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1. Introduction. Recently discovered decoupling inequalities for U/-processes
(mainly, de la Pefia, 1992, and de la Pefia and Montgomery—Smith, 1995) have had
important consequences for the asymptotic theory of U-statistics and U—processes
(Giné and Zinn, 1994, and Arcones and Giné, 1993, 1995, among others). It is the
object of these lectures to describe these developments.

U-statistics, first considered by Halmos (1946) in connection with unbiased
estimators and formally introduced by Hoeffding (1948), are defined as follows:
given an ii.d. sequence of random variables {X;}$2; with values in a measurable
space (5,8), and a measurable function h : S™ — R, the U-statistics of order m
and kernel h based on the sequence {X;} are

Un(h)zw > kX, X)), n2m, (1.1)

n!
(ityerim ) €T

where
I ={((¢1,.--,tm) 1 4; € N1 < <m,i; #1p if j # k).

These objects appear often in Statistics either as unbiased estimators of parameters
of interest or, perhaps more often, as components of higher order terms in expan-
sions of smooth statistics (von Mises expansion, delta—method). Particularly in
connection with von Mises expansions, it is sometimes convenient to also consider
U-processes indexed by families H of kernels, that is, collections of U-statistics
{Un(h): h € H}.

By a decoupling result for U-statistics we mean a (usually two-sided) inequality
between the quantities

ES(]) m(Xi,,..., Xi,))) (1.2)
Im
and
ES( h(xt,.... XM, (1.3)
Im

possibly multiplied by constants that depend only on m, where the sequences {X}},
k=1,...,m, are independent copies of the original sequence {X;}, and ® is a non—
negative function. Two quite different types of functions @ have been considered:
® convex (thus including @(|z|) = [¢|?, p > 1) and ®(|z]) = Lj;|>¢

The variables at the different coordinates of the domain of & in the decoupled
statistic come from different independent sequences and therefore a decoupled U-
statistic can be treated, conditionally on all but one of these sequences, as a sum
of independent random variables. Clearly then, decoupling inequalities will allow
for conditional use of Lévy type maximal inequalities and for randomization by
Rademacher variables, which then turn U-statistics into Rademacher chaos pro-
cesses conditionally on the X samples. In this way, the analysis of U-processes can
proceed more or less by analogy with that of empirical processes.

In Section 2 we describe the pertinent decoupling results and the randomization
lemma. Section 3 is devoted to the central limit theorem and to the law of the
iterated logarithm for U-statistics, and Section 4 to U—processes.



Contrary to the case of the bootstrap lectures in this volume, which are almost
self-contained, here we present no technical details and refer the reader, instead,
to the book ‘An Introduction to Decoupling inequalities and Applications’ by de la
Pefia and myself, in preparation, or to the original articles.

I thank the organizers of, and the participants in, the Saint-Flour Ecole d’Eté
de Calcul de Probabilités for the opportunity to present these lectures. I would like
to mention here that both, these lectures and the bootstrap lectures in this volume
have their origin in a short course on these same topics that I gave at the Université
de Paris-Sud (Orsay) in 1993. It is therefore a pleasure for me to also extend my
gratitude to the Orsay Statistics group.

2. Decoupling inequalities. a) Decoupling. Let (S5,5,P) be a probability
space. Consider collections H;, ;,, of measurable functions h : 5™ — R for
(i15-++,%m) € I™, with n > m (these functions can also be Banach space valued,
but this would not actually change the level of generality of the results to be stated
below). It is convenient to have the following definition: an envelope (or a mea-
surable envelope) of a class of functions H;, . ;,, is any measurable function H;, _;,,
such that supjeyy, [h(z1, .y 2m)| < Hiy i (21, zm) forallay,...,z;m € 5.
All the classes of functions considered here will have everywhere finite envelope.

m

Some standard notation: We set

||h(X17 v 7Xm)||7'l ‘= sup Ih(Xla vt 7Xm)|
heM

for any collection of kernels H, and we even write ||A|| for ||h|% if no confusion
is possible. Since these are often uncountable suprema of random variables, they
may not be measurable; in this case we write E* and Pr* for outer expectation and
probability (see the lecture notes on the bootstrap in this volume, chapter 2).

The main result about decoupling that we use in this article is the following
theorem of de la Pefia (1992):

2.1. THEOREM. For natural numbers n > m, let X;, Xk, i = 1,...,n, k =
1,...,m, be the coordinate functions of the product probability space

(§7im+1) gn(m+1) (P x ... x P,)™t1) in particular the variables {X;}I_; are in-
dependent S-—valued random variables, X; with probability law P;, ¢ < n, and
the sequences {X¥}* ., k < m, are i.i.d. copies of the sequence {X;}7,. For
each (i1,...,im) € I, let H;, i, be a collection of measurable functions h;, . ;,, :
S™ — R admitting an everywhere finite measurable envelope H; . ; such that
EH;, i (X1,...,Xm) < oco. Let ® :[0,00) — [0,00) be a convex non-decreasing
function such that E®(H;, ; (Xi1,...,Xn)) < oo for all (iy,...,1m) € I'. Then,

]E*cI)( sup IZ hil.‘.im(Xilw-inm)l)

hip i €Hipl i Im

<SE®(Cn  swp Y b (XL XR)) (20

i im €My i Im



where C, = 2™(m™ — 1)((m — 1){™=1 — 1) x ... x 3. If, moreover, the classes
Hi, .. i, satisfy that for all hy, ;. € Hi . i, T1,-..,2m € S and permutations s of
{17 RS m}}

h,‘lmim(zl, ey .Tm) = hia, ”_ism (.Tsl, sy :csm), (22)
then

* 1 i
E @(m N sup |Zhi1...im(Xi117"'7Xim)|>

1o im€Hiy i m
n

= E*q)(h.'l-.‘imsgg;lmim '%ﬂ: hil'“iM(Xil U ,Xim)‘)' (2'3)

For the proof of this theorem we refer to the above mentioned article of de la
Perfia or to our forthcoming book. However, we indicate here the proof of Theorem
1.2 for m = 2 and H,,;, = H for all {i5,1,}, countable. In this proof, ||-|| will denocte
the sup over h € H.

PROOF OF THEOREM 2.1 under the stated restrictions. We replace X}, X2 respec-

;
tively by X;, X|. Let {€;}", be independent random variables uniformly distributed
on a set with two elements, say {—1,1}, independent of {X;, X[}, and let Z; and
Z!, 1=1,...n, be defined as follows:

_ Xi ifEiZI ' Xl’ ifEiZI
Z’_{X{ fe,=—1 Zi_{X, ffei= 1 (24)

If, for each 1 < i < n, P; is the law of X; then the law of the vector (Z1,...,Zn,
Zy, .., Zh) s (P x -+ x P,)? since for each fixed ¢y, ...,&, the coordinates of this
vector are just 2n independent variables such that P; is the law of the i-th and the
(n+i)-th,7=1,...,n. That is,

L(Zy,. .., 20,21, Z0) = L( X1y, Xy X1y e, X0

n

Likewise, £(Z1,...,%) = L(X1,...,Xy). Therefore, for any (P x -+ x Pp)*~
integrable functions f and (P; x - -+ X P, )-integrable functions ¢ we have

Ef(Zy,....20,20,...,2) =Ef(Xy,..., Xn, X!,..., X1),
Eg(Zy,...,7%) = Eg(X1,..., Xn). (2.5)

Note also that, if Z is the o-algebra generated by the X variables,
Z=0(X,X!:i=1,...,n),

then conditional integration with respect to Z of any function of the Z variables is
simply integration with respect to the ¢; variables only. In particular, for all z #£ j,

B(h(Zi, 2,)|2) = E(W(Z:, 2))|2) = E(h(Z}, 2,)|2) = B(K(Z!, Z;)|2)
- i(h(X"’Xf) + h(X:, X5) + B(X, X;) + h(XJ,X;)). (2.6)



These observations i.e., equations (2.5) and (2.6), together with the convexity and
monotonicity of @, the integrability of the functions involved, and Jensen’s inequal-
ity, justify the following two strings of inequalities which, together, prove the theo-
rem.

1) For h symmetric in its entries,
1
ER( 3 HX X)) = EBGI M X))+ M X))
Iz 53

(IIZ [A(X3, X]) + h(X], X)) + h(X:, X;) + h(X], X))

MI»—A

+ 188 (2] > XX + {2 D A X))

SE@ (4] 3 E(h(Z:, 2,)12)]) + 5ES(2) Y ACK, X,)1)
2 1z

IA

SED (Y K2, Z)]) + SES(2 Y X X))
12 Iz

i

S0 D AOG X)) + 5BR(EN T HXe X))

<ES(4] > h(Xs, X5)]), (27)
E

proving (2.3). Note that symmetry is essential for the first identity.
2) For h not necessarily symmetric, letting X = o(X;:2=1,...,n), we have

E@(n\;h(xi,xnn)
S-M(znZE (X0, X;) + h(XL X,) + h(X0, X))+ R(XG XD 1Y)

+3E2(2 D E[HCE )+ KO X5) -+ KK X)) )

I/\

—IE@ (21 Z (Xi, X;) + h(X], X;) + h(X3, XJ) + h(XE X)) )
+ glE‘I’(Gll ST B X)0)]) + 5B (6] 3B X))
7

¥ 1Ec1> GHZE(h(X X)X
12

I/\

—M (811 Y E(h(2:, Z})12)Il) + m 6uZh<X“X 1)
[2



6HZEh(X Pl

E2 (8]l ) r(Z:, Z)ll) + E‘P GIIEh (X3, XD + = <I> GHZEh(X X

]’2

= §E¢(8H > R(X:, XD + gm’(ﬁll Z h(X:, X)) + g@(ﬁil Z EA(X:, X))
2 12 I2

[\DI»—A

<E3(8| Y r(X:, X)), (2.8)
1

proving (2.1), even with a better constant.
a

If By, i, are functions with values in a separable Banach space then, taking

b T {fo hil---im 1 f € B1}>

the sup over the H’s in Theorem 2.1 can be replaced by the norm of the Banach
space. The same comment applies to the next theorem.

It is remarkable that not only expected values of convex functions of U-statistics
can be decoupled, but also tail probabilities. This is due to de la Pefia and Montgom-
ery-Smith (1995). Their result contains Theorem 2.1 modulo constants, and is as
follows:

2.2. THEOREM. With the notation of Theorem 2.1 (but without any integrability
assumptions on the envelopes H; ; ), there are constants Cy,, € (0,00), depending
on m only, such that for all t > 0 and n > m,

Pr*{hl o ‘m|§;h,1 (X Xim)|>t}

< CuPr* {c . .m';h” (XL ,X{j‘n)f>t} (2.9)

If moreover the classes H;, .. i,, satisfy the symmetry conditions ( 2.2), then there are
constants Dy, € (0,00), depending on m only, such that for allt > 0 and n > m,

Pr*{h sup |3 b (XL X;:;))>t}

im GH:I vim Im

< D,Pr* {D e 'm];h“ in(Kis e, X)) > ) (210)

The proof of this theorem is much more involved than that of Theorem 2.1:
it requires hypercontractivity of the Rademacher polynomials in conjunction with
a Paley Zygmund type argument to obtain a sort of conditional Jensen inequality
for tail probabilities, hypercontractivity of linear combinations of the coordinates
of a multinomial (1;1/n,...,1/n) random vector, and (a simpler form of) the Lévy
type maximal inequality of Montgomery—Smith (1994) for sums of i.i.d. random



vectors. See de la Pefia and Montgomery-Smith (1995) or our forthcoming book for
the proof.

Decoupling theory started with decoupling of multilinear forms in ii.d. ran-
dom variables with distributional constraints (e.g., Gaussian, stable). Theorem 2.2
provides the most general decoupling inequality for multilinear forms, up to con-
stants, as follows. Let X = (X;y,...,X,) be a vector of n independent real random
variables X;, let X; = (X{,...,X2), 7 = 1,...,m, be m independent copies of X
and let

Qm = Qm(X,...,X) = Z Qil...imXﬁ “'Xim, (2.11)

el

where the coefficients a;, . ;,, are elements of some Banach space. Without loss of
generality we can assume the coefficients a;, _;, symmetric in their entries (other-
wise, we replace them by > Qiyryein(m) /ml, the sum extended over all permutations
sof {1,...,m}). Qm is a tetrahedral m-linear form in the variables X;,..., X,
(its monomials are of degree at most one in each of these variables). The decoupled
version of @)y, is defined to be

Q¢ = Qu(X1,.. ., Xm) = > @iy i X - XTI

i)
H m
eIy

(2.12)

assuming the coefficients a;, . ;,, are invariant under permutations of its subindices.
Application of Theorem 2.2 to the functions

hil_,,im(.'ll, . ,(L‘m) = Qi .inTiy " Tiy,

(more concretely to the collections {f(hi,..;,.) : f € Bi}, where B} is the unit ball
of the dual of B), immediately gives that the tail probabilities of the norms of @,
and Q9¢¢ are comparable. Actually, with a little extra care, this extends to not
necessarily homogenous polynomials (Giné, 1997) as follows:

2.3. COROLLARY. There exist constants Cp, € (0,00) depending only on m such
that if Q) is a tetrahedral polynomial of degree m in any set of n independent
random variables {X;}%_,, n > m, with coeflicients in any Banach space,

v
Qm) = Z Z Qiy. iy Xsy - Xy
k=0icTk

(with I = {0}), and if Q?fnc) is its decoupled version, defined as

Q?;tc) = Z (_TnT_VkX Z Z ail---ik‘Xl:1 o 'Xirkk’

k=0 T ielkfrel}

where {XZJ :i=1,...,n},j =1,...,m, are m independent copies of {X;}}-,, then

Z’% Pr{llQ{z5ll > Cmt} < Pr{llQem)ll > t} < Cr Pr{CnllQ{Z5) > 13-



This result should not be considered new since it is a trivial consequence of
Theorem 2.2, but it is formally new in the sense that previously published versions of
it require the variables X; to be symmetric and the polynomials to be homogeneous
(Kwapieri and Woyczynski, 1992; de la Pefia, Montgomery—Smith and Szulga, 1994),
or the variables to be symmetric and to have expected values of convex functions
instead of tail probabilities in the inequalities (Kwapien, 1987).

Neither Theorem 2.2 nor Corollary 2.3 will be used in the sequel.

b) Randomization of convex functions. What interests us about decoupling is the
possibility of randomizing a degenerate U—process (or a degenerate U-statistic). In
order to be more concrete, we will have to define the degree of degeneracy of a
U-statistic and also recall Hoeffding’s decomposition.

As usual, we let (S, S) be a measurable space and P a probability measure on
it, and let X, Xl-(j) TR egj) be the coordinate functions on the product of countably
many copies of (5,8,P) and countably many copies of ({—1,1},(61 + 6-1)/2). In
particular these variables are all independent, the X’s have law P, and the &’s are
Rademacher variables.

2.4. DEFINITION. A P™-integrable symmetric function of m variables, h : S™ — R,
is P -degenerate of order r — 1, 1 <r < m, if

/h(zl,...,zm)de_TH(x,,...,;vm) = /thm forall z,,...,2,_1 € S

whereas

/h(il)l,. o ,.Tm)dpm_r($r+1, .. .,(l)m)

is not a constant function. If h is P™—centered and is P-degenerate of order m — 1,
that is, if

/h(xl,...,xm)dp(wl) =0 forall z9,...,2,, € S,

then h is said to be canonical or completely degenerate with respect to P. If h is not
degenerate of any positive order we say it is nondegenerate or degenerate of order
zero.

In this definition the identities are usually taken in the almost everywhere sense,
however, when dealing with uncountable families of functions (and only then), we
need them to hold pointwise.

With the notation Py x -+ x Ppoh = [Rd(Py x -+ x P,,), the Hoeffding pro-
Jjections of h: S™ — R symmetric are defined as

mph(zy, ..., 2p) = ﬂfymh(wl,...,a:k) i= (85, —P) x -+ x (65, —P) x P™"Fp

for z; € S and 0 < k < m. Note that moh = P™h and that, for £k > 0, 7 h is a
completely degenerate function of k variables. For h integrable these projections
induce a decomposition of the U-statistic

m m 1
Un(R) := U™ (R) := U™ (B, P) := Q) > WX,y Xi)
m/ 1<i1 < <im<n



into a sum of U-statistics of orders k¥ < m which are orthogonal if P™A? < co and
whose kernels are completely degenerate, namely, the Hoeffding decomposition:

m

SIOEDY (’}Z) U (meh) (2.13)

k=0

(here the superindex P and the subindex m of wf’m are not displayed; they will be
dropped whenever no confusion is possible). This decomposition follows easily by
expanding

A1, &m) =8y X -+ X 64 b= ((8s, = P)+P) x+ X ((6s,, —P)+P)2

into terms of the form (§;, —P) x- -+ x(6;; —P)x P™—kh, It is very simple to check
that h symmetric is P~degenerate of order 7 — 1 iff r = min{k > 0 : 7r1,:’mh # 0}.
Therefore, h is degenerate of order r — 1 > 0 iff its Hoeflding expansion, except for
the constant term, starts at term r, that is,

m

Ua(h) = Ph =Y (Z‘) UP (mih). (2.14)

k=r

Hoeffding’s decomposition is a basic tool in the analysis of U-statistics.

We are interested in the behavior of [|Un(h) — P™h||3 = supp ey |Un(h) —P™h]|
for possibly uncountable families H of symmetric functions A : S™ — R. Whereas
the measurability requirements for decoupling are minimal, randomization requires
(or at least would not be useful without) the possibility of using Fubini’s theorem
on expressions of the form supj,cy |3 €, - €, A( Xy, ..., X4, )], whose integrals
one wants to compute by first integrating over the ¢’s and then over the X’s or
viceversa. In particular these expressions should be measurable. If the class H of
measurable functions is countable there are no measurability problems. A quite
general situation for which one can work without measurability problems, as if the
class were countable, is when H is image admissible Suslin that is, when there is
a map from a Polish space Y onto H, T, such that the composition of T and the
evaluation map, (y,z1,...,2m) = T(y)(215...,2m), is jointly measurable (Dudley,
1984). Often the classes of functions of interest are parametrized by Gs subsets
©® C R? and the evaluation map is jointly measurable in the arguments and the
parameter, thus the usefulness of the image admissible Suslin concept. If H is
image admissible Suslin, so are the classes {mxh : h € H} (e.g., Arcones and Giné,
1993). For simplicity, image admissible Suslin classes of functions will simply be
denoted as measurable classes.

Also, we will assume that all the classes of functions H considered in this
subsection admit everywhere finite measurable envelopes H.

Notation: The symbol ~ between two expressions means two sided inequality
up to multiplicative constants that depend only on the order m of the U—process
and on the exponent p. Likewise, the symbols < and 2 are used for one sided
inequalities up to multiplicative constants.

The following lemma for functions of one variable is well known and easy to
prove:
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2.5. LEMMA. Let 'H be a measurable class of P—centered functions h : § — R such
that, for some p > 1, the envelope H of the class satisfles PHP < co. Then, for all
n < oo,

27PE( Y eh(X)lh S BN (X < 2B esh(X)|lh,
=1 =1 .

=1

The randomization theorem to be stated immediately below can be considered
as an extension of this lemma where the P-centering hypothesis on h(z) is replaced
by a P-degeneracy hypothesis on h(zy,...,zm). This theorem is stated in full
generality although only the cases r = m (the completely degenerate case), r =1
and r = 2 are used below. The proof for r = m is a straightforward consequence
of the decoupling theorems (Theorem 2.1) and of Lemma 2.5 above. The proof for
general r is equally easy but more complicated (see our forthcoming book).

2.6. THEOREM. For 1 < r < m and p > 1, let H be a measurable class of real
functions defined on S™ consisting of P-centered, P—-degenerate functions of order
at least r — 1 such that P™"H? < oo. Then,

E” Z h(Xil,...,Xim)Hg-{
(il,..‘,im)GI;L"

~ E|| Z i e M Xy Xi)IIB,
(i1, yim )EIT

~ E|| Z el el M(Xyy, o X )

~E| N el el A(XE, L XT)5.(2.15)

710
(ilvnyim)elr’;n

PROOF for r = m. Let us use, for simplicity of notation, the abbreviations i for the
multiindex (i1,...,im), Xj for the vector (X;,,...,X;,,), X{ for (X},...,X),
&; for the product ¢;, - - - €;,, and ef* for the product &, ---&" . Since in the present
case (h canonical) we have Eh(X1,z2,...,2m) = 0 for all z,,...,2, € 5, letting

E, denote integration with respect to only the variables ¢”, X", Lemma 2.5 gives

E| > rXENIZ =EE 35 3 A=)

ielm =1 (ig,emn i )dEDT
~ BB, | 0 <L hXE)|
ierr

SEEY (Y i)

2= (i1,4a,...,im )€1
~ BEo|| ) el e, i(X{*)) 17
icrm

~ o IEH Z s?“h(X?“))Hi-
ieim
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Now the equivalences (2.15) for r = m follow by several applications of the decou-
pling Theorem 2.1.

[m]

¢) Randomization of tail probabilities. Let F be a vector space, let the function
h : 8™ — F be symmetric in its entries and let I = {(¢y,...,im) € N™ 1 4; #
1y for all j # k}. For finite sets A C N we set

Sa= > h(x).

ieInA™

The following elementary lemma (basically an inclusion—exclusion principle) pro-
vides decoupling and randomization of tail probabilities.

2.7. LEMMA. Let A;, 1=0,...,m, be m + 1 finite disjoint sets of integers, A; #
ifi# 0, and let A =ULA;. Then,

ml 3 (k)= (-1)™Sa + 3 (D)™ 3T Saguanguuas,-

1€EA) XX Am k=1 1< <. < <m
(2.16)

This lemma for Ag = § was observed by Giné and Zinn (1994) and for general
Ag by Zhang (1996). See these references (or our forthcoming book) for its proof.
An almost immediate consequence of it is the following one sided decoupling and
randomization inequality for tail probabilities of U-processes (Giné and Zinn, 1994).

2.8. THEOREM. Let H be a measurable class of real functions on S™, symmetric
in their entries. Then,

(a) For natural numbers ng < n, if D; are subsets of {ng +1,...,n}, 7 =1,...,m,
and M = ng + E;":l |D;|, then, for all t > 0,

2m¢
pefl Y AL XD > =

ieD; x--x Dy,

<2 max Pr{“.;ﬂ WX Xig)y 2 ) (217)
1edy

(b) for natural numbers ng < n and all t > 0,

22"‘15}

m!

Pe{l Y el emh(XL,. X7, 2

< 22 max Pr{H Z h(X,-l,...,Xim)HH > t}. (2.18)

no<k<nm ierr

PROOF assuming Lemma 2.7. Inequality (2.17) is trivially true if D; = 0 for some
J- So, assuming that D; is not empty for any j, we take Ay = {1,...,n0}, 4; =
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{1+no+ Zf;ll |Dil, ..., g+ Z{:l |D;|}, 7 =1,...,m, which are disjoint, and note
that, by permutation of the factors in the infinite product of (5,8, P),
2m¢

pr{|| > hxl,Lxm) > ET}

€D X XDy,

=eef| Y AKX 2 )

. m!
1€EA XX Am

Then, part (a) follows by direct application of Lemma 2.7.
Part (b) follows from part (a) and Fubini’s theorem because

> el el h(XE, LX)

no<i,eyim<n

is a linear combination with coefficients +1 of 2™ terms of the form

oo fxE,LXD)

€D x - X Dy

with Dj ={ng<i<n:el=1}or D;={ng <1 <n:el =-1}
a
It should be noted that there is no converse to inequality (2.18) in general, even
for m = 1. For instance, if X is such that Pr{X > t} ~ ¢;¢7!(logt)™*(loglogt) 2
and Pr{X < —t} ~ ct7(logt) !(loglogt)™2 as t — co and ¢; # ¢, (and omne
can find ¢;’s such that this random variable is even centered), then Y ;| X; =
Op(n(lognloglogn)™!) whereas 37 €;X; = Op(n(logn)~'(loglogn)~?). To see
this just note that X is in the domain of atraction of a 1-stable law with centerings
that upset the normings, and ¢X is in the domain of attraction of a 1-stable law
with centerings equal to zero and with the same normings (see, e.g., Giné, Mason

and Gotze, 1997).

Theorem 2.8 is useful for proving ‘converse limit theorems’, that is, for deducing
integrability properties of h under the assumption that the U-statistic with kernel
h satisfies a limit theorem such as the clt or the lil.

It does not seem that Theorem 2.8 follows from decoupling of tail probabilities

(Theorem 2.2); at any rate, Theorem 2.8 is much more elementary than Theorem
2.2.

3. Limit theorems for U—statistics. If i is integrable, then the U-statistics
(1.1) based on the kernel h form a reverse martingale, hence, they converge a.s. and
in Ly; the limit is a constant by the Hewitt—Savage zero—one law and this constant
is necessarily EA(X1,...,Xm) by Ly convergence. The law of large numbers was
first proved by Hoeffding (1948), but this slick argument belongs to Berk (1966).
Giné and Zinn (1992) gave an example of a U-statistic with a kernel not in L, that
converges a.s. and the question of finding necessary and sufficient conditions on h for
the U-stastistics U,(h) to converge (possibly after centering) a.s. or in probability
to a constant, is open. For the case A(z1,...,2m) = 21 -+ 2y see Cuzick, Giné and
Zinn (1995) and Zhang (1996). Recent developments on the exact estimation of
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moments of U-statistics (Klass and Nowicki, 1996) allow for some optimism, but it
is too early to tell.

Similar comments apply to the law of the iterated logarithm, except that it
was not known until very recently (Arcones and Giné, 1995) that finiteness of the
second moment of the kernel implies the lil for the corresponding U-statistic in
the completely degenerate case and for all m. The proof of this result does rely
heavily on decoupling (Theorem 2.1). Here again, h being in L, is not a necesary
condition for the lil in the canonincal case (Giné and Zhang, 1996), and necessary
and suflicient conditions are not known.

On the other hand, the clt is completely solved. Sufficiency of square integra-
bility of the kernel for a completely degenerate U-statistic of order m (for any m)
to satisfy the clt was proved by Rubin and Vitale (1980) and necessity by Giné and
Zinn (1994). Decoupling (Theorem 2.8) plays a basic role in the proof of necessity.

Only the clt and the lil will be described here. As a consequence of Hoeffding’s
decomposition (2.13), (2.14), it is clear that, at least under some integrability for
h, the clt (resp. the lil) for the completely degenerate or canonical case give the clt
(resp. the lil) in general. So, only canonical kernels will be considered.

a) The central limit theorem. Let X, be i.i.d. centered random variables, with finite
second moment equal to 1. Then, the clt and the lln for sums of ii.d. random
variables gives

1 & 71
Z XX, _(ﬁ;X,) —g;Xf—*df—l,

(2,1)612

where ¢ is N(0,1). This is the clt for the U-statistics with kernel h(z,y) = zy, which
is degenerate if EX; = 0. This simple example is very appropriate because canonical
kernels are just limits in L, of linear combinations of products ¢(z1) - ¢(zm), ¢
P—centered. Extrapolating, the example suggests that a canonical U—statistic of m
variables, multiplied by n™/2, should converge in law to an element of a Gaussian
chaos of order m. This is the content of the direct clt for canonical U-statistics,
which we now describe for completeness and also for use in the next section.

Let L§(S,S, P) be the space of real valued P—centered, P-square integrable
functions on S. Let Gp be an isonormal Gaussian process on L§(S,S, P), that is, a
centered Gaussian process with parameter set L3(S,S, P) such that EGp(f)Gp(g)
= [ fgdP. If {¢;}:e1 is an orthonormal basis of L§(S,S, P) and if {¢; }icr is a family
of independent N(0, 1) random variables, then the equation

sz Zagl, Za < 00,

i€l iel i€l

produces such a process. By identifying random variables which are a.s. equal, Gp
becomes a linear isometry from L5(S, S, P) onto the Hilbert space of jointly normal
random variables generated by {G p(f)} (or, isomorphically, by the g;’s). Then, the
finite dimensional central limit theorem simply asserts that the finite dimensional
distributions of the processes {W S f(XG) s f e Ly(S, S, P)} converge in law
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to the finite dimensional distributions of {Gp(f) : f € L§(S,S, P)}, that is, for
every finite set of functions f1,..., fx in L§(S,S, P),

(% ifl(X,»), oy zn:fk(X,-)) —e (Gr(f) - Grf), (B)

with convergence of up to second moments (of any norm) as well. The central
limit theorem for canomical U-statistics may be viewed as the extension of the
1sometry G'p to an isometry Kp from the Hilbert space of all P—canonical square
integrable kernels onto a Gaussian chaos Hilbert space (precisely, the Gaussian chaos
corresponding to Gp) in such a way that the finite dimensional distributions of
properly normalized U-statistics converge to the corresponding finite dimensional
distributions of the process Kp. (I learned this way of seeing the clt for U~statistics
from Bretagnolle, 1983.)

Let Lg’k(S,S,P) (LS*(P) for short) denote the Hilbert space of P-canonical
functions of k variables. It follows easily from basic Hilbert space and measure
theory that if {¢;}ies is an orthonormal basis for L§(S, S, P), then the following set
of functions is an orthonormal basis for L;’k(S,S, P):

s

where I* = {(iy,...,1x) 1 i, € J*, i, #£i,ifr#s, r,s=1,...,k}, forany j € I
and i € I*¥, j(i) = 25:1 I;,—; is the number of occurrences of j in the multiindex

3 fular)-- ¢ik(xk):i:(z’l,...,z’k)eI’“}, (3.2)

1
(r, 161)2 i:j(i)=r;

i=(i1,...,%m), and (r]_ 561) denotes the combinatorial number (mx k mn) if {r;
J €I} ={my,...,my}. So,if his a P-canonical kernel of k variables, then
h(:vl,...,:tk)z Za;qb,-l(:cl)---qﬁik(zk), (3.3)
icIk

in the L, sense, with coefficients

aj = Q4 = $1, . ivk) H ¢z,($

which are symmetric in their indices. Given a version of Gp, a version of Kp can
be constructed as follows: Kp is linear and

KP ¢11(-’E1) ¢zk z ) r, GP(¢])) (34)
((7‘, jET ‘J%ﬁ ‘ ) JI;II \/——

where H, is the Hermite polynomial of degree k and leading coefficient 1 [concretely,
Hj is defined by the relation exp(uz — u?/2) = 3_re, He(z)u*/k!]. Therefore, if h
has the expansion (3.3), then

Kp(h \/— > a [ Hio(Gr(4)). (3.5)

ierx  jel



15

We call Kp the isonormal Gaussian chaos process associated to the Gaussian process
Gp (and will shortly explain why). Then, the Rubin and Vitale (1980) central limit
theorem can be stated as follows:

3.1. THEOREM. For arbritrary natural numbers ry, 1 < £ < k < oo, let hy be
P-square integrable, P—canonical kernels in r, variables (that is, hy € Ly (P)),
and let Kp be an isonormal Gaussian chaos process on &%, Ly"(P). Then,

((n>%Un(h1),.._, (;”:)%Un(hk)) e (I{p(hl),...,f{p(hk)) (3.6)

r1
as n — oo, with convergence of up to second moments of the norm.

In fact, this limit theorem admits an extension to finite numbers of functions
in @iilL;’k(P). For a single function h € G}‘;‘;ng’k(P) the result is that, if h =
S22, by with hy € LO*(P), then

o) 1

Z (Z) 2Un(hk) —¢ Kp(h)

k=1

(Dynkin and Mandelbaum, 1983).

Let (2, %, Pr) be the probability space where the isonormal process Gp is de-
fined, and let ¢(Gp) be the sub-g-algebra of ¥ generated by the random variables
{Gp(¥) : ¥ € L5(P)}. Then La(Gp) := L2(,0(Gp),Pr) is the Hilbert space
of square integrable Gp measurable functions. Let Pr(Gp) (Py for short) be the
Hilbert subspace of Ly(Gp) generated by the polynomials of degree at most k in
the variables Gp(¢), ¥ € L§(P), and let Hi(Gp) (Hy for short) be the orthogonal

complement of Px_; in Py, that is,
Hi = Pr © Pg-1.

It turns out that Kp, extended as the identity on constants, is an isometry from
the Hilbert subspace of Ly(SN,PN) generated by the constants and the canonical

kernels of all orders, R @& (@leL;’k(P)) (note that all these spaces are orthogonal
in Lo(SN,PNY), onto Ly(Gp) = @32y Hi(P), such that

Kp(LS*(P)) = He(P), k€N, (3.7)

In other words, the orthogonal decomposition into canonical kernels of different
orders induces, via Kp, the chaos decomposition of Ly(Gp). This justifies the name
given to the process Kp. We note that it is possible to simulteneously prove the
clt for U-statistics and the chaos decomposition of Lo(Gp), quite economically. See
our forthcomming book for details. For a similar abbreviated account of the same
theory see Bretagnolle (1983). Dynkin and Mandelbaum (1983) contains another
derivation of the same facts.Theorem 3.1 was first proved for m = 2 by Serfling

(1980) and Gregory (1977).
Theorem 3.1 has the following converse (Giné and Zinn, 1994):
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3.2. THEOREM. Let h: S*¥ — R be a measurable symmetric function on (S,S) and
let X, X;, ¢t € N, be i.i.d. S—valued random variables with probability law P. If the
sequence of random variables

{ggﬁzh(Xm---aXik)}:; (3.8)
IT

is stochastically bounded, then Eh*(X,,...,X%) < oo and, moreover, h is P—
canonical.

Here is a sketch of the proof. By Theorem 2.8 on decoupling and randomization,
stochastic boundedness of the sequence (3.8) implies stochastic boundedness of the
sequence of decoupled and randomized U-statistics

(i T ehehhodxh)

1<iy,...,ig<n

o0

n=k

It then follows from this and properties of Rademacher multilinear forms that the

sequence i
(& X wexdxb)

1<y, <0

is also stochastically bounded. But then, by positivity, so is the family of variables

{% E (hthzgc)(Xill,...,ka):nEN,c>0}.

1<iy,...ix<n

Now, this and the law of large numbers for U-statistics applied to the bounded
kernels h?I2 < imply that the numbers E[(hzlhzgc)(Xl, el Xk)] are bounded uni-
formly in ¢, hence, that ER%(X,,..., X}) < oc. This, the direct clt and Hoeffding’s
decomposition yield that h is P-canonical. [The property of Rademacher multilinear
forms used here is that their fourth moment is dominated by a universal constant
times the square of their second moment, which is elementary, in fact very easy to
check in the decoupled case; this then allows use of the Paley-Zygmund argument
(Kahane, 1968, page 6), conditionally on the X’s, to obtain tightness of the sums
of squares.]

We complete this section with the observation that Theorem 3.1, the central
limit theorem for U-statistics in several dimensions, can be used in conjunction
with Theorem 2.2, decoupling of tail probabilities for U-statistics, to produce a
comparison theorem for tail probabilities of Gaussian polynomials and their decou-
pled versions. The result is as follows. For ease of notation we set |i| := maxg i,.

Given a sequence {g; : 1 € N} of i.i.d. N(0,1) random variables and a polyno-
mial Q) of degree m in the variables g;, and with coefficients in a Banach space
B, with expansion

Qemy =2 > e I Hir,oind (99,

k=0 max,<k |i-|<N JEN
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where the coefficients a; are symmetric in their indices (which we can assume without
any loss of generality), its decoupled version is defined as

m

Qs =Dm=bl Y a3 el

k=0 max,<p [ir|[<N JEIE,

by Arcones and Giné (1993a), whcere {g(j) :1€N},j=1,.--,m, are m independent

1

copies of the sequence {g;}. With this definition, we have:

3.3. THEOREM. For each m € N there exists Cp, € (0,00) such that, if B is
a Banach space, Q) is a Gaussian polynomial of degree m in an orthogaussian
sequence {g;}, with coefficients in B, and Q(d;;f) is its decoupled version, then

1
o Pr{1QEs) > Cut} < Pe{iiQum > t} < Cu Pr{lQES1 > 5=}

Since the constant C, is independent of N, the theorem extends to the whole
Gaussian chaos of order m (for each m). This is a generalization (Arcones and Giné,
1993, and Giné, 1997) of a theorem of Kwapien (1987) for homogeneous polynomials
in {g;} of degree at most one in each g;.

The proof consists in observing that Q(,,) is the limit in law of a U-statistic with
values in the finite dimensional space generated by the (finite number of ) coefficients
aj, and that Q‘(ifnc) is the limit in law of the corresponding decoupled U-statistics,
so that the theorem follows by taking limits in the inequality of Theorem 2.2. [This
simple proof would not be possible without Theorem 2.2; Kwapien (1987) developed
very effective and elegant tools to prove the version of Theorem 3.3 for homogeneous
tetrahedral polynomials and the version of Corollary 2.3 above for expected values
of convex functions and symmetric variables, and some of these tools made their
way into the proof of Theorem 2.2.]

b) The law of the iterated logarithm. As with the clt, in order to guess the natural
norming in the lil for degenerate U-statistics, it is instructive to begin with the
simplest example, namely the kernel h(z,y) = zy and random variables X; i.i.d.
with EX; = 0 and E'XZ-2 = 1. Then, the Hartman-Wintner lil for sums of i.i.d.
square integrable random variables and the law of large numbers readily show that

1
li — >y XX
1mnsup 2nloglogn ; J

. 1 n 9 1 n
=hmnsup[(———i§:X,~> - WZXZ?} =1 as.

(2nloglogn)® — P

In fact, by Strassen’s lil (e.g. Ledoux and Talagrand, 1991, page 206), for almost
every w, the set of limit points of the sequence {212 Xi(w)X;(w)/2nloglog n}:;l is
precisely the interval {0, 1]. This is just a particular case of a more general statement:
the kernel zy is replaced by a general square integrable P—canonical kernel in m
variables, the norming 2nloglogn is replaced by a, = (2nloglogn)™/?, and the
limit set [0, 1] becomes the set {E[h(X1,..., Xm)g(X1) - ¢(Xn)] : Eg?(X1) < 1}.
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Decoupling and randomization, together with the hypercontractivity property of
Rademacher chaos, will be seen to provide an elegant path towards this result.

Contrary to the case of sums of i.i.d. random variables, square integrability of
the kernel is not a necessary condition for the lil when m > 2. However, it is neces-
sary when h is restricted to be of a particular type, and there is a necessary condition
for the LIL in terms of integrability of A which differs from square integrability only
by a power of loglog |A|.

To ease notation, given h : S™ — R, we set

1
R = h(Xiys e X ) 3.9
an(h) (2nloglogn)> (. Z ( ) (3.9)

11,...,im)€IT’;’L
The lil for canonical U—statistics is then as follows:

3.4. THEOREM. Let X,X;, ¢« € N, be i.i.d. random variables with values in a
measurable space (5,S) and common law P. Let h; : S™ — R be P-canonical
functions with lEh? < o00,j=1,...,d. Then, with probability one, the sequence

{(an(ha), ... an(ha))}or (3.10)

is relatively compact in R® and its Iimit set is

K = {E[g(Xl)---g(Xm)(hl(Xl,._.,Xm),...,hd(xl,...,xm))} . Eg?(X) < 1}.
(3.11)

This theorem is due to Dehling (1989) for m = 2 and to Arcones and Giné
(1995) for general m. Dehling and Utev (to appear) gives a sketch of a proof of
Theorem 3.4 for general m and d = 1, different from ours.

The main point in our proof consists in obtaining the following intermediate
proposition (the bounded lil):

3.5. PROPOSITION. Let (S,S8,P) be a probability space, let X;, 1 € N, be i.id.
random variables with values in S and law P, and let h : S™ — R be a P—canonical
kernel such that ER? < co. Then, for every 0 < p < 2, there exists a constant
Cin,p < 00 depending only on m and p such that

1 4
]ESUII% Wl Z h(Xil,...,Xim)”

n€ (ityim ) EI
2
2

< Comp(BR2(Xy,..., X)) 2. (3.12)

(3.3) and polarization imply that the set of finite linear combinations of func-
tions of the form

RE (21, . zm) = (1) (zm), /de =0, /de <1 (3.13)
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is dense in Ly™(P). Then, Proposition 3.5 reduces the proof of Theorem 3.4, by
means of a standard approximation argument, to the lil for kernels of the form

k
h=> chlr (3.14)
r=1

The lil (i.e., Theorem 3.4) for U-statistics with kernels of the form (3.14) is an
immediate consequence of Strassen’s lil for sums of R? valued i.i.d. random variables.
Here is how it works for m = 2 and d = 1. Strassen’s lil (e.g., Ledoux and Talagrand,
1991) asserts that if Y, Y}, 7 € N, are i.i.d. random vectors in R¥, then, the sequence

{(inoglogn)z ZY (w)} =1

is relatively compact for almost every w € Q if and only if EY = 0 and E|Y|? < o0,

and then
ZY w)}-—I&Y a.s.

lim set{ ———
{ (2n log logn)? =

where Ky is the subset of R defined by
Ky = {IE[(g(Y))Y] : g real, measurable, and Eg?(Y) < 1}.
Hence, if 9;(X1), ¢ =1,...,k, are centered and square integrable, we have

@rLTgllogn—):Z(%(X ) ...,Q/)k(Xj))}

= {E[CO@(X), ... w(X))] : B(x) < 1),

where we take this statement to mean that, moreover, the sequence in question is
relatively compact with probability one, and where X is a random variable with
law P. Then, applying the continuous function A(zy,...,7%) = Zle crz? to both
terms, we obtain

limset{anoglogn Z Zw (X5)) }

k

_ {Zcr (B, (X)g(X)])* : Eg2(X) < 1}. (3.15)

=1

Now, with £ as in (3.14) and m = 2,

lim set{

1
S e h{X;, X;
2nloglogn Z Z ¥r(X; ) ~on log logn Z ( )

1 1<4,j<n

—_— h(X;, X;
2nloglognz (X“X)—*_anoglognz ( )
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and the last summand tends to zero a.s. by the law of large numbers since

E|h(X1,X1)] < 3 |er|E2(X1) < co. Moreover,

P

k
3 e [Evn(X)9(X))" = Y e B [gn(X0)ihr(X2)g( X2 )g(X2)]

r=1 r=1

E[R(X1, X2)g(X1)g(X2)].
Hence, (3.13) becomes

limset{m;h(Xi,Xj)} = {E[h(X17X2)g(X1)g(X2)] (Eg3(X) < 1}7

that is, the lil in Theorem 3.4 for the simple function h given by (3.14). The proof
for m > 2 is slightly more involved, and Newton’s identities help to account for the
sums with repeated X;’s in the analogue of the identity below (3.15).

We next see how to obtain the basic inequality (3.12) in Proposition 3.5 by
indicating several steps.

Step 1: Decoupling and randomization. Let K be a natural number and let 0 < p <
2. Letting h, = (0,722,0,h/ar, hfars1, ... hjasx) € £3% , it is easy to see that

So, we can apply Theorem 2.1 for £5% —valued kernels (which can be viewed as a
family of real valued kernels, as indicated immediately below the proof of Theorem
2.1) and obtain

< CE max

21(

E max
n<2¥

Z Sdec h(xdec)

for some constant C' < oo depending only on m and p.

Step 2: Blocking. Blocking is an essential part of the proof of the lil for sums of 1.1.d.
random variables, and it is achieved via maximal inequalities (Lévy or Ottaviani).
Once the statistic is decoupled and randomized, we can apply Lévy’s inequalities
conditionally on all but one of the m sequences {¢!, X/ : i € N}, repeatedly, and
obtain

1 P
dec dec m - dec dec
E,?éai}l{( Z ef R (X ) <2 lEkrSnIz{nEl a7 ; et h(X)
i 1'2M_1
where aj := ayx. We are now prepared for application of a basic property of

Rademacher multilinear forms.

Step Ja: A mazimal inequality. Let ¢ on Ry U {0} be a Young modulus that is, a
real function such that 4(0) = 0 and ¢ is convex and strictly increasing to infinity.
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Then, the space L,(£2, %, Pr) of all the random variables ¢ defined on £ such that
Ev(|€]/¢) < oo for some 0 < ¢ < o0, equipped with the norm

[€]ly = inf{c > 0: E¢(|{]/c) <1},

is a Banach space (cf. Krasnoselsky and Rutitsky, 1961). For instance, if ¥(z) = z?,

1 < p < oo, then |[£]ly = ||€]|l,. We are more intersted in Young functions of
exponential type, ¥, 0 < @ < oo, which are defined as follows:
exp(z®) — 1, fa>1
Yalz) = To(z) — aexp(%), fo<a<l,

1

where 74(2) denotes exp(z?®) if z > (1_—0‘) “, and it denotes the (ordinate of)

o

1
tangent line to the function y = exp(z®) at the point ((1_—0’) @ ,exp(l‘T")) 0 <L

(3
1

z < (I"T“) - (The complication in the definition of %, for a < 1 is due to the fact

that the function y = exp(z®) is not convex near zero.) Note that for all p > 0 and
all & > 0 there is ¢; o < oo such that

1€lls < cp,alléllea-

We can now state a useful maximal inequality (Arcones and Giné, 1995), valid
for Young moduli slightly more general than ., but not for power moduli.

3.6. PROPOSITION. Let v be a Young modulus such that

P~ (zy)

and 1
liisotip %}% < oo. (3.17)

Then, there exists a finite constant Cy such that, for every sequence of random
variables {{; : k € N},

€k
Pp=1(k)

This inequality is good for us because of the following property of Rademacher
chaos variables:

sup | < Cosup lgk - (3.18)
k P k

Step 3b: Integrability (hypercontractivity) of Rademacher sums. Y =3 a;e;, it is
classical (Bonami, 1970) that

EYP)? < (- )V2F )2, p22
Conditionally applying this inequality to the decoupled Rademacher m-linear form

— . . 1 CEREEY m
Z = E Qi) i€y " Eims

t1y.0tm
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we obtain

(B|Z|P)'/? < (p—1)™*(> el ;)% p22

(This inequality is also true for undecoupled Rademacher multilinear forms, but
it requires a little more work and we do not need it here.) Then, developing the
exponential, one gets

1Z01ps) < Cm(D_al, s IV (3.19)

for some universal constant Cy,. Combining (3.18) and (3.19), we obtain that, if Zj
is a sequence of decoupled Rademacher m-linear forms, then

1/2
o o], < comotey” a»

Step Je: Applying inequality (8.20). If we apply inequality (3.20) to the right hand
side of the inequality from Step 2, we obtain (recall that the ¢/, norm dominates
a constant times the L, norm)

1
E. max |— E efiech(X‘iiec)
k<K-1la} 4
l€I2k+1

< -
3T, i‘laz’f‘aogk% =2

Z Edech XdeC)

zE]m

r
2]}m Z h2(X¢iiec))2

16]5’};

< C’max(
k<K

for a constant C' < oo depending only on p and m, where E. denotes integration
with respect to the e variables only. So, integrating with respect to the X variables,
we have

1 dec decy|? ( 1 2y dec )*;‘
— ¢ d < - ¢
Ek< X E g h(X{) C']Einsax ok E h*(X{°9)
1612"’“1 iern

Thus, we have reduced the lil to a law of large numbers since the variable at the
right is basically an average.

Step 4. Doob’s mazimal inequality. Now it is an exercise to check that Doob’s
maximal inequality for reverse martingales (recall h? is integrable) bounds the last

expected value by (2/(2—p)) (]Ehz(X))P/Z, and Proposition 3.5 obtains by combining
the four steps.

Pisier (1975) has an analogous approach to the lil for sums of 1.i.d. Banach
valued random variables. The proof sketched here is from Arcones and Giné (1995).

The lil for degenerate U—statitics is still unfinished. Next we coment on some
recent developments. The first comment is that the condition EA? < oo in Theorem
3.4 is the best possible moment condition for the lil: it can be shown (Giné and
Zhang, 1996) that this condition is necessary for kernels of the form (3.14) (with
k < o). The best necessary integrability conditions for the bounded lil so far are
the following (Giné and Zhang, loc cit):
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3.7. THEOREM. Suppose we have

1
ki T
ey (2nloglogn)>

3 h(Xil,...,Xim)‘ < oo as. (3.21)

(i1yeenrim ) EI

Then ) .
Emin {h*(Xq,...,Xn),n(logl me
sup min {#*(Xy,. ., Xm) n_(log ogm)" '} < o0. (3.22)
n>1 (loglogn)™
In particular, h is P—canonical and, for m > 2,
Eh%(loglog |k|)*~™g(loglog |h|) < oo (3.23)

for all bounded non-negative monotone decreasing integrable functions g on R*.

The proof of this theorem relies heavily on decoupling. The integrability condi-
tion (3.22) for m = 1 reduces to Eh? < oo, so that Theorem 3.7 recovers in particular
Strassen’s converse lil. The following example shows that (3.23) cannot, in general,
be improved.

1 1
3.8. EXAMPLE. Let I, be the indicator function of the interval (1 mbr=r 1——

27’]’
for all r € N, and let
(e o) 2.’.
h(iC,Oé),(y,lB)) = —IT(CII)Ir(y)G,B,
27

defined on S2, § = [0,1] x {—1,1}. Let P = X x (6_; + 61)/2, where X is Lebesgue
measure. Then h is P-canonical and it can be proved, using truncation, binomial
probabilities and a better exponential inequality for Rademacher chaos (Ledoux and
Talagrand, 1991), that this kernel does satisfy the bounded lil, i.e., that

limsup—l_‘ Z h((Xi,Ez')7(Xj,5j))‘<OO a.s.

n—oo nloglogn (ifyer

However, not only Eh?(X;, X,) = oo, but in fact, [ h%g(loglog|h|)dP? = oo for all
bounded, decreasing functions ¢ such that fooo g(t)dt = co. So, this example shows
that for P-canonical U-statistics, (i) the condition Ek? < oo is not necessary for
the lil, and (ii) the necessary integrability conditions given in Theorem 3.7 are best
possible, at least for m = 2. We refer to Giné and Zhang (1996) for details.

It has recently been shown (Goodman, 1996) that

3.9. THEOREM. Let h(z,y) be a measurable symmetric P—canonical kernel and let
X,X;,1 €N, beiid(P). Let H(z) := Eh(z, X ). Then, the conditions

X
ogtes 7)) <

and

o:= sup R[R(X1,X5)g(X1)g(X2)] < o0
Eg2(X)<1
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imply

i
I,Iln_,solip 2n log logn

|Zh(XZ,X )| <420 as.

This is the best relatively satisfactory lil under conditions weaker than
Ehz(Xl,Xz) < oo. For another lil that does not require finiteness of the second
moment of 4, see Giné and Zhang, loc. cit.

We should remark that, by Hoeffding’s decomposition, the lil with norming
(2nloglogn)~/? for non- degenerate square integrable U-statistics reduces to the
lil for sums of the i.i.d. random variables P~ 1A(X;) together with Marcinkiewicz
type laws of large numbers for degenerate U-statistics, as noted in Sefling (1971).

4. Limit theorems for U—processes. We are concerned in this section with the
law of large numbers, the central limit theorem and the law of the iterated logarithm
for U-processes. The three types of results reduce to control of quantities of the
form

Pr{oup [Us() > en} o Efsup [Un(h)],

where H is a family of kernels and Pr, E, must be replaced by Pr*, E* (outer proba-
bility, outer expectation), when sup |U,(%)| is not measurable. This is immediately
clear for the lln and the lil, and Theorem 2.1.3 in the lectures on the bootstrap in this
volume makes it also clear for the clt. We will estimate these quantities via metric
entropy bounds after decoupling and randomization, as we now explain. (This is in
analogy with empirical processes, with the added ingredient of decoupling.)

We recall that, as in (3.19), if

Z = > @iy €ir "7 €y

1<i1 <. <im<n

is a real homogeneous polynomial of degree m in n independent Rademacher vari-
ables, then Bonami’s result gives

12, < (B2%)% = (3 a})'? (4.1)

for a constant C, < co that only depends on m (see e.g. Kwapiet and Woyczynski,
1892, or our forthcoming book). Then, if Zx, k¥ < N, is a family of such polynomials,
Proposition 3.6 gives the following maximal inequality:

m/2 a\1/2
| 2 12kl < Crmllog NJ™* max(B25)™%, N > 1. (4.2)

The norm at the left side can be replaced by the L, norm for any p, with a change in
the constant, that we will continue denoting as Cy,. The maximal inequality (4.2)
is really all that is needed (besides decoupling and randomization) to prove the law
of large numbers. To prove the other two limit theorems, one combines inequality
(4.2) with a measure of the size of the class H, namely, its metric entropy for certain
distances, particularly if H is Vapnik-Cervonenkis, to obtain the pertinent maximal
inequalities. The key to this is the following well known theorem, basically due to
Dudley (1967), with formal but important improvements by other authors (Pisier,
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Fernique). For a detailed proof, see Ledoux and Talagrand (1991) or our forthcoming
book. First, some definitions:

The covering number N(T,d,c), € > 0, of a metric or pseudometric space (T, d)
is the smallest number of open balls of radius at most € and centers in T required
to cover T, that is,

N(T,d,¢) := min{n : there exist ¢,...,¢, € T such that T C U B(t;,€)}. (4.3)

A process X(t),t € T, (T, d) a metric or pseudometric space, is separable if there
exist a countable set Ty C T and a set Qy C Q with Pr Qg = 0 such that for all w not
inQ,t € Tande > 0, X(¢,w) is in the closure of the set {X(s,w) : s € TyNB(¢,¢)}.
It is well known and easy to see that if (T, d) is a separable metric or pseudometric
space and X is continuous in probability for d, then X admits a separable version.
With these definitions we have:

4.1. THEOREM. Let (T,d) be a pseudometric space of diameter D and let ¢ be a
Young modulus satisfying conditions (3.16) and (3.17) in Proposition 3.6. Suppose
that

D
/ P (N(t,d,e))de < oo, (4.4)
0
and let X (), t € T, be a stochastic process satisfying
1 X(t) — X(s)|le < d(s,t), s,t €T. (4.5)

Then, any separable version X of X has almost all its sample paths in C,(T,d) and,
moreover,

D
Jsup KO, < 1)l + K [ 67 (VT o)) (4.6)
and
N 5 [
| su0 %) - X, < K/O BV (N(T, d, o)) de @.7)

for all 6 > 0 and a finite constant K that depends only on 3.

Since, for X separable,

lsup (Xl = sup [lmax 1 X(®)],
S finite
and likewise for Hsup aeyes | X () — X(S)lep’ the sups in (4.6) and (4.7) can be re-
g, teT
placed by maxima over finite sets. The key estimate here, of which all the ‘chaining’
proofs are (more or less complicated) variations of, is the following. Let us assume
X(tp) = 0 and T finite. For each k = 0,1,... let {tf,... ,tﬁ]k} = T}, be the centers
of Ny := N(T,d,27%) open balls of radius at most 27* and centers in T' covering T.
Note that Ty consists of one point, which we may take to be t5. For each £ > 0 let
7 : T — Tk be a function satisfying d(t, mx(t)) < 27* for all t € T, which obviously
exists. Moreover, T being finite, there is kr such that, if & > kr and s € T, then
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d(m(t),t) = 0; this implies, by (4.5), that X(¢) = X (7x(¢)) a.s. Then, for t € T we

have:
kr

X(t)= 3 (X(m(t)) - X(mes (1)) e

and, since
d(7r(t), me—1(t)) < d(me(t),t) + d(t, me—1(t)) < 3 - 27k

the maximal inequality (3.18) of Proposition 3.6 (better, (4.2) for 1) and hypothesis
{4.5) give, using (3.17) in the last step,

teT tETY,s€Ty _q
=1 a(s,t)<a-2-k

kr
[max | X (s)l[|, < D fl  max [X() - X(s)I]],,
k=1
ks
<3Cy Y 27N (Vi Neoy)

k=1
kp
<K 27TV,
k=1

that is, inequality (4.6).

There is quite a large class of collections of kernels that have good metric
entropy properties for the L,(P) distance, uniformly in P. These families of functions
go by the names of ‘Euclidean classes’, ‘polynomial classes’ or ‘Vapnik-Cervonenkis
classes’. A class of sets C is Vapnik—Cervonenkis (Dudley, 1977) if there is an n < oo
such that C does not shatter any subsets of cardinality n (C shatters a finite set 4,
if all the subsets of A can be obtained by intersection of A with sets in C). A class
of functions H is VC-subgraph if the subgraphs of all the functions in H form a
VC class of sets. By a combinatorial lemma due to Sauer, Vapnik and Cervonenkis,
and Shelah, independently, and a result of Dudley, extended by Pollard, the VC
subgraph classes of functions satisfy the following entropy bound:

4.2. THEOREM. If H is a VC-subgraph class of measurable functions on a mea-
surable space (S,S) with an everywhere finite envelope H (H is any measurable
function such that H(s) > suppeq|h(s)|) and p > 1, then there are constants
K < oo depending on ‘H and d > 0 depending on p and H, such that

N (3, Ly P, |l pe) < K ()", (48)

€
where P is any probability measure on (S,S) and || H||p,, denotes the L,(P) norm
of H.

See e.g., van der Vaart and Wellner (1996, Theorem 2.6.7), Dudley (1984)
or Pollard (1984). See Dudley (1988) for other classes of functions that satisfy
this theorem or similar bounds that make Theorem 4.1 applicable to them. These
references provide many examples of such classes of functions.

Next we describe results on the lln, clt and lil for U-processes.
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a) The law of large numbers. Let H be a class of symmetric functions on S™ with
an everywhere finite envelope H, and let P be a probability mesure on (S,S). We
ask whether
U, = P2 := sup |Un(h) = P™h| = 0 a.s.
heM

For m = 1 this is the law of large numbers for empirical processes, that is, a gen-
eralization to classes of functions of the Glivenko—Cantelli theorem (Vapnik and
Cervonenkis, 1971,1981; Giné and Zinn, 1984; Talagrand, 1987). The functions be-
ing in general non-degenerate, which corresponds to the case » = 1 in the randomiza-
tion theorem (Theorem 2.6), we will only be able to randomize by one Rademacher
factor. This will justify the following definition of a random distance on H. For X;

11.d.(P) and f,g € H, we set

’én,l(fvg):%Z ((nT—_ql—))" Z (f_g)(Xiu"'inm)'

=1 (2,..,im ): A€M

Actually, here, as in Section 2, we assume the variables X; to be the coordinates
SN S, and when we introduce new auxiliary variables, such as Rademacher
randomizers, we assume them to be defined also as coordinates in another factor of
the general probability space so that, in particular, they are independent of the X
variables.

The following is the U-statistic analogue of the VC law of large numbers for
empirical processes.

4.3. THEOREM. Let H be a measurable (:=image admissible Suslin) class of sym-
metric kernels on (S™,8™) with everywhere finite P™-integrable envelope. Then
the following statements are equivalent:

) |Un=P™l3 = 0 a.s.
1
ii) n logN(H, én,l,e) — 0 in pr* for all e > 0.
PROOF (Sketch). The strong law i) is equivalent to
E||U, — P™|jlx — 0

because, under the conditions of the theorem, U, — P™||%, n > m, is a reversed
submartingale. By the randomization theorem (Theorem 2.6), this is equivalent to

(n —m)!
IEHT;eilh(X,-l,...,Xim)HH 50

(note ||P™h||xE| doh=1 €i,/n| — 0). The implication 1) = ii) now follows from a
Sudakov type minorization inequality for suprema of linear combinations of Radema-
cher variables due to Carl and Pajor, 1988 (see Ledoux and Talagrand, 1991, Corol-
lary 4.14).
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To prove that ii) implies 1) we observe first that, by standard truncation tech-
niques, it suffices to prove
N (n —m)! _
JimJim sup IEH s ; e h(Xir. .. X, )HHM =0, (4.9)
where Hpr = {hig<m : h € H}. For simplicity, set Nnvl('HM,s) = N(HM,ényl,s).
It is easy to shown (see Arcones and Giné, 1993, page 1511 and Lemma 2.20 in Giné

and Zinn, 1984) that condition 1i) implies that for all ¢ > 0 there exists My(e) < oo
such that 1 ,
E|=log Npy(Hu,e)| — 0 (4.10)
n
for all r < oco.

For w fixed, let H}; be a subset of Hps of cardinality Nn,l(HM, €), e-dense in
‘Har for the distance €,;(w). Then, by the triangle inequality,

E.

n—m)!
(T—)—Zeilh(Xil7"'7Xlrn)
! e

Hu

<e+E,

(n —m)! ) .
T%ﬂ:gnh(){“,...,){,m)\ 2,

and by inequality (4.2) with m = 1, we have

E.

{(n —m)!
—_— i P( Xy, X ‘
— ;e, Kevrn X

— ! .
< Cm—!m)’[log N1 (Har,e)]'?
.

X;g%’.;{i( 3 h(Xil,...,Xim))z}

11=1 (ig,0..,im €D

1/2

nt/? - 1/2
< CM————|log N, , .
_C n_m+1[0g 71(7’(M 6)]
Integrating with respect to the X variables in this last inequality, and using (4.10),
proves (4.9) and therefore, the law of large numbers i).

[m]
Since €n,1(f,9) < en1(f,9) = Un(|f — g|), and e, is the L; distance for the
{(random) uniform probability measure on the points (X;,,..., X;_ )€ 5™, 1< i <

oo <ty < m, it follows from Theorems 4.2 and 4.3 that

4.4. COROLLARY. IfH is a VC class of symmetric funtions on S™ with everywhere
finite envelope H, then ||U,(h,P) — P™h||3 — 0 a.s. for all probability measures P
on (S,8) for which H is P™-integrable.
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For example, if X; are ii.d. in R?, with law P, and A(z,y,z) denotes the
triangle with vertices z,v, z in R?, then Corollary 4.4 shows that

sup

1
Y e A(Xi, Xiy, Xip)} — Pr{f € A(X), X5, X3)}| = 0 as.
seR?

(3) 1<i1<iz<ig<n

(4.11)
for any probability laws P in R?, because the corresponding family of subsets of RS,

Co := {(z,y,2): 0 € A(z,y,2)},8 € R?, is VC. The process

1
Dp(8) == . I{6eAX;, Xy, X)), 0€R,
(3) 1<4; <22<23<n

is the simplicial depth process of the sample {X;}" ;. The argmax of this process
are the simplicial medians of the sample, and the argmax of the function D(8) :=
Pr{f € A(X1,X,,X3)}, if it exists (even if it is not unique) is the population
simplicial median (Liu, 1990). It can be shown that, as a consequence of the above
limit, the empirical simplicial median is a consistent estimator of the population
simplical median. This extends to any dimensions.

Another corollary of Theorem 4.3 is the {ollowing extension to U-—statistics of
the Maurier law of large numbers:

4.5. COROLLARY. If B is a separable Banach space and if h : S™ — B satisfies
Ellh|| < oo, then U,(h) — P™h a.s.

Except for Corollary 4.4 for m = 2, which belongs to Nolan and Pollard (1987),
the results described in this subsection were obtained by Arcones and Giné (1993),
and we refer to this article for detailed proofs. The Nolan-Pollard article contains a
very interesting application of rates of convergence to zero of degenerate U-—processes
to density estimation. See also Turki-Moalla (1996).

b) The central limit theorem. We refer to the lectures on the bootstrap, Section 2.1,
for background on convergence in law in £°°(T'). In the case of empirical processes,
T is a class of functions of one variable whereas in the U—processes case, T is a set
of functions of several variables. Recall also the definition of the processes Gp and
Kp from Section 3a) above.

Given a kernel h(zy,...,zn) not necessarily P-degenerate, we can decompose
it as

h(z1,. .. 2m) —=P™h =Y ((P™'h)(zx) — P™h) + h(z1,.. ., 2m)

k=1

where h, defined by this same relation, is centered and degenerate of order 1. Then,
the central limit theorem for the first term reduces to the clt for the empirical
measure over the class of functions of one variable {P™ 'k : h € H}. The fact
that the kernel % is degenerate of order 1 (with r = 2 in Definition 2.4) implies,
by Theorem 2.6, that we can randomize the U-process with kernel h with two
Rademacher factors, and this is easily seen to be equivalent, in this situation, to
randomization by two Rademacher factors of the original U—process. In conclusion,
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we obtain the following corollary of the randomization theorem (Arcones and Giné,

1993):

4.6. THEOREM. Let H be a measurable class of symmetric kernels on (S™,8™)
with everywhere finite envelope H and let P be a probability measure on (S,S).
Then, the conditions

i) the class P™~1H := {P™~'h: h € H} is P-Donsker,

ii) there exists r > 0 such that

]E”n_m+l/2 Zeilgizh(Xiﬂ' .. aXim)”"rH — 0,

I
imply that
{n172(Ua(h) = P7R) s h € H} =g [mGe(Pmth—P7h) she ). (412)

Conversely, if t*P™{H >t} — 0 as m — oo and the clt (4.12) holds, then condition
i) holds and the limit in condition ii) holds true for every 0 < r < 2.

Condition i) has to do with empirical processes, which have been extensively
studied, and condition ii} can be checked using the tools for Rademacher chaos
decribed at the beginning of the section. For instance, a direct application of Theo-
rem 4.1 with ¢ = 11, the exponential modulus of order 1, which corresponds to the
Rademacher chaos of order 2 in inequalities (4.1), (4.2), shows that the condition

n_l/zE*/ log N(H, en2,8)de — 0,
0

where e,,5(f,9) = [Un((f — 9)2)]1/2’ implies condition i). (A smaller random
distance suffices.) In particular, by Theorem 4.2, measurable VC classes satisfy
the clt ({.12) for any P for which the envelope is square integable (again, less than
square integrability suffices). The clt for not necesarily degenerate VC classes was
obtained, for m = 2, by Nolan and Pollard (1988), and by Arcones and Giné (1993)
and, independently, by Sherman (1994), for general m.

The clt for degenerate classes is, in a sense, more interesting. Combining the
randomization theorem for r = m, the maximal inequality (4.2), Theorem 4.1,
the characterization of convergence in law in £°°(T') given as Theorem 2.1.3 in the
bootstrap lectures, and Theorem 3.1 for finite dimensional convergence, we obtain
the following result (recall ¥ (k) denotes the Hoeffding projection of h, and that
7L (h) is canonical —see Section 2b)):

4.7. THEOREM. Let H be a mesurable VC class of symmetric kernels S™ — R,
with everywhere finite envelope H such that P™H? < co. Then,

k/2
{(Z) UB (xf () :he H} e {Kp((r2,.(R)) : h € H}
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in £°(H), for k = 1,...,m, where Kp is the isonormal Gaussian chaos process
associated to P.

For a detailed proof, see Corollary 5.7 in Arcones and Giné (1993). (See also
Nolan and Pollard, 1988, for m = 2; Sherman, 1994, Corollary 8, contains a slightly
weaker result for general m, as well as an interesting application to generalized
regression).

Bach to the simplicial depth process D, in (4.11), Theorem 4.6 shows that the
simplicial depth process satisfies the clt, that is,

nt/*(D, — D) -, G

in £°(R), and where G is the Gaussian process mGp. Chen, Arcones and Giné
(1994) use this observation to prove that, if P is angularly symmetric with respect to
some center and enjoys certain smoothness properties, then the empirical simplicial
median is an asymptotically normal \/n—consistent estimator of the population sim-
plicial median. This article also contains a general setup for treating M—estimators
based on multivariate criterion functions, something considered also by Sherman
(1994).

In empirical process theory, besides the VC condition, there is another type of
conditions that ensures that some limit theorems hold, namely, ‘bracketing condi-
tions’. We will not treat these here because they do not seem to be very adequate
in the degenerate situation: see Arcones and Giné (1993) and Turki-Moalla (1996).

¢) The law of the iterated logarithm. The lil for non-degenerate U—processes reduces
to the lil for the empirical process over the class {P™7th : b € H}, well studied
(e.g., Ledoux and Talagrand, 1991), and to convergence to zero a.s. of the higher
order terms in the Hoeffding decomposition. This is done in Arcones (1993). The
lil for VC classes of P—degenerate functions was considered in Arcones and Giné
(1995), who obtained the following:

4.8. THEOREM. Let H be a measurable VC class of P-canonical symmetric func-
tions S™ — R with an everywhere finite enevelope H such that EH? < co. Let
ap(h), h € H, be defined as in (3.9). Then, for almost every w, the sequence
{an(h,w): h € H}22, is relatively compact in £>°('H) and its limit set is

K = {{]E[h(Xl,...7Xm)g(X1)---g(Xm)] h M} Eg¥(X) < 1}.

We succintly comment on the proof (see our article for details). The reduction
to an analogue of Proposition 3.5 above is less straightforward than in the finite
dimensional case, but still flows along lines similar to the analogous reduction in
the finite dimensional case as described in Section 3 (some extra arguments, that
we omit, are necessary). Inequality (3.12) in Proposition 3.5 now takes the form

Esup [|an(h)||E, < Con p(EHX(X1,.. ., X))/ (4.13)

for all 0 < p < 2. The proof of (4.13) follows the same steps as the proof of (3.12)
described above, the main difference being that now, instead of inequality (3.19),
we must use the following analogue:
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4.9. LEMMA. If 'H is a measurable VC class of functions, then

1> et ematal,, .. ,m)nHH SC(ZH%C%“..,J;Z))ML

PRrOOF. There is no loss of generality in assuming that H contains the function 0.
Take T in Theorem 4.1 to be H. Take d*(h1, hs) to be Y (hy — h1)? (2} ...,z ).
Then, the process X(h) =3 e} ---e h(z] ...,z ) satisfies inequality (4.5) with
Y = 3/, due to inequality (4.1) ( (3 19)) and the diameter of H for this pseu-

dodistance is precisely

D =2(} H(s), 'fn))m.

Moreover, X = X. Hence, inequality (4.6) in Theorem 4.1 gives

[DIERREXTE RSN /0 (log N(H, d, )™ de.

But this last integral is dominated by a constant times D because of Theorem 4.2
(as H is VC), proving the lemma.
[m]

This description of the proof of Theorem 4.8 constitutes an oversimplification:
as we have just mentioned, the reduction to the bounded lil is a little more compli-
cated than in the finite dimensional case and one actually needs also an inequality
similar to that of Lemma 4.9 for the increments of the process which utilizes in-
equality (4.7) in Theorem 4.1. However it conveys the idea that the proof that has
been sketched in the previous section for the finite diensional case extends to the
infinite dimensional VC case only with formal changes, given Theorem 4.1.

The proof of the lil from the previous section, with only formal changes (an easy
analogue of Lemma 4.9), also gives the lil for degenerate U- statistics with kernels A
taking values in a separable type 2 Banach space and such that E||k||* < co (Arcones
and Giné, 1995). Previously, Dehling, Denker and Philipp (1986) had proved the lil
for kernels & taking values in a Hilbert space and such that E|[A|[**? < oo for some
6> 0.

The lil for degenerate U-processes over VC classes does have statistical appli-
cations, for instance to determine the a.s. size of the remainder term in smooth
statistical functionals. In this direction, it has been applied (Arcones and Giné,
1995) to obtain the exact a.s. size of the remainder term in the linearization of
the Lynden—Bell product limit estimator of a distribution function when the data
are truncated (and this, in turn, has some interesting consequences regarding the
analysis of density estimates based on truncated data).
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Preface

Let X, X;, ¢ € N, beii.d.(P) and let H, := H,(X1,...,Xn;P) be a root (that
is, a function of both the data and their common probability law), symmetric in
the z entries, whose law under P we would like to estimate. If Q,, approximates P
(e.g. in the sense of convergence in distribution) and {X*}2_, are 1.i.d.(Q,), then,
under the appropriate hypotheses, the probability law of H}; := H.(X7,...,X};Q,)
may approximate that of H,. This principle would be useful if the law of H}
were easier to obtain or, at least, a large number of independent samples from
the law Qg could be easily produced in order to approximate it. In 1979, in a
landmark paper, Efron proposed (among other things) to take Q, = P,(w) with
Po(w) = Y7, 6x,(c)/n, the empirical distribution, and gave this procedure the
name of bootstrap. This makes very good sense because P,(w) —, P a.s. in great
generality, and resampling from P,(w), in our computer era, is easy. As he pointed
out, the empirical distribution is not the only possible candidate for Q,,, particularly
if a restricted model is assumed. For instance, suppose the variables X; are i.i.d.
N(6,0?%), 6 and ¢? unknown, and take H, = V(X — ), where X, is the sample
mean. If we take @, = N(X,,,s%) (s2 = 3.0 (X; — Xa)?/(n — 1), the sample
variance), then, estimating the law of H, by that of H}, which is N(0,s2), amounts
to estimating the law of the Student t-statistic, v/n(X, —8)/s,, by N(0,1). In this
sense, the bootstrap has been around for some time in one form or other. Of course,
the extraordinary merit of Efron’s proposal consists in the formulation of a basic
principle that applies in great generality, both in parametric and in non-parametric
settings.

In these lectures we propose to study first order consistency of the bootstrap in
the simple but important case of the mean, taken in a general sense (including e.g.
the Kolmogorov—Smirnov statistic since the distribution function F(z) is the mean
of the process Ix<,, 2 € R). Chapter 1 will be devoted to the bootstrap of the
mean in finite dimensions, and it will also include the bootstrap of U-statistics and
of very general statistics when the bootstrap sample size is reduced. In Chapter 2
we will consider the bootstrap of empirical processes (the bootstrap of the mean in
infinite dimensions).

Already for the simple statistic X,, — EX, one encounters several features of the
bootstrap that are general. For instance, there are situations when the bootstrap
approximation works better than the limit law (we will touch only very briefly on
this) although this is not always the case since, in particular, the regular bootstrap
of the mean (i.e., mimicking the statistic for the empirical distribution instead of
the original) does not work in general, neither a.s. nor in probability. The limits of
validity of the bootstrap can be exactly determined in our simple situation. There
are ways to modify the regular bootstrap when it does not work, such as reducing
the bootstrap sample size. In fact, sampling without replacement m times from
the n data, with m/n — 0, works in great generality. In other instances, however,
reducing the bootstrap sample size is not the only solution and another appropriate
course of action may be to devise more complicated sampling plans that better
mimick the original random mechanism; one of the first, very simple, instances of
this is the bootstrap of degenerate U-statistics. Another way of describing the
regular bootstrap of the mean is that instead of the average of the data, one takes a
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linear combination of the data with multinomial coefficients; then the question arises
as to whether other random coefficients are also appropriate, or even better (like,
e.g., in the Bayesian bootstrap); many of these different bootstraps are instances
of the ‘exchangeable bootstrap’, and therefore we will examine this bootstrap for
the sample mean. The bootstrap of the mean when the observations are a—mixing
instead of independent is also studied; the moving blocks bootstrap that applies
to this situation is another, more sophisticated, departure from the regular Efron’s
bootstrap. All these questions will be treated in Chapter 1, which will conclude
with consideration of a bootstrap procedure that applies in great generality, the so
called ‘m out of n bootstrap without replacement’.

As indicated above, in the second part of these lectures we will study the
bootstrap for the empirical process indexed by families of functions as general as
possible. We will see that whenever the empirical process satisfies the central limit
theorem, the bootstrap works, and conversely (in a sense). This is probably the most
general statement that can be made regarding consistency of the bootstrap: both,
directly and via the delta method, this result validates the bootstrap for a great
wealth of statistics. If one restricts the class of functions, but still remaining within
a very general situation, it can also be proved that basically any sensible model
based bootstrap works for the empirical process, including the smooth bootstrap,
the symmetric bootstrap, the parametric bootstrap, a ‘projection onto the model’
bootstrap, etc. Finally, as an application of the bootstrap for empirical processes,
we will consider the bootstrap of M-estimators.

I thank my wife Rosalind for her constant support and extraordinary patience
during the writing of these notes. I thank Dragan Radulovié and Jon Wellner for
personal comunications that made their way into these notes and for reading parts
of a first draft. Thanks also to the organizers of the Ecole d’Eté de Saint—Flour for
the opportunity to prepare these lectures and thanks as well to all the participants
in the course for their comments, their interest and their patience. I would like
to mention here that both, these lectures and the lectures on decoupling and U~
statistics in this volume have their origin in a short course on these same topics that
I gave at the Université de Paris-Sud (Orsay) in 1993. It is therefore a pleasure for
me to also extend my gratitude to the Orsay Statistics group.

Saint-Flour, Storrs, 1996 Evarist Giné
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Chapter 1: On the bootstrap in R

In this chapter we study the consistency of the bootstrap mostly for the statistic
H, = na;l (X'n - ]EX). We will see that it is not always possible to bootstrap it, not
even in probability, and will explore the limits of validity of the bootstrap procedure.
We will also see how it can be made consistent by reducing the bootstrap sample
size. This will be done in Section 1. A more general bootstrap (the ‘exchangeable
bootstrap’) will be considered in Section 2. Section 3 is devoted to the bootstrap of
the mean for mixing observations. The next section is devoted to the bootstrap of
U-statistics, as a simple instance of the need to adapt the bootstrap procedure so
as to mimic the main features of the original statistic. Finally, we present in Section
5 a bootstrap procedure (the m out of n bootstrap without replacement) which is
consistent in very general situations.

1.1. Efron’s bootstrap of the mean in R. In this Section we let X, X;, : € N,
be ii.d.(P), and set X = {X;}2,, X, = S0, Xi/n, 02 = T (Xi — X)?/n,
n € N. For each n € N, the bootstrap variables X} ;, i = 1,...,n, are defined to be
conditionally i.i.d. given the sample X, and with conditional law

Pe{X5, = XX} = =L

As is customary, we denote Pr(-|X) by Pr*(-), and so we do with the conditional
law (£*) and the conditional expectation (E*) given the sample X. For instance, if
Ui, 1 € N, are i.i.d. uniform on [0,1], independent of X, then a realization of the
bootstrap sample is

n
X;,i = ZXjIU.'GA(j,n)’ 1=1,...,n, n€ N,

j=1

where A(j,n) = ((j — 1)/n, j/n]. Without loss of generality we can assume the U’s

and the X’s defined as coordinates in a product probability space, the U’s depending

only on w', the X’s only on w. The bootstrap sample mean is X} = 3.5, X iln.
Whereas the meaning of the limit

£ (Va(Xy - X)) o p as. (1.1)

is clear, namely, that for almost every w, £* (\/E(X;(w) - X'n(w))> —w [, Where

w is fixed and the randomness comes from the U’s, the meaning of
£ (Va(Xz = Xa)) —w e in pr. (1.1

is less clear and we explain it now. Let d be a distance metrizing convergence in
law to u in R. For example, d(v, ) = sup{ [ fd(p — v) : || flleo + [| fllBL < 1} (with
I fllBL = sup,, |f(y) — f(2)|/ly — z]), which is in fact a countable sup; or di(v, 1),
defined as the sup of the same integrals but now over over the k times differentiable
functions f such that || f|leo + Zle ||f('v)||oo < 1. Moreover, if p has no atoms, d
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can be taken to be the sup distance between distribution functions. Then, (1.1%)
simply means that

d(ﬁ*(\/ﬁ()?: - X,,)),u) 0 in pr. (1.2)

This definition does not depend on the distance used since it is in fact equivalent
to (1.1) holding along some subsequence of every subsequence. These definitions
extend to any bootstrap functionals H.

1.1.1. Results. The following theorem asserts that the mean can be bootstrapped
a.s. iff EX? < co. The direct part is due to Bickel and Freedman (1981) and Singh
(1981) and the converse to Giné and Zinn (1989).

1.1. THEOREM. (a) FEX? = 02 < oo then
T X — X,
E*(Zz—l( n,t )

NG

(b) Conversely, if there exist random variables c,(w), an increasing sequence {an } 52,
of positive numbers tending to infinity, and a random probability measure p(w) non—
degenerate with postive probability, such that

C* ( Z?:l X;,i(w)

an

) o N(0,0?) as. (1.3)

- cn(w)) —yp p(w) as., (1.4)

then 02 := EX? < oo, \/n/an — +/c for some ¢ > 0, p = N(0,c0?) a.s. and cn(w)
can be taken to be c,(w) = an(w)/an

Here is the analogue for the bootstrap in probability:

1.2. THEOREM. (a) If X is in the domain of attraction of the normal law and the
constants a, are such that L(3 1_,(X; ~ EX)/an) —w N(0,1), then

C* (Z?:l(X:z,i - Xn)

an

) —y N(0,1) in pr. (1.5)
(b) Conversely, if
C* (E?:l X;,z(w)

Qn

- cn(w)> v p(w) in pr. (1.6)

with p{w) non degenerate on a set of positive probability, then there is ¢ > 0
such that £(3 1, (Xi —EX)/a,) —w N(0,0%), in particular, X is in the domain of
atraction of the normal law with admissible norming constants a,, and p = N(0,0?)
a.s.

Part (a) of this theorem was observed by Athreya (1985) and Part (b) by Giné
and Zinn (1989).

These two theorems set limits to the validity of Efron’s bootstrap in the case
of the mean.
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Theorems 1.1 and 1.2 also hold for i.i.d. random vectors in R*: The Cramér—
Wold’s device (that is, taking linear combinations of the coordinates) reduces the
vector case to R.

We should also remark that there is convergence of all bootstrap moments in
both (1.3) and (1.5), a.s. in one case, in pr. in the other. In fact, under the
hypotheses of Theorem 1.2 (a), we have that for all ¢ > 0,

n

E* exp{tZ(X,*m - Xn)/an} — Eet? in pr., (1.5")
=1
where Z is N(0,1), and the analogous statement holds a.s. if EX? < co. (Arcones
and Giné, 1991; previously, Bickel and Freedman, 1981, had observed that (1.3)
holds with convergence of the second bootstrap moments). (1.5’) justifies bootstrap
estimation of variances and other functionals of the original distribution.

If EX? < co then 02 — VarX a.s. by the law of large numbers, and Theorem
1.1 (a) gives that

C* (Z?zl(X:.,i - X")
Tn /1
Likewise, if EX? = co but X is in the domain of atraction of the normal law

with norming constants a,, as in (a) of Theorem 1.2, then Raikov’s theorem (e.g.
Gnedenko—Kolmogorov’s book, or a simple standard argument) easily implies that

) —u N(0,1) as. (1.7)

. 272 _ 1 Y P I
nh—»n;oZIXi [ay, = nll_l:rgo}_?(Xl Xn)*/as =1 inpr.
= 1=
and therefore, Theorem 1.2 (a) shows

o e (X5 — X))
c ( —

It is an exercise to check that ¢, in equations (1.7) and (1.8) can be replaced

*
n-

The two statements above about the studentized bootstrap clt also have con-
verses. Here is the complete statement:

> —y N(0,1) in pr. (1.8)

by o

1.3. THEOREM. (a) EX? < oo if and only if the studentized bootstrap clt holds
a.s., that is, iff (1.7) holds. (b) X is in the domain of attraction of the normal law
iff the studentized bootstrap clt holds in probability, that is, iff (1.8) holds.

Part (a) of this theorem was observed by Csorgd and Mason (1989) and part
(b) by Hall (1990).

The exact conditions under which there exist random normings A4, — oo and
random centerings B, such that {(X} — B,)/A,}3, converges in law conditionally
on X, a.s. or in probability, have been determined respectively by Sepanski (1993)
and Hall (1990). Besides normal limits, only Poisson limits are possible and then,
the relevant side of the tail is slowly varying at infinity (so, in this case, X is not even
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in the Feller class). We do not discuss the Poisson limit situation, which corresponds
to E|X| = co and does not relate to the bootstrap of the mean.

We will not discuss either p-stable domains of attraction with p < 1, for the
same reason. Regarding domains of attraction the following two results essentially
tell the story: to have consistency of the bootstrap in this case, we must reduce the
bootsirap sample size.

1.4. THEOREM. Suppose that X is in the domain of atraction of a non-degenerate
p-stable law p, 1 < p < 2, concretely, assume L(> o (X; — lEX)/an) —y p for
some constants a,, /" ©o. Let m,, /" oc. Then,

L*(Eﬁﬁ (X5 —Xn)>

Am

—w i In pr. (1.9)

n

if and only if
Mn
-2 0,
n
The direct part of this theorem is due to Athreya (1985) and the converse was
observed in Arcones and Giné, (1989). As with Theorems 1.1 and 1.2, conditional
weak convergence in (1.9) can be strengthened to coditional convergence of bootstrap

moments, but here only short of the p~th moment, that is, we have

(X - Xa)

Am

]E*

- /|x|°’du(ac) inpr, 0<a<p (1.9

n

(Arcones and Giné, 1991).

1.5. THEOREM. Let X be in the domain of atraction of a non—degenerate p-stable
law p, 1 < p < 2, concretely, assume L(3 1, (X; — ]EX)/an) —w p for some
constants a, / oo, and let m, ,/ oo be a regular sequence in the sense that
liminf, o my,/ma, > 0. Then,

L*(Z?Z‘l (X7 —Xn))

Am

—w [ as. (1.10)

if
my loglogn o, (1.11)

n
and (1.10) does not hold if liminf, o, (m, loglogn)/n > 0.

This theorem is due to Arcones and Giné (1989).

Self-normalization is also possible in the previous two theorems. Arcones and
Giné (1991) show that for X in the domain of attraction of a p—stable law, 1 < p < 2,
and for m,/n — 0,

w— lim L£* Zz‘:nl (Xn,i - X")
2 )™

=w-— lim £
n—o

[M inpr. (1.12)

(Z?:l X?)l/Q

Their proof also shows that this holds a.s. if the sequence m,, is regular and satisfies
(1.11). Deheuvels, Mason and Shorack (1992) have another approach to a result
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similar to (1.12), but with the norming in the bootstrap quantity depending on the
X’s, as in (1.8). They also prove the following theorem for the bootstrap of the
maximum of i.i.d. uniform random variables, one of the first examples of failure of
Efron’s bootstrap with m, = n (Bickel and Freedman, 1981). Let X be uniform on
(0,8). Then, it is easy to see that

ﬁ(n(ﬂ—maxlgign |Xi|)) i (1.13)

8

where p is the exponential distribution with unit parameter. Here is the Deheuvels
et al. bootstrap version of this limit.

1.6. THEOREM. Let X and p be as in (1.13). Then, if m,/n — 0 we have

o (mn(maxlgsn | X:| — maxi<icm, X3 )

in pr., 1.14
max; <i<n | Xi| ) Tw g P (1.14)

and if (m, loglogn)/n — 0 then the limit in (1.14) holds a.s.

Back to Theorem 1.3 (a), one may ask how good is £* (Y 1=, (X7 ;= Xn)/onv/7)
as an approximation to £()_.,(X; — EX)/o+/n). This has been thoroughly stud-
ied, starting with Singh (1981), who showed that if E|X[® < co and X is skewed,
the bootstrap approximation may be better than the normal approximation. Hall
(1988) shows that in case E[X|® = oo the bootstrap approximation can actually do
worse. We will present here a weaker and simpler result on direct comparison of
the bootstrap and the original distributions which also indicates how the bootstrap
improves on the normal approximation for skewed random variables with finite third
moment. D. Radulovié showed this to me and I thank him for allowing me to report
on his arguments in these lectures. For probability measures y, v on R, define

) = sup{| [ fatu =] Ufllw < 117 <1, 12023},

a distance that metrizes weak convergence of probability measures on R. 1t is easy
to see, using a Lindeberg type argument, that if E|X|* < co and, without loss of
generality, EX = 0 and EX? = 1, then

dy {L(Z?—:\/%&),N(O,l)} = 0(n"1?), (1.15)

and that this cannot in general be improved if EX® #£ 0. For the bootstrap, we
have:

1.7. ProposITION. IfE|X|® < oo then

dy [L:*(Z:l:l((ii,,/%— Xn))’ﬁ(z?zl(aX\;ﬁ— IEX))] _ 0<n—1/2) 0. (1.16)
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1.1.2. About the proofs. It is worth noting that as long as the norming constants a,,,
tend to infinity, the triangular array {X2,:7=1,...,m,}5% is a.s. infinitesimal:

* * * * 1 -
lr;l;a:: Pr {an,i| > 6(1,,1"} =Pr {|Xn,1| > 5amn} = Z;lejpéam"’

and, by the law of large numbers, the limsup of this last sum is a.s. bounded
by E|X|Ijx|>. for all ¢ > 0; letting ¢ — oo along a countable sequence gives the
a.s. infinitesimality. Then, the proofs of Theorems 1.1 to 1.5 consist in 1) showing
bootstrap convergence by just checking the conditions for the general normal (or
stable) convergence criterion for infinitesimal arrays and ii) applying the converse
part of this criterion to infer properties on the distribution of X from bootstrap
convergence. This program provides relatively simple proofs, except for Theorem
1.5, where one must proceed, roughly speaking, as in the proof of the LIL. Similar
comments apply to Theorem 1.6. (1.12) just follows from the bootstrap of a stable
convergence theorem in R?, and its proof is not different from that of the direct
parts of Theorems 1.4 and 1.5. Finally, Proposition 1.7 is proved by a Lindeberg
type argument applied to a simple coupling between the bootstrap and the original
statistics. We will give complete proofs of Theorem 1.1 and Proposition 1.7, and
then indicate parts of proofs of the other results.

1.7. PROOF OoF THEOREM 1.1 a). We will prove that if EX? < oo and if m, — oo

then oy ¢
Te(Xr - X
* i=1 n,t n 2 !
L ( N )—»w N(0,0%) as. (1.3")

By the general criterion for normal convergence (e.g., Araujo and Giné, 1980, Cor.
2.4.8, p.63), it suffices to prove

maPr{|X} || > 6mi/2} — 0 as. (1.17)
for all 6 > 0,
Var*(X;II'X, < 12) = VarX as. (1.18)
y mal<my
and
ml/2E* Xaalixs (om0 25 (1.19)

(Then, one makes the set of measure 1 where convergence takes place in (1.17)
independent of ¢ just by taking a countable dense set of é’s, which is all that is
needed.) The basic observation is that, since EX? < oo, the law of large numbers
yields

1 n
=D XKL s = 0 2, 0<p <2, 6>0. (1.20)
J=1

(Replace smi/? by c rational and take limits first as n — oo and then as ¢ — 00.)
Then, (1.17) and (1.19) follow immediately because

n
* * 1/2\0 Mn Z Z
m,Pr {|Xn,1| > bmy } T I|Xj]>6m:1/2 = |X |>8m.!
J=1
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and

1 n
1/2|m* v * 4 § : 2
my |E Xn,lIIX;’1|>m:,/2I < n X]I[Xj|>m}l/2'
j=1

As for (1.18), using (1.20) and the law of large numbers once more, we obtain:

1 n 1 T 2
* * _ = ‘2 _ = .
Var (X"JIIX:J[Smi“) T PIRE Tx;1gmis [n Z‘Xfllxnsfnl/?
j=1 =1

1¢ 1, )2
;;X§~[;;Xj] — VarX as,

P4

]
Part (a) of Theorem 1.3 follows from Part (a) of Theorem 1.1 because o2 —
VarX a.s. by the law of large numbers.

Next we prove part (b) of Theorems 1.1 and 1.3. This requires some prepara-
tion. The first lemma tells us that the limit in (1.4) must be normal.

1.8. LEMMA. If the limit (1.4) holds a.s. then the Lévy measure of the limit p(w)
is zero a.s. and

ZIIXj|>>\an =0 eventually a.s. and nPr{|X| > Aa,} — 0 (1.21)

Jj=1
for all A > 0.

PROOF. By a.s. infinitesimality, u(w) is a.s. infinitely divisible. Let m(w) be its
Lévy measure. First we will show that 7 is non-random (a constant measure on a
set of probability 1). By the converse clt (e.g. Araujo and Giné, 1980, Chapter 2),
with probability one

nL* (X5 1 @)] 455 =0 (@) 15s (1.22)

for all § = é(w) such that m(w){8, —6} = 0. Since we cannot control the continu-
ity points of the possibly uncountable number of masures m(w), we must smooth
these measures out. For each 6§ € Q7 let hs be a bounded, even, continuous func-
tion identically zero on [0,8/2] and identically one on [§, 00), and set ms(dz,w) =
hs(z)r(dz,w). Then, (1.22) implies

> he(Xifan)bx,a, —w s ass.

J=1

Let F be a countable measure determining class of real bounded continuous func-
tions on R (e.g. F = {costz,sintz : t € Q}). Then, the previous limit gives that,
on a set of measure one,

Zh,s(Xi/an)f(Xi/an) —w /fd7r5 a.s. forall f € F and 6§ € Q.

i=1



48

Since a,, — oo and the summands are bounded, the sum of the first k& terms at the
left hand side is a.s. eventually zero for all k£, and therefore, the variables [ fdnms
are all measurable for the tail o-algebra of the sequence X. Since there are only
a countable number of them, there is a common set of probability one where they
are all constant, by the zero—one law. Since F is measure determining, 7s(w) is a
constant measure on this set for all §. Hence, there is a Lévy measure 7 such that

7r5(w)||r|>5 = ﬂllrl>5 a.s. forall § > 0. Let # = 7 o|z|~!. (1.22) then becomes
D Ix; 1500, — T4, 00) (1.23)
j=1

for all A > 0 of continuity for 7, in particular on a countable dense set D of R'.
(1.23) implies that #(), co) takes on only non-negative integer values for all A € D.
Suppose 7(A,00) = r # 0 for some A > 0. Then,

n
ZIlXj|>>\an =r eventually a.s.,
i=1

which in particular implies

nleréoPr{Z Iix;[>xan =7} = 1. (1.24)
j=1

On the other hand, there is enough uniform integrability in (1.23) to have con-

vergence of expected values (e.g., by Hoffmann-Jgrgensen’s inequality: see Lemma

1.12, Chapter 2) so that

nPr{|X| > Xa,} —r

and therefore,

n

) T

nh_r&)Pr{Z Lix;{>ha, = € ) < 1,
=1

contradiction with (1.24). Hence, r = 0, that is, 7 = 0 and the limits (1.21) hold

true.

u}

1.9. LEMMA. If the limit (1.4) holds a.s. then, the standard deviation o(w) of the
normal component of the limit measure p(w) in (1.4) is a.s. a constant o different
from zero. FEX? < co, then nja? — ¢%/VarX, whereas if EX? = oo, then

X2 2
7111_{1;02 2 =0 as (1.25)
i=1 "
PROOF. The first limit in (1.21) gives that for all A > 0 and p € R,

Z | X171 x;|>2 = 0 eventually a.s. (1.26)
=1
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and therefore, we can ‘untruncate’ in the necessary condition for the clt in terms of
truncated variances, which then becomes

[27_-:1 XJZ(W) B (Zyzl Xj(w)
e/

Since a, — o0, (1.27) shows that 0?(w) is a tail random variable, thus a.s. constant,
say o2. Since p(w) is not degenerate with positive probability and = = 0 a.s., it
follows that o # 0. And of course, the fact that p(w) exists implies that o < oo.
If EX? < oo, the conclusion of the lemma follows from (1.27) and the law of large

numbers. Let us now assume EX? = oco. Then, we claim

(2= 1X;l/7] =0 as. (1.28)

lim
n-—0

)2] = 0% (w) as. (1.27)

2
an

n—oo 37 j=1 X]2/ n
(1.28) follows from the Paley-Zygmund argument applied to the empirical measure,
that is, from the following self-evident inequalities,

1 n 1 n
;Z Xl <a+—~ Y 1Kl x;15a
= j=1

1 < 1/2 /1 & 1/2
<a+ |- X? - Iix;|>a s
(n ; ]) <TL ]Z:; X5 > )
upon dividing by (Z?:l Xf /n)l/2 and then taking limits first as n — oo and then
as a — oo (use the Kolmogorov law of large numbers, both for finite and infinite
expectations, when taking these limits). Inequality (1.28) was stated as a lemma
(with other powers, besides 1 and 2) in Giné and Zinn (1989) and J. Chen in-
formed us some time after publication that he and H. Rubin already had noticed
this inequality, with a different proof, in Chen and Rubin (1984). Zinn and I hereby
acknowledge their priority (we did not have the opportunity to publish an acknowl-
edgement before). Back to the proof, it is clear that (1.25) follows from (1.27) and
(1.28).

o

Had we assumed the sequence a, to be regular (precisely, a,/n monotone,
and a,/n'/” monotone increasing for some r < 2), a refinement of Feller of the
Marcinkiewicz law of large numbers (e.g., Stout, 1974, page 132) would automati-
cally imply that (1.25) with 0 < ¢% < oo and EX? = oo can not both be true at the
same time, which would conclude the proof of Theorem 1.1, part b, by contradiction.
But without any conditions, an extra argument is needed. Here it is:

1.10. CONCLUSION OF THE PROOF OF THEOREM 1.1 b). Assume EX? = cc.
By (1.26), we can truncate the variables X; at a, in (1.25), Lemma 1.9, and then
take expectations of the resulting sums —by Hoffmann-Jgrgensen’s inequality (see
Chapter 2, Lemma 1.12 below), on account of the boundedness of the summands-
to obtain n

a—zlEXZIIXKan — o2 #£0. (1.29)

n
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This inequality implies, by the monotonicity of the a,’s, that

a2

. n i
lim sup — max —* < co.
n—ooo @ k<n k

Since n/a?® — 0, (1.29) also implies that there exists r, — oo such that

n

by = E%—ixg): at — 0.
Also, since by the first limit in (1.21), Lemma 1.8, |X,|/a, < 1 a.s., the Borel-
Cantelli lemma gives 3 oo, Pr{|X| > an} < oo, and therefore,

Z kPr{ar_; < |X| < ar} — 0.

k=ry

Using (1.29) once more, together with the last three limits, we obtain

n

2 . n 2
o* < "h—r'rologkz_lak Pri{ag-1 < |X| < ax}

2 o0
. . n ai
< 111LIr010 bn + llinjotip a—%-[rl?gaf)z( —k—] kZ EPr{ag_1 < |[X| < ar}—0.

This contradicts 02 # 0 and therefore we must have EX? < 0o and a, ~ /7.
O

1.11. PRrRoOOF OF THEOREM 1.3 a). It has already been observed above that
EX? < co implies (1.7). Assume (1.7) holds. Since E* [(X:L:1 —Xn)/an\/ﬁ]2 =1/n,
the random variable at the left of (1.7) is conditionally a.s. the n-th row sum of

an infinitesimal triangular array of independent variables. Then, a.s. asymptotic
normality implies (by the converse clt)

4|X;’1 _Xni > €

nPr*{ P

} — 0 as.,

for all € > 0, that 1s,

ki3
Z Lix; ~Zalfonym>e = 0 a8
=1

for all € > 0. This shows
|Xj _ an

max —————
1<j<n opy/n

If EX? < oo there is nothing to prove. If EX? = co then we can combine (1.28)
with (1.30) to conclude that

— 0 as. (1.30)

X
max #—— -0 as.

1<jgn V Z?:l X12
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But this can only happen if EX? < oo by a result of Kesten (1971).

O
1.12. REMARK ON THE PROOFS OF THEOREM 1.2 AND THEOREM 1.3 b). By a
subsequence argument, Theorem 1.2 a) follows by showing that the necessary con-
ditions for normal convergence (the analogues of (1.17)—(1.19)) hold in probability.
Then, to show that these limits hold, one uses the fact that, by the converse clt,
nPr{|X| > 6an} — 0 and na;?EX?Ix<,, — 1. For instance the analogue of
(1.17) that must be proved in this case is

n
Z le|>5an — 0 m pr.

=1

and for this, one just notices that

EZI|XI>5‘M =nPr{|X]| > éa,} — 0.

i=1

It is not difficult to complete the proof. To prove the converse (part b), working as in
the proof of Theorem 1.1 along subsequences, one obtains that, assuming EX? = oo,
St X2/a% — o2 # 0in probability. Then, the converse weak law of large numbers
gives, in particular, n Pr{|X| > 6a,} — 0 and na,*EX*]|x|<s,, — 0 for all § >0
which, by the direct clt, implies that X is in the domain of atraction of the normal
law, with norming constants a,. Theorme 1.3 b), direct part, follows from 1.2 a)
and Raikov’s theorem, as observed above. As for part b, the studentized bootstrap
clt in pr. gives, following the proof of Theorem 1.3 a) along subsequences, that
the limit (1.30) holds in probability, a condition that is known to be necessary and
suficient for X to belong to the domain of attraction of the normal law (O’Brien,

1980).

1.13. CONVERGENCE OF MOMENTS IN THEOREM 1.1. We will only show that if
VarX =1 and Z is N(0,1), then

E* exp{t' Zj:(X:’i - Xn)/\/ﬁ” — Eexp{t|Z|} a.s. (1.3")

for all # > 0 (since (1.5°) has a similar proof). We assume without loss of generality
that EX = 0 and that Z is independent of X. Let {¢;} be a Rademacher sequence
independent of {X} ;}. Then, convexity, the properties of Rademacher variables

and the facts that max;<n X?/n — 0 a.s. and Z;l:l ij/n — 1 as., give
n
} <E* exp{Qt‘;iz_—-

To(Xr - X,
]E* exp{t.zz—l( n,t ) }
Vv v
"X
< 2F* exp{4t2————z"l L }
n

LY *
1 <{"ql‘Xn,i
n
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That is, the sequence of bootstrap exponential moments is a.e. a bounded sequence.
By the bootstrap clt and the continuous mapping theorem, there is a.s. weak con-
vergence of the conditional laws of

{ i Z?:l (X:;,i - Xn)
expyt
n
to the law of exp{t|Z|} and, therefore, (1.3’) follows by a.s. uniform integrability.

NG

[m}

1.14. REMARKS ON THEOREMS 1.4 AND 1.5, THE STABLE CASE. A simple suffi-
ciency proof of Theorem 1.4 consists in routinely checking the conditions of the clt
for triangular arrays, as in the normal case. Just to show how the limit m,/n — 0
gets into the picture, we will check one of these three conditions, concretely

mnPr*{X;J > 6amn} — ¢6? in pr. (1.31)

for all 4 > 0, assuming that X is in the doa of a stable law with norming constants
an, thus, in particular, assuming the necessary condition nPr{|X| > éa,} — cé?
for all § > 0. The expected value of the left side of (1.31) satisfies

B Prt (X2 > Sam, 3] = E[Z2 3 T an, | = e Pr{IX1 > b, } = 87

J=1

whereas its variance tends to zero:

n

[E(ZZLi Z(I|Xj|>6amn - Pr{|X| > 6Qm, }))2

=1
2

2
%E(I|Xj|>6am" — Pr{|X| > bam, })

= %(1 —Pr{|X| > 6amn})Pr{|X| > 6amn}

o~ (T)mnPrﬂX[ > bam, } — 0

beacuse m,/n — 0 and m, Pr{|X| > éa,,, } is bounded. This proves (1.31). The
remaining conditions for stable convergence are proved similarly. For the converse,
just note that, if my/n’ — ¢ > 0 for some subsequence {n'}, then the argument in
the second part of the proof of Lemma 1.8 shows that the Lévy measure of the limit
must be zero, which is not the case for a stable limit. The proof of Theorem 1.5 is
more involved. Here we describe only part of the direct proof. The statement to be
proved corresponding to (1.31), is

% (I|Xj|>6dmn — Pr{|X| > dam, }) — 0 a.s.
7=1
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If the sequence m,, is regular, it turns out that we can block, symmetrize and apply
a maximal inequality as in the usual proof of the lil, to conclude that it suffices to

show
) 2"
;Pr{rgin jz::l(]|xi|>5a2n — Pr{|X| >5amn})’ > e} < oo,

and Prohorov’s exponential inequality shows that this is the case if
(myloglogn)/n — 0. We omit the details.

The proof of Theorem 1.6 is also omitted, and we turn now our attention to the
proof of Proposition 1.7. This proof will illustrate how the bootstrap conditional
distributions keep some of the skewness of the original distributions (this is not the
case, obviously, for the normal approximation).

1.15. PROOF OF PROPOSITION 1.7. We assume without loss of generality that
EX =0 and EX? = 1 (besides the crucial hypothesis E|X|* < oo). By translation
invariance of the family of functions in the definition of dy, we have

S Xy - Xn) PP, ¢ Xr—Xa X
di i C* = n,i G=1 “Vi < nds | £* n, ol i )
4[ ( Tar/1 )5( Jn )}—"4 ( aa/n ) (\/ﬁ)

(1.32)

Let now f be as in the definition of dy, that is, || f|lcc <1 and 1F D)o <1,1 <7< 4

The first and second conditional moments of (X% | — X,)/(0,\/n) are respectively

0 and 1/n, just as the first and secon moments of X/+/n. McLaurin’s development

of f then gives

IE:*f(X;’l _X") - ]Ef(%)‘ <1 ‘]E*(X,*,’I X - aiEX3‘

PR S Goindl?

1 * * —
o B n) = SO, — Kl
+ 6a3n3/2 E [|f’”(772) - fl”(o)||X|3]
=1, + II, + 111, ‘ (1.33)

7i, 1 = 1,2, being random variables respectively between 0 and (X; ~ X))/ (on/7),
and between 0 and X/+/n. Now, since o5, — 1 a.s., supy g <1 [£"(n:)—f"(0)] < 2
and supy sy <1 1" (7:) — f"'(0)] < [ni] — 0 a.s., it follows that

n3/? sup I, -0 (1.35)
1" lloo 1,1 f N0 <1

and, by the law of large numbers, that

n®/? sup IT, -0 as. (1.36)

1F7" Moo ST,11 £ leo <1

I,, is the crucial term in (1.33). In the analoguous proof of normal approximation,
the term I,, would just be EX?/(6n%/2) but here it is of a smaller order because

(62 —1DEX® -0 as.
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and, by the law of large numbers,

* * v \3 3 1 - 3 3 g E?:l Xl2 v 3
E*(X}, — X.)° - EX ‘ - ‘; S(X? - EX?) - 8X, S50 42X 50 as,
=
which gives
n®/? sup I,—0 as. (1.37)
N oo ST F || <1

combining the estimates (1.35)—(1.37) with (1.34) and then with (1.35), gives

d, [ﬁ*(Z?:l(ji;z,/iﬁ_ Xn)>’£<zz=/%Xi)] _ o(n_l/z),

proving the proposition.
a

1.2. The general exchangeable bootstrap of the mean. For each n € N, let
wy = (wp(1),...,wy(n)) be a vector of n exchangeable random variables indepen-
dent from the sequence {X,} and satisfying the following conditions:

El. w,(j) > 0 for all n and j, and E?:] wn(y) = 1;
E2. Var w,(1) = O(n7?).
E3. max;<j<n vVRlwn(j) —1/n| —p 0.
B4, n Y0 (wa(j) — 1/n)" —p & > 0.
Define n
X:L = an(.j)Xj
j=1

and take this as the bootstrap of the mean X,. Newton and Mason (1992) proved
the following theorem.

2.1. THEOREM. If EX? = ¢? < oo and the weights w,, are independent from the
sample {X,} and satisfy conditions E.1 to E.4, then

£(va(X; - X,)

X) —r N(O,c202) a.s.

Their original proof is based on a clt for exchangeable random variables due
to Hajek. Here, following Arenal and Matran (1996), we will deduce it simply
from the usual Lindeberg clt for independent random variables, as follows: we will
prove first convergence of the laws of the bootstrap variables conditioned on the
weights, from which unconditional convergence will follow, and then we will show
that unconditional convergence implies convergence of these laws conditioned on the
sample. We may assume, without loss of generality that our random variables are
defined on a product probability space, that the X’s depend on w and the weights
on w', so that the conditional laws given the weights or given the sample have a
very specific meaning. Since BL(R) is separable, the dg;, distance between one such
conditional law and a fixed probability measure on R is measurable. The theorem
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will follow from a series of simple lemmas. The assumptions in the lemmas are the
same as those in the theorem (although some of the lemmas require less).

2.2. LEMMA.
in the sense that

dpi (£(vn(Xs - Xa)

wn) — N(O,c2a2) in probability

wn) , N(0,0202)> — 0 in probability.

PROOF. By conditions E3 and E4, for every subsequence there is a further subse-
quence, call it n', such that

’
n

(12%1' \/;lwn’(].) - 1/n,|7n’ ;(wn’(” - 1/7’1,’)2) - (0’62) a.s.

Let w' be a sample point for which this convergence takes place. Then the random
variables

7w — NX,; A
Yy, = (wn (G, e) — 1/1) , i=1,...,n/, n' e{n'},

o J\/Z?lzl(wn!(j,w’) - 1/n’)2

form a triangular array of random variables which are i.1.d. by rows, and satisfy

:

Y Varx Yoi=1 and lim Y ExV} Iy, 5. =0 forall ¢>0.

n!—oo0 £

i=1 =1
Then, by Lindeberg’s clt, Z;il Y, ; converges in law to N(0,1). Hence,

dpr (£(V (X3 - %)

wn:),N(O,czaz)> — 0 a.s.

and the lemma follows.
2.3. LEMMA.

Proor. By Lemma 2.2,
dpr, (l: (ﬁ(X:L - X,)

Since these random variables are bounded by 2, convergence takes place in L, as
well, which gives

dpr(L(Va(X: - Xn)), N (0,¢%0%))
< E[dBL (ﬁ(\/ﬁ()_(: -X,)

wn) , N(O,c202)> — 0 in probability.

wn> , N(O, c202)>] — 0.
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a

Some preparation is necessary in order to condition with respect to the X’s in
the above lemma.

2.4. LEMMA. The sequence of conditional laws
{e(va(x; - x2)

is tight with probability one.

o

PROOF. The set {); where this sequence is tight is

fforn (s

Now, taking into account that, by exchangeability and E1, Cov(w,(i),w0.(}))
(Var wy(1))/(n — 1), and using E2, we have

Pr, (VA X5(w) - Xa(w)| 2 C)

7| X(w) - Znlw)] 2 N < }

||38
||C8
38

g—n—[ZX War wa(i) +2 3 Xi(w)X,(w)Cov(wn(i).04())]

c? i<j<n
<X Zx(w)+\n( 1)l<]§;nx )%, ()]|

3K 1 \ SKEX?
< Frr Y i) - M
=1

for all w on a set of probability 1 independent of C by the law of large numbers, and
for some K < oo (and independent of w). But the w’s for which there is convergence

belong to €2y as can be seen by enlarging C if necessary.
ui

Let us say that two sequences of probability laws are weakly equivalent if they
have the same subsequential limit laws, along the same subsequences.

2.5. LEMMA. There is a set Q; of probability one such that, for all w € €, the

sequences
<
) (w) } n=1

ProoF. Let F,(t,w) be the empirical distribution function corresponding to
{X;}7,, and let F' be the distribution function of the law of X. Let

{£(va(x; - %)

are all weakly equivalent.

2 ={w: %fo(w) S EX?, [Fa(w,t) — F(t)]leo — 0}.
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Then Pr§}; = 1 and therefore it suffices to prove that

By, (X;;(wz) — Xn(ws) — X)) + X'n(wl))2 =0

for all wy,w, € 4. By exchangeability, the random vectors

n

(K@) = Kn(w1), Xi(wz) = Xa(wn)) = D (wali) - %)(Xi(W1)7Xi(wz))

i=1
have the same conditional laws, given w; and w,, as

n

Z (wn(l) - %) (X(n,i)(wl )7 X(n,i)(w'z)) s

=1

where X(51),...,X(n,n) are the order statistics of X;,...,X,,. Hence, proceeding
as in the proof of Lemma 2.4,

nk, (X;(wg) — Xplwa) = XH(wy) + Xn(wl))2

(wn(2) - V(X iy (w2) — X(n,i)(w1)>2

(S
SK &
<Y (K gy (w2) = X iy (1))

1
- 31{/ (G(wa,t) = Golwr, 1)) dt,
0
where G,(w, 1) is the left—continuous inverse (w.r.t. the ¢ variable) of F,(w,?) (i.e.,
the quantile empirical process). Now, it is classical that, for w; € Qy, Gp{w;,t) —

G(t) for almost every t € (0,1), where G is the quantile function for the law of X.
Also, for w; € Q4,

1 1 1
GZ(wi,t)dt = — ) X 3w, ~>1EX2:/G2tdt
| G DI e

(recall that G(t), as a function on ([0, 1],B, ), has the law of X). Therefore, by
(generalized) dominated convergence,

/01 (Grlwa,t) — Gu(ws, 1)) dt — /01 (G(t) =G (1)) dt =0,

and the lemma follows.

The next lemma shows that bootstrap limit distributions are not random.
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2.6. LEMMA. Suppose that for some subsequence n' and almost every w,
E(\/J(X;, .0 ))(w) — pw).

Then, there exists a probability measure p such that p(w) = p a.e.

PROOF. Let F be a countable measure-determining set of bounded Lipschitz func-
tions on R (e.g., F = {costz,sintz : t € Q}). Then, since by E3 (E2 suffices),
\/7—1—’| Zle(wn/(j) ~1/n")X;(w)| — 0 in conditional probability given the X’s for
each k < co, we have that, for each f in F,

B, (VT 3 (i) — 1) X, () = = [ fouto.de)

j=k+1

Hence, this last integral, which is measurable, is a tail random variable for every f.
Therefore, there are constants pu(f) such that p(f) = f f(z)u(w,dz) for all f € F
and w in a set of measure 1, thus showing that the measure u := p(w) for a (any)
fixed w in this set satifies the conclusion of the lemma.

o

PROOF OF THEOREM 2.1. By Lemmas 2.4, 2.5 and 2.6, for every subsequence of
the natural numbers there is a further subsequence {n'} such that, for almost every

w, the conditional laws £ <\/ n’(X;, —Xn:)
probability measure p that may depend on the subsequence {n'}. Hence, for each
f bounded and continuous,

Euf (VA (Xi(w) ~ X)) = [ fdic as
and, by bounded convergence,
B (Vo (X5 — X)) [ s
But by Lemma 2.3 (unconditional convergence),
Ef (Vi (X5 — X)) = /de(o, c2o?).
Hence, p = N(0,c%0?). This shows

£(va(X; = Xa)

X) {(w) converge weakly to a non-random

X) — N(0,c%0?%) as.

O

This generalized bootstrap contains, by appropriate choice of weights, the regu-
lar Efron’s bootstrap, the under— or over— sampled bootstrap, the bootstrap without
replacement, the Bayesian bootstrap, etc. Checking E3-E4 sometimes requires in-
genuity; for example, for the regular bootstrap one takes w,(5) = > i, du,(4;)/n,
where U are i.i.d. uniformon (0,1) and 4, j = 1,...,n is a partition of the interval
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into sets of mass 1/n each; then, one uses e.g. Bernstein’s inequality to prove E3,
and Poissonization to prove E4.
It should be clear that this theorem extends, by Cramér-Wold, to i.i.d. random

vectors of R%. Praestgaard and Wellner (1993) extended it to empirical processes
(more on this below).

1.3. The bootstrap of the mean for stationary sequences. The strong or
a-mixing coefficient between two o-fields A and B in (Q, £, Pr) is defined as

a(A,B)= sup |Pr(4nB)-Pr(4)Pr(B),
(A,B)EAXB

and constitutes one of several standard measures of dependence. If {X;}2_ , is
a strictly stationary sequence of random variables and F,,, = o(X; : ¢ < m) and
F* = o(X; : 1 > n), then the mizing coefficients a, of the sequence {X;} are defined
as

Qn = a(f():]:n)v

and the sequence is said to be strongly mizing or a-mizing if im, . a, = 0. The
bootstrap has no reason to work if it does not mimic, in some essential way, the
random mechanism that produces the sample (in Efron’s bootstrap, independent
sampling from £(X) is mimicked by independent sampling from P,). In the a-
mixing case sample blocks carry dependence information, more of it the larger their
size b 1s, and, sampling from the set of these blocks (instead of from the sample,
as in the i.i.d. case), if there are many, produces a distribution close to that of
(X1,...,Xs). So, here is the stationary or Kunsch bootstrap procedure: Given the
sample Xi,...,X,, and the block size b := b(n), we let B;p = {Xi,..., Xitp—1}
be the b-size block of observations starting at X;,7 =1,...,n — b+ 1. We sample
with replacement k := k(n) = [n/b] of these blocks, say B;,,...,B;,, and then the
bootstrap sample is constructed from the samples in the blocks, that is

4 * * *
‘Xn,l = Xil yeee ’Xn,b = Xi1+b—17Xn,b+] = Xiza e kb = Xik-l-b—l-

Formally, 41, ...,% are i.i.d. random varibles, independent from the sequence {X,}
and uniformly distributed over the set of integers {1,...,n — b+ 1}. (Another
basically equivalent procedure takes the indices uniformly distributed on {1,...,n},
and defines the last b blocks formally in the same way but taking X,4, to be X,
~i.e., as if the data were in a circle). We will call the variables X ;, 1 =1,..., kb,
the MBB sample with block size b (at stage n).

The theorem that follows, due to D. Radulovié (1996), constitutes a consid-
erable strengthening of the original results of Kunsch (1989) and Liu and Singh
(1992). We let S, = -0, X; and o2 = VarS, (so, the sums start at X; even
though the sequence X; runs over Z). We resume the notation £*, Pr*, E*, etc. to
denote respectively conditional law, probability, expectation, etc. given the sample.

3.1. THEOREM. Let {X;}22__, be a strictly stationary strong mixing sequence of
square integrable real valued r.v.’s such that

E(S" —nEX,

Tn

) s N(0,1) (3.1)
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Let X*.,i=1,...,kb,n € N, be the MBB samples based on {X,}, with block size

n,t’

b:= b(r;), such that
0. (3.2)

b(n) — oo and

b(n)

Then, setting o} = \/Var* (Zfiq)b(n) X;,i), we have

E(n)b(n)
£ (HY) = z*(a—* S (X - EXL)) e N(O,1) i (33)
n =1
and
E(r)b(n)

1
\/k(n)ab(n) ;

Moreover, if condition (3.1) is replaced by

LH(H?) = L*( (X7, - IE*X;,Z-)) —u N(0,1) inpr. (3.4)

E(Sn—nlEXl) (Sn—nIEXl)Q}OO

)—»N(O,Uz) and {

is uniformly integrable,

N n n=1
(3.1")
(and (3.2) is kept unchanged) then
. lf(n)b(n) X* . - [E*}i—*
L* (H;) = E(Zl:l ( \/7;_: nil)) w ]V(O,UQ) in pr. (35)
In case )
% 0% and 0% >0,
n
it is clear that the regular clt,
Sn - TllEXl) 2

is equivalent to condition (3.1) and also to condition (3.17).

The best result on the central limit theorem for stationary sequences to present
belongs to Doukhan, Massart and Rio (1994): letting a(t) = o[y and letting @ be
the right continuous quantile function of X, the condition

1
/ a T ()QF(t)dt < o0 (3.7)
0
implies
Sn —nEX,
N

The limits (3.8) are also implied by the Ibragimov and Linnik (1971) sufficient
condition for the clt, namely that there exists some 6 > 0 such that

o2
5 0?% and ,C(
n

) = N (0,0%). (3.8)

> 5
E|X{)**% < oo and Zaé“ < o0, (3.9)
E=1
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Condition {3.9) is stronger than (3.7).

The main step in the proof of Theorem 3.1 consists in deriving a sort of Raikov
Theorem (i.e. lin for squares) associated to the clt (3.1): with it we can control
the relevant truncated bootstrap moments and thus derive the bootstrap clt from
general principles (the criterion for convergence of row sums of infinitesimal arrays to
a normal law already used above). The main tool is the basic covariance inequality

of Davidov (1968).

3.1. LEMMA. Let {£,}52, be a uniformly integrable sequence of real random vari-
ables. For eachn € N, let {,;,1 =1,...,n, be a strictly stationary set of random
variables individually distributed as €,,. Suppose there exist constants ay, ; satisfying

1 n
lim — g ni = 3.10
n1—>rr;o n i n, 0 ( )
and such that
‘COV(Y1I|Y1|§M7}/l'IlY;|§M)‘ S MQaH’,- (311)

for all M < oo and for all 0(&, ;) measurable random variables Y;. Then,

% > (éni — E€ny) - 0 in pr. (3.12)
i=1

PROOF. Let Y, ; = £, ;—E&, ;. Since the sequence {¥}, 1}5%; is uniformly integrable,
1t follows that

1 n
E\E Z(Yn,ifm,emwn - EYn,iIIY,.,;|>Mn)‘ < 2E|Ynilly, j>m, — 0
i=1
whenever M, — co. For M,, — oo to be chosen below, set )7',1)1» =Yoily, ;j<m,- It
then suffices to prove that

E > (Vi —EY,;) =0 in probability.
" =1

Stationarity of the set f’ml e ,?n,n for each n, together with (3.11) (note f’n,i is
o(€n,i) measurable), gives

Pr{\% i(ifn,,- — EY,,.,)
=1

1
ntg?

>e}§

Z Cov(f’n’i, )7”])

1<i,j<n

AN

lw
g
a

2
;

IA
3
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for all £ > 0. Now, choosing M, = (Z?:l O, i n)_]/ * makes this probability tend
to zero by (3.10).
o
In Theorem 3.1 we can assume, without loss of generality, that EX; = 0, and
we do so in what follows. For each n € Nand : = 1,...,N(n) :=n — b(n) + 1, we
let Z, ; be the sum of the data in block B;, that is,

Zn)i = Xi +... +Xi+b(n)—la ne N7 2= 17-- . 7N(n) (313)

The previous lemma gives the following corollary, a kind of Raikov’s theorem asso-
ciated to the clt in (3.1):

3.2. COROLLARY. Under the hypotheses of Theorem 3.1 and assuming EX = Q,
we have:

i)

1 Zni\? .
_—N(n) Z (Ub . ) -+ 1 in pr., {3.14)
=1 (n)
i) for every 6§ > 0 and 0 < p < 2,
N(n)
0 i o 3.15
N(n) Z ’\/k(n )Tb(n )l 1Zn.i1>600my /R0 0 T PE (3.15)
iii)
1 W2z,
=L 0 in pr., (3.16)
N(n) ZZ:; 0’(,(,1)
and, for all 6§ > 0
1 Zn ,i
—_— 17

ProoF. To prove that the limit (3.14) holds, we apply Lemma 3.1 with {nn)i =
Z,”/Gb(n) First we note that, since 6(n) — oo, the clt (3.1) implies that the
variables Zn 1/0y(n) converge in law to a standard normal variable. Then, the sec-
ond moments of these variables being all equal to 1, this gives that the sequence
{22 1/O'b(n)}n_1 is uniformly integrable. Also, if X is o(Z2 ) measurable and Y is

o(Z% ;) then, by the definition of an, and since o(Z? ;) C Fy(n) and o(Z2 ;) C F*,
we have that o(X,Y) < agi_p(n))ve and that

1 N{n) b(n) 1 n—b(n)+1
i~b{n < i 0 3.18
»———N(n);a( b( ))vo—n—b(n)+1+n#b(n)+1i=b(2n:‘+10¢ — (3.18)

(since an — 0 and b(n)/n — 0). Davidov’s (1968) inequality (actually a particular
case, Theorem 17.2.1 in Ibragimov and Linnik, 1971), to the effect that

Cov(X,¥) < 4a(X, )| X l[oo Y floo, (3.19)
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shows that the sequence {Z?E’l/of(n)}ff’:l satisfles condition (3.11) with an,; =
dai—p(n))vo- (3.18) gives condition (3.10) for these constants, and therefore, our
sequence satisfles Lemma 3.1. Its conclusion, the limit (3.12), translates exactly
into the limit (3.14). (Note that Lemma 3.1 also holds, with only the obvious
changes, if the ¢ variables are indexed by a sequence N(n) — oo of integers, instead
of by N.)

For every § > 0 and 0 < p < 2, the array

/" P
=k ’—"—l] Li=1,...,N(n),
(N, = k(n) SR ) oy | 1212890 /() ! ()

also satisfies the hyptheses of Lemma 3.1 with respect to the same array of coef-
ficients an,i = a(i—p(n))vo as above: (3.11) certainly checks, and {(n(n)1}nz; is
uniformly integrable because {n(ny,1 < 827 2n(n),1 for all n. Now, the limit in
(3.15) follows from Lemma 3.1 because the uniform integrability of the variables
Z?I’l/ag(n) implies

lim k(n)E

Zzn,l
n—oo \/k(n)thﬁ

P
‘ |Zn,1|>604(n)\/k(n)

<62 lim E

| Lot ]21 _
nmee |\ /k(n)oymy | 1P >Eoem VI

The rest of the statements follow in the same way, once we observe that the sequence
{Zn,1/ob(n) } 22, is uniformly integrable (since the sequence of its squares is) and
HZéznwl = O.

o

Now the proof of Theorem 3.1 becomes a routine check of the classical conditions
for normal convergence:

PROOF OF THEOREM 3.1. For each n, let Z ;1 =1,...,k(n), be an array of ran-
dom variables which, conditionally on the sample {X;}, are 1.i.d. with (conditional)

law

1

Pr*{Z; ;= Zn;} = Ny

Jj=1,...,N(n).

With this definition, we have

k(n)
~ 1
£ (i) = LI*(—————-— (Zn.-E'Z3))).
VE(M)ob(n) ; l
Hence, by previous arguments and the general criterion on convergence to the normal

law of infinitesimal arrays, the proof of (3.4) reduces to checking that the following
three limits hold for every é§ > 0:

k(n)

> e

‘>b}——>0 in pr.,

k(n)UbU”



64

Z* .
Var*(—n’l—I )—)1 in pr.
Z* |<boyayVE p
; VEm)oym 1 FrISEe
and

Z «
Z (\/k(—”ab( y lZn ,|>6ab(n)\/‘> — 0 in pr..

By the definition of Z* , these three conditions can be written as:

nz7

N(n)
k( )
Z |Zn i >604(my/E — 0 10 P, (3.20)
N(n) N(r)
1 Zn,i \? 1 T 2 '
N(n) ; (ab( )) L2001 <80y VE ("]\T(n_) ; mf|zn,€|§50b(n>\/§) — 1 in pr.
(3.21)
and
N(n)
r— ] — 1 inpr. 3.22
N(n) Z L(n)ab( ) |Z”'|>6ab(“ vk p ( )

Now, (3.20) and (3.22) are just (3.15) in Corollary 3.2 respectively for p = 0 and
p = 1. The first and second terms at the left of (3.21) converge in probability
respectively to 1 and to 0 by (3.14) and (3.17) in Corollary 3.2. Thus, we have
proved that the limit (3.4) holds.

Given (3.4), proving (3.3) reduces to showing that

“\2
(—a")é— — 1 in probability.
k(n)ob( )
Since (a;)z = k(n)Var*(Z} ;) by conditional independence of the Z} ; variables, we
have
2
(3)

1 D
k(n)od . N(n) <0b( )) - (N(n) ; Ub(n)) '

N(n)

which tends to 1 in probability by (3.14) and (3.16) in Corollary 3.2.
O

Since the MBB procedure produces a triangular array of conditionally row—
wise independent random variables, somehow with weaker dependence than original
sample, it is conceivable that the MBB works in cases when the original clt does

not. In fact this is the case, as shown by an example in Peligrad (1996, Remark
2.1).

1.4. The bootstrap of U-statistics. Degenerate U-statistics, together with the
maximum of i.1.d. uniform variables, were among the first examples for which the
regular Efron’s bootsrap (that is, sampling n times from the empirical measure P,)
was seen not to work. Bretagnolle (1983) discovered that reduction of bootstrap
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sample size makes the bootstrap consistent. These statistics constitute also an early
example of the fact that one can often modify the bootstrap procedure so that it
better simulates the original random mechanism. This may require, however, some
information about the main features of the problem at hand. In the case of U-
stastistics, a basic feature is the degree of degeneracy as it determines the Op size
of the statistic. Arcones and Giné (1992) proposed to empirically degenerate the
U-—statistic to the same order as the original before bootstrapping: in this case no
reduction of bootstrap sample size is necessary. We illustrate both ideas in a simple
example. Let X; be i.i.d.,, EX =0, EX? = 1. Then,

Z XX, -4 27— 1,
(M)EI’

where Z is N(0,1) and I? = {(4,5) : 1 < 4,5 < n,i % j}. This statistic is degenerate
of order 1. Let us write the statistic in the form

DO b I 0

(1 JHer

A ‘naive’ application of the bootstrap gives

n

Yo X J 1 2
Z X: X5, = [ = —=> (XD (4.1)
" Gper v "=

Now, the law of large numbers for X? bootstraps with no problem (the lln boot-
straps):

no(rx 2 2 n * 2 2 noox2 2
IE* !'Zz_l( n,z) _ 1] S QIE* |:Zz_l (Xn,l) _ ]E* (X: 1)2} + 2[2]—7: 3 _ 1]
n )

n

TooX? 2
< 2pr (x:)" +2[LJ—’ l 1}
n n

n n_x2 2
:%2 X;+2[2L:’_1_1] -0 as.
n 7
=1

by the Marcinkiewicz and Kolmogorov laws of large numbers. But the clt part at
the right of identity (4.1) does not converge to a normal law because the centering
VnX, is missing. Bretagnolle’s solution was: reduce the sample size to make the
missing centering go to zero (a.s. or in pr.) Obviously, taking the bootstrap sample
size in (4.1) to be m,, (instead of n) turns the centering of the clt part into \/mnXn,
which tends to zero in pr. if mn/n — 0 (by the clt), and tends to zero a.s. if
(myloglogn)/n — 0 (by the lil). And this is what happens in general for the
bootstrap of (the clt for) degenerate U-statistics: it works in pr if m,/n — 0 and it
works a.s. if (m, loglogn)/n — 0 (the rate mn(logn)'™®/n — 0 was first used for
the a.s. bootstrap but, as Arcones and Giné (1989) observed, (my, loglogn)/n — 0
is the appropriate rate for the a.s. bootstrap in many situations —basically, those in
which one can invoke some kind of lil). There is another logical solution to the above
problem since, after all, one cannot ignore the centering in the bootstrap of the mean
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even if EX = 0: just add the centering or, what is the same, reason this way: what
makes the norming constants to be n instead of /7 in the clt for X; X is that the X’s
are centered, so we are in fact dealing with the statistic 3 ;. (X; —EX }(X; —EX)/n,

which naturally bootstraps as >, (X}, — X’n)(X;,]. — X)/n. And this works since
1 * \ * %
~ )L (- X)X, - %)
(i.5)El?
noxX* . Xn 2 1 &
— Zz—l( n,i ) Z(X:;l
vn !
by the bootstrap clt and lln. This bootstrap (the ‘degenerate bootstrap’) has the

disadvantage of requiring knowledge that we may not have (we may not know EX =
0), but it is useful in testing (we will elaborate on this below).

X)) =i 22— 1 as. (42)

We let (S,S) be a measurable space and P a probability measure on it, and let
X, X, be iid. S-valued random variables with law P (i.e., the X's do not have to
be real).

4.1. DEFINITION. A P™-integrable function of m variables, f : S™ — R, symmetric
in its entries, is P-degenerate of orderr — 1,1 <1 < m, if

/f(a:l,..‘,xm)de_TH(x,,...,;cm):/fde forall xy,..., 2,1 € S

whereas

/f(a:l,...,xm)dP’"_r(zT“,...,:cm)

is not a constant function. If f is P™—centered and is P—degenerate of order m — 1,
that 1s, if

/f(:vl,..‘,xm)dP(:rl) =0 forall z9,...,2,, €S,
then f is said to be canonical or completely degenerate with respect to P. If f is

not degenerate of any positive order we say it is non—degenerate or degenerate of
order zero.

In this definition the identities are taken in the almost everywhere sense.
With the notation Py x --- x Py f = [ fd(Py x -+ x Pp,), the Hoeffding pro-

Jjections of f : S™ — R symmetric are defined as
7L f(21,. .., 2k) 1= nymf(zl,...,xk) i= (8p, = P) x -+ X (6, —P) x P™7FF

for z; € S and 0 < k < m. Note that 7t f = P™f and that, for £ > 0, 7T]1:f is a
completely degenerate function of k variables. For f integrable these projections
induce a decomposition of the U-statistic

Un(f) := US™(f) := US™(f,P) :=

S AKX X))

(:1) 1§i1<--~<imgn
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into a sum of U-statistics of orders k¥ < m which are orthogonal if P™ f? < co and
whose kernels are completely degenerate, namely, the Hoeffding decomposition:

v =3 (’Z) UP(xE ) (4.3)

k=0

(the subindex m of 'zrk m 18 not displayed; it will be dropped whenever no confusion
is possible). This decomposmon follows easily by expanding

f@1, o tm) =8 X x 8 f=((6z, =P)+P) x - x((6;,, —P)+P)f

into terms of the form (8, ~P)x---x (62, —P)x Pk f 1t is very simple to check
that f symmetric is P-degenerate of order r — 1 iff = min{k > 0 : Wf’mf # 0}.
Therefore, f is degenerate of order r — 1 > 0 iff its Hoeffding expansion, except for
the constant term, starts at term r, that is,

vatr) =27 = 3 (3 U (14)
k=r

Hoeffding’s decomposition is a basic tool in the analysis of U-statistics and in partic-
ular it will be put to use for the bootstrap. We recall that P, refers to the empirical
measure constructed from the sample X, ..., X,, and that, conditionally on X, the
variables X7 ; are i.i.d. with law P,. According to the definition, we will write

UL(F) = U () = US (£ P) = e S0 Aoy X )

(12
m 1<l[<<lm< T
The meanlng Of 7 ! J ls equa,Hy Clear

T f(21, s wk) = f(2a, oy 2k) 1= (6, = Po) X o0 X (62, — Po) x PRES

for z; € S and 0 < k¥ < m. From the clt for U-statistics, we know that the k-th term
in the Hoeffding decomposition (4.4) is asymptotically Op (n_k/Q) so that the whole
statistic is exactly of the order of the first term. Hence, at least up to first order
approximation, only the first term in the Hoeffding expansion needs bootsrapping
and we can ignore the rest. Since 7} f is completely P-degenerate we must replace
it by wk"f before bootstrapping, and this is the content of one of the next two
theorems. The first is from Arcones and Giné, loc. cit.

4.2. THEOREM. Let f(zy,...,2m), i € S, be a P-square integrable symmetric
kernel, P-degenerate of order r — 1, so that, in particular,

(’:) " (UAF,P) = P™F) —a Kp g (4.5)

where Kp ¢, is a Gaussian chaos variable of order r. Assume also that, for d :=
#{ilv v ,im};

E|f(Xi,..., Xi,)|"™ < 0. (4.6)

tm
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Then,
n 1/2 m
c[( ) < )U,ﬁ’)(n}?nf,Pn)} —u L(Kp,) as. (4.7)

T T

We note that (T:)W}:”f can be replaced in (4.6) by the P,—orthogonal projection

of f onto the space of P,—degenerate kernels of order r — 1, and Ul by UT(Lm), but
this new kernel is more complicated and may not lead to a better approximation.

We need a simple but useful proposition of Sen (1974) on the Marzinkiewicz
law of large numbers for U-statistics (the proof here is from Giné and Zinn, 1992,
which also has more information on the subject).

4.3. PROPOSTION. IfE|f|P < 0o with 0 < p < 1, then

— 0 a.s.

Y [f(Xa X))

nm/P
1< <. <im<n

PROOF. We assume f > 0 and set s := m/p > m. By Kronecker’s lemma, it suffices
to show that

[e¢]

1
TS Z f(X'i17"'>Xim_1,Xj)<OO a.s.
J':mj 1<i1 <o~ 1 <J

Since
e o] o0
Z(] -1t Pr{f > j’} < / g™ Pr{f >a’}dx < mTIEf™° < 0,
j=m -1
we can truncate at the level 7° and therefore it suffices to show

= 1
Z'_s Z (fIij’)(Xila'"7Xim_17Xj)<OO a.s.
i=m?’ 1<i1 <o i1 <J

But this follows by B. Levi’s lemma and the following estimate of the series of
expected values:

oo 1 .
Z (] _ 1)s—m+1 IEfIfSJ"’ < / ‘Tm_s_lIEfIsz’d-T
j=m

m—

1
< / / gmTet Pr{f > t}dtdw
m—1J0

_ M/(m_w Pr{f > t}dt
0

S —m

+/(°° (/to/o 2™ Ada) Pr{f > t}dt

m—1)*

_ 28—m 1 o -
< (m—1) + / te T Pr{f > t}dt < o0.
s—m Jy

S—m
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i
The following corollary follows immediately upon decomposing the V-statistic
into a sum of U-statistics.

4.4. COROLLARY. If f satisfies the integrability condition (4.6) then

—117[ Z f(-Xil-..,Xim) —P™f as. (4.8)
" i im<n

This in turn has the following consequence, that will allow us to restrict our
attention to very simple functions in the proof of Theorem 4.2.

4.5. COROLLARY. Let f; — 0 in Lo (Pm) and suppose the functions f, are sym-
metric and satisfy the integrability condition (4.6). Then,

£—00 n—00

n 1/2 2
lim lim IEK > U,(f)*(vrfnf[)] =0. (4.9)
T

ProoOF. Note that the operators W,? are centering operators and therefore they
are contractions in L2(Q), for any probability measures (), in particular for the
random mesures P,, and recall that E* is nothing but integration with respect to
the measure P,,. Then, observing that the summands in a U-statistic whose kernel
is ¢J—canonical are @}-orthogonal {assuming they are square integrable), we obtain

n 1/2 2 )
T
<SEff(Xnq, X))
1
=— 3 (X, X))
n 1<iy, . im<n
—P™f} as as n— oo

—0 as {— 0.

[m]

In order to implement the reduction to simple kernels it is useful to describe two
simple identities, namely, the polarization identities and Newton’s identities. The

polarization identities are as follows: If e1,...,e; are 1.i.d. Rademacher variables
(that is, Pr{e; = 1} = 1 — Pr{e; = —1} = 1/2), then, for any k real functions
&1, .., ¢ of one variable, not necessarily different, and for any z1,...,z, in S, we
have

k k
Zqﬁa(l)(zl)"-%(k)(wk) = E[51 -~'€k(zei¢i(f€1)) (Z €i¢i(33k))}, (2.4)
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where ¢ runs over all the permutations of {1,...,k}. By developing the expected
value in the second term of this identity we obtain a linear combination of at most
2% functions of the form

RY(21,. .. ) = p(z1) .- (zk)
with ¥(z) = ¢, (2) £ - £ ¢;, (z). Newton’s identities, which are useful to handle

U-statistics with kernels of the form h}f, are as follows: given ¢1,...,¢, in R, if, for
1<r<n, welet p, = El<i1<...<z‘,<nti1 --t;, and s, = >_"_ 17, then the identity
Sk = P15k—1 + pask—g — o+ (=1 sippmy + (< 1) kpp = 0

holds for all £ < n. These identities, which can be checked by induction, give, also
by induction, that for every k € N there is a real polynomial Ry of degreee k, in k
variables, such that for all n > k,

ki3

n n
Z til...tik:Rk(zti,ztf,---yztf)’
=1  i=l

1<i1 <...<ig < i=1

(Moreover, Rg{ui,...,ux) is a sum of monomials of the form chzl uf" with
Ele ik; = k and the coefficient of u¥ is 1/£%)

4.6. PROOF OF THEOREM 4.2. Let {¢;}ics be a complete orthonormal system of
L,(P) consisting of bounded functions. Since f € L,(P™), we have

fler,..,2m) = Z Cirrim @i (T1) - b (Zm)

1,entm €1

in the sense of Ly(P™) and, f being symmetric in its entries, the coefficients ¢;, .. ;. ,

are invariant under permutations of the indices #3,...,%,,. Then, by polarization,
— 1 X ZEN
f=lm Y t;h¥ = Jim by (4.10)
finite
also in Ly(P™), where the functions 1; are bounded and h¥(z1,...,Z) is as defined

above, so that hg is a finite linear combination of h¥¢’s.

We will not prove here the central limit theorem for U-statistics, but it is
required in this proof. See, for example, Arcones and Giné, loc. cit., or the forth-
coming book of de la Pefia and Giné (1997) -preliminary versions of it were dis-
tributed when these lectures were delivered. So, we recall that there is a chaos
process Rp indexed by the canonical functions of all orders on S™ such that the
random variable Kp s, in the limit (4.5) is precisely Kp s, = (T)Kp (Wff) for
all f € L*(P™), that E(Kp(g1) — Kp(g2))? = [(g1 — g2)2dP” for all square inte-
grable P—canonical functions of r variables, and that the limit (4.5) holds jointly
for any finite number of kernels, with limit the corresponding join distributions of
the variables (rf) Ky (Wff) Let d be any distance metrizing weak convergence in R.
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Then, using the just mentioned isometry, (4.10) and Corollary 4.5 on the functions
fe = f — he, we have

1/2
s () |
1/2 172
< im tim d[e((7) " vnaEen) e ((7) viegen)|
+ hm lim d[ﬁ*((r>1/2U"( P"hlz)) E(Kp,hl,r)j]

f— oo n—oo

-+ elim d[ﬁ(]\"p‘hur),,C(Kp‘f’r)]
1/2
= lim lim d[ﬁ*(( ) U;(wf’"hg)),[l(l‘{p,h”)] as.
{—o0 n—00 T

Hence, we have reduced proving Theorem 4.2 to showing that

1/2 1/2
w — lim zK") U,(f)(wf"h'/’,Pn)] =w— lim c[(”) U,(l')(nfh‘/’,P)}
n—o0 r n—o0 T
(4.11)
for ¥ bounded, joinily in any finite number of ¥’s.
Note that

w ¥ (o1, ae) = (Pe)" T ((ar) = P) - ((za) — PY)

for all z; € S, and likewise for P,,. Therefore, if R, is the polynomial of degree r
prescribed by Newton’s identities, we have

1
nr/2? Z Ph¢( iy '7Xir) (412)

1<i1<..<ir<n

— (Po)™ R (306X - Py, Z(zp(x )= PY)’/n,. D ($(Xi) = P) /n71?)

=1 =1

and, likewise,

1
nr/2 Z Pnh¢(X;11"' X:Hr)
1<y <...<i, <n

n n

= (Pat)™ "R (o (40X0.0) = Paw) /2, 3 (H(X) = Putt)

2<¢<X ) = Pap) /nt4.13)

Now, by the law of large numbers,

P.yp — Py asg
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by the bootstrap clt,

1 n n
w—nli_{z;oﬁ*[WZ(z/;(X;J)—PnIb)] —w— lim E{nl% Z(@Z)(X,-)—Pw)] as;

- n—oo "
=1 =1

by the bootstrap lln (see the beginning of t