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I N T R O D U C T I O N  

This  volume contains lectures g iven  a t  t he  Sain t -Flour  Summer School of P robab i l i ty  
Theory  dur ing  the  period 19th A u g u s t  - 4 th  September ,  1996. 

We t h a n k  the  authors  for all t h e  h a r d  work they  accomplished. Their  lectures are  a 
work of reference in the i r  domain.  

The  school brought  toge ther  74 par t i c ipan t s ,  38 of whom gave a lecture concerning 
the i r  research work. 

At  the  end of this  volume you will f ind t he  list of par t ic ipants  and  thei r  papers.  

Finally, to  facilitate research conce rn ing  previous  schools we give here the  n u m b e r  of 
t h e  volume of "Lecture  Notes" where  t hey  can  b e  found : 

L e c t u r e  N o t e s  in  M a t h e m a t i c s  

1971:  n ~  1 9 7 3 : n ~  - 
1 9 7 7 : n ~  - 1 9 7 8 : n ~  - 
1982:  n ~  1983: n ~  
1988 : n ~  1989:  n~  
1993 : n ~  1 9 9 4 : n ~  

1 9 7 4 : n ~  - 1975:  n ~  1 9 7 6 : n ~  - 
1 9 7 9 : n ~  - 1980:  n~  1 9 8 1 : n ~  - 
1984 : n~ - 1985 - 1986et  1 9 8 7 : n ~  - 
1990 :  n ~  1991:  n~  1 9 9 2 : n ~  

L e c t u r e  N o t e s  in  S t a t i s t i c s  

1986 : n~ 
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D E C O U P L I N G  A N D  L I M I T  T H E O R E M S  

F O R  U-STATISTICS A N D  U-PROCESSES 

Evarist GINE (-) 

(*) Work partially supported by NSF Crants  Nos. DMS-9300725 and DMS-9625457 and by the  CNHS 
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1. I n t r o d u c t i o n .  Recently discovered decoupling inequalities for U-processes 
(mainly, de la Pefia, 1992, and de la Pefia and Montgomery-Smith, 1995) have had 
important consequences for the asymptotic theory of U statistics and U processes 
(Gin4 and Zinn, 1994, and Arcones and Gin6, 1993, 1995, among others). It is the 
object of these lectures to describe these developments. 

U statistics, first considered by Halmos (1946) in connection with unbiased 
estimators and formally introduced by Hoeffding (1948), are defined as follows: 

�9 oo given an i.i.d, sequence of random variables {X,}i=I with values in a measurable 
space (S,,5), and a measurable function h : S m --* R, the U statistics of order m 
and kernel h based on the sequence { X i }  are 

v . ( h )  - ('~ - ~)! .~, ( 1 . 1 )  h ( x i l , . . . , x i m ) ,  n >_ 
72! 

(il,...,im)cz~ 

w h e r e  

I m =  {((i l , . -- , i ra)  : ij  E N, 1 <_ ij  < n, ij 7s ik if j 7~ k}. 

These objects appear often in Statistics either as unbiased estimators of parameters 
of interest or, perhaps more often, as components of higher order terms in expan- 
sions of smooth statistics (yon Mises expansion, delta method). Particularly in 
connection with yon Mises expansions, it is sometimes convenient to also consider 
U-processes indexed by families 7-g of kernels, that is, collections of U-sta t i s t ics  
{U~(h) : h �9 ~}.  

By a decoupling result for U statistics we mean a (usually two-sided) inequality 
between the quantities 

E (I (1.2) 

and 
(1.3) 

IF 

Xk possibly multiplied by constants that depend only on m, where the sequences { i }, 
k = 1 , . . . ,  m, axe independent copies of the original sequence {Xi}, and �9 is a non- 
negative function. Two quite different types of functions (~ have been considered: 

convex (thus including ~(Ixl) -- Ixl p, p > 1) and ~(Ixl) = ~ , > , .  
The variables at the different coordinates of the domain of h in the deeoupled 

statistic come from different independent sequences and therefore a decoupled U-  
statistic can be treated, conditionally on all but one of these sequences, as a sum 
of independent random variables. Clearly then, decoupling inequalities will allow 
for conditional use of Lfvy type maximal inequalities and for randomization by 
Rademaeher variables, which then turn U-statistics into Rademaeher chaos pro- 
cesses conditionally on the X samples. In this way, the analysis of U-processes can 
proceed more or less by analogy with that of empirical processes. 

In Section 2 we describe the pertinent decoupling results and the randomization 
lemma. Section 3 is devoted to the central limit theorem and to the law of the 
iterated logarithm for U-statistics, and Section 4 to U-processes. 



Contrary to the case of the boots t rap lectures in this volume, which are almost 
self-contained, here we present no technical details and refer the reader, instead, 
to the book 'An Introduction to Decoupling inequalities and Applications'  by de la 
Pefia and myself, in preparation, or to the original articles. 

I thank the organizers of, and the participants in, the Saint-Flour  l~cole d'l~t@ 
de Calcul de Probabilit~s for the opportuni ty  to present these lectures. I would like 
to mention here that  both,  these lectures and the boots t rap lectures in this volume 
have their origin in a short course on these same topics that  I gave at the Universit@ 
de Paris-Sud (Orsay) in 1993. It is therefore a pleasure for me to also extend my 
grat i tude to the Orsay Statistics group. 

2. D e c o u p l i n g  inequa l i t i e s ,  a) Decoupling. Let ( S , S , P )  be a probability 
space. Consider collections ~il...im of measurable functions h : S m -+ R for 
( i l , . . . , i m )  E I TM, with n > m (these functions can also be Banach space valued, 
but this would not actually change the level of generality of the results to be stated 
below). It is convenient to have the following definition: an envelope (or a mea- 
surable envelope) of a class of functions ~il...im is any measurable function Hil...im 
s u c h t h a t s u p h ~  ~ ~ I h ( x l , . . . , X m ) i  < Hi l . . . i~ (X l , . . . ,Xm)  for all x l , . . . , X m  E S. 
All the classes of ~unctions considered here will have everywhere finite envelope. 

Some s tandard notation: We set 

I Ih(Xl , . . .  ,Xm)ll, ,  := sup Ih(X~, . . .  ,Xm)l 
h E T - /  

for any collection of kernels 7-/, and we even write ]]hl] for ]]hi[~ if  no confusion 
is possible. Since these are often uncountable suprema of random variables, they 
may not be measurable; in this case we write s and Pr* for outer expectation and 
probability (see the lecture notes on the bootstrap in this volume, chapter 2). 

The main result about decoupling that  we use in this article is the following 
theorem of de la Pefia (1992): 

2.1. THEOREM. For natural numbers n > m, let X , , X i  k, i = 1 , . . .  ,n,  k = 
1 , . . . ,  rn, be the coordinate functions of the product probability space 
(S '~(m+l), S n(m+l), (P~ x . . .  x Pn) re+l), in particular the variables { X { } ~  are in- 
dependent S valued random variables, Xi  with probability iaw Pi, i <_ n, and 

X ~ the sequences I xk l '~  1r < rn, are i.i.d, copies of the sequence { i}{=1 For t i J i = l ~  - -  

each ( i l , . . .  ,ira) E ~ ,  let 7-til...im be a collection of measurable functions hi~...im : 
S m ---+ R admit t ing an everywhere finite measurable envelope Hi,...i~ such that 
~ .Hi~ . . . im(X1, . . . ,X=)  < oo. Let r : [0, oo) --, [0,0o) be a convex non decreasing 
function such that ,Xm)) < oo for a l / ( i l , . . .  �9 Ir  Then, 

E*#2( sup I ~ h i l . . . i ~ ( X i ~ , . . . , X i , ~ ) [ )  
hil...irn E'~it,. .ira I m 

<E*g2(Cm sup I~ -~h i , . . . i . , (X : , , . . . ,X i=)  0 (2.1) 
h i l ' " im  E"~il '" im I ~  



where Cm = 2m(ra m - 1)((rn - 1) (m-l) - 1) • . . .  • 3. If, moreover, the classes 
~it...im satisfy that for all hil...im E 7-fil ...ira, z l ,  �9 �9 Zm E S and permutations s of 
{1,...,~}, 

hi,...~,o(Xl,... , x m ) :  h,,,.. ~,~ (x , , , . . .  ,x~m), (2.2) 
then 

E*r 2(2m_2 r a - 1 ) ! h q  ; m e ' u q . ~  Ig' . . . .  " ' "  'm 

_< E * * (  sup 1~-~ hi~ . . . im(Zi~ , ' " ,X i , , ) [ )  " (2.3) 
\hil., ,im E']'~il. im I~ 

For the proof of this theorem we refer to the above mentioned article of de la 
Pefia or to our forthcoming book. However, we indicate here the proof of Theorem 
1.2 for m = 2 and 7-{~  = 7-f for M1 {i~, i2}, countable. In this proof, I1-It win denote 
the sup over h E 7-{. 

PROOF OF THEOREM 2.1 under the stated restrictions. We replace X/1, X~ respec- 
tively by Xi ,  X~. Let {ei}i'~l be independent random variables uniformly distributed 

I n on a set with two elements, say { - 1 ,  1}, independent of {X~,Xi}~=I, and let Z~ and 
Z~, i = 1 , . . .  n, be defined as follows: 

Zi = { X i  i f e i = l  , { X:  i f r  (2.4) 
X~ if r = - 1  ' Z i  = Xi  if Ci = - - 1  ' 

If, for each 1 < i < n, P/ is the law of Xi  then the law of the vector ( Z 1 , . . . , Z , ,  
Z ~ , . . . ,  Z ' )  is (P1 x .- .  x Pn) 2 since for each fixed e l , . . . ,  e,~ the coordinates of this 
vector are just 2n independent variables such that  Pi is the law of the i-th and the 
(n + i)-th, i = 1 , . . . , n .  That  is, 

C(Zl,. z , , z ; ,  z ' )  ~(x~,. .  ' x ' ) .  �9 ., . . . ,  = . , X n , X 1 , . . .  , 

Likewise, s  ,Z,~) = C(X1, . - .  ,X,,). Therefore, for any (P1 x - . .  • Pn) 2- 
integrable functions f and (P1 • "'" x P,~)-integrable functions g we have 

Ef (  Z 1 , . . . ,  Z , , , Z ~ , . . . , Z ~ )  = Ef(X~,...,X,~,X2,...; Xn)  , '  

E g ( Z l , . . .  , Zn)  : I I~g (X l , . . .  , X n ) .  ( 2 . 5 )  

Note also that ,  if Z is the a-a lgebra  generated by the X variables, 

Z = a ( X i , X ~ :  i = 1 , . . . , n ) ,  

then conditional integration with respect to Z of any function of the Z variables is 
simply integration with respect to the r variables only. In particular, for all i r j ,  

E(h(Z~, Z j ) lZ  ) = E(h(Zi,  Z])l z )  = E(h(Z;,  &) l  z )  = ~,(h(Z~, Z})I z )  

: 



These observations i.e., equations (2.5) and (2.6), together with the convexity and 
monotonieity of O, the integrability of the functions involved, and Jensen's inequal- 
ity, justify the following two strings of inequalities which, together, prove the theo- 
rem. 
1) For h symmetric in its entries, 

E(I, (I I ~ h(Xi, X~)ll) = E~(~ II Y~ h(X~, X~) + ~.  h(Xg, Xj)ll) 

_< �89 [h(x. x~)+ h(x:,xj)+ h(x~,xj)+ h(x:,x~)] II) 
z~ 

Jr- } ~(211E h(Xi'Xj)H) q- 1E(I)(2H Z h(X:' X~ )11) 

-- 1Eq'(4ll ~ G(h(Z,, Zr ~-E~(211 ~ h(x,, x~)ll) 

-< E e (  411Z h ( X i ' X j ) l l )  ' (2.7) 
z~ 

proving (2.3). Note that symmetry is essential for the first identity. 
2) For h not necessarily symmetric, letting X = (7(Xi : i = 1 , . . . ,  n) ,  we have 

EO(I I ~ h ( X i ,  Xj)ll ) 

_< ~ (211 y~E[h(X.Xj) + h(X:,Xj) + h(X.X}) + h(X:,X$)lx]ll) 

< ~a~(2, E[h(x,,~,)+ ~(<,~,)+ a(~,,x;)+ ~(<, x~)3 II) 

+ ~o(611 ~ E(h(Xf,X})IX)II) 

<_ ~a~(sll EE(h(z,,z/z)ll) + ~-E~(6, E h(x,,x~),) 



+ 6~(611 ~: Eh(X;, X~)ll) 

_< Ee(811 y ~  h(Xi ,X j ) l l ) ,  (2.8) 
r~ 

proving (2.1), even with a better constant. 
[] 

If h 6...i~ are functions with values in a separable Banach space then, taking 

"]-{il...i~ = { f o hil...im : f E B~ }, 

the sup over the 7-/'s in Theorem 2.1 can be replaced by the norm of the Banach 
space. The same comment applies to tile next theorem. 

It is remarkable that not only expected values of convex functions of U-statistics 
can be decoupled, but also tail probabilities. This is due to de la Pefia and Montgom- 
ery-Smith (1995). Their result contains Theorem 2.1 modulo constants, and is as 
follows: 

2.2. THEOREM. With the notation of Theorem 2.1 (but without any integrability 
assumptions on the envelopes H6...i~), there are constants Cm E (0, oo), depending 
on m only, such that for all t > 0 and n >_ m, 

Pr*{ sup I E h i ~ . . . i ~ ( X i , , . . . , X i ~ ) l  > t }  
hi l ' " im ~ i l ' " i m  I ~  

< C m P r * { C m  sup I E h i ,  x ,  x ~ } . . . .  ~ (  i , , . . - ,  ~ ) f  >~ (z9) 
hq..  ~ ET/q...i,~ I F  

/s the classes ~il...im satisfy the symmetry conditions (2.2), then there are 
constants Dm 6 (0, ~ ) ,  depending on m only, such that for aJl t > 0 and n >_ m, 

Pr*( sup ,m(x t , . .  , x  TM~,,,)J 
~ hq -im E~Q1..-im I F 

< DmPr*{Dm sup > 
hl i ..im ~ i l . . . i  m I F 

The proof of this theorem is much more involved than that of Theorem 2.1: 
it requires hypercontractivity of the Rademacher polynomials in conjunction with 
a Paley Zygmund type argument to obtain a sort of conditional Jensen inequality 
for tail probabilities, hypercontractivity of linear combinations of the coordinates 
of a multinomial (1; 1 / n , . . . ,  1/n) random vector, and (a simpler form of) the L6vy 
type maximal inequality of Montgomery Smith (1994) for sums of i.i.d, random 



vectors. See de la Pefia and Montgomery Smith (1995) or our forthcoming book for 
the proof. 

Decoupling theory started with deeoupling of multilinear forms in i.i.d, ran- 
dom variables with distributional constraints (e.g., Gaussian, stable). Theorem 2.2 
provides the most general decoupling inequality for multilinear forms, up to con- 
stants, as follows. Let X = ( X 1 , . . . ,  Xn) be a vector of n independent real random 
variables Xi,  let Xj  = (X~ , . . .  ,X~), j = 1 , . . .  ,m,  be m independent copies of X 
and let 

Qm := Q m ( X , . . . , x )  = ~ a~l. . .~J~ 1 . . . x ~ ,  ( z l l )  
iEs~-" 

where the coefficients ail...im are elements of some Banach space. Without  loss of 
generality we can assume the coefficients ail...im symmetric in their entries (other- 
wise, we replace them by y~ ai~o)...i,(m )/m!, the sum extended over all permutat ions 
s of { 1 , . . . , m } ) .  Q,~ is a tetrahedral m-linear  form in the variables X ~ , . . . , X ~  
(its monomials are of degree at most one in each of these variables). The decoupled 
version of Qm is defined to be 

Qa~r ~ X 1 .. Xm rn :=  Q n ( X l , . . . , X m )  �9 (2.12) ail , . . im il zm ~ 
iEz;, ~ 

assuming the coefficients ai~...i~ are invariant under permutations of its subindices. 
Application of Theorem 2.2 to the functions 

h i l . . . i , ~ ( X l , . . . , X r n )  = a i , . . . imXi i  " ' ' X i ~  

(more concretely to the collections { f (h i~ . . . i~) : f  E B~}, where B[ is the unit ball 
of the dual of B),  immediately gives that  the tail probabilities of the norms of Qm 
and Qd~ are comparable. Actually, with a little extra care, this extends to not 
necessarily homogenous polynomials (Gin6, 1997) as follows: 

2.3. COROLLARY. There exist constants Cm E (0, ec) depending only on m such 
that if Q(~) is a tetrahedral polynomied of degree m in any set of n independent 
random variables {Xi}in__l ,  n > m ,  with coet~cients in any Banach space, 

Q(m) = ~ E a i l . . . i k X i ~ ' " X i k  
k=O iEI~ 

(with _To = {0}), and i[ odec is its decoupled version, deigned as 

= ,...., a~...~Xi~ "Xi~ , 
k=O iEI~ ~Ez~ 

where { X / :  i = 1 , . .  3" = i , . . .  , m ,  are m independent copies or then 

1 a~c Cmt} < t} < Cm Pr{Cm er t}. Cm Pr{IiQ('~)II > _ Pr{IIQ(,~)II > _ IiQ(m)II > 



This result should not be considered new since it is a trivial consequence of 
Theorem 2.2, but it is formally new in the sense that  previously published versions of 
it require the variables Xi to be symmetric and the polynomials to be homogeneous 
(Kwapiefi and Woyczynski, 1992; de la Pefia, Montgomery-Smith  and Szulga, 1994), 
or the variables to be symmetric and to have expected values of convex functions 
instead of tail probabilities in the inequalities (Kwapiefi, 1987). 

Neither Theorem 2.2 nor Corollary 2.3 will be used in the sequel. 

b) Randomizat ion of convex functions. What  interests us about decoupling is the 
possibility of randomizing a degenerate U-process (or a degenerate U statistic). In 
order to be more concrete, we will have to define the degree of degeneracy of a 
U-stat is t ic  and also recall Hoeffding's decomposition. 

As usual, we let (S, $)  be a measurable space and P a probability measure on 

it, and let Xi, X} j) ci, cl j) be the coordinate functions on the product  of countably 
many copies of (S, S, P) and countably many copies of ( { - 1 ,  1}, ((~1 Jr- (~-1)/2). In 
particular these variables are all independent, the X ' s  have law P, and the e's are 
Rademacher  variables. 

2.4. DEFINITION. A pm integrable symmetr ic  function o f m  variables, h : S m --* R, 
is P -degenerate of order r - 1, 1 < r <_ m, i f  

/ h ( z l , . . . , x m ) d P m - r + l ( z ~ , . . . , x m ) = / h d P  m for a l l z l , . . . , Z r _ l  E S 

whereas 

h ( z l , . . . ,  z m ) d p m - r ( z r + l , . . . ,  Xm) 

is not a constant function. I f  h is Pro-centered and is P-degenerate  of  order rn - 1, 
that  is, i f  

h ( x l , . . . , x m ) d P ( z l )  = z 2 , . . . , z m  0 for all C S, 

then h is said to be canonical or completely degenerate with respect to P. I f  h is not 
degenerate of  any positive order we say it is nondegenerate or degenerate of  order 
zero. 

In this definition the identities are usually taken in the ah:nost everywhere sense, 
however, when dealing with uncountable families of functions (and only then), we 
need them to hold pointwise. 

Wi th  the notat ion P1 • '" ' X Pmh = f hd(Pl x . . .  x Pro), the Hoeffding pro- 
ject ions of h : S m --~ N symmetric are defined as 

r k h ( x l , . . . , x k )  :=  ~rP, m h ( x l , . . . , x k )  := (5~1 -- P) x - . .  • (5~ - P) x P m - k h  

for xi C S and 0 _< k _ rn. Note that  7r0h = p m h  and that,  for k > 0, 7rkh is a 
completely degenerate function of k variables. For h integrable these projections 
induce a decomposition of the U-stat ist ic 

1 
Un(h) :=  u(m)(h)  := u , ( r " ) (h ,P) :=  ( , )  E h ( X i l , . . .  ,X im)  

l <_il <...<im <_n 



into a sum of U-s t a t i s t i c s  of orders k _< m which are or thogonal  if pmh2 < ec and 
whose kernels are completely degenerate,  namely, the  Itoeffding decomposition: 

k = 0  

(here the  super index P and the subindex rn of P ~rk, m are not displayed; they  will be 
d ropped  whenever no confusion is possible). This decomposi t ion follows easily by 
expanding  

h ( x l , . . . , x m ) = 5 , 1  • 2 1 5  = ( ( 5 - 1 -  P) + P) •  • ( ( 5 - m - P ) + P ) h  

into te rms of the form (Sxq - P )  •  • (5~,, - P )  • Pm-kh. It is very simple to check 
P tha t  h symmet r ic  is P -degene ra t e  of order r - 1 iff r = min{k > 0 : ~rk,mh ~ 0}. 

Therefore,  h is degenerate  of order  r - 1 > 0 iff its Hoeffding expansion,  except  for 
the  constant  term,  s ta r t s  at te rm r, tha t  is, 

k = r  

Hoeffding's decomposi t ion is a basic tool in the analysis of U-s ta t i s t ics .  

We are in teres ted in the behavior  of HUn(h)-Pmh]]n := suph~ ~ ]Us(h)-Pmh] 
for poss ibly  uncountable  families 7~ of symmetr ic  functions h : S m ~ R. Whereas  
the  measurability requirements  for decoupling are minimal ,  randomiza t ion  requires 
(or at least would not  be useful wi thout)  the possibi l i ty of using Fubini ' s  theorem 
on expressions of the  form s u P h ~  / ] ~ ci~ "" r h(Xi~,..., Xim)l, whose integrals  
one wants  to compute  by first integrat ing over the e 's and then  over the  X ' s  or 
vieeversa. In par t i cu la r  these expressions should be measurable .  If the class 7-/of 
measurable  functions is countable there are no measurabi l i ty  problems.  A quite 
general  s i tua t ion  for which one can work without  measurabi l i ty  problems,  as if the 
class were countable,  is when 7-i is image admissible Suslin tha t  is, when there  is 
a map  from a Polish space Y onto 7-t, T, such tha t  the composi t ion of T and the 
evaluat ion map,  (y, x l , . . . ,  Xm) ---4 T(y)(xl , . . . ,  Xm), is jo int ly  measurable  (Dudley, 
1984). Often the  classes of functions of interest  are pa ramet r i zed  by G~ subsets 
O C IR d and the evaluat ion map  is jo int ly  measurable  in the arguments  and  the 
pa ramete r ,  thus the  usefulness of the image admissible Suslin concept.  If ~ is 
image admissible  Suslin, so are the classes {7rkh : h E 7-i} (e.g., Arcones and Gin~, 
1993). For simplicity, image admissible Suslin classes of functions will s imply be 
denoted  as measurable classes. 

Also, we will assume tha t  all the classes of functions 7-t considered in this 
subsect ion admi t  everywhere finite measurable  envelopes H.  

Nota t ion:  The  symbol  ~_ between two expressions means two sided inequal i ty  
up to mul t ip l ica t ive  constants  tha t  depend only on the order m of the  U process 
and on the exponent  p. Likewise, the symbols < and > are used for one sided 
inequali t ies  up to mul t ip l icat ive  constants.  

The  following lemma for functions of one variable is well known and easy to 
prove: 
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2.5. LEMMA. Let 7-( be a measu rab l e  class o f  P -cen te red  functions h : S ~ R such 
that,  for some p > 1, the envelope H of  the class satisiqes P H  p < oc. Then ,  for ali 
rt <'oo, 

12 

i=1 i=1 i=1 

T h e  randomization theorem to be s ta ted  immedia t e ly  below can be cons idered  
as a n  ex tens ion  of this  l e m m a  where  the  P - c e n t e r i n g  hypothes is  on h(z)  is replaced 
by  a P - d e g e n e r a c y  hypothes is  on h ( x l , . . .  ,zra) .  This  t heo rem is s t a ted  in full 
genera l i ty  a l t hough  only  the  cases r = m ( the complete ly  degenera te  case), r = 1 
and  r = 2 are used below. The  proof  for r = rn is a s t ra ight forward  consequence  
of the  deeoupl ing  theorems  (Theorem 2.1) and  of L e m m a  2.5 above. The  proof  for 
genera l  r is equal ly  easy b u t  more  compl ica ted  (see our  fo r thcoming  book) .  

2.6. THEOREM. For 1 <_ r <_ rn a n d  p _> 1, let H be a measurable class of  reai  
funct ions de/ /ned on Sra consisting o f  P-centered,  P-degenerate  functions of  order  
at least r - 1 such that  PraH p < oc. Then, 

(il ,...,im)ES~ 

_ Ell 
(il ,..-,ira)EI~ 

1 "'el  h ( X i l ,  X P 
(il ..... i~)ezp  

1 . . e [ h ( x l , . .  x )II .(2.15) 
(i~ ..... i,~)EI~ 

PROOF for r = rn. Let us use, for s implic i ty  of no t a t i on ,  the  abb rev i a t i ons  i for the  
�9 21  ra m u l t i i n d e x  ( i l , . . . , i r a ) ,  Xl  for the  vector  ( X i ~ , . . . , X i m ) ,  X f~c for ( i ~ , ' " , X i m ) ,  

el for the  p roduc t  ei~ - �9 �9 a n d  e d~c for the p roduc t  e I - �9 �9 Ew Since in  the  present  ~1 ~m " 
case (h  canonica l )  we have Eh(X1,  x 2 , . . . , X m )  = 0 for all x 2 , . . . ,  xra E S,  l e t t ing  
E~ deno te  i n t eg ra t i on  wi th  respect  to on ly  the  variables  e ~, X ~, L e m m a  2.5 gives 

n 
h(Xl ) ) l i T / :  ~ E l l l E (  E h(Xdec))ll~ 

|E/~ it=l ( i 2 , . . . , i m ) : i E I ~  

n 
= E E 2 1 i E  ( E el h(Xde%hllP il ', i J/ 117l 

iz=l (il,iZ,...,im):iEI,m~ 

1 e2 h C X . a ~ l l  ~ 
iCIp 
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Now the equivalences (2.15) for r = m follow by several applications of the decou- 
pling Theorem 2.1. 

[] 

c) Randomizat ion of tail probabilities. Let F be a vector space, let the function 
h : S m --+ F be symmetr ic  in its entries and let I = { ( i l , - . . , i m )  E N m : ij # 
ik for all j # k}. For finite sets A C N we set 

h(x,). 
i E I A A  T M  

The following e lementary lemma (basically an inclusion-exclusion principle) pro- 
vides decoupling and randomizat ion of tail probabilities. 

2.7. LEMMA. Let Ai,  i = 0 , . . .  ,rn, be rn + 1 finite disjoint sets of  integers, Ai 7 s 0 
K i  r O, and let A = uim=oAi . Then, 

rn! 
m 

E h(xl) = (--1)mSAo + E ( - - 1 )  m-k  E SAoUAq U...uA, k �9 
iEA1 x - . - x A ~  k = l  l < i l < . . . < i k < _ r n  

(2.16) 

This l emma for A0 = 0 was observed by Ging and Zinn (1994) and for general 
A0 by Zhang (1996). See these references (or our forthcoming book) for its proof. 
An almost  immedia te  consequence of it is the following one sided decoupling and 
randomizat ion inequality for tail probabilit ies of U-processes (Gin~ and Zinn, 1994). 

2.8. THEOREM. Let 7-{ be a measurable class of  real functions o n  S m ,  symmetr ic  
in their entries. Then, 
(a) For natural numbers  no < n, i f  Dj  are subsets of  {no + 1 , . . . ,  n}, j = 1 , . . . ,  m, 

m and M = no -]- ~ j = l  ]Djl, then, for all t > O, 

2mt  
Pr{ll E j 

lED1 •215  Dr .  

< 2  m max Pr{I  I E  h ( X i l , . . ,  xim)ll  n > t } ;  (2.17) 
n o < k < M  ~ - -  

(b) for natural numbers  no < n and a/1 t > 0, 

2 2 m r  - Pr{ll 
n o < i l , . . . , i r n  < n  

< 2  2m max  P r { I I E  h ( X i l , . . .  X i m ) l l ~ ) t } .  (2.18) 
n o < k < n m  ~ - -  

PROOF assuming L e m m a  2.7. Inequality (2.17) is trivially true if Dj = ~ for some 
j .  So, assuming tha t  Dj is not empty  for any j ,  we take A0 = { 1 , . . . , n 0 } ,  Aj  = 
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{1 + s 0  + E 21 IDo l , . . . ,  ~0 + E~=I  IDil}, J = 1 , . . . ,  m, which are disjoint,  and note 
tha t ,  by pe rmu ta t i on  of the factors in the infinite product  of (S, $ ,  P ) ,  

. .  x TM 2mt/  Pr{ll • h(X:l, ,  m)ll -> j 
IED1 x . . .xDm 

- -  Pr{I I ~ h(X~l, ,X~m)ll > 2rnt~ 
. . . .  r e ! J "  

iCAI x.- .xAm 

Then,  pa r t  (a) follows by direct appl ica t ion  of Lemma 2.7. 

Pa r t  (b) follows from par t  (a) and Fubini ' s  theorem because 

E el m h , X  1 X m ~ t ' " c i m  ( i t , ' " ,  i,~) 
n o ~ _ i l , . . . , i m  < n  

is a l inear  combinat ion  with coefficients -t-1 of 2 m terms of the form 

Z f(xl, 
iEDt x. . -xDm 

J - 1 } .  J 1} or Dj {no < i < n : e i with Dj = {no <: i _< n : e i = = _ = 
[] 

It should be noted  tha t  there is no converse to inequality (2.18) in general,  even 
for m = 1. For instance,  if X is such tha t  P r { X  > t} _~ c l t - l ( l og t ) -~ ( l og log t )  -2 
and P r { X  < - t }  _~ c2 t - l ( l og t ) - l ( l og log t )  -2 as t --~ ec and c 1 ~s c 2 (and o n e  

n can find ci's such tha t  this r andom variable is even centered),  then ~ i = 1  Xi  = 
Op (n(log n log log n) -1)  whereas ~i~=1 eiXi  = Op (n(log n) -1 (log log n ) - 2 ) .  To see 
this jus t  note  tha t  X is in the domain of a t rae t ion  of a 1 s table law with centerings 
tha t  upset  the  normings,  and e X  is in the domain of a t t rac t ion  of a 1 s table  law 
with eenterings equal to zero and with the same normings (see, e.g., Gin~, Mason 
and GStze, 1997). 

Theorem 2.8 is useful for proving 'converse limit theorems' ,  tha t  is, for deducing 
in tegrabi l i ty  proper t ies  of h under  the assumpt ion tha t  the U s ta t is t ic  wi th  kernel 
h satisfies a l imit  theorem such as the clt or the lil. 

It  does not seem tha t  Theorem 2.8 follows from decoupling of tai l  probabi l i t ies  
(Theorem 2.2); at  any rate,  Theorem 2.8 is much more e lementary  than  Theorem 
2.2. 

3. L i m i t  t h e o r e m s  for U - s t a t i s t i c s .  If h is integrable,  then the U-s t a t i s t i c s  
(1.1) based  on the kernel h form a reverse mart ingale ,  hence, they converge a.s. and 
in L1; the  l imit  is a constant  by the Hewi t t -Savage  zero-one law and this constant  
is necessari ly E h ( X 1 , . . . , X m )  by L1 convergence. The law of large numbers  was 
first proved by Hoeffding (1948), but  this slick argument  belongs to Berk (1966). 
Gin6 and Zinn (1992) gave an example  of a U-s t a t i s t i c  with a kernel not in L 1 tha t  
converges a.s. and the question of finding necessary and sufficient condit ions on h for 
the U-s t a s t i s t i c s  Un(h) to converge (possibly after centering) a.s. or in p robabi l i ty  
to a constant ,  is open. For the case h(X l , . . .  , Xm) = X l  " ' "  X m  see Cuzick, Gin~ and 
Zinn (1995) and Zhang (1996). Recent developments  on the exact  es t imat ion  of 
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moments of U-statistics (Klass and Nowicki, 1996) allow" for some optimism, but it 
is too early to tell. 

Similar comments apply to the law of the iterated logarithm, except that it 
was not known until very recently (Arcones and Ginfi, 1995) that finiteness of the 
second moment of the kernel implies the lil for the corresponding U statistic in 
the completely degenerate case and for all ra. The proof of this result does rely 
heavily on decoupling (Theorem 2.1). Here again, h being in L2 is not a necesary 
condition for the lil in the canonincal case (Gin~ and Zhang, 1996), and necessary 
and sufficient conditions are not known. 

On the other hand, the tit is completely solved. Sufficiency of square integra- 
bility of the kernel for a completely degenerate U statistic of order m (for any m) 
to satisfy the elf was proved by Rubin and Vitale (1980) and necessity by Gin~ and 
Zinn (1994). Decoupling (Theorem 2.8) plays a basic role in the proof of necessity. 

Only the clt and the lil will be described here. As a consequence of Hoeffding's 
decomposition (2.13), (2.14), it is clear that, at least under some integrability for 
h, the clt (resp. the lil) for the completely degenerate or canonical case give the clt 
(resp. the lil) in general. So, only canonical kernels will be considered. 

a) The central limit theorem. Let Xi be i.i.d, centered random variables, with finite 
second moment equal to 1. Then, the elf and the lln for sums of i.i.d, random 
variables gives 

1 X i X j  1 X i  X 2  ---+d 1, 
r~ 7Z 

(i,j)eI~ i = 1  i = 1  

where g is N(0, 1). This is the clt for the U-statistics with kernel h(x, y) = xy, which 
is degenerate if EX1 = 0. This simple example is very appropriate because canonical 
kernels are just limits in L2 of linear combinations of products r  r q5 
P-centered. Extrapolating, the example suggests that a canonical U-statistic of m 
variables, multiplied by n"qz, should converge in law to an element of a Gaussian 
chaos of order ra. This is the content of the direct clt for canonical U-statistics, 
which we now describe for completeness and also for use in the next section. 

Let L~(5',,5, P)  be the space of real valued P-centered, P-square  integrable 
functions on o% Let Gp be an isonormal Gaussian process on L~(S, S, P), that is, a 
centered Gaussian process with parameter set L~(S, $, P) such that EGp(f)Gp(g) 
= f fgdP. If {r is an orthonormal basis of L~(S, $, P) and if {gi}ie[ is a family 
of independent N(0, 1) random variables, then the equation 

2 

iEI iEI iEI 

produces such a process. By identifying random variables which are a.s. equal, Gp 
becomes a linear isometry from L~(S, S, P) onto the Hilbert space of jointly normal 
random variables generated by {Gp(f)} (or, isomorphically, by the gi's). Then, the 
finite dimensional central limit theorem simply asserts that the finite dimensional 
distributions of the processes { ~ ~i~1 f (Xi):  f C L~(S, S, P)},  converge in law 
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to the finite dimensional distributions of {Gp(f) : f E L~(S ,N,P)} ,  that  is, for 
every finite set of functions f l , . . . ,  fk in L~(S, $,  P) ,  

( ~  ~-~fl(Xi) ' 1 ~ )) ( )) 
�9 . .  ~ -  f k ( X i  --+c G e ( f l ) , . . . , G p ( A  , (3.1) 

Tt'ff i=1 rt2 i=1 

with convergence of up to second moments (of any norm) as well. The central 
limit theorem for canonical U statistics may be viewed as the extension of the 
isometry Gp to an isometry Kp from the Hilbert space of all P canonical square 
integrable kernels onto a Gaussian chaos Hilbert space (precisely, the Gaussian chaos 
corresponding to Gp)  in such a way that  the finite dimensional distributions of 
properly normalized U statistics converge to the corresponding finite dimensional 
distributions of the process Kp.  (I learned this way of seeing the elf for U-stat ist ics 
from Bretagnolle, 1983.) 

Let L~'k(S,S, P) (L~'k(P) for short) denote the Hilbert space of P-canonica l  
functions of k variables. It follows easily from basic Hilbert space and measure 
theory that  if {r162 is an orthonormal basis for L~(S, S, P), then the following set 
of functions is an orthonormal basis for L~'k(s, 3 ,  P) :  

1 
{ k �89 ~ ~il(Xl)' ' 'r _fk}, ( 3 . 2 )  

(rj:jeI) i:j(i)=rj 

where I k :=  { ( i l , - . . , i k )  : ir C jk ,  iT # i8 if r # s, r , s  = 1 , . . . ,  k}, for any j C I 

and i �9 I k, j ( i )  = }-~-~=1 Ii,=j is the number of occurrences of j in the multiindex 

i = ( /1 , . . . , i r a ) ,  and (rj:~El) denotes the combinatorial number ( . . . .  k.,mn) if {rj : 
j �9 I}  = { r n l , . . . ,  ran}. So, if h is a P-canonical  kernel of k variables, then 

h(xl,...,Xk) = ~ air162 ( 3 . 3 )  
IEI k 

in the L2 sense, with coefficients 

k 

al  := ait...ik = E [ h ( x l , . . .  , x k ) I I  r 
r=l 

which are ~ymmetric in their indices. Given a version of Gp, a version of Ifp can 
be constructed as follows: Kp is linear and 

( 1 ~ r 1 H - . . . .  I I  ( 3 . 4 )  
(rj:~EI) 7 i:j(i)=rd jC=I V ' 3" 

where HT is the Hermite polynomial of degree k and leading coefficient 1 [concretely, 
Hk is defined by the relation exp(ux - u2/2) = ~k~__0 Hk(x)uk/k[]. Therefore, if h 
has the expansion (3.3), then 

1 I I  Hi(1)(Gp(r  (3.5) Kp(h) = ~ .  ~ al 
iEI k jEI 
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We call Kp the isonormal Gaussian chaos process associated to the Gaussian process 
Gp (and will shortly explain why). Then, the Rubin and Vitale (1980) central limit 
theorem can be stated as follows: 

3.1. THEOREM. For arbritrary natural numbers rt, 1 <_ g <_ k < o% let ht be 
P-square integrable, P-canonical kernels in rt variables (that is, ht E L 2 (P)), 
and let Kp  be an isonormal Gaussian chaos process on O~=lL2 (P). Then, 

1 1 

~Un(hl),..., U~(hk) - ~  • (3.6) 
r l  r k 

as n ---+ oo, with convergence of up to second moments of the norm. 

In fact, this limit theorem admits an extension to finite numbers of functions 
oo c~k in @k=lL2 (P). For a single function h E | the result is that, if h = 

Y~k~__l hk with hk E L~'k(P), then 

k = l  

(Dynkin and Mandelbaum, 1983). 

Let (ft, E, Pr) be the probability space where the isonormal process Gp is de- 
fined, and let a(Gp) be the sub-a-a lgebra  of E generated by the random variables 
{Gp(r  : r E L~(P)}. Then L2(Gp) := L 2 ( ~ , a ( G p ) , P r )  is the Hilbert space 
of square integrable Gp measurable functions. Let "Pk(Gp) ('Pk for short) be the 
Hilbert subspace of L2(Gp) generated by the polynomials of degree at most k in 
the variables Gp(r  r E L~(P), and let 7-tk(ae) (~k for short) be the orthogonal 
complement of Pk-1 in Pk, that is, 

7-tk = Pk O Pk-1. 

It turns out that Kp,  extended as the identity on constants, is an isometry from 
the Hilbert subspace of L2(SN,P N) generated by the constants and the canonical 

kernels of all orders, I~ | Gk=IL2 (P) (note that all these spaces are orthogonal 

in L2(S N, pN)), onto L2(Gp) = |  ~k(P5 such that 

Kp(L~'k(P)) = 7-{k(P), k E N, (3.7) 

In other words, the orthogonal decomposition into canonical kernels of different 
orders induces, via Kp,  the chaos decomposition of L2(Gp). This justifies the name 
given to the process Kp. We note that it is possible to simultaneously prove the 
clt for U statistics and the chaos decomposition of L2(Gp), quite economically. See 
our forthcomming book for details. For a similar abbreviated account of the same 
theory see Bretagnolle (1983). Dynkin and Mandelbaum (1983) contains another 
derivation of the same facts.Theorem 3.1 was first proved for m = 2 by Serfling 
(1980) and Gregory (1977). 

Theorem 3.1 has the following converse (Gin6 and Zinn, 1994): 
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3.2. THEOREM. Let h : S k ~ R be a measurable symmetr ic  function on ( S , S )  and 
let X ,  X i ,  i C N, be i.i.d. S-valued  random variables with probabili ty law P. I f  the 
sequence of  random variables 

is stochastically bounded, then E h 2 ( X 1 , . . . , X k )  < oo and, moreover, h is P 
canonical. 

Here is a sketch of the proof. By Theorem 2.8 on deeoupling and randomization, 
stochastic boundedness of the sequence (3.8) implies stochastic boundedness of the 
sequence of decoupled and randomized U-statistics 

l_~il,...,i~_~n 

It then follows from this and properties of Rademacher multilinear forms that the 
sequence 

l <_il ,...,ik <_n 

is also stochastically bounded. But then, by positivity, so is the family of variables 

Z ): N,c > o , . . .  ~ z k 

l <_il ,...,ik <_n 

Now, this and the law of large numbers for U statistics applied to the bounded 
kernels h 2 Ih 2_<c imply that the numbers E [(h 2 Ih2 <_c)(Xl , . . . ,  Zk)]  are bounded uni- 
formly in c, hence, that Ehe(X1, . . . ,  Xk)  < oo. This, the direct clt and Hoeffding's 
decomposition yield that h is P-canonical. [The property of Rademacher multilinear 
forms used here is that their fourth moment is dominated by a universal constant 
times the square of their second moment, which is elementary, in fact very easy to 
check in the decoupled case; this then allows use of the Paley-Zygmund argument 
(Kahane, 1968, page 6), conditionally on the X's,  to obtain tightness of the sums 
of squares.] 

We complete this section with the observation that Theorem 3.1, the central 
limit theorem for U statistics in several dimensions, can be used in conjunction 
with Theorem 2.2, decoupling of tail probabilities for U-statistics, to produce a 
comparison theorem for tail probabilities of Gaussian polynomials and their decou- 
pled versions. The result is as follows. For ease of notation we set lil := maxt it. 

Given a sequence {gi : i E N} of i.i.d. N(0, 1) random variables and a polyno- 
mial Q(m) of degree m in the variables gi, and with coefficients in a Banach space 
B,  with expansion 

k = O  max~_<,~ l i~ l < N j EN 
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where the coefficients al are symmetric in their indices (which we can assume without 
any loss of generality), its decoupled version is defined as 

m 

k = O  . . . .  <_t: [i~l<_N jEIkm 

by arcones and Gin~ (1993@ whcre {g}J) : i e N}, j = 1 , . . . ,  m, are rn independent 
copies of the sequence {gi}. With this definition, we have: 

3.3. TIIEOREM. For each m E N there exists Cm E (0, oo) such that, if B is 
a Banach space, Q(m) is a Gaussian polynomiM of degree rn in an orthogaussian 
sequence {gi}, with coettlcients in B, and o&c is its decoupled version, then "~(m) 

I Pr{llQ(a&~)l I > Crnt} ~ Pr{llQ(m)][ > t} < CmPr{  dec 
C m  - -  - -  " 

Since the constant Cm is independent of N, the theorem extends to the whole 
Gaussian chaos of order m (for each m). This is a generalization (Arcones and Gin4, 
1993, and Ginfi, 1997) of a theorem of Kwapiefi (1987) for homogeneous polynomials 
in {gi} of degree at most one in each gi. 

The proof consists in observing that Q(m) is the limit in law of a U-statistic with 
values in the finite dimensional space generated by the (finite number of) coefficients 
al, and that g)g~c is the limit in law of the corresponding decoupled U-statistics, "~(m) 
so that the theorem follows by taking limits in the inequality of Theorem 2.2. [This 
simple proof would not be possible without Theorem 2.2; Kwapiefi (1987) developed 
very effective and elegant tools to prove the version of Theorem 3.3 for homogeneous 
tetrahedral polynomials and the version of Corollary 2.3 above for expected values 
of convex functions and symmetric variables, and some of these tools made their 
way into the proof of Theorem 2.2.] 

b) The law of the iterated logarithm. As with the clt, in order to guess the natural 
norming in the lil for degenerate U statistics, it is instructive to begin with the 
simplest example, namely the kernel h(x,y) = xy and random variables Xi i.i.d. 
with EXi = 0 and EX~ = 1. Then, the Hartman-Wintner lil for sums of i.i.d. 
square integrable random variables and the law of large numbers readily show that 

limnSUp 2n 1 E XIXj 
log log n 

n �9 / t  

z 1 
= l imsup 2nlo ogn)�89 Xi 2nloglogn i 

i = 1  i = 1  

In fact, by Strassen's lil (e.g. Ledoux and Talagrand, 1991, page 206), for almost 
every w, the set of limit points of the sequence { y-~qX Xi(co)Xj(w)/2n log log n } ~--1 is 
precisely the interval [0, 1]. This is just a particular case of a more general statement: 
the kernel xy is replaced by a general square integrable P-canonical kernel in m 
variables, the norming 2nloglogn is replaced by a .  = (2nloglogn) ml2, and the 
limit set [0, 1] becomes the set {E[h(X1, . . .  ,Xm)g(X1)" .g(Xm)] : Eg2(X1) _< 1}. 
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Decoupling and randomiza t ion ,  together  with the hypercont rac t iv i ty  p rope r ty  of 
Rademacher  chaos, will be seen to provide an elegant pa th  towards this result .  

Con t ra ry  to the case of sums of i.i.d, random variables, square in tegrabi l i ty  of 
the kernel is not a necessary condit ion for the lil when m >_ 2. However, it is neces- 
sary when h is res t r ic ted  to be of a par t icu lar  type,  and there is a necessary condi t ion 
for the  LIL in te rms of in tegrabi l i ty  of h which differs from square in tegrabi l i ty  only 
by a power of log log Ihl. 

To ease nota t ion ,  given h : S m --+ IR, we set 

1 
a~(h)  := (2n log log n) ~ E h(X i~ , . . .  ,X i , , ) .  (3.9) 

(i, ..... im)eIn T M  

The lil for canonical  U s ta t is t ics  is then as follows: 

3.4. THEOREM. Let X ,  Xi ,  i E N, be i.i.d, random variables with values in a 
measurab le  space ( S , S )  and common law P. Let hj : S m --+ N be P canonical 
functions with Eh~ < oo, j = 1 , . . . ,  d. Then, with probability one, the sequence 

{ (3.10) 

is relatively compact in R d and its limit set is 

: :  {]E[g(Xl)-..g(Xm)(hl(Xl,... ,Xrn ) , . . .  , h d ( X l , . . .  ,Kin))] : Eg2(X) ~ 1}. K 

(3.11) 

This theorem is due to Dehling (1989) for m = 2 and to Arcones and Gin6 
(1995) for general m. Dehling and Utev (to appear) gives a sketch of a proof of 
Theorem 3.4 for general m and d = I, different from ours. 

The main point in our proof consists in obtaining the following intermediate 
proposition (the bounded ill): 

3.5. PROPOSITION. Let (S',,5",P) be a probability space, let Xi ,  i E N, be i.i.d. 
r andom variables with values in S and law P,  and let h : S m --+ R be a P-canonical  
kernel  such that gh  2 < oo. Then, for every 0 < p < 2, there exists a constant 
Cm,p < oo depending only on m and p such that 

E s u p [  1 n)m/2 E h ( X i l " " ' X i ' ~ ) ]  p 
h e n  L (2n log log (i ...... ira) eI~ 

< Cm,p(IEh2(Xl , . . .  , X m ) )  ~. (3.12) 

(3.3) and  polar iza t ion  imply tha t  the set of finite l inear combinat ions  of func- 
tions of the  form 

h ~ ( x l , . . . , X m ) : : r  , / r  fr (3.13) 
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is dense in L~"~(P). Then, Proposition 3.5 reduces the proof of Theorem 3.4, by 
means of a s tandard approximation argument,  to the lil for kernels of the form 

k 

h = E c'h~m" (3.14) 
r ~ l  

The lil (i.e., Theorem 3.4) for U-statist ics with kernels of the form (3.14) is an 
immediate consequence of Strassen's lil for sums of R d valued i.i.d, random variables. 
Here is how it works for rn = 2 and d = 1. Strassen's lil (e.g., Ledoux and Talagrand, 
1991) asserts that  if Y ,  Yi,  i E N, are i.i.d, random vectors in R k, then, the sequence 

1 

(2n log log n) �89 

is relatively compact  for almost every w E 
and then 

{ 1 
lim set (2n log log n) �89 

where K y  is the subset of ]1{ k defined by 

n oG 

/ ~ 1  Y i  (('~ } n = l  "= 

ft if and only if E Y  = 0 and EIYI 2 < oe, 

n 

i=1 

K y  : { E [ ( g ( Y ) ) Y ]  : g real, measurable, and Eg2(Y) < 1}. 

Hence, if r i = 1 , . . . ,  k, are centered and square integrable, we have 

n 

lim set~ 1_ 1 E ( @ I ( X j ) , . . . , ~ ) k ( X j ) ) }  
t (2n log logn)~  j=l 

= : Eg2(X) _< 1}, 

where we take this statement to mean that,  moreover, the sequence in question is 
relatively compact  with probability one, and where X is a random variable with 

k law P. Then, applying the continuous function ~(x l , . . . ,  xk) ~ r = l  c,x~ to both  
terms, we obtain 

~, r  2 
2n log log n 

r = l  j = l  

k 

= {Ecr [Er  1}. (3.15) 

Now, with h as in (3.14) and rn = 2, 

1 E C r ( E r  - 2711oglogTt l<i,j<n 2n loglog n ~=1 j=] 

1 
2n log logn  ~ h(Xi ,Xj )  + 

1 h(x~, xi), 
2n log log n i=1 
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and the last summand tends to zero a.s. by the law of large numbers since 
E l h ( X l , X ~ ) l  < ~ Ic~lEr < oc. Moreover, 

k k 
E cr [ E~)r(x)g(X)]2 : E Cr~ [I/)r(X1 )l/)r(X2 )g(Xl )g(X2 )] 
r=l r=l 

= E [h(X1, X2 )9(21 )9(22 )]. 

Hence, (3.15) becomes 

limset{2 1 Eh X ,Xj } = {EEh(Xl,X2 g(Xl)g(X2 l : 1}, 
log log r[ r2 

that  is, the lil in Theorem 3.4 for the simple function h given by (3.14). The proof 
for m > 2 is slightly more involved, and Newton's identities help to account for the 
sums with repeated Xi ' s  in the analogue of the identity below (3.15). 

We next see how" to obtain the basic inequality (3.12) in Proposit ion 3.5 by 
indicating several steps. 

Step 1: DecoupIing and randomization. Let K be a natural number and let 0 < p < 
2. Lett ing t~, = (0, r.-1.)O, h/ar,  h / a r + l , . . . ,  h/a2K) E ~2~, it is easy to see that  

Z h(xl) = h,(xl)  n I ~  x I 

So, we can apply Theorem 2.1 for f ~  valued kernels (which can be viewed as a 
family of real valued kernels, as indicated immediately below the proof of Theorem 
2.1) and obtain 

E h(Xi) P 1 E d . . . . . .  decx p E m a x  < C E m a x  s i n tA  i ) 
n < 2  K n ~ 2  K 

- i E I ~  '~ - i E l $  

for some constant C < oo depending only on m and p. 

Step 2: Blocking. Blocking is an essential part of the proof of the Ill for sums of i.i.d. 
random variables, and it is achieved via maximal inequalities (L6vy or Ottaviani).  
Once the statistic is decoupled and randomized, we can apply L@vy's inequalities 

J J N}, repeatedly, and conditionally on all but one of the m sequences { s i , X  i : i E 
obtain 

1 E d . . . . . .  aecxl p 1 E d . . . . . .  dec,[ p E m a x -  gl n [~ i  )[ < 2 m E  max ~ El nk~i ) 1 '  
n<2 K _  an iEi. m k<K--l_ a k iEI~+l 

where a~ :=  a2k. We axe now prepared for application of a basic property of 
Rademacher  multilinear forms. 

Step 3a: A maximal  inequality. Let r on N+ U {0} be a Young modulus that  is, a 
real function such that  r  = 0 and ~b is convex and strictly increasing to infinity. 
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Then, the space Lr E, Pr) of all the random variables ~ defined on f~ such that  
Er < ~ f o r  some 0 < c < 0% equipped with the norm 

I1~11r = inf{c > O: Er _< 1}, 

is a Banaeh space (of. Krasnoselsky and Rutitsky, 1961). For instance, if r  = x p, 
1 < p < 0% then I1~11~ = II~llp We are more intersted in Young functions of 
exponential type, g?~, 0 < c~ < 0% which are defined as follows: 

r Tc~(X)--c~exp , i f0  <c~ < t, 

1 

where , . ( x )  denotes exp(x ~) if x _> ( ~ ) ; ,  and it denotes the (ordinate of) 

((-:) tangent line to the fmlction y = exp(x ~) at the point z exp if 0 _< 
1 

(k~__~) ;-. (The complication in the definition of ~b~ for ~ < 1 is due to the fact X < 

that  the function y = exp(x ~) is not convex near zero.) Note that  for all p > 0 and 
all a > 0 there is cp,~ < ec such that  

II~llp -< cp,~ll~II,o. 

We can now state a useful maximal inequality (Arcones and Gind, 1995), valid 
for Young moduli slightly more general than ~a,  but not for power moctuli. 

3.6. PROPOSITION. Let ~ be a Young modulus such that 

~ ) - - l ( x y )  
l imsup r  < co (3.16) 
:cAy----~ ( x ) r  

and 

r  ) < ~ .  (3.17) limsup~oo r  

Then, there exists a finite constant C~ such that, for every sequence of  random 
variables {~k : k C N}, 

sup ICkl < CcsupllCkll,. (3.18) 
k ~----2~(k) r - k 

This inequality is good for us because of the following property of Rademacher  
chaos variables: 

Step 3b: Integrability (hypercontractivity) of Rademacher ~um~. If Y = ~ aici, it is 
classical (Bonami, 1970) that  

l'~1/2(V'a2"~l/2 ( E I Y F ) I / p < ( P -  , ,z_., ~J ' P >-2" 

Conditionally applying this inequality to the decoupled Rademacher m-l inear  form 

E 1 , . s  Z = a i l . . . i m s  " ~ m '  

i l  ~...~im 
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we obtain  
(ElZlP),/p < ( p  1 ) m / 2 ( E  2 _ -- a i l . . . i m )  1/2,  p ~ 2. 

(This inequality is also true for undecoupled Rademacher  multil inear forms, but 
it requires a little more work and we do not need it here.) Then,  developing the 
exponential ,  one gets 

IlZll,,~/o, _< Cm(y]~ a~,...i~) '/~ (3.19) 

for some universal constant Cm. Combining (3.18) and (3.19), we obtain that ,  if Zk 
is a sequence of decoupled Rademacher  m-l inear  forms, then 

I Zk [ sup (E I Zk 12) 1/2 (3.20) SkP (log k )  rn/2 ~p ~- c m  k 

Step 3c: Applying inequality (3.20). If we apply inequality (3.20) to the right hand 
side of the inequality from Step 2, we obtain (recall that  the ~2/,~ norm dominates  
a constant  t imes the Lp norm) 

g s m a x  1. E d . . . . . .  dec,I p 
k<_K--1 a k ieI~+l el ntAi )l 

1 1 
< 3~-~-~ E~ max E d . . . . . .  dec,I p m km ci n [~ i  )l 
-- k_<a ( l o g k ) v  2 ~ -  ie• 

( 1 E ec)) < C m a x  h2(Xl d 
- -  k < t (  

- I E I ~  

for a constant  C < oc depending only on p and m, where E~ denotes integration 
with respect to the c variables only. So, integrating with respect to the X variables, 
we have 

) E max  - -  E gld . . . . .  n~_~ idec,,I p) I < C E m a x (  "1-~-- E h2(xdec) ~ 
k<K-1 a~ - k_<K\2 ~m 

- -  i E I ; + l  iEI 3 

Thus, we have reduced the lil to a law of large numbers since the variable at the 
right is basically an average. 

Step 4. Doob's maximal inequality. Now it is an exercise to check that  Doob 's  
maximal  inequality for reverse mart ingales (recall h 2 is integrable) bounds the last 

expected value by ( 2 / ( 2 - p ) ) ( E h 2 ( X ) )  "/2, and Proposit ion 3.5 obtains by combining 
the four steps. 

Pisier (1975) has an analogous approach to the lil for sums of i.i.d. Banach 
valued r andom variables. The proof sketched here is from Arcones and Gin@ (1995). 

The  lil for degenerate U-sta t i t ics  is still unfinished. Next we coment on some 
recent developments.  The  first comment  is that  the condition Eh 2 < oo in Theorem 
3.4 is the best  possible moment condition for the lil: it can be shown (Gin@ and 
Zhang, 1996) that  this condition is necessary for kernels of the form (3.14) (with 
k < (x)). The  best necessary integrability conditions for the bounded lil so far are 
the following (Gin~ and Zhang, loc cit): 
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3.7. THEOREM. Suppose we have 

1 
lira sup (2n log log n ) ~  E 

n---+oo ( il  ,...,im ) E in m 

Then 

h ( X i l , . . .  , X i m )  < oo a.s. (3.21) 

and 

[ H(X) ] 
E[_log (X) j < OO 

~r:= sup ELhqXl,X2)g~Xl)g(X2) j r  , , ~ , , ,n <cx~ 
Eg~(X)~_l 

E m i n { h 2 ( X 1 , . . . , X m ) , n ( l o g l o g n )  m-l}  < oe. 
sup (3.22) 
,>1 (log log n) m-1 

In particular, h is P-canonical and, for m > 2, 

Eh2(log log Ihl)2-mg(log log [hi) < oo (3.23) 

for all bounded non-negative monotone decreasing integrable functions g on •+. 

The proof of this theorem relies heavily on decoupling. The integrability condi- 
tion (3.22) for m = 1 reduces to Eh 2 < oo, so that  Theorem 3.7 recovers in particular 
Strassen's converse lil. The following example shows that  (3.23) cannot, in general, 
be improved. 

3.8. EXAMPLE. Let Ir  be the indicator function of the interval (1 _ 2_72i__1,1_ ~7] , 1  1 

for all r C N, and let 

h(x, ~), (y, 9)) = 
2 ~ 

defined on S 2, S = [0,1] • { -1 ,1} .  Let P = k x (6-1 +61) /2 ,  where A is Lebesgue 
measure. Then h is P-canonica l  and it can be proved, using truncation, binomial 
probabilities and a bet ter  exponential inequality for Rademacher chaos (Ledoux and 
Talagrand, 1991), that  this kernel does satisfy the bounded lil, i.e., that  

1 Z h ( (Xi ,~ i ) , (X j , c j ) )  < ~ o  a.s. limn__+oosup n log log n 
( i , j )CI~ 

However, not only Eh2(X1,X2) = 0% but in fact, f h2g(loglog Ihl)dP 2 = oo for all 
bounded, decreasing functions g such that  f o  g(t)dt = oo. So, this example shows 
that  for P-canonica l  U-statistics, (i) the condition Eh 2 < oo is not necessary for 
the lil, and (ii) the necessary integrability conditions given in Theorem 3.7 are best 
possible, at least for m = 2. We refer to Gin6 and Zhang (1996) for details. 

It has recently been shown (Goodman,  1996) that  

3.9. THEOREM. Let h(x, y) be a measurable symmetric P-canonical kernel and let 
X,  Xi,  i E N, be i.i.d.(P). Let H(x) := Eh(x ,X) .  Then, the conditions 
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imply 
1 

l imsup I~-~ h(Xi,Xj)I < 4v/~a a.s. 
2nloglogn n ~ o o  

This is the best relatively satisfactory lil under conditions weaker than 
]Eh2(X1,X2) < oc. For another lil that does not require finiteness of the second 
moment of h, see Gin~ and Zhang, loc. cit. 

We should remark that, by Hoeffding's decomposition, the lil with norming 
(2n log log n) -1/2 for non-degenerate square integrable U-statistics reduces to the 
lil for sums of the i.i.d, random variables pm-ih(Xi)  together with Marcinkiewicz 
type laws of large numbers for degenerate U-statistics, as noted in Sefling (1971). 

4. L i m i t  t h e o r e m s  for  U - p r o c e s s e s .  We are concerned in this section with the 
law of large numbers, the central limit theorem and the law of the iterated logarithm 
for U-processes. The three types of results reduce to control of quantities of the 
form 

Pr{sup pUn(h)l > or E[sup IU (h)l], 

where ~ is a family of kernels and Pr, E, must be replaced by Pr*, E* (outer proba- 
bility, outer expectation), when sup IU,~(h)l is not measurable. This is immediately 
clear for the lln and the lil, and Theorem 2.1.3 in the lectures on the bootstrap in this 
volume makes it also clear for the clt. We wiI1 estimate these quantities via metric 
entropy bounds after decoupling and randomization, as we now explain. (This is in 
analogy with empirical processes, with the added ingredient of decoupling.) 

We recall that, as in (3.19), if 

Z = ~ n i l  , . . . , img i i  �9 �9 �9 s  

l<_il<.. .<im<_n 

is a real homogeneous polynomial of degree m in n independent Rademacher vari- 
ables, then Bonami's result gives 

IlZllr _< (EZ2) 1/2 : ( ~ - ~ a ~ )  1/2 (4.1) 

for a constant Cm < oo that only depends on m (see e.g. Kwapiefi and Woyczynski, 
1992, or our forthcoming book). Then, if Zk, k _< N, is a family of such polynomials, 
Proposition 3.6 gives the following maximal inequality: 

< Cm[logN]m/2max(EZ~] 1/2, N > 1. max lZkllI, /  (4.2) 
" k_<N k ,  ~J 

The norm at the left side can be replaced by the Lp norm for any p, with a change in 
the constant, that we will continue denoting as Cm. The maximal inequality (4.2) 
is really all that is needed (besides decoupling and randomization) to prove the law 
of large numbers. To prove the other two limit theorems, one combines inequality 
(4.2) with a measure of the size of the class 7s namely, its metric entropy for certain 
distances, particularly if ~ is Vapnik-Cervonenkis, to obtain the pertinent maximal 
inequalities. The key to this is the following well known theorem, basically due to 
Dudley (1967), with formal but important improvements by other authors (Pisier, 



25 

Fernique). For a detailed proof, see Ledoux and Talagrand (1991) or our forthcoming 
book. First, some definitions: 

The covering number N(T,  d, e), e > 0, of a metric or pseudometric space (T, d) 
is the smallest number of open balls of radius at most ~ and centers in T required 
to cover T, that  is, 

N(T,d , r  := m i n { n :  there exist h , . . . , t n  E T such that T C_ U~=lB(ti,c)}. (4.3) 

A process X(t) ,  t 6 T, (T, d) a metric or pseudometric space, is separable if there 
exist a countable set To C_ T and a set ~0 C_ r with Pr  r0  = 0 such that  for all w not 
in rio, t 6 T and c > 0, X(t,cr is in the closure of the set {X(s ,w)  : s E ToAB(t ,c)} .  
It is well known and easy to see that  if (T, d) is a separable metric or pseudometric 
space and X is continuous in probability for d, then X admits a separable version. 
Wi th  these definitions we have: 

4.1. THEOREM. Let (T, d) be a pseudometric space of diameter D and let ~b be a 
Young moduius satisfying conditions (3.16) and (3.17) in Proposition 3.6. Suppose 
that 

OD ~--1 (N(t ,d ,e))dc < ec, (4.4) 

and let X( t ) ,  t E T, be a stochastic process satisfying 

IIXCt)- x(~) l l ,  _< d(~,0, s,t r T. (4.5)  

Then, any separable version X of X has almost all its sample paths in C~(T, d) and, 
moreover, 

D 
[]~pl_~(t)[[[~ _< ] [ X ( t o ) [ [ ~ + K / o  ~b-l(N(T,d,e))dc,  (4.6) 

and 6 
]1 ~(~',,)<~sup I X ( t ) - f ( ( s ) l H ~  <_ K f ~ - l ( N ( T , d , e ) ) d r  (4.7) 

~, tET  

for all 5 > 0 and a ~nite constant K that depends only on ~b. 

Since, for X separable, 

Ilsup Ix( )lll -- sup Ix(t)1l, 
{6T g; SC_T 

S f i n i t e  

and likewise for [[supd(,.o<8 IX( t )  - X(s) [ [ l  , ,  the sups in (4.6) and (4.7) can be re- 
s , t E T  

placed by maxima over finite sets. The key estimate here, of which all the 'chaining'  
proofs are (more or less complicated) variations of, is the following. Let us assume 
X(to) = 0 and T finite. For each k = 0 ,1 , . . .  let { t lk , . . . , tkk} = Tk be the centers 
of Nk :=  N(T,  d, 2 -k)  open balls of radius at most 2 -k and centers in T covering T. 
Note tha t  To consists of one point, which we may take to be to. For each k _> 0 let 
7rk : T --~ Tk be a function satisfying d(t, ~rk(t)) < 2 -k for all t r T, which obviously 
exists. Moreover, T being finite, there is kT such that,  if k >> kT and s E T, then 
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d(rck(t),t) = 0; this implies, by (4.5), that X ( t )  = X(rrk(t)) a.s. Then, for t E T we 
have: 

kT 

x(t) = - a . s .  

and, since 

d(rck(t),rCk-l(t)) < d(rck(t),t) q- d(t, rck_l(t)) < 3 . 2  -k ,  

the maximal inequality (3.18) of Proposition 3.6 (better, (4.2) for ~b) and hypothesis 
(4.5) give, using (3.17) in the last step, 

kT 

max Ix ( s ) t l l ,  < ~-~ll max IX( t )  - X(s)lfl  
t(7_T tETtc,~ETk-1 

k= l  d(~,t)<a.2_k 

ks 
3C,r ~ 2 - k ~ - l ( ] ~ k N k - 1 )  

k= l  

km 

_< K 2 -%- ' ( :vk ) ,  
k= l  

that is, inequality (4.6). 

There is quite a large class of collections of kernels that have good metric 
entropy properties for the Lp(P) distance, uniformly in P. These families of functions 
go by the names of 'Euclidean classes', 'polynomial classes' or 'Vapnik-Cervonenkis 
classes'. A class of sets C is Vapnik-Cervonenkis (Dudley, 1977) if there is an n < oo 
such that C does not shatter any subsets of cardinality n (C shatters a finite set A, 
if all the subsets of A can be obtained by intersection of A with sets in C). A class 
of functions ~ is VC-subgraph if the subgraphs of all the functions in ~ form a 
VC class of sets. By a combinatorial lemma due to Sauer, Vapnik and Cervonenkis, 
and Shelah, independently, and a result of Dudley, extended by Pollard, the VC 
subgraph classes of functions satisfy the following entropy bound: 

4.2. THEOREM. ff 7-~ is a VC-subgraph class of measurable functions on a mea- 
surabIe space (S, S)  with an everywhere finite envelope H (H is any measurable 
function such that H(s)  >_ suphe~ Ih(s)l) and p 2 1, then there are constants 
K < c~ depending on ~ and d > 0 depending on p and ~ ,  such that 

where P is any probability measure on (S, 8) and I[HHp,p denotes the Lp(P) norm 
of H. 

See e.g., van der Vaart and Wellner (1996, Theorem 2.6.7), Dudley (1984) 
or Pollard (1984). See Dudley (1988) for other classes of functions that satisfy 
this theorem or similar bounds that make Theorem 4.1 applicable to them. These 
references provide many examples of such classes of functions. 

Next we describe results on the lln, elf and lil for U-processes. 



27 

a) The law of large numbers. Let 7-/be a class of symmetric functions on S m with 
an everywhere finite envelope H, and let P be a probability mesure on (S, S). We 
ask whether 

llUn --  P m l l ~  : =  s u p  I U n ( h )  --  P m h l  --+ 0 a .~.  
h e n  

For m = 1 this is the law of large numbers for empirical processes, that  is, a gen- 
eralization to classes of functions of the Glivenko-Cantelli theorem (Vapnik and 
(~ervonenkis, 1971,1981; Gin~ and Zinn, 1984; Talagrand, 1987). The functions be- 
ing in general non degenerate, which corresponds to the ease r = I in the randomiza- 
tion theorem (Theorem 2.6), we will only be able to randomize by one Rademacher 
factor. This will justify the following definition of a random distance on ~ .  For Xi 
i.i.d.(P) and f ,  g C ~ ,  we set 

en,l(f ,g) = 1_ f i  (n - -m)!  ,X im) .  
n Q = I  ~ ~- ~ E ( f - -  g)(Xil , . . .  

( i2 ,...,im ):iE In T M  

Actually, here~ as in Section 2, we assume the variables Xi to be the coordinates 
S N -+ S, and when we introduce new auxiliary variables, such as Rademacher 
randomizers, we assume them to be defined also as coordinates in another factor of 
the general probability space so that,  in particular, they are independent of the X 
variables. 

The following is the U-statist ic analogue of the VC law of large numbers for 
empirical processes. 

4.3. THEOREM. Let Tt be a measurable (:=image admissible Suslin) class of sym- 
metric kernels on ( S m, S m) with everywhere finite pm~ntegrable envelope. Then 
the following statements are equivalent: 

i) IIU,~ - Pr~ll~ ~ 0 a.s. 

ii) -1 l o g N ( H ,  ~n,1,r ~ 0 in pr* for all r > O. 
n 

PROOF (Sketch). The strong law i) is equivalent to 

EIIUn - Pm[l~u ~ 0 

because, under the conditions of the theorem, [fUn - pm][~, n >_ rn, is a reversed 
submartingale. By the randomization theorem (Theorem 2.6), this is equivalent to 

E (~ -  )! x , ~ )  0 

(note [IPmhil~E] Y]i~=l ~il/T/~[ ~ 0)- The implication i) ~ ii) now follows from a 
Sudakov type minorization inequality for suprema of linear combinations of Radema- 
cher variables due to Carl and Pajor, 1988 (see Ledoux and Talagrand, 1991, Corol- 
lary 4.14). 
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To prove that  ii) implies i) we observe first that,  by standard truncation tech- 
niques, it suffices to prove 

lira t i m s u p E  ( n - m ) !  Xi~)  M . . . . .  ~ f  E c i ,  h (Xi~ , . . . ,  = O, (4.9) 
7~M 

r2 

where 7-fM = {hIH<M : h ~ 7-/}. For simplicity, set N.,~,I(~M,C) :=  N(TfM,g,~,l,e). 
It is easy to shown (see Arcones and Gin6, 1993, page 1511 and Lemma 2.20 in Gin6 
and Zinn, 1984) that  condition ii) implies that for all s > 0 there exists Mo(c) < oo 
such that  [ 1 

E lOg ]~/n,1 (7~M, s ) ~ 0 (4.10) 

for all r < co. 

For a; fixed, let 7-f~ be a subset of ~M of cardinality l~r~,~(~M, s), c-dense in 
~ M  for the distance g~,l(aJ). Then, by the triangle inequality, 

~.~ (~ - "~)! ~ c~ h ( x ~ , .  , 
I2 

< ~ y ]  h (xz , , . . . , x~o , )  } 

I2 

and by inequality (4.2) with rn = 1, we have 

E~ -~i ~--a-, ~ ' 

< c (~ - ~)! [tog :% ~(~M,~)] 1/~ - ~ f  

z x max h(X i~ , . . . ,X im  
hET-I*M .1= (i2,...,im):iEI 2 

,D1/2 
< CM [log ~ , ~ ( ~ ,  ~)] ~/~ 
- n - m + 1  

Integrating with respect to the X variables in this last inequality, and using (4.10), 
proves (4.9) and therefore, the law of large numbers i). 

[] 

Since d , , l ( / , g )  _< en,l(f,  9) := u.(If - gl), and e,,1 is the 5~ distance for the 
(random) uniform probability measure on the points (X~, , . . .  ,Xi,~) C S TM, 1 <: il < 
�9 .. < ~m _< r~, it follows from Theorems 4.2 and 4.3 that  

4 . 4 .  C O R O L L A R Y .  IfT-( is a VC class of symmetric funtions on S m with everywhere 
finite envelope H, then Ilg,~(h, P) - Pmhll~ - ,  0 a.s. for all probability measures P 
on (S ,$ )  for which H is Pm-integrable. 
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For example, if Xi  are ii .d. in R 2, with law P, and A ( x , y , z )  denotes the 
triangle with vertices x, y, z in R 2, then Corollary 4.4 shows that  

1 
sup E Z{0 E A t X i , ,  Xi2, Xi3)} - Pr{0 E AtXI ,  X2, X3)} ---+ 0 a.s. 
06 ]I~2 (3) l~il<i~<ia~n 

(4.11) 
for any probability laws P in R 2, because the corresponding family of subsets of R 6, 
Co : :  {(x, y, z) : 0 C A(x, y, z)}, 0 C II{ 2, is VC. The process 

1 Z I{o c o e R 
Dn(O) :=  i~) l<_i,<i2<ia<n 

X ~ is the ~implicial depth process of the sample { i}i=1' The argmax of this process 
are the simplicial medians of the sample, and the argmax of the function D(O) := 
Pr{0 E A ( X 1 , X 2 , X a ) } ,  if it exists (even if it is not unique) is the population 
simplieial median (Liu, 1990). It can be shown that,  as a consequence of the above 
limit, the empirical simplicial median is a consistent estimator of the populat ion 
simptical median. This extends to any dimensions. 

Another  corollary of Theorem 4.3 is the following extension to U-stat ist ics of 
the Maurier law of large numbers: 

4.5. COROLLARY. I f  B is a separable Banach space and if  h : S m ---+ B satisfie~" 
Ellh[I < oc, then U~(h) ~ pmh a.s. 

Except for Corollary 4.4 for m -= 2, which belongs to Nolan and Pollard (1987), 
the results described in this subsection were obtained by Arcones and Gin4 (1993), 
and we refer to this article for detailed proofs. The Nolan-Pollard article contains a 
very interesting application of rates of convergence to zero of degenerate U-processes 
to density estimation. See also Turki-Moalla (1996). 

b) The central limit theorem. We refer to the lectures on the bootstrap,  Section 2.1, 
for background on convergence in law in g~ In the case of empirical processes, 
T is a class of functions of one variable whereas in the U-processes case, T is a set 
of functions of several variables. Recall also the definition of the processes Gp and 
Kp from Section 3a) above. 

Given a kernel h ( x l , . . . ,  xm) not necessarily P-degenerate,  we can decompose 
it as 

t n  

h ( x l , . . . , x m )  - Pmh = E ( ( p m - l h ) ( x k )  -- pmh)  + h ( x l , . . . , X m )  
k = l  

where/t ,  defined by this same relation, is centered and degenerate of order 1. Then, 
the central limit theorem for the first term reduces to the elf for the empirical 
measure over the class of functions of one variable { P m - l h  : h E 7-/}. The fact 
that  the kernel /t is degenerate of order 1 (with r = 2 in Definition 2.4) implies, 
by Theorem 2.6, that  we can randomize the U-process with kernel h with two 
Rademacher  factors, and this is easily seen to be equivalent, in this situation, to 
randomization by two Rademacher factors of the original U-process. In conclusion, 
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we obtain the following corollary of the randomization theorem (Arcones and Gin6, 
1993): 

4.6. TtIEOREM. Let /-t be a measurable class of symmetric kernels on ( s m , s  m) 
with everywhere finite envelope H and let P be a probability measure on (S, $).  
Then, the conditions 

i) the class pm--17-L := { p m - l h  : h E 7~} is P Donsker, 

ii) there exists r > 0 such that 

o, 
s~ 

imply that 

Conversely, i t t 2 P ' ~ { H  > t} ~ 0 as rn ~ oo and the clt (4.12) holds, then condition 
i) holds and the Bmit in condition ii) holds true for every 0 < r < 2. 

Condition i) has to do with empirical processes, which have been extensively 
studied, and condition ii) can be checked using the tools for Rademacher chaos 
decribed at the beginning of the section. For instance, a direct application of Theo- 
rem 4.1 with ~ = ~91, the exponential modulus of order 1, which corresponds to the 
Rademacher  chaos of order 2 in inequalities (4.1), (4.2), shows that the condition 

n- l lZE * logN(7-t,e,,2,e)de ~ O, 

where e,~,2(f,g) = [ U , ~ ( ( I -  9)2)] 1/2, implies condition ii). (A smaller random 
distance suffices.) In particular, by Theorem 4.2, measurable VC classes satisfy 
the clt (4.12) for any P for which the envelope is square integable (again, less than 
square integrability suffices). The clt for not necesarily degenerate VC classes was 
obtained, for rn = 2, by Nolan and Pollard (1988), and by Arcones and Gin~ (1993) 
and, independently, by Sherman (1994), for general rn. 

The clt for degenerate classes is, in a sense, more interesting. Combining the 
randomizat ion theorem for r = rn, the maximal inequality (4.2), Theorem 4.1, 
the characterization of convergence in law in g~176 given as Theorem 2.1.3 in the 
boots t rap  lectures, and Theorem 3.1 for finite dimensional convergence, we obtain 
the following result (recall 7rP(h) denotes the Hoeffding projection of h, and that  
7rP(h) is canonica l -see  Section 2b)): 

4.7. THEOREM. Let 7-l be a mesurable VC class of symmetric kerne/s S m ~ R, 
with everywhere finite envelope H such that pmH2 < oo. Then, 

{ k/2u n (Trk,m(h)) : h C {I(p((zcP,m(h)) : h C 7-~} 
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in s for k = 1 , . . . , m ,  where Kp is the isonormal Gaussian chaos process 
associated to P. 

For a detailed proof, see Corollary 5.7 in Areones and Gin6 (1993). (See also 
Nolan and Pollard, 1988, for m = 2; Sherman, 1994, Corollary 8, contains a slightly 
weaker result for general m, as well as an interesting application to generalized 
regression). 

Bach to the simplicial depth process Dn in (4.11), Theorem 4.6 shows that  the 
simplicial depth process satisfies the clt, that  is, 

n] /2(D.  - D)  --+c G 

in s176176 and where G is the Gaussian process mGp.  Chen, Arcones and Gin6 
(1994) use this observation to prove that,  if P is angularly symmetric with respect to 
some center and enjoys certain smoothness properties, then the empirical simplieial 
median is an asymptotically normal v/-ff consistent estimator of the population sim- 
plicial median. This article also contains a general setup for treating M~est imators  
based on multivariate criterion functions, something considered also by Sherman 
(1994). 

In empirical process theory, besides the VC condition, there is another type of 
conditions that  ensures that  some limit theorems hold, namely, 'bracketing condi- 
tions'.  We will not treat these here because they do not seem to be very adequate 
in the degenerate situation: see Arcones and Gin6 (1993) and Turki Moalla (1996). 

c) The law of the iterated logarithm. The lil for non-degenerate U-processes reduces 
to the lil for the empirical process over the class { P m - l h  : h E 7-t}, well studied 
(e.g., Ledoux and Talagrand, 1991), and to convergence to zero a.s. of the higher 
order terms in the Hoeffding decomposition. This is done in Arcones (1993). The 
lil for VC classes of P degenerate functions was considered in Areones and Gin6 
(1995), who obtained the following: 

4.8. THEOREM. Let ~ be a measurable VC class of  P-canonical symmetric  func- 
tions S m --+ N with an everywhere finite enevelope H such that E H  2 < oo. Let 
~n(h),  h C ~ ,  be defined as in (3.9). Then, /'oi" admost every ~o, the sequence 
{Oln(h,  a2 ) : h C '~}n~176 i8 relatively compact in s and its limit set is 

I"(= { {E[h(Xl , . . . ,Xm)g(Xl) . . .g(Xm)]  : h �9 :IEg2(X) < 1}. 

We suecintly comment on the proof (see our article for details). The reduction 
to an analogue of Proposit ion 3.5 above is less straightforward than in the finite 
dimensional ease, but  still flows along lines similar to the analogous reduction in 
the finite dimensional case as described in Section 3 (some extra arguments,  that  
we omit, are necessary). Inequality (3.12) in Proposition 3.5 now takes the form 

Esup  ]l~n(h)llG _< Cm,p(EH2(X1 , . . .  ,Xm))  H2 (4.13) 
n 

for all 0 < p < 2. The proof of (4.13) follows the same steps as the proof of (3.12) 
described above, the main difference being that  now, instead of inequality (3.19), 
we must use the following analogue: 
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4.9. LEMMA. f f  T-~ is a measurable  V C  class os functions,  then 

l lZ  41...crmh(x l, <_ c H2( 

PROOF. There is no loss of generality in assuming that ~ contains the function 0. 
2 1 " ' i m ) "  Take T in Theorem 4.1 to be ~ .  Take d2(h l ,h2)  to be ~ ( h 2  - hi) ( z 6 , . .  x m 

Then, the process X ( h )  = y~ e !~ . . .  e ~,~ h (x~  , . . . ,  xm,,~ ) satisfies inequality (4.5) with 
~b = ~b2/m due to inequality (4.1) (=(3.19)), and the diameter of ~ for this pseu- 
dodistance is precisely 

D = 2 H 2 (x 1 z m 
\ i l  ~ " " " ' irn 

Moreover, X = )(.  Hence, inequality (4.6) in Theorem 4.1 gives 

D 

II 1 . . cm h(x1~, . .  , x ~  )ll e , /~  < K ffo ( l ~  ~ ~ i l  " z ,~  " 7~ - -  

But this last integral is dominated by a constant times D because of Theorem 4.2 
(as ~ is VC), proving the lemma. 

[]  

This description of the proof of Theorem 4.8 constitutes an oversimplification: 
as we have just mentioned, the reduction to the bounded lii is a little more compli- 
cated than in the finite dimensional case and one actually needs also an inequality 
similar to that  of Lemma 4.9 for the increments of the process which utilizes in- 
equality (4.7) in Theorem 4.1. However it conveys the idea that  the proof that  has 
been sketched in the previous section for the finite diensional case extends to the 
infinite dimensional VC case only with formal changes, given Theorem 4.1. 

The proof of the lil from the previous section, with only formal changes (an easy 
analogue of Lemma 4.9), also gives the lil for degenerate U -  statistics with kernels h 
taking values in a separable type 2 Banach space and such that  EIIhll 2 < ec (Arcones 
and Gin6, 1995). Previously, Dehling, Denker and Philipp (1986) had proved the lil 
for kernels h taking values in a Hilbert space and such that  El[hit 2+~ < oo for some 
6 > 0 .  

The lil for degenerate U-processes over VC classes does have statistical appli- 
cations, for instance to determine the a.s. size of the remainder term in smooth 
statistical funetionals. In this direction, it has been applied (Arcones and Gin6, 
1995) to obtain the exact a.s. size of the remainder term in the linearization of 
the Lynden-Bel l  product  limit estimator of a distribution function when the da ta  
are t runcated (and this, in turn, has some interesting consequences regarding the 
analysis of density estimates based on truncated data). 
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Pre face  

Let X, X~, i E N, be i.i.d.(P) and let H,, := Ha(X1, . . .  ,X,~; P) be a root (that 
is, a function of both the data and their common probability law), symmetric in 
the x entries, whose law under P we would like to estimate. If Qn approximates P 
(e.g. in the sense of convergence in distribution) and {X*}i~=l are i.i.d.(Qn), then, 
under the appropriate hypotheses, the probability law of H* := H~(X~ , . . . ,  X*; Q~) 
may approximate that of H~. This principle would be useful if the law of H* 
were easier to obtain or, at least, a large number of independent samples from 
the law Q~ could be easily produced in order to approximate it. In 1979, in a 
landmark paper, Efron proposed (among other things) to take Q~ = P~(w) with 
P.(w) = ~ ]  6x,(~)/n, the empirical distribution, and gave this procedure the 
name of bootstrap. This makes very good sense because P~(w) --~w P a.s. in great 
generality, and resampling from Pn(w), in our computer era, is easy. As he pointed 
out, the empirical distribution is not the only possible candidate for Q,,, particularly 
if a restricted model is assumed. For instance, suppose the variables Xi are i.i.d. 
N(O,o2), O and c~ 2 unknown, and take H~ = x/~(Xn - 0 ) ,  where Xn is the sample 
mean. If we take Q,~ = X(2~,s~)  (s 2 = E~=I(Xi - X~)2/(n - 1), the sample 
variancc), then, estimating the taw of Hn by that of H*, which is N(0, s2), amounts 
to estimating the law of the Student t-statistic, v/'ff(X,~ - O)/s,~, by N(0, 1). In this 
sense, the bootstrap has been around for some time in one form or other. Of course, 
the extraordinary merit of Efron's proposal consists in the formulation of a basic 
principle that applies in great generality, both in parametric and in non-parametric 
settings. 

In these lectures we propose to study first order consistency of the bootstrap in 
the simple but important case of the mean, taken in a general sense (including e.g. 
the Kolmogorov-Smirnov statistic since the distribution function F(x) is the mean 
of the process Ix<_~:, x E It~). Chapter 1 will be devoted to the bootstrap of the 
mean in finite dimensions, and it will also include the bootstrap of U-statistics and 
of very general statistics when the bootstrap sample size is reduced. In Chapter 2 
we will consider the bootstrap of empirical processes (the bootstrap of the mean in 
infinite dimensions). 

Already for the simple statistic X~ - E X ,  one encounters several features of the 
bootstrap that are general. For instance, there are situations when the bootstrap 
approximation works better than the limit law (we will touch only very briefly on 
this) although this is not always the case since, in particular, the regular bootstrap 
of the mean (i.e., mimicking the statistic for the empirical distribution instead of 
the original) does not work in general, neither a.s. nor in probability. The limits of 
validity of the bootstrap can be exactly determined in our simple situation. There 
are ways to modify the regular bootstrap when it does not work, such as reducing 
the bootstrap sample size. In fact, sampling without replacement m times from 
the n data, with m/n -~ O, works in great generality. In other instances, however, 
reducing the bootstrap sample size is not the only solution and another appropriate 
course of action may be to devise more complicated sampling plans that better 
mimick the original random mechanism; one of the first, very simple, instances of 
this is the bootstrap of degenerate U-statistics. Another way of describing the 
regular bootstrap of the mean is that instead of the average of the data, one takes a 
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linear combination of the data with multinomial coefficients; then the question arises 
as to whether other random coefficients are also appropriate, or even better (like, 
e.g., in the Bayesian bootstrap); many of these different bootstraps are instances 
of the 'exchangeable bootstrap', and therefore we will examine this bootstrap for 
the sample mean. The bootstrap of the mean when the observations are ~-mixing 
instead of independent is also studied; the moving blocks bootstrap that applies 
to this situation is another, more sophisticated, departure from the regular Efron's 
bootstrap. All these questions will be treated in Chapter 1, which will conclude 
with consideration of a bootstrap procedure that applies in great generality, the so 
called 'm out of n bootstrap without replacement'. 

As indicated above, in the second part of these lectures we will study the 
bootstrap for the empirical process indexed by families of functions as general as 
possible. We will see that whenever the empirical process satisfies the central limit 
theorem, the bootstrap works, and conversely (in a sense). This is probably the most 
general statement that can be made regarding consistency of the bootstrap: both, 
directly and via the delta method, this result validates the bootstrap for a great 
wealth of statistics. If one restricts the class of functions, but still remaining within 
a very general situation, it can also be proved that basically any sensible model 
based bootstrap works for the empirical process, including the smooth bootstrap, 
the symmetric bootstrap, the parametric bootstrap, a ~projection onto the model' 
bootstrap, etc. Finally, as an application of the bootstrap for empirical processes, 
we will consider the bootstrap of M-estimators. 

I thank my wife Rosalind for her constant support and extraordinary patience 
during the writing of these notes. I thank Dragan Radulovid and Jon Wellner for 
personal comunications that made their way into these notes and for reading parts 
of a first draft. Thanks also to the organizers of the ]~cole d'Etfi de Saint-Flour for 
the opportunity to prepare these lectures and thanks as well to all the participants 
in the course for their comments, their interest and their patience. I would like 
to mention here that both, these lectures and the lectures on decoupling and U-  
statistics in this volume have their origin in a short course on these same topics that 
I gave at the Universit~ de Paris-Sud (Orsay) in 1993. It is therefore a pleasure for 
me to also extend my gratitude to the Orsay Statistics group. 

Saint-Flour, Storrs, 1996 Evarist Gin~ 
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Chapter 1: O n  the bootstrap in  R 

In this chapter we study the consistency of the boots t rap mostly for the statistic 
Hn = na~ 1 ( f e n -  E X ) .  We will see that  it is not always possible to boots t rap it, not 
even in probability, and will explore the limits of validity of the boots t rap procedure. 
We will also see how it can be made consistent by reducing the boots t rap sample 
size. This will be done in Section 1. A more general bootstrap (the 'exchangeable 
boots t rap ' )  will be considered in Section 2. Section 3 is devoted to the boots t rap of 
the mean for mixing observations. The next section is devoted to the boots t rap of 
U-statist ics,  as a simple instance of the need to adapt the bootstrap procedure so 
as to mimic the main features of the original statistic. Finally, we present in Section 
5 a boots t rap  procedure (the m out of n bootstrap without replacement) which is 
consistent in very general situations. 

1.1. Efron~s bootstrap of the m e a n  in ll{. In this Section we let X, X/, i E N, 
�9 o o  n 2 n _ _  be i.i.d.(P), and set X = {X,} i=l  , X .  = ~ i = 1 Z i / n ,  o n = Ei=l(Zi  X)2/n,  

n E N. For each n E N, the boots t rap variables X*,i , i = 1 , . . . ,  n, are defined to be 
conditionally i.i.d, given the sample X, and with conditional law 

1 {x* x l x } =  j = l ,  ,n. Pr  ,,i = J n '  "'" 

As is customary, we denote Pr( . lX ) by Pr*(.), and so we do with the conditional 
law (s and the conditional expectation (E*) given the sample X. For instance, if 
Ui, i E N, are i.i.d, uniform on [0, 1], independent of X, then a realization of the 
boots t rap sample is 

X * , i = ~ X j l g ~ e A ( j , n ) ,  i = l , . . . , n ,  n E N ,  
j = l  

where A( j ,  n) = (( j  - 1 ) / n , j / n ] .  Without  loss of generality we can assume the U's 
and the X ' s  defined as coordinates in a product  probability space, the U's depending 

n only on w', the X ' s  only on w. The boots t rap sample mean is 2 *  = }-~i=1X*,i/n" 

Whereas the meaning of the limit 

(1.1) 

clear, namely, tha t  for almost every w, s (v / -n(J (*(w)- ) (n(c0) ) )  ---~ #, is where 

w is fixed and the randomness comes from the U's, the meaning of 

s  )(~))  4 , o #  in pr. (1.1') 

is less clear and we explain it now. Let d be a distance metrizing convergence in 
law to # in R. For example, d(v, #) = s u p { f f d ( #  - v) :  IIf[l~ + [[f]IBL _< 1} (with 
[IIIIBL = s u p ~ y  I f ( Y ) -  f(z)l/ly - x l ) ,  which is in fact a countable sup; or dk(v, #), 
defined as the sup of the same integrals but now over over the k times differentiable 
functions f such that  Ilfll~ + E~=I  Ilf(i)ll~o -< 1. Moreover, if # has no atoms, d 
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can be taken to be the sup distance between distribution functions. Then, (1.1') 
simply means that  

d(s - Xn)) ,# )  4-4 0 in pr. (1.2) 

This definition does not depend on the distance used since it is in fact equivalent 
to (1.1) holding along some subsequenee of every subsequence. These definitions 
extend to any boots t rap functionals H*. 

1.1.1. Results. The following theorem asserts that  the mean can be boots t rapped 
a.s. iff E X  2 < e~. The direct part is due to Biekel and Freedman (1981) and Singh 
(1981) and the converse to Ginfi and Zinn (1989). 

1.1. THEOREM. (a) / f  E X  2 = a 2 <~ oo tfien 

/ 2 . ( E L I ( X * , i  - X,~)) --~w N(0, a 2) a.s. (1.3) 

(b) Conversely, if  there exist random variables c•(a;), an increasing sequence {an } ~-1 
of positive numbers tending to inf/nity, and a random probabiBty measure #(w) non 
degenerate with postive probabihty, such that 

c* ( E , % ,  x : ,~ (~ )  c n ( @  - , ~  , ( ~ )  a.s., (1.4) 
a n  

then ~ :=  ~:X ~ < o~, v ~ / " ,  ~ v~  for some c > O, ~ = N(O, c~ ~) a.s. and c , ( ~ )  
ca~ be  taken to  be c,,(~o) = ' ~ X n ( ~ ) / a ,  

Here is the analogue for the bootstrap in probability: 

1.2. THEOREM. (a) If_3( is in the domain of attraction of the normal law and the 
constants a,  are such that s  - EX)/a,~) --'w N(O, 1), then 

( Z  ~ * ) /2* i=l(Xn,i__ - f(n) - -~ N(O, 1) in pr. (1.5) 
a n  

(b) Conversely, i f  

E . { E i ~  l r  X~,i(,~ ) cn(w)) --*w p(co) in pr. (1.6) 
\ a n  / 

with #(w) non degenerate on a set of positive probability, then there is a > 0 
such that s  EX) /an)  ~ N(O, a2), in particular, X is in the domain of 
atraction of the normal law with admissibIe norming constants a,,, and # = N(0,  a 2) 
a . s .  

Part  (a) of this theorem was observed by Athreya (1985) and Part  (b) by Gin~ 
and Zinn (1989). 

These two theorems set limits to the validity of Efron's boots t rap in the case 
of the mean. 
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Theorems 1.1 and 1.2 also hold for i.i.d, r andom vectors in ]Rd: The Cram~r-  
Wold's  device ( that  is, taking linear combinations of the coordinates) reduces the 
vector case to JR. 

We should also remark that  there is convergence of all boo ts t rap  moments  in 
bo th  (1.3) and (1.5), a.s. in one case, in pr. in the other. In fact, under the 
hypotheses of Theorem 1.2 (a), we have that  for all t > 0, 

n 

E* exp{ t  E ( X : , , -  - ~ n ) / a , }  --+ Ee 'Z in pr., (1.5') 
~ I  

where Z is N(0,  1), and the analogous s ta tement  holds a.s. if E X  2 < oo. (Arcones 
and Ginfi, 1991; previously, Bickel and Freedman, 1981, had observed tha t  (1.3) 
holds with convergence of the second boots t rap  moments) .  (1.5') justifies boo ts t rap  
es t imat ion of variances and other functionals of the original distribution. 

2 VarX a.s. by the law of large numbers,  and Theorem If E X  2 < oo then ~,~ 
1.1 (a) gives tha t  

f_* ( E L I ( X * , i  - 2n) 
) --+w N(0,  1) a.s. (1.7) \ O ' n V ~  

Likewise, if E X  2 = oo but X is in the domain of atract ion of the normal  law 
with norming constants  a,,, as in (a) of Theorem 1.2, then Raikov's theorem (e.g. 
Gnedenko-Kolmogorov ' s  book, or a simple s tandard argument)  easily implies tha t  

n n 

l i m e  ' ' E (  ' ' X i / a  n = Iim X i - X n )  /a,~ = 1 i np r .  
n ---+ o o  

i=1  i=1 

and therefore, Theorem 1.2 (a) shows 

f _ , ( E n = l ( X * i  -- Xn) 
) --+w N(0,  1) in pr. (1.8) 

k (Tn %/~  

It is an exercise to check tha t  ~rn in equations (1.7) and (1.8) can be replaced 
by ~r n. 

The  two s ta tements  above about  the studentized boots t rap  clt also have con- 
verses. Here is the complete s tatement:  

1.3. THEOREM. (a) E X  2 < oo if and only if  the studentized bootstrap clt holds 
a.s., that is, iff (1.7) holds. (b) X is in the domain of attraction of the normal  law 
iff the studentized bootstrap clt holds in probability, that is, iff (1.8) holds. 

Par t  (a) of this theorem was observed by Cs6rg5 and Mason (1989) and par t  
(b) by Hall (1990). 

The  exact conditions under which there exist r andom normings A,~ -+ oo and 
random centerings B,~ such tha t  {(X* -B,~)/A,~}~_I converges in law conditionally 
on X, a.s. or in probability, have been determined respectively by Sepanski (1993) 
and Hall (1990). Besides normal  limits, only Poisson limits are possible and then, 
the relevant side of the tail is slowly varying at infinity (so, in this case, X is not even 
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in the Feller class). We do not discuss the Poisson limit situation, which corresponds 
to EIX I = oo and does not relate to the boots t rap  of the mean.  

We will not discuss either p-s table  domains of a t t ract ion with p _< 1, for the 
same reason. Regarding domains of a t t ract ion the following two results essentially 
tell the story: to have consistency of the boots t rap  in this case, we must  reduce the 
boo t s t r ap  sample size. 

1.4. THEOREM. Suppose that X is in the domain o f  atraction of  a non-degenerate  
p-s tab le  law #, 1 < p < 2, concretely, assume s  - E X ) / a ~ )  --+w # for 
some constants a ,  7 oo. Let  r a n / z  oo. Then, 

s  - ) ( n ) )  --+w# inp r .  (1.9) 
a ~ 2  n 

if  and onIy i f  
m n  
- - - - + 0 7  

~2 

The direct par t  of this theorem is due to Athreya (1985) and the converse was 
observed in Arcones and Gin4, (1989). As with Theorems 1.1 and 1.2, conditional 
weak convergence in (1.9) can be strengthened to coditional convergence of boo t s t rap  
moments ,  but here only short of the p - t h  moment ,  that  is, we have 

E i = l ( X n , i  _ X n  ) r n n  . c~ 1"  
~:* ~ / I x l ~ d ~ ( x )  i np r . ,  0 < c ~ < p  (1.9') 

a m  n 3 

(Arcones and Gin~, 1991). 

1.5. THEOREM. Let  X be in the domain of  atraction of a non degenerate p-s tab le  
X law #, 1 < p < 2, concretely, assume /2(}-~i=]( i - E X ) / a n )  --+~ # for some 

constants an / "  oo, and let m~ 7 oo be a regular sequence in the sense that  
l im in f ,~oo  m,/rn2,~ > 0. Then, 

"~-'~1)% n I X *  s  ( 2-...,i=1 [ n, i --  

i f  

-~w # a.s. (1.10) 

rnn log log n 
0, (1.11) 

and (1.10) does  n o t  hold i f l im in f , ,~ (m ,~ log logn) /n  > 0. 

This theorem is due to Arcones and Gin6 (1989). 

Self-normalizat ion is also possible in the previous two theorems. Arcones and 
Gin6 (1991) show that  for X in the domain of a t t ract ion of a p-s table  law, 1 < p _< 2, 
and for m n / n  --+ O, 

m n  , - "1 
w -  lim s  [ET~(__X*,/_- Xn)  ] [ E ~ = I ( X / = I E X ) ]  

1/2 = w - l i m  s  (E =lX:)l/2 j in pr. (1.12) 
n - ~  L ( E i : l m ~  X n , i  ) , 2  n--oo _ 

Their  proof  also shows tha t  this holds a.s. if the sequence mn is regular and satisfies 
(1.11). Deheuvels, Mason and Shorack (1992) have another  approach to a result 
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similar to (1.12), but  with the norming in the bootstrap quanti ty depending on the 
X 's ,  as in (1.8). They also prove the following theorem for the boots t rap of the 
maximum of i.i.d, uniform random variables, one of the first examples of failure of 
Efron's boots t rap with mn --- n (Bickel and Freedman, 1981). Let X be uniform on 
(0, 0). Then, it is easy to see that  

s - maxl _<i_<~ IXil))  (1.13) 
0 --+w #, 

where # is the exponential distribution with unit parameter. Here is the Deheuvels 
et al. boots t rap version of this limit. 

1.6. THEOREM. Let X and ix be as in (1.13). Then, if mn /n  --+ O we have 

s  (mr~ (maxl <i<_~__~ lXil 2 maxl <_i<_ ..... IX~*,,[) 
in (1.14) 

\ maxl<i<n IXil / ---~w ix pr., 

and if (m~ log log n) /n  --+ 0 then the limit in (1.14) holds a.s. 

Back to Theorem 1.3 (a), one may ask how good is s (~ i= l (X~, i -X, , ) /e r , ,x / -n  ) 
as an approximation to L ; (2 i~  1 ( X i -  gX)/r  This has been thoroughly stud- 
ied, start ing with Singh (1981), who showed that  if EIX[ a < oc and X is skewed, 
the boots t rap  approximation may be better than the normal approximation. Hall 
(1988) shows that  in case EIXI a = oc the bootstrap approximation can actually do 
worse. We will present here a weaker and simpler result on direct comparison of 
the boots t rap and the original distributions which also indicates how the boots t rap 
improves on the normal approximation for skewed random variables with finite third 
moment.  D. Radulovid showed this to me and I thank him for allowing me to report 
on his arguments in these lectures. For probability measures ix, ~ on IR, define 

sup{t i l<t(ix- )1 : Ilflloo _< 1, II/( '11 o _< 1,1 < i  < 3}, 

a distance that  metrizes weak convergence of probability measures on IR. It is easy 
to see, using a Lindeberg type argument, that  if EIXI 3 < oc and, without loss of 
generality, EX = 0 and EX 2 = 1, then 

n X d4['t~(~-~i=lL ~ i),_N(O, 1)] ~ O(r~-l/~), (1.15) 

and that  this cannot in general be improved if EX 3 5~ 0. For the bootstrap,  we 
have: 

1.7. PROPOSITION. I fEIXl  a < oo then 

r - 
ll 

( X i - E X ) } ]  = o ( n - i / 2 )  a.s. (1.16) 
/ J  



46 

1.1.2. About the proofs. It is worth noting that  as long as the norming constants am, 
tend to infinity, the triangular array {X~, i : i  = 1 , . . . ,  rn~}~= 1 is a.s. infinitesimal: 

max Pr*{[X2,,[ > 5am, } = Pr*{ [X:,~ 1> ~am, } = ~ ~ IIx, I>~ . . . .  ' 
i<_rn~ ' j = l  

and, by the law of large numbers, the limsup of this last sum is a.s. bounded 
by E[X[IIXI>~ for all c > 0; letting c --~ oo along a countable sequence gives the 
a.s. infinitesimality. Then, the proofs of Theorems 1.1 to 1.5 consist in i) showing 
boots t rap convergence by just checking the conditions for the general normal (or 
stable) convergence criterion for infinitesimal arrays and ii) applying the converse 
part of this criterion to infer properties on the distribution of X from boots trap 
convergence. This program provides relatively simple proofs, except for Theorem 
1.5, where one must proceed, roughly speaking, as in the proof of the LIL. Similar 
comments apply to Theorem 1.6. (1.12) just follows from the bootstrap of a stable 
convergence theorem in N 2, and its proof is not different from that  of the direct 
parts of Theorems 1.4 and 1.5. Finally, Proposition 1.7 is proved by a Lindeberg 
type argument applied to a simple coupling between the boots t rap and the original 
statistics. We will give complete proofs of Theorem 1.1 and Proposit ion 1.7, and 
then indicate parts of proofs of the other results. 

1.7. PROOF OF THEOREM 1.1 a). We will prove that  if EX 2 < ec and if rn~ --~ oc 
then 

s  Ei~=~(X*'i--- X ~ ) )  - - ~  N(0, cr 2) a.s. (1.3') 

By the general criterion for normal convergence (e.g., Araujo and Gin~, 1980, Cor. 
2.4.8, p.63), it suffices to prove 

rnnPr*{[X~*,l [ > 5rn~/~ } --~ 0 a.s. (1.17) 

for a l l S > 0 ,  

and 

*(x* ) Mar n , l l x  . ~l<.d/= ~ VarX a.s. 
n - -  n 

(i.18) 

i/2 . . . . .  (1.19) r r z  n 1 ~  . A  n 1 1 ,  . , 1 / ~  ~ 0 a . S .  ,~ IX~,~l>m. 

(Then, one makes the set of measure 1 where convergence takes place in (1.17) 
independent of 5 just by taking a countable dense set of 5's, which is all that  is 
needed.) The basic observation is that,  since EX 2 < 0% the law of large numbers 
yields 

n IXjfIIxjl>~m~/~--+O a.s., 0 < p < _ 2 ,  5 > 0 .  (1.20) 
j = l  

(Replace ~ 1/2 orn~ by c rational and take limits first as n ~ oo and then as c ~ oo.) 
Then, (1.17) and (1.19) follow immediately because 

- 5 - 2  
- -  2 

m n P r . { l X . , l [  > 6mln/2 } = m.  E iix~l>~m~/2 <- XjZlxjl>~m~/2 
n 

j = l  j = l  
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and 
6_  1 n 

mall2 [ E * X * ,  I f  X* l [>ml /2  [ - < - -  E X~Z[x i [>ml /2  " 
n ?'/ 

j = l  

As for (1.18), using (1.20) and the law of large numbers once more, we obtain: 

n n 2 

V a r * ( X * l  z X .  [<m~/2) = ! E X2Zlxil<rnt./2 - [ 1 E  XjZlxil<_rn~/2] 
1=1 j = l  

,-~_ _ 1  2 _ . -  . [ l x - "  x . l  2 VarX ___9 a. S. 
n ~J  [n Z_, JJ 

j = l  j = l  

[] 

2 Part  (a) of Theorem 1.3 follows from Part  (a) of Theorem 1.1 because c~ n -~ 
VarX a.s. by the law of large numbers. 

Next we prove part  (b) of Theorems 1.1 and 1.3. This requires some prepara- 
tion. The first lemma tells us that  the limit in (1.4) must be normal. 

1.8. LEMMA. I[ the limit (1.4) holds a.s. then ~he L6vy measure of the limit #(w) 
is zero a.s. and 

~2~I lx j l>~"  = 0 eventually a.s. and nPr{ [X[  > Aan} ~ 0 (1.21) 
j = l  

for all A > O. 

PROOF. By a.s. infinitesimality, #(w) is a.s. infinitely divisible. Let 7c(w) be its 
L~vy measure. First we will show that  7r is non- random (a constant measure on a 
set of probability 1). By the converse elf (e.g. Araujo and Gin~, 1980, Chapter  2), 
with probability one 

nO* (X: ,  1 (co)) [[x[>5 ---~w 71(to)llz[>5 (1.22) 

for all 6 = 6(co) such that  7r(c0){6,-6} = 0. Since we cannot control the continu- 
ity points of the possibly uncountable number of masures 7r(w), we must smooth 
these measures out. For each 6 E Q+, let h~ be a bounded, even, continuous func- 
tion identically zero on [0,6/2] and identically one on [6, e<~), and set rc6(dx,a~) = 
h~(z)Tr(dx,w). Then, (1.22) implies 

~-~h~(Xi/an)6Xl/a . ---+w TC~ a.s. 
j = l  

Let ~- be a countable measure determining class of real bounded continuous fimc- 
tions on R (e.g. .7- = {cos tx , s in t x  : t C Q}). Then, the previous limit gives that,  
on a set of measure one, 

h s ( X i / a n ) f ( X i / a n )  --+w / fd~r~ a.s. for all f C .7- and 6 C Q+. 
j = l  . ]  
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Since a,~ --+ oo and the summands  are bounded, the sum of the first k terms at the 
left hand  side is a.s. eventually zero for all k, and therefore, the variables f fdr~a 
are all measurable for the tail a-algebra of the sequence X. Since there are only 
a countable number  of them, there is a common set of probabili ty one where they 
are all constant ,  by the zero-one law. Since j r  is measure determining, rra(co) is a 
constant  measure on this set for all ~. Hence, there is a L4vy measure rr such that 

= a .s .  for all  > 0. Let  = o I , l - ' .  ( 1 . 2 2 )  t h e n  b e c o m e s  

~ Ilxsl>; , . .  --+ r~(k, oo) (1.23) 
j=l 

for all ~ > 0 of continuity for #, in particular on a countable dense set D of ]l~ +. 
(1.23) implies that #(A, oo) takes on only non-negative integer values for all A E D. 
Suppose rr(~, oo) = v ~ 0 for some ~ > 0. Then, 

~ Itxjl>~an = r eventually a.s., 
j=l  

which in part icular  implies 

n 

lim P r { ~ - '  I ix  sl>~an = r} = 1. (1.24) 
7 Z ~ O O  " /----"~ 

j = l  

On the other hand,  there is enough uniform integrabili ty in (1.23) to have con- 
vergence of expected values (e.g., by Hoffmann-Jcrgensen 's  inequality: see Lemma 
1.12, Chapter  2) so that  

nPr{IXl > Aa ,~}  - ~  r 

and therefore, 
~z F r  

lira P r ~ - ' I i x ~ l > ~  = e - ~ 7 .  ~ < 1, 
/ z ~ c c  " -r 

j - ~ l  

contradict ion with (1.24). Hence, r = 0, that  is, rr = 0 and the limits (1.21) hold 
true. 

[] 

1.9. LEMMA. I f  the limit (2.4) holds a.s. then, the s tandard  deviation a(w) of the 
normal component  of the limit measure #(co) in (1.4) is a.s. a constant ~r different 
from zero. I f E X  2 < oo, then n/a2, --+ a2 /VarX ,  whereas i f E X  2 = oo, then 

n 

lira ~ X~ = r (1.25) 

PROOI~. The first limit in (1.21) gives that  for all k > 0 and p C IR, 

~ l X ~ l P I t x s  I>~ = 0 eventually a.s. (1.26) 
j=l  



49 

and therefore,  we can ' un t runca te '  in the necessary condit ion for the clt in terms of 
t runca t ed  variances,  which then becomes 

n 2 n r 

l im [ EN=IXN(w) (EJ=IXJ(W)'~ 2] ~r2(w) a.s. (1.27) 

Since a,~ --+ oo, (1.27) shows tha t  cr2(co) is a tai l  random variable,  thus a.s. constant ,  
say cr 2. Since #(aa) is not  degenerate  with posit ive probabi l i ty  and rr = 0 a.s., it 
follows tha t  a r 0. And  of course, the fact that  #(~0) exists implies tha t  cr < oo. 
If E X  2 < oo, the  conclusion of the lemma follows from (1.27) and the law of large 
numbers.  Let us now assume E X  2 = oc. Then, we claim 

lira [Ejn=ln 1Xjl/n]2 = 0 a.s. (1.28) 

(1.28) follows from the Pa l ey -Zygmund  argument  appl ied to the  empirical  measure,  
tha t  is, f rom the following self-evident inequalities,  

1 
IXjl _< a + 1 ~ IXjllIx, l>~ 

'rt j = l  r t  j = l  

(! < 
+ , n  -d---' ' ]  \ n  _ a [ l x i t > ~  ) , 

j = l  j = l  

rt upon dividing by ( ~ j = l  X~/n) 1/2 mad then taking limits first as n --+ oo and then 
as a --+ oo (use the  Kolmogorov law of large numbers,  both  for finite and infinite 
expecta t ions ,  when tak ing  these limits).  Inequal i ty  (1.28) was s ta ted  as a l emma 
(with other  powers, besides 1 and 2) in Gin4 and Zinn (1989) and J. Chen in- 
formed us some t ime after publ ica t ion  tha t  he and H. Rubin a l ready had not iced 
this inequali ty,  with a different proof, in Chen and Rubin  (1984). Zinn and I hereby 
acknowledge their  pr ior i ty  (we did not have the oppor tun i ty  to publish an acknowl- 
edgement  before). Back to the proof, it is clear tha t  (1.25) follows from (1.27) and 
(1.28). 

[]  

Had we assumed the sequence a~ to be regular  (precisely, an/n monotone,  
and an/nU" monotone  increasing for some r < 2), a refinement of Feller of the 
Marcinkiewicz law of large numbers (e.g., Stout ,  1974, page 132) would au tomat i -  
cally imply tha t  (1.25) with 0 < ~r 2 < oo and E X  2 = oo can not  bo th  be true ~t the 
same t ime,  which would conclude the proof of Theorem 1.1, par t  b, by contradict ion.  
But wi thout  any conditions,  an ex t ra  argument  is needed. Here it is: 

1.10. CONCLUSION OF THE PROOF OF THEOREM 1.1 b). Assume E X  2 = oc. 
By (1.26), we can t runca te  the variables Xj at a, in (1.25), Lemma 1.9, and then 
take expec ta t ions  of the  result ing sums - b y  Hoffmann-Jorgensen ' s  inequal i ty  (see 
Chap te r  2, Lemma 1.12 below), on account of the boundedness  of the s u m m a n d s -  
to ob ta in  

Ft 2 E x  r 0. (1.29) 
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This inequality implies, by the monotonicity of the an's, that  

a 2 

--max~k < c o .  lim,,_~sup a~ k<n_ k 

Since n/a~ ~ O, (1.29) also implies that  there exists r~ --* oo such that  

n max a~ --~ 0. 

Also, since by the first limit in (1.21), Lemma 1.8, IXnl/a,~ < 1 a.s., the Borel 
Cantelli lemma gives ~n~=l Pr{IXl > a~} < o~, and therefore, 

~-~ kPr{ak-1  < IXl _< ak} --+ 0. 
k = r  n 

Using (1.29) once more, together with the last three limits, we obtain 

~r 2 _< l i r n  a-~n a~ Pr{ak-1 < IXI _< ak} 
k = l  

2 o o  

n [max ak n--oo - -  ] E kPr{ak-1  < IXl <ak}- -+O.  _< lira G ~ + l i m s u P a ~  k<n--~- 
n ~ o o  - -  k = r n  

This contradicts a 2 :fi 0 and therefore we must have EX 2 < ec and an ~- V-ft. 
[] 

1.11. PROOF OF THEOREM 1.3 a). It has already been observed above that  

EX 2 < oo implies (1.7). Assume (1.7) holds. Since E* [ ( X * , I -  Xn)/crnv~] 2 = 1/n, 
the random variable at the left of (1.7) is conditionally a.s. the n- th  row sum of 
an infinitesimal triangular array of independent variables. Then, a.s. asymptot ic  
normality implies (by the converse clt) 

Ix:,  - x n l  

for all c > 0, that is, 

for all c > 0. This shows 

n 

E Iixj_X,i /~,v~>~ --+ 0 a.s. 
j = l  

IXJ - 2'~1 (1.30) max --* 0 a.s. 
l_<j<_n crn v/n 

If E X  2 < oo there is nothing to prove. If EX 2 = oc then we can combine (1.28) 
with (1.30) to conclude that  

max IXJ~.----[---- --~ 0 a.s. 
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But this can only happen if EX 2 < oo by a result of Kesten (1971). 
[] 

1.12. REMARK ON THE PROOFS OF THEOREM 1.2 AND THEOREM 1.3 b). By a 
subsequenee argument, Theorem 1.2 a) follows by showing that the necessary con- 
ditions for normal convergence (the analogues of (1.17)-(1.19)) hold in probability. 
Then, to show that these limits hold, one uses the fact that, by the converse elt, 
nPr{IX I > 5an} ~ 0 and na~2EX2Iixl<_a, --* 1. For instance the analogue of 
(1.17) that must be proved in this case is 

n 

E IIxl>~a, --+ 0 in pr. 
i = 1  

and for this, one just notices that 

n 

g E I i x l > 6 a "  = nPr{IX I > 6an} ~ O. 
i = 1  

It is not difficult to complete the proof. To prove the converse (part b), working as in 
the proof of Theorem 1.1 along subsequences, one obtains that, assuming EX 2 = co, 

" X i / a ,  • 0 in probability. Then, the converse weak law of large numbers E i = I  2 2 __+ 0 . 2  

gives, in particular, n P r { I X  r > 5a~} --+ 0 and na~2EX2Iixl<_~, --~ 0-2 for all 5 > 0 
which, by the direct elt, implies that X is in the domain of atraction of the normal 
law, with norming constants an. Theorme 1.3 b), direct part, follows from 1.2 a) 
and Raikov's theorem, as observed above. As for part b, the studentized bootstrap 
elf in pr. gives, following the proof of Theorem 1.3 a) along subsequences, that 
the limit (1.30) holds in probability, a condition that is known to be necessary and 
sufieient for X to belong to the domain of attraction of the normal law (O'Brien, 
1 9 8 o ) .  

1.13. CONVERGENCE OF MOMENTS IN THEOREM i.i. We will only show that if 

VarX = 1 and Z is N(0, 1), then 

n 

E*exp{t  E t x * , i - X n ) / V  ~ } ~ E e x p { t l Z I }  a.s. (1.3') 
i = 1  

for all t > 0 (since (1.5') has a similar proof). We assume without loss of generality 
that EX = 0 and that Z is independent of X. Let {ei} be a Rademacher sequence 
independent of {X*,i }. Then, convexity, the properties of Rademacher variables 

n and the facts that maxj_<n X~/n  --+ 0 a.s. and 2 j=1  X y / n  ~ 1 a.s., give 

E* e x p f t  ~ i n = l ( x * ' i -  ~n)  } < E* ex J'2t' ~in--1 cix*,i } 
, / ;  . - p [  , 

K J 

_< 2E* exp 4t 2 z-~i=j n,, 
)2 

[ l j _ ~  1 {4t2Xy~]~---~2e4t~" 
~ 2 n _ exp_-- - - -~  j 
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Tha t  is, the  sequence of boo t s t r ap  exponent ia l  moments  is a.e. a bounded  sequence. 
By the b o o t s t r a p  elf and the continuous mapping  theorem, there is a.s. weak con- 
vergence of the  condi t ional  laws of 

to the law of exp{tlZ[} and, therefore, (1.3') follows by a.s. uniform integrabil i ty.  

[] 

1.14. REMARKS ON THEOREMS 1.4 AND 1.5, THE STABLE CASE. A simple suffi- 
ciency proof  of Theorem 1.4 consists in rout inely checking the conditions of the clt 
for t r iangular  arrays,  as in the normal  case. Just  to show how" the limit m,~/n ~ 0 
gets into the  picture,  we will check one of these three conditions,  concretely 

> in pr. (1.31) 

for all 6 > 0, assuming tha t  X is in the doa of a s table law with norming constants  
an, thus, in par t icular ,  assuming the necessary condit ion n Pr{[X] > 5an} ~ eSP 
for all 6 > 0. The  expected  value of the left side of (1.31) satisfies 

n 

IE rnnPr*{X*,i>6amn =IE ~ I1xjl>6 . . . .  = m n P r { l X l > 6 a m ~ }  ~ c 6  p 
j = l  

whereas i ts variance tends to zero: 

n 2 

j = l  

2 2 

n 

: rn~(1 - P r { I X  I > 6am~})Pr{ lX I > 6am~} 
n 

"~ ( m ' ~ ] r n n  Pr{ lXl  > 6arn~} -~ 0 
\ 7% / 

beacuse rn~/n --+ 0 and m~pr{IXI > 5am~ } is bounded.  This proves (1.31). The  
remaining  condit ions for s table convergence are proved similarly. For the  converse, 
jus t  note  tha t ,  if rnw/n'  ~ c > 0 for some subsequence {n'}, then the argument  in 
the second par t  of the proof  of Lemma 1.8 shows tha t  the L6vy measure of the l imit  
must  be zero, which is not the case for a stable limit.  The proof  of Theorem 1.5 is 
more involved. Here we describe only par t  of the direct proof. The  s ta tement  to be 
proved corresponding to (1.31), is 

rn_~ E ( Z l x ,  l>~m, _ Pr{ lX[  > 6amn}) -~ 0 a..s. 
n 

j = l  
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If the sequence mn is regular, it turns out that  we can block, symmetrize and apply 
a maximal inequality as in the usual proof of the lil, to conclude that  it suffices to 
show ~ 2n 

Z P r {  m2" Z ( I l x ~ l > 6 , 2 , - P r { l X l > ~ a m , } ) > r  
n=l " j=l 

and Prohorov 's  exponential inequality shows that  this is the case if 
(m,~ log log n)/n  ~ O. We omit the details. 

The proof of Theorem 1.6 is also omitted, and we turn now our at tention to the 
proof of Proposit ion 1.7. This proof will illustrate how the boots t rap conditional 
distributions keep some of the skewness of the original distributions (this is not the 
case, obviously, for the normal approximation). 

1.15. PROOF OF PROPOSITION 1.7. We assume without loss of generality that  
EX = 0 and E X  2 = t (besides the crucial hypothesis EIxI 3 < ~). By translation 
invariance of the family of functions in the definition of d4, we have 

[ n x [ . f X a , l _ - Z n  x)] 
d4 s ,s i'~ljj ~ nd 4 [s \ O'nV #~ ) s  ~ . 

(1.32) 
Let now f be as in the definition of d4, that is, nfn~ < I and nf (i) noo < I, 1 < i < 4. 

X* The first and second conditional moments of ( ~,~ - )(~)/(anv/-ff) are respectively 
0 and 1/n, just as the first and secon moments of X/v/-~. McLaurin's development 
of f then gives 

. / X 7 , 1 - 2 , ~  
6o.3nn3/-----'-" ~ ~ n,1 )~'n) 3 -  

+ 6a~ n3/--------71 E* [If'"(w~) - f'"(0)llXn* a - 2hi ~] 

1 E [ I / ' " (~2 ) - / " (0 ) l lX l  3] 
+ 6a~na/~ 

:= zn + ZZn + zg , (1.33) 

--~ X* r/i, i 1, 2, being random variables respectively between 0 and ( ,~,~ - -2n) / (anV~) ,  
and between 0 and X/v/f t .  Now, since ~r,, --+ 1 a.s., supllr,,lloo_< l I f ' " ( w d - f " ' ( o ) l  < 2 
and sup[l/(4)ll~_< 1 I f" ' (~)  - f '"(0)l _< I~1 ~ 0 a.s., it follows that  

n 3/2 sup I I In  ~ 0 (1.35) 
II f '" I1~ <_1 ,llf (4) I1~ _< 1 

and, by the law of large numbers, that  

n 3/2 sup II,, --~ 0 a.s. (1.36) 
Ilf'"ll~_<l,llY(4)ll~ <_ 1 

/,, is the crucial term in (1.33). In the analoguous proof of normal approximation, 
the term In would just be EXJ/(6n  3/2) but here it is of a smaller order because 

( a ~  - 1 ) E X  3 - - ,  0 a . s .  
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and,  by the law of large numbers,  

E'f X* \ n , i  - -  X n )  3 - -  g X 3  = 

which gives 
n 3 / 2  

32~ E?-~ + 22~ ! V ' ( x 3  - E x  ~) - x g  ~ o a.s., n Z...~ \ z ?2 
j = l  

sup In ---+ 0 a.s. (1.37) 
IIP"ll~ -<Ll[f (4) II~ _<1 

combining the es t imates  (1.35) (1.37) with (1.34) and then with (1.35), gives 

d4[~.(Ein--l(X*,i - x n )  Ein=lXi ] 

proving the proposi t ion.  

1.2. T h e  g e n e r a l  e x c h a n g e a b l e  b o o t s t r a p  o f  t h e  m e a n .  For each n C N, let 
w~ = ( W n ( 1 ) , . . . ,  w~(n))  be a vector of n exchangeable random variables indepen-  
dent from the sequence {Xi} and satisfying the following conditions: 

n 
El .  wn(j) > 0 for all n and j ,  and ~j=l Wn(j) = 1; 

E2. Var w~(1) = O ( ~ - D .  
n3. maxl<j<n v ~ l ~ ( J )  - 1/~1 - ~ ,  O. 

E4. ~ 2j%, ( ~ ( J )  - l /n )  ~ - ~  ~: > 0. 

Define 
n 

2"~ = ~ wn(j)xj  
j = l  

and take this  as the  boo t s t r ap  of the mean )(n. Newton and Mason (1992) proved 
the following theorem. 

2.1. THEOREM. / r E X  2 -- c ~2 < (x) and the weights w,~ are independent from the 
sample {Xi} and  sat isfy conditions E.1 to E.4, then 

_ , n )  x )  + w  N(0,  e2 2) a s  

Their  original proof  is based on a clt for exchangeable random variables due 
to Hs Here, following Arenal  and Mat rs  (1996), we will deduce it s imply 
from the usual  Lindeberg  clt for independent  random variables,  as follows: we will 
prove first convergence of the laws of the boo t s t r ap  variables condi t ioned on the 
weights, from which uncondi t ional  convergence will follow, and then we will show 
tha t  uncondi t ional  convergence implies convergence of these laws condi t ioned on the 
sample.  We may  assume, without  loss of generali ty that  our r andom variables are 
defined on a produc t  probabi l i ty  space, that  the X ' s  depend on cv and the weights 
on co ~, so tha t  the  condi t ional  laws given the weights or given the sample have a 
very specific meaning.  Since BL(N) is separable,  the dBc dis tance between one such 
condi t ional  law and a fixed probabi l i ty  measure on II{ is measurable .  The  theorem 
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will follow from a series of simple lemmas. The assumptions in the lemmas are the 
same as those in the theorem (although some of the lemmas require less). 

2.2. LEMMA. 

s  * - X,~) w,~) --%, N(0,  cZ~r 2) in probability 

in the sense that 

d B L ( s  * -- f(,~) w ,~) ,N(O,  c2o2))  7 0  in probability. 

PROOF. By conditions E3 and E4, for every subsequence there is a further subse- 
quence, call it n' ,  such that  

t 

max v/-~n']w,,(j) - 1 / n ' ] , n ' E ( w n , ( j  ) - 1/n ' )  2) --+ (O,c 2) a.s. 
l~j~_n' 

j= l  

Let w' be a sample point for which this convergence takes place. Then the random 
variables 

Y,e,i = ( w , v ( j , w ' )  - 1 / n ' ) X i  i = 1 , . . .  ,n ' ,  n' C {n'}, 

 v%G 2' 

form a triangular array of random variables which are i.i.d, by rows, and satisfy 

n n I 

Varx Yn,i = 1 and E x Y ~ , j  [E,~l>e = 0  for all a > O. 
n 

i=1 i=1 

f t t  
Then, by Lindeberg's clt, E i = I  Y,,,i converges in law to N(O, 1). Hence, 

and the lemma follows. 
[] 

2.3. LEMMA. 
s  - Xn))  -%, N(0,  c2o-2). 

PROOF. By Lemma 2.2, 

Since these random variables are bounded by 2, convergence takes place in L1 as 
well, which gives 
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[] 

Some prepara t ion  is necessary in order to condit ion with respect  to the X ' s  in 
the above lemma. 

2.4. LEMMA. The sequence of conditional iaws 

is tight with probability one. 

PROOF. The set [20 where this sequence is t ight is 

: N U {co: Prw(x/~lx:( co)-X'(co)l > N < ~}. 
k=l N=I n=l 

Now, taking into account that ,  by exchangeabil i ty  and E l ,  Cov(w,~(i), w, , ( j ) )  
= - ( V a r  w~(1))/(n - 1), and using E2, we have 

Pr,o Xo(co)l >- 
rt 

~t 
<_ ~-ff [ ~  X~(w)Var w~(i) + 2 ~ Xi(w)Xj(co)Cov(w,(i),w~(j))] 

i=1 i<j<_n 

[ 1  '~-~ 2 ~ N/(CO)-J~'j(CO) ] 
<- u~s( ,=, x}(~o) + ,~(.,- 1) ~<j<n 

i=l 

for all co on a set of probabi l i ty  1 independent  of C by the law of large numbers,  and 
for some K < oc (and independent  of co). But the aJ's for which there is convergence 
belong to f20 as can be seen by enlarging C if necessary. 

[] 

Let us say tha t  two sequences of probabi l i ty  laws are weakly equivalent if they 
have the same subsequential  l imit laws, along the same subsequences. 

2.5. LEMMA. There is a set f~l of probability one such that, for all co E [21, the 
sequences 

are a11 weakly equivalent. 

PROOF. Let Fn(t, co) be the empirical  d is t r ibut ion  function corresponding to 
{Xi}in=l, and let F be the d is t r ibut ion  function of the law of X.  Let 

rt 
[21 z ( ~ : - -  

/2 i=1 
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Then Pr  ~'~1 = 1 and therefore it suffices to prove that  

~E,o (x:(02~)- x~(02~)- x:(02~) + x~(02~))~ -~ 0 

for all COl,022 6 ftl.  By exchangeability, the random vectors 

n 

(**(021)- *n(02]),X*(022)- *4(022)) : E(w~(i)- i) (X{(02~), X{(022)) 
i=1  

have the same conditional laws, given 021 and 022, as 

;7 

Z ( w ~ ( { ) -  1 )  (x(o#)(02~), x(~,~)(022)), 
i=1  

where X ( n , 1 ) , . . .  , X(n ,n  ) are the order statistics of X 1 , . . .  , X n.  Hence, proceeding 
as in the proof of Lemma 2.4, 

_< ~E,o (w~(i)  - ~ ) (x ( .~ , i ) (~2)  - x ( . , { ) ( ~ l )  
i : 1  

3K n 

E( ))~ Tt 
/ : 1  

= 3K (G,(022, t) - G,,(02,, t ) )2d t ,  

where a~(02, t ) i s  the left continuous inverse (w.r.t. the t variable) of F,,(w, t) (i.e., 
the quantile empirical process). Now, it is classical that,  for 02i E f~l, G,(02i ,  t)  --+ 
G( t )  for almost every t C (0, 1), where G is the quantile function for the law of X.  
Also, for 02i E f t l ,  

]0 J0 a~(02,,~)dt = -~ x~(02~) ~ E x  ~ = a~ ( , )d ,  
j = l  

(recall that G(t), as a function on ([0, II, •, A), has the law of X). Therefore, by 
(generalized) dominated convergence, 

/01 /o 1 (a~(022 , t )  - an (021 , t ) )2d t  -+ ( a ( t )  - , a ( t ) ) 2 d t  = O, 

and the lemma follows. 

The next lemma shows that  bootstrap limit distributions are not random. 
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2.6. LEMMA. Suppose that  [or some subsequence n ~ and almost every w, 

Then, there exists a probabil i ty measure # such that #(02) = # a.e. 

PROOF. Let Y be a countable measure-determining set of bounded Lipschitz func- 
tions on R (e.g., ~- = { c o s t x , s i n t x  : t e Q}). Then, since by E3 (E2 sumces), 
,/;71 k 2 j = l ( w ~ , ( 3 )  - 1/~')xj(02)l  --, 0 in conditional probability given the X ' s  for 
each k < oc, we have that, for each f in 5 r, 

j=k+l  

Hence, this last integral, which is measurable, is a tail random variable for every f.  
Therefore, there are constants #(f )  such that # ( f )  = f f (x)#(02,  dx) for all f E ~- 
and co in a set of measure 1, thus showing that the measure # := #(co) for a (any) 
fixed 02 in this set satifies the conclusion of the lemma. 

[] 

PROOF OF THEOREM 2.1. By Lemmas 2.4, 2.5 and 2.6, for every subsequence of 
the natural numbers there is a further subsequence {n ~} such that, for almost every 

the conditional laws s (x/nT(X*, -X~ , )  X) (w) converge weakly to anon-random 
% 

02, 
% / 

probability measure # that may depend on the subsequence {n~}. Hence, for each 
f bounded mad continuous, 

and, by bounded convergence, 

But by Lemma 2.3 (unconditional convergence), 

i,..(0,....). 
Hence> # = N(0, c2a2). This shows 

c ( e ; ( x : -  xo) x) N(0,.,.2) a.s. 

[] 

This generalized bootstrap contains, by appropriate choice of weights, the regu- 
lar Efron's bootstrap, the under- or over- sampled bootstrap, the bootstrap without 
replacement, the Bayesian bootstrap, etc. Checking E3-E4 sometimes requires in- 
genuity; for example, for the regular bootstrap one takes w ~ ( j )  = ~i~=1 5u~ ( A j ) / n ,  
where Ui are i.i.d, uniform on (0, 1) and Aj ,  j = 1 , . . .  ,n  is a partition of the interval 
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into sets of mass 1/n each; then, one uses e.g. Bernstein's inequality to prove E3, 
and Poissonization to prove E4. 

It should be clear that  this theorem extends, by Cram6r-Wold, to i.i.d, random 
vectors of N d. Praestgaard and Wellner (1993) extended it to empirical processes 
(more on this below). 

1.3. T h e  b o o t s t r a p  o f  t h e  m e a n  for  s t a t i o n a r y  s e q u e n c e s .  The strong or 
c~-mixing coefficient between two a-fields ,4 and B in (~, E, Pr) is defined as 

a (A,  B) = sup I Pr(A N B) - Pr(A) Pr(B)l  , 
(A,B)6.A xB 

. o o  and constitutes one of several standard measures of dependence. If {Xz}i=-oz, is 
a strictly stat ionary sequence of random variables and ~m = a(Xi  : i < m) and 
s = o . ( X  i : i ~ n) ,  then the mixing coefficients c~ of the sequence {Xi} are defined 
a s  

a n  = ~ ( $ - 0 ,  f~), 
and the sequence is said to be ~trongly mixing or c~ mixing if l i m n ~  C~n = 0. The 
boots t rap  has no reason to work if it does not mimic, in some essential way, the 
random mechanism that  produces the sample (in Efron's bootstrap,  independent 
sampling from E ( X )  is mimicked by independent sampling from P~). In the c~- 
mixing case sample blocks carry dependence information, more of it the larger their 
size b is, and, sampling from the set of these blocks (instead of from the sample, 
as in the i.i.d, case), if there are many, produces a distribution close to that  of 
( X 1 , . . . ,  Xb). So, here is the stationary or Kunsch bootstrap procedure: Given the 
sample X 1 , . . . , X ~ ,  and the block size b := b(n), we let Bi,b = {Xi , . . . ,X i+b-1}  
be the b-size block of observations starting at Xi, i = 1 , . . . ,  n - b + 1. We sample 
with replacement k :=  k(n) = [n/b] of these blocks, say Bi , , . . . ,  Bik, and then the 
boots t rap sample is constructed from the samples in the blocks, that  is 

X n ,  1 = X i l , . . .  , X * , b  ~- X i l + b _ l , X * , b + l  = X i 2 , . . .  , X * , k  b = X i k + b _  1 . 

Formally, is , . . .  ,ik are i.i.d, random varibles, independent from the sequence {Xi} 
and uniformly distributed over the set of integers {1 , . . .  ,n  - b + 1}. (Another 
basically equivalent procedure takes the indices uniformly distributed on { 1 , . . . ,  n}, 
and defines the last b blocks formally in the same way but taking Xn+,  to be X r  

-i.e., as if the data  were in a circle). We will call the variables X,~,i, i = 1 , . . . ,  kb, 
the MBB sample with block size b (at stage n). 

The theorem that  follows, due to D. Radulovid (1996), constitutes a consid- 
erable strengthening of the original results of Kunsch (1989) and Liu and Singh 

n 2 VarSn (so, the sums start at X 1 e v e n  (1992). We let Sn = ~ i = l X i  and a n = 
though the sequence Xi runs over Z). We resume the notat ion/2" ,  Pr*, E*, etc. to 
denote respectively conditional law, probability, expectation, etc. given the sample. 

3.1. THEOREM. Let {Xi}i~176 be a strictly stationary strong mixing sequence of  
square integrable real valued r.v.'s such that 

s  - nEX~ ) -~,~, N(0,1) (3.1) 
~:T 71 
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Let X~,i, i = 1 , . . . ,  kb, n 6 N, be the MBB samples based on {Xi}, with block size 
b := b(n), such that 

b(n) --~ oc and b(n) --+ O. (3.2) 
Tt 

Then, setting 0.~ : :  v/Var* (E~__(~)b(") X~,i), we have 

s 1 6 3  /~1= ( X * ' i - E * X * ' i ) ) - ~ N ( 0 ' I ) i n p r .  

and 

c* 1 

/=1 

(3.3) 

(X.*,i - E*X~*,i)) --+~ X(0, 1) in pr. (3.4) 

Moreover, if condition (3.1) is replaced by 

s N(0 ,0  -2) gild { ( S n -  7%EX1)2 }n21 is uniformly integrgble, 

(3.1') 
(and (3.2) is kept unchanged) then 

,v"~k(rt)b(n) [X* E*X,~,i) 
) iN (0, cr 2) in pr. (3.5) 

2 
( Srt - 72]EX1 ) N (0, o2). (3.8) a_2~ ~ ~2 and s --+w 

The limits (3.8) are also implied by the Ibragimov and Linnik (1971) sufficient 
condition for the clt, namely that there exists some 6 > 0 such that 

(3,7) 

oo 5 
E ~ (3.9) EIX ~l 2+~<c~ and a k < ~ .  
k: l  

implies 

fro ' a-l ( t )Q2(t)dt  < oo 

In case 2 
O'n ~ 0 .2 and 0.2 > O, 
~2 

it is clear that the regular clt, 

-  Ex1) ] ck j (3.6) 

is equivalent to condition (3.1) and also to condition (3.1'). 
The best result on the central limit theorem for stationgry sequences to present 

belongs to Doukhan, Massart gnd Rio (1994): letting a(t) : ct[t ] and letting Q be 
the right continuous quantile function of X1, the condition 



61 

Condition (3.9) is s tronger than (3.7). 

The  main  step in the proof of Theorem 3.1 consists in deriving a sort of Raikov 
Theorem (i.e. lln for squares) associated to the clt (3 .1 ) :  with i t  w e  can control 
the relevant t runcated  boots t rap  moments  and thus derive the boots t rap  clt f rom 
general principles (the criterion for convergence of row sums of infinitesimal arrays to 
a normal  law already used above). The main tool is the basic covarianee inequality 
of Davidov (1968). 

3.1. LEMMA. Let {~}~~176 1 be a uniformly integrable sequence of real random vari- 
ables. For each n 6 N, let {~,i, i = 1 , . . .  ,n,  be a strictly stationary set of random 
variables individually distributed as in. Suppose there exist constants an,i satisfying 

1 n 
lira 7z ~ a,,,i = 0 (3.10) 

7l---+OO 
i = 1  

and such that 
Cov(YIIIY, I<M,YiItY, I<_M ) <<_ MZ an,i (3.11) 

for all M < oo and for all o([~,i) measurable random variables Yi. Then, 

I ~(~n,i - -  E~n,i) 0 in pr. (3.12) 
n 

i=l 

PROOF. Let Yn,i = ~n,i-E~n,i. Since the sequence {Yn,1 }n~176 is uniformly integrable, 
it follows tha t  

i = 1  

whenever Mn --+ oo. For M,. --~ oo to be chosen below, set !7~,i = Yn,illy~.il<_f ~ . It 
then suffices to prove tha t  

n 

1 E ( ! p  i - E L , i )  --~ 0 in probabili ty.  
n 

i = 1  

Stat ionari ty  of the set I>~,~ . . . ,  Y,~,n for each n, together with (3.11) (note l<,,,i is 
cr(~n,i) measurable) ,  gives 

Pr{ l~(yn,, ~]>n#)> S} < 1 
i : 1  l<i,j~_n 

2 Cov(h, ,L,j < - -  
- -  ?%62 . 

< 2M2 ~ a,z,j 
- -  ~ s  

j = l  
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for all e > 0. Now, choosing M,~ = (E]=~ a,~,j/n)-~/4 makes this probability tend 
to zero by (3.10). 

In Theorem 3.1 we can assume, without loss of generality, that  EXi = 0 ,  and 
we do so in what follows, For each n ~ N and i = 1 , . . . , N ( n )  := n - b(n) + 1, we 
let Zn,i be the sum of the data. in block Bi, that  is, 

Z n , i  : X i q - . . . - [ - X i + b ( n ) _ l ,  n C N,  i ~-~ 1 , . . .  ,N(n) ,  (3.13) 

The previous lemma gives the following corollary, a kind of Raikov's theorem asso- 
ciated to the clt in (3.1): 

3.2. COROLLARY. Under the hypotheses of Theorem 3.1 and assuming E X  = 0, 
"we h a v e :  

i) 
N(n)  ~ 

ii) for e v e r y S > 0 a n d 0 _ < p < 2 ,  

iii) 

--~ 1 in pr., (3.14) 

N(n)k(n) N(~) k~/k~ab(,)Z~" ~IiZ..,l>6~b(.) kV4-(- ~ --+ 0 in pr., (3.15) 

1 Z~,~ 
-+ 0 in pr., (3.16) N(n) ab(.) 

and, for all 5 > O, 

N(n)l i~1 ) Z.,i  ~b{ , ) -  v'-,",TI'z-,'l<-b'~r --+ 0 in  pr., (3.17) 

PROOF. To prove that  the limit (3.14) holds, we apply Lemma 3.1 with ~N(n) , i  = 
2 2 Z,~,i/%(, O. First we note that ,  since b(n) --+ oo, the clt (3.1) implies that  the 

variables Z,~,l/ab(,O converge in law to a standard normal variable. Then, the sec- 
ond moments  of these variables being all equal to 1, this gives that  the sequence 

Z /,~2 >o n , l !  b(n)Jn=l iS uniformly integrable. Also, if X is cr(Z~,~) measurable and Y is 

~r(Z~,i) then, by the definition of a , ,  and since cr(Z~,l) C Job(,0 and a(Z2i) C 3 :i, 
we have that  c~(X, Y) < c~(i_b(,))v 0 and that  

N(,O ~-b(~)+l 
1 X-" b(n) 1 

N ( <  ~ ,~(,-b~,~)),,o < + b(.)  + 1 / - - ,  i=1 - -  n - b ( n )  + 1 n - 
i=b( ,Q+ l 

o.  -~ 0 (3.18) 

(since (~  ~ 0 and b(n)/n --+ 0). Davidov's (1968) inequality (actually a particular 
case, Theorem 17.2.1 in Ibragimov and Linnik, 1971), to the effect that  

Cov(X, Y) s 4o,(x, r)l[xll~llvl[~, (3.19) 
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Z 2 0.2 oo shows tha t  the sequence { n,1/ b(n)}n=l satisfies condition (3.11) with aN,i = 

4~(i-b(,))v0. (3.18) gives condition (3.10) for these constants, and therefore, our 
sequence satisfies Lemma  3.1. Its conclusion, the limit (3.12), t ranslates exactly 
into the limit (3.14}. (Note that  Lemma  3.1 also holds, with only the obvious 
changes, if the ( variables are indexed by a sequence N ( n )  ~ oo of integers, instead 
of by N.) 

For every 5 > 0 and 0 < p _< 2, the array 

k(n) Z,,,~ P IIz~ I >6,,~(~ g K ~ '  r = x/k(n)0.~(~) / = 1 , . . . ,  N(~) ,  n ~ N, 

also satisfies the hyptheses of Lemma 3.1 with respect to the same array of coef- 
ficients aN,i = a(~-b(n))v0 as above: (3.11) certainly checks, and {(N(n),l},~__l is 
uniformly integrable because (N(,~),I --< 5P-2~N(,) , l  for all n. Now, the limit in 
(3.15) follows f rom L e m m a  3.1 because the uniform integrability of the variables 
Z~,I/0.~(n) implies 

lim k(n)E Zn'l P 
n~oo {]~(n)0.b(n) IIzn,,I>6ab(n) k~(~ 

- V/k(n)0.b(n) I Iz , , , , l>e~( . ) , , /g~  = O. 

The  rest of the s ta tements  follow in the same way, once we observe that  the sequence 
{Z,~,l/eb(n)},~=l is uniformly integrable (since the sequence of its squares is) and 
EZ~,I = 0. 

[] 

Now the proof  of Theorem 3.1 becomes a routine check of the classical conditions 
for normal  convergence: 

PROOF OF THEOREM 3.1. For each n, let Z*,i , i = 1 , . . . ,  k(n),  be an array of ran- 
dom variables which, conditionally on the sample {X~}, are i.i.d, with (conditional) 
law 

1 
P r * { Z * i = Z n , j } -  N ( n ) '  j = l ' ' ' ' ' N ( n ) "  

With  this definition, we have 

1 ) 
4 k ( ~ ) ~ ( , , )  Z ( z : "  - E*z: , i )  

i=1  

Hence, by previous arguments  and the general criterion on convergence to the normal  
law of infinitesimal arrays, the proof of (3.4) reduces to checking that  the following 
three limits hold for every 5 > 0: 

k(,~) 

i=1  ~ O _ b ( n  ) > 6 --* 0 in pr., 



64 

and 

E va r  ~ ~ Ifz:.~l_<6~b(~)~/k 
i=~ ~ x/~(n)~b(~) 

] 1 in pr. 

,.~= \ ~ b ( n )  IizT,,~l>&,b(,)x/g) ~ 0 in pr.. 

By the definition of Z:,i, these three conditions can be written as: 

k(tZ) N(n) 

N(n) E I IZ . , , l >~b( . ) v~  ~ 0 in pr., 
i=1 

1 1 Z,,i I ,2 

(3.20) 

--~ 1 in pr. 

(3.21) 
and 

~(r~) N(.) Z~,i 
.~ ~ G b ( , O  IIz,.~l>~b(,)'/k" ~ 1 in pr. (3.22) N(n) 

Now, (3.20) and (3.22) are just (3.15) in Corollary 3.2 respectively for p = 0 and 
p = 1. The first and second terms at the left of (3.21) converge in probability 
respectively to 1 and to 0 by (3.14) and (3.17) in Corollary 3.2. Thus, we have 
proved that  the limit (3.4) holds. 

Given (3.4), proving (3.3) reduces to showing that  

(G*)2 --4 1 in probability. 

Since 
h a v e  

N(.) _ ( ~ 1  ) Z,~,, )2 
k(.)%n ) G = ' 

which tends to 1 in probability by (3.14) and (3.16) in Corollary 3.2. 

= k(n)Var* (Z*,I) by conditional independence of the Z*i variables, we 

Since the MBB procedure produces a triangular array of conditionally row-  
wise independent random variables, somehow with weaker dependence than original 
sample, it is conceivable that  the MBB works in cases when the original clt does 
not. In fact this is the case, as shown by an example in Peligrad (1996, Remark 
2.1). 

1.4. T h e  b o o t s t r a p  o f  U - s t a t i s t i c s .  Degenerate U-statistlcs, together with the 
maximum of i.i.d, uniform variables, were among the first examples for which the 
regular Efron's bootsrap (that is, sampling n times from the empirical measure Pn) 
was seen not to work. Bretagnolle (1983) discovered that  reduction of boots t rap 
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sample size makes the bootstrap consistent. These statistics constitute also an early 
example of the fact that  one can often modify the bootstrap procedure so that  it 
bet ter  simulates the original random mechanism. This may require, however, some 
information about the main features of the problem at hand. In the case of U 
stastistics, a basic feature is the degree of degeneracy as it determines the Op size 
of the statistic. Areones and Gin~ (1992) proposed to empirically degenerate the 
U statistic to the same order as the original before bootstrapping: in this case no 
reduction of boots t rap sample size is necessary. We illustrate both ideas in a simple 
example. Let Xi be i.i.d., EX = 0, EX 2 = 1. Then, 

f t  X i X j  --~d Z 2 1 ,  

where Z is X(0,  1) and I~ = {( i , j )  : 1 < i , j  <_ n, i r j } .  This statistic is degenerate 
of order 1. Let us write the statistic in the form 

I-V'n X 72 n 1 ~ X/Xj=/~g=l ~/ 1V'x? 
L ~--F- J - ' ~ L "  ' '  

( i , j )E]  ~" i=1 

A 'naive'  application of the bootstrap gives 

FS-'n X *  7 2  ~* 
X : , i X : , j  = - - X , ~ , { )  . (4.1) 

(~,j)c~.~ L ~ J ,~ .= 

Now, the law of large numbers for X 2 bootstraps with no problem (the lln boot- 
straps): 

E* 1 _<2E* n ~ n , l j j  + 2 .  [ n 1 

( ,~,1 + 2  1 
n [ n 

4 4 j X j  
z - -  n2 X j  + 2  1 ~ 0  a.s.  

j = l  

by the Marcinkiewicz and Kolmogorov laws of large numbers. But the clt part  at 
the right of identity (4.1) does not converge to a normal law because the centering 
v/nfiE, ia miaaing. Bretagnolle's solution was: reduce the sample size to make the 
missing centering go to zero (a.s. or in pr.) Obviously, taking the boots t rap sample 
size in (4.1) to be rnn (instead of n) turns the centering of the clt part into v/-E~Rn, 
which tends to zero in pr. if rnn/n --+ 0 (by the clt), and tends to zero a.s. if 
( m ,  loglogn) /n  --+ 0 (by the lil). And this is what happens in general for the 
boots t rap of (the clt for) degenerate U-statistics: it works in pr if rn,~/n --~ 0 and it 
works a.s. if (rn,~ loglogn)/n --+ 0 (the rate m~(logn)l+6/n --~ 0 was first used for 
the a.s. boots t rap but,  as Arcones and Gin6 (1989) observed, (mR log]ogn)/n --* 0 
is the appropriate  rate for the a.s. boots t rap in many situations -basically, those in 
which one can invoke some kind of lil). There is another logical solution to the above 
problem since, after all, one cannot ignore the centering in the boots t rap of the mean 
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even if EX = 0: just  add the centering or, what is the same, reason this way: what 
makes the norming constants to be n instead of V ~ in the clt for X i X j  is that  the X ' s  
are centered, so we are in fact dealing with the statistic ~z~ (X, - E X ) ( X j  - E X ) / n ,  

* - X,,)(Xn, j - X ) / n .  And this works since which na tura l ly  bootstraps as ~I~ (X~,i ~ ~* 

n 

= [E~=I(X.,{ _ Xn) 2 . . . .  1 ~-.L,(X.,i X~)2 --+d Z 2 1 a.s. (4.2) 

by the bootstrap clt and lln. This bootstrap (the 'degenerate bootstrap') has the 
disadvantage of requiring knowledge that we may not have (we may not know EX = 
0), but  it is useful in testing (we will elaborate on this below). 

We let (S, S) be a measurable space and P a probabili ty measure on it, and let 
X,  Xi  be i.i.d. S-valued random variables with law P (i.e., the X ' s  do not have to 
be real). 

4.1. DEFINITION. A Pm-integrable function of m variables, f : S m --~ N, symmetric 
in its entries, is P degenerate of order r - 1, 1 < r <_ m, if 

/ f(xl,...,xm)dpm-r+l(xr,...,Xm): / fdP  m for all X l , . . .  ,Xr-- 1 ~ S 

whereas 
, 77~ -- r f(:~1,..., xm)dP (z,+1,... ,~) 

is not a constant function. If f is P~ centered and is P-degenerate of order m - I, 

that is, i f  

f f ( x l , . . .  0 for all 6 S ,  , xm)dP(xl ) X 2 ~  . . . ~ X Ti9 

then f is said to be canonical or completely degenerate with respect to P. If  f is 
not degenerate of any positive order we say it is non-degenerate or degenerate of 
order zero. 

In this definition the identities are taken in the almost everywhere sense. 

Wi th  the nota t ion  P1 x . .-  x P m f  = f f d ( P ]  x . . .  x Pro), the Hoeffding pro- 
jections of f : S m ~ R symmetric are defined as 

P 7rPf (x l , . . . , xk )  := 7rk,mf(Xl, . . . ,Xk) := (6,~ -- P) •  • (5,k - P) • p , , - k /  

for xi 6 S and 0 < k < rn. Note that  ~r0Pf = p m f  and that ,  for k > 0, P 7r k f is a 
completely degenerate function of k variables. For f integrable these projections 
induce a decomposition of the U-sta t is t ic  

1 
Un(f) := U ( m ) ( f ) : =  U~(~)(/, P) . -  (~) Z f (X i~ , . . .  ,Xim) 

l < i x < . . . < i m < _ n  

_ * - . _ (x.,,- x.)(x. , j  x,.) 
m (i,j)cx~ 
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into a sum of U-s t a t i s t i c s  of orders  k _< m which are or thogonal  if pro f2 < oo and 
whose kernels are completely degenerate,  namely, the Hoeffcling decomposition: 

U(m)(f)  = k U,~ (Tr k f )  (4.3) 
k=O 

( the subindex ra of 7r e is not  displayed; it  will be d ropped  whenever no confusion k~ra 

is possible).  This decomposi t ion follows easily by expanding 

f ( x l , . . . , x m ) = ( 5 ~  1 x . . - x ( 5 ~ m f =  ( ( ( 5 ~ - P ) + P )  x . . .  x ( ( ~ 5 ~ m - P ) + P ) f  

into te rms of the  form ((~,q - P )  •  x (6~,  - P )  x pm--kf. It is very simple to check 
P tha t  f symmetr ic  is P degenerate of order r - 1 iff v = min{h > 0 : rrk,,,,.f ~ 0}. 

Therefore,  f is degenerate  of order  r - 1 > 0 iff its Hoeffding expansion,  except for 
the  constant  term, s ta r t s  at term r, tha t  is, 

k = r  
\ , , . /  

Hoeffding's decomposi t ion is a basic tool in the analysis of U-s ta t i s t i c s  and in part ic-  
ular  it will be put  to use for the boots t rap .  We recall tha t  P~ refers to the empir ical  
measure  const ructed  from the sample X1 , . .  �9 X,~, and that ,  condit ional ly on X,  the 
variables X,~,i are i.i.d, with law P~. According to the definition, we will wri te  

(m), 1 
ug(f) : =  y , ,  ( f )  : =  = ( s  ,_<,< 

The meaning of 7r P" k f is equally clear: 

P .  rrP"f(xl,. . . ,xk) := 7rk,mf(X~,...,xk):= ((5~, -- P , )  • . . .  X ((5=~ -- P,,) x P ~ - ~ f  

for xi E S and 0 < k < m. From the clt for U stat is t ics ,  we know tha t  the k - t h  term 
in the  Hoeffding decomposi t ion (4.4) is asymptot ica l ly  Oe  (n -k/2)  so tha t  the whole 
s ta t i s t ic  is exact ly  of the order of the first term. Hence, at least up to first order 
approximat ion ,  only the first term in the Hoeffding expansion needs boo t s rapp ing  
and we can ignore the rest. Since e ~r k f is completely P degenerate  we must  replace 
it by rrP~f before boo ts t rapp ing ,  and this is the content of one of the next two k 
theorems.  The  first is from Arcones and Gin6, loc. cit. 

4.2. THEOREM. Let f (x l , . . . ,xm) ,  xi C S, be a P - squa re  integrabie symmetric 
kernel, P degenerate  os order  r - 1, so that, in particular, 

( Yt'~ 1 /2  . 

where Kp,I,~ is a Gaussian chaos variable of order  r. Assume also that ,  t'or d := 
, i m } ,  

< oo. (4.6)  
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Then, 

s  - - -  - --%,s a.s. (4.7) 

We note tha t  (~)7r~ pn f can be replaced in (4.6) by the P~ or thogonal  pro jec t ion  

of f onto the space of P,~ degenerate kernels of order r - 1, and U O') by U ('~), but  
this new kernel is more complicated and may not lead to a be t t e r  approximat ion .  

We need a simple but  useful proposi t ion of Sen (1974) on the Marzinkiewicz 
law of large numbers  for U stat is t ics  (the proof here is from Ginfi and Zinn, 1992, 
which also has more informat ion on the subject) .  

4.3. PROPOSTION. If  Elf] p < co with 0 < p < 1, then 

1 
, m / ,  E IS(X,,,  - �9 )1 0 a.s. 

l <il <. . .<i~ <_n 

PROOF. We assume f >_ 0 and set s := rn/p > m. By Kronecker 's  lemma, it suffices 
to show tha t  

E ~ E N(X~I''''" , x i  . . . .  X j )  < (~0 a.s. 
j=rn J l < i l < . . . < i m - l < j  

Since 

E E ( j - 1 ) m - l p r { f > j s }  < x m - l p r { f > x S } d x  < r n - l E f m / s < o o ,  
j=rn --1 

we can t runca te  at the  level j~ and therefore it suffices to show 

oo 1 

j--7 ~ (fIy<_j,)(Xil, . . .  ,Xi  . . . .  Xj )  < oo a.s. 
j = m  l~_ i t< . . .< im- l<j  

But this  follows by B. Levi 's l emma and the following es t imate  of the series of 
expected  values: 

E ( j  _ 1)~-m+1EfI$<_j~ <_ xm-~-lEfls<_~,dx 
j=rn -1  

O0 X s 

-- (Trt--~-2)s~--rns--m ~0 (rn-1)" Pr{f > t}dt 

AV jf(rnC~ 1), ( f l ~ ~  xm-S-ldx)Pr{f> t } d t  

/7 _< (rn - 1) 2*-m + - - 1  t 9 - 1  P r { f  > t}dt < oo. 
,S -- rrt .s -- ~Tt 
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[] 

The  following corollary follows immedia te ly  upon decomposing the V s ta t i s t ic  
into a sum of U-s ta t i s t ics .  

4.4. COROLLARY. If  f satisfies the integrability condition (4.6) then 

1 
T~rl 1 ~ f ( X i l . . .  ,Xim) ---4 p m f  a.s. (4.8) 

l ~_il, . . . , i~ <_n 

This in tu rn  has the following consequence, that  will allow us to restr ict  our 
a t t en t ion  to very simple functions in the proof  of Theorem 4.2. 

4.5. COROLLARY. Let fe --+ 0 in L2(P m) and suppose the functions fe are sym- 
metr ic  and satisfy the integrability condition (4.6). Then, 

Iim lira E* U(~")*(rcP'~f, = O. (4.9) 

O 
PROOF. Note tha t  the operators  7r k are centering opera tors  and therefore they 
are contract ions  in L2(Q), for any probabi l i ty  measures Q, in par t icu lar  for the 
random mesures P,~, and recall that  E* is nothing but  in tegrat ion with respect  to 
the measure  Pn. Then,  observing that  the summands  in a U-s ta t i s t i c  whose kernel 
is Q-canon ica l  are Q-or thogona l  (assuming they are square integrable) ,  we ob ta in  

1/2  2 

= E , [ < o f , ]  2 

< E*f  ~ X* _ , ( , , , , , . . . , x % )  

1 
= f } ( x , l ,  , x ,m)  

l <_il ,...,im <_n 

_~pmf2  a.s. as n--* oc 

--~0 as ~--*oo.  

1:3 

In order  to implement  the reduct ion to simple kernels it is useful to describe two 
simple identi t ies,  namely, the polar izat ion identi t ies and Newton 's  identit ies.  The 
polarization identities are as follows: If e l , . . . , a k  are i.i.d. Rademacher  variables 
( tha t  is, Pr{ei  = 1} = 1 - Pr{ei  = - 1 }  = 1/2),  then, for any k real functions 
r  r of one variable,  not necessarily different, and for any x l , . . . ,  xk in S,  we 
have 

k k 

a i=1  i : 1  

(2.4) 
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where cr runs over all the  pe rmuta t ions  of { 1 , . . . ,  k}. By developing the expected  
value in the second te rm of this ident i ty  we obta in  a l inear combinat ion of at  most  
2 k functions of the form 

h ~ ( < , . . . ,  *k) = ~ ( X l ) . . . .  �9 ~(xk)  

with ~p(:c) = +~bi,(z) + . . .  + ~b~(:c). Newton's  identit ies,  which are useful to handle  

U-s t a t i s t i c s  wi th  kernels of the form h ~' k, are as follows: given t , , . . . ,  t~ in R, if, for 
/z r 

1 < r < n, we let PT = ~ l < _ i l < . . . < ~ < , t i l  " t i ~  and sT = ~ i = l t i ,  then the ident i ty  

Sk -- Plak--1 -{- p2Sk--2 -- . . .  4- ( - -1)k- ls lPk--1  + (--1)~kPk = 0 

holds for all k < n. These identit ies,  which can be checked by induction,  give, also 
by induct ion,  tha t  for every k 6 N there is a real polynomial  Rk of degreee k, in k 
variables,  such tha t  for all n > k, 

1_<il < . . . < i k _ < n  i=1  i=1  i = 1  

k 
(Moreover,  R k ( u l , . . . , u k )  is a sum of monomials  of the form c I~i=1 zz/k~ with 

k ~ i = 1  ik i  = k and the coe~c ien t  of ~Zl ~ is 1/k ! . )  

4.6. PROOF OF THEOREM 4.2. Let {~i}iEI be a complete or thonormal  sys tem of 
L2(P)  consist ing of bounded functions. Since f E L2(Pm), we have 

f ( x l , . . . , X n , )  = Z Ci ...... i . ,~ i~(Zl ) . . .~3 i .~(Z ,~)  
i l , . . . , i~El 

in the sense of L2(P m) and,  f being symmetr ic  in its entries, the coefficients ci, ..... i~ 
are invariant  under  pe rmuta t ions  of the indices i l , .  �9 �9 irn. Then,  by polar izat ion,  

f = l im Z t'ihw' := l im he (4.10) 
f inite 

also in L2(Pm),  where the functions ~ are bounded  and h r  xm) is as defined 
above, so tha t  ht is a finite l inear combinat ion of h ~ 's. 

We will not prove here the  central  l imit theorem for U stat is t ics ,  but  it is 
required in this proof. See, for example,  Arcones and Gin~, loc. cit., or the forth- 
coming book of de la Pefia and Gin~ (1997) -p re l iminary  versions of it were dis- 
t r ibu ted  when these lectures were delivered. So, we recall tha t  there  is a chaos 
process K p  indexed by the canonical  functions of all orders  on S m such tha t  the 
random variable Kp, f ,~  in the limit ( 4 . 5 ) i s  precisely Kp,I,T = (T)I~[p(rrPf)  for 

all f E L2(pm),  tha t  E ( K p ( g l )  - Kp(g2))  2 = f ( g l  - 92) 2dp~ for all square inte- 
a rable  P canonical  functions of r variables, and tha t  the limit (4.5) holds joint ly  
for any finite number  of kernels, with limit the corresponding join d is t r ibut ions  of 
the variables (mr)Kp ( r rPf) .  Let d be any distance metr izing weak convergence in R. 
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Then, using the just mentioned isometry, (4.10) and Corollary 4.5 on the functions 
fe = f - he, we have 

r /7 \  1/2 

[ ( (~)  1/2 )) ( ( )1 /2  ))] 
< lim lira d s . p~ . n . p~ 

+ lim j~In d s * P" f---+oo 

+lime_oo d[s I,~)] 

lim lim d s * P 
f ~ O 0  n ~ O 0  ~ ' 

Hence, we have reduced proving Theorem 4.2 to showing that 

,l [(:) , ,1 
1/2 -] 

w -  lira s U(~)(TrP"h'~ Pn = w -  lira L; U") (~-Phr  

for r bounded,  jointly in any finite number of r  

Note that  

a . S ,  

(4.11) 

7 r P h ~ b ( g l , . . . , X r )  ~- ( P @ ) m - r  ( ~ ) ( X l )  - e ~ ) )  . . .  ( ~ ) ( X n )  - -  P@) 

for all xi C S, and likewise for P~. Therefore, if R~ is the polynomial of degree r 
prescribed by Newton's  identities, we have 

1 7r~h (Xi~,...,Xi.) (4.12) nr/2 
l <_il <. . .<i~ <n 

r~ r t  n 

m-. " E( " 
= (PC) R~ ~(XI) -Pe) /n ' /~ ,E(r162  /n,..., ~,( .u162 

i=l 1:1 i:l 

and, likewise, 

1 ~-~ ~Pn l . ~  ( v - *  . . * 5 nr/2 
l<_ i l< . . .< i~<_n  

i=1 i=1 
n 

i=1 
Now, by the law of large numbers, 

P~ r  ~ P#9 a.s.; 
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by the boots t rap clt, 

w - lim s 1 ~ ( X * i  ) - P , f )  = w -  s f ( X i )  - P f  a.s.; n---* oo r 
i=1 

by the boots t rap  lln (see the beginning of this section), 

lim -1 ~ ( f ( X , , i  ) _ pn~)2  = Varp(~) rt~OO T~ i=1 
in conditional probability, a.s.; and, by Marcinkiewicz's law of large numbers, 

1 " , . 1 a s  

i=1 i=1 
for all k > 2. Note that  the last four limits hold jointly in any finite number of %'s 
(Theorem 1.1 holds in Rd). So, (4.11) follows from (4.12) and (4.13) and these last 
four limits because polynomials commute with weak limits. 

[] 

4.6. REMARK. The previous proof shows, in fact, that  if f satisfies the integrability 
hypothesis (4.6) then, without any degeneracy hypotheses, we have 

[ (~) 1/2 )] [(~) 1/2 )] 
w - lim s H(r)( ~P" r (r) P vn , " r  g ,P~ = w - l i r a  s U~ (Trrf, P a.s. 

(4.11') 
(and this last limit exists by the clt for canonical U statistics ). 

A similar proof that  requires, however, a little extra work for the analogue of 
Corollary 4.5 (and which we omit), gives the following refinement of BretagnoIle's 
boots t rap limit theorem for U-statistics. 

4.7. THEOREM. Let f ( x a , . . .  ,zm),  xi C S, be a P-square integrable symmetric 
kerne/, P-degenerate of order r - 1, so that, in particular, 

where Kp,f ,r  is a Gaussian chaos variable of order r. Assume also that, for d :=  
~ { i 1 , . . .  ,ira}, 

E [ f ( X i t , . . .  ,Xim)l 2d/rn "~ oo. (4.6) 

Let rn~ be a sequence of  natural  numbers tending to in/~nity. Then, 

~'[(;")l/2(S*r~(f, Prt)-Pr~f ) ----~dZs ----~zv~(Zs (4.14) 

in probability if rn~/n --~ 0 and a.s. if (rn~ l og logn) /n  ~ O. 

It seems clear that  the extensions of the bootstrap considered in the previous 
two sections can also be carried out for U-statistics. For instance, for rn = 2 and 
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for exchangeable weights such as those in Section 2, Hugkovg and Janssen (1993) 
modify the boots t rap of Arcones and Gin~ as follows: for h degenerate, the boots t rap 
statistic they consider is 

n 1 
Z WniW Jh(X 'X')--Zw    Z h(x ,xj) 
/-~ i=1 j<_n,jr 

1 

j=l  i<_n,iej I~ 

zn\ l /2  T(2)*t P n t \  which, for multinomial weights, coincides with (~) vn (rr 2 n) except for the 
h(Xi, Xi) terms. We will not pursue this matter.  

We will now indicate how to apply the bootstrap theory just developped to a test 
of independence proposed by Hoeffding (1948). This test follows a general pat tern  
on how to use model based bootstraps to test hypotheses, formalized by Romano 
(1989) (concrete examples of application of the same scheme already existed see 
e.g. Arcones and Gin~, 1991). 

4.8. EXAMPLE. Let F(x, y) be a bivariate distribution function and let 

= [ F ( . ,  y)  - r ( . ,  

Let ft" be the set of bivariate continuous distrubution functions whose marginals 
are also continuous. If the joint density F of (X, Y) is in ft", then X and Y are 
independent iff A ( F )  = O. It is easy to check that  A ( F )  can be written as 

A ( F ) =  1 j . . .  J r162 
• dr (x~ ,w) . . ,  dF(x~,ys), 

where r =/t~_>t~ - / t , > t ~ .  A good unbiased estimator of A ( F )  is then 

1 On- (;) E r 
l<_il,...,is<_n 

where we wri te  r  Y l ) , . - . ,  (3;5, ~]5)) for the symmetrization of the funct ion 

1 
~r x~ ~)r ,~ xs)~(yl,y~,y~)r 

Now, EDn = A and therefore, by the law of large numbers for U-statistics, D,~ = 
Op(1) if X and Y are not independent. Hoeffding also shows that  D~ is degener- 
ate of order I if and only if X and Y are independent. In particular, under the 
independence hypothesis, since moreover A = 0, the clt for U-statist ics gives that 
Dn = O p ( ~ - l ) .  In this last case, in fact, Hoeffding shows that  the limit of s 
has a continuous distribution which is independent of the joint distribution of X 
and Y as long as it is in F/". So, one can always, in principle, tabulate the limiting 
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distribution and construct a test. An alternative is to find, by simulation, c*(a) 
such that  

and reject independence if [nD,~l > c•(a). Note that: 1) Under the independence 
null hypothesis, Pr{lnD,~ ] > c ; ( a )}  --+ a, that  is, the test has asymptotically type 
I error a (by Theorem 4.2, since the limiting distribution is continuous). 2) For any 
cdf F in N 2, whether it is a product  cdf or not, rrFq5 is canonical and therefore the 

5 (2) p statistics n(2)U,~ @2 ~0) converge in law (Remark 4.6) and the boots t rap statistics 

n(52)U~(2)*(rr2P"qS) converge in conditional law to the same limit; this implies that 
the numbers c;(a) stabilize (a.s.) at some finite number as n --+ oo no mat ter  
what the distribution F of the data is (although their limit may depend on F).  
3) As mentioned above, InD,~J = Op(,~) under any alternatives. Conclusion: If we 
compute  the level c~(c~) as indicated, and reject independence if I'~D,,I > c,~(c~), 
then the test has asymptotically level c~ and the probability of rejecting the null 
hypothesis under any alternative tends to 1 as n --~ oo. Note that  there is no need 
to resort to a sample satisfying the null hypothesis in order to compute the levels 
4(~). 

We now briefly turn to V-statistics. With S = R, letting F be the cdf of X 
and F -1 its right continuous inverse, and letting /3 denote the Brownian bridge, 
Filippova (1961) proved that if f satisfies the integrability conditions (4.6), then 

nm/2 /R fd(pn _ p ) m - + d  /R .'1.). L f(F-~(Ul))''"'F-~(u"))d/3(u~)"d/3(ztm)" 
(4.15) 

Recall that  Pn is the empirical measure corresponding to the sample Xi, P,~ = 
~i~=1 6x~/n. Filippova's theorem is important  because these statistics arise as the 
second degree components in the von Mises development of smooth statistics, aa~d 
therefore, it has some interest to have its bootstrap version. 

The left side of (4.15) is a normalized canonical V-statistic,  and $ needs not be 
R for these statistics to have a limit (but then it camaot be expressed as a multiple 
integral of the classical Brownian bridge, although it is an element of a Gaussian 
chaos of order rn). In general, V statistics of order m and (symmetrtic) kernel 
f(zl , . . . ,  acre), based on Xi, i.i.d.(P), are defined as 

l<il,...,im<_n 

It follows from this definition that  

1 
V(m)(Trmf'P) := ~ E rrPf(xi"" 

l<it,...,im_<n 

�9 ,Xim) = fS~ fde~'. 

,Xi,,) = L ~  fd(P,~ - p)m, 

that  is, projecting f onto the space of canonical kernels has the effect of centering the 
empirical measures. V-statist ics decompose into the sum of U statistics, and their 
theory then reduces to that  of U-statistics. But for the boots t rap it seems more 
appropriate to work by analogy with U-statistics, rather than by reduction. We 
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will only state the boots t rap clt for canonical V-statistics, and then, the proof will 
only be sketched. (See Arcones and Ginfi, 1992, for more details.) In the following 
theorem, P* denotes the bootstrap empirical measure, that  is, 

. 1 L 6x:,{. P n  : ~  - -  
lZ 

i=1  

4.9. THEOREM. Let f be a kernel on S m such that f (X~, . . . ,X~m) is square 
integrable for all choices 1 <_ il, . . .  ,ira < rn. Then, 

w-2i--moos fs.=fd(P*-Pn)m] =w-~-oolim s f s ~ f d ( P n - P )  m] a.s. 

(4.16) 

PROOF. (Sketch) For a partit ion -oo = to < tl < ... < tin-1 < tk = oo of the 
completed real line, and for numbers gi~,...,im, let 

g ( X l , . . . , X m )  ---- g gi . . . . . .  i~IAj~(Xl ) ' ' ' ' /A /m(Zm) ,  
l_<ji  ..... jm<_k 

(4.17) 

where Aj = ( 1 } j _ l , • j ]  , j < k, and Ak = (tk_l,oo).  Since 

l < jl,...,jm <_k 

the boots t rap  central limit theorem and the continuous mapping theorem show 
that  the boots t rap clt (4.16) holds true for g. Let us denote this class of func- 
tions by g. Next, we define L2(P ,m)  as the set of functions f that  satisfy the 
integrability hypotheses of the theorem, with the norm IlfllL~(p,m) that  we now 

describe. [IfllL2(p,m) is the maximum over all partitions Q of { 1 , . . . , m }  of the 

L2(P #Q) norms of the functions fQ defined as follows: if Q = {A1, . . .  ,At}  then 
fQ(xl,. . .  ,Zr) = f(0cQ(1),... ,gee(m)), where Q(j )  = zk if j E Ak. G is dense in 
L2(P, m). It is easy to show that  

[Inm/2(Pn - P)mfl[L~(Vm ) <-- cmllfllL~(p,m), 

where em < c~ is a constant that  depends only on m. These comments also apply 
with P replaced by P,~. Then, if h E L2(P ,m)  we have 

E * [ n m / 2 (  P *  - -  P T z ) r n h l  ~ IlhllL2(p~ = Ilhqllc (p# ) IIhQIIc (P# ) a.s. 

(4.18) 
by the law of large numbers for U-statist ics (as the square of Ithgl[L~(p~Q) is a U-  

statistic with kernel h~.) Now, the density of G in L2(P, m), the fact that  Theorem 
4.9 holds for all kernels in G, and the inequality and limit in (4.18) imply (4.16) for 
all f E L2(P, m) by an easy triangle inequality. 

[] 

Although we have sketched an independent proof of Theorem 4.9, this theorem 
is in fact a corollary of Theorem 4.2. 
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1.5. A g e n e r a l  m o u t  o f  n b o o t s t r a p .  In two situations in the previous sections, 
undersampling has been seen to work when the regular Efron boots t rap does not. 
Politis and Romano (1994) (preprint from 1992) and Ghtze (1993) showed that  
the boots t rap  works in great generality if the bootstrap sample corresponding to 
a sample of size n is obtained by resampling mn data  from X 1 , . . . ; X ,  without 
replacement, and with ran/n ---+ oo. This scheme can be made to fit the exchangeable 
boots t rap of Section 2 by taking (wn(1 ) , . . . ,w~(n ) )  to be a row of ran times the 
number  l/ran and n - ran times the number zero, at random (that is, the subset 
of subindices j l , . . .  ,jm,, for which wn(jk) 7 k 0 is uniformly distributed over all the 
subsets of size ran of 1 , . . .  ,n). However we will not exploit this fact. Rather,  we 
will present the surprisingly simple proof of Politis and Romano based on an old 
exponential inequality of Hoeffding (1946) for U-statistics. 

Here is Hoeffding's inequality, where we replace one of the original computat ions 
by a more efficient one taken from Ledoux and Talagrand (1991), Lemma 1.5. 

5.1. LEMMA. Let X ,  Xi ,  i C N, be i.i.d. S-valued random variables, with law P 
on the measurable space (S,$) .  Let f : S 'n --+ R be a symmetric kernel such that 
f f d P  m = 0 and II/llo~ = c < oo. Then, ~or all t > o, 

x t _<2exp{ [~]?'1, (5.1) 
l<_il<...<im<n 

PROOF. First we see that  if ( is a centered random variable whose absolute value 
is bounded by 1, then 

ge ~ _< e ~2/2 (5.2) 

for all ~ E R. For this, we just observe that,  since k{ = 1@~ + L ~ ( _ A )  and 

1{I -< 1, convexity of the exponential function gives e xe _< 1@ca + ! @ e - a  so that 

the expected value satisfies g e  ae < cosh ~ < e ~ / 2 ,  proving (5.2). 

We set k := [n/ra] and define 

1 k-~ 
W ( X l , . . . , X n )  = ~ ~ f (Xjm+l , . . . ,X( j+l)m) ,  

j=0 

the average of f over disjoint ra-blocks of x's. Then, 

1 1 
(2)  Z s ( x , , , . . ,  x , ~ )  = 7., , ~  

l<_il<...<i~<n 

and therefore, by convexity of e al~l, 

a 1 Z f ( X i ~ , . . . , X i ~ )  <_ ~. 
exp - ~  l~_it<...<im<n Z 

(5.a) 
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The fact that  the summands defining W ( X i l , . . . ,  X i . )  are all independent (as they 
relate to different m-blocks of Xi's) facilitates application of the bound (5.2) to W, 
hence to the U-statist ic,  as follows: By (5.2) and (5.3), 

E e x p { A ~ )  l<i~<.~.<i=<nf(Xi~'""Xi=) 

_< Eexp{ IW(Xl, ,Xo)I} 
--< Eexp{.~W(X1,...,Xn)} -}-Eexp{-~W(X1,...,Xn)} 

E {'~cf(Xl"" Xrn)}]k [ { /~cf(Xl"'"Xm)}] q- E e x p  
: E e x p  k c k c 

- .~2C2 - 
<  exp{ } 

Then, by Chebyshev's  inequality, 

e r  1 E f ( X i t , . . . , X i . ~  > t  _< 2exp - a t + ~  , l<_it<...<im<_n 
which gives (5.1) upon taking A = tk /c  2. 

[] 

As a transition to the second chapter, we will state and prove the main result 
in this section for Banach space valued statistics (instead of real or multivariate 
statistics). For this we need a lemma on weak convergence (van der Vaart and 
Wellner, 1996, page 72, more general and with a different proof). Let B be a 
Banaeh space. We recall that  

B L I ( B ) =  { f : B - - ~ I R  : [[fl[oo < 1, H filLip-< 1}, 

where [IfllLip := sup~r If(z) -- f(Y)l/[[ z -- yll. 

5.2. LEMMA. Let # be a tight Bore1 probability mesure on a Banach space B. 
Then, there exists a countable subset D(#) of BL~ (B) such that, t'or any sequence 
#,~, n E N, of tight Bore1 probabiiity measures on B, the following are equivalent: 

i) #,~ --+w #, 

ii) s u p l e v ( ,  ) f fd(#n - #) --+ O, 

iii) f fd#,~ -+ f f d#  for a11 f C D(#). 

PROOF. Let K~, r E N, be a sequence of compact sets in B such that #(Kn)  -+ 1, 
and let f~(x) := d(x,K~) A 1, z C B, where d denotes the usual distance from 
points to sets. Since BLI(K~) is separable for the sup norm (by Arzel~Ascol i )  and 
every function in BL~ (K~) extends to a function in BL1 (B) (Kirszbraun-McShane 's  
theorem: see e.g. Dudley, 1989, or Araujo and Ginfi, 1980), there exists a countable 
set 23~ C BL~(B) which is dense in BL~(B) for the pseudonorm 

[[fI[K, = sup If(z)].  xEK~ 
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We may  and do assume that ,  for each r, 7~r contains the constant function lB. We 
set 7?~ := {f(1  - f~) /2  : f C 7},} and 7?(#) := U~=ID,. Then,  D(#)  is a countable 
subset of BLa(B). 

It is well known (e.g., Dudley, 1989, page 310, or Araujo and Gin6, 1980, page 
10) tha t  i) implies ii) and therefore iii), and that  in order to prove i) it suffices to 
show tha t  

ffhd#,~---+ffhd# (5.4) 

for all h C BLI(B) (e.g. Dudley, 1989, page 310, or Araujo and Gind, 1980, pages 
10 11). 

Let us assume that  condition iii) holds for 7:)(#) and let h E BL](B) and 
C 2 

c C (0,1). Let r be such that  #(K~) > 1 12.64" Since by hypothesis,  f (1  - 

f~)d(#n - #) --+ 0 as n ~ oo, there is N < oc such that  

f f - ~ )  e2 f~d(#,, - p) = (1 - f,)d(#n -< 12.6------~ 

for all n > N,  and therefore, for these values of n, 

s C2 

f,d#,~ _< #(/(~) + 12-6~ < 6 .6~"  

By construction, there is f E 7?, such that  

C 
[ [ h - f l l K .  _< ~ .  

Then,  

/ h d ( # ~ - # )  <_ / ( f ( 1 -  f ~ ) - h ) d ( # n - # )  + f f ( 1 -  f , ) d (#n -# )  

_< s . ) -  h)d(, .-  ,) + (s(1- s . ) -  h)d(, .-  . )  

j/f C2 
+ ( f ( 1 - f , . ) - h ) d ( # ~ - p )  + 12.6~" 

.(x)>e/16 

Now, 

(f  - h)d(#. - #) < '~ (#n + #) = ~. ( f ( 1 -  f~) - h ) d ( ~ .  ~) = , 
r 

i f  f , . (x)  = d ( x , K . )  < ~/16 then, since f , h  e BL~(B)  and Ili - hllK, _< ~/~6, we 
have 

3r c 
If(x)(1 - f,-(x)) - h(x)l _< If(x)(1 - f r ( X ) )  -- f (x)]  + ~ _< ~, 

and therefore, 

f0 ~) c <s.(~)_<~/1 ( f (1  - f~) - h ) d ( ~ .  - < 
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Finally, if f~(x) > s/16 we have 

If(x)(1 - f~(x)) - h(x)l < 2 < 32f r (x) ,  
g 

so that  

( f ( 1 - f ~ ) - h ) d ( # n - # )  < - -32 / f , - d (#n+#)  < --32( ~2 s 2 ) e 
r(~)>~/16 - E - e gT-----~+12-gT--~ = 8 '  

Collectiong all these estimates we obtain that  f hd(#n - #) < s for all n > N,  

proving that  (5.4) holds. So, iii) implies i) and the lemma is proved. 
[] 

As is well known, if B = IR d then D(#)  can be taken independent of # and 
such that  the sup in ii) equals the dBL distance (e.g., by a similar proof, taking 
K~ = {Ixl _< r}). 

Let X, Xi  and P be as above. Let 0(P) be a B-valued function of P and, for 
each n E N, let T~(x l , . . .  ,xn) be a B-valued measurable function defined on S n, 
symmetric  in its entries such that  the probability measures P~ o T~ -a are tight in 
B. We assume there is a sequence of constants Tn --~ cx~ and a B-valued  random 
variable Z whose law is tight such that  

z: { ~, [T,(X1,. . .  , x , )  - e(p)] } --~w Z(z).  (5.5) 

We further assume that  there exists a sequence m,~ of positive integers satisfying 

g/% n rn,~---+oo, - - - - - + 0  and rm= ---40 (5.6) 
~% T n 

as n ---+ ooi The m out of n bootstrap without replacement is defined as fol- 
lows. For every n, Y~* * n,1, ."  ,Y,~,m,~ are rn,~ samples drawn without replacement 
from ( X 1 , . . . , X n ) ,  that  is, if Pr* denotes, as usual, conditional probability given 
the sample, then, for any subset { i l , . . . ,  ira, } of {1 , . . . ,  n}, 

}] Pr* Y*,I,...,Y~*,m,} = { X i l , . . . , X i m ,  - (m~ ). 

(Here, the points Xi~, whether they are different or not, are treated as different 
elements of the set { X 6 , . . .  ,Xi , , .  }, and likewise for the points Y*/.) Wi th  these 
definitions and under these assumptions, we have the following theorem. 

5.3. THEOREM. Suppose the limit (5.5) holds and that the sequences of constants 
{m~} and {Tn} satisfy (5.6). Then, the rn~ out of n bootstrap without replacement 
of the limit theorem (6.5) works in probability, that is, 

~*(Trn~ [Tm~(Yn*l,...,Y*m~)-Tn(Xl,...,Xn)])---->w ~(~)in pr. ( 5 . 7 )  
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PROOF. To ease notation, let us set m := ran, T~ := Tmn(Y~*I,.. ',~/n*,m~) and 
Tn := T, ( X 1 , . . . ,  Xn).  The proof of the theorem basically consists of showing that  

]g'f  (Tin(T* -- T=)) --+ E f ( Z )  in pr. (5.8) 

uniformly in f E 7) :=  I9(s  the countable set of bounded Lipschitz functions 
corresponding to the probaility law of Z by Lemma 5.2. Set 

~,) :=  se~lsup f f d ( p  - d~(#, I/) I 

and recall that,  by Lemma 5.2, this distance metrizes weak convergence to # = s  
For f E :D C BL1 (B) we have 

E*I (T , , (T*  - T,~)) - E I ( Z )  

_ 1 ~ f ( r m [ T m ( X i l , . . . , X i . ) _ T , ( X 1 , . . . , X , ) ] ) _ E f ( Z )  
(=) l<, ,<. . .<, ,_<n 
1 

<-- (r~) E f ( r m ( T m ( X i , , . . .  ,Xim) - 0(P))) - E f ( Z )  -[- rmtT~ - 0(P)l 
l <_il <...< i~ <_n 

1 ~_j f ( r m ( T m ( X i t , . . . ,  Xi . , )  - 0(P))) - E f  (r~, (T,, - 0(P))) 
-< (m ~) i<,~<...<,m_<O 

Tr~Z 
+ Ef(rm(T,~ - 0(P))) - E f ( Z )  + --~IT~ - 0(P)[ 

Tn 

:=  I~( f )  + I I , ( f )  + I I In .  (5.9) 

Now, by (5.5) and the third limit in (5.6), III,~, which does not depend on f ,  tends 
to zero in pr. By (5.5), the fact that  m ,  --+ 0% and Lemma 5.2, i) ~ ii), we have 

snp SS~( / )=  d~ ( C ( ~ ( T ~  - 0(P))), C(Z)) -~ 0. 
fc7~ 

I~ is handled via Hoeffding's inequality (5.1): since, for each n, I~ is a U-stat is t ic  
whose kernel is centered and is bounded by 2, inequality (5.1) gives 

supPr{• <2e p{ 
f ~  - 8 

for all r > 0. We have thus proved the limit (5.8) uniformly over f C ~ ,  that  is, for 
all e > 0, 

sup Pr{ I ~ , * f ( r  - T ~ ) )  - Ef(z) l  > ~} -~ 0 
rE1) 

By Borel-Cantelli  and the fact that  D is countable, this implies that  every sub- 
sequence n'  has a further subsequence n" such that for all w in a set gt{n,,} of 
probability 1, 

E * f ( r m . , , ( g ~ , , ( w ) -  T~,,(co))) --+ E f ( Z )  for all f E l). 



8] 

Then, by Lemma 5.2, iii) ~ i), it follows that  

s -Tw,)] -~ s a.s., (5.13) 

which, by Lemma 5.2, i) ~ ii), can be rewritten as 

( T* , )--+ (5.14) t . , ,  C(Z) 0 a.s. 

Since,/9 is countable and E*f(7- , , . (T* ( w ) -  T~(~o))) is a random variable for all f 
measurable, it follows that  L~ is measurable for all n. Then, the usual subsequence 
argument applies to (5.14) and gives that  Ln -+ 0 in probability, proving the theo- 
rem. (Recall that  the definition of the bootstrap in probability does not depend on 
the metric, as long as it metrizes weak convergence to the limit.) 

[] 

If is such that E < oo and -e(P)) 9 a.s., then the 
limit (5.6) holds a.s. 

5.3. REMARK. (The bootstrap with replacement.) If one tries this proof on the 
undersampled boots t rap without replacement, one finds a problem with the main 
piece of (5.9), namely, I~, which is now a V statistic instead of a U-statistic.  This 
V-stat is t ic  consists of the diagonal parts, which are typically biased, and the non-  
diagonal part,  which is the same U-statist ic as above, but with norming 1/7~ "~. The 
conclusion is that  such a simple proof works for the bootstrap with replacement 
whenever ,~!/(n--m)! ~ 1, that  is, when rn~/n ~ O. So, results like the undersampled 
boots t rap for the mean in the stable convergence case, or for degenerate U-statistics, 
where the boots t rap in probability is proved for m ~ / n  ---+ O, still require separate 
proofs. 

Politis and Romano,  loc. cir., also extend the above procedure to mixing data: 
In this case one samples one of the data  points X 1 , . . .  , Xn_m+ 1 at random and 
evaluates the statistic Tm at the m successive observations starting from the sampled 
point. 

Finally we should mention that  there is work on the choice of bootstrap sample 
size mn and the accuracy and fine tuning of the procedure (e.g., the loss incurred 
in simple cases and how to correct the procedure to make it more accurate). Of the 
three terms in (5.9), I s  is quite small (see (5.10)), so that m~ could be estimated to 
balance the sizes of f in  and III~.  In the case of the mean, with third moment finite, 
this would give rn~ = n 1/2 and an error of the order of n -1/4. One can do a better  
calibration using Edgeworth expasions and get, for the same statistic, rn~ = n 2/3 
and an error of the order of n -1/3 (Politis and Romano, loc. cit.). In the case of 
the studentized mean, under quite stringent regularity conditions, examination of 
Edgeworth expansions show that  the cdf of 

77~ 1/2 
,nz(m] 1/2s * (VZm()( * - ) ~ ) / o * ) +  (1 - ( n ) )  N(0, 1) 

is op(n -1/2) close to the cdf of V~(/ (n  - EX) /~n .  This principle extrapolates 
to other not too irregular cases, but requires, for its application, relatively precise 
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information on the Edgeworth expansion of the statistic of interest (Bertail, 1994; 
see also Bickel, GStze and van Zwet, 1994). 

In another direction, we mention that Theorem 5.3 has a version for processes, 
in the setup of Chapter  2. We will omit its proof because the stament is not com- 
pletely satisfactory: Suppose that  B is now g~176 the space of bounded functions 
on T, that  Tn : S n v-. g~ (T)  and that  0(P) E e~ Suppose that,  in the notat ion 
of Section 2.1 in the next chapter, 

T,, [T,~(X1, . . . ,X,)  - 0(P)] ~ c  Z in e~(T) ,  (5.5') 

and that  r~ and mn satisfy conditions (5.6). Then, for every subsequence n'  there 
is another subsequence n" such that  

The problem is that  we do not know how to prove measurablity of this dsL or even 
of d~(L(z)) in order to deduce from this a boots t rap in probability. The proof goes 
along the same lines as the proof above, using the extension of Lemma 5.2 to this 
type of convergence (van der Vaart and Wellner, 1996, page 72, or a proof along the 
lines of Corollary 1.5 below) and simple non-measurable calculus. This version of 
Theorem 5.3 applies for example to U-processes, with r~ r v ~ in the degenerate 
case (e.g. Arcones and Gin6, 1993). 
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C h a p t e r  2: O n  t h e  b o o t s t r a p  for  e m p i r i c a l  p r o c e s s e s  

In this chapter we will prove that the central limit theorem for empirical 
processes in the Vapnik (~ervonenkis-Dudley general setting, can always be boot- 
strapped. This is important  because it automatically gives the boots t rap of many 
limit theorems. We will also show that for a more restricted but still quite general 
set of classes of functions, basically any sensible model based boots t rap works as 
well. A small number of applications (to e.g. M-es t imators)  will be considered. 
However, the boots t rap for empirical processes based on stationary observations 
and the boots t rap for U-processes will be ignored because current results in the lit- 
erature about  these two sobjects do not seem to be in final form (see, e.g., Arcones 
and Gin~, 1994, and Radulovid, 1996b). 

In accordance to s tandard practice in Statistics, in Chapter  1 we denoted X~,,i , 
Pr*, E* and s respectively the bootstrap variables, and conditional probability, 
expectation and law given the sample. In this chapter, the same objects will be 
denoted as X~,i, Pr  b, E b and s since we must reserve the superscript * for outer 
probability and expected value (the need for this did not arise in Chapter  1). 

2.1. B a c k g r o u n d  f r o m  e m p i r i c a l  p r o c e s s  t h e o r y .  In this section we present 
the minimum amount  of empirical process theory required for the boots t rap in 
probability of empirical processes, Efron's version, which is the simplest case: We 
want to give a clear idea about the amount of technique needed, with the hope of 
showing it is substantial but not excessive. We assume, however, some knowledge 
about weak convergence and about sums of independent random vectors (such as 
the clt in IR and L~vy's maximal inequalities). 

2.1.i. Convergence in law ofsarnple bounded processes. Let T be a set and let X,~(t), 
t E T, be stochastic processes indexed by the set T. Assume all the sample paths 
of these processes are bounded functions on T. Then X~(.) r g~176 the space of 
all bounded real functions on T. g~(T) ,  equipped with the sup norm, II" lIT, is a 
Banach space, in particular a metric space, but we do not assume that  the finite 

dimensional distributions of the processes X,,(t), s  ,Xn( tk ) ) ) ,  k E N, 
K 

ti E T, correspond to the finite dimensional projections #,.,h ..... t~ of individually 
tight Borel probability measures # ,  on f~176 Let now X(t ) ,  t E T, be a process 
whose finite dimensional laws do correspond to the finite dimensional laws of a tight 
Borel probability measure (=  a Radon probability measure) on g~ X is sample 
bounded, and we continue denoting as X its version with bounded sample paths. 
Then, we say that  Xn converge~ in law to X uniformly in t E T, or that 

Xn ---~z: X in t~176 (1.2) 

if 
~,*H(Xn) -+ ~.H(X) 

for all functions H : f~176 ~ II{ bounded and continuous. E* here denotes outer 
expectation, as indicated above: the outer expectation of a not necessarily measur- 
able function H(Xn)  is the infimum of the expected values of all the measurable 
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functions a.s. larger than  or equal to H(Xn).  As with regular  convergence in law, 
if F is a continuous function on C~176 with values in another  metr ic  space and if 
F(X~)  is measurable ,  then (1.2) implies tha t  F(Xn)  --+c F ( X )  in the usual way, 
and this is what  makes the concept of convergence in law in g~176 useful. 

The  outer  expec ta t ion  in the definition of convergence in law is necessary be- 
cause even the most  simple bounded processes may fail to induce Borel p robabi l i ty  
laws on e~176  For instance, let T = [0,1], let U be uniform on [0,1] and  let 
X( t )  = I(~,l](t), t E T. Let A be a non measm'able subset of [0,1] (which ex- 
ists if we assume the axiom of choice) and let FA = {I(,,1] : s E A} C g~176 
Then,  FA is a discrete set for the sup norm, hence a closed subset of g~176 But 
{X E FA} = {U E A} is not measurable  and therefore the law of X does not 
ex tend to a Borel probabi l i ty  measure on g~176 A good reference for all the non-  
measurable  calculus we use here is Dudley and Phi l ipp (1983), Section 2. Other  
more extensive references for it are Andersen (1985) and Ziegler (1994). van der 
Vaart  and Wellner (1996) contain also an excellent account of the non-measu rab le  
calculus required by empirical  process theory. 

The  following lemma clarifies the notion of processes whose laws are t ight Borel 
measures  on g~176 (t ight  Borel finite measures are also called Radon measures  and 
we use bo th  terms interchangeably) .  It is a t t r i bu ted  to Hoffmann-Jergensen  in 
Andersen  and Dobrid (1987). It was reproduced in Gin~ and Zinn (1986), with 
minor  a l terat ions .  

1.1. LEMMA. Let X( t ) ,  t E T, be a sample bounded stochastic process. Then the 
finite dimensional distributions of X are those of a tight B o r e / p r o b a b i l i t y  measure 
on g~176 if  and only if there exists on T a pseudo distance d fox" which (T,d) is 
totally bounded and such that X has a version with almost all its sample paths 
uniformly continuous for d. 

PROOF. Let #, a t ight  probabi l i ty  measure on g~176 be the law of X ,  let K~, n E N, 
be an increasing sequence of compact  sets in g~176 such tha t  #(U~_IlX',~) = 1, and 
let K = Un~_lKn. Then,  it is easy to see tha t  the pseudometr ic  d defined on T by 

c ~  

d(s,t) = ~ 2 -n (1  A dn(s,t)) 
rL=l  

with 

d,~(s, ~) = sup{if(~)  - f ( s ) :  f E Kn} ,  

makes (T, d) to ta l ly  bounded  (use tha t  U~m__IK~ is to ta l ly  bounded  and tha t  for any 
finite number  r of functions fi E kJ,m=lKn, the set { ( f l ( { ) , . . .  ,f~(t)) : ~ C T} is a 
to ta l ly  bounded  subset  of IRr; we skip the details).  Moreover, the functions f E K 
are uniformly ~ c o n t i n u o u s  since, if f E Kn, then If(s) - f ( 0 l  -< d,~(s, ~) < 2nd(s, ~). 
Since # ( K )  = 1, the  ident i ty  map  on (g~176 B, #) is a version of X with almost  all 
its t ra jec tor ies  in K ,  hence in Ca(T, d), the space of bounded  uniformly d-cont inuous  
functions on T. 

Conversely, let X(t ) ,  ~ E T, be a process with a version whose sample pa ths  
are a lmost  all in C~(T, d) for a dis tance or pseudodis tance  d on T for which (T, d) 
is to ta l ly  bounded.  Then,  since Cu(T, d) is complete  and separable,  the law of X is 
a t ight  Borel p robabi l i ty  measure on C~(T, d): by separabi l i ty  and the fact tha t  the  
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vectors ( X ( t l ) , . . . ,  X(tk))  are measurable, it follows that any uniformly continuous 
version of X is a measurable function from the basic probability space ~ into Cu 
and, C~ being Polish, its law is tight in Ca. But a tight Borel probability measure 
on C~(T) is a tight Borel measure on g~176 since the inclusion of Cu into t ~ is 
continuous. 

[] 

1.2. REMARK. Suppose that  X has the property that  for all tn E T, {X(tn)} 
is Cauchy in L2 whenever it is Cauchy in probability, which is the case if X is 
Gaussian or if it is a Gaussian chaos process. Then, if X induces a tight Borel 
probability law on g~(T) ,  it has a version with all its sample paths in C~(T, dx), 

where dx(s , t )  = [ E ( X ( t ) -  X(s))2] a/2, and the ps_eudo-metric space (T, d x ) i s  
totally bounded. Here is a sketch of the proof: If (T, d) is the completion of the 
pseudo-metr ic  space (T, d) prescribed by Lemma 1.1, then dx extends to 2P, and so 
does any version of X with sample paths in Ca(T, d), by uniform continuity. The 
metric space (T /dx ,  d) is compact and the identity map j :  (T /dx ,  d) ~ (T /dx ,  dx) 
is continuous, hence, (T /dx ,  dx)  is compact,  in particular totally bounded, and the 
identity map is bicontinuous. Now one can use the separability of (T • T, d • d) 
to show that ,  except for a set of measure 0, the sample paths of X satisfy X(s)  = 
X( t )  whenever px(s , t )  = 0. Hence, almost all the sample paths of any version of 
X in Cu(T, d) belong to C~(T/dx,  d) and, by continuity of the map j - l ,  also to 
CuC2/dx, ~x). 

1.3. THEOREM. Let X~ be processes on T a11 (or almost a11) of whose sample paths 
are bounded. Then the following statements are equivalent: 

i) The finite dimensional distributions of the processes X~ converge in law and 
there exists a pseudometric d on T such that ( T, d) is totally bounded and 

l im l imsupPr*  / sup I X ~ ( t ) - X ~ ( s ) l > c } = 0 ;  (1.3) 
5 ~ 0  n ~  ~ d ( s , t ) < 5  

for all r > O. 
ii) There exists a process X whose finite dimensional distributions are those of a 

tight Bore1 probability measure on ~ ( T )  and such that 

X~ ---~c X in ~ ( T ) .  

If i) holds, then the process X in ii), can be chosen to have aimost ali its sample 
paths bounded and uniformly continous for d. If X in ii) has a version with almost 
all of its trajectories in C~(T, p) for a pseudodistance p for which (T, p) is totally 
bounded, then the distance d in i) can be taken to be d = p. 

PROOF. Let us assume i) holds. Let To be a countable d-dense subset of T, and let 
Tk, k E N, be finite sets incresing to To. The limit laws of the finite dimensional 
distributions of the processes X,~ are compatible and thus define a stochastic process 
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X on T, and moreover, 

Pr~" max IX(t) - X(s)l > c~ 
I.d(s,t)<6, s,tET~ J 

_< liminf Vr~" max IXn ( t ) -  Xn(s)] > g~ 
n+co ~ d(s,t)<< s,tETk J 

_< l imin fPr~  max IXn(t) - X,~(s)l > g~. 
n ~ o o  (d(s , t )<5,  s,tETo ) 

Hence, taking limits as k ~ oc and using condition (1.3), we obtain that  there exists 
a sequence 6r "N 0, 6r > 0, such that  

Pr{  sup I X ( t ) -  X(s)I > 2-~'~ <_ 2 - L  
" d(s,t)<_6., s,tETo ) 

Then, by Borel-Cantelli,  there exists r(w) < ec a.s. such that  

sup IX( t ,~)  - X(~,w)l _< 2 -~ 
d(s, t )<hr,  s,tETo 

for all r > r(w). Hence, the restriction of X(t,  o:) to To is a d-uniformly continuous 
function of t E To for almost every w; T being totally bounded, X(t ,w),  t E To, 
is also bounded. X being continuous in probability, the extension to T by uni- 
form continuity of the restriction of X to To (only the w set where X is uniformly 
continuous needs be considered) produces a version of X whose trajectories are all 
in Cu(T, d) and, in particular, the law of X admits a tight extension to the Borel 
a -a lgebra  of g~176 (Lemma 1.1). 

Before proving convergence, we recall a useful fact (whose simple proof we 
omit): if f : g~176 --* R is bounded and continuous, and if K C ~~162 is compact,  
then for every z > 0 there exists 5 > 0 such that  

l b  - vl lT < 6, ~ E I <  v E g~176  ~ I f (u)  - f ( v ) l  < e. (1.4) 

Since (T, d) is totally bounded, for every r > 0 there exists a finite set of points 
g ( r )  

t l , . . . ,  tN(~) which is ~'-dense in (T, d) in the sense that  T C_ tJi= ~ B(ti, T), where 
B(t,~-) denotes the open ball of center t and radius T. Then, for each t E T we 
can choose 7%(t) G {Q, . . .  ,tN(~)} so that  d(Tr~(t),t) < r. We then define processes 
Xn,r, n G N, and X~ as 

X . , ~ ( t )  = X , ~ ( ~ ( t ) ) ,  

x~(t)  = x ( ~ ( t ) ) ,  t �9 T. 

These are approximations of X,~ and X taking only a finite number N(T) of values. 
Convergence of the finite dimensional distributions of X~ to those of X implies that  

Xn,~- --~L X,- in (~176 (1.5) 

Moreover, the uniform continuity of the sample paths of X implies 

lim Ix  - X IIT ; 0 a.s.  ( 1 6 )  
~ ' ~ 0  
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Let now f : g~176 --+ N be a bounded continuous function. We have 

I E * f ( X , )  - E f ( X ) l  < IE*f(X,~) - E/(X,~,~)[ 

+ I E / ( x ~ , 0  - E / ( x ~ ) I  + IEf(Xr) - EI(X)I 
:=  In,~ + II,,~ + III~. 

In order to prove that  ii) holds we must show that  the iterated limit lim~--+0 lim sup~ 
of each of these three quantities is 0. This is true for II,,~ by (1.5). Next we show 
it for III~. Given e > 0 let K C ~~176 be a compact set such that  P r { X  E K ~} < 
e/(allflloo), let 5 > 0 be such that  (1.4) works for K and r and let wi > 0 be such 
that  Pr{l lXr - - X l l z  _> 6} < c/(611/11~) for a l l ,  > w~ (possible by (1.6)). Then, 

] ~ f ( x ~ )  - E / ( x ) I  <_ 211/11~ p r { X  c K ~ or l i n t  - XlIT >_ ~} 
+sup{If(u)- f(v)l  : u E K, II~ --~IIT < ~} 

<2ll/ l loo c + c + g < c ,  

proving lim~_0 III,. = 0. For the same r 5 and K, we have 

]E*I(X~) - E / ( x , , r ) ]  _< 21l/ll~ Pr*{llXn - X~,,,IIT >_ ~} + Pr{X~,~ C 

+ 2 s u p { l f ( u ) -  f(v)l : u c K, l lu-  vllz < ~}, (1.7) 

where K~/2 is the 5/2 open neighborhood of the set K for the sup norm. (To verify 
inequality (1.7) note that  if X~,~ E K6/2 and IIx~ -x.,~Hr < 5/2 then there exists 
u E K such that  I1~ - x~,rll < ~/2 and I1~ - X~IIT < ~.) Since the hypothesis (1.3) 
implies tha t  there is r2 > 0 such that  

lim sup Pr* ~ IIX,,~ - XnlIT > 
% 

for all r < w2, and finite dimensional convergence 

< 611f I ~ - - - ~  

gives 

(Ka/2) ~ 611flloo' 

we obtain from (1.7), as above, that  for T < ~-i A w2, l imsup,~oo I E * f ( X , )  - 
EI(X~,r) I < c, showing that  l i m ~ 0  l imsup,~oo I,~,, = 0. Hence, i) implies ii). 

For the converse, we first observe that  if X~ --+c X in g~176 then, as for regular 
convergence in law, l imsupn~oo Pr*{Xn E F} _< P r{X E F} for every closed set of 
g~176 The proof is the same as for regular convergence in law and is omit ted (it 
can be found in many texts under the heading 'por tmanteau ' s  lemma').  Suppose 
now that  ii) holds. Then, by Lemma 1.1, there exists a pseudodistance d on T 
for which (T,d)  is totally bounded and such that  X has a version (that we still 
denote by X)  with all its sample paths in Cu(T,d). Take F~,~ = {u E e~176 : 
suPd(s,t)<a lu(s) -- u(t)l _> c}. Then, applying the previous observation to F6,~, we 
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obtain, by the convergence hypothesis, that  

l i m l i m s u p P r * ~  sup [ X n ( t ) - X n ( s ) [  >_e} 
5 4 0  n ~ o o  "d(s,t)<_5 

< l i m P r * ~  sup I X ( t ) - X ( s ) l _ > c ~  ~ 0 
5 4 0  "d(s,t)<_5 ) 

for all c > 0. 
[] 

Theorem 1.3 is contained, in one form or other, in Hoffmann-J0rgensen (1984), 
is a t t r ibuted to Hoffmann Jcrgensen in Andersen and Dobrid (1987), and the proof 
given here is just the proof of Theorem 1.3 in Gin~ and Zinn (1986) with only formal 
changes. See also Dudley (1984, Theorem 4.1.1). 

1.4. REMARK. It is not necessary to check that  all the finite dimensional marginals 
of the processes X~ converge in distribution, when (T, d) is totally bounded and 
the asymptot ic  equicontinuity condition (1.3) holds, in order to conclude that  X~ 
converges in law in t ~ ( T ) :  It suffices to check convergence in distribution of the 
marginals of X~(t)  for points t in a den~e subset D of (T,d). This is obvious 
because one can choose t l , . . .  ,tN(r) in D in the definition of 7r~, just below (1.4) 
in the previous proof (since only the marginals (X~( t l ) , . . . ,  X~(tN(~)) are involved 
in the proof of the theorem. This remark, for D countable, simplifies some proofs 
below. 

Let BL1 (t~176 be the set of all real functionals f on t~176 such that  
sup~ee~(T ) If(x)[ < 1 and sup~ey,~,vet~(T ) If(Y) -- f(x)l/l[Y -- xtIz < 1 (BL1 stands 
for the unit ball of the space of bounded Lipschitz functions). It is well known that  
if B is a separable metric space then the distance between probability measures on 
B dBL(# ,v ) :=  sup{[ f / d ( ,  - v) l :  f e BLI (B ) }  metrizes weak convergence (e.g. 
Dudley, 1989, page 310, or Araujo and Gin~, 1980, pages 10 11). If Y is a process 
on T with almost all its trajectories bounded and X a process whose law is a tight 
Borel measure on g~176 and we also denote by X one of its versions almost all of 
whose sample paths are in t~176 we define 

dBL(Y ,X)  :=  sup{[E*f (Y)  - E f (X) ]  : f C BLI( too(T))} .  (1.8) 

Wi th  this definition we have the following corollary (it does not add much to The- 
orem 1.3 but is sometimes useful). 

1.5. COROLLARY. If  the law of X is defined by a tight Borel mesure on too(T) and 
almost MI the trajectories of the processes Xn(t) ,  t ~ T, are bounded, then 

Xn --~c X in goo(T) 

if and only if 
dBL(Xn, X )  --, O. 

PROOF. Let Xn - - ~  X.  We use the same letter X to denote a version of X whose 
paths are all in C~(T, d) for some d for which (T, d) is totally bounded, and keep the 
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definitions and notat ion from the proof of Theorem 1.3. Consider the decomposit ion 
of the previous proof, 

] E * f ( X , )  - E f ( X ) I  <_ I~,T + IIn,, + III~. 

Then, since, for r fixed, Xn,~ --+c X~ as random vectors in IR N(~), a convergence 
metr ized by dBL, it follows that  

lim sup IIIn,~l = 0 
n---+oo f c B L l  (g~ (T))  

for all r > 0. Since IIXT - Kilt --+ o a.s., 

lim sup IIII~l <_ }im E(fIX~ -- XI[T A 2 ) = 0  
r---+o fEBLI(g~(T)) 

by bounded  convergence. Finally, 

l i m l i m s u p  sup I I ~ l < E * [  sup IX ~( t ) -X ~( s ) lA 2]  
r--*O n ~ o o  f6BLI(gOO(T) )  ~d(s , t )<r 

_< 2 1 i m l i m s u p P r * {  sup IX,~(t)-X,~(s)l > g } + c = e  
r---+O n ~ o  d(s , t )<r  

for all c > 0, by Theorem 1.3 ((1.3)). Thus, dBL(X , ,X)  --+ O. 
Conversely, let us assume dBL(X~, X)  --+ O. For a > 0 fixed, and all e, 8 > 0, 

let 
: c sup >_ 

/ % 

k d(,,0_<~ t 

If x C Ae,~ and y E A~,~/2 then IIx - YlIT >-- e/5.  Therefore, the restriction to the 
set Ae,~ O A~,e/2 of the function Iae.~ is Lipschitz with constant bounded by 5/5. 
Hence, by the Kirzbraun McShane extension theorem (e.g., Dudley, 1989, page 141 
or Araujo and Gin6, 1980, pages 2-3), there exists a bounded Lipschitz function f 
on g~176 non negative, bounded by 1 and with Lipschitz constant bounded by 5/e 
which is 0 on A~,~/2 and 1 on Ae,~. Then, the assumption implies 

l i m s u p P r * { X ~  e Ae,~} < l i m s u p E * f ( X ~ )  = E f ( X )  
n ~ o o  f z ~ o o  

< P r {  sup [ X ( t ) - X ( s ) l  > s} .  
- -d(,,t)_<a 

Now, the asymptot ic  equicontinuity condition (1.3) follows from the uniform con- 
t inuity with respect to d of the sample paths  of X.  Then, Theorem 1.3 gives 
Xn --+c X.  

[ ]  

Note tha t  in the converse part  of this proof, if X is fixed, it is sufficient to 
assume tha t  sup IE*f(X~) - Ef(X)l --+ 0 wirth the sup taken only over a countable 
subset of 

BL~(e~~ (instead of all of BL~), the subset consisting of one fa,~ for each 
Ae,~, defined as being Lipschitz with norm 1, zero on A~,r and taking the constant 
value @/5) A 1 on Aa,~ (such functions exist by the Ki rzbraun-McShane  theorem).  
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This comment extends Lemma 5.2 in Chapter 1 to the present setting (as in van 
der Vaart and Wellner, 1996, Theorem 1.12.2). 

Corollary 1.5 has been independently observed by several authors, e.g., Gin~ 
and Zinn (1990), to define boots t rap in probability and, more formally Dudley 
(1990), also in connection with the bootstrap,  and van der Vaart and Wellner in a 
1989 preprint. 

2.1.2. Symmetrization, Ldvy-type and Hoffmann-Jorgen~en inequalities. The in- 
equalities in this section are basic for most further developments. We will present 
them in the language of empirical processes, that  is, for random processes of the 
form ~ f (Xi )  where Xi are coordinates in a product  probability space and f runs 
over a class of functions j r  (instead of the more usual form of sums of independently 
formed random elements with values in a general Banach space). Some of the proofs 
will be omitted, particularly if they can be found in Ledoux and Talagrand's  1991 
book or in Gin6 and Zinn's 1986 lecture notes. Here is the general setting. Given 
(S, $,  P), a probability space, we set (•, E, Pr) = (S N x ~ ' ,  SN • E',  pN x Pr ' )  and 

let Xi, i C N, be the coordinate functions Xi(s,w') = Xi(s) = si, s E S N. Then, 
the variables Xi are i.i.d.(P). Sometimes, we will allow P to vary from coodinate 
to coordinate, that  is, we will take Hi~176 Pi instead of pN. We will let 5 ba a col- 
lection of measurable functions on S, and we will impose, often without explicitly 
mentioning it, that  either 

Fc(s) := sup{If (s )  - P f [ :  f E jr} < oc for all s C S, (1.9) 

or that  
F(s) :=  sup{If(s)[  : f C Y} < oo for all s r S, (1.10) 

according as to whether we are considering the processes f ( X i ) - P  or f (Xi) ,  f E 5; 
in this way these processes are random elements of the space got(jr) of all bounded 
functions on .7-. e~176 equipped with the sup norm, that  we denote II. I]~, is a 
Banach space. 

We are interested in comparing the tail probabilities and the p - t h  moments 
of the sup norms of processes of the form ~i~__1 f (Xi)  (or ~i'~=1 (f(Xi) - P f))  
with their symmetrized or randomized counterparts. We are also intersted on L~vy 
type maximal inequalities and an inequality of Hoffmann Jcrgensen (extending the 
converse Kolmogorov maximal inequality) for these processes. The newest material 
in this section is a L~vy type maximal inequality for sums of i.i.d, but not necessarily 
symmetric  random elements taking values in a Banach space, due to Montgomery-  
Smith (1994). 

We begin with randomization inequalities for expected values, which are easiest. 
They are s tandard under measurablity, but require some comments when measur- 
ablity is not assumed. We summarize in the next lemma most of the facts we need 
on the calculus of outer expectations, including the symmetrization inequalities. 
See e.g. Dudley and Philipp (1983), Andersen (t985) or van der Vaart and Wellner 
(1996) for the definition of outer integral, E* and for the fact that  E*f  = E f*, where 
f* is the measurable envelope or cover of f .  This lemma can also be found in van 
der Vaart and Wellner's 1996 book. 
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1.6. LEMMA. a) f f  X and Y are the coordinate functions of (S 2, S, P • Q) and if 
E f ( Y )  = 0 for all f 6 jr, then 

E*]lf(X)[[:~ <_ E*][f(X) + f(Y)[[:~. (1.11) 

b) If X and Y are coordinate functions as in a) and if g( r y) > 0 is a (not necessarily 
measurable) real function on S 2, then, letting E x (resp. IEy ) denote integration with 
respect to P (resp. Q), we have 

E~E~g(X,Y) < E~*(X,V) = ~*~(x, v),  (1.12) 

and if, moreover, Y is discrete, 

E*xEyg(X , Y )  <_ E*g(X, Y) = EyE*xg(X , Y).  (1.13) 

c) If el, i 6 N, is a Rademacher sequence defined on the ~ '  part of the basic 
probability space, and Xi, i C BbbN, are the coordinate functions defined on the 
S N par t ,  then 

7% n n 

i ~ - I  i ~ l  i = 1  

(1.14) 
where P f can be deleted from the expression at the right. 

PROOF. To prove a) we just note that ,  by Jensen, monotonici ty of E*, and Tonelli, 

\/6T f6~- 

<- E x E y I I f ( X )  + f(Y)[l*~ = EI I f (X)  + f(Y)tl*~ 

= E*II f (X)  + f (Y)IIT,  

proving (1.11). 

For b) we first note tha t  

E ~ E ~ g ( X , Y )  < E x E y g * ( X , V )  = Eg*(X ,V)  = E*g (X ,Y)  

since g* is jointly measurable,  and inequality (1.12) follows (the left side of (1.13) 
follows as well because g ( X , Y )  is a measurable function of Y if Y is discrete). 
Suppose now Y is discrete and denote g.,X (X, Y )  the measurable envelope of g(., Y), 
Y fixed. Note g * , X ( x , Y )  = ~ I y = r g * ' X ( X , r )  by definition. We have g * (X ,Y )  <_ 

Iy=rg*'X(x,  r) a.s. because the lat ter  function is jointly measurable;  so, g*(X, Y )  
< g*'X(X, Y )  a.s. The  reverse inequality is obvious because, by Fubini, g*(X, Y )  is 
measurable  in X for each value of Y. Hence, 

EyE~g(X, V) = Ey~.x~*,x(x, Y) = E~Exg*(x,  Y) = E*g(x, v),  

giving the identity at the right of (1.13). 
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To prove (1.14), we can assume P f ( X i )  = 0. Now, 

7l 

r l lE~,/cx,)f l~ = E~E~ E ~,fCX~) + E ~,fCxi) 
7 = 1  i:ei=l,i<_n i : e i = - - l , i < n  

i:r  i : e i = - - l , i < n  

~2 n 

lIEs( x)ll E*IIEN( X)tl < 2E~IE* = 2 i -- X i ~ ~-~ 
i=1 i=1 

where the identity follows from (1.13), the first inequality is obvious and the second 
inequality is justified by (1,11). This gives the left side of (1.14). For the right 
side, increase the basic probabili ty space with another copy of (S N, SH, pl~l), and 
denote the new coordinate functions by X~. Then,  by invariance of pH x pN under  
permuta t ions  of the coordinates, we have that if ~-i, i = 1 , . . . ,  n is any sequence of 
•  

rt rt rt 

r i l e / ( x o l l ~  _< r l l E ( / ( x o  + f(<))ll~ = E*IIE ~-~(fCx,)+/(<)) I1~. 
i:]. i : 1  i:I 

Therefore, using (1.12) once more, 

rt tz 

E*IIE f(x011~-- E~E;< lIE ~(i(x,)§ f(x:))ll~ 
i = 1  7 = 1  

rt rt 

* l ie  )11 l ie rc )ll < 2E~E x ei . f(Xi = E* _ y ,  e i_ .X i  ~. 
i=1 i=l 

The inequalities between tail probabilities of the centered empirical process and 
its randomized version are not as neat as (1.14). They are as follows: 

1.7. LEMMA. Let ei, i 6 N, be a Rademacher sequence de/~ned on the t2' part of 
the basic probabili ty space, in particular independent of  the sequence {Xi} ,  which 
are the coordinates of  (S  N, SN, pN) ,  and let F be a class of measurable functions 
on ( S, ,~, P ). Then: a) for all t > 0 and n E N, we have 

n k t 
> t < 2 m a x P r *  f (X i )  7 Pr* r Xi) 7 - k < ~  

i = 1  i = 1  

n 

< _ 0 P r  EZ(X i )  J:> ~ , 
i = 1  

and b) i f  
a ~ := ~np Varp(.f) < oc, 

rE7 
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then 

n n t -- 21/2anl/2) } ,  
Pr*{ E ( f ( X i ) - P f ) ~ _ > t }  <_4Pr'{ E g i ( f ( X i ) - P f ) -  > 2 

i = 1  i = l  

where P f  can be deleted from the term at the right. 
(1.16) 

PROOF. The easy first inequality in (1.15) is obtained by developing the integral 
with respect to the Rademacher variables after applying (1.13), and comes from Gin~ 
and Zinn (1984), Lemma 2.3 (a) (= (1986), Lemma 2.3 (a)). The deeper second 
inequality in (1.t5) has been recently obtained by Montgomery Smith (1994) and 
will be proved immediately below (Theorem 1.10). Inequality (1.16) is Lemma 2.7 
(b) in Ginfi and Zinn (1984) (= Lemma 2.3 (b) in Gin& and Zinn, 1986). It is based 
on a more basic symmetrization inequality (Lemma 2.5, loc. (it. '84 =Lemma 2.1, 
loc. cir. '86). 

[] 

Now we turn to Ldvy type inequalities. Kahane's proof of the classical Ldvy 
inequalities for independent symmetric random variables (e.g., Araujo and Gin~, 
1980, or Ledoux and Talagrand, 1991) extends to the present setting with only 
formal changes that we omit. 

1.8. THEOREM. (L4vy's inequalities). For n ~ N, let Xi ,  i < n, be the coordinate 
functions on the product probability space (S ~, n `5 , rli=l pi) ,  and let Y be a class of 
measurable functions on S such that f (  Xi  ), i < n, is a symmetr ic  random variable. 
Then, 

rt 

k t }  <_ 2 P r ' { l l E f ( X i ) l l ,  > t} (1.17) Pr* maxll  f(xdll. > 
I. k < n  

- -  i = l  i = 1  

and 
n 

Pr*{,22 llf(x )ll . > 4} < 2er*{ l lE fcx,)ll,  > (1.18) 
- -  i =1  

for all t > O. 

Ottaviani's inequality, with a complement, is contained in the following lemma 
(e.g. Kwapiefi and Woyczynski (1992)): 

1.9. LEMMA. For n C N, let Xi ,  i < n, be the coordinate functions on the product 
probabili ty space (S n, n n ,5 , l-Ii=l Pi), and let • be a cIass of measurable functions. 
Then, 

k k 
, t er{ 2xllZm(x )ll. >*} <_ amaxPr* tlNFi(xdlly <  <,,.--- > ~.} (1.19) 

- -  i = 1  - i = 1  

k PROOF. Let us set S k ( f )  := ~ i= ]  f ( X i )  for all k and drop the subindex )r  from 
the norm signs. Define, for all u ,v  >_ 0 and 1 _< k _< n, Ak = {llSilI* _< u + 
v for i < k, and ]ls~]I* > at + v}. The sets A~ are disjoint and their union is 
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{maxk_<n IISk[l* > u + v}. H S n -  Skl]* and IlSkll* are independent random variables 
by Dudley and Philipp (1983, Lemma 2.3). Therefore, 

Pr{[I$~ll* > u} > Pr{HS~[[* > u, m a x  IISkll* > u + v} 
k < n  

71 

_> Pr{Ak n {liSa - SkFI* _< v}} 
k = l  

n 

= ~-" Pr(Ak) Pr{lIS~ - &ll* -< v} 
k = l  

_> [1 - ma.xPr{llSn - Skll* > v}] Pr{maxllSkl[* > u + v}(1.20) 
k < n  k < n  

This is the L6vy Ottaviani  inequality. Taking u = t /3  and v = 2t/3 in this inequal- 
ity gives 

Pr{maxllSkl[* > t} < Pr{llS~ll* > t /3}  
k < n  - -  1 - maxk<n Pr{llSn - &it* > 2t/3} 

maxk<n Pr{ltSkll* > t /3}  < 
- 1 - 2maxk_<, Pr{lISkll* > t / 3 }"  

This proves (1 .19) i f  maxk_<n Pr*{ll&ll > t /3} < 1/3. But (1.19)is  trivially satis- 
fied otherwise. (We should recall here that  for any B valued random element U, 
pr*{l[gll > t} -- Pr{llgll* > t}: see e.g. Andersen, 1985, page 1.14 or van der Vaart  
and Wellner, 1996, page 7.) 

[ ]  

Next we will give the main argument  to prove that  L6vy's maximal  inequalities, 
with different constants,  are also true if the symmet ry  assumption is replaced by 
the assumpt ion  of identical distribution of the Xi's.  This remarkable result is due 
to Mon tgomery -Smi th  (1994) (he proved it for measurable random elements, but 
his proof  goes thru without measurabil i ty because the measurable outer envelope of 
a norm basically works like a norm).  

1.10. THEOREM. For n E N, let Xi ,  i <_ n, be the coordinate functions on the 
product  probabigty space (S  n, S n, P'~), and let iP be a class of  measurable func- 
tions.Then, for 1 < k < n, 

n t 
Pr* { II}-~ f (Xdl lF  > 

4 = 1  4 = 1  

(1.21) 

For n = 2 this theorem has a surprisingly simple proof: Let X, Y, Z, be i.i.d. 
r andom vectors. Then,  

Pr{l[Xl[ > t} < Pr{ l l (X  + Y) + ( X  + Z) - (Y + Z)l[ > 2t} 
2t 

_ < 3 P r { [ [ X + Y [ [ >  y } ,  

and the same argument  works with non-measurable  vectors and outer  probabilities. 
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The general case is more delicate and its proof rests on the lemma that  follows. 
First, an auxiliary definition: we say that  x E ~~176 is a t-concentration point for 
the process f ( X ) ,  f E Y: if Pr*{l l f (X ) - x(f)l l j:  > t} G 1/10. 

1.11. LEMMA. Let Z i ,  i < n, and,7-he  as in Theorem 1.10. I f S j ( f )  = }-~J f ( X i ) ,  
- -  i = 1  

f E ~ ,  has a t-concentration point s t for 1 < j <_ k <_ n, then 

IIk~j - J~kllJ= ~ 3(k + j ) t .  (1.22) 

PROOF. First we observe that  for f ( X )  and f ( Y ) ,  f G ,T, arbitrary, if x is a 
t -concentra t ion point for f ( X ) ,  y is a t -concentrat ion point for I ( Y )  and z is a 
t -concentra t ion point for f ( X )  + f ( Y )  then 

Ilx + y -  zll _< 3t. 

To see this just note 

Pr{llx + y-z l l  > 3t} 

(1.22') 

= Pr{Hf(X ) - x ( f )  + f ( y ) Y  - y ( f )  - ( f ( X )  + f ( Y )  - z(f))ll > 3t} 

< Pr*{llf(X ) -  x(f)H > t} + Pr*{llf(Y ) -  y(f)]] > t} 

+ Pr*{llf(X ) + f ( Y )  - z ( f ) l  I > t} 

_ 3/lO, 

so that P r { l l x + y - z  H <_ 3t} > 0 and therefore (1.22') holds since x , y  and z are non-  
random. To prove the lemma we now proceed by induction. The lemma obviously 
holds for j = k, and (1.22') gives it for k = 2. Hence, it suffices to show that  if the 
lemma holds for 1 _< j < r for all r < k, then it also holds for 1 < j < k. Now, 

Hence, applying (1.22') and the induction hypothesis, we obtain 

]ljsk - ksjH <_ Iljsk_j - ( k - j ) s j l  t -]- jllsk - sk- j  -- sjl] 

< 3(k - j  + j ) t + 3 j t  = 3 ( k + j ) t .  [] 

PROOF OF THEOREM 1.10. We distinguish three eases. Suppose first Pr{IISr > 
t /4}  <_ 1/2. Enlarging the probability space (S'~,,q'~,P n) to a product  with itself 

and letting Xj  be the second set of coordinates and S}(f)  = Y~=I  f(X'k),  we have 

Pr{llSjl]* > t} -- Pr{llSk - Sk-jl]* > t} 
t t 

_< Pr{llSkl[* > ~} + Pr{IISk-JH* > ~} 

t t t 
_<Pr{llSk]]* > ~} +2Pr{llSk-Jl l* > ~, II~ *-< ~} 

t r t 
_< Pr{llSkl]* > ~} + 2Pr{l lSk-J  +sjl l* > ~} 

_< 3Pr{[[Skll* > 4} ,  
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where we used independence of IlXk-jll* and Ilmjll*, as in the proof of Lemma 1.9. 
Next we asume that  there exists some 1 < i < k such that  Si does not have 

any ( t /64)-concentrat ion points. Denote Pri the product  of the first i P 's .  Then 

t 1 
Pr~{l l&(f )  + f ( X i + l ) 4 - . . . - t - / ( X k ) l l  > ~ }  > i-0 

for all values of X i + l , . . .  ,Xk .  Then, applying (1.12) for the random elements Si 
and Sk -- Si, we obtain 

1 > 1 Pr{llSjll > t} Pr*{ll&ll > ~ }  > l O  - 1 0  

f o r a l l l < _ j  < k .  

Suppose, finally, that  Pr{ l lSy l l  * > t /4}  >_ 1/2 and that  Si has a ( t /64) -  
concentration point 3 i for all 1 _< i _< k. Then {HSjII* > t14} N {llSj - sjll* _< 
t/64} r 0 and therefore, II~jll -> 15t/64. Hence, by Lemma 1.11, 

~ 15kt 6kt 9t Ilskll > I t s j l l -3k+J- - - -  > - -  > - - .  

t 

- j 64 - 64j 64j - 64 

This gives 

Z 9 Pr{ll&ll* > t}. [] pr{ll&ll* > ~ }  > Pr { l l& -  skll* -< ~4 } > 10 -  > s  

Theorem 1.10, combined with Lemma 1.9, yields L6vy's maximal inequality for  
i.i.d, random vectors: 

1.12. COROLLARY. For n E N, let X i ,  i < n, be the coordinate functions on 
the product  probabil i ty  space (S '~ ,$n ,P '~) ,  and let ~" be a ciass o f  measurable 
functions. Then, for 1 < k < n, 

~ t___} (1.23) Pr{m~ll~f(xdll ~ > t} < 3 0 P r * { l l ~ / ( x 0  N > 192 ' 
- -  i = 1  i = 1  

Finally, we turn to Hoffmann-J0rgensen's  inequality. We state it here without 
proof. References: Hoffmann-Jcrgensen (1974); see also Araujo and Gin6 (1980) 
and, particularly, Ledoux and Talagrand (1991), in the measurable case; the proof 
for measurable envelopes in the non measurable case is analogous (just as the proof 
of Lemma 1.9 above is ' the same' as the proof of the same lemma in the measurable 
case). 

1.13. THEOREM. Let  0 < p < oc, let n ~ N, and let X i  be the coordinate /unc-  
tions in the product  probabil i ty space (S N, S N, I I i~]  Pi), and let ~" be a class o f  
measurable funct ions such that E I I f ( x i N ~  < co, i = 1 , . . . ,  n. Le t t ing  

k 

to = i n f  t > 0 : P r  Xi  ~ : > t  <_ 1 / ( 2 . 4  p , 
- -  i = 1  
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we tlave~ 

k 

m  (IIE f( /11")' E Xi  F 
- -  i = 1  

_< 2 4PEmax f Xi  * p 2(4t0) p. (1.24) �9 k<n( l l  § 

This inequality is the best tool available to derive uniform integrability for 
uniformly tight sequences of sums of independent random vectors when 

Pr{m~lly~f(Xdll~= > e} ~ ~, Pr{I I f(x~)ll~= > e~e} 
- -  i = 1  i = 1  

for all t > 0 and some fixed ci > 0. By L~vy's inequality this happens if the variables 
f ( X i )  are symmetric,  or if .7- = {f} and f _> 0, and it happens always when the 
Xi's  are i.i.d, because of Corollary 1.12. 

2.1.3. Donsker classes. As in the last subsection, (S, 8,  P) is a probability space, 
(ft, E, Pr) = (S N x fY, S 1~ x E',  pr~ x Pr ' ) ,  Xi,  i C N, are the coordinate functions, 
which in particular are i.i.d.(P), and .~" is a class of measurable functions. From this 
point on we assume that  .7- is a subset of s  The centered empirical measure 
corresponding to the data  Xi,  is defined as 

Pn - P := - ~x~ - P (1.25) 
i = 1  

and it is a random element with values in the space go~()r) provided we assume 
Fc(s) < ec for all s 6 S, that  is, condition (1.9). The empirical process is defined as 

P , ~ ( P ,  P), (1.26) /]n : ~  /'In : ~  

and it also takes its values in ~ ( ) c )  if condition (1.9) holds. The P-Brownian  
bridge Gp is the centered Gaussian process on s  with covariance 

Cov(Gp( f ) ,  Gp(g)) = C o v p ( f , g ) .  

We say that  the class of functions .7- is P-pregaussian if the restriction of the process 
Gp to Jr induces a tight Borel probability law on f~176 By Remark 1.2, if .7- is 
P pregaussian then { G p ( f )  : f r .7-} admits a version with almost all its sample 
paths bounded and uniformly continuous for its intrinsic pseudometric 

P~(f ,g)  = E ( V p ( f )  - ap (g ) )  2 = p ( f  - g) 2 - ( p ( f  - g))2, (1.27) 

and (~', pp) is totally bounded. By Sudakov's minorization (e.g., Ledoux and Ta- 
lalgrand, 1991, pages 79-84), if the process {Gp( f )  : f E ~r} admits such a version 
then automatically (~ ,  pp) is totally bounded and therefore, 3c is P-pregaussian 
by Lemma 1.1 (although we will not use this fact in what follows). When .7- is 
P-pregaussian,  we will keep the same notation Gp to denote its version(s) with 
sample paths in Cu(~', pp). We now have the ingredients for the following definition 
of Dudley (1978, 1985): 
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1.14. DEFINITION. We say that a class 2- satisfying condition (1.9) is P Donsker, 
or 2- E CLT(P) ,  i f2-  is P pregaussian and 

P --+c Gp in goo(jc). 
/"rt 

Theorem 1.3 then has the following corollary: 

1.15. THEOREM. a) A class 2- satisfying (1.9) is P-Donsker if and only if  there 
exists a pseudo-distance d on 2- such that (2-, d) is totally bounded and 

lira lim sup Pr* ~ [ sup I  (f-g)l 0 (1.28) 
5 ~ 0  n----+oo L-f ,gc~F,d(f ,g)<_5 

for a/i ~ > 0, and then Gp has a version with all its sample paths  in Cu(2-, d). 
b) A class 2- satisfying (1.9) is P-Donsker if and only if (2-, pp) is totally bounded 
and the asymptotic equicontinuity condition (1.28) holds with d replaced by pp. 

This theorem is due to Dudley (1978, 1984) for pp and to Andersen and Dobrid 
(1987) for general d. In a sense, it goes back to Prohorov's  tightness criterion in 
C(S). 

In R, if X satisfies the clt then IEX 2 < oo, and in infinite dimensions, if X 
satisfies the elt then t 2 P r { l l X l l  > t}  --, 0 as  t --, o~. The analogue statement is true 
in too(2-): 

1.16. THEOREM. If Y: is P-Donsker (this presuposes that 2- satisfies (1.9)) and Fc 
is its centered envelope then 

lim t2Pr*{F~ > t} = 0. 
t ~ o O  

PROOF. Postponed to Proposition 1.20 below. 

(1.29) 

We will require several other conditions equivalent to F being P Donsker, be- 
sides the asymptot ic  equicontinuity condition of Theorem 1.15, and randomization 
and symmetrization,  as developed in the previous section, are invaluable tools for 
this. The following theorem was obtained by Gin6 and Zinn (1984; see also 1986). 
To simplify notation, here and in what follows, for every 5 > 0, we write 

2-'~,pp := 2-6 := { f  - g  : f ,  g E 2- ,pp( f ,g)  < ~} 

and  adhe re  to  the  n o t a t i o n  II ' I1~; for the sup norm over the class 2-~. 

1.17. THEOREM. Let 2- be a class satisfying condition (1.9). Then the following 
are equivalent: 

a) 2- is P-Donsker; 

b) (2-,pp) is totally bounded and 

l i m l i m s u P P r * {  - - ~ n ~  F~ } 6--'+0 n ~ o o  i=1 e i ( f (Xi )  -- p f )  > c = 0 

for all c > O; 
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b') ~ is P-pregaussian and 

n 

V ~ E i ( ~ X I I  i - - 1  - -  P) - - * c a p  in e~ (Y) ;  

c) (~', pp) is totally bounded and 

lim lim sup E* 1 _  ~-~ei(.f(Xi) 
e--0 ,--.oo x/~ i=1 - p f )  J:; = 0; 

d) (2 ,  pp) is totally bounded and 

lim lim sup E*II II , 

PRooF.  The  symmetr iza t ion  inequalities (Lemma 1.7), together with Theorem 1.1g 
show tha t  a) implies b); Hoffmann-JOrgensen (together with Lfivy) and Theorem 
1.16, tha t  b) implies c); c) implies d) by inequality (1.14), and d) implies a) by 
Theorem 1.15 and Chebyshev. b) and Y) are equivalent by Theorem 1.3. See Gin6 
and Zinn (1986), Theorem 2.8, for details. 

[] 

One of the reasons for symmetrizing in the previous theorem is that  one can 
use L6vy's inequality for more than one purpose, but in part icular  to obtain an 
efficient version of Hoffmann-Jorgensen 's  inequality. However, in the case of i.i.d. 
summands ,  which is the present situation, as mentioned above, Corollary 1.12 (Ldvy 
for i.i.d.) allows us to pass from a) to d) in Theorem 1.17 without symmetrizing.  
Although Corollary 1.12 makes randomiza t ion /symmetr iza t ion  less necessary than 
it used to be, it is not clear that  it has become completely superfluous, as we will 
see along the way. 

It will be convenient to further extend Theorem 1.17 since multipliers other 
than  Rademacher  will be needed in conditions b), Y) and c) in connection with 
the boots t rap .  The  following inequality will do just this. It requires the following 
definition: for real random variables ~, we let 

A2,i(~) := v/Pr{t~l > ~}da (1.30) 

Note tha t  A2,1(~) <~cxD implies E42 < oo, and that  EI~I 2+~ < oo for some 6 > 0 
implies A2,1 (4) < oo. 

1.18. THEOREM. Let ~ be a class of P-integrable functions, and let el, ~i, i C N, 
be respectively a Rademacher sequence and a sequence of symmetric i.i.d, tea/ 
random variables, independent of each other and de/~ned on the f~' factor of the basic 
probability space hence, in particular, independent of the sequence {Xi}. Then, for 
every 0 _< n0 < ec and no < ~ C N, we have 
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< ,~o(W.llf(X,)lly)Elma x .  . r  le, l] (1.31) 
- L g_< ~ x/g] 

k 

-}- A2 1({1)' " ,,0<k<~max E* Ei=~~ j:" 

If  the variables {i are centered but not necessarily symmetric, inequality (1.31) holds 
with the following modifications: E[{~[ at the left is replaced by E]~ - {21/2, the 
first summand at the right is multiplied by 2 and the second by 2x/2. 

PROOF. The left side inequality in (1.31) follows from the observation that, by sym- 
metry, the joint distribution of the variables {i coincides with the joint distribution 
of the variables eil{il, so that 

E* E~'--l{~f(Xi) ~ = g *  E~=le~l{ i l f (x ' ) l  >E* E~'=le~(Igl{~l)f(xg) 
5c'  

The following chain of inequalities, which are self-explanatory, gives the proof of the 
main part of theorem (the subindex Y is suppressed from the norm signs): 

-~ Z 4~f(xi) = ~il~Jf(x~ 
i = 1  i = 1  

= E* ~l~-~(L~ 

= It<14~laif(Xi) dt 
- ~  i= l 

<~ v/~ It<-I~l e i f (Xi)  
i = 1  

~ oo s i f (X i )  
= E* 1_ #{i_<n: I~;l>_t} 

,/; Z d, 
i = 1  

-< fro Pr Ii~,l_> t = k E* E c i f ( X i )  dt 
- -  - -  i = 1  

(/7 }) _< Pr Ii~l_>t > 0 dt 
i = 1  

+ x/kPr 
k = n 0 + l  i = 1  

max ~,* i i <f(Xd 
k<_no II V / ~  i = 1  

k 
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< Pr{max }~i} >_ t }d t  E*iif(Xi)l l  
i<_n 

k 

+ A:,I({) max ~*]1 1 
--  i = n o 4 - 1  

__,,0rlls(xi)llE(,r : I{,I) + ma,< + E 
--  n o < i < k  

When ~ is not symmetric, but still centered, the theorem follows from the previous 
estimates applied to & -  ~, where { ~ } is an independent copy of {& }, and inequality 
(1.12). 

Inequalities (1.31) are due to Pisier (private communication) told possibly also, 
independently, to Fernique (both of them told it to me in 1977 and none of the 
three of us has exact recollections); they were published, with a different proof, in 
Gin6 and Zinn (1984, 1986), and with the present proof in Ginfi (1996). Ledoux and 
Talagrand (1985) prove that the integrability condition on ~ cannot in general be 
relaxed. 

The previous inequalities obviously imply the following extension of Theorem 
1.17 (note that if A.o,I(~ ) < oc we have Emaxi<~ t~il/v ~ ~ 0 and we can take 
,~0 - >  o o  in (1.al}). 

1.19. THEOREM. Let  .,~ be a class satis condition (1.9) and iet {i be i.i,d. 
centered real random variables deigned on ~'  and such that A2,1 (&)  < O~. Then the 
following are equivalent: 

a) 5 c is P-Donsker," 

b) (5 r ,  pp) is totally bounded and 

1 '~ s" [ l i m l i m s u p P r * ( - - - ~ T - ' { i ( f ( X i ) - S f )  > J = 0 
6~0 n ~ o o  k ~/rt /-'---'~i=1 

for M1 s > O; 

c) (m, ee) i~ totaSsy bounded and 
Ii 

lim limsup E* G ~ { i ( f ( X i )  - P f) = 0. 
Y~ 

We complete this subsection with a useful remark on the necessary integrability 
associated with the Donsker property. We need a statement slightly more general 
than Theorem 1.16 in order to include the bootstrap clt. We will use implicitly in 
the proof below the fact that Illxlf~>, = (/[Ixrll>*)* already used in the previous 
subsection (e.g. Andersen, 1985, I, Proposition 2.3 or van der Vaart and Wellner, 
1996, Lemma 1.2.2). 
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1.20. THEOREM. Let (T,d) be a separable pseudo-metric space and, for each 
n E N, let Xn,l( t ) , . . .  ,Xn,n(t), t C T, be i.i.d, processes with bounded sample 
paths, defined on different factors of a product probability space. Assume 
i) for MI t in a d-dense subset D of T and for all A > O, 

limoonPr*{IX,,l(t)l > k,/~} = 0, (1.32) 

and ii) 
n 

l iml imsupPr '{- - -~  n sup Z ( X , ~ , i ( t ) - E X n , i ( t ) - X , ~ , i ( s ) + E X n , i ( s ) ) > g } = 0  
,5+0 n~oo d(s,t)~6 /=1 

(1.33) 
for all e > O. 
Then, 

l im  nPr*{IIX,~,IlIT> AV~} = 0  (1.34) 

for a11 A > O. If  hypotheses 1) and 2) hold only along a subsequence nk, then the 
same is true for the conclusion. 

X f PROOF. Let { n,i} be an independent copy of {X,,i} defined on a different factor 
of the general product probability space. Then, since 

X '  t}_<2Pr*{ > t Pr*{ E ( X , , i -  n , i ) >  E Xn'i 97} (1.35) 
i 2 

any pseudo-norm I1" II and any t > 0, condition ii) implies 

lim iim sup Pr* { 1 sup ~ - ~ ( X n , i ( t ) - X I n , i ( t ) - X n , i ( s ) + X I n , i ( s ) ) > e } = 0  
540 n~oo - ' ~  d(s,t)<_6 i=1 

(1.36) 
Set Yn,i := Xn,i --wl;'~tn,i �9 For each r > 0 let AI , , , . . . ,  AN(r),r be a finite number N(r )  
of subsets of T whose union covers T, whose diameter is smaller than T and such that 
Ai,, A D • O, i = 1 , . . . ,  N(r) .  Choose ti C Ai,~ N D and define Yn,j,,(t) = Yn,j(ti) 
if t E Ai,,, j = 1 , . . . ,  N ( r )  (very much as in the proof of Theorem 1.3 as modified 
by Remark 1.4). Then, 

Pr* { llYn,1 lIT ~ 2~V/~} ~ Pr* { lJYn,l,rlJT ~ /~x/~}-~PI'* { lira,l-Yn,l,rHT~/~V/-~} 
(1.37) 

Now, 

N(r) 
nPr*{HYn,l,rHT ~/~V~}  ~ E nPr{IYn,l(ti)l >/~/-n} ---+ 0 (1.38) 

i=1 

by hypothesis i) and (1.35) (with X~,~ replaced by X,~,~(t) - EXn,~(t), and likewise 
for X'~) .  Moreover, by Ldvy's inequality (1.17) (which works for outer probabilities 
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because I1" I1" behaves a.s. as a measurable norm), 

Pr*{ l<_i<_nmaX IIYo,i- Yo,, ,,liT > ~ }  < 

{i," } <2Pr* Z(Yn,i-Yo,,,,)IIT> ~ 
i=1 

n 
_ - x ' , , ( ~ )  - ' . 

d( , ~_r i=1 

Hence, (1.36) gives 

limlimsupnPr*lllgn,1- Y,,1,,II T > ~ v ~ }  = 0 ,  
, - - -~0  ~'I ---~00 I .  

and this, together with (1.37) and (1.38), yields 

nlimnPr*{ IIY~,IIIT > ~,/@ = 0. (1.39) 

I * To desymmetrize, we observe that, by independence of ilxo,~ll; and IIX~,,lIT (which 
follows e.g. from Dudley and Philipp, 1983, Lemma 2.3, already used in the previous 
subsection), 

?%Pr'{llYn,lllT > / ~ V ~ }  > ?%pr{llxn,ll l  ~ > 2Av~} Pr{l lXn, l l i  T ~ -'~V/~} 

and that by hypothesis i), for any t E D, 

Pr{IIx~,]I[ ~ < Ax/rn} < Pr{IX~,,(t)l < Ax/~}---,1 

as n ~ cx~, so that (1.39) yields the limit (1.34). The proof for subsequences does 
not differ from the proof for the whole sequence N. 

[] 

de Aeosta, Araujo and Gin6 (1978, Corollary 2.11) proved a more general ver- 
sion of the above proposition in separable Banach spaces. Pisier and Zinn (1978, 
Proposition 5.2), independently, obtained it for the usual normal domain of at- 
traction case, independently. The proof presented here is inspired by theirs, which 
consists basically of reducing to finite dimensions, where the result is classical. On 
the other hand, de Acosta et al. obtained the result from their study of the general 
clt, Poisson convergence included, which makes their proof less simple. 

2.2. Poissonizat ion inequalities and Efron's bootstrap in probability. Take 
the factor (Q',a ' ,  Pr') of the basic probability space (Q, a, Pr) to be a countable 
product of copies of ([0, 1],B,~), ~ being Lebesgue measure (we might later on 
increase f/' in order to fit it to any new set of variables we may define), and let Ui, 
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defined on (f2', or', Pr ' )  denote the [0, l]-coordinates,  Ui(s, s') = s~, where s' E [0, 1] 1~. 
For each n E N define variables 

n 

x L = (2.1) 
j = l  

with A(j, n) = ((j - 1) /n , j /n] ,  as in Chapter 1 (note that this makes sense because 
only one of the summands in not zero). Recall that  in this chapter the boots t rap  
variables are denoted by a superindex b instead of the usual superindex * and that  
now E b, Pr  b and s denote conditional expectation probability and law given the 
sample, or what  is the same, expectation, probability and law only with repeet to the 
a / c o o r d i n a t e  of the basic probability space, with co fixed. For each w, the variables 
X~,i(w), i = 1 , . . . ,  n, are i.i.d.(Pn(aJ)) and the bootstrap empirical measure P~(w) 

is the measure that  places mass 1/n on each of the points X,,i(w ) of the boots t rap 
sample. So, for each n and w, the (n- th)  bootstrap empirical process is defined as 

i = l  

Whereas the empirical process v,~ does not have a Radon law in ~~176 the condi- 
tional law of ~,~(~v) is Radon for each ~ as it only takes a finite number of values. 

2.1. DEFINITION. We say that a class of measurable functions ~- C s  satisfying 
condition (1.9) is bootstrap P-Donsker in probability, or .,~ E BprCLT(P), if  • is 
P-pregaussian and 

lim doL [s (uP, (co)), s  = 0 in outer probability. (2.3) 
n---~oo 

Our object in this section is to prove the following theorem of Gin~ and Zinn 
(1990) (with an improvement on measurability by Strobl, 1994, and van der Vaart 
and Wellner, 1996). Recall that  condition (1.9) is part  of the definition of P-Donsker  
classes. Define the envelope F of .7- as F ( s ) : =  sup{If(s)l  : f C 3r-}. 

2.2. THEOREM. If .F is P-Donsker then .~ is also bootstrap P-Donsker in probabil- 
ity. Conversely, ira class of measurable functions .Y with everywhere finite envelope 
F is image admissible Suslin and there exists a centered Gaussian process G indexed 
by .T whose law is Radon in goo(.~) and such that 

lim dBL [s (uP, (w)), s = 0 in outer probability, (2.4) 
n ~ o o  

then D r is P-Donsker and G = Gp. 

See Dudley (1984, Section 10.3) for the definition of the image admissible Suslin 
property and its consequences. For instance, if .7" = {fo : 0 E O} where @ is 
a Polish space, and if the evaluation map (0, s) ~-+ fo(s) is jointly measurable, 
then .7- is image admissible Suslin (previously it was required that (S, S) be also 
Suslin, but  this requirement is not necessary: see a forthcoming book of Dudley 
on empirical processes). The image admissible property implies that  lIPn - PII~ 
and its randomized versions are measurable, so that  in this case there is no need 
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of non measurable calculus. Most classes of interest are image admissible Suslin. 
The converse part of Theorem 2.2 holds under weaker measurability conditions (see 
e.g. van der Vaart and Wellner, 1996), but the Suslin property is very convenient 
and, this part being less useful than the direct part (basically, it just says that 
the direct part cannot be improved), we have chosen to give it under this stronger 
measurability hypothesis. 

Zinn and I (1990) stated Theorem 2.2 under measurability assumptions for 
both, direct and converse, but our original proof actually gives the direct part of 
the theorem without any measurability, as noted in the dissertation of F. Strobl 
(1994) and in the recent book of van der Vaart and Wellner (1996). We present 
here our proof of the direct part and a new proof of the converse, different, but 
not too different, from our original proof. This proof of the converse, based on a 
result on Poissonization of sums of i.i.d, symmetric (or centered) random variables 
of Araujo and Gin6 (1980) is inspired in part on work by Klaassen and Wellner 
(1992). Another difference with our original proof, also inspired by Klaassen and 
Wellner, is that here we make less extensive use of symmetry. 

Besides the general theory sketched in Section 1, plus the bootstrap of the mean 
in R, this theorem is based on two simple inequalities relating the original and the 
bootstrap empirical processes. These inequalities are based on Poissonization. So, 
we start with some basics about this (see Araujo and Gin~, 1980, for a more extensive 
treatment of the subject in connection with the clt). 

LeCam (1970) proved that in a general Banach space, if the accompanying 
Poisson laws of a triangular array of (row-wise) independent symmetric random 
variables are tight, so are the row sums. We need something slightly different, 
namely comparison of the expected values of the norms, a result that has a different, 
simpler proof than LeCam's (Ginfi and Zinn, 1990). We gave this inequality only 
for symmetric random variables, which is what we needed but both, statement and 
proof, work without changes for centered variables and without any measurability 
assumptions, as first noted by Klaassen and Wellner, loc. eit. 

2.3. LEMMA. (First Poissonization inequality). For any n E N, let Xi ,  i = 1 , . . . ,  n, 
j E N, be centered independent stochastic processes on azl index set T, and, for each 
i <_ n, let Xi , j ,  j C N, be independent copies of Xi ,  all independent.  Let Xi,o - O. 
Let Ni be i.i.d. Poisson random variables with unit expectation, independent of  the 
Xi,j. Assume, in fact, that each of the above variables (the X's  and the N's)  is 
defined on a different factor of an infinite product probability space. Then, 

n n Ni 
E* E x ,  r EEx ,,. (2.5) 

i=1 i--1 j=0  

PROOF. Using inequalities (1.16) and (1.17), we have 

n rt n 

e--  1~.  E X i ,  1 T = E* E ( E ( N i  A 1))Xi,1 <2_ E~iEN E ( - N i A  1)Xi,1 T 
e T 

i=1 i = l  i = l  

n n Ni n Ni 

T - -  E x i ' j  = E* E E Xi , j  �9 ~ I~NI~* x E ( N i  i 1 ) X i ,  1 < E N ] ~ (  E T T 
i=1 i=1 j= 0  i=1 j = 0  
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[] 

A reverse inequality is true provided the Xi are i.i.d. This observation comes 
from Araujo and Gin6 (1980, Theorem 4.9, Chapter 3, page 122, where the word 
symmetric is missing, and exercise 2 on the same page), who used it to prove that Le 
Cam's theorem for accompanying Poisson laws has a converse if the variables in each 
row of a triangular array are i.i.d, and symmetric. The same principle, basically a 
natural coupling of the sums and the Poison variables, has surely been used before. 
Here is an adaptation of the result for expected values (instead of probabilities). 

2.4. LEMMA. (Second Poissonization inequality). Let Xi, i C N, j E N, be centered 
independent identicadly distributed stochastic processes on an index set T. Let 
Xo - O. Let n C N and let N(n) be a Poisson random variable with parameter  
n independent of the X's. Assume, in fact, that each of the above variables (the 
X ' s  and N) is defined on a different factor of an infinite product probability space. 
Then, 

n N ( n )  n 

E* x ,  <_2E* , (2.6) 
i = 1  i = 0  "= 

and, in particula G 

E. _<3E. (2.7) 
i=O i = l  

PROOF. The key estimate is the following 

N ( n )  * r 

E* ~-~X~-  E Xi T = ~ P r { N , ~ - n = r } E  E X i  T 
7=1 7=0  r = - - n  i = 0  

< P r { N ~ - n = r } E *  + 2  ~ P r { N ~ - n = r } E *  ~ X i  v 
r - ~ - - n  i = 1  r = n + l  i = 1  

k n  n 

+...+k ~ Pr{Nn-~=~}g* ~Xi r+... 
r = ( k - - 1 ) n + l  = 

o o  ~z 

= [Pr{Nn < n }  + E kPr(kn < Nn <_ (k + 1)n}]E ~ X i  
k = l  i----1 

n 

_< 2E E X i  , 
i = 1  

where the first identity uses the proof of Lemma 1.6 b), the first inequality follows 
from (1.12) (as the summands are centered), and the last inequality is obtained by 
comparison of the sum to E(Nn/n) = 1. This proves inequality (2.6). Now (2.7) is 
immediate. 

[] 
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If the law of Xi,  1 is a Radon probability measure, say #i, then the law of the 
N~ X variable ~ j = 0  i,j is 

Pois#i :=  e -1 
#k 

~ e #  I - 1  ' 

k = 0  

where powers and exponential are understood in the sense of convolution. Then, 
by the properties of the exponential function, the law of the random variable 
v-,n x--Ni X " 
2 - ~ i = 1  2 - - J j = 0  i , j  l S  

n n 

Pois#l , . . . ,  Poispn = e p * - l * . . . *  e " ' - 1  = e x p { E # i -  n } :=  P o i s ( ~ # i ) ,  
i = 1  i = 1  

where, Pois# is defined, for any finite measure #, as 

Pois# = p , - M ,  

I~1 being the total mass of #. (This corresponds to the compound Poisson law asso- 
ciated to the probability measure >/I#1, with intensity I~1.)- With these definitions, 
if the processes Xi are just centered random vectors in a Banach space whose laws 
are Radon and if all the norms involved in (2.5) are measurable, then (2.5) becomes 

TZ n 

- ll lldPois . (2.m) 

i = 1  i = 1  

N Likewise, since N(n)  =d Y~,i=l i, N, i.i.d. Poisson with parameter  1, inequality 
(2.7) for Xi  i.i.d, and centered, becomes 

n 

J IlxlidPois(-S::(X,)) _< aE (2.7') 
7=1 

Two easy to check properties of the operator Pois, that  we use below, are that  

P o i s ( E  Pi) = Poispl * . . .  * Pois#n 

and that  
pois(a .) = 

where N= is a Poisson random variable with prameter a. The following are the basic 
inequalities for the proof of Theorem 2.2. 

2.5. PROPOSITION. Let B be a Banach space, and, t'or any n E N, let Vl , . . .  ,vn 
*1 be points in B and let v = E i = l  v i i  7"l be their average. Let v b , . . . , V  b be i.i.d. 

B-valued random variables with law Pr{V/b = vj} = l / n ,  j = 1, . . .  ,n. Let Ni, 
i = 1 , . . . , n  be i.i.d. Poisson random variables with parameter  1. Assume these 
random rectors and variables are ali independent. Then, 

n n n 

3 E E ( N i - 1 ) ( v i - v )  < E  E ( V i b - v )  < e E E ( N i - l ) ( v i - v ) .  (2.8) 
- -  - -  ( ~ _ _  J .  

7----1 i = 1  i = 1  
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PROOF. 

(2.8) are measurable.  We then note 

s  b - -  1)) ~ .  ) 2 f f . ( Y l  b - t , )  ~-  (Svj . . . .  

i = 1  j = l  

Therefore, 

Since the variables V/b and Ni are discrete, all the variables involved in 

n 

Pois (~--~ E ( v / b -  v ) ) =  Pois @v~ _~) * . . .  * Pois @v. _~) 
i = 1  

i=1  
n 

= Z; ( ~ - ~ ( N i -  1 ) ( v i - v ) ) ,  (2.9) 
i=1  

where we just use the properties of Poissonizastion listed above and the fact that  
y]. v~ = nv. Now we observe that,  by (2.9), the inequalities (2.8) are nothing but 
(2.5') and (2.7') for Xi  = Vi b - v. 

[] 

2.6. REMARK. Given the previous Poissonization lemmas,  the following sym- 
metr izat ion of (2.8) has an equally simple, analogous proof (alternatively, (2.8) 
together  with Lemma  1.6 c), give the following inequalities, but with worse con- 
stants): if IV//,M~ are i.i.d. Poisson with parameter  1/2, independent from {F/b}, 
and if ei are i.i.d. Rademacher  variables independent from all the others, then 

1 n t n e n . 

i = 1  i = 1  i=1  

The inequalities obtained in Proposit ion 2.5 are quite natural:  given tha t  the 
weights in Efron's  boo ts t rap  are multinomial,  replacing them by Poisson weights 
should not change things much asymptotically;  what is interesting here is tha t  we 
have concrete inequalities. Technically, what facilitates the above proof  is the fact 
that  P o i s ( 2  #i) = P o i s ( 2  vi) whenever 2 #i = ~ z~i. 

2 . 7 .  P R O O F  O F  T H E  D I R E C T  P A R T  O F  T H E O R E M  2.2. Assume .T is P Donsker. 
We can also assume, without loss of generality, that  P f  = 0 because bo th  Vn(f) = 
vn ( f  -- P f )  and Vnb(f) = v~( f  -- P / ) .  We must prove (2.3). Since (Y, pp) is total ly 
bounded (Theorem 1.15 b), for every r > 0 there is a map  rr~ : .7- --+ Y which 
takes no more than  N ( r )  < oo values and such that  pp(rr~f , f )  < r, and we define 
v,b,,df) := ~bn(~f), Ge,~(f) := Gp(rr~/) ,  as in the proof  of Theorem 1.3 and 
Corollary 1.5. Then,  as in these proofs, we consider the decomposit ion 

- EH(Cp)I - EbH( L)I 

+ I bH( L) - EH(ap, ) I + IEH(a ,.) - EH(a ) I 
:= I~ , . (H)  + IIn,~(H) + I I I~ (H) .  
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Now, SUpH~BLI(foo(.T))III~(H) --+ 0 as r -+ 0 since, by sample uniform continuity 
with respect to pp, Gp,r --+s Gp in goo(~-), a convergence metrized by dBL. Note 
that  III~ is not random. The sup over BL1 of II,,~(H), dBL, (s ,) s  

is measurable, and it tends to zero a.s. by the bootstrap clt in IR N(~). Finally, since 

sup In,r(H) <_ z ll411.,r , 
HffBLI(g~176 

the limit (2.3) will be proved if we show 

�9 "{  ll ll } l i m h m s u p P r  E t,,~ G > e = 0 (2.10) 
6 4 0  n ~ o o  

for all c > 0. (Recall the definition of I1.11G from the paragraph immediately above 
Theorem 1.17.) The right side of inequality (2.8), applied with B = g~(Sv~) and 
v, = 5xd~) for each fixed co, gives, using (1.13), 

E * E  b rd' 1 '~ G 

i = l  

n 

< -~-i (N~ - i)(~, - P~) ~; 

e E* 1 n 7~ 
< - E ( N i -  1)Sxi 
- e 1 7 i=l 

+ ( N i -  i) lIP.lIT; �9 
e - 1 i=l 

Now, .7- being P-Donsker ,  the lime lim supn_oo of the first summand in the last term 
of this string of inequalities is zero by Theorem 1.19, and so is the lim6+0 lim supn~oo 
of the second by Theorem 1.17 d). The direct part of Theorem 2.2 is thus proved. 

[] 

2.8. PROOF OF THE CONVERSE PART OF THEOREM 2.2. We assume that  .7- is 
image admissible Suslin, and that  9 r E Bp,-CLT. Then, the boots t rap clt holds in 
probability for f (X1)  with norming constants an = v ~ ,  where f is any finite linear 
combination of functions in Y. By Theorem 1.1 in Chapter 1, this implies that 

n X f2(X1) is integrable and that  ~ i = 1  ( f ( i )  - E f ( X 1 ) ) / v / - s  ---+a G(f). In particular, 
by the definition of Gp, EG2(f )  = EG~(f ) .  We thus have 

~- c & ( P )  ~ d  G = d e .  (2.11) 

At this point we can assume Ef(X1) = 0 for all f C b r. If (2.4) holds then for every 
subsequence there is a further subsequence, say {nk }, such that  

lira dmL [f_b (~bnk (W)), s  = 0 co - a.s. (2.12) 
k ~ o o  

where G is replaced by Gp by virtue of (2.11). (Actually, this limit holds for the 
measurable cover of d ,L  [C b (~,< (co)), s  .) Let a ,  be the set of probability 1 
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where (2.12) holds. The argument for the proof of the converse part of Corollary 
1.5 then shows that 

l iml imsupPrbt , ,  "- ~'Hr'~- -',(w)HF~ > r  ~ = 0 '  w E ~ I ,  r >0-  
6 ~ 0  r t  --+ o o  

Also, s = s  being Radon, (Y, pp) is separable. If D be a countable pp- 
dense subset of $r then there exists a set of probability one, say ~2, such that 
maxl<i<n f2 (Xi (w) ) /n  ~ 0 for all f E P and all w C f~2 (since Ef2(X1) < c~), and 
therefore we have 

n 

Hence, we can apply Theorem 1.20 to vbk (w) and obtain 

  Prb{llf(xL( ))ll  > o, a2Eaz~a2, -~>0, 

or what is the same, 

~ k  

~ - ] I F ( x , ) > x ~  ~ 0 ~ e a~ a a ~ ,  A > o, (2.13) 
i = 1  

where F = Fc is the measurable envelope of the class jr- (that we are assuming cen- 
tered). By Hoffmann-J~rgensen's inequality for sums of independent non-negative 
random variables (Theorem 1.13 and comments following it), this limit also holds 
in expectation (in fact for all moments), that is, 

nk Pr{F(X1) > 6x/~- } --~ 0. (2.14) 

The limit (2.12) Can be rewritten as 

n k  

J /_h_z~E(Sx~ , , , ( aO-Pnk (w) )~Gp  i n~(J - - ) ,  w E ~ I .  (2.15) 
v-~ i-- 1 _ 

Now we need to improve this limit to include convergence of bootstrap moments. In 
the next ~rguments we leave w implicit, but we assume it to be in f~l (] ~2. In order 

to apply Hoffmann-Jc~rgensen's inequality we must control the bootstrap expected 

value of the maximum of the norms of the individual summands. For any p > 0 and 

a > 0 ,  

gb m a x /  " ~ •  
.p ~'F(Xi)~P 
z m a x / - - /  

- i_<,~k \ ~ ] 

- -  F(Xi) Ig(x~)>~v~ <- 2p a + v/-~ i=l 
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Since the sum in (2.13) takes on only integer values, we have that }-~]~1 IF(x~)>~x/a7 
is eventually zero. So, the last quantity is eventually (2a) p and therefore, 

(ll x< , -  II.) p 
sup E b max - - -  < oo. 

k i_<., \ v/-a-7 

Then, using this and (2.15) in Hoffmann-Jorgensen's inequality for sums of i.i.d. 
random vectors (Theorem 1.13 together with Corollary 1.12), we obtain 

supEbHz~b P =s~pEb 1 - - ~ - - ~ ' ( 5 X , . , - P . .  ) ; < o o  
k nk .T" V / ~  i = l  

for all p > 0. This provides enough uniform integrability in (2.15) to conclude, by 
the continuous mapping theorem, that, for all w E [21 N ft2, 

}imE" = EllaPII (2.16) 
lim E b t,~k(w ) 7; :  Ha ll ;, (2.17) 

k ~ o o  

including Ella ll < o~ ~ d  lime_0 Ellap][~; = 0 (which we already knew from the 

theory of Gaussian processes). Now, we apply the left side inequality in Proposition 
2.5 together with (2.7), to obtain, using bounded convergence and Fatou, 

lim limsupE (Ni - 1)(6x, - P,~k) 2; A M 
6~0 n k  ~ o o  

< lim limsup E EN E ( N i - 1 ) ( 6 x ~ - P n k )  A M  
-- 6 ~ 0  n~--->oo ~ k k  i=I J:~ 

6 ~ 0  n k ~ o o  .T-~ 

< 3 ~01im E lim,~k~oosup E b ~'~k j:; 

= 3 lira ~ l l a P l b ;  = 0 (2,18) 
~---*0 

for all 0 < M < oo. 
Our last technical point will be to see that we can dispense with the centering 

P ~  in the limit (2.18). Since (~r, pp) is totally bounded and Ef(X1) = 0, the 
symmetrization inequality (1.16) gives that for all large n and for aii r > 0, 

n 7- 

i = I  
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Using the fact that  ei [Ni -N[[ =d Ni -  N[ and Jansen, the last quanti ty is bounded 
from above by 

l~6T ][i~ e-IEN,N , E ( N i -  N[)5 X. ~ /~ 
' F /  

i = 1  

i = t  ~ 5 r  

= ~-~E 2e - IEN E ( N i - 1 ) ( S x i - P n )  ) A , 
i = l  .7- 

rt where we use the fact that  nPn = ~ i=1  5x, in the last identity. In conclusion, we 
have that  for every r > 0 there are 0 < r '  < c~ and c < ec such that  

rt k 

for all k large enough. But, by bounded convergence and Fatou, as in (2.18), the 
limit (2.14) implies that  the limsup as nk ~ oc of this last sequence is zero (actually, 

the general term is dominated by a constant times n-~1/2). This implies that  

i = 1  

for all 5 > 0 and therefore, the limit (2.18) becomes 

lim lira sup E ( 1 n~ 2; ) . . . .   (Ni- 1)5 , A M = 0 
i = 1  

Hence, by Theorem 1.3 and Corollary 1.5, 

i = 1  

Since this happens for a subsequenee of every subsequence, we conclude 

d ~ ( 1  

But then Theorem 1.]9 implies that 

i•l(N, - 1)Sx~,Gp ~ O. 
= 

f is P-Donsker.  

As in the case of real random variables, proving that  the boots t rap clt implies 
the clt for the original sample seems to require more work than proving that  the clt 
can be boots t rapped,  which is a more useful result. 



113 

2.9. REMARK. Imbedded  in the proof  of the converse par t  of Theorem 2.2 is the 
interest ing fact tha t  if the boo t s t r ap  of the empirical  process works in outer  prob- 
abi l i ty  then all the boo t s t r ap  moments  of the sup norm of the empirical  boo t s t r ap  
process converge in outer  probabi l i ty  to the corresponding moments  of the l imit ,  at 
least under  the  image admissible Suslin hypothesis.  

2.10. REMARK. It can be r ightly argued tha t  the object  of the boo t s t r ap  is not 
to recovcr the  l imit  d is t r ibut ion  of the stat is t ics  of interest ,  but  to approx imate  the 
d is t r ibut ions  of these s tat is t ics  (for each n, as n -4 eo). In connection with this 
it is worth  ment ioning tha t  recently D. Radulovid has shown tha t ,  contrary  to the 
s i tua t ion  in R, there  do exist classes Jr which are not P -Donsker  and for which 
dBL(e~(~:)) ( ~ ,  ~ )  --+ 0 in probabi l i ty .  

2.3. T h e  a l m o s t  s u r e  E f r o n ' s  b o o t s t r a p .  We recall tha t  if f is a not necessaraIy 
measurable  r andom element then f* denotes its measurable  cover. We say that  
f~ --+ f almost uniformly, a.u. for short,  if IIf,~ - fll* --+ 0 a.s. (Dudley, 1985). 

3. l .  DEFINITION. We say that a class of measurable functions 5 C s  satisfying 
condition (1.9) is bootstrap P-Donsker a.s., or J: E B .... CLT(P) ,  i f  

lim dBL [Z;b(u~(co)) , /J(Gp)]  = 0 a.u. (3.1) 
t a b o o  

In analogy with  the previous section, our object  here is to prove the following 
theorem of Gin4 and Zinn (1990) on the a.s. boo t s t r ap  of empirical  processes. 
The comments  on measurabi l i ty  in Theorem 2.2 apply  also to Theorem 3.2. In 
par t icular ,  the  version we present assumes no measurabi l i ty  in the direct par t ,  but  
it does assume some for the converse. The measurabi l i ty  assumpt ion  for the direct 
par t ,  which required no changes from our proof, was removed by Strobl  (1994) and 
Van der Vaart  and Wellner (1996). 

3.2. THEOREM. I f  $- is P-Donsker and E*] l f (Xl )  - P fn  2 < oc then Jr is also 
bootstrap P-Donsker a.s. Conversely, if a class of measurable functions Jr with 
everywhere finite envelope F is image admissible Suslin and there exists a centered 
Gaussia~ process G indexed by Jr whose law is Radon in g~(.F) and such that 

l im dBL [ s163  = 0 a.u. (3.2) 
n ~ o o  

then jr is P-Donsker, EF2(X1)  < ec and G = Gp. 

3.3. PROOF OF THE CONVERSE PART OF THEOREM 3.2. In view of Theorem 2.2, 
and since B .... CLT  C B v C L T ,  it jus t  remains to be proved tha t  EF2(X1)  < oc. 
Since EII(X1)I < o o  by the proof  of Theorem 2.2, we can assume f ( X 1 )  centered 
for all f E f .  Proceeding as in the proof  of (2.13) in the previous section, we now 
obtain ,  instead,  

n 

--~/F(X~)>v~ --4 0 a.s. 
i = 1  



114 

In fact, since these variables only take (non-negat ive)  integer values, this sum is 
0 eventually a.s. ( that  is, for all n > n(w) with n(w) < oo a.s.). In part icular,  
F ( X , )  _< v ~ _< 1 eventually a.s. Therefore, Borel-Cantell i  gives 

that  is, EF2(X1)  < ~ .  

n 

E Pr{ F2(Xn)  > n} < co, 
r ~ l  

[] 

Regarding technique, the novelty here resides in the proof of the direct par t  
of the theorem. It requires a lemma of Ledoux, Talagrand and Zinn (Ledoux and 
Talagrand,  1988) expressing in infinite dimensions the fact that  if EX 2 < oc and 
is symmetr ic  with E~ 2 = 1, then, letting Xi,  ~i, be independent copies of X and 
respectively, all independent,  

lim E ~ ( ~ n ~ - ~  )~ i X i  = E X  2 a . s .  
n ~ o e  i = 1  

by the law of large numbers.  Surprisingly, the analogous result in infinite dimensions 
is not easy to prove. We know of two proofs for it, one using 'Yurinskii 's trick'  
as modified by Talagrand,  which was the original proof, and the other using more 
recent inequalities based on Talagrand 's  isoperimetric methods (as given in the book 
of Ledoux and Talagrand,  1991). We give here the original proof because it requires 
less technique. But  before, we give an auxiliary lemma on a small variation about  
the main  argument  in Hoffmann-Jcrgensen 's  inequality. Tha t  it works without  
measurabi l i ty  assumptions seems to have been noticed first by Strobl (1994) and 
van der Vaart  and Wellner (1996). 

3.4. LEMMA. For any n G N, let ~i and Yi, i = 1, . . .  ,n, be the coordinates in 
a product probability space, ~i reM, symmetric random variables with E]~i[ _< 1, 
and ~ s valued with I I f (~) l l~  -< e for some 0 < c < 0% where .T is a class d 
measurable  functions on S. Then, 

�9 /) Pr{E~ll~e,Y(~)ll. >2t+~}-< mr E( 4/f (Y/) l l~  > t  , (3.3) 
i = 1  i = 1  

where h* denotes the mesurable  cover of h with respect to all the variables jointly. 

P R o o f .  Set Uk := E~II k * E / = I  ~//(~)1[ . ,  1 _< k _< ~, and T := min{k  : Uk >_ t}. 
Then,  

u .  _< U,_l + E~II<~JI(YJ)II,: + ~l l  eJ(~)ll;- 
i : j + l  

<_ u , _ ,  + ~  + E ~ I I  ~/f (Y, ) I I : , ,  a.s. 
i = j + l  
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and note that  Uj_ 1 < t on T = j .  Therefore, up to a set of probability zero, 

/ = j + l  

Hence, since the two variables in the last set are independent as each of them is in 
fact a function of different coordinates of the product  probability space (see Dudley 
and Philipp, 1983, Section 2), we have 

n 

Pr{EelIE > +c} -< E Pr{T = j, EfH ~ ~if(Y~)ll7 > t} 
i=1  j = l  i = j + l  

= ~Pr{T =j}Pr{E~II ~ >~}. 
j=] i=j+s 

Now, a slight modification of the arguments in the proof of (1.11) give 

~.~ll 4//(Y,)II.-< Er eJ(~)ll~, 
/ = j + l  i = l  

and the 1emma follows because 

~ {11 7 " } E P r { T =  j}  _< Pr IE e e~f(~)ll. > t �9 
j = l  i = l  

[] 

In order to estimate expected values of norms of truncated sums at an important  
step in the next proposition, we will also need the following observation. It is an 
instance of a 'contract ion principle' (Dudley, unpublished; also given in van der Vaart 
and Wellner, 1996). If the three random variables ~, ( r , X )  and Y are coordinate 
functions on a product  probability space, X and Y are S valued, 4 and r are real 
valued, ~ is centered and 0 < r < 1, then 

E ' l i a r  f ( X )  + f(Y)][• <- g*l l~f(X)  + f(Y)llT. (3.4) 

To see this just note the following estimates, where the last inequality is a conse- 
quence of inequality (1.11), and the last identity follows from the fact that  if h is 
finite and measurable, (h f )*  = h f*  a.s.: 

E*lKrf(X)  + f (Y) l l*  -< E*Nr(gf(x)  + f(Y))lla: + E*IIf(Y)( 1 - r)lIJ: 

= E(Ngf(X) + f(Y)H~:~) + E* ( U ( Y )  + (E~) / (X)] I . (1  - ~)) 

_< E( IKf (X ) + f(Y)H~-T) + E(l l f (Y ) + gf(x)ll>(1 - r)) 

= E * I K f ( X )  + I(Y)ll*- 

The Ledoux-Talagrand-Zinn lemma is as follows: 
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3.5. THEOREM. Let {i and Y{, i 6 N, be coordinate functions on an infinite product 
probability space such that the variables ~i are reM, symmetric,  i.i.d, and E]~,[ _<7 1, 
and the variables Y{ are i.i.d, and take values in S. Let .7: be a class of measurable 
functions on S such that IIf(Y1)II:v < oo and E*]If(Y1)H~: < oo. Then, 

1 
{if(Y{) J: a.s., (3.5) 1 ~ {if(y{) ; < 2V/21im=suP E~ 

lin~oo p m s u  E e 7 i = 1  - -  i = 1  

where h* denotes the measurable cover of h with respect to all the variables jointly. 

PROOF. Denote by M the limsup at the right of (3.5), and assume it is finite 
(otherwise, there is nothing to prove). For ease of notation we drop the subindex 
Y from the norm signs. By Borel Cantelli, the proof of the theorem reduces to 
showing 

k 

E p r ,  max 1 * } "2"-'<k<2 ~ y ' ~ d ( Y { ) v ~  >~(2~r < ~  
n>no_ - / : 1  

for all c > 0 and for some n0 < oo. Since IE~ ~ = 1  {,f(y{) * increases with k a.s. 

by (1.11), we only have to prove 

I 2" �9 

E Pr{  2~.--~7gE{ E 4' f (y{)  > 2M + 5s} < oo 
n > n o  i : i  

for all e > 0. Because E*IIf(Y1)]I 2 < oo we can truncate ,f(y{) at the level cx/27: 
letting 

~ = { {f(y{)r,~(r,),.<_~.,,/2 ~/~ : / e  7 }  e eoo(7) 

we have 

6:,,. ] 
~._ Pr*Z[there exist i_< 2 n such that  u{ ~& 2~7g/2 .~ 

< ~ 2 "  Pr{llf(Y,)ll * > ~2"/2 } < oo. 

So, we only need to show 

2 ~ 

n > _ n o  = 

Furthermore,  by Lemma 3.4 (applied with t = M + 2s) this will follow if we prove 

2 ~ 2 

h i > n 0  ' :  
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Inequali ty (3.4) gives, by iteration, 

2 n 2 n 

E * <_ E Z af( )/2n/2 * 

i=l i = 1  

(take w = /l16y 1 ii;~_<e2,/2 for the first application of (3.4), and so on). Now, by the 
definition of M,  

2 n 

E E (if(Yi)/2n/2 * < M + c, (3.7) 
i = 1  

for all large n. So, we can center in (3.6), which reduces the problem to showing 

E Pr  Er ~iui - E y E (  ~iui > s < ec. (3.8) 
n = l  "=  i = 1  

We will show the series (3.8) converges by means of a mart ingale difference 
decomposi t ion of its terms due to Yurinskii (1974) (with a key observation by Ta- 
lagrand).  Let Ex,i denote expectat ion with respect to the variables X i + l , . . .  , X n 

only. We then have 

2 n 2 n 2 n 2 n 

E~ E ~ i ~ i  * - E  ~ i ~ i  * : E ( E x , i - ~ x , i _ I ) ( E ~  ~ i u  i *) 
i = 1  i = 1  i = 1  i = 1  

2 n 2 n 

= E ( E x , i - ~ x , i _ I ) ( E (  ~-~(iui * - E (  E ~jttj * ) ( 3 . 9 )  

i = l  i = 1  j<_2 n,jr 

since the subt rac ted  te rm does not depend on Xi (as indicated above). Set 

2 n 

k = l  j<_2 n ,j#i 

Since 0 _< f i  <_ E~[l~iuill* = I l u i l l * E l ~ i l  a.s. and E[~i I _< 1, we have 

Since 

it follows tha t  

0 ~ f~ ~ Ibill* a.s. (3.10)  

~ n  

~k~k -- 
k = l  

n 1 
i = l  j<_2n,j~ti 

2 n 

k : l  

2 n * 
<- 2 n -  lE  E (juj 

j<2~,jr 

and therefore, using (3.6) and (3.7), 

z 
jK_2",j~i j<2 n,j~i 

* M + s  
~jui < 2 ~ (3.11) 
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((3.11) is Talagrand's observation). The summands in the decomposition (3.9) are 
orthogonal. Therefore, (3.10) and (3.11) give 

E E (  ~iui - ~itti = EZ~ <_ E (ll~gll*)a/2f 1/2 
= i=1 i=1 i=1 

2n - \ 1/2 
< E (]~(]]tti 1 1 " ) 3 ) ( E f i )  1/2 

i=1 

2 ' ~ ( M - I - c E u - - ~  * 3 )  1/2 
_< (11 ,II ) 

i=1 

_- (2n(M + c)E(llUlll*)3) 1/2 

Finally, we apply this estimate to bound the series (3.8) using Chebyshev. We 
obtain 

Pr E~ - EyE~ ~itti > C 
- -  i = 1  i = 1  

M + e  2,E [ (IIf(Y,)IF) 3 < 
n=l 

g2 
~:llfOq)ll_<~2~/= 

M + e 21/2 
e ~  21/2_ lE*IlfiY1)EI ~ '" < < oo. 

[] 

3.6. REMARK. If the variables {i in Theorem 3.5 are taken to be centered (instead 
of symmetric), and the remaining hypotheses in Theorem 3.5 are left unchanged, 
then inequality (3.5) still holds, but with a different multiplicative constant at the 
right. This is an immediate consequence of inequality (1.11) and its proof. 

3.7. REMARK. Theorem 3.5 can be complemented with moment boundedness, 
to be precise, basically the same proof above shows that, under the hypotheses of 
Theorem 3.5, we also have 

E ( s u p l E ~ l l & ~ i f ( g i )  ;)<_ C[E* ~nn~-~"~if(Yi)+E*Hf(Y1)H~=]. (3.12) 
\ n e N  I1~r i=1 i=1 

To see this, proceed as in the previous proof with the following two changes: replace 

-~ ~if(Yi) ; E 1 n M by .~ := supneN E i = I  (this will allow all the series in the proof 

to start at 1 instead of at an unspecified no) and observe that the series that controls 
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the truncation, E 2'~ Pr{ IIf(Y1)ll* > e2 ~/2 } is dominated by E* IIf(~)l l2/e  z. With 
these two changes, the previous proof gives 

P r ( s u p  1 ~ * 5e)} < C E*IIf(YI)II2 --~ y ~  ~ f ( 5 )  ~ > 4ff(2~? + 
" k e n  x/k i=1 - ~ ' 

and (3.12) follows. 

3 .8 .  P R O O F  OF THE DIRECT PART OF THEOREM 3.2. We assume .7- is P-Donsker, 
P f  = 0 for all f E .7" and E*F2(X1) < oe. In complete analogy with the proof of 
Theorem 2.2, direct par% proving almost uniform convergence in (3.1) reduces to 
showing 

lim limsupEbllu~lIj=; = 0 a.u. (3.13) 
6--~0 n--+ oc 

By Lemma 1.6 (c) (right side of inequality (1.14) and the comment on centering 
following it), and by the right side of inequality (2.8s) we have, for all 5 > 0, 

2E b l ~ c i S X ~ . ~ F ;  ~ 2e ~ 2 _ ~ ,  '~X~ 2 ,  
~b[I//bl]'T'; ~ ~ i=1 e ~  I~M'M' i = l ( M i  - ]~[i) 

(3.14) 
where M,, M[,, i E N, are i.i.d. Poisson variables with parameter 1/2, defined on the 
t~ ~ part  of the basic probability space, and EN,N, denotes expectation with respect 
to these variables only (as usual). Theorem 3.5 gives that for all 6 > 0, 

lim sup EM,M, - M  < 2v~l i  p E  Mi-M~) - ~ ' 
i=1 i=1 

(3.15) 
since E*F 2 < oe. Now, since A2,1(Ma - M~) < oo and .7- is P Donsker, Theorem 
1.19 implies 

lim lim sup E* 1 ~ ~ ~ 0  ~ ~ ( M ~  - M ~ ) ~  = 0. (3.1< 
n~oo  i~ l  

Combining (3.14), (3.15) and (3.16) yields the limit (3.13). 
[] 

2.4. T h e  e x c h a n g e a b l e  b o o t s t r a p .  Prmstgaard and Wellner (1993) extended 
the exchangeable bootstrap clt (Section 1.2) to empirical processes. This section is 
devoted to their work. We change the notation about the weights from Section 1.2 
by setting Wn(j) := nw,~(j). We assume that in what follows the vector of weights, 
W,~ = (Wn(1) , . . . ,  Wn(n)), n E N, is exchangeable and satisfies the conditions 

n El.  Wn(j) >_ 0 for all n and j ,  and }-~-j=l W,~(j) = n; 
E2'. sup~ A2,1 (~l/~n(i)) : =  M ( W )  < oo. 

E3. maxl_<j_<, ~ I W ~ ( j )  - 11 -~p  0. 
tt 

E4. -5 E , = l  ( w ~ 0 )  - 1) ~ - , ,  1. 

Note that E.2' is a different condition from E.2 in Section 1.2 and that E.2' 
implies E.2. We will also assume throughout that the weights W are defined on 
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the f~' component  of the basic probabil i ty space (in part icular  they are independent  
from the da ta  X).  The  weighted empirical measure,  P~(w) is defined as 

P~(w) = _1 ~ Wn(j)Sxs(,o), w E fl, n C N, (4.1) 
gt 

j= l  

and the weighted empirical process, u~w, as 

1 n 

u~(w) := v /~(P~(w)  - P , (w) )  = ~ Z ( W , ( j )  - 1)Sxj(~) 

1 " 
= x~ ~ ~ Wn(j)(Sx,(~) - P , (w) ) ,  w C Ft, n E N. (4.2) 

We skip reference to w whenever no confusion may arise, and denote conditional 
probabil i ty  and expectat ion with respect to the da ta  X as Pr  w, E w, al though some- 
t imes we will be more specific and write e.g. EN for integration with respect to only 
the variables Ni. 

Propert ies  E.2' and E.3 imply: 

4.1. LEMMA. If the sequence of non-negative weights W,~ satisfies condition E.2' 
then the sequence {Wn(1)}n21 is uniform]y square integrable, and if moreover it 
satisfies E.3, then 

1 g --+ 
ma• W~(i) O. (4.8) 

V/~ l< i<n  

PROOF. By monotonicity,  condition E.2',  that  is, 

j0 J Az,1 (Wn(1)) := e r{W~(1)  > t )dt  < oo, 

implies 
P r { W n ( 1 )  > t}  = aS 

so tha t  

s El /~ /~n(1 )2ZWn(1)>t  = t 2 P r { W n ( 1 )  > t} + 2 tl Pr{!/V~(1) > u}du 

s < _ t 2 P r { W n ( 1 ) > t } + 2 [ s u p x / u 2 p r { W n ( 1 ) > u } ]  @Pr{Wn(1 )>u}du- -~O 
Lu>t  

a s  t ~ ec and, taking t = 0 in these inequalities, supn EW,~(1) 2 < ec. This and E.3 
give (4.3). 

[] 

The main  ingredient in the proof of the boots t rap  clt in probabil i ty for empirical 
processes is the following modification of the multiplier inequality given in Theorem 
1.18. 
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4.2. THEOREM. Let { = ( ~ 1 , . . . , ~ n )  be a non-negative, exchangeable vector 
such that a2,1(&) < oo, let R = (R(1) , . . .  ,R(n) )  be a random vector uniformly 
distributed over the set rr~ of  all the permutations of { 1 , . . . , n }  and let Z = 
( Z l , . . .  , Zn) be random elements of g~176 Assume {, R and Z are coordiante 
functions on a product probability space. Then, for all 0 <_ no <_ n, 

1 ~'2{iZi / n o  (G max ~i ~E / ' I~ -~ I IZ i l I* )  
E* ~ i = 1  - < l<{<,~v/g] <n i=1 

k 

+ A 2 , , ( & )  max E*I 1 
no<k~_n 

(4.4) 

PROOF. Proceeding as in the first steps in the proof of Theorem 1.18, we have 

1 = E* ~ < I&>_tZR(i) Fdt, 
E* ~ i=1 i=1 '= 

where the first identity is a direct consequence of the exchangeability of the vector 
~. If S is any random permutat ion then R o S is again uniformly distributed on 
rr~ and is independent of S, as is easy to check. Hence, if we take any (random) 
permutat ion S for which ~sO) -> ~s(2) >- . . .  -> ~s(,0, we have, for all t, 

E* l #{i:~;>-t} 
E* ~ i=i >tZR(i) ----- E mR(i) 3c" 

This allows us to continue as in the proof of Theorem 1.18 with only formal changes, 
except that  we use the following obvious estimate at the right place: 

m a x  
l < k < n o  

n0 n0 1 EIIZ{II>, 

where the last identity follows by (1.13). 

4.3. THEOREM. I f3  t- is P-Donsker and the exchangeable weights satisfy E.1-E.4 
and are defined on ft', then 

l i r n  dBL s ( n ), s  = 0 in outer probability. (4.5) 

PROOF. Proceeding as in the beginning of the proof of Theorem 2.2, where the 
proof of that  theorem is reduced to (2.7), with only formal changes, but using the 
exchangeable boots t rap of the mean (Theorem 2.1, Section 1, plus Cram& Wold) to 
control IIn,~(H) instead of the regular bootstrap of the mean, the proof of Theorem 
4.3 reduces to showing 

( II wll ) =~ (4.6) l iml imsupE* E w G~ ~-; 
6 4 0  n ~ o o  
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Now, by Theorem 4.2 applied with Zi = 5x~ - Pn and ~ = Wn, we have 

<_E* ! ~ W ~ ( ~ ) ( e , - P . )  T; 

_ < n 0 ( E  m a x  ~ ) 1 I ~  (SX, - - e n  ; 
l< i<n 

k 

' V ~  i=n0+l 

where the first inequality follows from (1.13). Since 

E* 5x~ -P~  *; -<E* 5 x ~ - P  z;  + g *  P n - P  *; _<4E* 5x, -P :r < ~ 1 7 6  

by Theorem 1.16 (the weak L2 integrability of F~*), it follows from Lemma 4.1 that 
the first summand in the last term of (4.7) converges to 0 for all no 6 N. By 
condition E.2', the second term is dominated by a constant times 

k 

max E* --~ ~ (Sxm, , - P . , )  7;" no<k<n i=no+l 

Now, using (1.13) and (1.11) 

k 
. 1 

k 
1 1 E* - P,~) 

- ~ (~_oo) E ~ (e,,,, n l<--Jl<'"<Jk-no<-n i=n0-t-1 F; 

k--no =IE.I ~ (Sx,- en) J:; 
i=l 

-~-"* E (r e )  ~; --~ v ~ E * l l e  n - NIl.T; 
i=1 
k 

<_ --~E* ~(ax,- P) *; + v ~ r [ l p ~  - Nil.;" 

being P-Donsker, Theorem 1.17 c) gives 

k 
lira lim sup---~E* E ( S x i - P )  ~_ = 0  
~ 0  no----*oo k>no i=1 

and, of course, tima~o limsup,~_oo x/hE*liP. .-  e l i . ;  = 0. Now, (4.6) follows from 
(4.7) and these limits and inequalities. 

[] 
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The  exchangeable  boo t s t r ap  also works a.s. if E*Fc 2 (X , )  := E* H f ( X 1 ) - P f l l  2 < 
O O :  

4.4. THEOREM. f f F  is P - D o n s k e r  and E* I I f ( x l ) - P f l l  2 < oo and the exchange~b]e 
weights  sat is fy  E .1 -E .4  and are deigned on ~ ' ,  then 

d B L [ s 1 6 3  = 0  a.u. (4.8) l im 
n - - * o o  k - - J 

The proof  of this theorem is considerably subt ler  than  tha t  of the exchange- 
able b o o t s t r a p  in probabil i ty.  The main ex t ra  tool it uses, besides the Ledoux 
Ta l ag rand -Z inn  inequality,  is the following interest ing observat ion of Hoeffding 
(1963) to the  effect tha t  a V s ta t is t ic  with a symmetr ic  kernel g can be wr i t t en  
as a U- s t a t i s t i c  with a uniquely de termined symmetr ic  kernel 0 which is a convex 
combinat ion  of all the  functions obta ined  from g by making some coordinates  equal 
and then symmetr iz ing.  The proof  will also require the extension of the right side 
of inequal i ty  (2.8s) when the number  of variables V, ~ is different from n ( tha t  is, 
for b o o t s t r a p  sample  size different from n) and some s tandard  es t imates  for Poisson 
random variables. Here are s ta tements  and indications of proofs for these results,  
beginning with Hoeffding's. 

4.5. THEOREM. Let  L be a real  vector space, let f : L --+ R be a convex funct ion,  
a n d l e t  Vl , . . . , v,~ E L for some n < oo. F o r m  <_ n, let X 1 , . . . , X ~  b e a r a n d o m  
sample  w i thou t  replacement  from { v l , . . .  ,vn}, and let ! /1 , . . .  ,Y~ be a r andom 
sample  wi th  replacement  from the same set ( that  is, the Y's  are independent  and 
uniformly dis t r ibuted  over vl , . . . , v,~). Then,  

i = 1  i = 1  

PROOF. Let g : L m ~ H be a symmetr ic  function ( tha t  is, a function invariant  
under  pe rmuta t ions  of its entries),  where H is another  real vector space. Then,  

1 
E g ( X l , . . . , X m ) -  (~)  E g(vit  . . ' , V i m ) ,  

1 <_il <.. .  <ira < n  

 g(Y1, "' n m E g(vi~ . . . , v i m ) ,  (4.10) 
l<_i l , . . . , im < n  

expressions of U and V s ta t is t ic  type  respectively. The  decomposi t ion of the  V -  
s ta t is t ic  based on g into a sum of U-s ta t i s t i c s  can be described as follows: There  is 
a unique function .0 : L m --~ H such that :  1) it is symmetr ic  in its entries; 2) it is of 
the form 

O ( Z l , . . . , X m )  = E P ( k ;  r l "  " 'rk; i l "  " ' ik  )g (x i l  ' r l ! , X i l , . . . , X i k ,  r k! ,Xik) ,  

(4.11) 
where the  weights p are positive, add  up to one and are independent  of g, L and H,  
and where the  sum runs over all the positive integers k, r l , . . . , r k , i ] , . . . , i k ,  such 
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that  1 < k < m, i l , . . . ,  ik are all different and do not exceed m, and rl+. ..+rk = rn; 
and 3) 

1 1 
n ~  ~ g ( z < . . . , x i m ) -  ~ O(xi~ . . . ,mi  ) (4.12) 

1_<7 . . . . . .  im<_  ( 2 , )  m l<_il<...<i,~<n 
for all X l , . . . , z n  C L. In particular,  

Eg ( Y l , . . . ,  ]r ~- E0 ( X 1 , . . . ,  Xm). (4.12') 

For instance, for m = 2 and n arbitrary,  

1 1 
0(Xl,X2) = D. gt- l g ( x l ' X 2 )  @ ~ g ( x l ,  Xl) -}- ~-~g(x2, x2). 

The existence and uniqueness of 0 satisfying the specified conditions can be proved 
by induction on m. If we take H = L and g(aq, .  .. ,z,,,) = xl + . . .  + x m  then the 
function 0 ( X l , . . .  ,xm) is a linear symmetr ic  function of x l , . . .  ,z,~, hence it is a 
constant  t imes xl + . . .  + xm; but,  since tile variables Xi and Yj all have the same 
expected value, it follows from (4.12') and (4.12) that  this constant is 1, tha t  is, 
O(xl , . . . ,  Xm) = xl + . . .  + x,,,. (We are abusing notat ion here: we mean different 
sets of variables X7 and Yj, defined for each possible set of n points in L.) Then,  
(4.11) gives 

~-~p(k ; r l , . . . , r k ; i l , . . . , i k ) ( r l x7 ,  + . . . + r k x T ~ )  = x l  + . . . + x , , .  (4.13) 

Let now f be a convex real function on L and let g ( z l , . . . ,  x~) := f ( x l  + . . .  + xm). 
Then,  (4.11), (4.13) and the convexity of f give 

:= f ( x ,  + . . .  + 

: f ( ~ p ( ~ ; r l , . . . , r k ; i l , . . . , i k ) ( r l Z i ,  ~-... nt- F k x i k ) )  

EP(k ; r l , . . . , r k ; i l , . . . , i k ) f ( r lX i ,  q-...-}-rkxik) 

= E p ( k ;  r l , . . . ,  rk; i l , . . . ,  ik)g(x h , P.!, x i~, . . . ,  xik, rk.!, xik ) 

= O ( x l , . . . , ~ ) .  

Therefore,  by (4.12'), 

m m 

]r~,f(E x i )  ~ l~@(Xl,...,Xm) : I~g(Yi,...,Yra ) : Ef(~-~Yi) .  
7=1 7=1 

[] 

The  proof  of the following l emma differs only formally from that  of the right 
side inequalities in Proposit ion 2.5 and Remark 2.6, and therefore is omitted.  
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4.6. LEMMA. Under the hypotheses for (2.8@ in Remark  2.6, but with Mi and 
M[ replaced by Ni(m/2n) and N[(m/2n), i.i.d. Poisson variables with p a r a m e t e r  
m/2n, we have,/'or any m C N, 

m n 

e e N m ~ rn ~" E giVib ~-- _ 1 E E ( i ( ~ ) - N i ( ~ ) ) v i  �9 
i=1 i=1 

(4.14) 

If 2V(A) :=  N(A) - N ' (A)  with N(A) and N ' (A)  independent  Poisson variables 
with pa rame te r  A, then direct computa t ion  gives EN(A) 4 = 12A 2 + 2A for all A > 0. 
By s t anda rd  computa t ions  we can then derive from this the following consequences: 

4.7. LEMMA. /~r(/~)satisfies 

A2,1 (2)(X)/x/~)  _< 4 for all A > O, (4.15) 

and, ir fz,(,x) are i.i.d, copies or~( ,x) ,  then 

Ni(/~) ( ~  ~ )1 /4  
E max ~ < 2x,/n + for all n E N, A > 0. (4.16) 

4.8. PROOF OF THEOREM 4.4. We assume F is P Donsker, P f  = 0 for all f C .7" 
and E * F  2 < oo. In analogy with previous proofs (Theorems 2.2, 3.2 and 4.3), the 
proof  of the theorem reduces to showing 

lim limsupEWll~,.~llF;,, --,, = 0 a.u. (4.17) 
540 n~oo 

Firs t  we apply  Theorem 4.2 condit ional ly on the sample, to the effect tha t  

= E  w ~ n E'~ v, ,  Zwo(i)( x,- Pn) F~ 
i= l  

/ W . ( i ) ~  1 n 
< n o / E  max - - / n  E II r -- Poll ; 

k 

:=  I,~,,~o,~ + IIn . . . .  ~, (4.18) 

where Rn is a r andom vector unformly d is t r ibuted  over the pe rmuta t ions  of 1 , . . . ,  n 
independent  of everything else, and ER denotes integrat ion with respect  to Rn only. ( )" Since E ~ ,  II x,-Pnlly;/  _< 4P~F* ---* 4PF* a.e. by the law o f l a rge  numbers,  

Lemma 4.1 then gives 
lira lim sup I . . . . .  6 = 0 a.u. (4.19) 
640 n~oo 
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for all no < oc. Regarding the second term in (4.18), we start  by applying Hoeffd- 
ing's inequality (4.9), to obtain 

k k 

ER~ ~((SXRn(i)/=n0_l_ 1 Pn )  F; ~ Eb ~ / = . 0 _ k l  -- 

k 

- < E b - - - ~ ( e x : , '  - P ' )  7{' 
/ : I  0 

( where the last inequality follows from (1.11)) and then apply the Poissonization 
inequality (4.14) to the effect that  

E b < - -  
- e - 1  ~ i T," 

i=1 j= l  

(here we have also used the symmetr izat ion inequality (1.14) and introduced Rade- 
macher  variables, which is allowed by symmetry) .  Contrary to the proof of Theorem 
3.2, we are not yet prepared to apply the Ledoux-Talagrand Zinn lemma. What  
we do before is to apply the multiplier inequality (4.4) once more, in conjunction 
with L e m m a  4.7 and, noting tha t  no <_ k < n, obtain 

1 ~ Ni(k /2n)e  5 I _ c i <  

j= l  
f 

<_ cnlnol /4pnF* + c,,,<e<nmaX ER,e 7 1  ~ ei~Sx~,( 0 -*"e 
j=nt-t-1 

:= I" . . . . . .  + I I"  ..... e, 

for all nl E N and for some universal c < oo (which can be easily specified but 
whose value is irrelevant for this proof). Now, 

lim " hm sup I~l,N0,n = 0 a.u. 

for all nl C N, by the law of large numbers for F*. The last three sets of inequalities 
and the last two limits show that  there is c < oo such that  

lim lim sup lim s u p ( I I ~  .. . .  e)* _< lira lira sup lim sup c (II" . . . .  a)* a.s. 

Hence, by (4.18), the theorem will be proved if we show 

lim lira sup lim s u p ( H '  n ... .  6)* = 0 a.s. (4.20) 

Let now 
g 

u , : =  
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and let Sn denote the a-a lgebra  generated by all the measurable functions f : S N --~ 
R symmetric  in the first n coordinates. Then, 

t e 

En,e ~ E l  j = n l + l S i 6 X n " ( { ) F ;  ~ER'e-~j= llEsi6xn"u) ;'e = E ( U e ] $ ' 0  a.s. (4.21) 

It follows from Remark 3.7 on boundedness of moments in the Ledoux-Talagrand-  
Zinn lemma and the hypotheses that  

E sup Ue < oe. (4.22) 
f61N 

Therefore, the sequence E(supe>n 1Utl$~ ) is a reverse martingale, hence it con- 
/ 

verges a.s. and in L1. But, its limit being measurable for the symmetric or-algebra, 
it is a.s. a constant by the Hewitt-Savage zero-one law. Thus, we have 

 (sup v, lso] sup a .s  as (4.23) 
\ 
i>nl " / i>nl 

By the Ledoux-Talagrand-Zinn ]emma (Theorem 3.5) 

lira sup Ue _< 2v~EIIaplIy~ a.~. 
nl -*oe t>nl 

so that by (4.22) and dominated convergence, 

lim E sup Ut < 2~/2IEIIaPIb:;, (4.24) 
n l ~ o o  f > n l  

which tends to zero as 6 tends to zero (Remark 1.2). Therefore, by (4.21)-(4.24) 
and the definition of II', we have 

lira lim sup lim sup (II: .... ~)* < lim lira sup lira sup E( sup Ue I Sn) 
~ 0  r t l ~ O O  r t~C,O ~ 0  r t l ~ O O  n ~ O O  ~>~11 

= lim lim sup E sup Ue 
640 nl~oo s 

_< lim 2v~IElIGslb:;  = 0 a.s. 
6~0 

This proves (4.20), hence the theorem. 
[] 

As is the case in N, here too, if the limit in E.4 is c 2 > 0, then the boots t rap 
limit in Theorems 4.3 and 4.4 is cGp. 
4.9. EXAMPLES. 1) W~,(j) = ~i~=~ Iv, eAtn,~) gives the regular bootstrap.  There is 
some work involved at showing that  these weights satisfy E.4 with c = 1. 

2) Wn(i) = Y//Y,, where Y/ are i.i.d, random variables with finite variance, gives 
the Bayesian bootstrap.  Here c 2 = VarY1/(EY1)~. 

3) W,~(j) = -r 2im5 Iu~eA(n,j ) gives the regular bootstrap with bootstrap sample 
size mn. c = 1 if rrzn ---+ oc. So, the above results contain the boots t rap of the 
empirical process with arbitrary bootstrap sample size m,~ ---+ oo. The proofs in the 
previous two sections, using Lemmas 4.6 and 4.7, give also this for the boots t rap 
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in probability, and give it also for the bootstrap a.s. if the sequence mn is regular. 
(These two lemmas were in fact noticed by Gin~ and Zinn to this effect and later 
communicated to Pr~s tgaard  and Wellner, who obviously made better use of them.) 

=d Mult inomial(n;  M ~ l / n , . . .  , M ~ / n )  conditional on 4) W,,  

M,, = ( M ~ l , . . . , M ~ )  =d Multinomial(n; 1 / n , . . . , 1 / n ) ,  gives the double boot- 
strap. Here c 2 = 2. 

5) The rn out of n bootstrap without replacement also falls into this scheme. 

Details on these examples can be found in Pr~estgaard and Wellner (1993) and 
van der Vaart and Wellner(1996). 

2.5. U n i f o r m l y  p r e g a u s s i a n  c lasses  o f  f u n c t i o n s  a n d  t h e  b o o t s t r a p .  The 
results from the previous sections show that, contrary to the prevailing thought a 
few years ago, the clt (for empirical processes) does not have to hold uniformly in Q 
near P, for it to be bootstrappable 'at  P' .  However, uniformity helps: in fact, when 
the clt holds uniformly in P, then one can justify all kinds of reasonable resampling 
procedures. This section contains part of the pertinent theory. 

Whereas the previous sections are almost self-contained, here we will rely heav- 
ily on two important  results from Gaussian process theory namely tile Slepian 
Fernique comparison theorem and Sudakov's minorization. Fernique's Saint Flour 
1974 Lecture notes or Ledoux and Talagrand (1991) are good references for this. 

Notation: 7)(S) will denote the set of all probability measures on (S, 3)  and 
~Pf(S) will denote the set of all the probability measures on (S, S) whose support 
is finite. Gp and Zp will repectively denote versions of the P Brownian bridge 
and the P-Brownian  motion with sample paths as regular as possible. (Recall that  
these are centered Gaussian processes defined on fi" C s  whose covariances are 
respectively those of 5xl - P and ClSXl .) pp and ep are the s pseudo-distances as- 
sociated respectively to Gp and Zp. Extrapolating notation from previous sections, 
given a pseudo-distance e on 5 ,  we set 

$-'(8, e) := .T;,~ :=  { f - g :  f , g  C ~,e ( . f ,g )  _< 8}, 

and we will be interested in .T'(8, pp) and 7 ( ~ ,  ep). It is convenient to keep in mind 
m that  if P = ~ i = l  ai6,~, then 

1/2 /~ P) and Zp ~ 1/2 6 (5.1) Gp = a i gikoz~ -- = cti gi z~, 
i=1 i=1 

where the variables gi are i.i.d. N(0, 1). In general, whether P is discrete or not, a 
version of Zp is Gp + gP, with g independent of Gp, as can be seen by computing 
covarianees. 

5.1. DEFINITION. A uniformly bounded class $r of  measurable functions on S is 
f ini tely uni formly pregaussian, .T C U P G  I for short, i f  

sup EIIZpII~- < oo, (5.2) 
P e P f  (S) 
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and 
lim sup EllZpll~,(a,r = 0. (5.3) 
540 PCPj(S) 

In other words, a class of functions 3c is UPG I if the processes Zp indexed 
by $r are well behaved uniformly in P E "Pf(S). These classes were introduced by 
Sheehy and Wellner (1988) and studied by Gind and Zinn (1991) and Sheehy and 
Wellner (1992). 

Note that  in (5.2) and (5.3) we could have used any other moments, or even 
tail probabilities, to obtain an equivalent definition since the median of the sup of 
a Gaussian process dominates (up to fixed, universal constant factors) all its Lp 
norms (see e.g. the proof of Claim 3 within the proof of Theorem 5.3 below). We 
could also have used Gp instead of the simpler Zp, but Zp is more convenient when 
dealing with uniformly bounded classes as in this case ( ) c  ep) is totally bounded iff 
(.7", pp) is, and Gp has a Radon law in e~(.7 ) iff Zp does. 

5.2. EXAMPLES. 1) Recall that  N(T,d,e),  the covering nombers of the pseudo 
metric space (T, d), is the smallest number of (closed) d-balls of radius e and centers 
in T needed to cover T. Recall also Dudley's entropy bound for the sup of a Gaussian 
process (e.g., Ledoux and Talagrand, 1991, Sections 11.1 and 12.1). This bound 
immediately gives that:  If the class ~ satisfies 

sup ~/log N(.Y, ep, c)dc < oc (5.4) 
Peps(s) 

and 

~0 5 lim sup x/log N(.7-, ep, r = 0, (5.5) 
6~0 PC'Pj (S) 

then ~ E UPG I. In particular, uniformly bounded VC subgraph clas.~es of functions 
are UPGf,  and so are the classes Pollard (1990) calls manageable and those he calls 
Euclidean. This is the statistically most important  example of UPGf. Gaenssler 
(1987) was first to prove the bootstrap clt for empirical processes based on Euclidean 
classes of sets. See Dudley (1987) for the definition and universal clt properties of 
VC-subgraph  classes and several other types of classes of functions that  satisfy 
conditions related to (5.4) and (5.5). 

k oo 2) If Y = { f  }k=2 with IIfkll~ o((log k)-1/2), then 3c E UPG I. To prove it, set 
ak = (log k)l/21lfkll~, which tends to zero by hypothesis, and 5~N = sups> N ak, 
which also tends to zero. It is classical that  if gi are N(0, 1), not necessarily inde- 
pendent,  then 

E s u p  lakgkl < K6N, 
k>N (log k )l /2 - 

I 

where K is a universal constant. Since 

Zp(fk)  = (Epf~)l/2gk and (Epf~) 1/2 _< c~k 
(log ~;)1/2 ' 
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the previous inequal i ty  gives 

and 

sup ~llZPll~- ~< i ~ 2  
pc~s(s') 

/ 

EIIZPll~,(6,~) _< E sum I Z P ( f n l  § E( sup I z p ( A )  - Zp(fe)l) 
k >  N k,e_<N,er(fk,f~)<_6 

<_ 2K6N + 5N 2, 

so tha t  we also have 
lim sup EllZpIl~,(<r ) = 0. 
6 4 0  P C ' P !  (S) 

Some of these classes are not covered by Example  1 (see e.g. Dudley, 1987). 

3) Let H be a separable,  infinite dimensional Hilbert  space and let H1 be its unit  
ball  centered at zero. Take S = H1, S the Borel sets of S, and 5 c = H1 act ing 
on S by inner product .  Since bounded  random H valued random vectors satisfy 
the central  l imit  theorem (see e.g. Araujo  and Gin6, 1980), it follows tha t  5 c is 
P -Donske r  for all P (universal  Donsker). However, it is not UPGf.  The reader  can 
verify tha t  (5.3) does not hold by considering the sequence of probabi l i ty  measures 

QN = EiN=I 5e,/N, N C N, for an or thonormal  basis el. 

The  two main  reasons behind Definition 5.1 are that  1) as we will see, empir ical  
processes indexed by UPGf classes satisfy very s trong uniformity in P proper t ies ,  
and so do their  l imit ing Gaussian processes, and 2) Gaussian processes are suffi- 
ciently well unders tood  so as to make it feasible, in general,  to decide whether  a 
given class satisfies the UPGI property,  and in fact, as the examples above show, 
there are many. 

More notat ion:  We set $-r := { f 2  f : f E ~c} and denote the class of Radon  
probabi l i ty  measures  on g~($-)  by R(g~o($-)). Xi ,  as usual will be the coordinates  

P S N --* S,  P~ the empirical  measure based on the first n such coordinates ,  u~ := 
x/~(P~ - P)  and,  since here we will be interested in u~ p for all P E 79(S), we will 
use the  subindex P on the signs for expectat ion,  probabil i ty,  the bounded  Lipsehitz 
distance,  etc. to indicate  tha t  we are integrat ing with respect to the probabi l i ty  pN 
on S N. 

The  main  result  in Gin6 and Zinn (1991) can be s ta ted  as follows: 

5.3. THEOREM. Let ~ be an image admissible Suslin UPG I class. Then, 
i) the laws of Gp and Zp are Radon in g ~ ( ~ )  for all P E ~P( S); in fact, ,~ is U PG in 
the sense that (5.2) and (5.3) hold with PI(S)  replaced by P(S),  and it also hoids 
with Zp replaced by Gp ; 
ii) .~" is uniform Donsker in the sense that ( yz, ep) is totally bounded uniformly in 
P and 

v, p l im sup dBLp(~ ,Cp)  = 0 (5.6) 
n ~ o o  p c -  p 

and iii), the m a p  

G: (~(S), II' I I ~ )  ~ (~(e~176 
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g iven  by 
G(P) = s  (5.7) 

is uniformly continuous. 

Before proving the theorem we give a consequence for the bootstrap.  (This 
consequence justifies including this section in these lectures). 

5.4. COROLLARY. Let .7" be an image admissible Suslin UPGI class and let Qn be 
random probability measures on ( S ,S )  such that, for some PE T)( S), 

lirno~ HQn - P][fJ:  = 0 a.s. (in pr.) (5.8) 

where we assume HQn - Pll~7 to be measurable. Then, 

lim dBLQ, (u Q~ Gp5 = 0 a.u. (in outer pr.) (5.9) 
n- - -~oo  \ n ~ ] 

PROOF. The proof is basicMly a triangle inequality. Assume the a.s. version of 
(5.8). Just  note 

d.L ap)* < d.L(.?~ aQo)* + d. (OQo, a.)* 
Conclusion ii) in Theorem 5.3 implies that  there exist cn --+ O such that  
dBL (r 'Q" , GQ,)* • on. Conclusion iii) of the same theorem implies that  given e > 0 
there is 5 > 0 such that,  for all n, 

dBL(GQ,~,Gp) <e / l iq  _PllTf< 5+2IIIQ _plpT:~_> 5 

(recall that  dBL is bounded by 2). For each n, the right side is a measurable random 
variable and the limsup of these random variables as n --~ oc is dominated by c due to 
hypothesis (5.8). Hence, dBL(U Q", Gp)* --~ 0 a.s. The same proof for subsequences 
gives the in probability version of the result. 

[ ]  

Corollary 5.4 was obtained by Gin~ and Zinn (1991, Corollary 2.7). Sheehy 
and Wellner (1988, Theorem 1.6) have a similar result for Efron's boots t rap with 
arbitrary boots t rap sample size tending to infinity with n. 

5.5. EXAMPLES. 1) As we will see somewhere along the proof of Theorem 5.3, if 
)r  is image admissible Suslin and UPGf  then IlPn - PllJ:J: ~ 0 p• a.s. for all 
PC 7'(S).  Then, Qn = Pn satisfies condition (5.8) and therefore Corollary 5.4 gives 
Efron's boots t rap a.s. for the empirical process with arbitrasry boots t rap sample 
size rnn --+ oe, that  is, u Q ' '  --+c Gp a.u. with Qn = Pn and any mn tending to 
infinity. (As mentioned above, this observation for arbitrary sample size mn was 
first made by Sheehy and Wellner, 1988.) 

2) Let S = R d and suppose that  the class ~" is closed by translations, image admissi- 
ble Suslin and UPGf .  Let An E 79(S) be smooth probability measures satisfying the 
'approximate identity'  condition IIAn -5011~J= --, 0. A smooth bootstrap consists of 
sampling not from Pn but from Pn*A,.  Since I l P n , A ~ - P , A n l l T J :  _< I l p n - P l l T J :  -* 0 
a.s. mad liP * An - PlIJ:~" -< IIA~ - ~011~ -~ 0, it follows that  IlPn * A n  - -  PllJ:J" -~ 0 
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P'*'~" ---+E Gp a.s., thus justifying the smoothed a.s. and Corollary 5.4 then gives u n 
bootstrap.  

3) Suppose we know P C {P0 : 0 E 0}.  For each n, let 0,, be an estimator of 0. 
The model based boots t rap in this situation consists of resampling not from Pn but 
from Pen. If Pc,  is as close or closer to P in the I I  I I ~  pseudo norm as Pn is, 
then this boots t rap may be better than Efron's, and it is justified by Corollary 5.4 
(assuming ,7- is image admissible Suslin UPGf). 

4) Example 3 is a special case of the following more general situation considered 
by Romano (1989); see Arcones and Gin~ (1991) for an additional example. Let 
Q(S) C 7)(S) (Q could be the set of product  probability measures if S is a product  
space, it could be the set of probability measures which are symmetric about zero 
if S = IR d, etc.). Let 7 : 7)(S) --+ Q(S) be a projection continuous for the pseudo-  
norm I1" IIf~. (7 does not have to be defined on all of JP(S).) The above corollary 
then shows that  resampling from TP72 is consistent whenever P C Q(S), that  is, 
u~ P" --+z: Gp a.s., and that  in general, u~P" --~c G~p a.s. (assuming 5 is image 
admissible Suslin and UPG/).  This is important  for constructing boots t rap tests 
of the null hypothesis P E Q(S). 

Next we prove Theorem 5.3. The long proof is decomposed into several steps. 

Before proving Theorem 5.3 we need two lemmas basically giving the conclu- 
sions it) and iii) for Y finite. 

5.6. LEMMA. Let 7 ~  :=  {P : P is a Borel probability measure on I~ d with supp P 
C {llxll _< M}} .  For Y ~ P~s, let ~F be i.i.d.(P) and let Cp = Coy(P).  Then, 

72 

sup dBL[g(E(~P--E~P)/x/ -n) ,N(O,q)p)]  = 0  (5.10) lim 
n ~ o o  p C ;D~s i = 1  

where N(0 ,  ~p)  denotes the centered normM law o f R  a with covariance ~p. 

PROOF (Sketch). This follows from standard results on speed of convergence in the 
multidimensional clt, but  an elementary proof obtains along the following lines. The 
Lindeberg proof of the clt, as e.g. in Araujo and Gin~ (1980), pages 37 and 67, gives 

n KM(traceeIIp) 

i = 1  - -  V / ~  

where K is a universal constant and d3(#, ~') :=  sup{I f/d(~-~)l : E,~,<~ IID~/llo~ 

< 1}, where a is a multi index and D ~ denotes partial derivatives with respect to the 
variables indicated by the index a (standard notation). For f such that  II/ll~ < 1 
and II/llLip < 1, and e > 0, define 

1 [ sy)e_llyll~/2dy _ 1 

and note tha t  

' I  IIf - /~l lo~ _< (2~)e/~ (2 A ~llYll)e-i'~'i~/2dy <_ c(d)c, 
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where c(d) depends only on d, whereas 

1/ 
IiD~/~ll~o < ~ I D%Idy 

being the density of the standard normal law in N a. Using these estimates in a 
simple triangle inequality and taking into account that the trace of 02p is bounded 
by d M  2, we obtain 

[ / ~ " ~ P  P "~ [ "~] n c(d)M3/4 

i=1 

where c(d) is a constant that  only depends on d (not necessarily equal to the one 
above). 

[] 

5.7. LEMMA. Let  02 and �9 be two covariances on IR a x IR d and let N(O, a2) and 
N(0, 'Is) be the centered normal laws o f R  d with theses covariances. Set  I1r ~H~o := 
maxi,j<_a ]02(el, e j )  -- tg(ei, ej)l ,  where {ei} is the canonicM basis o f R  ~. Then,  

dBL [N(0, 02), N(0, 'I-')] < c(d)1102 - "I't{'/", (5.11) 

where  c(d) is a constant  that depends  only on d. 

PROOF. The approximation arguments in the previous proof show that  it suffices 
to see that  

d3 [N(O, 02), N(O, @)] _< c(d)l102 - q'tloo 

for some constant c(d) depending on d only. One way to prove this inequality 
E n is to proceed as in the proof of Lindeberg's theorem: compare f ( ~ i = ~  X i / v / ~ )  

with E f ( ~ i ~ l  Y/ /v  ~ )  where the variables Xi  and ]5 are all independent, the X ' s  
distributed as N(0, 02) and the Y's  as N(0, @), by replacing one X by one Y at a 
time, and developing by Taylor up to the third term, as in Lindeberg's proof of the 
clt. Then the linear term is zero, the second term is bounded by c(d)1102 - ~11oo and 
the third term is bounded by a constant times n -*/2, and letting n tend to infinity 
gives the result. 

[] 

It is also convenient to have at hand the statements of the results on Gaussian 
processes that  we will use. These are the following: 

5.8. THE SLEHAN-FERNIQUE COMPARISON THEOREM. Let Zi( t ) ,  t E T ,  i = 1,2, 
be two centered Gaussian processes defined on a countable set T. If 

for all s, t ~ T, then 

E[z,(t)- Zl(S)] < E[z (t) - 

Esup  ZI(~, ) ~ Esup Z2(t)- 
tET tET 

If the processes have Radon laws in ~~ the same is true without any restrictions 
on T for the bounded Pz~ uniformly continuous version of Zi, i = 1,2 (T is separable 
for PZi in this case). 
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5.9. SUDAKOV'S MINORIZATION. Let Z be a centered Gaussian process on T and 
let Pz denote the induced L2 distance. Let N(T, pz,5), s > 0, denote the covering 
numbers of the pseudo-metric  space (T, pz), that  is, N(T, pz,e) is the smallest 
number  of p-balls (closed) of radius r needed to cover T. Then, there exist a 
universal constant K < oo such that 

sup c v/log N(T, Pz, r <_ KE sup Z(t). 
e>0 tcr  

5.10. PROOF OF THEOREM 5.3. We can assume 3 r is uniformly bounded by 1. 

CLAIM 1. Set g = {f, f 2 , f  _ g , ( f  _g)2 : f ,g C ~-}. Then, 

sup EPitP,  - Pll~ = 0(n-112) �9 (5-120 
PeP(S) 

Pro@ (The proof of this claim contains the main idea behind the theorem.) 
We will prove (5.12) only for the smaller class 7-( = {(f  - g) 2 : f ,  g C Dr'} since, as 
it will become apparent,  a subset of the proof for this set gives the rest. Let gi be 
i.i.d. N(0,  1) defined on ~2 r. We then have, by Lemma 1.6 c) and the left side of 
(1.31) (the easy part!): 

- 2Ep,  _< x/m-EP,.ll  g ax, (5.13) EPIIP. PI[~ _< sJx, 
i=1 i=1 

Now we will change the index 7-{ to 7 = { f  - g : f ,g C Dr} using the Slepian- 
Fernique comparison lemma for Gaussian processes. For a C f~ fixed, consider the 
two Gaussian processes 

1 n 
{ Z l ( f )  : ~ Eg i f2 (~u  " f E ~ ' } ,  

V/~ i=1 

Note then that:  i) 

E ( z I ( z 1 ) )  - Z l ( f 2 ) )  ') 

{ 1 s y'}. 
Z2(f) = ~ i=1 

= P n ( f  2 -- f22) 2 =  Pn [ ( f l -  f 2 )2 ( f l  di- f2)  2] 

__< 16Pn(/1  - f2) 2 = 16E(Z2( /1 ) )  - Z l ( f 2 ) )  2, 

ii) bo th  processes have uniformly continuous sample paths with respect to their 
corresponding L2 distances (recall w is fixed), and iii) both Zl and Z2 at tain 
the value zero at one of the f ' s  in Y ( f  = 0). Therefore, applying the Slepian- 
Fernique theorem 5.8 to {Z1, Z2} and to { - Z 1 , - Z 2  } (as, by iii), Eg sup fear, IZ11 -< 
Eg supfej: ,  Z1 + E 9 sup fcT , ( -Z1) ) ,  we obtain 

Eg sup IZll < 8Eg sup tZ2I. (5.14) 
yES r-' fEF '  

(5.13) and (5.14) give 

IEpIIP- - PI[~ -< Ep,g n 74 2T; 1 E gi6x{ E g i 6 x ,  <_ 8 Ep,g 
i=1 i=1 
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1 E g i 6 x ,  16 EPEglIZP~II. < 16 ~p,g = 

i=1 

r _< 16 sup EIIzQII, , (5.15) 
OET' s( s) 

proving Claim 1. 

CLAIM 2. (.7-, ep) is totally bounded uniformly in P E 7)(S) and 

N P c} 0 (5.16) l imlimsup sup P {ll~nll.,<~,~p)> = 
5~0 n--+c,a PeP(S) 

for all e > 0. 

Proof. (5.2) implies 

sup{EllZpow)ll. : P C P ( S ) ,  w E S N, n E N} < oc 

and therefore, by Sudakov's minorization, there is c < oo such that 

c 
log N(f ' ,  ep.(.,), e) < E- ~ (5.17) 

for all s, n and P. Claim 1 implies 

e 2 sup [ p . ( < ( f , g )  - ~p( f ,g )2 [  __, 0 
f ,gE 3 c" 

in pN probability. Then we have convergence for at least one w aiong a subsequence 
(for each fixed P), and this and (5.17) imply 

c 
sup logN() t-, ep,s) < - -  (5.18) 

s  
P e P ( S )  

proving (b c, ep) is totally bounded for all P, uniformly in P. In order to prove (5.16) 
we first symmetrize and decompose the resulting probability as follows: Using the 
symmetrization inequality (1.]6) in the first step, we have that, for 5 < 2s, 

PN{IIvPII~-,(&ep ) >4r <4Prp,~{ nT/2 ~ r  ~-'( ' ,~,)>r 
i=1 

< 4Prp,,{ ~ ~ g i ' X i  5c , (2 , /25 ,ep . )  > C} 
i=l  

q- pN{ sup te~> > a=} 
f,gE3= " 

:= Ip,,, + I I p  m . 

Now, Claim 1 ((5.12)) directly implies 

lim sup IIp,,~ = O. 
n ~ o o  P E'P(S) 
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Moreover, replacing ~ by ~a  = { ( f -  g) 2 : f ,  g E 3 r, ep(f, g) -< ~5}, the first line in 
the string of inequalities (&15), in the proof of Claim 1, becomes 

E Q  , s)SUp 'mlIZQIIT,( ,< (,5.19) 

for all 5 > 0 and P E P(P) .  Then, f f  being UPGI, we obtain 

lim sup Ip,,~ = O, 
n ~ o o  PET' (S)  

and Claim 2 follows. 

CLAIM 3. :T is UPG in the sense that 

~ p  ~IIzFII~  < oo, sup ~ l l a p l l *  < oo 
P E P ( S )  P E',~ 

and 
lim sup ~llZell.,(e,~)=0 and lira sup ~llapll.,(~,~p)~0. 
~ o  PEP(S) ~ o  pE~V(S) 

Pro@ Since the process Gp + gP, where g is N(0, 1) independent of Gp, is a 
version of Zp for all P, and IIPH~ _< i and I[PtlT;.oe < 8, it suffices to prove the 

claim for Gp. Claim 2 and the Portmanteau theorem give 

l imsup sup P r { l l a P I l ~ , ( e , ~ . ) > e }  
~-~o PE~'(S) 

< l i m s u p  sup l iminfPN{ p , e} 0. 
8 ~ 0  P E P ( S )  n ~ c o  

By hypercontractivity of Gaussian processes (e.g., Ledoux and Talagrand, 1991, 

page 65), we have (NIGelI4)  1/4 _< al/~(EIIapll2) ~/2 and therefore 

> ( 1 - A 2 )  2 
Pr{llapll  ~(~IlaPIP) ' /=} ~ V ~ - ~ /  

for any 0 < A < 1 by Paley-Zygmund's argument (Kahane, 1968, page 6: just 

note that, by HSlder, for all 0 < a < oo, EllapII 2 _< a 2 + ( E l l a p I ? ) l / "  [Pr{l lapII  > 

a}] 1D), where the norm refers to any be'(8, ep) for all 8 and P. The above limit and 
inequality then show that for all c > 0 there is r > 0 such that 

AEllaPll.,(a,cp) < 

for all 0 < 8 < r and for all P E 7)(S), that is, 

lim sup EI[GpII~ , (~ ,~p)=0 .  
ts~o P E'P(S) 

Now, 
sup m=llaplb= < 

PE~'(S) 
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follows from this and the fact that  (.7", ep) is totally bounded uniformly in P E 5o(S). 
The claim is proved. 

C L A I M  4 .  

lim sup dsLp (v p, Gp) = 0 (5.6) 
n 4 e ~  p EP 

Proof. In the decomposition of IE~H(v P) - EH(GP)I  into I~,T + II~,~ + III,- 
from the proofs of Theorem 1.3, Corollary 1.5 etc. for H Lipschitz in g~()r ) ,  the 
three terms can be estimated uniformly in P, the first, by claim 2, the second 
by Lemma 5.6, and the third by Claim 3. We omit the details in order to avoid 
repetition. 

CLAIM 5. The map given by (5.7) is uniformly continuous. 

Proof. Let P , Q  E P ( S )  and r > 0. (5.18) shows that  there is a universal 
constant a < oo and N(r, P, Q) < e ~1~2 subsets Ai of .7- that  cover 3 c and for each 
there is fi E b e such that  Ai C { f :  ep(f, f i)VeQ(f,  fi) <_ r}. Let H : go~(~) __+ R be 
bounded Lipschitz with sup and Lip norms bounded by one. As in previous proofs, 
define the Gaussian processes Zp , , ( f )  = Zp(fi) if f E Ai, and likewise for Zq,T. 

These processes are nothing but centered normal random vectors in IR exp (a/r~). Let 
qbp,~ and @q,~ be their covariances. Then, 

E l ~ ( Z p )  - H(ZQ) I < EIH(Zp) - H(Zp,T) I + EI~(ZQ) - H(ZQ,T)I 
+ EIH(Z~,~) - H(Zq,~) 1 

_ ~ 11/4 
< EIIZPIl.,( ,op) + EIIzQII.,(. ) § c(e~ - 

where in the last inequality we apply Lemma 5.7. Since 

II P,  - = i,j<_~(aX, p,q)]g2P,r(fi, f5) - dAQ,r(fi,fj) <_ lip - qll  , 

uniform continuity of the map G defined by (5.7) follows from Claim 3. This con- 
eludes the proof of the theorem. 

[] 

It is a simple exercise to show that  for Y uniformly bounded (in fact liP f l i t  < ~o 
s~mees), 7 c C L T ( P )  if and only if (2 ,  ep) is totally bounded and 

lim limsupPN{llv~ll,,(e,~p) > e} = 0. 
5 4 0  n 4 o o  

(Theorem 1.15 gives this for pp, and the reason why it works for ep instead is that  
if IlPf]l~ < oc then (~ ' ,ep)  is totally bounded if and only if ($r, pp) is.) So, the 
following corollary is a kind of converse to UPGf  ~ ii) in Theorem 5.3. 

5.11. COROLLARY. For .7- uniformly bounded and image admissibIe Suslin the 
following are equivalent: 

a) .7- E UPGI; 
b) (.T, ep) is totally bounded uniformly in P E 7v(S) and 

N P l iml imsup  sup P { l l ~ l l . , ( 6 , e ~ ) > c } = o  
5 4 0  n 4 o e  P E P ( S )  
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PROOF. a) implies b) by Claim 2 and b) implies a) by Claim 3 above. 
[] 

Even if we weaken condition b) by not assuming uniformity in P of the to- 
tal boundedness of (5 ~, ep), one still has that  b) implies a) (Gin~ and Zinn, 1991, 
Theorem 2.6). 

We should point out that  if 5 c is image admissible Suslin and satisfies condition 
(5.4) with the sup inside the integral, and if for some class of probabil i ty measures 
Q it also satisfies lima--+0 suppcQ fF2IF>adP = 0, then .T" is P Donsker uniformly 
in P E Q (Sheehy and Wellner, 1992). 

5.12. REMARK. (Uniform bounds for exponential moments). The est imate (5.12) 
can be improved to a bound for exponential  moments  of the empirical process in- 
dexed by a UPG class (less is required), valid for all P and n. For a heater  s ta tement ,  
it is convenient to recall that  the expression 

~b(~) := inf{c:  Eexp({2 /c  2) _< 2} 

is a p seudo-norm on the space of random variables (defined on, say, f~) such that  
Ee ~= < oo for some a > 0 (this is the Luxemburg norm corresponding to the Young 
function e ~ - 1). Fernique's integrability theorem for Gaussian processes (Fernique, 
1974) implies that  there exist c < oc such that  for any centered Gaussian process 
Z(t), t C T, with bounded sample paths,  

r < c~llZllr. (5.20) 

(where the L1 norm can be replaced by any Lp norm). It is easy to find good 
est imates for c, e.g. by using concentration inequalities (Section 3.1 in Ledoux and 
Talagrand,  1991). Inequality (5.20) has the following consequence (Gin~ and Zinn, 
1991): 

There exists C < oo such that if  :T: be an image admissible Suslin uniformly bounded 
class of functions satisfying 

M~ := sup I~[[Zpll~ < oc, (5.21) 
PEPj . (S)  

then 
sup sup r ~ CM.. (5,22) 

P E'P(S) hEN 

Proof. Let P E 7)I(S ). Let P"  be an independent copy of Pn (made of coordi- 
nates in an enlarged product  space). Proceeding as in (5.13) and (5.15), on account 
of the facts tha t  ~b is a pseudo-norm and that  the function e ~tlll~- is convex, (5.20) 
and (5.21) give 

P I 
r I/F) _< r  - P,~llT) 

n 

< 2~,(11~ ~,~,/,fall.) 
i=1 
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n 

<_ (2 )'/2e(llZ 
i=1 

< (27r)l12eM~. (5.23) 

[] 

Inequality (5.22) is not best possible: for really sharp exponential inequalities 
for empirical processes, particularly over VC subgraph classes, the reader should 
consult work by Alexander, by Massart and by Talagrand (see e.g. the Ledoux- 
Talgrand book). However, (5.22) is very easy to prove and applies in slightly more 
generality than just VC. 

2.6. Some  r e m a r k s  on appl icat ions .  In this section we see some instances of 
application of the previous theory, particularly in connection with M estimators. 
Very often the proof of a bootstrap limit result for a given sequence of statistics will 
follow the original proof, except that some key steps will only be possible because 
of the bootstrap theorems presented above. Typically, proving an a.s. bootstrap 
result will also involve results on the almost sure behavior of empirical processes. 
We wilI see this in two instances: for the median and for Z estimators. 

2.6.1. The bootstrap of the median. Bickel and Freedman's (1981) proof of the 
bootstrap clt for the median depends on KMT. In fact, nothing as deep as KMT 
is necessary for the bootstrap clt of the median but, certainly, deeper properties 
of the empirical process than just the limit theorems from Section 2.1 are needed, 
concretely a result on the a.s. oscillation behavior of the empirical process for the 
uniform distribution. See Stute (1982) for oscillations of the classical empirical pro- 
cess, and Alexander (1984,1985) for exponential bounds that extend Stute's result 
to the empirical process over VC subgraph classes of functions. Here is a less sharp 
exponential bound for VC-subgraph classes, based on Remark 5.12, that also yields 
a result on oscillations. 

6.1 THEOREM. Let .7" be a uniformly bounded image admissible Suslin class of 
functions on S such that 

and 

M : :  sup EllZpNj= < oo (5.21) 
PCPf (S) 

sup EIIzpll~,(~,~p) : o ( ~ ( l o g ~ - ' )  ~) (6.1) 

for some o~ > O. Then, there exist positive finite constants Cl, c2, c 3 such that 

t2 exp ( - - ca f ' n )  ] sup supP tll,,[[~-(~,~,) > C 1 
PEP(S)  n~N 

(6.2) 
for M1 t > 0 and 6 < (2t) i (1/2). As a consequence, for all 0 < T ~ 1/2, 

lim II~'~ll~,((loglog,)-,/~-,,~p) = 0 a.s. (6.3) 
~ ---+ O 0  
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and 
lim (log log n) U2 P (6.4) ~ - o o  I I ~ I I ~ , l ( l o g l o g n )  . . . .  , ~ P / =  0 a . s .  

PROOF. As in the proof of Claim 2 within the proof of Theorem 5.3, the sym- 
metrization inequality (1.16) gives that for 5 < 2t, 

N p 4t} < 4 P r {  1 ~-~r 1 2 > t }  

_~_ pN { IIuII? t > (~2~1/2 }, 

where ~ = {(f  - g) 2 : f ,  g C Y}. By Chebyshev and the definition of the pseudo- 
norm ~ of Remark 5.12, 

Pr{ n@/2~-~siSx~ ~_,(21/~,~p~) > t }  
i=1 

i=1 

Now, the parameter M corresponding to Jc'(21/2~, epn ) by (5.21) satisfies M = 
O(6(log 6-1)~) so that application of (5.22) for the randomized empirical process 
E ~  s ~ x , / v ~  indexed by this class (see (5.23)) gives 

~2 
Pr{ 1 ~-~si~x~ > ~} <~ C1 exp{--e2(~2(1og(~_l)2 a 

for some fixed 0 < Cl,C2 < oo independent of P, ~ and 6. Assuming without loss 
of generality that the funcitons in the class .7- are bounded by 1, inequality (5.14), 
shows that the parameter M~ for 7-/ is M < SEllZPI[j,, _< 16EllZpllf, so that, by 
(5.22) and Chebyshev, we have 

IDN{[[I/]I'~ > (~2~7,1/2} '~ CleXp{--E3(~4~Q~}. 

These inequalities prove the oscillations bound (6.2). 

Next we prove (6.3). The proof of (6.4), similar, will be omitted. It suffices to 
show that, for all s > 0, 

oo 
~Pr~ > < 
~=3 (2k<n~2k+t J 

where we set ~r' n := ~- ' ( ( loglogn)- l /2- r ,  ep). We can first replace Jr' n by the larger 
~-s and then use L~vy for i.i.d, random vectors (Corollary 1.12) to reduce the 
problem to showing that 

oo 
EPr{[[~Pk+l][~: k > c} < oo 
k=3 
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for all e > 0. Now, we apply inequality (6.2) to each summand and obtain 

Pr{l[~2P~+,l[y;k > e }  ~c l [exp{ -c2g2( log]r  l+r } + e x p { - - c 3 ( l o g k ) - 2 - 4 r 2 k + l } ] ,  

which is the general term of a convergent series. 
[] 

(6.2) in Theorem 6.1 comes from Gin6 and Zinn, 1991, and we take this oppor- 
tunity to mention that  their equation (2.43) is false as its right hand side should 
depend on the rate at which the expected value of the oscillations supp Ell Zp I I F, (5,ee) 
tend to zero with 5. The limits (6.3) and (6.4) below were observed in Arcones and 
Gin~ (1992) as consequences of Alexander's (1984) exponential inequalities, but they 
follow as well from inequality (6.2), easier to prove. 

Here is Bickel and Freedman's boots t rap theorem for the median: 

6.2. THEOREM. Let F be a continuous distribution function on R such that its 
derivative f exists on a neighborhood of its median rn, and is continuous and positive 
at rn. Let X i  be i.i.d.(F), let rn n be a median of  the empirical ditribution F~, and 

b be a median of  the bootstrap distribution function F b. Then, let m,~ 

f_~b(~l/2(mb --~n) ) ---+w N(O, 4 f 2 ~ ) .  (6.5) 

PROOF. Under the conditions of the theorem, m is unique, mn is a.s. unique if n 
is odd, and is any point between the n /2 - th  and (n /2  + 1) th data, e.g. the middle 

b We must show point, if n is even. We can also make a measurable choice for rn,~. 

F~n(m~-m,) - FN(O,1/4f2(ra)) cc --+ 0 a.S., 

where F ~ ( m b _ m n  ) is the conditional distribution function of the random variable 

nl /2 (m~ - ran) given the sample X. By separability of R and Polya's 1emma, it 
suffices to show that  

-Fx~nn(rab_mn)(X ) ~ FN(O,1/4f2(m))(X) a.s. (6.6) 

for all x E R. Let us take n odd for concreteness (the proof for n even is only slightly 
different). Letting F~ denote the empirical distribution function of the boots t rap 
sample, we have, by definition, 

prb{v~(.bn_?T~n)~x}:prb{Fb(?T~ n ~_ T/_I/2x) ~ [~,/2! -l-I} 
= + ~--1/2Z) 

~ V~( [~/~ ~-1 filn(,FO, nAr-y~--l/2x))}.(6.7) 

The class of sets C = { ( -0% x] : x E R} is image admissible Suslin (it is parametrized 
by II{ and the evaluation map (x ,u )  ~-+ I (_~ ,Q(u)  is jointly measurable) and it is 
an easy exercise to show that  the covering number N(C, eI,,e) is dominated by 
3/d for any P discrete; then, by the entropy bound for Gaussian processes we 
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have supp6ps(s) EllZpllc < oo and supp6~f(s) EllZpllo(5,ep) : 0(6~). In 
conclusion, C is P -Donske r  for all P (even uniformly in P) and, moreover,  the 
bound (6.3) applies. Then, the a.s. boots t rap  elf for empirical processes in Section 
2.3 (or the simpler Corollary 5.4) applies and gives 

s  - Fn))  ~ s a.s. in e~ (R) ,  

which, in part icular ,  implies that  

s  -- Fn)(an)) ----~ s  a.s. 

whenever an ---* a a.s. and an, a are conditionally constant given the sample X. 
Hence, since, as it is well known (e.g., Pollard, 1984, page 8), rn~ ---+ m a.s., and 
since by definition GF ((--0% m]) is normal  with variance F(m)  - F2(m) = 1/4, we 
have 

s  -- F,~)(rn~ +n-1 /2x ) )  ---+w s  m])) : N ( 0 , 1 / 4 )  a.s. (6.8) 

(6.8) es t imates  the conditional distribution of the boots t rap  variable in the last 
te rm of (6.7). We now est imate the 'conditional constant '  at  its right. Since f 
is positive on a neighborhood of m, F,~ has only jumps of size 1/n  near m with 
probabil i ty  one. Therefore,  IF,~(m~) - 1/21 < 1/n with probabil i ty one, which gives 

2 b / _  + 1 _< a.s 

Also, inequality (6.3) in Theorem 6.1 implies 

,/-;((F~ - r)(.~. + n-~/~x) - (F~ - F ) ( m ~ ) )  -~  0 a.s. 

Finally, since f exists in a neighborhood of m and is continuous at m, and again 
using mn --+ rn a.s., we have 

aff-~(F(~Ttn) -- r(?Tt n ~- yt-1/2X)) ~ --2~ f(rrt) a.s. 

by the mean  value theorem. The  last three observations show that  

T. := V~( in/2] + 1 _ F.(mn + n-]/2x)) -~ -xf(m) a.s. (6.9) 
n 

(6.8) and (6.9) then yield 

nlim prb{ v/-n(r b - Fn)(rnn 4" n -1/2x) > Tn} ----~N(O, 1/4)[- -x f (m) ,oo)  

= N(0,  1 / 4 ) ( - e c ,  xf(rn)] 

for all x, which, by (6.7), proves (6.6) and therefore the theorem. 
[] 

It is somewhat  pedantic to use Corollay 5.4 and Theorem 6.1 in the previous 
proof  given tha t  the boots t rap  clt for x /~(F ,  - F) ,  already proved by Bickel and 
Freedman (1981), and the oscillation inequalities for the classical empirical process 
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obtained by Stute (1982), do the same job. It should be pointed out, however, that  
the proofs of the more general theorems used here are not more difficult than the 
proofs of their real line analogues. 

The proof of Theorem 6.2 given here is adapted from an unpublished manuscript 
of Sheehy and Wellner, 1988. 

2.6.2. The delta method. This is treated very nicely in the book by van der Vaart 
and Wellner (1996). Other  references on the bootstrap in connection with the delta 
method:  Bickel and Freedman (1981), Dudley (1990) and Arcones and Gin~ (1992'). 
Regarding the delta method, it should be mentioned that recent work of Dudley 
tends to replace Hadamard  differentiability with respect to IIF,~ - Flloo by Fr~chet 
differentiability with respect to lien - F l i p  . . . .  i~ion. 

2.6.3. M-estimators. M-estimators can be forrnally defined in two ways, either 
by maximization (minimization) of P~9(',O) for some criterion function 9, or as 
solutions of P,h(. ,  0) = 0 (or almost 0). Van der Vaart and Wellner (1996) call the 
latter Z-es t imators  (Z for zero). Pollard (1985) gave an excellent t reatment of the 
clt for M-est imators  of the first type based on empirical processes. It turns out 
that,  with Theorems 2.2, 3.2 and 6.1 at our disposal, just the natural changes on 
Pollard's proof give a bootstrap version of his theorem, with no surprises involved 
(Arcones and Ginfi, 1992'). For instance, the reader can recognize a proof of the 
original clt for the median in the proof of Theorem 6.2, and see that  the changes 
to be made for the boots t rap are not, striking at all. The boots t rap in probability 
version of Pollard's theorem is even more straightforward than the a.s. boots t rap 
version since it does not require Theorem 6.1 (and it is in a sense better because 
it holds under the exact same hypotheses of the original, non-boots t rap ,  result, 
whereas the boots t rap a.s. seems to require some strenghtening of the hypotheses). 
Z-est imators  are easier to treat than M estimators (in tile strict sense) because the 
proof of the original clt for them is also simpler. See, however, Wellner and Zha.n 
(1996) for the boots t rap in probability of Z estimators in an infinite dimensional 
setting, with applications. We illustrate these comments with a proof of the a.s. 
boots t rap elf for Z-estimators (Arcones and Ginfi, 1992'). 

Some notation: We will use the notation Qh(., 0) to indicate f h(z, O)dQ(z). 

Let O C R d with 0 E O ~ P C P(S),  and let h : S x O --~ IR ~L be a jointly 
measurable function. The following are our conditions for the boots t rap clt for 
Z-es t imators  (Arcones and Gin&, 1992'): 

(Z.1) Ph(.,O) = 0 and P(h(.,O)) 2 < ee. 
(Z.2) H(O) := Ph( . ,0)  is "strongly" differentiable at zero with non-degerenate 

first derivative. Assuming (without loss of generality) H ' (0)  = I the dif- 
ferentiability condition is as follows: 

H ( O ) - H ( O ' ) = O - O ' + o ( [ O - O ' [ )  as 0 ~ 0  and 0 ' ~ 0 .  (6.10) 

(Z.3) If hi, i = 1 , . . . , d  denote the coordinates of h, the classes of functions 
J~ = {h,(.,O) - hi(.,0) : 101 _< M}, for some M > 0, satisfy conditions 
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(5.21) and (6.1), and 

e [h , ( . ,  0) - h~(.,  0)] ~ < c 
_ ( l ~ 1 7 6  1011)1+~ ( 6 . 1 1 )  

for some e < 0% 5 > 0, all 0 with 101 _< M, and i = 1 , . . . ,  d. 

(Z.4) (Existence and consistency of the Z-est imators)  There exist symmetric 
measurable functions O(xl,. . . ,  Xn) defined on the support of pn,  n E N, 
such that  if 0~ :=  O(X1,... ,Xn), then 

v/~Pnh( ", 0n)--+ .... 0 and 0n --+ .... 0. (6.12) 

(Z.5) (existence and consistency of the bootstrap Z estimators) For almost every 
~o E f~, there exist symmetric random variables 0b~(co) = O~(X~,l(CO),... , 
X~,,~(co)) such that  

b b (6 .1a )  V/-~Pnh(',8,)--+p~ 0 a.s. and 0~--0n--+p~b O a.s. 

The existence and consistency of the estimators (original and bootstrap)  is a 
simpler issue and will not be treated; perhaps it should be mentioned that  the 
conditions for consistency of Huber (1967) for case B (which is the Z case) not 
only give the consistency (Z.4) but also the bootstrap consistency (Z.5). [Regarding 
laws of large numbers, we have not proved, in these notes, that  the law of large 
numbers uniform in ~ for empirical processes can be boots t rapped the stone as the 
clt. This is easier than the boots t rap clt and may be taken as an exercise by the 
reader alternatively, see Gin6 and Zinn, 1990.] 

6.3. THEOREM. Under (Z.1)-(Z.5), 

lim s - 0n)) = lim s = N(0, Covph(-,0))  a.s. (6.14) 
n ~ o o  n ~ o o  

PROOF (Sketch). Suppose we prove 

- u ( o n ) )  + - o a.s .  ( 6 . 1 5 )  

Then the theorem follows from the bootstrap clt for the mean in R a. To prove 
(6.15), we decompose the left side into the boots t rap and the non-boots t rap  terms. 
Since Ph( . ,0)  = 0 and v/-~Pnh(., 0~) --+ 0 a.s., we can write the non boots t rap terms 
as follows: 

v/~H(0n)-Pnh(',0) ~-V~ (Pn-P)(h(.,O)-h(.,0n)) a.s. (6.16) 

(as n --~ oo). Now, we need to show that 0n is a.s. small so that we can apply 
Theorem 6.1. For this, we compare 0n to H(0n): By consistency of 0n ((6.12)) and 
the differentiability hypothesis (6.10) (in less than its full force), there is c > 0 such 
that for all n large enough (depending on M), 

cx/~]Onl <_ x/~]H(On)] < x/~](Pn - P)h(' ,On)] + x/~]Pnh(',O~,)] a.s. 
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Now, the last summand  tends to zero a.s. by (6.12) (i.e., by definition) and the 
first is a.s. of the order of (log log n) 1/2 by the law of the i terated logari thm for em- 
pirical processes over bounded P-Donkser  classes e.g., Dudley and Philipp (1983), 
Theorem 4.1. Therefore, 

, O n , = O ( ~ )  a.s. as n - ~ o o .  (6.17) 

Now, (6.17) and hypothesis (Z.3) (including (6.11)) a l l o w  us  to apply Theorem 6.1 
and conclude 

(Pn - P ) (h ( . , 0 )  - h(.,O~)) ~ 0 a.s., 

so that ,  by (6.16), the non-boo t s t r ap  terms of the random variable at the left in 
(6.15) do indeed converge to zero a.s. Next, we deal with the boots t rap  terms of 
(6.15): 

, / ; ( P h ( . ,  0~) - p~h( . ,  0))  _~ ~ ( p ~  - p ) (h ( . ,  0~,) - h ( ,  0)) 

= ~ ( p ~  - p , , ) (h( . ,  o~) - h(., 0)) 

v/-~(P~ - P ) ( h ( . , 0 b ~ ) -  h(. ,0)) in pr b, a(s6.16b) 

as n 7-4 oe since Ph(- ,0)  = 0 ((Z.1)) and v~P~h(.,0,b*) + 0 in pr  b, a.s. Now, 
since by boo t s t rap  consistency 0~ --~ 0 in pr b a.s. ((6.12) and (6.13)), applying the 
asymptot ic  equicontinuity condition associated to the boots t rap  clt for for each 
fixed, we obtain 

l i r a  v / n ( P b ~ - P ~ ) ( h ( . , 0 ~ ) - h ( . , 0 ) )  = 0  i n p r  b, a.s. 

and it is the last summand  in (6.16b) that  requires Theorem 6.1, as before. For 
this, we need to est imate the size of 0~. Using the full force of the differentiability 
condition (6.10), we find that  for some c > 0 and for almost every a~, the following 
inequality holds with boots t rap  probabil i ty tending to 1 as n -~ oc: 

cv~[O~[ < v/-~[H(0~)[ _< v~ [ (P~  - P~)h(. ,0~)[ + - ~ I ( P ~  - P)h(.,0b,.)] 

+ ,/;;lp~a(., 0~)]. 

Now, the first summand  is Op~b(1) a.s. by the boots t rap  clt (a.s.); the last sum- 
mand  is oprb(1 ) a.s. because 0~ -~ 0 in pr b a.s.; and the second smnmand  is 

O ( ~ / ( l o g l o g n ) )  a.s. by the law of the i terated logari thm for empirical processes. 
N ~ 

We conclude 

10ol:o   t v 
Then,  as before, hypothesis (Z.3), (6.16b) and Theorem 6.1 give that  

v ~ l ( p ~  - p )h( . ,0~) l  ~ 0 in pr u, a.s. 

This shows tha t  the boots t rap  terms in (6.15) tend to zero in boots t rap  probabil i ty 
a.s., concluding the proof of the theorem. 

R 
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Theorem 6.3 applies to Huber 's  (1964) location parameters with a significant 
simplification of the hypotheses (Arcones and Gin~, loe. tit.). 

6.4. THEORt~M. Let h : R ~ R be a bounded monotone function and let P be a 
probability measure on R. We let h(z,  O) := h(z  - 0), 0 E R. Assume: 

(H.1) Let t ing H(O) = Ph(. ,0) ,  we have H(0) = 0, H ' (0)  = 1 and 

lim (H(r )  - H(s) )  = H'(0) .  (6.18) 
. . . .  0 - , )  

(tI.2) There is a neighborhood U of 0 such that for a11 0 E U, 

P [h(., O) - h(., 0)] ~ < c 
(log I log 1011) ~+~ 

for some 5 > 0 and c < oo. 

(!4.3) P is continuous on Co for some 8 > 0, where C6 denotes the open 5 
neighborhood of the set C of discontinuity points of h(z,  O(P)) = h(z,  0). 

Then 

W/1 e r e  

l i rn  s  - 0n)) = l i rn s  = N(0 ,Varph)  a.s. 

0n = i n f { 0 : P n h ( ' , 0 )  > 0 }  and 0 b = i n f { 0 : P ~ h ( . , 0 )  > 0 } .  

(6.19) 

PROOF. By (H.1), 0 is the only zero of the function H(O). Since Pnh( . ,c )  --~ H(e)  > 
0 a.s. for all e > 0 it follows that  eventually 0n _< e a.s. Likewise 0 _> - e  a.s., i.e. 

0n ~ 0 a.s. (6.20) 

The same argument using the boots t rap law of large numbers gives 

05 - 0n --~ 0 in pr b a.s. (6.21) 

Let 101 < 8/2. The sample points Xi satisfying Xi  - 0  E C6/2 are all a.s. different by 
continuity of P on C~. Moreover, h(z) is continuous at z = Xi  - 0 if Xi  - 0 (f C6/2. 
Hence the function Pnh( . ,0)  has a jump at 0 of size at most 211hll~/~ ~.s. This 
proves, by (6.20) and (6.21), that  

v ~ P n h ( . , 0 ~ ) - ~ 0  a.s. and v~PSh( - , 0n ) - -~0  in pr ~ a.s. 

So, conditions (Z.4) and (Z.5) are satisfied. 
(H.1) is just (Z.1) and (Z.2). (H.2) is part  of (Z.3). Finally the rest of (Z.3) is 

satisfied because of the monotonicity of h: any class of sets ordered by inclusion is 
Vapnik-Cervonenkis and therefore satisfies conditions (5.21) and (6.1) (see Example 
5.2, 1)). 

[ ]  
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Theorem 6.3 and its corollary Theorem 6.4 contain the bootstrap CLT for the 
most usual M-estimators in particular for the median, Huber's estimators, etc. For 
instance, Theorem 6.4 applies to 

h(x) = + x• + 

under minimal conditions on P, namely that P{k} = P { - k }  = 0 and P ( - k ,  k) r 0 
(assuming Ph(., 0) = 0). 
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P R E F A C E  

This course aims to be a (nearly) self-contained account of part of the mathematical 
theory of percolation and related topics. The first nine chapters summarise rigorous 
results in percolation theory, with special emphasis on results obtained since the 
publication of my book [156] entitled 'Percolation', and sometimes referred to sim- 
ply as [G] in these notes. Following this core material are chapters on random walks 
in random labyrinths, and fractal percolation. The final two chapters include mate- 
rim on Ising, Potts, and random-cluster models, and concentrate on a 'percolative' 
approach to the associated phase transitions. 

The first target of this course is to draw a picture of the mathematics of per- 
colation, together with its immediate mathematical relations. Another target is to 
present and summarise recent progress. There is a considerable overlap between 
the first nine chapters and the contents of the principal reference [G]. On the other 
hand, the current notes are more concise than [G], and include some important ex- 
tensions, such as material concerning strict inequalities for critical probabilities, the 
uniqueness of the infinite cluster, the triangle condition and lace expansion in high 
dimensions, together with material concerning percolation in slabs, and conformal 
invariance in two dimensions. The present account differs from that of [G] in nu- 
merous minor ways also. It does not claim to be comprehensive. A second edition 
of [G] is planned, containing further material based in part on the current notes. 

A special feature is the bibliography, which is a fairly full list of papers published 
in recent years on percolation and related mathematical phenomena. The compila- 
tion of the list was greatly facilitated by the kind responses of many individuals to 
my request for lists of publications. 

Many people have commented on versions of these notes, the bulk of which 
have been typed so superbly by Sarah Shea-Simonds. I thank all those who have 
contributed, and acknowledge particularly the suggestions of Ken Alexander, Carol 
Bezuidenhout, Philipp Hiemer, Anthony Quas, and Alan Stacey, some of whom are 
mentioned at appropriate points in the text. In addition, these notes have benefited 
from the critical observations of various members of the audience at St Flour. 

Members of the 1996 summer school were treated to a guided tour of the li- 
brary of the former seminary of St Flour. We were pleased to find there a copy of 
the Encyctopddie, ou Dietionnaire Raisonnd des Sciences, des Arts et des Mdtiers, 
compiled by Diderot and D'Alembert, and published in Geneva around 1778. Of 
the many illuminating entries in this substantial work, the following definition of a 
probabilist was not overlooked. 
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P R O B A B I L I S T E ,  s. m. (Gram. Thdol.) celui qui tient pour la doctrine abominable 
des opinions rendues probables par la d~cision d'un casuiste, & qui assure l'innocence de 
l'action faite en consequence. Pascal a foudroy~ ce syst~me, qui ouvroit la porte au crime 
en accordant ~ l'autorit~ les prerogatives de la certitude, ~ l'opinion & la s~curit~ qui 
n 'appartient qu'~ la bonne conscience. 

T h i s  w o r k  was  a i d e d  b y  p a r t i a l  f i nanc ia l  s u p p o r t  f r o m  t h e  E u r o p e a n  U n i o n  un-  
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1. I N T R O D U C T O R Y  R E M A R K S  

1.1. PERCOLATION 

We will focus our ideas on a specific percolat ion process, namely  'bond percola t ion  
on the cubic la t t ice ' ,  defined as follows. Let ]L d = ( ~ d ,  led) be the hypercubic  la t t ice  
in d dimensions,  where d > 2. Each edge of ]L d is declared open with probabi l i ty  p, 
and closed otherwise.  Different edges are given independent  designations.  We th ink  
of an open edge as being open to the t ransmission of disease, or to the passage of 
water.  Now concentrate  on the set of open edges, a random set. Percola t ion theory  
is concerned with ascer ta ining propert ies  of this set. 

The following question is considered central. If water  is supplied at  the origin, 
and flows along the open edges only, can it reach infinitely many  vertices with 
s t r ic t ly  posi t ive probabi l i ty?  I t  turns  out  tha t  the answer is no for small  p, and yes 
for large p. There  is a critical probability Pc dividing these two phases. Percola t ion 
theory is pa r t i cu la r ly  concerned with unders tanding the geomet ry  of open edges in 
the subcritical phase (when p < Pc), the supercritical phase (when p > Pc), and 
when p is near  or equal to pc (the critical case). 

As an i l lus t ra t ion of the concrete problems of percolat ion,  consider the function 
O(p), defined as the probabi l i ty  tha t  the origin lies in an infinite cluster of open edges 
(this is the  p robabi l i ty  referred to above, in the discussion of Pc). I t  is believed tha t  
0 has the  general  appearance  sketched in Figure 1.1. 

�9 0 should be smooth  on (Pc, 1). I t  is known to be infinitely differentiable, but  
there  is no proof  known tha t  it is real analyt ic  for all d. 

�9 P re sumab ly  0 is continuous at  pc. No proof  is known which is valid for all d. 
�9 Perhaps  0 is concave on (Pc, 1], or a t  least on (Pc, Pc + 5) for some posi t ive 6. 
�9 As p ~ Pc, perhaps  O(p) ,-~ a(p - pc) ~ for some constant  a and some 'cr i t ical  

exponent '  ft. 
We stress tha t ,  a l though each of the points  raised above is unproved in general,  
there are special  a rguments  which answer some of them when either d = 2 or d is 
sufficiently large. The case d = 3 is a good one on which to concentrate.  

1.2 SOME POSSIBLE QUESTIONS 

Here are some apparen t ly  reasonable questions, some of which tu rn  out  to be feasible. 
�9 W h a t  is the value of pc? 
�9 W h a t  are the  s t ructures  of the subcri t ical  and supercri t ical  phases? 
�9 W h a t  happens  when p is near to pc? 
�9 Are there other  points  of phase t ransi t ion? 
�9 W h a t  are the  proper t ies  of o ther  'macroscopic '  quanti t ies ,  such as the  mean  

size of the open cluster containing the origin? 
�9 W h a t  is the relevance of the choice of dimension or lat t ice? 
�9 In what  ways are the large-scale proper t ies  different if the s ta tes  of nearby 

edges are allowed to be dependent  ra ther  than  independent?  
There  is a variety of reasons for the explosion of interest  in the percola t ion  model ,  

and we ment ion  next a few of these. 
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o(p) 

1 

I 
Pc 1 p 

Fig. 1.1. It is generally believed that the percolation probability 0(p) behaves 
roughly as indicated here. It is known, for example, that 0 is infinitely differen- 
tiable except at the critical point Pc. The possibility of a jump discontinuity at pc 
has not been ruled out when d _> 3 but d is not too large. 

�9 The  problems are simple and elegant to s tate ,  and apparen t ly  hard to solve. 
�9 Their  solutions require a mixture  of new ideas, from analysis,  geometry,  and 

discrete mathemat ics .  
�9 Physical  in tui t ion has provided a bunch of beautiful  conjectures.  
�9 Techniques developed for percolat ion have appl icat ions  to other more com- 

pl ica ted  spa t ia l  r andom processes, such as epidemic models.  
�9 Percola t ion  gives insight and method  for unders tanding  other  physical  models  

of spa t ia l  interact ion,  such as Ising and Pot t s  models.  
�9 Percola t ion  provides a ' s imple '  model  for porous bodies and other  ' t r an spo r t '  

problems.  
The ra te  of publ ica t ion  of papers  on percolat ion and its ramificat ions is very high 

in the  physics journals ,  a l though substant ia l  ma thema t i ca l  contr ibut ions  are rare. 
The dep th  of the 'cul ture  chasm'  is such tha t  few (if anyone) can honest ly  boas t  to 
unders tand  all the ma jo r  ma themat i ca l  and physical  ideas which have cont r ibu ted  
to the  subject .  

1.3 H[STOaY 

In 1957, Simon Broadbent  and John Hammers ley  [81] presented a model  for a dis- 
ordered porous med ium which they called the percolation model. Their  mot iva t ion  
was perhaps  to unders tand  flow through a discrete disordered system,  such as par t i -  
cles flowing through  the filter of a gas mask, or fluid seeping through the interstices 
of a porous stone. They  proved in [81, 174, 175] tha t  the percola t ion model  has a 
phase t ransi t ion,  and they  developed some technology for s tudying  the two phases 
of the  process. 

These early papers  were followed swiftly by a small  number  of high qual i ty  art i-  
cles by others,  par t i cu la r ly  [138, 181,339], but  interest  flagged for a per iod  beginning 
around 1964. Despi te  cer ta in  appearances  to the contrary,  some individuals  realised 
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that a certain famous conjecture remained unproven, namely that the critical prob- 
1 Fundamental rigorous ability of bond percolation on the square lattice equals 3" 

progress towards this conjecture was made around 1976 by Russo [326] and Seymour 
and Welsh [338], and the conjecture was finally resolved in a famous paper of Kesten 
[200]. This was achieved by a development of a sophisticated mechanism for study- 
ing percolation in two dimensions, relying in part on path-intersection properties 
which are not valid in higher dimensions. This mechanism was laid out more fully 
by Kesten in his monograph [202]. 

Percolation became a subject of vigorous research by mathematicians and physi- 
cists, each group working in its own vernacular. The decade beginning in 1980 
saw the rigorous resolution of many substantial difficulties, and the formulation of 
concrete hypotheses concerning the nature of phase transition. 

The principal progress was on three fronts. Initially mathematicians concen- 
trated on the 'subcritical phase', when the density p of open edges satisfies p < Pc 
(here and later, Pc denotes the critical probability). It was in this context that the 
correct generalisation of Kesten's theorem was discovered, valid for all dimensions 
(i.e., two or more). This was achieved independently by Aizenman and Barsky [13] 
and Menshikov [268, 269]. 

The second front concerned the 'supercritical phase', when p > Pc. The key 
question here was resolved by Grimmett  and Marstrand [165] following work of 
Barsky, Grimmett ,  and Newman [50]. 

The critical case, when p is near or equal to the critical probability Pc, remains 
largely unresolved by mathematicians (except when d is sufficiently large). Progress 
has certainly been made, but we seem far from understanding the beautiful picture of 
the phase transition, involving scaling theory and renormalisation, which is displayed 
before us by physicists. This multifaceted physical image is widely accepted as an 
accurate picture of events when p is near to Pc, but its mathematical  verification is 
an open challenge of the first order. 
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2. N O T A T I O N  A N D  D E F I N I T I O N S  

2.1 GRAPH TERMINOLOGY 

We shall follow the nota t ion of [G] whenever possible (we refer to [156] as [G]). 
The number  of dimensions is d, and we assume throughout  that  d _> 2. We 
write Z = { . . . , - 1 , 0 ,  1 , . . .  } for the integers, and Z d for the set of all vectors 
x = (Xl ,X2, . . .  ,Xd) of integers. For x C Z d, we generally denote by xi the i th  
coordinate of x. We use two norms on Z d, namely 

d 

(2.1)  Ixl = ~ -~ lx i l ,  
i = 1  

lixll = max{Ix~[ : 1 < i < d}, 

and note that  

(2.2) Ilxll <~ IxL ~< dllxll. 

We write 

(2.3)  e(~ ,  y) = I~ - xl .  

Next we tu rn  Z d into a graph, called the &dimensional  cubic lattice, by adding 
edges (x, y) between all pairs x, y E Z d with ~(x, y) = 1. This lattice is denoted 
L d = (zd, Ed). We use the usual language of graph theory. Vertices x , y  with 
5(x, y) = 1 are called adjacent, and an edge e is incident to a vertex x if x is an 
endpoint  of e. We write x ,-~ y if x and y are adjacent, and we write (x, y) for the 
corresponding edge. The origin of L d is wri t ten as the zero vector 0, and el denotes 
the uni t  vector el = (1, 0, 0 , . . . ,  0). 

A path of L d is an al ternat ing sequence xo, co,x1, e l , . . ,  of distinct vertices xi 
and edges ei = (x~, xi+l). If the path terminates at some vertex x~, it is said to 
connect xo to x,~, and to have length n. If the path is infinite, it is said to connect 
x0 to ec. A circuit of L d is an al ternat ing sequence Xo, e0, Xl, e l , .  �9 en-1,  x,~, en, xo 
such that  x0, co , . . .  , e~- l ,  xn is a path and e~ = (x~, x0); such a circuit has length 
n + 1. Two subgraphs of L d are called edge-disjoint if they have no edges in common, 
and disjoint if they have no vertices in common. 

A box is a subset of Z d of the form 

d 

B(a,  b) = H [ai, bi] for a, b E Z d 
i = 1  

where [a~, bi] is interpreted as [ai, b~] n Z and it is assumed that  a~ _< b~ for all i. 
Such a box B(a,  b) may be turned into a graph by the addition of all relevant edges 
from L d. A useful expanding sequence of boxes is given by 

B ( n )  = [ - n ,  n] d = {x  C z d  : Ilxll ~< n ) .  



162 

9 
I 

I 

I 

I 
I 

I 

! 

6- 
I 
I 

I 

I 

9 9 
I I 

I I 

-6- -h- 
i I 
I I 
I I 

I I 

I 1 

-6- - 6 - - - -  
I I 

I I 

I I 

I I 

P I 

6 5 

9 9 
I I 

,5- -6  
I I 

I I 

I I 

I I 

I I 

I I 
I I 
P I 

I I 

I I 

6 d 

Fig. 2.1. Part of the square lattice L 2 and its dual. 

The case of two-dimensional  percolat ion turns out to have a special  property ,  
namely  tha t  of duality. Planar  dual i ty  arises as follows. Let G be a p lanar  graph,  
drawn in the  plane. The planar dual of G is the graph const ructed in the following 
way. We place a ver tex  in every face of G (including the infinite face if it  exists) 
and we join two such vertices by an edge if and only if the corresponding faces of 
G share a boundary  edge. I t  is easy to see tha t  the dual  of the square la t t ice  L 2 
is a copy of L 2, and we refer therefore to the square la t t ice  as being self-dual. See 
Figure 2.1. 

2.2 PROBABILITY 

Let p and q satisfy 0 < p = 1 - q _< 1. We declare each edge of ]L d to be open with 
probabi l i ty  p, and closed otherwise, different edges having independent  designations.  

The appropr ia t e  sample  space is the set ~ = {0, 1 } ~ ,  points  of which are represented 
as w = (w(e) : e ~ E d) called configurations. The value w(e) = 1 corresponds to e 
being open, and w(e) --- 0 to e being closed. Our a-field .~ is tha t  generated by the 
f ini te-dimensional  cylinders of ~ ,  and the probabi l i ty  measure  is product  measure  
Pp having densi ty  p. In summary,  our probabi l i ty  space is (~,  ~ ,  Pp), and we wri te  
Ep for the  expec ta t ion  opera tor  corresponding to Pp. 

2.3 GEOMETRY 

Percola t ion theory  is concerned with  the  s tudy  of the geomet ry  of the set of open 
edges, and par t i cu la r ly  with the question of whether  or not there  is an infinite cluster 
of open edges. 

Let  w E ~t be a configuration. Consider the graph having ~d as vertex set, and as 
edge set the set of open edges. The connected components  of this  graph are called 
open clusters. We write C(x) for the open cluster containing the vertex x, and  call 
C(x) the  open cluster at x. Using the t ransla t ion- invar iance of Pp, we see tha t  the 
d i s t r ibu t ion  of C(x) is the same as tha t  of the open cluster C = C(0) at  the  origin. 
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Fig. 2.2. An open cluster, surrounded by a closed circuit in the dual. 

We shall  be interested in the size of a cluster C(x), and write IC(x)l for the number  
of vertices in C(x). 

If  A and B are sets of vertices, we write 'A ~ B '  if there  is an open pa th  (i.e., a 
pa th  all of whose edges are open) joining some member  of A to some member  of B. 
The  negat ion of such a s t a tement  is wri t ten  'A ~ B' .  We write 'A  ~ cx~' to mean  
tha t  some ver tex  in A lies in an infinite open path .  Also, for a set D of vertices 
(resp. edges), 'A ~ B off D '  means  tha t  there is an open pa th  joining A to B using 
no ver tex  (resp. edge) in D. 

We re turn  briefly to the discussion of graphical  dual i ty  at  the end of Section 2.1. 
Recall  t ha t  L 2 is self-dual. For the sake of definiteness, we take as vertices of this  
dual  la t t ice  the  set {x + (�89 �89 x E Z 2} and we join two such neighbouring vertices 
by a s t ra ight  line segment of ~2. There is a one-one correspondence between the 
edges of L 2 and the edges of the dual,  since each edge of L 2 is crossed by a unique 
edge of the  dual. We declare an edge of the dual  to be open or closed depending 
respect ively on whether  it crosses an open or closed edge of L 2. This assignment  
gives rise to a bond  percola t ion process on the dual  la t t ice  wi th  the same edge- 
p robabi l i ty  p. 

Suppose now tha t  the  open cluster at the origin of L 2 is finite, and see Figure  
2.2 for a sketch of the s i tuat ion.  We see tha t  the origin is surrounded by a necklace 
of closed edges which are blocking off all possible routes from the origin to infinity. 
We may  satisfy ourselves tha t  the corresponding edges of the dual  contain a closed 
circuit  in the dual  which contains the origin of L 2 in its interior. This is bes t  seen 
by inspect ing Figure  2.2 again. I t  is somewhat  tedious to formulate  and prove such 
a s t a t emen t  wi th  complete  rigour, and we shall not do so here; see [202, p. 386] for a 
more careful t r ea tment .  The converse holds similarly:  if the origin is in the interior  
of a closed circuit  of the dual  lat t ice,  then the open cluster at  the  origin is finite. 
We summar i se  these remarks  by saying tha t  ICI < oc if and only if the origin of L 2 

is in the  interior  of a closed circuit  of the dual. 
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2.4 A PARTIAL ORDER 

There is a natural  partial order on f2, namely col _< w2 if and only if wl (e) < w2 (e) 
for all e. This partial order allows us to discuss orderings of probability measures 
on (f~, 5c). We call a random variable X on (~, 9 r )  increasing if 

2(021) ~ X(a22) whenever wl _~ w2, 

and decreasing if - X  is increasing. We call an event A (i.e., a set in ~ )  increasing 
(resp. decreasing) if its indicator function 1A, given by 

1 if w �9 A, 
1A(W)= 0 if c o ~ A ,  

is increasing (resp. decreasing). 
Given two probability measures #1 and #2 on (f~, 5 c) we say that  #1 dominates 

#2, writ ten #1 _> #2, if p l (A)  > p2(A) for all increasing events A. Using this 
partial order on measures, it may easily be seen that  the probability measure Pp is 
non-decreasing in p, which is to say that  

(2.4) Ppl >- Pp2 if pl  _>pz. 

General sufficient conditions for such an inequality have been provided by Holley 
[192] and others (see Holley's inequality, Theorem 5.5), but  there is a simple direct 
proof in the case of product  measures. It makes use of the following elementary 
device. 

Let (X(e) : e �9 E d) be a family of independent random variables each being 
uniformly distributed on the interval [0, 1], and write Pp for the associated (product) 

measure on [0, 1] w~ . For 0 _< p _< 1, define the random variable % = (~p(e) : e �9 E d) 
by 

1 i fX(e )  <p, 
rip(e) = 0 i fX(e )  >_ p. 

It  is clear that:  
(a) the vector % has distribution given by Pp, 
(b) if Pl _> P2 then ~pl > ~p2. 
Let A be an increasing event, and pl  _> P2. Then 

PB1 (A) = P(~p, �9 A) >_ P(~B2 �9 A) s ince  7]p 1 ~ ~']~02 

= Pp~ (A), 

whence PPl ~-- PP2" 
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2.5 SITE PERCOLATION 

In bond  percolat ion,  it  is the edges which are designated open or closed; in site 
percolat ion,  it  is the vertices. In a sense, site percola t ion is more general  t han  
bond  percolat ion,  since a bond mode] on a la t t ice s may be t ransformed into a site 
model  on its ' l ine '  (or 'covering')  la t t ice  s (obtained from s by placing a ver tex  
in the  middle  of each edge, and calling two such vertices adjacent  whenever the 
corresponding edges o f / :  share an endvertex).  See [138]. In practice,  it  ma t t e r s  
l i t t le  whether  we choose to work with site or bond  percolat ion,  since sufficiently 
many  methods  work equally well for bo th  models. 

In  a more general  ' hypergraph '  model,  we are provided with  a hypergraph  on 
the ver tex  set Z d, and we declare each hyperedge to be open with  probabi l i ty  p. We 
then  s tudy  the existence of infinite paths  in the ensuing open hypergraph.  

We shall  see tha t  a percola t ion model  necessarily has a 'cr i t ical  p robab i l i ty '  Pc- 
Included in Section 5.3 is some information about  the re la t ionship between the 
cri t ical  probabi l i t ies  of site and bond models on a general graph G. 
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3. P H A S E  T R A N S I T I O N  

3.1 PERCOLATION PROBABILITY 

One of the principal objects of s tudy is the percolation probability 

(3.1) 0(p) = Pp(0 ~ ~ ) ,  

or a l ternat ively O(p) = Pp(IC] = co) where C = C(0) is, as usual, the open cluster 
at the origin. The event {0 ~ cx~} is increasing, and therefore 0 is non-decreasing 
(using (2.4)), and it is natural  to define the critical probability Pc = Pc(Ld) by 

pc = s u p { p :  o(p) = 0}.  

See Figure 1.1 for a sketch of the function 0. 

3.2 EXISTENCE OF PHASE TRANSITION 

It is easy to show tha t  pc(L) = 1, and therefore the case d = 1 is of l imited interest 
from this point of view. 

T h e o r e m  3.2. If d>2 thenO<pc(L d) < 1. 

Actual ly we shall prove tha t  

1 1 for d >  2 
(3.3) ~(d---~ -< Pc(Ld) -< 1 - , (27  _ 

where #(d) is the connective constant of L d. 

Proof. Since L d may  be embedded in L d+l, it is 'obvious'  tha t  pc(L d) is non- 
increasing in d (actually it is strictly decreasing). Therefore we need only to show 
that  

(3.4) pc(L d) > 0 for all d _> 2, 

pc(L 2) < 1. 

The proof  of (3.4) is by a s tandard 'pa th  counting'  argument.  Let N(n) be the 
number  of open paths  of length n s tar t ing at the origin. The number  of such paths  
cannot  exceed a theoretical  upper  bound of 2 d ( 2 d -  1) n-1. Therefore 

O(p) < Pp (N(n) > 1) < Ep (N(n)) 
< 2 d ( 2 d -  1 )n - lp  n 

which tends to 0 as n ~ ~ i f p  < ( 2 d -  1) -1 . H e n c e p c ( L  d) > ( 2 d -  1) -1 . By 
es t imat ing N(n) more carefully, this lower bound may  be improved to 

(3.6) pc(L d) >_ #(d) -1. 
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We use a 'Peierls argument '  to obtain (3.5). Let M(n) be the number of closed 
circuits of the dual, having length n and containing 0 in their interior. Note that  
IC[ < oc if and only if M(n) > 1 for some n. Therefore 

(3.7) I-O(p) = Pp(,C, < oc) = P p ( ~  M(n) >_ l )  

oo 

< Z(n4 )(1 - p)-, 
n = 4  

where we have used the facts that  the shortest dual circuit containing 0 has length 
4, and that  the total  number of dual circuits, having length n and surrounding the 
origin, is no greater than n4 ~. The final sum may be made strictly smaller than 1 
by choosing p sufficiently close to 1, say p > 1 - ~ where c > 0. This implies tha t  
pr 2) < 1 - c .  

This upper bound may be improved to obtain pc(L 2) ~ 1 - tt(2) -1. Here is a 
sketch. Let Fm be the event that  there exists a closed dual circuit containing the 
box B(m) in its interior, and let Gm be the event that  all edges of B(m) are open. 
These two events are independent, since they are defined in terms of disjoint sets of 
edges. Now, 

Pp(Fm) <_ Pp M(n) >_ 1 <_ na, (1 
- -  n ~ 4 m  

where a,~ is the number  of paths of L 2 starting at the origin and having length n. 
It is the case that  n -1 logan --* log#(2) as n ~ oo. If 1 - p < #(2) -1, we may find 

1 However, m such that  Pp(F~) < 5" 

O(p) >_ Pp(Fm N Gin) = Pp(Fm)Pp(Gm) >_ �89 > 0 

if 1 - p < #(2) -1 . [] 

Issues related to this theorem include: 
�9 The counting of self-avoiding walks (SAWS). 
�9 The behaviour o fpc(L  d) as a function of d. 
�9 In particular, the behaviour of pc(L d) for large d. 

Kesten [200] proved that  pc(L 2) = 1 This very special calculation makes essen- 5" 
tial use of the self-duality of L 2 (see Chapter 9). There are various ways of proving 
the strict inequality 

pc(L d) - p c ( L  d+l) > 0 for d > 2, 

and good recent references include [20, 158]. 
On the third point above, we point out that  

1 1 7 1 ((_~d)4) pc(L a) = ~-~ + ~ - ~  + ~ (2d) ~ + O as d --~ oc. 
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See [178, 179, 180], and earlier work of [151,209]. 
We note finally the canonical arguments used to establish that  0 < pc(L d) < 1. 

The first inequality was proved by counting paths, and the second by counting 
circuits in the dual. These approaches are fundamental  to proofs of the existence of 
phase transit ion in a multi tude of settings. 

3.3 A QUESTION 

The definition of Pc entails that  

= 0  i f p < p c ,  
O(p) > 0  i f p > p c ,  

but what happens when p = pc? 

C o n j e c t u r e  3.8. O(pc) = O. 

This conjecture is known to be valid when d = 2 (using duality, see Section 
9.1) and for sufficiently large d, currently d > 19 (using the 'bubble expansion',  see 
Section 8.5). Concentrate your mind on the case d = 3. 

Let us turn to the existence of an infinite open cluster, and set 

r = Pp(IC(x)l = for  s o m e  x) .  

By using the usual zero-one law (see [170], p. 290), for any p either r  = 0 or 
r  = 1. Using the fact that  Z d is countable, we have that  

r 1 if and only if O(p) >0 .  

The above conjecture may therefore be written equivalently as r = 0. 
There has been progress towards this conjecture: see [50, 165]. It is proved that,  

when p ---- pc, no half-space of 7/~d (where d > 3) can contain an infinite open cluster. 
Therefore we are asked to eliminate the following absurd possibility: there exists 
a.s. an infinite open cluster in L d, but  any such cluster is a.s. cut into finite parts  
by the removal of all edges of the form (x, x + e), as x ranges over a hyperplane of 
L d and where e is a unit vector perpendicular to this hyperplane. 
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4. I N E Q U A L I T I E S  F O R  C R I T I C A L  P R O B A B I L I T I E S  

4.1 R u s s o ' s  FORMULA 

There is a fundamental  formula, known in this area as Russo's formula but  developed 
earlier in the context of reliability theory. Let E be a finite set, and let ~tE = {0, 1} E. 
For co C f/E and e C E,  we define the configurations co~, we by 

Sc~ if f :e, S co(f) if f :e, 
(4.1) coe(f) We(f) / 1 i f f  = e, ~ 0 i f f  = e. 

Let A be a subset of f/E, i.e., an event. For co E f/E, we call e pivotal for A if 

either w e E A ,  w e ~ A  or w e ~ A ,  w e C A ,  

which is to say that  the occurrence or not of A depends on the state of the edge e. 
Note tha t  the set of pivotal edges for A depends on the choice of w. We write NA 
for the number of pivotal edges for A (so that  NA is a random variable). Finally, 
let N : f/E --+ R be given by 

N(co) = co(r), 
eEE 

the ' to ta l  number of open edges'. 

T h e o r e m  4.2. L e t O < p < l .  
(a) For any event A, 

d Pp(A) - 1 COVp(N, 1A). 
dp p(1 p) 

(b) For any increasing event A, 

d 
~p Pp(A) = Ep(NA). 

Here, Pp and Ep are the usual product measure and expectation on ~tE, and 
COVp denotes covariance. 

Proof. We have tha t  

Pp(A) = E p N ( ~ ) ( 1  -- p)IEI--N(~)IA(CO) 
02 

whence 

_ 1 Ep({N - pIEI}IA), 
p(1 --p)  
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as required for par t  (a). 
Turning to (b), assume A is increasing. Using the definition of N,  we have tha t  

(4.3) COVp(N, 1A) = E {Pp(A N Je) -- pPp(A)} 
eEE 

where J~ = {w(e) = 1}. Now, writing {piv} for the event tha t  e is pivotal  for A, 

Pp(A n ge) = Pp(m n Je n {piv}) + Pp(d n Je N {not piv}). 

We use the impor tan t  fact tha t  J~ is independent of {ply}, which holds since the 
lat ter  event depends only on the states of edges f other than  e. Since AnJ~N{piv}  = 
Je N {piv}, the first t e rm on the right side above equals 

Pp(Jc n {piv}) = Pp(Je [ piv)Pp(piv) = pPp(piv), 

and similarly the second te rm equals (since Je is independent of the event A N 
{not piv}) 

Pv(Je [ A n {not piv})Pp(A n {not piv}) = pPp(A n {not piv}). 

Returning to (4.3), the summand  equals 

{pPp(piv) + pPp(A n {not piv})} - p{Pp(A n {piv}) + Pp(A N {not piv})} 

= pPp(A n {piv}) = PPp(Je [ piv)Pv(piv) 

= p(1 - p)Pp(piv). 

Insert  this into (4.3) to obtain par t  (b) from par t  (a). An alternative proof  of par t  
(b) may  be found in [G]. [] 

Although the above theorem was given for a finite product  space ~E,  the con- 
clusion is clearly valid for the infinite space ~ so long as the event A is finite- 
dimensional. 

The methods  above may  be used further to obtain formulae for the higher deriva- 
tives of Pp(A). First, Theorem 4.2(b) may  be generalised to obtain tha t  

d E , , ( X )  : 

e E E  

where X is any given random variable on ~ and 5~X is defined by $eX(w) = 
X(w ~) - X(w~). I t  follows that  

d 2 
dp 2 Ep( X ) = 

e,fEE 

Now 6~heX = 0, and for e r f 

= - - + 
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Let X = 1A where A is an increasing event. We deduce that 

d 2 
~pp2 Pp(A) = E { 1A(w~l)(1 - 1A(Wle))(1 -- 1A(co~)) 

e,fEE 

- 1A(co})IA(co[)(1 -- 1A(W~I)} 

= Ep(N~4 er) - Ep(NP4 at) 

where N~ er (resp. N par) is the number of distinct ordered pairs e, f of edges such 
that w ~I E A but w[,co} ~ A (resp. ~[,co} E A but w~ I ~ A). (The superscripts 
here are abbreviations for 'series' and 'parallel'.) This argument may be generalised 
to higher derivatives. 

4.2 ~TRICT INEQUALITIES FOR CRITICAL PROBABILITIES 

If s is a sublattice of the lattice s  (written s C_ s  then clearly pc(/2) > Pc(/:'), 
but when does the strict inequality pc(f-.) > Pc(/2') hold? The question may be 
quantified by asking for non-trivial lower bounds for pc(s -Pc ( s  

Similar questions arise in many ways, not simply within percolation theory. More 
generally, consider any process indexed by a continuously varying parameter  T and 
enjoying a phase transition at some point T = Tc. In many cases of interest, enough 
structure is available to enable us to conclude that certain systematic changes to 
the process can change Tc but that any such change must push Tc in one particular 
direction (thereby increasing To, say). The question then is to understand which 
systematic changes change Tc strictly. In the context of the previous paragraph, the 
systematic changes in question involve the 'switching on' of edges lying in s but 
not in/2. 

A related percolation question is that of 'entanglements'. Consider bond perco- 
lation on L 3, and examine the box B(n).  Think about the open edges as being solid 
connections made of elastic, say. Try to 'pull apart '  a pair of opposite faces of B(n).  
If p > Pc, then you will generally fail because, with large probability (tending to 1 
as n ~ co), there is an open path joining one face to the other. Even i fp  < Pc then 
you may fail, owing to an 'entanglement'  of open paths (a necklace of necklaces, 
perhaps, see Figure 4.1). It may be seen that there is an 'entanglement transition' 
at some critical point Pe satisfying Pe ~ Pc- Is it the case that strict inequality holds, 
i.e., Pe < Pc ? 

A technology has been developed for approaching such questions of strict in- 
equality. Although, in particular cases, ad hoc arguments can be successful, there 
appears to be only one general approach. We illustrate this approach in the next 
section, by sketching the details in a particular case. 

Important  references include [20, 157, 158, 269]. See also [75]. 
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Fig. 4.1. An entanglement between opposite sides of a cube in three dimensions. 
Note the necklace of necklaces on the right. 
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Fig. 4.2. The triangular lattice may be obtained from the square lattice by the 
addition of certain diagonals. 

4.3 THE SQUARE AND TRIANGULAR LATTICES 

The t r iangular  lattice T may be obtained by adding diagonals across the squares of 
the square lattice L 2, in the manner  of Figure 4.2. Since any infinite open cluster 
of L 2 is also an infinite open cluster of T, it follows that  pc(T) < pc(L2), but  does 
strict inequali ty hold? There are various ways of proving the strict inequality. Here 
we adopt the canonical argument  of [20], as an i l lustration of a general technique. 

Before embarking on this exercise, we point out that ,  for this particular case, 
there is a variety of ways of obtaining the result, by using special properties of the 
square and t r iangular  lattices. The at t ract ion of the method described here is its 
generality, relying as it does on essentially no assumptions about  graph-structure or 
number  of dimensions. 

First  we embed the problem in a two-parameter system. Let 0 < p, s < 1. We 
declare each edge of L 2 to be open with probabili ty p, and each further edge of T 
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(i.e., the dashed edges in Figure 4.2) to be open with probability s. Writing Pp,s for 
the associated measure, define 

0(p,s) =P~,~(o~oo). 

We propose to prove differential inequalities which imply that 00/0t) and O0/Os 
are comparable, uniformly on any closed subset of the interior (0, 1) 2 of the pa- 
rameter space. This cannot itself be literally achieved, since we have insufficient 
information about the differentiability of 0. Therefore we approximate 0 by a finite- 
volume quantity On, and we then work with the partial derivatives of On. 

For any set A of vertices, we define the 'interior boundary'  OA by 

OA = {a 6 A : a ~ b for some b ~ A}.  

Let B ( n )  = [ -n ,  n] d, and define 

(4.4) 0~(p, s) = pp,s(0 ~ oB(~) ) .  

Note that  On is a polynomial in p and s, and that 

O.(p, s) ~ O(p, s) as n ---, oo. 

L e m m a  4.5. There exists a positive integer L and a continuous strictly positive 
funct ion g :  (0, 1) 2 ~ (0, oo) such that 

(4.6) g ( p , s ) _ l O e n ( p , s )  > a 0~ ap _ ~ e~(p, s) > g(p, s) e~(p, s) 

forO < p , s  < 1, n >_ L. 

Once this is proved, the main result follows immediately, namely the following. 

T h e o r e m  4.7. It  is the case that pc(T) < pc(L2). 

Sketch Proof of Theorem 4.7. Here is a rough argument, which needs some rigour. 
There is a 'critical curve' in (p, s)-space, separating the regime where 0(p, s) = 0 
from that  when 0(p, s) > 0 (see Figure 4.3). Suppose that this critical curve may be 
written in the form h(p, s) = 0 for some increasing and continuously differentiable 
function h. It  is enough to prove that the graph of h contains no vertical segment. 
Now (oh,0h  

Vh= ~ ~ )  

and, by Lemma 4.5, 

whence 

Vh. (0, 1) = Oh > g(p,s) Oh 
0 ~ -  ~ '  

}-0 
IVh t Os - Op / Os ] + 1  > g - ~ '  
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Fig. 4.3. The critical 'surface'. The area beneath the curve is the set of (p,s) for 
which 0(p, s) = 0. 

which is bounded away from 0 on any closed subset of (0, 1) 2. This indicates as 
required tha t  h has no vertical segment. 

Here is the proper  argument .  There is more than  one way of defining the critical 
surface. Let Csub = {(p, s) : O(p, s) = 0}, and let Ccrit be the set of all points lying 
in the closure of bo th  Csub and its complement.  

Let ~ be positive and small, and find 7 (> 0) such tha t  g(p, s) > 7 on [% 1 - ~]2. 
At the point (a,b) C [~, 1 - ~712, the rate of change of 0,~(a, b) in the direction 
(cos a , -  sin a) ,  where 0 < a < ~, is 

(4.8) 00n 00~ 
VS~.  (cos a,  - sin a)  = ~ cos a - ~ -  sin a 

< 0 0 ~ ( c o s a _ T s i n a ) < 0  
- O a  

so long as t a n a  > .)/--1. 
Suppose O(a,b) = O, and t a n a  = , .~ -1 .  Let (a ' ,b ' )  = 

where e is small and positive. Then, by (4.8), 
(a, b) + e(cos a ,  - s i na )  

O(a', b') = lim On(a', b') <_ lim 0~(a, b) = 0(a, b) = 0, 
n - - - 4 o o  n - - - 4  ~ 

whence (a' ,  b') C Cs,b. 
There  is quite a lot of information in such a calculation, but  we abs t rac t  a small  

amount  only. Take a = b = pc(T) - ~ for some small positive ~. Then choose e large 
enough so tha t  a '  > pc(T). The above calculation, for small enough (, implies tha t  

O(a', O) <_ O(a', b') = O, 

whence pc(L 2) ~ a ' >  pc(T). [] 
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as(n) 

, -  . . . . . . . . . .  , 

o , 

Fig. 4.4. Inside the box B(n), the edge e is pivotal for the event {0 ~-+ OB(n)}. By 
altering the configuration inside the smaller box, we may construct a configuration 
in which f(e) is pivotal instead. 

Proof of Lemma 4.5. With  ]E 2 the edge set of L ~ , and IF the additional edges in the 
triangular lattice T (i.e., the diagonals in Figure 4.2), we have by Russo's formula 
(in a slightly more general version than Theorem 4.2) that  

(4.9) 

0 
Op On(p, s) = Z Pp,s(e is pivotal for An), 

eEI~ 
0 

On(p, s) = E Pp,s(f is pivotal for An), 
0---~ IEF 

where An = {0 ~ OB(n)}. The idea now is to show that  each summand  in the 
first summat ion  is comparable with some given summand  in the second. Actually 
we shall only prove the second inequality in (4.6), since this is the only one used in 
proving the theorem, and additionally the proof of the other part  is similar. 

Wi th  each edge e of E 2 we associate a unique edge f = f(e) of IF such tha t  f 
lies near to e. This may be done in a variety of ways, but  in order to be concrete 
we specify that  if e = (u, u + el) or e = (u, u + e2) then f = (u, u + el + e2), where 
el and e2 are unit vectors in the directions of the (increasing) x and y axes. 

We claim that  there exists a function h(p, s), strictly positive on (0, 1) 2, such 
that  

(4.10) h(p, s)Pp,8(e is pivotal for A,~) < Pp,8(f(e) is pivotal for An) 

for all e lying in B(n). Once this is shown, we sum over e to obtain by (4.9) tha t  

h(p, S)~p On(p, s) < E Pp,s(f(e) is pivotal for An) 
e~E 2 

<_ 2 E Pp,s(f is pivotal for An) 
f~F 
0 

= On(p, s) 

as required. The factor 2 arises because, for each f (E IF), there are exactly two 
edges e with f(e) = f. 
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Finally,  we indicate  the reason for (4.10). Let us consider the  event {e is pivotal  
for As} .  We claim tha t  there exists an integer M,  chosen uniformly for edges e in 
B(n) and for all large n, such tha t  

(a) all pa ths  from 0 to OB(n) pass through the region e + B(M) 
(b) by al ter ing the configuration within e + B(M) only, we may  obta in  an event 

on which f(e) is pivotal  for As .  
This  c laim is proved by inspecting Figure 4.4. A special a rgument  may  be needed 
when the box e + B(M) either contains the origin or intersects OB(n), but  such 
special  a rguments  pose no substant ia l  difficulty. Once this geometr ical  c la im is 
accepted,  (4.10) follows thus. Wri te  Eg for the event tha t  the edge g is p ivota l  for 
As .  For w 6 E~, let w' = w'(w) be the configuration obta ined as above, so tha t  w' 
agrees wi th  w off e + B(M), and fur thermore  w' E Ef(~). Then 

1 
Pp,~(E~) = E Pp,~(w) <_ E ~gPP,~(J) <- Pp,~(Ef(~)) 

wEEe wEE~ 

where a = min{p, s, 1 - p, 1 - s} and R is the number  of edges of T in e + B(M). [] 

4.4 ENHANCEMENTS 

An ' enhancement '  is loosely defined as a sys temat ic  addi t ion  of connections accord- 
ing to local rules. Enhancements  may  involve further coin flips. Can an enhancement  
create an infinite cluster when previously there was none? 

Clear ly  the  answer can be negative. For example  the rule may  be of the  type:  
join any two neighbours of Z d with probabi l i ty  1 ~Pc, whenever they  have no incident  
open edges. Such an enhancement  creates ex t ra  connections but  (a.s.) no ex t ra  
infinite cluster.  

Here is a proper  definition. Consider bond percola t ion on L d wi th  pa rame te r  p, 
and consider enhancements  of the following type.  Let R > 0, and let f be a function 
which associates  to each configuration on the box B(R) a graph on Z d wi th  finitely 
many  edges. For each x E Z d, we observe the configuration w on the box x + B(R), 
and we wri te  f(x, w) for the associated evaluat ion of f .  The enhanced configurat ion 
is the  g raph  

where G(w) is the  graph of open edges, and {H(x)  : x 6 Z d} is a family of Bernoull i  
r andom variables,  each tak ing  the value 1 with probabi l i ty  s ( independent ly  of 
everything else). The  pa rame te r  s is the  'densi ty '  of the enhancement .  In wri t ing 
the union of graphs,  we mean the graph with vertex set Z d having the union of the 
appropr ia t e  edge sets. 

We call  such an enhancement  essential if there exists a percola t ion  configurat ion 
w conta ining no doubly-infini te  open pa th  but  such tha t  G ( w ) u  f (0 ,  w) does contain  
such a pa th .  The following theorem is taken from [20] and may  be proved in a 
manner  s imilar  to the proof  given in the last section. 
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I / 
Fig. 4.5. A sketch of the enhancement which adds an edge between any two inter- 
locking 2 x 2 squares in L 3 . 

T h e o r e m  4.11.  Let  s > O. For  any essent ial  enhancement ,  there exists  a non- 
empty  in terval  (zr(s) ,pc)  such that  

P(G(enh )  contains an infinite cluster ) > 0 

when 7r(s) < p <_ Pc. 

Tha t  is, essential enhancements  shift the critical point s tr ic t ly .  Here is such an 
enhancement  relevant to the entanglement  t ransi t ion in L 3. Whenever we see two 
interl inking 2 • 2 open squares, then we join them by an edge (see Figure 4.5). It 
is easy to see that  this enhancement  is essential, and therefore it shifts the critical 
point downwards. Hence the entanglement  critical point Pe satisfies Pe < Pc. See 
[20, 198]. 

Final ly  we note that  one may find explicit functions g in Lemma 4.5, whence the 
mechanism of the method leads to numerical  lower bounds on the change in critical 
value. 
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5. CORRELATION INEQUALITIES 

5.1 F K G  INEQUALITY 

The FKG inequality for percolation processes was discovered by Harris [181], and 
is often named now after the authors of [144] who proved a more general version 
which is the subject of this section. 

Let E be a finite set, and ~E ---- {0, 1} E as usual. We write -~E for the set of all 
subsets of g/E, and call a probability measure # on (~E, JZE) positive if #(0)) > 0 
for all 0) G g/E. 

T h e o r e m  5.1 ( F K G  I n e q u a l i t y ) .  Let # be a positive probability measure on 
(~E, ~E) such that 

(5.2) #(0)1 V 0)2)#(wl A w2) _> #(0)1)#(0)2) for all 0)1,0)2 E gtE. 

Then 

(5.3) ~(fg) > p( f )p(g)  

for all increasing random variables f ,  g : ~ E  ~ ~. 

Here, 0)1 V 0)2 and 0)1 A 0)2 are defined as the maximum and minimum configura- 
tions, 

0)1 V 0)2(e) = max{0)l(e),0)2(e)}, 0)1 A 0)2(e) = min{0)l(e),0)2(e)}, 

for all e E E.  In (5.3), we have used # to denote expectation as well as probability. 
Specialising to the indicator functions f = 1A, g ---- 1B, inequality (5.3) implies 

that  

(5.4) p(A A B) >_ #(A)p(B)  for increasing events A, B. 

It  is easily checked that  the product  measure Pp satisfies the hypotheses of the 
theorem (when 0 < p < 1), and therefore Pp satisfies the FKG inequality (5.3). 
This inequality may be proved directly in the special case of product  measure (see 
[G], p. 26). Here we shall prove the more general theorem given above. The proof 
proceeds by first proving a theorem about stochastic orderings of measures, usually 
called Holley's inequality after [192]. 

T h e o r e m  5.5 ( H o l l e y ' s  I n e q u a l i t y ) .  Let tq and #2 be positive probability mea- 
sures on ( ~ E ,  iCE) such that 

(5.6) Pl(wl V w2)U2(w 1 A 0)2) ~ //~1(w1)#2(0)2) for  all 0)1,0)2 e g/E. 

Then 

# l ( f )  ~ #2(f )  for all increasing f : g/E ~ •, 

which is to say that #l >_ #2. 
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Proof of Theorem 5. 5. The theorem is 'merely'  a numerical inequality involving a 
finite number  of positive reals. It may be proved in a totally elementary manner,  
using essentially no general mechanism. Nevertheless, in a more useful (and re- 
markable) proof we construct Markov chains and appeal to the ergodic theorem. 
This requires a mechanism, but the method is beautiful, and in addition yields a 
structure which finds applications elsewhere. 

The main step is the proof that  #1 and P2 can be 'coupled' in such a way that  the 
component  with marginal measure #1 lies above (in the sense of sample realisations) 
that  with marginal measure P2. This is achieved by constructing a certain Markov 
chain with the coupled measure as unique invariant measure. 

Here is a preliminary calculation. Let # be a positive probability measure on 
(~E, FE).  We may construct a time-reversible Markov chain with state space ft~ 
and unique invariant measure #, in the following way. We do this by choosing a 
suitable generator (or 'Q-matr ix ' )  satisfying the detailed balance equations. The 
dynamics of the chain involve the 'switching on or off' of components of the current 
state. For w C ~E, let w e and we be given as in (4.1). Define the function G : Ft~ 
R by 

it(wo) 
(5.7) G(we,w e) = 1, G(w e,we) - i t (we),  

for all w E ~E,  e C E; define G(w,w I) = 0 for all other pairs w , J  with w ~ J .  The 
diagonal elements are chosen so that  

E G(w, w') = 0 for all w E f/E. 
02  I 

It is elementary that  

it(w)G(w, w') = i t ( J )G(w ' ,  w) for all w, w' e ~E,  

and therefore G generates a time-reversible Markov chain on the state space ~E.  
This chain is irreducible (using (5.7)), and therefore has a unique invariant measure 
it (see [170], p. 208). 

We next follow a similar route for pairs of configurations. Let it1 and it2 satisfy 
the hypotheses of the theorem, and let S be the set of all pairs ( r ,  w) of configurations 
in ~E satisfying ~ _< w. We define H : S • S ~ R by 

(5.8) H( e, w; we : 1, 

itl(we) 
(5.9) H(Tr, we;~re,we - it l(we) ' 

it2( e) itl(we) 
(5.10) H(Tr e, we; re, w e - it2( e) it (we)' 

for all (~, w) C S and e C E; all other off-diagonal values of H are set to 0. The 
diagonal terms are chosen so that  

E H(Tr, w; lr', w') = 0 for all (lr, w) �9 S. 
7 r  I , o )  I 



180 

Equat ion  (5.8) specifies tha t ,  for 7r E ~tE and e C E,  the edge e is acquired by 7r 
(if it  does not  a l ready  contain it) at  ra te  1; any edge so acquired is added also to 
w if it does not a l ready contain it. (Here, we speak of a configuration r containing 
an edge e if r  = 1.) Equat ion  (5.9) specifies that ,  for w E ~-tE and e e E with  
w(e) = 1, the  edge e is removed from co (and also from 7r if 7r(e) = 1) at  the ra te  
given in (5.9). For e with ~r(e) = 1, there is an addi t ional  ra te  given in (5.10) at  
which e is removed from 7r but  not from w. We need to check tha t  this addi t iona l  
ra te  is indeed non-negative.  This poses no problem, since the required inequal i ty  

~l(~e)~2(~e) > .l(~e).2(~ e) where ~ < co 

follows from assumpt ion  (5.6). 
Let (Xt, Yt)t>_o be a Markov chain on S having generator  H,  and set (Xo, !:0) = 

(0, 1), where 0 (resp. 1) is the s ta te  of all 0's (resp. l ' s ) .  By examina t ion  of (5.8) 
(5.10) we see tha t  X = (Xt)t>_o is a Markov chain with generator  given by (5.7) 
with # = P2, and tha t  Y = (Yt)t_>0 arises s imilar ly  with # = Pl .  

Let  n be an invariant  measure for the paired chain (Xt, Yt)t>_o. Since X and Y 
have (respective) unique invariant measures #2 and Pl ,  it follows tha t  the marginals  
of n are P2 and p l .  We have by construct ion tha t  

~ ( { ( % w )  : 7r < co}) = 1, 

and ~ is the required 'coupling '  of # t  and tt2. 
Let (Tr, w) E S be chosen according to the measure  n. Then  

p~(f) : ~c(f(ca)) > ~(f(~-)) = .2(f), 

for any increasing function f .  Therefore #1 _> #2. [] 

Proof of Theorem 5.1. Assume tha t  # satisfies (5.2), and let f and g be increasing 
functions. By adding a constant  to the function g, we see tha t  it suffices to prove 
(5.3) under  the ex t ra  hypothesis  tha t  g is s t r ic t ly  positive. We assume this holds. 
Define posi t ive probabi l i ty  measures #1 and #2 on (fiE, 9rE) by #2 = # and 

g(w)P(~) for w e hE. 

Since g is increasing, (5.6) follows from (5.2). By Holley's  inequality, 

p l ( f )  ~ ~2(f ) ,  

which is to say tha t  

-> Z 

as required.  [] 
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5.2 DISJOINT OCCURRENCE 

Van den Berg has suggested a converse to the FKG inequality, namely that ,  for 
some interpretation of the binary operation o, 

Pp(A o B) ~_ Pp(A)Pp(B) for all increasing events A, B. 

The correct interpretation of A o B turns out to be 'A and B occur disjointly'. We 
explain this s ta tement  next. 

As usual, E is a finite set, ~ E  = {0, 1} E, and so on. For w E gtE, let 

K(w) = {e e E:  w(e) = 1}, 

so that  there is a one-one correspondence between configurations w and sets K(w). 
For increasing events A, B, let 

A o B = {w : for some H C_ K(w), we have that  w ~ e A and J '  C B, 

where K(w')  = H and K(a / ' )  = g(w) \ H } ,  

and we call A o B the event that  A and B occur disjointly. 
The canonical example of disjoint occurrence in percolation theory concerns the 

existence of disjoint open paths. If A = {u ~ v} and B = {x ~ y}, then A o B is 
the event tha t  are two edge-disjoint paths, one joining u to v, and the other joining 
x t o y .  

T h e o r e m  5.11 ( B K  I n e q u a l i t y  [67]). IrA and B are increasing events, then 

Pp(A o B) < Pp(A)Pp(B). 

Proof. The following sketch can be made rigorous (see [58], and [G], p. 32). For 
the sake of being concrete, we take E to be the edge-set of a finite graph G, and 
consider the case when A = {u ~ v} and B = {x ~ y} for four distinct vertices 
U~ V, X, y. 

Let e be an edge of E. In the process of 'splitting' e, we replace e by two copies 
e t and e n of itself, each of which is open with probability p (independently of the 
other, and of all other edges). Having split e, we look for disjoint paths from u to 
v, and from x to y, but with the following difference: the path  from u to v is not 
permit ted to use e ' ,  and the path from x to y is not permit ted to use e t. 

The crucial observation is that  this splitting cannot decrease the chance of finding 
the required open paths. 

We split each edge in turn, the appropriate probability being non-decreasing at 
each stage. After every edge has been split, we are then looking for two paths within 
two independent copies of G, and this probability is just Pp(A)Pp(B). Therefore 

Pp(A o B) < . . .  < Pp(A)Pp(B). [] 

Van den Berg and Kesten [67] conjectured a similar inequality for arbi t rary A 
and B (not just the monotone events), with a suitable redefinition of the operation 
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o. Their conjecture rebutted many serious a t tempts  at proof, before 1995. Here is 
the more general statement.  

For w E fiE, K C_ E,  define the cylinder event 

C ( w , K )  = {w' :  w'(e) = w(e) for e e K}. 

Now, for events A and B, define 

= {w:  for some K C_ E,  we have C(w,K) c_ A and C(w,-K) C_ B} .  A [ ] B  

Theorem 5.12 (Reimer's Inequality [322]). For all events A and B, 

PR(A [] B) < Pp(A)PB(B). 

The search is on for 'essential' applications of this beautiful inequality; such an 
application may be found in the study of dependent percolation models [65]. Related 
results may  be found in [62, 64]. 

Note that  Reimer 's  inequality contains the FKG inequality, by using the fact 
that  A [] B = A n B if A and B are increasing events. 

5.3 SITE AND BOND PERCOLATION 

Let G = (V, E) be an infinite connected graph with maximum vertex degree A. For 
a vertex x, define O(p, x, bond) (resp. O(p, x, site)) to be the probability that  x lies 
in an infinite open cluster of G in a bond percolation (resp. site percolation) process 
on G with parameter  p. Clearly O(p, x, bond) and O(p, x, site) are non-decreasing in 
p. Also, using the FKG inequality, 

O(p, x, bond) > Pp ({x ~ y} n {y ~ oe}) _> Pp(x ~ y)O(p, y, bond), 

with a similar inequality for the site process. It follows that  the critical points 

pc(bond) = sup{p:  O(p, x, bond) = 0}, 

pc(site) = sup{p:  O(p, x, site) = 0), 

exist and are independent of the choice of the vertex x. 

Theorem 5.13. We have that 

1 < pc(bond) < pc(site) < 1 -  (1 - p c ( b o n d ) )  A. (5.14) A - 1 - - - 

One consequence of this theorem is that  pc(bond) < 1 if and only if pc(site) < 1. 
The third inequality of (5.14) may be improved by replacing the exponent A by 
A - 1, but  we do no prove this here. Also, the methods of Chapter  4 may be used to 
establish the strict inequality pc(bond) < pc(site). See [169] for proofs of the latter 
facts. 
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Proof. The first inequality of (5.14) follows by counting paths, as in the proof of 
(3.4). We turn  to the remaining two inequalities. Let 0 be a vertex of G, called the 
origin. We claim that  

(5.15) C' (p, O, site) _< C(p, O, bond) 

and 

(5.16) C(p, O, bond) _< C'(p', O, site) if p' >_ 1 - (1 - p)A, 

where "<" denotes stochastic ordering, and where C(p, O, bond) (resp. C'(p, O, site)) 
has the law of the cluster of bond percolation at the origin (resp. the cluster of site 
percolation at the origin conditional on 0 being an open site). Since 

O(p, O, bond) = Prob(lC(p,  0, bond) l = oc), 

p-iO(p, O, site) = Prob( lC ' (p ,  0, site) l = oo), 

the remaining claims of (5.14) follow from (5.15) (5.16). 
We construct appropriate couplings in order to prove (5.15)-(5.16). Let w E 

{0, 1} E be a realisation of a bond percolation process on G = (V, E) with density 
p. We may build the cluster at the origin in the following standard manner.  Let 
el, e2 , . . ,  be a fixed ordering of E. At each stage k of the inductive construction, 
we shall have a pair (Ak, Bk) where Ak C_ V, Bk C_ E. Initially we set Ao = {0}, 
B0 = O. Having found (Ak, Bk) for some k, we define (Ak+i, Bk+i) as follows. We 
find the earliest edge ei in the ordering of E with the following properties: ei ~t Bk, 
and ei is incident with exactly one vertex of Ak, say the vertex x. We now set 

Ak if ei is closed, 
(5.17) Ak+i = Ak U {y} if ei is open, 

Bk U {ei} if ei is closed, 
(5.18) Bk+i = Bk if e~ is open, 

where e~ = (x, y). If no such edge ei exists, we declare (Ak+i, Bk+l) = (Ak, Bk). 
The sets Ak, Bk are non-decreasing, and the open cluster at the origin is given by 
Aoo = l i m k ~  Ak. 

We now augment the above construction in the following way. We colour the 
vertex 0 red. Furthermore, on obtaining the edge ei given above, we colour the 
vertex y red if ei is open, and black otherwise. We specify that  each vertex is 
coloured at most once in the construction, in the sense that  any vertex y which is 
obtained at two or more stages is coloured in perpetuity according to the first colour 
it receives. 

Let Aoo(red) be the set of points connected to the origin by red paths of G. It 
may be seen that  A~( red )  C_ A ~ ,  and that  A~(red)  has the same distribution as 
C'(p, O, site). Inequality (5.15) follows. 

The derivation of (5.16) is similar but slightly more complicated. We start  with a 
-----+ 

directed version of G, namely G = (V, E ) obtained from G by replacing each edge 
e = (x, y) by two directed edges, one in each direction, and denoted respectively by 
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[x, y) and [y,x>. We now let - J  E {0, 1} ~ be a realisation of an (oriented) bond 

percolation process on G with density p. 
We colour the origin green. We colour a vertex x (5  0) green if at least one edge 

f of the form [y,x) satisfies - J ( f )  = 1; otherwise we colour x black. Then 

(5.19) Pp(x is green) = 1 - (1 -p)P(=) _< 1 - (1 - p ) A ,  

where p(x) is the degree of x, and A = max= p(x). 
We now build a copy A ~  of C(p, O, bond) more or less as described above in 

(5.17)-(5.18). The only difference is that,  on obtaining the edge ei = (x, y} where 
x E Ak, y ~ Ak, we declare ei to be open for the purpose of (5.17)-(5.18) if 
and only if ~ ( [ x , y / )  = 1. Finally, we set Ac~(green) to be the set of points 
connected to the origin by green paths. It may be seen that  A~(green)  D A~ .  
Furthermore, by (5.19), Am(green) is no larger in distribution that  C'(p', 0, site) 
where p' = 1 - (1 - p)ZX. Inequality (5.16) follows. [] 
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6. S U B C R I T I C A L  P E R C O L A T I O N  

6.1 USING SUBADDITIVITY 

We assume throughout this chapter that p < pc. All open clusters are a.s. finite, 
and the phase is sometimes called 'disordered' by mathematical physicists, since 
there are no long-range connections. In understanding the phase, we need to know 
how fast the tails of certain distributions go to zero, and a rule of thumb is that 
'everything reasonable' should have exponentially decaying tails. In particular, the 
limits 

should exist, and be strictly positive when p < pc. The function r measures a 
'distance effect' and ~(p) a 'volume effect'. 

The existence of such limits is a quite different matter from their positiveness. 
Existence is usually proved by an appeal to subadditivity (see below) via a correla- 
tion inequality. To show positiveness usually requires a hard estimate. 

T h e o r e m  6.1 (Subadd i t ive  Inequa l i ty ) .  I f  (xr : r > 1) is a sequence of  reals 
satisfying the subadditive inequality 

Xm+n ~_ Xm + X,~ for  all m, n, 

then the limit 

exists, with -cx~ <_ A < co, and satisfies 

A inf{ 1 } = - x r : r _ ~ l  �9 
r 

The history here is that the existence of exponents such as r and ((p) was 
shown using the subadditive inequality, and their positiveness was obtained under 
extra hypotheses. These extra hypotheses were then shown to be implied by the 
assumption p < Pc, in important papers of Aizenman and Barsky [13] and Menshikov 
[268, 271]. The case d -- 2 had been dealt with earlier by Kesten [200, 202]. 

As an example of the subadditive inequality in action, we present a proof of the 
existence of r (and other things . . . ) .  The required 'hard estimate' is given in 
the next section. We denote by el a unit vector in the direction of increasing first 
coordinate. 
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T h e o r e m  6.2. 

(6.3) 

(6.4) 

exist and are equal. 

Let O < p < l. The limits 

el (p)  = n l im{ - 1  logPp(O~-*OB(n))}, 

r = l i r a {  - 1  logPp(O~-*nel)}, 

Before proving this theorem, we introduce the important  concept of 'correlation 
length'.  Suppose that  p < Pc. In the next section, we shall see that  the common 
limit r in (6.3)-(6.4) is strictly positive (whereas it equals 0 when p _> Pc). At a 
basic mathemat ica l  level, we define the subcritical correlation length ~(p) by 

(6.5) ~(p) = 1/r  for p < Pc. 

The physical motivation for this definition may be expressed as follows. We begin 
with the following statistical question. Given certain information about the existence 
(or not) of long open paths in the lattice, how may we distinguish between the two 
hypotheses that  p = Pc and that  p < Pc. In particular, on what ' length-scale' need 
we observe the process in order to distinguish these two possibilities? In order to be 
concrete, let us suppose that  we are told that  the event An = {0 ~ OB(n)} occurs. 
How large must n be that  this information be helpful? In performing the classical 
statistical hypothesis test of H0 : p = Pc versus H1 : p = p', where p'  < Pc, we will 
reject the null hypothesis if 

(6.6) Pp, (An) > flPpc (As) 

where fl (< 1) is chosen in order to adjust the significance level of the test. 
Now Pp(An) is 'approximately '  e -nr and we shall see in the next section 

that  r > 0 if and only if p < Pc. (The fact that  r = 0 is slightly delicate; 
see [G], equation (5.18).) Inequality (6.6) may therefore be written as nr  < 
O(1), which is to say that  n should be of no greater order than ~(p') = 1/r 
This statistical discussion supports the loosely phrased s tatement  that  'in order to 
distinguish between bond percolation at p = Pc and at p = pP, it is necessary to 
observe the process over a length-scale of at least ~(pP)'. 

The existence of the function r in Theorem 6.2 will be shown using s tandard 
results associated with the subadditive inequality. When such inequalities are ex- 
plored carefully (see [G], Chapter  5), they yield some smoothness of r namely that  
r is continuous and non-increasing on (0, 1], and furthermore that  r = 0. Taken 
together with the fact that  X(P) >_ r  (see [27, G]), we obtain tha t  

(6.7) x(pc) 

Now r = 0 when p > Pc (since PB(An) > 0(p) > 0). Therefore the above 
discussion needs more thought in this case. In defining the supercritical correlation 
length, it is normal  to work with the ' t runcated '  probabilities Pp(An, ]C I < c~). It  
may  be shown ([95, 165]) that  the limit 

(6.8) = 1 ,og (0 
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exists for all p, and satisfies r > 0 if and only if p ~ Pc. We now define the 
correlation length {(p) by 

(6.9) { ( p ) = l / r  f o r O < p <  1. 

Proof of Theorem 6.2. Define the (two-point) connectivity function rp(X,y) = 
Pp(x *-+ y). Using the FKG inequality, 

~(x,  y) >_ P~({x ~ z} n {z ~ y}) _> ~(x,  z>~(z, y) 

for any z C 77, d. Set x = 0, z = me1, y = ( m + n ) e l ,  to obtain tha t  rp(r) = 
Pv(O ~ re1) satisfies rv (m + n) >_ rv(m)rp(n  ). Therefore the limit r exists by 
the subaddit ive inequality. 

The  existence of r (p) may  be shown similarly, using the BK inequality as follows. 
Note tha t  

{0+-+aB(m+n)}g U {{0~x}o{x+-+x+aB(n)}} 
xEOB(m) 

(this is geometry) .  Therefore tip(r) = Pp(O ~-+ OB(r))  satisfies 

~('~ + ~) -< Z ~p(o,x)~p(~). 
x6OB(m) 

Now rp(O, x) <_ tip(m) for x e aB(m), so tha t  

&(m § n) <_ IOB(m)lgAm)9p(n). 

With  a little ingenuity, and the subadditive inequality, we deduce the existence of 
r in (6.3). Tha t  r >_ r follows from the fact tha t  Tp(O, nel)  < tip(n). 
For the converse inequality, pick x E OB(n) such tha t  

~p(o,  z )  > - -  

and assume tha t  Xl = +n.  Now 

1 

rp(0, x) 2 >_ 

by the F K G  inequality. [] 
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6.2 EXPONENTIAL DECAY 

The target of this section is to prove exponential decay for connectivity functions 
when p < Pc, i.e., that  the common limit r in (6.3)-(6.4) is strictly positive when 
0 < p < p c .  

T h e o r e m  6.10. There exists r satisfying r  > 0 when 0 < p < Pc, such that 

(6.11) Pp(O ~ 0 /~(n ) )  < e -nr  for  all n. 

It is straightforward to obtain inequality (6.11) with some ~(p) which is strictly 
positive when p < (2d - 1)-1; just follow the proof of (3.4). The problem is to 
extend the conclusion from 'small positive p'  to 'all subcritical values of p'. Such 
a difficulty is canonical: one may often obtain estimates valid for sufficiently small 
(resp. large) p, but one may require such estimates all the way up to (rasp. down 
to) the critical value Pc. 

We prove Theorem 6.10 via Menshikov's method [268, 271] rather than that  
of Aizenman-Barsky  [13]. The proof given below is essentially a reproduction of 
that  given in [G], but with the correction of a minor error on page 50 of [G]. The 
equation, theorem, and figure numbers are taken unchanged from [G], pages 47-561. 
It is a minor convenience here to work with the ball S(n) = {x E Z d : 5(0, x) <_ n} 
containing all points within graph-theoretic distance n of the origin. Note that  
S(n) is a 'd iamond '  (see the forthcoming figure labelled Fig. 3.1), and write A~ = 
{0 ~ 0S(n)}.  

(The remainder of this section is extracted largely from [G]) 

Let S(n, x) be the ball of radius n with centre at the vertex x, and let OS(n, x) be 
the surface of S(n, x); thus S(n, x) : x + S(n) and OS(n, x) = x + OS(n). Similarly, 
let A~(x) be the event that  there is an open path from the vertex x to some vertex 
in OS(n, x). We are concerned with the probabilities 

gp(n) = Pp(An) = Pp(An(x)) for any x. 

Now An is an increasing event which depends on the edges joining vertices in S(n) 
only. We apply Russo's formula to Pp(An) to obtain 

(3.9) gp(n) = Ep(N(A~)) 

where the prime denotes differentiation with respect to p, and N(A~) is the number 
of edges which are pivotal for An. It follows as in (2.29) 2 that  

1 Ep(N(An); An) g ; ( n )  : 

: ! Ep(N(A ) I 
P 

1Reproduced with the kind permission of Springer Verlag, which holds the copyright. 
2See Theorem 4.2 of the current lecture notes. 



~2 ~ el 

e3 

e4 01 -- 

J I _ / 

189 

Fig. 3.1. A picture of the open cluster of S(7) at the origin. There are exactly four 
pivotal edges for An in this configuration, and these are labelled el, e2, e3, e4. 

so tha t  

(3.10) 1 g'p(n) = 1 Ep(N(An) [ A~). 
gp(n) p 

Let 0 < c~ < fl < 1, and integrate (3.10) from p = c~ to p = fl to obta in  

(3.11) . q ~ ( n )  = g ~ ( n )  e x p  - 

<_ g~(n) exp - G ( N ( A ~ )  I A ~ ) e p  , 

as in (2.30). We need now to show tha t  Ep(N(A~) ] An) grows roughly l inearly 
in n when p < Pc, and then this inequali ty will yield an upper  bound for g~(n) of 
the form required in (3.5). The vast ma jo r i ty  of the work in the proof  is devoted 
to es t ima t ing  Ep(N(An) ] An), and the argument  is roughly as follows. If p < Pc 
then Pp(A~) ---* 0 as n ~ e~, so tha t  for large n we are condit ioning on an event of 
smal l  probabi l i ty .  If An occurs, 'bu t  only jus t ' ,  then the connections between the 
origin and OS(n) must  be sparse; indeed, there must  exist many  open edges in S(n) 
which are crucial for the occurrence of A,~ (see Figure 3.1). I t  is plausiblc tha t  the  
number  of such pivota l  edges in pa ths  from the origin to 0S(2n) is approx ima te ly  
twice the  number  of such edges in pa ths  to OS(n), since these sparse pa ths  have to 
traverse twice the distance. Thus the number  N(A,~) of edges pivotal  for An should 
grow l inearly in n. 
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Suppose that  the event An occurs, and denote by e l , e 2 , . . . ,  eN the (random) 
edges which are pivotal for An. Since An is increasing, each ej has the property 
that  A,~ occurs if and only if ej is open; thus all open paths from the origin to OS(n) 
traverse ej, for every j (see Figure 3.1). Let 7r be such an open path; we assume 
that  the edges el, e2 , . . .  , eN have been enumerated in the order in which they are 
traversed by ~r. A glance at Figure 3.1 confirms that  this ordering is independent 
of the choice of 7r. We denote by xi the endvertex of ei encountered first by 7r, 
and by Yi the other endvertex of ei. We observe that  there exist at least two edge- 
disjoint open paths joining 0 to xl,  since, if two such paths cannot be found then, 
by Menger's theorem (Wilson 19793, p. 126), there exists a pivotal edge in zr which 
is encountered prior to xl ,  a contradiction. Similarly, for 1 < i < N,  there exist at 
least two edge-disjoint open paths joining Yi to Xi+l; see Figure 3.2. In the words of 
the discoverer of this proof, the open cluster containing the origin resembles a chain 
of sausages. 

As before, let M = max{k : Ak occurs} be the radius of the largest ball whose 
surface contains a vertex which is joined to the origin by an open path. We note that,  
i fp  < Pc, then M has a non-defective distribution in that  Pv(M >>_ k) = gp(k) ~ 0 
as k ~ oc. We shall show that,  conditional on An, N(An) is at least as large as 
the number  of renewals up to time n of a renewal process whose inter-renewal times 
have approximately the same distribution as M. In order to compare N(An)  with 
such a renewal process, we introduce the following notation. Let pl = 5(0, xl)  and 
Pi+l = 5(yi,xi+l) for 1 _< i < N. The first step is to show that,  roughly speaking, 
the random variables pl, p2 , . . ,  are jointly smaller in distribution than a sequence 
M1, M 2 , . . .  of independent random variables distributed as M. 

(3.12) L e m m a .  Let k be a positive integer, and let r l , r2 , . . .  ,rk be non-negative 
k integers such that ~i=1 ri < n - k. Then, for 0 < p < 1, 

(3.13) Pv(Pk <-- rk, Pi = ri for l < i < k [ A n )  

> Pp(M <_ rk)Pp(p~ = r i  for 1 _< i < k [ A n ) .  

Proof. Suppose by way of illustration that  k = 1 and 0 _< rl  < n. Then 

(3.14) {Pl > r l}  C1 An C ATI+I o An, 

since if Pl > r l  then the first endvertex of the first pivotal edge lies either outside 
S(rl  + 1) or on its surface OS(rl + 1); see Figure 3.2. However, Ar l+l  and An 
are increasing events which depend on the edges within S(n) only, and the BK 
inequality yields 

Pp({pl > rl} (3 An) <_ Pp(ATI+I)Pp(An). 

We divide by Pp(An) to obtain 

Pp(Pl > rl I A,~) <_ gp(r 1 4- 1); 

however Pp(M > m) = gp(m), and thus we have obtained (3.13) in the case k = 1. 

3Reference [359]. 
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Fig. 3.2. The pivotal edges are e~ = (x~,y~ I for i = 1,2,3,4. Note that x3 = Y2 
in this configuration. The dashed line is the surface OS(pl) of S(pl). Note the two 
edge-disjoint paths from the origin to OS(pl). 

We now prove the  ] e m m a  for general  values of k. Suppose  t h a t  k > 1, a n d  let 
r l ,  r 2 , . . .  , rk be non-nega t ive  integers wi th  s u m no t  exceeding n - k. Let N be the  
n u m b e r  of edges which are p ivota l  for An;  we e n u m e r a t e  and  label  these edges as 
e~ = (xi,  Yi) as before. 

(The following section in italics replaces an incorrect passage in [G].) 
For any edge e = (u, v), let De be the set of vertices attainable from 0 along open 

paths not using e, together with all open edges between such vertices. Let Be be the 
event that the following statements hold: 

(a) exactly one of u or v lies in De, say u, 
(b) e is open, 
(c) De contains no vertex of OS(n),  
(d) the pivotal edges for  the event {0 ~ v} are, taken in order, (xl ,  Yl), (x2, Y2), 

�9 ' ' ,  (2Ck--2, Yk--2), (Xk--1, Yk--1) = e, where $(Y~-I, x~) = r~ for  1 < i < k, and 
y o = 0 .  

We now define the event B = U e B e .  For w E An N B,  there is a unique e = e(w) 
such that Be occurs. 

For  w C B,  we consider  the  set of vertices and  open  edges a t t a i n a b l e  a long open  
pa ths  f rom the  or igin  w i thou t  us ing  e = e(w); to this  graph we a p p e n d  e a n d  its 
o the r  endver tex  v = Yk-1, and  we place a m a r k  over Yk-1 in order  to d i s t ingu i sh  it  
from the  o ther  vertices. We denote  by G = De the resu l t ing  (marked)  graph,  and  
we wr i te  y(G) for the  un ique  marked  ver tex of G. We cond i t ion  on  G to o b t a i n  

G(A~ n B) = ~ G(B,  G = r)Pp(A~ I B ,  G = r),  
F 
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Fig. 3.3. A sketch of the event Be. The dashed line indicates that  the only open 
'exit '  from the interior is via the edge e. Note the existence of 3 pivotal edges for the 
event that  0 is connected to an endvertex of e. 

w h e r e  t h e  s u m  is over  al l  poss ib le  values  F of G. T h e  f inal  t e r m  in t h i s  s u m m a t i o n  
is t h e  p r o b a b i l i t y  t h a t  y (F )  is j o i n e d  to  OS(n) by  a n  o p e n  p a t h  w h i c h  h a s  no  v e r t e x  

o t h e r  t h a n  y ( F )  in  c o m m o n  w i t h  F. T h u s ,  in t h e  obv ious  t e r m i n o l o g y ,  

(3.15) PB(A, N B) = E Pp(B,G = r)p~(y(r) ~ os(n) o~r). 
F 

Simi la r ly ,  

Pp({Pk > rk} n An n B) 

= E Pp(B, G = rlPp({pk > rk} n A~ I B, G = r)  
P 

= E Pp(B, G = F)  
p 

• P,  ( {y (r )  ~ OS(rk + 1, y(r)) o~ r}  o {y(r)  ~ os(n) off r } ) .  

We a p p l y  t h e  B K  i n e q u a l i t y  to  t h e  las t  t e r m  to  o b t a i n  

(3.16) 

Pp({Pk > rk} N A,~ N B) 

< E P p ( B , G  = r)Pp(y(r)  ~ as(n) off r)Pp (y(r) ~ aS(rk + 1, y(r)) of f r )  
F 

< gp(rk + 1)P~(A~ n B) 
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by (3.15) and the fact that, for each possible F, 

Pp(y(F)  *-* OS(rk + 1 ,y (F) )o f fF)_<  Pp(y(F) +-* OS(rk + l , y (F ) ) )  

= Pp(A, ,+,)  

= gp(rk + 1). 

We divide each side of (3.16) by Pp(An n B) to obtain 

Pp(Pk <_ rk I A~ A B) >_ 1 - gp(rk + 1), 

throughout which we multiply by Pp(B I A~) to obtain the result. [] 

(3.17) L e m m a .  For 0 < p < 1, it is the case that 

n 

(3.18) Ep(N(A~)  I An ) >_ )_~i~=ogp(i) 1. 

Proof. It follows from Lemma (3.12) that 

(3.19) Pp(Pl + P2 + " "  + Pk <-- n - -  k I A~) > P(M1 + M2 + " "  + Mk <_ n - k), 

where k > 1 and M1, M2,... is a sequence of independent random variables dis- 
tributed as M. We defer until the end of this proof the minor chore of deducing 
(3.19) from (3.13). Now N(An)  >_ k if Pl + P2 + " "  + Pk <- n -  k, so that  

(3.20) Pp (N(An)  >_ k I An) >_ P(M1 + M2 + " "  + Mk <_ n - k). 

A minor difficulty is that  the Mi may have a defective distribution. Indeed, 

P ( M  >_ r) = gp(r) 

O(p) a s  r - ~  c o ;  

thus we allow the Ms to take the value oo with probability O(p). On the other hand, 
we are not concerned with atoms at co, since 

P(M1 + M2 + ' "  + Mk < n- -  k) = P(M{  + M~ + . . .  + M~ < n), 

where M~ = 1 + min{M~, n}, and we work henceforth with these truncated random 
variables. Summing (3.20) over k, we obtain 

(3.21) 
oo  

Ep(N(A~)  I A,~ ) >_ ~ _ P ( M ;  + M(2 + . . .  + M~ <_ n) 
k = l  

oo 

=EP(K>- k+l) 
k = l  

= E ( K )  - 1, 
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where K = min{k:  M~ + M~ + . . .  + M~ > n}. Let Sk = M~ + M~ + . . .  +_M~, the 
sum of independent, identically distributed, bounded random variables. By Wald's 
equation (see Chow and Teicher 19784, pp. 137, 150), 

n < E (SK)  = E ( K ) E ( M ~ ) ,  

giving that  

E ( K ) > - -  n n n 

E(M~) 1 + E(min{M1, n}) Ei~=o gp(i) 

since 
n 

E(min{M1, n}) = E P ( M  >_ i) = E gp(i). 
i= l  i = 1  

It remains to show that (3.19) follows from Lemma (3.12). We have that 

Pv(Pl + P2 + " "  + pk <_ n -  k [ A,~) 
n- -k  

= E P p ( P l + p 2 + ' " + p k _ l = i ,  pk < n - k - i  An) 
i=0 
n-k  

>-- E P ( M  <_ n - k - i)Pv(pl + P2 q- " " q- Pk-1 = Z [ d,~) 
i=o 

= Pp(Pl +P2 + ' "  + Ok-1 + Mk __< n -  k I An), 

by (3.13) 

where M k  is a random variable which is independent of all edge-states in S(n)  and is 
distributed as M. There is a mild abuse of notation here, since Pp is not the correct 
probability measure unless M k  is measurable on the usual a-field of events, but we 
need not trouble ourselves overmuch about this. We iterate the above argument in 
the obvious way to deduce (3.19), thereby completing the proof of the lemma. [] 

The conclusion of Theorem (3.8) is easily obtained from this lemma, but we 
delay this step until the end of the section. The proof of Theorem (3.4) proceeds 
by substituting (3.18) into (3.11) to obtain that, for 0 _< a < 3 _< 1, 

g~,(n) <_ g~(n)exp - ~i~=ogp(i) 1 dp . 

It is difficult to calculate the integral in the exponent, and so we use the inequality 
gp(i) < gz(i)  for p < ~3 to obtain 

( ]) (3.22) g~,(n) <_ g~(n)exp -(~3 - a) ~i~=ogz(i) 1 , 

41:reference [107]. 
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and it is from this relation that  the conclusion of Theorem (3.4) will be extracted. 
Before continuing, it is interesting to observe that  by combining (3.10) and (3.18) 
we obtain a differential-difference inequality involving the function 

n 

c(p, n) = Z gp(i); 
i = 0  

rewriting this equation rather informally as a partial differential inequality, we obtain 

02G > OG ( n ) 
(3.23) OpOn On ~ - 1 . 

Efforts to integrate this inequality directly have failed so far. 
Once we know that  

o o  

Eft (M) = E gfl (i) < oo for all fl < Pc, 
i = 1  

then (3.22) gives us that  

g,~(n) < e -'~r for all a < Pc, 

for some r  > 0, as required. At the moment  we know rather less than the finite 
summabil i ty of the gp(i) for p < Pc, knowing only that  gp(i) ~ 0 as i ~ oo. In 
order to estimate the rate at which gp(i) ~ 0, we shall use (3.22) as a mathemat ica l  
turbocharger.  

(3.24) L e m m a .  For p < Pc, there exists 6(p) such that 

(3.25) gp(n) <_ 5(p)n -1/2 for ~ >_ 1. 

Once this lemma has been proved, the theorem follows quickly. To see this, note 
that  (3.25) implies the existence of A(p) < oc such that  

n 

(3.26) E gp(i) < A(p)n 1/2 for p < Pc- 
i=O 

Let a < Pc, and find f l such  that  ~ < fl < p c .  Substitute (3.26) w i t h p - -  /~into 
(3.22) to find that  

ga(n)<gf~(n)_ e x p { - ( f l - a ) ~ / n l / 2  - 1 ) }  

1 (fl - a )  exp 1. ~X(-flff nl/2} " <_ 

Thus 
oo  

Z go(n) < 
n = l  

for a < Pc, 
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and the theorem follows from the observations made prior to the statement of Lemma 
(3.24). We shall now prove this lemma. 

Proof. First, we shall show the existence of a subsequence nl ,  n2 , . . ,  along which 
gp(n) approaches 0 rather quickly; secondly, we shall fill in the gaps in this subse- 
quence. 

Fix/~ < p c  and apos i t ive  integer n. Let a satisfy 0 < a < /3 and let n '  _> n; 
later we shall choose c~ and n '  explicitly in terms of fl and n. From (3.22), 

(3.27) ga(n') ~ gz(n ' ) exp  (1 

gfi(n)exp (1 

Ei~og,(i) ] 

: 

E,%0 g,(i)] 
since n _< n' .  We wish to write the exponent in terms of gz(n), and to this end we 
shall choose n '  appropriately. We split the summation into two parts corresponding 
to i < n and i _> n, and we use the monotonicity of g~(i) to find that  

n t 

1 z.-, "'~-'~g~(i~ < 1 

i=0 

< 3g~(n) if n' > nLg~(n)-lJ. 

We now define 

(3.28) n' = n'7~(n) where ~z(n)  = Lgz(n)- lJ  

and deduce from (3.27) tha t  

(3.29) 
/~--Oz 

Next we choose a by setting 

(3.30) Z - ~  = 3gz(n){1 - l o g ~ ( n ) ) .  

Now gz(m) ~ 0 as m ~ oc, so that  0 < a < fl if n has been picked large enough; 
(3.29) then yields 

(3.31) ga(n') < gfi(n) 2. 

This conclusion is the basic recursion step which we shall use repeatedly. We have 
shown that ,  for/~ < Pc, there exists n0(~) such that  (3.31) holds for all n > no(/3) 
whenever n '  and a are given by (3.28) and (3.30), respectively. 

Next, we fix p < Pc and choose 7r such that  p < 7r < Pc. We now construct 
sequences (pi : i > 0) of probabilities and (ni : i >_ 0) of integers as follows. We set 
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Po = 7r and  shall  pick no later.  Having found P o , P l , . . .  , P i  and n0, n l , . . .  ,n i ,  we 
define 

(3.32) n i + l  = niTi and pi - P i + l  = 3gi(1 - loggi)  

g-1  where gi  = g p ~ ( n i )  and 7i = [ i J. We note tha t  ni < n i+ l  a n d p i  > P i + l .  The 
recursion (3.32) is valid so long as pi+l  > 0, and this is indeed the case so long as 
no has been chosen to be sufficiently large. To see this we argue as follows. From 
the definit ion of Po , . - .  ,Pi and n o , . . . ,  n i  and the discussion leading to (3.31), we 
find t ha t  

2 for j = 0 , 1 , . .  , i - 1 .  (3.33) g j + l  < g j  . 

2 for j > 0, then it is If a real sequence (xy : j > 0) satisfies 0 < xo < 1, x j + l  = x3 
easy to check tha t  

OO 

s (xo)  = Z 3xj (1  - l o g x j )  < 
j=O 

and fur thermore  tha t  S ( X o )  --* 0 as xo -~ O. We may  pick xo sufficiently smal l  such 
tha t  

(3.34) s ( x o )  <_ 7r - p  

and then  we pick no sufficiently large tha t  go = g ~ ( n o )  < x o .  Now h ( x )  = 

3x(1 - logx)  is an increasing function on [0, xo], giving from (3.32) and (3.33) tha t  

P i + l  = Pi  - 3gi(1 - log gi) 
i 

= - 2g j(1 - log g j) 
j=0 

OO 

>_ 7r - E 3xj(1 - l o g x j )  
j=0 

> p by (3.34). 

Thus, by  a sui table  choice of no we may  guarantee not only tha t  p i+l  > 0 for all i 
bu t  also tha t  

= l i ra  pi 
$---400 

satisfies ~ > p. Let us suppose tha t  no has been chosen accordingly, so tha t  the  
recursion (3.32) is valid and ~ > p. We have from (3.32) and (3.33) tha t  

nk = no703'1 . . - 7 k - 1  for k > 1 

and 

(3.35) g ~ - I  = g k - l g k - 1  
2 

g k - l g k - 2  <-- " ' "  

<_ g k - l g k - - 2 .  �9 �9 g l g ~  

<_ ( ~ / k - l " Y k - 2  . . . ~ / o ) - l  go 

~ 2 n k l  , 
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where 5 ~ = nogo. 
We are essential ly finished. Let n > no, and find an integer k such tha t  nk-1  _< 

n < nk; this  is always possible since gk ~ 0 as k ~ ~ ,  and therefore nk-1  < nk for 
all large k. Then 

gp(n) < gpk-1 (nk-1) since p < Pk-1 

-- gk-1 

< ~n~ 1/2 by (3.35) 

< 5n - i /2  since n < nk 

as required.  This  is valid for n > no, but  we may  adjust  the constant  (~ so tha t  a 
s imilar  inequal i ty  is valid for all n _ 1. [] 

6.3 ORNSTEIN-ZERNIKE DECAY 

The connect iv i ty  function Tp(X, y) = Pp(x ~ y) decays exponent ia l ly  when p < Pc, 
which is to  say tha t  the l imits  

(6.12) r = l im ~ - l  logTp(O, nx)~ 
n - - - ~ o o  ( n ) 

exist and  sat isfy r x) > 0 for 0 < p < Pc and x ~ Z d \ {0} (cf. Theorem 6.2). 
In  one direction,  this observat ion may  lead to a s tudy  of the function r  In 

another ,  one may  ask for finer asymptot ics  in (6.12). We concentrate  on the case 
x = e l ,  and wri te  r  = r el) .  

T h e o r e m  6.13 ( O r n s t e i n - Z e r n i k e  D e c a y ) .  Suppose that 0 < p < Pc. There 
exists a positive function A(p) such that 

1-- A(p) e_nr )  p(0, he1) = (1 + o ( n -  as 

The correct ion factor n- �89 (d-l)  occurs s imilar ly  in many  other  disordered sys- 
tems,  as was proposed by Ornstein and Zernike [301]. Theorem 6.13, and  cer ta in  
extensions,  was obta ined  for percolat ion by Campanino,  Chayes, and Chayes [86]. 
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7. S U P E R C R I T I C A L  P E R C O L A T I O N  

7.1 UNIQUENESS OF THE INFINITE CLUSTER, 

Let I be the  number  of infinite open clusters. 

T h e o r e m  7.1. For any p, either Pp(I = O) = 1 or Pp(I = 1) = 1. 

This result  was proved first in [21], then more briefly in [146], and the definitive 
proof  of Bur ton  and Keane [83] appeared  short ly afterwards.  This last  proof  is short  
and elegant,  and relies only on the zero-one law and a l i t t le  geometry.  

Proof. Fix  p E [0, 1]. The sample  space ~ = {0, 1} ~ is a product  space with  a na tu ra l  
family of t rans la t ions  inheri ted from the t ransla t ions  of the  la t t ice  L d. Fur thermore ,  
Pp is a p roduc t  measure  on ~.  Since I is a t rans la t ion- invar iant  function on ~t, it  is 
a.s. constant ,  which is to say tha t  

(7.2) there  exists k E {0, 1 , . . .  } U {co} such tha t  Pp(I = k) = 1. 

Natural ly ,  the  value of k depends on the choice of p. Next  we show tha t  the  k 
in quest ion satisfies k E {0, 1 ,o  e}. Suppose (7.2) holds wi th  some k sat isfying 
2 ~ k < ~ .  We may  find a box B sufficiently large tha t  

(7.3) 1 Pp(B intersects two or more infinite clusters) > ~. 

By changing the s ta tes  of edges in B (by making all such edges open, say) we 
can decrease the  number  of infinite clusters (on the event in (7.3)). Therefore 
Pp(I = k - 1) > 0, in contradic t ion of (7.2). Therefore we cannot  have 2 < k < cc 
in (7.2). 

I t  remains  to rule out  the case k = c~. Suppose tha t  k = cx~. We will derive a 
cont radic t ion  by using a geometr ical  argument .  We call a ver tex x a trifurcation if: 

(a) x lies in an infinite open cluster,  and 
(b) the  delet ion of x splits  this infinite cluster into exact ly  three disjoint  infinite 

clusters and no finite clusters, 
and we denote  by T~ the event tha t  x is a tr ifurcation.  Now Pp(Tx) is constant  for 
all x, and  therefore 

(7.4) 1 ( ) 
Ep ~ 1T~ = Pp(To). 

IS(n) l  ~xCB(n) 

(Recall  t ha t  1A denotes the indicator  function of an event A.) I t  is useful to know 
tha t  the quan t i ty  Pp(To) is s t r ic t ly  positive, and it is here tha t  we use the assumed 
mul t ip l ic i ty  of infinite clusters. Since Pp(I = c~) = 1 by assumption,  we may  
find a box B(n)  sufficiently large tha t  it intersects at  least three dis t inct  infinite 
clusters wi th  probabi l i ty  at  least �89 By changing the configuration inside B(n),  we 
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7 
Fig. 7.1. Take a box B which intersects at least three distinct infinite open clusters, 
and then alter the configuration inside B in order to create a configuration in which 
0 is a trifurcation. 

may  tu rn  the  origin into a t r i furcat ion (see Figure 7.1). The corresponding set of 
configurations has s t r ic t ly  posit ive probabil i ty,  so tha t  Pp(TO) > 0 in (7.4). 

Before turn ing  to the geometry,  we present a l emma concerning par t i t ions .  Let 
Y be a finite set with ]Y[ > 3, and define a 3-partition H = {P1, P2, P3} of Y to 
be a pa r t i t i on  of Y into exact ly  three non-empty  sets P1, P2, P3- For 3-par t i t ions  
H = {P1, P2, P3} and H' = {P~, P~, P~}, we say tha t  H and H' are compatible if 
there exists an ordering of their  elements such tha t  P1 _D P~ U P~ (or, equivalently, 
t ha t  P~' _D P2 U P3). A collection P of 3-par t i t ions  is compatible if each pair  therein  
is compat ib le .  

L e m m a  7.5.  I f  :P is a compatible family of distinct 3-partitions of Y ,  then [7~[ _< 
Iv l -  2. 

Proof. There  are several ways of doing this; see [83]. For any set Q of dis t inct  
compat ib le  3-par t i t ions  of Y, we define an equivalence relat ion ~ on Y by x ~ y if, 
for all H E Q, x and y lie in the same element of H. Wri te  a(Q) for the number  
of equivalence classes of ~ .  Now, write  P = ( H I , H 2 , . . .  , I Im)  in some order, and 
let ak  = a(I I1 ,  H2,. �9 , Ilk).  Evident ly  a l  = 3 and,  using the compat ib i l i ty  of 111 
and H2, we have tha t  a2 _> 4. By compar ing Hr+l  wi th  II1, H2, �9 �9 , I I r  in turn,  and 
using thei r  compat ibi l i ty ,  one sees tha t  a(H1, H2,. �9 �9 , H~+I) _> a(I I1 ,  I I 2 , . . .  , H~)+I ,  
whence am _> a l  + ( m -  1) = m +  2. However am _< [Y[, and the claim of the  l emma  
follows. [] 

Let  K be a connected open cluster of B(n) ,  and write OK = K A OB(n). If 
x (E B(n  - 1)) is a t r i furcat ion in K ,  then the removal  of x induces a 3-par t i t ion  
H g ( x )  = {P1, P2, P3} of OK with the propert ies  tha t  

(a) Pi is non-empty,  for i = 1, 2, 3, 
(b) Pi is a subset  of a connected subgraph of B(n ) \ { x } ,  
(c) Pi ~ Pj in B(n),  if i # j .  

Fur thermore ,  if x and  x '  are dis t inct  t r i furcat ions of K A B(n  - 1), then IlK(X) and 
I Ig(x ' )  are dis t inct  and compatible;  see Figure 7.2. 
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X 

Fig. 7.2. Two trifurcations x and x ~ belonging to a cluster K of B(n). They induce 
compatible partitions of OK. 

It  follows by L e m m a  7.5 tha t  the number  T(K)  of t r i furcat ions in K n B(n - 1) 
satisfies 

T(K)  <_ IOKI- 2. 

We sum this inequal i ty  over all connected clusters of B(n), to ob ta in  tha t  

E 1T= < laB(n)l. 
xEB(n-1) 

Take expecta t ions ,  and use (7.4) to find tha t  

I B ( n -  1)lPp(To) _< lOB(n)1, 

which is impossible  for large n since the left side grows as n d and the right side as 
n d-1. This contradic t ion  completes  the proof. [] 

7.2 PERCOLATION IN SLABS 

Many results  were proved for subcr i t ical  percola t ion under the hypothesis  of 'finite 
suscept ib i l i ty ' ,  i.e., tha t  X(P) = Ep[CI satisfies X(P) < oc. Subsequently, it  was 
proved in [13, 268, 271] tha t  this hypothesis  is satisfied whenever p < Pc. The situ- 
a t ion was s imilar  for supercr i t ical  percolat ion,  the corresponding hypothesis  being 
tha t  percola t ion  occurs in slabs. We define the slab of thickness k by 

Sk = Z d-1 • { 0 , 1 , . . . , k } ,  

with cri t ical  p robabi l i ty  pc(Sk); we assume here tha t  d >_ 3. The decreasing l imit  
pc(S) = limk--+oopc(Sk) exists, and satisfies pc(S)  _> Pc- The hypothesis  of 'percola-  
t ion in s labs '  is t ha t  p > pc(S). Here is an example  of the hypothesis  in ac t ion (of. 
Theorem 6.2 and equat ion (6.8)). 
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T h e o r e m  7 .6 .  The limit 

l i r a {  1 log Pp(O +-+ OB(n), [CI < oo) } ~(p) = --~ 

ezists. Furthermore (r(p) > 0 if p > p~( S). 

This theorem asserts the exponential decay of a ' t runcated '  connectivity function 
when d > 3. Corresponding results when d = 2 may be proved using duality. 

Proof. The existence of the limit is an exercise in subadditivity (see [95, G]), and we 
sketch here only a proof that  a(p) > 0. Assume that  p > pc(S), so that  p > pc(Sk) 
for some k; choose k accordingly. Let H~ be the hyperplane containing all vertices 
x with xl  = n. It suffices to prove that  

(7.7) Pp(O ~ H~, ICI < ~ )  ~ e - ~  

for some 3' = 3'(P) > O. Define the slabs 

T/ = { x  �9 z d :  (i -- 1)k < Xl < ik} ,  1 _< i < Ln/kJ. 

Any pa th  from 0 to H~ must traverse every such slab. Since p > pc(Sk), each slab 
a.s. contains an infinite open cluster. If 0 ~ H~ and ICI < ec, then all paths from 
0 to Hn must  evade all such clusters. There are [n/kJ slabs to traverse, and a price 
is paid for each. With  a touch of rigour, this argument implies that  

Pp(O ~ Hn, ]CI < oo) < {1 - Ok(p)} [n/kj 

where 
Ok(p) = Pp(O +-+ oo in Sk) > 0. 

For more details, see [G]. [] 

Gr immet t  and Marstrand [165] proved that  Pc = pc(S), using ideas similar to 
those of [49, 50]. This was achieved via a 'block construction'  which appears to 
be central to a full understanding of supercritical percolation and to have further 
applications elsewhere. The details are presented next. 

7.3 LIMIT OF SLAB CRITICAL POINTS 

Material in this section is taken from [165]. We assume that d >_ 3 and that  p is 
such that  O(p) > 0; under this hypothesis, we wish to gain some control of the (a.s.) 
unique open cluster. In particular we shall prove the following theorem, in which 
pc(A) denotes the critical value of bond percolation on the subgraph of Z d induced 
by the vertex set A. In this notation, pC = pc(Zd). 



203 

T h e o r e m  7.8. I f  F is an infinite connected subset of Z d with p c ( F )  < 1, then for 
each r I > 0 there exists an integer k such that 

; c (2kr  + 8(k))  

Choosing F = Z 2 • {0} d-2, we have tha t  2kF + B(k)  = {x E Z d : - k  <_ xj  < 
k for 3 < j < d}. The  theorem implies tha t  p~(2kF + B(k))  -+ p~ as k -+ oc, which 
is a s t ronger  s t a t emen t  than  the s ta tement  tha t  Pc = pc(S) .  

In the  remainder  of this section, we sketch the  salient features of the  block 
const ruct ion  necessary to prove the above theorem. This construct ion may  be used 
direct ly  to ob ta in  fur ther  informat ion concerning supercr i t ical  percolat ion.  

The  ma in  idea involves working with a 'block la t t ice '  each point  of which repre- 
sents a large box of L d, these boxes being disjoint and adjacent .  In  this  block lat t ice,  
we declare a ver tex  to be 'open '  if there exist cer ta in  open pa ths  in and near  the 
corresponding box of L d. We shall  show that ,  wi th  posit ive probabil i ty ,  there  exists 
an infinite p a t h  of open vertices in the block latt ice.  Ft l r thermore,  this infinite pa th  
of open blocks corresponds to an infinite open pa th  of L d. By choosing sufficiently 
large boxes, we aim to find such a pa th  within a sufficiently wide slab. Thus there 
is a probabi l i s t ic  pa r t  of the proof, and a geometric  par t .  

There  are two main  steps in the proof. In the first, we show the existence of 
long finite paths .  In  the  second, we show how to take such finite pa ths  and bui ld 
an infinite cluster  in a slab. 

The  pr incipal  par t s  of the first s tep are as follows. Pick p such tha t  O(p) > O. 
1. Let  e > 0. Since O(p) > O, there exists m such tha t  

Pp(B(m) > 1 - 

This  is e lementary  probabi l i ty  theory. 
2. Let  n > 2m, say, and  let k > 1. We may  choose n sufficiently large to ensure 

tha t ,  wi th  probabi l i ty  at  least 1 - 2~, B(m)  is joined to at  least k points  in 
OB(n). 

3. By choosing k sufficiently large, we may  ensure tha t ,  wi th  p robabi l i ty  at  least 
1 - 3e, B(m)  is joined to some point  of OB(n), which is itself connected to a 
copy of B(m) ,  lying 'on '  the surface OB(n) and every edge of which is open. 

4. The  open copy of B(m) ,  constructed above, may  be used as a ' seed '  for 
i t e ra t ing  the  above construction.  When  doing this, we shall  need some control  
over where the seed is placed. I t  may  be shown tha t  every face of OB(n) 
contains  (with large probabi l i ty)  a point  adjacent  to some seed, and indeed 
many  such points.  

Above is the scheme for construct ing long finite paths ,  and we tu rn  to the  second 
step. 

5. This  const ruct ion is now i terated.  At  each stage there is a cer ta in  (small)  
p robab i l i ty  of failure. In  order tha t  there be a s t r ic t ly  posit ive probabi l i ty  of 
an infinite sequence of successes, wc i tcra tc  ' in two independent  direct ions ' .  
W i t h  care, one may  show tha t  the construct ion dominates  a cer ta in  super-  
cr i t ical  site percola t ion  process on L 2. 

6. We wish to deduce tha t  an infinite sequence of successes entails an infinite 
open pa th  of L d within the corresponding slab. There are two difficulties wi th  
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this. First, since there is not total control of the positions of the seeds, the 
actual pa th  in L d may leave every slab. This may be overcome by a process 
of 'steering', in which, at each stage, we choose a seed in such a position as 
to compensate for any earlier deviation in space. 

7. A larger problem is that,  in iterating the construction, we carry with us 
a mixture of 'positive' and 'negative'  information (of the form that  'certain 
paths exist' and 'others do not ') .  In combining events we cannot use the FKG 
inequality. The practical difficulty is that,  al though we may have an infinite 
sequence of successes, there will generally be breaks in any corresponding 
open route to oo. This is overcome by sprinkling down a few more open 
edges, i.e., by working at edge-density p + (~ where 6 > O, rather than at p. 

In conclusion, we show that,  if O(p) > 0 and 5 > O, then there is (with large 
probability) an infinite (p + 5)-open path in a slice of the form 

Tk = { x � 9  d :O< xj  < k f o r j ~ 3 }  

where k is sufficiently large. This implies that  p + 5 > pc(T) = limk-~oopc(Tk) if 
P > Pc, i.e., that  pc _> pc(T). Since pc(T) >_ pc by virtue of the fact that  Tk C Z d 
for all k, we may conclude that  Pc = pc(T), implying also that  Pc = pc(S). 

Henceforth we suppose that  d = 3; similar arguments are valid when d > 3. We 
begin with some notat ion and two key lemmas. As usual, B(n) = [ - n ,  n] 3, and we 
shall concentrate on a special face of B(n),  

= { x  e 0 B ( n ) :  = 

and indeed on a special 'quadrant '  of F(n),  

T(n)  = {x e OB(n) : x l  = n, xj  > 0 for j 2 2}. 

For m, n > 1, let 
2 m + l  

T(.% n) = [.J {jel + 
j= l  

where el = (1, 0, 0) as usual. 
We call a box x + B(m)  a seed if every edge in x + B(m)  is open. We now set 

K ( m , n )  = {x  C T(n)  : (x ,x  + el} is open, and 

x + el lies in some seed lying within T(m,  n)} .  

The random set K ( m ,  n) is necessarily empty if n < 2m. 
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B(m) S" T(.~,~) 

Fig. 7.3. A n  i l l u s t r a t i o n  o f  t h e  e v e n t  in (7 .10) .  T h e  h a t c h e d  r eg ion  is a c o p y  of  
B(m) all  o f  w h o s e  e d g e s  a re  p - o p e n .  T h e  c e n t r a l  b o x  B(m) is j o i n e d  b y  a p a t h  t o  
s o m e  v e r t e x  in  OB(n), w h i c h  is in t u r n  c o n n e c t e d  t o  a seed  l y i n g  o n  t h e  s u r f a c e  o f  
B(n). 

L e m m a  7.9. If  O(v ) > 0 and 7 > O, there exists m = re(p, 7) and n = n(p, 7) such 
that 2m < n and 

(7.10) Pp(B(m) +-+ K ( m , n )  in B(n)) > 1 - 7. 

The event in (7.10) is i l lustrated in Figure 7.3. 

Proof. Since O(p) > 0, there exists a.s. an infinite open cluster, whence 

We pick rn such that  

(7.11) 

P p ( B ( r n ) ~ o o ) - - + l  as m - + o o .  

Pp(B(m) oc) > 1 ,1 ,24 +-+ - t571 , 

for a reason which will become clear later. 
For n > ,~, let V(n)  = {x e T(n)  : x +-+ e ( m )  in g ( n ) } .  Pick M such that  

(7.12) pPp(B(rn) is a seed) > 1 - , i  , �9 

We shall assume for simplicity that  2rn + 1 divides n + 1 (and that  2m < n), and we 
partition T(n) into disjoint squares with side-length 2m. If IV(n)l _> (2m + 1)2M 
then B(m) is joined in B(n) to at least M of these squares. Therefore, by (7.12), 

Pp(B(m) ~ K(,n,n) in B(n)) 
M 

(7.13) > _ { 1 - [ 1 - p P , ( B ( m )  isaseed)] }Pp(IV(n) l>_(2rn+l)2M) 

_> (1 - �89 _> (2,~ + 1)2M). 

We now bound the last probabili ty from below. Using the symmetries  of L 3 
obtained by reflections in hyperplanes, we see that  the face F(n) comprises four 
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copies of T(n). Now OB(n) has six faces, and therefore 24 copies of T(n). By 
symmet ry  and the FKG inequality, 

(7.14) Pp(lU(n)] < 24(2m + 1)2M) > Pp(lV(n)l < (2m + 1)2M) 24 

where U(n) = {x E OB(n): x ~ B(m) in B(n)}.  Now, with 1 = 24(2m + 1)2M, 

(7.15) 

and 

Pp(IU(n) I < l) ~ Pp(IU(n)l < l, B(m) ~ co) + Pp(B(m) ~,~ co), 

(Here we use the fact that  U(n + 1) = o if every edge exiting OB(n) from U(n) is 
closed.) 

By (7.14)-(7.16) and (7.11), 

1 24 Pp(IV(n)[ < ( 2 m +  1)2M) < Pp(lV(n)l < l) 1/24 _~ (an Jr-(~T]) )1/24 

where a,~ --+ 0 as n ~ co. We pick n such that  

Pp(IV(n)l < (2m + 1)2M) < 1 _ ~ r ] ,  

and the claim of the lemma follows by (7.13). [] 

Having constructed open paths from B(m) to K(m, n), we shall need to repeat 
the construction, beginning instead at an appropriate seed in K(m,n). This is 
problematic, since we have discovered a mixture of information, some of it negative, 
about the immediate environs of such seeds. In order to overcome the effect of 
such negative information, we shall work at edge-density p + 5 rather than p. In 
preparation, let (X(e) : e E E d) be independent random variables having the uniform 
distribution on [0, 1], and let ~lp(e) be the indicator function that  X(e) < p; recall 
Section 2.3. We say that  e is p-open if X(e) < p and p-closed otherwise, and we 
denote by P the appropriate probability measure. 

For any subset V of Z 3, we define the exterior boundary AV and exterior edge- 
boundary AeV by 

A V = { x E Z  3 : x ~ V ,  x ~ y f o r s o m e y E V } ,  

z ov = {(x,  y ) :  x e v,  y z v, x ~ y}. 

We write Ev for the set of all edges of ][3 joining pairs of vertices in V. 

(7.16) 
Pp(IU(n)l < l, B(m) ~ co) < Pp(1 < IU(n)l < l) 

< (1 - p)-3lpp(U(n + 1) = O, U(n) ~ 0) 
---~0 as n ---* c~. 
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Fig. 7.4. An illustration of Lemma 7.17. The hatched regions are copies of B(m) 
all of whose edges are p-open. The central box B(m) lies within some (dotted) region 
R. Some vertex in R is joined by a path to some vertex in OB(n), which is in turn 
connected to a seed lying on the surface of B(n). 

W e  sha l l  m a k e  r e p e a t e d  use of t h e  fo l lowing l e m m a  5, w h i c h  is i l l u s t r a t e d  in F i g u r e  

7.4. 

L e m m a  7 . 1 7 .  I f  O(p) > 0 and e, 5 > O, there exist integers m = m(p,e ,  5) and 
n = n(p, e, 5) such that 2m < n and with the following property. Let R be such that 
B ( m )  C R C B ( n )  and (R  U A R )  ~ T (n )  = 0 ,  and le~ fl : A e R  N EB(~) --~ [0, 1 -- 5]. 

Define the events 

G = { t h e r e  ex i s t s  a p a t h  j o i n i n g  R to  K ( m ,  n) ,  th i s  p a t h  b e i n g  p - o p e n  

o u t s i d e  A e R  a n d  (/3(e) + 5 ) - o p e n  a t  i ts  u n i q u e  edge e ly ing  in A e R } ,  

H = {e is 3 ( e ) - c l o s e d  for al l  e E A e R  N EB(n) }. 

Then P ( G  [ H)  > 1 -  ~. 

Proof. A s s u m e  t h a t  O(p) > 0, a n d  let  c, 5 > 0. P i ck  a n  i n t ege r  t so la rge  t h a t  

1 (7.18) (1 - 5 )  t < ~e 

a n d  t h e n  choose  17 ( >  0) such  t h a t  

(7.19) q < �89 - p ) t .  

We  a p p l y  L e m m a  7.9 w i t h  t h i s  va lue  of  q, t h e r e b y  o b t a i n i n g  in t ege r s  m,  n such  t h a t  
2 m  < n a n d  

(7.20) P p ( B ( m )  *-~ K ( m , n ) i n  B ( n ) )  > 1 - q .  

5This lemma is basically Lemma 6 of [165], the difference being that  [165] was addressed at site 
percolation. R. Meester and J. Steif have kindly pointed out that, in the case of site percolation, 
a slightly more general lemma is required than that  presented in [165]. The following remarks are 
directed at the necessary changes to Lemma 6 of [165], and they use the notation of [165]. The 
proof of the more general lemma is similar to that  of the original version. The domain of fl is 
repiaced by a general subset S of B(n)\  T(n), and G is the event (there exists a path in B(n) from 
S to K(m, n), this path being p-open in B(n) \ S and (f?(u) + 6)-open at its unique vertex u E S}. 
In applying the lemma just after (4.10) of [165], we take S = AC2 ~ B(n) (and similarly later). 
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Let R and fl satisfy the hypotheses of the lemma. Since any path from B(m) to 
K(m, n) contains a path from OR to K(m, n) using no edges of ER, we have that  

(7.21) Pp(On ~ K(m,n) in B(n)) > 1 - rl. 

Let K C T(n), and let U(K) be the set of edges (x, y) of B(n) such that 
(i) x E R ,  y ~ R ,  and 

(ii) there is an open path joining y to K, using no edges of ER U AeR. 
We wish to show that U(K) must be large if PB(OR +--+ K in B(n)) is large. The 
argument centres on the fact that every path from 0R to K passes through U(K);  if 
U(K) is 'small '  then there is substantial uncertainty for the occurrence of the event 
{OR ~ K in B(n)}, implying that this event cannot have probability near 1. More 
rigorously, 

(7.22) Pp(OR ~ K in B(n)) = Pp(all edges in U(K) are closed) 

> (1 -p)tPp(]V(K)] < t). 

We may apply this with K = K(m, n), since K(m, n) is defined on the set of edges 
exterior to B(n). Therefore, by (7.21), (7.22), and (7.19), 

(7.23) 

Pp(lU(K(m,n))l> t)  _> 1 - (1 - p)-tPp(OR ~-~ K(m,n) in B(n)) 
1 _> 1 - ( 1 - p ) - t r ] >  1 - ~ c .  

We now couple together the percolation processes with different values ofp on the 
same probability space, as described in Section 2.3 and just prior to the statement 
of Lemma 7.17. We borrow the notation and results derived above by specialising 
to the p-open edges. Conditional on the set U = U(K(m, n)), the values of X(e),  
for e C U, are independent and uniform on [0, 1]. Therefore 

P (eve ry  e in U is (fl(e) + 5)-closed, ]U] > t H )  < (1 - 5) t, 

whence, using (7.18) and (7.23), 

P ( s o m e e i n U i s ( f l ( e ) + 5 ) - o p e n  H ) _ > P ( ] U [ > t ] H ) - ( 1 -  

= P p ( l U [  > t )  - (1  - 5 )  t 

> ( 1  - 1  ~e) - -  1 _ ~ E ,  

and the lemma is proved. [] 

This completes the two key geometrical lemmas. In moving to the second part  
of the proof, we shall require a method for comparison of a 'dependent'  process and 
a site percolation process. The argument required at this stage is as follows. 

Let F be an infinite connected subset of L d for which the associated (site) critical 
probability satisfies pc(F, site) < 1, and let {Z(x) : x C F} be random variables tak- 
ing values in [0, 1]. We construct a connected subset of F in the following recursive 



209 

manner. Let e(1), e (2) , . . ,  be a fixed ordering of the edges of the graph induced by 
F. Let xl  E F,  and define the ordered pair $1 = (A1, B1) of subsets of F by 

f ({x l} ,o )  i f Z ( x l ) = l  
S1 / (o ,{x l} )  if Z ( x l )  = O. 

Having defined $1, $2 , . . .  , St = (At, Bt), for t _> 1, we define St+l as follows. Let 
f be the earliest edge in the fixed ordering of the e(i) with the property that  one 
endvertex, xt+l say, lies in At and the other endvertex lies outside At U Bt. Then 
we declare 

{ ( A t u { x , + l } , B t )  i f Z ( x t + l ) = l ,  

St+l = (At,Bt U {xt+l}) if Z(x t+l )  = O. 

If no such edge f exists, we declare St+l = St. The sets At, Bt are non-decreasing, 
and we set Am = limt--.~ At, Boo = limt-,oo Bt. Think about Aoo as the 'occupied 
cluster' at xz, and B ~  as its external boundary. 

L e m m a  7.24. Suppose there exists a constant ~/ such that V > pc(F, site) and 

(7.25) P ( Z ( X t + l )  = 1 [$1, $ 2 , . . . ,  St) > 7 for  all t. 

Then P(IAool = cx~) > O. 

We omit a formal proof of this lemma (but see [165]). Informally, (7.25) implies 
that, uniformly in the past history, the chance of extending At exceeds the critical 
value of a supercritical site percolation process on F. Therefore A~  stochastically 
dominates the open cluster at xl of a supercritical site percolation cluster. The 
latter cluster is infinite with strictly positive probability, whence P ( I A ~  1 = c~) > O. 

Having established the three basic lemmas, we turn to the construction itself. 
Recall the notation and hypotheses of Theorem 7.8. Let 0 < q < Pc, and choose 

1 1 (7.26) P = P c  +-~?, 5 =  ~ ? ,  ~ =  ~ 4 ( 1 - p c ( F ,  site)). 

Note that pc(F, site) < 1 since by assumption pc(F)  =- pc(F, bond) < 1 (cf. Theorem 
5.13). Since p > Pc, we have that O(p) > 0, and we apply Lemma 7.17 with the 
above c, 5 to find corresponding integers m, n. We define N = m + n + 1, and we 
shall define a process on the blocks of 7/. 3 having side-length 2N. 

Consider the set { 4 N x  : x E Z d} of vertices, and the associated boxes B=(N)  = 
{ 4 g x  + B ( N )  : x E zd}; these boxes we call site-boxes. A pair B~(N) ,  B y ( N )  of 
site-boxes is deemed adjacent if x and y are adjacent in L d, Adjacent site-boxes 
are linked by bond-boxes, i.e., boxes N z  + B ( N )  for z E ~ d  exactly one component 
of which is not divisible by 4. If this exceptional component of z is even, the box 
N z  + B ( N )  is called a half-way box. See Figure 7.5. 

We shall examine site-boxes one by one, declaring each to be 'occupied' or 'un- 
occupied' according to the existence (or not) of certain open paths. Two properties 
of this construction will emerge. 

(a) For each new site-box, the probability that it is occupied exceeds the critical 
probability of a certain site percolation process. This will imply that, with 
strictly positive probability, there is an infinite occupied path of site-boxes. 
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Fig. 7.5. The hatched squares are site-boxes, and the dotted squares are half-way 
boxes. Each box has side-length 2N. 

(b) The existence of this infinite occupied path necessarily entails an infinite open 
path  of L d lying within some restricted region. 

The site-boxes will be examined in sequence, the order of this sequence being ran- 
dom, and depending on the past history of the process. Thus, the renormalisation 
is 'dynamic '  rather than 'static ' .  

As above, let F be an infinite connected subset of zd; we shall assume for neatness 
that  F contains the origin 0 (otherwise, translate F accordingly). As above, let 
e(1), e (2 ) , . . ,  be a fixed ordering of the edges joining vertices in F.  We shall examine 
the site-boxes Bx(N), for x E F ,  and determine their states. This we do according 
to the algorithm sketched before Lemma 7.24, for appropriate random variables 
Z(x) to be described next. 

We begin at the origin, with the site-box Bo(N) = B(N). Once we have ex- 
plained what  is involved in determining the state of Bo(N), most of the work will 
have been done. (The event {B0(N) is occupied} is sketched in Figure 7.7.) 

Note tha t  B(m) C B(N), and say that  ' the first step is successful' if every edge 
in B(m) is p-open, which is to say that  B(m) is a 'seed'. (Recall that  p and other 
parameters  are given in (7.26).) At this stage we write E1 for the set of edges of 

In the following sequential algorithm, we shall construct an increasing sequence 
E l , E 2 , . . .  of edge-sets. At each stage k, we shall acquire information about  the 
values of X(e)  for certain e E ]E 3 (here, the X(e) are independent uniform [0, 1]- 
valued random variables, as usual). This information we shall record in the form 
'each e is ~k(e)-closed and "yk(e)-open' for suitable functions ~k,Tk : E 3 -~ [0,1] 
satisfying 

(7.27) ~k(e) ~ ~k+l(e), "/k(e) ~ "/k+l(e), for all e E E 3. 
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{NN 
Fig. 7.6. An illustration of the first two steps in the construction of the event 
{0 is occupied}, when these steps are successful. Each hatched square is a seed. 

Having cons t ruc ted  E~, above, we set 

(7.28) /31(e) -- 0 for all e r E 3, 

(7.29) 71(e) : { p if e E E l ,  
1 otherwise. 

Since we are working with edge-sets Ej ra ther  than  with vertex-sets,  it will be 
useful to have some corresponding notat ion.  Two edges e, f are called adjacent, 
wri t ten  e ,.~ f ,  if they  have exact ly  one common endvertex.  This adjacency re la t ion 
defines a graph.  Pa ths  in this graph are said to be c~-open if X(e)  < a for all e 
lying in the  path .  The exterior  edge-boundary  A e E  of an edge-set E is the  set of 
all edges f E E 3 \ E such tha t  f ~ e for some e E E.  

For j = 1, 2, 3 and a = •  let L~ be an au tomorph i sm of ~.3 which preserves the 

origin and maps  el  = (1, 0, 0) onto aej; we insist tha t  L + is the identity.  We now 
define E2 as follows. Consider the set of all pa ths  ~ lying within the  region 

B~I=B(n) U{ U L~(T(rn'n))}l<j<3 
a=:t: 

such t ha t  
(a) the  first edge f of ~r lies in AeE1 and is (/31(f) + 6)-open, and 
(b) all o ther  edges lie outside E1 u AeE1 and are p-open. 

We define E2 = E1 LJ F1 where F1 is the set of all edges in the union of such pa ths  7r. 
We say tha t  ' the  second step is successful' if, for each j = 1, 2, 3 and a = •  there  
is an  edge in E2 having an endvertex in K](rn, n),  where 

K~ (rn, n) = {z E L~ (T(n)) :(z, z + aej} is p-open, and z + aej lies 

in some seed lying within L~ (T(m, n ) ) } .  

The corresponding event is i l lus t ra ted in Figure 7.6. 
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Next we estimate the probability that  the second step is successful, conditional 
on the first step being successful. Let G be the event that  there exists a pa th  in 
B(n)\B(m) from OB(m) to K(m, n), every edge e of which is p-open off AeE 1 and 
whose unique edge f in AeE1 is ( /~l(f)+5)-open. We write G~ for the corresponding 
event with K(rn, n) replaced by L~(K(m,n)). We now apply Lemma 7.17 with 
R = B(m) and/3  =/31 to find that  

P(G; Imm) is a seed) > 1 - e  for j : 1, 2, 3, ~r : +.  

Therefore 

(7.30) P(G~ occurs for all j , a  I B(m)  is a seed) > 1 - 6e, 

so tha t  the second step is successful with conditional probability at least 1 - 6c. 
If the second step is successful, then we update the 3, 7 functions accordingly, 

setting 

i7.31) 

(7.32) 

{ 31(e) ife r  

/32(e) = t31(e) + ~ if e C A e E I \ E 2 ,  

p if e E AeE2 \AeEI ,  

0 otherwise, 

71(e) if e E El ,  

72(e) = /3z(e) + 5 if e E /keEl A E2, 

p if e E E2\(E1 U AeE1), 

1 otherwise. 

Suppose that  the first two steps have been successful. We next aim to link 
the appropriate seeds in each L~(T(rn, n)) to a new seed lying in the bond-box 
2aNej + B(N), i.e., the half-way box reached by exiting the origin in the direction 
aej.  If we succeed with each of the six such extensions, then we terminate this stage 
of the process, and declare the vertex 0 of the renormalised lattice to be occupied; 
such success constitutes the definition of the term 'occupied'.  See Figure 7.7. 

We do not present all the details of this part  of the construction, since they 
are very similar to those already described. Instead we concentrate on describing 
the basic strategy, and discussing any novel aspects of the construction. First, let 
B2 = b2 + B(m) be the earliest seed (in some ordering of all copies of B(m)) all 
of whose edges lie in E2 A ET(m,n). We now try to extend E2 to include a seed 
lying within the bond-box 2Nel + B(N). Clearly B2 C Nel + B(N). In performing 
this extension, we encounter a 'steering' problem. It happens (by construction) 
that  all coordinates of b2 are positive, implying that  b2 + T(m, n) is not a subset of 
2Nel + BiN ). We therefore replace b2 + Tim, n) by b2 § T*im, n) where T*im , n) 
is given as follows. Instead of working with the 'quadrant '  T(n) of the face F(n), 
we use the set 

T*(n)= {xCOB(n):Xl- -n ,  xj <_ 0 for j = 2 , 3 } .  
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Fig. 7.7. An il lustration of the event {0 is occupied}. Each black square is a seed. 

We then define 
2 m + l  

T*(m,n)= U {jel + r*(n)}, 
j = l  

and obtain tha t  b2 + T* (m, n) c 2Nel  + B(N). We now consider the set of all paths 
7r lying within the region 

B; = b2 + {B(n)u  f*(m, n)} 

such that:  
(a) the first edge f of 7r lies in AeE2 and is (fl2(f) + ~)-open, and 
(b) all other edges lie outside E2 U AeE2 and are p-open. 

We set E3 --= E2 U F 2 where F2 is the set of all edges lying in the union of such paths. 
We call this step successful if E3 contains an edge having an endvertex in the set 

b2 + K*(m,n) = {z �9 b2 + T*(m,n) :(z,z + el} is p-open, z + el 

lies in some seed lying in b2 + T*(m, n)} .  

Using Lemma 7.17, the (conditional) probability that  this step is successful exceeds 
1 - ~ .  

We perform similar extensions in each of the other five directions exiting Bo(N). 
If all are successful, we declare 0 to be occupied. Combining the above estimates of 
success, we find that  

(7.33) 
P(0  is occupied [ B(m) is a seed) > (1 - 6c)(1 - e) 6 > 1 - 12e 

1 (1 q- p c ( F ,  s i t e ) )  
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Fig. 7.8. Two adjacent site-boxes both of which are occupied. The construct ion 
began with the left site-box Bo(N) and has been extended to the right site-box 
Be1 (N). The black squares are seeds, as before. 

by (7.26). 
If 0 is not occupied, we end the construction. If 0 is occupied, then this has been 

achieved after the definition of a set Es of edges. The corresponding functions/38, 7s 
are such that  

(7.34) /3s(e) _< "ys(e) _< p + 65 for e C Es; 

this follows since no edge lies in more than 7 of the copies of B(n) used in the 
repeated application of Lemma 7.17. Therefore every edge of Es is (p + V)-open, 
since 5 = ! ~  (see (7.26)). 12 

The basic idea has been described, and we now proceed similarly. Assume 0 is 
occupied, and find the earliest edge e(r) induced by F and incident with the origin; 
we may assume for the sake of simplicity that  e(r) = (0, el}. We now a t tempt  to 
link the seed b3 + B(m) ,  found as above inside the half-way box 2Nel + B(N), to a 
seed inside the site-box 4Nel + B(N). This is done in two steps of the earlier kind. 
Having found a suitable seed inside the new site-box 4Nel + B(N), we a t tempt  to 
branch-out in the other 5 directions from this site-box. If we succeed in finding seeds 
in each of the corresponding half-way boxes, then we declare the vertex el of the 
renormalised lattice to be occupied. As before, the (conditional) probability that  el 
is occupied is at least �89 + pc(F, site)), and every edge in the ensuing construction 
is (p + ~)-open. See Figure 7.8. 

Two details arise at this and subsequent stages, each associated with 'steering'. 
First, if b3 = (al ,  a2, a3) we concentrate on the quadrant Ta(n) of OB(n) defined 
as the set of x C OB(n) for which xjoLj ~ 0 for j = 2, 3 (SO that  xj has the opposite 
sign to aj). Having found such a T~(n), we define T~(m, n) accordingly, and look 
for paths from b3 + B(m) to b3 + T*(m, n). This mechanism guarantees that  any 
variation in b3 from the first coordinate axis is (at least partly) compensated for at 
the next step. 

A further detail arises when branching out from the seed b* + B(m) reached 
inside 4Nel + B(N). In finding seeds lying in the new half-way boxes abut t ing 
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Fig. 7.9. The central seed is B(m), and the connections represent (p+~)-open paths 
joining seeds within the site-boxes. 

4Nei + B(N), we 'steer away from the inlet branch' ,  by examining seeds lying on 
the surface of b* + B(n) with the property that  the first coordinates of their vertices 
are not less than that  of b*. This process guarantees that  these seeds have not been 
examined previously. 

We now continue to apply the algorithm presented before Lemma 7.24. At each 
stage, the chance of success exceeds "~ = �89 (1 + pc(F, site)). Since ~/> pc(F, site), we 
have from Lemma 7.24 that  there is a strictly positive probability that  the ult imate 
set of occupied vertices of F (i.e., renormalised blocks of L 3) is infinite. Now, on 
this event, there must  exist an infinite (p + q)-open path of L 3 corresponding to 
the enlargement of F.  This infinite open path must lie within the enlarged set 
4NF + B(2N) ,  implying that  Pc + ~ _> pc(4NF + B(2N)) ,  as required for Theorem 
7.9. See Figure 7.9. The proof is complete. [] 

7.4 PERCOLATION IN HALF-SPACES 

In the last section, we almost succeeded in proving that  0(pc) = 0 when d > 3. 
The reason for this s tatement  is as follows. Suppose O(p) > 0 and ~ > 0. There is 
effectively defined in Section 7.3 an event A living in a finite box B such that  

(a) Pp(A) > 1 - c, for some prescribed e > 0, 
(b) the fact (a) implies that  0(p + ~) > 0. 

Suppose that  we could prove this with ~? = 0, and that  0(Pc) > 0. Then Ppc (A) > 
1 -  e, which implies by continuity that  Pp, (A) > 1 - e  for some p' < Pc, and therefore 
O(p') > 0 by (b). This would contradict the definition of Pc, whence we deduce by 
contradiction that  0(pc) = 0. 

The fact tha t  ~? is strictly positive is vital for the construction, since we need to 
'spend some extra money '  in order to compensate for negative information acquired 
earlier in the construction. In a slightly different setting, no extra money is required. 
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Let ]~ = {0, 1 , . . .  } • Z d-1 be a half-space when d > 3, and write pc(H) for its 
critical probability. It  follows from Theorem 7.8 tha t  pc(H) = Pc, since ]HI contains 
slabs of all thicknesses. Let 

On(p) = Pp(0 ~ oc in H). 

T h e o r e m  7.35. W e  h a v e  t h a t  0~(pc) = 0. 

The proof  is not presented here, but may  be found in [49, 50]. It is closely related 
to tha t  presented in Section 7.3, but  with some crucial differences. The construct ion 
of blocks is slightly more complicated, owing to the lack of s y m m e t r y  of ~,  but 
there are compensa t ing  advantages of working in a half-space. For amusement ,  we 
present in Figure 7.10 two diagrams (relevant to the argument  of [50]) depicting the 
necessary constructions. 

As observed in Section 3.3, such a conclusion for half-spaces has a striking impli- 
cation for the conjecture tha t  0(pc) = 0. If 0(pc) > 0, then there exists a.s. a unique 
infinite open cluster in Z d, which is a.s. part i t ioned into (only) finite clusters by a n y  

division of Z g into two half-spaces. 

7.5 PERCOLATION PROBABILITY 

Although the methods  of Chapter  6 were derived pr imari ly  in order to s tudy sub-  

c r i t i c a l  percolation, they involve a general inequality of wider use, namely  

g ~ ( n )  > g~r(n) n -- �9 1 
- 

where g ~ ( n )  = P~(O  +-+ OSn) ;  see equations (3.10) and (3.18) in Section 6. We argue 
loosely as follows. Clearly g ~ ( n )  ---* 0(Tr) as n --* oo, whence (cross your fingers here) 

0'(rr) -> 0(Tr) ( 0 ( ~ )  - 1 ) 

o r  

0'(~) + 0(~) ~ 1. 

Integrate  this over the interval (Pc,P) to obtain 

O(p)e  p - 0(pc)e po ~ e p - epo, Pc _< P, 

whence it is an easy exercise to show that  

(7.36) O(p) - O(pc) >_ a ( p  - Pc), Pc < P, 

for some positive constant  a. The above argument  may be made rigorous. 
Differential inequalities of the type above are used widely in percolat ion and 

disordered systems. 
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Fig. 7.10. Illustrations of the block construction for the proof of Theorem 7.35 
presented in [50]. The grey regions contain open paths joining the black 'inlet' to the 
three 'outlets'.  The fundamental building block is a rectangle rather than a square. 
We have no control of the aspect ratio of this rectangle, and consequently two cases 
with somewhat different geometries need to be considered. Compare with Figure 7.7. 
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7.6 CLUSTER-SIzE DISTRIBUTION 

When p < Pc, the tail of the cluster-size ICI decays exponentially. Exponential  
decay is not correct when p > Pc, but  rather 'stretched exponential decay'.  

T h e o r e m  7.37. Suppose Pc < P < 1. There exist positive constants a(p),  fl(p) such 
that, for all n, 

(7.38) exp(-an(d-1)/d) <_ Pp(ICI = n) <_ exp(--~n(d-1)/d).  

See [G] for a proof of this theorem. The reason for the power n (d-1)/d is roughly 
as follows. It is thought  that  a large finite cluster is most likely created as a cluster 
of compact  shape, all of whose boundary edges are closed. Now, if a ball has volume 
n, then its surface area has order n (d-1)/d. The price paid for having a surface all 
of whose edges are closed is (1 - p)m where m is the number of such edges. By the 
above remark, m should have order n (d-1)/d, as required for (7.38). 

It is believed that  the limit 

(7.39) 7(P) = aim { 1 logPp(ICI = n ) }  n---*oc n(d-1)/d 

exists, but  no proof is known. 
Much more is known in two dimensions than for general d. The size and geometry 

of large finite clusters have been studied in detail in [38], where it was shown that  
such clusters may be approximated by the so called 'Wulff shape'.  This work includes 
a proof of the existence of the limit in (7.39) when d = 2. 



219 

8. C R I T I C A L  P E R C O L A T I O N  

8.1 PERCOLATION PROBABILITY 

The next main open question is to verify the following. 

C o n j e c t u r e  8.1. We have that 0(pc) = 0. 

This is known to hold when d = 2 (using results of Harris [181], see Theorem 
9.1) and for sufficiently large values of d (by work of Hara and Slade [178, 179]), 
currently for d > 19. The methods of Hara and Slade might prove feasible for 
values of d as small as 6 or 7, but  not for smaller d. Some new idea is needed for the 
general conclusion. As remarked in Section 7.4, we need to rule out the remaining 
theoretical possibility tha t  there is an infinite cluster in ~d when p = pc, but  no 
infinite cluster in any half-space. 

8.2 CRITICAL EXPONENTS 

Macroscopic functions, such as the percolation probability, have a singularity at 
P = Pc, and it is believed that  there is 'power law behaviour '  at and near this 
singularity. The nature of the singularity is supposed to be canonical, in tha t  it is 
expected to have certain general features in common with phase transitions in other 
physical systems. These features are sometimes referred to as 'scaling theory '  and 
they relate to 'critical exponents' .  

There are two sets of critical exponents, arising firstly in the limit as p --+ Pc, 
and secondly in the limit over increasing distances when p = Pc. We summarise the 
notat ion in Table 7.1. 

The asymptot ic  relation ~ should be interpreted loosely (perhaps via logarithmic 
asymptotics) .  The radius of C is defined by rad(C) = m a x { n :  0 ~ OB(n)}. The 
limit as p --* Pc should be interpreted in a manner appropriate for the function in 
question (for example, as p i pc for O(p), but as p --~ Pc for ~(p)). 

There are eight critical exponents listed in Table 7.1, denoted a,/3, 7, 6, u, q, p, Ax, 
but there is no general proof of the existence of any of these exponents. 

8.3 SCALING THEORY 

In general, the eight critical exponents may be defined for phase transitions in a 
quite large family of physical systems. However, it is not believed that  they are 
independent variables, but rather that  they satisfy the following: 

(8.2) Scaling relations 
2 - a = 7 + 2 / 3  = / 3 ( 6 +  1) ,  

/x = 6/3, 

7 = ~ ( 2  - ~ ) ,  
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Function Behaviour 

percolation 
probability 

truncated 
mean cluster size 

number of 
clusters per vertex 

cluster moments 

correlation length 

o(p) = P~(IOl = oo) 

x f ( p )  = E~(ICl ;  ICl < o~) 

~(p) = E p ( I O l - b  

x~(p) = E p ( I C l k ;  1(71 < ~) 

alp) 

cluster volume 

cluster radius 

connectivity function 

x~(p)  ~ I p - p ~ l  - ~  

~" ' (p )  ~ Ip _ p ~ j - l - ~  

~+l(p) 
x ~ -  ~ l p -  pr k > l 

dp) ~ I p -  p~l -~ 

P~r = ~) ~ ~ - ~ - ~ / ~  

Pp~ ( rad(C)  = n) "~ n - l - l I p  

ppo(0 ~ ~) ~ I1~112-d-" 

Exponent 

"7 

d~ 

A 

Table 7.1. Eight functions and their critical exponents. 

and, when d is not  too large, the 

(8.3) Hyperscaling relations 
d p = 5 +  l, 

2 - a = d v .  

The upper critical dimension is the largest value dc such tha t  the hyperscal ing 
relat ions hold for d _< dc. I t  is believed tha t  dc = 6 for percolat ion.  

There  is no general  proof  of the val idi ty of the scaling and hyperscal ing relat ions,  
a l though cer ta in  things are known when d = 2 and for large d. 

In the  context  of percolat ion,  there is an analyt ica l  ra t ionale  behind the scaling 
relat ions,  namely  the 'scaling hypotheses '  tha t  

P~(ICl = ~) ~ n-'f(n/((p) ~-) 
P~(0 ~ x,  ICl < oo) ~ II~ll~-a-'g(ll~ll/dp)) 

in the  double l imit  as p -~ Pc, n --~ ce, and for some constants  c~, T, ~7 and functions 
f ,  g. P lay ing  loose wi th  rigorous mathemat ics ,  the scaling relat ions may  be derived 
from these hypotheses.  Similarly, the hyperscal ing relat ions may  be shown to be 
not too  unreasonable,  at  least when d is not too large. For further discussion, see 
[c]. 
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We make some further points. 
Universality. It is believed that  the numerical values of critical exponents depend 
only on the value of d, and are independent of the particular percolation model. 
Two dimensions. When d = 2, perhaps 

43 (~ : . ~ , . . .  

Large dimension. When d is sufficiently large (actually, d > de) it is believed that  
the critical exponents are the same as those for percolation on a tree (the 'mean- 
field model ') ,  namely 6 = 2, V = 1, ~ = �89 p = �89 and so on (the other exponents 
are found to satisfy the scaling relations). Using the first hyperscaling relation, this 
supports  the contention that  dc = 6. Such statements are known to hold for d _> 19; 
see [178, 179] and Section 8.5. 

8.4 RIGOROUS RESULTS 

Open challenges include to prove: 
�9 the existence of critical exponents, 
�9 universality, 
�9 the scaling relations, 
�9 the conjectured values when d = 2, 
�9 the conjectured values when d >_ 6. 

Progress towards these goals has been slender, but  positive. Most is known in the 
case of large d, see the next section. For sufficiently large d, exact values are known 
for many exponents, namely the values from percolation on a regular tree. When 
d = 2, Kesten [204, 205] has proved that,  if two critical exponents exist, then certain 
others do also, and certain scaling relations are valid. However, the provocative case 
when d = 3 is fairly open terrain. 

Certain partial results are known in generality, yielding inequalities in situations 
where one expects (asymptotic) equalities. For example, it is known that  /3 < 1, if 
/3 exists (cf. (7.36)). In similar vein, we have that  V -> 1 and 6 > 2 for all d. 

8.5 MEAN-FIELD THEORY 

The expression 'mean-field' permits several interpretations depending on context. A 
narrow interpretation of the term 'mean-field theory '  for percolation involves trees 
rather than lattices. For percolation on a regular tree, it is quite easy to perform 
exact calculations of many quantities, including the numerical values of critical 
exponents. Tha t  is, 6 = 2, ~/ = 1, v = �89 p = �89 and other exponents are given 
according to the scaling relations (8.2); see [G], Section 8.1. 

Turning to percolation on L d, it is known that  the critical exponents agree with 
those of a regular tree when d is sufficiently large. In fact, this is believed to hold if 
and only if d >_ 6, but  progress so far assumes that  d >_ 19. In the following theorem, 
taken from [179], we write f (x )  ~" g(x) if there exist positive constants cl, c2 such 
that  c l f (x )  < g(x) < c2f(x) for all x close to a limiting value. 
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T h e o r e m  8.4. I f  d > 19 then 

(8.5) O(p)  "~ (p  --  pc) 1 as  p ,[ Pc, 

(8.6) X(P) ~- (Pc - p)-I  as p T pc, 

(8.7) ~ ( p ) - ~ ( p c - p ) - � 8 9  aspTpc,  

(8.8) x~+l(p) x~(p)  - (pc - p)-2  as p T Pc, for  k > 1. 

Note the strong form of the asymptotic relation _~, and the identification of the 
critical exponents ~, 7, A, v. The proof of Theorem 8.4 centres on a property known 
as the 'triangle condition'. Define 

(8.9) T(p) = E Pp(O ~ x)Pp(x ~ y)Pp(y ~ 0), 
x , yEZ  d 

and introduce the following condition, 

(8.10) Triangle condition: T(pc) < ~ .  

The triangle condition was introduced by Aizenman and Newman [27], who showed 
that it implied that X(P) ~- (Pc _ p ) - i  as p T pc. Subsequently other authors showed 
that the triangle condition implied similar asymptotics for other quantities. It was 
Hara and Slade [178] who verified the triangle condition for large d, exploiting a 
technique known as the 'lace expansion'. 

We present no full proof of Theorem 8.4 here, pleading two reasons. First, such 
a proof would be long and complicated. Secondly, we are unable to do better  than 
is already contained in the existing literature (see [178, 179]). Instead, we (nearly) 
prove the above Aizenman-Newman result (equation (8.6) above), namely that  the 
triangle condition implies that X(P) "~ (Pc - p ) - I  as p T pc; then we present a very 
brief discussion of the Hara-Slade verification of the triangle condition for large d. 
We begin with a lemma. 

L e m m a  8.11. Let Tp(U,V) -= Pp(u ~-~ v), and 

Q(a, b) = ~_, ~-Aa, v)~-~(v, ~)~-~(~, b) for a, b e Z ~. 
v ,wEZ  d 

Then Q is a positive-definite form, in that 

E f(a)Q(a, b)f(b) >_ 0 
a,b 

for all suitable functions f : Z d --~ C. 

Proof. We have that 

E f(a)Q(a, b)f(b) = E g(V)Tp(V, w)g(w) 
a~b v ,w 

= Ep(v~wg(V)l{v~w}g(w) ) 
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where g(v) = ~ a  f(a)Tp(a,v), and the penultimate summat ion is over all open 
clusters C. [] 

We note the consequence of Lemma 8.11, that  

(8.12) Q(a, b) 2 _< Q(a, a)Q(b, b) = T(p) ~ 

by Schwarz's inequality. 

T h e o r e m  8.13. I f  d >_ 2 and T(pc) < oo then 

X(P) ~ (Pc - P)-I as p T pc. 

Proof. This is taken from [27]; see also [G] and [179]. The following sketch is 
incomplete in one important  regard, namely that,  in the use of Russo's formula, 
one should first restrict oneself to a finite region A, and later pass to the limit as 
A T zd; we omit the details of this. 

Write Tp(u, V) = Pp(u ~ v) as before, so that  

x(p) =  p(0,x) 
x E Z  a 

By (ab)use of Russo's formula, 

(8.14) dx d dp dp E ~-p(0, x) = E E Pp(e is pivotal for {0 ~ x}). 
x E Z  d x E Z  d e E E  d 

If e = (a, b) is pivotal for {0 ~-* x}, then one of the events {0 ~-~ a} o {b ~-* x} and 
{0 ~ b} o {a ~ x} occurs. Therefore, by the BK inequality, 

(8.15) dx  < E E {'rp(O,a)'rp(b,x)+Tp(O,b)Tp(a,x)} 
d p -  x e=(a,b) 

= E {Tp(O,a) + Tp(O,b)}x(p) = 2dx(P) 2. 
e=(a,b) 

This inequality may  be integrated, to obtain that  

1 1 
- -  < 2 d ( p 2 - p l )  fo rp l_<p2 .  

X(Pl) X(P2) 

Take Pl = p < Pc and P2 > Pc, and allow the limit P2 I Pc, thereby obtaining that  

1 
(8.16) X(P) > for p < Pc. 

2d(pr - p) 

In order to obtain a corresponding lower bound for X(P), we need to obtain a 
lower bound for (8.14). Let e = (a, b) in (8.14), and change variables (x H x - a) 
in the summat ion  to obtain that  

(8.17) dx ~p = E ~ Pp(O ~ x, u ~ y off C~(x)) 
:r,,y lul=l 

where the second summat ion  is over all unit vectors u of Z d. The (random set) 
C,,(x) is defined as the set of all points joined to x by open paths not using (0, u). 

In the next lemma, we have a strictly positive integer R, and we let B = B(R).  
The set CB(x) is the set of all points reachable from x along open paths using no 
vertex of B. 



224 

A A 

W 

Fig. 8.1. If O +-* x, u ~-* y, and x +-~ y off B, then there exist v, w ~ B such that 
there are disjoint open paths from x to v, from v to 0, from v to w, from w to u, and 
from w to y. 

L e r n r n a  8.18.  Let  u be a uni t  vector. We  have that 

pp(0  ~ x, ~ ~ y off c ~ ( x ) )  > ~ (p )Pp(0  ~ ~, ~ ~ y off c B ( x ) ) ,  

where c~(p) = {min(p, 1 - p)}  2d(2R+l)d. 

Proo f  o f  L e m m a  8.18. Define the following events, 

E = {0 ~ x, ~ ~ y off Cu(x)} ,  

(8.19) F = {0 ~-* x, u ~-~ y off C B ( x ) } ,  

c = {B n c(~) # o, B n C(y) # 0, CB(x) n c~(y) : o} ,  

noting tha t  E C F C G. Now 

P p ( E )  = P p ( E  I G ) P p ( G  ) >>_ P p ( E  I G ) P p ( F  ). 

The event G is independent  of all edges lying in the edge-set EB of B. Also, for any 
w C G, there exists a configuration WB = WB(W) for the edges in EB such that  the 
composite configuration (w off EB, and WB on EB) lies in E. Since EB is finite, and 
Pp(WB) > a(p)  whatever the choice of COB, we have that  P p ( E  ] G) > a(p),  and the 
conclusion of the lemma follows. [] 

The event F in (8.19) satisfies 

F = { 0 ~ ,  ~ y } \ { 0 ~ x ,  u ~ ,  x~yoffB}, 

whence, by the FKG inequality, 

P p ( F )  = Pp(O ~ x, u ~ y) - P,(O ~ x, u ~ y, x ~ y off B )  

> ~ ( 0 ,  x ) r  y) - PAO ~ x,  ~ ~ y, �9 ~ y off  B ) .  

To bound  the last term, we use the BK inequality. Glancing at Figure 8.1, we see 
that ,  if 0 *-+ x, u ~ y, and x ~ y off B, then there exist v, w ~ B such that  there 
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are disjoint open paths from x to v, from v to 0, from v to w, from w to u, and from 
w to y. Applying the BK inequality, 

P~(F) > ~(0, x)~(~,y)-  ~2 ~(z,v)T~(~,0)~(~,~)~(~,~)~(~,y). 
v ,wf~B 

Now sum over x and y to obtain via (8.17) and Lemma 8.18 that  

~-p(o, v)~-Av, w)~-A~, u) ). 
v , w ~ B  

(8.20) d x > 2da(p)x2 (1 - sup 
d p -  lul=l 

Now, by (8.12), 

(8.21) E vp(O, v)'rv(V , w)'rp(w, u) <_ T(p) for all u. 
V~W 

Assuming that  T(pr < oo, we may choose B = B(R) sufficiently large that  

(8.22) d~ > 2d~(p)X2(1 _ 1) for p _< pC. a p -  

Integrate this, as for (8.15), to obtain that  

1 
X(P) <- for p <_ p~ ~,(pr - p) 

where a ~ = a~(p) is strictly positive and continuous for 0 < p < 1 (and we have used 
the fact (6.7) tha t  X(P~) = oc). [] 

Finally we discuss the verification of the triangle condition T(p~) < oc. This 
has been proved for large d (currently d > 19) by Hard and Slade [176, 177, 178, 
179, 180], and is believed to hold for d > 7. The corresponding condition for 
a 'spread-out '  percolation model, having large but finite-range links rather than 
nearest-neighbour only, is known to hold for d > 6. 

The proof tha t  T(pr < oo is long and technical, and is to be found in [178]; 
since the present author  has no significant improvement on that  version, the details 
are not given here. Instead, we survey briefly the structure of the proof. 

The triangle function (8.9) involves convolutions, and it is therefore natural  to 
introduce the Fourier transform of the connectivity function Tp(X, y) = Pp(x ~ y). 
More generally, if f : Z d --+ R is summable, we define 

f(O) = E f(x)ei~ for 0 = (01, . . . ,Od)  E [--Tr, Tr] d, 
x C Z  a 

d where O.x = Y'~j=I Ojxj. If f is symmetric  (i.e., f (x)  = f ( - x )  for all x), then f i s  
real. 

We have now that  

(8.23) T(p) = ~ TA0 , x)~-~(x, Y)~-~(Y, O) = (2~) -d [ 5~(0)3d0. 
x l y  J [ - -  7r~Tr] d 
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The proof  tha t  T(pc) < :x~ involves an upper  bound on ?p, namely  the so called 
infra-red bound 

(8.24) ~p(O) < c(p) 
-IOI2 

where 10] = v/-O �9 0. It  is immediate  via (8.23) tha t  the infra-red bound (8.24) implies 
tha t  T(p) < oc. Also, if (8.24) holds for some c(p) which is uniformly bounded for 
P < Pc, then T(pc) = limpTpc T(p) < oc. 

It  is believed tha t  

1 
(8.25) ~ ( e )  -~ lel2_, as le] -~ 0 

where ~ is the critical exponent given in the table of Section 8.2. 

T h e o r e m  8.26 ( H a r a - S l a d e  [178]). There exists D satisfying D > 6 such that, 
if d >_ D, then 

e(p) 
vp(o) <_ iol- w 

for some c(p) which is uniformly bounded for p < Pc. Also T(pc) < exp. 

The proof  is achieved by establishing and using the following three facts: 
(a) T(p) and 

W(p)-- Ixl2 A0,x) 2 
xEZ a 

are continuous for p _~ Pc; 
(b) there exist constants  kT and kw such tha t  

kT kW for p < 1 
T(p) ~_ l + - ~ ,  W(p) ~_ -~- ,  - 23;  

(c) for large d, and for p satisfying (2d)-: <_ p < Pc, we have tha t  

3kT 3kw 3 
T ( p ) < l + - - d - ,  W(p)<_-- j - - ,  p <  2d 

whenever 
4kT 4kw 4 

T(p) < l + ---~-, W(p) < ---~ , p <  2"-d" 

Fact (a) is a consequence of the continuity of Tp and monotone convergence. 
Fact (b) follows by comparison with a simpler model  (the required comparison is 
successful for sufficiently small p, namely p _< (2d) - : ) .  Fact (c) is much harder to 
prove, and it is here tha t  the 'lace expansion'  is used. Par t  (c) implies tha t  there 
is a ' forbidden region' for the pairs (p, T(p)) and (p, W(p));  see Figure 8.2. Since T 
and W are finite for small p, and continuous up to Pc, par t  (c) implies tha t  

3kT 3kw 3 
T ( p r  W(pc) < - y - ,  pc < ~ .  
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T(p) - 1 l 

3k/d  

4 I 
za ~ P 

Fig. 8.2, There is a 'forbidden region' for the pairs (p,T(p) - 1) and (p,W(p)), 
namely the shaded region in this figure. The quantity k denotes kT or kw as appro- 
priate. 

The infra-red bound emerges in the proof of (c), of which there follows an extremely 
brief account. 

We write x ~ y, and say that  x is 'doubly connected'  to y, if there exist two 
edge-disjoint open paths from x to y. We express Tp(0, x) in terms of the 'doubly 
connected'  probabilities 5p(u, v) = Pp(u ~ v). In doing so, we encounter formulae 
involving convolutions, which may be treated by taking transforms. At the first 
stage, we have that  

( , )  

where {0 ~=~ (u, v) ~ x} represents the event that  (u, v) is the 'first pivotal edge' 
for the event {0 ~ x}, and that  0 is doubly connected to u. (Similar but more 
complicated events appear throughout  the proof.) Therefore 

(8.27) ~ (0 ,x )  = ~p(0,~) + ~ P~(0 ~. (u,v) ~ x). 

Now, with A(0, u; v, x) = {v ~ x off C(~,.)(0)}, 

P, (o ~ (~, ~) ,-, x) = ppp (o ~ ~, A(o, ~; ~, x)) 

= p6p(O, u)'rp(v, x) - pEp (1{or { Tp(V, x) - 1A(O,~;.,=)}) 

whence, by (8.27), 

(8.28) ~p(0, x) = ~p(0, x) + ~ ; .  ( v I ) .  ~p(x) - R~,o(0, x) 

w h e r e ,  denotes convolution, I is the nearest-neighbour function I(u, v) = 1 if and 
only if u ,-~ v, and Rp,o is a remainder. 
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Equat ion (8.28) is the first step of the lace expansion, In the second step, the 
remainder Rp, 0 is expanded similarly, and so on. Such further expansions yield the 
lace expansion: if p < Pc then 

(8.29) Tp(0, x) = hp,N(O, x) + hp,g * (pI) * ~-p(X) + (--1)N+lRp,g(O, x) 

for appropriate remainders Rp,N, and where 

N 
hp,N(O, x) = ~p(O, x) + E(-1)JIIp,j(O, x) 

j=l 

and the Hp,n are appropriate functions (see Theorem 4.2 of [179]) involving nested 
expectations of quantities related to 'double connections'. 

We take Fourier transforms of (8.29), and solve to obtain that  

(8.30) ~v = 
~p + E ; = I ( - 1 ) J H p , j  + (--1)N+IRp,N 

1 pI(~p p ~-~j=l(-1)JfIp,j 

The convergence of the lace expansion, and the consequent validity of this formula 
for Sp, is obtained roughly as follows. First, one uses the BK inequality to derive 
bounds for the 5p, Hp,j, Rp,j in terms of the functions T(p) and W(p). These bounds 
then imply bounds for the corresponding transforms. In this way, one may obtain 
a conclusion which is close to point (c) stated above. 
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9. P E R C O L A T I O N  I N  T W O  D I M E N S I O N S  

1 9 . 1  T H E  C R I T I C A L  P R O B A B I L I T Y  IS  

The famous exact calculation for bond percolation on L 2 is the following, proved 
originally by Kesten [200]. The proof given here is taken from [G]. 

T h e o r e m  9.1. The critical probability of bond percolation on Z 2 equals 3" Fur- 
thermore, 0(�89 = O. 

Proof. Zhang discovered a beautiful proof that  0(3 ) = 0, using only the uniqueness 
1 Let T(n) be the box T(n) = [0, n] 2, and find N of the infinite cluster. Set p = ~. 

sufficiently large that  

1 
Pa ~ (aT(n) ~ oo) > 1 - 8~ for n > N. 

We set n = N + 1. Writing A l, A ~, A t, A b for the (respective) events that  the left, 
right, top, bo t tom sides of T(n) are joined to oo off T(n), we have by the FKG 
inequality tha t  

P�89 (T(n) ~+ oo) : P�89 (A I N A r n A  t n A  b) 

>_ P�89 (~)P(-A~)P(Af)P(Ag) 
= p�89 ( ~ ) 4  

by symmetry,  for g = 1,r,t,b. Therefore 

( )),in 7 
P�89 g ) >  1 -  1 - P � 8 9  > ~. 

Now we move to the dual box, with vertex set T(n)d = (x + (3,�89 : 0 _~ 
x l ,x2  < n}. Let A~, a r  a t  ab  denote the (respective) events tha t  the left, right, ~d ' �9 "d ,  �9 ~d 
top, bo t tom sides of T(n)d are joined to oo by a closed dual path off T(n)d. Since 
each edge of the dual is closed with probability �89 we have that  

7 for 1,r,t,b. P�89 > ~ g = 

Consider the event A = A 1NArn A~ n Abd, and see Figure 9.1. Clearly P�89 (A) < 3, 
1 so that  P�89 (A) > ~. However, on A, either L 2 has two infinite open clusters, or its 

dual has two infinite closed clusters. Each event has probability 0, a contradiction. 
1 We deduce that  0(3 ) = 0, implying that  Pc _> ~. 

1 Suppose instead that  Pc > 3, so that  Next we prove that  Pc _< ~. 

(9.2) P�89 (0 ~-+ OB(n)) < e -Tn for all n, 

for some "7 > 0. Let S(n) be the graph with vertex set {x E Z 2 : 0 _< xl  < n +  1,0 < 
x2 _< n} and edge set containing all edges inherited from L 2 except those in either 
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/ 
/ 

I 

Fig. 9.1. The left and right sides of the box are joined to infinity by open paths of 
the primal lattice, and the top and bottom sides are joined to infinity by closed dual 
paths. Using the uniqueness of the infinite open cluster, the two open paths must be 
joined. This forces the existence of two disjoint infinite closed clusters in the dual. 

the left side or the right side of S(n). Denote by A the event tha t  there is an open 
pa th  joining the left side and right side of S(n). Using duali ty,  if A does not occur, 
then the top  side of the dual  of S(n) is joined to the b o t t o m  side by a closed dual  
path .  Since the dual  of S(n) is isomorphic to S(n) ,  and since p = �89 it follows tha t  

1 See Figure  9.2. However, using (9.2), P�89 (A) = 5' 

P�89 (A) < (n + 1)e -x'~, 

a cont radic t ion  for large n. We deduce tha t  Pc < 1 - -  5 "  
[] 

9.2 RSW TECHNOLOGY 

Subs tan t ia l ly  more is known about  the phase t rans i t ion  in two dimensions than  
in higher dimensions.  The main  reason for this lies in the fact tha t  geometr ical  
constra ints  force the intersection of cer tain pa ths  in two dimensions,  whereas they  
can avoid one another  in three dimensions. Path- in tersect ion proper t ies  p lay  a 
central  role in two dimensions,  whereas in higher dimensions we have to rely on the 
more compl ica ted  G r i m m e t t - M a r s t r a n d  construct ion of Section 7.3. 

A basic tool  in two dimensions is the R S W  lemma,  which was discovered in- 
dependen t ly  by Russo [326] and Seymour-Welsh  [331]. Consider  the rectangle 
B(kl, l) = I - l ,  (2k - 1)/] x I - l ,  l], a rectangle of side-lengths 2kl and 2/; note tha t  
B(l, l) = B(1). We write LR(/)  for the event tha t  B(1) is crossed from left to right 
by an open pa th ,  and O(l)  for the  event tha t  there  is an open circuit  of the  annulus 
A(l) = B(31)\B(l) containing the origin in its interior. 



231 

0 0 0 ~ 0 

I 

= I : I �9 �9 
o o / r - - 0  o 

' nu * �9 �9 

Olr__o o o 
- - - - - ~  ,, �9 �9 �9 �9 

o i o - - - - o - - - -  ~, o 

- - - - - - - - - ~ - - - - - - - ~ - ~  ,, . 

o O l O l 9  o 

I 

o o o 6 o 

Fig. 9.2. If there is no open left-right crossing of S(n),  then there must be a closed 
top-bot tom crossing in the dual. 

T h e o r e m  9.3 ( R S W  L e m m a ) .  If Pp(LR(/))  = "r then 
Pp(O(l)) >_ (~-(1 - lv/~L~--T)4} 12 

1 for 1 > 1, whence When  p = �89 we have from self duality that  P�89 (LR(/)) > ~ _ 

( (9.4) P �89  -~4 1 -  forl>_ 1 

We refer the reader to [G] for a proof of the RSW lemma.  In common  with 
almost  every published proof of the l emma ([331] is an exception, possibly amongst  
others), the proof  given in [G] contains a minor e r ro r  Specifically, the event G 
below (9.80) on page 223 is not increasing, and therefore we may  not s imply use 
the F K G  inequality at (9.81) Instead, let A .  be the event tha t  the pa th  u is o p e n  
Then, in the notat ion of [G], 

P�89 >-P�89 (N+ N ( U [A~AM~])) 
~E"I"- 

> e�89189 (UIA~ n M;] ) by~KO 
7r 

>- P�89 (N+) E P�89 Cl M;) 

_> P�89 - l ~ - - L ~ - 7 ) E P � 8 9  by (9.84) 
7r 

= P�89 ( g + ) ( 1  - x/1 - ~-)P�89 
> (1 - ~ ) 3  as in [G]. 

There are several applications of the RSW lemma,  of which we present one. 
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Fig. 9.3. If  t h e r e  is a n  o p e n  l e f t - r igh t  c ros s ing  of  t h e  box,  t h e n  t h e r e  m u s t  ex i s t  
s o m e  v e r t e x  x in t h e  c e n t r e  w h i c h  is c o n n e c t e d  disjointly to  t h e  left  a n d  r i g h t  s ides .  

T h e o r e m  9.5. There exist constants A, ~ satisfying 0 < A, ~ < ~ such that 

(9.6) �89 -1/2 <_ P�89 (0 ~ aB(n))  <_ An -~. 

Similar power-law estimates are known for other macroscopic quantities at and 
1 In the absence of a proof that  quantities have near the critical point Pc = 3" 

'power-type '  singularities near the critical point, it is reasonable to look for upper 
and lower bounds of the appropriate type. As a general rule, one such bound is 
usually canonical, and applies to all percolation models (viz. the inequality (7.36) 
that  O(p) - 0(pc) > a(p-pc)) .  The complementary bound is harder, and is generally 
unavailable at the moment  when d _> 3 (but d is not too large). 

Proof. Let R(n) = [0,2n] • [ 0 , 2 n -  1], and let LR(n) be the event that  R(n) 
is traversed from left to right by an open path. We have by self-duality tha t  

1 P�89 = 7. On the event LR(n),  there exists a vertex x with xl  = n such 

that  x ~ x + OB(n) by two disjoint open paths. See Figure 9.3. Therefore 

2n--  1 

= P�89 (LR(n))  < E P�89 o Ak) <_ 2nP�89 (0 ~ OB(n)) 2 
k=O 

where Ak = {(n, k) ~ (n, k) + OB(n)}, and we have used the BK inequality. This 
provides the lower bound in (9.6). 

For the upper bound, we have from (9.4) that  P�89 >_ ~ for all l, where ~ > 0. 
Now, on the event {0 ~ OB(n)}, there can be no closed dual circuit surrounding 
the origin and contained within B(n).  In particular, no dual annulus of the form 
B ( 3 r + I ) \ B ( 3  r) + (1, �89 for 0 < r < log 3 n - 1, can contain such a closed circuit. 
Therefore 

(9.7) P�89 (0 ~ OB(n)) < (1 - ~) l~ n-2 

as required for the upper bound in (9.6). [] 
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9.3 C O N F O R M A L  I N V A I ~ I A N C E  

1 W i t h  We concentra te  on bond percola t ion in two dimensions with p = Pc = ~. 
S(n) = [0, n + 1] x [0, n], we have by self-duali ty tha t  

(9.8) P�89 (S(n) t raversed from left to right by open pa th)  - 1 

for all n. Cer ta in ly  L 2 must  contain long open paths,  but  no infinite pa ths  (since 
0(1) = 0). One of the features of (hypothet ical)  universal i ty is tha t  the chances 
of long-range connections (when p = Pc) should be independent  of the  choice of 
la t t ice  s t ructure .  In par t icular ,  local deformations of space should, within l imits,  
not affect such probabil i t ies .  One family of local changes arises by local ro ta t ions  
and di lat ions,  and par t icu la r ly  by applying a conformally invariant  mapping  to ]R 2. 
This suggests the possibi l i ty  tha t  long-range crossing probabi l i t ies  are, in some sense 
to be explored,  invariant  under eonformal maps  of IR 2 . (See [8] for an account of 
eonformal maps.)  

Such a hypothesis  may  be formulated,  and invest igated numerically.  Such a 
p rog ramme has been followed by Langlands,  Pouliot ,  and Sain t -Aubin  [231] and 
Aizenman [10], and their  results  suppor t  the hypothesis.  In  this  summary,  we refer 
to bond  percola t ion  on L 2 only, a l though such conjectures may  be formula ted  for 
any two-dimensional  percola t ion model.  

We begin with a concrete conjecture concerning crossing probabil i t ies .  Let 
B(kl, l) be a 2kl by 2l rectangle,  and let LR(k / , l )  be the event tha t  B(kl,1) is 
t raversed between its opposi te  sides of length 21 by an open path ,  as in Section 9.2. 
I t  is not  difficult to show, using (9.8), tha t  

1 P} (LR(/,  1)) -+ ~ as 1 ~ oe, 

and it is reasonable to conjecture tha t  the l imit  

(9.9) Ak = lim P1 (LR(kt, l)) 
l---+cm 

exists for all 0 < k < oo. By self-duality, we have tha t  )~k + kk-1 = 1 if the kk exist.  
I t  is apparen t ly  difficult to establish the l imit  in (9.9). 

In  [231] we see a general isat ion of this conjecture which is fundamenta l  for a 
Monte Carlo approach to conformal invariance. Take a simple closed curve C in the 
plane, and  arcs Ogl, a 2 , .  �9 �9 , a m , / ~ 1 , .  �9 - , / ~ r n ,  as well as arcs %, 72,. �9 �9 , % ,  5 , , . . .  , (Sn,  

of C. For a di la t ion factor r,  define 

(9.10) rc~(G) = P(rai ~ rl3i, r"/i +,~ r S i ,  for all i, in rC) 

where P = Ppc and G denotes the collection (C; ai, fli; 7i, 5i). 
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C o n j e c t u r e  9.11. The following limit exists: 

7r(G) = lim Try(G). 

Some convention is needed in order to make sense of (9.10), arising from the fact 
tha t  r C  lives in the plane II~ 2 rather than on the lattice L2; this poses no major  
problem. Conjecture (9.9) is a special case of (9.11), with C = B ( k ,  1), and a l ,  fit 
being the left and right sides of the box. 

Let r : R 2 ~ R 2 be a reasonably smooth function. The composite object G = 
(C; on,/3i; 7i, 5i) has an image under r namely CG = (r Ca~, r162 r r which 
itself corresponds to an event concerning the existence or non-existence of certain 
open paths. If we believe that  crossing probabilities are not affected (as r ~ oc, 
in (9.10)) by local dilations and rotations, then it becomes natural  to formulate a 
conjecture of invariance under conformal maps [10, 231]. 

C o n j e c t u r e  9.12 ( C o n f o r m a l  I n v a r i a n c e ) .  For all G = (C; ai , f l i ;Ti ,  5i), we 
have that 7r(r = :r(G) for  any r : R 2 ~ N 2 which is bijective on C and conformal 

on its interior. 

Lengthy computer  simulations, reported in [231], support this conjecture. Par- 
ticularly st imulating evidence is provided by a formula known as Cardy 's  formula 
[87]. By following a sequence of transformations of models, and applying ideas of 
conformal field theory, Cardy was led to an explicit formula for crossing probabilities 
between two sub-intervals of a simple closed curve C. 

Let C be a simple closed curve, and let zl, z2,z3, z4 be four points on C in 
clockwise order. There is a conformal map r on the interior of C which maps to the 
unit disc, taking C to its circumference, and the points zi to the points wi. There 
are many such maps, but the cross-ratio of such maps, 

(w4 - w 3 ) ( w 2  - w l )  
(9.13) u = 

(~3 - ~ 1 ) ( ~ 4  - ~2)' 

is a constant satisfying 0 < u < 1 (we think of zi and wi as points in the complex 
plane). We may parametrise the wi as follows: we may assume that  

W l  = e iO, W 2  -~ e - s O  , w 3 = - - e i o ~  w 4  = - - e  - i O  

for some 0 satisfying 0 _< 0 _< ~. Note that  u = sin 20. We take a to be the 
segment of C from zl to z2, and fl the segment from z3 to z4. Using the hypothesis 
of eonformal invariance, we have that  7r(G) = 7r(r where G = (C; c~,/3; g ,  0) ,  
implying that  ~r(G) may be expressed as some function f ( u ) ,  where u is given in 
(9.13). Cardy has derived a differential equation for f ,  namely 

2 (9.14) u(1 - u ) f " ( u )  + g(1 - 2 u ) f ' ( u )  = O, 

together with the boundary  conditions f(0)  = 0, f (1)  = 1. The solution is a hyper- 
geometric function, 

3r(-~)  u ~ / 3 2 F 1 ( � 8 9  2 4 . ~ ) .  
(9.15) f ( u )  - F ( ] )  2 g, g, 
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Recall that u = sin 2 0. The derivation is somewhat speculative, but the predictions 
of the formula may be verified by Monte Carlo simulation (see Figure 3.2 of [231]). 

The above 'calculation' is striking. Similar calculations may well be possible 
for more complicated crossing probabilities than the case treated above. See, for 
example, [10, 345]. 

In the above formulation, the principle of conformal invariance is expressed in 
terms of a collection {~r(G)} of limiting 'crossing probabilities'. It would be useful to 
have a representation of these ~(G) as probabilities associated with a specific random 
variable on a specific probability space. Aizenman [10] has made certain proposals 
about how this might be possible. In his formulation, we observe a bounded region 
D R = [0, R] 2, and we shrink the lattice spacing a of bond percolation restricted 
to this domain. Let p = Pc, and let Ga be the graph of open connections of bond 
percolation with lattice spacing a on D R .  By describing Ga through the set of 
Jordan curves describing the realised paths, he has apparently obtained sufficient 
compactness to imply the existence of weak limits as a ~ 0. Possibly there is a 
unique weak limit, and Aizenman has termed an object sampled according to this 
limit as the 'web'. The fundamental conjectures are therefore that there is a unique 
weak limit, and that this limit is conformally invariant. 

The quantities ~r(G) should then arise as crossing probabilities in 'web-measure'. 
This geometrical vision may be useful to physicists and mathematicians in under- 
standing conformal invariance. 

In one interesting 'continuum' percolation model, conformal invariance may ac- 
tually be proved rigorously. Drop points {X1, X2, . . .  } in the plane I~ 2 in the manner 
of a Poisson process with intensity A. Now divide ]R 2 into tiles {T(X1), T(X2),... }, 
where T(X) is defined as the set of points in ]~2 which are no further from X than 
they are from any other point of the Poisson process (this is the 'Voronoi tessela- 

1 and closed otherwise. tion'). We designate each tile to be open with probability 
This continuum percolation model has a property of self-duality, and it inherits prop- 
erties of conformal invariance from those of the underlying Poisson point process. 
See [11, 57]. 
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10. R A N D O M  W A L K S  IN R A N D O M  L A B Y R I N T H S  

10.1 RANDOM WALK ON THE INFINITE PERCOLATION CLUSTER 

It  is a classical result  tha t  symmet r ic  random walk on L d is recurrent  when d = 2 
but  t rans ient  when d > 3 (see [170], pages 188, 266). Three-dimensional  space is 
sufficiently large tha t  a r andom walker may  become lost, whereas two-dimensional  
space is not. The transience or recurrence of a r andom walk on a graph G is a crude 
measure  of the  'degree of connect ivi ty '  of G, a more sophis t icated measure  being the 
t rans i t ion  probabi l i t ies  themselves. In s tudying the geometry  of the infinite open 
percola t ion  cluster,  we may  ask whether  or not a random walk on this cluster is 
recurrent .  

T h e o r e m  10.1.  Suppose p > Pc. Random walk on the (a.s. unique) infinite open 
cluster is recurrent when d = 2 and a.s. transient when d > 3. 

This theorem,  proved in [164] 6, follows by a considerat ion of the infinite open 
cluster viewed as an electrical network. The relat ionship between random walks and 
electr ical  networks is ra ther  str iking,  and has proved useful in a number  of contexts;  
see [118]. 

We denote  the (a.s.) unique infinite open cluster by I = I(co), whenever it  exists. 
On the graph I ,  we construct  a random walk as follows. Firs t ,  we set So = x where x 
is a given vertex of I .  Given So, $ 1 , . . .  , S~, we specify tha t  Sn+I is chosen uniformly 
from the set of neighbours of Sn in I ,  this choice being independent  of all earlier 
choices. We call w a transient configuration if the random walk is t ransient ,  and  a 
recurrent configuration otherwise. Since I is connected, the transience or recurrence 
of S does not  depend on the choice of the s ta r t ing  point  x. 

The  corresponding electrical  network arises as follows. For x E I ,  we denote by 
B~(x)  the  set of all vertices y of I such tha t  5(x, y) < n, and we write OBn(x)  = 
13~(x)\Bn_](x) .  We turn  Bn(x)  into a graph by adding all induced (open) edges 
of I .  Next  we tu rn  this  graph into an electrical network by replacing each edge by 
a unit  rcsistor,  and by ' short ing together '  all vertices in OBn(x).  Let R,~(x) be the 
effective resistance of the network between x and the composi te  ver tex OB~(x). 

By an argument  using monotonic i ty  of effective resistance (as a function of the 
individual  resistances),  the increasing l imit  R ~  (x) = limn-~oo Rn (x) exists for all x. 
I t  is a consequence of the relat ionship between random walk and electrical  networks 
tha t  the r andom walk on I ,  beginning at x, is t ransient  if and  only if R ~ ( x )  < oe. 
Therefore Theorem 10.1 is a consequence of the following. 

T h e o r e m  10.2.  Let p > Pc, and let I be the (a.s.) unique infinite open cluster. 
(a) I f  d = 2 then R ~ ( x )  = oo for all x �9 I. 
(b) I f  d > 3 then Pp(R~(O) < oz ]0 �9 I)  = 1. 

Par t  (a) is obvious, as follows. The electrical  resistance of a graph can only 
increase if any individual  edge-resistance is increased. Since the network on I may  
be ob ta ined  from tha t  on L 2 by set t ing the resistances of closed edges to co, we 
have tha t  R ~ ( x )  is no smaller  than  the resistance 'between x and oo' of L 2. The 

6For a quite different and more recent approach, see [54]. 
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Fig. 10.1. The  left picture depicts a tree-like subgraph  of the  lattice. The  right 
picture is obtained by the  removal of common  points  and the  replacement  of compo- 
nent  pa ths  by single edges. The  resistance of such an edge emana t ing  from the k th  
generat ion has order ilk. 

latter resistance is infinite (since random walk is recurrent, or by direct estimation), 
implying that  R~(x )  = oc. 

Par t  (b) is harder, and may be proved by showing that  I contains a subgraph 
having finite resistance. We begin with a sketch of the proof. Consider first a 
tree T of 'down-degree'  4; see Figure 10.1. Assume that  any edge joining the kth 
generation to the (k + 1)th generation has electrical resistance flk where fl > 1. 
Using the series and parallel laws, the resistance of the tree, between the root and 
infinity, is ~'.k(fl/4)k; this is finite if fl < 4. Now we do a little geometry. Let us 
try to imbed such a tree in the lattice L 3, in such a way that  the vertices of the 
tree are vertices of the lattice, and that  the edges of the tree are paths of the lattice 
which are 'a lmost '  disjoint. Since the resistance from the root to a point in the kth 
generation is 

k--1 
/~k _ 1 

Z s -  i , 
r : 0  

it is reasonable to t ry to position the kth generation vertices on or near the surface 
OB(flk-1). The number of kth generation vertices if 4 k, and the volume of OB(fl k-~) 
has order fl(k-1)(d-1). The above construction can therefore only succeed when 
4 k < ~ ( k - 1 ) ( d - 1 )  for all large k, which is to say that  fl > 41/(d- l ) .  

This crude picture suggests the necessary inequalities 

(10.3) 41/(d-1) < fl < 4, 

which can be satisfied if and only if d _> 3. 
Assume now that  d _> 3. Our target is to show that  the infinite cluster I contains 

sufficiently many disjoint paths to enable a comparison of its effective resistance 
with tha t  of the tree in Figure 10.1, and with some value of fl satisfying (10.3). In 
presenting a full proof of this, we shall use the following two percolation estimates, 
which are consequences of the results of Chapter 7. 
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L e m m a  10.4.  Assume that p > pc. 
(a) There exists a strictly positive constant 7 = 7(P) such that 

(10.5) Pp(B(n )  ~ oc) >_ 1 - e - 'm for all n. 

(b) Let a > 1, and let A(n ,  a) be the event that there exist two vertices inside B ( n )  
with the property that each is joined by an open path to OB(an)  but that there is 
no open path of B ( a n )  joining these two vertices. There exists a strictly positive 
constant 6 = 6(p) such that 

(10.6) Pp(d(n ,  a)) < e - ~ ( ~ - 1 )  for all n. 

We rest r ic t  ourselves here to the  case d = 3; the general case d _> 3 is s imilar .  
The surface of B ( n )  is the  union of six faces, and  we concentra te  on the face 

F(n) = { x  �9 Z 3 :  x x  = n ,  Ix21, Ix31 < n}. 

We wri te  Bk = B(3 k) and Fk = F(3k)-  On Fk, we dist inguish 4 k points,  namely  

x k ( i , j )  = ( idk , jdk) ,  --2 k-1 < i , j  < 2 k-1 

where dk = [ (4 /3 )k j .  The x k ( i , j )  are d i s t r ibu ted  on Fk in the  manner  of a rect- 
angular  grid, and they form the 'centres of a t t r ac t ion '  corresponding to the k th  
generat ion of the tree discussed above. 

W i t h  each xk(i ,  j )  we associate four points  on Fk+l ,  namely  those in the  set 

I k ( i , j )  = { X k + l ( r , s ) : r  = 2 i - -  1,2i,  s = 2j  -- 1 ,2 j} .  

These four points  are called children of x k ( i , j ) .  The centroid of I k ( i , j )  is denoted  
Ik ( i ,  j ) .  We shall  a t t e m p t  to construct  open pa ths  from points  near  xk(i ,  j )  to points  
near to each member  of Ik(i ,  j ) ,  and this will be achieved with  high probabi l i ty .  In 
order  to control  the geometry  of such paths ,  we shall bui ld  them within cer ta in  
' tubes '  to be defined next.  

Wr i te  L(u,  v) for the set of vertices lying within euclidean dis tance x/~ of the  line 
segment  of R 3 joining u to v. Let a > 0. Define the  region 

Tk ( i , j )  = A k ( i , j )  U Ck ( i , j )  

where 

A k ( i , j )  = B (ak )  + L ( x k ( i , j ) , I k ( i , j ) )  

Ck ( i , j )  = B (ak )  + U L ( I k ( i , j ) , x ) .  
xeIk (i,j) 
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Fig. 10.2. A diagram of the region Tk(i,j), with the points Yk(i,j) marked. The 
larger box is an enlargement of the box B on the left. In the larger box appear open 
paths of the sort required for the corresponding event Eu, where y ---- Yu. Note that 
the two smaller boxes within B are joined to the surface of B, and that any two such 
connections are joined to one another within B. 

See F i g u r e  10.2. 
W i t h i n  each  Tk(i , j )  we cons t ruc t  a set of ver t ices  as follows. In  Ak( i , j )  we find 

ver t ices  Yl, Y2,..  �9 , Yt such t h a t  the  fol lowing holds. Firs t ly ,  the re  exists  a cons t an t  
v such t h a t  t < ~3 k for all  k. Secondly,  each y~ lies in Ak(i , j ) ,  

(lO.r) Yu C L(xk ( i , j ) ,Tk ( i , j ) ) ,  �89 < ~(Yu,Yu-F1) <__ ~ak 

for 1 < u < t, and  f u r t h e r m o r e  Yl = xk( i , j ) ,  and  lYt - I k ( i , j ) ]  _< 1. 
Likewise,  for each x e Ik(i , j ) ,  we find a s imi lar  sequence yl(x),  y2 (x ) , . . . ,  yv(x) 

sa t i s fy ing (10.7) w i th  Xk(i,j)  rep laced  by x, and wi th  yl(x) = yt, yv(x) = x, and 

v = v ( x )  < v 3  k. 
T h e  set  of  all  such y g iven above  is deno ted  Yk(i, j) .  We now cons t ruc t  open  

pa ths  us ing Yk(i , j )  as a form of skeleton.  Let  0 < 7b < a. For  1 _< u < t, let  

Eu = Eu(k , i , j )  be the  event  t h a t  
(a) the re  ex i s t  zl E y~, + B(bk) and z2 E Yu+l + B(bk) such t h a t  zi ~ Yu + OB(ak) 

for i = 1, 2, and  
(b) any two po in t s  lying in {y~, Yu+l} + B(bk) which are  jo ined  to y,, + OB(ak) 

are  also jo ined  to one ano the r  wi th in  y~ + OB(ak). 
We define s imi la r  events  E=,~ = E=,u(k,i,j) for x E Ik( i , j )  and 1 _< u < v --- v(x), 
and f inal ly let  

~EIk( i , j )  

Let  us e s t i m a t e  Pp(Ek(i, j)).  Using  L e m m a  10.4, we have  t h a t  

(10.8) Pp(Ek(i, j))  <_ 5v3ke -~bk + 5v3ke -hak/6. 

We call  xm+t ( r ,  s) a descendant of xm(0,  0) if it is a child of a child . . .  of a child of  
x.~(0, 0). Wr i t e  )Cm for the  set of  all (m + l, r, s) such t h a t  Xm+l(r, s) is a descendan t  

of  x,~(0, 0). We have f rom (10.8) t h a t  

co 

Um = E Pp(Ek(r, s)) <_ E 4k-'~hL'3k( e-~bk + e-hak/6)" 

(k,r,s)E/Cm k=m 
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I i 

I I 

Fig. 10.3. NW and NE reflectors in action. 

Now pick a, b such tha t  0 < 7b < a and e -~b, e -Sa/6 < 1 ,  so tha t  U,~ --* 0 as 
m --* oc. This implies tha t  there exists a ( random) value M of m such tha t  gk(r, s) 
occurs for all (k, r, s) E KM. 

Turning to the geometry  implied in the definition of the gk(r, s), we find tha t  the  
infinite open cluster contains a topological  copy of the tree in Figure  10.1, where 
the length of a pa th  joining a kth  generat ion vertex to one of its children is no 
greater  t han  Ck33 k for some constant  C. In par t icular ,  this length is smal ler  than  
C ' ~  k for any fl sat isfying 3 < fl < 4 and for some C '  = C'(f l) .  Choosing ~ and 
C '  accordingly,  and referring to the discussion around (10.3), we conclude tha t  I 
contains a tree having finite resistance between its root  and infinity. The second 
claim of Theorem 10.2 follows. 

10.2 RANDOM WALKS IN Two-DIMENSIONAL LABYRINTHS 

A beaut i fu l  question da t ing  back to Lorentz [245] and Ehrenfest  [129] concerns the 
behaviour  of a par t ic le  moving in N d but  sca t tered  according to reflecting obstacles 
d i s t r ibu ted  about  R d. There is a notorious lat t ice version of this  question which is 
largely unsolved. S tar t  with the two-dimensional  square la t t ice  L 2. A reflector may  
be placed at  any ver tex in either of two ways: either it is a N W  reflector (which 
deflects incoming rays heading northwards,  resp. southwards,  to the west, resp. east,  
and vice versa) or it  is a NE reflector (defined similarly);  see Figure  10.3. Think  of a 
reflector as being a two-sided mir ror  placed at  45 ~ to the axes, so tha t  an incoming 
light ray is reflected along an axis perpendicular  to its direct ion of arrival.  Now, for 
each ver tex  x, with probabi l i ty  p we place a reflector at x, and otherwise we place 
nothing at  x. This is done independent ly  for different x. If a reflector is placed at  
x, then we specify tha t  it is equally likely to be N W  as NE. 

We shine a torch nor thwards  from the origin. The light is reflected by the mirrors ,  
and we ask whether  or not the light ray re turns  to the origin. Let t ing  

~(p) = Pv(the light ray re turns  to the origin), 

we would like to know for which values of p it is the case tha t  ~(p) = 1. I t  is 
reasonable to conjecture tha t  r / i s  non-decreasing in p. Cer ta in ly  r/(O) = O, and it is 
'well known'  tha t  r/(1) = 1. 
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--. . . . .  r - - - 1  . . . . . . . . . . . . . .  

Fig. 10.4. (a) T h e  h e a v y  l ines form the  l a t t i ce  L~ ,  and  the  cen t r a l  po in t  is the  or ig in  
of l l? .  (b) An  open  c i rcui t  in L~ c o n s t i t u t e s  a ba r r i e r  of mi r rors  t h r o u g h  wh ich  no 
l igh t  m a y  p e n e t r a t e .  

T h e o r e m  10.9. It  is the case the r/(1) = 1. 

Proof of  Theorem 10.9. This proof is alluded to in [G] and included in [82]. From 
L 2 we construct an ancillary lattice L24 as follows. Let 

On A we define the adjacency relation ~ by (m + �89 n + �89 ~ (r + �89 s + �89 if and 
only if [ m -  rl = I n - sl = 1, obtaining thereby a copy of L 2 denoted as L~. See 
Figure 10.4. 

We now use the above ' labyrinth '  to define a bond percolation process on L~4. 
We declare the edge of L~ joining ( r n -  I 1 1 1 5 , n -  5) to ( m +  5 , n +  5) to be open if 
there is a NE mirror at (m, n); similarly we declare the edge joining (m - �89 n + !)2 

1 1 to ( m + g , n -  5) to be open if there i s a N W  mirror at (re, n). Edges which are 
not open are designated closed. This defines a percolation model in which north- 

1 (resp. easterly edges (resp. north-westerly edges) are open with probability PNE = 5 
PNW = �89 Note that  PNE -]- P N W  = 1 ,  which implies that  the percolation model is 
critical (see [G, 202]). 

Let N be the number of open circuits in L~ which contain the origin in their 
interiors. Using general results from percolation theory, we have that  P (N  > 1) = 1, 
where lP is the appropriate probability measure. (This follows from the fact that  
0(�89 = 0; cf. Theorem 9.1, see also [G, 181, 202].) However, such an open circuit 
corresponds to a barrier of mirrors surrounding the origin, from which no light can 
escape (see Figure 10.4 again). Therefore rj(1) = 1. 

We note that  the above proof is valid in the slightly more general setting in which 
NE mirrors are present with density PNE and NW mirrors with density PNW where 
PNW -t- PNE = 1 and 0 < PNW < 1. This generalisation was noted in [82]. [] 

When 0 < p < 1, the question of whether or not q(p) =- 1 is wide open, despite 
many a t tempts  to answer it 7. It has been conjectured that  rl(p) = 1 for all p > 

7I h e a r d  of th i s  p r o b l e m  in a conversa t ion  w i t h  H e r m a n n  P o s t  and  F r a n k  Spi tze r  in He ide lbe rg  
in 1978. T h e  p roof  t h a t  r](1) = 1 was k n o w n  to me (and  p r e s u m a b l y  to  o the r s )  in 1978 also. 
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0, based on numerical  s imulations;  see [111, 376]. Some progress has been made  
recent ly by Quas [321]. 

The  above la t t ice  version of the 'mir ror  model '  appears  to have been formula ted  
first a round  20 years ago. In a sys temat ic  approach to r andom environments  of 
reflectors, Rui jgrok and Cohen [325] proposed a p rogramme of s tudy  of 'mi r ro r '  
and ' r o t a to r '  models.  Since then, there  have been reports  of many  Monte Carlo 
exper iments ,  and several interest ing conjectures have emerged (see [109, 110, 111, 
344, 376]). Rigorous progress has been relat ively slight; see [82, G, 321] for pa r t i a l  
results.  

The  pr incipal  difficulty in the above model  resides in the facts tha t  the environ- 
ment  is r andom bu t  tha t  the t r a j ec to ry  of the light is (condit ionally)  determinis t ic .  
If we relax the  l a t t e r  de terminism,  then we arrive at  model  which is more t rac table .  
In this  new version, there  are exact ly  three types  of point,  called mirrors, crossings, 
and random walk (rw) points. Let Prw,P+ _> 0 be such tha t  Prw + P+ _< 1. We 
designate  each ver tex x to be 

a r andom walk (rw) point ,  with probabi l i ty  Prw, 
a crossing, wi th  probabi l i ty  p+,  
a mirror ,  otherwise. 

If a ver tex  is a mirror ,  then it is occupied by a N W  reflector with p robabi l i ty  1 
and otherwise by a NE refec tor .  The  environment of mirrors  and rw points  is 
denoted  by Z = (Z= : x E Z 2) and is t e rmed  a ' labyr inth ' ;  we write P for the  
p robabi l i ty  measure  associated with the labyrinth,  so tha t  P is p roduc t  measure  on 
the corresponding environment  space. 

The physical  meaning  of these te rms is as follows. Suppose tha t  some ver tex  x is 
occupied by a candle,  which emits  light rays along the four axes leaving x. When  a 
ray is incident  with a mirror ,  then it is reflected accordingly. When  a ray encounters  
a crossing, then it continues undeflected. When  a ray encounters a rw point ,  then  
it leaves this  point  in one of the four available directions,  chosen at  r andom in the  
manner  of a r andom walk. 

We formalise this  physical  explanat ion  by defining a type  of r andom walk X = 
(Xo, X 1 , . . . )  on L 2. Assume tha t  Prw > 0, and sample  a r andom labyr in th  Z 
according to the measure  P. Let x be a rw point ,  and set X0 = x. We choose 
a r andom neighbour  X1 of x, each of the four possibil i t ies being equally likely. 
Having cons t ruc ted  X0, X 1 , . . . ,  Xr ,  we define X r + l  as follows. If Xr  is a rw point ,  
we let X~+I be a r andomly  chosen neighbour of Xr  (chosen independent ly  of all 
earlier choices); if X~ is not  a rw point ,  then we define X~+I to be the  next  ver tex 
i l lumina ted  by a ray of light which is incident wi th  X~ travell ing in the  direct ion 
Xr  - X r - 1 .  The  consequent sequence X is called a ' r andom walk in a r andom 
labyr in th ' .  Let p Z denote  the law of X ,  condi t ional  on Z, and s ta r t ing  at  x. We 
say tha t  the  rw point  x is Z-recurrent if there  exists (PZ-a.s . )  an integer N such 
tha t  XN  = x, and otherwise we say tha t  x is Z-transient. We say tha t  the  l abyr in th  
Z is recurrent if every rw point  is Z-recurrent .  I t  is easily seen, using the t rans la t ion-  
invariance of ~ and the zero-one law, tha t  the labyr in th  is P-a.s. recurrent  if and  
only if 

P(0 is Z-recurrent  10 is a rw point)  = 1. 
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P+ 

1 -  

pc(site) 1 Prw 

Fig. 10.5. The grey region and the heavy lines of the figure indicate the par t  of 
(Prw,p+) space for which non-localisation is proved. The labyrinth is a.s. localised 
when Prw = P+ = 0; see Theorem 10.9. 

T h e o r e m  10.10. I f  prw > 0 then the labyrinth Z is ]?-a.s. recurrent. 

This theorem, together with most other results in this chapter, appears in [166], 
and is proved by showing that  a corresponding electrical network has infinite resis- 
tance. A brief proof appears at the end of this section. 

Remembering that  irreducible Markov chains on finite state spaces are neces- 
sarily recurrent, we turn our at tention to a question of 'localisation'. Let x be a 
rw point in the random labyrinth Z, and let X be constructed as above. We say 
that  x is Z-localised if X visits (PZ-a.s.) only finitely many vertices; we call x 
Z-non-localised otherwise. We say that  the random labyrinth Z is localised if all rw 
points are Z-localised, and we call it non-localised otherwise. Using the translation- 
invariance of Z and the zero one law, we may see that  Z is P-a.s. localised if and 
only if 

~(0 is Z-localised ] 0 is a rw point) = 1. 

T h e o r e m  10.11. Let prw > O. There exists a strictly positive constant A = A(prw) 
such that the following holds. The labyrinth Z is ]?-a.s. non-localised if any of the 
following conditions hold: 

(a) Prw > pc(site), the critical probability of site percolation on L 2, 
(b) p+ = 0, 
(c) P~w+P+ > 1 - A .  

We shall see in the proof of part  (c) (see Theorem 10.17) that  A(p~w) ---* 0 as 
Prw I 0. This fact is reported in Figure 10.5, thereby correcting an error in the 
corresponding figure contained in [166]. 

Proof of Theorem 10.10. Assume Prw > 0. We shall compare the labyrinth with a 
certain electrical network. By showing that  the effective resistance of this network 
between 0 and oo is a.s. infinite, we shall deduce that  Z is a.s. recurrent. For details 
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of the re la t ionship between Markov chains and electrical networks, see the book  
[118] and the papers  [251, 277]. 

By the t e rm Z-path we mean a pa th  of the lat t ice (possibly with self-intersections) 
which may  be followed by the light; i.e., at rw points  it is unconstrained,  while at  
reflectors and crossings it conforms to the appropr ia te  rule. A formal  definit ion will 
be presented in Section 10.3. 

Let  e = (u, v} be an edge of L 2. We call e a normal edge if it  lies in some Z - p a t h  
rr(e) which is min imal  with respect to the p roper ty  tha t  its two endvert ices (and no 
others) are rw points,  and fur thermore  tha t  these two endvertices are dist inct .  If e 
is normal ,  we wri te  l(e) for the number  of edges in rr(e); if e is not  normal ,  we write 
l(e) = 0. We define p(e) = 1/l(e), with the convention tha t  1/0 = oc. 

Next,  we construct  an electrical network E(p) on L 2 by, for each edge e of 
L 2, p lacing an electr ical  resistor of size p(e) at e. Let R = R(Z) be the effective 
resistance of this network between 0 and oc (which is to say tha t  R = l imn--.~ Rn, 
where R,~ is the resistance between 0 and a composi te  vertex obta ined  by identifying 
all vertices in OB(n)). 

L e m m a  10.12.  We have that 1?(R(Z) = oc l0 is a rw point)  = 1. 

Proof. We define the ' edge-boundary '  AeB(n )  of B(n) to be the set of edges e = 
(x, y) wi th  x �9 OB(n) and y �9 0B(n + 1). We claim tha t  there exists a posit ive 
constant  c and a r andom integer M such tha t  

C 
(10.13) p(e) > l ogn  for all e �9 AeB(~2 ) and n _> M. 

To show this, we argue as follows. Assume tha t  e = (x ,y)  is normal ,  and let A1 
be the number  of edges in the pa th  rr(e) on one side of e (this side being chosen in 
an a rb i t r a ry  way), and A2 for the number  on the other  side. Since each new vertex 
visi ted by the pa th  is a rw point  with probabi l i ty  P~w, and since no vertex appears  
more than  twice in 7r(e), we have tha t  

1?(l(e) > 2k, e is normal)  _< 217(A1 _> k, e is normal)  < 2(1 --Prw) �89 

Therefore, for c > 0 and all n > 2, 

( ) ( lo . ) 
17 p ( e ) <  ~ f o r s o m e e � 9  _<4(2n+1) I?  l ( e ) > - - c  e i s n o r m a l  

_~ /~/Z 1-~ 

where a = (~(c) = - ( 4 c )  -1 log(1 - Prw) and fl = fl(c, prw) < co. We choose c such 
tha t  (~ > 5, whence (10.13) follows by the Bore l -Cante l l i  lemma.  

The  conclusion of the  l emma is a fairly immedia te  consequence of (10.13), using 
the usual  a rgument  which follows. From the electrical  network E(p) we construct  
another  network with no larger resistance. This we do by identifying all vertices 
contained in each OB(n). In this new sys tem there are IAeB(n) l  paral lel  connections 
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between OB(n) and OB(n + 1), each of which has (for n >_ M)  a resistance at least 
c/log n. The effective resistance from the origin to infinity is therefore at least 

c e 
z z OO,  

~=M I~XeB(n)l logn 4(2n + ] ) l o g n  
n = m  

and the proof of the lemma is complete. [] 

Returning to the proof of Theorem 10.10, suppose that  0 is a rw point, and 
consider a random walk X with X0 = 0. Let Co be the set of rw points which may 
be reached by light originating at 0; Co is the state space of the embedded Markov 
chain obtained by sampling X at times when it visits rw points. This embedded 
chain constitutes an irreducible time-reversible Markov chain on Co. There is a 
corresponding electrical network with nodes Co, and with resistors of unit resistance 
joining every distinct pair u, v of such sites which are joined by some Z-path  which 
visits no rw point other than its endpoints. This may be achieved by assigning to 
each corresponding edge e of L 2 the resistance p(e). Since the latter network may 
be obtained from E(p) by deleting certain connections between paths, we have that  
the embedded Markov chain on Co is recurrent if E(p) has infinite resistance. This 
latter fact was proved in Lemma 10.12. [] 

Proof of Theorem 10.11. Part  (c) will be proved in the next section, as part  of 
Theorem 10.17. We begin with part  (a). If Prw > pc(site), then there exists a.s. 
a unique infinite cluster I of rw points having strictly positive density. Suppose 
x E I .  The walk X will (Pf -a . s . )  visit every vertex in I ,  whence the labyrinth is 
non-localised. 

Next we prove (b), of which the proof is similar to that  of Theorem 10.9. This 
time we construct two copies of L 2 as follows. Let 

A =  m + 3 , n +  2 : m + n i s e v e n  , B =  m + ~ , n +  2 : m + n i s o d d  . 

1 1 1 1 On A U B we define the adjacency relation (m + 3 ,n  + ~) ~ (r + ~,s  + ~) if and 
only if ] m -  r I = 1 and In - s I = 1, obtaining thereby two copies of L 2 denoted 
respectively as L~ and L~. See Figure 10.6. 

We now define bond percolation processes on L24 and L 2 .  Assume p+ = 0. We 
present the rules for L~4 only; the rules for L 2 are analogous. An edge of L~ joining 

1 1 1 1 (m - 3 , n  - ~) to (m + 3 ,n  + ~) to declared to be open if there is a NE mirror 
at (m, n); similarly we declare the edge joining (m - ~,nl + 3)1 to (m + 2' n l  _ 3)1 
to be open if there is a NW mirror at (m, n). Edges which are not open are called 
closed. This defines percolation models on L~ and L 2 in which north-easterly 

1 edges (resp. north-westerly edges) are open with probability PNE = 3 (1 - - P r w )  (resp. 
1 PNW = 3 (1 - Prw)). These processes are subcritical since PNE + PNW = 1 - Prw < 1. 

Therefore, there exists (P-a.s.) no infinite open path in either L~ or L~,  and we 
assume henceforth that  no such infinite open path exists. 
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i 

Fig. 10.6. The heavy lines are the edges of the lattice L~, and the dashed lines are 
the edges of the lattice L~. 

Let N(A) (resp. N(B)) be the number of open circuits in L 2 (resp. L 2 )  which 
contain the origin in their interiors. Since the above percolation processes are sub- 
critical, there exists (by Theorem 6.10) a strictly positive constant c~ = (~(PNW, PNE) 
such that  
(10.14) 

P(x, lies in an open cluster of L~ of diameter at least n)  < e - ~  for all n~ 

for any vertex x of L 2. (By the diameter of a set C of vertices, we mean m a x { l y - z  I : 
y, z C C}.) The same conclusion is valid for L~. We claim that  

(10.15) ~(0 is a rw point, and N(A) = N(B) = O) > O, 

and we prove this as follows. Let A(k) = [ -k ,  k] 2, and let Nk(A) (resp. Nk(B)) be 
the number  of circuits contributing to N(A) (resp. N(B)) which contain only points 
lying strictly outside A(k). If Nk(A) _> 1 then there exists some vertex ( rn+  5,1 g)l of 
L 2,  with m _> k, which belongs to an open circuit of diameter exceeding m. Using 
(10.14), 

]F(Nk(A) >_ 1) _< e - " m  < g 
m = k  

for sufficiently large k. We pick k accordingly, whence 

~(Nk(A) + Nk(B) > 1) < 2 

Now, if Nk(A) = Nk(B) = 0, and in addition all points of L 2 inside A(k) are rw 
points, then N(A) = N(B) = 0. These last events have strictly positive probabili- 
ties, and (10.15) follows. 

Let J be the event that  there exists a rw point x = x(Z) which lies in the 
interior of no open circuit of either L~ or L~. Since J is invariant with respect to 



2 4 7  

. . . .  . . . .  

. . . . . . .  h i  . . . . . . . .  '2.. . . . . . . .  

:% / i  
�9 ~ : �9 

. . . .  . . . .  

o. i � 9  o 

. . . . . . .  .x. i . . . . . . . .  ~ . . . . . . . .  
m 

: \  

. . . .  . . . .  

a :: �9 to 

/ i  
�9 o �9 

....... ~ ........ i./. ....... 
%. ] :  

�9 ff �9 

. . . .  . . . .  

o i � 9  i o 

. . . . . . . .  -:,k . . . . . . .  . ~ -  . . . . . . . .  

�9 o �9 

:% 
�9 i o �9 

. . . .  . . . .  

i ! /  . . . . . . . .  ~ .  . . . . . .  / :  . . . . . . . . .  

�9 o # . 

o ~ i o  

. . . . . . . .  ~ . . . . . .  ~ . . . . . . .  

o : o l o  

Fig. 10.7. T h e  sol id  l ine in e a c h  p i c t u r e  is t h e  e d g e  e = (u, v / ,  a n d  t h e  c e n t r a l  v e r t e x  
is u. If all three of the other edges of L~ incident with the vertex u are closed in [`2, 
then there are eight possibilities for the corresponding edges of L 2 . The dashed lines 
indicate open edges of [2 ,  and the crosses mark rw points of [`2 In every picture, 
light incident with one side of the mirror at e will illuminate the other side also. 

t ranslat ions of L 2 , and since P is product  measure, we have that  P(J )  equals either 0 
or 1. Using (10.15), we deduce that  P(J )  = 1. Therefore we may find a.s. some such 
vertex x = x ( Z ) .  We claim that  x is Z-non-localised, which will imply as claimed 
that  the labyr inth  if a.s. non-localised. 

Let C= be the set of rw points reachable by light originating at the rw point x. 
The set C= may be generated in the following way. We allow light to leave x along 
the four axial directions. When a light ray hits a crossing or a mirror, it follows the 
associated rule; when a ray hits a rw point, it causes light to depart the point along 
each of the other three axial directions. Now C= is the set of rw points thus reached. 
Following this physical picture, let F be the set of 'frontier mirrors ' ,  i.e., the set of 
mirrors only one side of which is i l luminated.  Assume that  F is non-empty,  say F 
contains a mirror at some point (m, n). Now this mirror must  correspond to an open 
edge e in either L~ and L~ (see Figure 10.6 again), and we may assume without 
loss of generality tha t  this open edge e is in L~. We write e = (u, v} where u, v C A, 
and we assume that  v = u + (1, 1); an exactly similar argument  holds otherwise. 
There are exactly three other edges of L~ which are incident to u (resp. v), and we 
claim that  one of these is open. To see this, argue as follows. If none is open, then 

u + ( - �89  �89 either is a rw point or has a NE mirror, 

u + ( - � 8 9 1 8 9  either is a rw point or has a NW mirror, 

u + ( � 8 9  either is a rw point or has a NE mirror. 
See Figure 10.7 for a diagram of the eight possible combinations.  By inspection, 
each such combinat ion contradicts the fact that  e = (u, v} corresponds to a frontier 
mirror. 

Therefore, u is incident to some other open edge f of L~, other than  e. By a 
further consideration of each of 2 3 - 1 possibilities, we may deduce that  there exists 
such an edge f lying in F.  I terat ing the argument,  we find that  e lies in either 
an open circuit or an infinite open path of F lying in L24. Since there exists (by 
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assumpt ion)  no infinite open path ,  this proves tha t  f lies in an open circuit  of F in 

By tak ing  the union over all e E F ,  we obta in  tha t  F is a union of open circuits 
of L~ and L~.  Each such circuit has an interior  and an exterior,  and x lies (by 
assumpt ion,  above) in every exterior.  There are various ways of deducing tha t  x is 
Z-non-local ised,  and here is such a way. 

Assume tha t  x is Z-localised. Amongs t  the set of vertices {x + (n, 0) : n > 1}, 
let y be the r ightmost  vertex at  which there lies a frontier mirror .  By the above 
argument ,  y belongs to some open circuit G of F (belonging to ei ther L~ or L~) ,  
whose exter ior  contains x. Since y is r ightmost ,  we have tha t  y '  = y + ( - 1 , 0 )  
is i l lumina ted  by light or iginat ing at  x, and tha t  light traverses the edge (y~,y). 
Similarly,  light does not traverse the edge (y, y"), where y" = y + (1, 0). Therefore, 
the point  y + (�89 0) of R 2 lies in the interior of G, which contradic ts  the fact tha t  y 
is r ightmost .  This completes  the proof  for par t  (b). [] 

10.3  GENERAL LABYRINTHS 

There are many  possible types  of reflector, especially in three and more dimensions.  
Consider  Z a where d > 2. Let I = { u l , u 2 , . . .  ,ua} be the set of posit ive unit  
vectors, and let I + = { - 1 ,  +1} x I;  members  of I + are wr i t ten  as •  We make 
the following definition. A reflector is a map  p : I + ~ I • sat isfying p ( - - p ( u ) )  = --u 
for all u C I • We denote by 7~ the set of reflectors. The ' ident i ty  reflector '  is called 
a crossing (this is the ident i ty  map  on I+ ) ,  and denoted by +.  

The physical  in te rpre ta t ion  of a reflector is as follows. If light impinges on a 
reflector p, moving in a direct ion u (E I ~:) then it is required to depar t  the reflector 
in the  direct ion p(u).  The condit ion p(-p(u) )  = - u  arises from the reversibi l i ty of 
reflections. 

Using e lementary  combinatorics ,  one may calculate tha t  the number  of dis t inct  
reflectors in d dimensions is 

d (2d)! 

(2s)! 2d-~(d - s)!" 
s=O 

A random labyr in th  is const ructed as follows. Let Prw and p+ be non-negat ive 
reals sat isfying Prw + p+ < 1. Let Z = (Z= : x C Z d) be independent  r andom 
variables tak ing  values in 7~ U {0},  with common mass function 

Prw 

II'(Zo = a ) =  p+ 
(1 - P~w - p+)Tr(p) 

i f a = ~  

if a = +  

if a = p C 7~\{+},  

where 7r is a prescr ibed probabi l i ty  mass function on 7~\{+}. We call a point  x a 
crossing if Z~ = + ,  and a random walk (rw) point if Z~ - O. 

A La -pa th  is defined to be a sequence x0, e0, x l ,  e l , . . ,  of a l te rna t ing  vertices xi 
and dis t inct  edges ej such tha t  ej = ( x j ,  Xj+l) for all j .  If the pa th  has a final 
vertex xn, then  it is said to have length n and to join x0 to xn. If it is infinite, then 
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it is said to join x0 to ~ .  A Ld-pa th  may  visit  vertices more than  once, but  we 
insist t ha t  i ts edges be dist inct .  

We define a Z - p a t h  to be a Ld-pa th  x0, e0, x l ,  e l , . . ,  with the p roper ty  tha t ,  for 
all j ,  

X j +  1 --  X j  = Z x j  ( x j  - Xj_I)  whenever Z~j r 0 ,  

which is to say tha t  the pa th  conforms to all reflectors. 
Let  N be the  set of rw points.  We define an equivalence relat ion ~ on N by 

x ~ y if and  only if there exists a Z -pa th  with endpoints  x and y. We denote by 
C~ the equivalence class of (N, ~ )  containing the rw point  x, and by C the set of 
equivalence classes of (N, ~ ) .  The following l emma will be useful; a sketch proof  is 
deferred to the  end of the section. 

L e m m a  10.16.  Let d >_ 2 and prw > O. 
(N, *-+) having infinite cardinality satisfies 

either P ( M = 0 ) = I  

The number M of equivalence classes of  

or IP(M = 1) = 1. 

Next  we define a r andom walk in the random labyr in th  Z. Let x be a rw point .  A 
walker, s t a r t ing  at  x, flips a fair coin (in the manner  of a symmet r i c  r andom walker) 
whenever it  arrives at  a rw point  in order to de termine  its next move. When  it meets  
a reflector, it moves according to the reflector (i.e., if it strikes the reflector p in the 
direct ion u, then it depar t s  in the direct ion p(u)).  Writ ing Px z for the law of the 
walk, we say tha t  the point  x is Z-recurrent  if P z ( X N  = x for some N _> 1) = 1, 
and Z- trans ien t  otherwise. As before, we say tha t  Z is transient if there  exists a rw 
point  x which is Z- t rans ient ,  and recurrent otherwise. 

Note tha t ,  if the  r andom walker s ta r t s  at the rw point  x, then the sequence of 
rw points  visi ted const i tutes  an irreducible Markov chain on the equivalence class 
Cx. Therefore,  the rw point  x is Z-local ised if and only if IC=I < oo. As before, we 
say tha t  Z is localised if all rw points  are Z-localised,  and non-localised otherwise. 

T h e o r e m  10.17.  Let Prw > O. There exists a strictly positive constant A = 
A(Prw, d) such that the following holds. 

(a) Assume  that d >_ 2. I f  l - Prw - P+ < A,  then the labyrinth Z is F-a.s. 
non-localised. 

(b) Assume  that d >_ 3. I f  1 - Prw - P+ < A, then Z is F-a.s. transient. 

As observed after 10.11, we have tha t  A = A(Prw, d) --~ 0 as Prw ~ 0. 
Using me thods  presented in [115, 116, 219], one may  obta in  an invariance princi- 

ple for a r andom walk in a r andom labyrinth,  under the condit ion tha t  1 - P r w  - P +  
is sufficiently small .  Such a principle is valid for a walk which s ta r t s  in the (a.s) 
unique infinite equivalence class of Z. The detai ls  will appear  in [74]. 

The  following proof  of Theorem 10.17 differs from tha t  presented in [166] s. I t  
is s l ightly more complicated,  but  gives possibly a be t te r  numerical  value for the 
constant  A. 

Proof. The idea is to re la te  the labyr in th  to a cer tain percola t ion process, as follows. 
We begin with  the  usual  la t t ice  L d = (Z d, Ed), and from this we construct  the  ' l ine 
la t t ice '  (or 'covering la t t ice ' )  s as follows. The vertex set of s is the edge-set E g 

SThere is a small  error in the proof of Theorem 7 of [166], but this may easily be corrected. 
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of 1L, d, and two distinct vertices el ,e2 (C E d) of /2 are called adjacent in s if and 
only if they have a common vertex of L d. If this holds, we write (el,e2) for the 
corresponding edge of s  and denote by F the set of all such edges. We shall work 
with the graph L: = (Ed,F), and shall construct a bond percolation process on s 
We may identify ]~d with the set of midpoints of members of E; this embedding is 
useful in visualising s 

Let (el,e2} C Ffl. If the edges el and e2 of ]]-d are perpendicular, we colour 
(el,e2} amber, and if they are parallel blue. Let 0 _< c~,/3 < 1. We declare an edge 
(el, e2) of F to be open with probability a (if amber) or /3 (if blue). This we do 
for each (e, f} E F independently of all other members of F. Write Pa,Z for the 
corresponding probability measure, and let 0(a,/3) be the probability that  a given 
vertex e (E E d) of L: is in an infinite open cluster of the ensuing percolation process 
on/3.  It is easily seen that  0(a,/3) is independent of the choice of e. 

L e m m a 1 0 . 1 8 .  Let d > 2 and O < c~ < 1. then 

/3~(a, d) = sup{/3 : ~(a,/3) = O} 

satisfies/3c((~, d) < 1. 

Note that,  when d = 2 and/3 = 0, the process is isomorphic to bond percolation 
1 on L 2 with edge-parameter ~. Therefore 0((~, 0) > 0 and/3c((~, 2) = 0 when (~ > ~. 

Proof. Since/3c(~, d) is non-increasing in d, it suffices to prove the conclusion when 
d = 2. Henceforth assume that  d = 2. 

Here is a sketch proof. Let L _> 1 and let AL be the event that  every vertex of 
s lying within the box B(L  + �89 = [ - L -  �89 L + 112 (of S2 ) i s  joined to every other 
vertex lying within B(L  + �89 by open paths of s lying inside B(L  + �89 which do 
not use boundary  edges. For a given a satisfying 0 < (~ < 1, there exist L and /3' 
such tha t  

Pa,~' (AL) >-- pc(site), 

where pc(site) is the critical probability of site percolation on L 2. Now tile Z 2 with 
copies of B(L  + �89 overlapping at the sides. It follows from the obvious relationship 
with site percolation that,  with positive probability, the origin lies in an infinite 
cluster. [] 

We now construct a labyrinth o n  Z d from each realisation w C {0, 1} ~ of the 
percolation process (where we write w(f )  = 1 if and only if the edge f is open). 
That  is, with each point x C ~ d  we  shall associate a member p~ of ~t_) {Z}, in such 
a way that  p= depends only on the edges (el, e2} o f f  for which el and e2 are distinct 
edges of L d having common vertex x. It  will follow that  the collection {Px : x C Z d} 
is a family of independent and identically distributed objects. 

Since we shall define the Px according to a translation-invariant rule, it will 
suffice to present only the definition of the reflector Po at the origin. Let Eo be 
the set of edges of L d which are incident to the origin. There is a natural  one-one 
correspondence between Eo and I • namely, the edge (0, u) corresponds to the unit 
vector u E I • Let p E T~. Using the above correspondence, we may associate with 
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p a set of configurations in s = {0, 1} ~, as follows. Let ~(p,  0) be the subset of 
containing all configurations w satisfying 

w((0, Ul),(0,  u2)) = 1 if and only if p ( - u l )  = u2 

for all distinct pairs ul ,  u2 �9 I +. 
I t  is not difficult to see tha t  

~ ( p l , 0 )  Mfl(p2,0) = ~ if Pl,P2 � 9  Pl # P 2 .  

Let w E ~t be a percolat ion configuration on F. We define the reflector Po = po(w) 
at the origin by 

p i fw E ~2(p,O) 
(10.19) P0 = O if w ~ Up,TO ~(p ,0) .  

If p0 = p c 7~, then the behaviour of a light beam striking the origin behaves 
as in the corresponding percolation picture, in the following sense. Suppose light 
is incident in the direction ul.  There exists at most  one direction u2 (5  ul )  such 
tha t  w((0, -Ul} ,  (0, u2)) = 1. If such a u2 exists, then the light is reflected in this 
direction. If no such u2 exists, then it is reflected back on itself, i.e., in the direction 
- - U  1 . 

For w �9 {0, 1} ~, the above construction results in a random labyrinth L(w). If 
the percolat ion process contains an infinite open cluster, then the corresponding 
labyrinth contains (a.s.) an infinite equivalence class. 

Turning to probabilities, it is easy to see that ,  for p �9 ~ ,  

~(p; ~,/3) = P. ,~(po = p) 

satisfies lr(p; a,/3) > 0 if 0 < a, /3 < 1, and fur thermore 

~r(+; a,/3) =/3d(1 -- a)(%~)-d. 

Also, 

7r(~; a,/3) = P,,Z(Po = O) = 1 - E ~r(p; a,/3). 
pET~ 

Let Prw, P+ satisfy Prw, P+ > 0, P~w +P+ -< 1. We pick a,/3 such tha t  0 < a, /3 < 1, 
/3 > /3c(a ,  2) and 

(lO.2O) ~r(+; a,/3) _> 1 - Prw (_> P+). 

(Tha t  this may  be done is a consequence of the fact tha t /3c(a ,  2) < 1 for all a > 0; 
cf. L e m m a  10.18.) 

Wi th  this choice of a , /3 ,  let 

A = min *[ 7r(p; a,/3) } [ ~(p) : p # + , p c n  
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with the convention that  1/0 = oc. (Thus defined, A depends on lr as well as on 
prw. If we set A = min{~-(p; a,  f l ) :  p # +, p �9 T4}, we obtain a (smaller) constant 
which is independent of 7c, and we may work with this definition instead.) Then 

~r(p; a,/3) >_ A~r(p) for all p r +, 

and in particular 

(10.21) 71"(p;a,]~) ~ (1 --Prw --p+)71-(p) if p ~  + 

so long as p+ satisfies 1 - Prw -- P+ < A. Note that  A = A(a,  fl) > 0. 
We have from the fact that  fl > tic(a, 2) that  the percolation process o~ a.s. 

contains an infinite open cluster. It follows that  there exists a.s. a rw point in 
L(w) which is L(~)-non-localised. The labyrinth Z of the theorem may be obtained 
(in distribution) from L as follows. Having sampled L(0J), we replace any crossing 
(resp. reflector p (5  +))  by a rw point with probability ~r(+; a,/3) - p +  (resp. 
7r(p; a,/3) - (1 -Prw -p+)zc(p)) ;  cf. (10.20) and (10.21). The ensuing labyrinth L'(w) 
has the same probability distribution as Z. Furthermore, if L(a;) is non-localised, 
then so is L~(w). 

The first part  of Theorem 10.17 has therefore been proved. Assume henceforth 
that  d > 3, and consider part  (b). 

Now consider a labyrinth defined by prw, p+, 7r(-). Let e be an edge of Z d. Either 
e lies in a unique path joining two rw points (but no other rw point) of some length 
/(e), or it does not (in which case we set l(e) = 0). Now, the random walk in this 
labyrinth induces an embedded Markov chain on the set of rw points. This chain 
corresponds to an electrical network obtained by placing an electrical resistor at 
each edge e having resistance l(e) -1. We now make two comparisons, the effect 
of each of which is to increase all effective resistances of the network. At the first 
stage, we replace all finite edge-resistances l(e) -1 by unit resistances. This cannot 
decrease any effective resistance. At the next stage we replace each rw point by 

+ with probability 7r(+;a,  fl) - p +  

p (#  +)  with probability zr(p; a,  fl) - (1 - Prw - p+)Tr(p), 

in accordance with (10.20) and (10.21) (and where a, fl are chosen so that  (10.20), 
(10.21) hold, and furthermore tic(a,2) < /3 < 1). Such replacements can only 
increase effective resistance. 

In this way we obtain a comparison between the resistance of the network arising 
from the above labyrinth and that  of the labyrinth L(w) defined around (10.19). 
Indeed, it suffices to prove that  the effective resistance between 0 and oo (in the 
infinite equivalence class) of the labyrinth L(w) is a.s. finite. By examining the 
geometry, we claim that  this resistance is no greater (up to a multiplicative constant) 
than the resistance between the origin and infinity of the corresponding infinite open 
percolation cluster of w. By the next ]emma, the last resistance is a.s. finite, whence 
the original walk is a.s. transient (when confined to the almost surely unique infinite 
equivalence class). 
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L e m m a  10.22. Let d >_ 3, 0 < ~ < 1, and/3c(a, 2) </3  < 1. Let R be the effective 
resistance between the origin and the points at infinity, in the above bond percolation 
process w on ~.  Then 

Pa,~ (R < oc 10 belongs to the infinite open cluster) = 1. 

Presumably the same conclusion is valid under the weaker hypothesis that  /3 > 
~c(a, d). 

Sketch Proof. Rather than present all the details, here are some notes. The main 
techniques used in [164] arise from [165], and principally one uses the exponential 
decay noted in Lemma 10.4. That  such decay is valid whenever/3 > /3c(a, d) uses 
the machinery of [165]. This machinery may be developed in the present setting 
(in [165] it is developed only for the hypercubic lattice Ld). Alternatively, 'slab 
arguments'  show (a) and (b) of Lemma 10.4 for sufficiently large ~; certainly the 
condition/3 >/3c(a, 2) suffices for the conclusion. [] 

Comments  on the Proof  of  Lemma 10.16. This resembles closely the proof of the 
uniqueness of the infinite percolation cluster (Theorem 7.1). We do not give the 
details. The notion of 'trifurcation' is replaced by that of an 'encounter zone'. Let 
R > 1 and B = B ( R ) .  A translate x + B is called an encounter zone if 

(a) all points in x + B are rw points, and 
(b) in the labyrinth Z d \ {x + B}, there are three or more infinite equivalence 

classes which are part of the same equivalence class of L d. 
Note that  different encounter zones may overlap. See [74] for more details. [] 
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11. F R A C T A L  P E R C O L A T I O N  

11.1. RANDOM FRACTALS 

Many so called 'fractals' are generated by iterative schemes, of which the classical 
middle-third Cantor construction is a canonical example. When the scheme incor- 
porates a randomised step, then the ensuing set may be termed a ' random fractal'. 
Such sets may be studied in some generality (see [131,153, lS3, 313]), and properties 
of fractal dimension may be established. The following simple example is directed 
at a 'percolative' property, namely the possible existence in the random fractal of 
long paths. 

We begin with the unit square Co = [0, 1] 2. At the first stage, we divide Co into 
1 (in the natural way), and we nine (topologically closed) subsquares of side-length 5 

declare each of the subsquares to be open with probability p (independently of any 
other subsquare). Write C1 for the union of the open subsquares thus obtained. 
We now iterate this construction on each subsquare in C1, obtaining a collection of 

1 After k steps we have obtained a union Ck open (sub)subsquares of side-length g. 
of open squares of side-length 1 k (g) . The limit set 

(11.1) C =  lim Ck = N Ck 
k ---* c<) 

k > l  

is a random set whose metrical properties we wish to study. See Figure 11.1. 
Constructions of the above type were introduced by Mandelbrot [254] and ini- 

tially studied by Chayes, Chayes, and Durrett [92]. Recent papers include [114, 134, 
302]. Many generalisations of the above present themselves. 

(a) Instead of working to base 3, we may work to base M where M > 2. 
(b) Replace two dimensions by d dimensions where d _> 2. 
(c) Generalise the use of a square. 

In what follows, (a) and (b) are generally feasible, while (c) poses a different circle 
of problems. 

It is easily seen that the number Xk of squares present in Ck is a branching 
process with family-size generating function G(x) = (1 - p  + px) 9. Its extinction 
probability 7/is a root of the equation rl = G(rl), and is such that 

= 1  if p <  ],  
Pv(extincti~ 1 

< 1  if p >  g. 

Therefore 

(11.2) P p ( C = O ) = I  if and only if p <  ~. 

When p > }, then C (when non-extinct) is large but ramified. 
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Fig. 11.1. Three stages in the construction of the 'random Cantor set' C. At each 
stage, a square is replaced by a 3 x 3 grid of smaller squares, each of which is retained 
with probability p. 

T h e o r e m  11.3.  Let p > ~. The Hausdorff dimension of C, conditioned on the 
event {C ~ 0} ,  equals a.s. l og (9p ) / l og3 .  

Ra the r  than  prove this in detai l ,  we mot iva te  the answer. The set C is covered 
by Xk squares of s ide-length 1 k (5) �9 Therefore the 5-dimensional  box measure  He(C) 
satisfies 

He(C) < Xk3 -ke. 

Condi t ional  on {C r ~} ,  the random variables Xk satisfy 

log Xk 
log#  as k ~ ,  a.s. 

k 

where # = 9p is the mean  family-size of the branching process. Therefore 

Hs(C) <_ (9p)k(l+~ -ke a.s. 

which tends  to 0 as k ~ cxz if 
5 > log(9p_____~) 

log 3 

It  follows tha t  the  box dimension of C is (a.s.) no larger than  log (9p) / log  3. Exper t s  
may  easily show tha t  this  bound for the dimension of C is (a.s.) exact  on the  event 
tha t  C ~ g (see [131, 183, 313]). 

Indeed the exact  Hausdorff  measure function of C may  be ascer ta ined (see [153]), 
and is found to be h(t) = td(logllogt[)l-�89 d where d is the Hausdorff  d imension of 
C. 

11.2 PERCOLATION 

Can C contain long paths?  More concretely, can C contain a crossing from left to 
right of the  original  unit  square Co (which is to say tha t  C contains a connected 
subset  which has non-t r ivia l  intersection with the  left and right sides of the unit  
square)? Let  LR denote  the event tha t  such a crossing exists in C, and define the  
percola t ion  probabi l i ty  

(11.4) O(p) = Pp(LR).  

In [92], it was proved tha t  there  is a non-tr ivial  cri t ical  p robabi l i ty  

pc = s u p { p  : 0 (p )  = 0 }  
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Fig. 11.2. The key fact of the construction is the following. Whenever two larger 
squares abut, and each has the property that at least 8 of its subsquares are retained, 
then their union contains a crossing from the left side to the right side. 

T h e o r e m  1 1 . 5 .  We have that 0 < Pc < 1, and furthermore 0(pc) > 0. 

Partial Proof. T h i s  p r o o f  is t a k e n  f rom [92] w i t h  he lp  f rom [114]. C lea r ly  Pc _> ~, 

a n d  we sha l l  p rove  n e x t  t h a t  

s (64~ 7 ~ 0.99248 . . .  Pc --~ ~ \ 6 3 ]  

W r i t e  C = (C0, C 1 , . . . ) .  We  call  C 1-good if IC~I _> 8. M o r e  genera l ly ,  we cal l  C 

(k + 1)-good if  a t  l eas t  8 of t he  squa re s  in  C1 are  k-good.  T h e  fo l lowing fac t  is c ruc i a l  
for t h e  a r g u m e n t :  if C is k -good  t h e n  Ck c o n t a i n s  a l e f t - r igh t  c ross ing  of t h e  u n i t  

s q u a r e  (see F i g u r e  11.2). T h e r e f o r e  (us ing  t he  fac t  t h a t  t h e  l i m i t  of a d e c r e a s i n g  

s equence  of  c o m p a c t  c o n n e c t e d  se ts  is c o n n e c t e d ,  a n d  a b i t  m o r e  9) 

(11.6) Pp(C is k -good)  _< Pp(Ck crosses  Co) ~ O(p) as k ---* cx~, 

w h e n c e  i t  suffices to  f ind a va lue  o f p  for wh ich  7vk = 7vk(p) = Pp(C is k -good)  sa t i s f ies  

(11.7) 7rk(p) ~ 7r(p) > 0 as k -~ c~. 

We  def ine  lr0 = 1. B y  a n  easy  ca l cu l a t i on ,  

(11.8) 

w h e r e  

(11.9) 

M o r e  genera l ly ,  

~1 = 9p8(1 - P )  + p 9  = F p ( ~ o )  

Fp(x) = p 8 x 8 ( 9  - 8px). 

~ k + l  z F p ( ~ k ) .  

9There are some topological details which are necessary for the limit in (11.6). Look at the set 
Sk of maximal connected components of Ck which intersect the left and right sides of Co. These 
are closed connected sets. We call such a component a child of a member of Sk-1 if it is a subset of 
that  member. On the event {C crosses Go}, the ensuing family tree has finite vertex degrees and 
contains an infinite path S1, $2, . . .  of compact connected sets. The intersection S ~  = limk~oc Sk 
is non-empty and connected. By a similar argument, S ~  has non-trivial intersections with the left 
and right sides of Co. It follows that  {Ck crosses Co} ~ {C crosses Co}, as required in (11.6). Part 
of this argument was suggested by Alan Stacey. 
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Fp(x) 

1 

m- 

~r 11 x 

Fig. 11.3. A ske tch  of  t he  func t ion  Fp for p close to 1, wi th  t h e  la rges t  fixed poin t  
m a r k e d .  

About  the fimction Fp we note that  Fp(0) = O, Fp(1) < 1, and 

Fp(x) = 72pSx7(1 -px )  >_ 0 on [0,1]. 

See Figure 11.3 for a sketch of Fp. 
It follows that  Trk ~ Tr as k --* oc where ~ is the largest fixed point of Fp in the 

interval [0, 1]. 
It is elementary that  Fpo (Xo) = Xo, where 

9 (63~  s 8 (64~  7 
X0 ---- 8 \ 6 4 2  ~ P0 ~ ~ k 6 3 ]  " 

It follows that  ~r(p0) _> x0, yielding 0(p0) > 0. Therefore Pc _~ p0, as required in 
(11.5). 

The proof that  0(pc) > O is more delicate; see [114]. [] 

Consider now the more general setting in which the random step involves replac- 
ing a typical square of side-length M -k  by a M • M grid of subsquares of common 
side-length M- (k+D (the above concerns the case M = 3). For general M,  a ver- 
sion of the above argument yields that  the corresponding critical probability pc(M) 
satisfies pc(M) _> M -2 and also 

(11.10) pc(M) < 1 if M > 3. 

When M = 2, we need a special argument in order to obtain that  pc(2) < 1, 
and this may be achieved by using the following coupling of the cases M = 2 and 
M = 4 (see [92, 114]). Divide Co into a 4 • 4 grid and do as follows. At the first 
stage, with probability p we retain all four squares in the top left corner; we do 
similarly for the three batches of four squares in each of the other three corners 

1 of Co. Now for the second stage: examine each subsquare of side-length ~ so 
far retained, and delete such a subsquare with probability p (different subsquares 
being treated independently). Note that  the probability measure at the first stage 
dominates (stochastically) product  measure with intensity ~ so long as (1 - ~)4 > 
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1 - p .  Choose ~r to satisfy equality here. The composite construction outlined above 
dominates (stochastically) a single step of a 4 • 4 random fractal with parameter  
p~r = p(1 - (1 - p) �88 which implies that  

pc(2)(1 - ( 1  - pc(2))�88 < p~(4) 

and therefore pc(2) < 1 by (11.10). 

11.3 A MORPHOLOGY 

Random fractals have many phases, of which the existence of left-right crossings 
characterises only one. A weaker property than the existence of crossings is tha t  
the projection of C onto the x-axis is the whole interval [0, 1]. Projections of random 
fractals are of independent interest (see, for example, the 'digital sundial '  theorem of 
[132]). Dekking and Meester [114] have cast such properties within a more general 
morphology. 

We write C for a random fractal in [0, 1] 2 (such as that  presented in Section 
11.1). The projection of C is denoted as 

~ c  = {z ~ ~ : (x,  y) ~ c for some  y}, 

and A denotes Lebesgue measure. We say that C lies in one of the following phases 
if it has the stated property. A set is said to percolate if it contains a left-right 
crossing of [0,112; dimension is denoted by 'dim'.  

I. C = ~ a.s. 
II. P(C # ~)  > 0, dim(TrC) = dim C a.s. 

III.  dim(~rC) < d i m C  a.s. on {C # g} ,  but A(~rC) = 0 a.s. 
IV. 0 < A(TrC) < 1 a.s. on {C # 0}.  
V. P(A(TrC) = 1) > 0 but C does not percolate a.s. 

VI. P(C percolates) > 0. 
In many  cases of interest, there is a parameter  p, and the ensuing fractal moves 

through the phases, from I to VI, as p increases from 0 to 1. There may be critical 
values PM,N at which the model moves from Phase M to Phase N.  In a variety 
of cases, the critical values PI,II, pII,IIi, Pill,IV can be determined exactly, whereas 
PIv,v and Pv,vI can be much harder to find. 

Here is a reasonably large family of random fractals. As before, they are con- 
structed by dividing a square into 9 equal subsquares. In this more general system, 
we are provided with a probability measure #, and we replace a square by the union 
of a random collection of subsquares sampled according to #. This process is iter- 
ated on all relevant scales. Certain parameters are especially relevant. Let al be 
the number  of subsquares retained from the lth column, and let mt = E(al )  be its 
mean. 
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Fig.  11 .4 .  In the  construct ion of the  Sierpinski carpet,  the  middle square is always 
deleted�9 

T h e o r e m  11.11. We have that 
�9 3 (a) C = 0 i f  and only i f  ~ z = l  ml ~ 1 (unless some gz is a.s. equal to 1), 

(b) d i m ( r e )  = dim(C) a.s. i f  and only if  

3 

~-~mz log ml _< 0, 
/=1 

(c) A(1rC) = 0 a.s. i f  and only if  

3 

log ml < 0. 
l = l  

For the proofs, see [113, 134]. Consequently, one may check the Phases I, II, I I I  
by a knowledge of the ml only. 

Next we apply Theorem 11.11 to the random Cantor set of Section 11.1, to obtain 
that,  for this model, pI,II = 1, and we depart Phase II as p increases through the 
value 1. The system is never in Phase III  (by Theorem l l . l ( c ) )  or in Phase IV (by 

1 and 1 Theorem 1 of [134]). It turns out that  PH,v = 5 5 < Pv,vI < 1. 
For the ' r andom Sierpinski carpet '  (RSC) the picture is rather different. This 

model is constructed as the above but with one crucial difference: at each iteration, 
the central square is removed with probability one, and the others with probability 
1 - p (see Figure 11.4). Applying Theorem 11.11 we find that  

PI,II ---- 1,  PII,III = 5 4 - � 8 8  PIILIV = 1 8 - � 8 9  

and it happens that  

1 < P[v,v _~ 0.8085, 0.812 _~ PV,VI _~ 0.991. 

See [114] for more details. 
We close this section with a conjecture which has received some attention. Writ- 

ing Pc (resp. pc(RSC)) for the critical point of the random fractal of Section 11.1 
(resp. the random Sierpinski carpet),  it is evident that  Pc _< pc(RSC). Prove or 
disprove the strict inequality Pc < pc(RSC). 
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11.4 RELATIONSHIP TO BROWNIAN MOTION 

Peres [312] has discovered a link between fractal percolation and Brownian Motion, 
via a notion called 'intersection-equivalence'. For a region U _C R d, we call two 
random sets B and C intersection-equivalent in U if 

(11.12) P ( B n  A r 0)  ~ P ( C n  A r g)  for all closed A C U 

(i.e., there exist positive finite constants cl, c2, possibly depending on U, such that 

P(a  n A # e) 
cl < < c2 

P(C n I # 2s) 

for all closed A C U). 
We apply this definition for two particular random sets. First, write B for the 

range of Brownian Motion in R a, starting at a point chosen uniformly at random in 
the unit cube. Also, for d > 3, let C be a random Cantor set constructed by binary 
splitting (rather than the ternary splitting of Section 11.1) and with parameter 
p = 2 2-d .  

T h e o r e m  11.13. Suppose that d > 3. The random sets 13 and C are intersection- 
equivalent. 

A similar result is valid when d = 2, but with a suitable redefinition of the 
random set C. This is achieved by taking different values of p at the different stages 
of the construction, namely p = k / (k  + 1) at the kth stage. 

This correspondence is not only beautiful and surprising, but also useful. It 
provides a fairly straightforward route to certain results concerning intersections of 
random walks and Brownian Motions, for example. Conversely, using the rotation- 
invariance of Brownian Motion, one may obtain results concerning projections of the 
random Cantor set in other directions than onto an axis (thereby complementing 
results of [113], in the case of the special parameter-value given above). 

The proof of Theorem 11.13 is analytical, and proceeds by utilising 
�9 classical potential theory for Brownian Motion, 
�9 the relationship between capacity and percolation for trees ([249]), and 
�9 the relationship between capacity on trees and capacity on an associated 

Euclidean space ([55, 309]). 
It is an attractive target to understand Theorem 11.13 via a coupling of the two 
random sets. 
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12. I S I N G  A N D  P O T T S  M O D E L S  

12.1 ISING MODEL FOR FERROMAGNETS 

In a famous experiment, a piece of iron is exposed to a magnetic field. The field 
increases from zero to a maximum, and then diminishes to zero. If the temperature  
is sufficiently low, the iron retains some 'residual magnetisation' ,  otherwise it does 
not. The critical temperature  for this phenomenon is often called the Curie point. 
In a famous scientific paper [194], Ising proposed a mathematical  model which may 
be phrased in the following way, using the modern idiom. 

Let A be a box of Z d, say A = [ -n ,  n]d. Each vertex in A is allocated a random 
spin according to a Gibbsian probability measure as follows. Since spins come in 
two basic types, we take as sample space the set EA = { - 1 ,  +1} h, and we consider 
the probabili ty measure ~A which allocates a probability to a spin vector o. C EA 
given by 

1 
(12.1) 7rA(o.) = ~ exp{--flHh(o.)),  o. E EA, 

where fl = T -1 (the reciprocal of temperature,  on a certain scale) and the Hamil- 
tonian HA : EA ~ N is given by 

(12.2) HA(O-) = -- E Y~aio-j -- h E o ' i  
~=(i,j) i 

for constants (J~) and h (called the 'external field') which parameterise the process. 
The sums in (12.2) are over all edges and vertices of A, respectively. 

The measure (12.1) is said to arise from 'free boundary conditions',  since the 
boundary  spins have no special role. It turns out to be interesting to allow other 
types of boundary  conditions. For any assignment ~/ : 0A ~ { - 1 ,  +1} there is a 
corresponding probability measure 7r~ obtained by restricting the vector a to the 
set of vectors which agree with 3/on 0A. In this way we may obtain measures 7r +, 
7r~, and 7rfh (with free boundary conditions) on appropriate subsets of EA. 

For simplicity, we assume here that  Je = J > 0 for all edges e. In this 'ferro- 
magnetic '  case, measures of the form (12.1) prefer to see configurations o. in which 
neighbouring vertices have like spins. The antiferromagnetic case J < 0 can be 
somewhat  tricky. 

Inspecting (12.1)-(12.2) with J > 0, we see that  spins tend to align with the sign 
of any external field h. 

The following questions are basic. 
(a) Wha t  weak limits l i m h ~  7r~ exist for possible boundary conditions 7? (This 

requires redefining 7r[ as a probability measure associated with the sample 

space E = { - 1 ,  +l}Zd.) 
(b) Under what  conditions on J, h, d is there a unique limit measure? 
(c) How may limit measures be characterised? 
(d) Wha t  are their properties; for example, at what rate do their correlations 

decay over large distances? 
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(e) Is there a phase transition? 
It turns out that  there is a unique limit if either d = 1 or h r 0. There is 

non-uniqueness when d _> 2, h = 0, and ~ is sufficiently large (i.e., fl > T~ 1 where 
Tc is the Curie point). 

A great deal is known about the Ising model; see, for example, [9, 130, 135, 150, 
236] and many other sources. We choose here to follow a random-cluster analysis, 
the details of which will follow. 

The Ising model on L 2 permits one of the famous exact calculations of statistical 
physics, following Onsager [300]. 

12.2 POTTS MODELS 

Whereas the Ising model permits two possible spin-values at each vertex, the Pot ts  
model permits  a general number q E {2, 3 , . . .  }. The model was introduced by Pot ts  
[318] following an earlier paper of Ashkin and Teller [46]. 

Let q be an integer, at least 2, and take as sample space EA = {1, 2 , . . . ,  q}n 
where A is given as before. This time we set 

1 
(12.3) 7ri(a) = ZA exp{-- /3Hi(a)},  a E EA, 

where 

(12.4) HA( ) = - J  Z 
e=(i,j) 

and 5u,v is the Kronecker delta 

5uv= { 1 i f u = v ,  

' 0 otherwise. 

External  field is absent from this formulation, but can be introduced if required by 
the addition to (12.4) of the term - h  }-:~i/~,,t, which favours an arbitrarily chosen 
spin-value, being here the value 1. 

The labelling 1, 2 , . . .  , q of the spin-values is of course arbitrary. The case q = 2 
is identical to the Ising model (without external field and with an amended value of 
J) ,  since 

aiaj = 26~,a~ - 1 for ai, aj C { - 1 ,  +1}. 
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12.3 RANDOM-CLUSTER MODELS 

It was Fortuin and Kasteleyn who discovered that  Potts  models may be recast as 
' random-cluster  models'.  In doing so, they described a class of models, including 
percolation, which merits at tention in their own right, and through whose analysis 
we discover fundamentM facts concerning Ising and Pot ts  models. See [159] for a 
recent account of the relevant history and bibliography. 

The neatest construction of random-cluster models from Pot ts  models is that  
reported in [128]. Let G = (V, E)  be a finite graph, and define the sample spaces 

~.={1,2,...,q}V, ~ = { 0 , 1 }  E, 

where q is a positive integer. We now define a probability mass function # on E • 
by 

(12.5) #(a, w) ~ H { (1 - p)Sw(e),o + P(~w(e),l(~e(if) } 
eEE 

where 0 < p < 1, and 

(12.6) 5~(a) = ~, ,~j  if e = ( i , j  I e E. 

Elementary calculations reveal the following facts. 
(a) Marginal on E. The marginal measure 

wE~ 

is given by 

e 

where p = 1 - e - ~ J .  This is the Potts  measure (12.3). Note tha t  ~ J  _> 0. 
(b) Marginal on f~. Similarly 

aEE 

(c) 

where k(w) is the number of connected components (or 'clusters') of the graph 
with vertex set Y and edge set ~?(w) -- {e C E : w(e) = 1}. 
The conditional measures. Given w, the conditional measure on E is obtained 
by put t ing (uniformly) random spins on entire clusters of w (of which there are 
k(w)), which are constant on given clusters, and independent between clusters. 
Given a, the conditional measure on ~ is obtained by setting w(e) = 0 if 
5e(a) = 0, and otherwise w(e) = 1 with probability p (independently of other 
edges). 
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In conclusion, the measure # is a coupling of a Pot ts  measure 7r~,g on V, together  
with a ' random-clus ter  measure '  

(12.7) 
"eEE 

) 

The parameters of these measures correspond to one another by the relation p = 
1 - e -~J. Since 0 _< p _< i, this is only possible if/3J _> O. 

Why is this interesting? The ' two-point correlation function'  of the Pot ts  measure 
7r~,j on G = (V, E)  is defined to be the function T~,j given by 

1 
- -  i , j E V .  T~ , j ( i , j )  = 7rp,j(~i = ~j)  q, 

The ' two-point  connectivity fimction'  of the random-cluster  measure r is Cp,q(i ~-~ j ) ,  
i.e., the probabil i ty  that  i and j are in the same cluster of a configuration sampled 
according to r It  turns out that  these ' two-point functions' are (except for a 
constant  factor) the same. 

T h e o r e m  12.8. I f  q E { 2 , 3 , . . . }  and p = 1 - e - z z  satisfies 0 <_ p <_ 1, then 

rZ ,J ( i , j )  = (1 -- q--1)r ~ j ) .  

Proof. We have tha t  

v ~ , j ( i , j )  : E { l { ~ , = ~ } ( a ) - q - 1 } # ( a , w )  

= E C p , q ( W ) E p ( a  [ w ) { l { ~ = ~ r  q-l} 
0J tT 

= E Cp,q(W){ (1 - q - l ) l ( i ~ j }  (w) + 0.  l{i~j} (w) } 
o)  

= (1 - q-1)r ~-~ j ) .  [] 

This fundamenta l  correspondence implies tha t  properties of Pot ts  correlation 
can be mapped  to properties of random-cluster  connection. Since Pot ts ian  phase 
transi t ion can be formulated in te rms of correlation functions, this implies tha t  
information about  percolative phase transit ion for random-cluster  models is useful 
for s tudying Pot t s ian  transitions. In doing so, we s tudy the 'stochastic geometry '  
of random-cluster  models. 

The random-cluster  measure (12.7) was constructed under the assumpt ion  tha t  
q C {2, 3 , . . .  }, but  (12.7) makes sense for any positive real q. We have therefore 
obtained a rich family of measures which includes percolation (q = 1) as well as the 
Ising (q = 2) and Pot ts  measures.  
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13. R A N D O M - C L U S T E R  M O D E L S  

13.1 BASIC PROPERTIES 

First we summarise some useful properties of random-cluster measures. Let G = 
(V, E) be a finite graph, and write ftE = {0, 1} E. The random-cluster measure on 
~2E, with parameters p, q satisfying 0 < p _< 1 and q > 0, is given by 

l / I I  } Cp,q(CO) = ~ pW(e)( 1 _ p)l--oa(e) qk(~o), CO E aE  

"e6E 

where Z = Za,p,q is a normalising constant, and k(co) is the number of connected 
components of the graph (V,~(co)), where r/(w) = {e: co(e) = 1} is the set of 'open' 
edges. 

T h e o r e m  13.1. The measure Cp,q satisfies the FKG inequality if q >_ 1. 

Pro@ If p = 0, 1, the conclusion is obvious. Assume 0 < p < 1, and check the 
condition (5.2), which amounts to the assertion that 

k(co v co') + k(co A w') >_ k(co) + k(co') for co,co' C f~E. 

This we leave as a graph-theoretic exercise. 

T h e o r e m  13.2 ( C o m p a r i s o n  Inequal i t ies) .  We have that 

[] 

(13.3) Cp, q, < r if p' < p, q' > q, q' > 1, 

pl P q, > q, ql >_ 1. (13.4) CP"q' > CP'q g q'(1 -p '~  > q (1 - -p ) '  

Proof. Use Holley's Inequality (Theorem 5.5) after checking condition (5.6). [] 

In the next theorem, the role of the graph G is emphasised in the use of the 
notation Ca,p,q. The graph G\e (resp. G.e) is obtained from G by deleting (resp. 
contracting) the edge e. 

T h e o r e m  13.5 (Tower  P r o p e r t y ) .  Let e E E.  
(a) Given w(e) = O, the conditional measure obtained from CG,p,q is CC\e,p,q. 
(b) Given w(e) = 1, the conditional measure obtained from CG,p,q is CG.e,p,u. 

Proof. This is an elementary calculation of conditional probabilities. [] 

More details of these facts may be found in [27, 160, 163]. Another comparison 
inequality may be found in [162]. 
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13 .2  W E A K  LIMITS AND PHASE TRANSITIONS 

Let d _> 2, and ~t = {0, 1} ~ . The  appropr ia te  (r-field of ~ is the (r-field Y generated 
by the finite-dimensional sets. For co C ~ and e E E a, the edge e is called open if 
w(e) = 1 and closed otherwise. 

Let A be a finite box in g d. For b C {0, 1} define 

a b = { c o E f i : w ( e ) = b f o r e C E a } ,  

where EA is the set of edges of L d joining pairs of vertices belonging to A. On ~ 
b we define a random-cluster  measure CA,p,q as follows. Let 0 _< p < 1 and q > 0. Let 

Ch,p,q(co) _ Z b p~(C)( 1 _ p)l-~o(c) qk(,~,i) 
A,p,q e 

where k(co, A) is the number  of clusters of (Z a, r/(co)) which intersect A (here, as 
before, ~(co) = {e E E a : co(e) = 1} is the set of open edges). The  boundary  
condition b = 0 (resp. b = 1) is sometimes termed 'free' (resp. 'wired') .  

T h e o r e m  13.7. The weak limits 

cb = lim cb b =  0,1, 
p,q A~Zd A,p,q~ 

exist i f  q > 1. 

Proof. Let A be an increasing cylinder event (i.e., an increasing finite-dimensional 
event). If  A _C A' and A includes the 'base '  of A, then 

r = r I all edges in Eh, \n are open) _> r p,q(A), 

where we have used the tower proper ty  and the F K G  inequality. Therefore the limit 
limA_,Za r exists by monotonicity. Since ~- is generated by such events A, 
the weak limit r exists. A similar argument  is valid in the case b - 0. [] 

The  measures  r and Cpl,q are called ' random-cluster  measures '  on L d with 
paramete rs  p and q. Another  route to a definition of such measures uses a type of 
Dobrushin-Lanford-Ruel le  (DLR) formalism rather  than  weak limits (see [163])1~ 
There is a set of 'DLR measures '  r satisfying r < r _< Cpl,q, whence there is a 
unique such measure  if and only if Cp0,q = Cp,q.1 

Henceforth we assume tha t  q > 1. Turning to the question of phase transition, 
and remember ing  percolation, we define the percolation probabilities 
(13.8) 0b(p, q) b = Cp,q(O ~ oo), b =  0,1, 

i.e., the probabil i ty  that  0 belongs to an infinite open cluster. The  corresponding 
critical probabili t ies are given by 

p~(q )=sup{p :Ob(p ,q )=O} ,  b = 0 , 1 .  

Faced possibly with two (or more) distinct critical probabilities, we present the 
following result, abs t rac ted  from [17, 159, 160, 163]. 

1~ CA,p,q{ be the random-cluster measure on A having boundary conditions inherited from 
the configuration { off A. It is proved in [163] that any limit point r of the family of probability 
measures {r : A C Z d, { E ~} is a DLR measure whenever r has the property that  the 

number I of infinite open clusters satisfies r  < 1) = 1. It is an open problem to decide exactly 
which weak limits are DLR measures (if not all). 
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T h e o r e m  13.9. Assume that d >_ 2 and q >_ 1. There exists a countable subset 
72) = ~i~q d o f  [0, 1], possibly empty, such that r 1 , p,q = ep,q if either 01(p,q) = 0 or 
p p. 

Consequently, 0~ q) = 01(p, q) if p does not belong to the countable s e t  7Dq,d, 
whence p0 (q) 1 = Pc (q). Henceforth we refer to the critical value as Pc (q). It  is believed 
that  7~q,d = ~ for small q (depending on the value of d), and that  7)q,d = {Pc(q)} 
for large q; see the next section. 

Next we prove the non-triviality of pc(q) for q > 1 (see [17]). 

T h e o r e m  13.10.  I f  d > 2  and q >_ 1 then O < p~(q) < 1. 

Proof. We compare the case of general q with the case q = 1 (percolation). Using 
the comparison inequalities (Theorem 13.2), we find that  

qpc(1) 
(13.11) pc(l)  < Pc(q) ~ l + ( q -  1 )pc ( l ) '  q ~ 1, 

where pc( l )  is the critical probability of bond percolation on ]L d. Cf. Theorem 3.2. 
[] 

We note tha t  Pc(q) is monotone non-decreasing in q, by use of the comparison 
inequalities. Actually it is strictly monotone and Lipschitz continuous (see [162]). 

Finally we return to the Potts  model, and we review the correspondence of phase 
transitions. The relevant 'order parameter '  of the Pot ts  model is given by 

M(f lJ ,  q) = lira ~rr)xs g(o(O) - -1 )  - q - 1 } ,  

w h e r e  7r~,fl,j is a Pot ts  measure on A 'with boundary  condition 1'. We may think of 
M(f lJ ,  q) as a measure of the degree to which the boundary condition '1 '  is noticed 
at the origin. By an application of Theorem 12.8 to a suitable graph obtained from 
A, we have that  

~rzk,~,j(a(0 ) 1) q-1 (1 -1 1 . . . .  q )r ~ (OA) 

where p = 1 - e -~J .  Therefore 

M(flJ ,  q ) = ( 1 - q - 1 )  lim ek ( 0 ~ 0 A ) .  
A ~ Z a  'P'q 

By an interchange of limits (which may be justified, see [17, 163]), we have that  11 

lira ~ 0A) 01(p, q), 

whence M(fl .~ q) and Ol(p, q) differ only by the factor (1 - q - l ) .  

llWe note that the corresponding limit for the free measure, limA~Zd (~O,p,q(0 ~--~ 0 h )  ---- 
O~ q), has not been proved in its full generality; see [163, 316]. 
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13 .3  F I R S T  AND SECOND O R D E R  TRANSITIONS 

Let q > 1 and 0 < p < 1. As before, Cb,q is the random-cluster measure on L d 
constructed according to the boundary condition b C {0, 1}. The corresponding 
percolation probability is Oh(p, q) = Cp,q(Ob ~ 00). There is a phase transition at 
the point Pc = Pc(q). Much of the interest in Potts  models (and therefore random- 
cluster models) has been directed at a dichotomy in the type of phase transition, 
which depends apparently on whether q is small or large. The following picture is 
credible but  proved only in part. 

(a) Small q, say 1 < q < Q(d). It is believed that r = r for all p, and that  
- -  p , q  

Ob(pc(q),q) = 0 for b = 0, 1. This will imply (see [163]) that  there is a unique 
random-cluster  measure, and that  each ob( ", q) is continuous at the critical point. 
Such a transition is sometimes termed 'second order'. The two-point connectivity 
function 

(13.12) ~,q(x ,y )  b = C p , q ( x ~ y )  

satisfies 

1 
(13.13) - -  logwbq(O,  r t e l )  --~ ~ ( p , q )  a s  n ~ o c  

~t 

where a(p, q) > 0 if and only i fp  < Pc(q). In particular a(Pc(q),q) = O. 

(b) Large q, say q > Q(d). We have that  Cp0,q = Cplq if and only i fp  # Pc(q). When 
P = Pc(q), then r and @,q are the unique translation-invariant random-cluster 
measures on L d. Furthermore O~ q) = 0 and 01(pc(q), q) > 0, which implies 
that  01( ., q) is discontinuous at the critical point. Such a transition is sometimes 
termed 'first order'. The limit function a, given by (13.13) with b = 0, satisfies 
a(pc(q),q) > 0, which is to say that  the measure r has exponentially decaying 

P,q 
connectivities even at the critical point. Trivially c~(p,q) = 0 when p > Pc(q), and 
this discontinuity at Pc(q) is termed the 'mass gap'. 

It is further believed that  Q(d) is non-increasing in d with 

(13.14) Q(d)= { 4 if d = 2  
2 i f d >  6. 

Some progress has been made towards verifying the main features of this picture. 
When d = 2, special properties of two-dimensional space (particularly, a duality 
property) may be utilised (see Section 13.5). As for general values of d, we have 
partial information when q = 1, q = 2, or q is sufficiently large. There is no full 
proof of a 'sharp cut-off '  in the value of q, i.e., the existence of a critical value Q(d) 
for q (even when d = 2, but  see [191]). 

Specifically, the following is known. 

(c) When q = 1, it is elementary that  there is a unique random-cluster measure, 
namely product  measure. Also, 0(pc(l), 1) = 0 if d = 2 or d > 19 (and perhaps for 
other d also). There is no mass gap, but or(p, q) > 0 for p < pc(l).  See [G]. 
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(d) When  q = 2, we have information via technology developed for the Ising model. 
For example,  01(pc(2),2) = 0 i f d  r 3. Also, or(p, 2) > 0 i f p  < pc(2). See [14]. 

(e) When  q is sufficiently large, the Pirogov Sinai theory of contours may  be applied 
to obta in  the picture described in (b) above. See [223, 225, 226, 255]. 

Further  information about  the above arguments  is presented in Section 13.5 for 
the special case of two dimensions. 

13.4 EXPONENTIAL DECAY IN THE SUBCRITICAL PHASE 

The key theorem for understanding the subcritical phase of percolation states tha t  
long-range connections have exponentially decaying probabilities (Theorem 6.10). 
Such a result is believed to hold for all random-cluster  models with q >_ 1, but 
no full proof  has been found. The result is known only when q = 1, q = 2, or q 
is sufficiently large, and the three sets of arguments  for these cases are somewhat  
different from one another.  As for results valid for all 
currently known is tha t  the connectivity function decays 
decays at  a sufficient polynomial rate. We describe this 
[168] for more  details. 

As a prel iminary we introduce another  definition of a 

(13.15) 

q (k  1), the best tha t  is 
exponentially whenever it 
result in this section; see 

critical point. Let 

lira sup  n d - l r  0 0 Y(P'q)  = n - ~  { p,q( ~-~ ON(n) )}  

and 

(13.16) p (q) = sup{p: r(p, q) < 

Evidently pg(q) < pc(q), and it is believed tha t  equality is valid here. Next,  we 
define the kth i terate of (natural)  logari thm by 

,~l(n) = logn,  )~k(n) = 1og+{)~k-l(n)} for k _> 2 

where l o g + x  = max{ l ,  logx}. 
We present the next theorem in two parts ,  and shall give a full proof  of par t  (a) 

only; for par t  (b), see [168]. 

T h e o r e m  13.17.  Let O < p < 1 and q > 1, and assume that p < pg(q). 
(a) / f  k > 1, there exists c~ = c~(p, q, k) satisfying a > 0 such that 

(13.18) r176 ~ OB(n))  < e x p { - a n / A k ( n ) }  for all large n. 

(b) / f  (13.18) holds, then there exists Z = fl(P,q) satisfying Z > 0 such that 

r176 ~ OB(n))  <_ e - ~  for all large n. 

The spirit of the theorem is close to tha t  of Hammers ley  [174] and Simon-Lieb 
[235, 332], who derived exponential  est imates when q = 1, 2, subject  to a hypothesis 
of finite susceptibility (i.e., that  ~ =  r176 ~ x) < oo). The lat ter  hypothesis is 
slightly stronger than  the assumpt ion of Theorem 13.17 when d = 2. 

Underlying any theorem of this type is an inequality. In this case we use two, of 
which the first is a consequence of the following version of Russo's  formula, taken 
from [751 . 
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T h e o r e m  13.19. Let 0 < p < 1, q > O, and let Cp be the corresponding random- 
cluster measure on a finite graph G = (V, E). Then 

d 1 {r  -- Cp(N)r  ~pp r - p(1-  p) 

for any event A, where N = N(w) is the number of open edges of a configuration w. 

Here, Cp is used both as probability measure and expectation operator. 

Proof. We express r as 

r = E,~ 1A(W)~p(~) 

where ~rp (w) = pN(~)(1 --p)lEl-~v(~)q~(~). Now differentiate throughout with respect 
to p, and gather the terms to obtain the required formula. [] 

L e m m a  13.20. Let 0 < p < 1 and q > 1. For any non-empty increasing event A, 

d {logCv(A)} > r  
d p  - p ( 1  - p )  

where 

inf E ( w ' ( e )  w' o/ 
e 

Proof. It  may be checked that  FA1A = O, and that  N + FA is increasing. Therefore, 
by the FKG inequality, 

Cp(N1A) -- Cp(g)Op(d) = Cp((N + FA)IA) -- r  

>_ r 

Now use Theorem 13.19. [] 

The quantity FA is central to the proof of Theorem 13.17. In the proof, we shall 
make use of the following fact. If A is increasing and A _C B1 N B2 N-- .  N Bin, where 
the B~ are cylinder events defined on disjoint sets of edges, then 

m 

(13.21) FA > E FB,. 
i = 1  
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L e m m a  13.22. Let q > 1 and 0 < r < s < 1. There exists a function c = c(r, s,q), 
satisfying 1 < c < cx~, such that 

r <_ k) < ckr for all k > 0 

and for all increasing events A. 

Proof. We sketch this, which is similar to the so called 'sprinkling lemma'  of [15]; 
see also [G, 168]. 

Let r < s. The measures r and r may be coupled together in a natural  way. 
That  is, there exists a probability measure # on ~t 2 = {0, 1} E x {0, 1} E s u c h  that:  

(a) the first marginal of # is r 
(b) the second marginal of # is r 
(c) tt puts measure 1 on the set of configurations (~r,w) C ~ 2  such that  7r < w. 

Furthermore # may be found such that  the following holds. There exists a positive 
number fl = fl(r, s, q) such that,  for any fixed ~ E ~E and subset B of edges (possibly 
depending on ~), we have that  

(13.23) 
# ( { ( % w ) : w ( e ) : l f o r e E B ,  :r=sC}) >_flIBI. 

Tha t  is to say, conditional on the first component of a pair (~, w) sampled according 
to #, the measure of the second component dominates a non-trivial product  measure. 

Now suppose that  ~ (ff gtE) is such that  FA(~) <_ k, and find a set B = B(~) 
of edges, such that  [B I _< k, and with the property that  ~B E A, where ~B is the 
configuration obtained from ~ by declaring all edges in B to be open. By (13.23), 

r > ~ # ( { ( % w ) :  w(e) = 1 for e C B, 7r = ~}) 
~:FA(~)<_k 

>_ ZkO~(FA <_ k) 

as required. [] 

Proof of Theorem 13.17. (a) Write An = {0 ~ Og(n)} and r = r where B(m),p,q 
P < Pc = Pc(q). We apply Lemma 13.20 (in an integrated form), and pass to the 
limit as m --* 0% to obtain that  the measures Cp,q = r satisfy 

(13.24) Cr,q(An) <_ Cs,q(An) e x p { - 4 ( s  - r)r if r _< s, 

where F~ = FA~ (we have used Theorem 13.2(a) here, together with the fact that  
F~ is a decreasing random variable). 

Similarly, by summing the corresponding inequality of Lemma 13.22 over k, and 
letting rn --* c~, we find that  

(13.25) r > - logCs ,q(An)  c if r < s. 
- l o g  c c - 1 
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We shall use (13.24) and (13.25) in an iterative scheme. At the first stage, assume 
r < s < t < pg = pg(q). Find cl(t) such that  

(13.26) r < ~(cl~tj 
- -  r i d -  1 

By (13.25), 

~gs,q(Fn ) ~ ( d -  1) logn  
log c 

which we insert into (13.24) to obtain 

for all n. 

+ o(1), 

We now choose m by 

K - 1  

(13.28) Fn > E Hi. 
i=0 

Now there exists a constant ~ (< co) such that  

(13.29) r < IOB(R~)IOv,q(Am) < qnd-lOp,q(A,~) 

f o r 0 < i < K - 1 .  
Let r < s < pg, and let c2 = c2(s), A2 = A2(s) as in (13.27). From (13.28)- 

(13.29), 

K - 1  

r > E r  2 K(1  - ~nd-lCp,q(Am)) 
i=0 

> K ( 1 - ~ n  d-1 c2 
-- m d - - l + A  2 ) ' 

= { (2 c2)n -1} 

(actually, an integer close to this value) to find that  

1 r >__ ~K > Dn ~3 

for some D > 0, 0 < A 3 <: 1. Substitute into (13.24) to obtain 

(13.30) Cr,q(An) < exp{-c3n  A3 } 

for some positive c3 = c3(r), A3 = A3(r).  This improves (13.27) substantially. 

and for some constants c2(r), A2(r) (> 0). This is an improvement over (13.26). 
At the next stages we shall need to work slightly harder. Fix a positive integer m, 

and let Ri = i m  for 0 < i < K where K = Ln/mJ. Let Li = {OB(Ri) +-* OB(R~+I)} 
and Hi = FL,. By (13.21), 

c2 (v) for all n, (13.27) Cr,q(An) < nd_l+A2(T) 
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We repeat the last step, using (13.30) in place of (13.27), to obtain 

(13.31) r _< exp (log n) A4 if r < pg 

for some e4 = e4(r) > 0 and 1 < A4 = A4(r) < oc. 
At the next stage, we use (13.28)-(13.29) more carefully. This time, set m = 

(logn) 2, and let r < s < t < pg. By (13.29) and (13.31), 

{ e4m } 
Ct,q(Li) <_ ~]n d-1 exp - (logm)A4 

which, via Lemma 13.22, implies as in (13.25) that  

D(log n) 2 
Cs,~(gd >_ (log log n )  A4 

for some D > 0. By (13.28), and the fact that  K = Ln/mJ, 

for some D '  > 0. By (13.24), 

Cs,q(F~) > 
D'n 

(log log n) A4 

C57. t } 
Cr,q(A~) < exp - (loglogn)A~ . 

Since A4 > 1, this implies the claim of the theorem with k = 1. The claim for 
general k requires k - 1 further iterations of the argument. 
(b) We omit the proof of this part. The fundamental  argument is taken from [139], 
and the details are presented in [168]. [] 

13.5 THE CASE OF TWO DIMENSIONS 

In this section we consider the case of random-cluster measures on the square lattice 
L 2. Such measures have a property of self-duality which generalises that  of bond 
percolation. We begin by describing this duality. 

Let G = (V, E)  be a plane graph with planar dual G d = (V d, Ed). Any config- 
uration w E ftE gives rise to a dual configuration w d C frEd defined as follows. If e 
(C E)  is crossed by the dual edge e d (E Ed), w e  define wd(e d) = 1 - cr As usual, 
~](w) denotes the set {e : w(e) = 1} of edges which are open in w. By drawing a 
picture, one may be convinced that  every face of (V, r/(w)) contains a unique compo- 
nent of (V d, ~(wd)), and therefore the number f(w) of faces (including the infinite 
face) of (V, ~(w)) satisfies f(w) = k(wd). See Figure 13.1. (Note that  this definition 
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T T 

Fig. 13.1. A primal configuration w (with solid lines) and its dual configuration tJ2 d 

(with dashed lines). The arrows join the given vertices of the dual to a dual vertex 
in the infinite face. Note that each face of the primal graph (including the infinite 
face) contains a unique component of the dual graph. 

of the dual  configuration differs slightly from that  used earlier for two-dimensional 
percolation.) 

The random-cluster  measure on G is given by 

Using Euler 's  formula, 

Ca,p,q(W) (x \ 1 - p ] qk(~). 

k@) = IvI - I~@)1 + f@)  - 1, 

and the facts tha t  f ( w )  = k(w d) and I~(w)] + J~(wd)l = [E I, we have that  

r ( q ( l ~  P))  '~(~)j c~ qk(~a), 

which is to say tha t  

(13.32) Ca,~,q(~) = r q(~ d) for ~ ~ ~E, 

where the dual parameter  pd is given according to 

(13.33) 
pd q(1 - p )  

1 - pd p 

The unique fixed point  of the mapping p ~ pd is easily seen to be given by p = nq 
where 

nq-  l + v ~  
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If  we keep t rack of the constants of proport ional i ty  in the above calculation, we 
find tha t  the par t i t ion function 

ZG,p,q = ~ p l V ( w ) l ( 1  - p)]E\v(,~)lqk(W) 
wE'rE 

satisfies the duality relation 

1 _ p,~ IEI 
(13.34) ZG,p,q = qlVl-1 \ pd ] ZGd,p a,q 

which, when p = p d  : t~q, becomes 

(13.35) Zc,~q,q = qlyJ-1- �89 IEI ZG d,,~q ,q" 

We shall find a use for this later. 
Turning to the square lattice, let An = [0, n] 2, whose dual graph A d may  be 

obtained from [ -1 ,n ]  2 + 1 1 (3, ~) by identifying all boundary  vertices. This implies by 
(13.32) tha t  

(13.36) 

for configurations w on An (and with a small 'fix' on the boundary  of Ad). Let t ing 
n ~ oc, we obtain tha t  

(13.37) = r176 r d) 

for all cylinder events A, where A d = {w d : w C A}. 
As a consequence of this duality, we may  obtain as in the proof  of Theorem 9.1 

tha t  

(13.38) O~ q) = 0 

(see [163, 346]), whence the critical value of the square lattice satisfies 

x/q for q > 1. Pc(q)>_ l + v ~  (13.39) 

It  is widely believed tha t  

x/~ for q > 1. 
Pc(q) - -  l + v ~  

This is known to hold when q = 1 (percolation), when q = 2 (Ising model),  and for 
sufficiently large values of q. Following the route of the proof  of Theorem 9.1, it 
suffices to show tha t  

r176162 ~-* a B ( n ) )  _~ e -nr162 for all n, 
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and for some r  satisfying r  > 0 when p < Pc(q). (Actually, rather 
less than exponential decay is required; it would be enough to have decay at rate 
n-1 . )  This was proved by the work of [14, 235, 332] when q = 2. When q is 
large, this and more is known. Let p be the connective constant of L 2, and let 
Q = {�89 + ~ ) } 4 .  We have that  2.620 < # < 2.696 (see [335]), whence 
21.61 < Q < 25.72. We set 

1 { ( 1 +  v/q)4 } 
r  = ~ log q#4 ' 

noting that  r  > 0 if and only if q > Q. 

T h e o r e m  13.40. I f  d = 2 and q > Q then the following hold. 
(a) The critical point is given by Pc(q) = v ~ / (  1 + x/~)" 
(b) We have that 01(pc(q), q) > O. 
(c) For any r < r 

,~ o/3(n)) < for all large n. 

We stress that  these conclusions may be obtained for general d (_> 2) when q is 
sufficiently large (q > Q = Q(d)), as may be shown using so called Pirogov Sinai 
theory (see [225]). In the case d = 2 presented here, the above duality provides a 
beautiful and simple proof. This proof is an adaptat ion and extension of that  of 
[226]. 

Proof. Let /3 = B(n)  = [ - n , n ]  2 as usual, and let /3d = [ - - n , n -  1] 2 + (1, !)2 be 
those vertices of the dual of B(n)  which lie inside/3(n) (i.e., we omit the vertex in 
the infinite face of B). We shall work with 'wired' boundary conditions on B, and 
we let co be a configuration on the edges of B. A circuit F of B d is called an outer 
circuit of a configuration co if the following properties hold: 

(a) all edges of F are open in the dual configuration cod, which is to say that  they 
traverse closed edges of B, 

(b) the origin of L 2 is in the interior of F, 
(e) every vertex of B lying in the exterior of F, but  within distance of 1 / v ~  of 

some vertex of F, belongs to the same component of co. 
See Figure 13.2 for an illustration of the meaning of 'outer circuit'. 

Each circuit F of /3d partitions the set EB of edges of B into three sets, being 

E = {edges of B exterior to F}, 

I = {edges of B interior to F}, 

F'  = {edges of B crossing F}. 

The edges I form a connected subgraph of B. 
Our target is to obtain an upper bound for the probability that  a given F is 

an outer circuit. This we shall do by examining certain parti t ion functions. Since 
no open component  of co contains points lying in both the exterior and interior of 
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Fig. 13.2. The dashed lines include an outer circuit F of the dual B d. 

an outer circuit, the event OC(F) = {F is an outer circuit} satisfies, for any dual 
circuit F having 0 in its interior, 

1 
(13.41) r (OC(F)) - Zi  E l~ (w)Trp(w) 

B,p,q w 

1 
= Z ~ - -  (1 - p)[rlZ~(F)ZI 

B,p,q 

where 7rp(w) = pN(w)(1 -- p)lEI--N(w)qk(W), Z~(F) is the sum of 7rp(W') over all w' E 
{0, 1} E with '1 '  boundary  conditions on OB and consistent with F being an outer 
circuit (i.e., property (c) above), and ZI is the sum of 7rp(w") over all w" E {0, 1} z. 

Next we use duality. Let I d be the set of dual edges which cross the primal edges 
I ,  and let m be the number of vertices of B inside F. By (13.34), 

(13.42) Z I  = qm-i { 1 - p )  III \ pd ] z~,,.,q 

where pd satisfies (13.33), and where Z~d,vd q is the part i t ion function for dual 

configurations, having wired boundary  conditions, on the set V d of vertices incident 
to I d (i.e., all vertices of V d on its boundary are identified, as indicated in Figure 
13.3). 

We note two general facts about partit ion functions. First, for any graph G, 
Zc,p,q _> 1 if q _> 1. Secondly, Z.p,q has a property of supermultiplicativity when 
q > 1, which implies in particular that  

Z i > i i 
B,p,q -- Z E ( F ) Z i u r , , ~ , q  

for any circuit F of B a. (This is where we use property (e) above.) 
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Fig. 13.3. T h e  interior edges  I of  F are marked in the leftmost  picture,  and the dual  
I d in the  centre picture (the vertices  marked wi th  a cross are identified as a single 
vertex) .  T h e  shifted set I *  = I d + ( � 8 9  �89 is drawn in the r ightmost  picture.  Note  

that  I *  C I U F ' .  

Let I* = I d + (�89 �89 where I d is thought of as a subset of R 2. Note from Figure 
13.3 that I* C_ I U F'. Using the two general facts above, we have that 

(13.43) z'B,~,q _> z ~ ( r ) z ~ . . , .  = z b ( r ) z ~ d  ;,~. 

Now assume that p = x/~/(1 + x/q), so that p = pal. Then, by (13.41)-(13.43) 
and (13.35), 

(13.44) r = (1 - p)lrl Z~(F)ZI  
Z i 

B,p,q 

= ( i  - ;)L~,qm-~-�89 z~(r )z~d ,~ ,q  
Z i 

B,p,q 

< (1 _p)lrlqm-l-�89 

Since each vertex of B (inside F) has degree 4, we have that 

4m = 21II + Irl, 

whence 

(13.45) 
1 ( q ) [F[/4 

Ckp,q(OC(r) )  < (1 _ p) lr lql lr l -1  = ~ (1 + V l )  4 

The number of dual circuits of B having length 1 and containing the origin in 
their interior is no greater than lat, where at is the number of self-avoiding walks of 
L 2 beginning at the origin and having length I. Therefore 

1 oo 1 ( q ~/4 
E ~gB,P,q(OC(r)) ~ E q ( 1 _ ~ _ ~ r  lal" 

F l = 4  
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Now l - i  logal  --* # as 1 ~ oc, where # is the connective constant  of L 2. Suppose 
now tha t  q > Q, so tha t  q#4 < (1 + x/~) 4. It  follows that  there exists A(q) (< oo) 
such tha t  

E O ~ , p , q ( O C ( F ) )  < A(q) for all n. 
F 

If A(q) < ,  (which holds for sufficiently large q), then 

r ~ OB) = r occurs for no F) 

>_ , - A(q) > O. 

(We have used the assumption of wired boundary  conditions here.) This implies, by 
taking the limit n --* oc, that  Oi(p,q) > 0 when p = v ~ / ( 1  + v~)" Using (13.39), 
this implies par ts  (a) and (b) of the theorem, when q is sufficiently large. 

For general q > Q, we have only tha t  A(q) < oc. In this case, we find N (< n) 
such tha t  

1 

F outside B(N) 

where F is said to be outside B(N) if it contains B(N) in its interior. This implies 
i Let n --~ oo, and deduce tha t  r (BiN) ~ oo) > 1 tha t  r ) ~ OB) > ~. 

implying tha t  0i(p, q) > 0 as required. 
Turning to par t  (c) 12, let p = pd = x / q / ( ' + V ~ )  and n < r. Let A,~ be the 

(cylinder) event tha t  the point (�89 �89 lies in the interior of an open circuit of length 
at least n, this circuit having the proper ty  tha t  its interior is contained in the 
interior of no open circuit having length strictly less than  n. We have from (,3.36) 
and (13.45) tha t  

(13.46) 
f i  mam ( q ~m/4 

r <-- m=n T (1 + ~ ) 4  ] for all large r. 

[Here, we use the observation that ,  if A,~ occurs in B(r ) ,  then there exists a maximal  
open circuit F of B(r) containing ( I ,  �89 In the dual of B(r), F consti tutes an outer 
circuit.] 

We write LR~ for the event that  there is an open crossing of the rectangle 
/~n  = [0, n]X [0, 2hi from its left to its right side, and we set AN = r176 q(LRn). We 
may  find a point x on the left side of Rn and a point y on the right side such tha t  

Cp0,q(X ~ y in R~) _> 
A~ 

(2n + 1) 2. 

By placing six of these rectangles side by side (as in Figure 13.4), we find by the 
F K G  inequality tha t  

An ) 6 
(13.47/  oq(x x + (6n,0) in E0,6n] • I0,2n]) > 

12The present proof was completed following a contribution by Ken Alexander, see [37] for 
related material. 
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d x + (6n, O) 

Fig. 13.~. Six copies of a rectangle having width n and height 2n may be put 
together to make a rectangle with size 6n by 2n. If each is crossed by an open path 
joining the images of x and y, then the larger rectangle is crossed between its shorter 
sides�9 

Fig. 13.5. If each of four rectangles having dimensions 6n by 2n is crossed by an 
open path between its shorter sides, then the annulus contains an open circuit having 
the origin in its interior. 

We now use four copies of the rec tangle  [0,6hi • [0, 2n] to cons t ruc t  an  a n n u l u s  
a r o u n d  the  or igin (see F igure  13.5). If each of these copies con ta ins  an  open  crossing, 
t hen  the  a n n u l u s  con ta ins  a circuit .  Using the  F K G  inequal i ty  again,  we deduce t h a t  

CP~ >- (2n+ 1) 2 

Fina l ly ,  if 0 ~-+ OB(n), t hen  one of the  four rectangles  [0, n] • [-n, n], [-n, n] • 
[0, n], I - n ,  0] • I - n ,  n], [ - n ,  n] • [-n, 0] is t raversed by an  open  p a t h  be twen  its two 
longer  sides. This  implies  t ha t  

(13.49) r176 ~ OB(n)) <_ 4An. 

C o m b i n i n g  (13.46)-(13.49) ,  we o b t a i n  t ha t  

�9 2 0 ~1/24 
r176 ~ OB(n)) <_ 4 { ( 2 n  + 1) Cp,q(A4n)~ 

< 4  ( 2 n + 1 )  2 E mare q 
- -  m=4n q (1 T v/q) 4 

As before, m -1  l ogam  ~ # as m ~ oo, whence par t  (c) follows. [] 
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Chapter 1 

Introduction and 
background material 

1 .1  I n t r o d u c t i o n  

I would probably never have worked on finite Markov chains if I had not met  
Persi Diaconis. These notes are based on our joint work and owe a lot to his 
broad knowledge of the subject  a l though the presentation of the material  would 
have been quite different if he had given these lectures. 

The aim of these notes is to show how functional analysis techniques and ge- 
ometric ideas can be helpful in s tudying finite Markov chains from a quanti tat ive 
point of view. 

A Markov chain will be  viewed as a Markov operator K acting on functions 
defined on the state space. The  action of K on the spaces 0 '(~) where rr is the 
s tat ionary measure of K will be used as an important  tool. In particular, the 
Hilbert space 12(rr) and the Dirichlet form 

1 
E(/ , / )  = 5 I/(x) 

2:~y 

associated to K will play crucial roles. Functional inequalities such as Poincar4 
inequalities, Sobolev and Nash inequalities, or Logarithmic Sobolev inequalities 
will be used to s tudy the  behavior  of the chain. 

There is a natural  g raph  s t ruc ture  associated to any finite Maxkov chain 
K.  The geometry of this g raph  and the combinatorics of paths enter the game 
as tools to prove functional  inequalities such as Poincar6 or Nash inequalities 
and also to study the behavior  of different chains through comparison of their 
Dirichlet forms. 

The potential  reader should be  aware tha t  these notes contain no probabilistic 
argument.  Coupling and s t rong s ta t ionary  times are two powerful techniques 
that  have also been used to s tudy  Markov chains. They form a set of techniques 
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that are very different in spirit from the one presented here. See, e.g., [1, 19]. 
Diaconis' book [17] contains a chapter  on these techniques. David Aldous and 
Jim Fill are writing a book on finite Markov chains [3] that contains many 
wonderful things. 

The tools and ideas presented in these notes have emerged recently as useful 
techniques to obtain quanti ta t ive convergence results for complex finite Markov 
chains. I have tried to il lustrate these techniques by natural, simple but non 
trivial examples. More complex (and more interesting) examples require too 
much additional specific material  to be treated in these notes. Here are a few 
references containing compelling examples: 

- For eigenvalue estimates using path  techniques, see [35, 41, 53, 72]. 
- For comparison techniques, see [23, 24, 30] 
- For other geometric techniques, see [21, 38, 39, 43, 60]. 

A c k n o w l e d g e m e n t s :  Many thanks to Michel Benalm, Sergei Bobkov, Persi 
Diaconis, Susan Holmes, Michel Ledoux, Pascal Lezand and Laurent Miclo for 
their help. Thanks also to David Aldous, Jim Fill, Mark Jerrum, Alistalr Sinclair 
for useful discussions and comments over the years. 

1 . 1 . 1  M y  o w n  i n t r o d u c t i o n  t o  f i n i t e  M a r k o v  c h a i n s  

Finite Markov chains provide nice exercises in linear algebra and elementary 
probability theory. For instance, they can serve to illustrate diagonalization 
or trianguiarization in linear algebra and the notion of conditional probability 
or stopping times in probability. Tha t  is often how the subject is known to 
professional mathematicians.  

The ultimate results then appear  to be the classification of the states and, 
in the ergodic case, the existence of an invariant measure and the convergence 
of the chain towards its invariant measure at an exponentiel rate (the Perron- 
Frobenius theorem). Indeed, this set of results describes well the asymptotic 
behavior of the chain. 

I used to think tha t  way, until I heard Persi Diaconis give a couple of talks 
on card shuffling and other  examples. 

H o w  m a n y  t i m e s  do  y o u  h a v e  t o  shuff le  a deck  of  cards  so t h a t  t h e  
d e c k  is wel l  m i x e d ?  

The fact that  shuffling many, many times does mix (the Perron-Frobenius The- 
orem) is reassuring but  does not at all answer the question above. 

Around the same t ime I s tar ted to read a paper by David Aldous [1] on the 
subject because a friend of mine, a student at MIT, was asking me questions 
about it. I was working on analysis on Lie groups and random walk on finitely 
generated, infinite group under the guidance of Nicolas Varopoulos. I had the 
vague feeling that  the techniques tha t  Varopolous had taught me could also be 
applied to random walks on finite groups. Of course, I had trouble deciding 
whether this feeling was correct or not because, on a finite set, everything is 
always true, any functional inequality is satisfied with appropriate constants. 
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Consider an infinite group G, generated by a finite symmetric set S. The 
associated random walk proceeds by picking an element s in S at random and 
move from the current s ta te  x to xs.  An important  nontrivial result in random 
walk theory is that  the tran.~ient/recurrent behavior of these walk.q depends only 
on G and not on the choosen generat ing set S. The proof proceeds by comparison 
of Dirichlet forms. The Dirichlet form associated to S is 

1 
E s ( f , f )  = 21Si ~ If(gl - f (ghl l  2. 

g6G,h6S 

If S and T are two generating sets, one easily shows that there are constants 

a, A > 0 such that 

aEs <_ ET <_ AEs. 

To prove these inequalities one writes the elements of S as finite products of 
elements of T and vice versa. They  can be used to show that  the behavior of 
finitely generated symmetr ic  r a n d o m  walks on G, in many respects, depends 
only on G, not on the generat ing set. 

I felt tha t  this should have a meaning on finite groups too although clearly, 
on a finite group, different generat ing finite sets may produce different behaviors. 

I went to see Persi Diaconis and we had the following conversation: 

L: Do you have an example  of finite group on which there are many different 
walks of interest? 
P: Yes, the symmetr ic  group Sn! 
L: Is there a walk tha t  you really know well? 
P: Yes there is. I know a lot abou t  random transpositions. 
L: Now, we need another  walk tha t  you do not know as well as you wish. 
P: Take the generators ~- = (1,2) and c +z = (1 , . . .  ,n) +z. 
L& P: Lets t ry it. Any t ranspos i t ion  can be writ ten as a product of 7 and c --~z of 
length at most  10n. Each of 7, c, c -z  is used at most  10n times to write a given 
transposition. Hence, (after some computat ions)  we get 

ET < i00 n 2 Zs 

where ET is the Dirichlet form for random transpositions and S = {r ,c ,c-Z}.  
What  can we do with this? Well, the first nontrivial eigenvalue of random trans- 
positions is 1 - 2/n  by Fourier analysis. This yields a bound of order 1 - 50/n  3 
for the walk based on the generat ing set S. 
L: I have no idea whether  this is good or not. 
P: Well, I do not know how to get this result any other way (as we later realized 
1 - c /n  3 is the right order  of magni tude  for the first nontrivial eigenvalue of the 
walk based on S). 
L: Do you have any other  example?  .... 

This took place during the spring of 1991. The conversation is still going on 
and these notes are based on it. 
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1 . 1 . 2  W h o  c a r e s ?  

There are many  ways in which finite Markov chains appear as interesting or 
useful objects. This section presents  briefly some of the aspects that  I find most  
compelling. 

R a n d o m  w a l k s  o n  f in i t e  g r o u p s .  I s tarted working on finite Markov 
chains by looking at  r andom  walks on finite groups. This is still one of my 
favorite aspects of the subject .  Given a finite group G and a generating set 
S C G, define a Markov chain as follows. If the current state is g, pick s 
in S uniformly at r andom  and move to gs. For instance, take G = S,~ and 
S = {id} U {( i , j )  : 1 < i < j < n}. This yields the "random transpositions" 
walk. Which generating sets of S,~ are most  efficient? Which sets yield random 
walks tha t  are slow to converge? How slow can it be? More generally, which 
groups carry fast generat ing sets of small cardinality? How does the behavior of 
random walks relate to the algebraic structure of the group? These are some of 
the questions tha t  one can ask in this context. These notes do not study finite 
random walks on groups in detail  except for a few examples. The book [17] 
gives an introduction and develops tools from Fourier analysis and probabili ty 
theory. See also [42]. The  survey paper  [27] is devoted to random walks on 
finite groups. It  contains pointers to the literature and some open questions. 
Many examples of walks on the symmetr ic  group are treated by comparison with 
random transposit ions in [24]. M. Hildebrand [49] studies random transvections 
in finite linear groups by Fourier analysis. The recent paper of D. Gluck [45] 
contains results for some classical finite groups that  are based on the classification 
of simple finite groups. Walks on finite nilpotent groups are studied in [25, 26] 
and in [74, 75, 76]. 

M a r k o v  C h a i n  M o n t e  C a r l o .  Markov chain Monte Carlo algorithms use 
a Markov chain to draw from a given distribution ~- on a state space X or 
to approximate  lr and compute  quantit ies such as ~r(f) for certain functions 
f .  The M e t r o p o l i s  a lgor i thm and its variants provide ways of constructing 
Markov chains which have the  desired distribution ~r as stationary measure. For 
instance let A be a 100 by 100 square grid, X = {x : A --+ (5=1}} and 

where z(c) is the unknown normalizing constant. This is the G i b b s  measure of a 
finite two-dimentional Ising model  with inverse temperature  c > 0 and external 
field strength h. In this case the Metropolis chain proceed as follows. Pick a site 
i E A at random and propose  the move x ~ x i where x i is obtained from x by 
changing x(i) to - x ( i ) .  I f  rr(xi)/Tr(x) __ 1 accept this move. If not, flip a coin 
with probabil i ty of heads 7r(xi)/lr(x). If the coin comes up heads, move to x i. 
If the coins comes up tails, s tay  at  x. I t  is not difficult to show that  this chain 
has s ta t ionary measure  rr as desired. I t  can then be used (in principle) to draw 
from rr (i.e., to produce typical  configurations), or to estimate the normalizing 
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constant z(c). Observe that running this chain implies computing 7r(x')/Tr(x). 
This is reasonable because the unknown normalizing constant disappears in this 
ratio and the computation only involves looking at neighbors of the site i. 

Application of the Metropolis algorithm are widespread. Diaconis recom- 
mends looking at papers in the Journal of the Royal Statistical Society, Series 
B, 55(3), (1993) for examples and pointers to the literature. Clearly, to validate 
(from a theoretical point of view) the use of this type of algorithm one needs 
to be able to answer the question: how many steps are sufficient (necessary) for 
the chain to yield a good approximation of 7r? These chains and algorithms are 
often used without any theoretical knowledge of how long they should be run. 
Instead, the user most often relies on experimental knowledge, hoping for the 
best. 

Let us emphasize here the difficulties that one encounters in trying to produce 
theoretical results that  bear on applications. In order to be directly relevant to 
applied work, theoretical results concerning finite Markov chains must not only 
be quantitative but they must yield bounds that are close to be sharp. If the 
bounds are not sharp enough, the potential user is likely to disregard them as 
unreasonably conservative (and too expensive in running time). It turns out that 
many finite Markov chains are very effective (i.e., are fast to reach stationarity) 
for reasons that seem to defy naive analysis. A good example is given by the 
Swendsen-Wang algorithm which is a popular sampling procedure for Ising con- 
figuration according to the Gibbs distribution [77]. This algorithm appears to 
work extremely well but there are no quantitative theoretical results to support 
this experimental finding. A better understood example of this phenomenon is 
given by random transpositions (and other walks) on the symmetric group. In 
this case, a precise analysis can be obtained through the well developed repre- 
sentation theory of the symmetric group. See [17]. 

Theore t ica l  C o m p u t e r  Science. Much recent progress in quantitative 
finite Markov chain theory is due to the Computer Science community. I refer 
the reader to [54, 56, 71, 72] and also [31] for pointers to this literature. Computer 
scientists are interested in classifying various combinatorial tasks according to 
their complexity. For instance, given a bipartite connected graph on 2n vertices 
with vertex set O U I, #O  = # I  = n, and edges going from I to O, they ask 
whether or not there exists a deterministic algorithm in polynomial time in n 
for the following tasks: 

(1) decide whether there exists a perfect matching in this graph 

(2) count how many perfect matchings there are. 

A perfect matching is a set of n edges such that each vertex appears once. It 
turn out that the answer is yes for (1) and most probably no for (2) in a precise 
sense, that is, (2) is an example of a # P-complete problem. See e.g., [72]. 

Using previous work of Broder, Mark Jerrum and Alistair Sinclair were able 
to produce a stochastic algorithm which approximate the number of matchings 
in polynomial time (for a large class of graphs). The main step of their proof 
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consists in studying a finite Markov chain on perfect and near perfect matchings. 
They need to show tha t  this chain converges to stationarity in polynomial time. 
They introduce paths and their combinatorics as a tool to solve this problem. 
See [54, 72]. This technique will be discussed in detail in these notes. 

Computer scientists have a host of problems of this type, including the cele- 
brated problem of approximating the volume of a convex set in high dimension. 
See [38, 39, 56, 60]. 

To conclude this section I would like to emphasize that although the present 
notes only contain theoretical  results these results are motivated by the question 
obviously relevant to applied works: 

H o w  m a n y  s t e p s  a r e  n e e d e d  for  a g iven  f ini te  M a r k o v  cha in  to  b e  
c lose  t o  e q u i l i b r i u m ?  

1 . 1 . 3  A s i m p l e  o p e n  p r o b l e m  

I would like to finish this introduct ion with a simple example of a family of 
Markov chains for which the asymptot ic  theory is trivial but satisfactory quan- 
titative results are still lacking. This example was pointed out to me by M. 
Jerrum. 

Start  with the hypercube X =- {0, 1} '~ endowed with its natural graph struc- 
ture where x and y are neighbors if and only if they differ at exactly one co- 
ordinate, tha t  is, Ix - Yl = ~ lx~ - Y~I = 1. The simple random walk on this 
graph can be analysed by commutat ive  Fourier analysis on the group {0, 1} '~ 
(or otherwise). The corresponding Markov operator has eigenvalues 1 - 2j /n ,  

0, 1 , . . . , n ,  each with multiplicity (~.).  It can be shown that this walk J 

reaches approximate equilibrium after �88 log n many steps in a precise sense. 
a n Now, fix a sequence a = ( i)1 of non-negative numbers and b > 0. Consider 

X ( a , b ) =  { x  E {O, 1}~ : ~-~ aixi <_b}. 

This is the hypercube chopped by a hyperplane. Consider the chain K = Ka,b 
on this set defined by K ( x , y )  = 1/n if [x - Yl = 1, K(x ,y)  = 0 if [x - y[ > 1 
and K(x ,  x) = 1 - n ( x ) / n  where n(x) = na,b(x) is the number of y in X(a,  b) 
such that  Ix - y[ = 1. This chain has the uniform distribution on X(a,  b) as 
stationary measure. 

At this writing it is an open problem to prove that this chain is close to 
stationarity after n ~ many steps, uniformly over all choices of a, b. A partial 
result when the set 2d(a, b) is large enough will be described in these notes. See 
also [381. 

1 .2  T h e  P e r r o n - F r o b e n i u s  T h e o r e m  

One possible approach for s tudying finite Markov chains is to reduce everything 
to manipulations of finite-dimensional matrices. Kemeny and Snell [57] is a 
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useful reference wri t ten in this spirit. From this point of view, the most basic 
result concerning the a sympto t i c  behavior  of finite Markov chains is a theorem 
in linear algebra, namely  the  celebrated Perron-Frobenius theorem. 

1 . 2 . 1  T w o  p r o o f s  o f  t h e  P e r r o n - F r o b e n i u s  t h e o r e m  

A stochastic matrix is a square  ma t r ix  with nonnegative entries whose rows all 
sum to 1. 

T h e o r e m  1.2.1 Let M be an n-dimensional  stochastic matrix. Assume that 
there exists k such that M k has all its entries positive. Then there exists a 
row vector m = (mj)'~ with positive entries summing to 1 such that for each 
l < i < n ,  

lira M[~ = m i. (1.2.1) 

Furthermore, m = (rnl)~' is the unique row vector such that ~ 1  mi  = 1 and 
m M - ~ m .  

We star t  with the following Lemma.  

L e m m a  1.2.2 Let M be an n-dimensional  stochastic matrix. Assume that for 
each pair ( i , j ) , l  < i , j  < n there exists k = k ( i , j )  such that M~. > O. Then 
there exists a unique row vector m = (mj)~  with positive entries summing to 
1 such that m M =  rn. Furthermore,  1 is a simple root of the characteristic 
polynomial of M .  

PROOF: By hypothesis, the column vector 1 with all entries equal to 1 satisfies 
M1 = 1. By linear algebra,  the  t ranspose  M t of M also has 1 as an eigenvalue, 
i.e., there exists a row vector  v such tha t  v M  = v. We claim that  Iv[ also satisfies 
IvIM = Ivl. Indeed, we have ~'~i IvdMi,j  >- IvJl �9 If IvlM r Ivl, there exists j0 
such tha t  ~'-]~ilvilMi,jo > IVjol. Hence, ~ i l v i l  = ~~j~~4lvilMi,j > ~'~j[Vjl, a 
contradiction. Set rnj = v f f ( ~ ,  i lvd). The weak irreducibility hypothesis in the 
lemma suffices to insure t ha t  there  exists e such that  A = ( I  + M) e has all its 
entries positive. Now, m A  = 2trn implies that  m has positive entries. 

Let u be such tha t  u M  = u. Since lul is also an eigenvector its follows tha t  
the vector u + with entries u + = max{ui ,  0} is either trivial or an eigenvector. 
Hence, u + is either tr ivial  or equal to u (because it must have positive entries). 
We thus obtain tha t  each vector  u r 0 satisfying u M  = u has entries that  are 
either all positive or all negative.  Now, if m,  m '  are two normalized eigenvectors 
with positive entries then  m - rn'  is either trivial or an eigenvector. If m - m '  
is not trivial its entries mus t  change sign, a contradiction. So, in fact, m = m ' .  

To see that  1 has geometr ic  multiplicity one, let V be the space of column 
vectors. The subspace Vo = {v : ~-].i vi = 0} is stable under M: MVo C Vo and 
V = R l ~ V 0 .  So either M - I i s  inver t ib leon  V0 or there is a 0  r v E Vo 
such tha t  M y  = v. The  second possibility must be ruled out because we have 
shown tha t  the entries of such a v would have constant sign. This ends the proof 
of Lemma 1.2.2. We now complete  the proof of Theorem 1.2.1 in two different 
ways. 
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PROOF (1) OF THEOREM 1.2.1: Using the strong irreducibility hypothesis of 
the theorem, let k be such that  V i , j  M k. z,j > 0. Let m =  (m~)[ be the row 
vector constructed above and set M m = rnj so that Moo is the matrix with all z,J  

rows equal to m. Observe that  

M Moo = M o o M  = M ~ (i.2.2) 

and that  M -k, > c M ~  with c = n f i n ~ , j { M ~ / M ~ j }  > 0. Consider the matrix z,./ - -  

1 ( M k _ c M o o )  
N = I _  c 

with the convention that  N = 0 if c = 1 (in which case we must indeed have 
M k = M~176 I f0  < c < 1, N is a stochastic matrix and NMoo = M ~ 1 7 6  = M ~176 
In all cases, the entries of ( N - M o o )  ~ = N t - M o o  are bounded by 1, in absolute 
value, for all g = 1, 2 , . . . .  Fur thermore 

Thus 

M k -  M 00 = ( 1 - c ) ( N -  Moo) 

M k t - M O O  = ( M  k - M O O / = ( 1 - c / ( N - M O O )  l. 

IM~ - Mi,~l / (i - c / .  

Consider the norm IIAIIoo -- m a x i j  IA~,jl on matrices. The function 

--+ IIM ~ - Moolloo 

is nonincreasing because M ~+i - M ~ = M ( M  ~ - M ~176 implies 

(M~+i - M~176 = E M ' , s ( M I  - Moo)s j  

Hence, 

$ 

max {IM~,j - mjl} < (I - c) [I/kj 
z,3 

In particular liml-+oo M~j = mj. This argument is pushed further in Section 
1.2.3 below. 

PROOF (2) OF THEOREM 1.2.1: For any square matrix let 

p(A) = max{IA I : A an eigenvalue of A}. 

Observe that any norm II " II on matrices that is submultiplicative (i.e., IIABII <_ 
IIAHIIBII ) must satisfy p(A)  < IIAII. 

L e m m a  1.2.3 For any square matr ix  A and any e > 0 there exists a submulti- 
plicative matr ix  no~n  I1" ]] such that IIAtl i p(A)  + e. 



312 

PROOF: Let U be a un i ta ry  ma t r ix  such tha t  A ~ = UAU* with A ~ upper-  
triangular. Let D = D( t ) ,  t > 0, be the diagonal matrix with Di,r = t ~. Then 
A" = D A ' D  -1 is upper - t r iangular  with A~,j = t-(J-i)A~,j ,  j > i. Note that ,  by 
construction, the diagonal entries are the eigenvalues of A. Consider the mat r ix  
norm (induced by the vector  norm IIv]ll -- ~ Ivil) 

IIBII1 = max  Z IB~,~I. 
J 

i 

Then  IIA"II1 = p(A) + O( t -1 ) .  Pick t > 0 large enough so that  IIA"II1 5_ p + c. 
For U, D fixed as above, define a ma t r ix  norm by setting, for any matr ix  B, 

IIBll = IIDUBU*D-~II1 = II(UD)B(DU)-I)III .  

This norm satisfies the conclusion of the lemma (observe that  it depends very 
much on A and e). 

�9 

L e m m a  1.2.4 We have Y m ~ o o  maxi , j  Ad,j = 0 if and only if p(A) < 1. 

For each e > 0, the submu]t ipl icat ive norm of Lemma 1.2.3 satisfies 

IIAII < R(A) + e. 

p(A) < 1, t hen  we can pick e > 0 so that  IIAII < 1. Then fim~-+= IIA~II < 
limt-~oo ]IAH ~ = 0. The  desired conclusion follows from the fact that  MI norms 
on a finite dimensional vector  space axe equivalent. Conversely, if 

= o  
~---+oo \ ~,3 ' / 

then ]im,-,oo IIA*II1 = 0. Since I1" II1 is multiplicative, p(A) < IIA*II~/* < 1 for g 
large enough. 

Let us pause here to see how the above argument translates in quanti tat ive 
terms. Let []AH~ = maxi, j  [Ai,j] and ]A]~ 2 = ~-~i,j ]Ai,J] 2" We want to bound 

HAtHo~ in terms of the norm []Atll of Lemma  1.2.3. 

L e m m a  1.2.5 For any n x n matr ix  A and any e > O, we can choose the norm 
][. ]] of Lemma 1.2.3 so that 

HAt[[r <_ nl/2(1 + ]~A~/e)'~HAI[]. 

PROOF: With the nota t ion  of the proof  of Lemma 1.2.3, we have 

IA~,~I = ~ U~,sAs,~-Uj,~ 

< n[AIII 
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because U is uni tary.  I t  follows t h a t  

[A~:j] <_ p(A) + |Am(t - 1) -1.  
i 

Hence, for t = 1 + ~A|/e, we ge t  

IIA[I = IIA"[I1 < p(A) + e 

as desired. Now, for any  ~, se t  B = Ae,B ' = (A')e,B '' = (A") t. Then  IIAql = 
lIB"Ill and A t = U*B'U = U*D-IB"DU.  T h e  ma t r ix  B '  = D - I B " D  is upper -  
t r iangular  wi th  coefficients B~,j = tJ-iB~',i for j > i. This  yields 

1/2 

" A t " ~  ~-~t2(j-i)'B~:j'2 ) i < j " J :  

< nl/2(1 +MAIIIleFIIB"II1 
= n / (I+IUAIIII ) IIA II. 

With  this ma te r i a l  a t  h a n d  the  following l e m m a  suffices to finish the second 
proof  or the  Pe r ron -F roben ius  t h e o r e m .  

L e m m a  1 .2 .6  Let M be a stochastic matrix satisfying the strong irreducibility 
condition of Theorem 1.2.1. Let M ~  = mj where m = (mj) is the unique 
normalized row vector with positive entries such that m M =  m. Then p(M - 
M ~176 < 1. 

PROOF: Let  A be an e igenvalue  of  M with left eigenvector v. Assume t h a t  
IAI = 1. Then ,  again,  Iv I is a left  e igenvector  with eigenvalue 1. Let  k be  such 
tha t  M k > 0. I t  follows t h a t  

J52 u  v,i = F, u  lvjl. 
J J 

Since M ) j  > 0 for all j ,  this  impl ies  t h a t  vj = e~~ for some fixed 0. Hence  
= 1. Le t  ,~1 = 1 a n d  ,~i, i = 2 , . . . , n  be the  eigenvalues of M repea t ed  

according to  there  geome t r i c  mult ipl ic i t ies .  By  L e m m a  1.2.2, I)~il < 1 for i = 
2 , . . . ,  n. T h e  eigenvalues of  Moo are  1 wi th  eigenspace R1 and 0 with e igenspace 
V0 = {v : ~ vi = 0}. B y  (1.2.2) it follows tha t  the  eigenvalues of M - Moo are  
0 = ,~1 - 1 and ,~i = hi - 0, i = 2 , . . . ,  n. Hence p(M - M ~) < 1. 

1 . 2 . 2  C o m m e n t s  o n  t h e  P e r r o n - F r o b e n i u s  t h e o r e m  

Each of the  two proofs  of  T h e o r e m  1.2.1 out l ined above provides existence of 
A > 0 and  0 < ~ < 1 such t h a t  

[Mi% - my I < A(1 - e) e. (1.2.3) 
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However, it is rather dishonest to s ta te  the conclusion (1.2.1) in this form without 
a clear WARNING: 

I the proof does not give a clue on how large A and how small e can be. I 

Indeed, "Proof (1)" looks like a quanti tat ive proof since it shows that  

M t - c) tt/k] I 1,3 mjl <_ ( 1 -  (1.2.4) 

whenever M k > cMoo. But,  in general, it is hard to find explicit reasonable k 
and c such that  the condition M k >_ c M  ~176 is satisfied. 

EXAMPLE 1.2.1: Consider the r andom walk on Z / n Z ,  n = 2p+ 1, where, at each 
step, we add 1 or substract  1 or do nothing each with probability 1/3. Then M 
is an n • n matrix with Mi, j  = 1/3 if ]i - j] = 0, 1, MI,,~ = M,~,I = 1/3, and all 
the orther entries equal to zero. The  matr ix  M ~ has all its entries equal to 1/n .  
Obviously, M p > n 3  -p Moo, hence IM;l,j - (1/n)l < 2(1 - n 3 - P )  [t/pj . This is a 
very poor estimate. It is quite typical of what can be obtained by using (1.2.4). 

Still, there is an interesting conclusion to be drawn from (1.2.4). Let 

ko = inf{s : M t > (1 - 1 /e )Moo}  

where the constant c = 1 - 1/e  as been chosen for convenience, This ko can 
be interpreted as a measure of how long is takes for the chain to be close to 
equilibrium in a crude sense. Then  (1.2.4) says that this crude estimate suffices 
to obtain the exponential decay with rate 1/ko 

M t 3e-t/ko I i , j - m j l <  

"Proof (2)" has the impor tan t  theoretical advantage of indicating what is 
the best exponential ra te  in (1.2.3). Namely, for any norm [[. [[ on matrices, we 
have 

lira [[M l - Moo[] 1/t = p (1.2.5) 

where 

p = p ( M  - M ~176 = max{]A[ : A y~ 1, A an eigenvalue of M}. 

Comparing with (1.2.4) we discover tha t  M ~' > cMoo implies 

1 log(l - c). 

Of course (1.2.5) shows that ,  for all e > 0, there exists C(e) such that  

[M[,j -- m j [  <_ C(e) (p + e) t. 
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The constant C(e) can be large and is dificult to bound. Since | M  l - M ~ 1 7 6  < 
2n 1/2 (in the notation of the proof  of Lemma 1.2.5), Lemma 1.2.5 yields 

M ~ - n l / ~ (  2n~/2 ) ~ I i,j rnjl < 1 + (p + e) t. (1.2.6) 

This is quantitative, but  essentially useless. I am not sure what is the best pos- 
sible universal estimate of this sort but  I find the next example quite convincing 
in showing that  "Proof  (2)" is not  satisfactory from a quantitative point of view. 

EXAMPLE 1.2.2: Let X = {0, 1} ~. Define a Markov chain with state space X 
as follows. If the current s ta te  is x = ( x l , . . . ,  x , )  then move to y = (Yl,- . - ,  Y,) 
where yi = xi+l for i = 1 , . . . , n  - 1 and y,~ = xl or y ,  = xl + 1 (mod 2), 
each with equal probabil i ty 1/2. It  is not hard to verify that this chain is 
irreducible. Let M denote the mat r ix  of this chain for some ordering of the 
state space. Then the left normalized eigenvector m with eigenvalue 1 is the 
constant vector with mi = 2- 'L  Furthermore,  a moment of thought shows that  
M "  = M ~ .  Hence p = p(M - M ~ )  = 0. Now, ma,xi,j IM~'~ I - mjl is of order 
2 -~. So, in this case, C(e) of order  (2e) -~ is certainly needed for the inequality 
I~aftj -- mjl  ~ C(e) (p -t- s to be satisfied for all ~. 

1.2.3 F u r t h e r  r e m a r k s  o n  s t r o n g  i r r e d u c i b i l i t y  

A n-dimensional stochastic mat r ix  M is strongly irreducible if there exists an 
integer k such that ,  for all i , j ,  M~j :> 0. This is related to what is known as the 
D o e b l i n  condition. Say tha t  M satisfies the Doeblin condition if there exist an 
integer k, a positive c, and a probabil i ty measure q on {1 , . . . ,  n} such that  

(D) for all i �9 { 1 , . . . , n } ,  M~j >_ cqj. 

Proof  (1) of Theorem 1.2.1 is based on the fact that strong irreducibility 
unplies the Doeblin condition (D) with q = m (the stationary measure) and 
some k, c > 0. The argument  developed in this case yields the following well 
known result. 

T h e o r e m  1.2.7 If M satisfies (D) for some k,c > 0 and a some probability q 
then 

]Mtj - rnjl _< 2(1 - c) lt/kj 

i 

for all integer e. Here rn = (rnj)~ is the vector appearing in Lemma 1.2.2, i.e., 
the stationary measure o[ M.  

PROOF: Using (1.2.1), observe tha t  (D) implies mj > cqj. Let M ~ be the 
matrix with all rows equal to rn, let Q be the matrix with all rows equal to q 
and set 

N _  1 _  c l  ( M k _ c Q ) ,  N ~ -  1 -c l  ( M ~ _ c Q ) .  
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These two matrices are stochatic. Furthermore 

M k - M ~ = (1 - c) ( N -  goo) 

and 

M k t _ M  ~ = ( M  k - M o o )  t 

= ( l - c )  l ( N - N ~  t .  

Observe that  (N - Noo) 2 = ( N  - N o o ) N  because Noo has constant columns so 
that P N  ~176 = Noo for any stochastic matr ix  P.  It follows that (N  - N~176 t = 
( N  - N o o ) N  t-1.  If we set | A | I  = maxi )-~j [Aid[ for any matrix A and recall 
that ]AB~I  < | A l l | B [ 1  we get 

| M  k' - Moo | l  _< (1 - c)'mN - NOOlI INt - I | I .  

Since N is stochastic, we have | N | I  = 1. Also | N  - Noo| l  _< 2. Hence 

miax E [ M  k~ -- M ~ I  < 2(1 - c) *. 
J 

This implies the s tated result because s -+ ]~M t - Moo| l  is nonincreasing. 
This section introduces nota t ion and concepts f~om elementary functional 

analysis such as operator  norms, interpolation, and duality. This tools turn out 
to be extremely useful in manipulat ing finite Markov chains. 

1 . 2 . 4  O p e r a t o r  n o r m s  

Let A, B be two Banach spaces with norms [l" IIA, []" |lB. Let K : A  --4 B be a 
linear operator. We set 

IIKIIA-+B = sup {IlKflIB} = sup 
IIKfllB 

I~A, : e A : : # o (  ~ J"  
[IIIIA~I 

If A*,B* are the {topological) duals of A , B ,  the dual operator K* : B* -+ A* 
defined by K*b*(a) = b*(Ka) ,a  E A,  satisfies 

IIK*IIB-~a- < IIKIIA-,B. 

In particular, if X is a countable set equipped with a positive measure lr and 
if A = s and B = eq(Tr) with 

) 1/p 
||flip = ][fll~p(~) = ~ [f(x)lPzr(x) and 

z E ~  

we write 

IIfll~ = s u p  [f(x)], 
zE,~' 
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Let 
</, g) = (L g)~ = ~ / ( = ) g ( x ) ~ ( = )  

2s 

be the scalar product  on e2(~r). For 1 < p < oc, this scalar product can be used 
to identify ~P(r)* with eq(~r) where p, q are HSlder conjugate exponents, that  is 
1/p+ 1/q = 1. Furthermore,  for all 1 < p _< ec, tq(Tr) norms ~'(~r). Namely, 

[l f l i p =  sup (f,g)~. 
gEtq(~r) 
11911q<1 

It follows that  for any linear opera tor  K : ev(~r) -+ ~(~r) with 1 _< p,r <_ +o0, 

[ I g l l v ~  = I[g*ll~-,q 

where 1/p+ 1/q = 1, l / r +  1/s = 1. Assume now that  the operator K is defined 
by 

K f (x )  = ~ K(x ,y ) f ( y )  
VEX 

for any finitely supported function f .  Then the norm [[K[[p~oo is given by 

IlK]lv-+oo = max IK(x,y)/lr(y)l%r(y ) (1.2.7) 
xE2r 

where l ip  + 1/q = 1. In particular,  

and 

I I K l l 2 ~  = I l g * l l l ~ 2  = m a x  Ig(x,y)/~(y)l%(y xE,-V 
(1.2.8) 

IIKII1_~oo = [IK*lll_+~o = max {IK(x,y)/~r(y)l } . (1.2.9) 
x,yEX 

For future reference we now recall the Riesz-Thorin interpolation theorem 
(complex method). It  is a basic tools in modern analysis. See, e.g., Theorem 
1.3, page 179 in [73]. 

T h e o r e m  1.2.8 F/x 1 < p~,q~ _< oc, i = 1,2, withpl <P2, qt <_ q2. Let K 
be a linear operator acting on functions by K f(x)  = ~'~y K(x, y)f(y). For any 
p such that Pl < P <_ P2 let 0 be such that 1/p = 0/Pl + (1 - 0)/P2 and define 
q E [ql, q2] by 1/q -- 0/ql + (1 - ~)/q2. Then 

K e Kl-O 
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1 . 2 . 5  H i l b e r t  s p a c e  t e c h n i q u e s  

For simplicity we assume now that  2( is finite of cardinality n = 12(I and work 
on the (n-dimensional) Hilbert  space e2(Tr). An operator K : ~(Tr) ~ s is 
seLf-adjoint if it satisfies 

(Kf ,  g),~ = i f ,  Kg),~, i.e., K* = g .  

Let K(x, y) be the kernel of the operator  K.  Then K* has kernel 

K*(x, y) = ~r(y)K(y, x)/~r(x) 

and it follows that K is selfadjoint if and only if 

K(x ,  v) = ~(v)K(v, x)/~(x). 

L e m m a  1.2.9 Assume that K is self-adjoint on g2(~r). Then K is diagonal- 
izable in an orthonormal basis of s and has real eigenvalues ~o >_ ~1...  >_ 
fl,~-l. For any associated orthonormal basis (~bl)~ -1 of eigenfunctions, we have 

K(x ,v ) /~ (v )  = y~Z~r162 (1.2.10) 
i 

2 2 IIK(x,.)/~(-)ll~ = ~ l r  �9 (1-2.11/ 
i 

E HK(x")/Tr(')[1227r(x) = E/3i2" (1.2.12) 
~E2d i 

PROOF: We only prove the set of equalities. Let z -~ l=(z) be the function 
which is equal to 1 at x and zero everywhere else. Then K(x,y)  = Klv(x) .  
The function ly has coordinates ( ly ,  r = r in the orthonormal basis 
( r  - 1 .  H e n c e  K l u ( x )  = 7r(y))--].~ ~r162 The second and third results 
follow by using the fact that  ( r  is orthonormal. 

We now turn to an important  tool known as the Courant-Fischer rain-max 
theorem. Let E be a (positive) Hermitian form on e2(~r). For any vector space 
W C s (Tr), set 

M ( W ) : m a x { E ( f ' f ) } ,  re (W)= m i n ( s  
,~w IIfll~ f e w  IIfll~ J 1#o 

Recall from linear algebra that  there exists a unique Hermitian matrice A such 
that E(f,  f )  = (A f,  f )~  and that ,  by definition, the eigenva~ues of E are the 
eigenva.lues of A. Furthermore,  these are real. 

T h e o r e m  1.2.10 Let E be a quadratic form on s with eigenvalues 

~o <_ )h <_ ... <_ A,~-I. 

Then 
,~k = min M ( W )  = max m(W). (1.2.13) 

WCL2(~): WCl2(n): 
dim(W) >~:+ I dim(W J. ) ~  
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For a proof, see [51], page 179-180. Clearly, the minimum of M ( W )  with 
dim(W) > k + 1 is obtained when W is the linear space spanned by the k + 1 
first eigenvectors r associated with Ai, i = 0 , . . . ,  k. Similarly, the maximum 
of re(W) with d im(W • < k is attained when W is spanned by the r 
i = k , . . . ,  n. This result also holds in infinite dimension. It has the follow- 
ing corollary. 

T h e o r e m  1.2.11 Let $, g' be two quadratic forms on different Hilbert spaces 
74, 74' of dimension n <_ n'. Assume that there exists a linear map f --~ ] from 
74 into 7-[ ~ such that, for all f E 74, 

E'(],]) < AS(f,/) and allfll~ ~ ll]ll-~, (1.2.14) 

for some constants 0 < a, A < oo. Then 

a r A t <At  for e = l , . . . , n - 1 .  (1.2.15) 

PROOF: Fix e = 0, 1 , . . . ,  n - 1 and let r be orthonormal eigenvectors associated 
to Ai, i = 0 , . . . , n  - 1. Observe tha t  the second condition in (1.2.14) implies 
that  f -+ ] is one to one. Let W C ?-I be the vector space spanned by (r 
and let W C ?-l' be its image under the one to one map f -~ ] .  Then W has 
dimension e and by (3.7) 

A~ < M ( W ) = m a x ~ C ' ( ] ' ] ) }  

< max ~ A E ( f ' f ) ' ~  ~_ AAt 
- : ~ w I  ~ J -  a 

1.3 N o t a t i o n  for  f in i t e  M a r k o v  chains  

Let X be a finite space of caxdinality ]X] = n. Let K(x ,y)  be a Markov kernel 
on 2d with associated Markov operator defined by 

K/(=) = ~K(z,y)I(y). 
yEX 

That is, we assume tha t  

K ( x , y )  k O and E K ( x ' y )  = I" 
y 

The operator K ~ has a kernel Kt(x ,  y) which satisfies 

K~(x,y) = ~ K~-l(x,z)K(z,Y) - 
zEX 
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Properly speaking, the Markov chain with initial distribution q associated with 
X ~r K is the sequence of X-valued random variables ( ~)0 whose law Pq is deter- 

mined by 

V g =  l , 2 , . . . ,  P q ( X i = x i , l < i < g ) = q ( x 0 ) K ( x 0 , x l ) - - - K ( x t - t , x t ) .  

With this notation the probabil i ty measure K t ( x ,  .) is the law of X t  for the 
Markov chain started at x: 

P = ( X t  -- y) = K l ( x , y ) .  

However, this language will almost  never be used in these notes. 
The continuous t ime semigroup associated with K is defined by 

H t f ( x )  = e - t ( I -K )  = e - t  ~ t i K i f  (1.3.1) 
i! 

0 

Obviously, it has kernel 

t iK~(x,y)  
g t ( x , y )  = e - t  ~_~ 

0 

Observe that  this is indeed a semigroup of operators, that  is, 

Ht+s = HtHs 

lira Ht = I. 
t--+0 

Furthermore, for any f ,  the function u(t, x) = H t f ( x )  solves 

( O t + ( I - K ) ) u ( t , x )  = 0 o n ( 0 ,  co) x X  
u(O,x) = f ix ) .  

Set H~(y) = Ht (x ,y ) .  Then  H~(.)  is a probability measure on X which repre- 
sents the distribution a t ime t of the continuous Markov chain (Xt)t>o associated 
with K and started at x. This process can be described as follows. The moves 
are those of the discrete t ime Markov chain with transition kernel K started at 
x, but the jumps occur after independent Poison(l)  waiting times. Thus, the 
probability tha t  there have been exactly i jumps at time t is e - t  ti/i! and the 
probability to be at y after exact ly i jumps at time t is e - t  t i Ki(x ,  y)/i!. 

The operators K, Ht  also acts on measures. If # is a measure then # K  (resp. 
#Ht) is defined by setting 

# g ( f )  = t t (K  f )  (resp. # H t ( f )  = # ( H J ) )  

for all functions f .  Thus 

 K(x) = x). 
Y 
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Def in i t i on  1.3.1 A Markov kernel K on a finite set X is said to be irreducible 
if for any x , y  there exists j = j ( x , y )  such that KJ(x ,y )  > O. 

Assume that  K is irreducible and let ~r be the unique stationary measure 
for K,  that  is, the unique probabil i ty measure satisfying 7rK = 7r (see Lemma 
1.2.2). We will use the nota t ion 

7r(f) = E f(X)Tr(X) and Var,~(f) = E If(x) - ~'(f)127r(x)" 

We also set 
7r. = ~m{~r(x)}. (1.3.2) 

Throughout  these notes we will work with the Hilbert space t2(~r) with scalar 
product 

if, 9) = ~_, f(x)g(:~)~(x), 
:r, EX 

and with the space eP(~r), 1 < p < co, with norm 

llfll, = [f(x)lpTr(x) , Ilf]l~ = mea~{lf(x)l}- 

In this context, it is natural  and useful to consider the densities of the probability 
measures K~, H{ with respect to 7r which will be denoted by 

g ( y )  = k~(~,y)  - K~(~,Y) 

and 

ht(y)  = ht (x ,y)  = 7r(y) " 

Observe that  the semigroup proper ty  implies that ,  for all t, s > 0, 

ht+,(x ,y)  = E ht(x, z)h,(z ,  y)~r(z). 
z 

The operator  K (hence also Ht)  is a contraction on each f~(rr) (i.e., HKfllp <_ 
I]fHp). Indeed, by Jensen's inequality, ]Kf(x)lP < K(If[P)(x ) and thus 

IIKfH~ < ~ K ( x ,  y)[f(y)lPTr(x) = E If(Y)IPTr(Y) = I[Jell~ �9 
x , y  y 

The adjoint K* of K on ~ 0 r )  has kernel 

g*(x,  y) = ~(y)g(y, x)/~(x). 

Since 7r is the stat ionary measure of K ,  it follows that  K* is a Markov operator. 
The associated semigroup is H** = e - t ( I - g ' )  with kernel 

H;  (x, y) = ~r(y)Ht(y, x) /~r(x) 
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and density 
h;(x ,  y) = h,(y, x). 

The Markov process associated with H ;  is the time reversal of the process as- 
sociated to Hr. 

If a measure # has density f with respect to lr, that  is, if it(x) = f(x)rc(x),  
then # K  (resp. #H,)  has density K * f  (resp. H ; f )  with respect to 7r. Thus 
acting by K (resp. H,)  on a measure is equivalent to acting by K* (resp H**) on 
its density with respect to 7r. In particular,  the density hi(x,-) of the measure 
H~ with respect to 7r is H;5~ where 5, = 1 J ~ ( x ) .  Indeed, the measure 1,  has 
density ~, = 1,/~r(x) with respect to lr. Hence H~ = 1 ,Ht  has density 

g ;5 ~ (y )  g ; ( y , x )  . 
- - h t (y, x) = ht(x, y) 

with respect to rr. 
Recall the following classic definition. 

De f in i t i on  1.3.2 A pair (t( ,  7r) where K is Markov kernel and rc a positive 
probability measure on X is reversible if 

= 

This is sometimes called the detailed balance condition. 

If (K, ~r) is reversible then 7rK = lr. Furthermore,  (K, lr) is reversible if and only 
if K is self-adjoint on g2 (~r). 

1 . 3 . 1  D i s c r e t e  t i m e  v e r s u s  c o n t i n u o u s  t i m e  

These notes are writ ten for continuous time finite Markov chains. The reason 
of this choice is that  it makes life easier from a technical point of view. This 
will allow us hopefully to stay more focussed on the main ideas. This choice 
however is not very satisfactory because in some respects (e.g., implementa- 
tion of algorithms) discrete t ime chains are more natural. Furthermore, since 
the continuous time chain is obtained as a function of the discrete time chain 
through the formula Ht = e - t ( I - g )  it is often straightforward to transfer in- 
formation from discrete t ime to continuous time whereas the converse can be 
more difficult. Thus, let us emphasize that  the techniques presented in these 
lectures are not confined to continuous time and work well in discrete time. 
Treatments of discrete t ime cbain.~ in the spirit of these notes can be found in 
[23, 24, 25, 26, 27, 28, 29, 35, 41, 63]. 

For reversible chains, it is possible to relate precisely the behavior of Ht 
to that of K ~ through eigenvalues and eigenvectors as follows. Assuming that  
(K, 7r) is reversible and [2( I = n, let (~.~,~-i he the eigenvalues of I - K in k ~10 

non-decreasing order and let (r be an orthonormal basis of g2(lr) made of 
real eigenfuntions associated to the eigenvaiues (A~)~ -1 with r -= 1. 

L e m m a  1.3.3 I f  (K,  ~r) is reversible, it satisfies 
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'n--1 

(I) k ~(=, y) = ~ (1 - ~,)t~,(=)r 
0 

n--1 

IIk~ - 1112 = ~--~(1 - A,)2~tr 

n--1 n--1 

(P,) h,(x,y) : ~ e-';"~b~(x)r IIh~ - 1112 = ~ e-2~;"1r 
0 1 

This classic result follows from Lemma 1.2.9. The next corollary gives a useful 
way of transferring information between discrete and continuous time. It sep- 
arates the effects of the largest eigenvalue A~-I from those of the rest of the 
spectrum. 

C o r o l l a r y  1.3.4 Assume that (K, ~r) is reversible and set fl_ = m a x ( 0 , - 1  + 
A , ~ - I } .  Then 

(1) []h~ - 11] 2 < ~--~e - t  + Hk~/2] - l [ I  ~. 

(2) Ilk N-11122</32_ " ~ ( l + ] l h ~ - l [ ]  2 ) + U h ~ v - 1 ] [  2 for N = m + e + l. 

P r o o f :  For (1), use Lemma 1.3.3, 

( 1  - A~) 2l = e 2ll~ 

and the inequality log(1 - x) > - 2 x  for 0 < x < 1/2. For (2), observe that  

n- -1  

k 2 l + l ( x , x )  = ~ - - ~ ( 1  - A ~ ) 2 ~ + l l C ~ ( x ) 1 2  > 0 .  

0 

This shows that 

Hence 

(z - .xD~+~lr ~ < ~ (1 - .xD2~+~Ir ~. 
i :A~>l  i :A~< l  

(1 - .x~)2t+21r < ~ (1 - .x,)2~1~(=)12. 
~.:A~ > I  i :X~< l  

Now, for those Ai that are smaller than I, we have 

( I  - -  A i )  21 : e 2 t l ~  < e -21A '  

so that 

a n d  

( 1 -  A~)2~1r <_ IIh~ll~ 
i :X~< I  

(1 - A,)2tlr < IIh~ - 111~. 
i~O,A~ < i  



324 

Putt ing these pieces together,  we get for N -- m + ~ + 1, 

n--1 

IIk~ - 111~ - -  E ( 1  - -  ..X,)~NIC,(x)I= 
1 

= ~ (1 - .x,)~Vlr ~ + ~ (1 -.,x,)2Nlr 
i: Ai > 1 i:~O: A~ < 1 

-< J32--'~( E (1 -Ai )2 t+2] r  + E (X-Ai)~g[r 
\ i : , k l  > i i#0 :Ai  <1 

2m h a 2 -< Z -  II ~ Ih + IIh~v - 111~ 

-- Z ~  (1 + l ib;  - 111~,) + IIhTv - 111~. 

Observe that,  according to Corrolary 1.3.4, it is useful to have tools to bound 
1 - A,~-i away from - 1 .  

CoroNary 1.3.4 says tha t  the behavior of a discrete time chain and of its 
associated continuous t ime chain can not be too different in the reversible case. 
It is interesting to see tha t  this fails to be satisfied for nonreversible chains. 

EXAMPLE 1.3.1: Consider the chain K on X = Z / m Z  with m = n 2 an odd 
integer and 

1/2 i f y = x + l  
K ( x , y )  = 1/2 if y = x + n  

On one hand, the discrete t ime chain takes order m 2 ~ n 4 steps to be close to 
stationarity. Indeed, there exists an affine bijection from X to X that send 1 to 
1 and n to - 1 .  On the other  hand, one can show that the associated continuous 
time process is close to s ta t ionari ty  after a time of order m = n 2. See [25]. 

Lemma 1.3.3 is often hard to use directly because it involves both eigenvalues 
and eigenvectors. To have a similar s ta tement  involving only eigenvalues one has 
to work with the distance 

| f  - g |  = I f (x ,  y) - g(x, y)l%r(x)Tr(y) 

between functions on X x X. 

L e m m a  1.3.5 I f  (K, ~r) is reversible, it satisfies 

n - - i  n--I  

~k' - i |  ~ = ~ ( 1  - ~,)~' ~ l~h~ - I~ ~ = ~ ~-~ ' .  
1 1 

It is possible to bound ]k t - 1[ using only 8,  = max{1 - A t ,  - 1  + A,~-t} and 
the eigenvalues Ai such tha t  Ai < 1. It is natural to state this result in terms 
of the eigenvalues/3i = 1 - A~ of K.  Then ~3, = max{~3i, [j3~_i[} and Ai < 1 
corresponds to the condition ~ > 0. 
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Corollary 1.3.6 Assume that (K,  rr) is reversible. 
above we have, for N = m + ~ + 1, 

PROOF: We have 

Hence 

It follows that 

|k N -  1 |  = 

< 

With the notation introduced 

lk"  - t l  ~ < 2~. ~' ~ ~',~" 
i:0</~ <1 

2r 0 

E /~2m+2 < E , ' - i  __ 2m 

~i <0 B~ >0 

i 

i: 



Chapter 2 

Analytic tools 

This chapter uses semigroup techniques to obtain quantitative estimates on the 
convergence of continuous time finite Maxkov chain in terms of various functional 
inequalities. The same ideas and techniques apply to discrete time but the details 
are somewhat more tedious. See [28, 29, 35, 41, 63, 72]. 

2.1 Nothing but the spectral gap 

2 .1 .1  T h e  D i r i c h l e t  f o r m  

Classicaly, the notion of Dirichlet form is introduced in relation with reversible 
Markov semigroups. The next definition coincides with the classical notion when 
(K, ~) is reversible. 

Definit ion 2.1.1 The form 

E(.f,g) = ~(((I - g)f,g)) 

is called the Dirichlet form associated with Ht = e - t ( 1 - K )  

The notion of Dirichlet form will be one of our main technical tools. 

L e m m a  2.1.2 The Dirichlet form s satisfies $(f,  f)  = ((I - � 8 9  + g*)) f ,  f ) ,  

1 
C(f, f )  = ~ ~ Jr(x) - f(y)12g(x,y)~r(x) (2.1.1) 

w~y 

and 
0 2 
~l lHtf l l2  = - 2  C(Htf, Htf).  (2.1.2) 

Paoov: The first equality follows from (K f,  f)  = (f  , K ' f )  = (K ' f ,  f). For the 
second, observe that C(f, f )  = Ilfll~ - ~( (Kf ,  f)) and 

1 
~ If(x) - f(y)t2K(x,y)Tr(x) 
2:~y 
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1 
I s K(x,y)Tr(x) = ~ (If(x)l  2 +I f (Y)  - 

X~y 

= Ilfll - f)). 
The third is calculus. In a sense, (2.1.2) is the definition of E as the Dirichlet 
form of the semigroup Ht since 

e ( f , f )  = -- O, llH, flh[t=o = - lim ((I - H t ) f , f ) .  
t-+O 

Lemma 2.1.2 shows tha t  the Dirichlet forms of Ht, Hi  and St = e -t(x-R) 
whith R = � 8 9  + K*) are equal. Let us emphasize that  equalities (2.1.1) and 
(2.1.2) are crucial in most developments involving Dirichlet forms. Equality 
(2.1.1) expresses the Dirichlet form as a sum of positive terms. It will allow 
us to estimate s in geometric terms and to compare different Dirichlet forms. 
Equality (2.1.2) is the key to translat ing functional inequalities such as Poincar6 
or logarithmic Sobolev inequalities into statements about the behavior of the 
semigroup Hr. 

2 . 1 . 2  T h e  s p e c t r a l  g a p  

This section introduces the notion of spectral gap and gives bounds on conver- 
gence that  depend only on the spectral gap and the stationary measure. 

Def in i t ion  2.1.3 Let K be a Markov kernel with Dirichlet form C. The spectral 
gap A = A(K) is defined by 

[ E(s,s) } 
A = min t ~ ,  Var . ( f )  # 0 

Observe that  A is not, in general, an eigenvalue of ( I -  K). If K is self-adjoint on 
g2(Tr) (that is, if (K, ~r) is reversible) then A is the smallest non zero eigenvalue 
of I - K.  In general A is the smallest non zero eigenvalue of I - � 8 9  + K*). 
Note also that  the Dirichlet forms of K* and K satisfy 

s  f )  = s (f, f ) .  

It follows that  A(K) = A(K*). Clearly, we also have 

A ---- min {s f ) ;  Ilfl12 = 1 ,  7r(f) ---- 0}. 

Furthermore, if one wishes, one can impose that  f be real in the definition of 
A. Indeed, let A~ be the quanti ty obtained for real f .  Then A~ > A and, if 
f = u + iv with u ,v  real hmctions, then A~Var~(f) = A~(Var~(u) + Var,~(v)) < 
E(v,v) + s  = E ( f , f ) .  Hence A~ <_ A and finally A~ = A. 

L e m m a  2.1.4 Let K be a Markov kernel with spectral gap A = A(K). Then the 
semigroup Ht = e - t ( l - K )  satisfies 

v y  E IIH, f- (f)ll  < 
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PROOF:  Se t  u ( t )  = V a r y ( H i  f )  = l lH~ ( f  - ~ ( f ) ) l l ]  = I I H J  - =( f ) l l~ .  T h e n  

u'( t )  = - 2 5  ( H t ( f  - 7r(f)) ,  H t ( f  - It(f))) < -2Xu(t). 

It follows that  
u(t)  <_ e -2~ ~u(o) 

which is the desired inequality because u(0) = Var~ (f). 

As a corollary we obtain one of the simplest and most useful quantitative 
results in finite Markov chain theory. 

Coro l l a ry  2.1.5 Let  K be a M a r k o v  kernel  with spectral gap )~ = A(K) .  Then 
the density h~(.) = H~(.) /Tr( . )  satisf ies 

IIh~ - 1112 < ~ e  T M  

It  follows that 
IHt(x, y) - ~ ( u ) l  < ~/~(y)/~(x) ~-~' 

PROOF: Let Ht* be the adjoint of Ht  on e2(r) (see Section 2.1.1). This is a 
Markov semigroup with spectral gap A(K*) = A(K). Set 5~(y) = 1/Tr(x) if 
y = x and 5~(y) = 0 otherwise. Then 

h~(y)  = H ~ ( y )  = H~*6=(y) 

and, by Lemma 2.1.4 applied to K*, 

Hence 

I IH;5~  - 11122 _< e - 2 X W a r ~ ( 5 = ) .  

< ~/1 -- 7r(x) e_Xt I e_,~ t llh~ 1112 
- V -< 

Of course, the same result holds for Ht*. Hence 
I 

_< IIh;/2 - l l l ~ l l h ; ~  - l l l~  
1 < e ->'t. 

- -  ~ / ~ ( x ) ~ ( y )  

Multiplying by rr(y) yields the desired inequality. This ends the proof of Corol- 
lazy 2.1.5. 

Def in i t ion  2.1.6 Let  w = w ( K )  = min{~(()  : ( ~ 0 an eigenvalue of  I - K } .  

Let S denote the spectrum of I - K .  Since Ht = e - t (1 -K) ,  the spectrum of Ht 
is {e -re : ~ E S}. It follows tha t  the spectral radius of Ht - E~ in e2(rr) is e - t~ .  
Using (1.2.5) we obtain the following result. 
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T h e o r e m  2.1.7 Let K be an irreducible Markov kernel. Then 

vl <p< oo, lira ---11og(maxllh: - 111,) =w. 
-- t~oo t 

In particular, A ~ w with equality if (K, 7r) is reversible. Furthermore, if we set 

T,=T,(K, 1/e)=min{t>O:maxllhf -lll,<_Ile}, (2.1.3) 

and define ~r. as in (1.3.2) then, for 1 <_ p <_ 2, 

w--I - < T ' - < ~ A ( 2 + l ~  

whereas, .for .for 2 < p <_ oe, 

w _ ~ l + l o g  . 

EXAMPLE 2.1.1: Let X -- { 0 , . . . , n } .  Consider the Kernel K ( x , y ) )  = 1/2 
i f y  -- x + l ,  (x,y) -- (0,0) or (n ,n) ,  and K ( x , y )  = 0 otherwise. This is a 
symmetric kernel with lmiform stationary distribution 7r = 1/(n + 1). Feller 
[40], page 436, gives the eigenvalues and eigenfunctions of K. For I - K,  we get 
the following: 

Ao=0, r 
1rj 

Aj = 1 - cos ~ - - ~ ,  Cj(x) = v/2cos(lrj(x + 1/2) / (n  + 1)) for j = 1 , . . . , n .  

Let Ht = e -r  and write (using cos(lrx) _< 1 - 2x 2 for 0 < x < 1) 

Ih,(x,y) - 11 = [ ~  Cj(x)r -~(1-c~ 
I j = l  

< 2 E e-2tj2/(n+l)2 
j----1 

_< (1 + + l) 12t). 
To obtain the last inequality, use 

E e-2tJ2/(n+l) 2 <_ e-2ts2/(~+l)2ds _ 
2 

and 

n + 1 [ - -  e_~2du 
Leg 
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In particular, 

max[h2t(x ,y)  - 1[ -- max[[h~ - 1][22 < 2e -c for t = l ( n +  1)2(1+c) 
q 

and T2(K, l /e )  _< 3(n + 1)2/4. Also, w = A = 1 - cos ~ _< ~r2/(n + 1) 2. Hence 
in this case, the lower bound for T2(K, l /e )  given by Theorem 2.1.6 is of the 
right order of magnitude whereas the upper bound 

T2 _~ 2+log~** < ( n + l ) 2 ( 2 + l o g ( n + l ) )  

is off by a factor of log(n + 1). 

EXAMPLE 2.1.2: Let 2r = {0, 1} '~ and K ( x , y )  = 0 unless Ix-y]  = ~'~i ]xi-Yl] = 
1 in which case K(x ,  y) = 1In.  Viewing X as an Abelian group it is not hard to 
see that  the characters 

X y : x  -.~ ( -1 )  y'~, y e {0,1} '~ 

where x.y = ~~i xiyi, form an orthonormal basis of e~(r), 7r -- 2 -~. Also 

Kx (x) = F_K(x , z ) zy (z )  
z 

This shows that  )~y is an eigenfunction of I - K with eigenvalue 2]yt/n where 

M is the number of l ' s  in y. Thus the e i g e n v a l u e  2 j / n  has multiplicity ( ~ )  

0 _< j _< n. This information leads to the bound 

1 

~.l e -4tj/n 
I 

< e n e - 4 t / n  - -  1.  

Hence 
1 

[ [h~- l l [  2_<e 1-c for t =  4 n ( l ~  + c ) ,  c > 0 .  

It follows that  T2(K, l / e )  <_ �88 + logn). Also, [[h~ - 1[] 5 _> ne -4t/'~ hence 
T2 = T2(K, l /e )  _> �88 + logn).  In this case, the lower bound 

1 1 4 
T 2 >  - - 

A ca n 
is off by a factor of log n whereas the upper bound 

T2_< ~ 2 + l o g  = ~ ( 2 + n ) .  

is off by a factor of n~ log n. 
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2.1.3 

It is well established that  ergodic 
of Chernoff's type for 

Chernoff  b o u n d s  and  cen t ra l  limit t heo rems  

Markov chains satisfy large deviation bounds 

f (X , )ds  - 7r(f) > ~) 

as well as central limit theorems to the effect that 

Pq ( fot  f (Xs)ds - tTr(f) < atx/2"Y) - @(7) -+ 0 

where @(7) is the cumulative Gaussian distribution and a is an appropriate 
number depending on f and K (the asymptotic variance). 

The classical treatment of these problems leads to results having a strong 
asymptotic flavor. Turning these results into quantitative bounds is rather frus- 
trating even in the context of finite Markov chains. 

Some progress has been made recently in this direction. This short section 
presents without any detail two of the main results obtained by Pascal Lezand 
[59] and Brad Mann [61] in their Ph.D. theses respectively at Toulouse and 
Harvard universities. 

The work of Lezaud clarifies previous results of Gillman [44] and Dinwoodie 
[36, 37] on quantitative Chernoff bounds for finite Markov chains. A typical 
result is as follows (there are also discrete time versions). 

Theo rem 2.1.8 Let (K, 7r) be a finite irreducible Markov chain. Let q denote 
the initial distribution and Pq be the law of the associated continuous time process 
(Xt)t>o. Then, for all functions f such that r ( f )  = 0 and Ilfll~ -< 1, 

Pa ( l  fo f (Xs)ds  > 7)  < llq/rrll2exp \ 10 ] 

Concerning the Berrry-Essen central limit theorem, we quote a continuous 
time version of one of Brad Mann's result which has been obtained by Pascal 
Lezeand. 

Theorem 2.1.9 Let (K, Tr) be a finite irreducible reversible Markov chain. Let 
q denote the initial distribution and Pq be the law of the associated continuous 
time process (Xt)t>0. Then, for t > O, -c~ < ~/ < ~ and for all functions f 
such that 7r(f) = 0 and Ilfll~ < 1, 

Pq ( a - ~  fo t f(X')ds <- ~) - r -< lO011q/Trll~llfll~A2 ~3 tx/z 

where 

(/0') a2= lim Var~ f(Xs)ds . 
t---+ ~ 

See [41, 61, 59, 28] for details and examples. There are non-reversible and/or,dis- 
crete time versions of the last theorem. Mann's Thesis contains a nice discussion 
of the history of the subject and many references. 
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2.2  H y p e r c o n t r a c t i v i t y  

This section introduces the notions of logarithmic Sobolev constant and of hyper- 
contractivity and shows how they enter convergence bounds. A very informative 
account of the development of hypercontractivity and logarithmic Sobolev in- 
equalities can be found in L. Gross survey paper [47]. See also [7, 8, 15, 16, 46]. 
The paper [29] develops applications of these notions to finite Markov chains. 

2.2.1 The log-Sobolev constant 

The definition of the logarithmic Sobolev constant a is similar to that  of the 
spectral gap A where the variance has been replaced by 

/ : ( f )  = Z If(z)l  = log \ ~ j  
=EX 

Observe t h a t / : ( f )  is nonnegative. This follows from Jensen's inequality applied 
to the convex function r = t 2 log t 2. Furthermore Z:(f) = 0 if and only if f is 
constant. 

Def in i t ion  2.2.1 Let K be an irreducible Markov chain with stationary measure 
rr. The logarithmic constant ~ = c~(K) is defined by 

E(f,  f )  O} = m i n {  ~ ; s 1 6 2  . 

It follows from the definition tha t  a is the largest constant c such that  the 
logarithmic Sobolev inequality 

cO(f)  < E(f ,  f )  

holds for all functions f .  Observe tha t  one can restrict f to be real nonnegative 
in the definition of a since s  = C(Ifl) and s [fl) < E( f , f ) .  

To get a feel for this notion we prove the following result. 

L e m m a  2.2.2 For any chain K the lo9-Sobolev constant a and the spectral gap 
A satisfy 2a <_ A. 

PROOF: We follow [67]. Let g be real and set f = 1 + eg and write, for e small 
enough 

( e21912 F O(e3)) I f r I o g l f l  = = 2 (1 + 2eg + c=191 =) eg 2 

= 2e 9 + 3e=lgl = + O(e 3) 

and 

Ift 2 log Ilfll~ = (1 + 2~g + ~=lgl =) (2~- (g)  + : l l g l h  = - 2 : ( ~ ( g ) )  = + 0 ( : ) )  
= 2e~(g) + 4e2gTr(g) + e=llgll~ - 2 : (~ ' (g ) )  = + O(s3). 
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Thus, 

I / I  = log I l l2  = 2c(g - + (31gl = - Ilgll  - 4glr(g) + 2(Tr(g)) 2) + O(e 3) 
II.fll  

and 

L ( f )  = (l lgll 2 _ + 0( 3) 
= 2c2Var(g) + O(r 

To finish the proof, observe tha t  E( f ,  f )  = e2E(g,g), multiply by e -2, use the 
variational characterizations of a and A, and let ~ tend to zero. 

It is not completely obvious from the definition that  a(K)  > 0 for any finite 
irreducible Markov chain. The  next  result, adapted from [65, 66, 67], yields a 
proof of this fact. 

T h e o r e m  2.2.3 Let K be an irreducible Markov chain with stationary measure 
7r. Let a be its logarithmic Sobolev constant and A its spectral gap. Then either 
a = A/2 or there exists a positive non-constant function u which is solution of 

2u logu - 2ulog [[ul[2 - l ( I  - K )u  -- 0, (2.2.1) 

and such that a = S(u, u ) /E (u ) .  In particular a > O. 

PROOF: Looking for a minimizer of E(f ,  f ) / L ( f ) ,  we can restrict ourselves to 
non-negative functions satisfying ~r(f) = 1. Now, either there exists a non- 
constant non-negative minimizer (call it u), or the minimum is attained at the 
constant function 1 where E(1, 1) -- s -- 0. In this second case, the proof of 
Lemma 2.2.2 shows that  we must have a = A/2 since, for any function g ~ 0 
satisfying 7r(g) = 0, 

lim E(1 + eg, 1 + eg) = lira e2E(g' g) A 
~ o  JE(1 + eg) ~-,o 2~2Var,~(g) -> 2" 

Hence, either a = A/2 or there must  exist a non-constant non-negative function 
u which minimizes E(f ,  f ) / E ( f ) .  It is not hard to show that any minimizer of 
E(f,  f ) / L ( f )  must satisfy (2.2.1). Finally, if u _> 0 is not constant and satisfies 
(2.2.1) then u must be positive. Indeed, if it vanishes at x E X then Ku(x )  = 0 
and u must vanishe at all points y such that  K ( x , y )  > 0. By irreducibility, this 
would imply u - 0, a contradiction. 

2 . 2 . 2  H y p e r c o n t r a c t i v i t y ,  a ,  a n d  ergodicity 
We now recall the main result relating log-Sobolev inequalities to the so-called 
hypercontractivity of the semigroup Hr. For a history of this result see Gross' 
survey [47]. See also [7, 8, 16, 46]. A proof can also be found in [29]. 
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T h e o r e m  2.2.4 Let  (K ,  Tr) be a f in i te  Markov chain with lo9-Sobolev constant  
Ct. 

1. A s s u m e  that there exis ts  13 > 0 such that IIHtll2--,,q < 1 for all t > 0 and 
2 < q < + ~  sat is fy ing e 4f~t > q - 1. Then 13L(f) < s  f )  for  all f and 
thus ~ > 13. 

2. A s s u m e  that (K,  Tr) is reversible. Then Ilntll2-+q <_ I for all t > 0 and all 
2 < q < + ~  sat is fy ing e 4'~t > q - 1. 

3. For non-reversible chains,  we still  have [IHtHz~q < 1 for  all t > 0 and all 
2 < q < +oo sat is fy ing e 2at > q - 1. 

We will not prove this result  but  only comment on the different statements. 
First let us assume that  (K, 7r) is reversible. The first two statements show that  
c~ can also be characterized as the largest/3 such that  

]lHt[12~q < 1 for all t > 0 and all 2 < q < +eo satisfying e 4at > q - 1. (2.2.2) 

Recall tha t  Ht is always a contract ion on g2(Tr) and that,  in fact, ]]Ht[]2-~2 = 1 
for all t > 0. Also, (1.2.8) and (1.2.11) easily show that  IIH, II=-+~ > 1 for all 
t > 0 and tends to 1 as t tends to infinity. Thus, even in the finite setting, it is 
rather surprising that  for each 2 < q < co there exists a finite tq > 0 such that  
IIHtll2-+q < 1 for t > tq. The fact tha t  such a tq exists follows from Theorem 
2.2.3 and Theorem 2.2.4(2). 

Statements 2 and 3 in Theorem 2.2.4 are the keys of the following theorem 
which describes how ~ enters quanti ta t ive bounds on convergence to stationarity. 

T h e o r e m  2.2.5 Let  (K, 7r) be a f in i te  Markov chain. Then, for  e,O, a > 0 and 
t = ~ + O + a ,  

IIh~: - 1115 _< { iIh~ll~/(l+~'~ e-~ 

Iih~ll~/(l+~':") e-~ 
i f  (K,  ~r) is revesible 

(2.2.3) 
in general. 

In particular, 

for  all c > 0 and 

IIh~: - 1112 _< e I - c  ( 2 . 2 . 4 )  

{ ( 4 o 0  -x log+ log(1/rr(x)) + )~-1 c for  reversible chains 

t = (2a) -1 log+ log(1/rr(x)) + A -x  c in general 

where log+ t = max{O, logt}.  

PROOF: We treat  the general case. The improvement for reversible chains 
follows from Theorem 2.2.4(2). For 0 > 0, set q(0) = 1 + e 2~e. The third 
statement of Theorem 2.2.4(3) gives ]lH0112_~q(e) < 1. By duality, it follows 
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tha t  HH$Hq,(o)_,2 < 1 where q'(O) is the Hblder conjugate of q(O) defined by 
1/q'(O) + 1/q(O) = 1. Wri te  

][h~+0+~ - 1112 = [I(H$+~ - 7r)h;I]2 < ]]Heh~ HuH = - 7r[12~2 

< llhill~,(o)llH$11.,(o)~=llH* - ~'11~-~2 d Ilhyll~/~(~ e -~'. 

Here we have used 1 <_ q~ < 2 and the  Hblder inequality 

Ilfl[q' < IIfllll-2/qllfll~/q 

with f = h *~, Hh~lll = 1 to ob ta in  the  last inequality. 
Consider the funct ion 5: defined by 5~(x) = 1/Tr(x) and 6,(y) = 0 for x ~ y 

and observe tha t  h~ = 5, ,  [Ih~[[2 = 115,1t2 _< 1/Tr(x) 1/2. Hence, for t = 0 + a,  

,,h~ lil2 _< (-~z)) ~/(~+:~') _ e - , ~ a "  

Assuming 7r(x) < 1/e  and  choosing 

O =  log log - ~ ,  a =  

we obtain Ilht - 1112 < e 1-c which is the  desired inequality. When r (x )  > l / e ,  
simply use 0 = 0. 

C o r o l l a r y  2.2.6 Let (K,  7r) be a finite Markov chain. Then 

Ht(z, y) 1 
lr(y) = ]ht(x, y) - 11 _< e 2-~ (2.2..5) 

for all c > 0 and 

{ (4a) -1 (log+ log(1/Tr(x)) + log+ log(1/Tr(y))) + )~-I c (reversible) 

t = (2a) -1 (log+ log(1/Tr(x)) + log+ log(1/~r(y))) +)~-1 c (general). 

PROOF: Use Theorem 2.2.5 for bo th  H,  and H ;  together with 

Iht+~(x,y) - 1 l  _< I I h ~  - l t l 2 l l h . 7  - 1 l l 2 .  

The next  result must  be compared  with Theorem 2.1.7. 

C o r o l l a r y  2 .2 .7  Let (K,  TO) be a finite reversible Markov chain. For 1 <_ p < ~ ,  
let Tp be defined by (2.1.3). Then, for  1 <_ p < 2, 

2---~ - _ ~ 4 + log+ log 

and for 2 < p < c~z, 

2---~ - _ ~ 3 + log+ log 

where 7r. = min~ ~r(z) as in (1.3.2). Similar upper bounds holds in the non- 
reversible case (simply multiply the right-hand side by 2). 
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This result shows tha t  (~ is closely related to the quantity we want to bound, 
namely the "time to equilbrium" 2"2 (more generally Tp) of the chain (K, rr). 
The natural  question now is: 

[can one compute  or estimate the constant a? [ 

Unfortunately, the present answer is tha t  it seems to be a very difficult problem 
to estimate a. To illustrate this point we now present what, in some sense, is 
the only example of finite Markov chain for which a is known explicitely. 

EXAMPLE 2.2.1: Let 2( = {0, 1} be the two point space. Fix 0 < 8 _< 1/2. 
Consider the Markov kernel K = Ke given by K(0,  0) = K(1, 0) = 8, K(0,  1) = 
K(1,1)  = 1 - O. The c h a i n / t o  is reversible with respect to rr0 where re(0) = 
(1 - 8), rre(1) = 8. 

T h e o r e m  2.2.8 The log-Sobolev constant of the chain (Ke,~re) on X = {0, 1} 
is given by 

1 - 20 
a o  = 1og[(l - O ) / O ]  

with all2 = 1/2. 

PROOF: The case 0 = 1/2 is due to Aline Bonami [10] and is wetl known since 
the work of L. Gross [46]. The  case 0 < 1/2 has only been worked out recently 
in [29] and independently in [48]. The present elegant proof is due to Sergei 
Bobkov. He kindly authorized me to include his argument in these notes. 

First, linearize the problem by observing that  

/ : ( f )  = sup {( f2 ,g)  : g # O, Ite~ll~ = 1}. 

Hence 
a = inf { a ( g ) :  g # O, [[eg[[x = l} 

with 

a ( g ) = i n f  

where ge is the Dirichlet form E0 (f ,  
any Markov chain. 

We now return to the two point  
with 8e a + (1 - 8)e b = 1. Observe 
can assume f > O, f(O) = V~, y(1) 

ae(g)---- ~>oinf { 

{ $o(f,f_______~) : f # 0} 
<P,g> 

f )  = O(1 - O)[f(0) - f(1)l 2. This is valid for 

space. Fix g # 0 and set 9(0) = b, g(1) = a 
tha t  this implies ab < 0. To find a0 (g) we 
= v @ = l w i t h x > 0 "  Then 

e(1 - e ) ( v ~  - t) 2 

One easily checks that  the infimum is at tained for x = [(1 -8)b/Sa]  2. Therefore 

8 1-8 
s0(g)  = ~ + - - a  
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I t  follows t h a t  

We set 

and 

so that 

a0 = i n f { ~  + 1 - / 9  
a 

: Oe = + (1 - O)e b = 1 } .  

t = e a ,  S = e b 

/9 1 - - 0  
h(t) = log'---s + "io-ogt wi th  Ot + (1 - 8)s = 1, 

s 0  = m f  { h ( t )  : t e (0, 1) u (1, l / e ) } .  

By Taylor  expans ion  a t  t = 1, 

- 83  + (1  - / 9 ) a  1 2/9 1 ( t - l ) +  ( t - l )  2 + O ( ( t - 1 )  3 ) 
h(t) = ~ + 12(1 - / 9 )  24(1 - / 9 )  2 

So, we ex tend  h as a con t inuous  func t ion  on [0, 1/0] by setting 

h(0) = - 0 / l o g ( 1  - 0), h(1) = 1/2, h(1/0)  = - ( 1 -  0 ) / l og0 .  

Observe t h a t  h(1) is not  a local  m i n i m u m  if 0 ~ 1/2. We have 

0 5 (1 - 0) 
h ' ( t )  ---- 

(1 - a)s[ log s] 2 t[log t] 2'  

This shows tha t  ne i ther  h(0) nor  h (1 /0 )  are m in ima  of h since h '(0)  = - o o ,  
h'(1//9) = +oo. 

Let us solve h ' ( t )  = 0 and  show t h a t  this equat ion has a unique solution in 
(0, 1/0). T h e  condi t ion h ' ( t )  = 0 is equivalent  to (recall tha t  (log s ) ( logt )  < O) 

{ /gvFt l o g t  = - ( 1  - O ) v S l o g s  
/gt + (1 - / 9 ) s  = 1 

Since et + (1 - O)s = 1, we have  O = (1 - s) / ( t  - s), 1 - / 9  = (1 - t ) / (s  - t). 
Hence h'(t) = 0 implies s = t = 1 or  

v/ t  log t _ v/~ log s 

1 - t  1 - s  

The  funct ion t --4 v(t) = ~ satisfies v(0) = v (+c~)  = 0, v(1) = - 1  and  
v(1/t) = v(t). I t  is decreas ing  on (0, 1) and  increasing on (1, +oo).  I t  follows 
tha t  h'(t) = 0 implies t h a t  e i ther  s = t = 1 or t = 1/s = (1 - 0)//9 (because 
Ot + (1 - O)s = 1). If/9 ~ 1 /2  t hen  h ' (1)  ~ 0, the equat ion h'(t) = 0 has a unique 
solution t = (1 - 0 ) /0  and  

1 - 20 
rain h(t) = h((1 - 0 ) / 0 )  - log[(1 O)/O]" t~(O,llO) 
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I f ~  = 1/2, then h'(1) = 0 and 1 is the only solution o fh ' ( t )  = 0 so that  
minte(o,2) h(t)  = h(1) = 1/2 in this case. This proves Theorem 2.2.8. 

EXAMPLE 2.2.2: Using Theorems 2.2.3 and 2.2.8, one obtains the following 
result. 

T h e o r e m  2.2.9 Let 7r be a posi t ive probability measure on X .  Let K ( x , y )  = 
7r(y). Then the log-Sobolev cons tant  o f  ( K ,  lr) is given by 

1 - 2 ~ ,  

log[(1 - ~, ) /~ , ]  

where 7r, = minx 7r. 

PROOF: Theorem 2.2.3 shows tha t  any non trivial minimizer must take only two 
values. The desired result then follows from Theorem 2.2.8. See [29] for details. 
THeorem 2.2.9 yields a sharp universal lower bound on a in terms of A. 

C o r o l l a r y  2.2.10 The log-Sobolev constant  a and the spectral gap )t of  any 
finite Markov  chain K with s ta t ionary  measure ~ satisfy 

1 - 27r, 

- l o g [ ( 1  - ~, ) /~ , ]  

PROOF: The variance Vary ( f )  is nothing else than the Dirichlet form of the 
chain considered in Theorem 2.2.9. Hence 

1 - 27r, 1 
Z~.(f) _< Var,~(f) _< -~EK, . ( f , f ) .  

log[(1 7f.)/Tr.] 

The desired result follows. 

2 . 2 . 3  S o m e  t o o l s  f o r  b o u n d i n g  a f r o m  b e l o w  

The following two results are extremely useful in providing examples of chains 
where a can be either computed  or bounded from below. Lemma 2.2.11 com- 
putes the log-Sobolev constant  of products  chains. This important result is due 
(in greater generality) to I Segal and to W. Faris, see [47]. Lemma 2.2.12 is a 
comparison result. 

L e m m a  2.2.11 Let (Ki,~ri) ,  i = 1 , . . . , d ,  be Markov chains on f inite sets Xi  
with spectral gaps Ai and log-Sobolev constants ai .  Fix  # = (#i)d such that 

d X 
Pi > 0 and ~ #~ = 1. Then  the product  chain (K, ~r) on X = I~1 i with Kerne l  

K.(x, y) = K(x,y) 
d 

= ~ m~(xi,yl)... ~(Xi_l,yy:~)K~(z, yi)~(Xi+l,yi+l)... ~(xe,Yd) 
J 

1 
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(where 5(x,  y) vanishes f o r  x # y and 5(x,  x)  = 1) and stationary measure 
d 

rr = ~ 1  7ri satisfies 

= = m 

PROOF: Let Ci denote the Dirichlet form associated to Ki, then the product 
chain K has Dirichlet form 

E(f, f) = ~ #, ,s (f, f)(xl)Tri(x i) 
1 \~j:j~s / 

where x i is the sequence ( X t , . . . , X d )  with x~ omitted, r i = ~e:t#iTrt  and 

s f ) ( x  ~) = C i ( f ( x l ,  . . . , Xd), f ( x l ,  . . . , Xd) ) has the obvious meaning: E~ acts 
on the i th coordinate whereas the other  coordinates are fixed. It is enough to 
prove the Theorem when d = 2. We only prove the statement for a. The 
proof for A is similar. Let  f : X1 • X2 --+ R be a nonnegative flmction and set 

F(x~)  = (E2:1 : ( x l ,  x2)2~l'1(xl))1/2. Write 

c ( : )  f(~' ~)~ ~(~, ~2) 
= E t:(Xl'X2)121~ I1:[1~: 

=1,=~ 

F(x~) 2 
= ~--~lF(x2)121~ 2 ~2(x2) 

. f (z l , z2)  2 
+ ~ If(zl,z=)l 2 log f(x2)2 7r(Zl,X2) 

Xl,X2 

< [].t20~2]--1/~2~2 (f ,  F) "4- [/ZlO~l] -1 ~/ . t lE1 (f( ' ,  x2), f( ' ,  x2)) 7r2(x2). 
X2 

Now, the triangle inequality 

[F(~2)- F(y~)I = I llf(-,~2)ll2:, -[If(',y2)ll~:, I 
< Hf(.,z2)- f(',y2)ll2:, 

implies that  

Hence 

~2(Y,Y) < ~ 2 ( f ( x l , - ) , f ( x l , . ) ) T r l ( X l  ). 

c(f) _< [1-Z2~2] -1 ~ ]Z2E2 (f(Xl, "), f(xl, "))7rl (Xl) 

-l-[/-tl Cel] -I ~ #IEI (f(', X2), f(', x2))Tr2 (x2) 
x2 
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which yields 

s  _< miax{1/ [#~a i ]}s  f ) .  

This  shows tha t  a _> min i [# , a i ] .  Tes t ing  on funct ions tha t  depend only on one 
of the two variables  shows t h a t  a = mini[/~iai].  

EXAMPLE 2.2.3:  F ix  0 < 8 < 1. Take  each Xi = {0,1}, #, = 1/d, Ki  = Ko as 
in Theo rem 2.2.8. We o b t a i n  a chain  on X = {0, 1} d which proceeds as follows. 
If  the current  s ta te  is x, we pick a coordina te ,  say i, uniformly at  r andom.  If  
xi = 0 we change it to I wi th  p robab i l i t y  1 - O and do nothing with probabi l i ty  
O. If xi = 1 we change it to  0 wi th  p robab i l i t y  O and do nothing with pobabi l i ty  
1 - O. According to  L e m m a  2.2.11, this  chain has spectra l  gap A = 1/d and 
log-Sobolev cons tan t  

i - 20 

dlog[(1 - 0)/0]" 

Observe  t h a t  the  funct ion F ( t )  : t --+ c(1 - 0 - t) with c = (0(1 - 8)) -1/2 is an 
eigenftmction of K i  (for each  i) wi th  e igenvalue 0 = 1 -  A satisfying []Fi tl2 = 1. I t  
follows tha t  the  eigenvalues of  I - K are  the  numbers  j /e l  each with mult ipl ic i ty  

( d ) .  The  cor responding  o r t h o n o r m a l  e igenfunct ions are 

F~: (x)~ ~ I I  F,(x) 
i E l  

where I C { 1 , . . . ,  d}, Fi(x)  = F ( x i )  and -#I = j .  The  product  s t ruc ture  of the 
chain K yields 

d 

I[h~ - l[l~ = h2 t ( x , x )  - 1 = H ( 1  + IFi(x)[2e-2t/a) 'i - 1. 
I 

For instance,  

In particular 

Hence 

Also, we have 

< (1 - e ) d  e_2ttgeO-~o~d ,-2,/a 
- e 

d 
llh ~ - 1112 < e � 8 9 1 6 2  for  t - ~- ( l o g [ ( 1  - O)dlO] + 2 c ) ,  e > O. 

d 

T2(Ko, I / e )  < ~ (3 + log[(1 - O)d/O]), c > O. 

ilhO _ iii= = > (i - O)de_2tld 
- O 
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which shows that  the upper bound obtained above is sharp and that  

d (2 + log[(1 - 0)d/0]) T2(K, l / e )  _> ~ 

It is instructive to compare these precise results with the upper bound which 
follows from Theorem 2.2.5. In the present case this theorem yields 

d (  1 ( } _ ~ _ . 0 )  ) 
][h ~  1112 < e 1-c for t = ~ 2(1 - 20) log logd + 2c . 

For any fixed 0 < 1/2, this is slightly off, but of the right order of magnitude. 
For 0 = 1/2 this simplifies to 

]]h ~  1-c f o r t =  d(logd +2c) 

which is very close to the sharp result described above. In this case, the upper 
bound 

T2 = T2(K1/2,1/e) <_ -~a 4 + l o g + l o g ~ - .  _< ~ ( 4 + l o g d )  

of Corollary 2.2.7 compares well with the lower bound 

T2 _> d (2 + log d). 

EXAMPLE 2.2.4: Consider now Ix[ = ~~Sxi, that is, the number of l 's  in 
the chain in the preceding example, as random variable taking values in Xo = 
{0 , . . . ,  d}. Clearly, this defines a Markov chain on Xo with stationary measure 

rro(j) = OJ(1-O)a-J ( ~ )  

and kernel 

0 if li - J l  > 1 
Ko(i,j) = (1 - 0 ) ( 1  - i / d )  i f j  = i + l  

Oi/d if j = i - 1 
( 1  - O)i/d + 0 ( 1  - i/d) i f  i = j .  

All the eigenvalues of I - Ko are also eigenvalues of I - K. It follows that  
)~o >_ 1/d. Furthermore, the flmction F : i --+ co[d(1 - 0) - i] with Co = (d0(1 - 
0)) -1/2 is an eigenfunction with eigenvalue 1/d and I]F[12 = 1. Hence, )~o = 1/d. 
Concerning a0, all we can say is tha t  

1 - 20 
ao > d l o g [ ( 1 -  0)/0]" 

When 0 = 1/2 this inequality and Lemma 2.2.2 show that a0 = 1/(2d) = ~/2. 

The next result allows comparison of the spectral gaps and log-Sobolev con- 
stants of two chains defined on different state spaces. 
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L e m m a  2.2.12 Let (K, Tr), (K ' ,  7r') be two Markov chains defined respectively 
on the finite sets 2( and X ' .  Assume that there exists a linear map 

e~(x,~) -+ e~(x',~'): I ~ ] 

and constants A , B , a  > 0 such that, for all f E e2(X, Tr) 

s  and aVar~(f) < Varr , ( f )  + B E ( f , f )  

then 

Similarly, if 

aA' 
- - < A .  
A + BA t - 

3 ' ( ] , ] )  < A E ( f , f )  and a C t ( f ) <  s  + B E ( f , f ) ,  

then 
a a  ~ 

< a .  
A + B a  t - 

In particular, if X = X ~, E' <_ AE and a~r <_ # ,  then 

a A  t a a  t 

A <A, --)-__a. 

PROOF: The two first assertions follow from the variational definitions of A and 
a. For instance, for A we have 

aVar,~(f) _< V a r , e ( f ) + B E ( f , f )  
1 t < -~E (], ]) + BE(y, :) 

_ ( A  + B )  C(I,I). 

The desired inequality follows. 
To prove the last assertion, use aTr < # and the formula 

Var~(I) = rain ~ If(x) - cl~(x) 
cER 

X 

to see that  aVar~(f) < Vary, (f) .  The inequality between log-Sobolev constants 
follows from ~ log ~ - ~ log ff - s + ~ > 0 for all ~, ~ > 0 and 

/Z~r(f) = E ( If(x)12 log If(x)l = - If(x)l 2 log Ilftl~ - If(x)l 2 + IlItl~) 7r(x) 

= min ~ (If(x)l 2 log I f ( x ) [  2 - If(x)l 2 logo - If(x)l = + c) ~(x). 
c > 0  

This useful observation is due to Holley and Stroock [50]. 
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EXAMPLE 2.2.5: Let X = {0, 1}" and set Ix - Yl = ~ i  [x~ - Yd- Let r : X -+ X 
be the map  defined by T(X) = y where Yi = x~-l ,  1 < i _< n, Yx = x~. Consider 
the chain 

1 / ( n  + 1) if  I = -  Yl = 1 
K(x,  y) = 1/(n + 1) if y = r(x) 

0 oherwise. 

I t  is not hard to check tha t  the uniform distribution rr = 2 - "  is the stat ionary 
measure of K .  Observe t h a t  K is neither reversible nor an invariant chain on 
the group {0, 1} ~. We will s tudy  this chain by comparison with the classic chain 
K '  whose kernel vanishes if Ix - Yl r 1 and is equal to 1/n if [x - y[ = 1. These 
two chains have the same s t a t ionary  measure  7r = 2 -~.  Obviously the Dirichlet 
forms E t and E satisfy 

n + l  
E' < E(f ,  f ) .  

n 

Applying Lemma 2.2.12, and  using the known values A' = 2/n, ~' = 1/n of the 
spectral gap and log Sobolev constant  of the chain K ~, we get 

2 1 
A >  - -  a >  ~ .  

- n + l '  - n + l  

To obtain upper  bounds,  we use the test  function f = ~-'~i(xi - 1/2). This has 
re(f) = 0. Also 

n n 2 
E(f ,  : )  = - -  E ' ( f ,  f )  - - -  Var,~(f). 

n + l  n + l n  

The first equality follows f rom the fact tha t  f(7(x)) = f(x). The second follows 
from the fact that  f is an eigenvalue of I - K '  associated with the eigenvalue 
2In (in fact, one can check tha t  f is an eigenfunction of K itself). Hence 
A < 2/(n + 1). This implies 

2 1 

n + l '  n + 1 "  

Applying Theorem 2.2.5 we get 

I l h ~ - l l l 2 < e  1-c for t - n + l ( 2 c + l o g n )  c > 0 .  
- 4 ' 

The test function f used above has Ilfllo~ = n/2 and 11/115 = n/4 and is an 
eigenfunction associated with A. Hence 

m ~ l l h T  - 1112 = IlHt - 7r[12--+oo > [IHtflloo 
- Ilfl[2 

_ nl/2e-2t/(,~+l). 

This proves the sharpness of our upper  bound. A lower bound in ~1 can be ob- 
tained by observing tha t  the number  of l ' s  in x, that  is Ixl, evolves has a Markov 
chain on { 0 , . . . ,  n} which is essentially the classic Ehrenfest 's urn Markov chain. 
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This example generalizes easily as follows. The permutaion T can be replaced 
by any other permutation without  affecting the analysis presented above. We 
can also pick at random among several permutations of the coordinates. This 
will simply change the factor of comparison between E and $'. 

We end this section with a result that  bounds a in terms of max, I[h T -1112 = 
I[Ht - 7rI[2-~oo. See [29] for a proof. Similar results can be found in [8, 16] 

T h e o r e m  2.2.13 Assume that (K, zr) is reversible. Fix 2 < q < +cx) and as- 
sume that tq, Mq satisfy I l H t q  - ~ll~q <_ Mq. Then 

(1 - ~)A 

- 2(Atq + l o g M q  + ~ )  " 

In particular, if q = oo and t is such that max, IlhT - 1112 <_ M,  we have 

A 
- 2(At + l o g M )  " 

EXAMPLE 2.2.6: Consider the nearest neighbor chain K on {0, . . . ,  n} with loops 
at the ends. Then A = 1 - cos -~-f. At the end of Section 2.1 it is proved that  

IIH~ - ~II~-~ = m~ llhf - III~ < 2e -~'/I'~§ (I + j(n + IYl4t). 

Thus, for t - -  �89 + 1) 2, [IHt - ~ll2-~ -< 1. Using this and A > 2/(n + 1) 2 in 
Theorem 2.2.13 give 

1 1 (  ~" ) 7r ~ 
2 ( n + l )  2 _ < a _ < ~  1--cos n + 1 4(n + 1) 2 + 0(1/n4)" 

The exact value of a is not known. 

2 . 3  N a s h  i n e q u a l i t i e s  

A Nash inequality for the finite Markov chain (K, ~r) is an inequality of the type 

v f e e2(x,~), II/ll~ <x+2/d) < c c ( f , f )  + ~ll/ll~ Ilfll~/d 

where d, C, T are constants depending on K.  The size of these constants is of 
course crucial in our applications. This inequality implies (in fact, is equivalent 
to) 

Ht(x,  y) < B(d)Tr(y) (eft) d/2 for 0 < t _< T 

where B(d) depends only on d and d, C, T are as above. This is discussed in 
detail in this section. Nash inequalities have received considerable attention in 
recent years. I personally learned about them from Varopoulos [78]. Their use 
is emphasized in [11]. Applications to finite Markov chains are presented in [28], 
with many examples. See also [69] 
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2 .3 .1  N a s h ' s  a r g u m e n t  f o r  finite Markov chains I 

Nash introduced his inequality in [64] to study the decay of the heat kernel 
of certain parabolic equations in Euclidean space. His argument only uses the 
formula 2.1.2 for the time derivative of u(t) = HHtfH 2 which reads u'(t) = 
-2s  Ht). This formula shows tha t  any functional inequality between the 
g2 norm of g and the Dirichlet form C(g, g) (for all g, thus g = Ht f )  can be 
translated into a differential inequation involving u. Namely, assume that  the 
Dirichlet form C satisfies the inequality 

v g, var,~(9) '+~/~ < cE(9,g)llgll~/fi 
Then fix f satisfying l if i l l  = x and set u(t) = I I & ( f  - ~(1))11~ = Vary(Hi f ) .  In 
terms of u, the Nash's inequality above gives 

C ,  
v t, u(t) ~+~/d <_ - - s  (t), 

since Illlh = 1 implies I IHd lh  _ 1 for all t > O. Setting v(t) = d~C4u(t)-2/d 
this differential inequality implies v'(t) _> 1. Thus v(t) >_ t (because v(O) >__ 0). 
Finally, 

( dC ~ d/2 
v t > 0, u(t) < \ - ~ - ]  

Taking the supremum over all functions f with H fill  = 1 yields 

( d C )  ~/4 
V t, Hge - ~ll1+2 < ~ -  

The same applies to adjoint H i and thus 

(e%'/' 
v t > o, IIH, - ~ll=-~o~ < \ 4t ] " 

Finally, using H, - ~r = (H,/~ - 7r)(H,/2 - 7r), we get 

v t > o ,  I IH , -~ - I I , -~oo  < \ 2 t ]  

which is the same as 
I h t ( x , y ) -  1[ < (dC/2t) d/2 . 

T h e o r e m  2.3.1 Assume that the finite Markov chain (K, zr) satisfies 

V g ~ e2(~-), Var,~(9) o+2/a) < CE(g,g)llgll~/a. 
Then 

and 

v t > o, IIh~ - 111~ < \ 4t ] 

( dC'~ a/2 
V t > O ,  [ h t ( x , y ) - i  !< k-~-] . 

(2.3.1) 
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Let us discuss what this says. First,  the hypothesis 2.3.1 and Jensen's inequality 
imply V g E g2(Tr), Var,~(g) < C $ ( g , g ) .  This is a Poincar~ inequality and it 
shows that  A > 1/C.  Thus, the conclusion of Theorem 2.3.1 must be compared 
with 

V t > 0, Ilh~ -III 2 < 7r(x)- l /2e  - t /C  (2.3.2) 

which follows from Corollary 2.1.5 when A > 1/C.  This last inequality looks 
better than the conclusion of Theorem 2.3.1 as it gives an exponential rate. 
However, Theorem 2.3.1 gives I[hT - 1112 _< 1 for t = d C / 4  whereas, for the same 
t, the right hand side of (2.3.2) is equal to 7r(x)- l /2e  -d/4. Thus, if d is small 
and 1/Tr(x) large, the conclusion of Theorem 2.3.1 improves up on (2.3.2) at 
least for relatively small value of t. Assume for instance that (2.3.1) holds with 
C = A/,~ where we think of A as a numerical constant. Then, for/9 = dA/ (4A) ,  

IIHo - ~112-,oo = max~ IIh$ - 1112 ___ 1. Hence, for t = s + 0 = s + dA / (4A)  

Ilh~ - 1112 < I I ( H ~ -  7r)(Ho - ~)112~= 

_< I IH~ - ~112-,~11Ho - ~'112--,~ 
< e -)~s" 

This yields 

C o r o l l a r y  2.3.2 I f  (K ,  Tr) satisfies (2.3.1) with some constants C , d  > O. Then 
A > 1 / C  and 

Vt >0, Ilh~- 11t2 _< min{(dC/4t)d/4,e-(t-~)x}. 

If (K, ~r) is reversible, then K is self-adjoint on e2(lr) and 1 - A is the second 
largest eigenvalue of K .  Consider an eigenfunction r for the eigenvalue 1 - A, 
normalized so that  max Ir = 1. Then,  

max IIH• -- lrll 1 = max II(H, - 7r)/iloo 
z i l f l l~r 

--> I I ( H t  - ~ ' ) r  
= e -tX" 

Hence 

C o r o l l a r y  2.3.3 A s s u m e  that (K, 7r) is a reversible Markov chain. Then 

e -~ t  < m a x  IIH~ - 7rill. 

Furthermore,  i f  (K, ~) satisfies (2.3.1) with C = A/)~ then 

e - x t  < max  IIH: - 71"111 ~ 2 e - ~ t + ~  

for all t > O. 

This illustrates well the s t rength of Nash inequalities. They produce sharp 
results in certain circumstances where the time needed to reach stationarity is 
approximatively 1/A. 
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2.3.2 Nash's  argument  for finite Markov chains II 

We now presents a second version of Nash's argument for finite Markov chains 
which turns out to be often easier to use than Theorem 2.3.1 and Corollary 2.3.2. 

T h e o r e m  2.3.4 Assume that the finite Markov chain (K, lr) satisfies 

V g E g2(lr), Ilgll 2(1+2/d) <_ C $(g,g)  + ~llgll~ IlgN~/d. (2.3.3) 

Then 

and 

_ h = : d C ~  d/4 
V t < T ,  El , l l ~ < e \ - ~ ]  

V t < T ,  h t ( x , y ) _ < e \ 2 t ]  " 

The idea behind Theorem 2.3.4 is tha t  Nash inequalities are most useful to 
capture the behavior of the chain for relatively small time, i.e., time smaller 
than T. In contrast with (2.3.1) the Nash inequality (2.3.3) implies no lower 
bound on the spectral gap. This is an advantage as it allows (2.3.3) to reflect the 
early behavior of the chain without  taking into account the asymptotic behavior. 
This is well illustrated by two examples that  will be treated later in these notes. 
Consider the natural chain on a square grid G,~ of side length n and the natural 
chain on the n-dog :D,~ obta ined by gluing together two copies of ~ at one of 
their corners. On one hand the spectral  gap of ~,~ is of order 1/n 2 whereas the 
spectral gap of :D,~ is of order  1/[n 2 logn] (these facts will be proved later on). 
On the other hand, 6,, and T4~ both  satisfy a Nash inequality of type (2.3.3) with 
C and T of order n 2. T h a t  is, the chains on 6,, and :D,~ have similar behaviors 
for t less than n 2 whereas their asymptot ic  behavior as t goes to infinity are 
different. This is not surprising since the local structure of these two graphs are 
the same. For :P~ a constant  C of order n 2 log n is necessary for an inequality 
of type (2.3.1) to hold true. 

PROOF OF THEOREM 2.3.4:  Fix f satisfying ]trill = 1 and set 

Then 

u(t) : e-2t/THHtf[l~. 

u'(t) = - 2 e  -2t/T ( E ( g t f ,  Ht f )  + l ltHtfll2) . 

Thus, Nash's argument ~e lds  

I dC I d/2 ~(t) < -~  
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which implies 

IIH, II,~2 < ~ , / r  - - ( d C ~  ~/4 
- k-471 �9 

T h e  announced  resul ts  follow since 

( d C )  d/4 
m axllh~[]2 = IlHt*l[l~2 <_ et/T 

by the  s ame  a r g u m e n t  app l i ed  to  H~.  

C o r o l l a r y  2 .3 .5  Assume that (K, re) satisfies (2.3.3) and has spectral gap )~. 
Then for all c > 0 and all 0 < to <_ T ,  

llh~ - 1112 ~ e 1-~ 

and 

for 

Ih2~(x, y )  - 11 < e ~-2~ 

t = t o + ~  log + c . 

PROOF: Wri te  t = s + to wi th  to <_ T and 

l t h ; - l l l ~  < I I ( H s - r e ) H ~ 0 1 1 2 ~  

_< llHs - rell2~2llHt0[[2-~oo 
<_ e(dC/4to) d/4 e -~s. 

The  result  easily follows. 

In pract ice ,  a "good"  N a s h  inequal i ty  is (2.3.3) with a small value of d and  
C ~ T.  Indeed,  if (2.3.3) holds  with,  say d = 4 and C = T,  then taking to = T 
in Corol lary  2.3.5 yields 

IIh~ - 111~ <_ e 1 - c  for t = T + c / ~ .  

We now give a s imple  e x a m p l e  t h a t  i l lustrates  the  s t rength  of a good Nash  
inequality. 

EXAMPLE 2.3.1:  Cons ide r  the  M a r k o v  chain on X = { - n , . . . , n }  wi th  Kernel  
K(x ,y )  = 0 unless Ix - Yl = 1 or x = y = :i:n in which cases K(x , y )  = 1/2.  
This  is an irreducible cha in  which  is reversible  with respect  to re - (2n + 1) -1 .  
The  Dirichlet  form of th is  cha in  is g iven by  

v i - - 1  
1 

E ( f ,  f )  = 2n +-----7 ~ I f ( i  + 1) - f ( i ) l  ~. 
- - i i  

For any u, v E X, and  a n y  func t ion  f ,  we have 

If(v) - f ( u ) l  <- E If(i + 1) - f( i ) l -  
i , i + l  b e t w e e n  u,v 
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Hence, if f is not of c o n s t a n t  sign, 

rL--1 

llfll~ < ~ If( i + 1) - f(i)l. 
--TI. 

To see this t ake  u to be  such t h a t  I lf l l~ = f (u)  and v such tha t  f ( v ) f (u )  < 0 
so t ha t  If(u) - f (v) [  _ I f (u ) l .  F ix  a funct ion g such t ha t  7r(g > 0) g 1/2 and  
7r(g < 0) _< 1/2 (i.e., 0 is a m e d i a n  of  g). Set f = sgn(g)lgl 2. Then  f changes 
sign. Observe  also t h a t  

l:(i  + 1) - f ( i ) l  = Isgn(g(i  + 1))g(i  + 1) 2 - sgn(g(i))g(i)21 

< Ig(i + 1) - g(i)l(Ig(i § 1)1 § Ig(i)l)- 

Hence 

IIfll~ < 

T h a t  is 

I t  follows t h a t  

n - 1  

I f( i  § 1) - f ( i ) l  

< ~ Ig(i + 1) - g(i)l(Ig(i + 1)1 + tg(i)l) 
- - n  

"n--1 

< 2 1 / 2 ( 2 n §  1)C(g,g)~/211gll2. 

Ilgll~ ~ 21/2( 2n § x)E(g,g)l/~llgllz. 

Ilgll~ Ilgll211gll 2 

< 21/2(2n + 1)E(g,g)l/211gll211gllx. 
Hence for any  g wi th  m e d i a n  0, 

Ilall~ ~ 2(2n § 1)aC(a,a)llall 4. 

For any f wi th  med ian  c, we can  a p p l y  the  above to g = f - c to get 

Ilf - cll~ ~ 2(2n § 1)2C(f, f ) l l f  - Ctll a <-- 2(2n § 1)=c(f,f)llfll 4. 

1/2 

Hence 
V f ,  Vax~( f )  3 < 2(2n+ 1)2g(f,f)llfll 4. 

This is a Nash  inequal i ty  of  t y p e  (2.3.1) wi th  C = 2(2n + 1) 2 and d = 1. I t  
implies t h a t  

1 
A >  

- 2(2n + 1)2 
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and, by Theorem 2.3.1 and Corollary 2.3.2 

V t> 0, ,Ih~-l][2_< ((2n~_/1) 2)  

and 

1/4 

1 
2(2n + 1) 2 (4 + c). V c > 0 ,  I jh~-l ]12_<e -c w i t h t =  

The test function f ( i )  = sgn(i)li I shows that 

12 
A <  

- ( 2 n  + 1) 2 

(in fact A = 1 - cos(Tr/(2n + 1))). By Corollary 2.3.3 it follows that 
1 2 t  t 1 

e ~ _< maxl[h ~ - i]]i _< 2e -2(2"+I~2+z 2d 

This shows that a time of order n 2 is necessary and sufficient for approximate 
equilibrium. This conclusion must be compare with 

t 

llhT - 111~ < v ~ +  1 e : ( : - + , 2  

which follows by using only the spectral gap estimate A >_ 1/(2(2n + 1) 2) and 
Corollary 2.1.5. This last inequality only shows that a time of order n 2 logn is 
sufficient for approximate equilibrium. 

2 . 3 . 3  N a s h  i n e q u a l i t i e s  a n d  t h e  l o g - S o b o l e v  c o n s t a n t  

Thanks to Theorem 2.2.13 and Nash's argument it is possible to bound the 
log-Sobolev constant a in terms of a Nash inequality. 

T h e o r e m  2.3.6 Let (K,x)  be a finite reversible Markov chain. 

1. Assume that (K, lr) satisfies (2.3.1), that is, 

V g E g2(Ir), Var,(g)  fl+2/d) -< C$(g,g)J[gll~/d. 

Then the log-Sobolev constant ~ of the chain is bounded below by 

2 
0 ~ > - - .  

- dC 

2. Assume instead that (K, 7r) satisfies (2.3.3), that is, 

Vg E e2(~), IJgll~ (1+2/d) < c e(g,g)  + ~l]gll2 IIg[l~/d, 

and has spectral gap A. Then the log-Sobolev constant a is bounded below 
by 

A 
dO 

for any 0 < to -< T.  
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PROOF: For the first s ta tement ,  observe that  Theorem 2.3.1 gives IIH,-=II=-+~ <_ 
1 for t = dC/4.  Pluging this into Theorem 2.2.13 yields a >_ 2/(dC),  as desired. 

For the second inequality use Theorem 2.3.3 with t = to <_ T and Theorem 
2.2.13. 

EXAMPLE 2.3.2: Consider the Markov chain of Example 2.3.1 on X = { - n , . . . ,  n} 
with Kernel K ( x , y )  = 0 unless Ix - Yl = 1 or x = y = + n  in which cases 
K(x ,  y) = 1/2. We have proved tha t  it satisfies the Nash inequality 

V f ,  Va ry ( f )  3 < 2 ( 2 n +  1)2~(f , f) l l f l l~ 

of type (2.3.1) with C = 2(2n + 1) 2 and d = 1. Hence Theorem 2.3.6 yields 

1 
- ( 2 n  + 1) 2.  

2 . 3 . 4  A c o n v e r s e  t o  N a s h ' s  argument 
Carlen et al. [11] found tha t  there is a converse to Nash's argument. We now 
present a version of their result. 

T h e o r e m  2.3.7 Assume that (K,  7r) is reversible and satisfies 

V t ___ T, IIH, II,-~2 < 

Then 

vg e e2(~), Ilfll~ u+2/d) < c' e(f , f )  + ~l l f l l~ Ilfll~/d 

with C' = 220+2/a)C. 

PROOF: Fix f with [If Ill = 1 and write, for 0 < t < T, 

/o' Ilfll~ = I Ig ,  f l l ~ -  asIIHsfll~ds 

/' 
= I ln t f l l~  + 2 E(Hsf, HJ)ds 

< (C/t) d/2 + 2tE(f,f). 

The inequality uses the hypothesis  (which implies }lHtf[[2 < (C/t)  ~/4 because 
tlflll  --- 1) and the fact tha t  t --+ E.(Htf, H t f )  is nonincreasing, a fact that  uses 
reversibility. This can be proved by writing 

E(Ht f ,  Hi f )  = II(Z - K)I/Zntfll~ < ll(Z - K)l/~fll~ = E(f,  f ) .  

It follows that 

( ' ) llfll~ < ( c / t / / 2  + 2t E(f, f) + ~-~llfll] 
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for all t > 0. The right-hand side is a minimum for 

dCdl2t-(1+d/2) = 2 $ ( f , f )  + ~ll/Ih 
2 

and the minimum is 

1 2 1/(1+2/d) 

This yields 

with 

1 2 

B = 2c  [(2/d)1/<1+~/d) + (~/2)~-'/c'+~/~)] '+~/d 

= 2C(1 + 2/d)(1 + d/2) 2/d <_ 22+2/dc. 

2 . 3 . 5  r q a s h  i n e q u a l i t i e s  a n d  h i g h e r  e i g e n v a l u e s  

We have seen that  a Poincar~ inequality is equivalent to a lower bound on the 
spectral gap A (i.e., the smallest non-zero eigenvalue of I - K).  It is interesting 
to note tha t  Nash inequalities imply bounds on higher eigenvalues. Compare 
with [14]. 

Let (K, ~r) be a finite reversible Markov chain. Let 1 = A0 _< A1 _< . . .  _< A~-I 
be the eigenvalues of I - / (  and 

Y ( s )  = N K ( s )  = # { i  e { O , . . . , n - 1 }  : Ai _< s}, s_>0, 

be the eigenvalue counting function. Thus, N is a step function with N(s )  = 1 
for 0 < s < A1 if (K, ~r) is irreducible. It is easy to relate the function N to the 
trace of the semigroup Ht  = e - t U - K ) .  Since (K, u) is reversible, we have 

n - - I  

~(t) = E h,(x, x)~(=) = 57  ijh~/211~(x) = E e-'~' 
x i = 0  

If A~ < 1/t  then e -t)'~ ~ e -1. Hence 

N ( 1 / t )  < e~(t). 

Now, it is clear that  Theorems 2.3.1, 2.3.4 give upper bounds on r in terms of 
Nash inequalities. 

T h e o r e m  2.3.8 Let (K, 7~) be a finite reversible Markov chain. 
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1. Assume that (K,  7r) satisfies (2.3.1), that is, 

v g ~ e2(~), Vary(g)(1+2/d) <__ CE(g,g)llgli~/~ 

Then the counting funct ion N satisfies 

N ( s )  < 1 + e(dCs/2)  d/2 

for all s > O. 

2. Assume instead that (K,  7r) satisfies (2.3.3), that is, 

v g E ~.2 (Tr), 

Then 

for all s >_ 1 /T .  

1 2 

N ( s )  < e3(dCs/2) d/= 

Clearly, if M(s)  is a continuous increasing function such that N(s)  <_ M(s), 
s > 1/T,  then 

~ ---- max{s :  N ( s )  <_ i} > M - l ( i  + 1) 

for all i > M ( 1 / T )  - 1. Hence, we obtain 

Coro l l a ry  2.3.9 Let (K,  7r) be a finite reversible Markov chain. Let 1 = ~o < 
)~1 <_ . . .  < ~,~-1 be the eigenvalues of I - K .  

1. Assume that (K,  7r) satisfies (2.3.1), that is, 

v g e e=(~), v~,~(g) (~+=/d) <_ CS(g,g)llgll~/fl 

Then 
2i2/d 

)~ > e2/ddC 

for all i E 1 , . . . , n -  1. 

2. Assume instead that (K,  Tr) satisfies (2.3.3), that is, 

1 2 V gE 

Then 

~ > 

for all i > e3(dC/ (2T) )  d/2 - 1. 

2(i + 1) 2/d 

ea/ddC 
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EXAMPLE 2.3.3: Assume tha t  (K, Tr) is reversible, has spectral gap A, and 
satisfies the Nash inequality (2.3.1) with C = A/A and some d, where we think 
of A as a numerical constant  (e.g., A = 100) and d as fixed. Then, the corollary 
above says that  

X~ > cAi 2/a 

for all 0 < i < n - 1 with c -1 = e2/ddA. 

EXAMPLE 2.3.4: For the natural  graph structure on X = { - n , . . . ,  n}, we have 
shown in Example 2.3.1 tha t  the Nash inequality 

Var~r(f) 3 < 2(2n + 1)2C( f , f ) l l f l [  4 

holds. Corollary 2.3.9 gives 

j )2  

Aj _> (e2(2n + 1) 

In this case, all the eigenvalues are known. They are given by 

~j 
Aj = l - c O S 2 n + l ,  0 < j _ < 2 n .  

This compares well with our lower bound. 

EXAMPLE 2.3.5: For a square grid on X = 
(Theorem 3.3.14) that  

{0 , . . . , n}  2, we will show later 

Vary( f )  2 _~ 64(n + 1)2E(f, f)[[fn 2. 

LFrom this and corollary 2.3.9 we deduce 

i 
A~ > 

e27~(n + 1) 2 

for a l l 0  < i ~ ( n + l )  2 -  1. One can show that  this lower bound is of the 
right order of magnitude for all i, n. Indeed the eigenvalues of this chain are the 
numbers 

1 - ~ cos + cos e,k E {0,. . .  n} 
n + l  n + l  ' 

which are distributed roughly like 

g2 --k k 2 

(n + 1) 2' 
e, k e {0, . . . ,~} 

and we have 
# {(e,k) ~ {0 , . . . , ~}  2 :e2+k ~ <j}  ~-j. 
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2 . 3 . 6  N a s h  a n d  S o b o l e v  i n e q u a l i t i e s  

Nash inequalities are closely related to the better known Sobolev inequalities 
(for some fixed d > 2) 

Ill zr(f) 2 - Ih~/(~-~) < CE(f, f) ,  (2.3.4) 

Ilfll2d/(d-2) ~ C E(f, f) + ~llfl l~ �9 

Indeed, the HSlder inequality 

(2.3.5) 

2 4/d 
[Ifll~ (1+2/d) < [lfll2a/(a-2) llflh 

shows that  the Sobolev inequality (2.3.4) (resp. (2.3.5)) implies the Nash in- 
equality (2.3.1) (resp. (2.3.3)) with the same constants d,C,T.  The converse 
is also true. (2.3.1) (resp. (2.3.3)) implies (2.3.4) (resp. (2.3.5)) with the same 
d, T and a C that  differ only by a numerical multiplicative factor for large d. 
See [9]. 

We now give a complete argument  showing that (2.3.1) implies (2.3.4), in 
the spirit of [9]. The same type of argument works for (2.3.3)) implies (2.3.5). 

For any function f > 0 and any k, we set fk = ( f - 2 k ) +  A2  k where 
(t)+ = max{0, t} and t A s  = min{t, s}. Thus, fk has support in {x: f(x)  >z 2k), 
f k ( x ) = 2  k i f x E { z : f ( z ) > _ 2  k+l} a n d f k = f - 2  k o n { x : 2  k<_f_<2k+l}.  

L e m m a  2.3.10 Let K be a finite Markov chain with stationary measure r:. 
With the above notation, for any function f ,  

C(IfIk, If]k) _ 2C(f, f). 
k 

PROOF: Since C([f[, If]) <- C(f, f ) ,  we can assume that f > 0. We can also 
assume that  g ( x ,  y)~r(x) is symmetr ic  (if not use �89 y)Tr(x) + g ( y ,  x)~(y))). 
Observe that  ]fk(x) - fk(y)] < If(x) - f(y)[ for all x,y. Write 

E(f~,f~) = ~ (A(~)-fk(v))2K(x,v)~(x).  
x . y  

l(~)>l(u) 

Set 
B~ = { x : 2  k < f (x )  < 2 k+x}, 

B~- = { x :  f(x) <_ 2k}, 

B + = { ~ :  2k+1 < f ( z ) } .  

Then 

c(A, ~ )  = 
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22k E K(x,y)Tr(x)+ 
zEB+ k 
yEB~ 

_< 2 2k ~ / ( ( :~ ,v)~(x)+ 
zEB + 

uEB'~ 

= A ~ ( k ) + & ( k ) .  

~_, (/~(~) - h(y))2K(~,y)~(=) 
:~EBk,yEBk--+I 

/ ( = ) > / ( y )  

E (f(x) - f(y))2K(x,y)Ir(x) 
z E B  k ,yE,~ 
f(=)>/(~#) 

We now bound ~-~k A1 (k) and ~ k  A2 (k) separately. 

A , ( k ) =  ::, 2 2k 
k z,y ,=)>,~1 k:l(y)<2~ <I(=)/2 

For x, y fixed, let k0 be the smallest integer such that  f(y) <_ 2 k~ and kl be the 
largest integer such that  2 kl < f(x).  Then 

E 
k:/(y)__S2" </(=)/2 

k l  --1 

22k = E 4k = 1(4k' - 4k~ -< ( f ( x ) -  f(y))2. 
k = k o  

The last inequality follows from the elementary inequality 

a 2 - b  2 ~ 3 ( a - b )  2 i f a ~ 2 b ~ 0 .  

This shows that 

E Al(k) < E(f,f). 
k 

To finish the proof, note tha t  

EA:(k)=E E (f(x) - f(y))2K(x,y)Tr(2) = E(f, f). 
k k =EBk,YEX 

f ( z ) > f ( y )  

Lemma 2.3.10 is a crucial tool for the proof of the following theorem. 

T h e o r e m  2.3.11 Assume that (K, ~r) satisfies the Nash inequality (2.3.1), that 
is, 

Var=(g) (1+2/d) <_ c E ( g ,  g)llgll~/~ 

for some d > 2 and all functions g. Then 

IIg = (g )  - 112,~/(d-2) < B(d)CE(g,g) 

where B(d) = 46+2d/(d-2). 

PROOF: Fix a function g and let c denote a median of g. Consider the functions 
f•  = (g - c)• where (t)• = max{0, +t}. By definition of a median, we have 

({x:  f~(x)  = 0}) > 1/2. 
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For simplicity of notation, we set f = f+ or f_ .  For each k we define f~ = 
( f  - 2k)+ A 2 k as in the proof of Lemma 2.3.10. Applying (2.3.1) to each fk and 
setting 7rk = 7r(fk), we obtain 

[22(k_l)Tr(ifk 7r,~l ~ 2~_1)]1+2/d - < C e ( f k , f k )  [2kTr(f > 2'~)] 4/d (2.3.6) 

V s > 0, V a, 7r({h > s}) < 2~r({Ih - al >_ s/2}). (2.3.7) 

Indeed, if a < s /2  then 7r({Ih - al > s/2}) > 7r(h > s) whereas if a > s /2  then 
7r({Ih - a I > s/2}) > rr(h = 0) > 1/2. Using (2.3.6) and (2.3.7) with h = fk, 
a = 7rk we obtain 

[22(k_l)rr(f k > 2k)] t+2/d < 21+2/dce( fk ,  fk)  [2'~rr(f >_ 2k)] 4/d �9 

Now, set q = 2d/(d  - 2), bk = 2qkTr({f > 2k}) and 0 = d/(d  + 2). The last 
inequality (raised to the power 0) yields, after some algebra, 

_ ~2(1-o) 
bk+l < 23+qC~ fk)  0 ~k �9 

By HSlder's inequality 

E bk = E bk+t 
k k 

<_ 23+q+OcOg(f, f)o bk 

It follows that  

Furthermore 2/9 - 1 = 20/q and 

(2 q -  1) E b k  = E ( 2 q ( k + l )  _ 2qk)Tr({f > 2k}) 
k k 

Hence 

1 - 0  

: ~-~(2~r k __< g < 2k§ ~ Ilfll~. 
k 

Ilfll 2 ~ 2z+(3§176 _ 1)2/qCE(f, f ) .  

Observe that  
~ ({x :  f~(x) = 0}) > 1/2 

and that, for any function h > 0 such that  7r({x : h(x) = 0}) > 1/2 we have 



358 

Recall that  f = f+  or f _  with f+  = (g - c)• c a median of g. Note also that  
> 1/2 when d > 2. Adding the inequalities for ]+ and f_ we obtain 

IIg - cllq: <_ 2(ilf+ll~ + IIf-112q) _< 4s+qCZ(g,g) 

because C(f+,  f+) + C( f_ ,  f _ )  _< C(g, g). This easily implies that 

Ilg - =(g)l12  < 46+ cE(g,g) 
which is the desired inequality. The  constant 4 6+q can be improved by using a 
p-cutting, p > 1, instead of a dyadic cutting in the above argument. See [9]. 

2 . 4  D i s t a n c e s  

This section discusses the issue of choosing a distance between probability dis- 
tribution to study the convergence of finite Markov chains to their stationary 
measure. From the asymptot ic  point of view, this choice does not matter  much. 
LFrom a more quanti tat ive point of view, it does matter  sometimes but it often 
happen that  different choices lead to similar results. This is a phenomenon which 
is not yet well understood.  Many aspects of this question will not be considered 
here. 

2 . 4 . 1  N o t a t i o n  a n d  i n e q u a l i t i e s  

Let #, ~r be two probabil i ty measures on a finite set ?( (we work with a finite X' 
but most of what is going to be said holds without any particlar assumption on 
2(). We consider 7r has the reference measure. Total variation is arguably the 
most natural  distance between probabili ty measures. It is defined by 

1 
][# - ~rllTv ---- ~ n ~  I#(A) - ~r(A)I = ~ B ]#(x) - ~r(x)l. 

= E X  

To see the second equality, use ~ , ( / ~ ( x )  - ~r(x)) = 0. Note also that  

-  IITv = m a x  { I , ( / )  - : I/I < 1} 

where #(f)  = ~"~ f(x)p(x) .  A well known result in Markov chain theory relates 
total variation with the coupling technique. See, e.g., [4, 17] and the references 
therein. 

All the others metrics or metric type quantities that we will consider are 
defined in terms of the density of /z  with respect to ~r. Hence, set h = #/Tr. The 
e p distances 

lib - 111, = Ih(x) - l[P~r(x) IIh - llto~ = max Ih(x) - 11 
' s E X  

are natural choices for the analyst  and will be used throughout these notes. The 
case p = 2 is of special interest as it brings in a useful Hilbert space structure. 
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It is known to statisticians as the chi-square distance. The case p = 1 is nothing 
else that  total variation since 

]]h - 1]]1 = ~ Ih(x) - lbr(x) = ~ ]#(x) - 7r(x)I = 2]]# - ~]lwv. 
xEX xEX 

Jensen's inequality yields a clear ordering between these distances since it implies 

] l h - l l I r < _ i l h - l [ I s  for all l < r < s < o o .  

If we view (as we may) ~,~r as linear functionals # , r  : gP(~) ~ R, f -+ 
#(f) ,  ~r(f), then 

II, - ~rll~.(.)--,~ = sup ([#(f) - ~r(/)l : llfllp _< I} = Ilh - lllq 

where q is given by 1/p-I-1/q = 1 (see also Section 1.3.1). Most of the quantitative 
results described in these notes are stated in terms of the e 2 and e~ distances. 

There are at least three more quantities that  appear in the literature. The 
Kullback-Leibler separation, or entropy, is defined by 

Ent,~(h) = ~ [h(x)log h(x)]~r(x). 
xE2d 

Observe that  Ent~ (h) > 0 by Jensen inequality. The Hellinger distance is 

2 

ll.- II,, -- 5: -i ___ 

zEX xEX 

~ E X  

It is not obvious why this distance should be of particular interest. However, 
Kakutani proved the following. Consider an infinite sequence (Xi, ~ri) of prob- 
ability spaces each of which carries a second probability measure #i = hiTl'i 

which is absolutely continuous with respect to lri. Let X = I'Ii Xi, # = l ' I i  #i, 
Tr = I-Ii 7ri. Kakutani 's  theorem asserts that  # is absolutely continuous with 

respect to lr if and only if the product 1-Ii (f:v, ~ &ri) converges. 
% 

Finally Aldous and Diaconis [4] introduces the notion of separation distance 

dsep(#, ~r) = mea~{1 - h(x)} 

in connection with strong stat ionary (or uniform) stopping times. See [4, 17, 19]. 
Observe the absence of absolute value in this definition. 

The next lemma collects inequalities between the various distances intro- 
duced above. These inequalities are all well known except possibly for the strange 
looking lower bounds in (2.4.2) and (2.4.4). The only inequality that  uses the 
fact that  2( is discrete and finite is the upper bound in (2.4.1). 
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L e m m a  2.4.1 Let ~r and # = hTr be two probability measure  on a finite set X .  

1. Set ~r. = minx~r .  For 1 < r < s < oc, 

I[h - 1[[~ < Hh - llls <_ ~rl./s-1/~llh - 1H~. (2.4.1) 

(iih - 1H2 2 - {lh - 1{]~) _< I]h - Ii]l <: {lh - 1Ii2. (2.4.2) 

2. The HeUinger distance satisfies 

1 H h -  lll~ _ II#-  rrllH -< 4ll h - 1H, (2.4.3) 

and 

1 (lIh _ l[li  - Hh - 11[]) < H# - 7rIIH < [Ih - ll]g (2.4.4) 

3. The entropy satisfies 

1 1 
lib -- 1112 < Ent,~(h) < ~ (llh - 1111 + lib - 111~) �9 (2.4.5) 

3. The separation dsep(#, ~r) satisfies 

][h - 1[]1 _ dsep(#, 7r) _< [ [h -  11]~. (2.4.6) 

PROOF: The inequalities in (2.4.1) are well known (the first follows from Jensen's 
inequality). The inequali t ies in (2.4.6) are elementary. 

The upper  bound  in (2.4.5) uses 

1 2 
V u > 0 ,  ( l + u ) l o g ( l + u ) < u + s u  

to bound the positive par t  of the  entropy. The lower bound is more tricky. First ,  
observe tha t  

V u > 0 ,  3 ( u - 1 )  2 < ( 4 + 2 u ) ( u l o g ( u ) - u + l ) .  

Then take square roots  and  use Canchy-Schwarz to obtain 

31[h -  1[[12 < [14+ 2hill IIhlog(h) - h + 1111. 

Finally observe t h a t  u log(u) - u + 1 > 0 for u _> O. Hence I]hlog(h) - h + 1H1 = 
En t~( f )  and 

3Hh - I]13 _< 6 E n t , ( f )  

which gives the desired inequality.  In his Ph. D. thesis, F. Su noticed the 
complementary bound  

E n t . ( h )  < log (1 + I[h - 1I[22) �9 

Also 
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The upper bound in (2.4.3) follows from Iv -ll 2 <_ h / ~ - l l ( v ~ + l )  = lu- l l ,  
u > 0. The lower bound in (2.4.3) uses l u - l [  = [ V ~ - I [ ( ~ + I ) ,  u _> 0, Cauchy- 
Schwarz, and IIV~ + 1112 <_ 4. 

The upper bound in (2.4.4) follows from Iv ~ - 11 _< [u - 1[, u _> 0. For the 
lower bound note that  

1 V ~ - - ~ < {  l + � 8 9  for - 1 < u < 1  
- l + � 8 9 1 8 9  3 for I < u. 

It follows that  

V , u  >_-1 ,  ~ / l + u < _ l + l u - l u 2 + l l u [ 3 .  
I D  

Now, [l# - 7rllH = 2(1 - IIv~lll) = 2(1 - [IX/1 + (h - 1)111). Hence 

I1~ - -  71"tlH ~ l ( I ] h -  iII~ -IIh- iII~)). 

Finally, the upper bound in (2.4.2) is a special case of (2.4.1). The lower 
bound follows from the elementary inequality: Vu > -1 ,  lul k }u + u 2 - [u] 3. 
This ends the proof of Lemma 2.4.1. 

2 , 4 . 2  T h e  c u t o f f  p h e n o m e n o n  a n d  r e l a t e d  q u e s t i o n s  

This Section describe briefly a surprising property appearing in number of exam- 
ples of natural finite Markov chains where a careful study is possible. We refer 
the reader to [4, 17] and the more recent [18] for further details and references. 

Consider the following example of finite Markov chain. The state space 
X = {0, 1} ~ is the set of all binary vectors of length n. At each step, we pick 
a coordinate at random and flip it to its opposite. Hence, the kernel K of the 
chain is K ( x , y )  = 0 unless Ix - y] = 1 in which case K ( x , y )  = 1In.  This chain 
is symmetric, irreducible but  periodic. It has the uniform distribution ~r _= 2 -"  

~ K ~ be the associated continuous as stationary measure. Let Ht - e - t  ~ o  T., 
time chain. Then, by the Perron-Frobenius theorem H t ( x , y )  -~ 2 -'~ as t tends 
to infinity. This can be quantified very precisely. 

T h e o r e m  2.4.2 For the cont inuous  t ime chain on the hypercube {0,1}  ~ de- 
scribed above, let t,~ = �88 Then  for  any ~ > O, 

H ~ lim II (t-~)t, - 2-'~lIwv = 1 
n--+OO 

whereas 
H ~ lira II (l+~)t~ - 2-'~I]TV = 0 

In fact, a more precise description is feasible in this case. See [20, 18]. This 
theorem exhibits a typical case of the so called cutoff  phenomenon.  For n large 
enough, the graph of t --+ y ( t )  = [IH~ - 2-'~[ITV stays very close to the line y = 1 
for a long time, namely for about t,~ -= �88  Then, it falls off rapidly to 
a value close to 0. This fall-off phase is much shorter than t,~. Reference [20] 
describes the shape of the curve around the critical time t~. 
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D e f i n i t i o n  2 .4 .3  Let $- = { (X~,K~,Tr~)  : n  = 1 , 2 , . . . }  be an infinite family of 
finite chains. Let Hn,t = e - t ( z -K" )  be the corresponding continuous time chain. 

One says that jz  presents a cutoff  in total variation with critical time (t,~)~ 
if t,~ -+ co and 

1. 

and 

l im m a x i [ H  ~ , -  ' t  - lr,~llwv = 1 

l im m a x  [IH:,0+~)~. - 7r,~l[Tv = O. 
~ ---~ O o  .)f 'n 

2. Let (t,~,b,~)~ such that t,~,b,~ >_ O, to -+ co, b,~/t,~ --+ O. One says that jz 
presents a cutoff of type (t,~, b~)~ in total variation if for all real c 

l im m a x  H ~-  - -  - - T r , ~ [ [ T V = f ( c )  

with f (c)  --+ 1 when c --+ - o 0  and f (c)  --+ 0 when c --+ co. 

Clearly, 2 ~ 1. T h e  u l t ima t e  cu tof f  resul t  consists in a precise description of the 
1 logn  funct ion f .  In T h e o r e m  2.4.2 the re  is in fact  a (tn, bm)-cutoff with t,~ = ~n 

and b~ = n. See [20]. 
In pract ica l  te rms,  the  cutoff  p h e n o m e n o n  means  the following: in order to 

app rox ima te  the  s t a t i ona ry  d i s t r i bu t ion  7r,~ one should not stop the chain Hint 
before t -- t,~ and  it is essent ia l ly  useless to  run  the chain for more than  t~. I t  
seems tha t  the  cutoff  p h e n o m e n o n  is widespread  among  na tura l  examples.  See 
[4, 18]. Nevertheless  it is r a t h e r  difficult to  verify tha t  a given family of chains 
sat isfy one or the  o ther  of  the  above  two definitions. This  mot ivates  the following 
weaker  definition. 

D e f i n i t i o n  2 .4 .4  Let ~ = {(X,~, K~ ,  7r~) : n = 1, 2 , . . . }  be an infinite family of 
finite chains. Let Hn.t = e - t ( z -K")  be the corresponding continuous time chain. 
Fix l g p < oo. 

1. One says that jr presents a weak eP-cutoff with critical time (t,~)~ if t,~ --+ 
co and 

lim m a x  IIh.,t. - l llep(~,) > 0 and l im hm(l+e)t ,  - l[le,(~,) = 0. 
rL --+ O0 " ~ n  r~ ---)" O0 

2. Let (t,~, b,~)~ ~ such that t,,, b,~ >_ O, t,~ -+ co, b,~/t,~ -+ O. One says that jr 
presents a weak ~P-cutoff of type (tn, b~)~ if.for all c >__ O, 

l im m a x  H h ~ , t . + c b ~  - -  l l l t , (~.)  = f(c) 
n --+ OO ,~fr, 

with f(O) > 0 and f (c)  --+ 0 when c -+ co. 

T h e  notion of weak cutoff  ex t ends  readi ly  to  Hellinger distance or entropy. The  
advantage  of this definit ion is t h a t  it c ap tu re s  some of the spirit of the cutoff 
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phenomenon  wi thou t  requ i r ing  a too  precise unders tanding  of what  happens  a t  
relat ively small  t imes.  

Observe  t h a t  a cu tof f  of  t y p e  (t,~, b ,)~ ~ is equivalent to  a cutoff  of type  
(t,,ab,~)~ ~ with a > 0 bu t  t h a t  t ,  can  not  always be  replaced by s,, even if 
t n  "~ Sn .  

Note also t ha t  if (t,~)~ ~ a n d  ( s , ) ~  ~ are  critical t imes for a family ~" (the same  
for t,~ and  s,~) then  l i m , _ ~  t ,~/s,,  = 1. Indeed,  for any  e > 0, we must  have 
(1 + e)t~ > s~ and  (1 + e)s,~ > t,, for  n large enough. 

D e f i n i t i o n  2 .4 .5  Let  (K ,  7r) be a f in i te  irreducible Markov chain. For 1 ~ p ~ 
oo and r > O, define the p a r a m e t e r  Tp(K ,  r = Tp(r by 

Tv(r  ) = inf{ t  > 0 :  m a x  [[h~ - 1[[ v _< e} 

where Ht  = e - t ( I - K )  is the associated continuous t ime chain. 

The  next  l e m m a  shows t h a t  for  revers ib le  chains and 1 < p _< oo the  different 
Tp's cannot  be too  different .  

L e m m a  2 .4 .6  Let  (K,  lr) be a f in i te  irreducible reversible Markov chain. Then, 
for  2 ~ p ~ +cxD and r > O, we have 

T 2 ( K , e )  <_ T v ( K , r  ) <_ Too(K,r  <_ 2T2(K , r  

Furthermore,  for  1 < p < 2 and rnp = 1 + [(2 - p) / [2(p  - 1)1], 

Tp(K,e) < T2(K,~) < mpTp(K, el/~.). 

PROOF: T h e  first a s se r t ion  is e a sy  and  left as an exercise. For the  second we 
need to use the  fact  t h a t  

m a x I l h : +  . - 1 [ I  q < ( m a x [ [ h : -  lIl~ ) ( m a x I ] h :  - l[]s ) (2.4.7) 

for all u, v > 0 and  1 < q, r ,  s < + o o  re la ted  by l + l / q  = 1 / r + l / s .  Fix  1 < p < 2 
and an integer  j .  Set,  for  i = 1 , . . .  , j  - 1, Pl = P, 1 + 1/pi+l  = 1/pi  + i / p ,  and  
ui = i t / j ,  vi = t / j .  A p p l y i n g  (2.4.7) j - 1 t imes with q = Pi+l,  r = Pi, s = p, 
u = ui, v = vj ,  we get  

)' m a x  []h~ - l[Ipj < []ht~/j - l[[p . 

Now, pj = 1 /p  - ( j  - 1)(1 - 1/p) .  T h u s  p/  >_ 2 for 

j > 1 + (2 - p)/[2(p - 1)1. 

The  desired result  follows. 
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T h e o r e m  2 .4 .7  Fix 1 < p < cx~ a n d s  > O. Let jr = {(X~,K,~,r~) : n = 
1,2 , . . . }  be an infinite family of finite chains. Let Hint = e - t ( I -K. )  be the 
corresponding continuous time chain. Let )~,~ be the spectral gap of K,~ and set 
t,~ = Tp(K,~,e). Assume that 

l im Ant,~ = oo. 
~,-"1" Or 

Then the family jr  presents a weak ~-cutof f  of type (t,,, 1 /~ , )~ ' .  

PROOF: By  definition m a x x .  []h,~,t" - 1lip = e > 0. To obtain an upper  bound  
write 

IIh~,t.+s - Xll p = II(n*, ,  - 7r,~)(h~,t. - 1)I1~ 

h z * -< II ~,,.  - l l lp  IIHX, ,  - ~ - I Ip -~p  

-< ~ IIHX, ,  - ~ l l p ~ .  

By Theorem 2.1.4 

I IH, : , ,  - rr~l12-~2 < e - ' ~ " .  

Also, IIn,~,~ - r~ l l l - , 1  < 2 and IIH.*.  - r ~ l l ~ - , ~  < 2. Hence,  by  interpolation, 
(see Theo rem 1.2.8) 

IIH*,,  - r,~llp-~p < 411~2-1~Pie -sx"(1-2[1/2-1/pl). 

It follows t h a t  

IIh,~,t.+~/~. - lllp < ~411/2-1/ple-c(1-211/2-1/pl). 

This proves the desired resul t  since 1 - 211/2 - 1/p I > 0 when 1 < p < co. This 
also proves the  following auxi l l iary result. 

L e m m a  2 .4 .8  Fix 1 < p < c~. Let j r  = {(X,~, K,~, ~r,~) : n = 1, 2 , . . . }  be an 
infinite family of finite chains. Let A,~ be the spectral gap of K,~. If 

lira .~,~ Tp ( K,~ , e) --> 

for some fixed r > O, then 

,~-+~ Tp(K,~, rl) 

for all ~ > O. 

For reversible chain we ob ta in  a necessary and sufficient condition for weak e 2- 
cutoff. 

T h e o r e m  2 .4 .9  Fix ~ > O. Let .T = {(X,~, K,~, 7r,~) : n = 1 ,2 , . . . }  be an infinite 
family of reversible finite chains. Let H~,t = e - t (I-K")  be the corresponding con- 
tinuous time chain. Let A,~ be the spectral gap of K,, and set t ,  = T2(K,~, e). A 
necessary and sufficient condition for jr  to present a weak [Z-cutoff with critical 
time t,~ is that 

l im A,~t,~ = c~. (2.4.8) 
r~ -"+  OO 

Furthermore, if (2.4.8) is satisfied then 
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1. :7 z presents a weak g~-cutof f  of type (2t~, 1/A~)~'. 

2. For each 1 < p <_ oo and each 77 > O, jz presents a weak g'-cutoff of type 
(Tp(K~, ~), 1 / ~ , ) ~ .  

PROOF: We already now tha t  (2.4.8) is sufficient to have a weak e2-cutoff. 
Conversely, if (2.4.8) does not  hold there exists a > 0 and a subsequence n(i) 
such that  )~,~(i)t,~(i) <_ a. To simplify notation assume that this hold for all n. 
Let r be an eigenfunction of K~ such that  Hr = 1 and ( I - K ~ ) r  = )~r 
Then 

max [}h,~ - 1115 > [[(H~, t - 7r~)r = e -t~'". 
X n  ' - -  

If follows that ,  for any r / >  0, 

max I Ih~ , (~+,m.  - ill= > e -(l+v)t';~" > e -0+ ' )" .  

Hence 
l i ~  m a x  IIh~,( l+,)~.  - 111~ ~+ 0 

which shows that there is no weak g2-cutoff. 
To prove the assertion concerning the weak gee-cutoff simply observe that  

maxx, Ilh~,t - 111~ = m a x  IIh~,t/~ - 111~. 

Hence a weak ~2-cutoff of type  (t,~, b,~)~ is equivalent to a weak g~-cutoff of 
type (2tn, bn). 

For the last assertion use Lemmas 2.4.6 and 2.4.8 to see that (2.4.8) implies 
)%Tp(K,~) --+ oo for any fixed 7 /> 0. Then apply Theorem 2.4.7. 

The following theorem is based on strong hypotheses that are difficult to 
check. Nevertheless, it sheds some new light on the cutoff phenomenon. 

T h e o r e m  2.4.10 Fix~  > O. Let ~- = {(X,~,K,~,lrn) : n  = 1 ,2 , . . .}  be an infi- 
nite family of reversible finite chains. Let H,~,t =- e - t ( I - K " )  be the corresponding 
continuous time chain. Let An be the spectral gap of Kn and set t,~ = T2(K,~,s). 
Let a,~ be the log-Sobolev constant of (K,~,Trn). Set 

A,~ = max  {11r : ][r = 1, Knr  = (1 - A,~)r 

Assume that the following conditions are satisfied. 

( I )  t . M  -+ ~ .  

(2) inf,~ {a,~/,~,~} = cl > O. 

(3) inf,~ {A,~ e -~''t~ } = c2 > O. 

Then the family jz presents a weak gP-cutoff with critical time (t,~)r for any 
1 <_ p < oo and also in Hellinger distance. 
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PROOF: By T h e o r e m  2.4.9 cond i t ion  (1) implies a weak ~P-cutoff of  type  

(Tp(K~,  ~), A~) 

for each 1 < p < oo a n d  ~ > 0. T h e  novel ty  in Theorem 2.4.10 is t h a t  it 
covers the  case p = 1 ( and  HeUinger  dis tance)  and t h a t  the critical t ime  ( t , , )~  
d o e s  n o t  depend  on 1 < p < c~. For  the  case p > 2, it suffices to  prove t h a t  
Tp(K,~ ,  e)  < t~ + c (p ) /A ,~ .  Using  s y m m e t r y ,  (2.2.2) and hypothesis  (2), we get  

I ]h~ , t .+s .  - Ill p < HH . . . .  H2_+pllhZ,t. - 1112 _< e 

with s .  = [ l o g ( p -  i ) ] / ( 4 a = )  _< [ l o g ( p -  1 ) ] / (4c1~. ) ,  which yields the  desired 
inequality. Observe  t h a t  cond i t ion  (3) has  not  been used to t rea t  the  case 2 < 
p < c r  

We now tu rn  to  the  p r o o f  of  t he  weak  ~l-cutoff.  Since 

IIh,~,t - l l h  <_ Ilh,~,t - 11] 2 

it suffices to  prove t h a t  
l i m i n f  IIh,~,t" - llll  > 0. 

~ . - - 4 0 0  

To prove this,  we use the  lower b o u n d  in (2.4.2) and condition (3) above.  Indeed,  
for each n there  exists  a n o r m a l i z e d  eigenfunct ion r and x,~ E X,~ such t h a t  
K,~r = (1 - An)r and  [[r = r = A,~. I t  follows tha t  

IIh:,"t.+~ - 1112 = sup  {]l(H,~,t.+s - ~r,~)r } 
{1'r < 1 

k A,~ e -~"(~"+~) k c2 e -~"~. 

Also, for a,~ = (log 2) / (4a ,~) ,  we have  

h �9 

_< - l r  - 

~ e -~ , , s "  

Hence, since A,~a,~ _< [log 2]/4Cl, 

1111 > 
> 

> 

> 

][h: ,~,+~.+s - 1]1~ - ] ] h : , ~ , + ~ , + s  - 11133 

C 2 e- -2A~(a~+s)  _ 8 . 3  e-3~.s 

e . . . .  

- -  

where cs = c~2 -1/4r �9 For  each  fixed n, we now pick s = s~ = A~ 1 log(c3/(2~3)).  
Hence 

Hh,~,t~ - 1111 > Hh: , " t .+~ ,+~ .  - 1]11 > c3 /2 .  

The  weak cutoff  in Hel l inger  d i s t ance  is proved the  same way using (2.4.3) or 
(2.4.4). F inal ly  the  case 1 < p < 2 follows f rom the results obta ined for p = 2 
a n d p  = 1. 



Chapter 3 

Geometr ic  too ls  

This chapter uses adapted graph structures to study finite Markov chains. It 
shows how paths on graphs and their combinatorics can be used to prove Poincar@ 
and Nash inequalities. Isoperimetric techniques are also considered. Path tech- 
niques have been introduced by M. Jerrum and A. Sinclair in their study of a 
stochastic algorithm that counts perfect matchings in a graph. See [72]. Paths 
are also used in [79] in a somewhat different context (random walk on finitely 
generated groups). They are used in [35] to prove Poincar@ inequalities. The 
underlying idea is classical in analysis and geometry. The simplest instance of 
it is the following proof of a Poincar6 inequality for the unit interwal [0, 1]: 

/o 1/0  If(s) - m l 2 d s  <_ ~ If'(s)leds 

where m is the mean of f .  Write f(s) - f( t )  = f~ f'(u)du for any 0 <_ t < s _< 1. 
Hence, using the Cauchy-Schwarz inequality, I f ( s ) - f ( t ) l  2 _< ( s - t )  f~ [f'(u)]2du. 
It follows that 

If(s) - m[2ds -/- If(s) - f(t)12dtds 

_< ~1  ,f,(u)[2 { ~ i  ~ l ( s  - t)X~<_u<_s(u)dtds} du 

<- g [f'(u)[ 2du" 

The constant 1/8 obtained by this argument must be compared with the best 
possible constant which is 1/Tr 2. 

This chapter develops and illustrates several versions of this technique in the 
context of finite graphs. 
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3.1 Adapted edge sets 

Def in i t i on  3.1.1 Let K be an irreducible Markov chain on a finite set X .  An 
edge set A C 2 ( •  2( is say to be adapted to K if ,4 is symmetric (that is 
(x, y) E `4 ~ (y, x) E `4), (2(, `4) is connected, and 

(x, y) E .4 ~ K ( z ,  y) + K(y ,  x) > O. 

In this case we also say that the graph (X , .4 )  is adapted. 

Let K be an irreducible Markov kernel on 2( with stationary measure 7r. It is 
convenient to introduce the following notation. For any e = (x, y) E X x X, set 

df(e) = f(y) - f(x) 

and define 
1 

Q(e) = ~ (K(x ,  y)~(x)  + K(y ,  x)~(y)) .  

We will sometimes view Q as a probabili ty measure on X x X. Observe that,  
by Definition 2.1.1 and (2.1.1), the Dirichlet form 8 of (K, 7r) satisfies 

1 E(f,I)= Id/(e)12Q(e). 
eEA" x A" 

Let .4 be an adapted edge set. A path 7 in (X,.4) is a sequence of vertices 
7 = ( x 0 , . . . , x k )  such that  ( x~- l , x i )  E .4, i = 1 , . . . , k .  Equivalently, 3' can 
be viewed as a sequence of edges ~/ = ( e t , . . . , e k )  with e~ = (x,_l,x~) E A, 
i = 1 , . . . ,  k. The length of such a pa th  7 is IvI = k. Let F be the set of all paths 
y in (X,`4) which have no repeated edges (that is, such that ei # ej if i # j) .  
For each pair (x, y) E X • 2(, set 

F(x ,y)  = {7 = (Xo , . . . ,Xk )  E F : x = xo, y = xk} .  

3.2 Poincar6 inequality 

A Poincar6 inequality is an inequality of the type 

V f ,  Var,~(f) < C g ( f , f ) .  

It follows from the definition 2.1.3 of the spectral gap A that  such an inequality 
is equivalent to A > 1/C. In other  words, the smallest constant C for which the 
Poincar~ inequality above holds is 1/A. This section uses Poincar~ inequality 
and path combinatorics to bound A from below. We start with the simplest 
result of this type. 
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T h e o r e m  3.2.1 Let K be an irreducible chain with stationary measure Tr on a 
finite set X .  Let ,4 be an adapted edge set. For each (x, y) E X x X choose 
exactly one path 7(x, y) in F(x,  y). Then A > 1/A where 

A = max  [7(x,y)l~r(x)Tr(y) �9 

PROOF: For each (x ,y)  E X x X, write 

f ( y )  -- f ( x )  = 

and, using Cauchy-Schwarz, 

df(e) 

If(y)-  f(x)I 2 ~ lT(m,y)I ~ [df(e)l 2. 
e~7(=,y) 

Multiply by �89 and sum over all x, y to obtain 

1 
! E I s ( y ) -  < El- (x,y)l E �9 2 

z ,y  z , y  eET(x,y) 

The left-hand side is equal to V a r y ( f )  whereas the right-hand side becomes 

2 ~  Q(e) ~.,~: 17(x'y)lTr(x)Tr(Y) Idf(e)]2Q(e) 
"y(=,y)~* 

{1 ) 
max ~ i:,(x,v)l~(x)~(v) E(f,f). 

-r(=,y)~e 

This proves the Poincar6 inequali ty 

V I ,  Var~( / )  _< A E ( I , : )  

hence A >_ 1/A. 

EXAMPLE 3.2.1: Let X = {0, 1}", zr ---- 2 -'~ and K ( x , y )  = 0 unless I x - y ]  = 1 in 
which case K ( x ,  y) = 1/n.  Consider the obvious adapted edge set A = {(x, y) : 
Ix - Yl = 1}. To define a p a t h  7(x,  y) from x to y, view x, y as binary vectors 
and change the coordinates of x one at  a t ime from left to right to match the 
coordinates of y. These pa ths  have length at  most n. Since 1/Q(e) = n 2" we 
obtain in this case 

= n ~ 2  - "  ~ # { ( x , y ) : - ~ ( x , v ) ~ e } .  

which is bounded by 
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Hence every thing boils down to count, for each edge e E .4, how many paths 
~(x, y) use that  edge. Let e = (u, v). Since e E .4, there exists a unique i such 
tha t  ui r vi. Furthermore,  by construct ion,  if ~/(x, y) 3 e we must have 

X ~ ( X l , . . . , X i - - l , U i ~ U i + l ~ . . . , ? s  

y = ( v l , . . . , v i - l , v i ,  Y~+I,...,Y,~). 

I t  follows that  i - 1 coordinates of x and n - i coordinates of y are unknown. 
Tha t  is, # { ( x , y )  : "y(x,y) 3 e} = 2 '~-1. Hence A <_ n2/2 and Theorem 3.2.1 
yields A _> 2/n 2. The right answer is )~ = 2/n. The above computation is quite 
typical of what has to be done to use Theorem 3.2.1. Observe in particular the 
non trivial cancellation of the exponential  factors. 

EXAMPLE 3.2.2: Keep X = {0, 1} '~ and consider the following moves: x -+ ~-(x) 
where ~'(x)i = x~-i and x -+ ~(x) where a(x) = x + (1, 0 , . . . ,  0). Let K(x ,  y) = 
1/2 if y = v(x) or y = cr(x) and K ( x ,  y) = 0 otherwise. This chain has ~r = 2 -~  
as s tat ionary distribution. I t  is not reversible. Define "y(x, y) as follows. Use 
v to turn the coordinates around from right to left. Use a to ajust x~ to y~ if 
necessary as it passes in position 1. These paths  have length at most 2n. Let 
e =  (u,v) be an edge, s a y v  = a ( u ) .  Pick an i n t ege r j ,  0 _ < j _ < n - 1 .  Then, 
if we assume tha t  v as been used exact ly  j t imes before e, then x~ = ul- j  for 
j < i < n, y~ = v,~_j+~ for 1 < i < j and Yj+I = vl. Hence, there are 2 "-1  
ordered pair (x, y) such tha t  e E ~(x, y) appears  after exactly j uses of v. Since 
there are n possible values of j ,  this shows tha t  the constant A of Theorem 3.2.1 
is bounded by A ~ 4n 2 and thus A > 1/(4n2). 

EXAMPLE 3.2.3: Let again 2( = {0, 1} ~. Let  T,o" be as in the preceding example. 
Consider the chain with kernel K ( x , y )  = 1/n  if either y = TJ(X) for some 
0 _< j _< n -- 1 or y = cr(x), and K ( x ,  y) = 0 otherwise. This chain is reversible 
with respect to the uniform distribution. Wi thout  further idea, it seems difficult 
to do any thing much be t te r  than  using the same paths and the same analysis 
as in the previous example.  This  yields A < n 3 and A >_ 1/n 3. Clearly, a bet ter  
analysis is desirable in this case because we have not taken advantage of all the 
moves at our disposal. A be t te r  bound will be obtained in Section 4.2. 

EXAMPLE 3.2.4: It  is instructive to work out what  Theorem 3.2.1 says for simple 
random walk on a graph (X, .4) where .4 is a symmetr ic  set of oriented edges. 
Set d(x) = # { y  E X : (x, y) E .4} and recall tha t  the simple random walk on 
(X, .4) has kernel 

0 if (x, y) ~ .4 
K ( x ,  y) = 1/d(x) if (x, y) E .4. 

This gives a reversible chain with respect  to the measure 7r(x) -- d(x)/I,4 [. For 
each (x, y) E X 2 choose a pa th  ~(x, y) with no repeated edge. Set 

d. = maxd(x) ,  ~. -- max  I~(x,y)t, 77. - - m a x # { ( x , y )  E X 2 : 'y(x,y)  3 e}. 
x E X  x , y E X  eE.A 
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Then Theorem 3.2.1 gives ~ > 1/A with 

d~,7.~?. 
A < ].41 

The quantity 7, can be interpreted as a measure of bottle necks in the graph 
(X, ,4). The quantity 7, as an obvious interpretation as an upper bound on the 
diameter of the graph. 

We now turn to more sophisticated (but still useful) versions of Theorem 
3.2.1. 

Definit ion 3.2.2 A weight/unction w is a positive ]unction 

w : A - ~  (0, oo). 

The w-length of a path 7 in F is 

1 
w ( e )  " 

eE7 

Theorem 3.2.3 Let K be an irreducible chain with stationary measure 7r on a 
finite set X. Let `4 be an adapted edge set and w be a weight function. For each 
(x,y) ~ X • X choose exactly one path 7(x ,y)  in r(x,y).  Then ~ > 1/A(w) 
where 

A ( w ) = , e A  [ 'Q-  ~ ,,..~,~.~='~':E ]7(x,y)]~Tr(X)~r(y) . 

PROOF: Start as in the proof of Theorem 3.2.1 but introduce the weight w when 
using Cauchy-Schwarz to get 

= I~(x,y)l~ ~ Id/(e)l~w(e). 

LFrom here, complete the proof by following step by step the proof of Theorem 
3.2.1. A subtle discussion of this result can be found in [55] which also contains 
interesting examples. 

EXAMPLE 3.2.5: What is the spectral gap of the dog? (for simplicity, the dog 
below has no ears or legs or tail). 
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For a while, Diaconis and  I puzz led  over  finding the order of magni tude  of  
the  spectral  gap for simple r a n d o m  walk  on the planar  graph  made f rom two 
square grids, say of  side length  n, a t t a c h e d  together  by one of their corners. 
This example became known to  us as " the  dog".  I t  turns  out tha t  the dog 
is quite an interesting example.  Thus ,  let X be the vertex set of two n • n 
square grids { 0 , . . . ,  n} 2 and { - n , . . . ,  0} 2 a t t ached  by identifying the two corners 
o = (0, 0) 6 X so tha t  ]X] = 2(n + 1) 2 - 1. Consider the markov kernel 

K(~,y) = { 
0 if Ix - Yl > 1 1/4 iflx-yl=l 
0 if x = y is inside or x = y = 0 

1 /4  if x = y is on  the  b o u n d a r y  but  not  a corner 
1/2 if x = y is a corner.  

This is a symmetr ic  kernel wi th  un i fo rm s t a t i ona ry  measure 7r -- (2(n+ 1) 2 - 1 ) - 1  
and 1/Q(e) = 4(2(n + 1) 2 - 1) if e E A. We will refer to this example as the 
n-dog.  

We now have to choose pa ths .  T h e  g r a p h  s t ructure  on X induces a distance 
d(x, y) between vertices. Also, we have the  Eucl idean distance Ix - y[. First  we 
define paths  f rom any x E X to  o. For  definitness, we work in the square lying 
in the  first quadrant .  Let  7(x,  o) be one of  the  geodesic paths  from x to  o such 
that ,  for any z e ~/(x, o), the Euc l idean  dis tance  between z and the straight  line 
segment Ix, o] is at  mos t  1 / v ~ .  

X 

/ 
/ 

/ 
__c 

Let e = (u, v) be an edge with d(o, v) = i, d(o, u) = i + 1. We claim tha t  

# { x :  7 (x ,o )  9 e} < 4(n + 1) 2 
- i + 1  
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By symmetry, we can assume tha t  u = (ul ,  u2) with II 1 _~ il 2. This implies that  
ul _> (i + 1)/2. Let I be the vertical segment of length 2 centred at u. Set 

{~ :  ~(~, o) ~ e} = Z(e). 

If z E Z(e) then the straight line segment [o, z] is at Euclidean distance at most 
l / v / 2  from u. This implies tha t  Z(e) is contained in the half cone C(u) with 
vertex o and base I (because (ul > u2). Thus 

z(e )  c {(zl ,z~)  E { 0 , . . . , n }  2 : z~ > ul,z~ > ~2} neck).  

J 

nmmmmma |mmmBum 
N m m ~ i S l  
I ~ m m m ~  ~wmmimm 

Let e(j) be the length of the intersection of the vertical line U(j) passing through 
(j, 0) with C. Then g( j ) / j  = g(k) /k  for all j , k .  Clearly g(ul) = 3. Hence 
g(j) <_ 3j /ul .  This means that  there are at most 1 + 3j /u l  vertices in Uj n Z(e). 
Summing over all Ul _< j _< n we obtain 

3n(n + 1) 4n(n + 1) 
# Z ( e )  < n + < 

2ul -- i + 1 

which is the claimed inequality. 
Now, if x, y are any two vertices in X, we join them by going through o using 

the paths ?(x,  o), 7(Y, o) in the obvious way. This defines "l(x,y). Furthermore, 
we consider the weight function w on edges defined by w(e) = i + 1 if e is at 
graph distance i from o. Observe tha t  the length of any of the paths 7(x, y) is 
at most 

2n--1 
1 < 21og(2n+ 1). 2 

"---' i + 1  - 
0 

Also, the number of times a given edge e at distance i from o is used can be 
bounded as follows. 

#{(x, y): ~(x, y) ~ e} _< (2(n + 1) 2 - 1) x # { z :  7(z,o) ~ e} 

< 4(n + 1)2(2(n + 1) 2 - 1)/(i + 1). 

Hence, The constant A in Theorem 3.2.3 satisfies 

A 4max=,y I~((x,y]~ max {w(e )#{ (x , y )  : ~(x,y) ~ e}} 
<- 2(n 4- 1) 2 - 1 

_< 16(n + 1) 21og(2n + 1). 
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This yields A > (16(n + 1) 2 log(2n + 1)) -1. To see that  this is the right order 
of magnitude, use the test function f defined by f ( x )  = sgn(x) log(1 + d(0, x)) 
where sgn(x) is 1,0 or - 1  depending on whether the sum of the coordinates of 
x is positive 0 or negative. This function has 7r(f) = 0, 

and 

C ( f , f )  

n ( ~  + 1) [log(n + 1)] 2 Var~(f )  = [Ifl12 2 ~ 2(n + 1) 2 - 1 

2r'.--1 
1 

-< 212(n + 1) 2 - 1] E [(i + 1) A (2n - i + 1)][ log(i + 2) - log( /+  1)] 2 
i----O 

n - - 1  
1 x-" 1 < 

2 ( n + 1 )  2 - 1  ~.= i + l  

< log(n + 1) 
- 2 ( n + l )  2 - 1 "  

Hence, A < [n(n + 1) log(n + 1)] -1. Collecting the results we see that the spectral 
gap of the n-dog satifies 

1 1 
< A <  

16 (n+1)  2 1 o g ( 2 n + l )  - - n ( n + l ) l o g ( n + l ) "  

One can convince oneseff tha t  there is no choice of paths such that Theorem 
3.2.1 give the right order of magnitude. In fact the best that Theorem 3.2.1 
gives in this case is A > c /n  3. The above problem (and its solution) generalizes 
to any fixed dimension d. For any d > 3, the corresponding spectral gap satisfies 
c l (d) /n  d < A < c2(d)/n d. 

In Theorems 3.2.1, 3.2.3, exactly one path  3,(x, y) is used for each pair (x, y). 
In certain situations it is helpful to allow the use of more than one path from x 
to y. To this end we introduce the notion of flow. 

Def in i t ion  3.2.4 Let (K, 7r) be an irreducible Markov chain on a finite set X .  
Let A be an adapted edge set. A flow is non-negative function on the path set F, 

such that 

r  ~ [0,co[ 

-ter(x,u) 

T h e o r e m  3.2.5 Let K be an irreducible chain with stationary measure 7r on a 
finite set X .  Let .4 be an adapted edge set and r be a flow. Then A > 1/A(r 
where 

A(r = max I~'lr �9 
e E A  

~EF:  
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PROOF: This time, for each (x ,y)  and each 7 E F(x,y) write 

If(Y) - f(x)] 2 - Iv[ ~ [dr(e)[ 2. 
eE-y 

Then 
If(Y)- f(x)127r(x)~(Y) < ~_~ 

Complete the proof as for Theorem 3.2.1. 

I~l ~ Idf(e)12r �9 
e E ' y  

EXAMPLE 3.2.6: Consider the hypercube {0, 1} ~ with the chain K ( x , y )  = 0 
unless Ix - y[ = 1 in which case K ( x , y )  : 1In. Consider the set ~(x ,y)  of all 
geodesic paths from x to y. Define a flow r by setting 

( [22~#G(x ' y)]- i  if ~/e ~(x, y) 
r = 0 otherwise. 

Then A(r = maxe A(r e) where 

A(r e) = n2 ~ ~ 17[r 
~' E [ ' :  

Using the symmetries of the hypercube, we observe that A(r e) does not depend 
on e. Slimming over the n2 '~ oriented edges yields 

A(r = ~ ~ Hr  
e e l 4  7 E r :  

-,[De 

= ~ 171~r S n 2. 
~y 

This example generalizes as follows. 

Corol lary 3.2.6 Assume that there is a group G which acts on X and such that 

. (g=)  = ~(~), Q(g~,gy)  = Q(~,y) .  

Let A be an adapted edge set such that (x ,y)  E A ~ (gx, gy) E A. Let A = 
Ul Ai,  be the partition of .A into transitive classes for this action. Then X>_ 1/A 
where 

A = m a x  a ( z ,  y ) 2 ~ r ( z ) ~ r ( y )  . 
l < i < k  IA~[Qi =,y 

Here [A,[ = ~Ai,  Qi = Q(ei) with ei E .A~, and d(x,y) is the graph distance 
between x and y. 
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PnOOF: Consider the set G(x, y) of all geodesic paths from x to y. Define a flow 
r by setting 

r = { ~r(x)lr(y)/#G(X,o y) otherwise.if 7 E G(x, y) 

Then A(r = max~ A(r e) where 

A(r e) -- 
1 

Q(~) ~ I~,1r 
~'EF: 

By hypothesis, A(r = Ai(r does not depend on ei E A~. Indeed, if g7 
denote the image of the path ~, under the action of g E G, we have [g'r[ = [7[, 
r = r Summing for each i = 1 , . . . ,  k over all the oriented edges in A~, 
we obtain 

A(r el) 
1 

- I~IQ, ~ ~ I~'10(~') 
eE.A~ ~ E r :  -r~e 

1 

eE.,d.i x , y  ~Eg(=,~,):  
"y~e 

< 

d(x, y)Tr(xfir(y) 
#G(z,y) 

1 IAdQ~ ~ Ni(x, y)d(x, y)~r(x)lr(y) 
~z~y 

where 
N~(x,y) = m a x  # { e  ~ A~  : ~ ~ e } .  

"rEg(z,y) 

That  is, Ni(x,y) is the maximal number of edges of type i used in a geodesic 
path from x to y. In particular, N~(x,y) < d(x,y) and the announced result 
follows. 

EXAMPLE 3.2.7: Let ?d be the set of all k-subsets of a set with n elements. 
Assume k < n/2. Consider the graph with vertex set 2r and an edge from x to 
y if # (x  N y) = k - 2. This is a regular graph with degree k(n - k). The simple 
random walk on this graph has kernel 

K(x, y) = { 1/[k(no - k)] otherwiseif # ( x  N y) = k - 2 

and stationary measure lr - (~ ) -1 .  It is clear that  the symmetric group S,, acts 
transitively on the edge set of this graph and preserves K and 7r. Here there 
is only one class of edges, I.A[ = (~) n(n - k), Q = [A[ -1. Therefore Corollary 
3.2.6 yields A _> 1/A with 

A -  IAIq =,y 
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Hence 

_ I k ( ) ,  
k 

l 

k Vk' (k 1) 
k) k ( n  - 

n ~ >  
- k ( n  - k ) ~ "  

Here we have used the fact tha t  the number  of pair (x, y) with d(z, y) = ~ is 

( ~ )  " " ,  , ( '~)-k)to obtain the second inequality. The true value is t l / [ k ( n -  k)]. 

See [34]. 

EXAMPLE 3.2.8: Let X be the set of all n-subsets of {0 , . . . ,  2n - 1}. Consider 
the graph with vertex set A" and an edge from x to y if # ( x  n y) = n - 2 and 
0 E x e y where x ~ y = x U y \ x n y is the symmetric  difference of x and p. 
This is a regular graph with degree n. The  simple random walk on this graph 
has kernel 

1 / n  i f # ( x n y ) = n - 2 a n d 0 6 x G y  
K ( x ,  y) = 0 otherwise 

and stat ionary measure rr = (2~] -1  This  process can be described informally 
as follows: Let x be subset of { 0 , . . . , 2 n  - 1} having n elements. If 0 �9 x, 
pick an element a uniformly at  r andom  in the complement of x and move to 
y = (x \ {0}) U {a}, tha t  is, replace 0 by a. If  0 • x, pick an element a uniformly 
at random in x and move to y = (x \ {a}) U {0}, that  is, replace a by 0. 

It  is clear that  the symmetr ic  group $2,~-I which fixes 0 and acts on {1 , . . . ,  2 n -  
1} also acts on this graph and preserves K and 7r. This action is not transitive 
on edges. There are two t ransi t ive classes ,41, ,45 of edges depending on whether, 
for an edge (x, y), 0 �9 x or 0 �9 y. Clearly 

,,41, = ,,42, = ( 2 : )  n, Ql  = Q2 = , ,4 , - '  = (2,,41,) -1. 

If x and y differ by exact ly s elements,  the distance between x and y is 2s if 
0 r x @ y and 2e - 1 if 0 �9 x @ y. Using this and a computation similar to the 
one in Example  3.2.7, we see tha t  the constant  A in Corollary 3.2.6 is bounded 
by 

1 
d = 1,411Q1 E d ( x ' Y ) 2 r c ( x ) l r ( Y )  

x , y  
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- 

= 8n 2" 

Hence A _> 1/(8n2). This can be slightly improved if we use the N~(x,y)'s 
introduced in the proof of Corollary 3.2.6. Indeed, this proof shows that  A _> 1/A' 
with 

A ' = m a x { l ~ - ~ N ~ ( x , y ) d ( x , y ) T r ( x ) T r ( y ) }  

where N~(x,y) is the maximal number of edges of type i used in any geodesic 
path from x to y. In the present case, if x @ y = [, then the distance between x 
and y is atmost 2g with atmost  [ edges of each of the two types. Hence, A' < 4n 2 
and A _> 1/(4n2). The true order of magnitude is 1/n. See the end of Section 
4.2. 

Coro l l a ry  3.2.7 Assume that X = G is a finite group with generating set S = 
{gl , . . . ,gs} .  Set K ( z , y )  = [ S [ - 1 1 s ( x - l y ) ,  7r =_ 1/[G I. Then 

1 
A(K) _> 2lSlD------ ~ 

where D is the diameter of the Cayley graph (G, S U S- I ) .  If  S is symmetric, 
i.e., S = S -1, then 

1 
A(K) _> iSID---- ~. 

PROOF: The action of the group G on its itself by left translation preserves K 
and zr. Hence it also preserves Q. We set 

A : : x C,s sus-1}. 
There are at most s = 2[Sl classes of oriented edges (corresponding to the distinct 
elements of S U S -1) and each class contains at least [G[ distinct edges. If S is 
symmetric (that is g E S =~ g-1 E S) then 1/Q(e) = [SI[G [ whereas if S is not 
symmetric, [S[[G I <_ 1/Q(e)  < 2IS[IG I. The results now follow from Corollary 
3.2.6. Slightly better bounds are derived in [24]. 

Coro l l a ry  3.2.8 Assume that X = G is a finite group with generating set S = 
{gl , . . . ,gs} .  Set g ( x , y )  = [ S [ - l l s ( x - l y ) ,  7r - 1/IGI. Assume that there is 
a subgroup H of the group of automorphisms of G which preserves S and acts 
transitively on S. Then 

1 
A(K) > 2D 2 

where D is the diameter of the Cayley graph (G, S U S- I ) .  If  S is symmetric, 
i.e., S = S -1, or if H acts transitively on S U S - I ,  then 

1 
A(K) _> 0 2 .  

These results apply in particular when S is a conjugacy class. 
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PROOF: Let ei = (x~,xis~) E .4, xi E G, si E S U S -1, i = 1,2 be two edges. 
If sl ,s2 E S, there exists a E H such that  ~r(sl) = s2. Set a(xl)  = Yl. Then 
z --+ x2y~ lc ( z )  is an automorphism of G which send xl to x2 and XlSl to 
x2s2. A similar reasoning applies if s l ,  s2 E S -1. Hence there are atmost two 
transitive classes of edges. If there  axe two classes, (x, xs) ~ (x, xs  -1) establishes 
a bijection between them. Hence [.411 = I.421 = ],41/2. Hence the desired results 
follow from Corollary 3.2.6. 

EXAMPLE 3.2.9: Let X = S,~ be the symmetric group on n objects. Let 
K ( x , y )  = 0 unless y = xai  with ai = (1,i)  and i = {2 , . . . , n} ,  in which case 
K ( x ,  y) = 1/(n - 1). Decomposing any permutat ion 8 in to disjoint cycles shows 
that  8 is a product of at most n transpositions. Further more, any transposition 
(i, j )  can b e written as (i, j )  = (1, i) (1, j )  (1, i). Hence any permutation is a prod- 
uct of at most 3n ai 's  and Corollary 3.2.7 yields A >_ 9n 3. However, the subgroup 
S~_t(1) C S~ of the permutat ions  tha t  fixe 1 acts by conjugaison on S~. Set 
r : x - + h x h  -1, h E  S~_1(1) a n d H  = {r : S ~ - + S ~ :  h E S s _ l ( 1 ) } .  This 
group of automorphisms of S~ acts transit ively on S = {ai : i E {2 , . . . , n}} .  
Indeed, for 2 < i , j  <_ n, h = ( i , j )  E S,~_I(1) satisfies eh(ai)  = Crj. Hence 
Corollary 3.2.8 gives the improved bound A > 9n 2. The right answer is that  
A = 1/n  by Fourier analysis [42]. 

To conclude this section we observe tha t  there is no reason why we should 
choose between using a weight function as in Theorem 3.2.3 or using a flow as 
in Theorem 3.2.5. Furthermore we can consider more general weight functions 

w : r x A --+ (0, co) 

where the weight w(3', e) of an edge also depends on which path 7 we are con- 
sidering. Again, we set [7[~ = ~ e - r  w(7, e) - I .  Then we have 

T h e o r e m  3.2.9 Let K be an irreducible chain with stationary measure ~r on a 
finite set X .  Let .4 be an adapted edge set, w a generalized weight function and 
r a flow. Then A > 1 /A(w,  r where 

} A ( w , r  = max w(7, e) l~Lr  �9 
eE.A 

3.3 Isoperimetry 

3 . 3 . 1  I s o p e r i m e t r y  a n d  s p e c t r a l  g a p  

It is well known that  spectral gap bounds can be obtained through isoperimet- 
ric inequalities via the so-called Cheeger's inequality introduced in a different 
con te~  in Cheeger [12]. See Alon [5], Alon and Milman [6], Sinclair [71, 72], 
Diaconis and Stroock [35], Kannan  [56], and the earlier references given there. 
See also [58]. This section presents this technique. It emphasizes the fact that  
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isoperimetric inequalities are simply s 1 version of Poincar~ inequalities. It follows 
that  in most circumstances it is possible and preferable to work directly with 
Poincar6 inequalities if the ult imate goal is to bound the spectral gap. Diaconis 
and Stroock [35] compare bounds using Theorems 3.2.1, 3.2.3, and bounds using 
Cheeger's inequality. They find that ,  most of the time, bounds using Cheeger's 
inequality can be tightned by appealing directly to a Poincar~ inequality. 

Def in i t ion  3.3.1 The "boundary" OA of a set A C X is the set 

O A = { e - ~ ( x , y )  E X •  x E A ,  y E A  c o r x E A  c , y E A } .  

Thus, the boundary is the set of all pairs connecting A and A c. 
Given a Markov chain (K, lr), the measure of the boundary OA of A C X is 

1 
Q(OA) = ~ E (K(x ,  y)Tr(x) + K(y,  x)~r(y)). 

x E A , y E A  c 

The "boundary" OA is a rather large boundary  and does not depend on the chain 
(K, ~r) under consideration. However, only the portion of OA that has positive 
Q-measure will be of interest to us so that  we could as well have required that  
the edges in OA satisfy Q(e) > O. 

Def in i t ion  3.3.2 The isoperimetric constant of the chain (K,~r) is defined by 

I = I(K,~r) = min ~Q(0A) ~ (3.3.1) 
1 j ~(A)<~l/2 

Let us specialize this definition to the case where (K, lr) is the simple random 
walk on an r-regular graph (2(, A). Then, K(x ,  y) = 1/r if x, y are neighbors and 
7r(x) _= 1/IX I. Hence Q(e) = 1/(rIXI) if e E A. Define the geometric boundary 
of a set A to be 

O,A = {(x,y) e A :  x E A,y  E AC}. 

Then 

L e m m a  3.3.3 

I = min Q(OA) 2 min 
Acz: # A  J ACX: ~ r ~A'~P~f/2 . ( A ) < 1 1 2  

The constant I satisfies 

I ---- min ~" ~-']~e IdS(e)lP(e) 

Here the minimum is over all non-constant fonctions ]. 

It is well known and not too hard to prove that  

; r  x 
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if and only if s0 satisfies 

7r(f > C~o) < 1/2 and 7r(f < a0) _< 1/2 

i.e., if and only if ao is a median. 

PROOF: Let J be the right-hand side in the equality above. To prove that  I _> J 
it is enough to take f -- 1A in the definition of J.  Indeed, 

IdlA(e)lQ(e) = Q(OA), ~ 1A(X)Tr(X ) = lr(A). 
e x 

We turn to the proof of J > I .  For any non-negative function f ,  set Ft = { f  >_ t} 
and f t  = 1g,. Then observe t ha t  f ( x )  = f o  f t (x)dt ,  

fO ~ 
7r(f) = 7r(Ft)dt 

and 

/oo ~ ,  Idy(e)lQ(e) = Q(OFt)dt. (3.3.2) 
e 

This is a discrete version of the so-called co-area formula of geometric measure 
theory. The proof is simple. "Write 

Idf(e)lQ(e) : 2 ~ (f(y)-f(x))Q(e) 
e e = ( z , U )  

I ( u ) > f ( = )  

= 2 E  
e=(z,y) 

f ( y ) > I ( = )  

= 2 Z 
e = ( z , y )  

Y ( y ) > _ t > I ( = )  

= Q(OFt)dt. 

fff (U) Q(e)dt 
(=) 

Q(e)dt 

Given a function f ,  let c~ be such tha t  rr(f > o~) < 1/2, 7r(f < a) < 1/2 and 
set f+ = ( f - c ~ ) y 0 ,  f_  --- --[(f  -- c~) A 0]. Then, f + + ] _  = ] f - ~ l  and 
Idf(e)l = Idf+(e)l + Idf_(e)l. Setting F+,t = {x : f+(x) >_ t}, using (3.3.2) and 
the definition of I ,  we get 

~_, Idf(e)lQ(e) 
e 

= ~_~ Idf+(e)lQ(e) + ~_, Idf-(e)lQ(e) 
e e 

E /o = Q(OF+,t)dt + Q(OF_,t)dt 

>_ i (~(F+,,I + ~(F-,,llat 
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= z '~ ( f+ ( : , : )+ f_ (= ) )~ (= )  

= z ~ If(=) - ~1~(=). 

This proves that J > I. 

There is an alternative notion of isoperimetric constant that is sometimes 
used in the literature. 

Def in i t ion  3.3.4 Define the isoperimetric constant I' of the chain (K, ~r) by 

I '=  I ' (K,  ~-)= rain { Q(aA) ~ (3.3.3) 
ACX 27r(A)(1-Tr(A))J"  

Observe that I /2 ~ I' < I. 

L e m m a  3.3.5 The constant I' is also given by 

I '  = min { )-'~ [df(e)[Q(e) } 

where the minimum is taken over all non-constant functions f .  

PROOF: Setting f = 1A in the ratio appearing above shows that the left-hand 
side is not smaller than the right-hand side. To prove the converse, set f+ = fV0, 
and Ft = {x : f+(x) >_ t}. As in the proof of Lemma 3.3.3, we obtain 

/? ~ [df+(e)lQ(e) >_ 2_r' 7r(F~)(1 - rr(F~))dt. 
e 

Now, 

2~r(Ft)(1 - ~'(Ft)) = ~ I1F,(=) -- ~'(1F,)l~r(=) 
x 

= max E 1F, (x) g(xfir(=). 
g ; ~ ( g ) = O  

miner [g - - c , [~  1 2: 

Here, we have used the fact that ,  for any function u, 

lu (=)  - ~ ' (~) l~ ' (x )  = m a x  ~ ( = ) g ( = ) ~ ' ( = ) .  
g ; ~ r ( g ) = O  

x rninc~ [ g - - a l _ < l  

See [68]. Thus, for any g satifying 7r(g) = 0 and min~ [g - a[ _< 1, 

(/o ) ~ldf+(e) lQ(e)  >_ I'~-~ 1F,(x)dt g(x)Tr(x) 

> s' ~ f+(~lg(=)~(x) .  
~g 
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The same reasoning applies to f _  = - [ f  A 0] so that,  for all g as above, 

Idf-(e)lQ(e) _> I '~ '  S_(x)g(x)~(z). 
e 

Adding the two inequalities, and taking the supremum over all allowable g, we 
get 

~'~. i~S(e)lO(e) >__ z' ~-] IS(x)-  ~(S)l~(x) 
e 

which is the desired inequality. 
Lemmas 3.3.3 and 3.3.5 shows tha t  the argument used in the proof of Theo- 

rem 3.2.1 can be used to bound  I and 11 from below. 

T h e o r e m  3.3.6 Let K be an irreducible chain with stationary measure 7r on a 
finite set X .  Let ,4 be an adapted edge set. For each (x ,y)  �9 X x X choose 
exactly one path 7(x, y) in F(x,  y). Then I > I '  >_ 1 /B  where 

/ 1 } 
B = m a x  E r(x)~r(y) . 

-r(z.u)~e 

PROOF: For each (x ,y)  �9 X x X ,  write f ( y )  - f ( x )  = ~ee~(=,v)dr(e) and 

I/(v) - S(~)l ___ ~] id:(e)l. 
~e'~(=,y) 

Multiply by lr(x)lr(y) and sum over all x, y to obtain 

�9 , y  x,y eE~(x,y) 

This yields 

]fix) - ~-(f)l~-(x) < B ~ ]df(e)lQ(e) 
e 

which implies the desired conclusion. There  is also a version of this result using 
flows as in Theorem 3.2.5. 

L e m m a  3.3.7 ( C h e e g e r ' s  i n e q u a l i t y )  The spectral gap A and the isoperimet- 
tic constant I,  I '  defined at (3.3.1), (3.3.3) are related by 

12 1'2 < < A < I '  < I .  
8 - 8 

Compare with [35], Section 3.C. There,  it is proved by a slightly different argu- 
ment that h2/2 < A < 2 h w h e r e  h = I / 2 .  This is the same as I2/8 < A < I.  
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PROOF: For the uppe r  b o u n d  use  the  tes t  funct ions f = 1A in the definition of 
A. For the lower bound,  a p p l y  

~ Id/(e)lQ(e) > Z m~. ~ IS(x)- ~l~(=) 

to  the  function ] = Ig-cl2sgn(g-c) where  g is an a rb i t r a ry  function and c = c(g) 
is a median  of g so t h a t  ~-~.= I f ( x )  - a l ~ ( x  ) is m i n i m u m  for a = O. Then,  for 
e = ( z ,  y ) ,  

Idf (e) l  < I d g ( e ) l ( I g ( x )  - el + Ig(Y) - cl) 

because la 2 - b21 = la - bl( lal  + lbl) if  ab > 0 and  a ~ + b 2 < la - bl(lal + Ibl) if  
ab < 0. Hence 

1 4 ( e ) l Q ( e )  < ~ tdg (e ) l ( lg (x )  - cl + Ig(Y) - c l )@(e)  

2 ~ ' ~ ( I g ( = )  - cl 2 + Ig(y)  - c l~)~(~ : )K(~: ,y )  
\ X , y  

= (se(g ,g) )  ~/~ ~ Ig(x) - c l~(~)  

Hence 

and  

I ~  Ig(x) - 612~(~) 
~g 

= z mim EIS(x)--I:~(x) 

<- E Idf(e)lQ(e) 
e 

I2Var~(g)  -< I2 E [g(x) - c]2~r(x) _< 8E(g,g) .  

for all funct ions g. This  proves  the  desired lower bound.  

1/2 

EXAMPLE 3.3.1:  Let  X = { 0 , . . .  , n}  2 be  the  ver tex  set of a square grid of side 
n. Hence, the  edge set  .4 is g iven  by  .4 = {(x,y) E X 2 : Ix -y l  : 1} where Ix -y l  
denote  ei ther the  Eucl id ian  d i s t ance  or s imply  ~'~ Ixi - Yd (it does not  m a t t e r  
which). Define K(x,y)  to  be  zero if Ix - y[ > 1, K(x,y)  -- 1/4 ff I x -  y[ = 1, 
and  K(x, x) = 0, 1 /4  or  1 /2  d e p e n d i n g  on whe ther  x is interior, on a side, or a 
corner of 2(. T h e  un i form d i s t r ibu t ion  T~ -- 1/(n + I) 2 is the reversible measure  
of K .  To have a more  geome t r i c  i n t e rp re t a t i on  of the boundary,  we view each 
ver tex  in X as the  center  of  a un i t  square  as in the  figure below. 
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Then, for any subset A C X, ~r(A) is proportional to the surface of those unit 
squares with center in A. Call A the union of those squares (viewed as a subset 
of the plane). Now Q(OA) is proport ional  to the length of the interior part  of 
the boundary of A. It is not hard  to see that  pushing all squares in each column 
down to the bot tom leads to a set A -L with the same area and smaller boundary. 
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4 

q 

4 

q 
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t! 

Similarly, we can push things left. Then  consider the upper left most unit square. 
It is easy to see that  moving it down to the left bot tom most free space does 
not increase the boundary. Repeat ing this operation as many times as possible 
shows that,  given a number N of unit squares, the smallest boundary is obtained 
for the set formed with [N/(n  + 1)] bo t tom raws and the N -  (n + 1)[N/(n + 1)] 
left most squares of the ([N/(n  + 1)] + 1) th raw. Hence, we have 

I N't-1 i f # A = N < n + l  
Q(OA) _ ~ 2  if n + 1 _< # A  = N and # A  does not divide n + 1 
7r(A) 2-~1 if # A  = N = k(n + 1). 

4 N  

T h e o r e m  3.3.8 For the natural walk on the square grid X = { 0 , . . . , n }  2 the 
isoperirnetric constants I ,  I '  are given by 

{ ' { ' I = i / n  + 1 is  e v e n  r = + 1 is  e v e .  

i/  n + l is odd. 2~(1+(,~+1)-=) if n + l is odd. 

Using Cheeger's inequality yields 

I 
A> 

- 32(n + 1) 2. 
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This is of the right order of magnitude. 

EXAMPLE 3.3.2: For comparison, consider the example of the "n-dog". That 
is, two square grids as above with one corner o identified. In this case, it is clear 
that the ratio Q(OA)/1r(A) (with lr(A) < 1/2) is smallest for A one of the two 
squares minus o. Hence 

1 
I(n-dog) = 

+ 1)5 _ 11  

In this case Cheeger's inequality yields 

1 
A(n-dog) >_ 

32(n + 1) 4. 

This is far off from the right order of magnitude 1/(n  2 logn) which was found 
using Theorem 3.2.3. 

The proof of Theorem 3.3.8 works as well in higher dimension and for rect- 
angular boxes. 

Theorem 3.3.9 For the natural walk on the parallelepiped 

x = { 0 , . . . , n l }  •  • { 0 , . .  

with nl = maxn l ,  the isoperimetric constants I, I '  satisfy 

1 
I > I ' >  

- d ( n l  + 1)" 

In this case, Cheeger's inequality yields a bound which is off by a factor of 1/d. 

The above examples must not lead the reader to believe that, generaly speak- 
ing, isoperimetric inequalities are easy to prove or at least easier to prove than 
Poincar~ inequalities. It is the case in some examples as the ones above whose 
geometry is really simple. There are other examples where the spectral gap 
is known exactly (e.g., by using Fourier analysis) but where even the order of 
magnitude of the isoperimetric constant ! is not known. One such example is 
provided by the walk on the symmetric group S,~ with K(x ,  y) = 2 /n (n  - 1) 
if x and y differ by a transposition and K ( x ,  y) = 0 otherwise. For this walk 
A = 2/ (n  - 1) and, by Cheeger's inequality, 2/ (n  - 1) < I < 4 / (n  - 1) 1/2. 

3 .3 .2  I s o p e r i m e t r y  a n d  N a s h  i n e q u a l i t i e s  

The goal of this section is to prove the following result. 

Theorem 3.3.10 Assume that (K, Tr) satisfies 

7r(A) (d-1)/d <_ S (Q(OA)  + R~r(A))  (3.3.4) 
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for all A C 2( and some constants d > 1, S, R > O. Then 

and 
1 2 

PROOF: Since ]dlgl(e)] <_ ]dg(e)l it suffices to prove the result for g > O. Write 
g = f o  gtdt where gt = l a , ,  Gt -- {g _> t}. and set q = d/(d - 1). Then 

/o /o llgllq < llg~ll~dt = 7r(Gt)11qdt 

1 . G  \ 

The first inequality uses Minkowski's inequality. The second inequality uses 
(3.3.4). The last inequality uses the co-area formula (3.3.2). This proves (3.3.5). 
It is easy to see that  (3.3.5) is in fact equivalent to (3.3.4) (take g = IA). 

To prove (3.3.6), we observe tha t  

Idg2(e)lQ(e) <_ [8E(g,g)]l/2llgl]2. 
e 

Indeed, 

Zldg2(e) lQ(e)  = ~ [dg(e)llg(x) + g(y)lQ(e) 
e e=(=,y) 

2 }--']~(Ig(x)l 2 + Ig(y)12)~-(~c)g(=, y) 
=,Y 

Thus, (3.3.5) applied to g 5 yields 

[]g,,2q <_ S ([8E(g.g)]l/2[,g[,, + 1,,g,,~) 

with q = d/(d - 1). The HSlder inequality 

I/(l+d) d/(l+d) 
llgll~-< g ~ g ~q 
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and the last inequality let us bound ]lg]12 by 

We raise this to the power 2(1 + d)/d and divide by [Igl[2 to get 

1 

This yields the desired result. 
There is a companion result related to Theorem 2.3.1 and Nash inequalities 

of type (2.3.1) versus (2.3.3). 

T h e o r e m  3.3.11 Assume that (K, ~r) satisfies 

~r(A) ("-1)/~ < SQ(OA) (3.3.7) 

for all A C X such that r(A) <_ 1/2. Then 

V g E g2(rr), Var,(g) (1+2/d) <_ 8S2s 

Before proving this theorem, let us introduce the isoperimetric constant associ- 
ated with inequality (3.3.7). 

The d-dimensional isoperimetric constant of a finite chain Def in i t ion  3 .3 .12  
(K, ~r) is defined by 

Id = Ia(K,~r) = rain Q(aA) 
ACX: 7r(A)l/q 

~{A)_<l/2 

where q = d / ( d -  1). 

Observe that I > Id with I the isoperimetric constant defined at (3.3.1) (in fact 
I >_ 21~did). It may be helpful to specialize this definition to the case where 
(K, rr) is the simple random walk on a r-regular connected symmetric graph 
(X, A). Then Q(e) = 1/]A 1 = 1/(r[X]), rr - 1~IX] and 

2 #O.A 
Id -- - -  min 

rlXll /d Ac~: [#A]l/q 

where 0 .A = {(x, y) e A : x e A ,  y • A } .  

L e m m a  3.3.13 The isoperimetric constant Id(K, rr) is also given by 

{ Y ~  ,df(e),Q(e) } 
Ig(K, Tr) - - in f  ~ f - - ~  : f non-constant 

where q = d/(d - 1) and c(f) denote the smallest median of f . 
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PROOF: For f = 1A with 7r(A) _ 
Hence 

It follows that  

1/2, c(f) -- 0 is the smallest median of f .  

~ [df(e)lQ(e ) Q(OA) 
Il l  - c ( / ) l lq  7r(A) 1/q 

( ~,~ H.f~[df(e)[Q(e) j < zd(g,-) 

To prove the converse, fix a function f and let e be such that ~r(f > c) _< 1/2, 
~r(f < e) _< 1/2. Set f+  = ( f - c ) V 0 ,  f_  = - [ ( f - c ) A 0 ] .  Then f + + f _  = i f - e l  
and [df(e)[ = [df+(e)[+[df_(e)[. Setting F• = {x:  f• _> t} and using (3.3.2) 
we obtain 

[df(e)[Q(e) 
e 

Now 

>_ ~ [df+(e)lQ(e) § ~ Idf-(e)lQ(e) 
e e 

/o /o = Q(OF+.t)dt + Q(c3F_,t)dt 

/? >_ Id (zr(F+,~) 1/q + zc(F_,t) I/q) dt. 

~(FH, , )  I/q = llXt~.,l lq = m a x  <lF~=.=,g> 
IIgH~<_t 

where 1 / r  § 1/q = 1. Hence, for any g such that  Ilgll~ <- 1, 

~_~ldf(e)lQ(e) >_ h ( O F + . , , g ) + ( l ~ "  . . . .  g)) 
e 

= ~rd ( ( / + ,  g) + ( / - ,  g) )  

= h( l f - c l ,g ) .  

Taking the supremum over all g with Jig[l, -< 1 we get 

[df(e)lQ(e) >_ Idllf - cllq. (3.3.8) 
e 

The desired inequality follows. Observe tha t  in (3.3.8) c is a median of f .  

PROOF OF THEOREM 3.3.11: Fix g and set f = sgn(g - c)[g - c[ 2 where c is a 
median of g, hence 0 is a median of f .  The hypothesis of Theorem 3.3.11 implies 
that  l,i >_ 1/S. Inequality (3.3.8) then shows that  

IIg - e l l ~  = I l f l l~ _< s ~ - ~  [df(e)lQ(e)l. 
e 

As in the proof of Lemma 3.3.7 we have 

I~f(e)lQ(e) <_ [8e(g,g)]l/2llg - ell2. 
e 
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Hence 
IIg - cll~q _< [ 8 s  2 E(g,  g ) ] ~ / 2 1 1 g  - c112. 

Now, the HSlder inequality [Ihll2 ___ Ilhll~/(X+d)llhll~(X+d) yields 

IIg - c112 < ( [8S  2 E(f, f)]l/211g - c112) d/z(l+d) IIg - cll~J (~+d). 

Thus 

IIg - r cl+2/d) _ 8 s 2 c ( f ,  f ) l l g  - cll~/d- 

Since c is a median of 9, it follows that  

Var~(g) 1+2/d < 8S 2 E(f ,  f)llgll~/a 
This is the desired result. 

EXAMPLE 3.3.3: Consider a square grid X = {0 , . . .  ,n} 2 as in Theorem 3.3.8. 
The argument developed for Theorem 3.3.8 also yields the following result. 

T h e o r e m  3.3 .14 For the natural walk on the square grid X = { 0 , . . . , n }  2 the 
isoperimetric constant I2 (i.e., d = 2) is given by 

1 i f n + l  is even 

/2 = ('~+2)1/~ if n + 1 is odd. 23/2nl/2(nq-1) 

By Theorem 3.3.11 it follows that, for all f e ~2(7r), 

Var,~(f) 2 _ 64(n + 1)2g(f,  f)]lfl[x 2. 

By Theorem 2.3.2 this yields 

IIh~ - 1112 < rain {23/2(n  + 1)lt~/~,e-t'/64(~+l):l+'12}. 
This is a very good bound which is of the right order of magnitude for  all t > 0. 

EXAMPLE 3.3.4: We can also compute /d for a paralellepiped in d-dimensions. 

T h e o r e m  3.3.15 For the natural walk on the parallelepiped 

x = { o , . . . , , ~ 1 }  • 2 1 5  { o , . . . , n d }  

with ni < nl ,  the isoperimetric constant Id satisfies 

1 
Id > d21_l/d(nl + 1) 

with equality if nl + 1 is even. It follows that 

Var~r(f) l+2/d ~ 822(1-11d) d 2 (nl + 1) 2 g(f ,  f)ilfi[~/a. 
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In [28] a somewhat better Nash inequality 

Ilfll~ +2/a < 64 d (n + 1) 2 E(f ,  f )  + d(n + 1) 2 Ilfll~ II/[1~/a 

is proved (in the case nl . . . . .  n d =  n) by a different argument. 

EXAMPLE 3.3.5: We now return to the "n-dog' .  The Nash inequality in Theo- 
rem 3.3.14 yields 

Ilfll~ _< ( 64 (n+  1)2s 1/2 +r r ( f )  2 

l ll/ll~)llfllQ x/2 < (\64(n + 1) 2 ( \ s  64 (n+  1) z 

for all functions f on a square grid {0 , . . . ,  n} 2. Now the n-dog is simply two 
square grids with one corner in common. Hence, applying the above inequality on 
each square grid, we obtain (the constant factor between the ,miform distribution 
on one grid and the uniform distribution on the n-dog cancel) 

( 1 1)2"fll~)llfll2" II/114 < 128(n + 1) 2 s  f )  + 32(n + 

The change by a factor 2 in the numerical constants is due to the fact that  the 
common corner o appears in each square grid. Recall that using Theorem 3.2.3 
we have proved that  the spectral gap of the dog is bounded below by 

1 
A >  

- 8(n + 1) 2 log(2n + 1)" 

Applying Theorem 2.3.5 and Corollary 2.3.5, we obtain the following result. 

T h e o r e m  3.3.16 For the n-dog made of two square grids {0 . . . .  ,n} 2 with the 
corners o = ol = o2 = (0, O) identified, the natural chain satisfies 

_ h = 1 ) / t l / 2 .  Vt < 32(n + 1) 2, 11 t ][2 ~__ 8e(n + 

Also, for all c > 0 and t = 8(n + 1)2(5 + clog(2n + 1)) 

IIh7 - 1112 < s  

This shows that  a t ime of order n 2 log n suffices to reach stationarity on the 
n-dog. Furthermore, the upper bound on A that  we obtained earlier shows that  
this is optimal since m a ~  IIh~ - 1111 > e -t~ > e -at/(~21~ 

Consider now all the eigenvalues 1 = A0 < A1 _< . . .  <_ Aixl-x of this chain. 
Corrolary 2.3.9 and Theorem 3.3.16 show that  

Ai >_ 10-4(i + 1)n -2 
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for all i > 104. This is a good estimate except for the numerical constant 104. 
However, it leaves open the following natural question. We know that  A = A1 
is of order 1/(n 2 log n). How many eigenvalues are there such that n2A~ tends 
to zero as n tends to infinity? Interestingly enough the answer is that  A1 is the 
only such eigenvalue. Namely, there exists a constant c > 0 such that,  for i _> 2, 
A~ > cn -2. We now prove this fact. Consider the squares 

x _  = { - n , . . . ,  0} 2, x+  = { 0 , . . - , n }  2 

and set 
r  = lx•  x E X. 

These functions span a two-dimensional vector space E C ~2(X). On each of the 
two squares X_, X+, we have the Poincar~ inequality 

1 
If(x)[ 2 _< ~(n + 1) 2 Z [df(e)12 (3.3.9) 

~ E X +  e 

for all function f on X+ satisfying ~=~x•  f(x) = 0. In this inequality, the right 
most sum runs over all edge e of the grid X• There are many ways to prove 
this inequality. For instance, one can use Theorem 3.2.1 (with paths having only 
one turn), or the fact that  the spectral gap is exactly 1 - cos(Tr/(n + 1)) for the 
square grid. 

Now, if f is a function in e2(X) which is orthogonal to E (i.e., to r  and 
r we can apply (3.3.9) to the restrictions f+, f_ of f to X+, X_. Adding up 
the two inequalities so obtained we get 

V f E E • ~ If(z)12~r(z) _< 2(n+l)2S(f,f). 
: e E X  

By the min-max principle (1.2.13), this shows that  

1 
A2 > 2(n + 1) 2. 

Let r denote the normalized eigenfunction associated to the spectral gap A. 
For each n, let a,~ < b,~ be such tha t  

lim a ~ n - 2 = + ~ ,  lira b,,[n21ogn]-l=O, l i m ( b ~ - a ~ ) = + o o  
~ - ' 4 O O  ~ " ~ O O  r/,-'+OO 

and set I,, = [a,~, b,~]. Using the estimates obtained above for A1 and A2 together 
with Lemma 1.3.3 we conclude that  for t E I,~ and n large enough the density 
ht(x,y) of the semigroup Ht on the n-dog is close to 

1 + r (z)r (y). 

In words, the n-dog presents a sort of metastability phenomenon. 
We finish this subsection by stating a bound on higher eigenvalues in terms 

of isoperimetry. It follows readily from Theorems 3.3.11 and 2.3.9. 
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T h e o r e m  3.3.17 Assume that (K, 7r) is reversible and satisfies (3.3.7), that is, 

7r(A) (d-1)/d <_ SQ(OA) 

for all A C 2( such that ~r(A) < 1/2. Then the eigenvalues )~ satisfy 

Compare with [14]. 

~, >_ 
i 2 / d  

8e2/ddS2 " 

3.3.3 I s o p e r i m e t r y  a n d  t h e  l o g - S o b o l e v  c o n s t a n t  

Theorem 2.3.6 can be used, together with theorems 3.3.10, 3.3.11, to bound the 
log-Sobolev constant a from below in terms of isoperimetry. This yields the 
following results. 

T h e o r e m  3.3.18 Let (K,  ~r) be a finite reversible Markov chain. 

1. Assume (K, Tr) satisfies (3.3.7), that is, 

7r(A) (d-1)/d <_ SQ(OA) 

for all A C 2( such that T~(A) < 1/2. Then the log-Sobolev constant a is 
bounded below by 

1 
- 4dS 2" 

2. Assume instead that (K, ~) satisfies (3.3.4), that is, 

~(A) (d-1)/d < S (Q(OA) + RTr(A) ) , 

for all set A C X .  Then 

- -  d l o g  [ dS2  "(] " 

EXAMPLE 3.3.6: Theorem 3.3.18 and Theorems 3.3.14, 3.3.16 prove that  the 
two-dimensional square grid X = {0 , . . . ,  n} 2 or the two-dimensional n-dog have 
a ~ A. Namely, for the two-dimensional n-grid, a and )~ are of order 1/n  2 
whereas, for the n-dog, a and ,k are of order 1/[n 2 logn]. 

EXAMPLE 3.3.7: For the d-dimensional square grid X = {0,. . .  ,n}  d, applying 
Theorems 3.3.18 and 3.3.15 we obtain 

2 
- d3(n + 1) 2 

whereas Lemma 2.2.11 can be used to show that  a is of order 1~[tin 2] in this 
c a s e .  
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3.4 M o d e r a t e  g r o w t h  

This section presents geometric conditions that implies that a Nash inequality 
holds. More details and many examples can be found in [25, 26, 28]. Let us 
emphasize that the notions of m o d e r a t e  g rowth  and of local Poincard in- 
equal i ty  presented briefly below are really instrumental in proving useful Nash 
inequalities in explicit examples. See [28]. 

Defini t ion 3.4.1 Let (K, 7r) be an irreducible Markov chain on a finite state 
space X.  Let A be an adapted edge set according to Definition 3.1.1. Let d(x ,y)  
denote the distance between x and y in ( X , A )  and 7 = max=,y d(x,y) be the 
diameter. Define 

V(x ,  r) = 7r({y : d(z, y) < r}). 

(1) We say the (K, rr) has (M, d)-moderate growth if 

1 ( r ~ l )  a 
V ( x , r )  > - ~  ~ for all x E X and all r < 7. 

( z )  We say that (K, 7r) satisfies a local Poincard inequality with constant a > 0 
g 

I I / -  1~11~ -< ar2 E ( f , f ) for all functions f and all r < 7 

where 
1 ~ /(y)~(y). 

/"(~) - v (~ , r )  ~,:d(.,~,)_<~ 

Moderate growth is a purely geometric condition. On one hand it implies (take 
r = 0) that 7r. _> M - 1 7  -d. If rr is uniform, this says [X] _< M7 d. On the other 
hand, it implies that the volume of a ball of radius r grows at least like r d. 

The local Poincar~ inequality implies in particular (take r = 7) that Var~ ( /)  < 
a72C(f, f) ,  that is A _> 1/(a72). It can sometimes be checked using the following 
lemma. 

L e m m a  3.4.2 For each (x ,y)  E X 2, x # y, fix a path 7(x,y) in F(x,y). Then 

II.: - f,-II~ __5 rl(r)E(f,f) 

where 

2 
~(r) = max E Q(e) 

z,y:d(z,u)<_r, 

, ,  ~(z)~(~) 

See [28], Lemma 5.1. 
Definition 3.4.1 is justified by the following theorem. 
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T h e o r e m  3.4.3 Assume that (K, 7r) has (M,d)  moderate growth and satisfies 
a local PoincarK inequality with constant a > O. Then A > 1/aT 2 and (K, 7r) 
satisfies the Nash inequality 

with C = (1 + l /d)2(1 + d)2/dM2/da72. It follows that 

] [ h ~ - l I I 2 ~ B e  -c  for t = a'y2(l + c), c > 0  

with B = (e(1 + d)M)l /2(2  + d) 4/4. Also, the log-Sobolev constant satisfies a > 
e/'y 2 with c -1 = 2a(2 + log B) .  

Futhermore, there exist constants ci, i = 1 , . . . ,  6, depending only on M, d, a 
and such that A < c l /~  2, a < c2/~ 2 and, if (K, lr) is reversible, 

c3e -~4~/'y2 _< max Ilh~ - 1l]1 _< cse - ~ t / ~ .  
~g 

See [28], Theorems 5.2, 5.3 and [29], Theorem 4.1. 
One can also state the following result for higher eigenvalues of reversible 

Markov chains. 

T h e o r e m  3.4.4 Assume that (K, rr) is reversible, has (M, d) moderate growth 
and satisfies a local Poincard inequality with constant a > O. Then there exists 
a constant c = c(M, d, a) > 0 such that A~ > ci2/d~ -2. 



Chapter 4 

Comparison techniques 

This chapter develops the idea of comparison between two finite chains K, Kq 
Typically we are interested in studying a certain chain K on 2(. We consider 
an atLxilliary chain K '  on ,Y or even on a different but related state space X'. 
This auxilliary chain is assumed to be well-known, and the chain K is not too 
different from Kq Comparison techniques allow us to transfer information from 
K to K' .  We have already encounter  this idea several times. It is emphasized 
and presented in detail in this chapter. The main references for this chapter are 
[23, 24, 30]. 

4.1 Using comparison inequalities 
This section collects a number  of results that  are the keys of comparison tech- 
niques. Most of these results have already been proved in previous chapters, 
sometimes under less restrictive hypoheses. 

T h e o r e m  4.1.1 Let (K, 7r), (K' ,  7c') be two irreducible finite chains defined on 
two state spaces X ,  X '  with 2( C X ' .  Assume that there exists an extention map 
f --+ / that associates a function ] :  2( -+ R to any function ~:  X '  --~ R and 
such that ](x)  = f ( x )  if  x E ,~. Assume further that there e,vist a, A > 0 such 
that 

V f : X ~ R ,  $ ' ( f i , ] ) < A g ( f , f )  and Vx  e X,  a~r(x) <_ ~r'(x). 

Then 

(1) The spectral gaps A, A' and the log-Sobolev constants a, a r satisfy 

In particular 

IIh  - 1112 < e 1 - c  

A >_ aA ' /A ,  a >_ aa' /A.  

Ac A 1 
a/k----- 7 for all t ---- + log+ log ~ with c > O. 

2aa' "li k a, j 
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(2) I f  (K, Tr) and (K',Tr') are reversible chains, and IXl = ~, IX'l = n ' ,  

V i =  l , . . . , n - 1 ,  )q > a)~/A 

where (~)~-1 (resp tyro'-1 v 'uo  j are the eigenvalues of I -  K (resp. I -  K ~) 
in nondecreasing order. In particular, for all t > O, 

nlh, - 112 <_ Ih'.~la - lIP = ~ e - ~ ~  
1 

where 

Illht - llU ~ = ~ I h t ( x , y )  - l l2~- (z)~- (y)  = ~ IIh~ - 111~(=) .  
az ,y  x 

(3) I f  (K, 7r) and (K' ,  7r') are reversible chains and that there exists a group 
G that acts transitively on 2( with K(gx ,  gy) = K(x ,  y) and ~r(gx) = ~r(x) 
then 

v z  �9 2(, IIh~ - 111~ < ~ e -~~ 
1 

(4) I f  (K, ~r) and (K' ,  7r') are invariant under transitive group actions then 

I S  v x  �9 2(, x '  �9 2(', IIh~ - 111~ < h ~ t / A  - lll~. 

PROOF: The first assertion follows f rom Lemma  2.2.12 and Corollary 2.2.4. The 
second uses Theorem 1.2.11 and (1.2.12). The  last s tatement simply follows from 
(2) and the fact tha t  [Ih~ - 1[[2 does not depend on x under the hypotheses of 
(3). Observe tha t  the theorem applies when 2( -- 2(~. In this case the extention 
map f -+ ] = f is the identi ty map  on functions. 

These results shows how the compar ison of the Dirichlet forms E, E' allows us 
to bound the convergence of h~ towards  7r in terms of certain parameters related 
to the chain K '  which we assume we understand better. The next example 
illustrates well this technique. 

a n EXAMPLE 4.1.1: Let Z = {0, 1} "~. Fix a nonnegative sequence a = ( ~)1 and 
b >_ 0. Set 

{ 2 } X(a,b)  = X =  x = (  i) l  � 9  a~x i<b  . 

On this set, consider the Markov chain with Kernel 

0 if Ix - y[ > 1 
= 1/n if I x -  y[ = 1 

Ka,b(x,y) K ( x ,  y) = (n - n ( x ) ) / n  if x = y 

where n(x)  = na,b(x) is the number  of y �9 2( such that  Ix - Yl = 1, that  is, the 
number of neighbors of x in Z tha t  are in 2(. Observe that  this definition makes 
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sense for any (say connected) subset of Z.  This chains is symmetric and has the 
uniform distibution zr = 1/IX[ as reversible measure. 

For instance, in the simple case where ai = 1 for all i, 

and 

X ( 1 , b ) = { x E { O ,  1 } " : ~ x i < b } .  

0 if [ x - y[ > 1 
1 / n  if  Iz - yl = 1 

Kl,b(x, y) = (n -- b)/n if x = y and Ix[ -- b. 

As mentioned in the introduction, proving that  a polynomial time t = O(n A) 
suffices to insure convergence of this chain, uniformly over all possible choices of 
a, b, is an open problem. 

Here we will prove a partial result for a, b such that  X(a, b) is big enough. Set 
II 

Ix[ = ~ I  xi. Set also x _< y (resp. <) if x~ < Yi (resp. <) for x, y E Z. Clearly, 
y E X(a, b) and x < y implies tha t  x E X(a,  b). Furthermore, if I x -  y[ = 1, then 
either x < y or y < x. Set 

V'~(x) = {y E Z :  I x - y[ = 1,y < x}. 

a n Now, we fix a = ( ~)1 and b. For each integer c let Xc be the set 

Hence Xc+l is obtained from X~ by adding the points z with ~ zi = c + 1. On 
each 9:'~ we consider the natural  chain defined as above. We denote by 

1 
s f) = 2n[X------~ E If(x) -/(y)l 2 

z , y E X  c 

1 2 - y l = l  

its Dirichlet form. We will also use the notation 7rr Varc, A~, ar 
Define g to be the largest integer such that  ~ i e l  ai < b for all subsets I C 

{1, . . .  ,n} with # I  = g. Observe that  Xc = X for c _< g. Also, X,, = Z = {0, 1}". 
We claim that the following inequalities hold between the spectral gaps and Iog- 
Sobolev constants of the natural  chains on X r X r 

2(n-c)  
Ac+l _< 1 +  c + 1  ]Ac  (4.1.1) 

a~+l < 1 +  c + l  ] a c "  (4.1.2) 

If we can prove these inequalities, it will follow that  

2-- _< e2(~+ ~x,2 A(a,b) (4.1.3) 
n 

1 _< e 2 ~  a(a,b) (4.1.4) 
n 
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where A(a, b) and a(a ,  b) are the spectral gap and log-Sobolev constant of the 
chain K = K~,b on X = 2'~,b. To see this use 

n--1 n.--1 (n  -- e) 2 
i < 

~-~1-  ~ + 1 -  ~ 
c = l  l 

To prove (4.1.1), (4.1.2) we proceed as follows. Fix c _> L Given a function 
f : ;'gc -+ R we extend it to a function fi : Xc+l ~ R by the formula 

f (x )  if x E A '~ 
] ( X )  -~ 1 ~"]~vev*(=) f(Y) if X E Xc+I \ Xc 

(observe that #V~'(x) = c + 1 if Ix] = c + 1). With this definition, we have 

varo(f) ~ If(x) - 7rc+l(f)l 2 1 
zEX~ 

IXc+l] I 

=EX~+I 
< ~varo+l(])  

and, similarly, Ec(f)  _< [IXc+ll/IXr L~+I(f). We can also bound Ec+l(f, f )  in 
terms of gc(f , f).  

1 
Ec+~(f,]) = 2nlXo+~l ~ I](x)-](v)12 

z . ! l E , ' ~ c +  1 : 
I=-ul=1 

IXA ( 1 
< IX---~+~l =,yEXc: 

I = -u l= l  

If(x) - f(y)l  2 

I/(x) - f(y)l  2)  1 

=:l=l=~-t-/ yE V~.(z) 

_ + 1 ~ . 

I&+l I 
We now bound T~ in terms of 5c(f ,  f ) .  If I x - y] = 1, let x A y be the unique 
element in V'~(x) N V$(y). 

= 5 ]  s(y)l 
=:l=l=c+l ~EVJ-(=) 

1 
~ ~ 2(c+1) ~ lf(z)-f(y)l 2 

z:lz[-:c+l y,zEV~(:=) 

< ~ c l  1 i f (z )  _ f ( z A y ) l  2 + I f ( z A y ) -  f(y)l 2 
=:1=1=c+1 
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2 
< c + 1  IS( )-S(u)l 

~::1~:1=c+1 ,,~v~-(.) 
.EV&(v) 

< 2n(n - 
- c + l  

Hence 

Cc+l ( ] , ] )  _< ~ 1 + c~ ' l "  ec ( f , f ) .  

Now, Lemmma 2.2.12 yields the claimed inequalities (4.1.1) and (4.1.2). We 
have proved the following result. 

T h e o r e m  4.1.2 Assume  that a = (ai)'~, b and g are such that ai, b > 0 and 
~-~iez ai < b for  all I C { 1 , . . . , n }  satisfying # I  < n - n 1/2. Then the chain 
g a , b  o n  

X ( a ' b )  = { x = (xi)~ E ( O ' l } n  : E a~x~ < 

satisfies 
2 ~  s 

A(a,b) >_ - - ,  c~(a,b) >_ - with ~ = e -4 
n n 

The associated semigroup Ht  = Ha,b,t = e - t (z-K' '~)  satisfies 

[[h~ - 1[[2 < e 1-c for  t = (4e) - ln ( logn  + 2c). 

These are good estimates and I believe it would be difficult to prove similar 
bounds for ][h~ - 1 [[2 without using the notion of log-Sobolev constant (coupling 
is a possible candidate but if it works, it would only give a bound in ~1). 

In the case where a~ = 1 for all i and b > n /2 ,  we can use the test function 
f ( x )  = ~-~<,~/2(z~ - 1/2) - :~-~>,~/2 (x~ - 1/2) to bound A(1, b) and a(1, b) from 
above. Indeed, this function satisfies 7rl,b(f) = 7rz(f)  = 0 (use the symmetry 

that switches i < n / 2  and i > n / 2 )  and Varl,b(f, f )  _> 2 ~ V a r z ( f ,  f )  (use 

the symmetry x --+ x + 1 mod (2)). Also Ea,b _< l ! ~ E z .  Hence A(a, b) < 4In ,  

a(a,  b) < 2 / n  in this particular case. 

4.2 Compar i son  of  Dirichlet  forms using paths 

The path technique of Section 3.1 can be used to compare two Dirichlet forms on 
a same state space X. Together with Theorem 4.1.1 this provides a powerful tool 
to study finite Markov chains tha t  are not too different from a given well-known 
chain. The results presented below can be seen as extentions of Theorems 3.2.1, 
3.2.5. Indeed, what has been done in these theorems is nothing else than compar- 
ing the chain (K, rr) of interest to the "trivial" chain with kernel K' (x ,  y) = 7r(y) 
which has the same stat ionary distribution It. This chain K'  has Dirichlet form 
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8'(f ,  f)  = Vary(f) and is indeed well-known: It has eigenvalue 1 with multiplic- 
ity 1 and all the other eigenvalues vanish. Its log-Sobolev constant is given in 
Theorem 2.2.9. Once the Theorems of Section 3.2 have been interpreted in this 
manner their generalization presented below is stralght-forwaxd. 

We will use the following notation. Let (K, lr) be the unknown chain of 
interest and 

1 (K(x ,  y)Tr(x) + K(y ,  x)z~(y)) if e = (x,y). Q(e) = 5 

Let .4 be an adapted edge-set according to Definition 3.1.1 and let 

r = U r ( x , y )  
x , y  

where F(x, y) be the set of all paths from x to y that have no repeated edges. 

T h e o r e m  4.2.1 Let K be an irreducible chain with stationary measure ~r on a 
finite set X.  Let .4 be an adapted edge-set for K.  Let (K I, 7r') be an auxilliary 
chain. For each (x,y) E X x X such that x # y and Kt (x ,y )  > 0 choose exactly 
one path 7(x, y) in F(x,y). Then E' < AE where 

A = m ~  ~ I'~(x, v)lK'(x, v)~'(x) �9 
o ~  O(e)  ~ . ~  

PROOF: For each (x, y) E X x X such that K'(x ,  y) > O, write 

f(y) -- f(x) = ~_~ df(e) 
.e-~(:~,v) 

and, using Cauchy-Schwarz, 

I f (v ) -  ](x)ff < 17(x,v)l ~,  Idf(e)l ~. 

Multiply by �89 y)~r'(x) and sum over all x, y to obtain 

_ 1 

1 E l f ( Y )  - f(x)12K'(x,  yl~r'(x) < ~ E [ 7 ( x ' Y ) ]  E Idf(e)12K'(x'yllr(x)" 
2 

=,y  x , y  eET(z,y) 

The left-hand side is equal to E'(f ,  f )  whereas the right-hand side becomes 

2 ~ A  Q~e) E=.~: lT(x,y)K'(x,y)lTr'(x) [df(e)12Q(e) 
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which is bounded by 

max { - -  
eEA 

Hence 

1 } 
Q(e) ~ IT(x,y)[K'(x,y)~'(x) 

x . y :  

V f ,  C ( f , f )  < AE( f , f )  

with A as in Theorem 4.2.1. 

g( f , f ) .  

Theorems 4.1.1, 4.2.1 are helpful for two reasons. First, non-trivial informa- 
tions about  K '  can be brought  to bear  in the study of K.  Second, the pa th  
combinatorics that  is involved in Theorem 4.2.1 is often simpler than that  in- 
volved in Theorem 3.2.1 because only the pairs (x,y) such that  K'(x,y)  > 0 
enter in the bound. These two points are illustrated by the next example. 

EXAMPLE 4.2.1: Let X = {0, 1} '~. Let x --+ 7-(z), be defined by [T(Z)]i = Xi-1, 
1 < i  < n, [z(x)]l =x ,~ .  Let x--+ a(x) be defined b y a ( x )  =x+(1 ,O , . . . ,O ) .  
Set K(x,y)  = 1/n if either y = ~-J(x) for some 1 < j < n or y = a(x) ,  and 
K(x,y)  -- 0 otherwise. This chain is reversible with respect to the uniform 
distribution. In Section 3.2, we have seen that  A > 1In 3 by Theorem 3.2.1. 
Here, we compare K with the chain K'(x ,  y) = 1In if Ix-y] = 1 and K(x,  y) = 0 
otherwise. For (x, y) with Ix - y[ = 1, let i be such that  x~ # yi. Let 

v )  = ( x ,  ( x ) ,  o ( = ) ,  o o o  5(x) = v )  

where j = i if i < n/2  and j = n - i if i > n/2. These paths have length 3. The 
constant A of Theorem 4.2.1 becomes 

A = 3 m a x #  { ( x , y ) :  K'(x ,y)  > 0, 7(x ,y)  9 e}. 
e6.A 

If e = (u,v)  with v = TJ(u), there  are only two (x,y)  such that  e E 7(x ,y)  
depending on whether ~ appears  after  or before e. If  v = a(u),  there are n 
possibilities depending on the choice of j E {0, 1 , . . . , n -  1}. Hence A = 3n. 
Since A' = 2/n and a' = 1/n, this yields 

2 1 
A > 3n2, a_> 3n 2. 

Also it follows that 

3n 2 
m a x l l h ~ - l [ 1 2 < e  1-c for t =  ( 2 c + l o g n )  c > O .  

EXAMPLE 4.2.2: Consider a g raph  (X, .4) where .4 is a symmetric set of oriented 
edges. Set d(z) = # { y  E 2( : (x, y) E .4} and 

0 if (x, y) ~ ,4 
K(x ,  y) = 1/d(x) if (x, y) E ,4. 
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This is the kernel of the simple random walk on (X, A). It is reversible with 
respect to the measure lr(x) = d(x)/]AI.  For each (x,y) e X 2 choose a path 
7(x, y) with no repeated edges. Set 

d. = maxd(x) ,  7. = max I'l(x,y)], ~7. = ~ a ~ # { ( x , y )  e X2:  7(x,y)  9 e}. 
xE2d x,yEPr 

We now compare with the chain K ' ( x ,  y) = 1/IA' I which has reversible measure 
r ' (x)  = 1fIX I and spectral gap A' = 1. Theorem 4.2.1 gives A _> a/A with 

A < ]A[7.~?_._____~. and a = IA[ 
- ] X I  2 d . ]X["  

This gives 

T h e o r e m  4.2.2 For the simple random walk on a graph (X, ,4) the spectral gap 
is bounded by 

IX___L 
- d.~f.~?," 

Compare with Example 3.2.4 where we used Theorem 3.2.1 instead. The present 
result is slightly bet ter  than the bound obtained there. It is curious that  one 
obtains a bet ter  bound by comparing with the chain K'(x ,  y) = 1/IX I as above 
than by comparing with the K(x ,  y) = 7r(y) which corresponds to Theorem 3.2.1. 

It is a good exercise to specialize Theorem 4.2.1 to the case of two left in- 
variant Markov chains g ( x ,  y) = q ( x - l y ) ,  K ' (x ,  y) = q ' (x - ly )  on a finite group 
G. To take advantage of the group invaxiance, write any element g of G as a 
product 

g __ g[1 ...g~k 

with q(g~) + q(g~-l) > 0. View this as a path  "~(g) from the identity id of G to 
g. Then for each (x, y) with q ' ( x - l y )  > 0, write 

x - l y  = g(x ,y )  = g~' . . . g ~  

(where the gi and ei depend on (x ,y ) )  and define 

~ ( z ,  y )  = x ~ ( g )  = ( x ,  x g l ,  . . . , z m  . . . g k - ~ ,  zg(~, y) = u). 

With this choice of paths Theorem 4.2.1 yields 

T h e o r e m  4.2.3 Let K,  K r be two invariant Markov chains on a group G. Set 
q(g) = K(id, g), q'(g) = K'( id ,  g). Let 7r denote the uniform distribution. Fix 
a generating set S satisfying S = S -1 and such that q(s) + q(s -1) > O. for all 
s E S. For each g E G such that q'(g) > O, choose a writing ofg as aproduct of 
elements of S, g = sl . . .  sk and set Ig] = k. Let N(s,  g) be the number of times 
s ~ S is used in the chosen writing of g. Then E <_ AE' and A ~ A'/A with 

ses q(s) + q(s -1) ~ IglN(s'g)q'(g) " 
gEG 
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Assume further that K,  K '  are reversible and let )~i (resp. )~), i = 0 , . . . ,  IGI - 1 
denote the eigenvalues of I -  K (resp. I -  K ' )  in non-decreasing order. Then 
)~ >_ )~/A for all i e {1 , . . . , IG[  - 1} and 

Vx ~ G, I Ih~ - 1112 _< I Ih ' t~/A - 1112. 

PROOF: (cf. [23], pg 702) We use Theorem 4.2.1 with the paths described above. 
Fix an edge e -- (z, w) with w = zs. Observe that  there is a bijection between 

{(g,h) E G x G :  "y(g,h) 9 (z,w)} 

and 

{(g,u) e G • G : 3 i such tha t  s~(u) = s , z - -  g s l ( u ) . . . s i - l ( u ) }  

given by (g, h) --+ (g, g - lh )  = (g, u). For each fixed u = g- lh ,  there are exactly 
N(s,  u) g E G such that  (g, u) belongs to 

{(x,u)  E G • G : 3 i  such tha t  si(u) = s , z =  x x s l ( u ) . . . s i - l ( u ) } .  

Hence 
JT(g,h)l = ~ JuiN(s,u). 

(g,h)EG• uEG 

This proves the desired result. See also [24] for a more direct argument. 

We now extend Theorem 4.2.1 to allow the use of a set of paths for each pair 
(x,y)  with K ' ( x , y )  > O. 

Def in i t i on  4.2.4 Let (K, 7r), K ' ,  ~r' be two irreducible Markov chains on a same 
finite set X .  Let .4 be an adapted edge-set for (K,~r). A (K,K')- f low is non- 
negative function r : F (K ' )  -+ [0, cc[ on the path set 

r ( K ' ) =  U r(x,y) 
K~(z,y)>O 

such that 

vx, y ~ x, x # y, K'(x,y) > 0, ~ r = K'(x,y)~'(~). 
~er(=,y) 

T h e o r e m  4.2.5 Let K be an irreducible chain with stationary measure ~r on a 
finite set 2(. Let ,4 be an adapted edge-set for (K,~) .  Let (K',  ,x') be a second 
chain and r be a (K, K')-flow. Then $' <__ A(r163 where 

{1 } 
A(r = max  ~ 171r �9 

- f ~ e  
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PROOF: For each (x, y) such that K'(x ,  y) > 0 and each ~/~ F(x,y) write 

I f ( Y )  - f ( x ) l  2 < I'~1 ~ Idf(e)l ~. 
e E"./ 

Then 
I f (Y) - f(x)12K'(x,Y)Tr'(x) <- ~ I'yl ~ldf(e)12r �9 

~Er(~,y) eE7 

/From here, complete the proof as for Theorem 4.2.1. 

Corol lary 4.2.6 Assume that there is a group G which acts on X and such that 

~(g~) = ~(~) ,  ~ ' (g~)  = ~ ' (~) ,  Q(gx, gy) = Q(~,y), Q'(yx, gy) = Q'(~,y). 

Let .4 be an adapted edge-set for (K, ~) such that (x, y) E .4 ~ (gx, gy) E A. Let 
k A = Ul Ai, be the partition of .4 into transitive classes for this action. Then 

E ~ ~ AC where 

A = max ~_, N i (x , y )d~(x , y )K ' ( x ,  y)Tr(z) . 
l<~<k I A i l Q i  ~,~ 

Here IA~l = ~:A~, Q~ = Q(e~) with e~ E A~, d~:(x,y) is the distance between x 
and y in (X,.A), and Ni(x ,y)  is the maximum number of edges of type i in a 
geodesic path from x to y. 

PEOOF: Consider the set G(x,y) of all geodesic paths from x to y. Define a 
(K, K')-flow r by setting 

i f~/e  G(x,y) 
otherwise. 

r = { K'(x,y)Tr'(x)/#6(x,Y)o 

Then A(r = max~ A(r e) where 

A(r e) - 
1 

Q(e) ~ IHr 
"TEF: 

By hypothesis, A(r = Ai(r does not depend on ei E Ai. Indeed, if g'y 
denote the image of the path ~, under the action of g E G, we have ]g3'l = I"/I, 
r = r Summing for each i = 1 , . . . ,  k over all edges in .Ai, we obtain 

1 
A(r - iA~iO~ E E ]71r 

e E ~ i  ~EF: 

1 d(x,y)K'(x,y)~r'(x) 
- IA, tq, Z ?2 yl 

< 1 E Ni (x, y)d(x, y)K'(x ,  y)Tr'(x). 
IA~IQ~ a:~y 
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This proves the desired bound. 

EXAMPLE 4.2.3: Let X be the set of all the n-sets of { 0 , 1 , . . . , 2 n -  1}. On 
this set, consider two chains. The unknown chain of interest is the chain K of 
Example 3.2.8: 

1/n i f # ( x N y ) = n - 2 a n d O E x ( g y  
K(x, y) = 0 otherwise 

This is a reversible chain with respect to the uniform distribution lr = (2~) -1. 
Let AK = {e = (x, y) : K(x, y) ~ 0} be the obvious K-adapted edge-set. 

The better known chain K '  tha t  will be used for comparison is a special case 
of the chain considered of Example 3.2.7: 

K'(x, y) = { 1/n20 ffotherwise#(X N y) = n - 2 

The chain K '  is studied in detail in [34] using Fourier analysis on the Gelfand 
pair ($2,, S ,  x S,~). The eigenvalues are known to be the numbers 

i ( 2 n - i + l )  
n2 

with multiplicity ( 2 n )  - ( i 2 _ n l ) ,  O < i < n .  

In particular, the spectral gap of K '  is A' = 2/n. This chain is known as the 
Bernoulli-Laplace diffusion model. 

As in Example 3.2.8, the symmetric group $2 , - I  which fixes 0 acts on X and 
preserves both chains K,  K ' .  There are two classes ,41, ,42 of K-edges for this 
action: those edges (x,y), x (9 y = 2, with 0 E x (9 y and those with 0 r x (9 y. 
Hence, we have 6' _< As with 

A = ' { } max E Ni(x,y)dg(x,y) �9 n2(2") i=1,2 .., 
z ~ y ~ 2  

Now, if x (9 y = 2 then 

1 f fOEx (gy  
dg (x, y) = 2 ff 0 • x (9 y. 

Moreover, in both cases, Ni(x, y) = 0 or 1. This yields 

4 
A_< n2(2n ) E.., 1 = 4 .  

z~)y=2 

Thus 

This shows that 

s _ 4s 

1 
A>-- 

-- 2n 
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improving upon the bound obtained in Example 3.2.8. 
In their paper [34], Diaconis and Shahshahani actually show that 

[]h't = - 1[[2 < be - c  for t = l n ( 2 c  + logn). 

Using the comparison inequality $ '  < 4$ and Theorem 4.1.1(2) we deduce from 
Diaconis and Shahshahani result  tha t  

[ ] h t - 1 ]  ~ be - c  for t = n ( 2 c + l o g n ) .  

Furthermore, the group $2,~-1 fixing 0 acts with two transitive classes on X. A 
vertex x is in one class or the other  depending on whether or not x contains 0. 
The two classes have the same cardinality. Since IIh~ - 1]12 depends only of x 
through its class, we have 

1 
~ht - 1~ 2 = 5 (llh~' -- 1H5 + [Ih~2 - 1]l~) 

where Xl 9 0 and x2 ~ 0 are fixed elements representing their class. Hence, we 
also have 

maxHh ~ -  1112 < 2be -c  for t = n ( 2 c + l o g n ) .  
~g 

This example illustrates well the strength of the idea of comparison which 
allows a transfer of information from one example to another. 
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"L'hypercontractivit~ et son utilisation en th@orie des semi~oupes" 

R.D. GILL 

"Lectures on Survival Analysis" 

S.A. MOLCHANOV 

"Lectures on the Random Media" 

P. BIANE 
"Calcul stochastique non-commutatif' 
R. DURRETT 

"Ten Lectures on Particle Systems" 

(LNM 1608) 
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1996 - 

R. DOBRUSHIN 

"Perturbation methods of the theory of Gibbsian fields" 

P. GROENEBOOM 

"Lectures on inverse problems" 

M. LEDOUX 

"Isoperimetry and gaussian analysis" 

E. GINE 

"Decoupling anf limit theorems for U-statistics and U-processes" 

"Lectures on some aspects theory of the bootstrap" 

G. GRIMMETT 

"Percolation and disordered systems" 

L. SALOFF-COSTE 

"Lectures on finite Markov chains" 

(LNM 1648) 

(LNM 1665) 


