Under conrutlOns 
where th,S normal approximatIOn is vahd, differences be­
tween this result and the exact confidence intervals are 
generally less than the rufferences between varIOus pub­
hshed confidence mterval tables, which have been calcu­
lated from different approximation schemes. 

If r = (n - r) = I, (69) reduces to p(delr, n) = de, the 
umform dIStributIOn whICh Bayes and Laplace took as 
their prIOr Therefore, we can now interpret the Bayes­
Laplace pnor as describing not a state of complete Igna­

'rance, but the state of knowledge m whICh we have observed 
one success and one failure. It thus appears that the 
Bayes-Laplace choice will be the approprIate pnor If the 
prior informatIOn assures us that It is physically possible 
for the experiment to yield eIther a success or a failure, while 
the distnbutIon of complete Ignorance (68) descnbes a 
"pre-pnor" state of knowledge m whIch we are not even sure 
of that. 

II r = 0 or r = n, the derivation of (69) breaks down and 
the posten or distribution remams unnormahzable, pro­
portional to 0- 1 (I - 8)0-1 or 00 - 1 (1 - 0)-1, respec­
tively. The weIght IS concentrated overwhelmmgly on the 
values 8 = 0 or e = 1 The prIOr (68) thus accounts for 
the kmd of inductive inferences noted In the case of the 
chenucal, whICh we all make mtuitlvely However, once 
we have seen at least one success and one faIlure, then we 
know that the experiment is a true binary one, m the sense 
of phySIcal possibilIty, and from that pomt on all postenor 
rustrlbutions (69) remam normalIzed, permlttmg definite 
inferences about O. 

The transformation group method therefore Yields a 
prior which appears to meet the common objectIOns raised 
against the Laplace rule of succession, but we also see that 
whether (68) or the Bayes-Laplace prIOr is appropnate 
depends on the exact prIOr informatIOn ,,,·allable. 

To summanze the above results' If we merely speCify 
complete InItial 19norance, we cannot hope to obtam any 
defirute pnor distrIbution, because such a statement IS too 
vague to define any mathematically well-posed problem 
We are defining what we mean by complete ignorance far 
more precisely if we can specify a set of operations which 

we recognIze as transforming the problem into all clluiva­
lent one, and the deSIderatum of conSIstency then placeh 
nontrivial restrictIOns on the form of the prIOr. 

VIn TRANSFORMATION GRoups-DISCUSSION 

f'urther analysis shows that, if the number of indepen­
dent parameters in the transformatIOn group is equal to the 
number of parameters in the statistical problem, the "fun­
damental domain" of the group (20 I reduces to a pomt, 
and the form of the prior IS uruquely determmed; thus 
specification of such a transformatIOn group IS an exhaus­
tIve descriptIOn of a state of knowledge. 

If the number of parameters in the transformation group 
is less than the number of statistICal parameters, the funda­
mental domam IS of higher dimensionalIty, and the prior 
will be only partially determined For example, if In the 
group (49) we had specified only the change of scale opera­
tion and not the shIft of location, repetition of the argu­
ment would lead to the prior j(j., ,,) = ,,-I k(j.), where k(j.) 
IS an arbItrary functIOn. 

It is also reaillly venfied that the transformatIOn group 
method is consistent with the deSIderatum of mvariance 
under parameter changes mentioned m SectIOn VI, I.e., 
that while the form of the prior cannot be mvariant under 
all parameter changes, Its content should be. 11 the trans­
formation group (49) had been specified m terms of some 
other chOIce of parameters (a, P), the form of the trans­
formati~n equations and functional equations would, of 
course, be different, but the prior to which they would lead 
in the (a, P) space would be Just the one that we obtain by 
solving the problem in the (j., ,,) space and transforming 
the result to the (a, (J) space by the usual Jacobian rule 

The method of reasonmg Illustrated here IS somewhat 
renuruscent of Laplace's "prinCIple of imWference." How­
ever we are concerned here with indifference between prob­
lems' rather than indifference between events. The 
distt~ctlOn is essential, for mdtfference between events is a 
matter of intUitive judgment on whICh our mtUItlOn often 
fails even when there is some obvious geometncal symmetry 
(as Bertrand's paradox shows). However, If a problem IS 
formulated in a sufficiently careful way, mdlfference be­
tween problems is a matter that is determmed by the state­
ment of a problem, independently of our mtUItlOn, none of 
the preced!ng transformatIOn groups corresponded to any 
particularly ObVIOUS geometrICal symmetry. 

More generally, if we approach a problem with the chari­
table presumption that it has a defirute solutIOn, then every 
CIrcumstance left unspeCIfied In the statement of the prob­
lem defines an invariance property (I e, a transformation 
to an eqUivalent problem) whICh that solution must have. 
RecognItion of this leads t6 a resolutIOn of the Bertrand 
paradox. here we draw straight lines "at random" mter­
secting a circle and ask for the rustnbutlOn of chord lengths. 
But the statement of the problem does not speCify the exact 
position of the Circle, therefore, if there IS any defirute 
solutIOn, it must not depend on thiS circumstance The 
conrutlOn that the solutIOn be invanant under mfimteslmal 
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displacements uf the circle relative to the random straight 
lines umquely deternunes the solution 

In such problems, furthermore, the transformation 
group method IS found to have a frequency correspondence 
property rather hke t hat of the maximum-entropy prmcI­
pie. If (as m the Bertrand problem) the ruatribution sought 
can be regarded as the result of a random experiment, then 
the distribution predICted by mvariance under the trans­
formatIOn group IS by far the most lIkely to be observed 
experImentally, because It reqUIres by far the least "skill:' 
consistently to produce any other would reqUire a "mlcro­
SCOPIC" degree of control over the exact conditIons of the 
experiment Proof of thc statements m the last two para­
graphs will be deferred to a later article 

The transformation group derivatlOn enables us to see 
the Jeffreys prIor probablhty rule 111 a new hght It has, 
perhaps, always been obvIOUS that the real JustificatIOn of 
the Jeffreys rule cannot he merely in the fact that the pa­
rameter IS posltlve As a Simple example, suppose that I' IS 
known to be a location parameter, then both mtUltlon and 
the precedmg analYSIS agree that a umform prIOr denSity IS 
the proper way to express complete Ignorance of 1'. The 
relatIOn I' = e - 0- 1 defines a 1.1 mappmg of the region 
(- 00 < I' < 00) onto the regIOn (0 < 0 < "'), but the 
Jeffreys rule cannot apply to the parameter 8, consIstency 
demanqmg that ItS prIor denSIty be taken proportIOnal to 
dl' = (I + 0-') de It appears that the fundamental justl­
ficatlOn of the Jeffreys rule IS not merely that a parameter 
is pOSitive, but that It IS a scale para11lRier. 

The fact that the distributIOns representmg complete 
ignorance found by transformatIOn groups cannot be nor­
mahzed may be interpreted m two ways One can say that 
It aflses SImply from the fact that our formulatIon of the 
notIOn of complete Ignorance was an Ideahzation that does 
not strIctly apply many reahstlc problem A shIft of loca­
tion from a pomt m St LoUIS to a pomt in the Andromeda 
nebula, or a change of scale from the sIze of an atom to the 
size of our galaxy, does not transform any problem of 
earthly concern mlo a completely eqUIvalent one. In 
practICe we wIll always have some kmd of prior knowledge 
about locatIon and scale, and m consequence the group 
parameters (a, b) cannot vary over a truly infirute range 
Therefore, the transformatIOns (49) do not, strIctiy speak­
ing, form a group However, over the range WhICh does ex­
press our prIor Ignorance, the above kmd of arguments sull 
apply Wlthm thiS range, the functIOnal equatIOns and the 
resultmg fonn of the prIOr must still hold 

However, our discussion of maxImum entropy shows a 
more constructive way of lookmg at thiS. Fmrung the 
rustributlOn representmg complete ignorance IS only the 
first step m findmg the prIOr for any realistIc problem The 
pre-prIOr distrIbutIOn resultlllg from a transformation 
group does not strIctiy represent any reahstlc state of 
knowledge, but It does define the invanant measure for our 
parameter space, WIthout whICh the problem of finrung a 
reahstIC prior by maximum entropy IS mathematICally 
indeternunate. 

IX. CONCLUSION 

The analysis given here provides no reason to think that 
specifying a transformation group is the only way in which 
complete Ignorance may be preCIsely defined, or that the 
principle of maximum entropy IS the only way of convert­
mg testable mformation mto a prior distributIOn. Further­
more, the procedures described here are not necessarily 
apphcable m all problems, and so it remains an open ques­
tIOn whether other approaches may be as good or better. 
However, before we would be in a pOSition to make any 
comparative Judgments, It would be necessary that some 
detimte alternatIve procedure be suggested. 

At present, lackmg thiS, one can only point out some 
propertIes of the methods here suggested. The class of 
problems m which they can be applied is that in which 1) 
the prior mformation IS testable, and 2) in the case of a 
contmuous parameter space, the statement of the problem 
suggests some defimte transformatIon group which estab­
hshes the invariant measure We note that satisfying 
these conditIOns IS, to a large extent, simply a matter of 
formulatmg the problem more completely than is usually 
done. 

If these condItIOns are met, then we have the means for 
mcorporatmg prIOr mformatlOn mto our problem, which IS 
mdependent of our chOice of parameters and is completely 
Impersonal, allowmg no arbitrary choice on the part of the 
user. Few orthodox procedures and, to the best of the 
author's knowledge, no other Bayesian procedures, enjoy 
thiS complete objectiVIty. Thus while the above CrIticisms 
are undoubtedly valid, it seems apparent that this analysis 
does constItute an advance In the precisIOn with which we 
are able to formulate statIstical problems, as well as an 
extensIOn of the class of problems in whIch statistical 
methods can be used. The fact that thIS h"" proved pOSSible 
gIVes hope that further work along these lines-in partic­
ular, dIrected toward learnmg how to formulate problems 
so that condition 2) IS satIsfied-may yet lead to the final 
solution of thiS anCIent but vital puzzle, and thus achieve 
full objectivity for BayeSIan methods. 
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8. THE WELL-POSED PROBLEM (1973) 

The idea of assigning probabilities by the principle of group invariance 
developed in a way parallel to that of the principle of maximum entropy. In 
both cases the original motivation (at least for me) was that the principle 
expressed in mathematical terms what seemed intuitively the 'most honest' 
description of a state of knowledge. In neither case was there any connection 
with frequencies - or indeed any reference to a repetitive 'random experi­
ment'. 

But in the case of maximum entropy a frequency connection appeared at 
once. Maxent on the space S of any experiment corresponds closely to a com­
binatorial theorem on the extension space Sn of n repetitions of the experi­
ment, the probabilities on S which have maximum entropy subject to any 
constraints being numerically equal to the frequencies on S" which could be 
realizeam the greatest number of ways subject to the same constraints. 

We could state the situation as follows. The Maxent probability distribu­
tion is at the same time the frequency distribution most likely to be realized, 
in the sense that to produce appreciably different frequencies would require 
additional physical constraints in the experiment, beyond those taken into 
account in the Maxent calculation. 

On further meditation it was realized that probabilities determined by 
group invariance on a space S also have a frequency connection on the 
extension space S". They are numerically equal to the frequencies that 
require the least 'skill' to produce. That is, to produce frequencies appreciably 
different from the invariant ones would require some degree of control over 
the initial conditions of the experiment. 

This statement, almost a trivial tautology on fust reading, becomes non­
trivial when we realize that in many cases an extremely large amount of skill, 
or control, would be required; and so in those cases group invariance already 
suffices to make quite reliable predictions of frequencies. Of course, those 
who spin roulette wheels or drive golf balls are well aware of this. But from 
the standpoint of principle it seemed important to show that, even though 
probabilities are not defmed as frequencies, they often acquire frequency 
connections, which may be of several different kinds. 

At the purely pragmatic level, there also appears to be something of value 
131 



132 E. T. JAYNES 

here. From the way in which group invariance arguments were able to deal 
with the Bertrand problem, one may expect that there are many problems 
in which group invariance can lead us to useful predictions of observable 
facts. 

For readers who may wish to try their hand at this kind of reasoning, here 
is the String Problem, calling out for solution: A perfectly flexible string of 
length L is tossed, very unskillfully, onto the floor. What is the probability 
distribution of the distance between its ends? Please do not cheat by doing 
the experiment fIrSt. 
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Many statistical problems, including some of the most important for physical 
applications, have long been regarded as underdetermined from the standpoillt 
of a strict frequency definition of probability: yet they may appear weI/posed 
or even overdetermined by the principles of maximum entropy and transforma­
tion groups. Furthermore, the distributions found by these methods turn out 
to have a definite frequency correspondence; the distribution obtained by 
invariance under a transformation group is by far the most likely to be observed 
experimentally, in the sense that it requires by far the least "skill." These 
properties are illustrated by analyzing the famous Bertrand paradox. On the 
viewpoint advocated here, Bertrand's problem turns out to be well posed after 
all, and the unique solution has been verified experimentally. We conclude that 
probability theory has a wider range of useful applications than would be 
supposed from the standpoint oj the usual frequency definitions. 

1. BACKGROUND 

In a previous article(l) we discussed two formal principles-maximum 
entropy and transformation groups-that are available for setting up 
probability distributions in the absence of frequency data. The resulting 
distributions may be used as prior distributions in Bayesian inference; or 
they may be used directly for certain physical predictions. The exact sense 
in which distributions found by maximum entropy correspond to observable 
frequencies was given in the previous article; here we demonstrate a similar 
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correspondence property for distributions obtained from transformation 
groups, using as our main example the famous paradox of Bertrand. 

Bertrand's problem(2) was stated originally in terms of drawing a straight 
line "at random" intersecting a circle. It will be helpful to think of this in 
a more concrete way; presumably, we do no violence to the problem (i.e., it 
is still just as "random") if we suppose that we are tossing straws onto the 
circle, without specifying how they are tossed. We therefore formulate the 
problem as follows. 

A long straw is tossed at random onto a circle; given that it falls so that 
it intersects the circle, what is the probability that the chord thus defined is 
longer than a side of the inscribed equilateral triangle? Since Bertrand 
proposed it in 1889 this problem has been cited to generations of students 
to demonstrate that Laplace's "principle of indifference" contains logical 
inconsistencies. For, there appear to be many ways of defining "equally 
possible" situations, and they lead to different results. Three of these are: 
Assign uniform probability density to (A) the linear distance between centers 
of chord and circle, (B) angles of intersections of the chord on the circum­
ference, (C) the center of the chord over the interior area of the circle. These 
assignments lead to the results P A = 1/2, PB = 1/3, and Pc = 1/4, respectively. 

Which solution is correct? Of the ten authors cited, (2-12) with short 
quotations, in the appendix only Borel is willing to express a definite 
preference, although he does not support it by any proof. Von Mises takes 
the opposite extreme, declaring that such problems (including the similar 
Buffon needle problem) do not belong to the field of probability theory at all. 
The others, including Bertrand, take the intermediate position of saying 
simply that the problem has no definite solution because it is ill posed, the 
phrase "at random" being undefined. 

In works on probability theory this state of affairs has been interpreted, 
almost universally, as showing that the principle of indifference must be 
totally rejected. Usually, there is the further conclusion that the only valid 
basis for assigning probabilities is frequency in some random experiment. 
It would appear, then, that the only way of answering Bertrand's question 
is to perform the experiment. 

But do we really believe that it is beyond our power to predict by 
"pure thought" the result of such a simple experiment? The point at issue 
is far more important than merely resolving a geometric puzzle; for, as 
discussed further in Section 7, applications of probability theory to physical 
experiments usually lead to problems of just this type; i.e., they appear at 
first to be underdetermined, allowing many different solutions with nothing 
to choose among them. For example, given the average particle density and 
total energy of a gas, predict its viscosity. The answer, evidently, depends on 
the exact spatial and velocity distributions of the molecules (in fact, it depends 
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critically on position-velocity correlations), and nothing in the given data 
seems to tell us which distribution to assume. Yet physicists have made 
definite choices, guided by the principle of indifference, and they have led us 
to correct and nontrivial predictions of viscosity and many other physical 
phenomena. 

Thus, while in some problems the principle of indifference has led us to 
paradoxes, in others it has produced some of the most important and 
successful applications of probability theory. To reject the principle without 
having anything better to put in its place would lead to consequences so 
unacceptable that for many years even those who profess the most faithful 
adherence to the strict frequency definition of probability have managed 
to overlook these logical difficulties in order to preserve some very useful 
solutions. 

Evidently, we ought to examine the apparent paradoxes such as 
Bertrand's more closely; there is an important point to be learned about the 
application of probability theory to real physical situations. 

It is evident that if the circle becomes sufficiently large, and the tosser 
sufficiently skilled, various results could be obtained at will. However, in 
the limit where the skill of the tosser must be described by a "region of 
uncertainty" large compared to the circle, the distribution of chord lengths 
must surely go into one unique function obtainable by "pure thought." 
A viewpoint toward probability theory which cannot show us how to calculate 
this function from first principles, or even denies the possibility of doing 
this, would imply severe-and, to a physicist, intolerable-restrictions on 
the range of useful applications of probability theory. 

An invariance argument was applied to problems of this type by 
Poincare, If) and cited more recently by Kendall and Moran. (8) In this treat­
ment we consider straight lines drawn "at random" in the xy plane. Each 
line is located by specifying two parameters (u, v) such that the equation of 
the line is ux + vy = I, and one can ask: Which probability density p(u, v) 
du dv has the property that it is invariant inform under the group of Euclidean 
transformations (rotations and translations) of the plane? This is a readily 
solvable problem, (8) with the answer p(u, v) = (u2 + V2)-3/2. 

Yet evidently this has not seemed convincing; for later authors have 
ignored Poincare's invariance argument, and adhered to Bertrand's original 
judgment that the problem has no definite solution. This is understandable, 
for the statement of the problem does not specify that the distribution of 
straight lines is to have this invariance property, and we do not see any 
compelling reason to expect that a rain of straws produced in a real experi­
ment would have it. To assume this would seem to be an intuitive judgment 
resting on no stronger grounds than the ones which led to the three different 
solutions above. All of these amount to trying to guess what properties a 
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"random" rain of straws should have, by specifying the intuitively "equally 
possible" events; and the fact remains that different intuitive judgments 
lead to different results. 

The viewpoint just expressed, which is by far the most common in the 
literature, clearly represents one valid way of interpreting the problem. If 
we can find another viewpoint according to which such problems do have 
definite solutions, and define the conditions under which these solutions are 
experimentally verifiable, then while it would perhaps be overstating the case 
to say that this new viewpoint is more "correct" in principle than the con­
ventional one, it will surely be more useful in practice. 

We now suggest such a viewpoint, and we understand from the start that 
we are not concerned at this stage with frequencies of various events. We ask 
rather: Which probability distribution describes our state of knowledge 
when the only information available is that given in the above statement of 
the problem? Such a distribution must conform to the desideratum of 
consistency formulated previously(l): In two problems where we have the 
same state of knowledge we must assign the same subjective probabilities. 
The essential point is this: If we start with the presumption that Bertrand's 
problem has a definite solution in spite of the many things left unspecified, 
then the statement of the problem automatically implies certain invariance 
properties, which in no way depend on our intuitive judgments. After the 
subjective solution is found, it may be used as a prior for Bayesian inference 
whether or not it has any correspondence with frequencies; any frequency 
connections that may emerge will be regarded as an additional bonus, which 
justify its use also for direct physical prediction. 

Bertrand's problem has an obvious element of rotational symmetry, 
recognized in all the proposed solutions; however, this symmetry is irrelevant 
to the distribution of chord lengths. There are two other "symmetries" 
which are highly relevant: Neither Bertrand's original statement nor our 
restatement in terms of straws specifies the exact size of the circle, or its 
exact location. If, therefore, the problem is to have any definite solution at 
all, it must be "indifferent" to these circumstances; i.e., it must be unchanged 
by a small change in the size or position of the circle. This seemingly trivial 
statement, as we will see, fully determines the solution. 

It would be possible to consider all these invariance requirements 
simultaneously by defining a four-parameter transformation group, where­
upon the complete solution would appear suddenly, as if by magic. However, 
it will be more instructive to analyze the effects of these invariances separately, 
and see how each places its own restriction on the form of the solution. 
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2. ROTATIONAL INVARIANCE 

Let the circle have radius R. The position of the chord is determined 
by giving the polar coordinates (r, 8) of its center. We seek to answer a more 
detailed question than Bertrand's: What probability density f(r, 8) dA = 
f (r, 8) r dr d8 should we assign over the interior area of the circle? The 
dependence on 8 is actually irrelevant to Bertrand's question, since the 
distribution of chord lengths depends only on the radial distribution 

r2w 
g(r) =), fer, 8) dO 

o 

However, intuition suggests thatf(r, 0) should be independent of 8, and the 
formal transformation group argument deals with the rotational symmetry 
as follows. 

The starting point is the observation that the statement of the problem 
does not specify whether the observer is facing north or east; therefore if 
there is a definite solution, it must not depend on the direction of the 
observer's line of sight. Suppose, therefore, that two different observers, 
Mr. X and Mr. Y, are watching this experiment. They view the experiment 
from different directions, their lines of sight making an angle ex. Each uses 
a coordinate system oriented along his line of sight. Mr. X assigns the 
probability density fer, 0) in his coordinate system S; and Mr. Y assigns 
g(r, 8) in his system S~ . Evidently, if they are describing the same situation, 
then it must be true that 

fer, 8) = g(r, 0 - ex) (I) 

which expresses a simple change of variables, transforming a fixed distribution 
f to a new coordinate system; this relation will hold whether or not the 
problem has rotational symmetry. 

But now we recognize that, because of the rotational symmetry, the 
problem appears exactly the same to Mr. X in his coordinate system as it 
does to Mr. Y in his. Since they are in the same sta.te of knowledge, our 
desideratum of consistency demands that they assign the same probability 
distribution; and so f and g must be the same function: 

f(r, 8) = g(r. 0) (2) 

These relations must hold for all IX in 0 ~ IX ~ 21T; and so the only possibility 
isf(r,8) = fer). 

This formal argument may appear cumbersome when compared to our 
obvious flash of intuition; and of course it is, when applied to such a trivial 
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problem. However, as Wigner(l3) and Weyl(l4) have shown in other physical 
problems, it is this cumbersome argument that generalizes at once to non­
trivial cases where our intuition fails us. It always consists of two steps: 
We first find a transformation equation like (I) which shows how two 
problems are related to each other, irrespective of symmetry; then a symmetry 
relation like (2) which states that we have formulated two equivalent problems. 
Combining them leads in most cases to a functional equation which imposes 
some restriction on the form of the distribution. 

3. SCALE INV ARIANCE 

The problem is reduced, by rotational symmetry, to determining a 
function fer), normalized according to 

{" r f(r)rdrdB = I 
o 0 

(3) 

Again, we consider two different problems; concentric with a circle of radius 
R, there is a circle of radius oR, 0 < 0 :s; 1. Within the smaller circle there is 
a probability her) r dr dB which answers the question: Given that a straw 
intersects the smaller circle, what is the probability that the center of its 
chord lies in the area dA = r dr dB? 

Any straw that intersects the small circle will also define a chord on the 
large one; and so, within the small circlef(r) must be proportional to her). 
This proportionality is, of course, given by the standard formula for a 
conditional probability, which in this case takes the form 

faR 

fer) = 27T17(r) fer) r dr, 
o 

o < a :::;;; 1, 0:::;;; r :s; aR (4) 

This transformation equation will hold whether or not the problem has scale 
invariance. 

But we now invoke scale invariance; to two different observers with 
different size eyeballs, the problems of the large and small circles would 
appear exactly the same. If there is any unique solution independent of the 
size of the circle, there must be another relation betweenf(r) and her), which 
expresses the fact that one problem is merely a scaled-down version of the 
other. Two elements of area r dr dB and (ar) dear) dB are related to the large 
and small circles respectively in the same way; and so they must be assigned 
the same probabilities by the distributionsf(r) and her), respectively: 

h(ar)(ar) dear) dB = fer) r dr dB 
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or 
a2h(ar) = fer) (5) 

which is the symmetry equation. Combining (4) and (5), we see that invariance 
under change of scale requires that the probability density satisfy the 
functional equation 

faR 
a2f(ar) = 21Tf(r) feu) u du, 

o 
o < a :s;; 1, O:S;; r :s;; R (6) 

Differentiating with respect to a, setting a = I, and solving the resulting 
differential equation, we find that the most general solution of (6) satisfying 
the normalization condition (3) is 

fer) = qrH /21TRq (7) 

where q is a constant in the range 0 < q < 00, not further determined by 
scale invariance. 

We note that the proposed solution B in the introduction has now been 
eliminated, for it corresponds to the choice fer) '"" (R2 - r2)-1/2, which is 
not of the form (7). This means that if the intersections of chords on the 
circumference were distributed in angle uniformly and independently on 
one circle, this would not be true for a smaller circle inscribed in it; i.e., the 
probability assignment of B could be true for, at most, only one size of circle. 
However, solutions A and C are still compatible with scale invariance, 
corresponding to the choices q = I and q = 2 respectively. 

4. TRANSLATIONAL INV ARIANCE 

We now investigate the consequences of the fact that a given straw S 
can intersect two circles C, C' of the same radius R, but with a relative 
displacement b. Referring to Fig. I, the midpoint of the chord with respect 
to circle C is the point P, with coordinates (r, 8); while the same straw 
defines a midpoint of the chord with respect to C' at the point P' whose 
coordinates are (r', 8). From Fig. I the coordinate transformation (r, 8) --+ 

(r', 8') is given by 

r' = I r - b cos 8 I 

8' = !8, 
f) + 1T, 

r > b cos 8 
r < b cos f) 

(8) 

(9) 

As P varies over the region r, P' vaires over r', and vice versa; thus the 
straws define a 1: I mapping of r onto F'. 
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s 

Fig. 1. A straw S intersects two slightly displaced 
circles C and C. 

Now we note the translational symmetry; since the statement of the 
problem gave no information about the location of the circle, the problems 
of C and C' appear exactly the same to two slightly displaced observers 0 
and 0'. Our desideratum of consistency then demands that they assign 
probability densities in C and C' respectively which have the same form (7) 
with the same value of q. -

It is further necessary that these two observers assign equal probabilities 
to the regions rand F', respectively, since (a) they are probabilities of the 
same event, and (b) the probability that a straw which intersects one circle 
will also intersect the other, thus setting up this correspondence, is also the 
same in the two problems. Let us see whether these two requirements are 
compatible. 

The probability that a chord intersecting C will have its midpoint in r is 

(10) 

The probability that a chord intersecting C' will have its midpoint in F' is 

where we have transformed the integral back to the variables (r, 8) by use of 
(8) and (9), nc;>ting that the Jacobian is unity. Evidently, (10) and (11) will 
be equal for arbitrary r if and only if q = 1; and so our distribution f(r) 
is now uniquely determined. 

The proposed solution C in the introduction is thus eliminated for lack 
of translational invariance; a rain of straws which had the property assumed 
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with respect to one circle, could not have the same property with respect to 
a slightly displaced one. 

S. FINAL RESULTS 

We have found that invariance requirements determine the probability 
density 

f(r, 8) = Ij27TRr, o ~ r ~ R, 0 ~ 8 ~ 27T (12) 

corresponding to solution A in the introduction. It is interesting that this 
has a singularity at the center, the need for which can be understood as 
follows. The condition that the midpoint (r, 8) falls within a small region LI 
imposes restrictions on the possible directions of the chord. But as LI moves 
inward, as soon as it includes the center of the circle all angles are suddenly 
allowed. Thus there is an infinitely rapid change in the "manifold of possi­
bilities. " 

Further analysis (almost obvious from contemplation of Fig. 1) shows 
that the requirement of translational invariance is so stringent that it already 
determines the result (12) uniquely; thus the proposed solution B is incom­
patible with either scale or translational invariance, and in order to find (12), 
it was not really necessary to consider scale invariance. However, the solution 

\ 

(12) would in any event have to be tested for scale invariance, and if it failed 
to pass that test, we would conclude that the problem as stated has no 
solution; i.e., although at first glance it appears underdetermined, it would 
have to be regarded, from the standpoint of transformation groups, as 
overdetermined. As luck would have it, these requirements are compatible; 
and so the problem has one unique solution. 

The distribution of chord lengths follows at once from (12). A chord 
whose midpoint is at (r, 8) has a length L = 2(R2 - r2)1/2. In terms of the 
reduced chord lengths, x == Lj2R, we obtain the universal distribution law 

xdx 
p(x) dx = (1 _ X2)1/2 ' O~x<l (13) 

in agreement with Borel's conjecture. C3) 

6. FREQUENCY CORRESPONDENCE 

From the manner of its derivation, the distribution (13) would appear 
to have only a subjective meaning; while it describes the only possible state 
of knowledge corresponding to a unique solution in view of the many things 
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left unspecified in the statement of Bertrand's problem, we have as yet given 
no reason to suppose that it has any relation to frequencies observed in the 
actual experiment. In general, of course, no such claim can be made; the 
mere fact that my state of knowledge gives me no reason to prefer one event 
over another is not enough to make them occur equally often! Indeed, it is 
clear that no "pure thought" argument, whether based on transformation 
groups or any other principle, can predict with certainty what must happen 
in a real experiment. And we can easily imagine a very precise machine which 
tosses straws in such a way as to produce any distribution of chord lengths 
we please on a given circle. 

Nevertheless, we are entitled to claim a definite frequency correspondence 
for the result (13). For there is one "objective fact" which has been proved 
by the above derivation: Any rain of straws which does not produce a 
frequency distribution agreeing with (13) will necessarily produce different 
distributions on different circles. 

But this is all we need in order to predict with confidence that the 
distribution (13) will be observed in any experiment where the "region of 
uncertainty" is large compared to the circle. For, if we lack the skill to toss 
straws so that, with certainty, they intersect a given circle, then surely we lack 
a fortiori the skill consistently to produce different distributions on different 
circles within this region of uncertainty1 

It is for this reason that distributions predicted by the method of trans­
formation groups turn out to have a frequency correspondence after all. 
Strictly speaking, this result holds only in the limiting case of "zero skill," 
but as a moment's thought will show, the skill required to produce any 
appreciable deviation from (13) is so great that in practice it would be 
difficult to achieve even with a machine. 

Of course, the above arguments have demonstrated this frequency 
correspondence in only one case. In the following section we adduce 
arguments indicating that it is a general property of the transformation group 
method. 

These conclusions seem to be in direct contradiction to those of von 
Mises, (lO,11) who denied that such problems belong to the field of probability 
theory at all. It appears to us that if we were to adopt von Mises' philosophy 
of probability theory strictly and consistently, the range oflegitimate physical 
applications of probability theory would be reduced almost to the vanishing 
point. Since we have made a definite, unequivocal prediction, this issue has 
now been removed from the realm of philosophy into that of verifiable fact. 
The predictive power of the transformation group method can be put to 
the test quite easily in this and other problems by performing the experiments. 

The Bertrand experiment has, in fact, been performed by the writer 
and Dr. Charles E. Tyler, tossing broom straws from a standing position 
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onto a 5-in.-diameter circle drawn on the floor. Grouping the range of chord 
lengths into ten categories, 128 successful tosses confirmed Eq. (13) with 
an embarrassingly low value of chi-squared. However, experimental results 
will no doubt be more convincing if reported by others. 

7. DISCUSSION 

Bertrand's paradox has a greater importance than appears at first 
glance, because it is a simple crystallization of a deeper paradox which has 
permeated much of probability theory from its beginning. In Ureal" physical 
applications when we try to formulate the problem of interest in probability 
terms we find almost always that a statement emerges which, like Bertrand's, 
appears too vague to determine any definite solution, because apparently 
essential things are left unspecified. 

We elaborate the example noted in the introduction: Given a gas of N 
molecules in a volume V, with known intermolecular forces, total energy E, 
predict from this its molecular velocity distribution, pressure, distribution 
of pressure fluctuations, viscosity, thermal conductivity, and diffusion 
constant. Here again the viewpoint expressed by most writers on probability 
theory would lead one to conclude that the problem has no definite solution 
because it is ill posed; the things specified are grossly inadequate to determine 
any unique probability distribution over microstates. If we reject the principle 
of indifference, and insist that the only valid basis for assigning probabilities 
is frequency in some random experiment, it would again appear that the 
only way of determining these quantities is to perform the experiments. 

It is, however, a matter of record that over a century ago, without benefit 
of any frequency data on positions and velocities of molecules, James 
Clerk Maxwell was able to predict all these quantities correctly by a "pure 
thought" probability analysis which amounted to recognizing the "equally 
possible" cases. In the case of viscosity the predicted dependence on density 
appeared at first to contradict common sense, casting doubt on Maxwell's 
analysis. But when the experiments were performed they confirmed Maxwell's 
predictions, leading to the first great triumph of kinetic theory. These are 
solid, positive accomplishments; and they cannot be made to appear other­
wise merely by deploring his use of the principle of indifference. 

Likewise, we calculate the probability of obtaining various hands at 
poker; and we are so confident of the results that we are willing to risk money 
on bets which the calculations indicate are favorable to us. But underlying 
these calculations is the intuitive judgment that all distributions of cards are 
equally likely; and with a different judgment our calculations would give 
different results. Once again we are predicting definite, verifiable facts by 
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"pure thought" arguments based ultimately on recogmzmg the "equally 
possible" cases; and yet present statistical doctrine, both orthodox and 
personalistic, denies that this is a valid basis for assigning probabilities! 

The dilemma is thus apparent; on the one hand, one cannot deny the 
force of arguments which, by pointing to such things as Bertrand's paradox, 
demonstrate the ambiguities and dangers in the principle of indifference. 
But on the other hand, it is equally undeniable that use of this principle has, 
over and over again, led to correct, nontrivial, and useful predictions. Thus 
it appears that while we cannot wholly accept the principle of indifference, 
we cannot wholly reject it either; to do so would be to cast out some of the 
most important and successful applications of probability theory. 

The transformation group method grew out of the writer's conviction, 
based on pondering this situation, that the principle of indifference has 
been unjustly maligned in the past; what it has needed was not blanket 
condemnation, but recognition of the proper way to apply it. We agree with 
most other writers on probability theory that it is dangerous to apply this 
principle at the level of indifference between events, because our intuition 
is a very unreliable guide in such matters, as Bertrand's paradox illustrates. 

However, the principle of indifference may, in our view, be applied 
legitimately at the more abstract level of indifference between problems; 
because that is a matter that is definitely determined by the statement of 
a problem, independently of our intuition. Every circumstance left unspecified 
in the statement of a problem defines an invariance property which the 
solution must have if there is to be any definite solution at all. The trans­
formation group, which expresses these invariances mathematically, imposes 
definite restrictions on the form of the solution, and in many cases fully 
determines it. 

Of course, not all invariances are useful. For example, the statement of 
Bertrand's problem does not specify the time of day at which the straws are 
tossed, the color of the circle, the luminosity of Betelgeuse, or the number 
of oysters in Chesapeake Bay; from which we infer, correctly, that if the 
problem as stated is to have a unique solution, it must not depend on these 
circumstances. But this would not help us unless we had previously thought 
that these things might be germane. 

Study of a number of cases makes it appear that the aforementioned 
dilemma can now be resolved as follows. We suggest that the cases in which 
the principle of indifference has been applied successfully in the past are 
just the ones in which the solution can be "reverbalized" so that the actual 
calculations used are seen as an application of indifference between problems, 
rather than events. 

For example, in the case of poker hands the statement of the problem 
does not specify the order of cards in the deck before shuffling; therefore if 
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the problem is to have any definite solution, it must not depend on this 
circumstance; i.e., it must be invariant under the group of 52! permutations 
or cards, each of which transforms the problem into an equivalent one. 
Whether we verbalize the solution by asserting that all distributions of cards 
in the final hands are "equally likely" or by saying that the solution shall 
have this invariance property, we shall evidently do just the same calculation 
and obtain the same final results. 

There remains, however, a difference in the logical situation. After 
having applied the transformation group argument in this way we are not 
entitled to assert that the predicted distribution of poker hands must be 
observed in practice. The only thing that can be proved by transformation 
groups is that if this distribution is not forthcoming then the probability of 
obtaining a given hand will necessarily be different for different initial orders 
of the cards; or, as we would state it colloquially, the cards are not being 
"properly" shuffled. This is, of course, just the conclusion we do draw in 
practice, whatever our philosophy about the "meaning of probability." 

Once again it is clear that the invariant solution is overwhelmingly the 
most likely one to be produced by a person of ordinary skill; to shuffle cards 
in such a way that one particular aspect of the initial order is retained 
consistently in the final order requires a "microscopic" degree of control 
over the exact details of shuffling (in this case, nowever, the possession of 
such skill is generally regarded as dishonest, rather than impossible). 

We have not found any general proof that the method of transformation 
groups will always lead to solutions with this frequency correspondence 
property; however, analysis of some dozen problems like the above has 
failed to produce any counterexample, and its general validity is rendered 
plausible as follows. 

In the first place, we recognize that every circumstance which our common 
sense tells us may exert some influence on the result of an experiment ought 
to be given explicitly in the statement of a problem. If we fail to do that, then 
of course we have no right to expect agreement between prediction and 
observation; but this is not a failure of probability theory, but rather a 
failure on our part to state the full problem. If the statement of a problem 
does properly include all such information, then it would appear that any 
circumstances that are still left unspecified must correspond to some lack of 
control over the conditions of the experiment, which makes it impossible for 
us to state them. But invariance under the corresponding transformation 
group is just the formal expression of this lack of control, or lack of 
skill. 

One has the feeling that this situation can be formalized more completely; 
perhaps one can define some "space" corresponding to all possible degrees of 
skill and define a measure in this space, which proves to be concentrated 
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overwhelmingly on those regions leading to the invariant solution. Up to 
the present, however, we have not seen how to carry out such a program; 
perhaps others will. 

8. CONJECTURES 

There remains the interesting, and still unanswered, question of how 
to define precisely the class of problems which can be solved by the method 
illustrated here. There are many problems in which we do not see how to 
apply it unambiguously; von Mises' water-and-wine problem is a good 
example. Here we are told that a mixture of water and wine contains at least 
half wine, and are asked: What is the probability that it contains at least 
three-quarters wine? On the usual viewpoint this problem is underdetermined; 
nothing tells us which quantity should be regarded as uniformly distributed. 
However, from the standpoint of the invariance group, it may be more useful 
to regard such problems as overdetermined; so many things are left unspecified 
that the invariance group is too large, and no solution can conform to it. 

It thus appears that the "higher-level problem" of how to formulate 
statistical problems in such a way that they are neither underdetermined nor 
overdetermined may itself be capable of mathematical analysis. In the writer's 
opinion it is one of the major weaknesses of present statistical practice that 
we do not seem to know how to formulate statistical problems in this way, 
or even how to judge whether a given problem is well posed. Again, the 
Bertrand paradox is a good illustration of this difficulty, for it was long 
thought that not enough was specified to determine any unique solution, 
but from the viewpoint which recognizes the full invariance group implied 
by the above statement of the problem, it now appears that it was well posed 
after all. 

In many cases, evidently, the difficulty has been simply that we have not 
been reading out all that is implied by the statement of a problem; the things 
left unspecified must be taken into account just as carefully as the ones that 
are specified. Presumably, a person would not seriously propose a problem 
unless he supposed that it had a definite solution. Therefore, as a matter of 
courtesy and in keeping with a worthy principle of law, we might take the 
view that a problem shall be presumed to have a definite solution until the 
contrary has been proved. If we accept this as a reasonable attitude, then we 
must recognize that we are not in a position to judge whether a problem is 
well posed until we have carried out a transformation group analysis of all 
the invariances implied by its statement. 

The question whether a problem is well posed is thus more subtle in 
probability theory than in other branches of mathematics, and any results 



THE WELL-POSED PROBLEM 147 

which could be obtained by study of the "higher-level problem" might be 
of immediate use in applied statistics. 

APPENDIX: COMMENTS ON BERTRAND'S PROBLEM 

Bertrand (Ref. 2, pp. 4-5): "Aucune de trois n'est fausse, aucune n'est 
exacte, la question est mal posee." 

Borel (Ref. 3, pp. 110-113): " .. .il est aise de voir que la plupart des 
procedes naturels que ron peut imaginer conduiser a la premiere." 

Poincare (Ref. 4, pp. 118-130): " ... nous avons definie la probabilite 
de deux manieres differentes." 

Uspensky (Ref. 5, p. 251): " ... we are really dealing with two different 
problems." 

Northrup (Ref. 6, pp. 181-183): "One guess is as good as another." 
Gnedenko (Ref. 7, pp. 40-41): The three results "would be appropriate" 

in three different experiments. 
Kendall and Moran (Ref. 8, p. 10): "All three solutions are correct, 

but they really refer to different problems." 
Weaver (Ref. 9, pp. 356-357): " ... you have to watch your step." 
Von Mises (Ref. 10, pp. 160-166): "Which one of these or many other 

assumptions should be made is a question of fact and depends on how the 
needles are thrown. It is not a problem of probability calculus to decide which 
distribution prevails .... " Von Mises, in the preface to Ref. 11, also charges 
that, "Neither Laplace nor any of his followers, including Poincare, ever 
reveals how, starting with a priori premises concernmg equally possible cases, 
the sudden transition to the description of real statistical events is to be 
made." It appears to us that this had already been accomplished in large 
part by James Bernoulli (1703) in his demonstration of the weak law of large 
numbers, the first theorem establishing a connection between probability 
and frequency. Reference I and the present article may be regarded as 
further contributions toward answering von Mises' objections. 

Mosteller (Ref. 12, p. 40): "Until the expression 'at random' is made 
more specific, the question does not have a definite answer .... We cannot 
guarantee that any of these results would agree with those obtained from 
some physical process .... " 
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9. CONFIDENCE INTERVALS vs 

BAYESIAN INTERVALS (I976) 

We come now to the most polemical of all my articles. There are several 
reasons for this heated style. Firstly, most of it was written in 1963, as a 
reply to the 'astonishing article' of Bross referred to, whose polemics make 
mine seem unimaginative. Indeed, his anti-Bayesian tirade contained nothing 
but polemics, unsupported by a single technical fact. But had he taken the 
trouble to read Jeffreys, he would have found demonstrations, on the level of 
technical fact with no polemics, of the falsity of his charges. 

But this distortion of known facts - naturally infuriating to a Bayesian -
was hardly limited to Bross. Almost every 'orthodox' textbook written for 
decades had charged Bayesian methods with nonexistent defects, while 
ignoring the demonstrable defects in orthodox methods. 

It seemed appropriate that a Bayesian point out these things, and so I 
collected a number of case histories, with mathematical details, from the 
same areas that Bross had alluded to and showed that, contrary to his asser­
tions, Bayesian methods correct the shortcomings of orthodox methods. 

My attempts to get the work published met with rebuff twice from those 
who had so quickly accepted the Bross article; clearly, different standards 
of acceptance existed for works differently slanted. After ten years of 
waiting, the opportunity arrived in an invitation to present a paper at the 
1973 London Symposium. But three more years passed before the Proceed­
ings Volume appeared, and so it required thirteen years to get this reply 
before the public. Still, none of it was obsolete - an interesting commentary 
on the rate of progress of orthodox thinking. 

In the Proceedings Volume, there appear also comments on my presenta­
tion by Margaret Maxfield and Oscar Kempthome, and my replies. Portions 
of the latter, which extend the main message, are included here. 

The reply to Kempthome also becomes polemical in places, but for an 
entirely different reason. Just as it was being written, a student of mine went 
forth into the world with a fresh Ph.D. degree, seeking a teaching position. 
Since he knew some statistical theory as well as some theoretical physiCS, one 
well-known institution suggested that he teach a statistics course, which he 
was well qualified to do. But on learning that he had been exposed to Bayesian 
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thinking, he was taken aside and told that it was a condition of his employ­
ment that he agree to teach straight out of Hoel, expounding no Bayesian 
ideas. 

My revulsion at such thought control - by persons who would rightly 
denounce it anywhere else - resulted in my coming down on poor old 
Oscar a bit harder than I would have otherwise (still, he will be the first to 
admit that he delivers fully as much as he receives, and neither of us takes it 
personally). 

The manuscript was sent to the publisher with some trepidations over the 
polemical style, but those fears were groundless; in fact, I have received more 
favorable fan mail over this article than on any two others. Many quite well­
known figures have told me in confidence: 'Bravo! These things needed to be 
said, but I cannot say them because my position requires me to maintain 
diplomatic relations with both sides in the Great Debate. You are just enough 
of an outsider so you can get away with it.' 
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AllsTRACT. For many years, statistics textbooks have followed this 'canonical' 
procedure: (1) the reader is warned not to use the discredited methods of Bayes and 
Laplace, (2) an orthodox method is extolled as superior and applied to a few simple 
problems, (3) the corresponding Bayesian solutions are not worked out or described 
in any way. The net result is that no evidence whatsoever is offered to substantiate the 
claim of superiority of the orthodox method. 

To correct this situation we exhibit the Bayesian and orthodox solutions to six 
common statistical problems involving confidence intervals (including significance tests 
based on the same reasoning). In every case, we find that the situation is exactly the 
opposite; i.e., the Bayesian method is easier to apply and yields the same or better 
results. Indeed, the orthodox results are satisfactory only when they agree closely 
(or exactly) with the Bayesian results. No contrary example has yet been produced. 

By a refinement of the orthodox statistician's own criterion of performance, the 
best confidence interval for any location or scale parameter is proved to be the 
Bayesian posterior probability interval. In the cases of point estimation and hypothesis 
testing, similar proofs have long been known. We conclude that orthodox claims of 
superiority are totally unjustified; today, the original statistical methods of Bayes and 
Laplace stand in a position of proven superiority in actual performance, that places 
them beyond the reach of mere ideological or philosophical attacks. It is the continued 
teaching and use of orthodox methods that is in need of justification and defense. 

I. INTRODUCTlONl 

The theme of our meeting has been stated in rather innocuous terms: 
how should probability theory be (1) formulated, (2) applied to statistical 
inference; and (3) to statistical physics? Lurking behind these bland 
generalities, many of us will see more specific controversial issues: (1) 
frequency vs. nonfrequency definitions of probability, (2) 'orthodox' vs. 
Bayesian methods of inference, and (3) ergodic theorems vs. the principle 
of maximum entropy as the basis for statistical mechanics. 

When invited to participate here, I reflected that I have already held 
forth on issue (3) at many places, for many years, and at great length. 
At the moment, the maximum entropy cause seems to be in good hands 
and advancing well, with no need for any more benedictions from me; 
in any event, I have little more to say beyond what is already in print. 2 

So it seemed time to widen the front, and enter the arena on issue (2). 
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Why a physicist should have the temerity to do this, when no statistician 
has been guilty of invading physics to tell us how we ought to do our 
jobs, will become clear only gradually; but the main points are: (A) we 
were here first, and (B) because of our past experiences, physicists may 
be in a position to help statistics in its present troubles, well described 
by Kempthorne (1971). More specifically: 

(A) Historically, the development of probability theory in the 18'th 
and early 19'th centuries from a gambler's amusement to a powerful 
research tool in science and many other areas, was the work of people -
Daniel Bernoulli, Laplace, Poisson, Legendre, Gauss, and several others -
whom we would describe today as mathematical physicists. In the 19'th 
century, a knowledge of their work was considered an essential part of the 
training of any scientist, and it was taught largely as a part of physics. 

A radical change took place early in this century when a new group of 
workers, not physicists, entered the field. They proceeded to reject virtually 
everything done by Laplace and sought to develop statistics anew, based 
on entirely different principles. Simultaneously with this development, 
the physicists - with Sir Harold Jeffreys as almost the sole exception -
quietly retired from the field, and statistics disappeared from the physics 
curriculum. 

This departure of physicists from the field they had created was not, 
of course, due to the new competition; rather, it was just at this time that 
relativity theory burst upon us, X-rays and radioactivity were discovered, 
and quantum theory started to develop. The result was that for fifty years 
physicists had more than enough to do unravelling a host of new experi­
mental facts, digesting these new revolutions of thought, and putting our 
house back into some kind of order. But the result of our departure was 
that this extremely aggressive new school in statistics soon dominated 
the field so completely that its methods are now known as 'orthodox 
statistics'. For these historical reasons, I ask you to think with me, that 
for a physicist to tum his attention now to statistics, is more of a home­
coming than an invasion. 

(B) Today. a physicist revisiting statistics to see how it has fared in our 
absence, sees quickly that something has gone wrong. For over fifteen 
years now, statistics has been in a state of growing ideological crisis -
literally a crisis of conflicting ideas - that shows no signs of resolving 
itself, but yearly grows more acute; but it is one that physicists can re-
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cognize as basically the same thing that physics has been through several 
times (Jaynes, 1967). Having seen how these crises work themselves out, 
I think physicists may be in a position to prescribe a physic that will speed 
up the process in statistics. 

The point we have to recognize is that issues of the kind facing us are 
never resolved by mere philosophical or ideological debate. At that level 
of discussion, people will persist in disagreeing, and nobody will be able 
to prove his case. In physics, we have our own ideological disputes, just 
as deeply felt by the protagonists as any in statistics; and at the moment I 
happen to be involved in one that strikes at the foundations of quantum 
theory (Jaynes, 1973). But in physics we have been perhaps more fortunate 
in that we have a universally recognized Supreme Court, to which all 
disputes are taken eventually, and from whose verdict there is no appeal. 
I refer, of course, to direct experimental observation of the facts. 

This is an exciting time in physics, because recent advances in technology 
(lasers, fast computers, etc.) have brought us to the point where issues 
which have been debated fruitlessly on the philosophical level for 45 
years, are at last reduced to issues of fact, and experiments are now un­
derway testing controversial aspects of quantum theory that have never 
before been accessible to direct check. We have the feeling that, very soon 
now, we are going to know the real truth, the long debate can end at last, 
one way or the other; and we will be able to tum a great deal of energy 
to more constructive things. Is there any hope that the same can be done 
for statistics? 

I think there is, and history points the way. It is to Galileo that we owe 
the first demonstration that ideological conflicts are resolved, not by 
debate, but by observation of fact. But we also recall that he ran into 
some difficulties in selling this idea to his contemporaries. Perhaps the 
most striking thing about his troubles was not his eventual physical 
persecution, which was hardly uncommon in those days; but rather the 
quality of logic that was used by his adversaries. For example, having 
turned his new telescope to the skies, Galileo announced discovery of the 
moons of Jupiter. A contemporary scholar ridiculed the idea, asserted that 
his theology had proved there could be no moons about Jupiter; and 
steadfastly refused to look through Galileo's telescope. But to everyone 
who did take a look, the evidence of his own eyes somehow carried more 
convincing power than did any amount of theology. 
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Galileo's telescope was able to reveal the truth, in a way that transcended 
all theology, because it could magnify what was too small to be perceived 
by our unaided senses, up into the range where it could be seen directly by 
all. And that, I suggest, is exactly what we need in statistics if this con­
flict is ever to be resolved. Statistics cannot take its dispute to the Supreme 
Court ofthe physicist; but there is another. It was recognized by Laplace 
in that famous remark, "Probability theory is nothing but common 
sense reduced to calculation". 

Let me make what, I fear, will seem to some a radical, shocking sug­
gestion: the merits of any statistical method are not determined by the 
ideology which led to it. For, many different, violently opposed ideologies 
may all lead to the same final 'working equations' for dealing with real 
problems. Apparently, this phenomenon is something new in statistics; 
but it is so commonplace in physics that we have long since learned how 
to live with it. Today, when a physicist says, "Theory A is better than 
theory B", he does not have in mind any ideological considerations; he 
means simply, "There is at least one specific application where theory A 
leads to a better result than theory B". 

I suggest that we apply the same criterion in statistics: the merits of any 
statistical method are determined by the results it gives when applied to 
specific problems. The Court of Last Resort in statistics is simply our 
commonsense judgment of those results. But our common sense, like 
our unaided vision, has a limited resolving power. Given two different 
statistical methods (e.g., an orthodox and a Bayesian one), in many cases 
they lead to final numerical results which are so nearly alike that our 
common sense is unable to make a clear decision between them. What 
we need, then, is a kind of Galileo telescope for statistics; let us try to 
invent an extreme case where a small difference is magnified to a large 
one, or if possible to a qualitative difference in the conclusions. Our com­
mon sense will then tell us which method is preferable, in a way that 
transcends all ideological quibbling over 'subjectivity', 'objectivity', the 
'true meaning of probability', etc. 

I have been carrying out just this program, as a hobby, for many 
years, and have quite a mass of results covering most areas of statistical 
practice. They all lead to the same conclusion, and I have yet to find one 
exception to it. So let me give you just a few samples from my collec­
tion. 
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(a) INTERVAL ESTIMATION 

Time not permitting even a hurried glimpse at the entire field of statistical 
inference, it is better to pick out a small piece of it for close examination. 
Now we have already a considerable Underground Literature on the 
relation of orthodox and Bayesian methods in the areas of point estima­
tion and hypothesis testing, the topics most readily subsumed under the 
general heading of Decision Theory. [I say underground, because the 
orthodox literature makes almost no mention of it. Not only in text­
books, but even in such a comprehensive treatise as that of Kendall 
and Stuart (1961), the reader can find no hint of the existence of the books 
of Good (1950), Savage (1954), Jeffreys (1957), or Schlaifer (1959), all 
of which are landmarks in the modern development of Bayesian statistics]. 

It appears that much less has been written about this comparison in the 
case of interval estimation; so I would like to examine here the orthodox 
principle of confidence intervals (including significance tests based on the 
same kind of reasoning), as well as the orthodox criteria of performance 
and method of reporting results; and to comparf .hese with the correspond­
ing Bayesian reasoning and results, with magnification. 

The basic ideas of interval estimation must be ancient, since they occur 
inevitably to anyone involved in making measurements, as soon as he 
ponders how he can most honestly communicate what he has learned to 
others, short of giving the entire mass of raw data. For, if you merely give 
your final best number, some troublesome fellow will demand to know how 
accurate the number is. And you will not appease him merely by answering 
his question; for if you reply, "It is within a tenth of a percent", he will 
only ask, "How sure are you of that? Will you make a 10: I bet on it?" 

It is not enough, then, to give a number or even an interval of possible 
error; at the very minimum, one must give both an interval and some 
indication of the reliability with which one can assert that the true value 
lies within it. But even this is not really enough; ideally (although this 
goes beyond current practice) one ought to give many different intervals -
or even a continuum of all possible intervals - with some kind of statement 
about the reliability of each, before he has fully described his state of 
knowledge. This was noted by D. R. Cox (1958), in producing a nested 
sequence of confidence intervals; evidently, a Bayesian posterior probabil­
ity accomplishes the same thing in a simpler way. 
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Perhaps the earliest formal quantitative treatment of interval estima­
tion was Laplace's analysis of the accuracy with which the mass of 
Saturn was known at the end of the 18'th century. His method was to 
apply Bayes' theorem with uniform prior density; relevant data consist 
of the mutual perturbations of Jupiter and Saturn, and the motion of 
their moons, but the data are imperfect because of the finite accuracy 
with which angles and time intervals can be measured. From the posterior 
distribution P (M) dM conditional on the available data, one can deter­
mine the shortest interval which contains a specified amount of posterior 
probability, or equally well the amount of posterior probability con­
tained in a specified interval. Laplace chose the latter course, and an­
nounced his result as follows: " ... it is a bet of 11 000 against I that the 
error of this result is not 1/100 of its value". In the light of present knowl­
edge, Laplace would have won his bet; another 150 years' accumulation 
of data has increased the estimate by 0.63 percent. 

Today, orthodox teaching holds that Laplace's method was, in Fisher's 
words, "founded upon an error". While there are some differences of 
opinion within the orthodox school, most would hold that the proper 
method for this problem is the confidence interval. It would seem to me 
that, in order to substantiate this claim, the orthodox writers would have 
to (1) produce the confidence interval for Laplace's problem, (2) show 
that it leads us to numerically different conclusions, and (3) demonstrate 
that the confidence interval conclusions are more statisfactory than 
Laplace's. But, in some twenty years of searching the orthodox literature, 
I have yet to find one case where such a program is carried out, on any 
statistical problem. 

Invariably, the superiority of the orthodox method is asserted, not by 
presenting evidence of superior performance, but by a kind of ideological 
invective about 'objectivity' which perhaps reached its purple climax in an 
astonishing article of Bross (1963), whose logic recalls that of Galileo's 
colleague. In his denunciation of everything Bayesian, Bross specifically 
brings up the matter of confidence intervals and orthodox significance 
tests (which are based on essentially the same reasoning, and often amount 
to one-sided confidence intervals). So we will do likewise; in the following, 
we will examine these same methods and try to supply what Bross omit­
ted; the demonstrable facts concerning them. 

We first consider three significance tests appearing in the recent litera-
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ture of reliability theory. The first two, which tum out to be so clear that 
no magnification is needed, will also bring out an important point con­
cerning orthodox methods of reporting results. 

II. SIGNIFICANCE TESTS 

Significance tests, in their usual fonn, are 
not compatible with a Bayesian attitude. 

C. A. B. Smith (1962) 

At any rate, what I feel quite sure at the 
moment to be needed is simple illustration 
of the new [Le., Bayesian] notions on real, 
everyday statistical problems. 

E. S. Pearson (1962) 

(a) EXAMPLE 1. DIFFERENCE OF MEANS 

One of the most common of the 'everyday statistical problems' concerns 
the difference of the means of two normal distributions. A good example, 
with a detailed account of how current orthodox practice deals with such 
problems, appears in a recent book on reliability engineering (Roberts, 
1964). 
Two manufacturers, A and B, are suppliers for a certain component, and 
we want to choose the one which affords the longer mean life. Manufac­
turer A supplies 9 units for test, which tum out to have a (mean ± 
standard deviation) lifetime of (42 ± 7.48) hours. B supplies 4 units, which 
yield (50±6.48) hours. 

I think our common sense tells us immediately, without any calculation, 
that this constitutes fairly substantial (but not overwhelming) evidence in 
favor of B. While we should certainly prefer a larger sample, B's units did 
give a longer mean life, the difference being appreciably greater than the 
sample standard deviation; and so if a decision between them must be 
made on this basis, we should have no hesitation in choosing B. However, 
the author warns against drawing any such conclusion, and says that, if 
you are tempted to reason this way, then "perhaps statistics is not for 
you!" In any event, when we have so little evidence, it is imperative that 
we analyze the data in a way that does not throw any of it away. 

The author then offers us the following analysis of the problem. He 
first asks whether the two variances are the same. Applying the F-test, 
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the hypothesis that they are equal is not rejected at the 95 percent signifi­
cance level, so without further ado he assumes that they are equal, and 
pools the data for an estimate of the variance. Applying the t-test, he 
then finds that, at the 90 percent level, the sample affords no significant 
evidence in favor of either manufacturer over the other. 

Now, any statistical procedure which fails to extract evidence that is 
already clear to our unaided common sense, is certainly not for me! So, I 
carried out a Bayesian analysis. Let the unknown mean lifetimes of A's 
and B's components be a, b respectively. If the question at issue is whether 
b>a, the way to answer it is to calculate the probability that b>a, con­
ditional on all the available data. This is 

00 00 

(1) Prob(b>a)= J da f db Pn(a) Pm (b) 
-00 a 

where Pn(a) is the posterior distribution of a, based on the sample of 
n = 9 items supplied by A, etc. When the variance is unknown, we find 
that these are of the form of the 'Student' t-distribution: 

(2) Pn(a) - [s~ + (a - ( .. )2]-n/2 

where fA, s~ = I} - i~ are the mean and variance of sample A. Carrying out 
the integration (1), I find that the given data yield a probability of 0.920, 
or odds of 11.5 to I, that B's components do have a greater mean life - a 
conclusion which, I submit, conforms nicely to the indications of common 
sense. 3 

But this is far from the end of the story; for one feels intuitively that if 
\ 

the variances are assumed equal, this ought to result in a more selective 
test than one in which this is not assumed; yet we find the Bayesian test 
without assumption of equal variance yielding an apparently sharper 
result than the orthodox one with that assumption. This suggests that we 
repeat the Bayesian calculation, using the author's assumption of equal 
variances. We have again an integral like (I), but a and b are no longer 
independent, their joint posterior distribution being proportional to 

(3) P (a, b),.., {n [s~ + (a - iA)2] + m [si + (b - iB)2]} -1/2 (n+m) 

Integrating this over the same range as in (1) - which can be done simply 
by consulting the t-tables after carrying out one integration analytically-
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I find that the Bayesian analysis now yields a probability of 0.948, or 
odds of 18: 1, in favor of B. 

How, then, could the author have failed to find significance at the 90 
percent level? Checking the tables used we discover that, without having 
stated so, he has applied the equal tails t-test at the 90 percent level. But 
this is surely absurd; it was clear from the start that there is no question 
of the data supporting A; the only purpose which can be served by a 
statistical analysis is to tell us how strongly it supports B. 

The way to answer this is to test the null hypothesis b=a against the 
one-sided alternative b>a already indicated by inspection of the data; 
using the 90 percent equal-tails test throws away half the 'resolution' and 
gives what amounts to a one-sided test at the 95 percent level, where it 
just barely fails to achieve significance. 

In summary, the data yield clear significance at the 90 percent level; 
but the above orthodox procedure (which is presumably now being taught 
to many students) is a compounding of two errors. Assuming the variances 
equal makes the difference (fB- fA) appear, unjustifiedly, even more 
significant; but then use of the equal tails criterion throws away more than 
was thus gained, and we still fail to find significance at the 90 percent level. 

Of course, the fact that orthodox methods are capable of being misused 
in this way does not invalidate them; and Bayesian methods can also be 
misused, as we know only too well. However, there must be something in 
orthodox teaching which predisposes one toward this particular kind of 
misuse, since it is very common in the literature and in everyday practice. 
It would be interesting to know why most orthodox writers will not use -
or even mention - the Behrens-Fisher distribution, which is clearly the 
correct solution to the problem, has been available for over forty years 
(Fisher, 1956; p. 95), and follows immediately from Bayes' theorem with 
the Jeffreys prior (Jeffreys, 1939; p. 115). 

(b) EXAMPLE 2. SCALE PARAMETERS 

A recent Statistics Manual (Crow et al., 1960) proposes the following 
problem: 31 rockets of type 1 yield a dispersion in angle of 2237 milsl, 
and 61 of type 2 give instead 1347 mils2 • Does this constitute significant 
evidence for a difference in standard deviation of the two types? 

I think our common sense now tells us even more forcefully that, in 
view of the large samples and the large observed difference in dispersion, 
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this constitutes absolutely unmistakable evidence for the superiority of 
type 2 rockets. Yet the authors, applying the equal-tails F-test at the 95 
percent level, find it not significant, and conclude: "We need not, as far 
as this experiment indicates, differentiate between the two rockets with 
respect to their dispersion". 

Suppose you were a military commander faced with the problem of 
deciding which type of rocket to adopt. You provide your statistician 
with the above data, obtained at great trouble and expense, and receive 
the quoted report. What would be your reaction? I think that you would 
fire the statistician on the spot; and henceforth make decisions on the 
basis of your own common sense, which is evidently a more powerful 
tool than the equal-tails F-test. 

However, if your statistician happened to be a Bayesian, he would 
report 4 instead: "These data yield a probability of 0.9574, or odds of 
22.47: 1, in favor of type 2 rockets". I think you would decide to keep 
this fellow on your staff, because his report not only agrees with com­
mon sense; it is stated in a far more useful form. For, you have little in­
terest in being told merely whether the data constitute 'significant evidence 
for a difference', It is already obvious without any calculation that they 
do constitute highly significant evidence in favor of type 2; the only 
purpose that can be served by a statistital analysis is, again, to tell us 
quantitatively how significant that evidence is. Traditional orthodox 
practice fails utterly to do this, although the point has been noted recently 
by some. 

What we have found in these two examples is true more generally. 
The orthodox statistician conveys little useful information when he 
merely reports that the null hypothesis is or is not rejected at some 
arbitrary preassigned significance level. If he reports that it is rejected at 
the 90 percent level, we cannot tell from this whether it would have been 
rejected at the 92 percent, or 95 percent level. If he reports that it is not 
rejected at the 95 percent level, we cannot tell whether it would have been 
rejected at the 50 percent, or 90 percent level. If he uses an equal-tails 
test, he in effect throws away half the 'resolving power' of the test, and 
we are faced with still more uncertainty as to the real import of the data. 

Evidently, the orthodox statistician would tell us far more about what 
the sample really indicates if he would report instead the critical signifi­
cance level at which the null hypothesiJ is just rejected in favor of the one-
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sided alternative indicated by the data; for we then know what the verdict 
would be at all levels, and no resolution has been lost to a superfluous 
tail. Now two possible cases can arise: (I) the number thus reported is 
identical with the Bayesian posterior probability that the alternative is 
true; (II) these numbers are different. 

If case (I) arises (and it does more often than is generally realized), the 
Bayesian and orthodox tests are going to lead us to exactly the same 
numerical results and the same conclusions, with only a verbal disagree­
ment as to whether we should use the word 'probability' or 'significance' 
to describe them. In particular, the orthodox I-test and F-test against 
one-sided alternatives would, if their results were reported in the manner 
just advocated, be precisely equivalent to the Bayesian tests based on the 
Jeffreys prior dpdu/u. Thus, if we assume the variances equal in the above 
problem of two means, the observed difference is just significant by the 
one-sided t-test at the 94.8 percent level; and in the rocket problem a one­
sided F-test just achieves significance at the 95.74 percent level. 

It is only when case (II) is found that one could possibly justify any 
'objective' claim for superiority of either approach. Now it is just these 
cases where we have the opportunity to carry out our 'magnification' pro­
cess; and if we can find a problem for which this difference is magnified 
sufficiently, the issue cannot really be in doubt. We find this situation, 
and a number of other interesting points of comparison, in one of the 
most common examples of acceptance tests. 

(c) EXAMPLE 3. AN ACCEPTANCE TEST 

The probability that a certain machine will operate without failure for 
a time t is, by hypothesis, exp ( - At), 0 < t < 00. We test n units for a time 
t, and observe r failures; what assurance do we then have that the mean 
life O=A -1 exceeds a preassigned value Oo? 

Sobel and Tischendorf (1959) (hereafter denoted ST) give an orthodox 
solution with tables that are reproduced in Roberts (1964). The test is to 
have a critical number C (i.e., we accept only if r ~ C). On the hypothesis 
that we have the maximum tolerable failure rate, AO = 00 1, the probability 
that we shall see r or tewer failures is the binomial sum 

(4) W (n, r) = 2: (~) e-<n-k) Aol (1 - e-Aot'f 

1=0 
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and so, setting W(n, C)~I-P gives us the sample size n required in 
order that this test will assure (J;:<: (Jo at the 100 P percent significance level. 
From the ST tables we find, for example, that if we wish to test only for a 
time 1=0.01 (Jo with C=3, then at the 90 percent significance level we 
shall require a test sample of n = 668 units; while jf we are willing to test 
for a time 1=80 with C= 1, we need test only 5 units. 

The amount of testing called for is appalling if I ~ 80 ; and out of the 
question if the units are complete systems. For example, if we want to 
have 95 percent confidence (synonymous with significance) that a space 
vehicle has eo ;:<: 10 years, but the test must be made in six months, then 
with C= 1, the ST tables say that we must build and test 97 vehicles! 
Suppose that, nevertheless, it had been decreed on the highest policy 
level that this degree of confidence must be attained, and you were in 
charge of the testing program. If a more careful analysis of the statistical 
problem, requi'ring a few man-years of statisticians' time, could reduce 
the test sample by only one or two units, it would be well justified economi­
cally. Scrutinizing the test more closely, we note four points: 

(I) We know from the experiment not only the total number r of 
failures, but also the particular times {It ... t,} at which failure occurred. 
This informaion is clearly relevant to the question being asked; but 
the ST test makes no use of it. 

(2) The test has a 'quasi-sequential' feature; if we adopt an acceptance 
number C= 3, then as soon as the fourth failure occurs, we know that the 
units are going to be rejected. If no failures occur, the required degree of 
confidence will be built up long before the time t specified in the ST tables. 
In fact, I is the maximum possible testing time, which is actually required 
only in the marginal case where we observe exactly C failures. A test 
which is 'quasi-sequential' in the sense that it terminates when a clear 
rejection or the required confidence is attained, will have an expected 
length less than t ; conversely, such a test with the expected length set at t 
will require fewer units tested. 

(3) We have relevant prior information; after all, the engineers who 
designed the space vehicle knew in advance what degree of reliability was 
needed. They have chosen the quality of materials and components, and 
the construction methods, with this in mind. Each sub-unit has had its 
own tests. The vehicles would never have reached the final testing stage 
unless the engineers knew that they were operating satisfactorily. In 
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other words, we are not testing a completely unknown entity. The ST 
test (like most orthodox procedures) ignores all prior information, except 
perhaps when deciding which hypotheses to consider, or which significance 
level to adopt. 

(4) In practice, we are usually concerned with a different question than 
the one the ST test answers. An astronaut starting a five-year flight to 
Mars would not be particularly comforted to be told, "We are 95 percent 
confident that the average life of an imaginary population of space 
vehicles like yours, is at least ten years". He would much rather hear, 
"There is 95 percent probability that this vehicle will operate without 
breakdown for ten years". Such a statement might appear meaningless to 
an orthodox statistician who holds that (probability) = (frequency). 
But such a statement would be very meaningful indeed to the astronaut. 

This is hardly a trivial point; for if it were known that A. -1 = 10 yr, the 
probability that a particular vehicle will actually run for 10 yrs would be 
only l/e=0.368; and the period for which we are 95 percent sure of 
success would be only -10 In(0.95) years, or 6.2 months. Reports which 
concern only the 'mean life' can be rather misleading. 

Let us first compare the ST test with a Bayesian test which makes use 
of exactly the same information; i.e., we are allowed to use only the 
total number of failures, not the actual failure times. On the hypothesis 
that the failure rate is A., the probability that exactly r units fail in time 
tis 

(5) p (r I n, A, t) = (;) e-(n-r) At (1 - e- At)'. 

I want to defer discussion of nonuniform priors; for the time being suppose 
we assign a uniform prior density to A.. This amounts to saying that, 
before the test, we consider it extremely unlikely that our space vehicles 
have a mean life as long as a microsecond; nevertheless it will be of in­
terest to see the result of using this prior. The posterior distribution of l 
is then 

(6) 
n! 

p (dll n, r, t) = e-(n-,) At (1 - e-J.t)' d (A.t). 
(n - r - I)! r! 

The Bayesian acceptance criterion, which ensures e ~ AO 1 with lOOP 
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percent probability, is then 

00 

(7) f p(d.1.ln,r,t)~l-P . 
.to 

But the left-hand side of (7) is identical with W (n, r) given by (4); this is 
just the well-known identity of the incomplete Beta function and the 
incomplete binomial sum, given already in the original memoir of 
Bayes (1763). 

In this first comparison we therefore find that the ST test is mathemati­
cally identical with a Bayesian test in which (1) we are denied use of the 
actual failure times; (2) because of this it is not possible to take ad­
vantage of the quasi-sequential feature; (3) we assign a ridiculously 
pessimistic prior to A.; (4) we still are not answering the question of real 
interest for most applications. 

Of these shortcomings, (2) is readily corrected, and (1) undoubtedly 
could be corrected, without departing from orthodox principles. On 
the hypothesis that the failure rate is A., the probability that r specified 
units fail in the time intervals {dt1 ••• dt,} respectively, and the remaining 
(n-r) units do not fail in time t, is 

(8) P(dtl ... dt, I n, A., t) = [X e- Arf dt 1 ••• dt,] [e-<,,-r).t'] 

where 1== r -1 L t I is the mean life of the units which failed. There is no 
single 'statistic' which conveys all the relevant information; but rand i 
are jointly sufficient, and so an optimal orthodox test must somehow 
make use of both. When we seek their joint sampling distribution 
per, dll n, A., t) we find, to our dismay, that for given r the interval 
0< 1< t is broken up into r equal intervals, with a different analytical 
expression for each. Evidently a decrease in r, or an increase in I, should 
incline us in the direction of acceptance; but at what rate should we trade 
off one against the other? To specify a definite critical region in both 
variables would seem to imply some postulate as to their relative im­
portance. The problem does not appear simple, either mathematically or 
conceptually; and I would not presume to guess how an orthodox 
statistician would solve it. 

The relative simplicity of the Bayesian analysis is particularly striking 
in this problem; for all four of the above shortcomings are corrected 
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effortlessly. For the time being, we again assign the pessimistic uniform 
prior to A; from (8), the posterior distribution of A is then 

(9) I (ATY -AT 
p(d)' n, I, 11 ... I.) = -- e d()'T) 

r! 
where 

(10) T == ri + (n - r) t 

is the total unit-hours of failure-free operation observed. The posterior 
probability that A~9o is now 

00 • 

(11) B(n, r) = ~ f x' e- x dx = e- AoT \' (AoTt 
r! ~ k! 
~T k=O 

and so, B(n, r) ~ 1-P is the new Bayesian acceptance criterion at the 
100 P percent level; the test can terminate with acceptance as soon as 
this inequality is satisfied. 

Numerical analysis shows little difference between this test and the ST 
test in the usual range of practical interest where we test for a time short 
compared to 90 and observe only a very few failures. For, if ).ot~ 1, and 
r ~n, then the Poisson approximation to (4) will be valid; but thisisjustthe 
expression (11) except for the replacement of Tby nt, which is itself a good 
approximation. In this region the Bayesian test (11) with maximum pos­
sible duration t generally calls for a test sample one or two units smaller 
than the ST test. Our common sense readily assents to this; for if we see 
only a few failures, then information about the actual failure time adds 
little to our state of knowledge. 

Now let us magnify. The big differences between (4) and (11) will occur 
when we find many failures; if all n units fail, the ST test tells us to 
reject at all confidence levels, even though the observed mean life may 
have been thousands of times our preassigned 60 , The Bayesian test (11) 
does not break down in this way; thus if we test 9 units and all fail, it tells 
us to accept at the 90 percent level if the observed mean life i~ 1.58 90 , 

Ifwe test 10 units and 9 fail, the ST test says we can assert with 90 percent 
confidence that 6~0.22 t; the Bayesian test (11) says there is 90 percent 
probability that 6~0.63 i+0.07 t. Our common sense has no difficulty in 
deciding which result we should prefer; thus taking the actual failure 
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times into account leads to a clear, although usually not spectacular, 
improvement in the test. The person who rejects the use of Bayes' theorem 
in the manner of Equation (9) will be able to obtain a comparable improve­
ment only with far greater difficulty. 

But the Bayesian test (II) can be further improved in two respects. 
To correct shortcoming (4), and give a test which refers to the reliability 
of the individual unit instead of the mean life of an imaginary ·population· 
of them, we note that if A were known, then by our original hypothesis 
the probability that the lifetime 0 of a given unit is at least 00 , is 

(12) p(O ~ 00 I A) = e-)./Jo. 

The-probability that 8~8o, conditional on the evidence of the test, is 
therefore 

(13) p(O ~ ()o I n, t 1 ••• tr ) = 
00 

f ( T )r+l 
= e-)'9° p (d).ln,t1 .•. l r )= T+9o 

o 

Thus, the Bayesian test which ensures, with 100 P percent probability, 
that the life of an individual unil is at least (Jo, has an acceptance criterion 
that the expression (13) is ~ P; a result which is simple, sensible, and as 
far as I can see, utterly beyond the reach of orthodox statistics. 

The Bayesian tests (11) and (13) are, however, still based on a ridiculous 
prior for ).; another improvement, even further beyond the reach of 
orthodox statistics, is found as a result of using a reasonable prior. In 
·reallife' we usually have excellent grounds based on previous experience 
and theoretical analyses, for predicting the general order of magnitude 
of the lifetime in advance of the test. It would be inconsistent from the 
standpoint of inductive logic, and wasteful economically, for us to fail 
to take this prior knowledge into account. 

Suppose that initially, we have grounds for expecting a mean life of 
the order of I,; or a failure rate of about ).,~I,-l. However, the prior 
information does not justify our being too dogmatic about it; to assign 
a prior centered sharply about .A, would be to assert so much prior 
knowledge that we scarcely need any test. Thus, we should assign a 
prior that, while incorporating the number I" is still as ·spread out' as 
possible, in some sense. 
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Using the criterion of maximum entropy, we choose that prior density 
p,(A) which, while yielding an expectation equal to A" maximizes the 
'measure of ignorance' H = - J p,(A.) log p,(A.) dA.. The solution is: 
p,(A)=t, exp( -At,). Repeating the above derivation with this prior, we 
find that the posterior distribution (9) and its consequences (11}-{13) 
still hold, but that Equation (11) is now to be replaced by 

(14) T=rf+(n-r)t+t,. 

Subjecting the resulting solution to various extreme conditions now shows 
an excellent correspondence with the indications of common sense. For 
example, if the total unit -hours of the test is small compared to t I, then our 
state of knowledge about A can hardly be changed by the test, unless an 
unexpectedly large number of failures occurs. But if the total unit-hours 
of the test is large compared to t" then for all practical purposes our 
final conclusions depend only on what we observed in the test, and are 
almost independent of what we thought previously. In intermediate 
cases, our prior knowledge has a weight comparable to that of the test; 
and if t,~ (Jo, the amount of testing required is appreciably reduced. For, 
if we were already quite sure the units are satisfactory, then we require 
less additional evidence before accepting them. On the other hand, if 
t,4.(Jo, the test approaches the one based on a uniform prior; if we are 
initially very doubtful about the units, then we demand that the test 
itself provide compelling evidence in favor of them. 

These common-sense conclusions have, of course, been recognized 
qualitatively by orthodox statisticians; but only the Bayesian approach 
leads automatically to a means of expressing all of them explicitly and 
quantitatively in our equations. As noted by Lehmann (1959), the 
orthodox statistician can and does take his prior information into ac­
count, in some degree, by moving his significance level up and down in 
a way suggested by the prior information. But, having no formal principle 
like maximum entropy that tells him how much to move it, the resulting 
procedure is far more 'subjective' (in the sense of varying with the taste 
of the individual) than anything in the Bayesian approach which recognizes 
the role of maximum entropy and transformation groups in determining 
priors. 

No doubt, the completely indoctrinated orthodoxian will continue to 
reject priors based even on the completely impersonal (and parameter-
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independent) principles of maximum entropy and transformation groups, 
on the grounds that they are still 'subjective' because they are not fre­
quencies [although I believe I have shown (Jaynes, 1968, 1971) that if a 
random experiment is involved, the probabilities calculated from maximum 
entropy and transformation groups have just as definite a connection 
with frequencies as probabilities calculated from any other principle of 
probability theory]. In particular, he would claim that the prior just in­
troduced into the ST test represents a dangerous loss of 'objectivity' of 
that test. 

To this I would reply that the judgment of a competent engineer, 
based on data of past experience in the field, represents information fully 
as 'objective' and reliable as anything we can possibly learn from a 
random experiment. Indeed, most engineers would make a stronger 
statement; since a random experiment is, by definition, one in which 
the outcome - and therefore the conclusion we draw from it - is subject 
to uncontrollable variations, it follows that the only fully 'objective' 
means of judging the reliability of a system is through analysis of stresses, 
rate of wear, etc., which avoids random experiments altogether. 

In practice, the real function of a reliability test is to check against the 
possibility of completely unexpected modes of failure; once a given 
failure mode is recognized and its mechanism understood, no sane 
engineer would dream of judging its chances of occurring merely from a 
random experiment. 

(d) SUMMARY 

In the article of Bross (1963) - and in other places throughout the orthodox 
literature - one finds the claim that orthodox significance tests are 'objec­
tive' and 'scientific', while the Bayesian approach to these problems is 
erroneous and/or incapable of being applied in practice. The above 
comparisons have covered some important types of tests arising in every­
day practice, and in no case have we found any evidence for the alleged 
superiority, or greater applicability, of orthodox tests. In every case, we 
have found clear evidence of the opposite. 

The mathematical situation, as found in these comparisons and in 
many others, is just this: some orthodox tests are equivalent to the Baye­
sian ones based on non-informative priors, and some others, when 
sufficiently improved both in procedure and in manner of reporting the 
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results, can be made Bayes-equivalent. We have found this situation when 
the orthodox test was (A) based on a sufficient statistic, and (B) free of 
nuisance parameters. In this case, we always have asymptotic equivalence 
for tests of a simple hypothesis against a one-sided alternative. But we 
often find exact equivalence for all sample sizes, for simple mathematical 
reasons; and this is true of almost all tests which the orthodox statistician 
himself considers fully satisfactory. 

The orthodox t-test of the hypothesis Jl=Jlo against the alternative 
Jl> Jlo is exactly equivalent to the Bayesian test for reasons of symmetry; 
and there are several cases of exact equivalence even when the distribu­
tion is not symmetrical in parameter and estimator. Thus, for the Poisson 
distribution the orthodox test for l = Ao against A> AO is exactly equivalent 
to the Bayesian test because of the identity 

00 11 

1 f I e-J.A," - x"e-"'dx= --
n! k! 

J. 1=0 

and the orthodox F-test for q 1 = q 2 against q 1> q 2 is exactly Bayes­
equivalent because of the identity 

P nt 

(n+m+l)!fXII(l_X)"'dX= \ (n+k)!p"+l(l_P)". 
n! m! ~ n!k! 

o 1=0 

In these cases, two opposed ideologies lead to just the same final working 
equations. 

If there is no single sufficient statistic (as in the ST test) the orthodox 
approach can become extremely complicated. If there are nuisance 
parameters (as in the problem of two means), the orthodox approach is 
faced with serious difficulties of principle; it has not yet produced any 
unambiguous and fully satisfactory way of dealing with such problems. 

In the Bayesian approach, neither of these circumstances caused any 
difficulty; we proceeded in a few lines to a definite and useful solution. 
Furthermore, Bayesian significance tests are readily extended to permit 
us to draw inferences about the specific case at hand, rather than about 
some purely imaginary 'population' of cases. In most real applications, 
it is just the specific case at hand that is of concern to us; and it is hard 
to see how frequency statements about a mythical population or an 
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imaginary experiment can be considered any more 'objective' than the 
Bayesian statements. Finally, no statistical method which fails to provide 
any way of taking prior information into account can be considered a 
full treatment of the problem; it will be evident from our previous work 
(Jaynes, 1968) and the above example, that Bayesian significance tests are 
extended just as readily to incorporate any testable prior information. 

III. TWO-SIDED CONFIDENCE INTERVALS 

The merit of the estimator is judged by the 
distribution of estimates to which it gives 
rise, i.e., by the properties of its sampling 
distribution. 

We must content ourselves with formulating 
a rule which will give good results 'in the 
long run' or 'on the average' .... 

Kendall and Stuart (1961) 

The above examples involved some one-sided confidence intervals, and 
they revealed some cogent evidence concerning the role of sufficiency and 
nuisance parameters; but they were not well adapted to studying the 
principle of reasoning behind them. When we turn to the general principle 
of two-sided confidence intervals some interesting new features appear. 

(a) EXAMPLE 4. BINOMIAL DISTRIBUTION 

Consider Bernoulli trials B2 (i.e., two possible outcomes at each trial, 
independence of different trials). We observe r successes in n trials, and 
asked to estimate the limiting frequency of success/, and give a statement 
about the accuracy of the estimate. In the Bayesian approach, this is a 
very elementary problem; in the case of a uniform prior density for f 
[the basis of which we have indicated elsewhere (Jaynes, 1968) in terms of 
transformation groups; it corresponds to prior knowledge that it is 
possible for the experiment to yield either success or failure], the posterior 
distribution is proportional to /,{l-f)"-' as found in Bayes' original 
memoir, with mean value /= (r+ 1)/(n+2) as given by Laplace (1774), 
and variance (12 = /(1-/)/(N + 3). 

The (/±(1) thus found provide a good statement of the 'best' estimate 
of /, and if/is not too close to 0 or I, an interval within which the true 
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value is reasonably likely to be. The full posterior distribution of/yields 
more detailed statements; if r~1 and (n-r)~I, it goes into a normal 
distribution (j, 0). The 100 P percent interval (i.e., the interval which 
contains 100 P percent of the posterior probability) is then simply 
(/±qu), where q is the (I +P)/2 percentile of the normal distribution; 
for the 90,95, and 99% levels, q= 1.645, 1.960,2.576 respectively. 

When we treat this same problem by confidence intervals, we find 
that it is no longer an undergraduate-level homework problem, but a 
research project. The final results are so complicated that they can hardly 
be expressed analytically at all, and we require a new series of tables and 
charts. 

In all of probability theory there is no calculation which has been sub­
jected to more sneering abuse from orthodox writers than the Bayesian 
one just described, which contains Laplace's rule of succession. But 
suppose we take a glimpse at the final numerical results, comparing, say, 
the 90% confidence belts with the Bayesian 90% posterior probability 
belts. 

This must be done with caution, because published confidence intervals 
all appear to have been calculated from approximate formulas which 
yield wider intervals than is needed for the stated confidence level. We 
use a recently published (Crow et a1., 1960) recalculated table which, for 
the case n = 10, gives intervals about 0.06 units smaller than the older 
Pearson-Clopper values. 

If we have observed 10 successes in 20 trials, the upper 90% confidence 
limit is given as 0.675; the above Bayesian formula gives 0.671. For 13 
successes in 26 trials, the tabulated upper confidence limit is 0.658; the 
Bayesian result is 0.652. 

Continued spot-checking of this kind leads one to conclude that, quite 
generally, the Bayesian belts lie just inside the confidence belts; the dif­
ference is visible graphically only for wide belts for which, in any event, 
no accurate statement about / was possible. The inaccuracy of published 
tables and charts is often greater than the difference between the Bayesian 
interval and the correct confidence interval. Evidently, then, claims for 
the superiority of the confidence interval must be based on something 
other than actual performance. The differences are so small that I could 
not magnify them into the region where common sense is able to judge 
the issue. 
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Once aware of these things the orthodox statistician might well decide 
to throwaway his tables and charts, and obtain his confidence intervals 
from the Bayesian solution. Of course, if one demands very accurate 
intervals for very small samples, it would be necessary to go to the in­
complete Beta-function tables; but it is hard to imagine any real problem 
where one would care about the exact width of a very wide belt. When 
r~ 1 and (n-r)~ 1, then to all the accuracy one can ordinarily use, the 
required interval is simply the above (/±q(J). Since, as noted, published 
confidence intervals are 'conservative' - a common euphemism - he can 
even improve his results by this procedure. 

Let us now seek another problem, where differences can be magnified 
to the point Where the equations speak very clearly to our common sense. 

(b) EXAMPLE S. TRUNCATED EXPONENTIAL DISTRIBUTION 

The following problem has occurred in several industrial quality control 
situations. A device will operate without failure for a time 0 because of a 
protective chemical inhibitor injected into it; but at time 0 the supply of 
this chemical is exhausted, and failures then commence, following the 
exponential failure law. It is not feasible to observe the depletion of this 
inhibitor directly; one can observe only the resulting failures. From data 
on actual failure times, estimate the time (J of guaranteed safe operation 
by a confidence interval. Here we have a continuous sample space, and we 
are to estimate a location parameter (J, from the sample values {Xl'" XN}, 

distributed according to the law 

Let us compare the confidence intervals obtained from two different 
estimators with the Bayesian intervals. The population mean is E (X) = 
=0+1, and so 

N 

(16) (J* (Xl'" XN) == ~ I (Xi - 1) 
i=l 

is an unbiased estimator of O. By a well-known theorem, it has variance 
(J"=N-t, as we are accustomed to find. We must first find the sampling 
distribution of (J*; by the method of characteristic functions we find that 
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it is proportional to yv-l exp( -Ny) for y>O, where Y= (0*-0+ I). 
Evidently, it will not be feasible to find the shortest confidence interval 
in closed analytical form, so in order to prevent this example from 
growing into another research project, we specialize to the case N = 3, 
suppose that the observed sample values were {Xl> Xz, X 3}= {12, 14, 16}; 
and ask only for the shortest 90% confidence interval. 

A further integration then yields the cumulative distribution function 
F(y)= [1-(1+3y+9yz/2)exp(-3y)],y>0. Any numbersYI'Yz satis­
fying F(Yz)-F(Yl)=0.9 determine a 90% confidence interval. To find 
the shortest one, we impose in addition the constraint F'(Yl)=F'(yz). 
By computer, this yields the interval 

(17) 0* - 0.8529 < 0 < 0* + 0.8264 

or, with the above sample values, the shortest 90% confidence interval is 

(18) 12.1471 < 0 < 13.8264. 

The Bayesian solution is obtained from inspection of (IS); with a con­
stant prior density [which, as we have argued elsewhere (Jaynes, 1968) is 
the proper way to express complete ignorance of location parameter], the 
posterior density of fJ will be 

(19) (fJl ) _{NeXPN(fJ-XI)' O<Xl} 
p Xl'" X N - 0 0 , > Xl 

where we have ordered the sample values so that XI denotes the least one 
observed. The shortest posterior probability belt that contains 100 P 
percent of the posterior probability is thus (xl-q)<O<xt> where 
q= -N-llog(I-P). For the above sample values we conclude (by 
slide-rule) that, with 90% probability, the true value of fJ is contained in 
the interval 

(20) 11.23 < fJ < 12.0. 

Now what is the verdict of our common sense? The Bayesian interval 
corresponds quite nicely to our common sense; the confidence interval 
(18) is over twice as wide, and it lies entirely in the region O>x I where it is 
obViously impossible for 0 to be!. 

I first presented this result to a recent convention of reliability and 
quality control statisticians working in the computer and aerospace 
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industries; and at this point the meeting was thrown into an uproar, about 
a dozen people trying to shout me down at once. They told me, "This is 
complete nonsense. A method as firmly established and thoroughly 
worked over as confidence intervals couldn't possibly do such a thing. 
You are maligning a very great man; Neyman would never have advocated 
a method that breaks down on such a simple problem. If you can't do 
your arithmetic right, you have no business running around giving talks 
like this". 

After partial calm was restored, I went a second time, very slowly and 
carefully, through the numerical work leading to (I8), with all of them 
leering at me, eager to see who would be the first to catch my mistake [it 
is easy to show the correctness of (18), at least to two figures, merely by 
applying parallel rulers to a graph of F(y)]. In the end they had to con­
cede that my result was correct after all. 

To make a long story short, my talk was extended to four hours (all 
afternoon), and their reaction finally changed to: "My God - why didn't 
somebody tell me about these things before? My professors and textbooks 
never said anything about this. Now I have to go back home and recheck 
everything I'v.: done for years". 

This incident makes an interesting commentary on the kind of in­
doctrination that teachers of orthodox statistics have been giving their 
students for two generations now. 

(c) WHAT WENT WRONG? 

Let us try to understand what is happening here. It is perfectly true that, 
if the distribution (15) is indeed identical with the limiting frequencies of 
various sample values, and ifwe could repeat all this an indefinitely large 
number of times, then use of the confidence interval (17) would lead us, 
in the long run, to a correct statement 90% of the time. But it would lead 
us to a wrong answer 100% of the time in the subclass of cases where 
0* > Xl +0.85; and we know from the sample whether we are in that subclass. 

That there must be a very basic fallacy in the reasoning underlying 
the principle of confidence intervals, is obvious from this example. The 
difficulty just exhibited is generally present in a weaker form, where it 
escapes detection. The trouble can be traced to two different causes. 

Firstly, it has never been a part of 'official' doctrine that confidence 
intervals must be based on sufficient statistics; indeed, it is usually held 
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to be a particular advantage of the confidence interval method that it leads 
to exact frequency-interpretable intervals without the need for this. 
Kendall and Stuart (1961), however, noting some of the difficulties that 
may arise, adopt a more cautious attitude and conclude (loc. cit .• p. 153): 
" ... confidence interval theory is possibly not so free from the need for 
sufficiency as might appear". 

We suggest that the general situation, illustrated by the above example, 
is the following: whenever the confidence interval is not based on a 
sufficient statistic, it is possible to find a 'bad' subclass of samples, re­
cognizable from the sample, in which use of the confidence interval would 
lead us to an incorrect statement more frequently than is indicated by 
the confidence level; and also a recognizable 'good' subclass in which the 
confidence interval is wider than it needs to be for the stated confidence 
level. The point is not that confidence intervals fail to do what is claimed 
for them; the point is that, if the confidence interval is not based on a 
sufficient statistic, it is possible to do better in the individual case by 
taking into account evidence from the sample that the confidence interval 
method throws away. 

The Bayesian literature contains a multitude of arguments showing that 
it is precisely the original method of Bayes and Laplace which does take 
into account all the relevant information in the sample; and which will 
therefore always yield a superior result to any orthodox method not 
based on sufficient statistics. That the Bayesian method does have this 
property (i.e., the 'likelihood principle') is, in my opinion, now as firmly 
established as any proposition in statistics. Unfortunately, many orthodox 
textbook writers and teachers continue to ignore these arguments; for 
over a decade hardly a month has gone by without the appearance of 
some new textbook which carries on the indoctrination by failing to 
present both sides of the story. 

If the confidence interval is based on a sufficient statistic, then as we 
saw in Example 4, it turns out to be so nearly equal to the Bayesian 
interval that it is difficult to produce any appreciable difference in the 
numerical results; in an astonishing number of cases, they are identical. 
That is the case in the example just given, where Xl is a sufficient statistic, 
and it yields a confidence interval identical with the Bayesian one (20). 

Similarly, the shortest confidence interval for the mean of a normal 
distribution, whether the variance is known or unknown; and for the 
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variance of a normal distribution, whether the mean is known or un­
known; and for the width of a rectangular distribution, all turn out to be 
identical with the shortest Bayesian intervals at the same level (based on a 
uniform prior density for location parameters and the Jeffreys prior 
dufu for scale parameters). Curiously, these are just the cases cited most 
often by textbook writers, after warning us not to use those erroneous 
Bayesian methods, as an illustration of their more 'objective' orthodox 
methods. 

The second difficulty in the reasoning underlying confidence intervals 
concerns their criteria of performance. In both point and interval estima­
tion, orthodox teaching holds that the reliability of an estimator is mea­
sured by its performance 'in the long run', i.e., by its sampling distribu­
tion. Now there are some cases (e.g., fixing insurance rates) in which long­
run performance is the sole, all-important consideration; and in such 
cases one can have no real quarrel with the orthodox reasoning (although 
the same conclusions are found just as readily by Bayesian methods). 
However, in the great majority of real applications, long-run performance 
is of no concern to us, because it will never be realized. 

Our job is not to follow blindly a rule which would prove correct 90% 
of the time in the long run; there are an infinite number of radically 
different rules, all with this property. Our job is to draw the conclusions 
that are most likely to be right in the specific case at hand; indeed, the 
problems in which it is most important that we get this theory right are 
just the ones (such as arise in geophysics, econometrics, or antimissile 
defense) where we know from the start that the experiment can never be 
repeated. 

To put it differently, the sampling distribution of an estimator is not a 
measure of its reliability in the individual case, because considerations 
about samples that have not been observed, are simply not relevant to the 
problem of how we should reason from the one that has been observed. 
A doctor trying to diagnose the cause of Mr. Smith's stomachache would 
not be helped by statistics about the number of patients who complain 
instead of a sore arm or stiff neck. 

This does not mean that there are no connections at all between indi­
vidual case and long-run performance; for if we have found the procedure 
which is 'best' in each individual case, it is hard to see how it could fail 
to be 'best' also in the long run. 
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The point is that the converse does not hold; having found a rule whose 
long-run performance is proved to be as good as can be obtained, it does 
not follow that this rule is necessarily the best in any particular individual 
case. One can trade off increased reliability for one class of samples 
against decreased reliability for another, in a way that has no effect on 
long-run performance; but has a very large effect on performance in the 
individual case. 

Now, if I closed the discussion of confidence intervals at this point, I 
know what would happen; because I have seen it happen several times. 
Many persons, victims of the aforementioned indoctrination, would deny 
and ridicule what was stated in the last five paragraphs, claim that I am 
making wild, irresponsible statements; and make some reference like 
that of Bross (1963) to the 'first-rate mathematicians' who have already 
looked into these matters. 

So, let us tum to another example, in which the above assertions are 
demonstrated explicitly, and so simple that all calculations can be carried 
through analytically. 

(d) EXAMPLE 6. THE CAUCHY DISTRIBUTION 

We sample two members {Xl> Xl} from the Cauchy population 

(21) 
1 dx 

p (dx /0) = ;; 1 + (x _ 0)2 

and from them we are to estimate the location parameter O. The transla­
tional and permutation symmetry of this problem suggests that we use the 
estimator 

which has a sampling distribution p(dO* 10) identical with the original 
distribution (21); an interesting feature of the Cauchy law. 

It is just this feature which betrays a slight difficulty with orthodox 
criteria of performance. For Xl' X2' and 0* have identical sampling 
distributions; and so according to orthodox teaching it cannot make any 
difference which we choose as our estimator, for either point or interval 
estimation. They will all give confidence intervals of the same length, and 
in the long run they will all yield correct statements equally often. 
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But now, suppose you are confronted with a specific problem; the 
first measurement gave Xl = 3, the second X2 = 5. You are not concerned 
in the slightest with the 'long run', because you know that, if your esti­
mate of 0 in this specific case is in error by more than one unit, the missile 
will be upon you, and you will not live to repeat the measurement. Are 
you now going to choose Xl = 3 as your estimate when the evidence of 
that X2 = 5 stares you in the face? I hardly think so! Our common sense 
thus forces us to recognize that, contrary to orthodox teaching, the 
reliability of an estimator is not determined merely by its sampling 
distribution. 

The Bayesian analysis tells, us, in agreement with common sense, that 
for this sample, by the criterion of any loss function which is a mono­
tonic increasing function of 10*-91 (and, of course, for which the 
expected loss converges), the estimator (22) is uniquely determined as the 
optimal one. By the quadratic loss criterion, L(O*, 0)= (0*-0)2, it is the 
unique optimal estimator whatever the sample values. 

The confidence interval for this problem is easily found. The cumulative 
distribution of the estimator (22) is 

1 
p(O* < 0' 10) = t + - tan- 1 (0' - 0) 

7t 
(23) 

and so the shortest 100 P percent confidence interval is 

(24) (0* - q) < 0 < (0* + q) 

where 

(25) q = tan (ltP/2) . 

At the 90% level, P=O.9, we find q=tan(810)=6.31. Let us call this the 
90% CI. 

Now, does the CI make use of all the information in the sample that is 
relevant to the question being asked? Well, we have made use of (Xl +X2); 

but we also know (XI-X2)' Let us see whether this extra information from 
the individual sample can help us. Denote the sample half-range by 

(26) y = teXI - Xl)' 

The sampling distribution p(dy I 9) is again a Cauchy distribution with 
the same width as (21) but with zero median. 
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Next, we transform the distribution of samples, p(dxt , dx2 1 0)= 
=p(dxt 10) p(dx2 10) to the new variables (0*, y). The jacobian of the 
transformation is just 2, and so the joint distribution is 

(27) * 2 d~~ 
p(d6 ,dy 16) = x2 [1 + (6* _ 6 + y)2] [1 + (6* _ 6 _ y)21 

While (Xl' X2) are independent, (6*, y) are not. The conditional cumulative 
distribution of 8*, when y is known, is therefore not (23), but 

(28) 
1 

p(6* < 0' 16, y) = t + - [tan-l (0' - 0 + y) + tan- t x 
2x 1 [1 + (0' - 0 + )2] 

x (0' - 0 - y)] + 4xy log 1 + (8' _ 6 _ ~)2 
and so, in the subclass of samples with given (xt - x2), the probability 
that the confidence interval (24) will yield a correct statement is not 
P=(2/x)tan- I q, but 

1 
w(y, q) = - [tan- l (q + y) + tan-~ (q - y)] + 

x 1 [1 + (q + y)2J 
+-log . 

2xy 1 + (q _ y)2 

(29) 

Numerical values computed from this equation are given in Table I, 

TABLE I 

Performance of the 90 % confidence 
interval for various sample 

half-ranges y 

y 

o 
2 
4 
6 
8 

10 
12 
14 

>14 

w(y, 6.31) 

0.998 
0.991 
0.952 
0.702 
0.227 
0.111 
0.069 
0.047 

4q 

n(1 + y2) 

F(v) 

1.000 
0.296 
0.156 
0.105 
0.079 
0.064 
0.053 
0.046 

2 
ny 
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in which we give the actual frequency w(y, 6.31) of correct statements 
obtained by use of the 90% confidence interval, for various half-ranges y. 
In the third column we give the fraction of all samples, F(y)= (21n) 
tan -1 (IIY) which have half-range greater than y. 

It appears that information about (XI-X2) was indeed relevant to the 
question being asked. In the long run, the 90% CI will deliver a right 
answer 90% of the time; however, its merits appear very different in the 
individual case. In the subclass of samples with reasonably small range, 
the 90% CI is too conservative; we can choose a considerably smaller 
interval and still make a correct statement 90% of the time. If we are so 
unfortunate as to get a sample with very wide range, then it is just too 
bad; but the above confidence interval would have given us a totally 
false idea of the reliability of our result. In the 6% of samples of widest 
range, the supposedly '90%' confidence interval actually yields a correct 
statement less than 10% of the time - a situation that ought to alarm us if 
confidence intervals are being used to help make important decisions. 

The orthodox statistician can avoid this dangerous shortcoming of the 
confidence interval (24), without departing from his principles, by using 
instead a confidence interval based on the conditional distribution (28). 
For every sample he would choose a different. interval located from (29) 
so as to be the shortest one which in that subclass will yield a correct 
statement 90"/0 of the time. For small-range samples this will give a 
narrower interval, and for wide-range samples a correct statement more 
often, than will the confidence interval (24). Let us call this the 90% 'uni­
formly reliable' (UR) estimation rule. 

Now let us see some numerical analysis of (29), showing how much 
improvement has been found. The 90% UR rule will also yield a cor­
rect statement 90% of the time; but for 87% of all samples (those with 
range less than 9.7) the UR interval is shorter than the confidence interval 
(24). For samples of very small range, it is 4.5 times shorter, and for half 
of all samples, the UR interval is less than a third of the confidence inter­
val (24). In the 13% of samples of widest range, the confidence interval 
(24) yields correct statements less than 90% of the time, and so in order 
actually to achieve the claimed reliability, the UR interval must be wider, 
if we demand that it be simply connected. But we can find a UR region 
of two disconnected parts, whose total length remains less than a third 
of the CI (24) as y -+ 00. 
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The situation, therefore, is the following. For the few 'bad' samples of 
very wide range, no accurate estimate of () is possible, and the confidence 
interval (24), being of fixed width, cannot deliver the presumed 90% re­
liability. In order to make up for this and hold the average success for all 
samples at 90%, it is then forced to cheat us for the great majority of 
'good' samples by giving us an interval far wider than is needed. The 
UR rule never misleads us as to its reliability, neither underestimating 
it nor overestimating it for any sample; and for most samples it gives us a 
much shorter interval. 

Finally, we note the Bayesian solution to this problem. The posterior 
distribution of () is, from (21) in the case of a uniform prior density, 

(30) 
2 (1 + y2) d() 

p(dO I Xl' X2) =; [1 + «() _ Xli] [1 + (8 _ X2)2] 

and, to find the shortest 90% posterior probability interval, we compute 
the cumulative distribution: 

1 
(31) p«() < 8' I Xl' X2) = t + - [tan- l (0' - Xl) + tan- l x 

21t 1 [1 + (0' - X2)2] 
x (8' - x 2 )] + 41ty log 1 + (8' _ XI)2 

and so, - but there is no need to go further. At this point, simply by 
comparing (31) with (28), the horrible truth appears: the uniformly 
reliable rule is precisely the Bayesian one! And yet, if I had simply in­
troduced the Bayesian solution ab initio, the orthodox statistician would 
have rejected it instantly on grounds that have nothing to do with its per­
formance. 

(e) GENERAL PROOF 

The phenomenon just illustrated is not peculiar to the Cauchy distribu­
tion or to small samples; it holds for any distribution with a location 
parameter. For, let the sampling distribution be 

(32) P(dXI ... dx" I 8) = [(XI ... x,,; 0) dX I ••. dxn • 

The statement that 8 is a location parameter means that 

(33) f(xI + a, X2 + a, ... x" +a; () + a) = [(XI ... x,,; 8), 
-oo<a<oo. 
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Now transform the sample variables {XI"'X,,} to a new set {YI ... y,,}: 

(34) YI =x=n- l LX; 
(35) y, = X, - Xl' i = 2, 3, ... n. 

From (33), (34), (35), the sampling distribution of the {YI'" y,,} has the 
form 

(36) p(dYl'" dy" I 0) = g (Yl - 0; Yz ... y,,) dYl'" dy". 

If Yl is not a sufficient statistic, a confidence interval based on the sam­
pling distribution p(dYI 10) will be subject to the same objection as was 
(24); i.e., knowledge of {yz ... y,,} will enable us to define 'good' and 
'bad' subclasses of samples, in which the reliability of the confidence 
interval is better or worse than indicated by the stated confidence level. 
To obtain the Uniformly Reliable interval, we must use instead the 
distribution conditional on all the 'ancillary statistics' {yz ... y,,}. This is 

where K is a normalizing constant. But the Bayesian posterior distribu­
tion of 0 based on uniform prior is: 

p(dO I Xl'" X,,) = p(dO I Yl ... y,,) = 
(38) = Kg (YI - 0; Yz ... y,,) dO 

which has exactly the same density function as (37). Therefore, by a 
refined orthodox criterion of performance, the 'best', (i.e., Uniformly 
Reliable) confidence interval for any location parameter is identical with 
the Bayesian posterior probability interval (based on a uniform prior) 
at the same level. 

With a scale parameter u, data {ql'" q,,}, set 8=logu, x,=logq" and 
the above argument still holds; the UR confidence interval for any scale 
parameter is identical with the Bayesian interval based on the Jeffreys 
prior da!a. 

IV. POLEMICS 

Seeing the above comparisons, one naturally asks: on what grounds was 
it ever supposed that confidence intervals represent an advance over the 
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original treatment of Laplace? On this point the record is clear and 
abundant; orthodox arguments against Laplace's use of Bayes' theorem, 
and in favor of confidence intervals, have never considered such mundane 
things as demonstrable facts concerning performance. They consist of 
ideological slogans, such as "Probability statements can be made only 
about random variables. It is meaningless to speak of the probability 
that (J lies in a certain interval, because (J is not a random variable, but 
only an unknown constant". 

On such grounds we are to be denied the derivation via Equations (1), 
(6), (9), (19), (30), (38) which in each case leads us in a few lines to a 
result that is either the same as the best orthodox result or demonstrably 
superior to it. On such grounds it is held to be very important that we use 
the words, "the probability that the interval covers the true value of {}" 
and we must never. never say, "the probability that the true value of (J lies 
in the interval". Whenever I hear someone belabor this distinction, I feel 
like the little boy in the fable of the Emperor's New Clothes. 

Suppose someone proposes to you a new method for carrying out the 
operations of elementary arithmetic. He offers scathing denunciations 
of previous methods, in which he neve~ examInes the results they give, 
but attacks their underlying philosophy. But you discover that applica­
tion of the new method leads to the conclusion that 2 + 2 = 5. I think all 
protestations to the effect that, "Well, the case of 2 + 2 is a peculiar 
pathological one, and I didn't intend the method to be used there", 
will fall on deaf ears. A method of reasoning which leads to an absurd 
result in one problem is thereby proved to contain a fallacy. At least, that 
is a rule of evidence universally accepted by scientists and mathematicians. 

Orthodox statisticians appear to use different rules of evidence. It is 
clear from the foregoing that one can produce any number of examples, 
at first sight quite innocent-looking, in which use of confidence intervals 
or orthodox significance tests leads to absurd or dangerously misleading 
results. And, note that the above examples are not pathological freaks; 
everyone of them is an important case that arises repeatedly in current 
practice. To the best of my knowledge, nobody has ever produced an 
example where the Bayesian method fails to yield a reasonable result; 
indeed, in the above examples, and in those noted by Kendall and 
Stuart (1961), the only cases where confidence intervals appear satis­
factory at all are just the ones where they agree closely (or often exactly) 
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with the Bayesian intervals. From our general proof, we understand why. 
And, year after year, the printing presses continue to pour out textbooks 
whose authors extoll the virtues of confidence intervals and warn the 
student against the thoroughly discredited method of Bayes and Laplace. 

A physicist viewing this situation finds it quite beyond human under­
standing. I don't think the history of science can offer any other example 
in which a method which has always succeeded was rejected on doctrinaire 
grounds in favor of one which often fails. 

Proponents of the orthodox view often describe themselves, as did 
Bross (1963), as 'objective', and 'fact-oriented', thereby implying that 
Bayesians are not. But the foundation-stone of the orthodox school of 
thought is this dogmatic insistence that the word 'probability' must be 
interpreted as 'frequency in some random experiment'; and that any 
other meaning is metaphysical nonsense. Now, assertions about the 
'true meaning of probability', whether made by the orthodox or the 
Bayesian, are not statements of demonstrable fact. They are statements of 
ideological belief about a matter that cannot be settled by logical demon­
stration, or by taking votes. The only fully objective, fact-oriented 
criterion we have for deciding issues -of this type, is just the one scientists 
use to test any theory: sweeping aside all philosophical clutter, which 
approach leads us to the more reasonable and useful results? I propose 
that we make some use of this criterion in future discussions. 

Mathematically, or conceptually, there is absolutely nothing to prevent 
us from using probability theory in the broader Laplace interpretation, 
as the 'calculus of inductive reasoning'. Evidence of the type given above 
indicates that to do so greatly increases both the power and the simplicity 
of statistical methods; in almost every case, the Bayesian result required 
far less calculation. The main reason for this is that both the ad hoc step 
of 'choosing a statistic' and the ensuing mathematical problem of finding 
its sampling distribution, are eliminated. In particular, the F-test and 
the I-test, which require considerable mathematical demonstration in the 
orthodox theory, can each be derived from Bayesian principles in a few 
lines of the most elementary mathematics; the evidence of the sample is 
already fully displayed in the likelihood function, which can be written 
down immediately. 

Now, I understand that there are some who are not only frightened to 
death by a prior probability, they do not even believe this last statement, 
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the so-called 'likelihood principle', although a proof has been given 
(Birnbaum, 1962). However, I don't think we need a separate formal 
proof if we look at it this way. Nobody questions the validity of applying 
Bayes' theorem in the case where the parameter fJ is itself a 'random 
variable'. But in this case the entire evidence provided by the sample is 
contained in the likelihood function; independently of the prior distribu­
tion, different intervals dfJ are indicated by the sample to an extent 
precisely proportional to L(fJ) dO. It is already conceded by all that the 
likelihood function has this property when 0 is a random variable with 
an arbitrary frequency distribution; is it then going to lose this property 
in the special case where 0 is a constant? Indeed, isn't it a matter of the 
most elementary common sense to recognize that, in the specific problem 
at hand, (J is always just an unknown constant? Whether it would or 
would not be different in some other case that we are not reasoning 
about, is just not relevant to our problem; to adopt different methods on 
such grounds is to commit the most obvious inconsistency. 

I am unable to see why 'objectivity' requires us to interpret every 
probability as a frequency in some random experiment; particularly when 
we note that in virtually every problem of real life, the direct probabilities 
are not determined by any real random experiment; they are calculated 
from a theoretical model whose choice involves 'subjective' judgment. 
The most 'objective' probabilities appearing in most problems are, 
therefore, frequencies only in an ad hoc, imaginary universe invented just 
for the purpose of allowing a frequency interpretation. The Bayesian 
could also, with equal ease and equal justification, conjure up an imagi­
nary universe in which all his probabilities are frequencies; but it is idle 
to pretend that a mere act of the imagination can confer any greater 
objectivity on our methods. 

According to Bayes' theorem, the posterior probability is found by 
multiplying the prior probability by a numerical factor, which is deter­
mined by the data and the model. The posterior probabilities therefore 
partake of whatever 'qualities' the priors have: 

(A) If the prior probabilities are real frequencies, then the posterior 
probabilities are also real frequencies. 

(B) If the prior probabilities are frequencies in an imaginary universe, 
then the posterior probabilities are frequencies in that same universe. 

(C) If the prior probabilities represent what it is reasonable to believe 
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before the experiment, by any criterion of 'reasonable', then the posterior 
probabilities will represent what it is equally reasonable to believe after 
the experiment, by the same criterion. 

In no case are there any grounds for questioning the use of Bayes' 
theorem, which after all is just the condition for consistency of the product 
rule of probability theory; i.e., p (AB I C) is symmetric in the propositions 
A and B, and so it can be expanded two different ways: p(AB I C)= 
=p(A I BC)p(B I C)=p(B I AC)p(A I C). If p(B I C)~O, the last 
equality is just Bayes' theorem: 

P(BIAC) 
P (A I BC) = p (A I C) ( ) . 

P BIC 

To recognize these things in no way forces us to accept the 'personalis­
tic' view of probability (Savage, 1954, 1962). 'Objectivity' clearly does 
demand at least this much: the results of a statistical analysis ought to be 
independent of the personality of the user. In particular, our prior prob­
abilities should describe the prior information; and not anybody's vague 
personal feelings. 

At present, this is an ideal that is fully achieved only in particularly 
simple cases where all the prior information is testable in the sense 
defined previously (Jaynes, 1968). In the case of the aforementioned 
'competent engineer' the determination of the exact prior is, of course, 
not yet completely formalized. But, as stressed before, the measure of 
our success in achieving 'objectivity' is just the extent to which we are able to 
eliminate all personalistic elements, and approach a completely 'im­
personalistic' theory of inference or decision; on this point I must agree 
whole-heartedly with orthodox statisticians. 

The real issue facing us is not an absolute value judgment but a relative 
one; it is not whether Bayesian methods are 100% perfect, or whether 
their underlying philosophy is opprobrious; but simply whether, at the 
present time, they are better or worse than orthodox methods in the 
results they give in practice. Comparisons of the type given here and in 
the aforementioned Underground Literature - and the failure of orthodoxy 
to produce any counter-examples - show that the original statistical 
methods of Laplace stand today in a position of proven superiority, that 
places them beyond the reach of attacks on the philosophical level, and 
a fortiori beyond any need for defense on that level. 
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Presumably, the future wiII bring us still better statistical methods; I 
predict that these will be found through further refinement and generali­
zation of our present Bayesian principles. After all, the unsolved problems 
of Bayesian statistics are ones (such as treatment of nontestable prior 
information) that, for the most part, go so far beyond the domain of 
orthodox methods that they cannot even be formulated in orthodox 
terms. 

It would seem to me, therefore, that instead of attacking Bayesian 
methods because we still have unsolved problems, a rational person 
would want to be constructive and recognize the unsolved problems as 
the areas where it is important that further research be done. My work 
on maximum entropy and transformation groups is an attempt to contri­
bute to, and not to tear down, the beautiful and powerful intellectual 
achievement that the world owes to Bayes and Laplace. 

Dept. of Physics, Washington University, 
St. Louis, Missouri 63130 
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bowever, the numerical work was done directly from Equation (1) rather than relying 
OD tables which have been so little used and which would require a risky kind of 
interpolation. The first integration can be done analytically, and the second is easily 
done numerically to all the accuracy needed. Tail areas for a<O need not be truncated, 
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4 IBM 7092 calculation by Mr. Robert Schainker. Using the Jeffreys prior, du/u, the 
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2r=n-3, and S1 2=2,237, etc. The required probability is then an integral like (I), 
which can be expressed as a finite sum for numerical work. Alternatively, it can be 
expressed in terms of the incomplete Beta function, so that in principle the F-tables 
could be used; however, these tables use too widely separated values of the significance 
level for accurate interpolation. 
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JAYNES' REPLY TO KEMPTHORNE'S COMMENTS 

Such a magnificent confirmation of my main thesis could hardly have been 
hoped for; he has surely silenced those critics who thought that my account 
of the orthodox position was exaggerated. 

Before venturing into areas where we presently differ I want to say that, 
during our five days acquaintance at this Conference, I have developed a 
warm personal affection for Oscar Kempthorne, and came to seek him out 
for many between-sessions and after-dinner discussions, all pleasant and 
valuable to me for reasons ranging from his interesting comments to the 
aroma of his cigars. Although it may not be apparent to the casual reader, 
there is a very wide area of agreement between us; on most of the issues 
discussed at this Conference, we would stand together. 

For example, we both see at a glance the sterility of efforts to refine 
the mathematics ",ithout refining the concepts; or to axiomatize old ideas 
without any creative development of new ones. We are, I think, equally 
appalled at the prospect of changing the principles of logic to accom­
modate an illogical theory of physics. 

We both tend to place more emphasis on the practical working rules 
and less on highflown mathematical and philosophical aspects of statistics 
than some of our younger colleagues, because we have seen enough 
ambitious but short-lived efforts with the generic title: 'A New Foundation 
for Statistics' to become a bit weary of them. And we have seen enough 
putative 'foundations' develop a fluid character unlike real foundations 
and adapt themselves to the unyielding practical realities, to become a bit 
wary of them. 

It is clear to me that, on a much deeper level than the superficial dif­
ferences being aired here, Oscar Kempthorne and I are kindred souls, 
with the same basic outlook and value judgments. On studying his com­
ments, I am convinced that our differences arise almost entirely from 
misapprehensions concerning the nature of Bayesian methods as they 
exist today, which could have been cleared up if only we had more time 
to thresh matters out. Surely, there is no difference in our real aims to 
improve the power and scope of statistical methods at the practical, 
working level. 

But granting all this, the differences between us do involve issues of 
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crucial importance to statistics, and it would be a disservice to minimize 
them. This 120-year-old hangup over prior probabilities, started by 
Boole, must come to an end, because it is the direct cause of the troubles 
that today prevent orthodox statistics from giving any useful solutions to 
many important, real statistical problems. 

Thus, linear regression with both variables subject to error is one of 
the most common statistical problems faced by experimenters; yet 
orthodox theory is helpless to deal with it because with n data points we 
have (n+2) nuisance parameters. In irreversible statistical mechanics, 
and in some mathematically similar problems of communication theory 
and business decisions, the only probabilities involved are prior probabil­
ities. The possibility of any useful solutions at aU depends on principles 
such as maximum entropy, for translating prior information into prior 
distributions. 

This debate has gone on for over 100 years, with the same old argu­
ments and counter-arguments repeated back and forth for generations, 
without ever getting anywhere. Philosophical disputation may be great 
fun; but through recorded history its score for actually solving problems 
is, I believe, precisely zero. Anybody who genuinely wants to see these 
issues resolved must recognize the need for a better method. 

Now the present condition of statistics is just the condition physics 
was in until the late 16th century, when Galileo showed us a better method 
- the direct cause of the advances that physics has made since. Instead of 
arguing about how objects 'ought' to move according to some philosoph­
ical or theological preconceptions, or by quoting ancient authorities 
such as Aristotle, why don't we just use the evidence of our own eyes? 
We are surrounded daily by moving objects; so any proposed theory 
about how they move can be tested by direct observation of the facts. 

But, as this Conference showed very dramatically, 400 years of 'enlight­
enment' have not changed basic human nature. Today, statisticians 
regard themselves as the guardians of 'scientific objectivity' in drawing 
conclusions from data. Yet when I suggested that their own methods be 
judged, not by the philosophical preconceptions underlying them, but by 
examination of the facts of their actual performance, this appeared to 
many - as I knew it would - just as radical and shocking at as it did to 
Galileo's contemporaries. After my talk, a half-dozen people remon­
strated with me, trying to inform me about the terrible defects of Bayesian 



192 E. T. JAYNES 

methods by repeating the same tired old Boole-Venn cliches that we all 
learned as children. Not one of these individuals took the slightest note 
of the contrary facts (the mathematically demonstrable relations between 
actual performance of Bayesian and orthodox methods) that I had just 
pointed out. So we had an exact 20'th century repetition of GaIileo's 
experience with the colleague who refused to look through his telescope. 

To answer fully every point raised by Kempthorne would require a 
document much longer than my original presentation. Therefore, this 
reply must be confined to a brief summary of the situation, followed by 
specific comments only on those points of fact which are of general 
interest, and which would propagate confusion if they were allowed to 
go unanswered. 

SUMMARY 

My presentation was concerned with examining the relative merits of 
orthodox and Bayesian statistical methods by considering specific real 
problems, giving for each an orthodox solution which has been advocated 
in the recent literature, and adding what cannot be found in that literature, 
namely the Bayesian solution which makes use of the same information 
(i.e., is based on a noninformative prior). In Example 3, we also examined 
the further improvement obtainable when definite prior information is 
put in by maximum entropy. From these comparisons, several substantive 
conclusions emerge, which can be summed up as follows: Orthodox 
methods, when improved to the maximum possible extent (by using one­
sided tests, reporting critical significance levels, using sufficient statistics 
or conditioning on all ancillary information, etc.) become mathematically 
equivalent to the Bayesian methods based on noninformative priors, 
provided that no nuisance parameters are present, and a sufficient sta­
tistic or complete set of ancillary statistics exists. Otherwise, mathematical 
equivalence cannot be achieved, and magnification then shows the 
Bayesian result to be superior. 

This conclusion is supported in part by general theorems, in part by 
examination of specific cases. By now, we have a multitude of specific 
worked-out examples supporting it; and anyone who has understood 
my analysis can see that we are prepared to mass-produce any number of 
additional examples. Orthodox statistics has yet to produce one counter­
example. The reason for this is clear to one who has studied the theorems 
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of R. T. Cox (1946, 1961). He shows that any method of plausible reason­
ing in which we represent degrees of plausibility by real numbers, is 
necessarily either equivalent to Laplace's, or inconsistent. 

Even though an orthodox statistician may, in the words between his 
equations, vociferously denounce the use of Bayes' theorem, it is never­
theless a matter of straightforward mathematics to see if his actual con­
clusions can be derived from Bayes' theorem. Either they can or they can­
not. If they can, then it is obvious that his rejection of the Bayesian 
method is not based on its actual performance. If the conclusions are 
different, then we have the opportunity to judge that difference by Galileo's 
method. If we can magnify the difference sufficiently, it will become 
quite obvious which method is giving sensible results, and which is not. 

Let me stress this point. Doubtless, some readers will jump to the 
conclusion that I deliberately chose examples to support my prejudices; 
and that one can just as easily produce examples on the other side. In 
fact, I hope that every reader of the orthodox persuasion will come to 
exactly that conclusion, and set about immediately to produce six 
examples where an orthodox method yields a result that simple common 
sense can see is preferable to the Bayesian resuft. For it is not in the pas­
sive reading of my words, but in the active attempt to produce these 
counter-examples, that one's eyes will be opened. 

(2) My topic was the relative merits of orthodox and Bayesian methods, 
and not how they correlate with intelligence. Not having studied the 
latter topic, I have nothing more to add to the conclusions already 
reported by professional statisticians, viz: 

I believe, for example, that it would be very difficult to persuade an intelligent physicist 
that current statistical practice was sensible, but that there would be much less difficulty 
with an approach via likelihood and Bayes' theorem .. 

G. E. P. Box (1962) 

A student of statistical methods tends to be one of two t}opes; either he accepts the 
technique in its entirety and applies it to every conceivable situation, or he is more 
intelligent and questions the applicability at all. 

O. Kempthorne (1952) 

With regard to the other remark, I think an historical study would show 
that the reasons for the interest of both Laplace and Jeffreys in probability 
theory arose from the problem of extracting 'signals' (i.e., new systematic 
effects) from the 'noise' of imperfect observations, in astronomy and 
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geophysics respectively. The procedures would today be called 'signifi­
cance tests', and I wish every one who has not already done so, would read 
Jeffreys' (1939) beautiful and comprehensive chapters on significance 
tests, then compare them from the standpoint of solid content and use­
fulness in real problems, with any work ever written on the subject from 
the orthodox point of view. 

Likewise, my own interest in statistics arose from problems of extract­
ing signals from noise in several applications ranging from optimum 
design of radar receivers and magnetic resonance probes, to land mine 
detectors. I am on record (Jaynes, 1963) as claiming that there is no 
area of physics, from elementary particle theory to cyclotron design, in 
which the phenomenon of noise does not present itself. 

In view of all this, one can imagine my consternation at the suggestion 
that "there has been little attention to unavoidable noise" in physics. 
Physicists were actively studying noise and, thanks to Laplace, knew the 
proper way to deal with it, long before there was any such thing as a 
Statistician. 

(3) (a) Of course, by 'the orthodox solution' I mean the particular 
one which I am describing; and likewise for 'the Bayesian solution'. Of 
course, there are many different orthodox solutions to a given problem -
but I think that is the last thing a defender of orthodoxy would wish to 
bring to our attention. 

Dirac did not in any way suggest that "working statisticians would 
estimate a probability to be a negative number", as a reading of his 
lecture will show. On the other hand, it is a matter of documentable fact 
that some orthodox statisticians suggest estimating a parameter known to 
be positive by an estimator which can become negative for some samples 
[KF, p. 203, Equation (7.42)]. 

(b) It is really discouraging to find - 25 years after the birth of infor­
mation theory (Shannon, 1948), 17 years after its bearing on the prior 
probability problem was shown (Jaynes, 1957), ten years after the gen­
eralization to continuous distributions (Jaynes, 1963), six years after 
the resulting functional analysis generalization of Gibb's work to ir­
reversible statistical mechanics was given (Jaynes, 1967), five years after 
it was shown that the theory becomes parameter-independent if one 
uses the entropy relative to the invariant measure on the parameter space 
(Jaynes, 1968), and two years after the frequency interpretation of that 
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invariant measure was demonstrated (Jaynes, 1971) - that an eminent 
worker in statistics is still writing that attempts to produce prior distribu­
tions by logical analysis have 'failed'. 

It is true that the principles of maximum entropy and transformation 
groups have not yet led to the solutions of every conceivable statistical 
problem; and I know that there are some who reject the entire program 
just for that reason. Presumably these same critics do not condemn the 
use of insulin on the grounds that it will not cure all diseases. The point is 
that we have solved some problems, in a way which I believe will be 
recognized by history as the final answer; and in fact we have succeeded 
in a wide enough class of problems to cover perhaps 90% of current 
applications. Criticisms of Bayesian methods on the grounds that we 
still have unsolved problems, come with particularly ill grace from those 
who have in the past, by their discouraging negative attitude, done every­
thing in their power to prevent these problems from being solved. 

I would think that anyone might recognize that a meaningful com­
parison of Bayesian and orthodox solutions must use the Bayesian solu­
tion which makes use of the same information as does the orthodox 
solution. A Bayesian solution which makes use of extra prior information 
that the orthodox method cannot use at all, will of course be superior 
for that reason alone; it is more instructive - and in a sense fairer - to 
make comparisons using a Bayesian solution based on a noninformative 
prior. Now, a noninformative prior is one which is uniform, not neces­
sarily with respect to Lebesgue measure for any particular choice of the 
parameter, but with respect to the invariant measure defined by the trans­
formation group on the parameter space. As explained in my work 
referred to, this isjust the mathematical statement of the basic desideratum 
of consistency: in two problems where we have the same prior information, 
we should assign the same prior probabilities. 

My previous work (1968) shows how to construct priors for location 
and scale parameters, the rate constant of a Poisson process, and the 
parameter of a binomial distribution, by logical analysis. Evidently, 
the point needs to be made repeatedly and with more examples; so let 
me show briefly how to find the prior in the parameter space (IX, /3) of the 
standard regression problem Y=IX+/3X, by logical analysis, for the case 
that x, yare variables of the same kind (for example, the departure from 
average barometric pressure at New York and Boston), so that it is as 
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natural to consider regression of (x on y) as (yon x). Given any proposed 
element of prior probability I(rx, P) drx dP, interchange x and y. The 
estimated line becomes x=rx' + P'y, with a prior probability element 
g(rx', P') drx' dp'. From the Jacobian of the transformation rx' = - p-1rx, 
fJ'=P-l, we find g(rx'fJ')=p3 /(a, fJ). This transformation equation 
holds whatever the function f. 

Now if we are 'completely ignorant' of (a, P), the interchange of (x, y) 
shouldn't matter; we are also 'completely ignorant' of (a', P'). But 
consistency demands that in two problems where we have the same state 
of knowledge, we must assign the same probabilities. Therefore.f and g 
must be the same function; i.e., the prior density representing 'complete 
ignorance' must satisfy the functional equation fJ 3 /(rx, fJ)=f( - p-1a, 
P-l), which has the solution/(rx, P)=(l +p2r3/l. Thus, setting p=tanO, 
the invariant measure of the parameter space is 

dJ,l = drx d sinO. 

Why is this not uniformly distributed in 0 rather than in sinO? Answer: it 
is uniform in sinO only for fixed rx; but under rotations of the (x, y) plane 
a also varies [indeed, under any· Euclidean transformation (x, y)-+ 
-+(x', y'), where x=x' cosiP-y' siniP+xo, y=y' cosiP+x' siniP+yo, 
the estimated line y=rx+fJx goes into y'=rx' +P'x', where rx'= (rx­
- Yo + fJxo)!(cosiP + fJ siniP), fJ' = (fJ cosiP -siniP)!(cosiP + fJ siniP)= tanO'; 
and we readily verify the invariance: da' d sinO' =drx. d sinO, while da dO 
is not invariant]. 

This invariance of the measure dJ,l means that, however we draw the x 
and y axes, the prior dJ,l=drx d sinO expresses exactly the same state of 
prior knowledge about the position of the regression line. It thus leaves the 
entire decision to the subsequent evidence of the sample - which, of course, 
is exactly what Fisher insisted that a method of inference ought to do. 
But as we see, if this is the property we want to have, the goal is not 
achieved by closing our eyes to the very existence of a prior. It can be 
achieved only by logical analysis showing us which prior has the desired 
property. If we do have relevant prior information, it can now be in­
corporated into the problem by finding the probability measure dp that 
maximizes the entropy relative to dJl: H= - J dp log(dp!djl), subject to 
whatever constraint the prior information imposes on dp; if the con­
straints take the form of mean values, this reduces to the canonical 
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ensemble formalism of statistical mechanics of J. Willard Gibbs. 
Now the simple facts, made understandable by Cox's theorems, il­

lustrated in my presentation and in many other examples throughout the 
Bayesian literature, explain what we have observed throughout the 
history of orthodox statistics; every advance in orthodox practice has 
brought the actual procedures back closer and closer to the original 
methods of Laplace. The rise of decision theory was, in fact, the main 
spark that touched off the present 'Bayesian Revolution'. Other examples 
are Fisher's introduction of conditioning, discussed below, and his intro­
duction of the notion of sufficiency. 

The discovery of sufficiency was, of course, a great advance in orthodox 
statistics; because in an important class of problems it removed the 
ambiguity in deciding which statistic should be used; if a sufficient 
statistic for e exists, it is rather hard to justify using any other for in­
ference about e, for reasons illustrated in my Example 5 and explained 
under 'What Went Wrong?' But in Bayesian statistics there never was 
any ambiguity of this type to resolve. Fisher's definition of sufficiency can 
be stated more succinctly (and in my view, more meaningfully) as: If the 
posterior distribution of (J depends on the sample (Xl ... X,,) only through 
the value of a certain function 8* (Xl ••. X .. ), then (J* is a sufficient statistic 
for (J. Evidently, if a sufficient statistic exists, application of Bayes' theorem 
will lead us to it automatically without our having to take any special 
note of the idea. But Bayes' theorem will lead us to the optimum inference 
whether or not any sufficient statistic exists; i.e., sufficiency is a con­
venience affecting the amount of calculation but not the quality of the 
inference. 

I am afraid that to castigate Bayesian methods, but not orthodox ones, 
on grounds of lack of uniqueness, is to get it exactly backwards. It is 
orthodox statistics that offers us many different solutions to a single 
problem, (i.e., given prior information, sampling distribution, and 
sample), depending on whose school of thought, whose textbook within 
that school, and even which chapter of that textbook, you read. An 
estimator ought to be unbiased, efficient, consistent, etc.; but in general 
orthodoxy gives us no criterion as to the relative importance of these, 
nor any method by which a 'best' estimator can be constructed. The use 
of an unbiased estimator or a shortest confidence interval will lead us 
to different conclusions with different choices of parameters. KF (p. 316) 
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cannot make up their minds about whether to accept the principle of 
conditioning, and advocate significance tests in which the conclusions 
depend on the arbitrary ordering you or I might assign to data sets which 
were not observed! Indeed, there is scarcely any problem of inference for 
which KF offer any definite preferred solution; in most cases there is an 
inconclusive discussion that terminates abruptly with the remark that 
'it is all very difficult', leaving the reader in utter confusion as to which 
method should be used. But with all this ambiguity, orthodox methods 
provide no means for taking prior information into account. 

In sharp contrast to this, for a given sampling distribution and sample, 
different Bayesian results correspond, as rational inferences should, to 
and only to, differences in the prior information. When priors are deter­
mined by the principles of maximum entropy and transformation groups, 
Bayesian methods achieve complete invariance under parameter changes 
(Jaynes, 1968). 

(4) We are now told that even to utter the words 'Fisher-Neyman­
Pearson theory' is a calumny on Fisher's views (but apparently not on 
Neyman's or Pearson's); and againfor the 'benefit' (precious little) of 
readers not present at the Conference, may I state that I first heard this 
phrase from the lips of Professor Oscar Kempthorne, shortly before my 
talk was given. I repeated it only to say that I would follow common 
practice by using the word 'orthodox' as an approximate synonym. 

However, since the issue has been raised, I would like to state that the 
term 'Fisher-Neyman-Pearson approach' appears to me as an entirely 
accurate and appropriate term for a certain area of statistical thought. 
To use it is in no way to ignore, much less deny, the fact that there were 
differences between Fisher on the one hand, and Neyman-Pearson on the 
other. However, this should not blind us to the fact that there is a very 
much larger area of agreement; i.e., a corpus of ideas which are not in 
Bayesian statistics, but are common to the Fisher and Neyman-Pearson 
points of view and which therefore characterize their union. I refer to the 
ideas that (I) the word 'probability' must be used only in the sense of 
'frequency in a random experiment', (2) inference requires that we find 
sampling distributions of some 'statistics' in addition to the direct sample 
distribution p(dx 18), (3) the conclusions we draw from an experiment 
can depend on the probabilities of data sets which were not observed, or 
the psychological state of mind of the experimenter (optional stopping), 
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(4) we can improve the precision of our results by throwing away relevant 
information instead of taking it into account (the procedure euphemisti­
cally called 'randomization'), (5) the attempt to dispense with prior 
probabilities. 

Recalling the difference between the Fisher and Neyman-Pearson camps 
over confidence intervals vs fiducial probabilities, let's just see how 
great this calumny is. Given a basic sample distributionp(dx 19), choose 
two 'statistics' 91(Xl •.. X,,),92(Xl"'X,,) such that prob(91 <9<92)=P; 
this defines a 100 P percent confidence interval. Letting 91 -+ 9m1n, the 
lower bound of the parameter space, we have prob(9<92}=P, which is 
Fisher's definition (Collected works, 27.253) of the fiducial distribution 
of 9, based on the statistic 92 , As we see, the deep, profound difference 
in basic approach is fully as great as that between Tweedledee and 
Tweedledum. 

The difference is not in the approach, but in the perception with which 
it was used. Fisher, with his vastly greater intuitive understanding, saw 
at once something which still does not seem generally recognized by 
others; that all this is valid only when we are using sufficient statistics. 
Even in the Fisher obituary notice, Kendall (1963, p. 4) questions the 
need for sufficiency. My Example 5 was intended to make Fisher's 
point by demonstrating just what can happen when we use a confidence 
interval not based on a sufficient statistic. Obviously, anyone who rejects 
fiducial probability, but endorses the use of confidence intervals, is not 
doing so on grounds of their actual performance. 

(7) We apparently agree that a statistical method should be judged by 
the results it gives in practice. Well and good. However, I categorically 
deny that "the Bayesian idea was rejected by Boole, Venn, Fisher and 
Neyman" on these grounds. It is just the weakness of their work that 
they rejected Bayesian methods on purely philosophical or ideological 
grounds, without examining their actual performance. 

Since the case of Boole and Venn has been brought up, let us examine 
the work of these gentlemen and see for ourselves the validity of their 
actual criticisms, and the accuracy with which their work is reported 
today in the orthodox literature. I believe that Boole, like most other 
critics of Laplace, failed to comprehend fully his definition of probability. 
Since Laplace has been quoted out of context so many times in this and 
other matters, let us take the trouble to quote his definition in full. The 
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first volume of his Theorie Analytique is concerned with mathematical 
preliminaries, and the actual development of probability theory begins in 
Volume 2. The first sentence of Volume 2 is: "The probability of an 
event is the ratio of the number of cases favorable to it, to the number of 
all cases possible when nothing leads us to expect that anyone of these 
cases should occur more than any other, which renders them, for us, 
equally possible". 

This definition has stated only the finite discrete case, but we know how 
to generalize it. The point is that Laplace defined probability in a way 
which clearly represents a state of knowledge; and not a frequency. Of 
course, as Laplace demonstrates over and over again, connections be­
tween probability and frequency appear later, as mathematical con­
sequences of the theory. I claim that these derivable connections (the 
limit theorems of Jacob Bernoulli and de Moivre-Laplace, Laplace's rule 
of succession, the de Finetti exchangeability theorem, etc.) include all the 
ones actually used in applications. 

If one has no prior knowledge other than enumeration of the possibili­
ties (i.e., specification of the sample space), then to assign equal proba­
bilities is clearly the only honest way one can describe that state of, 
knowledge. This can be formalized more completely than Laplace did, by 
the aforementioned desideratum of consistency: if we were to assign any 
distribution other than the uniform one it would be possible, by a mere 
permutation of labels, to exhibit a second problem in which our state of 
knowledge is exactly the same, but in which we are assigning different 
probabilities. But in this case Laplace surely considered the argument 
and result so obvious that he would insult the reader's intelligence by 
mentioning them. The only serious error Laplace made was overestimat­
ing the intelligence of his readers. 

Boole (1854), not perceiving this, rejected Laplace's work on the ground 
that the prior was 'arbitrary', i.e., not determined by the data. He did 
not reject it in the ground of the actual performance of Laplace's results in 
the case of uniform prior because he, like Laplace's other critics, never 
bothered to examine the actual. performance under these conditions, 
much less to compare it with alternative methods. Had he done so, he 
might have discovered the real facts about performance, presented 85 
years later by Jeffreys. Curiously, Boole, after criticizing Laplace's prior 
distribution based on the principle of indifference, then invokes that 
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principle to defend his own methods against the criticisms of Wilbraham 
(see several articles in Phil. Mag, Vols. vii and viii. 1854). 

This brings up another matter that needs to be mentioned. Boole's 
unjust criticism of Laplace has been quoted approvingly, over and over 
again, in the orthodox literature, Fisher (1956) being a very generous 
contributor. But in that same literature, a conspiracy of silence hides 
the fact that Boole's own work on probability theory (Boole, 1854, 
Chapters 16-21) contains ludicrous errors, far worse than any committed 
by Laplace. Some were noted by Wilbraham (1854), McColl (1897) and 
Keynes (1921). See his Example 6, page 286, where by a confusion of 
propositions [taking the probability of the proposition: 'If X is true, Y is 
true' as the conditional probability p(Y I X)] he arrives at the conclusion 
that two propositions with the same truth value can have different 
probabilities. He not only fails to see the absurdity of this, but even calls 
it to the reader's attention as something which 'deserves to be specially 
noticed'. Or his solution to another problem, page 324, Equation (10), 
which reduces to an absurdity in the special cases c 1 = C2 = I and c 1 = 
=Pl = 1. While Laplace considered real probl~ms and got scientifically 
useful answers, Boole invented artificial school-room type problems, 
and often gave absurd answers. Finally, it is mathematically trivial to 
show that all of 'Boolean algebra' was contained already in the rules of 
probability theory given by Laplace - in the limit as all probabilities go 
to zero or unity, any equation of Laplace's 'Calculus of Inductive 
Reasoning' reduces to one of Boolean algebra. 

Now let's turn to the case of Venn (1866), who expresses his disdain for 
mathematical demonstration very clearly throughout his book and its 
preface. Venn's Chapter 6 is an attack on Laplace's rule of succession, 
so viciously unfair that even Fisher (1956) was impelled to come to 
Laplace's defense on this issue. Fisher questions whether Venn was even 
aware of the fact that Laplace's rule had a mathematical basis, and like 
other mathematical theorems has 'stipulations specific for its validity'. 
He proceeds to give examples in which, unlike those of the 'great thinker' 
Venn, the stipulations are satisfied, and Laplace's rule is the correct one 
to use. 

How is it possible for one human mind to reject Laplace's rule of suc­
cession; and then advocate a frequency definition of probability? Any­
body who assigns a probability to an event equal to its observed frequency 
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in many trials, is doing just what Laplace's rule tells him to do. In my 
Example 4, we examined Laplace's calculation underlying this rule, and 
learned that anybody who rejects Laplace's methods in favor of confidence 
intervals for the binomial, is certainly not doing so on grounds of actual 
performance. 

I would like to plead here for a greater concern for historical accuracy, 
in writing on these matters. For over a century, there has been a conspiracy 
in the statistical literature to rewrite history and denigrate Laplace, first in 
the Boole-Venn manner, then by denying him credit when his principles 
were rediscovered (examples below). An ad hominem attack on Laplace 
(as 'a consummate politician') has even befouled the air of this Conference. 
I have long since learned never to accept the word of a biased source 
(Boole, Venn, Von Mises, Fisher, E. T. Bell, Cramer, Feller, etc.) on any 
question of what Laplace did or did not do. When working in my study, 
Laplace's TMorie Analytique is always at my elbow; and when any ques­
tion about him comes up, I go straight to the original source. It is for this 
reason that my judgment of Laplace differs so radically from that pre­
sented in the literature from Boole on. 

Not only those who are ignorant of history, but also those who will 
not profit by its lessons, are doomed to repeat it. Starting with Condorcet 
and his omelette, those who scorned Laplace's outlook and methods -
whether in science or politics - and tried to do things differently, have 
shared a common experience. 

(A) In George Gamow's book, The Biography of the Earth (1941), 
Laplace's theory of the origin of the solar system is torn to shreds. But 
in 1944, Weiszacker pointed out a few things that Laplace's critics had 
overlooked; and the 1948 edition of Gamow's book had a new 15 page 
section entitled, 'Laplace was right after all!' 

(B) Abraham Wald, in his mimeographed course notes of 1941, 
rejected Laplace's methods of parameter estimation and hypothesis 
testing and asserted that such problems cannot be solved by the principles 
of probability theory. During the 1940's Wald sought a new foundation 
for statistics based on the idea of rational decisions, which had the aim 
of avoiding the mistakes of Laplace; but in Wald's final 1950 book, 
Statistical Decision Functions, the fundamental place of 'Bayes strategies' 
is finally recognized. As it turned out, Wald's life work was to prove, 
very much against his will, that the original methods developed by 
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Laplace in the 18'th century, which he and many other statisticians had 
scorned for years, were in fact the unique solution to the problem of 
rational decisions. Lap/ace was right after all. 

(C) I had the same experience. In 1951, I somehow came to the con­
clusion that Bayes' theorem did not adequately represent the full variety 
of inductive reasoning, and sought to develop a two-valued theory of 
probability, very much like the one presented here by Shafer, except that 
my numbers corresponded to the sum and difference of his. I even ex­
pounded this in a Round Table Discussion at one of the Berkeley Statisti­
cal Symposiums. However, I then made the tactical error of trying to 
apply this theory to some real problems. At about the third attempt, the 
scales fell from my eyes and I saw that a two-valued theory contains 
nothing that is not already given by Laplace's original one-valued theory, 
by going to a deeper sample space. In other words, the defects that 
I thought I saw in Laplace's theory were my own defects, in not having 
the ingenuity to invent an adequate model. Lap/ace was right after 
all. 

Now, I don't know how many other people are doomed to follow this 
path - already far more man-years of potentially useful talent have been 
wasted on futile attempts to evade Laplace's principles, than were ever 
invested in circle-squaring and perpetual motion machines. But just as 
Lindemann's proof put an end to circle-squaring for all who could see 
its implications, so Cox's theorems (1946) ought to have put an end, 
twenty-five years ago, to these unceasing efforts to evade what cannot 
be evaded. The situation is described in more detail in my review of 
Cox (1961). This is why I can say the following to latter-day Don 
Quixotes: 

Many of us have already explored the road you are following, and we 
know what you will find at the end of it. It doesn't matter how many new 
words you drag into this discussion to avoid having to utter the word 
'probability' in a sense different from frequency: likelihood, confidence, 
significance, propensity, support, credibility, acceptability, indifference, 
consonance, tenability, - and so on, until the resources of the good Dr 
Roget are exhausted. All of these are attempts to represent degrees of 
plausibility by real numbers, and they are covered automatically by 
Cox's theorems. It doesn't matter which approach you happen to like 
philosophically - by the time you have made your methods fully con-
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sistent, you will be forced, kicking and screaming, back to the ones given 
by Laplace. Until you have achieved mathematical equivalence with 
Laplace's methods, it will be possible, by looking at specific problems 
with Galileo's magnification, to exhibit the defects in your methods. 

Here are two typical examples of the kind of factual distortion that we 
find in the literature. KF (p. 314) quote approvingly a statement of 
Fisher (1956, p. 4) that: "So early as Darwin's experiments on growth 
rate the need was felt for some sort of a test of whether an apparent effect 
might reasonably be due to chance". More specifically, Fisher (p. 81) then 
states that the 'Student' t-test was "the first exact test of significance." 
Neither book makes any mention of the historical fact that Laplace devel­
oped many significance tests to determine whether discrepancies between 
prediction and observation 'might reasonably be due to chance' and used 
them to decide which astronomical problems were worth working on: a 
bit of wisdom that might well be noted by scientists today. Laplace also 
illustrates the use of these tests, including two-way classifications, in many 
other problems of geodesy, meteorology, population statistics, etc. As I 
hope to show in detail elsewhere, Laplace's significance tests were in no 
way inferior - and were in some cases demonstrably superior - to tests 
advocated in the orthodox literature today. 

Likewise, both KF and Fisher denounce the use of Bayes' theorem and 
uphold the 'student' t-test as a great advance in statistical practice; but of 
course neither mentions the fact that precisely the same result follows in 
two lines from Bayes' theorem; given the data D= {Xl'" XII}' the likeli­
hood function is L(Il, O')=O'- lI exp(-nQ/2O'2), where Q=S2+(X-Il)2. 
Integrating out 0' with respect to Jeffreys' prior, the posterior density of Il 
is _Q-n/2, which but for notation is just the t-distribution. Students 
reading these works obtain a completely false picture of both the historical 
and mathematical facts about significance tests. 

THE WEA THERMAN'S JOB 

In a certain city, the joint frequencies of the actual weather and the weath­
erman's predictions are given by: 

Predicted 
Rain 

Actual 

Rain Shine 

Shine I 0 1 
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An enterprising fellow trained in orthodox statistics (but not in meteoro­
logy) notices that, while the weatherman is right only 50% of the time, a 
prediction of 'shine' everyday would be right 75% of the time, and 
applies for the weatherman's job. Should he get it? Which would you 
rather have in your city? 

The weatherman is delivering useful information at a rate I=(entropy 
of distribution of predictions) + (entropy of actual weather distribution) 
-(entropy of joint distribution)=(0.562+0.562-1.040)/ln2=0.123 
bits/day. As explained previously (Jaynes, 1968) this means that in the 
course of a year the weatherman's information has reduced the number 
of reasonably probable weather sequences by a factor of W=exp(0.123 x 
x 365 x In2) = 2.92 x 1013. With the weatherman on the job, you will 
never be caught out in an unpredicted rain; with the orthodox statistician 
this would happen to you one day out offour. 

As this example once more forces one to recognize, the value of an infer­
ence lies in its usefulness in the individual case, and not in its long-run 
frequency of success; they are not necessarily even positively correlated. 
The question of how often a given situation would arise is utterly irrele­
vant to the question how we should reason when it does arise. I don't know 
how many times this simple fact will have to be pointed out before statisti­
cians of 'frequentist' persuasions will take note of it; but I think it is 
important that we keep trying. 

(15) 'Improper' Priors. Let me try to explain the situation. 'Complete 
initial ignorance' of a scale parameter u corresponds formally to use of 
the Jeffreys prior du/u=d logu. But as noted before (Jaynes, 1968), to 
apply this within infinite limits (- 00 < log u < 00) would not represent 
any realistic state of prior information. For example, if x is a measured 
length of some material object on the earth, we surely know that the 
standard error u % of the measurement cannot be less than the size of one 
atom, - 10- 8 cm; or greater than the size of the earth, _109 cm. So we 
know in advance that ( - 8 < 10glO U" < + 9). Outside this range, the prior 
density must be zero. 

Similarly, if x is the measured breaking stress of some structural material, 
we know in advance that u" surely cannot be less than the pressure of 
sound waves, -1 dyne cm -:1., due to people talking in the room; nor 
greater than 1014 dynes cm- 2 , which is 1000 times the tensile strength of 
any known material. So the prior density must be all contained in (0< 
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< Inu x < 33). If x is a time interval measured in seconds, we can be pretty 
sure in advance that (-12<loglOux < 18). 

Generally, thinking about any problem in this way will lead one to 
specify prior limits Umin, Umax within which the unknown value surely lies; 
within this interval the invariance arguments leading to the form du/u still 
apply if there is no other prior information (Jaynes, 1968). Therefore, the 
prior is normalizable, and we have a well-behaved mathematical problem. 

Now if our final conclusions depend appreciably on the exact prior 
limits chosen, then obviously we should analyze our prior information 
more carefully than I did above, to get more reliable numerical values for 
Umin. UmaJ[' But it just wouldn't be very intelligent to g.o to all that work. 
only to discover that Umin. UmaJ[ cancel out of the expressions representing 
our final conclusions (which might be the first few moments, or the quar­
tiles. of a posterior distribution). So it will be good strategy to work 
through the solution first for general limits, whereupon the mathematics 
will tell us under just what conditions the prior limits matter; and when 
they don't. 

Having thus formulated the problem, the conclusion is fairly obvious; 
if the likelihood function is sufficiently concentrated (i.e., if the experiment 
is a sufficiently informative one), then the prior limits cannot matter 
appreciably as long as they are outside the region of appreciable likeli­
hood. To put it in a way somewhat crude, but not really wrong: if the 
amount oflikelihood [integral of L(u)] lying outside the limits (ut <0'< 

<0'2) is less than 10- 6 of the total likelihood, then as long as our prior 
limits are still wider (0' min < 0' 1 < 0'2 < 0' mu), the exact values of 0' min' 0' max 

can't make more than about one part in 106 difference in our conclusions. 
If, then, we don't worry about them, and just take the limiting form of the 
solution as O'min -+0, Umax -+ 00 for mathematical convenience, we are 
committing no worse a sin than does the person who laboriously deter­
mines the proper values of Umin' UmaJ[' works out the exact solution based 
on them - and then rounds off his final result to six significant figu­
res. We are only getting that result with an order of magnitude less labor. 

If, on the other hand, we should encounter a non-normalizable poste­
rior distribution in this limit, the theory is telling us that the experiment 
is so uninformative that our exact state of prior information is still im­
portant, and must be taken into account explicitly. This phenomenon, far 
from being a defect of Bayesian methods, is a valuable safety device that 
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warns us when an experiment is too uninformative to justify, by itself, 
any definite inferences. If someone ignores the warning, and gets into 
trouble with 'improper priors', what we are witnessing is not a failure, but 
only a misapplication, of Bayesian methods. 

Finally, let us keep in mind that we are really concerned here with 
relative value judgments; and so if anyone attacks Bayesian methods 
because of the possible situation just described, fairness demands that he 
also takes note of what happens to orthodox methods in the same prob­
lems. Now one of the substantive factual issues illustrated in my presen­
tation, is this: orthodox methods, when improved to the maximum possi­
ble degree, reduce ultimately to procedures that are mathematically iden­
tical with applying Bayes' theorem with just the noninformative improper 
prior about which Professor Kempthorne expresses such alarm! We saw 
this phenomenon in Examples 2, 3, 5 and 6. As we have just seen, this 
causes difficulty only when the experiment is so uninformative that our 
final conclusions must, necessarily, still depend strongly on our prior 
knowledge. The Bayesian can correct this at once by using a realistic prior, 
leading to the inferences that are justified by the total information at hand; 
but the orthodoxian cannot, because his ideology forbids him to recognize 
the existence of any prior which is not also a known frequency. 

In fact, we had just this situation in the first part of my Example 3, 
where we took no note of the actual failure times. If all units tested fail, 
the test provides no evidence against the hypothesis of arbitrarily large l. 
The Bayesian test (6) based on a uniform prior then yields a non-normaliz­
able posterior distribution p(dll n, r, t)_(l-e-.l.r)" dA., which tells us 
that A. is almost certainly greater than (t-l logn), but gives no upper limit. 
In this way, the safety device warns us that our prior information con­
cerning the possibility of very large l, remains relevant; by taking it 
explicitly into account, rational inferences about A. are still possible, as I 
showed by the maximum entropy prior. 

But we saw that the orthodox ST test was, in the absence of such pathol­
ogy, mathematically identical with this Bayesian test; so what happens 
to it? Well, this is just the case already noted where the ST test breaks 
down entirely, telling us to reject at all significance levels. In problems 
where the Bayesian cannot use the approximation of an improper prior, 
orthodox methods give no warning, but simply yield absurd results; and 
only the alertness and common sense of the user can save him from the 
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consequences. As we see, it is the orthodoxian, and not the Bayesian, who 
is going to be in trouble in cases where 'improper priors' cannot be used. 

CONCLUSION 

I suppose it is possible, without actual logical contradiction, to maintain 
that Bayesian methods are utterly wrong, but that through a series of 
fortuitous accidents they always happen to give the right answer in every 
particular problem. However, I cannot believe that anybody will want to 
take that position. Now the person who, after studying the evidence given 
here and in the rest of the Bayesian literature, still wishes to claim that 
orthodox methods are superior, must realize that, if he is to avoid being 
forced into exactly that position, mere linguistics and ideological slogans 
will no longer suffice. The burden of proof is squarely on him to show us 
specific problems, with mathematical details, in which orthodox methods 
give a satisfactory result and Bayesian methods do not. My own studies 
have convinced me that such a problem does not exist. 

Whether I am right or wrong in this belief, we now have a large mass of 
factual evidence showing that (a) orthodox methods contain dangerous 
fallacies, and must in any event be revised; and (b) Bayesian methods are 
easier to apply and give better results. As a teacher, I therefore feel that to 
continue the time honored practice - still in effect in many schools - of 
teaching pure orthodox statistics to students, ~ith only a passing sneer 
at Bayes and Laplace, is to perpetuate a tragic error which has already 
wasted thousands of man-years of our finest mathematical talent in pur­
suit of false goals. If this talent had been directed toward understanding 
Laplace's contributions and learning how to use them properly, statistical 
practice would be far more advanced today than it is. 
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to. WHERE DO WE STAND ON MAXIMUM ENTROPY? (1978) 

In May 1978 a three-day Symposium on 'The Maximum-Entropy Formalism' 
held at M.I.T. provided a good opportunity to put into the record a more 
comprehensive summing up than had been attempted until then. The follow­
ing lengthy article was written hastily in a few weeks, to meet a publication 
deadline; and the rough unpolished edges show everywhere. Still, the Proceed­
ings Volume did appear in December 1978, probably a speed record. 

For some years, in dealing with both physicists and statisticians, I had 
been struck by the fact that neither group was aware of the history or current 
problems of the other's field, even though they were often doing near!y the 
same thing. So I wrote two parallel histories, in the hope of giving at least a 
sense of a common background. It is hard to understand why the two fields 
have developed in almost complete isolation from each other since the time 
of Laplace; surely this has been detrimental to both. 

Also, for some time I had tried to -follow Galton's wise advice that one 
should neither resent nor reply to criticisms of his own work, leaving that 
judgment to others. But an increasing number of correspondents urged me to 
change this policy, on the grounds that my continued failure to answer two 
attacks published several years previously, was giving the impression that they 
were unanswerable. I was fmally persuaded, but found the Shimony criticism 
so vague and confused that there was really nothing specific to reply to; one 
could only point out that Maxent and Bayes' theorem are different things, 
and different problems have different solutions. 

But replying to Rowlinson became a genuine pleasure, because he was so 
clear that one could see exactly where the difficulty lay, and answer with 
defmite, interesting calculations. Many have since told me that the calculation 
of that combinatorial ratio (10 86) and the analysis of Wolfs dice data are the 
high pOints of this work. 

However, in the haste of writing a technical error crept in, when I argued 
for five degrees of freedom on the grounds that a still lower value of Chi­
squared could have been achieved had the parameters been chosen by that 
criterion instead of by the Maxent one. In fact, the criteria were numerically 
indistinguishable; for the next Chapter of that story, see the 'Concentration 
of Distributions at Entropy Maxima' article in this volume. Rowlinson's 
criticism has now led to an advance in the technique of hypothesis testing, 
using numerical values of entropy rather than of Chi-squared. 

210 
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WHERE DO WE STAND ON MAXIMUM ENTROPY? 

Edwin T. Jaynes 

A. Historical Background 

B. Present Features 

C. Speculations for the Future 

D. An Application: Irreversible Statistical Mechanics 

Summary. In Part A we place the Principle of Maximum Entropy 
in its historical perspective as a natural extension and unifi­
cation of two separate lines of development, both of which had 
long used special cases of it. The first line is identified 
with the names Bernoulli, Laplace, Jeffreys, Cox; the second 
with Maxwell, Boltzmann, Gibbs, Shannon. 

Part B considers some general properties of the present 
maximum entropy formalism, stressing its consistency and inter­
derivabi1ity with the other principles of probability theory. 
In this connection we answer some published criticisms of the 
principle. 

In part C we try to view the principle in the wider context 
of Statistical Decision Theory in general, and speculate on 
possible future applications and further theoretical develop­
ments. The Principle of Maximum Entropy, together with the 
seemingly disparate principles of Group Invariance and Margina­
lization, may in time be seen as special cases of a still more 
general principle for translating information into a probability 
assignment. 

Part D, which should logically precede C, is relegated to 
the end because it is of a more technical nature, requiring 
also the full formalism of quantum mechanics. Readers not 
familiar with this will find the first three Sections a self­
contained exposition. 

In Part D we present some of the details and results of what 
is at present the most highly developed application of the 
Principle of Maximum Entropy; the extension of Gibbs' formalism 
to irreversible processes. Here we consider the most general 
application of the principle, without taking advantage of any 
special features (such as interest in only a subspace ofstate~ 
or a subset of operators) that might be found in particular 
problems. An alternative formulation, which does take such 
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advantage--and is thus closer to the spirit of previous "kinetic 
equation" approaches at the cost of some generality, appears in 
the presentation of Dr. Baldwin Robertson. 

A. Historical Background 
The ideas to be discussed at this Symposium are found clearly 
expressed already in ancient sources, particularly the Old 
Testament, Herodotus, and Ovennus. All note the virtue of 
making wise decisions by taking into account all possibilities, 
i.e., by not presuming more information than we possess. But 
probability theory, in the form which goes beyond these moral 
exhortations and considers actual numerical values of probabil­
ities and expectations, begins with the Ludo aleae of Gerolamo 
Cardano, some time in the mid-sixteenth century:--Wi1ks (19bl) 
places this "around 1520," although Cardano's Section "On Luck 
in Play" contains internal evidence that shows the date of its 
writing to be 1564, still 90 years before the Pascal-Fermat 
correspondence. 

Already in these earliest works, special cases of the Prin­
ciple of Maximum Entropy are recognized intuitively and, of 
necessity, used. For there is no application of probability 
theory in which one can evade tha~ all-important first step: 
assigning some initial numerical values of probabilities so 
that the calculation can get started. Even in the most elemen­
tary homework problems, such as "Find the probability of 
getting at least two heads in four tosses of a COin," we have 
no basis for the calculation until we make some initial 
judgment, usually that "heads" shall have the probability 1/2 
independently at each toss. But by what reasoning does one 
arrive at this initial assignment? If it is questioned, how 
shall we defend it? 

The basis underlying such initial assignments was stated as 
an explicit formal principle in the Ars Conjectandi of James 
(= Jacob) Bernoulli (1713). Unfortunately, it was given the 
curious name: Principle of Insufficient Reason which has had, 
ever since, a psychologically repellant quality that prevents 
many from seeing the positive merit of the idea itself. Keynes 
(1921) helped somewhat by renaming it the Principle of Indif­
ference; but by then the damage had been done. Had Bernoulli 
called his principle, more appropriately, the Desideratum of 
Consistency, nobody would have ventured to deprecate it. and 
today statistical theory would be in considerably better shape 
than it is. 

The essence of the principle is just: (1) we recognize 
that a probability assignment is a means of describing a 
certain state of knowledge. (2) if the available evidence 
gives us no reason to consider proposition Al either more or 
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less likely than A2, then the only honest way we can describe 
that state of knowledge is to assign them equal probabilities: 
p 1 = pz. Any other procedure would be inconsistent in the sense 
that, by a mere interchange of the labels U, 2) we could then 
generate a new problem in which our state of knowledge is the 
same but in which we are assigning different probabilities. 
(3) Extending this reasoning, one arrives at the rule 

(A) - ~ - (Number of cases favorable to A) (Al) 
p - N - (Total number of equally possible cases) 

which served as the basic definition of probability for the 
next 150 years. 

The only, valid criticism of this principle, it seems to me, 
is that in the original form (enumeration of the "equally pos­
sible" cases) it cannot be applied to all problems. Indeed, 
nobody could have emphasized this more strongly than Bernoulli 
himself. After noting its use where applicable, he adds, "But 
here, finally, we seem to have met our problem, since this may 
be done only in a very few cases and almost nowhere other than 
in games of chance the inventors of which, in order to provide 
equal chances for the players, took pains to set up 50 that the 
numbers of cases would be known and --- so that all these cases 
could happen with equal ease." After citing some examples, 
Bernoulli continues in the next paragraph, "But what mortal 
will ever determine, for example, the number of diseases --­
these and other such things depend upon causes completely 
hidden from us ---." 

It was for the explicitly stated purpose of finding proba­
bilities when the number of "equally possible" cases is infinite 
or beyond our powers to determine, that Bernoulli turns next to 
his celebrated theorem, today called the weak law of large numbers. 
His idea was that, if a probability p cannot be calculated in 
the manner p = MIN by direct application of the Principle of 
Insufficient Reason, then in some cases we may still reason 
backwards and estimate the ratio MIN approximately by observing 
frequencies in many trials. 

That there ought to be some kind of connection between a 
theoretical probability and an observable frequency was a 
vaguely seen intuition in the earlier works; but Bernoulli, 
seeing clearly the distinction between the concept~ recognized 
that the existence of a connection between them cannot be 
merely postulated; it requires mathematical demonstration. If 
in a binary experiment we assign a constant probability of 
success p, independently at each trial, then we find for the 
probability of seeing m successes in n trials the binomial 
distribution 



214 E. T. JAYNES 

! ( n) m n-m P{m n,p) = m p (l-p) 

Bernoulli then shows that as n ~ m, the observed frequency 
f = mIn of successes tends to the probability p in the sense 
that for all e > 0, 

P{p-e<f<p+e!p,n) ~l 

(A2) 

(A3) 

and thus (in a sense made precise only in the later work of 
Bayes and Laplace) for sufficiently large n, the observed 
frequency is practically certain to be close to the number p 
sought. 

But Bernoulli's result does not tell us how large n must be 
for a given accuracy. For this, one needs the more detailed 
limit theorem; as n increases, f may be considered a continuous 
variable, and the probability that (f < mIn < f + df) goes into a 
gaussian, or normal, distribution: 

P (df I n, p) '\, [ 21TP 7l-P)] ~ exp [- ~~~~:~ ~ ] df (A4) 

in the sense of the leading term of an asymptotic expansion. 
For example, if p = 2/3, then from (A4), in n = 1000 trials, 
there is a 99% probability that the observed f will lie in the 
interval 0.667±0.038, and an even chance that it will fall in 
0.667 ± 0.010. The result (A4) was first given in this generality 
by Laplace; it had been found earlier by de Moivre for the case 
p = t. And in turn, the de Moivre-Laplace theorem (A4) be­
came the ancestor of our present Central Limit Theorem. 

Since these limit theorems are sometimes held to be the most 
important and sophisticated fruits of probability theory, we 
note that they depend crucially on the assumption of indepen­
dence of different trials. The slightest positive correlation 
between trials i and j, if it persists for arbitrarily large 
! i - j !, will render these theorems qualitatively incorrect. 

Laplace's contributions to probability theory go rather far 
beyond mere analytical refinements of other peoples' results. 
Most important for statistical theory today, he saw the general 
principle needed to solve problems of the type formulated by 
Bernoulli, but left unfinished by the Bernoulli and de Moivre­
Laplace limit theorems. These results concern only the so­
called "sampling distribution." That is, given p = MIN, what 
is the probability that we shall see particular sample numbers 
(m,n)? The results (Al)-(A4) describe a state of knowledge in 
which the "popUlation numbers" (M,N) are known, the sample 
number unknown. But in the problem Bernoulli tried to solve, 
the sample is known and the population is not only unknown--
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its very existence is only a tentative hypothesis (what mortal 
will ever determine the number of diseases, etc.). 

We have, therefore, an inversion problem. The above theorems 
show that, given (M,N) and the correctness of the whole con­
ceptual model, then it ~likely that in many trials the---­
observed frequency f will be close to the probability p. 
Presumably, then, given the observed f in many trials, it is 
likely that p is close to f. But can this be made into a 
precise theorem like (A4)? The binomial law (A2) gives the 
probability of m, given (U,N,n). Can we turn this around 
and find a formula for the probability of M, given (m,N,n)? 
This is the problem of inverse probabilities. 

A particular inversion of the binomial distribution was 
offered by a British clergyman and amateur mathematician, 
Thomas Bayes (1763) in what has become perhaps the most famous 
and controversial work in probability theory. His reasoning 
was obscure and hard to describe; but his actual result is 
easy to state. Given the data (m,n), he finds for the proba­
bility that MIN lies in the interval p < (MIN) < p + dp, 

P(dplm,n) = (n+l)! pm (l_p)n-m d 
m! (n-m)! p (A5) 

today called a Beta distribution. It is not a binomial distri­
bution because the variable is p rather than m and the numerical 
coefficient is different, but it is a trivial mathematical 
exercise . [expand the logarithm of (AS) in a power series about 
its peak] to show that, for large n, (AS) goes asymptotically 
into just (A4) with f and p everywhere interchanged. Thus, if 
in n = 1000 trials we observe m = 667 successes, then on this 
evidence there would be a 99% probability that p lies in 
(0.667 ± 0.038), etc. 

In the gaussian approximation, according to Bayes' solution, 
there is complete mathematical symmetry between the probability 
of f given p, and of p given f. This would certainly seem to 
be the neatest and simplest imaginable solution to Bernoulli's 
inversion problem. 

Laplace, in his famous memoir of 1774 on the "probabilities 
of causes," perceived the principle underlying inverse proba­
bilities in far greater generality. Let E stand for some 
observable event and {C 1 •• , CN} the set of its conceivable 
causes. Suppose that we have found, according to some con­
ceptual model, the "sampling distribution" or "direct" proba­
bilities of E for each cause: p(Elei), i=I,2, ... ,N. Then, 
says Laplace, if initially the causes Ci are considered equally 
likely, then having seen the event E, the different causes are 
indicated with probability proportional to p(Elci ). That is, 
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with uniform prior probabilities, the posterior probabilities 

::c:~:)c: [a~f P(EIC.)] 1 p(EICi ) 
J=l J 

(A6) 

This ~a tremendous generalization of the Bernoulli-Bayes 
results (A2) , (AS). If the event E consists in finding m suc­
cesses in n trials, and the causes Ci corres~ond to the possible 
values of M in the Bernoulli model, then P(EICi)is the binomial 
distribution (A2); and in the limit N ~ 00 (A6) goes into Bayes' 
result (AS). 

Later, Laplace generalized (A6) further by noting that, if 
initially the Ci are not considered equally likely, but have 
prior probabilities p(CiII), where I stands for the prior in­
formation, then the terms in (J.£) should be weighted according 
to p(c.II): 

1 p(Elci)p(ciII) 

p(CiIE,I) = 2:. p(Elc.)p(c. II) 
J J J 

(Al) 

but, following long-established custom, it is Laplace's result 
(Al) that is always called, in the modern literature, "Bayes' 
theorem." 

Laplace proceeded to apply (A6) to a variety of problems 
that arise in astronomy, meteorology, geodesy, population 
statistics, etc. He would use it typically as follows. Com­
paring experimental observations with some existing theory, or 
calculation, one will never find perfect agreement. Are the 
discrepancies so small that they might reasonably be attribured 
to measurement errors, or are they so large that they indicate, 
with high probability, the existence of some new systematic 
cause? If so, Laplace would undertake to find that cause. 
Such uses of inverse probability--what would be called today 
"significance tests" by statisticians, and "detection of signals 
in noise" by electrical engineers--led him to some of the most 
important discoveries in celestial mechanics. 

Yet there were difficulties that prevented others from fol­
lowing Laplace's path, in spite of its demonstrated usefulness. 
In the first place, Laplace simply stated the results (A6),(A7) 
as intuitive, ad hoc recipes without any derivation from compel­
ling desiderata; and this left room for much agonizing over 
their logical justification and uniqueness. For an account 
of this, see Keynes (1921). However, we now know that Laplac~s 
result (A7) is, in fact, the entirely correct and unique 
solution to the inversion problem. 
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More importantly, it became apparent that, in spite of first 
appearances, the results of Bayes and Laplace did not, after 
all, solve the problem that Bernoulli had set out to deal with. 
Recall, Bernoulli's original motivation was that the Principle 
of Insufficient Reason is inapplicable in so many real problems, 
because we are unable to break things down into an enumeration 
of "equally possible" cases. His hope--left unrealized at his 
death in l705--had been that, by inversion of his theorem one 
could avoid having to use Insufficient Reason. Yet when the 
inversion problem was finally solved by Bayes and Laplace, the 
prior probabilities p(CiII) that Bernoulli had sought to avoid, 
intruded themselves inevitably right back into the picture! 

The only useful results Laplace got came from (A6), based on 
the uniform prior probabilities P (Ci I I) = lIN from the Principle 
of Insufficient Reason. That is, of course, not because Laplace 
failed to understand the generalization (A7) as some have 
charged--it was Laplace who, in his Essai Philosophique, pointed 
out the need for that generalization. Rather, Laplace did not 
have any principle for finding prior probabilities in cases 
where the prior information fails to render the possibilities 
"equally likely." 

At this point, the history of statistical theory takes a 
sharp 90° turn away from the original goal, and we are only 
slowly straightening out again today. One might have thought, 
particularly in view of the great pragmatic success achieved 
by Laplace with (A6), that the next workers would try to build 
constructively on the foundations laid down by him. The next 
order of business should have been seeking new and more ~neral 
principles for determining prior probabilities, thus extending 
the range of problems where probability theory is useful to 
(A7). Instead, only fifteen years after Laplace's death, there 
started a series of increasingly violent attacks on his work. 
Totally ignoring the successful results they had yielded. 
Laplace's methods based on (A6) were rejected and ridiculed, 
along with the whole conception of probability theory expounded 
by Bernoulli and Laplace. The main early references to this 
counter-stream of thought are Ellis (1842), Boole (1854), Venn 
(1866), and von Mises (1928). 

As already emphasized, Bernoulli's definition of probability 
(Al) was developed for the purpose of representing mathemat­
ically a particular state of knowledge; and the equations of 
probability theory then represent the process of plausible. or 
inductive, reasoning in cases where there is not enoughinforma­
tion at hand to permit deductive reasoning. In particular. 
Laplace's. result (A7) represents the process of "learning by 
experience," the prior probability p(CII) changing to the 
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posterior probability P(CIE,I) as a result of obtaining new 
evidence E. 

This counter-stream of thought, however, rejected the notion 
of probability as describing a state of knowledg~ and insisted 
that by "probability" one must mean only "frequency in a random 
experiment." For a time this viewpoint dominated the field so 
completely that those who were students in the period 1930-1960 
were hardly aware that any other conception had ever existed. 

If anyone wishes to study the properties of frequencies in 
random experiments he is, of course, perfectly free to do so; 
and we wish him every success. But if he wants to talk about 
frequencies, why can't he just use the word "frequency?" Why 
does he insist on appropriating the word "probability," which 
had already a long-established and very different technical 
meaning? 

Most of the debate that has been in progress for over a 
century on "frequency vs. non-frequency definitions of proba­
bility" seems to me not concerned with any substantive issue 
at all; but merely arguing over who has the right to use a 
word. Now the historical priority belongs clearly to Bernoulli 
and Laplace. Therefore, in the interests not only of respon­
sible scholarship, but also of clear exposition and to avoid 
becoming entangled in semantic irrelevancies, we ought to use 
the word "probability" in the original sense of Bernoulli and 
Laplace; and if we mean something else, call it something else. 

With the usage just recommended, the term "frequency theory 
of probability" is a pure incongruity; just as much so as 
"theory of square circles." One might speak properly of a 
"frequency theory of inference," or the better term "sampling 
theory," now in general use among statisticians (because the 
only distributions admitted are the ones we have called 
sampling distributions). This stands in contrast to the 
"Bayesian theory" developed by Laplace, which admits the 
notion of probability of an hypothesis. 

Having two opposed schools of thought about how to handle 
problems of inference, the stage is set for an interesting 
contest. The sampling theorists, forbidden by their ideology 
to use Bayes' theorem as Laplace did in the form (A6), must 
seek other methods for dealing with Laplace's problems. What 
methods, then, did they invent? How do their procedures and 
results compare with Laplace's? 

The sampling theory developed slowly over the first half of 
this Century by the labors of many, prominent names being 
Fisher, "Student," Pearson, Neyman, Kendall, Cramer, Waldo 
They proceeded through a variety of ad hoc intuitive principles, 
each appearing reasonable at first glance, but for which 
defects or limitations on generality always appeared. For 
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example, the Chi-squared test, maximum likelihood, unbiased 
and/or efficient estimators, confidence intervals, fiducial 
distributions, conditioning on ancillary statistics, power 
functions and sequential methods for hypothesis testing. 
Certain technical difficulties ("nuisance" parameters, non­
existence of sufficient or ancillary statistics, inability 
to take prior information into account) remained behind as 
isolated pockets of resistance which sampling theory has never 
been able to overcome. Nevertheless, there was discernible 
progress over the years, accompanied by an unending stream of 
attacks on Laplace's ideas and methods, sometimes degenerating 
into personal attacks on Laplace himself [see, for example, 
the biographical sketch by E. T. Bell (1937), entitled "From 
Peasant to Snob"]. 

Enter Jeffreys. After 1939, the sampling theorists had another 
target for their scorn. Sir Harold Jeffreys, finding in geo­
phYSics some problems of "extracting signals from noise" very 
much like those treated by Laplace, found himself unconvinced 
by Fisher's arguments, and produced a book in which the methods 
of Laplace were reinstated and applied, in the precise, compact 
modern notation that did not exist in the time of Laplace, to 
a mass of current scientific problems. The result was a vastly 
more comprehensive treatment of inference than Laplace's, but 
with two points in common: (A) the applications worked out 
beautifully, encountering no such technical difficulties as 
the "nuisance parameters" noted above; and yielding the same 
or demonstrably better results than those found by sampling 
theory methods. For many specific examples, see Jaynes (1976). 
(B) Unfortunately, like Laplace, Jeffreys did not derive his 
principles as necessary consequences of any compellingdesid­
erata; and thus left room to continue the same old arguments 
over their justification. 

The sampling theorists, seizing eagerly upon point (B) while 
again totalling ignoring point (A), proceeded to give Jeffreys 
the same treatment as Laplace, which he had to endure for some 
thirty years before the tide began to turn. 

As a student in the mid-1940's, I discovered the book of 
Jeffreys (1939) and was enormously impressed by the smooth, 
effortless way he was able to derive the useful results of 
the theory, as well as the sensible philosophy he expressed. 
But I too felt that something was missing in the exposition 
of fundamentals in the first Chapter and, learning about the 
attacks on Jeffreys' methods by virtually every other writer 
on statistics, felt some mental reservations. 

But just at the right moment there appeared a work that 
removed all doubts and set the direction of my own life's 



220 E. T. JAYNES 

work. An unpretentious little article by Professor R. T. Cox 
(1946) turned the problem under debate around and, for the 
first time, looked at it in a constructive way. Instead of 
making dogmatic assertions that it is or is not legitimate 
to use probability in the sense of degree of plausibility 
rather than frequency, he had the good sense to ask a question: 
Is it possible to construct a consistent set of mathematical 
rules for carrying out plausible, rather than deductive, 
·reasoning? He found that, if we try to represent degrees of 
plausibility by real numbers, then the conditions of consistency 
can be stated in the form of functional equations, whose general 
solutions can be found. The results were: out of all possible 
monotonic functions which might in principle serve our purpose, 
there exists a particular scale on which to measure degrees of 
plausibility which we henceforth call probability, with par­
ticularly simple properties. Denoting various propositions by 
A, B, etc., and using the notation, AB::: "Both A and B are true," 
A::: "A is false," p(AIB) :::probability of A given B, the con­
sistent rules of combination take the form of the familiar 
product rule and sum rule: 

p(ABlc) p(AIBC) p(BIC) 

p(AIB) + p(AIB) = I 

(AB) 

(A9) 

By mathematical transformations we can, of course, alter the 
form of these rules; but what Cox proved was that any altera­
tion of their content will enable us to exhibit inconsistencies 
(in the sense that two methods of calculation, each permitted 
by the rules, will yield different results). But (AB) , (A9) 
are, in fact, the basic rules of probability theory; allother 
equations needed for applications can be derived from them. 
Thus, Cox proved that any method of inference in which we 
represent degrees of plausibility by real numbacs, is neces­
sarily either equivalent to Laplace's, or inconsistent. 

For me, this was exactly the argument needed to clinch 
matters; for Cox's analysis makes no reference whatsoever to 
frequencies or random experiments. From the day I first read 
Cox's article I have never for a moment doubted the basic 
soundness and inevitability of the Laplace-Jeffreys methods, 
while recognizing that the theory needs further development 
to extend its range of applicability. 

Indeed, such further development was started by Jeffreys. 
Recall, in our narrative we left Laplace (or rather, Laplace 
left us) at Eq. (A6), seeing the need but not the means to 
make the transition to (A7), which would open up an enormously 
wider range of applications for Bayesian inference. Since the 
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function of the prior probabilities is to describe the prior 
information, we need to develop new or more general principles 
for determination of those priors by logical analysis of prior 
information when it does not consist of frequencies; just what 
should have been the next order of business after Laplace. 

Recognizing this, Jeffreys resumed the constructive develop­
ment of this theory at the point where Laplace had left off. 
If we need to convert prior information into a prior proba­
bility assignment, perhaps we should start at the beginning 
and learn first how to express "complete ignorance" of a 
continuously variable parameter, where Bernoulli's principle 
will not apply. 

Bayes and Laplace had used uniform prior densities, as the 
most obvious analog of the Bernoulli uniform discrete assign­
ment. But it was clear: even in the time of Laplace, that this 
rule is ambiguous because it is not invariant under a change 
of parameters. A uniform density for e does not correspond to 
a uniform density for CI. = e 3; or S = log e; so for which choice 
of parameters should the uniform density apply? 

In the first (1939) Edition of his book, Jeffreys made a 
tentative start on this problem, in which he found his now 
famous rule: to express ignorance of a scale parameter a, 
whose possible domain is 0 < 0<00, assign uniform prior density 
to its logarithm: P(da I I) = do/a. The first arguments advanced 
in support of this rule were not particularly clear or con­
vincing to others (including this writer). But other desid­
erata were found; and we have now succeeded in proving via 
the integral equations of marginalization theory (Jaynes, 1979) 
that Jeffreys' prior do/a is, in fact, uniquely determined as 
the only prior for a scale parameter that is "completely un­
informative" in the sense that it leads us to the same conclu­
sions about other parameters e as if the parameter a had been 
removed from the model [see Eq. (C33) below]. 

In the second (1948) 1dition, Jeffreys gave a much more 
general "Invariance Theory" for determining ignorance priors, 
which showed amazing prevision by coning within a hair's 
breadth of discovering both the principles of Maximum Entropy 
and Transformation Groups. He wrote down the actual entropy 
expression (note the date!), but then used it only to generate 
a quadratic form by expansion about its peak. Jeffreys' in­
variance theory is still of great importance today, and the 
question of its relation to other methods that have been 
proposed is still under study. 

In the meantime, what had been happening in the sampling 
theory camp? The culmination of this approach came in the 
late 1940's when for the first time, Abraham Wald succeeded 
in removing all ad hockeries and presenting general rules of 
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conduct for making decisions in the face of uncertainty, that 
he proved to be uniquely optimal by certain very simple and 
compelling desiderata of reasonable behavior. But quickly a 
number of people--including I. J. Good (1950), L. J. Savage 
(1954), and the present writer--realized independently that, 
if we just ignore Wald's entirely different vocabulary and 
diametrically opposed philosophy, and look only at the specific 
mathematical steps that were now to be used in solving specific 
problems, they ~ identical with the rules given ~ Laplace 
in the eighteenth century, which generations of statisticians 
had rejected as metaphysical nonsense! 

It is one of those ironies that make the history of science 
so interesting, that the missing Bayes-optimality proofs, which 
Laplace and Jeffreys had failed to supply, were at last found 
inadvertently, while trying to prove the opposite, by an early 
ardent disciple of the von Mises "collective" approach. It is 
also a tribute to Wald's intellectual honesty that he was able 
to recognize this, and in his final work (Wa1d, 1950) he called 
these optimal rules, "Bayes strategies." 

Thus came the "Bayesian Revolution" in statistics, which is 
now all but over. This writer's recent polemics (Jaynes, 1976) 
will probably be one of the last battles waged. Today, most 
active research in statistics is Bayesian, a good deal of it 
directed to the above problem of determining priors by logical 
analysis; and the parts of sampling theory which do not lie in 
ruins are just the ones (such as sufficient statistics and 
sequential analysis) that can be justified in Bayesian terms. 

This history of basic statistical theory, showing how devel­
opments over more than two centuries set the stage naturally 
for the Principle of Maximum Entropy, has been recounted at 
some length because it is unfamiliar to most scientists and 
engineers. Although the second line converging on this prin­
ciple is much better known to this audience, our account can 
be no briefer because there is so much to be unlearned. 

The Second Line: Maxwell, Boltzmann, Gibbs, Shannon. Over the 
past 120 years another line of development was taking place, 
which had astonishingly little contact with the "statistical 
inference" line just described. In the 1850's James Clerk 
Maxwell started the first serious work on the application of 
probability analysis to the kinetic theory of gases. He was 
confronted immediately with the problem of assigning initial 
probabilities to various positions and velocities of molecules. 
To see how he dealt with it, we quote his first (1859) words 
on the problem of finding the probability distribution for 
velocity direction of a spherical molecules after an impact: 
"In order that a collision may take place, the line of motion 
of one of the balls must pass the center of the other at a 
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distance less than the sum of their radii; that is, it must 
pass through a circle whose centre is that of the other ball, 
and radius the sum of the radii of the balls. Within this 
circle every position is equally probable, and therefore --- ." 

Here again, as that necessary first step in a probability 
analysis, Maxwell had to apply the Principle of Indifference; 
in this case to a two-dimensional continuous variable. But 
already at this point we see a new feature. As long as we 
talk about some abstract quantity e without specifying its 
physical meaning, we see no reason why we could not as well 
work with (l = e 3, or e = log e; and there is an unresolved 
ambiguity. But as soon as we learn that our quantity has the 
physical meaning of position within the circular collision 
cross-section, our intuition takes over with a compelling force 
and tells us that the probability of impinging on any particular 
region should be taken proportional to the area of that region; 
and not to the cube of the area, or the logarithm of the area. 
If we toss pennies onto a wooden floor, something inside us 
convinces us that the probability of landing on anyone plank 
should be taken proportional to the width of the plank; and 
not to the cube of the width, or the logarithm of the width. 

In other words, merely knowing the physical meaning of our 
parameters, already constitutes highly relevant prior informa­
tion which our intuition is able to use at once; in favorable 
cases its effect is to give us an inner conviction that there 
is no ambiguity after all in applying the Principle of Indif­
ference. Can we analyze how our intuition does this, extract 
the essence, and express it as a formal mathematical principle 
that might apply in cases where our intuition fails us? This 
problem is not completely solved today, although I believe we 
have made a good start on it in the principle of transforma­
tion groups (Jaynes, 1968, 1973, 1979). Perhaps these remarks 
will encourage others to try their hand at resolving these 
puzzles; this is an area where important new results might 
turn up with comparatively little effort, given the right in­
spiration on how to approach them. 

Maxwell built a lengthy, highly non-trivial, and needless 
to say, successful analysis on the foundation just quoted. 
He was able to predict such things as the equation of state, 
velocity distribution law, diffusion coefficient, viscosity, 
and thermal conductivity of the gas. The case of viscosity 
was particularly interesting because ~mxwell's theory led to 
the prediction that viscosity is independent of density, which 
seemed to contradict common sense. But when the experiments 
were performed, they confirmed Maxwell's prediction; and what 
had seemed a difficulty with his theory became its greatest 
triumph. 
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Enter Boltzmann. So far we have considered only the problem 
of expressing initial ignorance by a probability assignment. 
This is the first fundamental problem, since "complete initial 
ignorance" is the natural and inevitable starting point from 
which to measure our positive knowledge; just as zero is the 
natural and inevitable starting point when we add a column of 
numbers. But in most real problems we do not have initial 
ignorance about the questions to be answered. Indeed, unless 
we had some definite prior knowledge about the parameters to 
be measured or the hypotheses to be tested, we would seldom 
have either the means or the motivation to plan an experiment 
to get more knowledge. But to express positive initial 
knowledge by a probability assignment is just the problem of 
getting from (A6) to (A7), bequeathed to us by Laplace. 

The first step toward finding an explicit solution to this 
problem was made by Boltzmann, although it was stated in very 
different terms at the time. He wanted to find how molecules 
will distribute themselves in a conservative force field (say, 
a gravitational or centrifugal field; or an electric field 
acting on ions). The force acting on a molecule at position 
x is then F = -grad <p, where <p (x) is its potential energy. A 
molecule with mass m, position x, -velocity v thus has energy 
E = t mv 2 + <P(x). We neglect the interaction energy of molecules 
with each other and suppose they are enclosed in a container 
of volume V, whose walls are rigid and impermeable to both 
molecules and heat. But Boltzmann was not completely ~orant 
about how the molecules are distributed, because he knew that 
however they move, the total number N of molecules present can­
not change, and the total energy 

N [1 2 ] E = I: "2 m v. + <p (x . ) 
i=l ~ ~ 

(A10) 

must remain constant. Because of the energy constraint, 
evidently, all positions and velocities are not equally 1ike1~ 

At this point, Boltzmann found it easier to think about 
discrete distributions than continuous ones (a kind of previ­
sion of quantum theory); and so he divided the phase space 
(position-momentum space) available to the molecules into 
discrete cells. In principle, these could be defined in any 
way; but let us think of the k'th cell as being a region Rk 
so small that the energy Ek of a molecule does not vary ap­
preciably within it; but also so large that it can accommodate 
a large number, Nk » 1, of molecules. The cells {Rk, 1:: k:: s} 
are to fill up the accessible phase space (which because of the 
energy constraint has a finite volume) without overlapping. 

The problem is then: given N, E, and <P(x), what is the 
best prediction we can make of the number of Nk of molecules 
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in Rk? In Boltzmann's reasoning at this point, we have the 
beginning of the Principle of Maximum Entropy. He asked first: 
In how many ways could a given set of occupation numbers Nk 
be realized? The answer is the multinomial coefficient 

N! 
W(Nk) = N I N I N I 1· z· ... s· 

This particular distribution will have total energy 
s 

E = k~l Nk Ek 

and of course, the Nk are also constrained by 

N 

(All) 

(AlZ) 

(Al3) 

Now any set {Nk} of occupation numbers for which E, N agree 
with the given information, represents a possible distribution, 
compatible with all that is specified. Out of the millions of 
such possible distributions, which is most likely to be realized? 
Eoltzmann's answer was that the "most probable" distribution 
is the one that can be realized in the greatest number of ways; 
i.e., the one that maximizes (All) subject to the constraints 
(AlZ) , (A13) , if the cells are equally large (phase volume). 

Since the Nk are large, we may use the Stirling approxima­
tion for the factorials, whereupon (All) can be written 

log W (A14) 

The mathematical solution by Lagrange multipliers is straight­
forward, and the result is: the "most probable" value of Nk 
is 

(A15) 

where 

Z(8) :: tl exp (-8Ek) (A16) 

and the parameter 8 is to be chosen so that the energy con­
straint (A12) is satisfied. 

This simple result contains a great deal of physical in­
formation. Let us choose a particular set of cells Rk as 
follows. Divide up the coordinate space V and the velocity 
space into cells Xa. Yb respectively, such that the potential 
and kinetic energies <P(x) , tmv2 do not vary appreciably within 
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them, and take Rk = Xa ® Yb' Then, writing Nk = Nab' 
Boltzmann's prediction of the number of molecules in Xa 
irrespective of their velocity, is from (Al5) 

(AI7) 

where the normalization constant A(S) is determined from 
2:Na =N. This is the famous Boltzmann distribution law. In 
a gravitational field, cp (x) = mgz, it gives the usual "barometric 
formula" for decrease of the atmospheric density with height: 

p(z) = p(O) exp(-Smgz) (AlB) 

Now this can be deduced also from the macroscopic equation of 
state: for one mole, PV=RT, or P(z) = (RT/mNo)p(z), where No 
is Avogadro's number. But hydrostatic equilibrium requires 
-dP/dz = gp(z), which gives on integration, for uniform 
temperature, p(z) = p(O) exp(-No mgz/RT). Comparing with (AI8), 
we find the meaning of the parameter: S = (kT)-l, where T is 
the Kelvin temperature and k = RINo is Boltzmann's constant. 

We can, equally well, sum (AI5) over the space cells Xa and 
find the predicted number of molecules with velocity in the 
cell Yb, irrespective of their position in space; but a far 
more interesting result is contained already in (AI5) without 
this summation. Let us ask, instead; What fraction of the 
molecules in the space cell Xa are predicted to have velocity 
in the cell Yb? This is, from (AI5) and (AI7), 

(A20) 

This is, of course, just the Maxwellian velocity distribution 
law; but with the new and at first sight astonishing feature 
that it is independent of position in space. Even though the 
force field is accelerating and decelerating molecules as they 
move from one region to another, when they arrive at their new 
location they have exactly the same mean square velocity as 
when they started! If this result is correct (as indeed it 
proved to be) it means that a Maxwellian velocity distribution, 
once established, is maintained automatically, without any 
help from collisions, as the molecules move about in any con­
servative force field. 

From Boltzmann's reasoning, then, we get a very unexpected 
and nontrivial dynamical prediction by an analysis that, 
seemingly, ignores the dynamics altogether! This is only the 
first of many such examples where it appears that we are 
"getting something for nothing," the answer coming too easily 
to believe. Poincare, in his essays on "Science and Hethod," 
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felt this paradox very keenly. and wondered how by exploiting 
our ignorance we can make correct predictions in a few lines 
of calculation. that would be quite impossible to obtain if we 
attempted a detailed calculation of the 1023 individual 
trajectories. 

It requires very deep thought to understand why we are not. 
in this argument and others to come. getting something for 
nothing. In fact. Boltzmann's argument does take the dynamics 
into account. but in a very efficient ma~. Information about 
the dynamics entered his equations at two places: (l) the con­
servation of total energy; and (2) the fact that he defined his 
cells in terms of phase volume. which is conserved in the 
dynamical motion (Liouville's theorem). The fact that this was 
enough to predict the correct spatial and velocity distribution 
of the molecules shows that the millions of intricate dynamical 
details that were not taken into account, ~ actually irrele­
vant to the predictions, and would have cancelled out anyway if 
he had taken the trouble to calculate them. 
-- Boltzmann,g-reasoning was super-efficient; far more so than 
he ever realized. Whether by luck or inspiration. he put into 
his equations only the dynamical information that happened to 
be relevant to the questions he was asking. Obviously, itwou1d 
be of some importance to discover the secret of how this come 
about. and to understand it so well that we can exploit it in 
other problems. 

If we can learn how to recognize and remove irrelevant in­
formation at the beginning of a problem, we shall be spared 
having to carry out immense calculations. only to discover at 
the end that practically everything we calculated was irrele­
vant to the question we were asking. And that is exactly what 
we are after by applying Information Theory [actually. the 
secret was revealed in my second paper (Jaynes, 1957b); but to 
the best of my knowledge no other person has yet noticed it 
there; so I will explain it again in Section D below. The 
point is that Boltzmann was asking only questions about experi­
mentally reproducible equilibrium properties]. 

In Boltzmann's "method of the most probable distribution," 
we have already the essential mathematical content of the 
Principle of Maximum Entropy. But in spite of the conventional 
name, it did not really involve probability. Boltzmann was not 
trying to calculate a probability distribution; he was estimating 
some physically real occupation numbers Nk, by a criterion 
(value of W) that counts the number of real physical possibili­
ties; a definite number that has nothing to do with anybody's 
state of knowledge. The transition from this to our present 
more abstract Principle of Maximum Entropy, although mathemat­
ically trivial, was so difficult conceptually that it required 
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almost another Century to bring about. In fact, this required 
three more steps and even today the development of irreversible 
Statistical Mechanics is being held up as much by conceptual 
difficulties as by mathematical ones. 

Enter Gibbs. Curiously, the ideas that we associate today with 
the name of Gibbs were stated briefly in an early work of Boltz­
mann (1871); but were not pursued as Boltzmann became occupied 
with his more specialized H-theorem. Further development of 
the general theory was therefore left to Gibbs (1902). The 
Boltzmann argument just given will not work when the molecules 
have appreciable interactions, since then the total energy can­
not be written in the additive form (A12). So we go to a much 
more abstract picture. Whereas the preceding argument was 
applied to an actually existing large collection of molecules, 
we now let the entire macroscopic system of interest become, in 
effect, a "molecule," and imagine a large collection of copies 
of it. 

This idea, and even the term "phase" to stand for the col­
lection of all coordinates and momenta, appears also in a work 
of Maxwell (1876). Therefore, when Gibbs adopted this notion, 
which he called an "ensemble," it- was not, as is apparently 
thought by those who use the term "Gibbs ensemble," an innova­
tion on his part. He used ensemble language rather as a con­
cession to an already established custom. The idea became as­
sociated later with the von Mises "Kollektiv" but was actually 
much older, dating back to Venn (1866); and Fechner's book 
Kollektivmasslehre appeared in 1897. 

It is important for our purposes to appreciate this little 
historical fact and to note that, far from having invented the 
notion of an ensemble, Gibbs himself (loc cit., p. 17) de­
emphasized its importance. We can detect a hint of cynicism 
in his words when he states: "It is in fact customary in the 
discussion of probabilities to describe anything which is im­
perfectly known as something taken at random from a great number 
of things which are completely described." He continues that, 
if we prefer to avoid any reference to an ensemble of systems, 
we may recognize that we are merely talking about "the proba­
bility that the phase of a system falls within certain limits 
at a certain time ---." 

In other words, even in 1902 it was customary to talk about 
a probability as if it were a frequency; even if it is a 
frequency only in an imaginary ad hoc collection invented just 
for that purpose. Of course, any probability whatsoever can be 
thought of in this way if one wishes to; but Gibbs recognized 
that in fact we are only describing our imperfect knowledge 
about a single system. 
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The reason it is important to appreciate this is that we 
then understand Gibbs' later treatment of several topics, one 
of which had been thought to be a serious omission on his part. 
If we are describing only a state of knowledge about a single 
system, then clearly there can be nothing physically real about 
frequencies in the ensemble; and it makes no sense to ask, 
"which ensemble is the correct one?" In other words: different 
ensembles are not in 1:1 correspondence with different physical 
situations; they correspond only to different states of knowledge 
about a single physical situation. Gibbs understood this 
clearly; and that, I suggest, is the reason why he does not 
say a word about ergodic theorems, or hypotheses, but instead 
gives a totally different reason for his choice of the canonkal 
ensembles. 

Technical details of Gibbs' work will be deferred to Sec. D 
below, where we generalize his algorithm. Suffice it to say 
here that Gibbs introduces his canonical ensemble, and works 
out its properties, without explaining why he chooses that 
particular distribution. Only in Chap. XII, after its proper­
ties--including its maximum entropy property--have been set 
forth, does he note that the distribution with the minimum 
expectation of log p (i.e., maximum entropy) for a prescribed 
distribution of the constants of the motion has certain desirable 
properties. In fact, this criterion suffices to generate all 
the ensembles--canonical, grand canonical, microcanonical, and 
rotational--discussed by Gibbs. 

This is. clearly, just a generalized fonn of the Principle of 
Indifference. The possibility of a different justification in 
the frequency sense, via ergodic theorems, had been discussed 
by Maxwell, Boltzmann, and others for some thirty years; as 
noted in more detail before (Jaynes, 1967) if Gibbs thought 
that any such further justification was needed, it is certainly 
curious that he neglected to mention it. 

After Gibbs' work, however, the frequency view of probability 
took such absolute control over mens' minds that the ensemble 
became something physically real, to the extent that the fol­
lowing phraseology appears. Thennal equilibrium is defined as 
the situation where the system is "in a canonical distribution." 
Assignment of uniform prior probabilities was considered to be 
not a mere description of a state of knowledge, but a basic 
postulate of physical fact, justified by the agreement of our 
predictions with experiment. 

In my student days this was the kind of language alwaysuse~ 
although it seemed to me absurd; the individual system is not 
"in a distribution;" it is in a state. The experiments, more­
over, do not verify "equal ~ prior1Probabilities" or "random 
~ priori phases;" they verify only the predicted macroscopic 
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equation of state, heat capacity, etc., and the predictions for 
these would have been the same for many ensembles, uniform or 
nonuniform microscopically. Therefore, the reason for the 
success of Statistical Mechanics must be altogether different 
from our having found the "correct" ensemble. 

Intuitively, it must be true that use of the canonicalensem­
ble, while sufficient to predict thermal equilibrium properties, 
is very far from necessary; in some sense, "almost every"member 
of a very wide class of ensembles would all lead to the same 
predictions for the particular macroscopic quantities actually 
observed. But I did not have any hint as to exactly what that 
class is; and needless to say, had not the faintest success in 
persuading anyone else of such heretical views. 

We stress that, on this matter of the exact status of ensem­
bles, you have to read Gibbs' own words in order to know accu­
rately what his position was. For example, Ter Haar (1954, 
p. 128) tells us that "Gibbs introduced ensembles in order to 
use them for statistical considerations rather than to illus­
trate the behavior of physical systems ---." But Gibbs himself 
(loc. cit. p. 150) says, "--- our ensembles are chosen to 
illustrate the probabilities of events in the real world ---." 

It might be thought that such questions are only matters of 
personal taste, and a scientist ought to occupy himself with 
more serious things. But one's personal taste determines which 
research problems he believes to be the important ones in need 
of attention; and the total domination by the frequency view 
caused all attention to be directed instead to the aforemen­
tioned "ergodic" problems; to justify the methods of Statistical 
Mechanics by proving from the dynamic equations of motion that 
the canonical ensemble correctly represents the frequencies 
with which, over a long time, an individual system coupled to 
a heat bath, finds itself in various states. 

This problem metamorphosed from the original conception of 
Boltzmann and Maxwell that the phase point of an isolated 
(system + heat bath) ultimately passes through every state 
compatible with the total energy, to the statement that the 
time average of any phase function f(p,q) for a single system 
is equal to the ensemble average of f; and this statement in 
turn was reduced (by von Neumann and Birkhoff in the 1930's) 
to the condition of metric transitivity (i.e., the full 
phase space shall have no subspace of positive measure that is 
invariant under the motion). But here things become extremely 
complicated, and there is little further progress. For exampl~ 
even if one proves that in a certain sense "almost every" con­
tinuous flow is metrically transitive, one would still have to 
prove that the particular flows generated by a Hamiltonian are 
not exceptions. 
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Such a proof certainly cannot be given in generality, since 
counter-examples are known. One such is worth noting: in the 
writer's "Neoclassical Theory" of electrodynamics (Jaynes, 1973) 
we write a complete classical Hamiltonian system of equations 
for an atom (represented as a set of harmonic oscillators) 
interacting with light. But we find [loco cit. Eq. (52)] that 
not only is the total energy a constant of the motion, the 
quantity EnWn/vn is conserved, where Wn , vn are the energy and 
frequency of the n'th normal mode of oscillation of the atom. 

Setting this new constant of the motion equal to Planck's 
constant h, we have a classical derivation of the E = hv law 
usually associated with quantum theory! Indeed, quantum theory 
simply takes this as a basic empirically justified postulate; 
and never makes any attempt to explain why such a relation 
exists. In Neoclassical Theory it is explained as a consequence 
of a new uniform integral of the motion, of a type never suspected 
in classical Statistical Mechanics. Because of it, for example, 
there is no Liouville theorem in the "action shell" subspace of 
states actually accessible to the system, and statistical proper­
ties of the motion are qualitatively different from those of the 
usual classical Statistical Mechanics. But all this emerges 
from a simple, innocent-looking classical Hamiltonian, involviqg 
only harmonic oscillators with a 'particular coupling law (linear 
in the field oscillators, bilinear in the atom oscillators). 
Having seen this example, who can be sure that the same thing 
is not happening more generally? 

This was recognized by Truesdell (1960) in a work that I 
recommend as by far the clearest exposition, carried to the 
most far-reaching physical results, of any discussion of ergodic 
theory. He comes up against, "--- an old problem, one of the 
ugliest which the student of statistical mechanics must face: 
What can be said about the integrals of a dynamical system?" 
The answer is, "Practically nothing." In view of such simple 
counter-examples as that provided by Neoclassical theory, con­
fident statements to the effect that real systems are almost 
certainly ergodic, seem like so much whistling in the dark. 

Nevertheless, ergodic theory considered as a topic in its 
own right, does contain some important results. Unlike some 
others, Truesdell does not confuse the issue by trying to mix 
up probability notions and dynamical ones. Instead, he states 
unequivocally that his purpose is to calculate time averages. 
This is a definite, well posed dynamical problem having nothing 
to do with any probability considerations; and Truesdell pro­
ceeds to show, in greater depth than any other writer known to 
me, exactly what implications the Birkhoff theorem has for this 
question. Since we cannot prove, and in view of counter­
examples have no valid reason to expect, that the flow is 
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metrically transitive over the entire phase space S, the orieinal . 
hopes of Boltzmann and Maxwell must remain unrealized; but in 
return for this we get something far more valuable, which just 
misses being noticed. 

The flow will be metrically transitive on some (unknown) 
sub-space S' determined by the (unknown) uniform integrals of 
the motion; and the time average of any phase function f(p,q) 
will, by the Birkhoff theorem, be equal to its phase space 
average over that subspace. Furthermore, the fraction of time 
that the system spends in any particular region sin S' is equal 
to the ratio of phase volumes: o(s)/o(S'). 

These are just the properties that Boltzmann and Maxwell 
wanted; but they apply only to some subspace S' which cannot 
be known until we have determined all the uniform integrals 
of the motion. That is the purely dynamical theorem; and I 
think that if today we could resurrect Maxwell and tell it to 
him, his reaction would be: "Of course, that is obviously 
right and it is just what I was trying to say. The trouble 
was that I was groping for words, because in my day we did not 
have the mathematical vocabulary, arising out of measure theory 
and the theory of transformation groups, that is needed to state 
it precisely." 

That more valuable result is tantalizingly close when 
Truesdell considers "--- the idea that however many integrals 
a system has, generally we shall not know the value of any but 
the energy, so we should assign equal ~ priori probability to 
the possible values of the rest, which amounts to disregarding 
the rest of them. Now an idea of this sort, by itself, is 
just unsound." It is indeed unsound, in the context of Truesdell's 
purpose to calculate correct time averages from the dynamics; 
for those time averages must in general depend on all the 
integrals of the motion, whether or not we happen to know about 
them. 

The point that he just fails to see is that if, nevertheless, 
we only have the courage to go ahead and do the calculation he 
rejects as unsound, we can then compare its results with ex­
perimental time averages. If they disagree, then we have 
obtained experimental evidence of the existence of new integrals 
of the motion, and the nature of the deviation gives a clue as 
to what they may be. So, if our calculation should indeed prove 
to be "unsound," the result would be far more valuable to physics 
than a "successful" calculation! 

To all this, however, one proviso must be added. Even if one 
could prove transitivity for the entire phase space, this result 
would not explain the success of equilibrium statistical me­
chanics, for reasons expounded in great detail before (Jaynes, 
1967). These theorems apply only to time averages over enormous 
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(strictly, infinite) time; and an average over a finite time T 
will approach its limiting value for T -+ 00 only if T is so long 
that the phase point of the system has explored a "representa­
tive sample" of the accessible phase volume. But the very 
existence of time-dependent irreversible processes shows that 
the "representative sampling time" must be very long compared 
to the time in which our measurements are made. So the equality 
of phase space averages with infinite time averages fails, on 
two counts, to explain the equality of canonical ensemble 
averages and experimental values. We can conclude only that 
the "ergodic" attempts to justify Gibbs' statistical mechanics 
foundered not only on impossibly difficult technical problems 
of integrals of the motion; but also on a basic logical defect 
arising from the impossibly long averaging times. 

Enter Shannon. It was the work of Claude Shannon (1948) on 
Information Theory which showed us the way out of this dilemma. 
Like all major advances, it had many precursors, whose full 
significance could be seen only later. One finds them not only 
in the work of Boltzmann and Gibbs just noted, but also in that 
of G. N. Lewis, L. Szilard, J. von Neumann, and W. Elsasser, to 
mention only the most obvious examples; 

Shannon's articles appeared just at the time when I was taking 
a course in Statistical Mechanics from Professor EugeneWigner; 
and my mind was occupied with the difficulties, which he always 
took care to stress, faced by the theory at that time; the 
short sketch above notes only a few of them. Reading Shannon 
filled me with the same admiration that all readers felt, for 
the beauty and importance of the material; but also with a 
growing uneasiness about its meaning. In a communication 
process, the message Mi is assigned probability Pi' and the 
entropy H = -EPi log Pi is a measure of "information." But 
whose information? It seems at first that if information is 
being "sent," it must be possessed by the sender. But the 
sender knows perfectly well which message he wants to send; 
what could it possibly mean to speak of the probability that 
he will send message Mi? 

We take a step in the direction of making sense out of this 
if we suppose that H measures, not the information of the sender, 
but the ignorance of the receiver, that is removed by receipt 
of the message. Indeed, many subsequent commentators appear 
to adopt this interpretation. Shannon, however, proceeds to 
use n to determine the channel capacity C required to transmit 
the message at a given rate. But whether a channel can or 
cannot transmit message M in time T obviously depends only on 
properties of the message and the channe1--and not at all on 
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the prior ignorance of the receiver! So this interpretation 
will not work either. 

Agonizing over this, I was driven to conclude that the dif­
ferent messages considered must be the set of all those that 
will, or might be, sent over the channel during its useful 
life; and therefore Shannon's H measures the degree of igporance 
of the communication engineer when he designs the technical 
equipment in the channel. Such a viewpoint would, to say the 
least, seem natural to an engineer employed by the Bell Tele­
phone Laboratories--yet it is curious that nowhere does Shannon 
see fit to tell the reader explicitly whose state of knowledge 
he is considering, although the whole content of the theory 
depends crucially on this. 

It is the obvious importance of Shannon's theorems that 
first commands our attention and respect; but as I realized 
only later, it was just his vagueness on these conceptual 
questions--allowing every reader to interpret the work in his 
own way--that made Shannon's writings, like those of Niels 
Bohr, so eminently suited to become the Scriptures of a new 
Religion, as they so quickly did in both cases. 

Of course, we do not for a moment suggest that Shannon was 
deliberately vague; indeed, on ot~er matters few writers have 
achieved such clarity and precision. Rather, I think, a 
certain amount of caution was forced on him by a growing para­
dox that Information Theory generates within the milieu of 
probability theory as it was then conceived--a paradox only 
vaguely sensed by those who had been taught only the strict 
frequency definition of probability, and clearly visible only 
to those familiar with the work of Jeffreys and Cox. What do 
the probabilities Pi mean? Do they stand for the frequencies 
with which the different messages are sent? 

Think, for a moment, about the last telegram you sent or 
received. If the Western Union Company remains in business 
for another ten thousand years, how many times do you think 
j.t will be asked to transmit that identical message? 

The situation here is not really different from that in 
statistical mechanics, where our first job is to assign proba­
bilities to the various possible quantum states of a system. 
In both cases the number of possibilities is so great that a 
time millions of times the age of the universe would not suf­
fice to realize all of them. But it seems to be much easier 
to think clearly about messages than quantum states. Here at 
last, it seemed to me, was an example where the absurdity of 
a frequency interpretation is so obvious that no one can fail 
to see it; but the usefulness of the probability approach was 
equally clear. The probabilities assigned to individual mes­
sages are not measurable frequencies; they are only a means of 



WHERE DO WE STAND ON MAXIMUM ENTROPY? 235 

describing a state of knowledge; just the original sense in 
which Laplace and Jeffreys interpreted a probability distribu­
tion. 

The reason for the vagueness is then apparent; to a person 
who has been trained to think of probability only in the sense 
of frequency in a random experiment (as was surely the case for 
anyone educated at M.I.T. in the 1930's!), the idea that a 
probability distribution represents a mere state of knowledge 
is strictly taboo. A probability distribution would not be 
"objective" unless it represents a real physical situation. 
The question: "Whose information are we describing?" doesn't 
make sense, because the notion of a probability for a person 
with ~ certain state of knowledge just doesn't exist-:- So 
Shannon is forced to do the most careful egg-walking, speaking 
of a probability as if it were a real, measurable frequency, 
while using it in a way that shows clearly that it is not. 

For example, Shannon considers the entropies HI calculated 
from single letter frequencies, H2 from digram frequencies, 
H3 from trigram frequencies, etc., as a sequence of successive 
approximations to the "true" entropy of the source, which is 
H'" lim Hn for n'" 00. Application of his theorems presupposes 
that all this is known. But suppose we try to determine the 
"true" ten-gram frequencies of English text. The number of 
different ten-grams is about 1.4xl014; to determine them all 
to something like five percent accuracy, we should need a 
sample of English text containing about 10 17 ten-grams. That 
is thousands of times greater than all the English text in the 
Library of Congress, and indeed much greater than all the 
English text recorded since the invention of printing. 

If we had overcome that difficulty, and could measure those 
ten-gram frequencies (by scanning the entire text) at the rate 
of 1000 per second, it would require about 4400 years to take 
the data; and to record it on paper at a rate of 1000 entries 
per sheet, would require a stack of paper about 7000 miles 
high. Evidently, then, we are destined never to know the 
"true" entropy of the English language; and in the application 
of Shannon's theorems to real communication systems we shall 
have to accept some compromise. 

Now, our story reaches its climax. Shannon discusses the 
problem of encoding a message, say English text, into binary 
digits in the most efficient way. The essential step is to 
assign probabilities to each of the conceivable messages in 
a way which incorporates the prior knowledge we have about the 
structure of English. Having this probability assignment, a 
construction found independently by Shannon and R. M. Fano 
yields the encoding rules which minimize the expected trans­
mission time of a message. 
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But, as noted, we shall never know the "true" probabilities 
of English messages; and so Shannon suggests the principle by 
which we may construct the distribution Pi actually used for 
applications: " __ - we may chC'ose to use some of our statis­
tical knowledge of English in constructing a code, but not all 
of it. In such a case we consider the source with the maximum 
entropy subject to the statistical conditions we wish to retain. 
The entropy of this source determines the channel capacity 
which is necessary and sufficient." [emphasis mine]. 

Shannon does not follow up this suggestion with the equations, 
but turns at this point to other matters. But if you start to 
solve this problem of maximizing the entropy subject to certain 
constraints, you will soon discover that you are writing down 
some very familiar equations. The probability distribution 
over messages is just the Gibbs canonical distribution with 
certain parameters. To find the values of the parameters, you 
must evaluate a certain partition function, etc. 

Here was a problem of statistical inference--or what is the 
same thing, statistical decision theory--in which we are to 
decide on the best way of encoding a message, making use of 
certain partial information about the message. The solution 
turns out to be mathematically identical with the Gibbs forma­
lism of statistical mechanics, which physicists had been trying, 
long and unsuccessfully, to justify in an entirely different 
way. 

The conclusion, it seemed to me, was inescapable. We can 
have our justification for the rules of statistical mechanics, 
in a way that is incomparably simpler than anyone had thought 
possible, if we are willing to pay the price. The price is 
simply that we must loosen the connections between probability 
and frequency, by returning to the original viewpoint of 
Bernoulli and Laplace. The only new feature is that their 
Principle of Insufficient Reason is now generalized to the 
Principle of Maximum Entropy. Once this is accepted, the 
general formalism of statistical mechanics--partitionfunctions, 
grand canonical ensemble, laws of thermodynamics, fluctuation 
laws--can be derived in a few lines without wasting a minute 
on ergodic theory. The pedagogical implications are clear. 

The price we have paid for this simplification is that we 
cannot interpret the canonical distribution as giving the 
frequencies with which a system goes into the various states. 
But nobody had ever justified or needed that interpretation 
anyway. In recognizing that the canonical distribution repre­
sents only our state of knowledge when we have certain partial 
information derived from macroscopic measurements, we are not 
losing anything we had before, but only frankly admitting the 
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situation that has always existed; and indeed, which Gibbs had 
recognized. 

On the other hand, what we have gained by this change in 
interpretation is far more than we bargained for. Even if one 
had been completely successful in proving ergodic theorems, and 
had continued to ignore the difficulty about length of time 
over which the averages have to be taken, this still would have 
given a justification for the methods of Gibbs only in the 
equilibrium case. But the principle of maximum entropy, being 
entirely independent of the equations of motion, contains no 
such restriction. If one grants that it represents a valid 
method of reasoning at all, one must grant that it gives us 
also the 10ng-hoped-for general formalism for treatment of 
irreversible processes! 

The last statement above breaks into new ground, and claims 
for statistical mechanics based on Information Theory, a far 
wider range of validity and applicability than was ever claimed 
for conventional statistical mechanics. Just for that reason, 
the issue is no longer one of mere philosophical preference 
for one viewpoint or another; the issue is now one of definite 
mathematical fact. For the assertion just made can be put to 
the test by carrying out specific calculations, and will prove 
to be either right or wrong. 

Some Personal Recollections. All this was clear to me by 1951; 
nevertheless, no attempt at publication was made for another 
five years. There were technical problems of extending the 
formalism to continuous distributions and the density matrix, 
that were not solved for many years; but the reason for the 
initial delay was quite different. 

In the Summer of 1951, Professor G. Uh1enbeck gave his 
famous course on Statistical Mechanics at Stanford, and fol­
lowing the lectures I had many conversations with him, over 
lunch, about the foundations of the theory and current progress 
on it. I had expected, naively, that he would be enthusiastic 
about Shannon's work, and as eager as I to exploit these ideas 
for Statistical Mechanics. Instead, he seemed to think that 
the basic problems were, in principle, solved by the then 
recent work of Bogoliubov and van Hove (which seemed to me 
filling in details, but not touching at all on the real basic 
problems)--and adamantly rejected all suggestions that there 
is any connection between entropy and information. 

His initial reaction to my remarks was exactly like my 
initial reaction to Shannon's: "Whose information?" His 
position, which I never succeeded in shaking one iota, was: 
"Entropy cannot be a measure of 'amount of ignorance,' because 
different people have different amounts of ignorance; entropy 
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is a definite physical quantity that can be measured in the 
laboratory with thermometers and calorimeters." Although the 
answer to this was clear in my own mind, I was unable, at the 
time, to convey that answer to him. In trying to explain a 
new idea I was, like Maxwell, groping for words because the 
way of thinking and habits of language then current had to be 
broken before I could express a different way of thinking. 

Today, it se~ls trivially easy to answer Professor Uhlen­
beck's objection as follows: "Certainly, different people 
have different amounts of ignorance. The entropy of a thermo­
dynamic system is a measure of the degree of ignorance of a 
person whose sole knowledge about its microstate consists of 
the values of the macroscopic quantities Xi which define its 
thermodynamic state. This is a completely 'objective' quantit~ 
in the sense that it is a function only of the Xi, and does not 
depend on anybody's personality. There is then no reason why 
it cannot be measured in the laboratory." 

It was my total inability to communicate this argument to 
Professor Uhlenbeck that caused me to spend another five years 
thinking over these matters, trying to write down my thoughts 
more clearly and explicitly, and making sure in my own mind 
that I could answer all the objections that Uhlenbeck and 
others had raised. Finally, in the Summer of 1956 I collected 
this into two papers, sending the first off to the Physical 
Review on August 29. 

Now another irony takes place; it is left to the Reader to 
guess to whom the Editor (S. Goudsmit) sent it for refereeing. 
That Unknown Referee's comments (now framed on my office wall 
as an encouragement to young men who today have to fight for 
new ideas against an Establishment that wants only new mathe­
matics) opine that the work is clearly written, but since it 
expounds only a certain philosophy of interpretation and has 
no application whatsoever in Physics, it is out of place in a 
Physics journal. But a second referee thought differently, 
and so the papers were accepted after all, appearing in 1957. 
Within a year there were over 2000 requests for reprints. 

Needless to say, my own understanding of the technical 
problems continued to evolve for many years afterward. A 
schoolboy, having just learned the rules of arithmetic, does 
not see immediately how to apply them to the extraction of 
cube roots, although he has· in his grasp all the principles 
needed for this. Similarly, I did not see how to set down the 
explicit equations for irreversible processes because I simply 
could not believe that the solution to such a complicated 
problem could be as simple as the Maximum Entropy Principle 
was giving; and spent six more years (1956-1962) trying to 
mutilate the principle by grafting new and more complicated 
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rococo embellishments onto it. In my Brandeis lectures of 1962, 
tongue and pen somehow managed to state the right rule [Eq. 
(50)]; but the inner mind did not fully assent; it still seemed 
like getting something for nothing. 

The final breakthrough came in the Christmas vacation period 
of 1962 when, after all else had failed, I finally had the 
courage to sit down and work out all the details of the calcu­
lations that result from using only the Maximum Entropy Prin­
ciple; and nothing else. Within three days the new formalism 
was in hand, masses of the known correct results of Onsager, 
Wiener, Kirkwood, Callen, Kubo, Mori, MacLennon, were pouring 
out as special cases, just as fast as I could write them down; 
and it was clear that this was it. Two months later, my 
students were the first to have assigned homework problems to 
predict irreversible processes by solving Wiener-Hopf integral 
equations. 

As it turned out, no more principles were needed beyond 
those stated in my first paper; one has merely to take them 
absolutely literally and ~ them, putting into the equations 
the macroscopic information that one does, in fact, have about 
a nonequilibrium state; and all else follows inevitably. 

From this the reader will understand why I have considerable 
sympathy for those who today have difficulty in accepting the 
Principle of Maximum Entropy, because (1) the results seem to 
come too easily to believe; and (2) it seems at first glanceas 
if the dynamics has been ignored. In fact, I struggled for 
eleven years with exactly the same feeling, before seeing 
clearly not only why, but also in detail how the formalism is 
able to function so efficiently. 

The point is that we are not ignoring the dynamics, and we 
are not getting something for nothing, because we are asking 
of the formalism only some extremely simple questions; we are 
asking only for predictions of experimentally reproducible 
things; and for these all circumstances that are not under the 
experimenter's control must, of necessity, be irrelevant. 

If certain macroscopically controlled conditions are found, 
in the laboratory, to be sufficient to determine a reproducible 
outcome, then it must follow that information about those macro­
scopic conditions tells us everything about the microscopic 
state that is relevant for theoretical prediction of that out­
come. It may seem at first "unsound" to assign equal ~ priori 
probabilities to all other details, as the Maximum Entropy 
PrinCiple does; but in fact we are assigning uniform probabili­
ties only to details that are irrelevant for questions about 
reproducible phenomena. 

To assume further information by putting some additional 
fine-grained structure into our ensembles would, in all 
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probability, not lead to incorrect predictions; it would only 
force us to calculate intricate details that would, in the end, 
cancel out of our final predictions. Solution by the Maximum 
Entropy Principle is so unbelievably simple just because it 
eliminates those irrelevant details right at the beginning of 
the calculation by averaging over them. 

To discover this argument requires only that one think, very 
carefully, about why Boltzmann's method of the most probable 
distribution was able to predict the correct spatial and veloc­
ity distribution of the molecules; and this could have been 
done at any time in the past 100 years. Whether or not one 
wishes to recognize it, this--and not ergodic properties--is 
the real reason why all Statistical Mechanics works. But once 
the argument is understood, it is clear that it applies equally 
well whether the macroscopic state is equilibrium or non­
equilibrium, and whether the observed phenomenon is reversible 
or irreversible. 

I hope that this historical account will also convey to the 
reader that the Principle of Maximum Entropy, although a power­
ful tool, is hardly a radical innovation. Its philosophy was 
clearly foreshadowed by Laplace and Jeffreys; its mathematics 
by Boltzmann and Gibbs. 

B. Present Features and Applications. 
Let us set down, for reference, a bit of the basic Haximum 
Entropy formalism for the finite discrete case, putting off 
generalizations until they are needed. There are n different 
possibilities, which would be distinguished adequately by a 
single index (i = 1,2, •.. ,n). Nevertheless we find it helpful, 
both for notation and for the applications we have in mind, to 
introduce in addition a real variable x, which can take on the 
discrete values (xi' I ~ i :: n), defined in any way and not neces­
sarily all distinct. If we have certain information I about x, 
the problem is to represent this by a probability distribution 
{Pi} which has maximum entropy while agreeing with I. 

Clearly, such a problem cannot be well-posed for arbitrary 
information; I must be such that, given any proposed distribu­
tion {Pi}, we can determine unambiguously whether I does or 
does not agree with {Pi}. Such information will be called 
testable. For example, consider: 

II - "It is certain that tanh x < 0.7." 

12 - "There is at least a 90% probability that tanh x < 0.7." 

13 - "The mean value of tanh x is 0.675." 
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14 - "The mean value of tanh x is probably less than 0.7." 

IS - "There is some reason to believe that tanh x = 0.675." 

Statements II' 12, 13 are testable, and may be used as con­
straints in maximizing the entropy. 14 and IS, although 
clearly relevant to inference about x, are too vague to be 
testable, and we have at present no formal principle by which 
such information can be used in a mathematical theory. How­
ever, the fact that our intuitive common sense does make use 
of nontestable information suggests that new principles for 
this, as yet undiscovered, must exist. 

Since n is finite, the entropy has an absolute maximum value 
log n, and any constraint can only lower this. If we think of 
the {Pi} as cartesian coordinates of a point P in an n-dimensional 
space, P is constrained by Pi ~ 0, ~Pi = 1 to lie on a domain D 
which is a "triangular" segment of an (n-l)-dimensional hyper­
plane. On D the entropy varies continuously, taking on all 
values in 0 < H < log n and reaching its absolute maximum at the 
center. Any testable information will restrict P to some sub­
region D' of D, and clearly the entropy has some least upper 
bound H ~ log n on D'. So the maximum entropy problem must 
have a solution if D' is a closed set. -

There may be more than one solution: for example, the in­
formation 16 == "The entropy of the distribution {Pi} is not 
greater than log(n-l)" is clearly testable, and if n> 2 it 
yields an infinite number of solutions. Furthermore, strictly 
speaking, if D' is an open set there may not be any solution, 
the upper bound being approached but not actually reached on 
D'. Such a case is generated by 17 == "pi+p~<n-~" However, 
since we are concerned with physical problems where the dis­
tinction between open and closed sets cannot matter, we would 
accept a point on the closure of D' (in this example, on its 
boundary) as a valid solution, although corresponding strictly 
only to IS == "pi + p~ ::: n- 2 ." 

But these considerations are mathematical niceties that one 
has to mention only because he will be criticized if he does 
not. In the real applications that matter, we have not yet 
found a case which does not have a unique solution. 

In principle, every different kind of testable information 
will generate a different kind of mathematical problem. But 
there is one important class of problems for which the general 
solution was given once and for all, by Gibbs. If the con­
straints consist of specifying mean values of certain functions 
{fl(X),f2(x), ••• ,fm(x)}: 



242 E. T. JAYNES 

1 < k < m (Bl) 

where {Fk}are numbers given in the statement of the problem, 
then if m < n, entropy maximization is a standard variational 
problem solvable by stationarity using the Lagrange multiplier 
technique. It has the formal solution: 

Pi = (A 1 A) eXP[-Alfl(xi ) - •.• - Amfm(Xi )] 
Z 1'" m 

where 

(B2) 

(B3) 

is the partition function and {Ak} are the Lagrange multipliers, 
which are chosen so as to satisfy the constraints (Bl). This 
is the case if 

d - - log Z 
dAk 

(B4) 

a set of m simultaneous equations for m unknowns. The value 
of the entropy maximum then attained is, as noted in my 
reminiscences, a function only of the given data: 

(BS) 

and if this function were known, the explicit solution of (B4) 
would be 

1 < k < m (B6) 

Given this distribution, the best prediction we can make (in 
the sense of minimizing the expected square of the error) of 
any quantity q(x), is then 

<q(x» 
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and numerous covariance and reciprocity rules are contained in 
the identity 

(B7) 

[note the special cases q (x) = f j (x), and j = k] • The funct ions 
fk(x) may contain also some parameters aj: 

(which in physical applications might have the meaning of volume, 
magnetic field intensity, angular velocity, etc.); and we have 
an important variational property; if we make an arbitrary 
small change in all the data of the problem {OFk,oar }, we may 
compare two slightly different maximum-entropy solutions. The 
difference in their entropies is found, after some calculation, 
to be 

(B8) 

where 

(B9) 

The meaning of this identity has a familiar ring: there is no 
such function as Qk(Fl .•. Fm;al •.• as) because OQk is not an 
exact differential. However, the Lagrange multiplier Ak is an 
integrating factor such that LAk oQk is the exact differential 
of a "state function" S(Fl ••• Fm;al ••• a s ). 

I believe that Clausius would recognize here an interesting 
echo of his work, although we have only stated some general 
rules for plausible reasoning, making no necessary reference to 
physics. This is enough of the bare skeleton of the formalism 
to serve as the basis for some examples and discussion. 

The Brandeis Dice Problem. First, we illustrate the formalism 
by working out the numerical solution to a problem which was 
used in the Introduction to my 1962 Brandeis lectures merely as 
a qualitative illustration of the ideas, but has since become a 
cause celebre as some papers have been written attacking the 
Principle of Maximum Entropy on the grounds of this veryexampl~ 
So a close look at it will take us straight to the heart of some 
of the most common misconceptions and, I hope, give us some 
appreciation of what the Principle of Maximum Entropy does and 
does not (indeed, should not) accomplish for us. 
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When a die is tossed, the number of spots up can have any 
value i in 1 < i < 6. Suppose a die has been tossed N times and 
we are told only that the average number of spots up was not 
3.5 as we might expect from an "honest" die but 4.5. Given 
this information, and nothing else, what probability should 
we assign to i spots on the next toss? The Brandeis lectures 
started with a qualitative graphical discussion of this problem, 
which showed (or so I thought) how ordinary common sense forces 
us to a result with the qualitative properties of the maximum­
entropy solution. 

Let us see what solution the Principle of Maximum Entropy 
gives for this problem, if we interpret the data as imposing 
the mean value constraint 

6 
L i Pi = 4.5 (BlO) 

i=l 
The partition function is 

Z(>..) = Le-H 

i __ >.. 
where x = e 

-1 6 x(l-x) (I-x) 

The constraint (BlO) then becomes 

a 1 - 7x6 + 6x7 
- -- log Z = 4.5 

oA (I-x) (1_x6) 
or 

3x7 - 5x6 + 9x - 7 = 0 

(Bll) 

(B12) 

By computer, the desired root of this is x - 1.44925, which 
yields A = -0.37105, Z ~ 26.66365, log Z = 3.28330. The 
maximum-entropy probabilities are Pi = Z~xi, or 

{P1 ••• P6} ={0.05435, 0.07877, 0.11416,0.16545,0.23977, 0.34749} 
(B13) 

From (B5), the entropy of this distribution is 

s = 1.61358 natural units (Bl.4) 

as compared to the maximum of 10ge6 = 1.79176, corresponding 
to no constraints and a uniform distribution. 

Now, what does this result mean? In the first place, it is 
a distribution {Pr' 1 ~ r ~ 6} on a space of only six points; 
the sample space S of a single trial. Therefore, our result 
as it stands is only a mean of describing a state of knowledge 
about the outcome of a single trial. It represents a state of 
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knowledge in which one has only (1) the enumeration of the six 
possibilities; and (2) the mean value constraint (BIO); and no 
other information. The distribution is "maximally noncommittaf' 
with respect to all other matters; it is as uniform (by the 
criterion of the Shannon information measure) as it can get 
without violating the given constraint. 

Any probability distribution over some sample space S 
enables us to make statements about (i.e., assign probabilities 
to) propositions or events defined within that space. It does 
not--and by its very nature cannot--make statements about any 
event lying outside that space. Therefore, our maximum­
entropy distribution does not, and cannot, make any statement 
about frequencies. 

Anything one says about a frequency in n tosses is a state­
ment about an event in the n-fold extension space Sn = S ® S ® 
.•• ~ S of n tosses, containing 6n points (and of course, in 
any higher space which has Sn as a subspace). 

It may be common practice to jump to the conclusion that a 
probability in one space is the same as a frequency in a dif­
ferent space; and indeed, the level of many expositions is 
such that the distinction is not recognized at all. But the 
first thing one has to learn about using the Principle of 
Maximum Entropy in real problems is that the mathematical 
rules of probability theory must be obeyed strictly; all con­
ceptual sloppiness of this sort must be recognized and expunged 

There is, indeed, a connection between a probability Pi in 
space S and a frequency gi in Sn; but we are justified in using 
only those connections which are deducible from the mathematical 
rules of probability th~ As we shall see in connection 
with fluctuation theory, some common attempts to identify 
probability and frequency actually stand in conflict with the 
rules of probability theory. 

Probability and Frequency. To derive the simplest and most 
general connection, the sample space Sn of n trials may be 
labeled by {rl,r2, .•• ,rn }, where 1::rk::6, and rk is the 
number of spots up on the k'th toss. The most general proba­
bility assignment on Sn is a set of non-negative real numbers 
P(rl ••. r n) such that 

6 

L 
r =1 

1 

6 

L P(rl ••• 
r =1 

n 

r ) 
n 

I (B15) 

In any given sequence {rl ... r n } of results, the frequency with 
which i spots occurs is 
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-1 n 
g. (rl···r ) = n L O(rk,i) 
~ n k=l 

(B16) 

This can take on (n+l) discrete values, and its expectation is 
6 6 
L L P(rl···rn)o(rk,i) 

r =1 r =1 
1 n 

= ~[Pl (i) + P2(i) + •.. + Pn(i)] (B17) 

where Pk(i) is the probability of getting i spots on the k'th 
toss, regardless of what happens in other tosses. The expected 
frequency of an event is always equal to its average proba­
bility over the different trials. 

Many experiments fall into the category of exchangeable 
sequences; 1. e., it is clear that the underlying "mechanism" 
of the experiment, although unknown, is not changing from one 
trial to another. The probability of any particular sequence 
of results {rl ••• r n } should then depend only on how many times 
a particular outcome r = i happened; and not on which particular 
trials. Then the probability distribution P{rk} is invariant 
under permutations of the labels k. In this case, the proba­
bility of i spots is the same at each trial: PI (i) = Pz (i) = 
... = Pn(i) = Pi' and (B17) becomes 

<gi> = Pi (BIB) 

In an exchangeable sequence, the probability of an event at one 
trial is not the same as its frequency in many trials; but it 
is numerically equal to the expectation of that frequency; and 
this connection holds whatever correlations may exist between 
different trials. 

The probability is therefore the "best" estimate of the 
frequency, in the sense that it minimizes the expected square 
of the error. But the result (BIB) tells us nothing whatsoever 
about whether this is a reliable estimate; and indeed nothing 
in the space ~ of a single trial can tell us anything about 
the reliability of (BIB). 

To investigate this, note that by a similar calculation, the 
expected ~roduct of two frequencies is 

n 
<gigj> = n -2 L Pk(i) p(j ,ml i,k) (B19) 

k,m=l 
where p(j,mli,k) is the conditional probability that the m'th 
trial gives the result j, given that the k'th trial had the 
outcome 1. Of course, if m=k we have simply p(jklik) = 0ij" 



WHERE DO WE STAND ON MAXIMUM ENTROPY? 247 

In an exchangeable sequence p(jmlik) is independent of m,k 
for m + k; and so Pk(i) p(jmlik) : Pij' the probability of 
getting the outcomes i,j respectively at any two different 
tosses. The covariance of g.,g. then reduces to 

1 J 

<gigj> - <gi><gj> : (Pij - PiPj) +*(Oij Pi - Pij) (B20) 

If the probabilities are not independent. Pij 1 PiPj' this 
does not go to zero for large n. 

Let us examine the case i: j more closely. Writing Pi! 
ai Pi. ai is the conditional probability that, having obtained 
the result i on one toss, we shall get it at some other spec­
ified toss. The variance of gi is, from (B20), dropping the 
index i, 

I 
p(a-p) + - pel-a) 

n (B21) 

Two extreme cases of inter-trial correlations are contained in 
(B21) . For complete independence, a: p, the variance reduces 
to n-1 p(l- p). just the result of the de Moivre-Laplace limit 
theorem (A4). But as cautioned before. in any other case the 
variance does not tend to zero at all; there is no "law of 
large numbers." For complete dependence, a: 1 (Le., having 
seen the result of one toss, the die is certain to give the 
same result at all others). (B21) reduces to p(l- p) which 
again makes excellent sense; in this case our uncertainty 
about the frequency in any number of tosses must be just our 
uncertainty about the first toss. 

Note that the variance (B2l) becomes zero for a slight 
negative correlation: 

a :p ~ 
- n-l (B22) 

Due to the permutation invariance of P(rl ••• r n) it is not pos­
sible to have a negative correlation stronger than this; as 
n +00 it is not possible to have any negative correlation in 
an exchangeable sequence. This corresponds to the famous de 
Finetti (1937) representation theorem; in the literature of 
pure mathematics it is called the Hausdorff moment problem. 
An almost unbelievably simple proof has just been found by 
Heath and Sudderth (1976). 

To summarize: given any probability assignment P(rl ••• r n) 
on the space Sn, we can determine the probability distribution 
Wi(t) for the frequency gi to take on any of its possible 
values gi: (tIn), 0::: t ::: n. The (mean) ± (standard deviation) 
over this distribution then provide a reasonable statement of 
our "best" estimate of gi and its accuracy. In the case of 
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an exchangeable sequence, this estimate is 

(gi) est = Pi ±jPi (1- Pi) [Ri + 1: RiJ~ (B23) 

where Ri :: (rti - Pi) / (1 - Pi) is a measure of the inter-trial 
correlation, ranging from R = 0 for complete independence to 
R = 1 for complete dependence. 

Evidently, then, to suppose that a probability assignment 
at a single trial is also an assertion about a frequency in 
many trials in the sense of the Bernoulli and de Moivre-Laplace 
limit theorems, is in general unjustified unless (1) the suc­
cessive trials form an exchangeable sequence, and (2) the 
correlation of different trials is strictly zero. However, 
there are other kinds of connections between probability and 
frequency; and maximum-entropy distributions have an exact 
and close relation to frequencies after all, as we shall see 
presently. 

Relation to Bayes' Theorem. To prepare us to deal with some 
objections to the maximum-entropy solution (B13) we turn back 
to the basic product and sum rules of probability theory (A8), 
(A9) derived by Cox from requirements of consistency. Just 
as any argument of deductive logic can be resolved ultimately 
into many syllogisms, so any calculation of inductive logic 
(i.e., probability theory) is reducible to many applications 
of these rules. 

We stress that these rules make no reference to frequencies; 
or to any random experiment. The numbers p(AIB) are simply a 
convenient numerical scale on which to represent degrees of 
plausibility. As noted at the beginning of this work, it is 
the problem of determining initial numerical values by logical 
analysis of the prior information in more general cases than 
solved by Bernoulli and Laplace, that underlies our study. 

Furthermore, in neither the statement nor the derivation of 
these rules is there any reference to the notion of a sample 
space. In a formally qualitative sense, therefore, they may 
be applied to any propositions A, B, C, ••• with unambiguous 
meanings. Their complete qualitative correspondence with 
ordinary common sense was demonstrated in exhaustive detail 
by Polya (1954). 

But in quantitative applications we find at once that merely 
defining two propositions, A, B is not sufficient to determine 
any numerical value for p(AIB). This numerical value depends 
not only on A, B, but also on which alternative propositions 
A', A", etc. are to be considered if A should be false; and 
the problem is mathematically indeterminate until those alter­
natives are fully specified. In other words, we must define 
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our "sample space" or "hypothesis space" before we have any 
mathematically well-posed problem. 

In statistical applications (parameter estimatio~hypothesis 
testing), the most important constructive rule is just the 
statement that the product rule is consistent; i.e., p(ABIC) 
is syunnetric in A and B, so p(AIBC)p(BIC) =p(BIAC)p(AIC). If 
p(BIC) I 0, we thus obtain 

I - I (B AC) p(A BC) - p(A C) p(B C) (B24) 

in which we may call C the prior information, B the condi­
tioning information. In typical applications, C represents 
the general background knowledge or assumptions used to 
formulate the problem, B is the new data of some experiment, 
and A is some hypothesis being tested. For example, in the 
Millikan oil-drop experiment, we might take A as the hypothesis: 
"the electronic charge lies in the interval 4.802 < e < 4.803," 
while C represents the general assumed known laws of electro­
statics and viscous hydrodynamics and the results of previous 
measurements, while B stands for the new data being used to 
find a revised "best" value of e. Equation (B24) then shows 
how the prior probability p(AIC) is changed to the posterior 
probability p(AIBC) as a result of acquiring the new informa­
tion B. 

In this kind of application, p(BIAC) is a "direct" or 
"sampling" probability, since we reason in the direction of 
the causal influence, from an assumed cause A to a presumed 
observable result B: and p(AIBC) is an "inverse" probability, 
in which we reason from an observed result B to an assumed 
cause A. On comparing with (A7) we see that (B24) is a more 
general form of Laplace's rule, in which we need not have an 
exhaustive set of possible causes. Therefore, since (A7) is 
always called "Bayes' theorem," we may as well apply the same 
name to (B24). 

At the risk--or rather the certainty--of belaboring it, we 
stress again that we are concerned here with inductive rea­
soning of any kind, not necessarily related to random experi­
ments or any repetitive process. On the other hand, nothing 
prevents us from applying the theory to a repetitive situation 
(i.e., n tosses of a die); and propositions about frequencies 
gi are then just as legitimate pieces of data or objects of 
inquiry as any other propositions. Various kinds of connection 
between probability and frequency then appear, as mathematical 
consequences of (A8) , (A9). We have just seen one of them. 

But now, could we have solved the Brandeis dice problem by 
applying Bayes' theorem instead of maximum entropy? If so, 
how do the results compare? Friedman and Shimony (1971) 
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(hereafter denoted FS) claimed to exhibit an inconsistency in 
the Principle of Maximum Entropy (hereafter denoted PME) by 
an argument which introduced a proposition dE' so ill-defined 
that they tried to use it as (1) a constraint in PME, (2) a 
conditioning statement in Bayes' theorem; and (3) an hypothesis 
whose posterior probability is calculated. Therefore, let us 
note the following. 

If a statement d referring to a probability distribution in 
space S is testable (for example, if it specifies a mean value 
<f> for some function f(i) defined on S), then it can be used 
as a constraint in PME; but it cannot be used as a conditioning 
statement in Bayes' theorem because it is not a statement about 
any event in S or any other space. 

Conversely, a statement D about an event in the space Sn 
(for example, an observed frequency) can be used as a condi­
tioning statement in applying Bayes' theorem, whereupon it 
yields a posterior distribution on Sn which may be contracted 
to a marginal distribution on S; but D cannot be used as a 
constraint in applying PME in space S, because it is not a 
statement about any event in S, or about any probability dis­
tribution over S; i.e., it is not testable information in S. 

At this point, informed students of statistical mechanics 
will be astonished at the suggestion that there is any incon­
sistency between application of PME in space S and of Bayes' 
theorem in Sn, since the former yields a canonical distribution, 
while the latter is just the Darwin-Fowler method, originally 
introduced as a rigorous way of justifying the canonical dis­
tribution! The mathematical fact shown by this well-known 
calculation (Schrodinger, 1948) is that, whether we use 
maximum entropy in space S with a constraint fixing an average 
<f> over a probability distribution, or apply Bayes' theorem 
in Sn with a conditioning statement fixing a numerically equal 
average I over sample values, we obtain for large n identical 
distributions in the space S. The result generalizes at once 
to the case of several simultaneous mean-value constraints. 

This not only illustrates--contrary to the claims of FS-­
the consistency of PME with the other principles of probability 
theory, but it shows what a powerful tool PME is; i.e., how 
much simpler and more convenient mathematically it is to use 
PME in statistical calculations if the distribution on S is 
what we are seeking. PME leads us directly to the same final 
result, without any need to go into a higher space Sn and carry 
out passage to the limit n -+ 00 by saddle-point integration. 

Of course, it is as true in probability theory as in car­
pentry that introduction of more powerful tools brings with 
it the obligation to exercise a higher level of understanding 
and judgment in using them. If you give a carpenter a fancy 
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new power tool, he may use it to turn out more precise work in 
greater quantity; or he may just cut off his thumb with it. 
It depends on the carpenter. 

The FS article led to considerably more discussion (see the 
references collected with the FS one) in which severed thumbs 
proliferated like hydras; but the level of confusion about the 
points already noted is such that it would be futile to attempt 
any analysis of the FS arguments. 

FS suggest that a possible way of resolving all this is to 
deny that the probability of de can be well-defined. Of course 
it cannot be; however, to understand the situation we need no 
"deep and systematic analysis of the concept of reasonable 
degree of belief." We need only raise our standards of exposi­
tion to the same level that is required in any other applica­
tion of probability theory; i.e., we must define our proposi­
tions and sample spaces with enough precision to make a 
determinate mathematical problem. 

There is a more serious difficulty in trying to reply to 
these criticisms. If FS dislike the maximum-entropy solution 
(B13) to this problem strongly enough to write three articles 
attacking it, then it would seem to follow that they prefer a 
different solution. But what different solution? One cannot 
form any clear idea of what is really troubling them, because 
in all these publications FS give no hint as to how, in their 
view, a more acceptable solution oueht to differ from (B13). 

The Rowlinson Criticism. In sharp contrast to the FS criticisms 
is that of J. S. Rowlinson (1970), who considers the same dice 
problem but does offer an alternative solution. For this 
reason, it is easy to give a precise quantitative reply to his 
criticism. 

He starts with the all too familiar line: "Most scientists 
would say that the probability of an event is (or represents) 
the frequency with which it occurs in a given situation." Like­
wise, a critic of Columbus could have written (after he had 
returned from his first voyage): "Most geographers would say 
that the earth is flat." 

Clarification of the centuries-old confusion about proba­
bility and frequency will not be achieved by taking votes; 
much less by quoting the philosophical writings of Leslie Ellis 
(1842). Rather, we must examine the mathematical facts con­
cerning the rules of probability theory and the different sample 
spaces in which probabilities and frequencies are defined. We 
have seen, in the discussion following (Bl4) above, that anyone 
who glibly supposes that a probability in one space can be 
equated to a frequency in another, is assuming something which 
is not only not generally deducible from the principles of 
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probability theory; it may stand in conflict with those prin­
ciples. 

There is no stranger experience than seeing printed crit­
icisms which accuse one of saying the exact opposite of what 
he has said, explicitly and repeatedly. Thus my bewilderment 
at Rowlinson's statement that I reject "the methods used by 
Gibbs to establish the rules of statistical mechanics." I 
believe I can lay some claim to being the foremost current 
advocate and defender of Gibbs' methods! Anyone who takes 
the trouble to read Gibbs will see that, far from rejecting 
Gibbs' methods, I have adopted them enthusiastically and 
(thanks to the deeper understanding from Shannon) extended 
their range of application. 

One of the maj or unsolved riddles of probability theory is: 
how to explain to another person exactly what is the problem 
being solved? It is well established that merely stating this 
in words does not suffice; repeatedly, starting with Laplace, 
writers have given the correct solution to a problem, only to 
have it attacked on the grounds that it is not the solution to 
some entirely different problem. This is at least the tenth 
time it has happened to me. As I tried to stress, the maximum­
entropy solution (Bl3) describes the state of knowledge in 
which we are given the enumeration of the six possibilities, 
the mean value <i> = 4.5, and nothing else. But Rowlinson 
proceeds to introduce models with an urn containing seven white 
and three black balls (or a population of urns with varying 
contents) from which one makes various numbers of random draws 
with replacement. One expects that different problems will 
have different solutions. 

In Rowlinson's Urn model, we perform Bernoulli trials five 
times, with constant probability of success p = 0.7. Then the 
numbers s of successes is in 0 ~ s $. 5, and the expected number 
is <s>=5xO.7=3.5. Setting i =s+l, we have 1$.i$.6, 
<i> = 4.5, the conditions stated in my dice problem. Thus he 
offers as a counter-proposal the binomial distribution 

, = ( 5 ) i-I (1 _ ) 6-i 1 < i < 6 
Pi i-I P P (B25) 

These numbers are 

{pi .•. p (,} = {O. 00243, O. 02835, 0.1323, 0.3087, 0.36015, 0.16807}. (B26) 

and they yield an entropy S' = 1.413615, 0.2 unit lower than 
that of (B13). This lower entropy indicates that the urn 
model puts further constraints on the solution beyond that 
used in (B13). We see that these consist in the extreme values 
(i = 1,6) receiving less probability than before (only one of 
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25 = 32 possible outcomes can lead to i = I, while ten of them 
yield i = 3, etc.). 

Now if we knew that the experiment consisted of drawing 
five times from an urn with just the composition specified by 
Rowlinson, the result (B25) would indeed be the correct solu­
tion. But by what right does one assume this elaborate model 
structure when it is not given in the statement of the problem? 
One could, with equal right, assume anyone of a hundred other 
specific models, leading to a hundred other counter-proposals. 
But it is just the point of the maximum-entropy principle that 
it achieves "objectivity" of our inferences, in the sense that 
we base our predictions only on the information that we do, in 
fact, have; and carefully avoid introducing any such gratuitous 
assumptions not warranted by our data. Any such assumption is 
far more likely to impose false constraints than to happen, by 
luck, onto an unknown correct one (which would be like guessing 
the combination to a safe). 

At this point, Rowlinson says, "Those who favour the automatic 
use of the principle of maximum entropy would observe that the 
entropy of [our Eq. (B25)], 1.4136, is smaller than that of 
[Bl3], and so say that in proposing [B25] as a solution, 'in­
formation' has been assumed for which there is no justification!' 
We do indeed say this, although Rowlinson simply rejects it out 
of hand without giving a reason. So to sustain our claim, let 
us calculate explicitly just how much Rowlinson's solution 
assumes without justification. 

To clarify what is meant by "assuming information," suppose 
that an economist, Mr. A, is trying to forecast future price 
trends for some commodity. The condition of next week'smarket 
cannot be known with certainty, because it depends on intent ions 
to buy or sell hidden in the minds of many differentindividums. 
Evidently, a rational method of forecasting must somehow take 
account of all these unknown possibilities. Suppose that Mr. 
A's data are found to be equally compatible with 100 different 
possibilities. If he arbitrarily picked out 10 of these which 
happened to suit his fancy, and based his forecast only on them, 
ignoring the other 90, we should certainly consider that Mr. A 
was guilty of an egregious case of assuming information without 
justification. Our present problem is similar in concept, but 
quite different in numerical values. 

We have stressed that, fundamentally, the maximum-entropy 
solution (B13) describes only a state of knowledge about a 
single trial, and is not an assertion about frequencies. But 
Rowlinson, as noted, also rejects this distinction and wants 
to judge the issue on the grounds of frequencies. Very well; 
let us now bring out the frequency connection that a maximum­
entropy distribution does, after all, have (and which, incidentally, 
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was pointed out in my Brandeis lectures, from which Row1inson 
got this dice problem). 

In N tosses, a set of observed frequencies {gi}={Ni/N} 
(called g to avoid collision with previous notation) can be 
realized in 

(B27) 

different ways. As we noted from Boltzmann's work, Eq. (A14) , 
the Stirling approximation to the factorials yields an asymp­
totic formula 

log W '" NS 

where 

S = - t gi log gi 
i=l 

(B28) 

(B29) 

is the entropy of the observed frequency distribution. Given 
two different sets of frequencies {gil and {g!'}, the ratio: 
(number of ways gi can be rea1ized)/(number of ways gi can be 
realized) is given by an asyaptotic formula 

W~ '" A exp[N(S - S')]{l + i + O(N-2)} 

where 

k 
A == rr (g '/g ) 2 

iii 

(B30) 

(B31) 

(B32) 

are independent of N, and represent corrections from the higher 
terms in the Stirling approximation. We write them down only 
to allay any doubts about the accuracy of the numbers to follow. 
In all cases considered here it is easily seen that they have 
no effect on our conclusions, and only the exponential factor 
matters. 

Rawlinson mentions an experiment involving 20,000 throws of 
a die, to which we shall return later; but in the present com­
parison this leads to numbem beyond human comprehension. To 
keep the resu1 ts more modest, let us assume only N = 1000 throws. 
If we take {gil as the maximum-entropy distribution (B13) and 
{gi') as Row1inson's solution (B26), we find A co 0.159, B = 34, 
S - S' '" 0.200; and thus, with N = 1000, 
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W L 19 x 1086 WI= (B34) 

Both distributions agree with the datum <i> = 4.5; but for every 
way in which Rowlinson's distribution can be realized, there 
are over 1086 ways in which the maximum entropy distribution 
can be realized (the age of the universe is less than 1018 
seconds). It appears that information was indeed "assumed for 
which there is no justification." 

This example should help to give us a proper respect for 
just what we are accomplishing when we maximize entropy. It 
shows the magnitude of the indiscretion we commit if we accept 
a distribution whose entropy is 0.2 unit less than the maximum 
value compatible with our data. In this example, to accept any 
distribution whose entropy is as much as 0.005 below the maxi­
mum value, would be to ignore over 99 percent of all possible 
ways in which the average <i> = 4.5 could be realized. 

For reasons unexplained, Rowlinson seizes upon the particular 
value PI = 0.05435 from the maximum-entropy solution (B13), and 
asks: "But what basis is there for trusting in this last 
number?" but fails to ask the same question about his own very 
different result pi = 0.00243. Since it is so seldom that one 
is able to give a quantitative'reply tQ a rhetorical question, 
we should not pass up this opportunity. 

Answer to the Rhetorical Question. Let us, as before, count up 
the number of possibilities compatible with the given data. In 
the original problem we were to find {Pl" .Pn} so as to maximize 
H = -~Pi log Pi subject to the constraints EPi =< 1, <i> = EiPi, a 
specified numerical value. If now we impose the additional 
constraint that PI is specified, we can define conditional 
probabilities 

, Pi 
Pi = l=P 

1 
with entropy 

i 

n 
H' = - L Pi' log P , 

i=2 i 

2,3, .•. n 

These quantities are related by Shannon's basic functional 
equation 

(B35) 

(B36) 

(B37) 

and so, maximizing H with PI held fixed is equivalent to maxi­
mizing H'. We have the reduced maximum entropy problem: 
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maximize H' subject to 
n 

L 
i=2 

po' 
l. 

<i>' 

1 

n 
\' . , 
L.. l.p i 
i=2 

1 + <i> - 1 
1- P1 

(B38) 

(B39) 

The solution proceeds as before, but now the maximum attainable 
entropy is a function Hmax = S(P1,<i» of the specified value 
of PI' as well as <i>. The maximum of S(P1,4.5) is of course 
the previous value (B14) of 1.61358, attained at the maximum­
entropy value PI = 0.05435. Evaluating this also for Rowlinson's 
PI', I find S(Pl',4.5) = 1.55716, lower by 0.05642 units. By 
(B30) this means that, in 1000 tosses, for every way in which 
Rowlinson's value could be realized, regardless of all other 
frequencies except for the constraint <i> = 4.5, there are 
over 1024 ways in which the maximum-entropy frequency could be 
realized. 

We may give a more detailed answer: expanding S(P1,4.5) 
about its peak, we find that as we depart from 0.05435, the 
number of ways in which the frequency glcould be realized drops 
off like 

exp[-14,200(gl - 0.05435)2] (B40) 

and so, for example, for 99% of all possible ways in which the 
average <i> = 4.5 can be realized, gl lies in the interval 
(0.05435 ± 0.0153). 

This would seem to be an adequate answer to the question, 
"But what basis is there for trusting in this number?" I 
stress that the numerical results just given are theorems, 
involving only a straightforward counting of the possibilities 
allowed by the given data. Therefore they stand independently 
of anybody's personal opinions about either dice or probabilit¥ 
theory. 

However, it is necessary that we understand very clearly the 
meaning of these frequency connections. They concern only the 
number of possible ways in which certain frequencies {gil could 
be realized, compatible with our constraints. They do not 
assert that the maximum-entropy frequencies will be observed 
in a real experiment; indeed, neither rhe Principle of Maximum 
Entropy nor any other principle of probability theory can pre­
dict with certainty what will happen in a real experiment. 
The correct statement is rather: the frequency distribution 
{gil with maximum entropy calculated from certain constraints 
is overwhelmingly the most likely one to be observed in a real 
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experiment, provided that the physical constraints operative in 
the experiment are the same as those assumed in the calcula­
tion. 

In our mathematical formalism, a "constraint" is some piece 
of information that leads us to modify a probability distribu­
tion; in the case of a mean value constraint, by inserting an 
exponential factor exp[-Af(x)] with an adjustable Lagrange 
multiplier A. It is perhaps not yet clear just what we mean 
by "constraints" in a physical experiment. Of course, by these 
we do not mean the gross constraining linkages by levers, 
cables, and gears of a mechanics textbook, but something more 
subtle. In our applications, a "physical constraint" is any 
physical influence that exerts a systematic tendency--however 
slight--on the outcome of an experiment. We give some specific 
examples of physical constraints in die tossing below. 

From the above numbers we can understand the success of the 
work of J. C. Keck and R. D. Levine reported here. I am sure 
that their results must seem like pure magic to those who have 
not understood the maximum-entropy formalism. To find a dis­
tribution of populations over 20 molecular energy levels might 
seem to require 19 independent pieces of data. But if one 
knows, from approximate rate coefficients or from past expe­
rience, which constraints exist (in practice, even if only the 
one or two most important ones are taken into account), one can 
make quite confident predictions of distributions over many 
levels simply by maximizing the entropy. 

In fact, most frequency distributions produced in real ex­
periments are maximum-entropy distributions, simply because 
these can be realized in so many more ways than can any othe~ 
As N + 00, the combinatorial factors become so sharply peaked 
at the maximum entropy point that to produce any appreciably 
different distribution would require very effective physical 
constraints. Any statistically significant departure from a 
maximum-entropy prediction then constitutes strong--and if it 
persists, conclusive--evidence of the existence of new con­
straints that were not taken into account in the calculation. 
Thus the maximum-entropy formalism has the further "magical" 
property that it provides the most efficient procedure by 
which, if unknown constraints exist, they can be discovered. 
But this is only an updated version of the process noted in 
Section A by which Laplace discovered new systematic effects. 

It is, perhaps, sufficiently clear from this how much a 
Physical Chemist has to gain by understanding, rather than 
attacking, maximum entropy methods. 

But we still have not dealt with the most fundamental mis­
understandings in the Rowlinson article. He turns next to the 
shape of the maximum-entropy distribution (Bl3), with another 
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rhetorical question: "--- is there anything in the mechanics 
of throwing dice which suggests that if a die is not true the 
probabilities of scores 1,2, .•. 6, should form the geometrical 
progression [our Eq. (B13)]?" He then cites some data of Wolf 
on 20,000 throws of a die which gave an average <i>=3.5983, 
plots the observed frequencies against the maximum-entropy dis­
tribution based on that constraint, a nd concludes that "depar­
tures from the random value of 1/6 bear no resemblance to those 
calculated from the rule of maximum entropy. What is clearly 
wrong with the indiscriminate use of this rule, and of the 
older rules from which it stems, is that they ignore the physics 
of the problem." 

We have here a total, absolute misconception about every point 
I have been trying to explain above. If Wolf's data depart 
significantly from the maximum-entropy distribution based only 
on the constraint <i> = 3.5983, then the proper conclusion is 
not that maximum entropy methods "ignore the physics" but 
rather that the maximum entropy method brings out the physics 
by showing us that another physical constraint exists beyond 
that used in the calculation. Unable to see the new physical 
information here revealed, he lashes out blindly against the 
principle that has revealed it. 

Therefore, let us now give an analysis of Wolf's dice data 
showing just what things maximum entropy can give us here, if 
we only open our eyes to them. 

Wolf's Dice Data. In the period roughly 1850-1890, the Zurich 
astronomer R. Wolf conducted and reported a mass of "random 
experiments." An account is given by Czuber (1908). Our 
present concern is with a particular die (identified as "Weiszer 
Wurfel" in Czuber's two-way table, loco cit p. 149) that was 
tossed 20,000 times and yielded the afor~ntioned mean value 
<i> = 3.5983. We shall look at all details of the data pres­
ently, but first let us note a few elementary things about 
that "ignored" physics. 

We all feel intuitively that a perfectly symmetrical die, 
fairly tossed, ought to show all faces equally often (but 
that statement is really circular, since there is no other way 
to define a "fair" method of tossing; so, suppose that by ex­
perimenting on a die known to be true, we have found such a 
fair method, and we continue to use it). The uniform frequency 
distribution {gi = 1/6, 1 < i < 6} then represents the nominal 
"unconstrained" situation of maximum possible entropy S = log 6. 
Any imperfection in the die may then give rise to a "physical 
constraint" as we have defined that term. A little physical 
common sense can anticipate what these imperfections are likely 
to be. 
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The most obvious imperfection is that different faces have 
different numbers of spots. This affects the center of gravity, 
because the weight of ivory removed from a spot is obviously not 
(in any die I have seen) compensated by the paint then applied. 
Now the numbers of spots on opposite faces add up to seven. 
Thus the center of gravity is moved toward the "3" face, away 
from "4", by a small distance e: corresponding to the one spot 
discrepancy. The effect of this must be a slight frequency 
difference which is surely, for very small £, proportional to £: 

g4 - g3 = ue: (B4l) 

where the coefficient u would be very difficult to calculate, 
but could be measured by experiments on dies with known £. But 
the (2-5) face direction has a discrepancy of three spots, and 
(1-6) of five. Therefore, we anticipate the ratios: 

(B42) 

But this says only that the spot frequencies vary linearly with 
i: 

(B43) 

where 

(B44) 

The spot imperfections should then lead to a small linear 
skewing favoring the "6." This is the most obvious "physical 
constraint," and it changes the expected number of spots to 

<i> = 2) gi = 3.5 + 17.5 ue: (B45) 

or, to state it more suggestively, the function f 1 (i) acquires 
a non-zero expectation 

(B46) 

Now, what is the next most obvious imperfection to be ex­
pected? Evidently, it will involve departure from a perfect 
cube, the specific kind depe~ding on the manufacturing methods; 
but let us consider only the highest quality die that a 
factory would be likely to make. If you were assigned the job 
of making a perfect cube of ivory, how would you do it with 
equipment likely to be available in a Physics Department shop 
or a small factory? 
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I think you would head for the milling machine, and mount 
your lump of ivory on a dividing head clamped to the work table 
with axis vertical. The first cut would be with an end mill, 
making the "top" face of the die. The construction of the 
machine guarantees that this will be accurately plane. Then 
you use side cutters to make the four side faces. For the 
finish cuts you will move the work table only in the direction 
of the cut, rotating the dividing head 90° from one face to the 
next. The accuracy of the equipment guarantees that you now 
have five of the faces of your cube, all very accurately plane 
and all angles accurately 90°, the top face accurately square. 

But now the trouble begins; to make the final "bottom" face 
you have to remove the work from its mount, place it upside 
down on the table, and go over it with the end mill. Again, 
the construction of the machine guarantees that this final 
face will be accurately plane and parallel to the "top;" but 
it will be practically impossible to adjust the work table 
height ~ accurately that the final dimension is exactly equal 
to the other two. Of course, a skilled artisan with a great 
deal more time-ind equipment could do better; but this would 
run up the cost of manufacture for something that would never 
be detected in use. For factory production, there would be no 
motivation to do better than we have described. 

Thus, the most likely geometrical imperfection in a high 
quality die is not lack of parallelism or of true 90° angles, 
but rather that one dimension will be slightly different from 
the other two. 

Again, it is clear what kind of effect this will have on 
frequencies. Suppose the die comes out slightly "oblate," the 
(1-6) dimension being shorter than the (2-5) and (3-4) by some 
small amount o. If the die were otherwise perfect, this would 
evidently increase the frequencies gl' g6 by some small amount 
So, and decrease the other four to keep the sum equal to unity, 
where S is another coefficient hard to calculate but measurable 
The result can be stated thus: the function 

f 3 (i) = {~~: ~ : ~:~,4,5 } (B47) 

defined on the sample space, acquires a non-zero expectation 

6So (B48) 

and the frequencies are 

1 1 
g I = - + - 136 f (1) 

... 6 2 3 

ill + 3So f3 (i) 1 (B49) 
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If now both imperfections are present. since the perturba­
tions are so small we can in first approximation just superpose 
their effects: 

gi "i[l + 6ae: fl (i)][l + 3130 f 3(i)] 

But this is hardly different from 

1 
gi = 6 exp[6ae: fl(i) + 3130 f 3(i)] 

(850) 

(851) 

and so a few elementary physical common-sense arguments have 
led us to something which begins to look familiar. 

If we had done maximum entropy using the constraints (846). 
(B48), we would find a distribution proportionaltoexp[-Alfl(i) 
- A3f3(i)], so that (B5l) is a maximum-entropy distribution 
based on those constraints. We see that the Lagrangemultiplier 
by which any information constraint is coupled into our proba­
bility distribution, is just a measure of the strength of the 
physical constraint required to realize a numerically equal 
frequency distribution: 

-6ae: 

-3136 

(B52) 

(853) 

and if our die has no other imperfections beyond the two noted, 
then it is overwhelmingly more likely to produce the distribu­
tion (851) than any other. 

If the observed frequencies show any statistically signif­
icant departure from (B5l), then we have extracted from the 
data evidence of a third imperfection, which probably would 
have been totally invisible in the raw data; i.e., only when 
we have used the maximum entropy principle to "subtract off" 
the effect of the stronger influences, can we hope to detect 
a weaker one. . 

Our program for the maximum-entropy analysis of the die--or 
any other random experiment--is now defined except for the final 
step; how we decide whether a discrepancy is "statistically 
significant?" 

The reader is cautioned that in all this discussion relating 
to Rowlinson we are being careless about distinctions between 
probability and frequency, because Rowlinson himself makes no 
distinction between them, and trying to correct this at every 
point quickly became tedious. The following analysis should 
be restated much more carefully to bring out the fact that it 
is only a very special case, although to the "frequentist" it 
appears to be the general case. 
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We have some "null hypothesis" Ho about our die, that leads 
us to assign the probabilities {Pl"'P6}' We obtain data from 
N tosses, in which the observed frequencies are {gi = Ni/N, 
lSiS6L If the numbers {gl ••• g6} are sufficiently close to 
{Pl"'P6} we shall say the fit is satisfactory; the null 
hypothesis is consistent with our data, and so there is no 
need, as far as this experiment indicates, to seek a better 
hypothesis. But how close is "close?" How do we measure the 
"distance" between the two distributions; and how large may 
that distance be before we begin to doubt the null hypothesis? 

Early in this Century, Karl Pearson invented an intuitive, 
ad hoc procedure, called the Chi-squared test, to deal with 
this problem, which has been since widely adopted. Here we 
calculate the quantity 

2 
X (B54) 

and if it is greater than a certain "critical value" given in 
Tables,we reject the null hypothesis. In the present case 
(six categories, five "degrees of freedom" after normalization), 
the critical value at the conventional 5% significance level is 

X~ = 11.07 (B55) 

which means that, if the null hypothesis is true there is only 
a 5% chance of seeing a value greater than X~. The critical 
value is independent of N, because for a frequentist who be­
lieves that Pi is an assertion of a limiting frequency in the 
sense of the de Moivre-Laplace limit theorem (A4) , if Ho is , 
true, then the deviations should fall off as I gi - Pil = O(N-~). 
A more careful approach shows that this holds only if our model 
is an exchangeable sequence with zero correlations; and even in 
this case the X2 criterion of "closeness" has no theoretical 
justification (i.e., no uniqueness property) in the basic prin­
ciples of probability theory. 

In fact, for the case of independent exchangeable trials, 
there is a criterion with a direct information-theory justifi~ 
tion (Kullback, 1959) in the "minimum discrimination information 
statistic" 

6 
t/! == N L g. log (gi/P.) (B56) 

i=l 1 1 

and the numerical value of t/!, rather than X2, will lead us to 
inferences directly justifiable by Bayes' theorem. If the de­
viations (gi-P.) are large, these criteria can be very different. 

1 
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However, by a lucky mathematical accident, if the devia­
tions are small (as we already know them to be for our dice 
problem) an expansion in powers of (gi - Pi) [in the logarithm, 
write g/p= 1+ (g-p)/g+ (g_p)2/gp] yields 

(B57) 

the neglected terms falling off as indicated, provided that 
I gi - Pi I = 0 (N-~). The result is that in our problem, from a 
pragmatic standpoint it doesn't matter whether we use X2 or ~. 
So I shall apply the X2 test to Wolf's data, because it is so 
much more familiar to most people. 

Wolf's empirical frequencies {gil are given in the second 
column of Table 1. As a first orientation, let us test them 
against the null hypothesis {Ho:Pi = 1/6, 1< i< 6}of a tniform 
die. We find the result 

2 
Xo = 271 (B58) 

over twenty times the critical value (B55). The hypothesis 
Ho is decisively rejected. 

Next, let us follow Rowlinson by considering a new hypothesis 
HI which prescribes the maximum-entropy solution based on VbIf' s 
average <i> = 3.5983, or, 

(B59) 

This will give us a distribution Pi'\, exp [- A fl (i)] • From the 
partition function (Bll) with this new datum we find A = 0.03373 
and the probabilities given in the third column of Table 1. 
The fourth column gives the differences ~ = gi - Pi' while in 
the fifth we list the partial contributions to Chi-squared: 

2 
(gi-Pi) 

c i - 20,000 p. 
l. 

which add up to the value 

2 
Xl = 199.4 (B60) 

The fit is improved only slightly; and HI is also decisively 
rejected. 
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Table l- One Constraint 

i gi Pi 2';;i c i 

1 0.16230 0.15294 + 0.0094 11.46 
2 0.17245 0.15818 + 0.0143 25.75 
3 0.14485 0.16361 - 0.0188 43.02 
4 0.14205 0.16922 - 0.0272 87.25 
5 0.18175 0.17502 + 0.0067 5.18 
6 0.19660 0.18103 + 0.0156 26.78 

199.43 

At this point, Rowlinson wants to reject not only HI' but 
also the whole principle of maximum entropy. But now I stress 
still another time what the principle is really telling us: ~ 
statistically significant deviation is evidence of !! ~ physical 
constraint; and the nature of the deviation gives us 2.. clue ~ 
to what that constraint is. After subtracting off, by maximum 
entropy, the deviation attributable to the first constraint, 
the nature of the most important remaining one is revealed. 
Indeed, from a glance at the deviations lI i = gi - Pi the answer 
leaps out at us; Wolf's die was slightly "prolate," the (3-4) 
dimension being greater than the (2-5) and (1-6) ones. So, 
instead of (B47), the new constraint is 

f (") - {+l, i = 1,2,5,6 (B6l) 
2 1 = -2, i = 3,4 

and Wolf's data yield the result 

(B62) 

So now let us subtract off, by maximum entropy, the effect of 
both of these constraints; and thus discover whether Wolf's 
die had a third imperfection. 

With the two constraints (B59), (B62) we have two Lagrange 
multipliers and a partition function 

6 
Z("1'''2) = .2: eXP[-Alf l (i) - A2f 2 (1)] 

1=1 

-5/2 4 2-3 x y(l+x)(l+x +x y ) (B63) 

where x = exp(-A1), y = eXP(-"2)' The maximum-entropy proba­
bilities are then 

-1 -5/2 { 2 -3 3 -3 4 5 L 
{Pl"'P6}~Z x Y l,x,x y ,x y ,x,x r (B64) 
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Writing out the constraint equations (B4) and eliminating y 
from them, we find that x is determined by 

5 4 
(6F1 - 4F2 - 11)x + (6F1 - 4F2 - 5)x + (6F1 + 4F2 + 5)x 

+ (6Fl + 4F2 + 11) = 0 

or, with Wolf's numerical values (B59), (B62), 

5.4837x5 + 2.4837x4 - 3.0735x - 6.0735 = 0 

(B65) 

(B66) 

This has only one real root, at x = 1. 032233, from which we have 
Al = -0.0317244, Y = 1.074415, 1.2 = -0.0717764. ThenewllllXimum­
entropy probabilities are given in Table 2, which contains the 
same information as Table 1, but for the new hypothesis H2. 

Table 2. Two Constraints 

i gi Pi lIi c. 
~ 

1 0.16230 0.16433 - 0.0020 0.502 
2 0.17245 0.16963 + 0.0028 0.938 
3 0.14485 0.14117 + 0.0037 1.919 
4 0.14205 0.14573 - 0.0037 1.859 
5 0.18175 0.18656 - 0.0048 2.480 
6 0.19660 0.19258 + 0.0040 1.678 

9.375 

We see that the second constraint has greatly improved the 
fit. Chi-squared has been reduced to 

2 
X2 = 9.375 (B67) 

This is less than the critical value 11.07, so there is now no 
statistically significant evidence for any furtherimperfection~ 
Le., if the given Pi were the "exact" values, it is reasonably 
likely that the distribution gi would deviate from Pi by the 
observed amount, by chance alone. Or, to put it in a way 
perhaps more appropriate to this problem, if the die were 
tossed another 20,000 times, we would not expect the frequencies 
gi to be repeated exactly; the new frequencies gi', might rea­
sonably be expected to deviate from the first set gi by about 
as much as the distributions gi' Pi differ. 

That this is reasonable can be seen directly without calcu­
lating Chi-squared. For if the result i is obtained ni times 
in N tosses, we might expect this to fluctuate in successive 
repetitions of the whole experiment by about ±~. Thus the 

~ 
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observed frequencies gt = ni/N should fluctuate by about 
.6.gi=±v!ii/N; for gi=1/6, N=20,000, this gives .6.gi'" 0.0029. 
But this is just of the order of the observed deviations .6.i. 
Therefore, it would be futile to search the {.6. i } of Table 2 
for a third imperfection. Not only does their distribution 
fail to suggest any simple hypothesis; if the die were tossed 
another 20,000 times, in all probability t~e new .6.i would be 
entirely different. With our two-parameter hypothesis H2 we 
are down "in the noise" of random variations, and any further 
systematic influences are too small to be seen unless we go up 
to a million tosses, by which time the die will be changed any­
way by wear. 

A technical point might be raised by Statisticians: "You 
have estimated two parameters AI,A2 from the data; therefore 
you should use the test for three degrees of freedom rather 
than five." This reduction is appropriate if the parameters 
are chosen by the criterion of minimizing X2 • That is, if we 
choose them for the express purpose of making X2 small and 
still fail to do so, it does not speak well for the hypothesis 
and a penalty is in order. But our parameters were chosen by 
a criterion that took no note of X2; and therefore the proper 
question is only; "How well does_the result fit the data?" 
and not: "How did you find the par-ameters?" Had we chosen 
our parameters to minimize X2, we would have found a still 
lower value; but one that is not relevant to the point being 
made here, which is the performance of the maximum entropy 
criterion, as advocated long before this die problem was thought 
of. 

The maximum entropy method with two Lagrange multipliers 
thus successfully determines a distribution with five indepen­
dent quantities. The "ensemble" canonical with respect to the 
constraints fl(i), f 2(i) describing the two imperfections that 
common sense leads us to expect in a die, agrees with Wolf's 
data about as well as can be hoped for in a statistical problem. 

It was stressed above that in this theory the connections 
between probability and frequency are loosened and we noted, 
in the discussion following (B40), that the connections re­
maining are now theorems rather than conjectures. As we now 
see, they are not loosened enough to hamper us in dealing with 
real random experiments. If we had been given only the two 
constraints (B59), (B62) we could have reproduced, by maximum 
entropy, all of Wolf's frequency data. 

This is an interesting caricature of the results of Keck and 
Levine, and shows again how much our critics would gain by 
understanding, rather than attacking, this principle. Far from 
"ignoring the physics," it leads us to concentrate our attention 
on the part of the physics that is relevant. Success in using 
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it does not require that we take into account all dynamical 
details; it is enough if we can recognize, whether by common­
sense analysis or by inspection of data, what ~ the systematic 
influences at work, that represent the "physical constraints?" 
If by any means we can recognize these, maximum entropy then 
takes over and supplies the rest of the solution, which does 
not depend on dynamical details but only on counting the pos­
sibilities. 

In effect, then, by subtracting off the systematic effects 
we reduce the problem to Bernoulli's "equally possible" cases; 
the deviations ~i from the canonical distribution that remain 
in Table 2 are the same as the deviations from Pi = 1/6 that we 
would expect if the die had no imperfections. 

Success of our predictions is not guaranteed in advance, as 
Row1inson supposed it should be when he wanted to reject the 
entire principle at the stage of Table 1. But this supposition 
merely reflects his rejection, at the very outset, of the dis­
tinction between probability and frequency that I keepstressin~ 
If one is not moved by theoretical arguments for that distinc­
tion, we now see a pragmatic reason for it. The probabilities 
Pi in Table 1 are an entirely correct description of our state 
of knowledge about a single toss, when we know about only the 
constraint f1(i). It is a theorem that they are also numeri­
cally equal to the frequencies which could happen in the greatest 
number of ways if no other physical constraint existed. But 
our probabilities will agree with measured frequencies only 
when we have recognized and put into our equations the con­
straints representing all the systematic influences at work in 
the real experiment. 

This, I submit, is exactly as it should be in a statistical 
theory; at no point are we ever justified in claiming that our 
predictions must be right; only that, in order to make any 
better ones we should need more information than was given. 
It is when a theory purports to do more than this (by failing 
to recognize the distinction between probability and frequency) 
that it may be charged with promiSing us something for nothing. 

Since the fit is now satisfactory, the above values of A1' 
A2 give us the numerical values of the systematic influences in 
Wolf's experiment: from (B52), (B53) we have 

So 

0.03172 
6 

0.07178 
3 

0.0053 (B68) 

0.024 (B69) 

So, if today some enterprising person at Monte Carlo or Las 
Vegas will undertake to measure for us the coefficients a, S, 
then we can determine--100 years after the fact--just how far 
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(in terms of its nominal dimensions) the center of gravity of 
Wolf's die was displaced (presumably by excavation of the 
spots), and how much longer it was in the (3-4) direction than 
in the (2-5) or (1-6). We can also certify that it had no 
other significant imperfections (at least, none that affected 
its frequencies). Note, however, that a, 6 are not, strictly 
speaking, physical constants only of the die; a little further 
common-sense reasoning makes it clear that they must depend 
also on how the die was tossed; for example, tossing it with 
a large angular momentum about a (3-4) axis will decrease the 
effect of the fl(i) constraint, while if it spins about the 
(1-6) axis the effect of f 2(i) will be less; and with a (2-5) 
spin axis both constraints will be weakened. 

Indeed, as soon as the die is unsymmetrical, all sorts of 
physical conditions that were irrelevant for a perfectly sym­
metrical one, become relevant. The frequencies will surely 
depend not only on its center of gravity but also on all the 
second moments of its mass distribution, the sharpness of its 
edges, the smoothness, elasticity, and coefficient of friction 
of the table, etc. 

However, we conjecture that a~ 6 depend very little on these 
factors within the small range of_ conditions usually employed 
(i.e., small angular momentum in tossing, etc.); and suspect 
that in that range the coefficient a is already well known to 
those who deal with loaded dice. 

I really must thank Rowlinson for giving us (albeit ininten­
tionally) such a magnificent test case by which the nature and 
power of the Principle of Maximum Entropy can be demonstrated, 
in a context entirely removed from the conceptual problems of 
quantum theory. And indeed, all the criticisms he made were 
richly deserved; for he was not, after all, criticizing the 
Principle of Maximum Entropy; only a gross misunderstanding of 
it. Rowlinson' s criticisms were, however, taken up and extended 
by Lindhard (1974); in view of the long commentary above we may 
leave it as an exercise for the reader to deal with his arguments. 

The Constraint Rule. There is a further point of logic about 
our use of maximum entropy that has troubled some who are able 
to see the distinction between probability and frequency. In 
imposing the mean-value constraint (Bl) we are simply appro­
priating a sample average obtained from N measurements that 
yielded fj on the j'th observation: 

I N 
F = f = - [ f. (B70) 

N j=l J 

and equating it to a probability average 
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n 
<f> = L Pi f(x.) 

i=l ~ 
(B7l) 

Is there not an element of arbitrariness about this? A cynic 
might say that after all these exhortations about the distinc­
tion between probability and frequency. we proceed to confuse 
them after all. by using the word "average" in two quite dif­
ferent senses. 

Our rule can be justified in· more than one way; in Section 
D below we argue in terms of what it means to say that certain 
information is "contained" in a probability distribution. Let 
us ask now whether the constraint rule (Bl) is consistent with. 
or derivable from, the usual principles of Bayesian inference. 

If we decide to use maximum entropy based on expectations of 
certain specified functions {fl(x) ••• fm(x)}, then we know in 
advance that our final distribution will have the mathematical 
form 

p(xiIH) = Z(\~ .. Am) exp[-Al fl(x i ) ••• - Am fm(xi )] (B72) 

and nothing prevents us from thinking of this as defining a 
class of sampling distributions parameterized by the Lagrange 
multipliers Ak' the parameter space consisting of all values 
of {Al ••• Am} which lead to normalizable distributions (B72). 
Choosing a specific distribution from this class is then 
equivalent to making an estimate of the parameters Ak' But 
parameter estimation is a standard problem of statistical in­
ference. 

The class C of hypothesis being considered is thus specifie~ 
any particular choice of the {Al ••• Am} may be regarded as 
defining a particular hypothesis REC. However, the class C 
does not determine any particular choice of the functions 
{fl(x), .... fm(x)}. For. if A is any nonsingular (mxm) matrix. 
we can carry out a linear transformation 

m 

L 
j=l 

where 

A* f~(x) 
j J 

(B73) 

(B74a) 

(B74b) 

and· the class of distributions (B72) can be written equally 
well as 
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P (xi I H) = 1 exp{->.. *1 f*l(x.) - ... - >.. * f* (Xi)} • (B75) 
z (>..~ ••. >..=) 1. m m 

As the {>..* .•. >..*} vary over their range, we generate exactly 
the same tamilymof probability distributions as (B72). The 
class C is therefore characteristic, not of any particular 
choice of the {fl(x) ..• fm(x)}, but of the linear manifold M(C) 
spanned by them. 

If the fk(x) are linearly independent, the manifold M(C) has 
dimensionality m. Otherwise, M(C) is of some lower dimension­
ality m' < m; the set of functions {fl (x) ••. fm(x)} is then 
redundant, in the sense that at least one of them could be 
removed without changing the class C. While the presence of 
redundant functions fk(x) proves to be harmless in that it does 
not affect the actual results of entropy maximization (Jaynes, 
1968), it is a nuisance for present purposes [Eq. (B81) below]. 
In the following we assume that any redundant functions have 
been removed, so that m' = m. 

Suppose now that Xi is the result of some random experiment 
that has been repeated r times, and we have obtained the data 

D:: {Xl true r l times, x2 true r 2 times, ••• , xn true rn times}. 

(B76) 

Of course, Er i = r. Out of all hypotheses He:C, which is most 
strongly supported by the data D according to the Bayesian, or 
likelihood, criterion? To answer this, choose any particular 
hypothesis Ho :: {>"I(O) ••• >"m(O)} as the "null hypothesis" and 
test it against any other hypothesis H:: {AI •.• Am} in C by 
Bayes' theorem. The log-likelihood ratio in favor of Hover 
Ho is 

P(D H) n 
L :: log P(D H ) L 

0 i=l 

r[lOg(z/Z) 
m 

+ L 
k=l 

wheI:e 

f _l~ f() 
k - r ~ r i k Xi 

i=l 

(B77) 

(B78) 

is the measured average of fk(x), as found in the experiment. 
Out of all hypotheses in class C the one most strongly supported 
by the data D is the one for which the first variation vanishes: 
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oL = -r ~l [a~k log Z + fkJOAk - D 

But from (B4), this yields just our constraint rule (Bl): 

{<f > = f 
k k 

1 < k < m} 
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(B79) 

(B8D) 

To show that this yields a true maximum, form the second varia­
tion and note that the covariance matrix 

2 
a log Z = <fJofk> - <fJo><fk> 
dAjaAk 

(B8l) 

is positive definite almost everywhere on the parameter space 
if the fk(x) are linearly independent. 

Evidently, this result is invariant under the aforementioned 
linear transformations (B74); i.e., we shall be led to the same 
final distribution satisfying (B8D) however the fk(x) are 
defined. Therefore, we can state our conclusion as follows: 

{
Out of all hypotheses in class C, the data D support } 
most strongly that one for which the exp~ctation (B82) 
<f(x) > is equal to the measured average f(x) for every 
function f(x) in the linear manifold M(C). 

l 
This appears to the writer as a rather complete answer to some 
objections that have been raised to the constraint rule. We 
are not, after all, confusing two averages; it is a derivable 
consequence of probability theory that we should set them equal. 
Maximizing the entropy subject to the constraints (B8D), is 
equivalent to (i.e., it leads to the same result as) maximizing 
the likelihood over the manifold of sampling distributions 
picked out by maximum entropy. 

Forney's Question. An interesting question related to this 
was put to me by G. David Forney in 1963. The procedure (Bl) 
uses only the numerical value of F, and it seems to make no 
difference whether this ;as-a measured average over 2D observa­
tions, or 20,000. Yet there is surely a difference in our state 
of knowledge--our degree of confidence in the accuracy of F-­
that depends on N. The maximum-entropy method seems to ignore 
this. Shouldn't our final distribution depend on N as well as 
F? 

It is better to answer a question 15 years late than not at 
all. We can do this on both the philosophical and the technkal 
level. Philosophically, we are back to the question: "What is 
the specific problem being solved?" 
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In the problem I am considering F is simply a nl~ber given 
to us in the statement of the problem. Within the context of 
that problem, F is exact by definition and it makes no dif--­
ference how it was obtained. It might, for example, be only 
the guess of an idiot, and not obtained from any measurement 
at all. Nevertheless, that is the number given to us, and our 
job is not to question it, but to do the best we can with it. 

This may seem like an inflexible, cavalier attitude; I am 
convinced that nothing short of it can ever remove the ambiguity 
of "What is the problem?" that has plagued probability theory 
for two centuries. 

Just as Row1inson was impelled to invent an Urn Model that 
was not specified in the statement of the problem, you and I 
might, in some cases, feel the urge to put more structure into 
this problem than I have used. Indeed, we demand the right to 
do this. But then, let us recognize that we are considering a 
different problem than pure "classical" maximum entropy; and it 
becomes a technical question, not a philosophical one, whether 
with some new model structure we shall get different results. 
Clearly, the answer must be sometimes yes, sometimes no, depen­
ding on the specific model structure assumed. But it turns out 
that the answer is "no" far more often than one might have 
expected. 

Perhaps the first thought that comes to one's mind is that 
any uncertainty as to the value of F ought to be allowed for 
by averaging the maximum-entropy distribution Pi(F) over the 
possible values of F. But the maximum-entropy distribution is, 
by construction, already as "uncertain" as it can get for the 
stated mean value. Any averaging can only result in a distri­
bution with still higher entropy, which will therefore neces­
sarily violate the mean value number given to us. This hardly 
seems to take us in the direction wanted; i.e., we are already 
up against the wall from having maximized the entropy in the 
first place. 

But such averaging was only an ad hoc suggestion; and in 
fact the Principle of Maximum Entropy already provides the 
proper means by which any testable information can be built 
into our probability assignments. If we wish only to incorporate 
information about the accuracy with which f is known, no new 
model structure is needed; the way to do this is to impose 
allother constraint. In addition to <f> we may specify <f2>; 
or indeed, any number of moments <fn> or more general functions 
<h(f». Each such constraint will be accompanied by its 
Lagrange multiplier A, and the general maximum-entropy formalism 
already allows for this. 

Of course, whenever information of this kind is available it 
should in principle be taken into account in this way. I would 
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"hold it to be self-evident" that for any problem of inference, 
the ideal toward which we should aim is that all the relevant 
information we have ought to be incorporated explicitly into 
our equations; while at the same time, "objectivity" requires 
that we carefully avoid assuming any information that we do not 
possess. The Principle of Maximum Entropy, like Ockham, tells 
us to refrain from inventing Urn Models when we have no Urn. 

But in practice, some kinds of information prove to be far 
more relevant than others, and this extra information about 
the accuracy of F usually affects our actual conclusions so 
little that it is hardly worth the effort. This is particu­
larly true in statistical mechanics, due to the enormously 
high dimensionality of the phase space. Here the effect of 
specifying any reasonable accuracy in F is usually completely 
negligible. However, there are occasional exceptions; and 
whenever this extra information does make an appreciable dif­
ference it would, of course, be wrong to ignore it. 

c. Speculations for the Future 
The field of statistical Inference--in or out of Physics--is so 
wide that there is no hope of guessing every area in which new 
advances might be made. But we can indicate a few areas where 
progress may be predicted rather safely because it is already 
underway, with useful results being found at a rate proportional 
to the amount of effort invested. 

Current progress is taking place at several different levels: 
I Application of existing techniques to existing problems 

II Extension of present theory to new problems. 
III More powerful mathematical methods. 

IV Further development of the basic theory of inference. 
However, I shall concentrate on I and I~ because II is so 
enveloped in fog that nothing can be seen clearly, and III seems 
to be rather stagnant except for development of new specialized 
computer techniques, which I am not competent even to describe, 
much less predict. 

There are important current areas that seem rather desperately 
in need of the same kind of house-cleaning that statistical 
mechanics has received. What they all have in common is: 
(a) long-standing problems, still unsolved after decades of 
mathematical efforts, (b) domination by a mental outlook that 
leads one to concentrate all attention on the analogs of ergodic 
theory. That is, in the belief that a probability is not re­
spectable unless it is also a frequency, one attempts a direct 
calculation of frequencies, or tries to guess the right "sta­
tistical assumption" about frequencies, even though the avail­
able information does not consist of frequencies, but consists 
rather of partial knowledge of certain "macroscopic" parameters 
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{ail; and the predictions desired are not frequencies, but 
estimates of certain other parameters {Si}. It is not yet 
realized that, by looking at the problems this way one is not 
making efficient use of probability theory; by restricting its 
meaning one is denying himself nearly all its real power. 

The real problem is not to determine frequencies, but to 
describe one's state of knowledge by a probability distribu­
tion. If one does this correctly, he will find that whatever 
frequency connections are relevant will appear automatically, 
not as "statistical assumptions" but as mathematical conse­
quences of probability theory. 

Examples are the theory of hydrodynamic turbulence, optical 
coherence, quantum field theory, and surprisingly, communication 
theory which after thirty years has hardly progressed beyond 
the stage of theorems which presuppose all the ten-gram fre­
quencies known in advance. 

In early 1978 I attended a Seminar talk by one of the current 
experts on turbulence theory. He noted that the basic theory 
is in a quandary because "Nobody knows what statistical assump­
tions to make." Yet the objectives of turbulence theory are 
such things as: given the density, compressibility, and vis­
cosity of a fluid, predict the cOllditions for onset of turbulence, 
the pressure difference required to maintain turbulent flow, the 
rate of heat transfer in a turbulent fluid, the distortion and 
scattering of sound waves in a turbulent medium, the forces 
exerted on a body in the fluid, etc. Even if one's objective 
were only to predict some frequencies gi related to turbulence, 
statements about the best estimate of gi and the reliability of 
that estimate, can only be derived from probabilities that are 
not themselves frequencies. 

We indicated a little of this above [Equations (BI5)-(B23»); 
now let us see in a more realistic case why the frequencies 
with which various things happen in a time-dependent process 
are not the same as their probabilities; but that, nevertheles~ 
there are always definite connections between probability and 
frequency, derivable as consequences of probability theory. 

Fluctuations. Consider some physical quantity f(t). What 
follows will generalize at once to field quantities f(x,t); 
but to make the present point it is sufficient to consider only 
time variations. Therefore, we may think of f(t) as the net 
force exerted on an area A by some pressure P(x,t): 

f(t) = J P(x,t) dA 
A 

(el) 

or the net force in the x-direction exerted by an electric field 
on a charge distributed with density p(x): f(t) =fEx (X,t)p(x)d 3X 
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or as the total magnetic flux passing through an area A, or the 
number of molecules in an observed volume V; or the difference 
in magnetic and electrostatic energy stored in V: 

1 J 2 2 3 f(t) = an [H (x,t) - E (x,t)]d x 
V 

(C2) 

and so on! For any such physical meaning, the following con­
siderations will apply. 

Given any probability distribution (which we henceforth call, 
for brevity an ensemble) for f(t}, the best prediction of f(t} 
that we can make from it--"best" in the sense of minimizing the 
expected square of the error--is the ensemble average 

<f(t}> = <f> (C3) 

which is independent of t if it is an equilibrium ensemble, as 
we henceforth assume. But this mayor may not be a reliable 
prediction of f(t} at any particular time. The mean square 
expected deviation from the prediction (C3) is the variance 

(C4) 

again independent of t by our assumption. Only if 1M /<f> I « 1 
is the ensemble making a sharp prediction of the measurable 
value of f. 

Basically, the quantity ~f just defined represents only the 
uncertainty of the prediction; i.e., the degree of ignorance 
about f expressed by the ensemble. Yet ~f is held, almost 
universally in the literature of fluctuation theory, to repre­
sent also the measurable RMS fluctuations in f. Clearly, this 
is an additional assumption, which might or might not be true; 
for, obviously, the mere fact that I know f only to ±l% accuracy, 
is not enough to make it fluctuate by ±1%! Therefore, we note 
there is logically no room for any postulate that ~f is the 
measurable RMS fluctuation; whether this is or is not true is 
mathematically determined by the probability distribution. To 
understand this we need a more careful analysis of the relation 
between <f>, 6f, and experimentally measurable quantities. 

More generally, we can consider a large class of functiona1s 
of f(t) in some time interval (0< t <T); for example, 

K[f(t}] == T-n J~t1 ••• JTdtn G[f(t1} ••• f(t n)] (C5) 
o 0 

with G(f1 ••• fn) a real function. For any such functional, the 
ensemble will determine some probability distribution P(K)dK, 
and the best prediction we can make by the mean-square-error 
criterion is its expectation <K>. What is the necessary and 
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sufficient condition that, as T + 00, the ensemble predicts a 
sharp value for K? It is, as always, that 

o (C6) 

For any such functional, this condition may be written out 
explicitly; let us give two examples that will surprise some 
readers. 

One of the sources of confusion in this field is that the 
word "average" is used in several different senses. We try to 
avoid this by using different notations for different kinds of 
average. For the single system that exists in the laboratory, 
the observable average is not the ensemble average <f>, but a 
time average, which we denote by a bar (reserving the angular 
brackets to mean only ensemble averages): 

f:: ¥J T 
f(t)dt (Cn 

o 
which corresponds to (C5) with G :: f(tl). The averaging time 
T is left arbitrary for the time being because the results (C8), 
(CII) , (CI8), to be derived next, being exact for any T, then 
provide a great deal of insight that would be lost if we pass 
to the limit too soon. 

In the state of knowledge represented by the ensemble, the 
best prediction of f by the mean square error criterion, is 

1fT lJT <f> = <:T f(t)dt;> = T <f>dt 
o 0 

or, for an equilibrium ensemble, 

<f> = <f> (C8) 

an example of a very general rule of probability theory; an 
ensemble average <f> is not the same as a measured value f(t) 
or a measured average f; but it is equal to the expectations 
of both of those quantities. 

But (C8), like (C3), tells us nothing about whether the pre­
diction is a reliable one; to answer this we must again con­
sider the variance 

(C9) 
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Only if l~f/<f>I« 1 is the ensemble making a sharp prediction 
of the measured average f. Now, however, the time averaging 
can help us; for ~f may become very small compared to ~f, if 
we average over a long enough time. 

Now in an equilibrium ensemble the integrand of (C9) is a 
function of (t2 - tl) only, and defines the covariance function 

<!>(T) _ <f(t)f(t+T» - <f(t»<f(t+T» 

<f{O)f(T» - <f>2 

from which (C9) reduces to a single integral: 

- 2 2 JT (M) = 2" (T - T)<j>(-r)dT 
T 0 

(CIO) 

(Cll) 

A sufficient (stronger than necessary) condition for ~f to tend 
to zero is that the integrals 

~ <!>(T)TdT ~ <!>(T)dT (CI2) 
o 0 

converge; and then the characteristic correlation time 

Tc == [{' <!>(T)dTrl[{'T <!>(T)dT] (C13) 

is finite, and we have asymptotically, 

(~f)2 ~ i ~ <!>(T)dT (CI4) 

if then tends to zero like 11 If, and the situation is very much 
as if successive samples of the function over non-overlapping 
intervals of length Tc were independent. However, the slightest 
positive correlation, if it persists indefinitely, will prevent 
any sharp prediction of f. For, if <!>(T) ~ <!>(oo) > 0, then from 
(Cll) we have 

(CIS) 

and the ensemble can never make a sharp prediction of the 
measured average; i.e., any postulate that the ensemble average 
equals the time average, violates the mathematical rules of 
probability theory. These results correspond to (B23). 

Now everything we have said about measurable values of f can 
be repeated mutatis mutandis for the measurable fluctuations 
Of(t); we need only take a step up the hierarchy of successively 
higher order correlations. For, over the observation time T, 
the measured mean-square fluctuation in f(t)--i.e., deviation 
from the measured mean--is 
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(of)Z == t t [f(t) - £]Z dt (CI6) 
o 

(CI7) 

Z which corresponds to the choice G = f (tl) - f (tl)f (tZ) in (CS). 
The "best" prediction we can make of this from the ensemble, 
is its expectation, which reduces to 

(CI8) 

as a short calculation using (C4), (CIl) will verify. This is 
in itself a very interesting (and I am sure to many surprising) 
result. The predicted measurable fluctuation cf is not the 
same as the ensemble fluctuation ~f unless the ensemble is such, 
and the averaging time so long, that ~f is negligible compared 
to ~f. 

But (CI8) tells us nothing about whether the prediction 
«of)2> is a reliable one; to answer this we must, once more, 
examine the variance 

4 Z 2 V = «of) > - «of) > (CI9) 

Unless (CI9) is small compared to the square of (CI8), the 
ensemble is not making any definite prediction of (of)2. After 
some computation we find that (CI9) can be written in the form 

(CZO) 

where ~ is a four-point correlation function: 

~(tl,t2,t3,t4) = <f(t l )f(t2)f(t3)f(t4» - Z<f(t l )f(tz)fZ(t3» 

+<f2 (t l )fZ(tZ» - [(6£)2 + (~f/]Z (CZI) 

which we have written in reduced form, taking advantage of the 
symmetry of the domain of integration in (CZO). 

As we see, the person who supposes that the RMS fluctuation 
~f in the ensemble is also the experimentally measurable RMS 
fluctuation of, is inadvertently supposing some rather non­
trivial mathematical properties of that ensemble, which would 
seem to require some nontrivial justification! Yet to the best 
of my knowledge, no existing treatment of fluctuation theory 
even recognizes the distinction between of and ~f. 
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In almost all discussions of random functions in the exist:big 
literature concerned with physical applications. it is taken 
for granted that (C6) holds for all functionals. One can 
hardly avoid this if one postulates. with Rawlinson. that 
"the probability of an event is the frequency with which it 
occurs in a given situation." But if it requires the computa­
tion (C20) to justify this for the mean-square fluctuation. 
what would it take to justify it in general? That is just 
the "ergodic" problem for this model. 

Future progress in a number of areas will. I think, require 
that the relation between ensembles and physical systems be 
more carefully defined. The issue is not merely one of "phi­
losphy of interpretation" that practical people may ignore; 
for not only the quantitative details. but even the qualitative 
kinds of physical predictions that a theory can make. depend on 
how these conceptual problems are resolved. For example. as 
was pointed out in my 1962 Brandeis Lectures, [loc.cit. Eqs. 
(83)-(93)], one cannot even state, in terms of the underlying 
ensemble, the criterion for a phase transition, or distinguish 
between laminar and turbulent flow, until the meaning of that 
ensemble is recognized. 

A striking example of the need for clarifications in fluc­
tuation theory is provided by quantum electrodynamics. Here 
one may calculate the expectation of an electric field at a 
point: <E(x. t» = 0, but the expectation of its square diverges: 
<E2 (x, t) > = a>. Thus ~E = 00; in present quantum theory one inter­
prets this as indicating that empty space is filled with 'Vacuum 
fluctuations," yielding an infinite "zero-point" energy density. 
But when we see the distinction between ~E and OE. a different 
interpretat ion suggests itself. If ~E = 00 that does not have to 
mean that any physical quantity is infinite; it means only that 
the present theory is totally unable to predict the field at a 
point, Le •• the only thing which is infinite is the uncertainty 
of the prediction. 

It had been thought for 30 years that these vacuum fluctua­
tions had to be real. because they were the physical cause of 
the Lamb shift; however it has been shown (Jaynes, 1978) that 
a classical calculation leads to just the same formula for this 
frequency shift without invoking any field fluctuations. There­
fore, it appears that a reinterpretation of the "fluctuation 
laws" of quantum theory along these lines might clear up at 
least some of the paradoxes of present quantum theory. 

The situation just noted is only one of a wide class of 
connections that mi~ht be called "generalized fluctuation­
dissipation theorems." or "fluctuation-response theorems." 
These include all of the Kubo-type theorems relating transport 
coefficients to various "thermal fluctuations." I believe that 
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relations of this type will become more general and more use­
ful with a better understanding of fluctuation theory. 

Biology. Perhaps the largest and most obvious beckoning new 
field for application of statistical thermodynamics is biology. 
At present, we do not have the input information needed for a 
useful theory, we do not know what simplifying assumptions are 
appropriate; and indeed we do not know what questions to ask. 
Nevertheless, molecular biology has advanced to the point 
where some preliminary useful results do not seem any further 
beyond us now than the achievement of an integrated circuit 
computer chip did thirty years ago. 

In the case of the simplest organism for which a great deal 
of biochemical information exists, the bacterium E. coli, 
Watson (1965) estimated that "one-fifth to one-third of the 
chemical reactions in E.coli are known," and noted that addi­
tions to the list were-coming at such a rate that by perhaps 
1985 it might be possible to describe "essentially all the 
metabolic reactions involved in the life of an E. coli cell." 

As a pure speculation, then, let us try to anticipate a 
problem that might just possibly be amenable to the biochemical 
knowledge and computer technology of the year 2000: Given the 
structure and chemical composition of E. coli, predict its 
experimentally reproducible properties~ i~ the range of 
environmental conditions (temperature, pH, concentrations of 
food and other chemicals) under which a cell can stay alive; 
the rate of growth as a function of these factors. Given a 
specific mutation (change in the DNA code), predict whether 
it can survive and what the reproducible properties of the 
new form will be. 

Such a program would be a useful first step. It seems, in 
my very c10udycrystal ball, that (1) its realization might be 
a matter of decades rather than centuries, (2) success in one 
instance would bring about a rapid increase in our ability to 
deal with more complicated problems, because it would reveal 
what simplifying assumptions are permissible. 

At present one could think of several thousand factors that 
might, as far as we know, be highly relevant for these predic­
tions. If a single cell contains 20,000 ribosomes where 
protein synthesis is taking place, are they performing 20,000 
different functions, each one essential to the life of the 
cell? This just seems unlikely. I would conjecture that of 
all the complicated detail that can be seen in a cell, the 
overwhelmingly greatest part is--like every detail of the hair 
on our heads, or our fingerprints--accidental to the history 
of that particular individual; and not at all essential for 
its biological function. 
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The problem seems terribly complicated at present, because 
in all this detail we do not know what is relevant, what is 
irrelevant. But success in one instance would show us how to 
judge this. It might turn out that prediction of biological 
activity requires information about only a dozen separate 
factors, instead of a million. If so, then one would have 
both the courage and the insight needed to attack more com­
plicated problems. 

This has been stated so as to bring out the close analogy 
with what has happened in the theory of irreversible processes. 
In the early 1950's the development of a general formalism for 
irreversible processes appeared to be a hopelessly complicated 
program, not to be thought of in the next thousand years, if 
ever. Thus, van Hove (1956) stated: " ••• in view of the 
unlimited diversity of possible nonequi1ibrium situations, 
the existence of such a set of equations seems rather doubtful." 
Yet, as noted in Section A above, the principle which has 
solved this problem already existed, unrecognized, at that 
time. And today it seems that our major problem is not the 
complications of detail, but the conceptual difficulty in 
understanding how such a complicated problem could have such 
a (formally) simple solution. The answer is that, while full 
dynamical information is extremely complicated, the relevant 
information is not. 

Perhaps there is a general princip1e--which we are concep­
tually unprepared to recognize today because it is toosimple-­
that would tell us which features qf an organism are its 
essential, relevant biological features; and which are not. 

Of course, applications of statistical mechanics to biology 
may be imagined at many different levels, so widely separated 
that they have nothing to do with each other. Thus, while I 
have been speculating about complexities within a single cell, 
the contribution of E. H. Kerner to this Symposium goes after 
the opposite extreme, interaction of many organisms. At that 
level the relevant information is now so much simpler and more 
easily obtained that many interesting results are already 
available. 

Basic Statistical Theory. From the standpoint of statistical 
theory in general, the principle of maximum entropy is only 
one detail, which arose in connection with the problem of 
generalizing Laplace's statistical practice from (A6), and we 
have. examined it above only in the finite discrete case. As 
n ~ 00 a new feature is that for some kinds of testable informa­
tion there is no upper bound to the entropy. For mean-value 
constraints, the partition function may diverge for all real A, 
or the constraint equations (B4) may not have a solution. In 
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this way. the theory signals back to us that we have not put 
enough information into the problem to determine any definite 
inferences. In the finite case, the mere enumeration of the 
possibilities {i = 1,2 •••• n} specifies enough to ensure that a 
solution exists. If n+ex>, we have specified far less in the 
enumeration, and it is hardly surprising that this must be 
compensated by specifying more information in our constraints. 

Row1inson quotes Leslie Ellis (1842) to the effect that 
"Mere ignorance is no ground for any inference whatever. Ex 
nihilo nihil." I am bewildered as to how Rowlinson can con:: 
strue this as an argument against maximum entropy, since as 
we see the maximum entropy principle iDDllediately tells us the 
same thing. Indeed. it is the principle of maximum entropy-­
and not Leslie Ellis--that tells us preCisely how much informa­
tion must be specified before we have a normalizable distribu­
tion so that rational inferences are possible. Once this is 
recognized, I believe that the case n+ "" presents no difficulties 
of mathematics or of principle. 

It is very different when we generalize to continuous dis­
tributions. We noted that Boltzmann was obliged to divide 
his phase space into discrete cells in order to get the 
entropy expression (A14) from the_combinatorial factor (All). 
Likewise. Shannons uniqueness proof establishing -Epi log Pi 
as a consistent information measure. goes through only for a 
discrete distribution. We therefore approach the continuous 
case as the limit of a discrete one. This leads (Jaynes. 1963b, 
1968) to the continuous entropy expression 

S = - Jp(X) log ~ dx (C22) m(x) 

where the "measure function" m(x) is proportional to the 
limiting density of discrete points (all this theory is readily 
restated in the notation of measure theory and Stieltjes 
integrals; but we have never yet found a problem that needs it). 
So, it is the entropy relative to some "measure" m(x) that is 
to be maximized. Under a change of variables, the functions 
p(x), m(x) transform in the same way, so that the entropy so 
defined is invariant; and in consequence it turns out that the 
Lagrange multipliers and all our conclusions from entropy 
maximization are independent of our choice of variables. The 
maximum-entropy probability density for prescribed averages 

Jfk(X)P(X)dX = Fk 1 ~ k ~ m (e23) 
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is 

p(x) = Z(~~~~.Am) exp [ -~Ak fk(X)] (C24) 

with the partition function 

zeAl· .• Am) == J dx m(x) exp [ - ~ Ak fk (X)] • (C25) 

An interesting fact, which may have some deep significance not 
yet seen, is that the class of maximum-entropy functions (C24) 
is, by the Pitman-Koopman theorem, identical with the class of 
functions admitting sufficient statistics; that is, if as in 
(B72)-(B8l) we think of (C24) as defining a class of sampling 
distributions from which, given data D == "N measurements of x 
yielded the results {xl .•. xN}'" we are to estimate the 
{AX • • Am} by applying Bayes' theorem, we find that the posterior 
d1stribution of the A's depends on the data only through the 
observed averages: 
_ _ 1 N 
fk = N L fk(xr ) 

r=l 
(C26) 

all other aspects of the data being irrelevant. This seems to 
strengthen the point of view noted before in (B72)-(B8l). For 
many more details, see Huzurbazar (1976). 

But now let us return to our usual viewpoint, that (C24) is 
not a sampling distribution but a prior distribution from 
which we are to make inferences about X, which incorporate any 
testable prior information. If the space Sx in which the con­
tinuous variable x is defined, is not the result of any obvious 
limiting process, there seems to be an ambiguity; for what now 
determines m(x)? 

This problem was discussed in some detail before (Jaynes, 
1968). If there are no constraints, maximization of (C22) 
leads to p(x) =Am(x) where A is a normalization constant; thus 
m(x) has the intuitive meaning that it is the distribution 
representing "complete ignorance" and we are back, essentially, 
to Bernoulli's problem from where it all started. In the con­
tinuous case, then, before we can even apply maximum entropy 
we must deal with the problem of complete ignorance. 

Suppose a man is lost in a rowboat in the middle of the 
ocean. What does he mean by saying that he is "completely 
ignorant" of his position? He means that, if he were to row 
a mile in any direction he would still be lost; he would be 
just as ignorant as before. In other words, ignorance of one's 
location is a state of knowledge which is not changed by a 
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small change in that location. Mathematically, "complete 
ignorance" is an invariance property. 

The set of all possible changes of location forms a group 
of translations. More generally, in a space Sx of any struc­
ture, one can define precisely what he means by "complete 
ignorance" by specifying some group of transformations of Sx 
onto itself under which an element of probability m{x)dx is 
to be invariant. If the group is transitive on Sx (i.e., 
from any point x, any other point x' can be reached by some 
element of the group). this determines m{x). to within an 
irrelevant multiplicative constant. on Sx. 

This criterion follows naturally from the basic desideratum 
of consistency: In ~ problems where ~ have the ~ ~ 
of knowledge. ~ should assign the ~ probabilities. Any 
transformation of the group defines a new problem in which a 
"completely ignorant" person would have the same state of 
prior knowledge. If we can recognize a group of transforma­
tions that clearly has this property of transforming the 
problem into one that is equivalent in this sense. then the 
ambiguity in m(x) has been removed. Quite a few useful 
"ignorance priors" have been found in this way; and in fact 
for most real problems that arise, the solutions are now well-­
if not widely--known. 

But while the notion of transformation groups greatly 
reduces the ambiguity in m(x). it does not entirely remove 
it in all cases. In some problems no appropriate group may 
be apparent; or there may be more than one, and we do not see 
how to choose between them. Therefore. still more basic 
principles are needed; and active research is now underway 
and is yielding promising results. 

One of these new approaches. and the one on which there is 
most to report. is the method of marginalization (Jaynes. 1979). 
The basic facts pointing to it were given already by Jeffreys 
(1939; §3.8), but it was not realized until 1976 that this 
provides a new, constructive method for defining what is meant 
by "ignorance." with the advantage that everything follows 
from the basic rules (AB) , (A9) of probability theory. with 
no need for any such desiderata as entropy or group invariance. 
We indicate the basic idea briefly. using a bare skeleton 
notation to convey only the structure of the argument. 

Marginalization. We have a sampling distribution p(xIS) for 
some observable quantity x. depending on a parameter S, both 
multidimensional. From an observed value x we can make in­
ferences about S; with prior information II' prior probability 
distribution P(SIIl) Bayes' theorem (B24) yields the posterior 
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distribution 

(C27) 

In the following, A always stands for a normalization constant, 
not necessarily the same in all equations. 

But now we learn that the parameter e can be separated into 
two components: e = (~,n) and we are to make inferences only 
about~. Then we discover that the data x may also be sepa­
rated: x= (y,z) in such a way that the sampling distribution 
of z depends only on ~: 

p(zl~n) = fp(yzln~)dY = p(zl~) (C28) 

Then, writing the prior distribution as p (6 Ill) = 1T(~)1T(n), 
(C27) gives for the desired marginal posterior distribution 

p(~IY,z II) = A 7T(~) fp(y,zl~n)7T(n)dn (C29) 

which must in general depend on our prior information about n. 
This is the solution given by a "conscientious Bayesian" BI. 

At this point there arrives on the l?cene an "ignorant 
Bayesian" B2' whose knowledge of the experiment consists only 
of the sampling distribution (C28); i.e., he is unaware of the 
existence of the components (y,n). When told to make inferences 
about ~, he confidently applies Bayes' theorem to (C28), getting 
the result 

(C30) 

This is what was called a "pseudoposterior distribution" by 
Geisser and Cornfield (1963). 

BI and B2 will in general come to different conclusions be­
cause Bl is taking into account extra information about (y,n). 
But now suppose that for some particular prior 1T(n), BI and B2 
happen to agree after all; what does that mean? Clearly, B2 is 
not incorporating any information about n; he doesn't even know 
it exists. If, nevertheless, they come to the same conclusions, 
then it must be that Bl was not incorporating any information 
about n either. In other words, a prior 1T(n) that leaves Bl 
and B2 in agreement must be, within the context of this model, 
a completely uninformative prior; it contains no information 
relevant to questions about ~. 

Now the condition for equality of (C29), (C30) is just a 
Fredholm integral equation: 

fp(y,zl~,n)7T(n)dn = A(y,z)p(zl~) (C3l) 
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where A(y,Z) is a function to be determined from (C31). There­
fore, the rules of probability theory already contain the 
criterion for defining what is meant by "completely uninforma­
tive." 

Mathematical analysis of (C3l) proves to be quite involved; 
and we do not yet know a necessary and sufficient condition on 
p(y,zl~n) for it to have solutions, or unique solutions, al­
though a number of isolated results are now in (Jaynes, 1979). 
We indicate one of them. 

Suppose y and n are positive real, and n is a scale para­
meter for y; i.e., we have the functional form 

I -1 
p(y,z ~,n) = n f(z,~;y/n) (C32) 

for the sampling density function. Then, (C3l) reduces to 

y-l Jf(Z,~;a)[~ ~(~)]da = A(Y'Z)Jf(Z,~;a)da (C33) 

where we have used (C28). It is apparent from this that the 
Jeffreys prior 

(C34) 

is always a solut ion, lead ing to A (y ,z) = y -1. Thus (C34) is 
"completely uninformative" for all models in which n appears 
as a scale parameter; and it is easily shown (Jaynes, 1979) 
that one can invent specific models for which it is unique. 

We have therefore, the result that the Jeffreys prior is 
uniquely determined as the only prior for a scale parameter 
that is "completely uninformative" without qualifications. We 
can hardly avoid the inference that it represents, uniquely, 
the condition of "complete ignorance" for a scale parameter. 

This example shows how marginalization is able to give 
results consistent with those found before, but in a way that 
springs directly out of the principles of probability theory 
without any additional appeal to intuition (as is involved in 
choosing a transformation group). At the moment, this approach 
seems very promising as a means of rigorizing and extending the 
basic theory. However, there are enough complicated technical 
details not noted here, so that it will require quite a bit 
more research before we can assess its full scope and power. 
In fact, the chase is at present quite exciting, because it 
is still mathematically an open question whether the integral 
equations may in some cases become overdetermined, so that no 
uninformative prior exists. If so, this would call for some 
deep clarification, and perhaps revision, of present basic 
statistical theory. 
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D. An Application: Irreversible Statistical Mechanics. 
The calculation of an irreversible process usually involves 
three distinct stages; (1) Setting up an "ensemble," 1. e., 
choosing a density matrix p(O), or an N-particle distribution 
function, which is to describe our initial knowledge about the 
system of interest; (2) Solving the dynamical problem; i.e., 
applying the microscopic equations of motion to obtain the 
time-evolution of the system pet); (3) Extracting the final 
physical predictions from the time-developed ensemble pet). 

Stage (3) has never presented any procedural difficulty; to 
predict the quantity F from the ensemble p, one follows the 
practice of equilibrium theory, and computes the expectation 
value <F> = Tr(pF). While the ultimate justification of this 
rule has been much discussed (ergodic theory), no alternative 
procedure has been widely used. 

In this connection, we note the following. Suppose we are 
to choose a number f, representing our estimate of the physical 
quantity F, based on the ensemble p. A reasonable criterion 
for the "best" estimate is that the expected square of the 
error, «F-f)2> shall be made a minimum. The solution of this 
simple variational problem is: f = <F>. Thus, if we regard 
statistical mechanics, not in the "classical" sense of a means 
for calculating time averages in terms of ensemble averages, 
but rather as an example of statistical estimation theory 
based on the mean square error criterion, the usual procedure 
is uniquely determined as the optimal one, independently of 
ergodic theory. A justification not depending on ergodic 
theory is in any event necessary as soon as we try to predict 
the time variation of some quantity F(t); for the physical 
phenomenon of interest then consists just of the fact that 
the ensemble average <F(t» is not equal to a time average. 

The dynamical problem of stage (2) is the most difficult to 
carry out, but it is also the one in which most recent progress 
has been booked (Green's function methods). While the present 
work is not primarily concerned with these techniques, they are 
available, and needed, in carrying out the calculations in­
dicated here for all but the Simplest problems. 

It is curious that stage (1), which must logically precede 
all the others, has received such scant attention since the 
pioneering work of Gibbs, in which the problem of ensemble 
construction was first recognized. Most recent discussions 
of irreversible processes concentrate all attention on stage 
(2); many fail to note even the existence of stage (1). One 
consequence of this is that the resulting theories apply un­
ambiguously only to the case of "response functions," in 
which the nonequilibrium state is one resulting from a 
dynamical perturbation (i.e., an explicitly given term in the 
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Hamiltonian), starting from thermal equilibrium at some time 
in the past; the initial density matrix is then given by con­
ventional equilibrium theory, and so the problem of ensemble 
construction is evaded. 

If, however, the nonequilibrium state is defined (as it 
usually is from the experimental standpoint) in terms of 
temperature or concentration gradients, rate of heat flow, 
shearing stress, sound wave amplitudes, etc., such a procedure 
does not apply, and one has resorted to'various ad hoc devices. 
An extreme example is provided by some problems in astrophysic~ 
in which it is clear that the system of interest has never, in 
the age of the universe, been in a state approximating thermal 
equilibrium. Such cases have been well recognized as presenting 
special difficulties of principle. 

We show here that recognition of the existence of the stage 
(1) problem, and that its general solution is available, can 
remove such ambiguities and reduce the labor of stage (2). In 
the case of the nonequilibrium steady state, stage (2) can be 
dispensed with entirely if stage (1) has been properly treated. 

Background. To achieve a certain unity within the present 
volume, we shall take the review article of Hori, Oppenheim, 
and Ross (1962)--hereafter denoted MOR--as indicating the 
level to which nonequilibrium theory had been brought before 
the introduction of Information Theory notions. This work is 
virtually unique in that the Stage 1 problem, and even the 
term "ensemble construction" appear explicitly. The earlier 
work of Kirkwood, Green, Callen, Kubo and others, directly 
related to ours, is noted in MOR, Sec. 6. 

To fix ideas, consider the calculation of transport proper­
ties in systems close to equilibrium (although our final 
results will be far more general). In the treatments discussed 
by MaR, dissipative-irreversible effects did not appear in the 
ensemble initially set up. For example, a system of Nparticles 
of mass m, distributed with macroscopic density p(x), local 
temperature T(x), is often described in classical theory by 
an N-particle distribution function, or Liouville function, 
of the form: 2 

N p(xi ) 3/2 { Pi l 
1.JN(xl Pl " ".'1~PN) = .rr: N;;- [2mnkT(xi )] exp - 2mkT(x.) (Dl) 

1=i 1 

where xi' Pi denote the (vector) position and momentum of the 
ith particle. But, although this distribution represents non­
vanishing density and temperature gradients Vp, VT, the dif­
fusion current or heat flow computed from (Dl) is zero. 

Likewise, in quantum theory MOR described such a physical 
situation by the "local equilibrium," or "frozen-state" 
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density matrix: 

Pt = i exp{-Jd3X S(x)[H(x) - ~(x)n(x)]} (D2) 

where H(x), n(x) are the Hamiltonian density and number density 
operators. Again, although (D2) describes gradients of temper­
ature, concentration, and chemical potential, the fluxes 
computed from (D2) are zero. 

~~thematically, it was found that dissipative effects appear 
in the equations only after one has carried out the following 
operations: (a) approximate forward integration of the equa­
tions of motion for a short "induction time," and (b) time 
smoothing or other coarse-graining of distribution functions 
or Heisenberg operators. 

Physically, it has always been somewhat of a mystery why 
either of these operations is needed; for one can argue that, 
in most experimentally realizable cases, irreversible flows 
(A) are already "in progress" at the time the experiment is 
started, and (B) take place slowly, so that the low-order 
distribution functions and expectation values of measurable 
quantities must be already slowly-varying functions of time 
and position; and thus not affected by coarse-graining. In 
cases where this is not true, coarse-graining would result in 
loss of the physical effects of interest. 

The real nature of the forward integration and coarse­
graining operations is therefore obscure; in a correctly 
formulated theory neither should be required. We are led to 
suspect the choice of initial ensemble; i.e., that ensembles 
such as (Dl) and (D2) do not fully describe the conditions 
under which irreversible phenomena are observed, and therefore 
do not represent the correct solution of the stage (1) 
problem. [We note that (Dl) and (D2) were not "derived" from 
anything more fundamental; they were written down intuitively, 
by analogy with the grand canonical ensemble of equilibrium 
theory.] The forward integration and coarse-graining opera­
tions would, on this view, be regarded as corrective measures 
which in some way compensate for the error in the initial 
ensemble. 

This conclusion is in agreement with that of MOR. These 
authors never claimed that Pt in (D2) was the correct density 
matrix, but supposed that it differed by only a small amount 
from another matrix pet), which they designate as the "actual 
distribution." They further supposed that after a short in­
duction time, Pt relaxes into pet), which would explain the 
need for forward integration. 

Such relaxation undoubtedly takes place in the low-order 
distribution functions derived from p, as was first suggested 
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by Bogoliubov for the analogous classical problem. However, 
this is not possible for the full "global" density matrix; if 
Pt and pet) differ at t = 0 and undergo the same unitary trans­
formation in their time development, they cannot be equal at 
any other time. Furthermore, pet) was never uniquely defined; 
given two different candidates Pl(t), P2(t) for this role, MOR 
give no criterion by which one could decide which is indeed 
the "actual" distribution. 

For reasons already explained in earlier Sections and in 
Jaynes (1967), we believe that such criteria do not exist; 
Le., that the notion of an "actual distribution" is illusory, 
since different density matrices connote only different states 
of knowledge. In the following Section we approach the problem 
in a different way, which yields a definite procedure for con­
structing a density matrix which is to replace Pt' and will 
play approximately the same role in our theory as the pet) 
of MOR. 

The Gibbs Algorithm. If the above reasoning is correct, a re­
examination of the procedures by which ensembles are set up in 
statistical mechanics is indicated. If we can find an algorithm 
for constructing density matrices which fully describe non­
equilibrium conditions, we should find that transport and other 
dissipative effects are obtainable by direct quadratures over 
the initial ensemble. 

This algorithm, we suggest, was given already by Gibbs (1902). 
The great power and scope of the methods he introduced have not 
been generally appreciated to this day; until recently it was 
scarcely possible to understand the rationale of his method for 
constructing ensembles. This was (loc. cit., p. 143) to assign 
that probability distribution which, while agreeing with what 
is known, "gives the least value of the average index of proba­
bility of phase," or as we would describe it today, maximizes 
the entropy. This process led Gibbs to his canonical ensemble 
for describing closed systems in thermal equilibrium, the grand 
canonical ensemble for open systems, and (loc. cit., p. 38) an 
ensemble to represent a system rotating at angular velocity ~ 
in which the probability density is proportional to 

-+ -+ 
exp[-8(H - woM)] (D3) 

where H, M are the phase functions representing Hamiltonian and 
total angular momentum. 

Ten years later, the Ehrenfests (1912) dismissed these 
ensembles as mere "analytical tricks," devoid of any real sig­
ificance, and asserted the physical superiority of Boltzmann's 
methods, thereby initiating a school of thought which dominated 
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statistical mechanics for decades. It is one of the major 
tragedies of science that Gibbs did not live long enough to 
answer these objections, as he could have so easily. 

The mathematical superiority of the canonical and grand 
canonical ensembles for calculating equilibrium properties has 
since become firmly established. Furthermore, although Gibbs 
gave no applications of the rotational ensemble (D3), it was 
shown by Heims and Jaynes (1962) that this ensemble provides 
a straightforward method of calculating the gyromagnetic 
effects of Barnett and Einstein-de Haas. At the present time, 
therefore, the Gibbs methods--like the Laplace methods and 
the Jeffreys methods--stand in a position of proven success 
in applications, independently of all the conceptual problems 
regarding their justification, which are still being debated. 

The development of Information Theory made it possible to 
see the method of Gibbs as a general procedure for inductive 
reasoning, independent of ergodic theory or any other physical 
hypotheses, and whose range of validity is therefore not re­
stricted to equilibrium problems; or indeed to physics. In 
the following we show that the Principle of Maximum Entropy 
is sufficient to construct ensembles representing a wide 
variety of nonequilibrium conditions, and that these new 
ensembles yield transport coefficients by direct quadratures. 
Indeed, we shall claim--for reasons already explained in 
Jaynes (1957b), that this is the only principle needed to 
construct ensembles which predict any experimentally repro­
ducible effect, reversible or irreversible. 

The general rule for constructing en~embles is as follows. 
The available information about the state of a system consists 
of results of various macroscopic measurements. Let the 
quantities measured be represented by the operators Fl,F2 •••• Fm. 
The results of the measurements are. of course, simply a set 
of numbers: {fl •••• ,fm}. These numbers make no reference to 
any probability distribution. The ensemble is then a mental 
construct which we invent in order to describe the range of 
possible microscopic states compatible with those numbers, in 
the following sense. 

If we say that a density matrix p "contains" or "agrees 
with" certain information, we mean by this that. if we com­
municate the density matrix to another person he must be able, 
by applying the usual procedure of stage (3) above, to recover 
this information from it. In this sense. evidently, the 
density matrix agrees with the given information if and only 
if it is adjusted to yield expectation values equal to the 
measured numbers: 

k = l, •••• m (D4) 
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and in order to ensure that the density matrix describes the 
full range of possible microscopic states compatible with (D4), 
and not just some arbitrary subset of them (in other words, 
that it describes only the information given, and contains no 
hidden arbitrary assumptions about the microscopic state), we 
demand that, while satisfying the constraints (D4) , it shall 
maximize the quantity 

81 = -Tr(p log p) (DS) 

A great deal of confusion has resulted from the fact that, 
for decades, the single word "entropy" has been used inter­
changeably to stand for either the quantity (DS) or the quantity 
measured experimentally (in the case of closed systems) by the 
integral of dQ/T over a reversible path. We shall try to 
maintain a clear distinction here by following the usage in­
troduced in my 1962 Brandeis lectures (Jaynes, 1963b); refer­
ring to 81 as the "information ~ntropy" and denoting the 
experimentally measured entropy by 8E' These quantities are 
different in general; in the equilibrium case (the only one 
for which 8E is defined in conventional thermodynamics) the 
relation between them was shown (loc. cit.) to be: for all 
density matrices p which agree with the macroscopic informa­
tion that defines the thermodynamic state; i.e., which satisfy 
(D4) , 

(D6) 

where k is Boltzmann's constant, with equality in (D6) if and 
only if SI is computed from the canonical density matrix 

1 
p Z(Al ••• Am) exp[AlFl + ... + AmFm] (D7) 

where the Ak are unspecified real constants. In the nonequi­
librium theory we find it easier to change our sign convention, 
so that all A'S here are the negative of the usual ones; other­
wise, from this point on it would be invariably (-A) rather 
than A that we need. For normalization (Tr p = 1) we have 

Z(Al···Am) = Tr exp[AlFl + .• ~ + AmFm1 (DB) 

which quantity will be called the partition function. It 
remains only to choose the Ak [which appear as Lagrange multi­
pliers in the derivation of (D7) from a variational principle] 
so that (D4) ~ satisfied. This is the case of 

fk = <Fk> = a~k log Z k = 1,2, ••• ,m (D9) 
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If enough constraints are specified to determine a normalizable 
density matrix, it will be found that these relations are just 
sufficient to determine the unknowns Ak in terms of the given 
data {fl ... fm}; indeed, we can then solve (D9) explicitly for 
the Ak as follows. The maximum attainable value of SI is, from 
(D7), (DB), 

m 

(SI) = log Z - L Ak<Fk> 
max k=l 

(DIG) 

If this quantity is expressed as a function of the given data, 
S(fl ... f m), it is easily shown from the above relations that 

as 
Ak = - afk 

(Dll) 

It has been shown (Jaynes, 1963b, 1965) that the second law 
of thermodynamics, and a generalization thereof that tells 
which nonequilibrium states are accessible reproducibly from 
others, follow as simple consequences of the inequality (D6) 
and the dynamical invariance of SI' 

We note an important property of the maximum entropy ensemble, 
which is helpful in gaining an intuitive understandin~ of this 
theory. Given any density matrix p and any E in G < E < 1, one 
can define a "high-probability linear manifold" (HPM) of finite 
dimensionality W(E), spanned by all eigenvectors of p which 
have probability greater than a certain amount 6(E), and such 
that the eigenvectors of p spanning the complementary manifold 
have total probability less than E. Viewed in another way, the 
HPM consists of all state vectors IjJ to which p assigns an "array 
probability" as defined in Jaynes (1957b), Sec. 7, greater than 
6(E). Specifying the density matrix p thus amounts to asserting 
that, with probability (1- E), the state vector of the system 
lies somewhere in this HPM. As E varies, any density matrix 
p thus defines a nested sequence of HPM's. 

For a macroscopic system, the information entropy S1 may be 
related to the dimensionality W(E) of the HPM in the following 
sense: if N is the number of particles in the system, then as 
N .... co with the intensive parameters held constant. N-1S I and 
N-1 log W(E) approach the same limit independently of E. This is 
a form of the asymptotic equipartition theorem of Information 
Theory, and generalizes Boltzmann's S = k log W. The process of 
entropy maximization therefore amount~ for all practical purposes, 
to the same thing as finding the density matrix which, while 
agreeing with the available information, defines the largest 
possible HPM; this is the basis of the remark following (D4). 
An analogous result holds in classical theory (Jaynes, 1965), 
in which W(E) becomes the phase volume of the "high-probability 
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region" of phase space, as defined by N-particle distribution 
function. 

The above procedure is sufficient to construct the density 
matrix representing equilibrium conditions, provided the 
quantities Fk are chosen to be constants of the motion. The 
extension to nonequilibrium cases, and to equilibrium problems 
in which we wish to incorporate information about quantities 
which are not intrinsic constants of the motion (such as stress 
or magnetization) requires mathematical generalization which 
we give in two steps. 

It is a common experience that the course of a physical 
process does not in general depend only on the present values 
of the observed macroscopic quantities; it depends also on the 
past history of the system. The phenomena of magnetic hysteresis 
and spin echoes are particularly striking examples of this. 
Correspondingly, we must expect that, if the Fk are not con­
stants of the motion, an ensemble constructed as above using 
only the present values of the <Fk> will not in general suffice 
to predict either equilibrium or nonequilibrium behavior. As 
we will see presently, it is just this fact which causes the 
error in the "local equilibrium" density matrix (D2). 

In order to describe time vari~tions, we extend the Fk to 
the Heisenberg operators 

(D12) 

in which the time-development matrix U(t) is the solution of 
the Schrodinger equation 

ifiU(t) = H(t)U(t) (D13) 

with U(O) .. I, and H(t) is the Hamiltonian. If we are given 
data fixing the <Fk(ti» at various times ti, then each of these 
must be considered a separate piece of information, to be given 
its Lagrange multiplier Aki and included in the sum of (D7). 
In the limit where we imagine information given over a continuous 
time interval, -T < t < 0, the summation over the time index i 
becomes an inte~ration and the canonical density matrix (D7) 
becomes 

p = ~ expJ f r Ak(t)Fk(t) dt} (D14) be-I -T 
where the partition function has been generalized to a partition 
functional 

Z[AI (t) ••• Am(t)] :: Tr exp{t t Ak(t)Fk(t) dt} (D15) 
k .. l -T 
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and the unknown Lagrange multiplier functions Ak(t) are deter­
mined from the condition that the density matrix agree with the 
given data <Fk(t» over the "information-gathering" time in­
terval: 

-T < t < 0 (D16) 

By the perturbation methods developed below, we find that (D16) 
reduces to the natural generalization of (D9): 

-T < t < 0 (Dl7) 

where 0 denotes the functional derivative. 
Finally, if the operators Fk depend on position as well as 

time, as in (D2), Eq. (D12) is changed to 

-1 
Fk(x,t) = U (t)Fk(x,O)U(t) (DIS) 

and the values of these quantities at each point of space and 
time now constitute the independent pieces of information, 
which are coupled into the density matrix via the Lagrange 
multiplier function Ak(x,t). If we are given macroscopic in­
formation about Fk(x,t) throughout a space-time region Rk 
(which can be a different region for different quantities Fk)' 
the ensemble which incorporates all this information, while 
locating the largest possible HPM of microscopic states, is 

p = i exp{l: J dt d3x Ak(X,t)Fk(X,t)} (D19) 
k Rk 

with the partition functional 

Z = Tr exp{l:J dt d3x Ak(X,t)Fk(X,t)} 
kRk 

and the Ak(x,t) determined from 

o (x,t) in ~ 

Prediction of any quantity J(x,t) is then accomplished by 
calculating 

<J(z,t» Tr[pJ(x,t)] 

The form of equations (Dl9)-(D22) makes it appear that 
stages (1) and (2), discussed in the Introduction, are now 

(D20) 

(D21) 

(D22) 
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fused into a single stage. However, this is only a consequence 
of our uSing the Heisenberg representation. According to the 
usual conventions, the Schrodinger and Heisenberg representa­
tions coincide at time t = 0; thus we may regard the steps 
(D19)-(D2l) equally well as determining the density matrix 
p(O) in the Schrodinger representation; i.e., as solving the 
stage (1) problem. If, having found this initial ensemble, we 
switch to the Schrodinger representation, Eq. (D22) is then 
replaced by 

<J(x»t = Tr[J(x)p(t)] (D23) 

in which the problem of stage (2) now appears explicitly as 
that of finding the time-evolution of p(t). The form (D23) 
will be more convenient if several different quantities 
J l ,J2 , •.. are to be predicted. 

Discussion. In equations (D19)-(D23) we have the generalized 
Gibbs algorithm for calculating irreversible processes. They 
represent the three stages: (1) finding the ensemble which 
has maximum entropy subject to the given information about 
certain quantities {Fk(X,t)}; (2) _Utilizing the full dynamics 
by working out the time evolution from the microscopic equa­
tions of motion; (3) making those predictions of certain other 
quantities of interest {Ji(x,t)} which take all the above into 
account, and minimize the expected square of the error. We do 
not claim that the resulting predictions must be correct; only 
that they are the best (by the mean-square-error criterion) 
that could have been made from the information given; to do any 
better we would require more initial information. 

Of course this algorithm will break down, as it should, and 
refuse to give us any solution if we ask a foolish, unanswerable 
question; for example, if we fail to specify enough information 
to determine any normalizable density matrix, 1f we specify 
logically contradictory constraints, or if we specify space­
time variations incompatible with the Hamiltonian of the system. 

The reader may find it instructive to work this out in 
detail for a very simple system involving only a (2 x 2) matrix; 
a single particle of spin 1/2, gyromagnetic ratio Y, placed in 
a constant magnetic field g in the z-direction, Hamiltonian 
H = -(1/2)~ y(O"B). Then the only dynamically possible be­
havior is uniform precession about B at the Larmor frequency 
Wo = yB. If we specify any time variation for <ax> other than 
sinusoidal at this frequency, the above equations will break 
down; while 1£ we specify <ax(t» = a cos wot+b sin wot, we 
find a unique solution whenever (a 2 + b2 ) :: 1. 
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Mathematically, whether the ensemble p is or is not making 
a sharp prediction of some quantity J is determined by whether 
the variance <J 2 > - <J>2 is sufficiently small. In general, 
information about a quantity F would not suffice to predict 
some other quantity J with deductive certainty (unless J is 
a function of F). But in inductive reasoning, Information 
Theory tells us the precise extent to which information about 
F is relevant to predictions of J. In practice, due to the 
enormously high dimensionality of the spaces involved, the 
variance <J2 > - <J>2 usually turns out to be very small compared 
to any reasonable mean-square experimental error; and there­
fore the predictions are, for all practical purposes, deter­
ministic. 

Experimentally, we impose various constraints (volume, 
pressure, magnetic field, gravitational or centrifugal forces, 
sound level, light intensity, chemical environment, etc.) on 
a system and observe how it behaves. But only when we reach 
the degree of control where reproducible response is observed, 
do we record our data and send it off for publication. Be­
cause of this sociological convention, it is not the business 
of statistical mechanics to predict everything that can be 
observed in nature; only what can be ohserved reproducibly. 
But the experimentally imposed macroscopic constraints surely 
do not determine any unique microscopic state; they ensure 
only that the state vector is somewhere in the RPM. If effect 
A is, nevertheless, reproducible, then it must be that A is 
characteristic of each of the overwhelming majority of possible 
states in the RPM; and so averaging over those states will not 
change the prediction. 

To put it another way, the macroscopic experimental condi­
tions still leave billions of microscopic details undetermined. 
If, nevertheless, some result is reproducible, then those 
details must have been irrelevant to the phenomenon; and so 
with proper understanding we ought to be able to eliminate 
them mathematically. This is just what Information Theory 
does for us; it removes irrelevant details by averaging over 
them, while retaining what is relevant to the particular 
question being asked [i.e., the particular quantity J(x,t) 
that we want to predict]. 

It is clear, then, why the maximum entropy prescription 
works in such generality. If the constraints used in the 
calculation are the same as those actually operative in the 
experiment, then the maximum-entropy density matrix will 
locate the same RPM as did the experimental conditions; and 
will therefore make sharp predictions of any reproducible 
effect, provided that our assumed microscopic physics (enum­
eration of possible states, equations of motion) is correct. 
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For these reasons--as stressed in Jaynes (l957b),--if the 
class of phenomena predictable from the maximum entropy prin­
ciple is found to differ in any way from the class of repro­
ducible phenomena, that would constitute evidence for new 
microscopic laws of physics, not presently known. Indeed 
(Jaynes,1968) this is just what did happen early in this 
Century; the failure of Gibbs' classical statistical mechanics 
to predict the correct heat capacities and vapor pressures 
provided the first clues pointing to the quantum theory. Any 
successes make this theory useful in an "engineering" sense; 
but for a research physicist its failures would be far more 
valuable than its successes. 

We emphasize that the basic physical and conceptual formula­
tion of the theory is complete at this point; what follows 
represents only the working out of various mathematical con­
sequences of this algorithm. 

Perturbation Theory. For systems close to thermal equilibrium, 
the following general theorems are useful. We denote an "un­
perturbed" density matrix Po' by 

A e 
Po = Z 

o 
a "perturbed one by 

A+£B 
p = _e __ 

Z 

, -

where A, B are Hermitian. The expectation values of any 
operator C over these ensembles are respectively 

<C> = Tr(p C) 
o 0 

<C> = Tr(pC) 

(D24) 

(D25) 

(D26) 

The cumulant expansion of <C> to all orders in £ is derived 
in Heims and Jaynes (1962), Appendix B. The n'th order term 
may be written as a covariance in the unperturbed ensemble: 

00 

<C> - <C> = '\ £n [<Q C> - <Q > <C> ] (D27) 
o n~l non 0 0 

Here Qn is defined by Ql - 51' and 
n-l 

Qn :: Sn - I: <Qk> S -k n > 1 (D28) 
k=l 0 n 

in which S are the operators appearing in the well-known 
expansion n 

eA+£B = eA [1 + f £n Sn] (D29) 
n=l 
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More explicitly, 

Sn f1dXl ~l dX2 ••• JXn-l dXn B(xl ) ••• B(xn) 

o o o 

where 

B(x) = e-xA B exA 

The first-order term is thus 

<C> - <C> 0 '" lOr dx [<e -xA B exA C> 0 

o 

- <B> <C> ] o 0 

(D30) 

(D3l) 

(D32) 

and it will appear below that all relations of linear transport 
theory are special cases of (D32). 

For a more condensed notation, define the average of any 
operator n over the sequence of similarity transformations as 

1 

B=J dxe-xABexA (D33) 
o 

which we will call the Kubo transform of B. Then (D32) becomes 

<C> - <C>o '" £ KCB 

in which, for various choices of C, B, the quantities 

KCB = <BC> - <lh <C> 
000 

are the basic covariance functions of the linear theory. 

(D34) 

(D35) 

We list a few useful properties of these quantities; in all 
cases, the result is proved easily by writing out the expres­
sions in the representation where A is diagonal. Let F, G be 
any two operators; then 

<F> 
o 

<F> 
o 

If F, G are Hermitian, then 

~G is real 

(D36) 

(D37) 

(D38) 

If Po is a prOjection operator representing a pure state, then 
KFG = O. If P is not a pure state density matrix, then with 
Hermitian F, G~ 
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(D39) 

with equality if and only if F = qG, where q is a real number. 
If G is of the form 

G(u) = e-uA G(O) euA (D40) 

then 

d 
- L = <[F G]> du -r-G '0 

(D4l) 

This identity, with u interpreted as a time, provides a general 
connection between statistical and dynamical problems. 

Near-Equilibrium Ensembles. A closed system in thermal equi­
librium is described, as usual, by the density matrix 

-8H e 
Po = z-<S) (D42) 

o 
which maximizes 51 for prescribed <H>, and is a very special 
case of (D19). The thermal equilibrium prediction for any 
quantity F is, as usual, 

<F> = Tr(p F) 
o 0 

(D43) 

But suppose we are now given the value of <F(t» throughout 
the "information-gathering" interval -T ~ t < O. The ensemble 
which includes this new information is of the form (D19), which 
maximizes 51 for prescribed <H> and <F(t». It corresponds to 
the partition functional 

Z[S,A(t)] = Tr exp[-SH + f: A(t) F(t) dtJ (D44) 

If, during the information-gathering interval, this new in-
formation was simply <F(t» <F>, it is easily shown from 
(D17) that we have identically 0 

fo 
A(t) F(t) dt = 0 

-T 
(D45) 

In words: if the new information is redundant (in the sense 
that it is only what we would have predicted from the old 
information), then it will drop out of the equations and the 
ensemble is unchanged. This is a general property of the 
formalism here presented. In applications it means that there 
is never any need, when setting up an ensemble, to ascertain 
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whether the different pieces of information used are independent; 
any redundant parts will drop out automatically. 

If, therefore, we treat the integral in (044) as a small 
perturbation, we are expanding in powers of the departure from 
equilibrium. For validity of the perturbation scheme it is 
not necessary that A(t)F(t) be everywhere small; it is suf­
ficient if the integral is small. First-order effects in the 
departure from equilibrium, such as linear diffusion or heat 
flow, are then predicted using the general formula (032), with 
the choices A = -SH, and 

A(t) F(t) dt (D46) £B = fO 
_T 

With constant H, the Heisenberg operator F(t) reduces to 

F(t) = exp(iHt/-fi) F(O) exp(-iHt/n) (D47) 

and its Kubo transform (D33) becomes 

- I rS 
F(t) = 8" J du F(t-in u) 

° 
(D48) 

the characteristic quantity of the Kubo (1957, 1958) theory. 
In the notation of (D34), the first-order expectation value 

of any quantity C(t) will then be given by 

<C(t» - <C> = yaK (t,t') A(t') dt ' (D49) 
o -T CF 

where KCF is now indicated as a function of the parameters t,t ' 
contained in the operators: 

<F(t')C(t» - <F> <C> 
000 

(D50) 

Remembering that the parameters t,t ' are part of the operators 
C, F, the general reciprocity law (037) now becomes 

When H is constant, it follows also from (047) that 

KCF (t , t ') = KCF{ t - t' ) 

and (D4l) becomes 

i~ :t KCF(t,t ' ) = <[C(t),F(t')]>o B-1 

(051) 

(052) 

(D53) 
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Integral Equations for the Lagrange Multipliers. We wish to 
find the Ak(x,t) to first order in the given departures from 
equilibrium, <Fk(x,t» - <Fk(X,t»o' This could be done by 
direct application of the formalism; by finding the perturba­
tion expansion of log Z to second order in the A's and taking 
the functional derivative explicitly according to (D2l). It 
will be sufficient to do this for the simpler case described 
by Equations (D44)-(D53); but on carrying through this calcula­
tion we discover that the result is already contained in our 
perturbation-theory formula (D49). This is valid for any 
operator C(t); and therefore in particular for the choice 
C(t) = F(t). Then (D49) becomes 

fO KFF(t,t')A(t')dt' = <F(t» - <F>o 
-T 

(D54) 

If t is in the "information-gathering interval" (-T 5. t ~ 0) 
this is identical with what we get on writing out (D17) ex­
plicitly with log Z expanded to second order. In lowest order, 
then, taking the functional derivative of log Z has the effect 
of constructing a linear Fredholm integral equation for A(t), 
in which the "driving force" is the given departure from 
equilibrium. 

However, from that direct manner of derivation it would 
appear that (D54) applies only when (-T ~ t ~ 0); while the 
derivation of (D49) makes it clear that (D54) has a definite 
meaning for all t. When t is in -T ~ t ~ 0, it represents the 
integral equation from which A(t) is to be determined; when 
t > 0, it represents the predicted future of F(t); and when 
t < -T, it represents the retrodicted past of F(t). 

If the information about <F(t» is given in the entire past, 
T = 00, (D54) becomes a Wiener-Hopf equation. Techniques for the 
solution, involving matching functions on strips in the complex 
fourier transform space are well known; we remark only that the 
solution A(t) will in general contain a o-function singularity 
at t = 0; it is essential to retain this in order to get correct 
physical predictions. In other words, the upper limit of in­
tegration in (D54) must be taken as (0+). The case of finite 
T, where we generally have a-functions at both end-points, is 
discussed by Middleton (1960). 

For example, with a Lorentzian correlation function 

K (t-t') = ~ exp[-alt-t' I] 
FF 2 

(D55) 

and T = 00, the solution is found to be 

( I d2 ) 1 A(t) = 1--- f(t) +-- f(O)[ao(t)-o'(t)] 
2 d 2 2 a t a 

(D56) 
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where 

{ <F«» ; <F> 0 } t < 0 
f (t) - t > 0 (D57) 

Then we find 

r+ {f«) • «0 } ~F(t-t')A(t')dt' 
= f(O)e -at t > 0 -00 

(D58) 

in which it is necessary to note the a-functions in fIlet) at 
the upper limit. The nature and need for these a-functions be­
comes clear if we approach the solution as the limit of the 
solutions for a sequence {fn} of "good" driving functions each 
of which satisfies the same boundary conditions as KFF at the 
upper limit: 

[f~(t')~F(t-t') - fn(t') a:' ~(t-t')t,=o -0, t<O .(D59) 

The result (D58) thus predicts the usual exponential ap­
proach back to equilibrium, with a relaxation time T = a-I. 
The particular correlation function (D55) is "Markoff ian" in 
that the predicted future decay depends only on the specified 
departure from equilibrium at t .. 0; and not on information 
about its past history. With other forms of correlation 
function we get a more complicated prediction, with in general 
more than one relaxation time. 

Relation to the Wiener Prediction Theory. This problem is so 
similar conceptually to Wiener's (1949) problem of optimal 
prediction of the future of a random function whose past is 
given that one would guess them to be mathematically related. 
However, this is not obvious from the above, because the Wiener 
theory was stated in entirely different terms. In particular, 
it contained no quantity such as A(t) which enables us to 
express both the given past and predicted future of F(t) in a 
single equation (D54). To establish the connection between 
these two theories, and to exhibit an alternative form of our 
theory, we may eliminate A(t) by the following purely formal 
manipulations. 

If the resolvent KFF-l(t,t') of the integral equation (D54) 
can be found so that r ~F(t,t")~F-l(t",t')dt" = a(t-t'). -T~t,t'~O (D60) 

-T 

fO ~F-l(t,t")~F(t",t')dt" .. a(t-t') , 
-T 

-T ~ t,t' ~ 0 (D6l) 
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then 

1° 1 A(t) = ~F- (t,t')[<F(t'» - <F> ldt' , 
-T 0 

-T < t < ° (D6Z) 

and the predicted value (D49) of any quantity C(t) can be ex­
pressed directly as a linear combination of the given departures 
of F from equilibrium: 

<C(t» - <C> =JO R (t,t')[<F(t'» - <F> ldt' (D63) 
o CF 0 

-T 
in which 

RCF(t,t') ::: fO KCF(t,tll)KFF-l(tll,t')dtll 
-T 

will be called the relevance function. 

(D64) 

In consequence of (D6l), the relevance function is itself 
the solution of an integral equation: 

KCF(t) = t RCF(t,t')~F(t')dt' ~ -co<t<oo (D65) 
-T 

so that, in some cases, the final prediction formula (D63) can 
be obtained directly from (D65) without the intermediate step 
of calculating A(t). 

In the Wiener theory we have a random function f(t) whose 
past is known. For any "lead time" h > 0, we are to try to 
predict the value of f(t+h) by a linear operation on the past 
of f(t), i.e., the prediction is 

f(t+h) = ~f(t-t')W(t')dt' (D66) 

o 
and the problem is to find that Wet) which minimizes the mean 
square error of the prediction: 

I[Wl = lim Z; f~ If(t+h) - f(t+h)I Z dt (D67) 
T-- -T 

We readily find that the optimal 
integral equation 

~(t+h) ~~(t-t')W(t')dt' 
o 

where 

~(t) _ lim ZlT f T f ( t+t ' ) f (t ' ) d t ' 
T-- -T 

W satisfies the Wiener-Hopf 

t > ° (D68) 

(D69) 

is the autocorrelation function of f(t), assumed known. 
Evidently, the response function Wet) corresponds to our 

relevance function ~F(t,t'); and to establish the formal 
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identity of the two theories, we need only show that R also 
satisfies the integral equation (D68). But, with the choice 
C(t) = F(t), this is included in (D65) making the appropriate 
changes in notation; our "quantum covariance function" KFF(t) 
corresponding to Wiener's autocorrelation function ¢(t). In 
the early stages of this work, the discovery of the formal 
identity between Wiener's prediction theory and this special 
case of the maximum-entropy prediction theory was an important 
reassurance. 

The relevance function RcF(t,t') summarizes the precise 
extent to which information about F at time t' is relevant to 
prediction of C at time t. It is entirely different from the 
physical impulse-response function ¢CF(t-t') discussed, for 
example, by Kubo (1958), Eq. (2.18). The latter represents 
the dynamical response <C (t) > - <C> 0 at a time t > t', to an 
impulsive force term in the Hamiltonian applied at t = t' : 
H(t)=Ho+F o(t-t'), while in (D63) the "input" <F(t'»-<F>o 
consists only of information concerning what the system, with 
a fixed Hamiltonian but in a nonequilibrium state, was doing 
in the interval -T ~ t' S O. This distinction is perhaps brought 
out most clearly by emphasizing again that (D63) is valid for 
an arbitrary time t, which may be before, within, or after this 
information-gathering interval. Thus, -while our conception of 
causality is based on the postulate that a force applied at 
time t' can exert physical influences only at later times, 
there is no such limitation in (D63). It therefore represents 
an explicit statement of the fact that, while physical in­
fluences propagate only forward in time, logical inferences 
propagate equally well in either direction; i.e., new informa­
tion about the present affects our knowledge of the past as 
well as the future. Although relations such as (D63) have 
been rather rare in physics, the situation is, of course, 
commonplace in other fields; sciences such as geology depend 
on logical connections of this type. 

Space-Time Variations. Suppose the particle density n(x,t) 
departs slightly from its equilibrium value in a space-time 
region. R. Defining on(x,t) = n(x,t) - <n(x»o' the ensemble 
containing this information corresponds to the partition 
functional 

Z[S,A(X,t)] = Tr e[-SH+J/(X,t)on(X,t)d3xdt] (D70) 

and (D34) becomes 

<on(x,t» = J. Knn (X-x';t-t')A(X',t')d3X'dt' 
R 

(D71) 
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When (x,t) are in R this represents the integral equation 
determining A(X',t'); when (x,t) are outside R it gives the 
predicted nonequilibrium behavior of <n(x,t» based on this 
information, and the predicted departure from equilibrium of 
any other quantity J(x,t) is 

<J(x,t» - <J>o = J
R

KJn (X-x';t-t')A(X',t')d3x'dt' (D72) 

To emphasize the generality of (D72), note that it contains 
no limitation on time scale or space scale. Thus it encompasses 
both diffusion and ultrasonic propagation. 

In (D7l) we see the deviation <On> expressed as a linear super­
position of basic relaxation functions Knn(x,t) = <on(O, 0) on6t,t) >0 
with A(X',t') as the "source" function. The class of different 
nonequilibrium ensembles based on information about <On> is in 
1:1 correspondence with different functions A(X,t). In view of 
the linearity, we may superpose elementary solutions in any way, 
and while to solve a problem with specific given information 
would require that we solve an integral equation, we can extract 
the general laws of nonequilibrium behavior from (D7l), (D72) 
without this, by considering A(X, t) as the independent variable. 

For example, let J be the a-component of particle current, 
and for brevity write the covariance function in (D72) as 

<on(x',t')J (x,t» a 0 
(D73) 

Now choose R as all space and all time t < 0, and take 

t < 0 (D74) 

where \.I(x), q(t) are "arbitrary" functions (but of course, 
sufficiently well-behaved so that what we do with them makes 
sense mathematically). In this ensemble, the current is 

<Ja(x,t» = Jd3x, \.I(X')~ dt' q(t')Ka(x-x',t-t') (D75) 
-00 

Integrate by parts on t and use the identity n+V'·J=O: the 
RHS of (D75) becomes 

Jd3X' \.I(X')[q(O)Ka(X-X"O)+a:'~ Ldt' q(t)KCL~(X-x',t-t')] (D76) 

where Ka~ is the current-current covariance: 

Ka~(x-x',t-t') = <J~(x',t')Ja(x,t»o (D77) 

But from symmetry K (x-x' ,0) = O. Another integration by parts 
then yields a 
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<Ja(x,t» = -~:t'q(t')Id3X' KaS(x-x',t-t') a!¥s (D78) 

and thus far no approximations have been made. 
Now let us pass to the "long wavelength" limit by supposing 

~(x) so slowly varying that a~/ax'S is essentially a constant 
over distances in which K 0 is appreciable: 

o ap 

<Ja(x,t» ~ - ;;sf~t' q(t')fd3X ' KaS(x-x',t-t') (D79) 

and in the same approximation (D7l) becomes 

<on(x,t» '" q(O)~(X}fd3X' K (x' ,0) (D80) 
nn 

Therefore, the theory predicts the relation 

<J > = -D __ a_ <on> 
a as axS 

with 

t:t' q(t'} Jd3X' KaS(x-x',t-t'} 

q(O)Pd3x' K (x-x' ,0) J nn 

(D8l) 

(D82) 

If the ensemble is also quasi-stationary, q(t} very slowly 
varying, only the value of q(t) near the upper limit matters, 
and the choice q(t} = exp(£t) is as good as any. This leads 
to just the Kubo expression for the diffusion coefficient. 

If instead of taking the long-wavelength limit we choose a 
plane wave: ~(x) = exp(ik·x) , (D75), (D7l) become 

<J (x, t)> = 
a 

eik,xL dt' q (t' )Ka(k;t-t') (D83) 

<on(x,t» = eik,xI: dt' q (t ' ) K (k, t-t ' ) nn 
(D84) 

where KN(k,t), K (k,t) are the space fourier transforms. These 
"'" nn represent the decay of sound waves as linear superpositions of 

many characteristic decays ~ K~(k,t), ~(k,t) with various 
"starting times" t'. If we take time fourier transforms, (D84) 
becomes 

ik·x J dw -iwt <on(x,t» = e --2 K (k,w)Q(w}e 
'IT nn 

(D85) 

which shows how the exact details of the decay depend on the 
method of preparation (past history) as summarized by Q(w). 
Now, however, we find that ~n(k,w) usually has a sharp peak at 
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some 
pole 
wI = 

frequency w = Wo (k), which arises mathematically from a 
near the real axis in the complex w-plane. Thus if 
Wo - ia and Knn (k,w) has the form 

-iKl A 

K (k,w) = -- + K(k w) nn w-wl ' (D86) 

where K(k,w) is analytic in a neighborhood of wI' this pole 
will give a contribution to the integral (n86) of 

Q( ) i(kox-wot) -at 
Kl wI e e t > 0 . (D87) 

Terms which arise from parts of Knn(k,w)Q(w) that are not 
sharply peaked as a function of w, decay rapidly and represent 
short transient effects that depend on the exact method of 
preparation. If a is small, the contribution (D87) will quickly 
dominate them, leading to a long-term attenuation and propaga­
tiqp velocity essentially independent of the method of prepara­
tion. 

Thus, the laws of ultrasonic dispersion and attenuation are 
contained in the location and width of the sharp peaks in 
Knn(k,w). 

Other Forms of the Theory. Thus far we have considered the 
application of maximum entropy in its most general form: given 
some arbitrary initial information, to answer an arbitrary 
question about reproducible effects. Of course, we may ask any 
question we please; but maximum entropy can make sharp predic­
tions only of reproducible things (that is in itself a useful 
property; for maximum entropy can tell us which things are and 
are not reproducible, by the sharpness of its predictions). 
Maximum entropy separates out what is relevant for predicting 
reproducible phenomena, and discards what is irrelevant (we saw 
this even in the example of Wolf's die where, surely, the only 
reproducible events in his sample space of 620,000 points were 
the six face frequencies or functions of them; just the things 
that maximum entropy predicted). 

Likewise, in the stage 2 techniques of prediction from the 
maximum entropy distribution, if we are not interested inevery 
question about reproducible effects, but only some "relevant 
subset" of them, we may seek a further elimination of details 
that are irrelevant to those particular questions. But this 
kind of problem has come up before in mathematical physics; and 
Dicke (1946) introduced an elegant projection operator technique 
for calculating desired external elements of a scattering matrix 
while discarding irrelevant internal details. Our present 
problem, although entirely different in physical and mathematical 
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details, is practically identical formally; and so this same 
technique must be applicable. 

Zwanzig (1962) introduced projection operators for dealing 
with two interacting systems, only one of which is of interest, 
the other serving only as its "heat bath." Robertson (1964) 
recognized that this will work equally well for any kind of 
separation, not necessarily spatial; i.e., if we want to 
predict only the behavior of a few physical quantities {FI ••• Fm} 
we can introduce a projection operator P which throws away 
everything that is irrelevant for predicting those particular 
things; allowing, in effect, everything else to serve as a kind 
of "heat bath" for them. 

In the statistical theory this dichotomy may be viewed in 
another way: instead of "relevant" and "irrelevant" read 
"systematic" and "random." Then, referring to Robertson's 
presentation in this volume, it is seen that Eq. (9.3), which 
could be taken as the definition of his projection operator 
P(t}, is formally just the same as the solution of the problem 
of "reduction of equations of condition" given by Laplace for 
the optimal estimate of systematic effects. A modern version 
can be found in statistics textbooks, under the heading: 
"multiple regression." Likewise, his formulas (9.8), (9.9) 
for the "subtracted correlation functions" have a close formal 
correspondence to Dicke's final formulas. 

Of course, this introduction of projection operators is not 
absolutely required by basic principles; it is in the realm of 
art, and any work of art may be executed in more than one way. 
All kinds of changes in detail may still be thought of; but 
needless to say, most of them have been thought of already, 
investigated, and quietly dropped. Seeing how far Robertson 
has now carried this approach, and how many nice results he 
has uncovered, it is pretty clear that anyone who wants to do 
it differently has his work cut out for him. 

Finally, I should prepare the reader for his contribution. 
When Baldwin was a student of mine in the early 1960's, I 
learned that he has the same trait that Lagrange and Fermi 
showed in their early works: he takes delight in inventing 
tricky variational arguments, which seem at first glance totally 
wrong. After long, deep thought it always developed that what 
he did was correct after all. A beautiful example is his 
derivation of (4.3), where most readers would leave the track 
without this hint from someone with experience in reading his 
works: you are not allowed to take the trace and thus prove 
that a=l, invalidating (4.4), because this is a formal argument 
in which the symbol <F> stands for Tr(Fo)even when 0 is not 
normalized to Tr (o) = L For a similar reason, you are not 
allowed to protest that if Fo:::: 1, then 8<Fo> ::: O. One of my 
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mathematics professors once threw our class into an uproar by 
the same trick; evaluating an integral, correctly, by dif­
ferentiating with respect to n. For those with a taste for 
subtle trickery, variational mathematics is the most fun of 
all. 
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11. CONCENTRATION OF DISTRIBUTIONS AT 

ENTROPY MAXIMA (I979) 

After sending off the 'Where Do We Stand?' manuscript for the MIT Proceed­
ings Volume, my thoughts returned to Rudolph Wolfs dice data. The hastily 
concocted argument for five degree of freedom instead of three bothered me 
a bit, and I decided to calculate how much Chi-squared could have been 
reduced if the parameters AI, A2 had been chosen to minimize it, rather than 
from the Maxent rule. But fust, as a check on the old computer program, I 
recalculated the entropies of those various distributions. Quite by accident, I 
noticed that the numerical values of N ~H were in every case just half the 
values of Chi-squared in the MIT article. 

The light suddenly dawned: my calculations of Chi-squared were foolish. 
There was no need to work out the squares of the residuals and compute their 
weighted sum; it seemed that the entropy of a Maxent distribution, deter­
mined immediately from the partition function, already contained that infor­
mation. 

Then a little analytical work, to understand why this connection existed, 
brought forth the Concentration Theorem. Result: all the tedious analysis of 
Wolfs dice data in the MIT volume could now be reproduced, more accurate­
ly and more meaningfully, in a few lines. To test any number of theories con­
cerning which constraints were present, against Wolfs data, we need only 
compare their predicted entropies to the entropy of the data. 

But this better method also revealed that I had been wrong in arguing for 
five degrees of freedom. Although it was correct to say that the parameters 
were not chosen by the criterion of minimizing Chi-squared, nevertheless the 
analysis showed unequivocally that the distribution with three degrees of 
freedom was the correct one determining the distribution of entropy over 
class C - chalk up another for Fisher. Therefore, instead of reporting that 
Wolf's data were not quite significant at the 5% level, I must now report 
that they were slightly significant, and do contain evidence for a third, very 
tiny, imperfection. 

In September 1981 I visited Zurich, saw the observatory where Rudolph 
Wolf had worked, and thanks to the kindness of Dr. Lucien Preuss and Dr. 
Hans Primas, came away with more detailed evidence concerning this now 
famous die. It will be reported in due course. 
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Nevertheless, it is fortunate that I did not know of this more efficient 
method in the MIT volume. The plodding, familiar type of analysis given 
there will be far more convincing to almost every reader. The efficient 
procedure described below is just too slick and subtle to be grasped immedi­
ately; it gives that impression of 'getting something for nothing' to anyone 
who does not really understand what is happening. Knowing how many years 
it took for the bare Maxent principle to be comprehended by persons who 
accused me of trying to get something for nothing out of it, I expect that 
some time will pass before the principle of hypothesis testing by comparing 
entropies will be usable in public. 
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CONCENTRATION OF DISTRIBUTIONS AT ENTROPY MAXIMAt 

E. T. Jaynes 

Department of Physics, Washington University 

St. Louis, Missouri 63130, U.S.A. 

1. INTRODUCTION 

It has long been recognized, or conjectured, that the notion of 

entropy defines a kind of measure on the space of probability distributions 

such that those of high entropy are in some sense favored over others. 

The basis for this was stated first in a variety of intuitive forms: 

that di stri butions of hi gh entropy represent greater "di sorder ," that 

they are "smoother," that they are "more probable," that they "assume 

less" according to Shannon's interpretation of entropy as an information 

measure. etc. While each of these doubtless expresses an element of 

truth. none seems explicit enough to lend itself to a quantitative 

demonstration. This alone. however, has not prevented the useful 

exploitation of this property of entropy. 

In many statistical problems we have information which places some 

kind of restriction on a probability distribution without completely 

determining it. If, given two distributions that agree equally well 

with the information at hand, we prefer the one with greater entropy, 

then the distribution with the maximum entropy compatible with our 

information will be the most favored of all. Thus conversion of prior 

information into a definite prior probability assignment becomes a 

v,riational problem in which the prior information plays the role of 

constraint. 

no be presented at the 19'th fHlER-NSF Seminar on Bayesian Statistics, 
~ontreal, October 1975. 



318 E. T. JAYNES 

But while this Principle of Maximum Entropy has an established 

usefulness in a variety of applications, it has left an unanswered 

question in the minds of many. Granted that the distribution of maximum 

entropy has a favored status. in exactly what sense. and how strongly, 

are alternative distributions of lower entropy ruled out? 

Probably most information theorists have considered it obvious 

that. in some sense, the possible distributions are concentrated 

strongly near the one of maximum entropy; i.e., that distributions 

with appreciably lower entropy than the maximum are atypical of those 

allowed by the constraints. 

Likewise. SchrBdinger (1948) noted that this is the reason why, in 

statistical mechanics, the Darwin-Fowler method and the Boltzmann 

"method of the most probable distribution" lead to the same result 

1n the limit N ...... where N is a suitable "size" parameter (Le •• in 

statistical mechanics the number of particles in a system; in communica­

tion theory the number of symbols in a message; in statistical inference 

the number of trials of a random experiment). A general proof of this 

limiting form (i.e •• a generalized Darwin-Fowler theorem) is given by 

van Campenhout and Cover (1979). 

But these results, pertaining only to the limiting distribution. 

leave us in the same unsatisfactory state as did the original limit 

theorem of Jacob Bernoulli (1713): {as N ...... the observable frequency 

f=r/N of successes converges in probability to pl. This said nothing 

about how large N must be for a given accuracy. For applications one 

needed the more explicit de Moivre-Laplace theorem: {Asymptotically. 

f",N(p.a) where i = N- l p(l-p)}. 
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Similarly, in our present problem it would be desirable to have a 

quantitative demonstration of this entropy concentration phenomenon for 

finite N. so that one can see just how the limit is approached. This 

1s so particularly because there are still some who. apparently unaware 

or unconvinced of the reality of the phenomenon, reject the Principle 

of Maximum Entropy as a method of inference. 

This problem was discussed at the M.I.T. Maximum Entropy Formalism 

Conference of May 1978. in connection with some alternative solutions 

that had been proposed for maximum entropy problems. The result was a 

lengthy but awkward and unsatisfactory analysis (Jaynes. 1978) in which 

real insight into the problem had nat yet been achieved. We give here 

a Simpler, more accurate, and more general treatment of entropy concentra­

tion. 

The general Principle of Maximum Entropy is applicable to any 

problem of inference with a well-defined hypothesis space but incomplete 

information. whether or not it involves a repetitive situation such as 

a random experiment. However, we consider below only the special 

applications where we use entropy as a criterion for (1) estimating 

frequencies in a random experiment about which incomplete information 

is available; or (2) testing hypotheses about systematic effects in 

experiments where frequency data are available. 

The second application is illustrated by analyzing the famous 

dice data of R. Wolf. We show how entropy analysis enables one to draw 

conclusions about the specific physical imperfections that must have 

been present (not knowing whether those dice are still in existence. 

so that our conclusions might be checked directly). 

315 
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2. ENTROPY CONCENTRATION THEOREM 

A random experiment has n possible results at each trial; thus in 

N trials there are nN conceivable outcomes (we use the word "result" for 

a.single trial, while "outcome" refers to the experiment as a whole; thus 

one outcome consists of an enumeration of N results, including their 

order). Each outcome yields a set of sample numbers {N i } and frequencies 

{f; = N/N, 1 ~ ; ~ n}, with an entropy 

n 
f } = - L fl· log f i 
n i=l 

(0 

Consider the subclass C of all possible outcomes that could be 

observed in N trials, compatible with m linearly independent constraints 

{m < n} of the form 

(l ~ j ~ m) {2} 

The conceptual interpretation is that m different "physical quantities" 

have been measured, the matri x A .. defines thei r "nature," and D. are 
Jl J 

the particular "data" for the case under study. These data tell us 

that the actual outcome must have been in class C, but are insufficient 

to determine the frequencies {fiL lie examine the combinatorial basis 

for uSing--and the consequences of failing to use--the entropy (l) as 

a criterion for estimating the {fi }. 

Although it is not needed for this purpose, we note that in a 

real application one will wish, if possible, to choose the constraint 

matrix A .. so that the resulting quantities D. represent systematic 
Jl J 

physical influences, real or conjectured, (for example, eccentric 

position of the center of gravity of a die), which constrain the 
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frequencies to be different from the uniform distribution of absolute 

maximum entropy Ho = log n. In using entropy analysis for hypothesis 

testing, the mathematical relations are used in the other direction, 

considering the {fi } as known experimentally. A successful hypothesis 

about the systematic influences is then one for which the experimentally 

observed entropy (1) is sufficiently close to the maximum Hmax permitted 

by the assumed constraints (2), "sufficiently close" being defined by 

the following concentration theorem. 

A certain fraction F of the outcomes in class C will yield an 

entropy in the range 

where Hmax may be determined by the following algorithm: define the 

partition function 

- f exp (-.f AJ. A.,.) . 
i=l J=l J 

Then 
m 

H = log Z + L AJ. OJ' 
max j=l 

in which the Lagrange multipliers {Aj } are found from 

a _ ax- log Z + O. - 0 , 
j J 

(l ~ j ~ m) 

(3) 

(4) 

(5) 

(6) 

a set of m simultaneous equations for m unknowns. The frequency distribu­

tion which has this maximum entropy is then 

f i = Z-l exp( - LA. A .. ) , (l ~ ~ n) 
j J J' 

(7) 
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Other distributions {fi} allowed by the constraints (2) will have 

various entropies less than Hmax. Their concentration near this upper 

bound {i.e., the functional relation connecting F and ~H} is given by 

the Concentration Theorem: Asymptotically, 2N~H is distributed over 

class Cas Chi-squaredwithk=n-m-l degrees of freedom. independently 

of the nature of the constraints. That is, denoting the critical Chi­

squared for k degrees of freedom at the 100 P % significance level by 

X~(P), ~H is given in terms of the upper tail area {l-F} by 

2N ~H = x~(l-F) (8) 

The proof is relegated to the Appendix, since it consists of little more 

than repeating mutatis mutandis Karl Pearson's original derivation of 

the Chi-squared distribution, taking note of the reduction of dimensionality 

due to constraints. Note that the theorem is combinatorial, expressing 

only a counting of the possibilities; it does not become a statement of 

probabilities unless one assigns equal probability to each outcome in 

class C. 



CONCENTRATION OF DISTRIBUTIONS 

3. EXAMPLES: FREQUENCY ESTIMATION 

We illustrate the meaning and use of this result by a much-discussed 

example. Suppose a die is tossed N = 1000 times and we are told only that 

the average number of spots up was not 3.5 as we might expect from a "true" 

die, but 4.5, i.e., 

6 
1: i fi = 4.5 
i=l 

(9) 

which is a special case of (2). Given this information and nothing else 

(i.e., not making use of any additional information that you or I might 
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get from inspection of the die or from past experience with dice in general). 

what estimates should we make of the frequencies {fi } with which the 

different faces appeared? This is a kind of caricature of a class of 

real problems that arises constantly in physical applications. 

The distribution which has maximum entropy subject to the constraint 

(9) is given by (4)-(7) with n=6, m=l, Aji=i. ZeAl = (e-A+ ... +e-6A ), 

A = -0.37105. The result. derived in more detail before (Jaynes. 1978), 

is 

{fl'" f6} = {0.0543, 0.0788. 0.1142, 0.1654. 0.2398. 0.3475} (10) 

and it has entropy 

Hmax = 1.61358 (11 ) 

as compared to the value loge 6 = 1.79176, corresponding to no constraint 

and a uniform distribution. 
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Applying the concentration theorem, we have 6 -1 - 1 = 4 degrees of 

freedom; entering the Chi-squared tables at the conventional 5% significance 

level, we find that 95% of all possible outcomes allowed by the constraint 

(9) have entropy in the range (3) of width t.H = (2Nr1 X~(0.05) = 0.00474; 

or, to sufficient accuracy, 

1.609 < H < 1.614. (12) 

Thus on the "null hypothesis" whi ch supposes that no further systematic 

influence is operative in the experiment other than the one taken into 

account (i.e., which assigns equal probability to all outcomes in class 

C), there is less than a 5% chance of seeing a frequency distribution 

with entropy outside the interval (12). 

A remarkable feature is that the "95% concentration range" 

H - 4.74 < H < H 
max N - - max 

(13) 

is valid asymptotically for any random experiment with four degrees of 

freedom, although the value of Hmax may vary widely with other details. 

More interesting numerical results are found at more extreme 

significance levels. Thus, in any experiment with 1000 trials and 

four degrees of freedom, 99.99% of all outcomes allowed by the constraints 

have entropy in a range of width t.H= (2Nr1 x~(O.OOOl) =0.012. In the 

above example this is 

1.602 ~ H ~ 1.614 (14) 

and only one in 108 of the possible outcomes has entropy below the range 

1.592 ~ H < 1.614 (15) 
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Thus. given certain incomplete information. the distribution of maximum 

entropy is not only the one that can be realized in the greatest number 

of ways; in fact, for large N the overwhelming majority of all possible 

distributions compatible with our information have entropy very close to 

the maximum. 
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Note that the width of this region of concentration goes down like 

N-l ; and not like N-l / 2 as one might have guessed. Thus, in 20,000 tosses 

agreeing with (g), 95 percent of the possible outcomes have entropy in 

the interval (1.61334<H< 1.61358) and only one in 108 has H < 1.61253. 

As N +~. any frequency distribution other than the one of maximum entropy 

thus becomes highly atypical of those allowed by the constraints. 

Even more interesting numbers are readily found. Rowlinson (1970) 

rejected the principle of maximum entropy for this problem, and proposed 

as an alternative solution in place of (10) the binomial distribution 

f i = ( i'~ 1 ) P f - 1 (l-p) 6- i , 1:: i :: 6 (16) 

which also satisfies the constraint (9) if p=0.7. But the distribution 

(16) has entropy H' = 1.4136= Hmax -0.200, far below the limit (15). We 

now have 2N ~H = 400 = x!O-F); or from (A8). 

1 - F '" 2.94 x 10-84 (17) 

This indicates that in 1000 tosses, less than one in 1083 of the outcomes 

compatible with the constraint (9) have entropy as low as H'. 
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But the concentration theorem is valid only asymptotically, because 

of the approximation (A4) made in its derivation; and even for N = 1000 we 

might distrust its numerical accuracy that far out in the tail of the 

distribution. However, we can check the magnitude of (17) by direct 

counting. 

The number of ways W in which a specific set of sample numbers 

{N1 ••• N6} can be realized is given by the multinomial coefficient (A1). 

The asymptotic formula (A3) for the ratio W/W' (which is free from any 

errors that might result from the aforementioned approximation) says 

that, for every way in which the binomial distribution (16) can be 

realized, there are about exp(NllH) '" exp(200), or more than 1086 ways, 

in which the maximum-entropy distribution (10) can be realized (about 

1062 ways for every microsecond in the age of the universe). While 

this result does not take into account the volume element factors 

(rk- l dr) of the full concentration theorem, it does indicate that 

(17) did not mislead us. 

Even if we come down to N = 50, we find the following. The sample 

numbers which agree most closely with (10), (16) while summing to ENk = 50 

are {Nk} = {3,4,6,8,12, 17} and nl~} = {O,l ,7,16, 18,S} respectively. With 

such small numbers, we no longer need asymptotic formulas; for every 

way in which the distribution {Nk} can be realized, there are exactly 

W/W' = (7116! lS! )/(3!4!6! 12117!) = 3S,220 ways in which the maximum­

entropy distribution {Nk} can be realized. 

Such numbers illustrate rather clearly just what we are accomplishing 

when we maximize entropy. If our data do not fully determine a distribu­

tion {fi }, it is prudent to adopt, for purposes of inference, that 

distribution which has maximum entropy subject to the data we do have. 
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4. HYPOTHESIS TESTING: WOLF'S DICE DATA 

The Swiss astronomer Rudolph Wolf (1816-1893; best known today as 

the discoverer of the correlation between terrestrial magnetic disturbances 

and sunspot activity) performed a number of random experiments, conducted 

with great care, presumably to check the validity of statistical theory. 

An account with references is given by Czuber (1908). 

In one of these experiments, a red and white die were tossed together 

20.000 times in a way that precluded any systematic favoring of any face 

over any other. The resulting 36 joint sample numbers are given in Table 

1 (taken from Czuber). 

Table 1. Wolf's Dice Data 

White Die Row 
1 2 3 4 5 5 Total 

1 547 587 500 462 621 690 3407 
2 609 655 497 535 651 684 3631 

Red 3 514 540 468 438 587 629 3176 
Die 4 462 507 414 413 509 611 2916 

5 551 562 499 506 658 672 3448 
6 563 598 519 487 609 646 3422 

Column 3246 3449 2897 2841 3635 3932 20000 Total .-
These are the sample numbers {Ni , 1 ~ i ~ n} of a random experiment with 

n" 36 Dossible results at each trial. On the null hypothesis which assigns 

uniform probabilities p" n-1 "1/36, the expectation and standard deviation 

of any sample number are Np .. 555.55, 0= [Np(l-p)]~ = 23.24 respectively. 
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Czuber, writing in the days when commonly understood statistical inference 

consisted of little more than fitting by least squares, compared a with 

the observed mean-square deviation 

(18) 

and concluded only that the null hypothesis must have been wrong; "die 

WUrfelseiten nicht a1s gleichmog1iche Falle sich darstellen." 

Keynes (1921) also cited Wolf's dice data, but did even less with 

th~. Noting only that agreement with predictions of the null hypothesis 

was atrocious, he concludes: "This, then, is the sole conclusion of these 

immensely laborious experiments, -- that Wolf's dice were very ill made. 

Indeed, the experiments could have had no bearing except upon the accuracy 

of his dice." This appears to be an outstanding example of blindness to 

an important result staring one in the face. Why did he not see in such 

"bad" data a golden opportunity for further analysis, that would have been 

lost had Wolf worked with perfect dice and produced the kind of data expected 

of him? 

Today, another sixty years have passed, and to the best of the wr~ter's 

knowledge no statistician has ever attempted to draw any specific inferences 

about the imperfections in' Wolf's dice from these data. Yet to a physicist 

those data tell us something very clear and simple about his dice; information 

that can be extracted by a straightforward entropy analysis that does not 

require us to go into complicated mechanical details. 

Ludwig Boltzmann, writing thirty years before Czuber and about 

six years before Wolf's experiment, had given the principle by which 

this analysis may be carried out; and J. Willard Gibbs, writing six 

years before Czuber, had developed the resulting mathematical apparatus 
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to a high degree of perfection. Yet today, 100 years after Boltzmann's 

work, it still seems generally believed that the principles of statistical 

mechanics apply only to molecules; and not to dice. 

We do not expect, and Wolf's data do not give evidence for, any 

correlations between the results of the two dice. Therefore, the import 

of the data for our purposes is contained in the marginal totals. The 

observed frequencies {fi } and their deviations {.~i = fi -1/6} from the 

null hypothesis prediction are given in Table 2. 

Table 2. Wolf's Marginal Frequencies 

Red Die White Die 
i fi t.i fi t.i 

1 0.17035 +0.00368 0.16230 -0.00437 
2 0.18155 +0.01488 0.17245 +0.00578 
3 0.15880 -0.00787 0.14485 -0.02182 
4 0.14580 -0.02087 0.14205 -0.02464 
5 0.17240 +0.00573 0.18175 +0.01508 
6 0.17110 +0.00443 0.19960 +0.02993 

-

On the null hypothesis that the dice were true, the standard 

deviations of {fi } from p = 1/6 should be 0= [p(1-p)/N]~ = 0.0026. The 

observed deviations t.i are many times this amount. 

Now let us judge the deviation by the entropy criterion, considering 

only the white die. The entropy of the observed distribution lies below 

the maximum, log 6, by 

log 6 = 1.791 759 
HWo1f = 1.784 990 

t.H = 0.006 769 

329 
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which looks rather small; but this is for N = 20.000 trials. As a "quick 

and dirty" estimate based on (A3) we find exp(NLlH) '" 6 x 10S8, indicating an 

unm1stakably strong constraint (i.e., systematic influence) keeping the 

frequencies away from the uniform distribution that could happen in the 

greatest number of ways if the die were equally free to settle in all 

positions. 

The more precise concentration theorem gives 

2 2N LlH = 270.1 = Xs (1 - F) (19) 

and therefore, from (A8), 

1 - F = 1.07 x 1O-S6 (20) 

Only one in 1056 of the 6N conceivable outcomes has an entropy as low as 

Wolf's data give. 

In Jaynes (1978) we considered what specific imperfections one might 

expect to find in a die, that might tend to make the frequencies nonuniform. 

The two most obvious are (1) a shift of the center of gravity due to the 

mass of ivory excavated from the spots, which being proportional to the 

number of spots on any side, should make the quantity {fl (i) ::: i - 3.S, 1 ~ i ~ 6} 

have a nonzero expectation; and (2) errors in trying to machine a perfect 

cube, which will tend to make one dimension (the last side cut) slightly 

different from the other two. It is clear from the data that Wolf's white 

die gave a lower frequency for the faces (3,4); and therefore that the 

(3-4) dimension was undoubtedly greater than the (1-6) or (2-S) ones. 

The effect of this is that the function 

= {+ 1, i l,2,S ,6l 
f20 ) 

-2, i 3,4 
(21) 
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has a non-zero expectation. The strength of these two systematic influences 

1s indicated by Wolf's measured averages for them: 

1'1 = 0.0983 • 1'2 = 0.1393 (22) 

Now if these are the only two imperfections present. we expect that 

the die will be equally free to yield any outcome compatible with the 

constraints (22). Therefore the observed frequencies should be the ones 

that can be realized in the greatest number of ways while agreeing with 

(22); i.e •• which has maximum entropy subject to these two constraints. 

On the other hand. if the entropy of the observed distribution is 

appreciably below the maximum allowed by (22). that would be evidence 

that there is still another imperfection present; i.e •• a third systematic 

influence not yet taken into account. 

The maximum entropy Hmax allowed by (22) was calculated in 

Jaynes (1978) by the algorithm (4)-(7). with the result indicated 

below: 

Hmax = 1.785 225 

HWo1f = 1.784 990 

lIH = 0.000 235 

The discrepancy is reduced by nearly a factor of thirty. The concentration 

theorem now gives 

2N lIH = 9.38 = x~(l - F) (23) 

or 

1 - F = 0.025 (24) 
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The result appears just barely significant. That is, 97.5 percent of 

all outcomes compatible with (22) have an entropy greater than observed 

by Wolf. To as~ume a further very tiny imperfection [the (2-3-6) corner 

chipped off] we could make even this discrepancy disappear; but in view 

of the great number of trials one will probably not consider the result 

(24) as sufficiently strong evidence for this. 

s. CONCLUSION 

In Jaynes (1978) we gave a much more lengthy analysis, using 

the conventional Chi-squared test but arriving at less detailed and 

less accurate conclusions. At that time, in ignorance of the concentration 

theorem, it was not realized that there is no need to carry out the 

laborious computation of Chi-squared from the observed deviations Ai; 

the discrepancy between the observed entropy and that allowed by the 

hypothesis is already a more precise measure of significance. 

We now see that the single maximum entropy formalism defined by 

(1) - (7) provides not only the procedure for predicting frequencies 

when incomplete data are available, that is optimal by a certain well­

defined criterion; but also the criterion for testing hypotheses about 

systematic influences when frequency data are at hand. 
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APPENDIX 

In N trials of the aforementioned random experiment. the i'th 

resul t occurs Ni = N f. ti mes. 1 < i < n. Out of the nN concei vab 1 e outcomes. 
1 - -

the number which yield a particular set of frequencies {fi } is 

(Al) 

and as N + m we have by the Stirling approximation 

-1 ) N 1 og W --+ H ( fl' •• f n (A2) 

the entropy function (1). Given two sets of frequencies {fi } and {fi}' 

the ratio (number of ways fi can be realized)/(number of ways f1 can be 

realized) is asymptotically 

where 

~WW '" A eN(H-H') [1 + B + O(N-2)] .... m 

A E 7T(fi/fi)~ 
i 

BEL (fi - fP/fifi 
i 

(A3) 

(A4) 

represent corrections from the higher terms in the Stirling approximation. 

Their variation with {fi } is. of course. completely overwhelmed by that 

of the factor exp N(H-H'). 

The conceivable frequencies {fl'" fn} may be regarded as cartesian 

coordinates of a point P in an n-dimensional space. restricted to is: 0 ~ f i • 

Efi "'l}. an (n-l)-dimensional convex set whose vertices are the n points 
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{fi = 1, 1 ~ i ~ n}. On S, the entropy (1) varies continuously, taking on 

all values in (0 ~ H(P) ~ log n) as P moves from a vertex to the center. 

But now we obtain information that imposes the m linearly independent 

constraints (2), which define an (n-m}-dimensional hyperplane M. P is 

now confined to the intersection S' = M n S, a closed set comprising a 

bounded porti on of hyperplane of dimens i ona 1 i ty k = n - m - l. 

On S' the entropy attains a maximum H < log n. That this max -
is attained at a unique point of S' may be proved analytically, but is 

perhaps made obvious as follo~ls. Since any "mixing" increases the 

entropy, the set {SX: P £: S, H(P) ~ x} is strictly convex. Entropy 

maximization with constraints linear in {fi } thus amounts to finding 

the value of x = Hmax for which S' is a supporting tangent plane to Sx 

After these preliminaries, our argument follows slavishly the 

original derivation by Karl Pearson, as recalled by Lancaster (1969). 

In. S' we may define new coordinates {xl ... xk} as appropriate linear 

functions of {fl ... fn} such that the new origin is at the maximum-
2 1.: entropy point. and there is a distance r= (EXi ). such that near the 

origin a power series expansion yields 

H(P} Hmax - a r2 + ••• a > 0 (A4) 

We then have a volume element in S' proportional to r k- l dr. The domain 

of all possible frequency distributions {fl ... fn} which satisfy the 

constraints and whose entropy is in the range (3) is a k-sphere of radius 

R. given by aR2 = ~H. 



CONCENTRATION OF DISTRIBUTIONS 335 

In N trials this sphere contains a fraction F of all possible outcomes 

in class C. From (A2), (A4) this is given asymptotically by 

where 

F'" I(R)/I(co) 

I{R) = ~ e-Nar2 rk-1 dr 
o 

(AS) 

(A6) 

But, setting NaR2 = N flH = (1/2)i, this is just the cumulative Chi-squared 

distribution with k degrees of freedom; in conventional notation the 

relation between flH and F is given by Eq. (4). 

In our applications we are generally concerned with numerical values 

for large N flH, beyond the range of tables. The Chi-squared distribution 

F(N flll) may be expressed analytically as 

F(x) = ;! ~ t S e-t dt 
o 

(A7) 

where s = (k/2) -1. For large x = N t.H, this yields the asymptotic expansion 

When s is an integer (k even) this terminates and gives the exact result. 

Most of the numerical results cited in the text have been obtained from 

(AS). 
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12. MARGINALIZATION AND PRIOR PROBABILITIES (1980) 

This article calls for an unusually long commentary, because a great deal of 
misinformation about improper priors is now propagating through the statis­
tical literature, inspiring wasted effort on non-problems. Some further ex­
planations are needed. 

At the London meeting in 1973 I fust met Dennis Lindley and learned 
from him about the startling new 'Marginalization Paradox' of Dawid, Stone, 
and Zidek, which had been presented at a meeting of the Royal Statistical 
Society about a month earlier. The consensus was that the culprit was the use 
of improper (Le. non-normalizable) prior probability distributions; and that 
henceforth Bayesians must avoid them. 

The neat - and clearly intuitively right - results that follow from the 
Jeffreys improper priors made me doubt this; but it was the eagerness with 
which Oscar Kempthore seized upon marginalization as sounding the death­
knell of all Bayesianity, that clinched my resolve to study the matter for my­
self. But various misfortunes intervened, and it was not until September 1976 
that I fmally located the DSZ article and gave it some intensive study. 

It required two weeks of increasing frustration at not being able to fmd 
the suspected error in the DSZ calculations, before the comprehension 
dawned; the difficulty was not in the calculations at all, but in the faulty 
logic that one is tricked into by an inadequate notation. Once seen, the 
resolution was trivial. As I had expected from the start, there is no fault in 
the Jeffreys priors «(.efmed, of course, as limits of proper priors). Indeed, it 
was just the failure to follow Jeffreys in notation that made one see a para­
dox where none existed. 

The Bayesian posterior probability of some hypothesis H is conditional on 
both the data D and the prior information I. In principle, if you fail to 
specify one of them, the problem is just as ill-posed and indeterminate as if 
you had failed to specify the other. Jeffreys had of course recognized this 
from the start, and his probability symbolsp(H I D,I) always indicated which 
prior information was intended. But orthodox statistics, which recognized the 
existence only of sampling probabilities of the form p(D I H), did not use 
even the term 'prior information', much less a symbol for it. 

Now statisticians trained from the orthodox literature still clung to the 

337 
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habit of orthodox notation after they became Bayesians. That is, they 
denoted posterior probabilities by p(H I D), leaving out explicit mention of 
the prior infonnation. One can get along for a while in this way, without 
disaster, understanding the prior infonnation from the surrounding context. 
But eventually a problem will arise in which probabilities conditional on two 
different pieces of prior information 11 and 12 , appear; and then we are in 
danger of misreading our equations. 

In the DSZ work two Bayesians, B1 and B2 , are given the same data but 
come to different conclusions. This is held to be a paradoxical inconsistency. 
Now B1 had used an improper prior, while B2 did not; and DSZ draw the 
conclusion that B1 is at fault for using an improper prior. 

But if they used different prior probabilities, they were necessarily taking 
into account different prior infonnation. That they came to different con­
clusions is no more paradoxical than if they had come to different conclu­
sions from different data. Indeed, the prior infonnation used by B2 did not 
include even the existence of the parameter to which B1 had assigned an 
improper prior! If DSZ had used the full Jeffreys notation p(H I D, 11), 
p(H I D'/2) for the two calculations, there could never have been any appear­
ance of paradox. 

However, if this were the whole storY, the matter could not have erupted 
into controversy. The trouble was that a subtle mathematical point lay, so to 
speak, right on top of this not so subtle logical point, and they were not easy 
to distinguish. Since some workers in this field have not yet recognized the 
double nature of the confUSion, let us emphasize once more what is explained 
more fully in the following article. 

The reason why DSZ placed the blame on improper priors was their pur­
ported proof that the 'paradox' (i.e., difference in conclusions) cannot arise 
if B1 uses a proper prior. However, that proof rested on two assumptions 
that are in general mutually contradictory. But - and this is the extremely 
subtle point - in the problems they considered, those assumptions were 
contradictory for proper priors, but they became compatible just for the 
class of improper priors under discussion! 

So they got their 'paradox' with .improper priors, without noticing that 
they had proved nothing for the case of proper priors. The result of this 
double confusion was: improper priors were blamed for causing a 'para­
dox' which they did not cause and which was not a paradox. 

In the following article I demonstrated that improper priors are not the 
cause of the difference by showing that one can reproduce the same 'paradox' 
to arbitrarily great accuracy by use of proper priors. 
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Indeed, that something is amiss is clear from results in the DSZ article 
itself. As noted in my article, their Example 5 already provides a case in 
which Bl may use an arbitrary proper prior, yet the 'paradox' is still present, 
a counter-example to their proof. 

It is unfortunate that we Bayesians must dissipate so much of our efforts 
in putting out fIres, that more important matters suffer. This commentary 
has not touched at all on the constructive, useful aspects of marginalization 
theory in pointing to another avenue by which uninformative priors may be 
defmed and constructed. However, perhaps a few readers may push their way 
through to the fmal Sections of the following article, in which the prior 
probability problem takes on a new and different mathematical form, thanks 
to the work of DSZ. 

A great deal more work is needed on the purely mathematical problems 
of fmding solutions and existence proofs for these simultaneous integral 
equations. In my opinion, new results important for statistical theory will 
reward the person who masters them. 

In the volume where this article was originally published, it is followed 
by some comments by DSZ (actually, I believe, by Merwyn Stone alone) and 
a rejoinder by me. While this discussion is a major contribution to statistical 
polemics, it does not contribute to the technical development of statistics, 
and is not reprinted here. 
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MARGINALIZA TION AND PRIOR PROBABILITIES· 

EDWIN T. JAYNES 
Washmgton UnIVersity 

1. Introduction 

A recent article of Dawid, Stone and Zidek (1973) notes two Bayesian calculation 
methods- the first using an improper prior, the second avoiding it - that one feels 
intuitively ought to lead to the same result, but in general do not. This 
"marginalization paradox" has been interpreted widely as revealing a fundamen­
tal inconsistency in the common Bayesian practice of using improper priors to 
express prior ignorance. 

We argue that, on the contrary, resolution of the paradox is very simple, the 
discrepancy arising not from any defect of improper priors, but from a rather 
subtle failure of the second method to take into account all the relevant 
information. This situation, far from revealing an inconsistency in Bayesian 
methods, shows that to violate them in seemingly harmless ways can generate 
paradoxes, i.e. it is only by strict adherence to the Bayesian principles expounded 
by Jeffreys in 1939, that one can avoid inconsistencies in statistical reasoning. 

The marginalization process is then turned to advantage by showing that it 
leads to a new means for defining what is meant by "uninformative" and for 
constructing noninformative priors, as the solution of an integral equation. This 
method draws only upon the universally accepted principles of probability 
theory, making no appeal to such additional desiderata as entropy. group 
invariance, or Fisher information. However, its range of appli~ability is still 
largely unexplored. 

2. The paradox 

A conscientious Bayesian B1 studies a problem with parameters e which he 
partitions into two sets, e = (y!, 0. being interested only in inferences about (. 

• A prehmmary account of thiS work was given at the 14th NBER-NSF Semmar on BayesIan 
Inference, Holmdel, N.J., June 1977 
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Dawid, Stone and Zidek (1973: hereafter denoted by DSZ) note that, in several 
examples where B, uses an improper prior for 'I, the data x may also be 
partitioned into two sets, x = (y, z) in such a way that B,'s marginal posterior 
distribution for C "is a function of z only", while the sampling distribution of z 
depends only on C. 

A lazy Bayesian B2 then tries to derive the posterior distribution p«(lx)= p(Clz) 
more easily by applying Bayes's theorem directly to the sampling distribution 
p(zIO; and finds that he cannot reproduce B,'s result whatever prior 7[(C) he 
assigns. 

DSZ then point the accusing finger at B, thus: "B/s intervention has revealed 
the paradoxical unBayesianity of BI 's posterior distribution for C." In the ensuing 
discussion there was near unanimity of all opinions expressed, holding that BI is 
the party at fault, his transgression lying in his use of an improper prior. 

A group-theoretical analysis by DSZ showed that if the sampling distribution 
p(dydzl'lO has a certain group structure (invariant under the combined action of 
coupled homomorphic groups G, G which are exact and transitive on the spaces 
S(y), S('I)), the paradox can be avoided by choosing the prior as the right­
invariant measure on S('I). This procedure has indeed been advocated by a long 
list of writers starting with Poincare (1912). However, as soon as we pass beyond 
the case of location and scale parameters it is rather exceptional to find a 
problem with all that group structure; and the para.dox persists even in problems 
that have no group structure at all. In general, therefore, no way emerged of 
avoiding the paradox. 

Predictably, some have seized upon this as a new tool for the abrogation of 
Bayesian statistics in general. However unimportant the practical consequences 
may be, it is imperative for Bayesian theory that this puzzle be cleared up. 

In what follows we argue these points: 
(1) Resolution of the paradox is far too simple a problem to be in need of 

group-theoretical analysis. That it can be made to appear and disappear by 
different choices of the 'I-prior, shows immediately where the difficulty lies. 

(2) The real cause of the paradox is not BI's use of improper priors, or indeed 
any transgression on BI's part. On the contrary, it appears only when B2 violates 
elementary Bayesian principles. B2'S transgression was concealed from view by 
concise notation. 

(3) Nevertheless, the prior 7[('1) that "avoids the paradox" has a useful In­

terpretation as being, in a certain sense, "completely uninformative". 
(4) Recognizing this, marginalization leads to a new means for constructing 

noninformative priors, via a set of simultaneous integral equations. This method 
is consistent with, but appears more general than, the group analysis. 

3. The resolution 

We must be careful to note exactly what the first quoted statement of DSZ 
means. From the mathematics it is clear that to say the posterior distribution of C 



342 E. T. JAYNES 

"is a function of z only" lIleans that it depends on the data x only through the 
value of z. But of course, any posterior distribution depends not only on the data, 
but also on the prior information. As Jeffreys (1939) stressed, to avoid ambiguities 
the prior information (or hypotheses) on which our probabilities are conditional, 
ought to be stated explicitly to the right of the stroke in our probability symbols 
p(AIB). 

B1'S prior information includes the whole structure of the model, the quali­
tative fact of the existence of the components t/ and y, and the prior distribution of 
t/. How, then, can one be sure that B2 is justified in considering only the reduced 
problem in which (t/, y) never appear at all? According to Bayesian principles, 
one may not disregard any part of either the data or the prior information, unless 
that part is shown to be irrelevant in the sense that it cancels out mathematic­
ally. 

B2's reduction appears, at first glanc,~, to be reasonable; but so did a multitude 
of ad hoc procedures of non-Bayesian statistics, which were found eventually to 
contain defects. Surely, there is no room for personal opinions about this; the 
mathematical rules of probability theory are quite competent to tell us whether 
B/s reduction is or is not justified. 

As a constant reminder of the presence of prior information, we extend the 
notation of DSZ by introducing the symbols J 1 and J 2 to stand for the totality of 
prior information used by B1 and B2, respectively. The quoted first statement is 
then, more precisely, 

p«(lxl d= p«(lzl d. 

Now the rules of probability theory tell us that 

p«(lxl 1)= Jdt/ p«(lt/xI dp(t/lxl 1)· 

(1) 

(2) 

If, given 11 and all the data x, additional knowledge of t/ would be irrelevant for 
inference about (, i.e. if 

(3) 

then t/ integrates out of (2) trivially. But if (3) does not hold, then t/ is relevant, 
and the postenor distribution p(t/ I xII) intrudes itself inevitably into the problem, 
bringing With it a dependence on the prior n(t/ll 1). 

In this case we have to expect that the separation property (1) cannot hold for 
all t/-priors. If (1) holds for some class C of priors, then while p«(lxltlIS, in a 
sense, "a function of z only", It IS a different function of ( for different t/-pnors m 
C. But since B2's posterior dIstribution p«(I zI 2) is independent of n(t/ I J 1), it 
appears that we have at hand all the material needed to manufacture paradoxes. 
In other words, we suggest that this paradox has, fundamentally, nothing to do 
with improper pnors; B1 and B2 obtain different results when, and only when, B2 
ignores relevant pnor mformation (about t/ and/or the model), that B1 is taking 
into account. 

It remains to be shown that the mechanism just suggested IS the one actually 
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operative in the examples of DSZ. Since (3) is equivalent to 

p(", 'lxI)=p("lxI)p("xI), 

we examine some of the DSZ examples for this factorization property. 

(4) 

Example 1. The model is described in DSZ. For present purposes we need note 
only that the raw data x={x i .•. xn } are partitioned into Y=X h and z={z,= 
x./x h 1 ~ i ~ n}. The joint posterior distribution is 

(5) 

where 

( n 

Q(C Z)=LZi+ C I z, (6) 
I (+ I 

is a function that is known from the data. Here Bl has helped B2's prospects as 
much as possible by assigning independent priors to ", ,. Nevertheless, the 
likelihood function mixes them up and we find the conjectured lack of factori­
zation (4). Bl's marginal posterior distribution is 

(7) 

from which we note several things. 
(a) As predicted, the dependence on the prior :n:("I/I) is manifest. Prior 

information about" is clearly relevant to inference about ,; and B2's reduction 
violates Bayesian principles by throwing it away. 

(b) The dependence on Y drops out on normalization, leading to (I), if and only 
if the ,,-prior is in the class {C: :n:("I/I)oc'7\-n-l<k<oo}, which mcludes all 
those considered by DSZ. 

(c) For any prior in class C there are no convergence problems. It is therefore 
difficult to see how use of an improper prior can in itself be grounds for reproach; 
all of BI's conclusions can be approximated to any accuracy we please (e.g. one 
part in 101000) by use of a proper prior (as shown explicitly below, eq. (24». 

(d) On the other hand, use of a proper prior, S:n: (" 1 1 I )d'7 = I, will take us out of 
the class C. But then the statistic Y cannot be disentangled, and remains relevant; 
the separation property (I) is lost, and B2 becomes superfluous. 

(e) The proof of DSZ that use of proper priors avoids the paradox, rested on 
two assumptions: that BI uses a proper prior, and (DSZ, eq. (1.20» that the 
separation property still holds. But for this model, those assumptions are 
contradictory. DSZ supposed that, with proper priors, the paradox would 
disappear because B\ and B2 then agree. We now see that, at least in this 
example, the paradox disappears rather because the comparison disappears; B2 
can no longer play his game at all. 

For efficient verbalizatIOn at this point, we need to coin a new term. A pnor 
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n(,,) that leads to the separation property (1) nullifies the effect of the data y for 
inference about ,. Let us call such a prior nullifying (more precisely: y-nullifying 
within the context of a particular model). What DSZ proved is then: if a pro­
per prior is also nullifying, then it necessarily leaves Bl and B2 in agree­
ment. However, except in the trivial case of complete indepen­
dence: p(dydzl'10 = p(dyl,,)p(dzIO one cannot assume ohne weiteres the existence of 
such a prior, as this example illustrates. 

Example 2. We have parameters O=(Jll,Jl2 a) and data x=(u to u2 , s) with 
sampling density function 

P(U1 u2s11l 1 1l2a) = A(s' - 1 /a d 2)eXp( - Q), 

where A is a normalizmg constant and 

I 2 2 2 
Q '" 2a2 [(U I - Ill) + (U 2 - 1l2) + vs ]. 

However, we are interested in inference only about 

and the samphng distribution of 

Ul -U] 

Z =---;:;T2 
is found to depend only on (: 

P(ZIJllIl2a)=p(zIO=J(2n)A f)w. e- R dw, 

where 

R(z, " w)",t[vw2 +(WZ_()2]. 

Makmg the additIOnal change of van abies 

Jl=1(Jll + Jlz); u=1(u l +U2)' 

(8) 

(9) 

(10) 

(11 ) 

(12) 

(13) 

(14) 

the unwanted components are "=(Il, a); y=(u, s), and Bl 's postenor distributIOn 
of, is 

P«(IXl l )<x:n«(IItlf'wv dw e- R flu, a), ( 15) 

where 

flu, a) =_1_, f" dll1t(Jl, a) exp[_(u-ll)zJ, 
~1t -r a 

(16) 
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and in the integration over w = s/u, s is held constant while u varies. Again, a 
certain class C of priors 1t(,,) = 1t(Jl, u) is found to be nullifying, leading to the 
separation property (1). This includes the class 

{C': dJlldJl2u-kdu=J(2) d(dJl u l - kdu} (17) 

considered by DSZ, or indeed any prior 1t(Jl, u) independent of Jl, for which (15) is 
independent of y: 

(18) 

From this we confirm eq. (1.3) of DSZ (with k = 1) and comparing with (12) it is 
seen that Bl and B2 will agree ifk=2. Once again it is clear from (15) and (18) 
that in general their conclusions will differ because Bl is taking into account 
relevant prior information about ,,= (Jl, u) that B2 is ignoring. 

Rather than continuing with a rather tedious, but still superficial, inspection of 
more examples, which would only reconfirm the mechanism already established, 
we can get a better understanding by returning to a second look at example 1. 

4. A reinterpretation 

We may take a more charitable view of B2 if DSZ will grant a similar courtesy to 
Bl. In these examples, independently of all questions of priors, it is true that the 
marginal sampling distribution of z depends only on (. Suppose that we now 
regard B2, not as a lazy fellow who "always arrives late on the scene of inference" 
and tries to simplify Bl's analysis; but merely, through no fault of his own, an 
uninformed fellow whose knowledge about the experiment consists only of the 
sampling distribution 

(19) 

and is unaware of the existence of the components (", y). Then B2 is following 
strict Bayesian principles, and 

(20) 

will always represent the best inferences that can be made on the information he 
has - whether or not Bl's posterior distribution has the separation property 
(P«(lYZ]I) independent of y) that initiated all this. 

H then makes sense to compare B2's results with Bl's in all cases, whether Bl's 
prior for" is proper or improper; and in all cases the comparison will reveal just 
how much difference Bl 's extra information has made. For the most meaningful 
comparison, we suppose they have the same prior information about (: 

(21) 
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Returning now to example 1, from eq. (1.2) of DSZ, B2's conclusions are given by 

(22) 

while B1's are given by our eq. (7). Let B1 assign a proper ,,-prior of the conjugate 
form 

t>O, (23) 

which as t-+O goes mto the family of Improper priors used by DSZ. Then B1's 
result is 

[ Y J"+. P«(lyzl1)ocn«()c-~ t+ yQ«(, z) (24) 

which, we note, goes smoothly and continuously into Bz's result (22) as t-+O and 
k-+O. 

But no "paradoxical unBayesianity" or "impropriety" is apparent. Strictly 
speaking, the dependence on y drops out, leading to the separation property (\), 
only when t = 0, but for t« yQ there is virtually no y-dependence, even though 
the prior is still proper. There is no discontinuous change; as t becomes smaller 
and the prior (23) becomes more nearly nullifying, the y-statistic just becomes less 
and less informative. 

If then B1, having noted that t«yQ, decides to simplify (24) by setting t=O, 
this now appears, not as a paradox-creating transgression into the realm of 
improper priors, but rather as a perfectly harmless and reasonable approximation 
- indeed, an approximation far better justified than many that are accepted 
without question in non-Bayesian statistics. 

If B1 has very little prior information about ,,(i.e. if (t, k) are small), then there 
is virtually no difference between his conclusions and B2's, whether his prior is 
proper or improper. If, on the other hand, (t, k) are large, then B1 is in possession 
of additional, highly cogent, information relevant to inference about (; and it is 
only right and proper that his conclusions deviate from B2's. Any statistical 
method that failed to make use of this information although it was available to 
the user, would then be deserving of the epithet, "impropriety". 

5. Improper priors - discussion 

In view of the great emphasis on the issue of improper priors in DSZ and in the 
ensuing discussion - almost to the exclusion of all else - and subsequent attempts 
to use this as an argument against all Bayesian methods, some further exegesis 
defending the use of improper priors is needed. 

A sequence {n,} of proper priors defines a corresponding sequence {Pi} of 
posterior distributions. Often, even though the limit of {nJ is improper, the limit 
of {P,} is a proper, well-behaved, and analytically simple distribution. The 
Bayesian will often take that limit for mathematical convenience, after it is clear -
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whether by specific calculation in the manner of (24) or through past experience 
with similar problems - that this will make no practical difference in the results. 

Often, the experimental data are so much more informative than the prior 
information that to carry along all the details of any particular proper prior, 
although in principle the correct thing to do, would in practice only increase the 
amount of computation without yielding anything of value for the purposes at 
hand. Usually, It is so clear when we have this situation that there is no need to 
construct specific sequences of the type (23), (24); one proceeds immediately to 
this simpler limit. 

In a similar way, a person using the X2 test knows in advance, from common 
sense and the past experience of statisticians in general, about how much data he 
needs, and how many categories, to give a test that is good enough for his 
purposes. Beyond that, further refinements, although correct in principle, would 
only increase the amount of computation without useful return. In orthodox 
statistics, use of a little practical common sense in applying a method is not 
regarded as an inconsistency. Perhaps, when his methods are more widely 
understood, the Bayesian may hope to be granted an equal dIspensation. 

Now, as noted by several participants in the discussion following the DSZ 
paper and discussed at greater length in Jaynes (1976), it is just the Bayesian 
results based on noninformative improper priors that correspond closely - often 
exactly - with those obtained by orthodox methods, In these cases it is difficult to 
see how one can reject the Bayesian use of an improper prior, without thereby 
rejecting with equal force the orthodox method which yields the same result. 

On the other hand, in some cases the attempted passage to an improper prior 
may fail, by yielding a non-normalizable posterior distribution in the limit. ThIs is 
symptomatic that the expenment is so uninformative that our prior information 
is, necessarily, still highly relevant to any inference that can be made; and in such 
a case we had better take that prior information explicitly into account by using 
the appropriate proper prior. In this case an orthodox method, by its nature 
incapable of taking prior information into accoum, is virtually guaranteed to 
produce absurd or dangerously misleading results (for a specific example, see 
Jaynes (1976); reply to Kempthorne's comments). 

The actual equations both in DSZ and in the present work are not in any way 
changed by our reinterpretation of B2's role; but the analysis is seen in a different 
and perhaps more constructive light. We are not merely exhibiting the folly of a 
defective Bayesian procedure - ignoring information or using improper priors. 
We are comparing two entirely correct Bayesian procedures, making mferences 
about the same quantity', at two different stages of knowledge. The parameter" 
is not merely an "unwanted" complication; It represents new information relevant 
to the desired inference about ,. 

The comparison is, in effect, a microcosm of an often-occurring real life 
phenomenon, the effect of advancmg knowledge on a scientific inference. 

For example, from the known rate (z=2 x 1020 MW) of radiation of energy 
from the sun, estimate its future lifespan (0; how much longer can it continue 
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pouring out energy at that rate? The datum (z) was known 120 years ago about 
as well as it is today, and on the basis of the laws of physics as then known, B2 
(better known as Lord Kelvin (1862» estimated a future life of , = a few million 
years;1 an entirely valid conclusion from the information he had. But today we 
know of a new parameter (1'/ = energy release from nuclear reactions) that has an 
important bearing on the question, and we have new data (y= abundance of 
various elements in the sun, and energy release of a number of nuclear reactions). 
As a result, BI (Gamow (1945) re-estimated the future life of the sun to be vastly 
greater, about 1010 years.2 

Doubtless, an econometncian could give much more Immediate examples; e.g. 
the effect of new knowledge (the role of oil prices) on prediction of economic 
activity from models in which, prior to 1973, oil pnce did not appear as a factor. 

6. The integral equations 

Can we extract something of positive value from all this, leaving Bayesian theory 
with a net gain? As is now clear, there is no reason to be surprised when BI and 
B2 disagree; that was only to be expected. What is perhaps surprising, and calls 
for explanation, is rather that in some cases B1's extra information was unavail­
ing, and they did agree, after all. How is that possible? 

Clearly, in all cases B2 was incorporating no prior information about 1'/. If, 
nevertheless, they agree in one case, it seems natural to conclude that, in that 
case, Bl must not have been incorporating 'any prior information either; at least, 
none that was relevant to r 

The prior 1[(1'/) that leaves them in agreement should, then, have some close 
relation to the one describing "complete ignorance" of 1'/, if such exists. Is it 
possible that marginalization is giving us a new, objective, and above all, 
workable criterion for defining precisely what is meant by "complete ignorance," 
and for telling us whether and when such priors do or do not exist? 

But we must proceed cautiously. It is not clear how marginalization could tell 
us that a prior is "completely uninformative" without qualifications. But margi­
nalization can and does provide an answer to the question whether, within the 
context of a given model, any proposed prior 1[(1'/) is or is not "completely 
uninformative about (." 

Two further cautions are necessary. A prior 1[(1'/) that is held to be unin-

I He concludes: "It seems, therefore, on the whole most probable that the sun has not illuminated 
the earth for 100,000,000 years, and almost certam that it has not done so for 500,000,000 years. As 
for the future, we may say, with equal certainty, that inhabItants of the earth cannot continue to enJoy 
the hght and heat essenual to their life, for many milhon years longer, unless sources now unknown to 
us are prepared in the great storehouse of creation." Those unknown sources were revealed 43 years 
later, when Albert Emstein wrote E=mc l . 

'The concludmg sentence is: "And the year 12,000,000,000 after the Creation of the Umverse, or 
AD 10,000,000,000, will find mfinite space sparsely filled WIth still receding stellar Islands populated by 
dead or dying stars." 
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formative about " ought, one would suppose, to have the property that it is 
uninformative a fortiori about any other quantIty C. Clearly, however, the 
converse need not hold. In any gIven model, a prior n(,,) might express very great 
knowledge about ,,; and still be C-uninformatlve because of the functional form of 
p( yzl"C). On the other hand, If one could prove that a gIven prior It(,,) is C­
uninformative for all models in which" appears as a scale parameter, and unique 
for one, that would seem to be valid grounds for a stronger claim. 

Finally, we note that in another respect the property of a prIor It(,,) to leave Bl 
in agreement wIth B2 involves rather more than what one usually means by the 
term "uninformative". BI's advantage over B2 does not lie only in his prior 
knowledge of,,; he has also the additional data y. If a prior It(,,) is to leave him in 
agreement wIth B2, therefore, it is not enough for xl,,) to have the passive 
property of being C-uninformative (i.e. of not in itself providing any information 
relevant to C). It must perform also the active function of rendering the new data 
y irrelevant to C; that is what we have termed "nullifying". 

The necessary and sufficient condition for a prior It(,,) to be nullifying inde­
pendently of ItK) is that BI's quasilikelihood contains y and C in separate factors 

(25) 

for some functions f, g. The surprising discovery of DSZ was then that, while a 
proper prior that is nullifying is also necessarily uninformative [Proof: integrat­
ing y out of (25), it then reduces to B2'S likelihood p(z/C)], an improper prior may 
be nullifying without being uninformative. In example 1, the prior (23) is 
nullifying if t = 0; but it is not uninformative u,nless k = 0 also. 

Let us seek the necessary and sufficient condition for agreement of BI and B2, 

subject to three assumptions. First is the property (19) without which we should 
have little reason to compare BI and B2 at all. Secondly, it would make little 
sense to ask whether an ,,-prior is uninformative about C if it contained C; so we 
assume that Bl assigns independent priors: 

(26) 

Thirdly, DSZ considered whether Bl could, by any choice of his prior x(C/Il ), 

achieve agreement with BI's posterior distribution. But for present purposes we 
cannot allow B2 that much freedom; for if BI and B2 had different priors for C, 
that would in itself lead to a difference in their conclusions, which really has 
nothing to do with BI's prior knowledge about ", although agreement of the 
posterior distributions might be, fortuitously, restored by a particular 'I-prior. But 
in that case it would be very wrong to label such an ,,-prior as "uninformative 
about r'. To avoid this, we must suppose rather that BI and B2 start from the 
same state of prior knowledge about C as in (21): 

x(C Ill) = x(C 112) = x(C), 

and end up still in agreement as to the posterior distribution. And by "agree­
ment", we do not mean that they agree for one particular sample or one 
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particular prior. In order to justify saying that Bl 's prior for rt was completely (­
uninformative and y-nullifying, they must remain in agreement for all data sets 
x = (y, z), all sample sizes, and all priors n((). 

With these assumptions, Bl 's posterior distribution is 

p«(ly, z, I docn«()p(zl() fdrt n(rtl 1 dp( YlzrtO 1), (27) 

(28) 

Evidently, the necessary and sufficient condition for agreement is that 

fd rt n(rtI1dp(ylzrtOl)=p(ylzOd (29) 

shall be independent of ( for all y,z. Denoting the parameter space and our 
partitioning of it into subs paces by S8 = S, X S., we may write (29) as 

r p(y, zl(, rt)n(rt)drt =A.(y, z)p(zl(), ( in S,. (30) Js. 
This is a Fredholm integral equation in which the kernel is Bl'S likelihood, K«(, 
rt) = p( y, zl(' rt), the "driving force" is B/s 1ikelihood p(zl(), and A.( y, z)= p( ylz1l) 
is an unknown function to be determined from (30). 

For each possible data set x = (y, z) we have an equation of the form (30); so if 
a single prior n(rt) is to suffice for all data sets it must satisfy not just one integral 
equation, but a large - in general infinite - class of Simultaneous integral 
equations. 

Now in other applications we are accustomed to find that a single Fredholm 
equation has already a unique solution. At first glance, therefore, it seems almost 
beyond belief that the system of equations (30) could fail to be grossly over­
determined; from which one would be forced to conclude, with the anti-Bayesian 
skeptics, that uninformative priors do not exist. 

Clearly, the consistency of previous Bayesian thought, which presupposed the 
existence of uninformative priors, is being put here to a severe test. But it is also 
an eminently fair and "objective" test. The question whether, in a given model, 
the notion of an uninformative prior is contradictory, ambiguous, or well defined, 
is removed from the realm of philosophical debate, and reduced to the question 
whether a set of simultaneous integral equations is overdetermined, under­
determined, or well-posed. 

7. An example 

We know at least that the system of equations (30) is not always overdetermined; 
for in several examples DSZ were able to recognize particular priors n(rt) which 
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leave B, and B1 in harmony for all samples. Each of the DSZ examples can tell us 
something about the mathematical structure of (30) and its correspondence with 
previous group invariance arguments. 

Example 1. The sampling distribution is 

p(yzl"C) =,,- c"-c y"-' exp [ -"yQ(z, m 
with Q(z, C) defined by (6). This gives the marginal sampling distribution 

p(zl()=(n-l)! c"-c Q--. 

(31) 

(32) 

s~ is the positive real line, and the family of integral equations (30) becomes: for 
each possible sample (y, z), 

1'''n(,,),,- e-~yQ d,,=(n-l)! y..1.(y, z)[yQ(z, CW-, 

C=I, 2, ... , n-1. (33) 

Now choose any two values C * C and write Q == Q(z, C), Q' == Q(z, n Eq. (33) then 
requires that for all (y, z) 

roo n(")(,,yQt e-~yQ d,,= roo n(")(,,yQ't e-~yQ' d". Jo Jo . (34) 

or 

f' [n(,,)- g, n( "g,) ] ,,- e-~yQ d" =0, O<y<oo. (35) 

Since the Laplace transform is uniquely invertible, this requires that for all 
choices of {z, C, n we must have, setting a==Q/Q', 

n(,,) = ax (a,,), 0<" < 00. (36) 

But this is the same functional equation that was deduced earlier from the 
transformation group that expresses "complete ignorance" of a scale parameter. 
To complete the proof, note that from (6), if C' <C, eq. (36) must hold in the 
continuous range (1 ~a~c), and so the only possibility is, to within a constant 
factor, 

(37) 

This argument shows that no x(,,) other than (37) can satisfy (33). Conversely, on 
substitution we see that (33) is indeed satisfied for all {y, z, (}, with y.l.( y, z)= 1. 
Again, we note several things. 

(a) This argument made no use of the separation property (1). The solution (37) 
implies this as a necessary, if obvious, condition for agreement of B, and B1. 

(b) The problem turned out to be well-posed; there is one unique prior x(,,) that 
is "completely uninformative about C", and it is just the one that Jeffreys 
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anticipated, on partly intuitive grounds, some forty years ago (as the prior 
representing "complete ignorance" of a parameter known to be positive). It 
follows also from the fact that 1/ is a scale parameter, by some transformation 
group methods (for example, Jaynes (1968); one of several quite different ap­
proaches all called "the transformation group method" or "the group invariance 
principle", although they utilize different groups which operate in different spaces, 
are chosen by different criteria, and yield different results. For further comments, 
see Appendix A.) 

(c) But the prior (37) is now derived in a way that is completely independent of 
anybody's intuition or any additional desiderata such as entropy, group in­
variance, or Fisher Information. Given the sampling distribution (31~ the result 
(37) follows by straightforward mathematical steps. [Indeed, on sufficiently fine 
analysis, it will be seen that the only elements of probability theory used in the 
transition from (31) to (37) are the product rule p(ABIc)=p(AIBC)p(BI C), and 
the sum rule p(AIB)+p(-AIB)=IJ. 

(d) This, however, recalls the oft-quoted remark of Lindley (1971): "Why should 
one's knowledge, or ignorance, of a quantity depend on the experiment being 
used to determine itT The answer, in our view, is that the prior distribution 
should, of course, be based on all the prior information available. But the role a 
parameter plays in a sampling distribution is always a part of that information. 
Indeed, that is the irreducible minimum information without which a problem of 
inference cannot be formulated. Often, {n pedagogical examples, it is the only 
pnor information at hand, because (as in all the DSZ examples) the person 
formulating the problem sImply neglects to provide any more. In this case - and 
only in this case - the prior distribution is, necessarily, determined (not neces­
sarily uniquely) by the sampling distribution. But thIS is just the case we are 
solving by (37). 

(e) In a real problem a parameter will be, In general, "a physically meaningful 
quantity about which we know something". But for the mechanics of incorporat­
ing that something into our informative prior there are, to the best of the writer's 
knowledge, only two known principles: Bayes's theorem and maximum entropy; 
and both of these still require an ignorance preprior like (37) as their starting­
point (Jaynes (1968)). Therefore, for any problem of inference we see no way to 
avoid the notion of "complete ignorance", any more than we could avoid the 
concept of zero in arithmetic. Nor should we wish to avoid It; for clearly, to ask 
"What is our state of knowledge after receiVIng information IT cannot have any 
defimte answer until we speCIfy: What was our state of knowledge before receiving 
J? And this holds with equal force whether we choose to classify I as part of the 
data, or part of the prior information (see however, the Appendix for some 
further comments). 

(I) In this example, 1/ was a scale parameter, the sampling distribution (31) 
having the functional form pry, zl(' 1/)=y- 1 g(z, C: Y1/). For any sampling 
distribution of this form [or equally well, y-I g(z, (; Y/1/)] one readily verifies that 
the Jeffreys prior n(1/)-1/-1 satisfies (30), and y..1.(y, z) is then a constant. Whether 
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this solution is unique depends, of course, on how z, ( enter into the function 
g. 

8. The one-dimensional case 

With the insight gained from the DSZ example 1, we are able to give a more 
general discussion of the case where y, " are one dimensional. We started 
cautiously, asking only for a prior n(,,) that is uninformative about ( within the 
context of a given model. We now see that for a scale parameter ", the Jeffreys 
prior is (-uninformative for all models, and unique for one. But this is already 
enough to establish it as the only prior for a scale parameter that is "completely 
uninformative" without qualifications. 

Since the location and scale parameter cases are equivalent by the transfor­
mation Jl = loga, it follows that the uniform prior dJl is similarly general and 
unique for a location parameter (but in this case the result is so intuitive that it 
had never been doubted anyway). 

The analysis may be generalized in the following way (suggested to the writer 
by a remark of W. D. Fisher). Consider any sampling distribution with the 
functional form 

ah 
p( yzl'l()=g[z, (; h( y, ,,)] ay' (38) 

for which the property p(z I '1C) = p(z Ie) underlying marginalization theory follows 
at once. The integral equation (30) for an uninformative prior becomes 

fg(ZC; h) :~ n(,,)d'l =.l.( y, z) fg(ZC; h)dh. (39) 

If this is to hold without further assumptions about the functional form of g(zC; 
h), it is necessary that .l.(y, z)=.l.(y) be independent of z, and that 

Bh ah 
ay n(I])=.l.(y) a,,' 

But then, making the change of variables (y, ,,)->(Y, '!) where 

y=exp f)'(Y)dY; " =exp fn('1)d'l, 

eq. (40) reduces h to a function of (y,,): 

h(y, 1]) = h(YI]) 

(40) 

(41) 

(42) 

and (38) assumes the functional form p(y, zl'!, C)=y-lg(Z, C; Y'1) of remark (f) 
above, where g(z(; ex)=g(z, C; h(ex». Thus, the class of functions h(y, 1]) for which 
n(,,) and .l.(y) can be constructed as in (40) takes us back, to within the change of 
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variables (41), to the scale parameter case. 
For example, if 

h(y, ,,) = tanh J(y" +,," - a), 0 <" < 00, 

we have at once from (40) that the uninformative prior is 

1[(11)=" .. -1. 

Likewise, if 

the uninformative prior is 

1[(") = csc(21XI1). 

and if 

h(y, ,,)=IOg[<"y- ~~"+ y)] 

the uninformative prior is 

1[(,,)=1 +,,-2. 

Now, although the result (40) is rather special in the class of all problems with 
one-dimensional (y, 11), it is easily seen to exhaust the possibilities of the DSZ 
group analysis for that class. They took the sampling distribution as (DSZ, eq. 
(2.6» p(dydzl"C) =/(yzl "C)JLo(dy)dz, where JLG is "a fixed general measure ele­
ment" and defined the group structure by (DSZ, eq. (2.7»: 

(43) 

where g, 9 are corresponding elements of the groups G, G mentioned in section 2 
above. Evidently, if (y, ,,) are one dimensional, eq. (43) says only that we have the 
functional form (compare (38»: 

(44) 

the "combined action of the groups" signifiying a kind of hydrodynamic flow in 
the (y, ,,) plane, whose streamlines are the contours h(y, ,,) = const. But just as our 
eq. (40) cannot be satisfied for all functional forms of h(y, II), so the group 
structure (43) restricts the form of h(y, 11) in (44). 

The form of that restriction can be anticipated at once by the following 
argument. A continuous exact group of mappings of the real line onto itself is 
necessarily a one-parameter group (for in y' =gy with fixed y, each group element 
g is represented by one and only one value of y'; thus y' parameterizes the group). 
But a one-parameter continuous group is isomorphic with the group of simple 
translations (x'=x+a). We infer that the group structure (43) must restrict us to 
problems that are equivalent, to within a change of variables, to the location/ 
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scale parameter case. Indeed, on following through the analysis (Hamermesh 
(1962» we find that the condition imposed on (44) by the group structure is just 
our eq. (40), i.e. the functions denoted h( y, '1) in (38) and (44) are identical. 

The condition found here is the same as that given by Lindley (1958) for 
agreement of a Bayesian posterior with a fiducial distribution; such relations were 
noted also by Fraser (1961) and Villegas (1971). 

Now we arrive at the really interesting question: What happens in the one­
dimensional case if we try to go beyond the class of problems just discussed? Do 
we continue to find uninformative priors from (30) beyond those obtainable by 
group analysis; or do we come up against that threatening overdetermination? 
This opens up a wide class of new mathematical problems, interesting in their 
own right and of obvious importance for the future of Bayesian statistical theory. 
At the time of writing (January 1978) progress on them is far from complete, 
consisting mostly of isolated results. 

The following example, due to C. L. Mallows, shows that further solutions do 
exist beyond those resulting from the group structure (43), and that the apparent 
overdetermination is not always real. 

Let y, z be non-negative integers, and 

O~(, '1<00 

O~y~z 

Then the marginal sampling distributions are Poisson: 

(Z 
p(zl('1) = p(zl() = e -I; -

z! 

independent of '1, as required by marginalization theory and 

(YI Y )= -I;~ ('1,y 
P \" '1 e , ' y. 

(45) 

(46) 

(47) 

depending on both parameters; thus seemingly leading to a nontrivial marginali­
zation problem. This example lacks the group structure (43), since y is discrete, '1 
continuous. But we now find the peculiarity that 

p(Ylz, (, '1) (48) 

is independent of (, and as a consequence the integral equations (30) are satisfied 
trivially; all priors n('1) are nullifying and uninformative about (. 

That the opposite behavior can also occur, is shown by example 5 of DSZ. The 
concluding message of their section 1 was that all is well as long as B1 uses 
proper priors. Later, they consider the model 

(49) 
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and note that, if y=O, the posterior distributions of B1 and B2 are 

(50) 

(51) 

But if z>O, the ratio of the integrals is (by a Schwarz inequality) a monotonic 
increasing function of C; and so B1 and B2 cannot agree unless they assign a 
singular prior n(C) = b(C - Co), in which case their posterior distribution is inde­
pendent of the data. 

DSZ (Appendix 2) term this situation, "The Inevitable Paradox of Example 5". 
It is, perhaps, even more inevitable and more paradoxical than they intended; for 
it is clear from (49) that this situation arises for all priors n ('1), proper or 
improper! What, then, are we to make of their proof in Section 1, that this 
discrepancy "could not have arisen if B1 had employed proper prior 
distributions"? 

Passing over this query, the DSZ example 5 is particularly instructive, just 
because at first glance the trouble appears so acute. The only nullifying prior is 
the uniform one n('1) = const.; and it leads us back to (50) for all y. Surely, we have 
now run up against that overdetermination; it is simply a mathematical fact that 
there is no prior n('1) that can leave B1 and B2 in agreement for all data sets (y, z) 
and all priors n(C). 

Yet we would argue that there is still no real paradox here. This situation 
should not be disconcerting to anyone who has noted, in other Bayesian 
problems, that the effective sample number n often drops by one unit when we 
integrate out an unwanted parameter; or who, in using the X2 test, has reduced 
the number of degrees of freedom by one unit to take account of a parameter 
estimated from the data. 

In fact, the explanation was noted in our section 3 above; the mere qualitative 
fact of the existence of the components ('1, y), i.e. the knowledge that other 
parameters are present in our model beyond those of interest, already constitutes 
prior information relevant to B1 's inferences, that B2 is ignoring. For further 
discussion, see section 11 below. 

These examples demonstrate that two opposite extremes of behavior are 
possible; presumably, many or all of the conceivable intermediate cases are also 
possible. It is evident that a great deal more insight into the content of the 
integral equations (30) will be needed before any overall understanding of 
marginalization and its implicatIOns for Bayesian theory can be reached. In the 
writer's judgment, the remaining space available here is best used, not in 
communicating a mass of further isolated results like the above (which the reader 
can easily invent for himself), but by giving a preliminary survey of a more 
general attack on the structure of those integral equations, not restricted to the 
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one-dimensional case. But before turning to that, we note sOine further pertinent 
clues from the DSZ examples with higher dimensionality. 

9. Higher dimensionality 

It appears from the foregoing that the case of a single location or scale parameter 
- or one that can be reduced to this by a change of variables - is disposed of once 
and for all; the only remaining function of the integral equations (30) is to 
determine whether, in a given model, the result is unique. Mathematically, this is 
the question whether the kernel of the integral equation is complete. 

If the parameter t/ is two-valued, comprising both a location and scale 
parameter, i.e. if t/ =(J.L, u) and the corresponding data y can be separated into two 
components y=(u, s) such that the sampling distribution has the form 

( u-p s) p(zus!(pU)=S-2 g z, ,; -u-; ~ , 

then we can verify that the element of prior probability 

dpdu 
n(p, u)dJ.Ldu =--

u 

(52) 

(53) 

will satisfy (30) with SA.(s, u, z) a constant. Clearly, then, whether or not (53) 
is uniquely determined by (30), no disagreement between B1 and B2 can arise 
from its use. Yet DSZ produce apparent counterexamples, in which a prior of the 
form (53) does lead to disagreement! The DSZ paradoxes must, then, have been 
in part illusory. In the following examples we will set' just how this has come 
about. 

Example 2. Here we appear to be in the aforementioned difficulty, for DSZ note 
that the "paradox" (i.e. disagreement between B1 and B2) does not disappear for 
the "widely recommended prior"dJ.L,dp2du/u; but it does for dp,dJ.L2du/u2 for 
which "no recommendations appear to exist". Of course, in a problem with two 
parameters the prior dJ.Ldu/u is indeed widely - and as we have just seen, 
justifiably - recommended; but that is a very different problem. In the Appendix 
we discuss the present problem from the standpoint of the transformation group 
method recommended by the writer (Jaynes (1968» and show that either result 
may be obtained depending on further details of the "real-life" situation which are 
not conveyed by the mere words "location parameter" or "scale parameter". 

Our sampling distribution is, in the notation of eqs. (9H18), 

(54) 
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Note particularly that from (14), II =t(1I1 + 112). Since (54) has the form (52), the 
prior dllduju must be a solution of (30). To see this directly, and to see whether 
the result is unique, we can write (30), using (12), in the form 

f' w' e-R[f(u, U)_·SA,(U, s, z)]dw=O, 
O<s<oo, 
- 00 <u, z, C < 00, 

(55) 

where A,(usz)=p(uslzl l ), f(u, u) is given by (16), and in the integration over 
w=sju, s is held constant. 

But (55) is an integral equation with complete kernel, since e- R is the 
generating function for a complete set of (Hermite) functions; 

(56) 

Substituting this into (55), it is apparent that each term of the summand must 
vanish separately. A function orthogonal to a complete set must vanish almost 
everywhere, and so the necessary and sufficient condition (NASC) for an unin­
formative prior reduces to 

f(u, u) = SA,(u, S, z), 
O<s, U<OO, 

-oo<u, z<oo, 
(57) 

from which we infer that f(u, u) is independent of u, and the undetermined 
function 

g(u) = SA,(u, s, z) 

is independent of s, z. Using (16), the NASC is then 

1 fa> [ (II-U)2] Tn _a> dll exp - -u- n(lt, u)=g(u), 
O<u<oo, 
-oo<u<oo. 

(58) 

(59) 

Evidently, for any n(lt, u) that could be taken seriously as a prior, the integral 
(59) converges so well that g(u) must be an entire function. But then appealing 
again to completeness and generating function relations of the form (56), the most 
general function satisfying (59) is 

n(,J, u)= f: a, U,-1 H, (~), 
.=0 u 

(60) 

where (x. are arbitrary constants, and H. are the Hermite polynomials. We then 
find g(u)=l:a.(2u)'. Conversely, on substituting (60) back into (15), we find that 
Bl 's posterior distribution reduces to B2 's, all the arbitrary constants a. cancell­
ing out upon normalization. 
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Of course, not all functions of the form (60) satisfy the further requirement 1[(14 
a)~O; but (60) includes many non-negative priors. For example, if w(q) is any 
non-negative function with moments of all orders, the choice 

1 fa) 
a. =p;f _ co w(q)q· dq (61) 

leads to a non-negative prior 

(62) 

for which BI and B2 will be in agreement. As a special case, if w(q) goes into a 
delta function o(q - t) we get a. = t· In! which in tum yields the anticipated Jeffreys 
prior dlldala in the special case t=O. 

Also in this example, then, our early fears for the poverty of overdetermination 
disappear in an embarrassment of riches; from a mathematical standpoint the 
problem is grossly underdetermined. Nevertheless, out of the many different 
solutions of (59) the Jeffreys prior 1[(p, a)-a- I still appears to hold a favored 
position. Out of the class of solutions (62) it is the only one that does not become 
exponentially large as \Il\-+ 00. We conjecture that some further restriction on the 
allowable behavior at infinity (for example that 1[(Il, a) shall be at most O(\Il\N) 
for some N < 00) may lead, after all, to the Jeffreys prior as the unique solu­
tion. 

Example 3. We have n independent observations of a bivariate (XI' X2) with 
model structure 

(63) 

where el , e2 are independent and N(O, 1). We require inference about the 
correlation coefficient, =yai/(y2ai +a~)112. The prior that avoids the paradox 
should then express complete ignorance about those components of the para­
meter space that can be varied with , held constant. DSZ note that the 
"recommended" prior 

(64) 

yields a posterior distribution identical with Fraser's structural distribution; but 
that the marginalization paradox is still present. 

However, from the'standpoint of the writer's transformation group method, the 
difficulty with (64) is obvious. For the model equation (63) is written in such a 
way that the parameter y is not decoupled (i.e. it gets entangled in the change of 
scale transformations which express the fact that al> a2 are scale parameters); and 
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so of course it cannot be assigned an independent prior. If we rewrite (63) as 

(65) 

then r=YGt!G2 is decoupled, an arbitrary change of scale G;=aIGJ, G2=a2G2 
inducing no change in r. But since the parameter of interest ( is a function of T (if 
r =tan(.(, then (=sina), the prior assigned to r should not have anything to do 
with the paradox. Re-examining the equations of DSZ we find, as expected, that 
use of the prior 

(66) 

avoids the paradox, where f(r) is an arbitrary function. 
The same result can be reasoned out without introducing T. For in the model 

equation (63), y appears not as a location parameter, but as a scale parameter 
(note that the product or ratio of two scale parameters is still a scale parameter). 
Complete ignorance of all three parameters should then be represented by a 
product of three Jeffreys priors. But again the prior assigned to the quantity of 
interest ( should not matter; so we should be able to insert an arbitrary function 
g«() without disrupting the agreement of BI and B2 • Indeed, one can verify that 
the prior 

g«() dydGI dG2 
y GI G2 

(67) 

leads to agreement, and is equivalent to (66). The prior which DSZ noted as 
"avoiding the paradox" is a special case of (67), corresponding to 
g«()=(/(1_(2)1/2. 

The joint likelihood function, which forms the kernel of the integral equations, 
can be read off from eq. (1.8) of DSZ. However, to avoid cumbersome expressions 
we introduce the notation 

(68) 

(69) 

(70) 

where SII' S22 are the sample moments as defined by DSZ. The joint likelihood is 
then 

(71) 
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where 

cosh(P-b)-z' 
T(z, b; C, P)= J(1-e) (72) 

and z = S 12/ J(S 11 S 22) is the sample correlation coefficient, whose sampling 
distribution depends only on ( (DSZ, eq. (1.10». The "unwanted" components of 
the parameter and sample spaces may then be taken as '1 =(al, (2); y=(SII' S22); 
and the NASC that a prIOr 1t(al, (2) shall be completely unmformative about ( is 

-1<z,«l (73) 
O<SI1' S22<oo ' 
n=2, 3, ... 

where ..1.(z, SlI' S22) is an undetermined function, and {SlI' S22' C} are held 
constant in the integrations over ro, p. 

Evidently, if the kernels ron- 2 exp( -roT) are complete on the domain of 
integration we shall be led to the Jeffreys prior (dal/al)(da2/a2) as the unique 
solution. We conjecture that this is the case; however, we have not succeeded in 
finding a fully rigorous proof of this, or a counterexample. Therefore, in view of 
the writer's astonishment at discovering the nonuniqueness of (59) after long 
believing it unique but being unable to prove it, we leave this an open question 
which others may perhaps answer. 

Example 4&. At this point in the DSZ narrative, the sense of paradox increases 
sharply; for they produce two versions of a problem that appear not only 
paradoxical, but unavoidably inconsistent with each other. We obtain the sample 
{Xli' XI2"'" Xln} from N(1l1> a) and {X21> X22' ... , x2n} from N(1l2' a). In version 
(1) BI is interested in inference about (={eJ(1 =1l1la, (2 =1l2/(1}. The "unwanted" 
component is '1=(1, and the corresponding data separation is in part {z.=(ns)-I 
I.jX.j, i = 1, 2]; y was not specified. Using the class of priors 

(74) 

DSZ show that BI and B2 cannot agree unless p= - 3. 
But then in version (2) B2 "asserts his interest in el alone". Now e2 becomes 

part of the "unwanted" parameters: '1 = {a, P,2/(1}, and the paradox is resurrected; 
BI and B2 cannot agree unless p = - 2. Not only do the two priors contradict the 
Jeffreys rule; they contradict each other! 

In view of our earlier demonstrations, something must be very amiss; yet we 
can find no error in the DSZ calculations. So the resolution must be - and is -
very much simpler. We have here a case of paradox by optical illusion. 

BI and B2 are free to partition the parameter space S,=S, x S~ in any way they 
please; but having chosen any such partition, the mathematical problem is: what 
prior 1t('1) in the space S.,. i.e. with C held constant, is uninformative about C? The 
trouble was simply that, after choosing a partition, DSZ continued to write their 
prior (74) in terms of the old variables (Ill' 1l2' (1), thereby failing to make the 
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condition (( =const.) visible. Had DSZ transformed their priors to the new 
variables n(On(,O they would have found, in all these examples, that the "para­
dox" disappears just for the priors n(,,) recommended by Jeffreys. Far from 
suggesting any Inconsistency in Bayesian principles, marginalization thus de­
monstrates again the power and basic soundness of the notions introduced into 
this field by Jeffreys some forty years ago. 

10. Singular solutions: knowledge is ignorance 

In the DSZ example 3, the correlation coefficient was considered the quantity of 
interest, p=(, and we found that the prior n(,,)d,,=dadal)(da2/atl was com­
pletely uninformative about (. Can we reverse our viewpoint and find an 
uninformative prior n(p)dp for the correlation coefficient? Most people, facing the 
problem of expressing ignorance of p, have chosen the form ~(p)-(l- p2)-k more 
or less instinctively; but complete agreement on the value of k still eludes us. 

We would like to make the choice: {(=(al> a2), ,,=p}, and our method then 
requires that we find a separation of data x=(y, z) for which p(zlC,,)=p(zlC). 

Perhaps this is possible, but our first guess: {Z=(SII' S22): y=r=S12/(SI1Snll/2} 
does not work. The joint sampling distribution of (SI1, S22) still depends on p, 
containing as a factor the modified Bessel function 

However, the sampling distribution of SI1 depends only on al; so let us 
marginalize using the chOice: {(=a\, ,,=(a2, p), Z=SII> y=(SZ2, r)}. In view of 
what we found above, we shall perhaps be willing to take from the start 
n(,,)=n(a2, p)=ai l n(p). From eq. (1.8) of DSZ, we are led to the integral 
equation 

( Sl1) =A. exp - 2ai ' (75) 

where A. must be independent of al' For the class of samples: {S22 =2, S12 =O}, 
(75) collapses to 

(76) 
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But this cannot be independent of (1 I unless 1t(p) is singular: 

1t(p) = o(p), (77) 

i.e. the prior information must be that p =0 with certainty! Conversely, the prior 
(77) satisfies (75) for all samples. 

On further reflection, we see that this result does, after all, make sense. B2 is (in 
our reinterpretation) given data {XI'" x.} whose sampling distribution depends 
only on (1 h and uses it to make the standard Bayesian inference about (1 I' In 
addition, BI.has the other data components {Yt ... y.}. But if BI also knows that 
p = 0, then these additional data cannot help him to estimate (1 I; uncorrelated 
normal distributions are independent. BI and B2 will then agree, not because BI 
is totally ignorant of p, but for the opposite reason, i.e. that his perfect 
knowledge of p makes his extra data irrelevant. 

To recognize this puts a new dimension into the marginalization game. A prior 
1t(,,) that is uninformative about' does not necessarily express ignorance about ,,; 
it depends on the structure of the model. If BI did not know p, his extra data {YI 
... Y.} would always be relevant and he would always revise B2's conclusions 
about (11; there is no ignorance prior n(p)-(1-p2)-. that can avoid this. But if 
BI had far greater knowledge, he might throwaway the new data and accept B2's 
conclusions after all! 

This is not paradoxical, but is a natural and _necessary part of consistent 
plausible reasoning. We can see this phenomenon in generality already in eq. (2). 
If for some particular value" ="0 we should have 

a 
"p('I"o, y, z, Id=O, uy . 

(78) 

then the singular prior 1t("ll l )=o("-,,o) will bring about agreement between BI 
and B2 by making the data y irrelevant. Whenever the property (78) exists, the 
integral equation will have singular solutions representing ignorance of , due to 
perfect knowledge of ". 

Now, at long last, we have enough clues in hand to commence a general attack 
on the integral equations. 

11. Structure of the integral equations 

For any fixed data set x=(Y, z), (30) is an integral equation which we write, for 
suggestiveness, in the form 

(79) 

Already at this stage it is possible to have "'-overdetermination". The set of all 
functions on S, forms a Hilbert space tie,. As " ranges over S. the functions K«(, 
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,,) span a certain subspace 3e, of 3e,. If f(') does not lie in 3e" there can be no 
solution of (79). In these cases the mere qualitative fact of the existence of the 
components (", y) - irrespective of their numerical values - already constitutes 
prior information relevant to B 1 's inferences (because introducing them restricts 
the space 01 B1's possible posterior distributions to 11: (')Hl). We saw an example 
in (49). In this case, the shrinkage of :)( , cannot be restored by any prior on S~ 
and the integral equations (79) ask an ill-advised question. In what follows we 
consider only the case where the problem is free from ,-overdetermination. 

If we think of 11:(,,) as a vector in a Hilbert space Jf of functions on S~, then for 
each C, eq. (79) specifies the inner product of n(,,) with the function K(C, ,,). If as C 
varies over S, these functions span the full space of Jf then the kernel K(C, ,,) may 
be said to be "complete", and the function n(,,) is defined "uniquely"; i.e. almost 
everywhere. 

On the other hand, if the functions {K(C, "H E S.} are not complete on S." they 
span some subspace 3e 0 c:3e, and (79) determines only the projection 11:0(,,) of n(,,) 
onto 3e 0, i.e. n(,,) = 11:0(,,) +11: 1(,,), where nd,,) is orthogonal to 11:0(") but is 
otherwise undetermined. Since the coefficient A is at this stage arbitrary, 11:0(") is 
determined to wIthin a multiplicative constant. 

But all this has referred to only one particular data set x. For every different 
data set we can have a different kernel 

K,,(C, ,,) = p(yzl",C), 

a different "driving force" 

fAO=p(zIC)= f dy p(yzl"O, 

and a different coefficient Je x . The equations 

(80) 

(81) 

(82) 

will, for two different data sets x, x', determine the projections 11:,,(,,), 11:",(,,) of n(,,) 
onto two different subspaces 3e", 3ex ' of tJe. If tJf x' tJfx' are disjoint, the two 
integral equations (82) determine no relation between these solutions, i.e. the 
arbitrary constants C x in [n,,(,,), A,,] and Cx' in [nx '(")' A",] may be specified 
independently. But if 3ex and ;;ex' are not disjoint (i.e. they have a common linear 
manifold ..511), then there are several possibilities. 

Case I. If 5\( has dimenSIOnality greater than one, the two integral equations for 
x and x' may determine different (i.e. linearly independent) projections of 11:(,,) 
onto 5)(. If these are both nonzero, then formally we can still escape overdeter­
mination by setting A" = A", = 0; and then hoping that some other data point x" 

will allow Ax" cF O. If one of the projections (say of n",) vanishes, then we need set 
only Ax=O. But in either case there will be an embarrassing situation; since A." has 
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the meaning: A(y, z)=P(Ylz/l)' we are escaping overdetermination only by 
assigning a prior 1t(11) which says that the trouble-making data set x =(Y, z) is 
impossible! 

One would be very reluctant to accept such a prior as "uninformative"; indeed, 
it would seem to be a rather obvious minimum requirement of any prior 
deserving of that name that it should not exclude in advance any data set 
permitted by the sampling distribution p(y, zll1'). A fully acceptable solution 
ought to lead to A> 0 over the entire sample space. Case I thus represents a kind 
of moral - even if not formal mathematical - overdetermination. If it should 
occur for many pairs of data points, we could have also mathematical overdeter­
mination, the only solution of (82) being Ax=O, 1t('1) =0. 

Case II. The two integral equations for x, x agree that 1t(t7) is orthogonal to ,5)( . 

Then the situation is basically as if the subspaces gj{x, gj{x' were disjoint, i.e. no 
connection is established, and Ax, Ax, may still be specIfied independelltly. As far 
as x, x· are concerned, the "unused" manifold :Jl( could be removed from the 
Hilbert space with no essential change in the problem (of course, if some other 
data point x" should determine a nonzero projection ontoj)(, we are back to case 
I). 

Case III. The two integral equations agree in assigning nonzero projections of 
1t(t7) onto :M that are the same within a multiplicative constant. Then the 
existence of a single function 1[(11) demands that these multiplicative constants be 
equal. A connection is thus established so that, given Ax, Ax' is determined. This 
can happen whatever the dimensionality of 3Yl. If we can find a third data set x" 
for which Ax, and Ax" have a common manifold, then Ax" is in turn determined by 
A". 

In this way, by a sequence of points {x--+x'--+x"--+ ... } with overlapping 
manifolds the constants Ax, originally arbitrary and independent at each point of 
the sample space, become tied together by the requirement of a single solution 
1t(t7), into a function A(X) defined at many points. The existence or nonexistence of 
unique and "morally acceptable" noninformative priors then depends on whether 
by this process a single functIOn A(X) > 0 can be set up over the entire sample 
space. 

Let us call any sequence {XI' X2, X3, ... } such that 3(x, and gj{X", overlap, a 
continuation path P. Then for any two points x, x' that can be connected by a 
continuation path, the ratio (A(X')/ A(X» is determined by the integral equations 
(82). The process is somewhat analogous to analytic continuation (but very 
different topologically, i.e. a sequence gj{x, 3Cx" ... of overlapping manifolds does 
not in general correspond to a continuous path in the sample space). 
Case III is thus in turn comprised of three possibihtles. 

Case IlIa, "NonintegrabiJity". Two points x, x· can be connected by two 
different continuation paths PI' P2; but they yield different ratIOs [A(X')/A(X)] , #c 
[A(x')/A(x)]2' Then there is no single-valued nonvanishing function A(X) and, as in 
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case I, the problem is morally - and, depending on how much of the sample space is 
infected with this disease, perhaps also mathematically - overdetermined. The 
avoidance of this case is analogous to a condition of integrability (but again, very 
different topologically!). 

Case IIIb, "Intransitivity". The sample space S" can be decomposed into two 
subspaces S~l), S~2) in such a way that there is no continuation path from any 
point in S~l) to any point in S~2). Then no connection is established between 
l(l)(x) and l(2)(x), i.e. they can be assigned independent arbitrary multiplicative 
constants. The problem is then underdetermined, and more than one "nonin­
formative prior" exists. If there are K disconnected subspaces {S~l) ... S~K)}, then 
the prior n(,,) determined by (30) will contain K arbitrary constants. 

Case Ilk, "Integrable transitivity". Any two points x, x' in the sample space can 
be connected by a continuation path, and if more than one such path exists, all 
paths assign the same ratio [l(x')jl(x)]. Then a single-valued function l(x»O 
exists over the entire sample space, and eqs. (82) define one unique nonin­
formative prior n(,,), to within a normalization constant. 

Previous Bayesian thought (including the writer's) which simply took for 
granted the existence of unique non informative priors, has thus in effect assumed 
that we always have case I11e. But looked at in this new way, it seems astonishing 
that such a thing could be true. If for any two points x, x' in our sample space we 
should have case I or case IlIa, then it is all over with our search for a "morally 
acceptable" non informative prior. Yet we have the counterexamples of DSZ 
where such solutions do exist. What, in the structure of the problem, prevents 
these cases from occurring? 

For enlightenment let us turn back, still another time, to our faithful DSZ 
Example 1, which has never yet failed to give us an interesting and useful answer 
to any question we have put to it. 

12. Example 1 - a fourth look 

We have seen already, in eq. (37), that the integral equations determine the 
Jeffreys prior n(,,) =" -1 uniquely; now we want to examine in minute detail the 
mechanism by which this is accomplished. Introducing the Laplace transform of 
,," 1t(,,): 

F(a); L"" ,," n(")e-""d,,, 

the set of IOtegral equations (33) becomes 

(/1 -I)! yl(y, z) 
F[yQ(z, OJ = [yQ(z, m" ' (=1,2, ... , (n-1). 

(83) 

(84) 
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For a fixed data set x =(y, z) this determines the value of F(a) to within a 
multiplicative factor, at (n -1) discrete points a, = yQ(z, C). The set of points {aJ (y, 
z) ... a._I (y, z)] will be called the spectrum of x. We can suppose without loss of 
generality that c>1. From (6), the a j are nonincreasing: al~a2~ ... ~a.-l' and 
all lie within a factor c of each other, i.e. 

1 ~ada"_1 ~c. (85) 

The subspace 3e x is the one spanned by the set of functions 

i=l, 2, ...• (n-l) (86) 

linearly independent if the aj are all distinct. 
Clearly. for n> 3 we can in general find another data set x' = (y', z') such that 

al(Y' z)=a2(y', z'). 

a2(Y, z)=a3(y" z'). 

(87a) 

(87b) 

and the subspaces fJ{ '" 3f. ,,' then have a two-dimensional linear manifold IDl in 
common, consisting of all functions of the form 

(88) 

with arbitrary coefficients CI> Cz. 
Therefore unless both data sets x, x' determine the same projection of n(,,) onto 

this manifold: 

F(aJl F(a2) 
F(a2) = F(a;)' 

(89) 

we shall have case I, and the problem will be morally overdetermined. Now from 
the data set x we have 

F(al) _[Q(Z, (I)J" 
F(a2) - Q(z. ( 2) , 

and from x' = (y' z') 

F(aD = [Q(Z'. (2)J· 
F(a;) Q(z', (;) . 

But (87) is, more explicitly. 

yQ(z, (1)= y'Q(z', CD, 

yQ(z, (2)= y'Q(z', C;). 

(90) 

(91) 

(92a) 

(92b) 

from which we see that (90) and (91) are indeed equal. We have escaped 
overdetermination only because of the connection (87) required to produce a 
common linear manifold. 
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Likewise, we could have a three-dimensional common manifold by adding to 
(87) the condition 

(93) 

which is generally possible if n > 4. But again the three conditions (87a), (87b) and 
(93) are just sufficient to bring about equality of the three ratios F(a.)/F(a); and 
so on. We continue to have case Ille. 

We see now how different this problem is from the usual theory of integral 
equations with complete kernel. It is just the very great incompleteness of our 
kernel K«(, rj) that, so to speak, creates room for agreement so that all the 
integral equations (82) can be satisfied simultaneously. Because of this incom­
pleteness the subspaces 3f x are so small, and scattered about so widely in the full 
Hilbert space :;e like stars in the sky, that it requires a very special relation 
between x, x' to bring about any overlapping manifold at all. 

But it still seems magical that the relation required to produce overlapping 
should also be just the one that brings about agreement in the projections. So we 
still have not found the real key to understanding how case I is avoided. 

Since there is a unique solution (37), a single-valued function A.x > 0 must have 
been determined over the sample space Sx' Evidently, then, our integral equations 
must be transitive on Sx, i.e. there must exist a continuation path connecting any 
two points x, x'. What are these paths? Are there more than one for given x, x'? If 
so, how was nonintegrability (case IlIa) avoided? 

We suppose the spectra {ai, a2' ... , a._ d, {a;, ai, ... , a~_ d of x, x' to have no 
point in common (otherwise !J( x' !J{ x' have already a common manifold j){ and 
there is no need for a continuation path}. If any point a. is within a factor c of 
some point a~ we define a new data pomt x" =(y", z") by 

11 ca~-al. 
y ~' (94) 

and Z3 =z~ = ... =z~ =0. Then the first two points of the spectrum of x" are, from (6), 

(95) 

and x-->x" -+x' is a continuation path. If the spectra of x, x' are more widely 
separated (i.e. if ck - I < a. _ da~ < ck ), then (because of the restrictIOn (85) on the 
spectrum of anyone point x") it will require a continuation path with at least k 
intermediate points to connect them; but thiS can always be done by repetition of 
the above process. The reason for the transitivity is thus clear. 

Now, how does this determine the function .l.(y, z)? Wnting the family of 
integral equations (33) as 

G(a)= f~d1/ n(1/)(1/yQ)"e- nyQ =(n-l)! y.l.(y, z) (96) 

for any given data pomt x, the necessary and sufficient condition that n(rj) be 
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uninformative about ( was that the integral in (96) take on equal values at (n-l) 
discrete values of (, or G(a l ) = G(a2 ) = ... = G(a._ I ). Introducing new data points 
x', x", ... connected by contmuation paths, this equality is extended to further 
values a', a", .... Now G(a) IS a continuous function. As we continue to all points 
of the sample space Sx, if the set of spectral points a' where G(a') = G(a 1) becomes 
everywhere dense on 0 < a' < 00, then G(a) =const. is the only possibility. Eq. (96) 
then reads 

L;() dll1t(II)II"e-~a=(const.) x a-·, O<a<oo (97) 

and, on inverting the Laplace transform, we have again the unique solution (41). 
On setting X(II) = 11-1, (97) reduces to 

A(Y, z) = Y- I > O. (98) 

Our questIOns have now been answered. Uniqueness of the solution requires that 
the set of spectral points a' be everywhere dense on the positive real line, and 
nonintegrability was avoided because the extension of Ax along any continuation 
path connecting two points took the eminently satisfactory form that a function 
of (x, () was a constant. So, by study of example 1 we see how all the conditions 
can be met, leading to the case HIe most pleasing to a Bayesian. 

The structure thus revealed will, of course, generalize readily to other problems. 
But our story has already grown too long, and the next Chapter must be told 
elsewhere. 

13. Conclusion 

While the full implIcations of marginalization for Bayesian statistical theory are 
still far from explored, the analysis given here represents at least the necessary 
begInnIngs. However, in research of this type, more than half the game usually 
lies in the slow process of recognizing the existence of an Important solvable 
problem, and learning how to reduce vague conceptual questions to definite, 
clearly formulated mathematical ones. After that, further progress to the limit of 
our mathematical capabilities generally comes rapIdly. 

VIewed in thIS way, one is encouraged to think that the slow mitial stages are 
now over, and we may hope in the near future to see major advances in the 
determmation of prior probabilities by logical analysis. 

The integral equations mtroduced here mayor may not prove to be more 
widely useful, In practice, than previous desiderata for uninformative priors. At 
present, they seem to have at least the advantage of being general and noncon­
troversial, i.e. they express only the universally accepted principles of probability 
theory, making no use of intuitive ideas (symmetry, entropy, indifference, group 
mvanance, "letting the data speak for themselves", etc.) whIch appeal differently 
to different people. Of course, with full understanding, those integral equations 
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may in time be seen as stepping-stones to a still more appropriate and useful 
method, as yet unimagined. 

The most encouraging sIgn of allIs simply that, at last, the first prerequisite for 
progress in Bayesian theory is now an accomplished fact. The blind alleys have 
been tracked to their ends, and after decades of neglect and worse ~ even from 
some who professed to be Bayesians ~ the program started by Jeffreys IS 
recogmzed as the true road to progress. Mathematical problems that mIght have 
been solved by Wald or FIsher m 1940 are, at last, bemg taken senously and 
actually worked on. 

At present, the crucial problem before us IS: What is the necessary and sufficient 
condition on the functional form of p(y, zl", () for the integral equatIOns (30) to 
possess nontrivial and "morally acceptable" solutions? Our analysis in section 11 
above does not yet answer this; only the future will tell how close it has come to 
that goal. 

Appendix A: comments on group analysis 

The explicit mathematical use of group invariance as a criterion for assigning 
probability distributions goes back to Poincare (1912), although of course the 
intuitive recognition of symmetry in gambling devices was present from the very 
beginnings (Cardano and Pascal). It appears to the writer that, in the final 
analysis, all applications of probability theory are based necessarily on such 
considerations, however much those motivations have been disavowed. 

Smce the term "group analysis" has several different meanings, we try here to 
indicate how they are related to each other and to the general problem of 
inference. 

In the group structure (43) considered by DSZ the sampling distribution is 

invariant under two groups G, G operating simultaneously on the sample space 
lmd the parameter space. The status of that approach can be seen as follows. (a) 
Whatever group structure of this kind a problem may possess, is determined by 
the functional form of the sampling distribution. (b) Hence, whatever results may 
be deduced from that group structure, must also be deducible directly from the 
functional form. (c) Since group analysis cannot be more general than a "func­
tional form" analysis ~ and is easily seen to be less general ~ the question of 
method reduces to whether, in a problem where it is applicable, group analysis 
leads to a more efficient calculation, or a better intuitive understanding, of the 
result. It seems clear that group analysis does accomplish both ~ often brilliantly. 
Therefore, by all means, let us take advantage of the DSZ group analysis 
whenever we can. (d) Nevertheless, whether or not any group structure exists, the 
necessary and sufficient condition for agreement between Bl and B2 is always the 
set of integral equations (30). For a general understanding of marginalization, 
then, it appears that we should appeal to the integral equations rather than the 
group structure. 
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Now an entirely ditTerent kind of group analysis (Jaynes (1968; 1971; 1976» has 
also been proposed and illustrated in several applications. Since I believe it to be 
closer to the spirit of what one means intuitively by "ignorance", and also more 
widely applIcable mathematically, let us look at it in the context of the DSZ 
example 2 (eqs. (54H62) above). 

What prior probability element n(JlIJllO")dJl1dJlldO" expresses "complete 
ignorance" of two location parameters associated with a common scale param­
eter? We have a sampling distribution of the form 

( X - III Y - 1l2)dX dy 
p(dxdyiJlIJlzO")=h --; -- --

0" 0" 0" 0" 

and we consider 

(A.l) 

Problem 1. Given the data D= {(Xl' y.): (Xl' Y2), ... , (X., y.)}, estimate (JlI' 1l2' 0"). 

Complete initial ignorance means, intuitively, that having no other basis for 
inference, our estimates are obliged to follow the data, i.e. a noninformative prior 
is the means by which one achieves Fisher's goal of letting the data speak for 
themselves. As noted in the text, it is also the necessary starting point for the 
construction of an informative prior. 

Of course, a mere verbal statement such as "complete initial ignorance" is too 
vague to determine any mathematically well-posed problem. However, there is a 
rather obvious and basic desideratum of consistency: in two problems where we 
have the same prior information we should assign the same prior probabilities. 
Surely, any method for assigning priors which was found to violate this require­
ment would be rejected as self-contradictory. 

Yet, as noted before (Jaynes (1968», in many cases this desideratum is already 
sufficient to determine a unique solution. For, given the above problem 1, we can 
carry out a transformation of all variables: {Xi' y" JlIJllO"} --+ {x;Y;Jl{Jl20"'} which 
involves a mapping ()--+()' of the parameter space onto itself, and consider: 

Problem 2. Given the data D', estimate (Jl{, Jll, 0"'). 

Any proposed prior f (Ill 112 O")dlll dll2 dO" will be transformed into g(Il'IIl~O")dJl~ dJl~ dO"' 
according to the Jacobian of the transformation 

(A.2) 

where J(JlIlllO") = iJ(1l {Jl1.11')/iJ(JlI Jl20"); and of course the transformation rule (A.2) 
will hold whatever the function f{J1llllO"). But now the transformation may be 
such that we recognize problems 1 and 2 as entirely equivalent problems, i.e. they 
have the same sampling distribution and if initially we were "completely ig­
norant" of (JlIJl20") in problem 1 - whatever that means - we are at least in the 
same state of knowledge about (Jl{JllO"') in problem 2. But our desideratum of 
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consistency then demands that f and 9 must be the same function, i.e. the prior 
representing complete ignorance must satisfy the functional equation 

(A.3) 

which determines the ratio of prior density at any two points (), ()' of the 
parameter space that are connected by the mapping. 

If then the mapping (}-+()' is one of a group of transformations that is transitive 
on the parameter space (i.e. from any point () any other point ()' can be reached 
by some transformation of the group), then (A.3) determmes the prior, to within a 
mUltiplicative constant, everywhere. 

Note that, in this method the prior is determined by the Jacobian of the 
transformation on the parameter space; and this remains true whether the group is 
Abelian or non-Abelian, compact or noncompact. Therefore, considerations of 
right Haar measure or left Haar measure do not arise. Haar measure is defined 
on the group manifold; and not on our parameter space. 

Furthermore, this method is more general; for if by any means we can 
recognize the group on the parameter space that transforms our prior state of 
knowledge into an equivalent one, the same result (A.3) will follow whether there 
is or is not an image group on the sample space. Thus, the Mallows example (45) 
has no group structure of the DSZ type; yet there is a natural group induced on 
S, by Bayes' theorem (Jaynes (1968» w~ich leads to the uninformative prior 
7t(,,)oc [,,(I-,,)r 1; and let me acknowledge (correoting an erroneous statement in 
Jaynes (1968» that, unknown to me at the time, this result, too, had been 
anticipated by Jeffreys and Haldane. 

This will perhaps make clearer the distinction between our method and other 
group invariance arguments which do not appear to be motivated by the 
desideratum of consistency; or at least, to the best of the writer's knowledge, do 
not explicitly invoke it. 

In this method a noninformative prior is not in general determined merely by 
the form of the sampling distribution; it is determined by specifying the in­
variance group on the parameter space. Furthermore, even if we do choose a 
group by the form of the sampling distribution, a given sampling distribution 
may be invariant under more than one group. 

For the sampling distribution (A.I) perhaps the simplest transformation group 
is given by 

with 

P' =aa, 

pi =Pl +bh 

pi = Pl + bl , 

O<a<oo, 

- 00 <bl < 00, (A.4) 

- 00 < bl < 00, 

(A.5) 
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The new sampling distribution p(dx'dy'\J.I;J.l2u') is then identical to (A.I). If our 
state of prIor knowledge is such that this transformation results in a problem 2 
that is entirely eqUivalent to problem 1, then from the Jacobian J = a-I of (A.4) 
the unmformative prior must satisfy the functional equatIOn 

af(J.l1 +b., /12 +b2, au)=f(J.lIJL2U), 

from which we obtain the "widely recommended" prior element 

du 
f(J.lIJ.l2u)dJ.lldJ.l2du=dJ.lldJ.l2-· 

u 

(A.6) 

(A.7) 

However, when two "location" parameters are present, we may in some cases 
feel that this does not represent our prior knowledge. In (A.4) a change of scale 
u' = au affects only the accuracy of the x,, y, measurements. It may be that for 
other reasons not discernible in the sampling distribution (A.I), we know that the 
parameter u not only sets the scale for the "measurement errors" (x, - /11)' 
(y,- J.L2), but it also sets the scale on which the difference of means (J.L2 - J.LI) is to 
be measured. 

As a concrete - if oversimplified - example, a spectroSCOPiSt may wish to 
determine the difference in magnetic moment of two atomic states by observation 
of the Zeeman effect, but the available magnet has uncontrollable field fluc­
tuations. Here u corresponds to the magnetic field strength, and J.l1o J.l2 to the 
resonant frequencies one is trying to measure. Doubling u doubles the probable 
error in the measurements; but it also doubles the measurable difference (J.l2 - J.ll)' 
On the other hand, the crystalline environment of the atoms affects both their 
frequencies in the same unknown way independent of u. All thiS prior infor­
mation is in the mind of an experimenter E., but it does not appear at all in the 
sampling distribution (A. I). Because of it, EI replaces (A.4) by 

(J' = alI, 

(J.I; -J.L·I) = a (J.L 2 -J.LI)+C, 

1(J.L·1 + J.L~)=1(J.L1 + J.L2)+ b, 

O<a<oo, 

-00 <C<oo, 

-oo<b<oo. 

This leads to the functional equation 

a2f(qJ.ll +PJl2 +b-c, PJ.Ll +QJl2+ b + c, au)=f(Jll J.l2 u), 

(A.8) 

(A.9) 

where 2q == I + a, 2p == I-a. But the left-hand side can be independent of both b 
and c only if f(J.lIJ.l2U) = f(u). The functional equation then collapses to a2f(au) = 
f(u), or f(u)oc.u- 2 , the prior that DSZ found to avoid the paradox in example 2. 

We are far from having exhausted the number of transitive groups under which 
the sampling distribution (A.I) is invariant. For example, 

(1' = au, 

J.I{=aJ.lI+b, 

J.l2 = J.l2 +c, 

O<a<oo, 

- 00 <b< 00, 

- 00 <c< 00, 
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a'=aa, 

Jl.;=aJl.l+b, 

Jl.i=aJl.2+ c, 

E. T. JAYNES 

leads to!(Jl.1Jl.2a)oca-3, which DSZ noted as avoiding the paradox in example 4a, 
version 1. 

AIl of these correspond to different possible kinds of prior knowledge about the 
physical meaning of the parameters. These differences cannot be seen in the 
sampling distribution, which describes only the measurement errors. Thus, when 
we pass beyond pedagogical examples to real life problems, a further aspect of the 
quoted remark of Lindley (1971) becomes apparent. 

As we see from this, group analysis does not answer questions of uniqueness. A 
given group leads to a definite prior, but there may be more than one group; and 
in any event group analysis - at least in any form yet visualized - does not tell us 
whether other solutions of the integral equations (30) may exist beyond those 
resulting from the group structure. However, it may be that new theorems 
bearing on this are waiting to be discovered. 

Appendix B: historical note 

Since statistical theory is returning to the original viewpoint of Laplace on the 
relation of inference and probability, we follow Laplace's example also in 
concluding with two remarks on the background of the marginalization problem, 
in addition to those noted by DSZ. 

"The mathematical facts underlying marginalization were fully recognized - and 
in the writer's view correctly interpreted - by Geisser and Cornfield (1963). Their 
eqs. (3.10) and (3.26) are just what we now caIl 8 1's result and 8 2's result; but 
instead of seeing a paradox in the difference, they very wisely termed the latter a 
"pseudoposterior distribution". 

And inevitably, when we search for the origin of a 8ayesian result, we turn to 
Jeffreys (1939). His section 3.8 considers the bivariate normal case, and although 
the sample correlation coefficient r is a sufficient statistic for p, the posterior 
distributions (10) and (24) again reveal the slight difference in 8 1's conclusions 
caused by different prior information about the location parameters (a, b). He 
then gives 8 2's result in (28), the agreement with (24) showing that a uniform 
prior for (a, b) is uninformative about p. Thus Jeffreys had unearthed essentially 
all the pertinent facts on which marginalization theory is based. 
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13. WHAT IS THE QUESTION? (1981) 

At the International Meeting on Bayesian Statistics at Valencia, Spain in June 
1979, two papers presented by Professors Arnold Zellner of the University of 
Chicago and Jose Bernardo of the University of Valencia, considered similar 
problems of hypothesis testing. In both, the point at issue was whether some 
conjectured new parameter}.. was needed to represent the data. The problems 
were interesting because Bayesian theory allows more than one way of for­
mulating them. One may defme a 'null hypothesis' Ho which asserts that 
}.. = 0, and ask for its posterior probability; or one may ask simply for an 
estimate of }.., and from that decide the issue. The procedures ask different 
questions, yet either should be adequate for the practical purpose. 

In Bernardo's problem}.. was the only parameter involved, while Zellner's 
was more complicated in that there was also an unknown scale parameter a. 
However, both chose the null hypothesis method and became involved in the 
question which prior probability p(d}..-I I) will lead to realistic conclusions. 
Bernardo used an information theory argument, asking essentially, 'For which 
prior would we learn the most from the data?' and was led to a prior that had 
a (to most of us) disconcerting dependence on the amount n of data. Zellner, 
following Jeffreys, used a Cauchy prior p (d}" I aI) ex a d}"/( a2 + }.. 2 ) express­
ing a cautious kind of prior ignorance, that had a (to me at the time) dis­
concerting dependence on a. 

But from these very different appearing beginnings they emerged with 
quite similar results. One could interpret both as saying: the criterion that the 
data give significant evidence for a non-zero value of }.. is that its estimated 
value 5.. be large compared to the probable error O}.. of that estimate. A rela­
tion to the parameter estimation method thus seemed to force its way into 
both solutions. 

Now Laplace had considered very similar problems in the 18th Centrury, 
to decide whether astronomical data indicated the existence of some new 
systematic effect not accounted for in his calculations. He used the parameter 
estimation method, and got essentially the same conclusions that Zellner and 
Bernardo did, except that he did not need any tricky arguments about prior 
probabilities; the uniform priors that would have caused trouble for Zellner 
and Bernardo were just the ones that led Laplace to neat results without any 
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trouble. So the relation between hypothesis testing and parameter estimation 
seemed closer than one would imagine from the conventional statistical 
literature. 

In my role as discussant for these papers, it struck me that the presenta­
tion by Professor R. T. Cox at the M.I.T. Maximum Entropy Formalism 
Conference a year earlier, in which he recognized that answers to different 
questions do not necessarily convey different information, had a fundamental 
bearing on just this situation. Indeed, on some analysis it developed that if 
there are sufficient statistics, then all questions from whose answers the 
sufficient statistics may be recovered, elicit just the same information from 
the data, however different the questions may seem. 

The following article was written partly out of evangelistic zeal to promote 
Cox's ideas, and partly out of a feeling that modem Bayesians, while certainly 
wise to pay attention to Jeffreys, ought also to pay some attention to Laplace, 
who started it all. He made many important contributions to scientific 
inference, not all of which are remembered in a literature that has done him 
so much injustice for over a Century. 

The fmal conclusion comes out rather heavily in favor of parameter 
estimation over null hypothesis formulation; and I still believe that is where 
most of the truth lies, most of the time. But in subsequent discussions Zellner 
has persuaded me that there is after all, inherent in the nature of some real 
problems, some natural merit in the null hypothesis way of looking at things, 
and that the dependence of his prior on a is, afterall, reasonable. 

Pragmatically, one of the main advantages of Bayesian over orthodox 
methods is that Bayesians recognize the relevance of, and take into account, 
prior information even though it does not consist of frequencies. But 
Bayesians in turn need to be vigilant that we are not falling into the same 
error on a higher level and ignoring relevant information that does not fit into 
a preconceived pattern. In the last analysis, each problem must be considered 
separately, on its own merits; and if there are additional considerations that I 
have ignored here, one will quite properly come to a different conclusion 
than I did. 
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International Meeting on Bayesian Statistics 
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WHAT IS THE QUESTION? 

(Discussion by E. T. Jaynes on the Ze11ner-Siow and Bernardo presentations) 

It is always interesting to recall the arguments that Jeffreys used 

to find priors. The case recounted by Zellner is a typical example where 

it appears at first glance that we have nothing to go on; yet by thinking 

more deeply, Jeffreys finds something. He shows an uncanny ability to 

see intuitively the right thing to do, although the rationalization he 

offers is sometimes, as Laplal=e said of Bayes' argument, "fine et trt!s 

ing~nieuse. quoiqu'un peu embarrass~e." It_was from studying these flashes 

of intuition in Jeffreys that I became convinced that there must exist a 

general formal theory of determination of priors by logical analysis of 

the prior information--and that to develop it is today the top priority 

research problem of Bayesian theory. 

Pragmatically, the actual results of the Jeffreys-Zellner-Siow and 

Bernardo tests seem quite reasonable; without considerable analysis one 

could hardly say how or whether we should want them any different. Like­

wise, there is little to say about the mathematics, since once the premises 

are accepted, all else seems to follow in a rather straightforward and 

inevitable way. So let us concentrate on the premises; more specifically, 

on the technical problems encountered in both these works, caused by 

putting that lump of prior probability on a single point" = O. 
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1. THE PROBLEM 

In most Bayesian calculations the same prior appears in numerator and 

denominator, and any normalization constant cancels out. Usually, passage 

to the limit of an "uninformative" improper prior is then uneventful; i.e., 

our conclusions are very robust with respect to the exact prior range. But 

in Jeffreys' significance test this robustness is lost"since K = p(DIHJ/p(DIH1) 

contains in the denominator an uncancelled factor which is essentially the 

prior density neAl at A = x. Then in the limit of an improper prior we have 

K+m independently of the data D, a result given by Jeffreys (1939, p. 194, 

Eq. 10), and since rediscovered many times. Note that the difficulty is not 

due solely to the different dimensionality of the parameter spaces; it would 

appear in any problem where we think of Ho as specifying a definite, fixed 

prior range, but fail to do the same for H1.-

Jeffreys (1961) dealt with this and other problems by using a Cauchy 

prior n(A/a) scaled on a in the significance test, although he would have 

used a uniform prior '!rCA) = 1 in the same model Hl had he been estimating A. 

But then a question of principle rears up. To paraphrase Lindley's rhetorical 

question: Why should our prior knowledge, or ignorance, of A depend on the 

question we are asking about it? Even more puzzling: why should it depend 

on another parameter a, which is itself unknown? One feels the need for a 

clearer rationalization. 

Furthermore, the difficulty was not really removed, but only concealed 

from view, by Jeffreys' procedure. All his stated conditions on the prior 

would have been met equally well had he chosen a Cauchy distribution with 

interquartile span 40 instead of a; but then all his K-values would have 

been quadrupled, leading to indifference at a very different value of the 
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t-statistic [see Eq. (5-13) below]. We do not argue that Jeffreys made 

a bad choice; quite the contrary. Our point is rather that in his choice 

there were elements of arbitrariness, arising from a still unresolved question 

of principle. Pending that resolution, one is not in a position to say much 

about the "uniqueness" or "objectivity" of the test beyond the ,admitted 

virtue of yielding results that seem reasonable. 

Bernardo comes up against just the same problem, but deals with it 

more forthrightly. Finding again that the posterior probability Po of the 

null hypothesis Ho increases with the prior variance 01 in a disconcerting 

way, he takes what I should describe as a meat-axe approach to the difficulty, 

and simply chops away at its prior probability p until Po = pK/(pK+ 1 - p) is 

reduced to what he considers reasonable (from the Jeffreys-Zellner-Siow 

standpoint he chops a bit too much, since his Po tends only to 1/2 on 

prolonged sampling when H is true). This approach has one great virtue: o 
whereas the Jeffreys results tended to be analytically messy, calling for 

tedious approximations, Bernardo emerges triumphantly (in the limit of 

large 0 1) with a beautifully neat expression (Eq. (11» which has also, 

intuitively, a clear ring of truth to it. 

But for this nice result, Bernardo pays a terrible price in 

unBayesianity. He gets it only by making p vary with the sample size n, 

calling for another obvious paraphrase of Lindley. This elastic quality 

of his prior is rationalized by an information-theoretic argument; it is, 

in a sense, the prior for which one would expect (before seeing the data) 

to learn the most from the experiment. But is this the property one wants? 
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If a prior is to incorporate the prior information we had about A before 

the sample was observed, it cannot depend on the sample. The difficulty is 

particularly acute if the test is conducted sequentially; must we go back to 

the beginning and revise our prior as each new data point comes in? Yet after 

all criticisms I like the general tone of Bernardo's result, and deplore only 

his method of deriving it. 

The common plot of these two scenarios is: we (1) start to apply Bayes' 

theorem in what seems a straightforward way; (2) discover that the result has 

an u~expected dependence on the prior; (3) patch things up by tampering with 

the prior until the expected kind of result emerges. The Jeffreys and Bernardo 

tamperings are similar in effect, although they offer very different rational­

izations for what they do. But in both cases the tampering has a mathematical 

awkwardness and the rationalization a certain contrived quality, that leads 

one to ask whether some important point has been missed. 

Now, why should that first result have been unexpected? If, according 

to H1• we know initially only that A is in some very wide range 201• and we 

then receive data showing that it is actually within ±o/In of the value 

predicted by Ho--as a physicist would put it, "the data agree with Ho to 

within experimental error"--that is indeed very strong evidence in favor of 

Ho' Such data ought to yield a likelihood ratio K = 1n01/0 increasing with 

a1• just as Bernardo finds. This first result is clearly the correct answer 

to the question Ql that was being asked. 

If we find that answer disconcerting, it can be only because we had in 

the back of our minds a different. unenunciated question Q2' On this view. 

the tampering is seen as a mutilation of equations originally designed to 

answer Ql. so as to force them to answer instead Q2' 
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The higher-level question: "Which question should we ask?" ooes not seem 

to have been studied explicitly in statistics, but from the way it arises 

here, one may suspect that the answer is part of the necessary "software" 

required for proper use of Bayesian theory. That is, just as a computer 

stands ready to perform any calculation we ask of it, our present theory 

of Bayesian inference stands ready to answer any question we put to it. 

In both cases, the machine needs to be programmed to tell it which task to 

perform. So let us digress with some general remarks on question-choosing. 

2. LOGIC OF QUESTIONS 

For many years I have called attention to the work on foundations of 

probability theory by R. T. Cox (1946, 1961) which in my view provides the 

most fundamental and elegant basis for Bayesian theory. We are familiar 

with the Aristotelian deductive logic of propositions; two propositions 

are equivalent if they say the same thing, from a given set of 

them one can construct new propositions by conjunction. disjunction. etc. 

The probability theory of Bernoulli and Laplace included Aristotelian logic 

as a limiting form, but was a mathematical extension to the intermediate 

region (0 < p < 1) between proof and disproof where. of necessity. virtually 

all our actual reasoning takes place. While orthodox doctrine was rejecting 

this as arbitrary, Cox proved that it is the only consistent extension of 

logic in which degrees of plausibility are represented by real numbers. 

Now we have a new work by Cox (1978) which may prove to be of even 

more fundamental importance for statistical theory. Felix Klein (1939) 

sU9gested that questions, like propositions, might be used as logical 

elements. Cox shows that in fact there is an exactly parallel logic of 
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questions: two questions are equivalent if they ask the same thing. from 

a given set of them one can construct new questions by conjunction (ask both). 

disjunction (ask either), etc. All the "Boolean algebra" of propositions 

may be taken over into a new symbolic algebra of questions. Every theorem 

of logic about the "truth value" of propositions has a dual theorem about 

the "asking value" of questions. 

Presumably, then, besides our present Bayesian statistics--a formal 

theory of optimal inference telling us which propositions are most plausible-­

there should exist a parallel formal theory of optimal inquiry, telling us 

which questions are most informative. Cox makes a start in this direction, 

showing that a given question may be defined in many ways by the set of its 

possible answers, but the question possesses an entropy independent of its 

defining set, and the entropies of different-questions obey algebraic rules 

of combination much like those obeyed by the probabilities of propositions. 

The importance of such a theory, further developed, for the design of 

experiments and the chOOSing of procedures for inference, is clear. For 

over a century we have argued over which ad hoc statistical procedures 

ought to be used, not on grounds of any demonstrable properties, but from 

nothing more than ideological committments to various preconceived pOSitions. 

There is still a great deal of this in my exchanges with Margaret Maxfield 

and Oscar Kempthorne in Jaynes (1976), and even a little in the exchange 

with Dawid, Stone, and Zidek over marginalization in Jaynes (1979). A 

formal theory of optimal inquiry might resolve differences of opinion in 

a way that Wald-type decision theory and Shannon-type information theory 

have not accomplished. 
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Our present problem involves a special case of this. If, seeing the 

answer to question Ql we are unhappy with it, what alternative question Q2 

dfd we have, unconsciously, in the back of our minds? Is there a question 

Q3 that is the optimal one to ask for the purpose at hand? Since the 

conjectured formal theory of inquiry is still largely undeveloped, we try 

to guess some of its eventual features by studying this example. 

Note that the issue is not which question is "correct." We are free 

to ask of the Bayesian formalism any question we please, and it will always 

give us the best answer it can, based on the information we have put into 

it. But still, we are in somewhat the position of a lawyer at a courtroom 

trial. Even when he has on the stand a witness who knows all the facts of 

the case and is sworn to tell the truth, the information he can actually 

elicit from this witness still depends on his adroitness in asking the 

right questions. 

If his witness is unfriendly, he will not extract any information at 

all unless he knows the right questions to force it out, phrasing them as 

sharp leading questions and demanding unequivocal "yes" or "no" answers. 

But if a witness is friendly and intelligent, one can get all the information 

desired more quickly by asking simply, "Please tell us in your own words 

what you know about the case?" Indeed, this may bring out unexpected new 

facts for which one could not have formulated any specific question. 

Significance tests which specify a sharply defined hypothesis and 

preassigned significance level, and demand to know whether the hypothesis 

does or does not pass at that level, therefore in effect treat probability 

theory as an unfriencly witness and automatically preclude any possibility 

of getting more information than that one bit demanded. 
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Suppose we try instead the opposite tactic. and regard Bayesian 

formalism as a friendly witness. ready and willing to give us all the 

pertinent information in our problem--even information that we had not 

realized was pertinent--if we only allow it the freedom to do so. Instead 

of demanding the posterior probability of some sharply formulated null 

hypothesis Ho' suppose we ask of it only, "Please tell us in your own 

words what you know about A?" Perhaps by asking a less sharp and 

restrictive question. we shall elicit more information. 

3. INFORMATION FROM QUESTIONS 

Evidently. to deal with such problems one ought to be an information 

theorist--and not only in the narrow sense of One-Who-Uses-Entropy. In 

385 

the present problem we are concerned not only with the range of possible 

answers. as measured by the entropy of a question. but also with the 

specific kind of information that the question can elicit. In the following 

we use the word "information" in this specific sense rather than the entropy 

sense. 

All statistical procedures are in the last analysis prescriptions for 

information processing: what information have we put into our mathematical 

machine, and what information are we trying to get out of it? In these terms. 

what is the difference--if any-- between Significance testing and estimation? 

Having put certain information (model. prior. and data) into our hopper. we 

may carry out either. by asking different questions. But the answers to 

different questions do not necessarily convey different information. 
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The tests considered by Zellner and Bernardo sought information that 

can help us decide whether to adopt a new hypothesis Hl with a value of A 

different from its currently supposed value A = o. Presumably, any procedure 

which yields the same information would be equally acceptable for this 

purpose, even though current pedagogy might not call it a "significance 

test." 

Now this information criterion establishes an ordering of different 

procedures, or "tests," rather like the notion of admissibility. If test 

B (which answers question QB) always gives us the same information as test 

A, and sometimes more, then B may be said to dominate A in the sense of 

information yiel d; or question Q8 dominates QA in "asking power." And 

if 8 requires no more computation, on what grounds could one ever prefer A? 

In my work of 1976 (p. 185 and p. 219},_I showed that the original 

Bayesian significance test of laplace, which asks for the posterior 

probability Pl of a one-sided alternative hypothesis, dominates the 

traditional orthodox t-test and F-test in just this sense. That is, given 

Pl we know what the verdict would be, at any significance level, for all 

three of the corresponding orthodox tests (one equal-tails and two one-sjded); 

bJt the verdict of anyone orthodox test is far from determining Pl. Thanks 

to Cox, we have now a much broader view of this phenomenon. 

let us call a question simple if its answer is a Single real number; 

or in Cox's terminology, if its irreducible defining set is a set of real 

numbers. For example: "What is the probability that A, or some function of A, 

lies in a certain region R?" 

In any problem involving a single parameter A for which there is a 

single sufficient statistic u, then given any simple question QA about A, 

the answer will be, necessarily, some function a(u}. Given any two such 
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questions QA' QB and any fixed prior information, the answers a(u), b(u), 

being functions of a single variable u, must obey some functional relation 

a= f(b). If f(b) is single-valued, then the answer to QB tells us everything 

that the answer to QA does. As Cox puts it, "An assertion answering a 

question answers every implicate of that question. II If the inverse function 

b=f-l(a) is not single-valued, then QB dominates QA. 

In the case of a single sufficient statistic, then, any simple question 

whose answer is a strict monotonic function of u, yields all the information 

that we can elicit about A, whatever question we ask; and it dominates any 

simple question whose answer is not a strict monotonic function of u. But 

this is just the case discussed by Bernardo; he considers cr known, and 

consequently x is a sufficient statistic for A. Since his odds ratio K(x) 

is not a strict monotonic function of x, we know at once that Bernardo's 

test is dominated by another. 

The Jeffreys-Zellner-Siow tests are more subtle in this respect, 

since cr is unknown, and consequently there are two jointly sufficient 

statistics (x,s). Given two simple questions QA' QB with answers a(x,s), 

b(X,s), the condition that they ask essentially the same thing, leading 

to a functional relation a = f(b), is that the Jacobian J = a(a,b)/il(x,s) 

should vanish. If J 'I D, then neither question can dominate the other and 

no simple question can dominate both. But any two simple questions for 

which (x,s) are uniquely recoverable as single-valued functions x(a,b), 

s(a.b) will jointly elicit all the information that any question can yield, 

and thus their conjunction dominates any simple question. 
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We may. therefore. conclude the following. Since Jeffreys' test asks 

a simple question. whose answer is the odds ratio K(X.s). it can be dominated 

by a compound question. the conjunction of two simple questions. Indeed. 

since K depends only on the magnitude of the statistic t. it is clear that 

Jeffreys' question is dominated by anyone simple question whose answer is 

a strict monotonic function of t. 

These properties generalize effortlessly to higher dimensions and 

arbitrary sets. Whenever sufficient statistics exist. the most searching 

questions for any hypothesis test are those (simple or compound) from whose 

answers the sufficient statistics may be recovered; and all such questions 

elicit just the same information from the data. 

As soon as I realized this. it struck me that this is exactly the kind 

of result that Fisher would have considered intuitively obvious from the 

start; however. a search of his collected works failed to locate any passage 

where such an idea is stated. Perhaps others may recall instances where he 

made similar remarks in private conversation; it is difficult to believe 

that he was unaware of it. 

With these things in mind. let us re-examine the rationale of the 

Jeffreys-Zellner-Siow and Bernardo tests. 

4. WHAT IS OUR RATIONALE? 

In pondering this--trying to see where we have confused two different 

questions and what the question Q2 is--I was struck by the contrast between 

the reasoning used in the proposed tests and the reasoning that physicists 

use. in everyday practice. to decide such matters. We cite one case history; 

recent memory would yield a dozen equally good. which make the same point. 
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In 1958, Cocconi and Sa1peter proposed a new theory H, of gravitation, 

which predicted that the inertia' mass of a body is a tensor. That is, 

instead of Newton's F"' Ma, one had F i = EMij aj • For terrestri a' mechanics 

the principal axes of this tensor would be determined by the distribution 

of mass in our galaxy, such that with the x-axis directed toward the galactic 

center, M 1M = M 1M z = (1 + A). From the approximately known galactic xx yy xx z 
mass and size, one could estimate (Weisskopf, 1961) a value A'" 10-8• 

Such a small effect would not have been noticed before, but when the 

new hypothesis H, was brought forth it became a kind of challenge to 

experimental physicists: devise an experiment to detect this effect, if 

it exists, with the greatest possi~le sensitivity. Fortunately, the newly 

discovered MOssbauer effect provided a test with sensitivity far beyond 

one's wildest dreams. The experimental verdict (Sherwin, et !i. 1960) was 

that A, if it exists, cannot be greater than IAI < 10-15 . So we forgot 

about H, and retained our null hypothesis: 

gravitation, in which A = O. 

H = Einstein's theory of o 

From this and other case histories in which other conclusions were 

drawn. we can summarize the procedure of the physicist's significance test 

as follows: (A) Assume the alternative H
" 

which contains a new parameter 

A. true as a working hypothesis. (B) On this basis, devise an experiment 

which can measure A with the greatest possible precision. (C) Do the 

experiment. (0) Analyze the data as a pure estimation prob1em--Bayesian, 

orthodox, or still more informal, but in any event leading to a final 

"best" estimate and a statement of the accuracy claimed: (A)est = A' ± CA. 

It is considered good form to claim an accuracy OA corresponding to at least 

two, preferably three, standard deviations. (E) Let AO be the correct value 

according to the null hypothesis Ho (we supposed AO = 0 above, but it is now 
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best to bring it explicitly into view}, and define the "statistic" 

t ;: (A' - Ao}/6A. Then there are three possible outcomes: 

If It I < 1, retain H 
o 

If It I »1, accept Hl 

If 1 < It I < 3, withhold judgment 

STATUS QUO 

AWARD NOBEL PRIZES 

SEEK BETTER EXPERIMENTS 

That is, to within the usual poetic license, the reasoning format in which 

the progress of physics takes place. 

You see why I like the actual results reported here by Zellner and 

Bernardo, although I find their rationalizations puzzling. They did indeed 

find, as the criterion for accepting H1, that the estimated deviation lA' - Aol 

should be large compared to the accuracy of the measurement, considered known 

(a/In) in Bernardo's problem, and estimated_ from the data in the usual way 

(s/Iii) in Zellner's. 

It is in the criterion for accepting Ho that we seem to differ; contrast 

the physicist's rationale with that usually advanced by statisticians, 

Bayesian or otherwise. When we retain the null hypothesis, our reason is 

not that it has emerged from the test with a high posterior probability, or 

even that it has accounted well for the data. Ho is retained for the totally 

different reason that if the most sensitive available test fails to detect 

its existence, the new effect (A - A ) can have no observable consequences. o 
That is, we are still free to adopt the alternative Hl if we wish to; but 

then we shall be obliged to use a value of A so close to the previous AO 

that all our resulting predictive distributions will be indistinguishable 

from those based on Ho' 
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In short, our rationale is not probabilistic at all, but simply 

pragmatic; having nothing to gain in predictive power by switching to the 

more complicated hypothesis Hl , we emulate Ockham. Note that the force 

of this argument would be in no way diminished even if Ho had emerged from 

some significance test with an extremely low posterior probability; we 

would still have nothing to gain by switching. Our acceptance of Hl 

when It I » 1 does, however, have a probabilistic basis, as we shall see 

presently. 
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Today, most physicists have never heard the term "significance test." 

Nevertheless, the procedure just described derives historically from the 

original tests devised by Laplace in the lS'th Century, to decide whether 

observational data indicate the existence of new systematic effects. Indeed, 

the need for such tests in astronomy was the reason why the young Pierre 

Simon developed an interest in prQbability theory, forty-fiv~ years before 

he became the Marquis de Laplace. This problem is therefore the original 

one, out of which "Bayesian statistics" grew. 

As noted also by E. C. Molina (1963) in introducing the photographic 

reproduction of Bayes' paper, even the result that we call today "Bayes' 

theorem" was actua 11y given not by Bayes, but by Laplace (the on ly va 1 i d 

reason I have found for calling it "Bayes' theorem" was provided at this 

meeting: "There's no theorem like Laplace's theorem" does not set well 

to Irving Berlin's music). Molina also offers some penetrating remarks 

about Boole's work, showing that those who have quoted Boole in support 

of their criticisms of Bayes and Laplace may have mistaken Boole's intention. 

Now, although Laplace's tests were thoroughly "Bayesian" in the sense 

just elucidated, they encountered no such difficulty as those found by 

Jeffreys and Bernardo; he always got clear-cut decisions from uniform 
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priOrs without tampering. To see how this was managed, let us examine the 

simplest of all Laplacian significance tests. 

As soon as fairly extensive birth records were kept, it was noticed 

that there were almost always slightly more boys than girls, the ratio for 

large samples lying usually in the range 1.04< (nb/ng) < 1.06. Today we 

should, presumably, reduce this to some hypothesis about a difference in 

properties of X and Y chromosomes (for example, the smaller Y chromosome, 

leading to a boy, would be expected to migrate more rapidly). But for 

Laplace, knowing nothing of such things, the problem was much simpler. 

Making no reference to any causal mechanism, he took the model of 

Bernoulli trials with parameter ~ = probability of a boy. 

His problem was then: given specific data D = {nb,ng}, do these data 

indicate the existence of some systematic cause favoring boys? Always direct 

and straightforward in his thinking, for him the proper question to ask of 

the theory was simply: QL = "Conditional on the data, what is the 

probability that ~ > (1 - ~)?" With unifonn prior, the answer was 

P = (~+ ~)! Jl ~ nb (l _ A) ng dA 
l nb• ng• 

Ao 

with n = nb + ng, AO = 1/2. In his Essai Philosophigue Laplace reports many 

results from this, and in the Theorie Analytigue (Vol. 2, Chap. 6) he gives 

the details of his rather tedious methods for numerical evaluation. 

Needless to say, Laplace was familiar with the nonnal approximation 

to p(dAID), the inverse of the de Moivre-Laplace limit theorem. But Laplace 

also realized that the nonnal approximation is valid only within a few 

standard deviations of the peak, and when the numbers nb,n9 become very 

large, it can lead easily to errors of a factor of 10100 in PL/(l - PL); 

hence his tedious methods. 
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Bernardo's example of r~rs. Stewart's telepathic powers, where the null 

hypothesis value AO = 0.2 is about 24 standard deviations out, is another 

instance where the normal approximation leads to enormous numerical errors 

in K (many millions, by my estimate). 

But pragmatically, once it is estimated that an odds ratio is about 

10130, it hardly matters if the exact value is really only 10120 . Once it 

is clear that the evidence is overwhelmingly in favor of Hl , nobody cares 

precisely how overwhelming it is. After Laplace's time, phYSicists lost 

interest in his accurate but tedious evaluations of PL; for the criterion 

that we have overwhelming evidence in favor of a positive effect (A > AO)' 

is just that the overwhelmingly greater part of the mass of the posterior 

distribution p(dAID) shall lie to the right of AO' In the above example, 

the peak and standard deviation of p(dAID) are A' = nbln, OA= [A'(l-A')/n]!f 

and this criterion reduces to the aforementioned t = (A' - Ao)/oA» 1, of 

the modern physicist's significance test--just the same criterion that 

Jeffreys and Bernardo arrive at in their different ways. 

We have noted above that the orthodox t-test and F-test are dominated 

by Laplace's, and argued that the Jeffreys and Bernardo tests must also be 

dominated by some other. Let us now compare their specific tests with the 

ones Laplace would have used in their problems. 

5. COMPARISONS WITH LAPLACE 

In Bernardo's problem we have a normal sampling distribution 

p(dxIA,a) '\, N(>.,a) with a known. Hypothesis Ho specifies A = >'0' Hl a normal 

prior w(dAIHll '\, N(~l,al)' leading to a normal posterior distribution 

p(dAI DHl 1 '\, N(>.' ,0>') where 
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-2 -2-2 
(6)') = n ° + 01 (5-1) 

(5-2) 

Laplace, asking for the probability of a positive effect, would calculate 

(5-3) 

where ,z,(t) is the cumulative normal distribution, and as always, t:: (>"->'0)/6>.. 

Bernardo (Eq. 9) finds for the posterior odds ratio 

(5-4) 

where 

(5-5) 

But by algebraic rearrangement, we find this is equal to 

(5-6) 

where w :: (1I1 - >'0)/°1 is independent of the data and drops out if 1I1 = >'0-

or if 01 ~~. Bernardo would then find for the posterior probability of 

the null hypothesis 

(5-7) 

and comparing with (5-3) we have, as anticipated, a functional relation 

PB = f(PL). To see the form of it, I plotted PB against PL and was 

surprised to find a quite accurate semicircle. almost as good as one could 

make with a compass. To all the accuracy one could use in a real problem, 
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the functional relation is simply 

(5-8) 

The error in (5-8) vanishes at five points in (0 ~ PL ~ 1). 

Since PB = f(PL) is single-valued while the inverse function is not, 

we have the result that Laplace's original significance test does, indeed, 

dominate Bernardo's. As stressed in Jaynes (1976), one-sided tests always 

dominate two-sided ones; given PL we know everything that Bernardo's K or 

Ps can tell us; and if It I »1 we know in addition whether A > 1..0 or 1..<1..0 ' 

which PB does not give. 

Of course, in this case one can determine that extra bit of information 

from a glance at the data; so the mere fact of domination is hardly a strong 

selling point. What is important is that Laplace's method achieves this 

without any elements of arbitrariness or unBayesianity. 

In Jeffreys' problem we have the same sampling distribution, with the 

standard likelihood function L(A,o) = o-n exp[_ns2Q2(A)/202], where 

HO and Hl assign common priors do/a, but Ho specifies A = 1..0 ' while H1 

assigns the Cauchy prior p(dAloHl ) = Tr(Alo)dA with the density 

Tr(Alo) = 2 ~o 2 
Tr(a a + A ) 

(5-9) 

(5-10) 

scaled on a (Jeffreys takes a = 1, 1..0 = 0, but we define the problem thus to 

bring out some points noted in Sec. 1). To analyze the import of the data, 

Jeffreys then calculates the likelihood ratio 

(5-11 ) 
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while Laplace (if he used the same prior) would calculate instead the 

probability of a positive effect, given Hl : 

pLrx,s) = p(A>Ao!DH1) = M- l ( dAr do 0-1 Tr(A!o)L(A,o) 
o 0 

(5-12) 

These expressions have a common denominator M, equal to the integral in 

(5-12) with AO = -~. 

It is straightforward but lengthy to verify that Jeffreys and Laplace 

do not ask exactly the same question; i.e., J = 3(KJ ,PL)/3(X,S) ~ O. 

However, they are not very different, as we see on making the same 

approximation (large n) that Jeffreys makes. Doing the o-integration in 

(5-12) approximately, the other integrals may be done exactly, leading to 

the approximate form 

(5-13) 

where q = (X/as). This reduces to Jeffreys' result [Zellner's Eq. (2.7) in 

this volume] when a=l, AO=O. In the same approximation, Laplace's result 

1s the tail area of a t-distribution with (n-2) degrees of freedom: 

PL = An ~ dA/Qn-l(A) 

AO 

(5-14) 

where An is a normalization constant. Of course, if Laplace used a uniform 

prior for A, he would find instead the usual "Student" result with (n-1) 

degrees of freedom. 

In the limit of an improper prior (a + ~), KJ diverges as noted in 

Sec. 1, the original motivation for both the Jeffreys and Bernardo tamperings; 

but the arbitrary parameter "a" cancels out entirely from Laplace's leading 

term, appearing only in higher terms of relative order n- l • 
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Had we been estimating A instead, we should find the result 

(A)est=A'±6A, where A'=x, 6A=s/.fii. But Laplace's result (5-14) is 

a function only of the statistic t = (A' - Aol/6A, and Jeffreys' (5-13) is 

too for all practical purposes (exactly so if Ao=O, as Jeffreys assumes). 

Therefore, while considering a unknown has considerably complicated the 

mathematics, it does not lead to any real difference in the conclusions. 

Again, Laplace's test yields the same information as that of Jeffreys, 

and in addition tells us the sign of (A - Ao)' In all cases--Jeffreys, 

Bernardo. Laplace, and the modern physicist's test--the condition that 

the data indicate the existence of a real effect is that It I »1. 

6. WHERE DOES THIS LEAVE Q1? 

In sunmary it should not, in my view, be considered "wrong" to ask 

the original question Ql = "What is the relative status of Ho and H1 in 

the light of the data?" But the correct answer to that question depends 

crucially on the prior range of A according to Hl ; and so the question 

appears in the retrospect awkward. 

Now the original motivation for asking Q1' stated very explicitly 

by Jeffreys, was to provide a probabilistic justification for the process 

of induction in science, whereby sharply defined laws are accepted as 

universally valid. But as both Jeffreys and Bernardo note. Ho can never 

attain a positive posterior probability unless it is given some to start 

with; hence that "pump-priming" lump of prior probability on a single 

pOint A = O. It seems usually assumed that this step is the cause of 

the difficulty. 
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398 E. T. JAYNES 

However, the question Ql is awkward in another, and I think more basic, 

respect. The experiment can~ot distinguish differences in A smaller than 

its "resolving power" I'iA = s/rri. Yet Ql asks for a decision betweer'l Ho and 

Hl even when IA-Aol < I'iA. On the other hand, the experiment is easily capable 

of telling us whether A is probably greater or less than AO (Laplace's 

question), but Ql does not ask this. In short, Ql asks for something which 

the experiment is fundamentally incapable of giving; and fails to ask for 

something that the experiment ~ give. 

[Incidenta lly, a "reference prior" based on the Fisher informati on 

i(A) is basically a description of this resolving power I'iA of the experiment. 

That is, the reference prior could be defined equally well as the one which 

assigns equal probabilities to the "equally distinguishable" subregions of 

the parameter space, of size I'iA. This prope,rty is quite distinct from that 

of being "uninformative," although they happen to coincide in the case of 

Single location and scale parameters.] 

But what we noted in Sec. 4 above suggests a different view of this. 

Why does induction need a probabilistic justification if it has already a 

more compelling pragmatic one? It is for the departures from the previoas 

line of induction (i.e., switching to Hl ) that we need--and Laplace gave--a 

probabilistic justification. Bernardo seems to have sensed this also, in 

being content with the fact that his p(HoID) tends only to 1/2 when Ho is 

true. Once we see that maintenance of the status quo requires no probabilistic 

justification, the original reason for asking Ql disappears. 
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7. CONCLUSION 

What both the Jeffreys and Bernardo tamperings achieved is that they 

managed to extricate themselves from an awkward start and, in the end, 

succeeded in extracting the same information from the data (but for the 

sign of A - AO) that Laplace's question QL = "What is the probability that 

there is a real, positive effect?" el icited much more easily. What, then, 

was that elusive question Q21 It was not identical with QL' and perhaps 

does not need to be stated explicitly at all; but in Cox's terminology 

we may take Q2 as !!).t implicate of Laplace's question whose answer is !. 

strict monotonic function of Itl. 

We have seen how the answers to seemingly very different questions 

may in fact convey the same information. Laplace's original test elicits 
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all the information that can be read off from Jeffreys' KJ(x,s) or Bernardo's 

KB(X). And for all purposes that are useful in real problems, Laplace's 

PL may in turn be replaced by the A' and 6A of a pure estimation problem. 

Because of this, I suggest that the distinction between Significance testing 

and estimation is artificial and of doubtful value in statistics--indeed, 

ne~ative value if it leads to needless duplication of effort in the belief 

that one is solving two different problems. 
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14. THE MINIMUM ENTROPY 

PRODUCTION PRINCIPLE (1980) 

Written in 1979, this work is still too new to have acquired much hindsight­
inspired criticism, at least from me. Its rambling, piecemeal character is the 
result of last-minute radical surgery to meet the length limitation of 10000 
words (the article originally written being over 40000). Therefore these 
comments now break precedent, to describe what this article does not 
contain, but should have. 

Some analysis of the logic of Onsager's theory, and of the de Groot­
Mazur approach, was sacrificed. Rather than giving a lengthy criticism of that 
thinking, it seemed more important to describe Tykodi's correction of it 
which, although applying only to the steady state, was logically unassailable 
and had been systematically ignored by the Establishment. Clearly, if I did 
not point it out, it would remain unknown. 

It would be hard to overestimate the importance of the work of Truesdell 
and his co-workers on the reformulation of the phenomenological theory to 
include arbitrary time variations and fading memory effects. This will surely 
be the format of thermodynamics (in the true sense of that word) in the next 
Century. It seems to me almost miraculous that they could reason out, 
without any appeal to molecular details, almost the identical mathematical 
formalism that my students and I arrived at laboriously, by many years of 
statistical analysis. This work too has been systematically ignored by the 
Establishment, and I regret not having said more about it here. 

Some comments on Gibbs' Heterogeneous Equilibrium (pointing out that 
the 'Gibbs Paradox' about entropy of mixing was explained and resolved 
already in this early work; but this was missed by later writers who had read 
only his unfinished Statistical Mechanics) were also deleted, and will appear 
elsewhere. 

But the great lacuna is the one only crudely plugged up by the paragraph 
on page 421, referring to Mitchell's macroscopic source theory. Many pages, 
with some of the most important results of Irreversible Statistical Mechanics, 
lay on the cutting-room floor at this point. When gathered up again they will 
make another major article, in a sense the culmination of the whole Maxent 
approach in the application originally visualized. 
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THE MINIMUM ENTROPY 
PRODUCTION PRINCIPLE 

E. T. Jaynes 
Arthur Holly Compton Laboratory of Physics, Washington University, St. 
Louis, Missouri 63130 

INTRODUCTION 

It seems intuitively reasonable that Gibbs' variational principle de­
termining the conditions of heterogeneous equilibrium can be gener­
alized to nonequilibrium conditions. That is, a nonequilibrium steady 
state should be the one that makes some kind of generalized~ntropy 
production stationary; and even in the presence of irreversible fluxes, 
the condition for migrational equilibrium should still be the equality of 
some generalized chemical potentials. 

We summarize progress to date toward this goal, reviewing (a) the 
early history, (b) work of Onsager and first attempts at generalization, 
(c) the new direction the field took after 1967 with the work of Tykodi 
and Mitchell, and (d) the present situation and prospects. Our conclu­
sion will be, briefly, that the outlook is good in that the basic principles 
are believed known; but we do not. yet know whether they can be 
reduced to simple rules immediately useful in practice, in the way that 
the Gibbs phase rule is useful. For this, we need more experience in the 
technique of applying them to particular cases, and more data to test 
some conjectures. 

EARLY HISTORY 

In 1848, Kirchhoff (1) generalized Ohm's law to three dimensions, and 
noted an interesting fact. If the electric field is E = - "il ct>, the conductiv­
ity a(x), then when a steady state is reached the potential ct>(x) must 
cause no accumulation of electric charge at any point: 

l. 

But this is just the Euler-Lagrange equation stating that the rate of 



ENTROPY PRODUCTION 403 

production of Joule heat in a volume V 

2. 

is stationary with respect to vanabons 84>( x) that vanish on the 
boundary of V. Thus the current distributes itself so as to dissipate the 
least possible heat for given voltages applied on its boundary. This is 
probably the first example of a steady nonequilibrium state determined 
by a variational principle. 

In this respect, quantitative nonequilibrium thermodynamics may 
claim an earlier origin even than our conventional equilibrium theory, 
for Kirchhoffs discovery antedated by 27 years Gibbs' announcement 
(2) of the general variational principle for heterogeneous equilibrium, 
and even preceded Clausius' introduction (3) of the word "entropy" by 
17 years. Yet 125 years after Kirchhoffs result, Girardeau & Mazo (4) 
state: "Variational methods for nonequilibrium statistical mechanics are 
virtually nonexistent." Why, after such a promising head start, has 
nonequilibrium theory lagged so far behind thermostatics? 

It was evident that Kirchhoff's result could be generalized, and 
quickly other laws of "least dissipation of -energy" and the almost 
equivalent reciprocal relations were found. In particular, an 1859 work 
of Helmholtz (5), which contained some of his greatest mathematical 
achievements, gave the acoustical reciprocity theorem, later extended by 
Rayleigh (6) and Lorentz (7) to mechanics and electrodynamics. 

These first applications (where the thermal aspect, although in the 
picture, was not in the foreground) all involved variational principles for 
energy dissipation. Gibbs surely had first-hand knowledge of them, for 
he had spent a post-doctoral year (1868-1869) with Kirchhoff and 
Helmholtz in Heidelberg. But in Gibbs' own work, which began to 
appear four years later, the thermal aspect was the primary thing, and 
he gave instead a variational principle for entropy. 

Gibbs lived another 25 years after completing his monumental work 
on heterogeneous equilibrium. Why then, with his seemingly perfect 
background for it, did not Gibbs himself generalize the Kirchhoff­
Helmholtz results, and announce the principle of minimum entropy 
production 100 years ago? Perhaps Gibbs saw at once the difficulty. 

Anyone familiar with Kirchhoff's work might simplify the arrange­
ment to this: two resistors R I' R 2 are in thermal contact with two heat 
reservoirs at temperatures TI , T2 • Connecting the resistors in parallel, we 
send a total current 1=11 + 12 through them. How does it divide? 

When a steady state is reached, the rates of production of heat and 
• 2 2' 2 2 entropy are Q=RJ/J +R2/2' S=(RtlTI)/1 +(R 2/T2 )/2 • The entropy 
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production is a minimum when the current distribution satisfies 
R,I,/T, =R2 12/T2 • We know, of course, that the actual distribution 
will satisfy Rill =R 2 12 , which is the condition for minimum heat 
production. 

The example is admittedly oversimplified; but one can invent arbi­
trarily complicated networks with the resistors at different temperatures 
and again, given the existence of a potential field q,( x) and the phenom­
enological laws tJ.q,; = R;I, connecting current and potential difference 
for the individual elements, the steady-state current distribution for any 
applied voltages or currents is completely determined by Kirchhofrs 
condition of charge conservation at the nodes; there is logically no 
room for any further principle. 

Now there is nothing special about electric current; what is true for 
fluxes of electrons is surely true for fluxes of any kind of stable 
particles, or of anything else that is conserved (energy, momentum, etc). 
Given the phenomenological relations connecting fluxes and forces, the 
steady state is determined by the conservation laws, leaving no room for 
any other principle; but then, what are we to make of the recent 
discussions of it? 

Prigogine (8) postulates the existence of fluxes .f; and forces X;, 
connected by the phenomenological relations l;=L,jXj (summation 
over repeated indices understood), so defined that the rate of entropy 
production is S=l;X,=LijX;X,. Considering so~e of the forces to be 
fixed and others to be free, the condition that S be a minimum with 
respect to a free variable Xm is as/aXm=(Lmj+L,m)X,=O, if the L,j 
are constants. But if the reciprocal relations Lij = L,; hold, this is the 
same as Jm=O, which is considered synonymous with "stationary state." 
This is the entire content of his theorem. 

de Groot & Mazur (9) generalize Prigogine's treatment by taking 
spatial variations (but not convection currents) into account. They 
undertake to show that in heat conduction, "the stationary state is 
characterized by a minimum of the entropy production, compatible with 
the imposed temperature distribution at the walls of the system." Their 
proof is a paraphrase of Kirchhofrs, and it requires the assumption that 
the phenomenological coefficient Lqq defined by the heat current ex­
pression Jq=Lqq V(T- I ) is independent of temperature; i.e. that the 
thermal conductivity h defined by Jq = - A V T varies with temperature as 
T- 2• 

Since there is no known substance obeying this relation, there is no 
real situation involving heat conduction where the stationary state 
would be predicted quantitatively by minimizing entropy production. If 
hCJ:. Tb, the steady state is the condition for minimum rate of production 
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of the quantity F= fTb+ 2dS. But for all b, the steady state is predicted 
correctly by energy conservation, V .Jq= V ·(TbVT)=O. The same diffi­
culty would have invalidated Kirchhoffs theorem if the electric conduc­
tivity a varied with the potential <[>. 

de Groot & Mazur then give a more general example involving 
simultaneous heat conduction, diffusion, and chemical reactions. Their 
argument must now assume all the phenomenological coefficients Lij 
involved to be independent of both temperature and the concentrations 
of the participating substances. 

In all the examples given in (8,9), after these restrictive assumptions 
are made the final Euler-Lagrange equations expressing minimum en­
tropy production reduce simply to the conservation laws, which were 
valid exactly without any restrictive assumptions. So if we have enough 
information to apply the principle with any confidence, then we have 
more than enough information to solve the steady-state problem without 
it. This same criticism was made by Klein (10). 

Gibbs surely would not have given any principle unless it met his 
standards of logical precision and was of some constructive use; so we 
are no longer surprised at his failure to give this one. 

Yet after all criticisms, there remains a feelfug that the principle does 
at least hint at an important truth, however imperfectly expressed. If the 
principle had nothing in it but misdirection, there would be no reason to 
write a review article about it. 

REORIENTATION 

There is a major part missing from our theoretical structure: On the one 
hand, the Kirchhoff-Helmholtz principles call out for generalization to 
thermodynamics; on the other, Gibbs' variational principle calls out for 
generalization to nonequilibrium cases. Surely, this gap can be filled; i.e. 
there must exist an exact variational principle for steady irreversible 
processes. It should include Gibbs' principle as a special case and be 
also (a) precise and general, requiring no restrictive assumptions like 
the above, and (b) constructive, yielding useful information that we 
would not have without it. But to find such a principle we must reorient 
our thinking in two respects. 

First, we note the backward direction of the logic in the aforemen­
tioned examples. One assumed phenomenological forms which were 
only approximate; then stated a principle which could be only an 
approximate substitute for the conservation laws. We should rather take 
the conservation laws as exact and given, and seek a principle which 
gives the correct phenomenological relations without our having to 
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assume them. It is reasoning in this direction that might lead to a 
precise, constructive principle. 

But reversing the direction of the logic ought to reverse the principle. 
If the conservation laws represent the approximate condition of mini­
mum entropy production for prescribed approximate phenomenological 
laws, then perhaps the exact phenomenology is the one that has maxi­
mum entropy production for prescribed exact conservation laws. In­
deed, such a reversed principle would be much closer to the spirit of 
Gibbs' work. 

Second, we need a verbal reorientation. The main difficulties that 
have retarded progress for a century are not mathematical, but concep­
tual; and these in tum are mainly artifacts of semantics. The words 
"irreversible," "entropy," "probability" are used indiscriminately with 
many different meanings, and the fact that the same word is used 
prevents many from seeing that the meanings are different. 

Thus such a common phrase as "the paradox of how to reconcile the 
irreversibility of the second law with the reversibility of the equations of 
motion" records not a paradox but an abuse of language, the term 
"reversible" being used with two entirely different meanings. It is 
impossible to think and communicate rationally about these problems 
unless we use different words and symbols to convey different ideas. 

By far the most abused word in science is "entropy." Confusion over 
the different meanings of this word, already serious 35 years ago, 
reached disaster proportions with the 1948 advent of Shannon's infor­
mation theory, which not only appropriated the same word for a new 
set of meanings; but even worse, proved to be highly relevant to 
statistical mechanics. So it is necessary to insert at this point a short 
lexicon. 

ENTROPY 

As befits a word with many mutually contradictory meanings, "entropy" 
has also a rich and varied folklore concerning its etymology. According 
to Prigogine (8) it comes "from the Greek fP"'P0'1TT/ meaning 'evolution'." 
According to Clausius (3) it comes from "'P01TT/, meaning "a turning" or 
"a turning point" (the same root that appears in isotropic, phototropic, 
troposphere, etc). Clausius states that he added the en- only to make the 
word look and sound like "energy," although he might have noted that 
en- is in Greek, as in German and English, a standard modifying prefix, 
and fnp01TT/ which (according to three Greek dictionaries and two 
Greek friends) means "to tum one's head aside," rather neatly expresses 
the one-sided character of S that he had discovered. Because every 
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German noun is required to have a gender he also determined, by 
means unexplained, that "Die Entropie" is feminine. 

Prigogine & Mayne (11) consider a quantity SpM which they call 
"entropy," so defined that only near equilibrium can one express it in 
terms of macroscopic quantities. Their "second law" SPM :>0 is then to 
be a theorem in dynamics, and not in phenomenological physics. 

The "entropies" with which we shall be concerned here are of a 
totally different nature. First is the experimental entropy SE of Clausius, 
Gibbs, and G. N. Lewis, which is by construction a function 
SE(T, P, M, .. . ) of the observed macroscopic quantities. For us, as for 
them, the term "second law" refers to a property of SE observed in 
laboratory experiments. It is therefore, by definition, a proposition of 
macroscopic phenomenology. Whether it might be also a theorem in 
dynamics was answered in the negative already by Gibbs (2) with a very 
vivid example of gas diffusion. 

Second, we use the information entropy Sf= - ~Pllogp;, a property 
of any probability distribution. In quantum theory, the {P,} are eigen­
values of a density matrix p, and Sf(P)= -Tr(plogp). 

If Sf is maximized subject to certain constraints {AI'" An}' the 
maximum attained defines a third entropy SeAl'" An)=(Sf)max' which 
is a function of those constraints. Since we may choose the constraints 
in many different ways, there are many different quantities S(A), with 
different meanings. Just as Clausius' SE is undefined until we specify 
which macroscopic variables are to be used, one must also indicate in 
each case which constraints are used-and therefore become the inde­
pendent variables-in defining S(A). In our applications, the {A,} may 
be any macroscopic quantities about which we have some information. 

To keep the distinctions clear, our SE is, as in conventional thermody­
namics, a numerical multiple of Boltzmann's constant k, while Sf and 
S(A) are dimensionless, following Shannon. Being defined as the maxi­
mum in a constrained variational problem, S(A) will have, like SE' a 
tendency to increase whenever a constraint is removed, thus paralleling 
in our mathematics what is observed in the laboratory (12). 

Many other entropies appear in the literature, among which we note 
the Boltzmann and Gibbs SB' SG defined from the single-particle and 
N-particle distribution functions, and the quantity SBEP=klogW of 
Boltzmann, Einstein, and Planck. The relations between these have been 
discussed in detail elsewhere ( 13a, b). 

As should be evident, there is no possibility of finding the correct 
relations for irreversible processes unless one understands clearly the 
distinctions in meaning and the different properties of SE' Sf. 
S(A). SB' SG' and SBEP' We can hardly expect that the variational 
principle we seek can hold for all of them. While the properties of Sf 
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and S(A) are mathematical theorems, those of SE are summaries of 
experimental facts. 

For a closed system, Clausius defined SE by the integral of dQIT 
over a reversible path and stated that, in an adiabatic process from an 
initial equilibrium state (Tp VI) to a final one (T2' V2 ), 

SE(2);;' SE(I) 3. 

with equality if and only if the process is reversible. Of all the state­
ments of the second law made by Clausius and Planck, only Eq. 3 meets 
our requirements of logical precision; given certain provisos that we 
have stressed before (13), its truth or falsity can be determined in the 
laboratory to an accuracy limited only by the accuracy of our measure­
ments, and not by the accuracy of definition of the terms in the 
equation. But in applications it tells us only in what general direction a 
change of state will go-not how far, how fast, or along what path. 

Gibbs (2) generalized this to open systems and showed that a stronger 
statement is more useful in practice, telling us precisely "how far" and 
thus leading to quantitative predictions of the final equilibrium state 
reached. Let us call Eq. 3 the Clausius weak form of the second law, 
and append to it the Gibbs strong form: SE not only "tends" to 
increase; it will increase, to the maximum value permitted by the 
constraints imposed. The exact constraints for which this is asserted 
(essentially the conservation laws) involve some standard technical 
discussion. 

In the strong form we see entropy rising above its obscure beginnings 
and, so to speak, "presiding over" all of thermostatics; i.e. it determines, 
by its variational properties 8S = 0, the set of all possible equilibrium 
states. In a similar way, the Lagrangian L presides over all of mechanics 
and electrodynamics, determining by its variational properties 8 J Ldt = 0 
all the equations of motion, in any coordinate system. 

We seek a generalization of entropy with properties more like a 
Lagrangian, which can by its variational properties generate our "equa­
tions of motion," telling us how fast, and along what path, an irreversi­
ble process will take place. The first general attack on this problem was 
made by Onsager (14a, b), whose work we now survey_ 

ONSAGER'S THEORY 

Irreversible thermodynamics had its historical ongms in Thomson's 
analysis of the thermocouple in 1854. For the effect of transporting a 
charge q around the circuit, he assumed that one might apply Carnot's 
principle in the form ~QJT;=O to the reversible Peltier and Thomson 
heat effects even though irreversible heat conduction was also present. 
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Indeed, unless something like this were true, there would be few real 
applications in which one could ever apply Camot engine arguments 
with any confidence. His assumption went beyond the principles of 
thermostatics and yielded, for the interaction of heat flow and electric 
current, the first example of an "Onsager reciprocal relation." 

By 1931 many such relations had been noted, and Onsager (14) 
sought a general theoretical justification for them. His argument is still 
worth recalling because the formal relations survive, generalized and 
reinterpreted, in our present theory. We summarize it briefly, noting the 
four "serious" assumptions by Roman numerals and limiting comments 
to the square brackets. 

A closed system is characterized by certain parameters {O 1 •.• On}' so 
defined that they vanish in the equilibrium state of maximum entropy. 
Then in a neighborhood of equilibrium we may expand: 

S=So-(1/2)IG,Jo,oJ+'" 4. 

where G is a positive definite, symmetric matrix, G= GT• The system is 
displaced from equilibrium by means unspecified, then released to find 
its way back to equilibrium. The derivatives 

5. 

are thought of as the "forces" which drive the system back according to 

I. a;=IJL,jJS 6. 

where the L;j are the "Onsager phenomenological coefficients." Thus 
the a's relax to zero along a trajectory given in matrix notation by 
a= -LGa, or 

a(t+T)=exp( -LGT)a(t), 7. 

Now we turn to situations very close to equilibrium and examine the 
small thermal fluctuations in the a's (which were neglected above). We 
postulate that the same entropy function Sea,) that supplied the forces 
X, is also to supply the probability distribution of these fluctuations, i.e. 
the equilibrium distribution of the a's at equal times is given by a 
density function 

II. 8. 

where k is Boltzmann's constant [at this point it appears that Onsager's 
entropy is most closely related to the SBEP noted above]. Denoting 
averages over this distribution by angular brackets, we have <aj ) =0, 
while the matrix of second moments, KjJ=<a;aj ) is essentially the 
inverse of G: KG = GK = kI, where I is the unit matrix,' K.. is a 

'J 
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covariance indicating how far, but not how rapidly, the a, may be 
expected to fluctuate about zero. 

We now make an assumption about this: that the average regression 
of these spontaneous fluctuations follows the same law, Eq. 7, as that 
assumed for forced deviations from equilibrium. That is, given the event 
a(/), the conditional average of a(t+-r) at a later time, over many 
repetitions of the event, shall be 

III. <a(/+-r» =exp( -LG-r)a(t), -r>0. 9. 

[This step is characteristic of the logic of stochastic theories; instead of 
asking what the microscopic equations of motion have to say about the 
matter, one simply ignores them and introduces intuitive "stochastic 
assumptions" at the macroscopic level.] 

With this assumption we can define a time-dependent covariance 
matrix: 

10. 

in which the double average is over the different motions averaged in 
Eq. 9, and then over the distribution, Eq. 8. Inserting Eq. 9 into Eq. 10, 
this means that the covariance matrix must also decay according to the 
macroscopic law, Eq. 7: 

K( -r)=exp( -LG-r)K(O)=K(O) exp( -GL-r), -r>0 II. 
\ 

where K(O) = kG- I is the same matrix that we denoted by K above, and 
we used an identity of any matrix function: j(LG)G-1=G-1f(GL). 
K(-r) as defined by Eq. 10 is independent of t; K( _-r)=KT(-r); or from 
Eq. II, 

K(--r)=K(O)exp(-GLT-r), -r>0 12. 

since the transposed matrix function isfT(LG)=f(GTLT)=f(GLT). 
Finally, we invoke the famous assumption that Onsager called "mi­

croscopic reversibility": 

IV. K( --r)=K(-r). 

Comparing Eq. II and 12 we have the grand result 

L=LT. 

13. 

14. 

Onsager's argument showed a remarkable instinct for sensing the 
right formal relations, which have stood the test of fifty years. But he 
chose a thorny path to them, ignoring the smooth path made by his 
predecessor at Yale. The relation he needed was Eq. 11; given that, the 
rest of the derivation is a two-line triviality. But to reach it he (a) 
assumed a phenomenological form that was (Ia) linear, (Ib) without 
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memory; (b) assumed that the average regression of fluctuations fol­
lows that same phenomenological law; (c) from these deduced Eq. 11: 
the covariance function K(/) also follows that phenomenological law. 

But had he taken the path of a Gibbsian statistical theory instead of a 
stochastic one, this result-including space dependences and all mem­
ory effects-would have been present from the start with no need to 
assume any phenomenological form or to mention regression of fluctua­
tions at all. For in such a theory, the predicted space-time dependence 
of any macroscopic process is given by a covariance function 
K(x, I; x', I'). 

For example, in acoustics the sound pressure ~P(x, t) due to a source 
distribution s(x', I')sec- I (i.e. cm3 sec-1per cm3 ) is given by a linear 
superposition 

~P(x. 1)= f d 3x' r dl'G(x, I; x', 1')S(x', I'). 
-00 

15. 

At thermal equilibrium. Gibbsian statistical theory gives for the Green's 
function 

G(x, I; x', t')=(l/kT)<~P(x, 1)~P(x', I'», 16. 

i.e. just (kT) -I times the covariance of the- thermal pressure fluctua­
tions. This linear response kernel contains all memory effects, including 
propagation time delays, reflection from walls. "ringing" due to multiple 
scatterers and resonators, ultrasonic dispersion and attenuation due to 
relaxation in the medium, etc. Its obvious symmetry is just the Helm­
holtz-Rayleigh reciprocity theorem. 

Onsager's viewpoint fits in nicely with our conjectured reorientation. 
If, as stated by Eq. 5, the force driving the system back to equilibrium is 
the entropy gradient, then instead of minimizing entropy production, 
the system is maximizing it, trying to get to equilibrium as rapidly as it 
can, subject to whatever restraints are preventing this. But looking at the 
relations in this way suggests an additional conjecture. 

It appears to us that Onsager might have obtained more useful results 
by making a different assumption, which seems no stronger than Eq. 13. 
Since G is real and symmetric. it can be diagonalized by an orthogonal 
matrix O. In the coordinate system of the new variables a~=~;Ok,a" 
the matrix G' = OGO- 1 is diagonal. and so the force X~ is merely a 
numerical multiple of a~. The a~ are uncorrelated at equal times and the 
entropy function S = ~S( a~) is the same as if we had n separate, 
noninteracting systems. So it seems plausible that in the absence of 
magnetic or Coriolis forces the a~ should relax independently; in other 
words, that the new phenomenological matrix L' = OLO- 1 should also 
be diagonal. If so, then Land G must commute in the original 
coordinate system [a,]. 
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But LG=GL is a stronger condition than the Onsager symmetries 
L=LT. For example, with n=3 fluxes, the Onsager relations red,uce the 
number of independent phenomenological coefficients from n2 = 9 to 
n(n+ 1)/2=6. The condition LG=GL yields these and three additional 
relations, leaving only n= 3 independent coefficients. If the matrix G 
were known from equilibrium measurements, one would then need only 
three non equilibrium measurements: for example the self-conductances 
L II , L 22 , L33 ; whereupon all six coupling coefficients L ij , i=l=j, would be 
determined. In the case n = 2, the coupling coefficients would reduce to 
LI2=L21 =G 12(L 11 - L 22 )/(G 11 - G22 )· 

We point this out in the hope that some readers may be in possession 
of enough experimental data to check the relation LG= GL. If this 
conjecture should be confirmed, irreversible thermodynamics would 
become more useful, since one could predict considerably more about 
irreversible processes from equilibrium data. 

INTERLUDE 

In the 1940s and 1950s some attempts were made to generalize Onsager's 
treatment to a macroscopic continuum theory based on the notions of 
local equilibrium and local rate of entropy production. In 1962 this 
approach was summarized in the book of de Groot & Mazur (9), where 
references to the vast literature it generated can be found. 

This approach postulates the existence of a local entropy density 
s(x, t) which plays the role of a field variable. It is to have also a flow 
rate 1. and source strength a( x, t) > 0, so as to obey the field equation 
s+ V ·Js=a(x, t). Entropy is thus conceived of as a kind of fluid which, 
once created, is conserved forever after. 

Mathematically, the notion of entropy can be generalized to non­
equilibrium conditions in many different ways. Basically, the issue is not 
which is "correct," but which ones have demonstrable and useful 
physical properties. We agree that a useful theory should be set up as a 
continuum field theory; but if we allow entropy to degrade into no more 
than one of many field variables, we shall lose just those properties that 
made entropy uniquely useful in the work of Gibbs and Onsager. 

Therefore we shall seek, rather, to elevate entropy to a functional 
S[A1(x, t) ... Aix, t)] over the thermokinetic history of the field varia­
bles so that it can retain those properties, while acquiring a new 
generating power like a Lagrangian; only thus do we see the possibility 
of reaching our goal. 

In any event, de Groot & Mazur use, without defining, a local 
entropy density in an inhomogeneous nonequilibrium state. In addition 
they suppose that the equilibrium expressions for temperature and 
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chemical potentials can be used as local field variables, obeying the 
Gibbs equilibrium relation TdS = dU + PdV - ~,,;dn; even when gradi­
ents and irreversible fluxes are present. 

Now one expects that procedures of this kind should, like Thomson's, 
meet with some success very close to equilibrium; and of course de 
Groot and Mazur did not claim any more than this. But a "local 
equilibrium" approach has no criterion for judging its range of validity 
and provides no basis for further development, since it contains scarcely 
any quantity that has a precise meaning in a nonequilibrium state. 

This approach, therefore, reached a dead end. The logic of using 
equilibrium relations in nonequilibrium situations was hardly an ad­
vance over that used by Thomson in 1854; indeed, we are unable to see 
wherein they differ at all. To make further progress beyond this point, it 
was necessary to go back to first principles and reason things out all 
over again, much more carefully, The coup de grace and final benedic­
tions were administered by Wei (15) and Truesdell (16). 

RESURRECTION 

In 1967, Tykodi (17) showed how entropy production theories might be 
not only salvaged, but made in a sense exact, using logic so simple and 
direct that one could not question any part of it without at the same 
time questioning a considerable part of established equilibrium theory. 
He simply abandoned altogether the notions of local equilibrium and 
local entropy production, and reasoned as follows. 

There is one case where logically impeccable inferences about an 
irreversible process were drawn from the relations of equilibrium the­
ory: the Joule-Thomson porous plug experiment of 1852. The inflowing 
gas is at thermal equilibrium with temperature and pressure (TI, PI)' 
and we measure the outflowing gas far enough downstream from the 
plug so that it has come back to thermal equilibrium, with new values 
(T2' P2 )· By a simple argument given in all the textbooks we are 
persuaded at once that, however violent the irreversible process taking 
place in the plug (it might, for example, involve locally supersonic 
velocities, shock waves, chemical reactions catalyzed by the plug, etc), if 
the plug cannot communicate directly with the outside world, so it does 
no work and all the heat generated must be carried off by the effluent 
gas, then when a steady state is reached, the (enthalpy + kinetic energy 
of mass flow) of the incoming and outgoing gases must be the same. 

In other words, established equilibrium theory does enable us to draw 
rigorous inferences about steady irreversible processes that begin and 
end in states of complete thermal equilibrium. This is just the conclu-
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sion we noted already in Eq. 3, and which had been stressed in the 
writer's pedagogical article (13). But as soon as we recognize this the 
road is straight and we can see for miles, for the Joule-Thomson 
example can be generalized endlessly. 

In the first place, the barrier need not be a simple "plug." It may 
contain apparatus of any complexity, and even if conditions in it never 
come to a steady state, but go into limit-cycle oscillations, if the 
apparatus contains suitable "mufflers" so that there is eventually uni­
form inflow and outflow, the conclusion still holds. 

Furthermore, nothing· restricts us to a system with only two channels, 
one for inflow and one for outflow. We can have any number of inflow 
channels, containing different chemical substances, or mixtures of them, 
at different pressures and temperatures, flowing at different rates; and 
any number of similar outflow channels. And nothing restricts us to 
gases; a channel could transport liquid, solids, plasma, electrons, radi­
ation, etc. There need not be a single reaction region; the plumbing 
might be arranged to carry any number of substances to any number of 
reaction vessels in any sequence. In short, we may imagine an arbitrary 
continuous-flow processing plant. 

For any such arrangement we can define an energy flux H; = (enthalpy 
+ kinetic energy of mass flow) transported from the reaction region per 
unit time or per oscillation cycle in the ith channel, and a similar 
entropy flux Sj. The reaction region may communicate directly with the 
outside world, doing work W per unit time or per oscillation cycle. 
Under these conditions the energy balance requirement gives rigorously 
"iH; + W=O, while at the same time the total rate of entropy production 
"is, is now unambiguously defined by equilibrium theory. 

Only at this point is one in a position to discuss entropy production 
principles in a meaningful way. All ambiguities about the definition of 
temperature and entropy in a nonequilibrium state have been eliminated, 
since however such notions mayor may not be defined eventually, at 
least in a steady state they are not changing. And we are not limited to 
near-equilibrium regimes with linear phenomenological laws; nor have 
we neglected fading memory effects. 

If .f; is the flux in the ith channel in moles (grams) per second, then 
the rate of entropy production is 

17. 

where kA j is the entropy per mole (gram) of the ith substance. If it is a 
pure chemical substance, then Aj = - p.J kT is essentially the chemical 
potential. The quantities Aj , which we call simply the "potentials," are, 
however, the fundamental quantities of our theory. 



ENTROPY PRODUCTION 415 

Although Eq. 17 looks at first glance like the Onsager expression 
S='"i.X,.!;, it has a different meaning. In the first place, Eq. 17 is not a 
quadratic approximation holding near equilibrium; it is the exact rate of 
entropy production for any departure from equilibrium. Secondly, there 
are more terms in Eq. 17 and they are not independent. If particles of 
type k enter via channel 3 and emerge unchanged but for pressure and 
temperature in channel 7, in Eq. 17 this contributes two terms k(A3J3+ 
A7J7 ), constrained by the conservation law J3 +J7 =0, but only one XkJk 
in the Onsager form. Where Onsager took his forces as derivatives, 
xk=aS/aak, we see that the exact "force" should be X~=k(A7-A3)' a 
finite difference of potentials. 

If we eliminate fluxes determined by the conservation laws and 
rewrite Eq. 17 in terms of independently variable fluxes we obtain the 
Onsager form SE='"i.X~Jk. In these terms, Tykodi states a minimum 
entropy production principle that, close to equilibrium, is equivalent to 
the Onsager relations. He conjectures that this principle (varying Xm 
while holding the other forces constant, minimum S occurs at Jm=O) 
should hold also far from equilibrium. It would be interesting to have 
experimental data which could check this. 

Of course, other conjectures may be made. If we restate the phenome­
nology in differential form, dlk = '"i. j LkjdX) , then the symmetries Lkj= 
Ljk will hold in the nonlinear regime if and only if there exists a 
functionj(X\ ... Xm) such that Jk=aj/axk. Because it appears that this 
form may be obtained from a Gibbsian statistical theory, experiments to 
check the symmetry of L kj far from equilibrium would be of great 
interest. 

In summary, progress to this point consists of some conjectured 
principles that, thanks to Tykodi, can at least be stated in precise and 
experimentally meaningful terms so that their correctness or incorrect­
ness can be determined in the laboratory. But we set for ourselves a 
more ambitious goal than this. 

Since the methods of 'analysis reviewed above were not powerful 
enough to guide us to the missing theoretical principle, we are driven 
finally to recognize what should have been obvious from the start. Only 
the Gibbs standards of logical reasoning were powerful enough to give 
us the first variational principle, on which physical chemistry has been 
feeding for a century; and only a Gibbsian statistical analysis is powerful 
enough to extend that principle to irreversible processes. But in recent 
years the field that is now called "statistical mechanics," with its 
reversion to kinetic theory, stochastic equations, and ergodicity, has 
deviated so widely from the program for which Gibbs introduced that 
term, that we need to coin a new name for Gibbs' program if we are not 
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to propagate still more semantic confusion. We now explain briefly an 
extension of Gibbs' work currently underway, set apart by a new 
descriptive word. 

PREDICTIVE STATISTICAL MECHANICS 

Predictive statistical mechanics is not a physical theory, but a form of 
statistical inference. As such, it is equally applicable in other fields than 
physics (e.g. engineering, econometrics, etc). In fact, it is having its 
greatest current success in the new techniques for image reconstruction 
in optics and radio astronomy (18a,b). We emphasize the sharp distinc­
tion in purpose and content between these two methods of reasoning. 

A physical theory asks bluntly, "How does the system behave?" and 
seeks to answer it by deductive reasoning from the known laws of 
physics. But, for example, the Onsager reciprocal relations cannot be 
proved by deductive logic from the equations of motion (they are not 
true for every possible initial state). Therefore, to obtain them in the 
manner of a physical theory requires that one make extra physical 
assumptions of an "ergodic" or "stochastic" nature, beyond what is 
contained in the equations of motion. 

Predictive statistical mechanics, instead of seeking the unattainable, 
asks a more modest question: "Given the partial information that we 
do, in fact, have, what are the best predictions we can make of 
observable phenomena?" It does not claim deductive certainty for its 
predictions, but to ensure the "objectivity" of the predictions we do 
make, it explicitly forbids the use of extraneous assumptions beyond the 
data at hand. The formal device which accomplishes this is that we shall 
draw inferences only from that probability distribution whose sample 
space represents what is known about the structure of microstates, and 
that maximizes SI subject to the macroscopic data. 

By this device, the probability is distributed as uniformly as possible 
over the class C of microstates compatible with our information. There­
fore, we shall make sharp predictions only of those phenomena which 
are characteristic of each of the vast majority of the states in C. But 
those are just the reproducible phenomena which a physical theory had 
sought to predict. 

Our aim is not to "explain irreversibility," but to describe and predict 
the observable facts. If one succeeds in doing this correctly from first 
principles, he will find that philosophical questions about the "nature of 
irreversibility" will either have been answered automatically, or else will 
be seen as ill-considered and irrelevant. 
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The background and technical details of this approach have been 
explained in another recent review article (19). We recall here only what 
is needed for the immediate purpose. 

On the space f of all possible microstates there is defined a measure 
df which may be classical phase volume: df=dq) ... dpN' or some 
appropriate generalization of this for quantum theory or any other 
microscopic theory that we might consider. Choosing some set of 
macroscopic variables {A) ... All' n<<<N}, the set of their possible values 
defines a macrospace O. The mapping of f onto 0 defines a measure on 
o by projection: 

18. 

where the region R of integration is all microstates for which Aj is in 
dA"It;;;it;;;n. 

Microscopic properties are relevant to macroscopic predictions only 
to the extent that certain aspects of the microstates "leak through" and 
appear at the macroscopic level. Most evident _are the conservation laws 
for mass, energy, and momentum, which made it possible to discover 
the principles of mechanics at the macroscopic level long before they 
were recognized as equally valid microscopically, leading to the first 
law. Next in importance is the above measure W; through this the 
fantastically great variations in number of microscopic possibilities of 
realization manifest themselves at the macroscopic level, as the second 
law. At sufficiently low energies, log W becomes essentially independent 
of other parameters, leading to the third law. 

These are the only microscopic properties involved in conventional 
equilibrium thermodynamics; the content of Gibbs' variational principle 
is that, given the measure W as a function of certain macroscopic 
quantities (energy, volume, mole numbers, etc) the equilibrium proper­
ties of a system are determined. As a procedure for inference, his 
principle amounts to this: We shall predict that behavior that can 
happen in the greatest number of ways, consistent with our data. 

Predictive statistical mechanics seeks to do no more than this, but 
only to do it more generally. All its mathematical formalism is nothing 
but a kind of bookkeeping system by which we may "count the number 
of ways" in which various conceivable events can happen, consistent 
with whatever macroscopic data we may have. If our data are of the 
kind considered by Gibbs (constant in time, piecewise homogeneous in 
space), then our principle will reduce to his. It is more general in that we 
must be prepared to deal, both in the information used and in the 



418 E. T. JAYNES 

predictions made, with arbitrary space-time dependences. Mathemati­
cally, this means that the functions of Gibbs are promoted to function­
also 

Any probability distribution w( qJ ... PN) over microstates defines a 
macroscopic distribution P(A J ••• An) on n by w df=PdA. Its informa­
tion entropy is then 

Sf= - f wlogwdf= - fdA P(A)log[ P(A)jW(A)} 19. 

and so, given the measure W( A), we may carry out the maximization in 
either space. 

Direct evaluation of W would be very difficult; much more manage­
able and equally informative is its n-fold Laplace transform, called the 
partition function: 

Z(AJ ... An }= LWe->..·AdA = Ire-Udf 20. 

where we used the abbreviations dA = dA J ••• dAn' A· A = ~,AiA;. 
When the integral converges, it is because the rapidly increasing factor 
W is overpowered by an even more rapidly decreasing factor exp( - A· A), 
so that the integrand W exp( -A·A) has an enormously sharp peak at 
some point {A,}. Most of the contribution to the integral then comes 
from the immediate neighborhood of this peak. 

Now the probability density peA) which maximizes Sf subject to 
prescribed mean values <A, > is just the canonical distribution P(A)= 
Z- I W( A) exp( - A· A), of which Gibbs gave several examples. The peak 
of this density in the macrospace n is so sharp that for all practical 
purposes the mode A, and mean <A,) are the same. Therefore we need 
only choose the {A,} so as to place that peak at the experimentally 
observed values {Ai ... A~}. The simplest way of doing this is to note 
that the first moments of P( A) are given by 

21. 

so setting these equal to the experimental values <A,) =A;, gives n 
simultaneous equations for the n unknowns A,. 

In fact, all moments of P( A) are determined by derivatives of log Z; 
differentiating Eq. 21 with respect to \' we find a combined reciprocity­
covariance law: 

22. 

and we suspect already that reciprocal relations are going to appear 
rather trivial in this theory. 
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Note that these relations are perfectly general, whatever microscopic 
theory we imagine as underlying the macroscopic one. This is a point 
that was stressed by Einstein many years ago, and it is the reason that 
he was able to move so confidently in the transition from classical to 
quantum theory. He knew that Eq. 22 was trustworthy whatever our 
microscopic theory; as long as conservation of mass and energy were 
not being called into question, the only thing that could change was the 
underlying measure: Wcla.r.s-W qIIQIIIJom. So he applied Eq. 22 to determine 
the energy fluctuations (~E)2 of black-body radiation from the empiri­
cal Planck law a(E) jaT, noted a term identical with the fluctuations 
of an ideal gas, and inferred the existence of photons. 

Having noted this generality, we may equally well use the notation of 
quantum theory; the A, are then operators, the canonical density matrix 
p=Z-1 exp( -A·A) maximizes Sf= - Tr(plogp) subject to given values 
of A;=(A,) = Tr(pA,), where the partition function is Z(A)=Tr 
exp(-A·A). 

For a system of macroscopic size the measure 10gW(A;) is (13,19) 
essentially the maximum of Sf thus attained: (Sf)max=S(Ai ... A~) 
= 10gZ+A·A'. For all purposes that could be relevant experimentally, 
S(A') may be taken as the logarithm of tDe number of microstates 
compatible with the macroscopic data A;. If this function is known, then 
the A'S (which arose as Lagrange multipliers in the maximization of Sf) 
are given simply by A,=aSj3A;. They are, therefore, just the "poten­
tials" appearing in Tykodi's entropy production rate, Eq. 17. 

The potential A, thus measures the rate at which the number of 
microscopic possibilities would change if A; were slightly different. 
According to Onsager's interpretation, Eq. 5, the "statistical force" that 
drives a system back to equilibrium is essentially a change in A, given 
near eqUilibrium by the matrix G of second derivatives of S(A'). 
Tykodi's Eq. 17 suggests that this may be, in fact, exact. 

All the formal properties noted above-although perhaps not the 
interpretation we have just made-have been well known for many 
years; if the A, are energy and mole numbers, P(A) reduces to the grand 
canonical ensemble of Gibbs. Predictive statistical mechanics applies 
this same formalism, with more general choices of the A, than Gibbs 
made. Two different stages of generalization, and therefore two differ­
ent generalized entropies S(A'), are useful in present applications. 

The qmtntity A, might be observed at different positions A,(x); for 
each such datum there would be a Lagrange multiplier A,)" In the limit 
as the points Xj become dense, the scalar product A·A then goes into 
A·A_~;/Ai(X)Ai(X)d3X. If all this pertains to one time t, we indicate 
this by a subscript t: the partition function and entropy then become 
functionals Z,=Z,[A,(x)], S,=S,[A~(x)]. 
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The density matrix P, = Z,-I exp( - A· A) is then, for certain choices of 
the As, formally identical with what has been called a ··local equilibrium" 
density matrix, but its meaning is here entirely different; in particular, it 
has nothing to do with equilibrium. p, represents information about the 
space distribution of the fields at one instant of time, and no other 
information whatsoever, because it has maximum SJ subject to that 
constraint. The functional S, measures the number of microstates com­
patible with that information, and it generates the potential fields A;(X) 
by what has now become functional differentiation: A;(x)=8S,/8A;(x). 

Note that S, measures the total number of all microstates compatible 
with the macrostate A;(x) at time I, regardless of the thermokinetic 
history by which the system came into that state. Thus it contains, with 
various relative weightings, a kind of mixture of every conceivable 
history. It is obvious, then, that in general P, cannot contain enough 
information to predict other quantities B, or the future evolution of the 
system; for the characteristic feature of irreversible processes is the 
appearance of fading memory effects, and in P, all memory of the past 
has been thrown away. This is the logical defect that makes any "local 
equilibrium" approach inadequate. 

In 1964, Robertson (20) showed now, in spite of this, one can make 
predictions of later irreversible behavior from P, by adding corrective 
memory terms that accumulate as one integrates the equations of 
motion forward in time from I. This work developed and applied the 
con~inued fraction expansion, later given by Mori. If the important 
relaxation times are short compared to the time over which one can 
trust second-order perturbation theory, then one reaches a "plateau" at 
which transport coefficients may be calculated, as was indeed shown by 
Green and Kubo in the I 950s. Robertson's recent review (21) gives an 
extensive list of the many works to 1978 based on this approach. 

But there is a more elegant and general way of incorporating memory 
effects into this theory. Let the A;(x) now become time-dependent 
operators in the Heisenberg representation, and suppose we add infor­
mation about their values at various times Ij" Each of these will now 
acquire its Lagrange multiplier Aij(X), and again in the limit of dense Ij 
we have an integral over time. The dot product now goes into 

23. 

in which R; is the space-time region in which we have information 
about A;(x, I). The new entropy functional S[A;(x, I)] is over all the 
known thermokinetic history of the system, and it measures the number 
of microstates consistent with that specific history. 
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Analogous to the world-lines of relativity theory, the evolution of a 
microstate may be visualized as a world-line in "phase space-time," and 
S is the cross-section of a tube formed of all world-lines by which the 
given history could have been realized. Let us then call S for any 
particular history the caliber of that history. 

We have indicated recently (19) some of the technical details and 
results of this space-time theory, and applications to hydrodynami,:s are 
given by Grandy (22). If the specified history {A~(x, t), x, t in R;} 
includes all that is relevant in the laboratory for determining reproduci­
ble behavior, then the new ensemble based on Eq. 23 automatically 
includes all memory effects; the plateau phenomenon is eliminated and 
one now obtains transport coefficients by direct quadratures over the 
initial ensemble; they are the full "renormalized" ones. 

The theory is freed from previous limitations to the quasi-stationary, 
long-wavelength case; when all memory effects are included, there is no 
longer any limitation on time scale or space scale. Thus, as shown in 
(19), a single equation for the predicted space-time dependence of 
particle density encompasses both static diffusion and ultrasonic disper­
sion and attenuation. 

An important addition to the technique of applying this theory was 
added in 1967 by Mitchell (23) in his theory of macroscopic sources, 
which was identical in philosophy with Schwinger's source theory for 
quantum fields. From Mitchell's viewpoint, the acoustic Green's func­
tion formula Eq. 16 appears as an obvious triviality. He went on to 
some elegant theorems showing how variational properties of the caliber 
S of a process determine the conditions for migrational equilibrium in 
nonequilibrium states, and reciprocity-response theorems about the 
effect of imposing a new constraint, by which any "renormalization" 
effects may be analyzed. In the course of this, he formulated what is 
now called "mode-mode coupling theory." We hope to present elsewhere 
a detailed account of the kind of results that may be obtained by 
Mitchell's methods. 

The caliber S of a space-time history determines by its variational 
properties most of the relevant physical information one would like to 
have. Its first variations determine the conditions of migrational 
equilibrium, while its second variations generate the "equations of 
motion." To see why this is so, suppose we have information IA from 
one space-time region R A, which determines a caliber SA; and we wish 
to predict-or retrodict-events in some other region R B • Now we 
could imagine that someone had given to us a conjectured answer I B to 
this, so that we had the total information I=IA+IB • What would be the 
caliber S of the combined process? Since S is the result of maximization 
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subject to a further constraint I B' we shall have S <:. SA with eqUality if 
and only if the new information is redundant; i.e. if it is what the theery 
would have predicted from the old information I A • Thus the theory 
always predicts those events in R B for which the total thermokinetic 
process will have maximum caliber-an obvious generalization of Gibbs' 
variational principle. 

Although the principle itself evidently holds far from equilibrium, the 
explicit form of the equations of motion is easily found close to 
equilibrium where we expect them to be linear. Let So be the caliber 
corresponding to thermal equilibrium (it is just k-1SE ); and let 8A = 
{8Ai( x, t) . .. 8A~( x, t)} be some small departures from equilibrium con­
ditions in R A , while we wish to predict the similar departures 8B of 
some quantities B (which may be the same as the As) in R B • Then the 
caliber determined by IA will be given by an expansion SA =So­
(l/2)8A·GAA ·8A, generalizing Onsager's Eq. 4. However, this is com­
pact notation; we remind ourselves that 8A· GAA · 8A actually stands for 

Now if we add a small variation J3B, the caliber acquires more terms: 
S=SA -(1/2)8B·GBB ·8B-8B·GBA ·8A, where we have used GAB=GBA. 
For fixed 8A, the caliber is maximum when 

25. 

which is a set of simultaneous linear integral equations determining the 
8B. Had we been given 8B and predicted 8A, the result would have been 
GAA ·8A + GAB ·8B=O, and GAB = GBA implies a mass of reciprocal rela­
tions. Thus the Gs generated by second variations of S are the kernels 
of the equations of motion. 

S usually possesses a convexity property expressed by the inequality 
of any two neighboring ensembles: 8A· 8A' <:. O. This is a generalization 
of the condition given by Gibbs (Reference (2), Eq. 171) from which he 
deduced all his stability conditions, and leads in the present theory to 
the positive definite character of G. Then G can be inverted, and the 
inverse kernels K = G- 1 are the set of space-time covariance functions 
generalizing Onsager's Eq. 10, of which the acoustic Green's function 
Eq. 16 is an example. When the convexity fails, the theory predicts 
bifurcations or other instabilities, a generalization of Gibbs' condition 
for phase transitions. 
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CONCLUSION 

As the reader will have sensed, our title is a play on words; logical 
economy minimizes the principles, not the entropy production. We 
started by seeking an exact variational property characterizing the 
nonequilibrium steady state. One such is now apparent, although there 
may be others more useful. Consider a system evolving according to its 
equations of motion. Because the caliber S of its history up to time t 
embodies further constraints beyond those defining the local equilibrium 
~, we have S<. St, with equality if and only if that history is the one 
retrodicted from Pt. Now at each instant I' < I there is an St'lt defined as 
was ~ by maximizing Sf' but subject to the retrodicted values A;(x, I'). 
For reasons explained before (13), a retrodicted history could not be 
reproduced in the laboratory unless St'lt <. St; but it is a theorem (invari­
ance of Sf under unitary transformations) that St'lt> St. 

These inequalities yield the theorem: Of all reproducible histories 
terminating at a given state, that one which corresponds to constant St 
throughout the past has the greatest caliber: S= S,. At present it is not 
known whether this is a pragmatically useful principle in applications; it 
is, however, of some theoretical importance. . 

Readers of Truesdell's fresh and fascinating new approach to thermo­
dynamics (16) will resonate at Ollce to this statement. It is a paraphrase 
of what he calls a "major assertion" in need of proof, from which many 
other desired results will follow [Reference (16), pp. 22,43J. There is, 
evidently a close correspondence between these approaches; but to 
understand it fully and combine them into a single unified theory is a 
task for the future. 
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relevance function 304 
reliability tests 157-168 passim 

Shannon theorems 
asymptotic equipartition 83 
entropy 16 

significance tests (lee allo Jeffreys, 
Laplace) 

'chi squared 210,262,315,322,332 
exact levels 160 
F-test 157-158,160 
form of in physics 388-391 

statistical mechanics 
classical 7 -1 0 
generalized 13-15 
predictive 2,19,37,416-423 
quantum 20-25 passim, 6lff. 

statistics (8ee al80 Bayesian, orthodox) 
ancillary 219 
sufficient 26,169,174-175,182,197, 

199,386-388 
subjective 17 -18, 23 

H-theorem 27ff., 38 

thermodynamics 
equilibrium 10,53-57,109 
irreversible 7, 17, 25-28, 39, 75, 

111-112,238-239,287-310 
perturbation theory 298ff. 
second law of 19,74,80,82-86,293, 

408 
time-dependent phenomena 19 

thermometer 14 
transformation groups (lee invariance) 

uninformative prior (see noninformative 
prior) 

Wiener prediction theory 303-305 
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