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11801 México D.F.

Marcelo Salgado
Universidad Nacional
Autónoma de México
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Preface

The Mexican School on Gravitation and Mathematical Physics, sponsored
by the Mexican Physical Society, is a conference that started 10 years ago.
The aim of the School is to cover different topics on the frontiers of gravita-
tion, field theory and mathematical physics. It is held every two years and
a different theme is chosen for each occasion. The School, which is oriented
towards advanced graduate students and beyond, is gaining a reputation for
the quality of lectures given by leaders in the field. In our previous Schools
the subjects covered have been Supergravity and Mathematical Physics, Bra-
nes, Black Holes and the speakers have included A. Ashtekar, B. Carter,
G. Gibbons, M. Heusler, W. Israel, F. Müller–Hoisen, Y. Neeman, R. My-
ers, L. Randall, R. Sorkin, P. Van Niewenhuizen, R. Wald, among other top
ranked physicists.

Over the past few years remarkable discoveries in physics and astronomy
have been achieved with enormous implications for cosmology. In particu-
lar, the recent experiments measuring anisotropies on the cosmic microwave
background (CMB) and the distance–red–shift relation in type Ia superno-
vae (SNIa) have opened a new era in cosmology, sometimes called the golden
years or the high–precision era of cosmology.

Such discoveries have not only corroborated several theoretical predictions
and put stringent bounds on many cosmological models, but also renew some
ancient paradigms like the origin of a cosmological constant.

In view of the primary importance of such a hot topic today, it was clear
that a convenient theme for the Fifth Mexican School was The Early Universe
and Observational Cosmology. We considered that subjects like Inflation,
Structure Formation, Cosmological Perturbations, Braneworld Cosmologies,
Quintessence, and Dark Matter would give the participants a good picture of
the current status of modern cosmology.

Like in past Schools the topics were covered by leaders in the field, and the
general perception by the participants was that the goals were well accom-
plished; of course, the beautiful setting of Playa del Carmen in the Mexican
Caribbean did not hurt. About 80 people participated from all over the world
and we are indebted to all of them.



VI Preface

Undoubtedly, the School would have not been possible without the main
courses and plenary lectures. Therefore, we extend our deep gratitude to the
invited speakers. The School was complemented with more specialized topics
presented in parallel sessions, some of which are included in these Lecture
Notes.

Finally, the goals of the School would certainly be unmet if there were not
some hard–copy record of the ideas presented during that week of November
2002. To that end, we warmly thank all the contributors who made possible
the publication of this book.

Mexico City, Nora Breton
January 2004 Jorge L. Cervantes–Cota

Marcelo Salgado
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Instituto de Ciencias Nucleares,
A.P. 70-543,04510 México D.F.
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hugo@xanum.uam.mx
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Introduction

Nora Bretón1, Jorge L. Cervantes–Cota2, and Marcelo Salgado3

1 Departamento de F́ısica, Cinvestav-IPN, Apdo. Postal 14-740, 07000 México,
D.F. Nora.Breton@fis.cinvestav.mx

2 Departamento de F́ısica, ININ, Apdo. Postal 18-1027, Col. Escandón, 11801
México D.F. jorge@nuclear.inin.mx

3 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
Apdo. Postal 70-543, 04510 México D.F. marcelo@nuclecu.unam.mx

Abstract. We summarize the topics presented in this book, and when appropriate
we enlighten cross–references among the different topics: high precision and obser-
vational cosmology, standard Big Bang model, inflation, reheating, baryogenesis,
quintessence, strings, braneworlds, and loop quantum cosmology.

The last two decades have been glorious for modern cosmology. So glorious
that the experimental advances in this direction have risen cosmology to the
status of a genuine science: many speculative theoretical issues have found
an almost direct verification and also many experiments can be performed
now with better precision. Perhaps the experiment that started this new
era was the one performed by the COBE satellite team in the early 1990’s.
This experiment, which was a modern version of that performed by Penzias
and Wilson, for the first time revealed that the Universe was almost, but
not completely homogeneous and isotropic. The small quantum fluctuations
generated in the early Universe were imprinted in the tiny anisotropies that
COBE detected in the Cosmic Microwave Background Radiation (CMBR).
This and other more recent cosmological probes (CP), like BOOMERANG,
MAXIMA, and WMAP, not only confirmed with a great accuracy some
of the theoretical predictions of the standard Big Bang model (SBB), but
also opened the possibility of testing theories and scenarios of the very early
Universe, namely, the theory of inflation.

Inflation, in its many versions, tries, one way or the other, to solve the
paradigms that emerge when confronting the SBB with current observations;
that is, inflation solves the horizon and flatness problems, and provides
a causal origin of density fluctuations. In the most standard version, the
dominating vacuum energy of a hypothetical fundamental scalar field, the
inflaton, is responsible for an exponential expansion of the Universe.

During inflation, the matter–energy content within a Hubble radius ho-
mogenize and isotropize, and hence, a flat Universe is achieved, like the one
observed nowadays. This huge expansion rate, which is guaranteed by cosmic
no–hair theorems, also made unimportant the shape of the Universe’s initial
conditions. The effective potentials (cosmological constants), which permit
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the application of these theorems, have their origin in particle physics’s theo-
ries, whose modern descedents are the braneworld scenarios. In this way, the
isotropy and homogeneity, assumed in the SBB, are within the inflationary
scenario validated in a rather quantitative way.

This exponential expansion caused quantum fluctuations of the inflaton
field to cross the Hubble radius, and later after inflation they reentered into
a Hubble size. In this way, quantum fluctuations were imprinted in fluctuati-
ons of matter and radiation to yield the seeds of structure formation. Matter
density fluctuations ultimately evolved in the form of galaxies and larger
structures, whereas CMBR fluctuations decoupled from matter at the last
scattering surface, and remain so until now, up to possible reionization pro-
cesses. These topics, being known for some time, are reviewed with a modern
view in the first part of the book. The lecture by J. L. Cervantes–Cota pre-
sents the SBB, emphasizing its long–standing problems. Then, a solution to
these problems is found in the inflationary theory. In a complementary man-
ner, E. J. Copeland covers some aspects of the Big Bang theory, namely its
problems and solutions within inflationary string cosmology scenarios. C. A.
Terrero–Escalante complements these lectures by analyzing the general pro-
perties of scalar fields in Friedman–Robertson–Walker (FRW) backgrounds
to achieve a successful cosmological model, from the inflationary era to the
present.

Perhaps one of the key predictions of the standard inflationary scenario
is the average value of the total energy density of the Universe Ω = 1. Until
some years, prior to BOOMERANG and MAXIMA results, the assumption
Ω = 1 in many constructed–theoretical cosmological models was somehow
seen as a prejudice of inflation due to the fact that the observations only
showed that Ωobs ∼ 0.3 at the best. Most of this density was attached to
an unknown form of matter, dark matter, responsible for the clustering of
galaxies and only a small fraction Ωbar ∼ 0.04, the primordial nucleosynthe-
sis contribution, due to ordinary visible matter (baryons). The inflationary
prediction Ω = 1, if not completely confirmed, has been to a large extent
validated by the very recent CP, whose results together with the simplest
standard cosmological scenarios become consistent only if Ω ∼ 1. Of course
this would be compatible with Ωobs ∼ 0.3 only if another contribution of
energy density is added. The current and simplest scenario appeals to a cos-
mological constant, or dark energy, contributing with ΩΛ ∼ 0.7.

In addition to those provided by the CP there have been other cosmo-
logical observations of primary importance. One of the oldest but no less
remarkable ones started at the time of E. Hubble, who was the first in revea-
ling that the Universe was not static but in continuous expansion. Limited
by the technology of that time, the observation of relatively close objects
showed that galaxies were expanded at a rate H0 of 50− 100 km s−1Mpc−1,
known today as the Hubble constant. Recent direct observations have narro-
wed that range, but which is more important for modern cosmology are the
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recent observations of far SNIa. These observations which allow one to draw
a modern Hubble diagram show that the Universe is not only expanding but
expanding in an accelerated way, contrary to what would be expected if the
Universe were filled only with a matter in the form of pressureless particles.
This astonishing result, of an independent nature from the CP observations,
when applied to the standard cosmological model is only compatible with
Ω ∼ 1 if dark energy producing negative pressure is considered. Remarkably,
the independent CP and the SNIa observations coincide to a large extent
with the values of several cosmological parameters.

The CP and SNIa have not only confirmed the inflationary prediction
Ω ∼ 1, their precision in measuring small scale temperature anisotropies also
confirms some of the predictions of the sophisticated theory of cosmological
perturbations. In this way the correlation of temperature fluctuations with
angular scales can be well understood. The small room that the current CP
leave in the space of cosmological parameters of theoretical models open
the possibility to differentiate between competing models. The lectures by
R. Brandenberger, M. Tegmark and A. Filippenko give a detailed review of
the above ideas, and they complete the first part of the book: The Very
Early Universe and High Precision Cosmology. R. Brandenberger provides
a theoretical view of the current status of the theory of fluctuations in the
early Universe around the FRW background. M. Tegmark provides a survey
of recent measurements of spacetime, from local to cosmological, covering
a factor of 1022 orders of magnitude in scale! The lecture of A. Filippenko
gives a detailed account of the SNIa projects, their confrontation with the
standard cosmological models, and the future expectations for ruling out
some of them. These three authors confront the measurements of CP and
SNIa with the competing cosmological models.

As it turns out in many branches of physics, the theoretical models to-
gether with precision experiments open new paradigms. This has not been the
exception in cosmology. As we mentioned, while the insertion of a cosmologi-
cal constant in the theoretical models allowed one to explain the requirement
Ω ∼ 1 in a simple fashion, it also raised a paradigm known as the coincidence
problem, that we can rephrase as follows: how is it possible that after billi-
ons of years of evolution we live in a time of our Universe where the energy
density of the different components of matter (which evolve in time) is of
the same order of magnitude of the constant energy density attributed to the
cosmological constant ? For instance in the time of the radiation dominated
epoch, the cosmological constant contribution was several orders of magni-
tude smaller than the photon contribution. Nowadays, however, the matter
density contribution almost coincides with that of dark energy.

This coincidence problem has been intended to be solved in several fas-
hions. Perhaps the most popular models in this direction are the ones that
replace the cosmological constant with a scalar field: the quintessence or the
k–essence field. As expected, the new proposals have to be submitted to all
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possible tests. In this regard, the lectures of M. Tegmark and A. Filippenko
also show the constraints on the equation of state w in quintessential models
imposed by the CP and SNIa experiments. Furthermore, the lectures of the
second part of the book by A. de la Macorra, G. German and J. Jaeckel
treat different aspects of quintessence scenarios: initial conditions, various
potentials, and quantum corrections, among other topics. Two other contri-
butions complement this part, namely, one on electroweak phase transitions
by G. Piccinelli & A. Ayala, and one on a new method to infer which type of
neutralinos could make up galactic dark halos by L. G. Cabral–Rosetti et al.

The last part of the book is dedicated to the most recent theoretical
developments in the cosmological theory. Apart from the paradigms of dark–
energy, dark–matter and their possible correlation, the dimensionality of na-
ture and the quantum version of gravity are perhaps two of the most funda-
mental questions in physics, which presumably are interconnected with each
other. In this regard, the braneworld scenarios offer the possibility that the
Universe we observe lives in a brane embedded in a larger dimensional ma-
nifold (the bulk). These scenarios, some of them motivated by string theory,
can provide alternative explanations to the origin of inflation and quintes-
sence, or combine them in several fashions. The lecture by K. Maeda gives
a thorough account of cosmologies in braneworld scenarios, whereas the lec-
ture by J. Lidsey deals with specific issues (inflation, density perturbations,
gravity waves) related to the Randall–Sundrum type II braneworld and ex-
tensions of it. The lecture by R. Cordero & E. Rojas covers the creation of
brane Universes, whereby the probability of nucleation of the brane is com-
puted, and its cosmological consequences are explored. T. Matos et al present
a braneworld realization of their dark matter and dark energy models. Fi-
nally, the contribution by M. Bojowald and H. A. Morales–Técotl accounts
for cosmological realizations of the theory of loop quantum gravity, in which
the basic formalism of this new approach is included.
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Abstract. A short introduction to the Standard Big Bang model is provided,
presenting its physical model, and emphasizing its long–standing problems such
as the horizon, flatness, baryon asymmetry, among others. Next, an introduction
to the inflationary cosmology is presented to elucidate a solution to some of the
above–mentioned problems. It is shown that the inflationary scenario succeeds in
explaining what the standard Big Bang model cannot, passing the tests of the
high precision experimental constraints which have been performed since last de-
cade. This contribution should serve as an introduction to the standard ideas and
scenarios which will be used in the forthcoming lectures of this book.

1 On the Standard Big Bang Model

We would like to begin our study by reviewing some basic aspects of the
the standard hot Big Bang model (SBB), paying attention to what particle
physics theories would bring about in the very early Universe. Our primary
focus is to present the achievements of the SBB, but also some difficulties or
conundrums that cannot be understood without the incorporation of other
concepts, such as extensions to both gravity and particle physics theories,
which will give rise to an inflationary scenario.

1.1 FRW Models

The SBB is based on Einstein’s general relativity (GR) theory, which can be
derived from the Einstein–Hilbert Lagrangian:

L =
1

16πG
R
√
−g , (1)

where R is the Ricci scalar, G the Newton constant, and g = |gµν | the
determinant of the metric tensor; for our geometric conventions see the table
provided in [68] (cover page), here we have used “-” for the metric g, “+” for
Riemann, and “-” for Einstein.

By performing the metric variation of this equation, one obtains the Ein-
stein’s well known field equations

Rµν −
1
2
Rgµν = −8πGTµν , (2)
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where Rµν is the Ricci tensor and Tµν is the energy–momentum stress tensor.
The left hand side (l.h.s.) of this equation represents the geometry, whereas
the right hand side (r.h.s.) accounts for the fluid(s) present. In GR the space–
time is four dimensional (three spatial dimensions plus time), and since both
tensors are symmetric, (2) represents a collection of ten coupled, partial dif-
ferential equations.

Once one is provided with the gravity theory, one should introduce a
symmetry through the metric tensor. In cosmology one assumes a simple
metric tensor according to the cosmological principle which states that the
Universe is both homogeneous and isotropic. This turns out to be in very good
agreement with the observed very–large–scale structure of the Universe. This
homogeneous and isotropic space–time symmetry was originally studied by
Friedmann, Robertson, and Walker (FRW); see [38, 81, 96]. The symmetry
is encoded in the special form of the following line element:

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2
(
dθ2 + sin2 θ dφ2)] , (3)

where t is the time variable, r–θ–φ are polar coordinates, which can be ad-
justed so that the constant curvature takes the values k = 0,+1, or −1 for a
flat, closed, or open space, respectively. a(t) is the scale factor of the Universe.

The FRW solutions to the Einstein equations (2) represent a cornerstone
in the development of modern cosmology, since with them it is possible to
understand the expansion of Universe, as was realized in the late 20s through
Hubble’s law of expansion [53]. With this metric, the GR cosmological field
equations are,

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2 (4)

and
ä

a
= −4πG

3
(ρ+ 3p) , (5)

where H is the Hubble parameter; ρ and p are the density and pressure of
the perfect fluid considered; that is, Tµν = ρuµuν + p(uµuν − gµν), where
uµ = δ0µ is the four–velocity of the fluid in co–moving coordinates, i.e. in
coordinates that are moving with the expansion. Equations (4–5) can also be
deduced within Newtonian cosmology, but there the pressure is not a source
of gravitation; see the contribution of E. Copeland in this book.

The energy–momentum tensor conservation, T ν
µ ;ν = 0, is valid and from

it one obtains that

ρ̇+ 3H(ρ+ p) = 0 . (6)

If one assumes further a barotropic equation of state for the fluid, ω =
const.,
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p

ρ
= ω =




1
3 for radiation and/or ultra− relativistic matter
0 for dust
1 for stiff fluid
−1 for vacuum energy

(7)

to integrate (6), it yields

ρ =
Mω

a3(1+ω) , (8)

where Mω is the integration constant and is differently dimensioned by con-
sidering different ω−fluids. Equations (4), (5), and (6) are not linearly inde-
pendent, only two of them are. That is, one can derive, e.g., (5) from (4) and
(6). Note that these equations are time symmetric, the interchange t → −t
leaves the equations the same.

Let us very briefly recall which ω−values are needed to describe the di-
fferent epochs of the Universe’s evolution. At very early times, the Universe
is believed to have experienced a huge expansion due to some cosmological
constant (Λ = 8πGρ, where ρ = const.) or vacuum energy. This epoch,
to be fully described later on, is roughly characterized by an equation of
state ω = −1. After inflation, the vacuum energy decays in some particle
content, a process called reheating [3, 33, 1], after which the Universe is
filled with a “fluid” of radiation or of ultra–relativistic matter where the
material content of the Universe consisted of photons, neutrinos, electrons,
and other massive particles with very high kinetic energy. During this epoch
the assumption ω = 1/3 is valid. After some Universe cooling, some massive
particles decayed and others survived (protons, neutrons, electrons) and their
masses eventually surpassed the radiation components (photons, neutrinos).
From that epoch until very recent times, the matter content dominated and
effectively produced no pressure on the expansion and, therefore, one accepts
a model filled with dust, i.e. ω = 0. Until the mid 90s we thought that a
dust model would be representative for the current energy content of the
Universe. Recent measurements (see contribution of A. Filippenko in this
book), however, indicate that as of recently the Universe is again experiencing
a huge expansion rate. It is believed that a kind of cosmological constant, or
vacuum energy, is the largest energy contribution to the expansion of the
Universe at present. Thus the cosmological constant is the generic factor of
an inflationary solution, see the k = 0 solution below, (10), which is believed
to be characteristic of both the very early inflationary epoch and today.

Finally, a stiff model, ω = 1, is sometimes considered in order to describe
very dense matter under very high pressures.

The ordinary differential equations system described above needs a set of
either initial conditions or boundary conditions to be integrated. One can as-
sume a set of two initial values, say, (ρ(t∗), ȧ(t∗)) ≡ (ρ∗, ȧ∗) at some (initial)
time t∗, in order to determine its evolution. Its full analysis has been revie-
wed by many authors [97, 68]. Here, in order to show some early Universe



10 J.L. Cervantes–Cota

consequences we take k = 0, justified as follows: From (4) and (8) one notes
that the expansion rate, given by the Hubble parameter, is dominated by the
density term as a(t)→ 0, since ρ ∼ 1/a3(1+ω) > k/a2 for ω > −1/3; that is,
the flat solution is very well fitted at the very beginning of time. Furthermore,
recent Cosmic Microwave Background Radiation (CMBR) 1 measurements
[26, 6, 48, 13] are consistent with k ∼ 0. Therefore, assuming k = 0, (4)
implies

a(t) = [6πGMω(1 + ω)2]
1

3(1+ω) (t− t∗)
2

3(1+ω)

=




( 32
3 πGM 1

3
)1/4 (t− t∗)1/2 for ω = 1

3 radiation
(6πGM0)1/3 (t− t∗)2/3 for ω = 0 dust
(24πGM1)1/6 (t− t∗)1/3 for ω = 1 stiff fluid

(9)

and
a(t) = a∗eHt for ω = −1 vacuum energy (10)

where the letters with a subindex “∗” are integration constants, representing
quantities evaluated at the beginning of times, t = t∗.

From (9) one can immediately see that at t = t∗, a∗ = 0 and from (8),
ρ∗ = ∞; that is, the solution has a singularity at that time, presumably at
the Universe’s beginning; this initial cosmological singularity is also called
Big Bang singularity. As the Universe expands the Hubble parameter evolves
as H ∼ 1/t, i.e. the expansion rate decreases; whereas the matter–energy
content acts as an expanding agent, cf. (4), it also decelerates the expansion
in an asymptotically decreasing manner, cf. (5) and (8). In that way, H−1

represents an upper limit to the age of the Universe; for instance, H−1 = 2t
for ω = 1/3 and H−1 = 3t/2 for ω = 0, t being the Universe’s age.

The solution (10) is inflationary and has no singularity. This solution is
such that the Hubble parameter is indeed a constant. A fundamental ingre-
dient of inflation is that the r.h.s. of (5) remains positive, ä > 0. This is
performed when the inflation pressure is negative [18], ρ + 3p < 0. In this
way, one does not have necessarily to impose the strong condition ω = −1,
but it suffices that ω < −1/3, in order to have a moderate inflationary solu-
tion; for example, ω = −2/3 it implies a = a∗t2, a mild power-law inflation.
The issue of inflation will be discussed in Sect. 2.

1.2 The Physical Scenario

So far we have obtained some exact solutions for Einstein’s cosmology. Now,
to achieve a more physical scenario one considers the Universe filled with a
plasma of particles and their antiparticles. This was originally done by G.
Gamow [40], who first considered a hot Big Bang model for the Universe’s
1 The CMBR is also sometimes referred to in this book as Cosmic Microwave

Background (CMB) or Cosmic Background Radiation(CBR).
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beginning, which was later qualitatively confirmed by Penzias and Wilson
[73] and interpreted by Dicke et. al. [29]. Furthermore, with the development
of modern particle physics theories in the 70s it was unavoidable to think
about a physical scenario for the early Universe which should include even
the “new” physics. It was also realized that the physics described by GR
should not be applied beyond Planck (Pl) initial conditions, because there
the quantum corrections to the metric tensor become very important, a theory
which is still in progress. Thus, we make some assumption at some early time,
t>∼ tPl: the Universe was filled with a plasma of relativistic particles, including
quarks, leptons, and gauge and Higgs bosons, all in thermal equilibrium at a
very high temperature, T , with some gauge symmetry dictated by a particle
physics theory.

Now, in order to work in that direction one introduces some thermodyna-
mic considerations necessary for the description of the physical content of the
Universe, which we would like to present here. Assuming an ideal-gas appro-
ximation, the number density ni of the particles of type i, with a momentum
q, is given by a Fermi or Bose distribution [60]:

ni =
gi

2π2

∫
q2dq

e(Ei−µi)/T ± 1
, (11)

where Ei =
√
m2
i + q2 is the particle energy, µi is the chemical potential,

the sign (+) applies for fermions and (−) for bosons, and gi is the number
of spin states. One has that gi = 2 for photons, quarks, baryons, electrons,
muons, taus, and their antiparticles, but gi = 1 for neutrinos because they
are only left-handed. For the particles existing in the early Universe one
usually assumes that µi = 0: one expects that in any particle reaction the
µi are conserved, just as the charge, energy, spin, and lepton and baryon
number are conserved as well. The number density of photons (nγ), which
can be created and/or annihilated after some particle collisions, must not be
conserved and its distribution with µγ = 0, E = q = hν, reduces to the
Planck one. For other constituents, in order to determine the µi, one needs
ni; one notes from (11) that for large µi > 0, ni is large too. One does not
know ni, but from nucleosynthesis that [72]

η ≡ nB
nγ
≡ nbaryons − nanti−baryons

nγ
≈ (3− 4)× 10−10 . (12)

The smallness of the baryon number density, nB , relative to the photon’s,
suggests that nleptons may also be small compared with nγ . Therefore, one
takes for granted that µi = 0 for all particles. Why the ratio nB/nγ is so
small, but not zero, is one of the puzzles of the SBB. This ratio is also often
called η ≡ nB/nγ .

The above approximation allows one to treat the density and pressure of
all particles as a function of the temperature only. According to the second
law of thermodynamics, one has [97]
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dS(V, T ) =
1
T

[d(ρV ) + pdV ] , (13)

where S is the entropy in a volume V ∼ a3(t) with ρ = ρ(T ), p = p(T ) in
equilibrium. Furthermore, the integrability condition ∂2S

∂T∂V = ∂2S
∂V ∂T is also

valid, which turns out to be

dp

dT
=
ρ+ p

T
. (14)

Additionally, the energy conservation law equation (6) leads to

a3(t)
dp

dt
=

d

dt
[a3(t)(ρ+ p)] (15)

and using (14), the latter takes the form

d

dt
[
a3(t)
T

(ρ+ p)] = 0 . (16)

Using (14), (13) can be written as

dS(V, T ) =
1
T
d[(ρ+ p)V ]− V

T 2 (ρ+ p)dT . (17)

Then, (16) together with (17) imply that the entropy

S =
a3

T
[ρ+ p] = const. (18)

is a constant of motion.
The density and pressure are given by

ρ ≡
∫
Einidq and p ≡

∫
q2

3Ei
nidq . (19)

For photons or ultra–relativistic fluids, E = q, these equations become such
that

p =
1
3
ρ , (20)

confirming (7), and after integrating (14), it results that

ρ = bT 4 (21)

with the constant of integration, b. In a real scenario there are many relati-
vistic particles present, each of which contributes as in (21). Summing up all
of them, ρ =

∑
i ρi and p =

∑
i pi over all relativistic species, it results that

b(T ) = π2

30 (NB + 7
8NF ), which depends on the number of effective relativi-

stic degrees of freedom of bosons (NB) and fermions (NF ). Therefore, this
quantity varies with the temperature; different i−species remain relativistic
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until some characteristic temperature T ≈ mi, after which the value NFi
(or

NBi
) no longer contributes to b(T ). The factor 7/8 accounts for the different

statistics the particles have, see (11). In the standard model of particles phy-
sics b ≈ 1 for T � 1 MeV and b ≈ 35 for T > 300 GeV. Additionally, for
relativistic particles one obtains from (11) that

n = cT 3, with c =
ζ(3)
π2 (NB +

3
4
NF ) . (22)

where ζ(3) ≈ 1.2 is the Riemann zeta function of 3. Currently, nγ ≈ 422
cm3T

3
2.75,

where T2.75 ≡ Tγ0
2.75◦K ; the subscript “0” refers to quantities evaluated at

present time.

From (18), using (20) and (21), one concludes that T ∼ 1/a(t) and from
the ω = 1/3 solution in (9) one arrives at the result

T =
4

√
M 1

3

b

1
a(t)

= 4

√
3

32πGb
1

(t− t∗)
1
2
, (23)

a decreasing temperature behavior as the Universe expands. Therefore, in-
itially at the Big Bang t = t∗ implies T∗ = ∞, the Universe was very hot.

The entropy for an effective relativistic fluid is given by (18) together with
(20) and (21):

S =
4
3
b (a T )3 = const. (24)

Combining this with (23), one can compute the value of M 1
3

to be M 1
3

=
( 3
4S)4/3/b1/3 ≈ 10116, since b ≈ 35 and the photon entropy S0 = 4

3 b (a0 T0)3 ≈
1088 for the currently evaluated quantities a0 = dH(t0) = 1028cm and
Tγ0 = 2.7 ◦K. For later convenience, we define the entropy per unit vo-
lume, entropy density, to be s ≡ S/V = 4

3
π2

30 (NB + 7
8NF )T 3; thus, currently

s ≈ 7nγ . The nucleosynthesis bound on η, (12), implies that nB/s ≈ (4-
− 6)× 10−11.

Now we consider particles in their non–relativistic limit (m 	 T ). From
(11) one obtains for both bosons and fermions that

n = g

(
mT

2π

)3/2

e−m/T . (25)

The abundance of equilibrium massive particles decreases exponentially once
they become non–relativistic; this situation is referred as in equilibrium an-
nihilation. Their density and pressure are given through (19) and (25) by

ρ = nm

p = nT � ρ . (26)
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Therefore, the entropy given by (18) for non–relativistic particles through
(25) and (26) also diminishes exponentially during their in equilibrium an-
nihilation. The entropy of these particles is transferred to that of relativis-
tic components by augmenting their temperature. Hence, the constant total
entropy is essentially the same as that given by (24), but the i−species con-
tributing to it are just those which are in equilibrium and maintain their
relativistic behavior, that is, particles without mass such as photons.

Having introduced the abundances of the different particle types, we
would like to comment on the equilibrium conditions for the constituents
of the Universe as it evolves. This is especially of importance in order to have
an idea whether or not a given i−species disappears or decouples from the
primordial brew. To see this, let us consider ni when the Universe’s tempera-
ture, T , is such that (a) T 	 mi, during the ultra–relativistic stage of some
particles of type i and (b) T � mi, when the particles i are non–relativistic;
both cases originally in thermal equilibrium. From (22) one obtains for case
(a) that ni ∼ T 3; the total number of particles, ∼ nia

3, remains constant.
Whereas for case (b), from (25), ni ∼ T 3/2e−mi/T , i.e. when the Universe
temperature goes down below mi, the number density of the i−species sig-
nificantly diminishes; an “in equilibrium annihilation” occurs. Let us take as
an example the neutron–proton annihilation: one then has

nn
np
∼ e

mp−mn
T = e− 1.5×1010 ◦K

T (27)

which drops with the temperature, from nearly 1 at T ≥ 1012 ◦K to about 5/6
at T ≈ 1011 ◦K, and 3/5 at T ≈ 3× 1010 ◦K [70]. If this is forever valid, one
ends up without massive particles, meaning that our Universe should have
consisted only of radiative components; our own existence contradicts that!
Therefore, the in–equilibrium annihilation eventually stopped. The quest is
now to freeze out this ratio (to be nn/np ≈ 1/6) 2 in order to leave some ha-
drons for posteriorly achieving successful nucleosynthesis. The answer comes
by comparing the Universe expansion rate, H, with particle physics reaction
rates, Γ . Hence, for H < Γ , the particles interact with each other faster than
the Universe expansion rate and then equilibrium is established. For H > Γ
the particles cease to interact effectively and then thermal equilibrium drops
out 3. In this way, the more interacting the particles are, the longer they
remain in equilibrium annihilation and, therefore, the lower their number
densities are after some time; e.g., baryons vanish first, then charged leptons,
2 Due to neutron decays, until the time when nucleosynthesis begins, nn/np redu-

ces to 1/7.
3 This is only approximately true; a proper account of this involves a Boltzmann

equation analysis. In doing so a numerical integration should be carried out in
which annihilation rates are balanced with inverse processes; see for example
[90, 60].
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neutral leptons, etc. Finally, the particle numbers of (massless) photons and
neutrinos remain constant, as it was mentioned above; see Fig. 1. Note that
if interactions of an i−species freeze out when it is still relativistic, then its
abundance can be significant at present.

It is worth mentioning that if the Universe were to expand faster, then
the temperature of decoupling at H ∼ Γ would be higher, thus the fixed ratio
nn/np would be greater, thus leading to profound implications in the nucleo-
synthesis of the light elements. For instance the Helium, 4He, abundance
should be higher. Therefore, the expansion of the Universe cannot arbitrarily
be augmented during the equilibrium era of some particles. Furthermore, if a
particle species is still highly relativistic (T 	 mi) or highly non–relativistic
(T � mi) when decoupling from primordial plasma occurs, it maintains an
equilibrium distribution; the former characterized by Tra =const. and the
latter by Tma2 =const., cf. (30).

›
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Fig. 1. The evolution of the particle density of different i−species. If an i−species
is in equilibrium its abundance diminishes exponentially after the particle becomes
non–relativistic (solid line). However, interactions of an i−species can freeze out,
causing the particle species to decouple from equilibrium and maintain its abun-
dance (dashed line). (Figure adapted from Kolb and Turner 1990).

There are also some other examples of decoupling, like the neutrino decou-
pling: during nucleosynthesis there exist reactions like νν̄ ←→ e+e−, which
maintain neutrinos efficiently coupled to the original plasma (Γ > H) un-
til about 1 MeV, since Γ

H ≈
(

T
MeV

)3
. Below 1 MeV reactions are no longer

efficient and neutrinos decouple and continue evolving with a temperature
Tν ∼ 1/a. Then, at T >

∼ me = 0.51MeV the particles in equilibrium are pho-
tons (with NB = 2) and electron and positron pairs (with NF = 4) which
contribute to the entropy with b(T ) = π2

30 · (11/2). Later, when the tempe-
rature drops to T � me, the reactions are no longer efficient (Γ < H) and
after the e± pair annihilation there are only photons in equilibrium with
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b(T ) = π2

30 · (2). Since the total entropy, S = 4
3b(aT )3, must be conserved,

the decrease in b(T ) must be balanced with an increase in the radiation tem-
perature; this gives a result of Tγ

Tν
=

( 11
4

)1/3, which should remain to the
present day, implying the existence of a cosmic background of neutrinos with
a temperature today of Tν0 = 1.96 ◦K.

Another example of this is the gravitation decoupling, which should also
be present if gravitons were in thermal equilibrium at the Planck time and
then decoupled. The present–day background of temperature should be cha-
racterized at most by Tgrav. =

( 4
107

)1/3 ≈ 0.91 ◦K.

For the matter dominated era we have stressed that effectively p = 0;
next we will see the reason for this: First consider an ideal gas (like atomic
Hydrogen) with mass m, then ρ = nm+ 3

2nTm and p = nTm. From (15) one
obtains, equivalently, that

d

da
(ρa3(t)) = −3pa2(t) (28)

and substituting the above ρ and p, one obtains

d

da
(nma3(t) +

3
2
nTma

3(t)) = −3nTma2(t) (29)

where nma3(t) is a const. This equation yields

Tma
2(t) = const. , (30)

that matter temperature drops faster than that of radiation as the Universe
expands; see (23). Now, if one considers both radiation and matter, it is
valid that ρ = nm + 3

2nTm + bT 4
r and p = nTm + 1

3bT
4
r ; the source of the

Universe’s expansion is proportional to ρ+ p = nm+ 5
2nTm + 4

3bT
4
r ; the first

term dominates the second, precisely because Tm decreases very rapidly. The
third term diminishes as ∼ 1/a4, whereas the first as ∼ 1/a3, and after the
time of densities equality (eq.), ρm = ρr, the matter density term is greater
than the others, which is why one assumes no pressure for that era.

From now on, when we refer to the temperature, T , it should be related
to the radiation temperature.

The detailed description of the thermal evolution of the Universe for the
different particle types, depending on their masses, cross-sections, etc., is
well described in many textbooks, going from the physics known in the early
70s [97] to the late 80s [60], or late 90s [62], and therefore it will not be
presented here. However, we notice that as the Universe cools down, a se-
ries of spontaneous symmetry–breaking phase transitions are expected to
occur. The type and/or nature of these transitions depend on the specific
particle physics theory considered. Among the most popular are Grand Uni-
fication theories (GUT) which bring together all known interactions except
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for gravity. One could also be more modest and just consider the standard
model of particle physics or some extensions of it. Ultimately, one should de-
cide, in constructing a cosmological theory, according to which energy scale
one wants to use to describe physics. For instance, at a temperature bet-
ween 1014 GeV to 1016 GeV the transition of the SU(5) GUT should take
place -if this theory is valid- in which a Higgs field breaks this symmetry
to SU(3)C × SU(2)W × U(1)HC , a process through which some bosons ac-
quire their masses. Due to the gauge symmetry, there are color (C), weak
(W) and hypercharge (HC) conservation, as the subindexes indicate. Later
on, when the Universe evolves to about a few hundred GeV, the electro-
weak phase transition takes place, in which a second Higgs field breaks the
symmetry SU(3)C × SU(2)W × U(1)HC to SU(3)C × U(1)EM ; through this
second breaking the fermions also acquire their masses. At this stage, there
are only color and electromagnetic (EM) charge conservation, due to the
gauge symmetry. Afterwards, at a temperature of about 100 to 300 MeV
the Universe should undergo a transition associated to the chiral symmetry–
breaking and color confinement, from which baryons and mesons are formed
out of quarks. Subsequently, at approximately 10 MeV the synthesis of light
elements (nucleosynthesis) begins, producing most of the observed Hydrogen
and Helium observed in the present day, along with abundances of some other
light elements. The nucleosynthesis represents the earliest scenario tested in
the SBB. After some time, matter dominates, over radiation components, in
the Universe, and the large scale structure (galaxies, clusters, superclusters,
voids, etc.) begins to form. At about 1 eV the recombination takes place;
that is, the Hydrogen ions and electrons combine to compose neutral Hy-
drogen atoms, then matter and EM radiation decouple from each other. At
this moment the surface of last scattering (ls) of the CMBR evolves as an
imprint of the Universe at that time. In Fig. 2 the main events of the SSB are
sketched.

Let us go back to the FRW cosmological equations. In observing the
two terms involved in (4), the matter term 8πGρ/3 and the curvature term
k/a2, one should be aware of the validity of the approximation 8πGρ/3 >
k/a2. Let us for the moment elucidate that k is tiny but different from zero.
Then, eventually when the energy density has diminished enough due to the
expansion, 8πGρ/3 ∼ k/a2, and further on the Universe will be dominated
by its curvature. Let us consider this case, but for both k = ±1 separately.
First, take k = −1, then H = 1/a and the solution is a ∼ t, that is, the
Universe expands forever. Otherwise, for k = +1, at the moment of maximum
expansion, say4 τc/2 , 8πGρ/3 = k/a2, the Universe stops its expansion and
then the scale factor begins to decrease. The solution given by the negative
square root of (4) again ends with a singularity but now at t = τc > t∗, where

4 τc stands for τcollapse. The lifetime of such an Universe, the time of a cycle, is just
twice the time of maximal expansion, because the solution is time symmetric.
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Fig. 2. The thermal history of the SBB (Figure adapted from Harrison 1970).

ρ = ∞, T = ∞, and a = 0; this is the so-called Big Crunch. For instance,
the lifetime τc for a model filled with cold dark matter is

τc ≈MG ≈ M

MPl
10−43 s ; (31)

that is, if our Universe were dark–matter dominated and with a closed cur-
vature, then it must presently have (1017 s) a mass M > 1060MPl ≈ 1055gr.

For a radiation model, in terms of its entropy, from (18) and (23), one
obtains that

τc ≈
S2/3

MPl
≈ S2/310−43 s , (32)

in this case S > 1090, a huge entropy! In trying to understand such big
numbers one is forced to recognize some problems with the SBB. Next, we
present some of them.
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1.3 Problems of the Standard Big Bang Model

In considering a theory of the Universe one is open to think about an Uni-
verse’s “arena” as general as possible. In doing so one finds a large list of
problems to be understood. However, not all of them are of the same na-
ture. For instance, some problems arise as a result of computations, others
by implementing a physical scenario for GUT or from the conception itself of
how the Universe should have begun; that is, apart from the choice of initial
conditions, (ρ∗, ȧ∗), are the number of dimensions or the global topology. In
this section we list some of these problems, emphasizing those for which the
inflationary Universe offers an explanation:

Dimensionality

Why should the Universe have four space–time dimensions, at least locally
in our surroundings? A first attempt to consider theories in more dimensions
was carried out by Kaluza and Klein [54, 56], who tried, unsuccessfully, to
unify gravity with the electromagnetic interaction. However, from that we
learned to use more than four dimensions for unifying meanings.

Other theories such as fundamental strings are conceivable in D−dimen-
sions, but by demanding Lorentz invariance of the quantized bosonic string
theory one has to choose D = 26, or in fermionic strings D = 10. Yet, there
arises the problem of compactifying the D−4 dimensions, to a compact space
whose size is of the order of the Planck length (lPl). There is no unique pro-
cedure. The compactification can be achieved in a number of ways, many of
them casting different particle content in their low energy effective Lagrangi-
ans. In addition, there exists no compelling principle which would determine
the space–time dimension to be four. All dimensions below D seem to be on
an equal footing [66].

Euclidicity

What is the global geometry of the Universe? The space geometry is almost
perfectly Euclidean on large scales, but on very small scales -say, slightly
smaller than the Planckian- GR is not any more tractable, as quantum fluc-
tuations of the metric make it impossible to extend a classical formalism.
Within GR one understands a large–scale euclidicity, but not at the very
small scale, even though the only natural length in GR is lPl =

√
G. Why

this? Naturally, it is tempting to go beyond GR, a theory which is not yet
completed.

Singularity

As we have already mentioned, at t = t∗ the scale factor is a = 0, the density
ρ = ∞ and T = ∞, see (9), (8) and (23). It can also be shown that the
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curvature tensor Rµνγδ = ∞ at that time. There exists no such a theory to
explain gravity as a(t) approaches zero. In fact, one expects GR to be valid
as far as a(t) → lPl; in going beyond this limit the problems mentioned in
the Euclidicity item appear.

Homogeneity and Isotropy

The large–scale structure of the Universe seems to be very homogeneous and
isotropic. However, looking on small scales, the isotropy and homogeneity
break down: there exist planets, stars, compact objects, galaxies, clusters...a
large–scale structure. Hence, it is tempting to consider more general inhomo-
geneous and anisotropic models, which should explain, as a consequence of
their evolution, the currently observed large–scale structure along with the
isotropy limits observed in the CMBR, in x–ray backgrounds (e.g. quasars at
high redshift), and in number counts in faint radio sources.

In GR, without the aid of a cosmological constant or inflation, Collins
and Hawking [25] examined the question in terms of an “initial conditions”
analysis. They obtained that the set of spatially homogeneous cosmological
models approaching isotropy in the limit of infinite times is of measure zero
in the space of all spatially homogeneous models. This in turn implies that
the isotropy of the models is unstable to homogeneous and anisotropic per-
turbations. However, their definition of isotropization demands asymptotic
stability of the isotropic solution. An asymptotic stability analysis of Bianchi
models in GR [10] shows, e.g., that in the Bianchi type VIIh the anisotropy
will not exactly vanish but can be bounded. In this sense, the open FRW
model may be stable. Attempts to understand this question in other gravity
theories, such as Brans–Dicke theory, shed some light on the solution [20].

Horizon

The region of space which can be connected to some other region by causal
physical processes, at most through the propagation of light with ds2 = 0,
defines the causal or particle horizon, dH . For the FRW equation (3), in
spherical coordinates with θ, φ =const. and after redefining r, this means
that [82, 97]:

∫ t

0

dt

a(t)
=
∫ rH

0

dr√
1− kr2

dH(t) ≡ a(t)
∫ rH

0

dr√
1− kr2

. (33)

In order to analyze the whole horizon evolution, from the present (t0) to the
Planck time (tPl), we first compute the horizon for the matter dominated era
teq. ≤ t ≤ t0 and secondly for the radiation era t ≤ teq., because they are
differently determined by (9), where we set t∗ = 0 for convenience. For the
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matter epoch one has a(t) = a0(t/t0)2/3, then the first equation above gives
rH = 3

a0
(t20 t)

1/3; from the second equation one obtains the horizon dH(t) =
3t = 2H−1. For the radiation period, one finds that rH = 2

aeq.
(teq. t)1/2

and dH(t) = 2t = H−1. We see for the matter dominated era that the
causal horizon is twice the Hubble distance, H−1, and that they are equal
to each other during the radiation dominated era; therefore, one uses them
interchangeably. It is clearly seen for both eras that as t → 0, the Universe
is causally disconnected, being a(t) > dH(t).

The evolution of a typical co–moving distance scale, L, due to the Universe
expansion is given by L(t) = L0

a(t)
a0

. Next, let us compare the past evolution
of that scale with the corresponding traced by the horizon, dH(t) = dH0(t/t0),
where dH0 = 3t0, for the matter dominated era. Then, one finds that

dH
L

=
dH0

L0

(
t

t0

)1/3

for teq. ≤ t ≤ t0 . (34)

Now consider the typical scale, L0, to be the present observed particle horizon,
L0 = dH0 . Then, the amount by which the three dimensional horizon was
smaller than the “volume” L3(t) is determined by the following relation:

(
dH
L

)3

=
t

t0
=
(
T0

T

)3/2

for teq. ≤ t ≤ t0 , (35)

in which we have made use of (9) and (24). At the time when the CMBR
was last scattered (ls) one has then that

(
dH

L

)3
ls ≈ 10−5; that is, there were

approximately one hundred thousand small horizon regions without causal
connection! But, on the other hand, by that time the CMBR was already
highly isotropic. Thus, one has to take for granted that the initial conditions
for all the 105 volume horizons were fine tuned so as to account for the present
observed large angle CMBR levels of isotropy, with δT/T ∼ 10−5. This is the
horizon problem.

One can go further and compute the number of disconnected regions up
to the Planck epoch. But first, one needs to evaluate the ratio dH/L when the
radiation and matter densities equal (eq.) each other; this is

(
dH

L

)3
eq. ≈ 10−6.

Up until this time, one has to use the radiation solution given by

dH
L

=
dHeq.

Leq.

(
t

teq.

)1/2

for t ≤ teq. , (36)

again taking as the typical scale that of the horizon at that time, which is
given by

(
dH

L

)3
eq. ≈ 10−6. Then, one finds that

(
dH
L

)3

= 10−6
(

t

teq.

)3/2

= 10−6
(
Teq.

T

)3

for t ≤ teq. , (37)
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which at the time of nucleosynthesis (ns) is
(
dH

L

)3
ns ≈ 10−24; then one has

to tune the initial conditions even finer (than at t = teq) to explain the
homogeneous Universe element composition. Further, at Planck time it yields(
dH

L

)3
Pl
≈ 10−89, that is, L

dH
≈ 1029 ≈ e68; such large numbers will later be

explained in a successful inflationary model.
Now, let us try to link this issue with the big numbers encountered in (31)

and (32). To do that, next we compute the entropy per horizon, SH , using
(24), finding

SH =
4
3
b (dH T )3 , (38)

now using (34), (24), and (9) for the matter dominated era and (36), (24),
and (23) for the radiation era, we obtain the following results:

SH = S

(
T0

T

)3/2

for teq. ≤ t ≤ t0 (39)

and

SH = S

(
dHeq.

Leq.

)3 (
Teq.

T

)3

= S × 10−6
(
Teq.

T

)3

for t ≤ teq. , (40)

where S = 1088 and should be a constant of motion; see (18). From these
equations one obtains at t = tls that SHls = 1083. At a typical time during
the nucleosynthesis one finds SHns = 1063, and so on, until the Planck time,
where SHP l

≈ 1. That is to say that the horizon problem is related to the
increase of the horizon entropy as the Universe expands: this increase should
be such that currently SH0

>
∼ 1088 can explain the Universe’s age, cf. (32).

The evolution of horizon entropy in the standard Big Bang model is depicted
in Fig. 3. Within the context of the anthropic principle, the existence of such
big numbers invites us to reflect on our own existence; why are they so big
(or so small)? The anthropic principle states that only in this way can life
exist to account for it!

Flatness

Why is our Universe today nearly flat, and why was it almost identically flat
at the very beginning? [30]. From (4) and (8) one finds that

Ω(t)− 1 =
ρ− ρc
ρc

=
k

a2H2

=
k

8πG
3 Mωa−(1+3ω) − k

, (41)

where the density parameter is defined as Ω(t) ≡ ρ(t)/ρc(t) and the critical
density as ρc(t) ≡ 3H2(t)/8πG. From (41) one can see that k = 0, Ω = 1
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Fig. 3. The entropy per horizon is shown as the Universe cools. For the matter
era the solution is given by (39) and for the radiation era by (40). The entropy per
horizon presently is SH0 = S ∼ 1088 at T = 2.7 ◦K.

is an unstable point. Consider the limit a → 0, then Ω → 1 for ω > −1/3.
Now, if k = −1, as a→∞ then Ω → 0; while for k = +1, as a→ amax. then
Ω →∞. That is, unless k = 0 and exactly Ω = 1, the spatially flat Universe
is unstable [72]; see Fig. 4.

Let us analyze in greater detail the first limit taken above. In order to
compare the presently observed Ω0 = O(1) with that in the past, we first
consider the evolution during the matter dominated era, given by (9) with
ω = 0. It implies that

Ω(t)− 1 = k

(
H−1

0

a0

)2 (
t

t0

)2/3

for teq. ≤ t ≤ t0 (42)

which at t = t0 implies Ω − 1 ≈ k, but at t = tls, Ω − 1 = k 10−4. Therefore,
in order to explain the present Ω0 = O(1) one has to fine tune the density
value at t = tls to be very similar to the critical value, the difference being of
the order of only one part in ten thousand. This is the flatness problem.

For t < teq., we use the radiation solution, given by (9) with ω = 1/3, to
have

Ω(t)− 1 = k

(
H−1

eq.

aeq.

)2
t

teq.
for t ≤ teq. , (43)

at t = tPl, Ω − 1 = k 10−59 ! Thus, considering the entire evolution of the
Universe beginning with Planckian initial conditions, one needs again to fine–
tune the initial density value to be ρ = (1± 10−59)ρc in order to explain the
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Fig. 4. The parameter Ω as a function of the scale factor, a, in a radiation do-
minated Universe. For closed models, with k = +1, Ω diverges as the scale factor
approaches its maximum value, whereas for open models, k = −1, Ω asymptotically
approaches to zero as the Universe expands. Finally, for a flat metric, k = 0, Ω is
always equal to one. The behavior for a dust model is similar.

currently observed energy content of the Universe, i.e. to explain our own
existence. The anthropic principle would just restate that the Universe has
chosen those initial conditions necessary for us to be here! Nevertheless, this
is no explanation but more a philosophical posture.

Let us try again to relate this issue to the aforementioned big numbers,
(31) and (32). To do that, we express the above quantities in terms of the
entropy within the horizon, (39) and (40). Since (24) is always valid, one
obtains for both eras that

Ω(t)− 1 = k

(
SH
S

)2/3

for all times; (44)

again, at t = t0, Ω(t)− 1 ≈ k. At t = tls, SHls = 1083 implies that Ω(t)− 1 ≈
k10−4, whereas at the Planck time SH ≈ 1, one once again obtains that
Ω(t) − 1 ≈ k10−59. Very similar to the horizon problem, here one finds
that the very small numbers come from the vast entropy increase within the
horizon, which is the entropy necessary to fit the Universe’s age, cf. (32).

Thus, the last two puzzles can be restated as: Why was the horizon en-
tropy at the Planck time SHP l

≈ 1, but now SH0 ≈ 1088?
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Baryon Asymmetry

We observe that our Universe is apparently made of matter but not of an-
timatter. Why is this? Furthermore, the present different types of matter
(fermions, bosons) are not in equal proportion. As we have already mentio-
ned, nucleosynthesis restricts the value of η to be5 η ≈ (3 − 4) × 10−10, cf.
(12); this fact tells us that the Universe is far more filled with photons than
with baryons and if the baryon number is conserved η must also be conserved
since the beginning of nucleosynthesis. In the standard model of cosmology
one has to assume this as a given input. Let us explain this in more detail:

As far as observations show, within the solar system and our galaxy there
is no evidence of primordial anti–baryons; if there were, some amount of
gamma rays would be detected because of their annihilation with their baryon
counterparts, something which has been not observed [89]. In going beyond
galaxy scales, antimatter in galaxy clusters is ruled out by simple arguments
that in fact are related to the horizon problem: one can imagine a baryon
symmetric early Universe, whereby baryons and anti–baryons coexist in equi-
librium. Their particle numbers in a co–moving volume should remain con-
stant only until they become non–relativistic, when (25) begin to be valid;
after that their particle abundances decrease exponentially. The particles re-
main in equilibrium annihilation until the temperature T ≈ 22 MeV, when
the annihilation rate, Γ , falls below the expansion rate. Then the ratio nB/s
is fixed to be nb/s = nb̄/s = 7×10−20 [89, 60], nine orders of magnitude smal-
ler than the currently observed ratio nB/s! In order to avoid this annihilation
catastrophe one can try in some manner to stop the annihilation mechanism
some time before, at about T ≈ 38 MeV when nb/s = nb̄/s = 10−10− 10−11,
by separating baryons from anti–baryons. Even so the horizon at that time
contained the following amount of matter:

Md = ρd3
H = (ρa3)0

(
dH
a0

)3

= M0 × 10−6
(
Teq.

T

)3

, (45)

where we have used (37); at T = 38 MeV, Md = 5× 1026gr = 2.7× 10−7M�,
which is clearly very much smaller compared to galaxy cluster mass scale;
again, very fine tuning must be done. Instead of appealing to rare initial
conditions, an alternative is to explain the baryon asymmetry by means of
the Universe’s evolution. Accordingly, at some high temperature T >

∼ 1 GeV,
5 In fact, η cannot be directly determined, nor can nB/s. They are fitted

to the currently observed values of light element composition in the Uni-
verse, i.e. 0.22 <

∼ Y4He
<
∼ 0.26, D/H >

∼ (1 − 2) × 10−5, (D + 3He)/H <
∼ 10−4 and

(7Li/H) <
∼ 2 × 10−10. In this way, one can relate η with the baryon content of

the Universe. Accordingly, for baryons nB = ρB/mB = 1.13 × 10−5ΩBh2/cm3

and nγ = 2ζ(3)
π2 T 3 ≈ 422

cm3 T 3
2.75, therefore, ΩB = 3.6 × 107ηT 3

2.75/h2, and from
the above mentioned value of η one finds that 0.01 ≤ ΩB ≤ 0.10; that is, the
Universe cannot be closed by baryons alone.
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when nq ≈ nq̄ ≈ nγ , a tiny asymmetry was already present and it prevented
the total annihilation of quarks (q) and anti–quarks (q̄), in such a manner
that nq−nq̄

nq
= 3 × 10−8 in order to explain the nB/s needed for successful

nucleosynthesis to take place [60].
The particle physics implementation in the early Universe by which that

tiny asymmetry could be solved is called baryogenesis. The first attempt to
address this problem was made by Sakharov [84], who pointed out three ingre-
dients necessary to attain a baryon asymmetry in the Big Bang model. Let us
review these: (i) baryon number violation, otherwise the baryon asymmetry
can only reflect asymmetric initial conditions; (ii) violation of charge conju-
gation (C) and charge conjugation combined with parity (CP) are necessary
to achieve different production rates for baryon and anti–baryons, otherwise a
net zero baryon number is maintained; and (iii) non–equilibrium conditions,
otherwise the same Fermi distribution of baryons and anti–baryons would
guarantee the same phase space for them, i.e. nb = nb̄.

It is curious that these three conditions were pointed out before there was
a theory which could accomplish them. Indeed, first GUT appeared in the
70s and when one realized them in an early Universe scenario, they met the
three ingredients: the first two are fulfilled because, by construction, strong
and electroweak interactions are unified; this implies that quarks and lep-
tons are members of a common irreducible representation of the GUT gauge
group. In that way, gauge bosons mediate interactions in which baryons can
decay into leptons, or the inverse, giving rise to a baryon number violation.
C is violated by weak interactions and CP violation is observed in Kaon K0

(meson) interaction. Thus, one also expects that the massive X-bosons decay
into quarks/leptons, with a branching ratio of, say, r, and X̄ with r̄, such that
r = r̄. The third condition is attained due to Universe expansion, which evol-
ves as H ∼ T 2/MPl in the radiation dominated era. For that to happen, one
takes the reaction rates (decay, annihilation, and inverse processes) ΓX > H.
Then, through the out-of-equilibrium decay mechanism the X−bosons have
a long enough lifetime so that their inverse decays go out of equilibrium as
they are still abundant. In this way, the baryon number is produced by the
X free decay, whereas the inverse rates are turned off.

Nevertheless, GUT have their own problems. For instance, precisely be-
cause of the first two ingredients above, the proton should decay too; in the
minimal SU(5) GUT its lifetime is τp ≈ 1029±1 years, but the experimen-
tal limit is greater, τp ≈ 1031−32 years. Thus, something is wrong with this
theory.

Another problem of GUT is that unless the model is B-L conserving, any
net baryon number generated might be brought to zero by efficient anomalous
electroweak processes, at temperatures of about T ∼ 100 GeV. Though this
seems not possible within the standard model electroweak baryogenesis, there
are model extensions where this can be possible; see contribution of Picci-
nelly and Ayala in this book. This possibility represents a serious problem
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to GUT, and it opens new windows for low energy physics. Here, we depict
briefly the idea of how electroweak baryogenesis works[31]: the vacuum ma-
nifold of the electroweak model, the so-called θ−vacuum, has degenerated
minima separated by energy barriers in the field configuration space as a
result of non–trivial vacuum gauge configurations (Aaµ = 0) of non–Abelian
gauge theories. Different minima have different baryon and lepton numbers,
with the net difference between two adjacent minima being given by the num-
ber of families. Thus, for the standard model, jumps between these minima
imply the creation of three baryons and leptons, hence, there is B-L conserva-
tion and B+L violation. At T = 0, tunneling (jumps) between two adjacent
minima is mediated by instantons and the tunneling rate is exponentially
suppressed [92] Γ ∼ e

− 1
α

EW , where α
EW

= 1/170 is the electroweak coupling
constant; this is why the proton is stable. However, at finite temperature,
T ≈ 100 GeV, one can go over the energy barrier to achieve a baryon number
violation, as first described in [61]. The height of the barrier is a solution of
an unstable static configuration called sphaleron, whose rate is Γ ∼ e− ES

T ,
with its associated energy ES ≈ MW /αEW

. For temperatures above the cri-
tical temperature of electroweak symmetry restoration, the rate is no more
strongly suppressed, but Γ ∼ (α

EW
T )4, indeed making possible baryon num-

ber violation. The other two ingredients to achieve baryogenesis could also
be present, but a detailed analysis is in order; for a short review see [32, 44]
and for an extended one see [31].

Monopole and Other Relics

Another problem of GUT is the production of magnetic monopoles [91, 77] as
a consequence of GUT symmetry–breaking to some semi simple group U(1).
In the course of the phase transition, bubbles of the new phase are produced
and on scales greater than dH one expects different Higgs field alignments.
Because of this randomness, topological knots are present and they are the
magnetic monopoles. It has been proved that their number density should be
comparable to the baryon density, but their mass is 1016 times greater than
that of the protons; in this case, the Universe should have recollapsed long
before [55, 102, 78].

Additionally, some theories predict primordial cosmological particles (or
structures) that could be present currently, also as a result of some sponta-
neous symmetry–breaking process. Among these cosmological relics are mas-
sive neutrinos, gravitinos, domain walls, cosmic strings, axions, etc.

Cosmological Constant

Another problem that arises as a consequence of theories of grand unifica-
tion (or theories of everything, including gravity) is that the vacuum energy
associated with these, < 0|Tµν |0 >=< ρ > gµν , turns out to be very large.
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Summing the zero-point energies of all normal modes of some field of mass
m, one obtains < ρ >≈ M4/(16π2), where M represents some cutoff in the
integration, M 	 m. Then, assuming GR is valid up to the Planck scale, one
should take M ≈ 1/

√
8πG, which gives < ρ >= 1071 GeV4. This term plays

the role of an effective cosmological constant of Λ = 8πG < ρ >≈M2
Pl ∼ 1038

GeV2 which must be added to the l.h.s. of Einstein equations (2) and yields
an inflationary solution (10). However, if the cosmological constant is at pre-
sent of the order of magnitude of the material content of the Universe, one
has that

Λ ∼ 8πGρ0 = 3H2
0 ∼ 10−83GeV2, (46)

which is very small compared with the value derived above on dimensional
grounds. Thus, the cosmological constraint and theoretical expectations are
rather dissimilar, by about 121 orders of magnitude! Even if one considers
symmetries at lower energy scales, the theoretical Λ is indeed smaller, but
never as small as the cosmological constraint. One finds that ΛGUT ∼ 1021

GeV2 and ΛSU(2) ∼ 10−29 GeV2 in contrast to (46). For an analysis of this
problem in terms of longitude scales (not of mass square scales), see the
contribution by E. Copeland in this book. This problem has been reviewed
in [98, 19].

Large–Scale Structure

The problem of explaining structure formation in the Universe is most fasci-
nating. There exist stars, galaxies, clusters of galaxies, superclusters, voids,
and a variety of large–scale structures in the currently observed Universe,
whose origin one hopes to understand within the framework of Newtonian
or GR physics. Such systems represent complicated problems, for which one
needs a deep understanding of both the initial conditions of the relevant
physical quantities and their evolution: among them are the Universe com-
position (accounted in the density of the different i-species, Ωi) and the type
of perturbation the Universe experienced, i.e. adiabatic or isocurvature (iso-
thermal).

Imagine an early Universe filled with a radiation fluid (i.e. effective rela-
tivistic) and some non–relativistic components. Let us consider the following
density contrast:

δ(x) ≡ δρ(x)
ρ̄

=
ρ(x)− ρ̄

ρ̄
, (47)

where ρ̄ is the average density of the Universe. If in the past there were
small density perturbations that grew as time went on, the formation of
some structure will be favored. This density contrast is commonly expanded
into a Fourier expansion:
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δ(x) =
V

(2π)3

∫
vol.

δke
−ik·xd3k and

δk =
1
V

∫
vol.

δ(x)eik·xd3x , (48)

where for x are chosen co–moving coordinates. A given “perturbation” mode
λ is associated with its wave number k = 2π/λ. The physical mode is given
by λphys. = λa(t)a∗

, then kphys. = k a∗
a(t) , when the expansion begins at t =

t∗, a(t∗). One can also relate to a given λ a mass defined as the rest mass
contained in a radius λphys./2, M ≡ π

6 ρmλ
3
phys. = 1.5× 1011M�(Ω0h

2)λ3
Mpc.

For a galaxy, for instance this corresponds to λgal. ≈ 1.9Mpc
(Ω0h2)1/3 ; this is the

physical scale that would contain today a galaxy mass (of approximately
∼ 1012M�) and after its non–linear regime would give rise to a typical galaxy
size of approximately 30 kpc.

The fundamental quantity |δk|2, called the power spectrum, P(k), de-
termines any statistical quantity for gaussian random fluctuations. In the
absence of a fundamental theory of structure origin, one admits a power
spectrum of the type

P(k) ≡ |δk|2 = const. kns , (49)

where an isotropic wave number |k| = k has been assumed which is allowed
in an FRW Universe symmetry; ns is a constant called the spectral index6.
At first, the Cosmic Background Explorer (COBE) satellite DMR results[86]
suggested that ns ∼ 1 [11, 12, 100, 7]. Recently, the WMAP satellite measu-
rements of the CMBR concluded more precisely that ns = 0.93 ± 0.03 [13].

The evolution of the density contrast determines whether and when the
perturbation grows to arrive at its non–linear stage, when |δk|2 > 1, it starts
to develop structure formation. This comes out by analyzing the Jeans equati-
ons in an expanding Universe. One finds that effectively there exists growing
modes solutions (for k < kJ), which open, in principle, the possibility of
describing the presently observed large–scale structure.

A particular perturbation is given through a Fourier component and is
characterized by its amplitude and its co–moving wave number, in terms of
which one can write the root-mean-square (rms) density fluctuation δρ/ρ as,

(
δρ

ρ

)2

≡ 〈δ(x)δ(x)〉 =
1
V

∫ ∞

0

k3|δk|2
2π2

dk

k
, (50)

where 〈· · · 〉 stands for spatial average. An rms mass fluctuation, δM , corre-
sponds to a density contrast such that

6 The spectral index, ns, is sometimes referred as n, cf. contribution of E. Copeland
in this book.
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(
δM

M

)2

λ

=
1

(2π)3
1

V V 2
W

∫
P(k)|W (k)|2d3k , (51)

whereW (k) is a window function, typically Gaussian, i.e.W (k) = VW e
−k2r2o/2,

where ro is the radius within which the mass M is contained; VW = (2π)3/2r3o
being its volume. Then, one has for the rms mass perturbation at a given λ
that (

δM

M

)2

λ

∼ k3P(k) ∼ k3+ns , (52)

where the overall normalization amplitude, for all λ, has not yet been speci-
fied, according to (49). Note that

(
δρ
ρ

)
k
≈

(
δM
M

)
λ
, where the subindex k in

the density contrast means δρ
ρ in a given logarithmic interval dkk ∼ 1.

Because of the existence of a causal horizon, there should be some λ− mo-
des that were once super-horizon sized and that some time later enter inside
the horizon. These modes begin to grow posteriorly at t > teq.. Once the per-
turbation enters the horizon, the Universe is well described with Newtonian
physics and the distinction between adiabatic and isothermal perturbations
becomes irrelevant; see Fig. 5.

The density and matter contrasts evolve for superhorizon modes as δM
M ∼

am(t) ∼ t
2m

3(1+ω) , see (9); during the radiation era ω = 1/3, m = 2 and for
the matter dominated era ω = 0, m = 1. During the time the physical
mode is superhorizon sized, it scales as λphys. = λa(t) ∼ λ t

2
3(1+ω) and at

the moment this mode enters the horizon it is valid that λphys. = dH ∼
tH , therefore, λ

3(1+ω)
1+3ω ∼ k− 3(1+ω)

1+3ω ∼ tH ; since 3(1+ω)
1+3ω > 0, then the larger

the initial perturbation wavelength is, the later it enters the horizon. This
means larger perturbation wavelengths begin later to develop to their non–
linear regime, thus, one expects large–scale perturbations in the present to
be smaller than the small scale perturbations. This is in accordance with the
fact that δρ/ρ ∼ 1030 for stars, 105 for galaxies, 101−3 for cluster of galaxies,
and O(1) for superclusters.

One has at the moment of horizon entering for every λ−scale that

δH(k) ≡ δM

M
(k, tH) ∼ t

2m
3(1+ω)

H · δM
M

(k, t) = k− 2m
1+3ω · k

3+ns
2 = k

ns−1
2 . (53)

This is valid for both radiation and matter dominated horizon entering modes,
since 2m

1+3ω = 2 for both cases. Harrison [49] and Zel’dovich [101] have argued
that at the time perturbations enter the horizon they should have equal
amplitude, that is, a scale invariant spectrum, which is achieved by choosing
ns = 1. This value is preferred by observations, as mentioned above. For
instance, if ns > 1, the perturbations are too strong and tend to close up and
form island Universes; for ns < 1 they are too weak to form galaxies [72].
Furthermore, the amplitude is required to be O(10−5) in magnitude when
the perturbations start to grow at teq..
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Fig. 5. At some early times there were superhorizon sized perturbations characteri-
zed by their wavelength and amplitude. As the Universe evolves these perturbations
grow with the scale factor and eventually they cross inside the horizon, H−1. After
that, these modes first have a linear regime (δλ < 1) and afterwards they start
to develop the sky structure we see nowadays. In the figure we show two typical
modes, one corresponding to galaxy scales and the other to horizon scales. The
horizon evolves as H−1 ∼ t ∼ a1/n, where here n denotes n = 3(1 + ω)/2, from
solution (9). (Figure adapted from Kolb and Turner 1990).

During its radiation dominated phase, the Universe will not significantly
develop non–linearities inside the horizon. Furthermore, some λ−scales are
forbidden because of damping phenomena due to collisionless phase mixing of
relativistic particles, known as Landau damping or free–streaming (fs). This is
caused because relativistic particles move freely away from overdense regions
and their velocity dispersion dissolves the compression regions. In this way,
only those wavelengths greater than some free streaming scale 7 (λfs) are

7 That is, wavelengths corresponding to scales greater than the horizon size when
the particles become non–relativistic. λfs = O(1)×(

t
a

)
nr

≈ 1Mpc keV
mX

TX
Tγ

, where
nr refers to when the X−component, with mass mX and temperature TX , be-
comes non–relativistic.
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allowed to maintain overdense regions. Once a non–relativistic component
becomes dominant, the growing modes increase typically as δ ∼ a(t). Howe-
ver, baryons suffer from collisional damping due to photon diffusion, mainly
during photon decoupling. This allows growing λ−modes that are larger than
the diffusion scale, also known as the Silk scale 8 (λS).

The amplitude of density perturbations affects the temperature profile
and, at the last scattering surface, the last stage of matter-radiation equili-
brium. This can be quantified, since the present–day observed temperature
contrast, δT

T ∼ 10−5, represents a “cosmic imprint” of the Universe since
decoupling.

The currently measured temperature perturbations are partially caused
by fluctuations in the gravitational potential, the so–called the Sachs-Wolf
effect. This effect is responsible for large angular–scale (θ > 1◦) anisotropies9.
The other known effect, the dipole anisotropy, is presumably due to our
galaxy’s peculiar velocity with respect to the cosmic rest frame.

One finds in the synchronous gauge for a flat Universe and large angular
scales that

δT (x)
T

∣∣∣
ls

= − a2
0H

2
0

2(2π)3

∫
k−2δke

−ik·xd3k

=
1
3
∆φ(x, t0) ≈

(
δρ

ρ

)
λ∼H−1

0

, (54)

where ∆φ(x, t0) is the perturbed Newtonian potential and x points to the
last scattering surface and has a length of 2H−1

0 . It is convenient to expand
δT/T in spherical harmonics,

δT (x)
T

=
∞∑
l=2

m=+l∑
m=−l

almYlm(θ, φ) , (55)

where θ and φ are the spherical angles in the sky (θ > 1◦ corresponds to
l < 100). The coefficients alm can be computed for the power spectrum of
(49) resulting in

Cl ≡ 〈|alm|2〉 =
H4

0

2πV

∫ ∞

0
|δk|2[jl(kx)]2

dk

k2

∼ Hns+3
0 ≈

(
δρ

ρ

)2

H−1
0

(56)

8 λS ≈
(

Ω0
ΩB

)1/2
3.5Mpc

(Ω0h2)3/4 , where ΩB is the baryonic contribution to the total
density, i.e. Ω0 = ΩB + Ωγ + · · · .

9 1◦ because the horizon scale at decoupling subtended approximately that angle.
Then, θ > 1◦ corresponds to a λ−perturbation that was super-horizon sized.
The existence of such super-horizon scales represents an initial density spectrum
beyond causality!
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where jl is the spherical Bessel function of order l. Hence, δT/T depends
upon the present horizon scale, H−1

0 . For a Harrison-Zel’dovich form, ns = 1,
the spectrum of density fluctuations with a λ−scale greater than λeq. ≈
13(Ω0h

2)−1 Mpc should conserve its initial form, and is related to an rms
mass perturbation as follows:

Cl ≈ (H0L)4
(
δM

M

)2

L

. (57)

Evaluating it in L = 30h−1 Mpc and (δM/M)L = 1/4, as inferred from
measurements, one gets C1/2

l ≈ 2 × 10−5 which is experimentally confirmed
from the CMBR anisotropies measurements; a more general discussion is
found, e.g., in [60].

Note that, on the one hand, one has that
(
δρ
ρ

)
ls

= const.
(
δT
T

)
ls and, on

the other hand10, δρ/ρ ∼ a(t) ∼ 1/(1 + z); thus, the maximal amplitude
grow from last scattering until now is given by 1 + zls ≡ a0

als
= 1200 times

10−5, which is not sufficient to form the non–linear structures we observe
today. Therefore, other (dark) components must have played a role in the
growing of perturbations. It seems that considering dark matter together
with a quintessence field the correct grow can be achieved, as is suggested in
the forthcoming lectures in this book.

One more intriguing aspect of the large–scale structure arises by observing
the autocorrelation function of galaxies, clusters, etc.; ξ(r) ≡ 〈δn(x+r)δ(x)〉,
which is proportional to the probability of finding an emitting object at a
distance r from a given object, i.e. δP = nδV [1 + ξ(r)]; for instance, in a
totally uniform distribution ξ(r) = 0, whereas ξ(r) > 0 indicates an enhan-
cement of density near a given object. This has been measured for galaxies,
clusters, and superclusters, showing that approximately [5, 9, 74]

ξg ≈ 20 r−γ for 2 <
∼ rMpc

<
∼ 10 ,

ξc ≈ 360 r−γ for 15 <
∼ rMpc

<
∼ 100 ,

ξsc ≈ 1500 r−γ for 100 <
∼ rMpc

<
∼ 200 , (58)

where γ ≈ 1.7− 1.8 and the distance rMpc is given in Mpc. Again, due to the
existence of a causal horizon, if one goes back in time one finds out that the
co–moving separation between two emitting objects, e.g. cluster of galaxies,
is larger than the light cone of causality at t = teq. Therefore, if the initial
density perturbations, δ(x), were produced before, or at, teq, the correlations
cannot be explained by causal mechanisms. Hence, why do have approxi-
mately the same slope, but different magnitudes or correlation lengths, is a
mysterious aspect that should be explained by the structure formation theory,
10 By considering the evolution of the Universe, one often uses, instead of the time

parameter, the redshift (z), defined as 1 + z ≡ a0/a.
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still in development. The different magnitudes of ξ(r)s suggest the existence
of some dark matter present in greater quantities on bigger scales. This is
in agreement with the determination of Ω0 from dynamical computations,
according to which one needs more dark matter as one goes from galaxy to
cluster scales, and so forth.

In order to explain these issues, investigators have developed some nume-
rical codes in which they include Hot Dark Matter (HDM) like light neutri-
nos in order to achieve a top–down scenario, first performing large structures
that should fragment to give rise to smaller ones. One finds that typical
large–scale filamentary structures and voids are well reproduced, but smal-
ler scales are underweighted and, for instance, galaxy formation should have
taken place rather recently, at z <∼ 1 , in order to obtain the observed galaxy
correlation function mentioned above. Besides, the predicted limits for ∆T/T
are near the upper limit measured. Numerical simulations also include Cold
Dark Matter (CDM) with WIMPs (weakly interacting massive particles) to
have now a bottom–up scenario, where first the smaller structures are formed
and, later on, the larger ones. These simulations are in good agreement with
galaxy correlation functions for acceptable redshifts, say z ∼ few. Nevert-
heless, some negative correlation function is expected for galaxies that have
not been observed. Furthermore, the cluster correlation function is predicted
to be about three times less than the measured value, that is, large scales
are underweighted; the temperature contrast in this model can be as much
as one order of magnitude below that observed. One notes that HDM and
CDM play opposite roles for structure formation, because of their different
free streaming ranges. Therefore, one considers mixed models (MDM) which
include both CDM and HDM, and additionally some smooth components
as a cosmological constant term (ΛDM). Up until now, it is not known for
sure which particles have participated as the relevant building blocks that
eventually brought about the formation of the large–scale structure with the
right spectrum of anisotropies we observe today; computations hint there
may be mixture of them: cold, hot, and a Λ−term; see the contribution of
Cabral–Rosetti et al in this book. A review of these topics can be found in
[4].

Summarizing, the problem of density perturbations lies in the understan-
ding of its growth during its linear era in such away that on large scales
δρ/ρ ∼ δT/T ∼ 10−5, but on small scales δρ/ρ > 1 in order to reproduce the
structures we see in the sky nowadays.

We have mentioned above some important aspects to be considered in
order to achieve a better understanding of our present Universe. One should
mention that these problems do not imply logical inconsistencies with the
SBB. Nevertheless, for their explanation one is forced to appeal to very spe-
cial initial conditions, a thing that a physicist would hardly accept. Moreover,
solutions like the anthropic principle result to be dissatisfying. Therefore, ex-
tensions of the SBB are required, because by nature some of the presented
problems, but not all, already come from its extensions, as by incorporating
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high energy (	MeV) physics; ergo, the solutions to the puzzles should hope-
fully come from correct implementations of such extensions. Some proposed
scenarios are already known, such as the inflationary one, which is the best
candidate and is the subject of the next section. In order to achieve a further
understanding of the early Universe, it is tempting to move from energies in
MeVs to the Planck energy scale, that is, 22 orders of magnitude greater!

2 Beyond the Standard Big Bang Model: Inflation

In this section we show a way to solve the problems of the SBB presented in
Sect. 1. We explain the general inflationary scenario that took place in the
very early Universe and that gave rise to a successful cosmological model;
that is, a Universe with its right causal size, age, temperature, and the per-
turbations spectrum that originated structure formation. At the end of this
section we point out some remarks on inflationary models.

Inflation was accomplished as a natural extension of the “new” physics
of the 70s being incorporated into the SBB. With the advent of GUT it was
natural to study their cosmological consequences. In the late 70s and the
beginning of the 80s some publications appeared about effects of GUT phase
transitions in the very early Universe; even in this respect some authors con-
sidered exponential solutions, see [65, 72]. But the cornerstone paper was that
of A. Guth [46], where he stressed that due to these phase transitions, the
Universe could have experienced an exponential expansion of approximately
e65 foldings, and in this way one could solve the horizon, flatness, and mo-
nopole problems, all at once. This was the first model of inflation. Although
the original model suffered from some problems, this has shown that it is,
in principle, possible to tackle the problems of the SBB by considering some
vacuum energy or scalar fields to be present at the very beginning of time.
Next, we explain how inflation addresses this.

2.1 Inflation: The General Idea

As we mentioned in Sect. 1, the FRW cosmological (4)-(6) admit very rapid
expanding solutions for the scale factor. This is achieved when the inflation
pressure, ρ+ 3p, is negative, i.e. when the equation of state admits negative
pressure such that ω < −1/3, to have ä > 0. For instance, if ω = −2/3, one
has that a ∼ t2 and ρ ∼ 1/a, that is, the source of rapid expansion decreases
inversely proportional to the expansion. Of special interest is the case when
ω = −1, ρ = const., because this guarantees that the expansion rate will not
diminish. Thus, if ρ = const. is valid for a period of time, τ , then the Universe
will experience an expansion of N = τH e−foldings, given by a = a∗eN , (10).
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This is the well known de Sitter cosmological solution11 [27], achieved here
only for a τ−stage in an FRW model.12

We shall now see how an inflationary stage helps to solve the problems of
the SBB. First consider the particle (causal) horizon, given by (33), during
inflation; with k = 0, again one obtains

dH = H−1(eHt − 1) ; (59)

the causal horizon grows exponentially, whereas H−1 remains constant. Since
dH = H−1, we call H−1 the Hubble horizon to distinguish it from the causal
horizon. We again compare, in analogy to (34) and (36), the horizon distance
with that of any physical length scale, L(t) = L∗

a(t)
a∗

= L∗eHt, to get

dH
L

=
H−1(eHt − 1)

L∗eHt
>
∼ 1− e−Ht , (60)

for initial length scales L∗ <∼ H−1. After a few e-fold times the causal horizon
is as big as any length scale which initially was subhorizon sized. Therefore,
if the original patch before inflation is causally connected, and presumably in
equilibrium13, after inflation this region of causality is exponentially bigger
than it was; thus all the present observed (apparent) Universe can stem from
it. Therefore, at some later time, say, at the time of last scattering (photon
decoupling) the Universe has all the mentioned 105 regions (and more than
that!) causally connected, then solving the horizon problem. In fact, if the
inflation stage is sufficiently long, there can presently exist regions which are
still so distant from each other that they are no longer in contact, even though
originally they come from the same causal patch in existence before inflation;
they will be in contact again when light reaches these distant points.

From (59) one can observe that if the initial physical length scale is greater
than the Hubble distance, L∗ > H−1

∗ , then L > dH during inflation. Events
initially outside the Hubble horizon remain acausal. This is better observed
by considering the event horizon, de, that determines the region of space
11 The de Sitter model contained no matter, p = ρ = 0. Instead de Sitter considered

a cosmological constant such H2 = Λ/3. In this sense, this was an anti–Machian
solution, since matter was not needed to produce inertia. Alternatively, by choo-
sing p = −ρ, Λ = 0 the dynamic is the same and the solution is Machian, but
the price paid is that of having such exotic matter, p = −ρ.

12 From now on, inflation will refer to the period of exponential expansion. Ho-
wever, an inflationary scenario also implies some other physical processes such
generation of density fluctuations, reheating, etc.

13 One can imagine the initial stage of the Universe to possess some inhomogenei-
ties, anisotropies, and a rather chaotic distribution of particles. At some time
after the Planck scale, 103tPl, one expects the dampening of the anisotropies
and inhomogeneities in the metric, and due to statistical processes, the Universe
should thermalize in some local scale (< dH), which we now call the original
patch [46].
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which will remain in causal contact after some time; that is, it delimits the
region from which one can ever receive (up to some time tmax) information
about events taking place now (at the time t):

de(t) = a(t)
∫ tmax

t

dt′

a(t′)
. (61)

For a flat model during its matter dominated era (a ∼ t2/3), like our Universe
in the present, de → ∞ as tmax → ∞. However, during inflation one finds
that

de = H−1(1− e−(tmax−t)H) ≈ H−1, (62)

which implies that any observer sees only those events that take place within
a distance ≤ H−1. In this respect, there is an analogy with black holes, from
whose surface no information can escape. Here, in an exponential expanding
Universe, observers encounter themselves in a region which apparently was
surrounded by a black hole [43, 65], since they receive no information located
further than H−1.

So far we have seen how the exponential solution can offer means to un-
derstand the horizon problem of the SBB. Now, we analyze it quantitatively.
First, consider the evolution of a co–moving length since the very beginning.
Before inflation starts the Universe is characterized by some initial values of
temperature, Hubble horizon, etc., related by

ρ∗ = b T 4
∗ ,

H2
∗ =

8πG
3

b T 4
∗ ,

S∗ =
4
3
b (a∗T∗)3 . (63)

If inflation does not take place, an initial horizon–sized length scale, L∗ ≤
H−1

∗ , grows only proportionally to t1/2 (radiation era) and, later, to t2/3

(matter era). Therefore its size would currently be much smaller than our
apparent Universe; in others words, this is the horizon problem. Hence, sup-
pose that inflation indeed takes place during a time period τ = NH−1

∗ and,
afterwards, a usual Friedmann Universe follows. Then, a typical co–moving
scale evolves as

L = L∗eN
(
teq
tf

)1/2 (
t

teq

)2/3

. (64)

The first term accounts for the inflationary stage (until the final time tf ≈
τ = NH−1

∗ ), the second for the radiation era that lasts until the time of
equal densities (ρr = ρm at t = teq), and the third term for the matter
dominated era; all of them being solutions of the FRW cosmological equations
characterized by different equations of state, cf. (9) and (10). Consequently,
the number of e-folds (N) of growth in the initial co–moving scale L∗, to
achieve at present (t0) a size L0, is given by
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N =
1

log e

(
log

L0

L∗
− 1

2
log

teq
tf
− 2

3
log

t0
teq

)
≡ Nmin1 . (65)

In principle, one could substitute the value tf ≈ NH−1
∗ into (65) and try

to solve it for N , but one finds no analytical solution. As a matter of fact,
one typically obtains tf ≈ 102H−1

∗ and this turns out to be a very good
approximation. For definiteness, let us assume this and, furthermore, that
the initial co–moving scale is the horizon at the beginning, i.e. our original
patch; then from (63), L∗ = H−1

∗ ≈ 10−1MPl/T
2
∗ . T∗ is the temperature that

characterizes some phase transition and is typically T∗ = 1014 GeV. Then,
H−1

∗ = 10−24 cm, t∗ = 10−35 s, teq
tf

= 1012s
10−33s = 1045, t0

teq
= 1017s

1012s = 105, and
L0
L∗

= 1028cm
10−24cm = 1052 to yield N = 60.2. In fact, this value represents the

minimal number of e-folds of inflation necessary for an initial horizon sized
co–moving length scale to grow as big as our presently observed Universe,
L0 = H−1

0 ≈ 1028 cm. If the original patch is horizon sized, then during
inflation it remains within the causal horizon, dH , according to (59). After
inflation the causal horizon grows as dH ∼ t, whereas the co–moving scale
expands only as the scale factor does, in conformity with (9). Therefore, the
co–moving length scale, L, remains always within the causal horizon.

For the inflationary Universe the currently apparent horizon comes from
a region delimited by the original patch H−1, which during inflation remains
almost constant and, after, evolves as H−1 ∼ t. At the end of inflation
a(t) 	 H−1(t). Subsequently, the scale factor expands only with the po-
wer law solution t1/2 (or t2/3), whereas the Hubble horizon evolves faster,
H−1 ∼ t. Then, at some later time the Hubble horizon is as large as the scale
factor, H−1 ∼ a(t). Accordingly, the value Nmin1 defines the minimal num-
ber of e-folds of inflation necessarily to have this equality at present; that is,
the original patch grown until now is as big as our apparent Hubble horizon.
Hence, some time ago, say, at the last scattering surface (photon decoupling),
the Universe consisted of 105 Hubble horizon regions, yet all these regions
stem from one original patch of size H−1

∗ just at the start of inflation. Recall
that the causal horizon, dH , is always bigger than H−1, except at the outset
of inflation. Naturally, our original patch could have experienced a longer
period of inflation. In this case, N > Nmin1 and the Universe is bigger than
we observe it to be today: our event horizon will enable us to explore the
Universe beyond.

Let us see how the flatness comes out of inflation. Consider originally a
Hubble patch, H−1, that might even possess some curvature different from
zero. If there were the above conditions for such a gigantic expansion to
take place, then in a short time the original Hubble patch will become very

flat, since H =
√

8πG
3 ρ stays constant during that τ -stage. On the other

hand, a typical scale L∗ ≤ H−1 will exponentially increase in size as L(t) =
L∗

a(t)
a∗

= L∗eN . That is, all physical inhomogeneities, anisotropies and/or
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‘perturbations’ of any kind (including particles!) will be diluted away. Their
density becomes insignificant, thus solving the monopole (and other relics)
problem.

When we discussed the flatness problem it was pointed out that Ω closely
approaches unity as one goes back in time (see 42 and 43), in a way such
that one must choose very special initial density values for explaining our
flatness today, i.e. Ω0 ≈ O(1). Imagine the Universe with initial conditions
taken above, a∗ ∼ H−1

∗ , then Ω∗ − 1 ≈ k. Now, if the exponential expansion
occurs, Ω(t = τ) evolves to

Ω(τ)− 1 =
ρ− ρc
ρc

=
k

a2H2 = ke−2N . (66)

If N is sufficiently large, which will be case since typically N > Nmin1, after
a de Sitter stage the Universe looks like an almost perfectly flat model. The-
refore, the initial density plays almost no role; if the exponential expansion
occurs the Universe becomes effectively flat; see Fig. 6. In this way, instead of
appealing to very special initial conditions, one starts with a Universe with
more normal -that is, not very fine tuned- conditions which permit the Uni-
verse to evolve to an inflationary stage, after which it looks like it would have
very special conditions, i.e. with Ω ≈ 1 with exponential accuracy. Thereu-
pon, the flatness problem is no longer present.

One can also observe this by geometric means. The radius of curvature of
the Universe is defined as

Rcurv ≡
a(t)
|k|1/2 =

H−1

|Ω − 1|1/2 , (67)

where we have used (4). Initially one may find that Ω ≈ O(1), implying that
Rcurv ∼ H−1, but after inflation Ω is very close to unity; thus the radius of
curvature is exponentially larger than the Hubble distance, making the latter
look very flat.

We have argued that the Universe becomes very flat. However, after in-
flation the r.h.s. of (66) starts to grow linearly with time during the radiation
dominated era, as was derived in (43), and during the matter era it grows as
∼ t2/3, cf. (42). Therefore, the time evolution of Ω(t) is given by

Ω(t)− 1 =
k

a2H2 = k e−2N teq
tf

(
t

teq

)2/3

for teq ≤ t . (68)

If the number of e-folds of inflation is not sufficient, at some t, Ω will be very
different from one. Accordingly, from (68) one can compute the minimal num-
ber of e-folds such that currently Ω0 ≈ O(1), as suggested from observations.
One gets,

N >
1

2 log e

(
log

teq
tf

+
2
3
log

t0
teq

)
≡ Nmin2 , (69)
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which with the values used above implies that N > 56 = Nmin2. However,
the value of N chosen greater than (65), N > Nmin1, already fulfills our
new requirement, since Nmin1

>
∼ Nmin2. Therefore, in most models of inflation

N 	 Nmin1 to predict Ω0 to be unity to high accuracy, in accordance with
the recent WMAP measurements [13] of the CMBR. However, if Ω is close,
but different than the unity, then there will come a future time when the
value of Ω is arbitrarily close to zero (for k = −1) or arbitrarily large (for
k = 1), the same as happens in the SBB; compare Figs. 4 and 6.

Fig. 6. The parameter Ω as a function of the scale factor, a, during inflation and
thereafter in a radiation dominated Universe. Inflation makes the space seem almost
flat. Having enough e-folds of inflation to solve the horizon problem implies that
the Universe still looks currently very flat. Later on, the behavior is as in Fig. 4.

2.2 Transition to the Physical Universe

Provided that the Universe underwent a period of N(≥ Nmin1 ≈ 60) e-folds
of inflation, it seems that the horizon and flatness problems are no longer
present: all physical events are, or were, in causal contact. However, as we
shall see now, this is only a necessary, but not a sufficient, condition to assure
that the original patch, H−1

∗ , contains the properties of our Universe today.
In Sect. 1 we saw that both problems are related to the increase of entropy

per horizon and that the age of the Universe is related to the total entropy, cf.
(32): the Universe is too old because the entropy is too large. Then, within the
inflationary Universe there arises the question of how the Nmin′s are related
to the entropy enhancement.

In this section we have remarked that with the aid of inflation any co–
moving length scale remains within causal horizon. Therefore, in the present
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case the entropy per causal horizon remains constant if the Universe evolves
adiabatically (T ∼ 1/a), and therefore it is no longer necessary to distinguish
between horizon entropy and the total entropy. Thus, it suffices to compute
the entropy at any time to know how large it is. Accordingly, at the very
beginning S∗ = 4

3b(a∗T∗)3 ∼ 1013 with initial conditions taken from above.
Clearly, this value is much smaller than the observed photon entropy today,
S0 ∼ 1088. Once the entropy augments to 1088, the flat patch can explain the
currently observed Universe with a big mass and age; see (31) and (32). In
this way, to fully solve the horizon and flatness problems, one has to find an
entropy production mechanism such that the increase factor grows over 1075

orders of magnitude! Would this entropy enhancement not exist, the original
patch must contain a huge entropy (1088), and therefore, the Universe would
consist at the very beginning of too many disconnected causal horizons; ergo,
the horizon problem would stay unsolved. The natural solution is to obtain
after inflation a mechanism by which the entropy increases from some initial
value to S0 ∼ 1088. To see how this happens, consider first a Universe model
filled with some relativistic components with an energy density given by

ρ = bT 4 + V (0) , (70)

where V (0) ≡M4 is a constant associated with the vacuum energy density of
some GUT; M is some mass term. As the Universe cools the energy density
diminishes until certain time, say, t = tc, at which the constant dominates the
dynamics over the radiative components. At that moment the entropy wit-
hin the horizon is SdH

= 4
3b(acTc)

3 = const., assuming adiabatic processes.
At the moment when the constant V (0) begins to dominate the dynamics,
the solution is given by (10). Then, the original patch, ac ∼ H−1

c , expands
exponentially and the Universe supercools T = Tce

−Hτ , since aT = const.
during the τ -stage of inflation. Note that the entrance to an inflationary era
is natural as a consequence of the Universe cooling and, of course, of the pre-
sence of the constant V (0). Typically, M ∼ Tc ∼ 1014 GeV is related to the
critical temperature of a spontaneous symmetry–breaking process, whereas
H−1
c ≈ 10−1MPl/M

2 ∼ 10−34s, that is, the values we have chosen above to
yield SdH

∼ 1013 � 1088. Furthermore, after inflation the Universe contains a
very low particle density and is very cold, even as cold as it is today! The tran-
sition to a radiation–(or matter–)dominated era with sufficient entropy and
particle content comes from the ‘decaying’ or transformation of the energy
source of inflation, ρ = V (0), into heat, a process called reheating (RH).
In his original model of inflation A. Guth [46] showed that if the Universe
super–cools sufficiently its temperature is Ts ∼ e−NTc and a phase transition
proceeds releasing latent heat of characteristic temperature ∼ Tc. Then, the
Universe is reheated to some temperature (TRH) of the order of Tc. Through
this mechanism the entropy increases from the initial value S∗ = 4

3b(acTc)
3

to the final, after reheating, Sf = 4
3b(aRHTRH)3 ≈ 4

3b(e
NacTc)3, that is, by

a factor of (TRH/Ts)
3 ∼ e3N , achieving the desired numbers.
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2.3 Density Perturbations

The vacuum energy density responsible for inflation is associated with some
scalar field that experiences quantum fluctuations around some vacuum ex-
pectation value. The theory of quantum fluctuations in a de Sitter space
was developed by Bunch and Davies [17] and was applied by several authors
[50, 47, 88, 8] to the inflationary universe in order to compute its contribution
to δρ/ρ.

It is our intention in this subsection to depict qualitatively how these
fluctuations are responsible for a density perturbation spectrum, as required
to understand structure formation; see the problem of structure formation
above. For a detailed treatment of this topic see the lecture by R. Branden-
berger in this book and his review article [69] .

We begin by noting that the event horizon during a de Sitter stage is
de ≈ H−1, cf. (62). This means that microphysics can only operate coherently
within distances at most as big as the Hubble horizon, H−1. Recall that the
causal horizon, dH , expands exponentially and it is very large compared to
the almost constant H−1 during inflation, see (59). Hence, during the de
Sitter stage the generation of perturbations, which is a causal microphysical
process, is localized in regions of the order of H−1. That is, in all regions of
size H−1 that comprise the Universe during inflation there should be such
generation of perturbations.

Furthermore, it has been shown that the amplitude of inhomogeneities
produced corresponds to the Hawking temperature in the de Sitter space,
TH = H/(2π). In turn, this means that perturbations with a fixed physical
wavelength of size H−1 are produced throughout the inflationary era. Accor-
dingly, a physical scale associated with a quantum fluctuation, λphys = λa(t),
expands exponentially and once it leaves the (Hubble) horizon it behaves as
a metric perturbation; its description is then classical, general relativistic.
If inflation lasts for enough time, the physical scale can grow as much as a
galaxy– or horizon–sized perturbation. The field fluctuation always expands
with the scale factor and after inflation it evolves according to tn (n = 1/2
radiation or n = 2/3 matter). On the other hand, the Hubble horizon evol-
ves after inflation as H−1 ∼ t. This means that there will come a time at
which field fluctuations cross inside the Hubble horizon and re-enter as den-
sity fluctuations. Thus, inflation produces a large spectrum of perturbations,
of which the largest originated at the start of inflation with a size H−1

i , and
the smallest with H−1

f at the end of inflation; see Fig. 7.

Finally, analogous to the density perturbations spectrum created by the
scalar field during inflation, any massless (or very light H 	 M) field is
excited in the de Sitter space. Once the excited modes re–enter the Hubble
horizon they will propagate as particles [94]. In this way, gravitational wave
(GW ) perturbations re–enter the Hubble horizon during the radiation do-
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Fig. 7. Quantum perturbations were initially subhorizon–sized. During inflation
they grow exponentially (λphys. = λa(t)), whereas the Hubble horizon remains
almost constant. Then they eventually cross outside H−1 and evolve as classical
perturbations. Later on, they re-enter the Hubble horizon to produce an almost
scale invariant, Harrison-Zel’dovich density perturbation spectrum; in this way, its
origin is no longer a mystery. In the figure there are two physical perturbations
scales depicted, galaxy and horizon sized. (Figure adapted from Kolb and Turner
1990).

minated era [45, 87, 83, 35]. The amplitude of these perturbations must be
≤ 10−5 in order to be consistent with the isotropy levels of the CMBR.

2.4 Final Remarks on Inflationary Models

The descriptions presented above generically describe the inflationary scena-
rio without referring to the many specific models that have been proposed
in the course of more than twenty years of inflationary cosmology. Below we
mention the primary features of the first inflationary models that permitted
the understanding of the physical properties of a general inflationary scenario.

The first inflationary model was due to A. Guth, who in 1981 published
[46] a model which later became known as old inflation. This model proposed
the formation of bubbles of scalar fields obeying a first–order GUT phase
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transition in the early Universe; see Fig. 8. However, the nucleation of the
bubbles and Hubble expansion rates could not encompass the right numbers
of e-folds required (≥ Nmin) and, at the same time, achieve a homogeneous
thermalized model. The model also had difficulties in ending the inflationary
period, a problem known as graceful exit.

Fig. 8. An artistic picture of how the formation of bubbles after inflation should
take place. The big circle represents the universe filled with a background of false
vacuum, φ = 0. Thus, some bubbles are forming in a sea of false vacuum. The
different bubble φ-field values are represented by different gray tones.

Shortly afterwards, a model called new inflation was proposed [63, 2], in
which the scalar field experiences a second–order phase transition. In this
model the whole Universe stems from an initially uniform single bubble or
fluctuation region (≤ dH), which after its exponential expansion can be as
large as our apparent horizon. In this way the Universe does not possess the
problem of bubble nucleation, nor that of the presence of unwanted relics,
because they are produced at bubble boundaries, which in this case are ex-
ponentially far away from our apparent horizon. The source of exponential
expansion is achieved by permitting the scalar field to slowly evolve from its
symmetric state (φ = 0) to its ground state, φ = v, of a typical potential
V (φ) = λ(φ2−v2)2. During this time the potential associated with the scalar
field is almost constant, thus providing an effective cosmological constant to
the FRW equations; see Fig. 9. The process of slow rolling down of φ along
its potential curvature is the main new ingredient of this model of achieving
an inflationary stage.

After inflation the φ-field begins to oscillate around its stable minimum,
φ = v. The energy stored in V (0) decays to reheat the Universe to have
the required entropy. One must point out that over the course of the years,
important steps to consolidate the theory of reheating have been made; see for
example [93]. But, qualitative new ideas have been introduced only since the
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Fig. 9. A sketch of the new inflationary potential is shown. The potential curvature
is very flat in order to permit the field to slow roll down the hill to yield enough
e-folds of inflation during that time. Inflation begins at some φi and ends at φf

when the field begins to evolve rapidly to its stable symmetry–breaking state φ = v,
around which the field oscillates until reheating.

mid 90s [57, 58]. Accordingly, the process of reheating should consist of three
different stages. At the first phase, the φ-field decays into massive bosons
(fermions) due to parametric resonance given through a Mathieu equation
that determines the regions of stability and instability (particle production)
in the quantum fluctuations of the created particles. These can be φ-particles
or other bosons (fermions) coupled to the φ-field. This process is very efficient,
even explosive, and many bosons can be created in this stage. Note that
the original theory is based upon the decay of the φ-particles, whereas in
the present theory the φ-field decays into φ-particles, and perhaps others,
and only after this process does the decay of φ-particles proceed. Then, to
distinguish this explosive process from the normal stage of particle decay,
the authors of [57] have called it preheating. Bosons produced at this stage
are far from thermal equilibrium and have very big occupational numbers.
The second stage of this scenario describes the decay of the already produced
particles. This phase is described as in the original theory. Thus, the methods
developed for the original theory are now applied to the product particles,
but not to the decay of the φ-field itself. The third stage is the thermalization
by which the system reaches equilibrium; for review of this topic see [59].

A very important result found in the context of the “new” inflationary
model is that perturbations of the scalar field can explain the required initial
conditions of structure formation, i.e. an almost scale invariant, Harrison-
Zel’dovich spectrum. This spectrum results from the original quantum fluc-
tuations of the φ-field. These field fluctuations cross outside the Hubble hori-
zon during inflation, evolve classically and, eventually, return back to re–enter
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the Hubble horizon as density perturbations with scales of galaxy or present–
horizon size, see Sect. 2.3. But its correct accomplishment demands, according
with the COBE and WMAP measurements, a magnitude of δρ/ρ ∼ 10−5

when perturbations re–enter the Hubble horizon. This fact demands the
above potential, or the generic toy chaotic model potential V = λφn [64],
to have an extremely small value for λ which in turn implies very particular
choices of particle physics models (fine–tuning), or even wrong models. In
this way, some inconsistencies appear. Inflation was thought to circumvent
the choosing of special initial conditions of the SBB, but now we see that
it encounters its own. In spite of this and other difficulties, the new and the
chaotic inflationary models served to show how the very idea of field slow rol-
lover dynamics can be implemented in many particle physics and/or gravity
theories with general success.

Over the course of two decades of the inflationary theory, many related
scenarios and models have been proposed with concrete physical mechanisms
to achieve inflation, reheating, baryogenesis and a causal perturbation spec-
trum, among others. It has been found that many models generally suffer from
“unnatural” fine–tuning of parameters. Nevertheless, some of these models
have interesting properties, and the relation among theoretical and obser-
vational cosmology and particle physics has become tighter than ever. For
instance, typical unification theories have different scalar fields which have
been used to have one or more inflationary stages. Additionally, they have
been used to produce the correct density perturbation spectrum together
with a sufficient reheating temperature. That is, it is tempting to use the va-
rious fields for achieving different cosmological tasks, as in the case of hybrid
inflation. Then, to distinguish among the different fields, the field responsible
for the period of exponential expansion is generically called the inflaton. The
modern view is that this inflaton is a primary ingredient in offering a solu-
tion to the above–mentioned problems. A general description of the scalar
field (inflaton) dynamics, as well as some of its quantitative parameters, are
found in the contributions of E. Copeland and C. A. Terrero–Escalante in
this book.

3 Overview

Finally, we are going to review the topics that were covered in this contri-
bution. We have presented a general view of the SBB, its problems, and the
main ideas involved in the inflationary Universe. We have shown how infla-
tion achieves an explanation of the horizon and flatness problems. In doing
so, a period exponential expansion of about 60 e-folds in the scale factor is
necessary. However, this condition is not sufficient at all to yield a Universe
like the one we live in: after inflation the region of the Universe which will
give rise to our present apparent horizon is almost devoid of particles and,
because of the adiabatic exponential expansion, it is also very cold. There-
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fore, a process of reheating is mandatory. GUT offer through phase transition
phenomena an appealing scenario for creating both a constant energy density
in the very early Universe, to have inflation, and its subsequent preheating
and reheating. After inflation Baryogenesis can take place in the context of
GUT, a scenario which can attain the Sakharov required conditions.

We have also shown that the inflationary theory provides means to solve
the monopole and other relics problems within the new inflationary scenario.
Furthermore, there are inflationary models with no singularity, because they
begin with finite initial conditions, for instance, those attached to the poten-
tial energy. In this way, one excludes singularities by appealing to the physical
limitations of the classical theory; this is the case for chaotic inflation. Other
inflationary models without initial singularity have also been proposed [95].

The homogeneity and isotropy of the large–scale structure of the Universe
are also a consequence of a long period of exponential expansion. Recall that
all inhomogeneities are shifted away from the Hubble horizon. Thus, inflation
makes the space very homogeneous and isotropic. This assertion is known as
the cosmic no hair conjecture [43, 15]. The question remains whether the
initial patch was sufficiently smooth to enable inflation to start. That is, in
some sense, the Universe should be, at some level homogeneous and isotropic
to consider it as an original patch with which to begin inflation. It turns
out that scalar fields, initially without considering potential terms, can bring
an initially homogeneous, anisotropic patch to an almost FRW symmetry
[20, 67]. That is, an anisotropic Universe can begin with such initial conditions
that the potential term is yet not the primary contribution to the cosmological
field equations and, after some time, it can become nearly isotropic. Then,
inflation occurs when the potential term begins to dominate [21, 22, 23].

The cosmological constant, Λ = V (0), provides the energy density to have
an exponential expansion. However, in the inflationary theory this constant
must be assumed, and inflation provides no explanation of this. From the
particle physics point of view, it is also intriguing to consider why this con-
stant should or should not exist; there is no known principle that demands
it to vanish. Thus, for convenience one usually assumes V (0) = 0 in order to
be able to achieve inflation and to have today V (v) = 0 with φ = v. In this
way, one avoids choosing the tuned value V (v)<∼ ρc0 ≈ 10−47 GeV4 today.
However, this last possibility is very interesting in the context of the present
huge expansion rate; see below.

It is worthwhile to notice that because inflation predicts Ω0 ≈ 1 and
since our observed baryonic Universe only contributes ΩB ∼ 0.05 to the total
energy density, then inflation predicts some amount of dark components, na-
mely, Ωdark ∼ 0.95! The motivation for one of the dark candidates, Λ, came
from different cosmological measurements which without a cosmological con-
stant (or function) are rather difficult to explain. For instance, W. Priester et
al. [51, 52, 14] pointed out that with a present cosmological constant one can
explain the absorption lines of quasars, the so called Ly α-forest spectrum,
assuming a Hubble constant of H0 = 90 km s−1 Mpc−1. Further, measure-
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ments of the Hubble constant employing a variety of techniques suggested a
rather high value for it: H0 = 80 ± 5 km s−1 Mpc−1 [39]. Also, the Hubble
Space Telescope (HST) measurements of Cepheid variable stars in the Virgo
cluster evidence such high values as H0 = 80± 17 km s−1 Mpc−1 [36, 71]. If
this evidence is correct, it turns out that the age of a flat Big Bang Universe
(suggested by inflation) is too small, t0 = 2

3H
−1
0 = 8−10 Gyr, to explain the

oldest globular clusters estimated to be 16 ± 3 Gyr [85] or 9.3 ± 2 Gyr [99].
This means that some other contribution to the FRW cosmological equati-
ons should be present to let the Universe be older. This effect is carried out
precisely by a cosmological constant, or function term. This is so because Λ
corresponds to a negative pressure (repulsive force) so that the expansion rate
first decreases more slowly (than if Λ = 0) and eventually decreases faster,
yielding a larger expansion age.

Astonishingly, recent, independent observational data measured in the
CMBR on various angular scales [26, 13], in type Ia supernovae14 [79, 76, 80],
as well as in the 2dF Galaxy Redshift survey [75, 34], suggest that Ω = ΩΛ +
Ωm ≈ 1, or ΩΛ ≈ 0.7 and Ωm ≈ 0.3, implying the existence of dark energy
and dark matter, respectively. One particular candidate for dark energy is a
scalar field usually called quintessence [24]. Naturally, particular inflationary
scenarios motivated from different particle physics theories have their own
dark matter candidates, as such the Axion, neutralino, Higgs particle, etc,
and additionally a quintessence field; see the contributions of E. Copeland
and A. de la Macorra in this book.

Additionally, three–dimensional numerical simulations of structure for-
mation have incorporated cold, warm, or hot particles into their analyses
and, up to now, the best fittings with sky surveys turn out to be a mixture
of the different dark matter ingredients with Ωmatter ∼ 0.3, also including a
cosmological constant with ΩΛ ∼ 0.7 [4].

Next we comment on the first two problems listed in Sect. 1: the di-
mensionality and euclidicity problems. They seem to go beyond the scope of
the inflationary theory. They touch the foundations of a theory of everything,
including gravity. However, some cosmological solutions in Kaluza Klein theo-
ries have been found that are related to modern particle physics and gravity
theories [37]. With the advent of fundamental string theory, some cosmologi-
cal solutions have been found that compactify the D − 4 dimensions to four
[28], and there are inflationary solutions stemming from effective string theo-
ries in which various fields exist; one of them, the dilaton, plays the role of
the inflaton [41, 42, 16]. The issue of string cosmology has become of much in-
terest in recent years, and modern implementations are accomplished within
braneworld scenarios; this topic is extensively explained in the contributions
of K. Maeda and J. Lidsey in this book.

14 See the contribution of A. Filippenko in this book.
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Inflation turns out to be a possible, natural, cosmological realization of
high energy physics with qualitatively outstanding results. However, a better
implementation of it must be achieved, perhaps within new theories or as
extensions of the known ones, such as the ones presented in the forthcoming
chapters of this book.
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Inflation – In the Early Universe and Today

Edmund J. Copeland
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Abstract. In these lectures we will be giving a basic introduction to modern ideas
in cosmology. Beginning with a review of the Standard Big Bang (SBB) scenario,
we will introduce the observed cosmological parameters and indicate the features
that the SBB can not explain, such as the initial conditions. This will lead to an
introduction to the inflationary cosmology, which postulates a period of accelerated
expansion during the Universe’s earliest stages [1, 2, 3, 4, 5]. We will provide some
examples of inflationary solutions and demonstrate how they can be used to make
distinctive predictions which in principle can be tested with current observations. In
particular it provides a possible model for the origin of structure in the Universe.
The state of these observations will also be discussed with particular attention
being given to the most recent experiments which have detected anisotropies in the
cosmic microwave background radiation. We will discuss some of the most exciting
developments that have recently emerged in cosmology, arising from string and M-
theory models. A particular example of inflation arising out of branes will be given
to emphasise the potential new features these solutions have. Finally we will discuss
models of Quintessence, scalar field models used to explain the exciting results that
the Universe is undergoing a period of acceleration today.

1 The Standard Big Bang Model

The standard hot big bang (SBB) theory is an extremely successful one,
and has been around for over 60 years, since Gamow originally proposed it.
Remarkably, for such a simple idea, it provides us with an understanding
of many of the basic features of our Universe. All that you require in the
cooking pot, are initial conditions of an expanding scale factor, gravity, plus
the standard particle physics we are used to, to provide the matter in the
Universe. It can then pass a number of crucial observational tests.

– The expansion of the Universe – tage ∼ 10− 20 Billion years.
– The existence and spectrum of the cosmic microwave background radia-

tion (CBR) – Planck Back Body spectrum with T ∼ 2.73K.
– The abundance of light elements in the Universe (nucleosynthesis).
– Gravitational collapse – responsible for the formation of structure in the

Universe, although it relies on the presence of initial irregularities being
present in the CBR consistent with that detected by the COBE satellite.

E.J. Copeland, Inflation – In the Early Universe and Today, Lect. Notes Phys. 646, 53–107
(2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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However, as mentioned the hot big bang theory can successfully proceed only
if the initial conditions are very carefully chosen, and even then it only really
works at temperatures low enough, so that the underlying physics can be well
understood. The very early Universe is out of bounds, yet there is a hope that
accurate observations of the present state of the Universe may highlight the
types of process occurring during these early stages, providing an insight
on the nature of physical laws at energies which it would be inconceivable to
explore by other means. Another unresolved issue is the cause of the apparent
acceleration of the Universe today, as seen through the distribution of distant
Type Ia Supernovae.

To begin with we will give a quick review of the big bang cosmology.
Surprisingly, for a theory which is usually associated with solving highly
non-linear Einstein equations, it is possible to obtain the key evolution equa-
tion (the Friedmann equation) simply from Newtonian cosmology. The hot
big bang theory is based on the cosmological principle, which states that the
Universe should look the same to all observers. That tells us that the Uni-
verse must be homogeneous and isotropic. With this in mind, imagine (you
will need a healthy imagination throughout these lectures!) a uniform homo-
geneous ‘dust’ filled Universe of mass M , with a test particle at radius a.
The acceleration experienced by the particle is (ignoring the mass outside of
radius a),

ä = −GM
a2 ,

where G is Newton’s constant and ȧ ≡ da
dt . This can be integrated to give

ȧ2

2
− GM

a
= −k

2
, (2)

where k is an integration constant. Equation (2) is simply the statement that
energy is conserved. Now, for a uniform dust distribution we have

M =
4π
3
ρa3 = constant,

where ρ is the energy density (i.e. mass per unit volume). Substituting for M
in (2) we obtain the Friedmann equation,

H2 ≡ ȧ2

a2 =
8πG

3
ρ− k

a2 , (4)

where H is the Hubble parameter. This derivation is perfectly adequate be-
cause of the assumption of homogeneity. Birkhoff’s theorem allows us to
consider a region of arbitrary small a, where we expect the Newtonian ap-
proximation to be a valid. Homogeneity allows us to then extend this to large
a. The parameter a(t) is an important one, it is the ‘Scale factor’ of the uni-
verse, so called because all length scales grow by the same factor a(t) in a
homogeneous Universe. It measures the physical size of the Universe. The
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constant k has a geometrical interpretation (although we need to return to
the full General Relativity to see it), it measures the spatial curvature with
k negative, zero or positive corresponding to open, flat and closed Universes
respectively. The cosmological principle tells us which metric must be used
to describe it. It is the Robertson–Walker metric, which is given by (3) in the
contribution of J.L. Cervantes–Cota in this book.

In cosmology we often use comoving coordinates (r) which are rescaled
to the physical coordinates (x) through x = a(t)r. Comoving coordinates are
so useful, they allow for the expansion of the Universe to be removed from
a problem. The crucial link that Einstein spotted was that the geometry of
the Universe or its expansion is governed by the properties of material within
it. This is specified by the energy density ρ(t) and the pressure p(t), usually
related by an equation of state, ρ = wp which gives p as a function of ρ. The
key examples are

p =
ρ

3
Radiation , (5)

p = 0 Non-relativistic matter , (6)
p = −ρ Vacuum Dominated . (7)

In general though there need not be a simple equation of state for example
when there is a combination of radiation and non-relativistic matter. This
matter satisfies energy momentum conservation, also known as the Fluid
equation,

ρ̇+ 3H(ρ+ p) = 0 (8)

In (8), 3Hρ is the reduction in density due to the increase in volume, and
3Hp is the reduction in energy caused by the thermodynamic work done by
the pressure when this expansion occurs. Combining (4) and (8) we obtain
the useful k-independent Acceleration equation

ä

a
= −4πG

3
(ρ+ 3p) . (9)

1.1 Standard Big Bang Solutions

In most of what follows we will assume a flat Universe (although there will
be exceptions which hopefully will be clear). When k = 0 (4) and (8) can be
solved for the various equations of state to give the cosmological solutions

Matter Domination p = 0 : ρ ∝ a−3 a(t) ∝ t2/3 (10)
Radiation Domination p = ρ/3 : ρ ∝ a−4 a(t) ∝ t1/2 (11)
Vacuum Domination p = −ρ : ρ ∝ ρ0 a(t) ∝ exp(Ht). (12)
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In both radiation and matter cases the density falls as t−2, whereas in the
vacuum (or cosmological constant case it remains constant (in general it will
be constant or decrease less quickly than 1/t2). If there is both matter and
radiation the Friedmann equation can be solved using conformal time τ =∫
dt/a, while, as we shall see, if there is matter and a non-zero curvature

term the solution can be given either in parametric form using normal time
t.

1.2 Characteristic Scales and Density Parameters

When the spatial geometry is flat, for a given H, (4) determines the critical
density

ρc(t) =
3H2

8πG
. (13)

Densities are usually measured as fractions of ρc:

Ω(t) ≡ ρ

ρc
, (14)

where Ω is known as the density parameter, and can be applied either to
individual types of material or to the total density.

The present value of the Hubble parameter is not that well known, so it
is parameterized as

H0 = 100h km s−1 Mpc−1 =
h

3000
Mpc−1 , (15)

where h is normally assumed to lie in the range 0.5 ≤ h ≤ 0.8. The current
most popular value for h is around h � .7 based on a number of different
observations. Note, the subscript ‘0’ refers to the present day and reflects the
value a parameter has today. Having defined the Hubble parameter and cur-
vature scale, it follows that these can be used to define two length scales: The
Hubble time (or length) H−1

0 = 9.8×109h−1 years gives an approximation to
the actual age of the Universe, providing the typical time scale of evolution
for a(t). Of course, the Hubble parameter is not constant, varying in general
as t−1. The second scale is the curvature scale a|k|−1/2 and gives the distance
up to which space can be taken as having a flat (Euclidean) geometry. The
present critical density is

ρc(t0) = 1.88h2 × 10−29 g cm−3, (16)

incredibly small bearing in mind what we are used to dealing with on earth.
Both the Hubble length and curvature length are physical scales; to obtain

the corresponding comoving scale we must divide by a(t). The ratio of these
scales actually gives a measure of Ω; from the Friedmann equation we find

|Ω − 1| = |k|
H2a2 . (17)
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A crucial property of the big bang Universe is that it possesses hori-
zons which arise because light can only have traveled a finite distance since
the start of the Universe t∗. To obtain the horizon, we simply use the fact
that light travels on null geodesics (ds2 = 0), see (3) in the contribution
of J.L. Cervantes–Cota in this book, hence for fixed θ and φ, we obtain
dr = dt/a(t) which integrates to give the physical distance

dH(t) = a(t)
∫ t

t∗

dt

a(t)
. (18)

In a matter dominated Universe dH(t) = 3t = 2H−1; see also Sect. 1 (horizon)
in the contribution of Jorge L. Cervantes–Cota in this book.

1.3 Introducing the Cosmic Background Radiation

The redshift measures the expansion of the Universe via the stretching of
light

1 + z =
a(t0)
a(temit)

. (19)

As a measure of time, the redshift refers to the time at which light would
have to be emitted to have a present redshift z. As a measure of distance, it
refers to the present distance to an object from which light is received with
a redshift z. We can combine (4), (17) and (19) to solve for more general
cosmologies involving the situation k = 0 (remember we are assuming that
the cosmological constant vanishes here). Unfortunately it is generally too
difficult to obtain explicit solutions in these cases for a(t), rather we obtain
t(a). For example, in a matter dominated Universe we obtain

t0 = H−1
0

Ω

2(Ω − 1)3/2

[
cos−1(2Ω−1 − 1)− 2

Ω
(Ω − 1)1/2

]
, Ω > 1

= H−1
0

Ω

2(1−Ω)3/2

[
2
Ω

(1−Ω)1/2 − cosh−1(2Ω−1 − 1)
]
, Ω < 1. (20)

Expanding about Ω = 1 we obtain

t0 �
2
3
H−1

0

[
1− 1

5
(Ω − 1) + ·

]
, (21)

implying that for Ω < 1, the Universe is older for a given value of h.
The Universe is full of radiation, a remnant of the big bang. The detection

of this primordial soup in 1965 by Penzias and Wilson provided one of the
major breakthroughs for cosmologists trying to understand the nature of the
Universe. Its existence is a prediction of the model and was first proposed
in the 1940’s by George Gamow. The radiation was emitted at a red shift
z ∼ 1100 the epoch known as the surface of last scattering, corresponding
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to a time t ∼ 180, 000(Ωh2)(−1/2) years, the time when the photons decou-
pled from the the electrons as they found their way into their ground state.
The temperature then was about 2500 K, and was the moment the Universe
went from being opaque to being transparent. Gamow argued that as the
Universe expanded and cooled, the photons would be stretched and would
today have a temperature of order 10 K and be close to a perfect blackbody
spectrum. In 1990, based on just 9 minutes of data, the COsmic microwave
Background Explorer satellite (COBE) detected the radiation and showed
that it was almost perfectly isotropic, with a Planck blackbody spectrum of
T = 2.735 ± 0.01 K. This corresponds to a photon density in the Universe
today of nγ = 422cm−3. The radiation is peaked at wavelength λ = 2 mm
corresponding to a frequency ν = 150GHz (i.e. in the microwave region of the
electromagnetic spectrum). Of course, this temperature is today much lower
than it was in the early Universe. This is because as the Universe expands, it
cools. We can determine the rate that it cools through the following simple
argument. At high density, because of the high interaction rate, any mat-
ter rapidly approaches thermal equilibrium. For radiation, Planck showed us
that a quanta of frequency ν had energy E = hν = h/λ ∝ a(t)−1 where h is
Planck’s constant, and the scaling with the scale factor simply represents the
fact that all length scales are stretched by the expansion of the Universe. The
corresponding energy density in radiation evolves as ργ(t) = Eγ/V ∝ a(t)−4.
From the world of statistical mechanics we have Stefan’s law which tells us1

ργ ∝ T 4, from which we see that the Universe cools as it expands according
to the law

T ∝ 1
a
. (22)

In its earliest stages the Universe may have been arbitrarily hot and dense,
so although matter dominated since nucleosynthesis, far enough in the past
it will have been dominated by radiation.

1.4 The Mass of the Universe

How much mass is there in the Universe and can we determine the answer?
This is a crucial issue in cosmology. Earlier, we defined the density parameter
Ω(t) ≡ ρ/ρc. This is the parameter which is important if we are to determine
the future evolution of the Universe. Current bounds on its value place it
between .3 < Ω < 1.2, but what is it composed of? One of the most signifi-
cant and successful predictions of the SBB is Nucleosynthesis, the formation
of the lightest elements in the Universe. The spectrum of these elements can
be predicted and has been compared to observation through numerous ex-
periments. Basically as the Universe expands and cools, it reaches a critical
temperature (around 1 MeV) when the reversible reaction of the neutron de-
caying into protons ceases and the neutron freezes out. The neutron’s then
1 Compare to (21) in the contribution of J.L. Cervantes–Cota in this book.
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decay solely into protons and the lightest elements begin to form. This is
not the place to discuss nucleosynthesis in detail, it involves analysing rate
equations to determine the net fractions of light elements formed, but it is
worth discussing the main results. The actual fraction of the light elements
formed depends sensitively on the density of ordinary matter (the baryons)
at the time of nucleosynthesis. This can vary from 10−30−10−31gm cc−1. The
light elements formed are Hydrogen (75% by mass), Helium (24% by mass),
Deuterium (10−5 compared to hydrogen), Helium3 (10−5 compared to hy-
drogen), Lithium 7 (10−10 compared to hydrogen). These incredibly small
numbers are crucial as slight variations in the baryon density lead to large
changes in the abundance, changes that can be ruled out by observation.
The key feature though as far as we are concerned are bounds on the total
amount of baryonic matter in the Universe. The current Nucleosynthesis
constraints give

Ωbaryon = (0.019± .0012)h−2. (23)

So the maximum contribution to the total energy density arising from baryons
is bounded by Ωbaryon < 0.08. However, we just saw earlier that the lower
bound on Ω from all sources is Ω > .3. This arises from a number of ob-
servations including analysing the dynamics of clusters of galaxies, from the
gravitational lensing of distant quasars by rich clusters of galaxies and by
determining the baryon abundance in the centres of clusters of galaxies. All
of these long distance observations provide bounds of

Ωmatter = (0.3± .05)h−(1/2). (24)

The conclusion that emerges from comparing (23) and (24) are incredibly
significant and one of the principle reasons why particle physicists should be
interested in cosmology. Clearly, some of the matter in the Universe must be
non-baryonic and it must be dark, we can not see it. This is clear simply
from analysing the rotation curves of light emitted from neighbouring gala-
xies. These can be interpreted as placing constraints on the matter distribu-
tion in our own neighbourhood and points to the existence of large almost
spherical dark halos around our visible galaxy.

The current boom in high precision cosmic microwave background expe-
riments such as BOOMERANG, MAXIMA and DASI have enabled a new
and exciting approach on the matter question. Since these lectures were given
WMAP has come on the scene, and so we should really make use of their
wonderful data (whilst bearing in mind the pioneering work of the other high
precision experiments). Given a particular cosmological model, there is an as-
sociated distribution of peaks and troughs in the power spectrum associated
with the anisotropies in the CBR, the position and height of which depend
on the nature of the cosmological parameters. In particular the location in
�-space of the first ‘doppler’ peak depends on the quantity Ωmatter + ΩΛ,
where ΩΛ is the density parameter associated with a cosmological constant
(and will be discussed later), through � ∼ 220/

√
Ωmatter +ΩΛ. Based on
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parameter fits and combining their data with other astronomical data, the
WMAP team find that the best fits are [6]: Ωmatter +ΩΛ = 1.02± .002, with
Ωmatterh

2 = .135+.008
−.009 and Ωbaryonsh

2 = .0224± .0009.
This all opens up the intriguing question, what could be the source of this

dark matter? There are a number of particle physics candidates including
cold (non-relativistic at decoupling) particles such as Axions, neutralinos,
primordial black holes and supermassive non-thermal relics. There are also
Hot particles possible such as massive neutrinos. At first sight the amazing
discovery by the Super-Kamiokande team of evidence for massive neutrinos
could be thought to point in this direction, however, the proposed masses
for the light neutrinos appear to be too light for them to play a significant
cosmological role. Another fascinating aspect of the matter question is the
fact that even with dark matter present there is still too little matter to cause
the Universe to be flat as can be seen from (17). This amount of matter would
lead to an open Universe but as we shall shortly discuss the Universe appears
to be flat today. Where then is the remaining contribution required to yield
Ω = 1? We shall see that it appears to be coming from an unusual source,
namely something is providing an energy contribution through an effective
cosmological constant which is dominating the Universe today – a dark energy
contribution!

1.5 The Timetable for the Universe

Up until the mid 1990’s, any cosmology book would state with some authority
that the present Universe is dominated by non-relativistic matter which scales
as ρ ∝ a−3. Since we know radiation reduces more quickly with the expansion,
this implies that at earlier times the Universe was radiation dominated. We
can estimate this period by simply relating the two contributions to obtain
1/aeq = 2.4. × 104(Ωh2) where the two energy densities are equal when the
scale factor is aeq. During the radiation era, since a ∝ t1/2, temperature and
time are related by

t

1 sec
�
(

1010 K
T

)2

�
(

MeV
T

)2

. (25)

From this we quickly see that

T ∼ MeV⇐⇒ t ∼ sec
T ∼ GeV⇐⇒ t ∼ 10−6sec
T ∼ 1015GeV⇐⇒ t ∼ 10−35sec. (26)

The highest energies accessible to terrestrial experiment, generated in par-
ticle accelerators, correspond to a temperature of about 1015 K, which was
attained when the Universe was about 10−10 sec old. Earlier times rely on
extrapolation of our known physics and possibly new mathematical insights
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(such as string theory may offer). Later times appear to be well understood,
with a possible timetable being:

– 10−34 seconds: Grand unified phase transition, where strong force decou-
ples from electroweak force.

– 10−10 seconds: Electroweak phase transition, where weak force decouples
from electromagnetic force. Possible origin for the observed baryon asym-
metry in the Universe.

– 10−4 seconds: Quarks condense to form protons and neutrons.
– 1 second: The Universe has cooled sufficiently that light nuclei are able

to form – nucleosynthesis.
– 104 years: Matter–radiation equality. Subsequently the Universe is

matter dominated.
– 105 years: Decoupling of radiation from matter leads to the formation

of the microwave background. Similar time to recombination, when the
up-to-now free electrons combine with the nuclei to form atoms.

– 1010 years: The present era where Beckham joins Real Madrid for a bar-
gain of £20M – and the Universe is accelerating!.

We have seen that up to two years ago, this would have been the accepted
folklore. However, it now appears that the Universe, rather than steadily
decelerating is actually accelerating, going faster and faster. The evidence for
this lies in the distribution of Type Ia Supernovae at very large scales, but the
conclusion is dramatic. As we shall shortly discover, an accelerating universe
requires an energy source which effectively has a negative pressure. There is
something out there providing this constant source of energy density, and it is
dominating over everything else present – there appears to be a cosmological
constant present in the Universe today! We will return to this amazing issue
later on.

2 Problems with the Big Bang

There are a number of issues that the SBB simply can not address and have
to adopt as initial conditions. These provided the original motivation for the
inflationary cosmology, and we now turn our attention to these issues.

2.1 The Flatness Problem

In the absence of a cosmological constant contribution, the Friedmann equa-
tion can be written in terms of the density parameter equation (17). During
SBB evolution, a2H2 is decreasing, and so Ω moves away from one, for ex-
ample

Matter domination: |Ω − 1| ∝ t2/3 (27)
Radiation domination: |Ω − 1| ∝ t (28)
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where the solutions apply provided Ω is close to one. So Ω = 1 is an unstable
critical point. However, today Ω is certainly within an order of magnitude of
one, so it must have been much closer in the past. Inserting the appropriate
behaviours for the matter and radiation eras gives for example

nucleosynthesis (t ∼ 1 sec) : |Ω − 1| < O(10−16) (29)

That is, hardly any choices of the initial density lead to a Universe like
our own. Typically, the Universe will either swiftly recollapse, or will rapidly
expand and cool below 3K within its first second of existence.

2.2 The Horizon Problem

The observation by COBE that all cosmic microwave photons appear to be in
thermal equilibrium at almost the same temperature is a puzzle? Why is it so
isotropic? It is not difficult to see that in the SBB the Universe has not had
enough time for different regions to reach a state of thermal equilibrium by
today. The regions could not have interacted before the photons were emitted
because of the finite horizon size,

∫ tdec

t∗

dt

a(t)
�

∫ t0

tdec

dt

a(t)
. (30)

In other words, the distance light could travel before the microwave backgro-
und was released is much smaller than the present horizon distance. In fact,
any regions separated by more than about 2 degrees would be causally sepa-
rated at decoupling in the hot big bang theory. In the big bang theory there
is therefore no explanation of why the Universe appears so homogeneous.

The same argument that prevents the smoothing of the Universe also
prevents the creation of irregularities. The COBE satellite has detected irre-
gularities in the CMB on all large angular scales, too large to be accounted
for as emerging in the period between the big bang and the time of decou-
pling, because the horizon size at decoupling subtends only a degree or so.
Hence these perturbations must have been part of the initial conditions.

2.3 The Monopole Problem

Modern particle theories predict a variety of ‘unwanted relics’, which can not
be present today as they would have dramatically altered the evolution of
the Universe. These include magnetic monopoles, domain walls, gravitinos
and moduli fields associated with the extra dimensions arising in superstring
theories. They are all massive particles created in the very early Universe but
are diluted less rapidly than radiation as the Universe expands. Hence they
would rapidly come to dominate the dynamics, and lead to rapid closure of
the Universe. We must eliminate them, while preserving the rest of the matter
which we like.
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2.4 The Cosmological Constant

When Einstein developed the theory of General Relativity, the consensus was
that the Universe was static, after all there was no apparent movement of the
galaxies in the night sky with respect to one another. However, the Friedmann
equations were unstable to a static solution, not surprising since matter at-
tracts. To resolve the problem, Einstein introduced a constant balancing term
(Λ) which would allow for a static solution to exist. The modified Friedmann
equation now became

H2 =
8πG

3
ρ+

Λ

3
− k

a2 , (31)

with the new cosmological constant appearing as a constant contribution to
the Hubble parameter. As soon as the Universe was discovered to be ex-
panding, the need for this term went away. Unfortunately, the equations
suggested otherwise, there was no apriori reason to set Λ = 0. This term has
haunted cosmologists and particle physicists ever since and could well have
just come back to visit us again today. What is the problem then?

From (31), as we are not dominated by the curvature term and since the
present energy density is close to the critical value, we see that today,

|Λ| ≤ H2
0 . (32)

Thus the length scale �Λ ≡ |Λ|−1/2 associated with the cosmological constant
must be larger than H−1

0 = h−1
0 × 1026 m, a macroscopic distance. In a

classical regime this is fine, it is simply saying the cosmological constant
length scale is larger than the Hubble length. Problems arise when we combine
gravity and quantum mechanics. At the quantum level the natural scales
which emerge at the Planck epoch are the Planck mass and Planck length
given by (where we have reinserted Planck constant and the speed of light)

mP =

√
�c

8πG
= 2.4× 1018 GeV/c2

,

�P =
�

mP c
= 8.1× 10−35 m

The above constraint now reads :

�Λ ≡ |Λ|−1/2 ≥ 1
H0
∼ 1060 �P . (33)

There are more than sixty orders of magnitude between the scale associated
with the cosmological constant and the scale of quantum gravity. We could of
course simply set Λ = 0, indeed this is generally what is done. Unfortunately
when there is matter hanging around this is not such a good idea. The matter
itself experiences quantum fluctuations (called zero-point fluctuations) and
these can act like an effective cosmological constant (Λeff ∼ λ4/m2

P ). In fact
the natural value this constant should then have usually reflects the scale
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associated with these quantum fluctuations. So, λ would be typically of the
order of 100 GeV in the case of the gauge symmetry breaking of the Standard
Model or 1 TeV in the case of supersymmetry breaking. But the constraint
(33) now reads:

λ ≤ 10−30 mP ∼ 10−3 eV. (34)

It is this very unnatural fine-tuning of parameters that is referred to as the
cosmological constant problem, or more accurately the vacuum energy pro-
blem.

3 Enter Inflation

Inflation is defined to be any epoch where ä > 0, an accelerated expansion.
From (9) this corresponds to a negative pressure (p < −ρ3 ) and from the defi-

nition H = ȧ
a , we see that it also corresponds to d(H−1/a)

dt < 0, i.e. the Hubble
length as measured in comoving coordinates, decreases during inflation. At
any other time, the comoving Hubble length increases. This is the key pro-
perty of inflation; although typically the expansion of the Universe is very
rapid, the crucial characteristic scale of the Universe is actually becoming
smaller, when measured relative to that expansion.

We have already seen an example of an inflationary solution, the vacuum
dominated regime p = −ρ, has a solution is

a(t) ∝ exp (Ht) . (35)

There are many many more! Of course, we know the SBB has many successes,
and it is none inflating, so inflation can not last for ever, it must terminate
and enter the SBB regime smoothly at some epoch.

3.1 The Flatness Problem

Inflation solves the flatness problem by rapidly forcing Ω towards unity rather
than away from it. This is clear from the fact that the comoving Hubble length
H−1/a is decreasing. We require enough inflation to force Ω extremely close
to unity to ensure that it will remain close to it today. Remember, as soon
as we enter the SBB phase, Ω = 1 is an unstable point. Including a possible
cosmological constant contribution, modifies the Friedmann equation to

|Ω +ΩΛ − 1| = |k|
a2H2 , (36)

and so it is Ω + ΩΛ which is forced to one. In general, it is spatial flatness
(k � 0) that we are driven towards, not a critical matter density.
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3.2 Relic Abundances

The rapid expansion of the inflationary stage rapidly dilutes the unwanted
relic particles, because the energy density during inflation falls off more slowly
than the relic particle density. Very quickly their density becomes negligible.
Of course they do not disappear totally and will one day re-enter the horizon
– the ultimate in sweeping something under the carpet.

We need to ensure that after inflation, the energy density of the Universe
can be turned into conventional matter without recreating the unwanted
relics. This reheating period must have a temperature that never gets hot
enough to allow their thermal recreation. It will then allow for the particles
we want to create and lead naturally into the SSB period, vital for the success
of nucleosynthesis and the CMB.

3.3 The Horizon Problem and Homogeneity

Inflation rapidly increases the size of any region of the Universe, but it keeps
its characteristic scale, the Hubble scale fixed. So, a small patch of the Uni-
verse, small enough for thermalisation before inflation, can expand to a patch
much larger than the size of our presently observable Universe. This ensures
that all the cosmic microwave radiation are in thermal equilibrium. Moreo-
ver, it also allows for irregularities to be generated in the CMB, irregularities
which would then evolve to form structures. We can rephrase the horizon
solution by saying that because of inflation, light can travel much further
before decoupling than it can afterwards.

3.4 The Cosmological Constant

Unfortunately, a period of inflation says nothing about why the present value
of the cosmological constant should be so small. In fact it should now be clear
that inflation effectively relies on such a constant if only for a finite period
of time.

4 Inflation out of Particle Physics

The most common framework in which inflation is obtained is based on the
existence of scalar fields, in particular scalar field potentials. Needless to say,
as far as particle physics is concerned they remain elusive – yet we really need
them! They represent spin zero particles, transforming as a scalar (that is, it
is unchanged) under coordinate transformations. In a homogeneous Universe,
the scalar field is a function of time alone.

The traditional starting point for particle physics models is the action,
which is an integral of the Lagrange density over space and time and from
which the equations of motion can be obtained. A scalar field Lagrangian
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is like one for a particle, the difference between the kinetic energy and the
potential energy of the field

L =
1
2
(∂µφ)(∂µφ)− V (φ). (37)

The stress energy tensor is defined in terms of the Lagrangian

Tµν = (∂µφ)(∂νφ)− Lgµν , (38)

where gµν is the metric tensor. If φ represents an isotropic fluid then we can
write down the pressure and energy density from the definition

Tµν = diag(−ρ, p, p, p), (39)

from which we obtain for a homogeneous field

ρφ =
1
2
φ̇2 + V (φ) (40)

pφ =
1
2
φ̇2 − V (φ) . (41)

The potential energy V (φ) measures how much internal energy is associated
with a particular field value. Normally, like all systems, scalar fields try to
minimize this energy; however, a crucial ingredient which allows inflation is
that scalar fields are not always very efficient at reaching this minimum energy
state. In a given theory, there would be a specific form for the potential V (φ).
However, we are not presently in a position where there is a well established
fundamental theory that one can use, so, in the absence of such a theory,
inflation workers tend to regard V (φ) as a function to be chosen arbitrarily,
with different choices corresponding to different models of inflation. Some
example potentials are

V (φ) = λ
(
φ2 −M2

)2 Higgs potential (42)
V (φ) = 1

2m
2φ2 Massive scalar field (43)

V (φ) = λφ4 Self-interacting scalar field (44)

4.1 Inflation Dynamics

The equations for an expanding Universe containing a homogeneous scalar
field are easily obtained by substituting (40) and (41) into the Friedmann
and fluid equations, giving

H2 =
8πG

3

[
V (φ) +

1
2
φ̇2
]
, (45)

φ̈+ 3Hφ̇ = −V ′(φ) , (46)
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where prime indicates d/dφ. Here we have ignored the curvature term k, since
we know that by definition it will quickly become negligible once inflation
starts. Since

ä > 0⇐⇒ p < −ρ
3
⇐⇒ φ̇2 < V (φ) (47)

we will have inflation whenever the potential energy dominates. This should
be possible provided the potential is flat enough, as the scalar field would
then be expected to roll slowly. The potential should also have a minimum
or some other feature which would allow inflation to end.

To solve these equations we use the slow-roll approximation (SRA),
which assumes that a term can be neglected in each of the equations of motion
to leave the simpler set

H2 � 8πG
3

V (48)

3Hφ̇ � −V ′ (49)

The slow-roll parameters fist introduced by Liddle and Lyth [14]

ε(φ) ≡ 1
16πG

(
V ′

V

)2

; η(φ) ≡ 1
8πG

V ′′

V
, (50)

measures the slope of the potential (ε), and the curvature (η), and the neces-
sary conditions for the slow-roll approximation to hold are

ε� 1 ; |η| � 1 . (51)

4.2 The Amount of Inflation

The amount of inflation is normally specified by the the number of e-foldings
N , given by

N ≡ ln
a(tend)
a(tinitial)

=
∫ te

ti

H dt , (52)

� −8πG
∫ φe

φi

V

V ′ dφ , (53)

where the final step uses the SRA. Notice that the amount of inflation bet-
ween two scalar field values can be calculated without needing to solve the
equations of motion, and also that it is unchanged if one multiplies V (φ) by
a constant. We can estimate the amount of inflation required to solve the va-
rious cosmological problems. Consider the flatness problem. First we make a
few plausible assumptions to ease the situation: inflation is of the exponential
form ending at t = 10−34 sec, with the Universe immediately entering a radia-
tion era which persists until today some 3× 1017 sec later. Imagine also that
today |Ω − 1| ≤ 0.01, a reasonable constraint on the value of Ω. Now during
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the radiation era, from (17), |Ω−1| ∝ t, hence |Ω(10−34 sec)−1| ≤ 3×10−54.
During inflation H is constant, so |Ω − 1| ∝ 1

a2 . From this it follows that in
order to satisfy the constraint by the end of inflation, the scale factor has to
grow during inflation by an amount

atend

atbegin
∼ 1027 ∼ exp(62), (54)

corresponding to around 62 e-foldings. Although this looks large, inflation is
typically so rapid that most inflation models give much more.

4.3 Some Examples of Inflation: Polynomial Chaotic Inflation

A particularly nice example of an inflaton potential is a simple polynomial
potential first introduced by Linde (for a review see [7]). It could be a massive
non-interacting field, V (φ) = m2φ2/2 where m is the mass of the scalar field,
or it could be a massless self-interacting field, V (φ) = λφ4, where λ is the
self coupling of the field. Consider the first case. The slow-roll equations are

3Hφ̇+m2φ = 0 ; H2 =
4πGm2φ2

3
, (55)

and the slow-roll parameters are

ε = η =
1

4πGφ2 , (56)

implying that inflation can proceed provided |φ| > 1/
√

4πG, i.e. away from
the minimum.

The solutions to the equations give

φ(t) = φi −
m√

12πG
t , (57)

a(t) = ai exp

[√
4πG

3
m

(
φit−

m√
48πG

t2
)]

, (58)

(where φ = φi and a = ai at t = 0) and the total amount of inflation is

Ntot = 2πGφ2
i −

1
2
. (59)

An important thing to bear in mind is that we need to ensure that we
are in a position where classical physics remains a valid approximation. This
is simply the requirement V � G−2, but it is still easy to get enough in-
flation provided m is small enough. In fact, m is required to be small from
observational limits on the size of density perturbations produced.

As an exercise the reader may want to try and repeat the exercise for
potential V (φ) = λφ4, assuming the field starts at t = 0 from rest rolling
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towards φ = 0 from the positive side of the potential. Show that the SR
equations give

φ(t) = φi exp

(
−
√

2λ
3πG

t

)
, (60)

a(t) = ai exp

{
φ2

i πG

[
1− exp

(
−
√

4λ
3πG

t

)]}
, (61)

(where φ = φi and a = ai at t = 0) and the total amount of inflation is

Ntot = πGφ2
i − 1 . (62)

Since these lectures were given, the WMAP results are now beginning to place
constraints on the viability of polynomial inflation models, and it appears that
the λφ4 marks the boundary between viable models (powers less than 4) and
un-viable models (powers greater than 4)[8]. However, a word of caution. The
‘real’ inflaton potential is likely to be a bit more complicated than a simple
single scalar field power law model, so lets not get too excited yet about
ruling out large classes of potentials.

4.4 From Inflation to the SBB – Reheating

During inflation, all matter except the inflaton scalar field is redshifted to
extremely low densities. Reheating is the process whereby the inflaton’s
energy density is converted back into conventional matter after inflation, re-
entering the standard big bang theory.

As the slow-roll conditions break down, φ evolves from being overdamped
to being underdamped, moving rapidly on the Hubble timescale and oscilla-
ting at the bottom of the potential, where it decays into conventional matter.
This is an active and technically demanding area of research and there has
recently been something of a revolution in the way we think reheating ta-
kes place. Traditional treatments (e.g. as given in Kolb & Turner[9]) added
a phenomenological decay term; this was constrained to be very small with
reheating being inefficient. In particular there was a long time delay (reds-
hifting) between the end of inflation and the Universe returning to thermal
equilibrium; hence a low reheat temperature compared to the energy density
at the end of inflation.

In preheating [10], this picture is turned on its head. Kofman et al
have shown that the decay can initially proceed through broad parametric
resonance, with extremely efficient transfer of energy from the coherent os-
cillations of the inflaton field. The result is a very short reheating period,
with most of the inflaton energy density at the end of inflation available for
conversion into thermalized form. A higher reheat temperature is possible
with some amazing possibilities, such as non-thermal phase transitions [11]
and baryogenesis occurring at the electroweak scale[12, 13].
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4.5 Inflation Models

There are a number of models on offer, some better motivated than others.
Chaotic inflation models are the generic type found in a number of si-
tuations because they just require a single scalar field, rolling in a potential
V (φ), which in some regions satisfies the slow-roll conditions, while also pos-
sessing a minimum with zero potential in which inflation is to end. the initial
conditions place the field well up the potential, and could be due to large
fluctuations at the Planck era. Examples include (see [14])

Polynomial chaotic inflation V (φ) = 1
2m

2φ2

V (φ) = λφ4

Power-law inflation V (φ) = V0 exp(
√

16πG
p φ)

‘Natural’ inflation V (φ) = V0[1 + cos φf ]
Intermediate inflation V (φ) ∝ φ−β

Hybrid inflation models are a very interesting class as they have more
than one scalar field and appear to offer the possibility of occurring in particle
physics contexts. An example is one with a potential

V (φ, ψ) =
λ

4
(
ψ2 −M2)2 +

1
2
m2φ2 +

1
2
λ′φ2ψ2 . (63)

When φ2 is large, the minimum of the potential is in the ψ-direction is at
ψ = 0. The field rolls down this ‘valley’ until it reaches φ2

inst = λM2/λ′,
where ψ = 0 becomes unstable and the field rolls into one of the true minima
at φ = 0 and ψ = ±M . Note for suitable choices of the potential, topological
defects could form at the end of a period of inflation.

While in the ‘valley’, it is like a single field model with an effective po-
tential for φ of the form

Veff(φ) =
λ

4
M4 +

1
2
m2φ2 . (64)

The constant term would not normally be allowed as it would give a present-
day cosmological constant. When it dominates, it allows both for the energy
density during inflation to be much lower than normal while still giving sui-
tably large density perturbations, and for φ to roll very slowly.

Models of inflation can also be found in scalar-tensor theories of gravity
where the gravitational constant may vary. One interesting case arises from
the low energy string action, where two scalar fields, the dilaton and moduli
field lead to a period of inflation driven not by the potential energy of the
fields (in fact the potential vanishes), rather by the kinetic energy of the
fields. This interesting possibility is known as the pre big bang model, so
called because this evolution occurs before the usual big bang singularity is
met. These will be discussed in Sect. 5. There are also fascinating models
which lead to Open universes, but likewise we do not have time to discuss
them here.
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4.6 Density Perturbations and Gravitational Waves

Perhaps the most important property of inflationary cosmology is that it
produces spectra of both density perturbations and gravitational waves. The
former would be responsible for the formation and clustering of galaxies, as
well as creating anisotropies in the microwave background radiation. The
gravitational waves do not affect the formation of galaxies, but may contri-
bute extra microwave anisotropies on the large angular scales sampled by the
COBE satellite.

The beauty of having models like inflation, or topological defects (which
we do not discuss here) is that they are predictive. We can predict the form of
the initial perturbation spectra, as opposed to simply assuming it as is often
done in studies of large-scale structure. For example, the gravitational waves
may be assumed not to be present, and the density perturbations to take on
a simple form such as the scale-invariant Harrison–Zel’dovich spectrum, or a
scale-free power-law spectrum. In his lectures Robert Brandenberger has gone
into a great deal of detail describing the cosmological perturbations theory
[15]. Here we will just be picking out the bits useful for inflation without
deriving any of the formalism.

4.7 Perturbations Produced During Inflation

Inflation generates perturbations on large scales because the comoving Hub-
ble length decreases during inflation, where as in the SBB the comoving
Hubble length is always increasing, all scales are initially much larger than
it, and hence unable to be affected by causal physics. Once they become smal-
ler than the Hubble length, they remain so for all time. The fact that COBE
sees perturbations on large scales at a time when they were much bigger than
the Hubble length, means that in the standard picture no mechanism could
have created them.

During inflation a given comoving scale could be well inside the Hubble
length, and hence be affected by causal physics, thereby enabling it to ge-
nerate homogeneity to solve the horizon problem and to superimpose small
quantum perturbations. Before inflation ends, as the comoving Hubble length
decreases, the given scale crosses outside the Hubble radius rendering causal
physics ineffective. Any perturbations generated become imprinted, or, ‘fro-
zen in’. Long after inflation is over, as the comoving Hubble length increases
the scales cross inside the Hubble radius again. Perturbations are created on
a very wide range of scales, but the most readily observed ones range from
about the size of the present Hubble radius (i.e. the size of the presently
observable Universe) down to a few orders of magnitude less. Thus inflation
allows perturbations to be generated causally. These quantum fluctuations
are present simply from the Uncertainty principle, they have to be and can
explain the initial inhomogeneities that later grow by gravitational collapse
to the structures we see today.
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The size of the irregularities depends on the energy scale at which inflation
takes place. It is outside the scope of these lectures to describe in detail how
this calculation is performed. We will just briefly outline the necessary steps
and then quote the result, which we can go on to apply (see Liddle and Lyth
[14] for details).

(a) Perturb the scalar field φ = φ(t) + δφ(x, t)
(b) Expand in comoving wavenumbers δφ =

∑
(δφ)keik.x

(c) Linearized equation for classical evolution
(d) Quantize theory
(e) Find solution with initial condition giving

flat space quantum theory (k 	 aH)
(f) Find asymptotic value for k � aH 〈|δφk|2〉 = H2/2k3

(g) Relate field perturbation to metric Rk = H δφk/φ̇
or curvature perturbation

Unfortunately, analytic results are not known for general inflation models.
The results given below are lowest-order in the SRA. There are results known
to second-order in slow-roll for arbitrary inflaton potentials. Power-law infla-
tion is the only standard model for which exact results are known.

The curvature perturbation Rk is so important because it provides the
vital bridge which allows us to link the primordial fluctuations in φ to the
physically observed matter fluctuations present today. The reason is that
it remains effectively constant for scales much greater than the co-moving
Hubble length, hence the scales that ‘freeze-in’ as they leave the Hubble
length during inflation, remain unaffected (apart from stretching due to the
Universe expanding) until they re-enter the Hubble radius much later in the
standard big bang era. Given the definition of the power spectra

Pg(k) =
k3

2π2 |δgk|
2 , (65)

then the amplitude of the density perturbation δ2H(k) = 4
25PR is given by

δ2H(k) =
4
25

k3

2π2

(
Hδφk

φ̇

)2

=

∣∣∣∣∣.
4
25

(
H

φ̇

)(
H

2π

)2
∣∣∣∣∣
k=aH

. (66)

Using the SRA this then gives

δH(k) =

√
512π
75

V 3/2G3/2

|V ′|

∣∣∣∣∣
k=aH

. (67)



Inflation – In the Early Universe and Today 73

A similar calculation gives the amplitude of the gravitational waves

AG(k) =

√
32
75

V 1/2G

∣∣∣∣∣
k=aH

, (68)

where A2
G(k) = 1

25Pg(k).
The right-hand sides of the above equations are to be evaluated at the time

when the comoving wave number k = aH during inflation, which for a given
k corresponds to some particular value of φ. We see that the amplitude of
perturbations depends on the properties of the inflaton potential at the time
the scale crossed the Hubble radius during inflation. The relevant number of
e-foldings from the end of inflation is approximately given by

N � 62− ln
k

a0H0
(69)

Approximating this to to say that the scales of interest to us crossed outside
the Hubble radius 60 e-foldings before the end of inflation then gives

N � −8πG
∫ φend

φ

V

V ′ dφ , (70)

which tells us the value of φ to be substituted into (67) and (68).
We can apply this formalism to the specific example of the m2φ2/2 po-

tential. Inflation ends when ε = 1, so φend � 1/
√

4πG. 60 e-foldings before
this, gives φ60 � 3√

G
from (59), which in turn upon substitution yields

δH � 12m
√
G ; AG � 1.4m

√
G.

The COBE result corresponds to δH � 2× 10−5 (provided AG � δH), hence
m
√
G � 10−6 and we have an inflaton mass of m = 1013 GeV. Such a small

mass satisfies the condition V G2 < 1, which implies that φ < 1/(mG) �
106(1/

√
G). Since Ntot � 2πφ2G, we can get up to about 1013 e-foldings in

principle, compared with the 70 or so actually required.

4.8 Observational Consequences

The current high precision CMB experiments like BOOMERANG, MAXIMA
I and now WMAP are beginning to probe key features of the spectra, such
as the scale-dependence and the relative size of the two spectra. Again the
slow-roll parameters ε and η can be used to estimate these quantities for any
given inflation potential. The standard approximation used to describe the
spectra is the power-law approximation, where we take2

δ2H(k) ∝ kn−1 ; A2
G(k) ∝ knG , (71)

2 Cf. (53) in the contribution of J.L. Cervantes–Cota in this book.
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where the spectral indices3 n and nG are given by

n− 1 =
d ln δ2H
d ln k

; nG =
d lnA2

G

d ln k
. (72)

The power-law approximation is usually valid because only a limited range
of scales are observable, with the range 1 Mpc to 104 Mpc corresponding to
∆ ln k � 9.

The crucial equation we need is that relating φ values to when a scale k
crosses the Hubble radius,

d ln k
dφ

= 8πG
V

V ′ . (73)

This comes from the noticing the right hand side of the amplitude equations
are evaluated when k = aH, and during inflation Ḣ is very small compared to
the rate of change of a. Hence we can take d ln k = Hdt, from which it follows
k � expN . Then make use of (70). Direct differentiation then yields[14]

n = 1− 6ε+ 2η , (74)
nG = −2ε , (75)

where now ε and η are to be evaluated on the appropriate part of the potential.
A measure of the relevant importance of density perturbations and gra-

vitational waves is seen in the microwave background which gives gives

R ≡ CGW
�

CDP
�

� 4πε . (76)

where the C� are the contributions to the microwave multipoles. Briefly, the
temperature difference between two regions of the sky separated by (θ, φ) is
given in terms of spherical harmonics Y �m as ∆T/T =

∑
a�mY

�
m(θ, φ) where

C� = 〈|a�m|2〉; see (56) in the contribution of Jorge L. Cervantes–Cota in this
book.

From n, nG and R, it follows that if and only if ε � 1 and |η| � 1 do
we get n � 1 and R � 0 whereas gravitational waves can have a significant
effect even if ε is quite a bit smaller than one.

Different models predict different things which implies that large-scale
structure observations, and especially microwave background observations,
can strongly discriminate between inflationary models. When they are made,
most existing inflation models will be ruled out. As an example the recent
WMAP data appears to be placing the λφ4 model under some pressure [8].
Fortunately, inflation as an idea has one very useful and hopefully unique test,
which will allow it to be verified or ruled out, independent of the particular

3 The scalar spectral index, n, is sometimes referred as ns.
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Table 1. The spectral index and gravitational wave contribution for a range of
inflation models – taken from Liddle - astro-ph/9910110.

MODEL POTENTIAL n R

Polynomial φ2 0.97 0.1
chaotic inflation φ4 0.95 0.2
Power-law inflation exp(−λφ) any n < 1 2π(1 − n)
‘Natural’ inflation 1 + cos(φ/f) any n < 1 0
Hybrid inflation (standard) 1 + Bφ2 1 0
Hybrid inflation (extreme) 1 + Bφ2 1 < n < 1.15 ∼ 0

model being investigated. There exists a consistency equation

R = −2πnG , (77)

independent of the choice of inflationary model (though it does rely on the
slow-roll and power-law approximations). There are no other models that
produce such a relation, unfortunately as we have already seen it may turn
out that the gravitational wave contribution is so small that the consistency
equation can never be verified!

4.9 The Cosmological Parameters

Cosmologists are aiming to fully understand and explain the origin and con-
tents of our Universe, and this includes all the parameters that make it up.
So far, we have discussed three primordial ones, δH , n and R which describe
the initial perturbations laid down in the first 10−34 sec or so. Most of the
perturbations except the largest ones just re-entering the horizon today, have
been heavily processed by real astrophysics to give the non-linear features we
observe. We can break the parameters up into cosmological and inflationary:

Inflationary parameters: δH , n , nG , R , dn/d ln k ·

Cosmological parameters: h ,Ωbaryon , ΩCDM , ΩHDM , ΩLambda , k , g∗ , τ ·,

where g∗ is the number of massless species of particles and τ is the reionisation
optical depth. As we mentioned earlier, through a combination of observa-
tions and parameter fitting techniques these parameters are already being
constrained The recent WMAP data coupled with other astronomical data
have led to the following published constraints: n = 1.13± 0.08, dn/d ln k =
−0.055+0.028

−0.029, Ωmatter + ΩΛ = 1.02 ± .002, with Ωmatterh
2 = .135+.008

−.009 and
Ωbaryonsh

2 = .0224± .0009[6, 8]. Note there may be tentative evidence for a
running of the spectral index, something that would be highly significant if
it holds.

The COBE normalization allows the energy scale associated with inflation
to be determined, since it is probing perturbations still in their primordial



76 E.J. Copeland

form, dependent only on the initial seed perturbations. Using the present
Hubble scale, δH ≡ δH(k = a0H0), to be given by the COBE normalisation

δH � 2× 10−5 , (78)

then since
δ2H =

32
75
G2 V

1
ε
, (79)

this implies
V 1/4 � 10−3/

√
G � 1016 GeV , (80)

at the time when observable scales crossed outside the horizon. A scale con-
sistent with many GUT models.

5 String Cosmology

String theory, and its most recent incarnation, that of M-theory, has been
accepted by many as the most likely candidate theory to unify the forces of
nature as it includes General Relativity in a consistent quantum theory. If
it is to play such a pivotal role in particle physics, it should also include in
it all of cosmology. It should provide the initial conditions for the Universe,
perhaps even explain away the singularity associated with the standard big
bang. It should also provide a mechanism for explaining the observed density
fluctuations, perhaps by providing the inflaton field or some other mechanism
which would lead to inflation. Should the observations survive the test of
time, string theory should be able to provide a mechanism to explain the
current accelerated expansion of the Universe. In other words, even though
it is strictly a theory which can unify gravity with the other forces in the
very early Universe, for consistency, as a theory of everything it will have
a great deal more to explain. In this article, we will introduce some of the
developments that have occurred in string cosmology over the past decade
or so, initially basing the discussion on an analyse of the low energy limit
of string theory, and then later extending it to include branes arising in
Heterotic M-theory.

5.1 Dilaton-Moduli Cosmology (Pre-Big Bang)

Strings live in 4+d spacetime dimensions, with the extra d dimensions
being compactified. For homogeneous, four–dimensional cosmologies, where
all fields are uniform on the surfaces of homogeneity, we can consider the
compactification of the (4 + d)–dimensional theory on an isotropic d–torus.
The radius, or ‘breathing mode’ of the internal space, is then parameterized
by a modulus field, β, and determines the volume of the internal dimensions.
We can then assume that the (4 + d)–dimensional metric is of the form
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ds2 = −dt2 + gijdx
idxj + e

√
2/dβδabdX

adXb (81)

where indices run from (i, j) = (1, 2, 3) and (a, b) = (4, . . . , 3 + d) and δab is
the d–dimensional Kronecker delta. The modulus field β is normalized in such
a way that it becomes minimally coupled to gravity in the Einstein frame.

The low energy action that is commonly used as a starting point for string
cosmology is the four dimensional effective Neveu-Schwarz- Neveu-Schwarz
(NS-NS) action given by:

S∗ =
∫
d4x

√
|g|e−ϕ

[
R+ (∇ϕ)2 − 1

2
(∇β)2 − 1

2
e2ϕ (∇σ)2

]
, (82)

where ϕ is the effective dilaton in four dimensions, and σ is the pseudo–scalar
axion field which is dual to the fundamental NS–NS three–form field strength
present in string theory, the duality being given by

Hµνλ = εµνλκ eϕ∇κσ. (83)

The dimensionally reduced action (82) may be viewed as the prototype
action for string cosmology because it contains many of the key features
common to more general actions. Cosmological solutions to these actions
have been extensively discussed in the literature – for a review see [16]. Some
of them play a central role in the pre–big bang inflationary scenario, first
proposed by Veneziano [17, 18]. An important point can be seen immediately
in (82) where there is a non-trivial coupling of the dilaton to the axion field,
a coupling which will play a key role later on when we are investigating the
density perturbations arising in this scenario.

All homogeneous and isotropic external four–dimensional spacetimes can
be described by the Friedmann-Robertson-Walker (FRW) metric. The general
line element in the string frame can be written as

ds24 = a2(η)
{
−dη2 + dΩ2

κ

}
, (84)

where a(η) is the scale factor of the universe, η is the conformal time and
dΩ2

κ is the line element on a 3-space with constant curvature κ:

dΩ2
κ = dψ2 +

(
sin
√
κψ√
κ

)2 (
dθ2 + sin2 θdϕ2) (85)

To be compatible with a homogeneous and isotropic metric, all fields, inclu-
ding the pseudo–scalar axion field, must be spatially homogeneous.

The models with vanishing form fields, but time-dependent dilaton and
moduli fields, are known as dilaton-moduli-vacuum solutions. In the Einstein–
frame, these solutions may be interpreted as FRW cosmologies for a stiff
perfect fluid, where the speed of sound equals the speed of light. The dilaton
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and moduli fields behave collectively as a massless, minimally coupled scalar
field, and the scale factor in the Einstein frame is given by

ã = ã∗

√
τ

1 + κτ2 (86)

where ã ≡ e−ϕ/2a, ã∗ is a constant and we have defined a new time variable:

τ ≡



κ−1/2| tan(κ1/2η)| for κ > 0
|η| for κ = 0
|κ|−1/2| tanh(|κ|1/2η)| for κ < 0

. (87)

The time coordinate τ diverges at both early and late times in models which
have κ ≥ 0, but τ → |κ|−1/2 in negatively curved models. There is a curvature
singularity at η = 0 with ã = 0 and the model expands away from it for η > 0
or collapses towards it for η < 0. The expanding, closed models recollapse at
η = ±π/2 and there are no bouncing solutions in this frame.

The corresponding string frame scale factor, dilaton and modulus fields
are given by the ‘rolling radii’ solutions [19]

a = a∗

√
τ1+

√
3 cos ξ∗

1 + κτ2 , (88)

eϕ = eϕ∗τ
√

3 cos ξ∗ , (89)

eβ = eβ∗τ
√

3 sin ξ∗ (90)

The integration constant ξ∗ determines the rate of change of the effective
dilaton relative to the volume of the internal dimensions. Figures 1 and 2
show the dilaton-vacuum solutions in flat FRW models when stable compac-
tification has occurred, so that the volume of the internal space is fixed, with
ξ∗ mod π = 0.

The solutions just presented have a scale factor duality which when ap-
plied simultaneously with time reversal implies that the Hubble expansion
parameter H ≡ d(ln a)/dt remains invariant, H(−t) → H(t), whilst its first
derivative changes sign, Ḣ(−t) → −Ḣ(t). A decelerating, post–big bang so-
lution – characterized by ȧ > 0, ä < 0 and Ḣ < 0 – is mapped onto a pre–big
bang phase of inflationary expansion, since ä/a = Ḣ +H2 > 0. The Hubble
radius H−1 decreases with increasing time and the expansion is therefore
super-inflationary. Thus, the pre-big bang cosmology (κ = 0 case in (88–
90)) is one that has a period of super-inflation driven simply by the kinetic
energy of the dilaton and moduli fields [17, 18]. This is related by duality to
the usual FRW post–big bang phase. The two branches are separated by a
curvature singularity, however, and it is not clear how the transition between
the pre– and post–big bang phases might proceed. This will be the focus of
attention in Sect. 5.
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Fig. 1. String frame scale factor, a, as a function of conformal time, η, for flat
κ = 0 FRW cosmology in dilaton-vacuum solution in (88) with ξ∗ = 0 (dashed-
line), ξ∗ = π (dotted line) and dilaton-axion solution in (93) with r =

√
3 (solid

line). The (+) and (−) branches are defined in the text.

Fig. 2. Dilaton, eϕ, as a function of conformal time, η, for flat κ = 0 FRW cosmo-
logy in dilaton-vacuum solution in (89) with ξ∗ = 0 (dashed-line), ξ∗ = π (dotted
line) and dilaton-axion solution in (92) with r =

√
3 (solid line).

The solution for a flat (κ = 0) FRW universe corresponds to the well–
known monotonic power-law, or ‘rolling radii’, solutions. For cos ξ∗ < −1/

√
3

there is accelerated expansion, i.e., inflation, in the string frame for η < 0
and eϕ → 0 as t → −∞, corresponding to the weak coupling regime. The
expansion is an example of ‘pole–law’ inflation [20, 21].

The solutions have semi-infinite proper lifetimes. Those starting from a
singularity at t = 0 for t ≥ 0 are denoted as the (–) branch in [22], while those
which approach a singularity at t = 0 for t ≤ 0 are referred to as the (+)
branch (see Figs. 1–2). These (+/−) branches do not refer to the choice of sign
for cos ξ∗. On either the (+) or (−) branches of the dilaton-moduli-vacuum
cosmologies we have a one-parameter family of solutions corresponding to the
choice of ξ∗, which determines whether eϕ goes to zero or infinity as t → 0.
These solutions become singular as the conformally invariant time parameter
η ≡

∫
dt/a(t)→ 0 and there is no way of naively connecting the two branches

based simply on these solutions [22].
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In the Einstein frame, where the dilaton field is minimally coupled to
gravity, the scale factor given in (86), becomes

ã = ã∗ |η|1/2 (91)

As η → 0 on the (+) branch, the universe is collapsing with ã → 0, and
the comoving Hubble length |d(ln ã)/dη|−1 = 2|η| is decreasing with time.
Thus, in both frames there is inflation taking place in the sense that a given
comoving scale, which starts arbitrarily far within the Hubble radius in either
conformal frame as η → −∞, inevitably becomes larger than the Hubble
radius in that frame as η → 0. The significance of this is that it means that
perturbations can be produced in the dilaton, graviton and other matter
fields on scales much larger than the present Hubble radius from quantum
fluctuations in flat spacetime at earlier times – this is a vital property of any
inflationary scenario.

For completeness, it is worth mentioning that these solutions can be exten-
ded to include a time-dependent axion field, σ(t), by exploiting the SL(2, R)
S-duality invariance of the four–dimensional, NS-NS action [19]. We now turn
our attention to this fascinating case.

5.2 Dilaton-Moduli-Axion Cosmologies

The cosmologies containing a non–trivial axion field can be generated imme-
diately due to the global SL(2, R) symmetry of the action (82). The resultant
solutions are [19]:

eϕ =
eϕ∗

2

{(
τ

τ∗

)−r
+
(
τ

τ∗

)r}
, (92)

a2 =
a2

∗
2(1 + κτ2)

{(
τ

τ∗

)1−r
+
(
τ

τ∗

)1+r
}
, (93)

eβ = eβ∗τ s , (94)

σ = σ∗ ± e−ϕ∗

{
(τ/τ∗)−r − (τ/τ∗)r

(τ/τ∗)−r + (τ/τ∗)r

}
, (95)

where the exponents are related via

r2 + s2 = 3 , (96)

and without loss of generality we may take r ≥ 0.
In all cases, the dynamics of the axion field places a lower bound on the

value of the dilaton field, ϕ ≥ ϕ∗. In so doing, the axion smoothly inter-
polates between two dilaton–moduli–vacuum solutions, where its dynamical
influence asymptotically becomes negligible. The effects of time–dependent
axion solutions for the scale-factor and dilaton are plotted in Figs. 1 and 2
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for the flat FRW model when the modulus field is trivial (s = 0). When the
internal space is static, it is seen that the string frame scale factors exhibit a
bounce. However we still have a curvature singularity in the Einstein frame
as τ → 0. The actual time-dependent axion solutions is shown in Fig. 3.

Fig. 3. Axion, σ, as a function of conformal time, η, for flat κ = 0 FRW cosmology
in dilaton-axion solution in (95) with r =

√
3 (solid line).

The spatially flat solutions reduce to the power law, dilaton–moduli–
vacuum solution given in (88–90) at early and late times. When η → ±∞
the solution approaches the vacuum solution with

√
3 cos ξ∗ = +r, while as

η → 0 the solution approaches the
√

3 cos ξ∗ = −r solution. Thus, the axion
solution interpolates between two vacuum solutions related by an S-duality
transformation ϕ → −ϕ. When the internal space is static the scale factor
in the string frame is of the form a ∝ t1/

√
3 as η → ±∞, while as η → 0 the

solution becomes a ∝ t−1/
√

3. These two vacuum solutions are thus related
by a scale factor duality that inverts the spatial volume of the universe. This
asymptotic approach to dilaton–moduli–vacuum solutions at early and late
times will lead to a particularly simple form for the semi-classical pertur-
bation spectra that is independent of the intermediate evolution. However,
there is a down side to these solutions from the standpoint of pre big bang
cosmologies. As η → ±∞ and as η → 0 the solution approaches the strong
coupling regime where eϕ → ∞. Thus there is no weak coupling limit, the
axion interpolates between two strong coupling vacuum solutions. We will
shortly see how a similar affect arises when we include a moving brane in the
dilaton-moduli picture, as it too mimics the behaviour of a non-minimally
coupled axion field.

The overall dynamical effect of the axion field is negligible except near
τ ≈ τ∗, when it leads to a bounce in the dilaton field. Within the context of
M–theory cosmology, the radius of the eleventh dimension is related to the
dilaton by r11 ∝ eϕ/3 when the modulus field is fixed. This bound on the
dilaton may therefore be reinterpreted as a lower bound on the size of the
eleventh dimension.
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5.3 Fine Tuning Issues

The question over the viability of the initial conditions required in the pre
Big Bang scenario has been a cause for many an argument both in print and
in person. Since both Ḣ and ϕ̇ are positive in the pre–big bang phase, the
initial values for these parameters must be very small. This raises a number
of important issues concerning fine–tuning in the pre–big bang scenario [23,
24, 25, 26, 27, 28, 29]. There needs to be enough inflation in a homogeneous
patch in order to solve the horizon and flatness problems which means that
the dilaton driven inflation must survive for a sufficiently long period of time.
This is not as trivial as it may appear, however, since the period of inflation
is limited by a number of factors.

The fundamental postulate of the scenario is that the initial data for in-
flation lies well within the perturbative regime of string theory, where the
curvature and coupling are very small [18]. Inflation then proceeds for suf-
ficiently homogeneous initial conditions [27, 28], where time derivatives are
dominant with respect to spatial gradients, and the universe evolves into a
high curvature and strongly–coupled regime. Thus, the pre–big bang initial
state should correspond to a cold, empty and flat vacuum state. Initial the
universe would have been huge relative to the quantum scale and hence should
have been well described by classical solutions to the string effective action.
This should be compared to the initial state which describes the standard hot
big bang, namely a dense, hot, and highly curved region of spacetime. This
is quite a contrast and a primary goal of pre–big bang cosmology must be
to develop a mechanism for smoothly connecting these two regions, since we
believe that the standard big bang model provides a very good representation
of the current evolution of the universe.

Our present observable universe appears very nearly homogeneous on suf-
ficiently large scales. In the standard, hot big bang model, it corresponded
to a region at the Planck time that was 1030 times larger than the horizon
size, lPl. This may be viewed as an initial condition in the big bang model or
as a final condition for inflation. It implies that the comoving Hubble radius,
1/(aH), must decrease during inflation by a factor of at least 1030 if the
horizon problem is to be solved. For a power law expansion, this implies that∣∣∣∣ηfηi

∣∣∣∣ ≤ 10−30 (97)

where subscripts i and f denote values at the onset and end of inflation,
respectively. In the pre–big bang scenario, (89) implies that the dilaton grows
as eϕ ∝ |η|−

√
3, and since at the start of the post–big bang epoch, the string

coupling, gs = eϕ/2, should be of order unity, the bound (97) implies that
the initial value of the string coupling is strongly constrained, gs,i ≤ 10−26.
Turner and Weinberg interpret this constraint as a severe fine–tuning problem
in the scenario, because inflation in the string frame can be delayed by the
effects of spatial curvature [23]. It was shown by Clancy, Lidsey and Tavakol
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that the bounds are further tightened when spatial anisotropy is introduced,
actually preventing pre–big bang inflation from occurring [24]. Moreover, as
we have seen the dynamics of the NS–NS axion field also places a lower bound
on the allowed range of values that the string coupling may take [19]. In
the standard inflationary scenario, where the expansion is quasi–exponential,
the Hubble radius is approximately constant and a ∝ (−η)−1. Thus, the
homogeneous region grows by a factor of |ηi/ηf | as inflation proceeds. During
a pre–big bang epoch, however, a ∝ (−η)−1/1+

√
3 and the increase in the size

of a homogeneous region is reduced by a factor of at least 1030
√

3/(1+
√

3) ≈
1019 relative to that of the standard inflation scenario. This implies that the
initial size of the homogeneous region should exceed 1019 in string units if
pre–big bang inflation is to be successful in solving the problems of the big
bang model [17, 25]. The occurrence of such a large number was cited by
Kaloper, Linde and Bousso as a serious problem of the pre–big bang scenario,
because it implies that the universe must already have been large and smooth
by the time inflation began [25].

On the other hand, Gasperini has emphasized that the initial homoge-
neous region of the pre–big bang universe is not larger than the horizon even
though it is large relative to the string/Planck scale [30]. The question that
then arises when discussing the naturalness, or otherwise, of the above initial
conditions is what is the basic unit of length that should be employed. At
present, this question has not been addressed in detail.

Veneziano and collaborators conjectured that pre–big bang inflation ge-
nerically evolves out of an initial state that approaches the Milne universe in
the semi–infinite past, t→ −∞ [27, 28]. The Milne universe may be mapped
onto the future (or past) light cone of the origin of Minkowski spacetime and
therefore corresponds to a non–standard representation of the string pertur-
bative vacuum. The proposal was that the Milne background represents an
early time attractor, with a large measure in the space of initial data. If so,
this would provide strong justification for the postulate that inflation begins
in the weak coupling and curvature regimes and would render the pre-big
bang assumptions regarding the initial states as ‘natural’. However, Clancy
et al. took a critical look at this conjecture and argued that the Milne uni-
verse is an unlikely past attractor for the pre–big bang scenario [31]. They
suggested that plane wave backgrounds represent a more generic initial state
for the universe [24]. Buonanno, Damour and Veneziano have subsequently
proposed that the initial state of the pre–big bang universe should correspond
to an ensemble of gravitational and dilatonic waves [29]. They refer to this as
the state of ‘asymptotic past triviality’. When viewed in the Einstein frame
these waves undergo collapse when certain conditions are satisfied. In the
string frame, these gravitationally unstable areas expand into homogeneous
regions on large scales.
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To conclude this section, it is clear that the question of initial conditions
in the pre–big bang scenario is currently unresolved. We turn our attention
now to another unresolved problem for the scenario – the Graceful Exit.

5.4 The Graceful Exit

We have seen how in the pre Big Bang scenario, the Universe expands from a
weak coupling, low curvature regime in the infinite past, enters a period of in-
flation driven by the kinetic energy associated with the massless fields present,
before approaching the strong coupling regime as the string scale is reached.
There is then a branch change to a new class of solutions, corresponding to a
post big bang decelerating Friedman-Robertson-Walker era. In such a scena-
rio, the Universe appears to emerge because of the gravitational instability
of the generic string vacua – a very appealing picture, the weak coupling, low
curvature regime is a natural starting point to use the low energy string effec-
tive action. However, how is the branch change achieved without hitting the
inevitable looking curvature singularity associated with the strong coupling
regime? The simplest version of the evolution of the Universe in the pre-big
bang scenario inevitably leads to a period characterised by an unbounded
curvature. The current philosophy is to include higher-order corrections to
the string effective action. These include both classical finite size effects of
the strings (α′ corrections arising in higher order derivatives), and quantum
string loop corrections (gs corrections). The list of authors who have worked
in this area is too great to mention here, for a detailed list see [16, 32]. A
series of key papers were written by Brustein and Madden, in which they
demonstrated that it is possible to include such terms and successfully have
an exit from one branch to the other [33, 34]. More recently this approach has
been generalised by including combinations of classical and quantum correc-
tions [35]. Brustein and Madden [33, 34] made use of the result that classical
corrections can stabilize a high curvature string phase while the evolution is
still in the weakly coupled regime[36]. The crucial new ingredient that they
added was the inclusion of terms of the type that may result from quan-
tum corrections to the string effective action and which induce violation of
the null energy condition (NEC – The Null Energy Condition is satisfied if
ρ+ p ≥ 0, where ρ and p represent the effective energy density and pressure
of the additional sources). Such extra terms mean that evolution towards a
decelerated FRW phase is possible. Of course this violation of the null energy
condition can not continue indefinitely, and eventually it needs to be turned
off in order to stabilise the dilaton at a fixed value, perhaps by capture in a
potential minimum or by radiation production – another problem for string
theory!

The analysis of [33] resulted in a set of necessary conditions on the evolu-
tion in terms of the Hubble parameters HS in the string frame, HE in the Ein-
stein frame and the dilaton ϕ, where they are related byHE = eϕ/2(HS− 1

2 ϕ̇).
The conditions were:
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– Initial conditions of a (+) branch and HS , ϕ̇ > 0 require HE < 0.
– A branch change from (+) to (−) has to occur while HE < 0.
– A successful escape and exit completion requires NEC violation accom-

panied by a bounce in the Einstein frame after the branch change has
occurred, ending up with HE > 0.

– Further evolution is required to bring about a radiation dominated era in
which the dilaton effectively decouples from the “matter” sources.

There is as yet no definitive calculation of the full loop expansion of string
theory. This is of course a big problem if we want to try and include quantum
effects in analysing the graceful exit issue. The best we can do, is to propose
plausible terms that we hope are representative of the actual terms that will
eventually make up the loop corrections. We believe that the string coupling
gS actually controls the importance of string-loop corrections, so as a first
approximation to the loop corrections we multiplied each term of the classical
correction by a suitable power of the string coupling [33, 34].

Not surprisingly the field equations need to be solved numerically, but this
can be done and the solutions are very encouraging as they show there exists
a large class of parameters for which successful graceful exits are obtained
[35]. One such example is shown in Fig. 4.
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Fig. 4. Hubble expansion in the S-frame as a function of the dilaton for a successful
exit. The y-axis corresponds to H, and the x-axis to 2ϕ̇/3. The initial conditions for
the simulations have been set with respect to the lowest-order analytical solutions
at tS = −1000. For details see [35]

We should point out though, that although it is possible to have a suc-
cessful exit, it is not so easy to ensure that the exit takes place in a weakly
coupled regime, and typically we found that as the exit was approached
ϕfinal ∼ 0.1 − −0.3. Thus it is fair to say that although great progress has
been made on the question of Graceful Exit in string cosmology, it remains
a problem in search of the full solution. It is a fascinating problem, and not
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surprisingly alternative prescriptions which aim to address this issue have
recently been proposed, involving colliding branes [37] and Cyclic universes
[39]. We now turn our attention to the observational consequences of string
cosmology, in particular the generation of the observed cosmic microwave
background radiation.

5.5 Density Perturbations in String Cosmology

We have to consider inhomogeneous perturbations that may be generated due
to vacuum fluctuations, and follow the formalism pioneered by Mukhanov and
collaborators [40, 41]. During a period of accelerated expansion the comoving
Hubble length, |d(ln a)/dη|−1, decreases and vacuum fluctuations which are
assumed to start in the flat-spacetime vacuum state may be stretched up
to exponentially large scales. The precise form of the spectrum depends on
the expansion of the homogeneous background and the couplings between
the fields. The comoving Hubble length, |d(ln ã)/dη|−1 = 2|η|, does indeed
decrease in the Einstein frame during the contracting phase when η < 0.
Because the dilaton, moduli fields and graviton are minimally coupled to this
metric, this ensures that small-scale vacuum fluctuations will eventually be
stretched beyond the comoving Hubble scale during this epoch.

As we remarked earlier, the axion field is taken to be a constant in the
classical pre-big bang solutions. However, even when the background axion
field is set to a constant, there will inevitably be quantum fluctuations in this
field. We will see that these fluctuations can not be neglected and, moreover,
that they are vital if the pre-big bang scenario is to have any chance of
generating the observed density perturbations.

In the Einstein frame, the first-order perturbed line element can be written
as

ds̃2 = ã2(η)
{
−(1 + 2Ã)dη2 + 2B̃,idηdxi + [δij + hij ] dxidxj

}
, (98)

where Ã and B̃ are scalar perturbations and hij is a tensor perturbation.

5.6 Scalar Metric Perturbations

First of all we consider the evolution of linear metric perturbations about
the four-dimensional spatially flat dilaton-moduli-vacuum solutions given in
(88–90). Considering a single Fourier mode, with comoving wavenumber k,
the perturbed Einstein equations yield the evolution equation

Ã′′ + 2h̃Ã′ + k2Ã = 0 , (99)

plus the constraint
Ã = −(B̃′ + 2h̃B̃) , (100)
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where h̃ is the Hubble parameter in the Einstein frame derived from (91),
and Ã′ ≡ dÃ

dη . In the spatially flat gauge we have the simplification that the
evolution equation for the scalar metric perturbation, (99), is independent
of the evolution of the different massless scalar fields (dilaton, axion and
moduli), although they will still be related by the constraint

Ã =
ϕ′

4h̃
δϕ+

β′

4h̃
δβ , (101)

where δϕ and δβ are the perturbations in ϕ and β respectively. To first-
order, the metric perturbation, Ã, is determined solely by the dilaton and
moduli field perturbations, although its evolution is dependent only upon the
Einstein frame scale factor, ã(η), given by (91), which in turn is determined
solely by the stiff fluid equation of state for the homogeneous fields in the
Einstein frame.

One of the most useful quantities we can calculate is the curvature pertur-
bation on uniform energy density hypersurfaces (as kη → 0). It is commonly
denoted by ζ [42]and in the Einstein frame, we obtain

ζ =
Ã

3
, (102)

in any dilaton–moduli–vacuum or dilaton–moduli–axion cosmology [43, 46].
The significance of ζ is that in an expanding universe it becomes constant

on scales much larger than the Hubble scale (|kη| � 1) for purely adiabatic
perturbations. In single-field inflation models this allows one to compute the
density perturbation at late times, during the matter or radiation dominated
eras, by equating ζ at “re-entry” (k = ãH̃) with that at horizon crossing
during inflation. To calculate ζ, hence the density perturbations induced in
the pre-big bang scenario we can either use the vacuum fluctuations for the
canonically normalised field at early times/small scales (as kη → −∞) or
use the amplitude of the scalar field perturbation spectra to normalise the
solution for Ã. This yields, (after some work), the curvature perturbation
spectrum on large scales/late times (as kη → 0):

Pζ =
8
π2 l

2
PlH̃

2(−kη)3[ln(−kη)]2 , (103)

where lPl is the Planck length in the Einstein frame and remains fixed throug-
hout. The scalar metric perturbations become large on superhorizon scales
(|kη| < 1) only near the Planck era, H̃2 ∼ l−2

Pl .
The spectral index of the curvature perturbation spectrum is conventio-

nally given as [44]

n ≡ 1 +
d lnPζ
d ln k

(104)

where n = 1 corresponds to the classic Harrison-Zel’dovich spectrum for
adiabatic density perturbations favoured by most models of structure forma-
tion in our universe. By contrast the pre–big bang era leads to a spectrum of
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curvature perturbations with n = 4. Such a steeply tilted spectrum of metric
perturbations implies that there would be effectively no primordial metric
perturbations on large (super-galactic) scales in our present universe if the
post-Big bang era began close to the Planck scale. Fortunately, as we shall
see later, the presence of the axion field could provide an alternative spec-
trum of perturbations more suitable as a source of large-scale structure. The
pre-big bang scenario is not so straightforward as in the single field inflation
case, because the full low-energy string effective action possesses many fields
which can lead to non-adiabatic perturbations. This implies that density per-
turbations at late times may not be simply related to ζ alone, but may also
be dependent upon fluctuations in other fields.

5.7 Tensor Metric Perturbations

The gravitational wave perturbations, hij , are both gauge and conformally
invariant. They decouple from the scalar perturbations in the Einstein frame
to give a simple evolution equation for each Fourier mode

h′′
k + 2h̃ h′

k + k2hk = 0 . (105)

This is exactly the same as the equation of motion for the scalar perturbation
given in (99) and has the same growing mode in the long wavelength (|kη| →
0) limit given by (103). The spectrum depends solely on the dynamics of
the scale factor in the Einstein frame given in (91), which remains the same
regardless of the time-dependence of the different dilaton, moduli or axion
fields. It leads to a spectrum of primordial gravitational waves steeply growing
on short scales, with a spectral index nT = 3 [18], in contrast to conventional
inflation models which require nT < 0 [44]. The graviton spectrum appears
to be a robust and distinctive prediction of any pre-big bang type evolution
based on the low-energy string effective action, although recently in the non-
singular model of Sect. 5, we have demonstrated how passing through the
string phase could lead to a slight shift in the tilt closer to nT ∼ 2 [45]

5.8 Dilaton–Moduli–Axion Perturbation Spectra

We will now consider inhomogeneous linear perturbations in the fields about
a homogeneous background given by [46, 47]

ϕ = ϕ(η) + δϕ(x, η), σ = σ(η) + δσ(x, η), β = β(η) + δβ(x, η) . (106)

The perturbations can be re-expressed as a Fourier series in terms of Fourier
modes with comoving wavenumber k. Considering the production of dilaton,
moduli and axion perturbations during a pre-big bang evolution where the
background axion field is constant, σ′ = 0, the evolution of the homogeneous
background fields are given in (89–90). The dilaton and moduli fields both
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evolve as minimally coupled massless fields in the Einstein frame. In parti-
cular, the dilaton perturbations are decoupled from the axion perturbations
and the equations of motion in the spatially flat gauge become

δϕ′′ + 2h̃δϕ′ + k2δϕ = 0 , (107)

δβ′′ + 2h̃δβ′ + k2δβ = 0 , (108)

δσ′′ + 2h̃δσ′ + k2δσ = −2ϕ′δσ′ , (109)

Note that these evolution equations for the scalar field perturbations defined
in the spatially flat gauge are automatically decoupled from the metric per-
turbations, although as we have said they are still related to the scalar metric
perturbation, Ã through (101).

On the (+) branch, i.e., when η < 0, we can normalise modes at early
times, η → −∞, where all the modes are far inside the Hubble scale, k 	
|η|−1, and can be assumed to be in the flat-spacetime vacuum. Whereas in
conventional inflation where we have to assume that this result for a quantum
field in a classical background holds at the Planck scale, in this case the
normalisation is done in the zero-curvature limit in the infinite past. Just as
in conventional inflation, this produces perturbations on scales far outside
the horizon, k � |η|−1, at late times, η → 0−.

Conversely, the solution for the (−) branch with η > 0 is dependent upon
the initial state of modes far outside the horizon, k � |η|−1, at early times
where η → 0. The role of a period of inflation, or of the pre-big bang (+)
branch, is precisely to set up this initial state which otherwise appears as a
mysterious initial condition in the conventional (non-inflationary) big bang
model.

The power spectrum for perturbations is commonly denoted by

Pδx ≡
k3

2π2 |δx|
2 , (110)

and thus for modes far outside the horizon (kη → 0) we have

Pδϕ =
32
π2 l

2
PlH̃

2(−kη)3[ln(−kη)]2 , (111)

Pδβ =
32
π2 l

2
PlH̃

2(−kη)3[ln(−kη)]2 , (112)

where H̃ ≡ ã′/ã2 = 1/(2ãη) is the Hubble rate in the Einstein frame. The
amplitude of the perturbations grows towards small scales, but only becomes
large for modes outside the horizon (|kη| < 1) when H̃2 ∼ l−2

Pl , i.e., the Planck
scale in the Einstein frame. The spectral tilt of the perturbation spectra is
given by

n− 1 ≡ ∆nx =
d lnPδx
d ln k

(113)

which from (111) and (112) gives ∆nϕ = ∆nβ = 3 (where we neglect the
logarithmic dependence). This of course is the same steep blue spectra we
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obtained earlier for the metric perturbations, which of course is far from the
observed near H-Z scale invariant spectrum. We have recently examined the
case of the evolution of the field perturbations in the non-singular cosmologies
of Sect. 5 and as with the metric-perturbation case, amongst a number of new
features that emerge there is a slight shift produced in the spectral index [48].

While the dilaton and moduli fields evolve as massless minimally coupled
scalar fields in the Einstein frame, the axion field’s kinetic term still has a
non-minimal coupling to the dilaton field. This is evident in the equation of
motion, (109), for the axion field perturbations δσ. The non-minimal coupling
of the axion to the dilaton leads to a significantly different evolution to that
of the dilaton and moduli perturbations.

After some algebra, we find that the late time evolution in this case is
logarithmic with respect to −kη, (for µ = 0)

Pδσ = 64πl2PlC
2(µ)

(
e−ϕH̃

2π

)2

(−kη)3−2µ , (114)

where µ ≡ |
√

3 cos ξ∗| and the numerical coefficient

C(µ) ≡ 2µΓ (µ)
23/2Γ (3/2)

, (115)

approaches unity for µ→ 3/2.
The key result is that the spectral index can differ significantly from

the steep blue spectra obtained for the dilaton and moduli fields that are
minimally coupled in the Einstein frame. The spectral index for the axion
perturbations is given by [46, 47]

∆nσ = 3− 2
√

3| cos ξ∗| (116)

and depends crucially upon the evolution of the dilaton, parameterised by the
value of the integration constant ξ∗. The spectrum becomes scale-invariant as√

3| cos ξ∗| → 3/2, which if we return to the higher-dimensional underlying
theory corresponds to a fixed dilaton field in ten-dimensions. The lowest
possible value of the spectral tilt ∆nσ is 3− 2

√
3 � −0.46 which is obtained

when stable compactification has occurred and the moduli field β is fixed.
The more rapidly the internal dimensions evolve, the steeper the resulting
axion spectrum until for cos ξ∗ = 0 we have ∆nσ = 3 just like the dilaton
and moduli spectra.

When the background axion field is constant these perturbations, unlike
the dilaton or moduli perturbations, do not affect the scalar metric per-
turbations. Axion fluctuations correspond to isocurvature perturbations to
first-order. However, if the axion field does affect the energy density of the
universe at later times (for instance, by acquiring a mass) then the spectrum
of density perturbations need not have a steeply tilted blue spectrum such
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as that exhibited by the dilaton or moduli perturbations. Rather, it could
have a nearly scale-invariant spectrum as required for large-scale structure
formation. Such an exciting possibility has received a great deal of attention
recently, notably in [49, 50, 51, 52, 53], and could be a source for the ‘cur-
vaton’ field recently introduced by Lyth and Wands as a way of converting
isocurvature into adiabatic perturbations [54]. Time will tell if the axion has
any role to play in cosmological density perturbations although already it is
beginning to look as the curvaton route is an interesting one to follow in this
context [55, 56].

5.9 Smoking Guns?

Are there any distinctive features that we should be looking out for which
would act as an indicator that the early Universe underwent a period of
kinetic driven inflation? We have already mentioned the possibility of obser-
ving the presence of axion fluctuations in the cosmic microwave background
anisotropies. Some of the other smoking guns include:

– The spectrum of primordial gravitational waves steeply growing on short
scales, with a spectral index nT = 3, although of no interest on large
scales, such a spectrum could be observed by the next generation of gra-
vitational wave detectors such as the Laser Interferometric Gravitational
Wave Observatory (LIGO) if they are on the right scale [57, 58, 45]. The
current frequency of these waves depends on the cosmological model, and
in general we would require either an intermediate epoch of stringy in-
flation, or a low re-heating temperature at the start of the post-big bang
era [59] to place the peak of the gravitational wave spectrum at the right
scale. Nonetheless, the possible production of high amplitude gravitatio-
nal waves on detector scales in the pre–big bang scenario is in marked
contrast to conventional inflation models in which the Hubble parameter
decreases during inflation.

– Because the scalar and tensor metric perturbations obey the same evolu-
tion equation, their amplitude is directly related. The amplitude of gravi-
tational waves with a given wavelength is commonly described in terms of
their energy density at the present epoch. For the simplest pre–big bang
models this is given in terms of the amplitude of the scalar perturbations
as

Ωgw =
2
zeq
Pζ (117)

where zeq = 24000Ωoh2 is the red-shift of matter-radiation equality. The
advanced LIGO configuration will be sensitive to Ωgw ≈ 10−9 over a range
of scales around 100Hz. However, the maximum amplitude of gravitatio-
nal waves on these scales is constrained by limits on the amplitude of
primordial scalar metric perturbations on the same scale [59]. In particu-
lar, if the fractional over-density when a scalar mode re-enters the horizon
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during the radiation dominated era is greater than about 1/3, then that
horizon volume is liable to collapse to form a black hole with a lifetime
of the order the Hubble time and this would be evaporating today! If we
find PBH’s and gravitational waves together then this would indeed be
an exciting result for string cosmology!

– Evidence of a primordial magnetic field could have an interpretation in
terms of string cosmology. In string theory the dilaton is automatically
coupled to the electromagnetic field strength, for example in the heterotic
string effective action the photon field Lagrangian is of the form

L = e−ϕFµνFµν , (118)

where the field strength is derived from the vector potential, Fµν =
∇[µAν].
Now in an isotropic FRW cosmology the magnetic field must vanish to
zeroth-order, and thus the vector field perturbations are gauge-invariant
and we can neglect the metric back-reaction to first-order. In the radiation
gauge (A0 = 0, Ai|i = 0) then the field perturbations can be treated as
vector perturbations on the spatial hypersurfaces. The field perturbation
Ai turns out to have a clear unique dependence on the dilaton field. In fact
the time dependence of the dilaton (rather than the scale factor) leads
to particle production during the pre–big bang from an initial vacuum
state [60, 61, 62]. Using the pre–big bang solutions given in (88)–(90),
we find that the associated Power spectrum of the gauge fields have a
minimum tilt for the spectral index for ξ∗ = 0 when µ = (1 +

√
3)/2 with

a spectral tilt ∆nem = 4−
√

3 ≈ 2.3. This is still strongly tilted towards
smaller scales, which currently is too steep to be observably acceptable.

6 Dilaton-Moduli Cosmology
Including a Moving Five Brane

We turn our attention briefly to M-theory, and in particular to cosmologi-
cal solutions of four-dimensional effective heterotic M-theory with a moving
five-brane, evolving dilaton and T modulus [63]. It turns out that the five-
brane generates a transition between two asymptotic rolling-radii solutions,
in a manner analogous to the case of the NS-NS axion discussed in Sect. 3.
Moreover, the five-brane motion generally drives the solutions towards strong
coupling asymptotically. The analogous solutions to those presented in the
pre-big-bang involves a negative-time branch solution which ends in a brane
collision accompanied by a small-instanton transition. Such an exact solution
should be of interest bearing in mind the recent excitement that has been
generated over the Ekpyrotic Universe scenario, which involves solving for
the collision of two branes [37, 38].
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The four-dimensional low-energy effective theory we will be using is re-
lated to the underlying heterotic M-theory. Of particular importance for the
interpretation of the results is the relation to heterotic M-theory in five
dimensions, obtained from the 11-dimensional theory by compactification
on a Calabi-Yau three-fold. This five-dimensional theory provides an ex-
plicit realisation of a brane-world. The compactification of 11 dimensional
Horava-Witten theory, that is 11-dimensional supergravity on the orbifold
S1/Z2 × M10, to five dimensions on a Calabi-Yau three fold, leads to the
appearance of extra three-branes in the five-dimensional effective theory. Un-
like the “boundary” three-branes which are stuck to the orbifold fix points,
however, these three-branes are free to move in the orbifold direction, and
this leads to a fascinating new cosmology.

Our starting point is the four dimensional action

S = − 1
2κ2

P

∫
d4x
√
−g

[
1
2
R+

1
4
(∇ϕ)2 +

3
4
(∇β)2 +

q5
2
e(β−ϕ)(∇z)2

]
,

(119)
where ϕ is the effective dilaton in four dimensions, β is the size of the orbifold,
z is the modulus representing the position of the five brane and satisfies
0 < z < 1, and q5 is the five brane charge. Due to the non-trivial kinetic term
for z, solutions with exactly constant ϕ or β do not exist as soon as the five-
brane moves. Therefore, the evolution of all three fields is linked and (except
for setting z = const) cannot be truncated consistently any further. Looking
for cosmological solutions for simplicity, we assume the three-dimensional
spatial space to be flat. Our Ansatz then reads

ds2 = −e2νdτ2 + e2αdx2 (120)
ϕ = ϕ(τ) (121)
α = α(τ) (122)
β = β(τ) (123)
z = z(τ) (124)

The cosmological solutions are given by [63]

α =
1
3

ln
∣∣∣∣ t− t0T

∣∣∣∣ + α0 (125)

β = pβ,i ln
∣∣∣∣ t− t0T

∣∣∣∣ + (pβ,f − pβ,i) ln

(∣∣∣∣ t− t0T

∣∣∣∣
−δ

+ 1

)− 1
δ

+ β0 (126)

ϕ = pϕ,i ln
∣∣∣∣ t− t0T

∣∣∣∣ + (pϕ,f − pϕ,i) ln

(∣∣∣∣ t− t0T

∣∣∣∣
−δ

+ 1

)− 1
δ

+ ϕ0 (127)

z = d

(
1 +

∣∣∣∣ T

t− t0

∣∣∣∣
−δ)−1

+ z0 . (128)
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where t is the proper time, the time-scales t0 and T are arbitrary constants as
are the constants d and z0 which parameterise the motion of the five-brane.
For −∞ < t < t0 we are in the positive branch of the solutions and for
t0 < t <∞ we are in the negative branch.

We see that both expansion powers for the scale factor α are given by 1/3,
a fact which is expected in the Einstein frame. The initial and final expansion
powers for β and ϕ are less trivial and are subject to the constraint

3p2
β,n + p2

ϕ,n =
4
3

(129)

for n = i, f . These are mapped into one another by
(
pβ,f
pϕ,f

)
= P

(
pβ,i
pϕ,i

)
, P =

1
2

(
1 1
3 −1

)
. (130)

This map is its own inverse, that is P 2 = 1, which is a simple consequence of
time reversal symmetry. The power δ is explicitly given by

δ = pβ,i − pϕ,i . (131)

For δ < 0 we are in the negative branch and for δ > 0 we are in the positive
time branch. Finally, we have

ϕ0 − β0 = ln
(

2q5d2

3

)
. (132)

The solutions have the following interpretation: at early times, the system
starts in the rolling radii solution characterised by the initial expansion po-
wers pi while the five-brane is practically at rest. When the time approaches
|t − t0| ∼ |T | the five-brane starts to move significantly which leads to an
intermediate period with a more complicated evolution of the system. Then,
after a finite comoving time, in the late asymptotic region, the five-brane
comes to a rest and the scale factors evolve according to another rolling radii
solution with final expansion powers pf . Hence the five-brane generates a
transition from one rolling radii solution into another one. While there are
perfectly viable rolling radii solutions which become weakly coupled in at
least one of the asymptotic regions, the presence of a moving five-brane al-
ways leads to strong coupling asymptotically, a phenomenon similar to what
we observed in the dilaton-moduli-axion dynamics (see Fig. 2).

These general results can be illustrated by an explicit example. Focusing
on the negative-time branch and considering the solutions with an approxi-
mately static orbifold at early time, Fig. 5 shows the evolution of β and ϕ,
whereas Fig. 6 shows the evolution of the dynamical brane.

At early times, |t− t0| 	 |T |, the evolution is basically of power-law type
with powers pi, because at early time the five-brane is effectively frozen at
z � d + z0 and does not contribute a substantial amount of kinetic energy.
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Fig. 5. Time-behaviour of β (upper curve) and ϕ (lower curve).

This changes dramatically once we approach the time |t − t0| ∼ |T |. In a
transition period around this time, the brane moves from its original position
by a total distance d and ends up at z � z0. At the same time, this changes
the behaviour of the moduli β and ϕ until, at late time |t| � |T |, they
correspond to another rolling radii solution with powers controlled by pf .
Concretely, the orbifold size described by β turns from being approximately
constant at early time to expanding at late time, while the Calabi-Yau size
controlled by ϕ undergoes a transition from expansion to contraction. We
also find that as with the axion case discussed earlier, the solution runs into
strong coupling in both asymptotic regions t − t0 → −∞ and t − t0 → 0
which illustrates our general result.

In Fig. 6 we have shown a particular case which leads to brane collision.
The five-brane is initially located at d+ z0 � 0.9 and moves a total distance
of d = 1.5 colliding with the boundary at z = 0 at the time |t− t0|/|T | � 1.

This represents an explicit example of a negative-time branch solution
which ends in a small-instanton brane-collision. Solving for these systems has
only just the begun, but already interesting features have emerged including
a new mechanism for baryogenesis arising from the collision of two branes
[64], and a more detailed understanding of the vacuum transitions associated
with brane collisions [65].

7 Inflation Today – Quintessence

Now we will look at the general form Quintessence scenarios take. They
are of course attempts to account for the observed accelerated expansion of
the universe [66, 67], but are based on the evolution of as yet unobserved
time dependent scalar fields. In particular they are not: a true cosmological
constant; a time-dependent cosmological constant or solid dark energy such
as arising from frustrated network of domain walls.
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Fig. 6. Time-behaviour of the five-brane position modulus z for the example spe-
cified in the text. The boundaries are located at z = 0, 1 and the five-brane collides
with the z = 0 boundary at |t/T | � 1.

In Quintessence, the time dependent solutions arising out of scalar field
potentials usually involves some form of tracking behaviour, where the energy
density in the scalar field evolves so as to mimic that of the background fluid
density for a period of time [68]. As we approach a redshift between 0.5 <
z < 1 the potential energy of the Quintessence field becomes the dominant
contribution to the energy density and the Universe begins to accelerate
[69, 70]. We will not go into details of the solutions in these lectures, rather we
will discuss the general behaviour one expects from Quintessence scenarios.
A nice review of the rich structure present in these models is presented in
[71, 72], and Axel de la Macorra has given some detailed lectures here at the
meeting [73].

Using a particular potential V (φ) = exp(0.3e0.3φ) as an example, Fig. 7
shows the generic behaviour that is expected to be followed in Quintessence
models.

Region 1 corresponds to the period where the initial potential energy in
the scalar field is converted into kinetic energy as the field begins to roll
down its potential. This scalar field kinetic energy soon comes to dominate
the energy density of the scalar field as ρφ ∝ a(t)−6 where a(t) is the scale
factor [region 2]. As the kinetic energy decreases rapidly, the system slows
down again [region 3] leading to a constant field regime. This is then followed
by the crucial period where the kinetic energy in the scalar field scales in
proportion to its potential energy [region 4]. This is an attractor regime and
as can be seen from Fig. 7 it corresponds to an extended period in which the
energy density tracks that of the background energy density. These attractor
properties are very useful because they make the reliance on initial conditions
of the scalar field less important. Finally in region 5, we see the specific
property of the scalar field potential coming into its own, as it determines
when the scalar field potential energy density comes to dominate over the
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Fig. 7. Typical scaling properties of Quintessence potentials. ρB , ρφ are the energy
densities in the background fluid and scalar field respectively[72].

background fluid energy density leading to the observed acceleration of the
Universe. Fig. 7 gives a flavour for some of the fine tuning issues that arises
in Quintessence. There are two obvious ones, the first is that the value of
the energy density today must be very close to the critical density 10−3eV 4,
the second is that domination had to occur very recently z ≤ 1 in order to
account for the fact that galaxy formation is not affected too much by the
Quintessence field. There are also tight constraints on the energy density in
the Quintessence field at the time of nucleosynthesis, as the field acts like
an extra light degree of freedom and we already know that there are tight
constraints on the number of families from nucleosynthesis. We will now go
on to look at some individual models.

7.1 Specific Quintessence Models

The original Quintessence model [69, 70] has an inverse power law type of
potential,

V (φ) =
M4+α

φα
, (133)

where α is thought of as a positive number (it could actually also be negative)
and M is constant.

Most models of Quintessence are analysed through their effective equation
of state,

wφρφ,

where pφ is the pressure in the field and ρφ is the energy density in the field.
We know from Einstein’s acceleration equation that for the Quintessence field
to lead to acceleration of the Universe we require ρφ + 3pφ < 0 or wφ < − 1

3 .
Applying this to the inverse power case we find
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wφ =
αwB − 2

2 + α
,

where wB is the background fluid equation of state. Where does the fine
tuning arise in these models? Recall we need to match the energy density in
the Quintessence field to the current critical energy density, which in terms
of the Hubble parameter today H0 and the Planck mass Mpl is given by

ρφ < M2
plH

2
0 ∼ 10−47GeV 4.

It turns out that during the tracking regime, H2 ∼ V (φ)
φ2 ∼ ρφ

M2
pl

, hence it
follows that at the time the scalar field is dominating the energy density and
leading to acceleration today, we must have φ0 ∼Mpl, the value of the scalar
field today has to be of order the Planck scale. This is typical of virtually all
Quintessence models. The real fine tuning now becomes clear, substituting
for the value of φ0 in to the bound on the energy density today ρ0

φ, we see:

M = (ρ0
φM

α
pl)

1
4+α .

This then constrains the allowed combination of α,M . For example for α =
2 the constraint implies M = 1GeV etc... Within the class of parameters
which satisfy the coincidence problem the inverse power law potentials suffer
in that their predicted equation of state wφ is only marginally compatible
with the values emerging from observations. At the 1σ confidence level in
the ΩM − wφ plane, the data prefer wφ < −0.8 with possibly a favoured
cosmological constant wQ = −1 whereas the values permitted by these tracker
potentials (for α ≥ 1, have wQ > −0.8. A general problem we will always
have to tackle is finding such Quintessence models in particle physics. For an
interesting attempt at this in the context of Supersymmetric QCD see the
model proposed by Binetruy [74].

Multiple exponential potentials also offer interesting possibilities for a
successful Quintessence scenario [75]. Such potentials are expected to arise as
a result of compactifications in superstring models, hence are well motivated.
Unfortunately we still have not obtained what one would call a ‘natural’
model for reasons we will discuss below. Nevertheless it remains a model
with some potential for success in it as it delivers Quintessence scenarios for
a wide range of initial conditions.

It has been known for some time that single exponential potentials lead to
scaling solutions[68, 76, 77]. Consider the case of V (φ) = V0 exp(ακφ), where
κ2 ≡ 8π/M2

pl. The two late time attractor solutions depend on the values of
α and the background’s equation of state wB :

(1) α2 > 3(wB+1) : the scalar field mimics the evolution of the barotropic
fluid with wφ = wB , and the relation Ωφ = 3(wB + 1)/α2 holds.

(2) α2 < 3(wB + 1). The late time attractor is the scalar field dominated
solution (Ωφ = 1) with wQ = −1 + α2/3.
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By including two exponential terms it allows for the possibility of the
system entering two scaling regimes which depend on the value of the slope
of the two terms: one tracks radiation and matter, while the second one
dominates at end. To be specific we can consider

V (φ) = V0
(
eακφ + eβκφ

)
, (134)

where for convenience we assume α to be positive (the case α < 0 can always
be obtained taking φ→ −φ). Figures 8 and 9 show the results of a typical run
with such a potential leading to potential domination today and acceleration.
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Fig. 8. Plot of the energy density, ρQ, for the 2EXP model with α = 20, β = 0.5
and several initial conditions admitting an ΩQ = 0.7 flat universe today. The line
labeled by ργ+M is the evolution of radiation and matter.[72].
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Fig. 9. The late time evolution of the equation of state, in the 2EXP model, for
parameters (α, β) = (20,0.5) dashed line; (20,−20) solid line for ΩQ = 0.7.[72].
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It is clear from Fig. 9, where the evolution of the equation of state is
shown and compared to the case with β/α > 0, that the field mimics the
radiation (wQ = 1/3) and matter (wQ = 0) evolution before settling in an
accelerating (wQ < −1/3) expansion. As a result of the scaling behaviour of
attractor (1), it is clear that there exists a wide range of initial conditions
that provide realistic results.

Where in this case is the fine tuning to be found then? Demanding the
energy density in the field matches the critical density today, places the bound
V0 ∼ ρ0

φ ∼ 10−47GeV 4 ∼ (10−3eV )4. This very low energy density converts
into an extremely light scalar field, in particular its mass is given by

m �
√

V0

M2
pl

∼ 10−33eV.

Such a tiny mass is very difficult to reconcile with fifth force experiments,
unless there is a mechanism to prevent φ from having interactions with the
other matter fields!

A model which can be related to the two exponential case has been sug-
gested by Sahni and Wang [78]. The potential can be written as:

V (φ) = V0 [cosh(ακφ)− 1]n . (135)

It behaves as an exponential potential V → exp(nακφ) for |ακφ| 	 1 and as
a power law type of potential V → (ακφ)2n for |ακφ| � 1. It follows that the
evolution scales as radiation and matter when dominated by the exponential
form and later enters into an oscillatory regime when the minimum is reached.
In this regime the time average equation of state is

〈wφ〉 =
n− 1
n+ 1

. (136)

We see that for n < 1/2 then wφ < −1/3, implying late times accelerated
expansion driven by the scalar field. The fine tuning in this case is similar to
that of the two exponential potential discussed earlier.

Albrecht and Skiordis [79] have developed an interesting model which
they have argued can be derived from String theory, in that they claim the
parameters are all of order one in the underlying string theory. The potential
has a local minimum which can be adjusted to have today’s critical energy
density value (this is where the fine tuning is to be found by the way). The
actual potential is a combination of exponential and power-law terms:

V (φ) = V0e
−ακφ [A+ (κφ−B)2

]
. (137)

In Fig. 10 we show the evolution of the equation of state. For early times
the exponential term dominates the dynamics, with the energy density of φ
scaling as radiation and matter. For suitable choices of the parameters the
field gets trapped in the local minimum because the kinetic energy during
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Fig. 10. The evolution of the equation of state of quintessence when the Albrecht-
Skiordis potential has a local minimum (solid) and when it does not (dashed). In
this case α = 10, V0 = κ−4, A = 0.9/α2 and B = 27.2, for the former case and
α = 6, V0 = κ−4, A = 1.1/α2 and B = 45.5, for the latter.[72].

scaling is small. The field then enters a regime of damped oscillations leading
to wφ → −1 and an eternally expanding universe.

There are many other models which we could describe: coupled quin-
tessence, extended quintessence, tracking oscillatory quintessence to name
but three. They all have similar properties to those described above, but
rather than concentrate on them we will turn our attention finally to the
case of Quintessential Inflation, developed by Peebles and Vilenkin [80]. One
of the major drawbacks often used to attack models of Quintessence is that it
introduces yet another weakly interacting scalar field. Why can’t we use one of
those scalars already ‘existing’ in cosmology, to also act as the Quintessence
field? This is precisely what Peebles and Vilenkin set about doing. They
introduced a potential for the field φ which allowed it to play the role of the
inflaton in the early Universe and later to play the role of the Quintessence
field. To do this it was important that the potential did not have a minimum
in which the inflaton field would completely decay at the end of the initial
period of inflation. The potential they proposed was:

V (φ) = λ(φ4 +M4) for φ < 0

=
λM4

(1 + ( φM )α)
for φ ≥ 0

For φ < 0 we have ordinary chaotic inflation. When this ends the Universe
is reheated via gravitational particle production. Much later on, for φ > 0
the Universe once again begins to inflate but this time at the lower energy
scale associated with Quintessence. Needless to say, Quintessential Inflation
also requires a degree of fine tuning, in fact perhaps even more than before
as there are no tracker solutions we can rely on for the initial conditions. The
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initial period of inflation must produce the observed density fluctuations,
hence constrains λ ∼ 10−14. Demanding that Ω0

φ ∼ 0.7, we find we can
constrain the parameter space of (α, M). For example, for α = 4, we have
M = 105 GeV. Time does not permit us to elaborate further on this aspect of
Quintessence, but it is worth at least mentioning that there are some very nice
resolutions of Quintessential Inflation in Brane world scenarios (for details see
[81, 82, 83]. Neither have we time to go into the wealth of Quintessence models
that have been proposed within the context of supergravity, apart from giving
a brief flavour of the general idea. Brax and Martin [84] demonstrated that a
supergravity model with Superpotential W = Λ3+αΦα and Kahlar potential
K = ΦΦ∗ (where Φ is the Chiral scalar field) leads to an associated scalar
potential

V (φ) =
Λ6+α

φ2α+2 e
κ2
2 φ

2
,

under the rather strict assumption that < W >= 0. A working example
is the case α = 11 which has an associated equation of state w0

φ = −0.8.
There are more models that have been investigated [85, 86, 87]. A word of
caution though about Quintessence in supergravity. Kolda and Lyth [88],
have argued that all current supergravity inspired models suffer from the
fact that loop corrections will always couple the Quintessence field to other
sources of matter so as to lift the potential thereby breaking the flatness
criteria required for Quintessence today.

7.2 Evidence for Quintessence?

If there is a scalar field responsible for the current acceleration of the Universe
how might we see it? In this conference there have been many talks addressing
this issue, so we will not go into great details here, other than remind the
reader of some of the attempts that are under way and have been proposed
recently. Ideally we would look for evidence of evolution in the equation of
state, wφ as a function of redshift. These include

– Precision CMB anisotropies – lots of models are currently compatible.
– Combined LSS, SN1a and CMB data tend to give wφ < −0.8, which is

difficult to tell from a true cosmological constant.
– Look for more supernova of the type SN1a. The proposed satellite, SNAP

will find over 2000 which may then enable us to start constraining the
equation of state.

– Constraining the equation of state with Sunayaev-Zeldovich cluster sur-
veys from which we can compute the number of clusters for a given set of
cosmological parameters.

– Probing the Dark Energy with Quasar clustering in which redshift distor-
tions constrain cosmological parameters.
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– Reconstruct the equation of state from observations – this approach at
least offers the hope of developing a method independent of potentials –
an example is the Statefinder method developed by Sahni et al. [89].

– Look for evidence in the variation of the fine structure constant.

We finish off the lectures by discussing in a bit more detail one of the items
just mentioned. Finding a suitable parameterisation of the equation of state
an issue of importance for those interested in reconstructing wφ from obser-
vation, such as those working on SNAP [90, 91]. Two approaches suggested
to date involve a polynomial expansion either in terms of the red-shift, z (i.e.
wφ(z) =

∑N
i=0 wiz

i) [92] or in terms of the logarithm of the red-shift (i.e.
wφ(z) =

∑N
i=0 wi ln(1 + z)i) [93]. A third approach has recently been develo-

ped by Corasaniti and Copeland [94]. It allows for tracker solutions in which
there is a rapid evolution in the equation of state, something that the more
conventional power-law behaviour can not accommodate. This has has some
nice features in that it allows for a broad class of Quintessence models to
be accurately reconstructed and it opens up the possibility finding evidence
of quintessence in the CMB both through its contribution to the Integra-
ted Sachs Wolfe Effect [95] and as a way of using the normalisation of the
dark energy power spectrum on cluster scales, σ8, to discriminate between
dynamical models of dark energy (Quintessence models) and a conventional
cosmological constant model[96].

8 Summary

In these lectures we have addressed a number of issues relating to inflatio-
nary cosmology, both in the early Universe and today. We have seen how
inflation arises in both potential dominated cases and as a result of rolling
radii solutions associated with the low energy string action. We have also seen
how hard it is to relate inflation to realistic particle physics inspired models.
This area is one of intense interest at the moment. In our attempt to bridge
this gap, we have related these solutions to the exciting new solutions arising
in M-theory cosmology, and showed how a moving five brane could act in a
manner similar to the axion field in the pre Big Bang case. This is an exciting
time for string and M-theory cosmology, the subject is developing at a very
fast rate, and no doubt there will be new breakthroughs emerging over the
next few years. Hopefully out of these we will be in a position to address a
number of the issues we have raised in this article, as well as other key ones
such as stabilising the dilaton and explaining the current observation of an
accelerating Universe. We have investigated a number of Quintessence mo-
dels and tried to argue why Quintessence offers a plausible explanation for the
observational fact that the Universe is accelerating today. We have also tried
to emphasise the issues that Quintessence as a model simply fails to answer
naturally, requiring some form of fine tuning in order to do so. These include:
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– Why is there a Λ type term dominating today?
– Why are the matter and Λ contributions comparable today – ‘coincidence’

problem?
– Why is Λ so small compared to typical particle physics scale?
– Is there any need for a quintessence field? Is it simply a cosmological

constant?

There is little doubt that this very exciting field is being driven by ob-
servations, especially in the CMBR and LSS. They are constraining the cos-
mological parameters, even before Map or Planck arrives on the scene. Yet
we do not know why the universe inflating today and through Quintessence
we are hoping that particle physics provides an answer. The existence of sca-
ling solutions and tracker behaviour may yet show up through time varying
constants [97]. There is much going on in Brane inspired cosmology and it
may provide important clues to the nature of dark energy. In general as we
have seen, there are many models of Quintessence but they may yet prove
too difficult to separate from a cosmological constant. We need to try though
– it is too exciting a prospect not to!
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Abstract. Conditions for accelerated expansion of Friedmann–Robertson–Walker
space–time are analyzed. Connection of this scenario with present–day observations
are reviewed. It is explained how a scalar field could be responsible for cosmic
acceleration observed in present times and predicted for the very early Universe.
Ideas aimed at answering whether is that the actual case for our Universe are
described.

1 Introduction

The Standard Big Bang Model (SBB), based on a Friedmann–Robertson–
Walker (FRW) Universe, evolves in time with essentially two phases. In the
first one the energy related to relativistic matter (known as radiation) do-
minates over any other form of energy. During that period phase transitions
described by particle physics took place to give rise to hadron formation,
baryogenesis, nucleosynthesis, Quintessence fields and so on. Because in an
expanding Universe radiation energy dilutes faster than the energy of pressu-
reless matter, in the second phase the latter becomes dominant. Large scale
structures (LSS) like galaxies and galaxy clusters formed during that period.
In both phases the Universe expands in a decelerated fashion (for a short re-
view of the SBB see the contribution to this book by J. L. Cervantes–Cota[1],
and for more details the book [2]).

The SBB can easily accommodate phases of accelerated expansion of the
Universe. According to cosmological observations, such a phase could corre-
spond to the present state of the observable Universe and seems to be neces-
sary in the very early Universe in order to solve several problems inherent to
the SBB, particularly those problems related to the initial conditions.

For the Universe to expand acceleratingly, a very special kind of energy
density is required to dominate over the remaining contributions to the total
energy budget. This kind of energy is related to a negative pressure. One of
the outstanding problems in modern cosmology is to find out what exactly
this kind of matter is. It could be the case that there are different explanations
of what causes the Universe to undergo cosmic acceleration in the present and
in the very early phases of its evolution. As to the present era, a dominating
vacuum energy is good enough to explain the observations but it introduces
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other problems which seem to be very difficult to solve. A good candidate is,
instead, a single scalar field with dynamics dominated by its potential energy.
This is also the favorite candidate to explain an era of cosmic acceleration
in the very early Universe. In both cases, the problem is then to determine
what the high-energy physics framework is where such scalar fields arise.

In the next section the conditions for an accelerated FRW Universe will
be derived. Then, in Sect. 3 a scalar field will be described from a cosmolo-
gical point of view, along with how it could be used to induce an accelerated
expansion. Section 4 is devoted to explaining some ideas aimed at finding
observational signatures in the data, allowing us to distinguish the origin of
cosmic acceleration. If scalar fields are responsible for the observed and pre-
dicted eras of accelerated expansion, the observations should say something
about high-energy physics that is outside the scope of Earth-based laborato-
ries. Finally, conclusions are presented in Sect. 5.

Throughout this contribution natural units are used, i.e. c = � = 1.

2 Accelerated Friedmann–Robertson–Walker Universe

Models in physics are based on a set of principles derived from observations
and assumptions that make computations simpler without wiping out crucial
features of the phenomenon to be modeled. The SBB is not an exception.
The first assumption is that there exists a cosmic scale, quite a bit larger
than the galaxy clusters scale, 100 − −200 Mpc. After averaging on those
scales, everything we observe in the sky dilutes into an isotropic picture.
This means that the Universe is the same when seen by a terrestrial observer
in any direction. But, according to scientific history, the human being does
not seem to be such a special being. Thus, it is assumed that we live on an
ordinary planet orbiting an ordinary star in a ordinary galaxy which is an
ordinary member of an ordinary galaxy cluster. It implies that any observer
located at any other point in the observable Universe will see exactly the same
picture of the sky, averaged in cosmic scales, that a human observer does. In
other words, the Universe is assumed to be isotropic and homogeneous. This
is known as the cosmological principle.

The physical distance Xphys between two observers will change with time,
even if they are in relative rest each with respect to the other,

Xphys = a(t)×Xcom . (1)

The physical distance between observers will be equal to the distance between
them if space does not expand (or contract), i.e. Xcom, times factor a(t) which
describes the change in size of the expanding (contracting) homogeneous
Universe after given amount of time. The coordinate system where Xcom is
defined is called the comoving frame. Since the age of the Universe is one
of the quantities that can be inferred from observations, the homogeneity of
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the Universe must be defined on a surface of constant proper time since the
Big Bang. Time dilation causes the proper time measured by an observer to
depend on the velocity of the observer, hence the time variable t is actually the
proper time for comoving observers since the beginning of the cosmological
evolution. Distances in such a space–time are given by the FRW metric; see
(3) in [1]. There the FRW equations are deduced (see (4) and (5) in [1]),
and solutions are found for a flat Universe (7), (8) and (9), (10) in [1]). The
Friedmann equation ((4) in [1]) that determines the Hubble parameter can
be rewritten as

Ω − 1 =
k

ȧ2 =
k

a2H2 = kd2
Hcom , (2)

where a new definition is introduced, namely the comoving Hubble radius
dHcom ≡ dH/a, with dH ≡ H−1 being the physical Hubble radius1. Hence,
Ω(≡ ρ/ρc) can take values less, equal or greater than unity in open, flat and
closed Universes, respectively. From this equation important conclusions can
already be drawn about the differences between accelerated and decelerated
cosmologies. In the case of cosmological evolution with ä > 0 (ä < 0) the
comoving Hubble radius decreases (increases) with time and Ω converges to
(diverges from) unity, implying that, with time, the corresponding spatial hy-
persurfaces look more and more (less and less) flat. The general condition for a
Universe to expand or to contract acceleratingly can be drawn from (5) in [1].

p < −ρ
3
, (3)

i.e. it must be filled with a fluid having a sufficiently large negative pressure.
From the continuity equation ((6) in [1]) is not difficult to see that if the

energy density is constant, then either the Universe is static (i.e. the scale
factor a does not change in time) or the fluid satisfies the equation of state
p = −ρ. Since a particular value of this constant energy density can be ρ = 0,
this energy is commonly associated with the (scalable) energy of the cosmic
vacuum. According to condition (3), the case of the non-static Universe with
equation of state pΛ = −ρΛ = −(8πG)−1Λ = constant, implies that, whene-
ver the weak condition ρΛ > 0 is satisfied, the Universe is described by an
accelerated expansion (or contraction) of the spatial hypersurfaces.

Vacuum is a particular case of barotropic fluids with equation of state,
p = ωρ, where ω is, in general, a function of time. Condition (3) now reads,
ω < − 1

3 . For the case of ω = const., the continuity equation yields ρ =
ρ0a

−3(1+ω).
The SBB includes two evolutionary stages. One extends from the Big

Bang until nearly the beginning of the epoch of galaxies formation. To match
several observations (the more important being the abundances of light ele-
ments as predicted by nucleosynthesis), the period had to be dominated
1 Note that this definition does not coincide with the one for the causal horizon gi-

ven in [1, 5] for dH(t) ≡ a(t)
∫ t

t∗
dt

a(t) ; They are different during an inflationary era
but are proportional to each other when the expansion is of the power–law type.
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by relativistic matter known, in general, as radiation with ωR = 1/3. Af-
ter that period, the formation of large–scale cosmological structure requires
non-relativistic pressureless matter (ωM = 0) to dominate over radiation.
Therefore, according to ω < − 1

3 , the SBB describes a Universe that expands
non-acceleratingly from the very beginning through the far future.

The SBB provides us a picture of an expanding Universe that evolves from
the initial singularity until today, passing through the above–described w-
epochs. It is successful in explaining the formation of light elements (nucleo-
synthesis) and provides a general framework to understand the evolution of
perturbations that eventually gave rise to the formation of LSS. However, as
it is pointed out in the contributions by J. L. Cervantes–Cota [1] and E. Cope-
land [5] to this book, the SBB has unavoidable problems (horizon, flatness,
causal origin of primordial perturbations, etc) that cannot be understood
without the incorporation of new concepts and ideas. The main ingredient
that particle physics has brought to the modern cosmological understanding
is that of scalar field dynamics. The scalar field represents a generic matter
field that evolves with the Universe expansion and should be responsible for
an inflationary epoch at the very beginning of time, and perhaps should also
be responsible for the present accelerating dynamics of the Universe. In the
next section we study the dynamics of this generic field.

3 Scalar Fields

A real scalar field is a map φ : M→ lR, i.e. a real function that puts a point
in the space–time M into relation with a point in the line lR. In Quantum
Field Theory this function is used to represent a boson particle. If the boson
lives in a Minkowski space–time M4, then the corresponding action is given
by (the details of the calculations in this section can be found in [2]),

S =
∫

M4
dx4L , (4)

with Lagrangian density,

L = −1
2
ηµνφ,µφ,ν − V ′(φ) , (5)

where ηµν = diag{−1, 1, 1, 1} stands for a metric of M4, µ, ν = 0, 1, 2, 3,
V (φ) is the scalar field potential and a prime denotes the derivative with
respect to φ. Varying the action, the equation of motion for the scalar field
is obtained as,

φ̈−∇2φ+ V ′(φ) = 0 . (6)

In the cosmological framework, M4 is substituted by the FRW space–
time RW and the action is that of the Einstein–Hilbert,
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S =
∫

FRW
dx4√−gL , (7)

where g is the determinant of the FRW metric,

L =
1
2
m2

PlR−
1
2
gµνφ,µφ,ν − V ′(φ) , (8)

mPl is the Planck mass and R is the scalar curvature. Equation (6) becomes,

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (9)

where a friction-like term arises due to the cosmic expansion and the gradient
terms were omitted, consistent with the cosmological principle.

After comparison with the continuity equation ((6) in [1]), the scalar field
becomes equivalent to a perfect fluid with energy density and pressure,

ρ =
φ̇2

2
+ V (φ) , p =

φ̇2

2
− V (φ) . (10)

Hence, for a Universe dominated by the energy density of a real scalar field,
the condition (3) for accelerated expansion is rewritten as,

φ̇2

2
< V (φ) . (11)

With the aim of facilitating the analysis of the cosmic dynamics, it is
convenient to define the horizon–flow functions that are given in terms of
Hubble horizon; the latter is a primordial ingredient to understand the causal
evolution of the cosmological dynamics; see the horizon problem in [1, 5].
Thus, horizon–flow functions are [6]:

ε0 ≡
dH(N)
dHi

, εm+1 ≡
d ln |εm|

dN
, m ≥ 0 , (12)

where dHi ≡ dH(ti). Note that ε1 = ˙dH and ε1ε2 = dH d̈H . According to
condition ä > 0 =⇒ d ln dH

dN < 1, for a positive energy density, 0 ≤ ε1 < 1
during inflation.

Further, in accordance with definitions (12),

H2(N) = H2
0 exp

(
−2

∫
ε1(N)dN

)
, (13)

where H0 is an integration constant. Now, substituting ρ as given by (10) in
the Friedmann equation ((4) in [1]) and using the definition (12) for ε1 [2, 8],

dφ

dN
=

√
2
κ

√
ε1 , (14)
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where κ ≡ 8πG = 8π/m2
Pl. Given a scalar field cosmology characterized by

ε1(N) the corresponding potential as a function of the field is given by,

V (φ) =



φ(N) =

√
2
κ

∫ √
ε1dN − φ0 ,

V (N) = H2
0
κ [3− ε1] exp

(
−2

∫
ε1dN

)
,

(15)

where the potential as a function ofN is derived from the Friedmann equation
for scalar field cosmology using expressions (14) and (13) [2, 9].

4 Observations and Modeling

4.1 Present Day Acceleration

Recent observations of the celestial candles known as type Ia supernovae have
been made that indicate a new feature of the present Universe composition.
Currently the physics behind the peak light output from such supernovae
seems to be well understood. Thus, by observing a type Ia supernova in a
distant galaxy, measuring the peak light output, and comparing the relative
intensity of light observed from the object with that expected from its ab-
solute magnitude, the inverse square law for light intensity can be used to
infer its distance. Because type Ia supernovae are very bright objects they
are used to measure distances out to around 1000 Mpc, which is a significant
fraction of the radius of the observable Universe. According to the analysis
of the data collected for several type Ia supernovae, the observable Universe
seems to be in a phase of accelerated expansion; for details on the type Ia
supernovae and on the analysis of the redshift data see the contribution by
A. Filippenko to this book [3].

Therefore, in accordance with (3), the Universe would be currently do-
minated not by pressureless matter but by some kind of fluid with negative
pressure. Since this component of the cosmic energetic budget has eluded
direct observation so far, it is generically known as dark energy (see the
contribution to this book by de la Macorra [4]). The dark energy can be,
in principle, the non-zero vacuum energy parametrized by the cosmological
constant Λ. Adding such an energy does not strongly modify the cosmological
picture as described by the SBB. In fact, the dark energy seems also to be
necessary in order to match data from the observation of cosmic microwave
background radiation and from large–scale structure formation. This fact is
a very interesting confirmation of the existence of the dark energy.

First of all, if one would like to describe the present time cosmic accele-
ration as induced by a cosmological constant, the associated vacuum energy
required to match the observations is ρObsΛ ≤ (10−12GeV )4. On the other
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hand, from Quantum Field Theory with cutoff at the Planck scale it is ex-
pected that ρQFTΛ ∼ (1018GeV )4. The large disagreement between the two
estimations of the vacuum energy is one of the hottest problems of modern
cosmology. This is referred to as the cosmological constant problem.

A solution to this problem is to consider a cosmological “constant” decay-
ing in such a way that its associated energy is currently the one required by
observations. According to (10), the simplest candidate for such a dynamical
vacuum energy could be a scalar field slowly changing over time. For a high
enough potential energy, condition (11) is fulfilled and the Universe permea-
ted by the scalar field potential energy undergoes accelerated expansion. This
scalar field has been coined quintessence.

Many quintessence models have been devised and some other candidates
for the dark energy have been proposed such as the Cardassian expansion [10]
and the Chaplygin gas [11]. Among the problems that arise when modeling
the dark energy, one of the outstanding ones is to find observational signatures
differentiating between the candidates. One expects the observations to help
in that task but often it is necessary to know exactly what to look for in
the data. Since different dark energy candidates evolve in different ways,
it could be useful to look for the imprint of these differences in data. With
that aim, a model-independent parameterization of the dark energy evolution
can be useful. In Fig. 1 it is shown how this parameterization can be done.

Fig. 1. Parameterization of the dark energy evolution

In the horizontal axis the e-folds numbers are calculated now with respect
to the present time N0, i.e. N increases leftwards. In the vertical axis is
ω(N), which determines the equation of state p = ωρ. With dashed lines are
denoted four cases where w is a constant: a stiff fluid (ωs = 1), radiation
(ωR = 1/3), matter (ωM = 0), a tracker scalar field (which is a special case
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of quintessence models where w can be safely approximated to be constant
with −1 < ωtracker < −1/3), and a cosmological constant (ωΛ = −1). Those
cases that do not satisfy the condition ω < − 1

3 get thrown out of the game
because they do not produce an accelerated expansion.

More generally, one can look for parameterizations where ω can be ap-
proximated by different constants for different ranges of e-folds numbers. In
the figure the filled polygons represent each case,

ω(N) =




ω4 = 1
3 , N > N3

ω3 = 1, N3 ≥ N > N2
ω2 = −1, N2 ≥ N > N1

−1 < ω1 < − 1
3 , N1 ≥ N > N0

(16)

where −1 < ω1 < −1/3. As it is explained in [4], this could be the case
of some fluid which initially behaves like radiation, at some energy scale
condensates into a scalar field with dynamics dominated by its kinetic energy,
then undergoes a strong friction changing to a phase of totally potential-
dominated dynamics and, finally, behaves like a tracker field.

It is interesting to check, for instance, how such a parameterization will
modify the CMB spectrum and how it compares to a cosmological constant
and to tracker fields. CAMB is a program which permits one to compute the
CMB spectrum after specifying a number of parameters including ωtracker.
To include the constant in sectors parameterization of w(N) it was necessary
to match the values of the energy densities ρwi at the borders of those sectors,

ρwi(N) = ρeffi exp [−3(1 + ωi)N ] , (17)

where,

ρeffi = ρ0 exp (−3∆ω12N2) exp (−3∆ω23N3) . . . exp
(
−3∆ω(i−1)iNi

)
(18)

and ∆ω(i−1)i = ω(i−1) − ωi.
In Fig. 2, examples are presented of the variations of the CMB spectrum

after varying the parameters in (16). In this figure the binned data from ex-
periments DASI, Boomerang, MAXIMA and COBE–DMR is also shown.
Though a more detailed analysis is still in progress, it can be already noted
that variation of the values of N1, N2 and N3 modifies the heights and po-
sitions of the peaks and dips of the theoretical curve of the CMB spectrum.
In fact, one can choose the values of these parameters in such a way that
the fit to data might be improved compared to the cases of a cosmological
constant and a tracker field, as shown in Fig. 3, where the blue curve re-
presents the spectrum for a tracker field with ωtracker = −0.86, the green
curve stands for a cosmological constant and the yellow one corresponds to
N1 = 1.97, N2 = 4.2, N3 = 6.5 and ω1 = −0.86. Certainly, the data error
bars are still too large to make any strong conclusion in this direction but
results are encouraging.
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4.2 Cosmic Acceleration in the Very Early Universe

As in the case of the present-day Universe, if the acceleration in the very
early times –required to solve the SBB problems– is proposed to be induced
by the vacuum energy associated with a cosmological constant, then several
problems are confronted. The theory of nucleosynthesis, which is so successful
in accounting for the observed cosmic abundances of the lightest atoms, de-
scribes a radiation-dominated Universe. In this way, in order to reproduce the
SBB success the inflationary period must end some time before nucleosyn-
thesis started. Moreover, if the density perturbations leading to large–scale
structure are wanted to be causally seeded by an inflationary period in the
very early Universe, then the Hubble radius must start to increase, which
implies the end of the accelerated expansion.

Once the energy of a cosmological constant begins to dominate over other
non-exotic forms of energy, it will dominate forever. Thus, the inflationary
epoch will have no end. Once more, a single scalar field seems to be the
simplest candidate to solve all the problems associated with a cosmological
constant while still producing enough inflation. In this framework, the origin
of the density perturbations leading to LSS is thought to be the quantum
fluctuations of the scalar field during inflation [2, 7]. A distinguishing feature
of this scenario is that, along with the density perturbations associated with
the inflaton field, tensor perturbations are also produced which are associated
with space–time metric perturbations. All these fluctuations will be amplified
by the accelerated expansion and seeded at the required time through the
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Fig. 2. The CMB spectra for different versions of the parametrization by sectors
of the state parameter ω.
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Fig. 3. Comparing a tracker field case (blue curve), the Λ case (green curve) and
a case with ω(N) parametrized by sectors (yellow line).

mechanism of crossing out and crossing back into the Hubble horizon. The
primordial perturbations are parameterized as,

lnA2(k) = lnA2(k1) + n(k1) ln
k

k1

+
1
2
dn(k)
d ln k

|k=k1 ln2 k

k1
+ · · · , (19)

where A stands for the normalized amplitudes of the scalar (AS) or tensor
(AT ) perturbations, the corresponding spectral indices, n, are defined by,

nS − 1 ≡ d lnA2
S

d ln k
, (20)

nT ≡
d lnA2

T

d ln k
, (21)

and k1 = aH is the comoving wavenumber corresponding to the wavelength
matching the Hubble distance. As it was discussed in the previous chapters
of this book, one of the problems of the SBB is the very constrained na-
ture of the initial conditions required for LSS formation. One of the most
restricting requirements is the almost scale invariant nature of the primor-
dial perturbations. Obviously, this imposes strong constraints on the values
of the parameters in expansion (19). Along with the requirement of yielding
a sufficiently large number of e-foldings, nS ≈ 1 and nT ≈ 0 are strong con-
ditions in determining whether a proposed scalar field model is a successful
inflationary model.
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The horizon–flow functions (12) serve as link between observations and
the inflationary dynamics. For most inflationary models, exact expressions
for parameters in (19) are unknown. The usual way to calculate them is as
an expansion in terms of the horizon–flow functions (see [12, 6] for details).
To next–to–leading order in terms of the horizon–flow functions, indices (20)
and (21) are written as [12, 13]

nS − 1 = −2ε1 − ε2 − 2ε21 − (2C + 3)ε1ε2 − Cε2ε3, (22)
nT = −2ε1 − 2ε21 − 2(C + 1)ε1ε2 , (23)

where C ≈ −0.7293. Dynamics described using the horizon-flow functions
correspond to an inflationary potential. In this way, the corresponding spec-
tral indices can be calculated and compared with the observational values.

The big problem here is that there exist a large number of single scalar
field models in good agreement with observations, therefore it is difficult
to determine which is the one corresponding to the actual physics of the
very early Universe. With this aim, a more efficient approach seems to be to
constrain and determine the main features of the inflaton potential according
to observations, instead of building models and comparing their predictions
with the measured data (see [5] and [14] for references on this approach).

Recalling that, according to (12), the definition of εm+1 involves the de-
rivative with respect to N of εm, (22) and (23) are therefore differential
equations for ε1. In this way, solving these equations and using expression
(15), the inflaton potential can be determined from the information on the
functional forms of the tensor and scalar spectral indices.

The strong limitation for this program to be useful is that the most that
is known (and will be for a while) about the scale or time dependence of the
spectral indices is the observed values of a very few parameters in expansions
(19), together with the corresponding error bars. Taking this limitation into
account, the best one can do is to look for generic features of the potential
yielding values of the primordial parameters, in agreement with those derived
from observations, using some “well-based” assumptions for the values of
those parameters which have not been observed so far.

For instance, in [15] it was proved that if it is assumed dn/d ln k = 0 for
the scalar and the tensor perturbations, then the resulting potential is an
exponential function of the inflaton field. This corresponds to the scenario
known as power-law inflation because a ∼ tp with p	 1 [16].

If dnS/d ln k � 1 is allowed to be non-zero while keeping dnT /d ln k = 0,
it can be seen that power–law inflation is an attractor of the corresponding
inflationary dynamics [15]. This implies that it is difficult to distinguish the
actual potential from the exponential one using the observational informa-
tion.

A similar result is obtained if both spectral indices are allowed to be
scale–dependent but with this dependence being detectible up to the second
order on the horizon–flow functions [8].
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The role of the tensor perturbations deserves special attention when de-
termining the best–fit values of the cosmological parameters from CMB and
LSS spectra. This is motivated in part by the possibility of measuring the
cosmic background polarization [2], allowing the tensorial contribution to be
indirectly determined. This contribution can be parametrized in terms of the
relative amplitudes of the tensor and scalar perturbations,

r ≡ α
A2
T

A2
S

, (24)

where α is a constant. The expectation is to measure a central value of r.
Thus the question is what inflationary dynamics, yielding an almost constant
ratio r, look like. The answer was given in [17] where it was shown that in
the case of an exactly constant r, power–law inflation is a repulsor of the
corresponding dynamics. Since it describes a quick and strong departure from
scale–invariance, for the model to be successful, the perturbations must be
produced in the quasi power–law regime, once more making it difficult to
observationally distinguish between the two dynamics.

All of the above-discussed results imply a serious handicap for any pro-
gram of reconstruction of the inflaton potential. A way to improve this situa-
tion could be to combine the information on ∆n (the difference between the
spectral indices) and the value of r, with the two first horizon–flow functions
[18]. It follows from definitions (20), (21) and (24) that

d ln r
d ln k

= ∆n ≡ nT − (nS − 1) , (25)

this way, any information on the evolution of both spectral indices can be
used as information on the scale dependence of the tensor to scalar ratio.

With regards to these, it becomes important to analyze in detail the case,

ln
r

16
= a0 + a1(N −N0) , (26)

where the corresponding solution for ε1 is [18],

ε1(N) = ε1(i) exp
[
B exp

(
−N
C

)]
exp (AN) , (27)

with ε1(i) ≡ ε1(0) exp{[a0 + (N0 − C) a1]C} and A ≡ a1C. The asymptotes
of this solution for B = 0 will be mainly determined by the value and sign of
B. However, for A = 0 (i.e. ln r/16 = a0), if the model yielding ε1 given by
(27) is expected to be compatible with current data, B has to be chosen an
extraordinarily small number. Once more, this will make it very difficult to
observationally distinguish the corresponding scenario from power–law infla-
tion. More interesting is the case B = 0 where the potential is,

V = V0

(
3− A2

4
ψ2

)
exp

(
−A

2
ψ2

)
, (28)
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Fig. 4. Sectors of the inflaton potential given by (28) for A = −0.0073 (VI) and
A = 0.0073 (VII).

with ψ ≡
√
κ/2(φ + φ0). In Fig. 4 sectors of this potential are plotted for

A = −0.0073 (VI) and A = 0.0073 (VII). For this model, information on
the existence of extrema and on the curvature can be derived. As can be
seen in Fig. 4, realizations of this potential resemble the cases of monomial
potentials with even order (VI , ε2 < 0), and inflation near a maximum (VII ,
ε2 > 0) (see [2] for examples of such inflationary scenarios motivated by
particle physics) allowing, therefore, one to observe features of the inflaton
potential beyond the exponential form characteristic of power–law inflation.
In [18] it was shown that for a large set of A and ε1(i) values, the corresponding
spectra agree with CMB and LSS observations.

On the Order of the Approximations

A crucial question in the analysis of the previous section is to what extent
these results depend on the order of expressions underlying the calculations.
It is widely believed that this is not of concern. Let us show that it must be.

To next-to-next-to-leading order of the tensor to scalar ratio is given by,

ln
r

r0
= ln ε1 + Cε2 +

(
−π

2

2
+ 5 + C

)
ε1ε2

+
(
−π

2

8
+ 1

)
ε22 +

(
−π

2

24
+
C2

2

)
ε2ε3 . (29)

If the order of this expression was of little concern, then the corresponding
solution for the case with r given by (26) must be very similar to potential
(28). To check this, one can assume,
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ε1 = εnlo1 (1 + δ) , (30)

with δ << 1, yielding

ε2 = εnlo2 +
dδ

dN
(31)

ε2ε3 = εnlo2 εnlo3 +
d2δ

dN2 , (32)

where the super-index nlo stands for the next-to-leading order solution. δ(N)
is expected to remain very small as N increases. Substituting (30), (31) and
(32) into (29) with εnlo1 given by expression (27) it is obtained that

d2δ

dN2 + D(N)
dδ

dN
+ S(N)δ = F (N) (33)

D(N) = C3 + C2ε1(i) e
BeNC1

eAN (34)

S(N) = −C4 + C2ε1(i) e
BeNC1

eAN
(
C1Be

NC1 +A
)

(35)

F (N) = C2ε1(i) e
BeNC1

eAN
(
C1Be

NC1 +A
)

+ C5Be
NC1 + C6A , (36)

where non-linear terms of δ were neglected and Ci (with i = 1 . . . 6) are fixed
constants given in terms of C and π. Constants ε1(i), A and B are those
already given in the next-to-leading order solution (27). In Figs. 5, 6 and 7
the N -dependent parameters D(N), S(N) and F (N) are plotted for the same
numerical values used for the constants in [18].

At least for this case, the parameters can be safely approximated by con-
stants. Therefore, a qualitative analysis of the phase space for the flow gi-
ven by (33) can be carried out. It yields that there exists a saddle point at
(δ = F/S, δ̇ = 0), shown in Fig. 8. It means that solutions for δ(N) with
A = −0.0073 and ε1(i) = 0.05 are likely unstable. A more complete analy-
sis is indeed required, but this result would serve as a warning to pay more
attention to the order of the approximations used when information on the
inflationary dynamics is drawn from observational data.

5 Conclusions

Cosmic acceleration is a trivial solution to the Einstein equations for an
isotropic and homogeneous Universe, as appears to be the one where we live.
An accelerated expansion is typical of Universes filled with a kind of energy
yielding a strong enough negative pressure. This is the case when the cosmic
energy is dominated by the contribution of the vacuum.

Observational evidence strongly suggests that our Universe’s evolution
includes three well-defined epochs with regards to the increase of the cos-
mic volume. First, the very early Universe would undergo an accelerated
expansion known as inflation. Then, a period of non-accelerated expansion
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Fig. 8. The phase portrait for (33) with D = −5.32, S = 6.891 and F = 0.014. In
the horizontal axis δ is represented; in the vertical axis, δ̇. Arrows show the vector
field and lines show some trajectories.

would take place where most of the known kinds of matter and matter struc-
tures were formed. Finally, in recent times (with respect to cosmic scales)
the Universe would enter a second epoch of accelerated expansion where the
corresponding dominant matter–energy content is called dark energy.

A real scalar field is a good candidate for inducing cosmic acceleration. It
may help to solve problems arising when a constant vacuum energy is used to
explain inflation or the nature of the dark energy. For the required negative
pressure, the scalar field dynamics must be dominated by its potential energy.

A hot question in cosmology is whether the observed (predicted) cosmic
acceleration is (was) induced by a scalar field. If this is the case, the relevant
question is to determine the origin and nature of the corresponding potential.
This will open an important window into high energy physics.

Here, an idea was hinted at on how to differentiate between candidates for
the dark energy. The proposal is to divide the evolution of the dark energy in
periods where the corresponding equation of state could be approximated to
be linear. The best–fit values for the corresponding slopes would indicate the
favorite candidate. Encouraging results have been obtained in this direction.

It also explained some of the difficulties that arise when deriving the infla-
tionary potential from observations. It seems that the best that can be done
is to indicate generic features of the potentials yielding perturbations spectra
matching the measured data. It was emphasized that the use of data on the
difference of the tensor and scalar indices of perturbations yields information
on the scale–dependence of the tensor to scalar ratio. This information may
be very useful in classifying the inflationary potentials. Finally, a warning
was issued about the possibility that the features of the inflaton potential
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drawn from the observational data could be biased by the order of the ap-
proximations used to derive the expressions underlying the calculations.
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of Cosmological Perturbations
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Abstract. The theory of cosmological perturbations has become a cornerstone of
modern quantitative cosmology since it is the framework which provides the link
between the models of the very early Universe such as the inflationary Universe
scenario (which yield causal mechanisms for the generation of fluctuations) and
the wealth of recent high-precision data on the spectrum of density fluctuations
and cosmic microwave anisotropies. In these lectures, I provide an overview of the
classical and quantum theory of cosmological fluctuations.

Crucial points in both the current inflationary paradigm [1, 2] of the early
Universe and in proposed alternatives such as the Pre-Big-Bang [3] and Ekpyrotic
[4] scenarios are that, first, the perturbations are generated on microscopic scales
as quantum vacuum fluctuations, and, second, that via an accelerated expansion of
the background geometry (or by a contraction of the background), the wavelengths
of the fluctuations become much larger than the Hubble radius for a long period
of cosmic evolution. Hence, both Quantum Mechanics and General Relativity are
required in order to understand the generation and evolution of fluctuations.

As a guide to develop the physical intuition for the evolution of inhomogeneities,
I begin with a discussion of the Newtonian theory of fluctuations. applicable at
late times and on scales smaller than the Hubble radius. The analysis of super-
Hubble fluctuations requires a general relativistic analysis. I first review the classical
relativistic theory of fluctuations, and then discuss their quantization. I conclude
with a brief overview of two applications of the theory of cosmological fluctuations:
the trans-Planckian “problem” of inflationary cosmology and the current status
of the study of the back-reaction of cosmological fluctuations on the background
space-time geometry. Most of this article is based on the review [5] to which the
reader is referred to for the details omitted in these lecture notes.

1 Motivation

As described in the lectures by Tegmark at this school [6], observational
cosmology is currently in its golden years. Using a variety of observational
techniques, physicists and astronomers are exploring the large-scale structure
of the Universe. The Cosmic Microwave Background (CMB) is the observa-
tional window which in recent years has yielded the most information. The
anisotropies in the CMB have now been detected on a wide range of angu-
lar scales, giving us a picture of the Universe at the time of recombination,
the time that the cosmic photons last scattered. Large-scale galaxy redshift

R.H. Brandenberger, Lectures on the Theory of Cosmological Perturbations, Lect. Notes Phys.
646, 127–167 (2004)
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surveys are providing us with increasingly accurate power spectra of the dis-
tribution of objects in the Universe which emit light, which - modulo the
question whether light in fact traces mass (this is the issue of the cosmic
bias) - gives us the distribution of mass at the present time. Analyses of
the spectra of quasar absorption line systems and weak gravitational lensing
surveys are beginning to give us complementary information about the dis-
tribution of matter (independent of whether this matter in fact emits light,
thus shedding light on the biasing issue). The analysis of weak gravitational
lensing maps is in fact sensitive not only to the baryonic but also to the dark
matter, and promises to give a technique which unambiguously reveals where
the dark matter is concentrated. X-ray telescopes are providing additional
information on the distribution of sources which emit X-rays.

The current data fits astonishingly well with the current paradigm of early
Universe cosmology, the inflationary Universe scenario [1]. However, it is im-
portant to keep in mind that what is tested observationally is the paradigm
that the primordial spectrum of inhomogeneities was scale-invariant and pre-
dominantly adiabatic (these terms will be explained in the following section),
and that there might exist other scenarios of the very early Universe which
do not yield inflation but predict a scale-invariant adiabatic spectrum. For
example, within both the Pre-Big-Bang [3] and the Ekpyrotic scenarios [4]
there may be models which yield such a spectrum 1 One should also not for-
get that topological defect models of structure formation (see e.g. [19, 20, 21]
for reviews) naturally yield a scale-invariant spectrum, however of primor-
dial isocurvature nature and thus no longer compatible with the latest CMB
anisotropy results.

The theory of cosmological perturbations is what allows us to connect
theories of the very early Universe with the data on the large-scale structure
of the Universe at late times and is thus of central importance in modern cos-
mology. The techniques discussed below are applicable to most scenarios of
the very early Universe. Most specific applications mentioned, however, will
be within the context of the inflationary Universe scenario. To understand
what the key requirements for a viable theory of cosmological perturbations
are, recall the basic space-time diagram for inflationary cosmology (Fig. 1):
Since, during the phase of standard cosmology tR < t < t0, where tR corre-

1 Note, however, that whereas the simplest inflationary models yield an almost
scale-invariant n = 1 spectrum of fluctuations, as discussed in detail in these
lectures, this is not the case for the simplest models of Pre-Big-Bang type nor
for four dimensional descriptions of the Ekpyrotic scenario. In the case of single
field realizations of Pre-Big-Bang cosmology, a spectrum with spectral index
n = 4 emerges [7]. In Ekpyrotic cosmology, the value of the index of the final
power spectrum is under active debate. Most studies conclude either that the
spectral index is n = 3 [8, 9, 10, 11, 12], or that the result is ill-defined because of
the singularities at the bounce [13, 14] (see, however, [15, 16, 17] for arguments
in support of a final scale-invariant spectrum). See also [18] for criticisms of the
basic setup of the Ekpyrotic scenario.
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Fig. 1. Space-time diagram (sketch) showing the evolution of scales in inflationary
cosmology. The vertical axis is time, and the period of inflation lasts between ti

and tR, and is followed by the radiation-dominated phase of standard big bang
cosmology. During exponential inflation, the Hubble radius H−1 is constant in
physical spatial coordinates (the horizontal axis), whereas it increases linearly in
time after tR. The physical length corresponding to a fixed comoving length scale
labelled by its wavenumber k increases exponentially during inflation but increases
less fast than the Hubble radius (namely as t1/2), after inflation.

sponds to the end of inflation, and t0 denotes the present time, the Hubble
radius lH(t) ≡ H−1(t) expands faster that the physical wavelength associa-
ted with a fixed comoving scale, the wavelength becomes larger than the
Hubble radius as we go backwards in time. However, during the phase of ac-
celerated expansion (inflation), the physical wavelength increases much faster
than the Hubble radius, and thus at early times the fluctuations emerged at
micro-physical sub-Hubble scales. The idea is that micro-physical processes
(as we shall see, quantum vacuum fluctuations) are responsible for the origin
of the fluctuations. However, during the period when the wavelength is super-
Hubble, it is essential to describe the fluctuations using General Relativity.
Thus, both Quantum Mechanics and General Relativity are required to suc-
cessfully describe the generation and evolution of cosmological fluctuations.

A similar conclusion can be reached when considering the space-time dia-
gram in a model of Pre-Big-Bang or Ekpyrotic type, where the Universe
starts out in a contracting phase during which the Hubble radius contracts
faster than the physical length corresponding to a fixed comoving scale (see
Fig. 2). The contracting phase ends at a cosmological bounce, after which the
Universe is assumed to follow the same evolution history as it does in stan-
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Fig. 2. Space-time diagram (sketch) showing the evolution of scales in a cosmo-
logy of PBB or Ekpyrotic type. The axes are as in Fig. 1. Times earlier than tB

correspond to the contracting phase, times after describe the post-bounce phase of
expansion as described in standard cosmology. The Hubble radius decreases rela-
tive to a fixed comoving scale during the contracting phase, and increases faster
in the expanding phase. Fluctuations of cosmological interest today are generated
sub-Hubble but propagate super-Hubble for a long time interval.

dard Big Bang cosmology. As in inflationary cosmology, quantum vacuum
fluctuation on sub-Hubble scales (in this case in the contracting phase) are
assumed to be the seeds of the inhomogeneities observed today. For a long
time period, the scale of the fluctuation is super-Hubble.

Thus, we see that in inflationary cosmology as well as in Pre-Big-Bang
and Ekpyrotic-type models, both Quantum Mechanics and General Relati-
vity are required to understand the generation and evolution of cosmological
perturbations.

2 Newtonian Theory of Cosmological Perturbations

2.1 Introduction

The growth of density fluctuations is a consequence of the purely attractive
nature of the gravitational force. Imagine (first in a non-expanding back-
ground) a density excess δρ localized about some point x in space. This
fluctuation produces an attractive force which pulls the surrounding mat-
ter towards x. The magnitude of this force is proportional to δρ. Hence, by
Newton’s second law
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δ̈ρ ∼ Gδρ , (1)

where G is Newton’s gravitational constant. Hence, there is an exponential
instability of flat space-time to the development of fluctuations.

Obviously, in General Relativity it is inconsistent to consider density fluc-
tuations in a non-expanding background. If we consider density fluctuations
in an expanding background, then the expansion of space leads to a friction
term in (1). Hence, instead of an exponential instability to the development
of fluctuations, the growth rate of fluctuations in an expanding Universe will
be as a power of time. It is crucial to determine what this power is and how
it depends both on the background cosmological expansion rate and on the
length scale of the fluctuations.

We will be taking the background space-time to be homogeneous and
isotropic, with a metric given by

ds2 = dt2 − a(t)2dx2 , (2)

where t is physical time, dx2 is the Euclidean metric of the spatial hypersurfa-
ces (here taken for simplicity to be spatially flat), and a(t) denoting the scale
factor, in terms of which the expansion rate is given by H(t) = ȧ/a. The co-
ordinates x used above are “comoving” coordinates, coordinates painted onto
the expanding spatial hypersurfaces. Note, however, that in the following two
subsections x will denote the physical coordinates, and q the comoving ones.

The materials covered in this section are discussed in several excellent
textbooks on cosmology, e.g. in [22, 23, 24, 25].

2.2 Perturbations About Minkowski Space-Time

To develop some physical intuition, we first consider the evolution of hydro-
dynamical matter fluctuations in a fixed non-expanding background. Note
that in this case the background Einstein equations are not satisfied.

In this context, matter is described by a perfect fluid, and gravity by
the Newtonian gravitational potential ϕ. The fluid variables are the energy
density ρ, the pressure p, the fluid velocity v, and the entropy density S. The
basic hydrodynamical equations are

ρ̇+∇ · (ρv) = 0

v̇ + (v · ∇)v +
1
ρ
∇p+∇ϕ = 0

∇2ϕ = 4πGρ (3)
Ṡ + (v · ∇)S = 0

p = p(ρ, S) .

The first equation is the continuity equation, the second is the Euler (force)
equation, the third is the Poisson equation of Newtonian gravity, the fourth
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expresses entropy conservation, and the last describes the equation of state
of matter. The derivative with respect to time is denoted by an over-dot.

The background is given by the background energy density ρo, the back-
ground pressure p0, vanishing velocity, constant gravitational potential ϕ0
and constant entropy density S0. As mentioned above, it does not satisfy the
background Poisson equation.

The equations for cosmological perturbations are obtained by perturbing
the fluid variables about the background,

ρ = ρ0 + δρ

v = δv

p = p0 + δp (4)
ϕ = ϕ0 + δϕ

S = S0 + δS ,

where the fluctuating fields δρ, δv, δp, δϕ and δS are functions of space and
time, by inserting these expressions into the basic hydrodynamical equations
(3), by linearizing, and by combining the resulting equations which are of
first order in time to obtain the following second order differential equations
for the energy density fluctuation δρ and the entropy perturbation δS

δ̈ρ− c2s∇2δρ− 4πGρ0δρ = σ∇2δS (5)
δ̇S = 0 ,

where the variables c2s and σ describe the equation of state

δp = c2sδρ+ σδS (6)

with

c2s =
(δp
δρ

)
|S (7)

denoting the square of the speed of sound.
What can we learn from these equations? First of all, since the equations

are linear, we can work in Fourier space. Each Fourier component δρk(t) of
the fluctuation field δρ(x, t)

δρ(x, t) =
∫
eik·xδρk(t) (8)

evolves independently.
There are various types of fluctuations. If the entropy fluctuation δS

vanishes, we have adiabatic fluctuations. If the entropy fluctuation δS is
non-vanishing but δ̇ρ = 0, we speak on an entropy fluctuation. The first
conclusions we can draw from the basic perturbation equations (5) are that
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1) entropy fluctuations do not grow,
2) adiabatic fluctuations are time-dependent, and
3) entropy fluctuations seed an adiabatic mode.

Taking a closer look at the equation of motion (5) for δρ, we see that the
third term on the left hand side represents the force due to gravity, a purely
attractive force yielding an instability of flat space-time to the development
of density fluctuations (as discussed earlier, see (1)). The second term on the
left hand side of (5) represents a force due to the fluid pressure which tends
to set up pressure waves. In the absence of entropy fluctuations, the evolution
of δρ is governed by the combined action of both pressure and gravitational
forces.

Restricting our attention to adiabatic fluctuations, we see from (5) that
there is a critical wavelength, the Jeans length, whose wavenumber kJ is given
by

kJ =
(4πGρ0

c2s

)1/2
. (9)

Fluctuations with wavelength longer than the Jeans length (k � kJ) grow
exponentially

δρk(t) ∼ eωkt with ωk ∼ 4(πGρ0)1/2 (10)

whereas short wavelength modes (k 	 kJ) oscillate with frequency ωk ∼ csk.
Note that the value of the Jeans length depends on the equation of state of
the background. For a background dominated by relativistic radiation, the
Jeans length is large (of the order of the Hubble radius H−1(t)), whereas for
pressure-less matter the Jeans length goes to zero.

2.3 Perturbations About an Expanding Background

Let us now improve on the previous analysis and study Newtonian cosmologi-
cal fluctuations about an expanding background. In this case, the background
equations are consistent (the non-vanishing average energy density leads to
cosmological expansion). However, we are still neglecting general relativistic
effects (the fluctuations of the metric). Such effects turn out to be dominant
on length scales larger than the Hubble radius H−1(t), and thus the analysis
of this section is applicable only to scales smaller than the Hubble radius.

The background cosmological model is given by the energy density ρ0(t),
the pressure p0(t), and the recessional velocity v0 = H(t)x, where x is the
Euclidean spatial coordinate vector (“physical coordinates”). The space- and
time-dependent fluctuating fields are defined as in the previous section:

ρ(t,x) = ρ0(t)
(
1 + δε(t,x)

)
v(t,x) = v0(t,x) + δv(t,x) (11)
p(t,x) = p0(t) + δp(t,x) ,

where δε is the fractional energy density perturbation (we are interested in
the fractional rather than in the absolute energy density fluctuation!), and
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the pressure perturbation δp is defined as in (6). In addition, there is the
possibility of a non-vanishing entropy perturbation defined as in (4).

We now insert this ansatz into the basic hydrodynamical equations (3),
linearize in the perturbation variables, and combine the first order differential
equations for δε and δp into a single second order differential equation for δρε.
The result simplifies if we work in “comoving coordinates” q which are the
coordinates painted onto the expanding background, i.e.

x(t) = a(t)q(t) . (12)

After a substantial amount of algebra, we obtain the following equation which
describes the time evolution of density fluctuations:

δ̈ε + 2Hδ̇ε −
c2s
a2∇

2
qδε − 4πGρ0δε =

σ

ρ0a2 δS , (13)

where the subscript q on the ∇ operator indicates that derivatives with res-
pect to comoving coordinates are used. In addition, we have the equation of
entropy conservation

˙δS = 0 . (14)

Comparing with the equations (5) obtained in the absence of an expan-
ding background, we see that the only difference is the presence of a Hubble
damping term in the equation for δε. This term will moderate the exponen-
tial instability of the background to long wavelength density fluctuations. In
addition, it will lead to a damping of the oscillating solutions on short wa-
velengths. More specifically, for physical wavenumbers kp � kJ (where kJ is
again given by (9)), and in a matter-dominated background cosmology, the
general solution of (13) in the absence of any entropy fluctuations is given by

δk(t) = c1t
2/3 + c2t

−1 , (15)

where c1 and c2 are two constants determined by the initial conditions, and
we have dropped the subscript ε in expressions involving δε. There are two
fundamental solutions, the first is a growing mode with δk(t) ∼ a(t), the
second a decaying mode with δk(t) ∼ t−1. On short wavelength, one obtains
damped oscillatory motion:

δk(t) ∼ a−1/2(t)exp
(
±icsk

∫
dt′a−1(t′)

)
. (16)

As a simple application of the Newtonian equations for cosmological per-
turbations derived above, let us compare the predicted cosmic microwave
background (CMB) anisotropies in a spatially flat Universe with only baryo-
nic matter - Model A - to the corresponding anisotropies in a flat Universe
with mostly cold dark matter (pressure-less non-baryonic dark matter) - Mo-
del B. We start with the observationally known amplitude of the relative
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density fluctuations today (time t0), and we use the fact that the ampli-
tude of the CMB anisotropies on the angular scale θ(k) corresponding to the
comoving wavenumber k is set by the value of the primordial gravitational
potential φ - introduced in the following section - which in turn is related
to the value of the primordial density fluctuations at Hubble radius cros-
sing (and not to its value of the time trec). See e.g. Chapter 17 of [5]). In
Model A, the dominant component of the pressure-less matter is coupled to
radiation between teq and trec, the time of last scattering. Thus, the Jeans
length is comparable to the Hubble radius. Therefore, for comoving galactic
scales, k 	 kJ in this time interval, and thus the fractional density contrast
decreases as a(t)−1/2. In contrast, in Model B, the dominant component of
pressure-less matter couples only weakly to radiation, and hence the Jeans
length is negligibly small. Thus, in Model B, the relative density contrast
grows as a(t) between teq and trec. In the time interval trec < t < t0, the
fluctuations scale identically in Models A and B. Summarizing, we conclude,
working backwards in time from a fixed amplitude of δk today, that the am-
plitudes of δk(teq) in Models A and B (and thus their primordial values) are
related by

δk(teq)|A �
(a(trec)
a(teq)

)
δk(teq)|B . (17)

Hence, in Model A (without non-baryonic dark matter) the CMB anisotropies
are predicted to be a factor of about 30 larger [26] than in Model B, way
in excess of the recent observational results. This is one of the strongest
arguments for the existence of non-baryonic dark matter.

2.4 Characterizing Perturbations

Let us consider perturbations on a fixed comoving length scale given by a co-
moving wavenumber k. The corresponding physical length increases as a(t).
This is to be compared to the Hubble radius H−1(t) which scales as t provi-
ded a(t) grows as a power of t. In the late time Universe, a(t) ∼ t1/2 in the
radiation-dominated phase (i.e. for t < teq, and a(t) ∼ t2/3 in the matter-
dominated period (teq < t < t0). Thus, we see that at sufficiently early times,
all comoving scales had a physical length larger than the Hubble radius. If we
consider large cosmological scales (e.g. those corresponding to the observed
CMB anisotropies or to galaxy clusters), the time tH(k) of “Hubble radius
crossing” (when the physical length was equal to the Hubble radius) was in
fact later than teq. As we will see in later sections, the time of Hubble radius
crossing plays an important role in the evolution of cosmological perturbati-
ons.

Cosmological fluctuations can be described either in position space or
in momentum space. In position space, we compute the root mean square
mass fluctuation δM/M(k, t) in a sphere of radius l = 2π/k at time t. A
scale-invariant spectrum of fluctuations is defined by the relation
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δM

M
(k, tH(k)) = const. . (18)

Such a spectrum was first suggested by Harrison [27] and Zeldovich [28] as
a reasonable choice for the spectrum of cosmological fluctuations. We can
introduce the “spectral index” n of cosmological fluctuations by the relation

(δM
M

)2(k, tH(k)) ∼ kn−1 , (19)

and thus a scale-invariant spectrum corresponds to n = 1.
To make the transition to the (more frequently used) momentum space

representation, we Fourier decompose the fractional spatial density contrast

δε(x, t) =
∫
d3kδ̃ε(k, t)eik·x . (20)

The power spectrum Pδ of density fluctuations is defined by

Pδ(k) = k3|δ̃ε(k)|2 , (21)

where k is the magnitude of k, and we have assumed for simplicity a Gaussian
distribution of fluctuations in which the amplitude of the fluctuations only
depends on k.

We can also define the power spectrum of the gravitational potential ϕ:

Pϕ(k) = k3|δ̃ϕ(k)|2 . (22)

These two power spectra are related by the Poisson equation (3)

Pϕ(k) ∼ k−4Pδ(k) . (23)

In general, the condition of scale-invariance is expressed in momentum
space in terms of the power spectrum evaluated at a fixed time. To obtain
this condition, we first use the time dependence of the fractional density
fluctuation from (15) to determine the mass fluctuations at a fixed time
t > tH(k) > teq (the last inequality is a condition on the scales considered)

(δM
M

)2(k, t) =
( t

tH(k)
)4/3(δM

M

)2(k, tH(k)) . (24)

The time of Hubble radius crossing is given by

a(tH(k))k−1 = 2tH(k) , (25)

and thus
tH(k)1/2 ∼ k−1 . (26)

Inserting this result into (24) making use of (19) we find
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(δM
M

)2(k, t) ∼ kn+3 . (27)

Since, for reasonable values of the index of the power spectrum, δM/M(k, t)
is dominated by the Fourier modes with wavenumber k, we find that (27)
implies

|δ̃ε|2 ∼ kn , (28)

or, equivalently,
Pϕ(k) ∼ kn−1 . (29)

2.5 Matter Fluctuations in the Radiation Era

Let us now briefly consider fluctuations in the radiation dominated epoch. We
are interested in both the fluctuations in radiation and in matter (cold dark
matter). In the Newtonian treatment, (13) is replaced by separate equations
for each matter fluid component (these components are designated by the
labels A or B):

δ̈A + 2H ˙δA − v2
Aa

−2∇2δA = 4πG
∑
B

ρBδB , (30)

where ρB indicate the background densities, and δB the fractional density
fluctuations. The velocities of the respective fluid components are denoted
by vB , with v2

r = 1/3 for radiation and vm = 0 for cold dark matter.
In the radiation dominated epoch, the evolution of the fluctuations in

radiation is to a first approximation (in the ratio of the background densities)
independent of the cold matter content. Inserting the expansion rate for this
epoch, we thus immediately obtain

δr(t) ∼ a(t)2 (31)

on scales much larger than the Hubble scale, i.e. k � kH , whereas δr under-
goes damped oscillatory motion on smaller scales.

The evolution of the matter fluctuation δm is more complicated. Its equa-
tion of motion is dominated by the source term coming from δr. What results
is logarithmic growth of the amplitude of δm, instead of the growth propor-
tional to a(t) which would occur on these scales in the absence of radiation.
This damping effect on matter fluctuations due to the presence of radiation
is called the “Meszaros effect”. It leads to a turnover in the spectrum of
cosmological fluctuations at a scale keq which crosses the Hubble radius at
the time of equal matter and radiation. On larger scales (k < keq), one has
the primordial power spectrum with spectral index n, on smaller scales, to a
first approximation, the spectral index changes to n − 4. The details of the
power spectrum on small scales depend largely on the specifics of the matter
content in the Universe. One can write
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Pfinal(k, t) = T (k, t)P0(k, t) (32)

where P0 is the primordial power spectrum extrapolated to late times with
unchanged spectral index, and Pfinal denotes the actual power spectrum
which depends on effects such as the ones mentioned above. For more details
see e.g. [23, 24].

3 Relativistic Theory of Cosmological Fluctuations

3.1 Introduction

The Newtonian theory of cosmological fluctuations discussed in the pre-
vious section breaks down on scales larger than the Hubble radius because it
neglects perturbations of the metric, and because on large scales the metric
fluctuations dominate the dynamics.

Let us begin with a heuristic argument to show why metric fluctuations
are important on scales larger than the Hubble radius. For such inhomogenei-
ties, one should be able to approximately describe the evolution of the space-
time by applying the first Friedmann-Lemâitre-Robertson-Walker (FLRW)
equation of homogeneous and isotropic cosmology to the local Universe (this
approximation is made more rigorous in [29]):

( ȧ
a

)2 =
8πG

3
ρ . (33)

Based on this equation, a large-scale fluctuation of the energy density will
lead to a fluctuation (“δa”) of the scale factor a which grows in time. This is
due to the fact that self gravity amplifies fluctuations even on length scales
λ greater than the Hubble radius.

This argument is made rigorous in the following analysis of cosmological
fluctuations in the context of general relativity, where both metric and matter
inhomogeneities are taken into account. We will consider fluctuations about
a homogeneous and isotropic background cosmology, given by the metric (2),
which can be written in conformal time η (defined by dt = a(t)dη) as

ds2 = a(η)2
(
dη2 − dx2) . (34)

The evolution of the scale factor is determined by the two FLRW equations,
(33) and

ρ̇ = −3H(ρ+ p) , (35)

which determine the expansion rate and its time derivative in terms of the
equation of state of the matter, whose background stress-energy tensor can
be written as

Tµν =



ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p


 . (36)
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The theory of cosmological perturbations is based on expanding the Ein-
stein equations to linear order about the background metric. The theory was
initially developed in pioneering works by Lifshitz [30]. Significant progress in
the understanding of the physics of cosmological fluctuations was achieved by
Bardeen [31] who realized the importance of subtracting gauge artifacts (see
below) from the analysis (see also [32]). The following discussion is based on
Part I of the comprehensive review article [5]. Other reviews - in some cases
emphasizing different approaches - are [33, 34, 35, 36].

3.2 Classifying Fluctuations

The first step in the analysis of metric fluctuations is to classify them ac-
cording to their transformation properties under spatial rotations. There are
scalar, vector and second rank tensor fluctuations. In linear theory, there is
no coupling between the different fluctuation modes, and hence they evolve
independently (for some subtleties in this classification, see [37]).

We begin by expanding the metric about the FLRW background metric
g
(0)
µν given by (34):

gµν = g(0)
µν + δgµν . (37)

The background metric depends only on time, whereas the metric fluctuations
δgµν depend on both space and time. Since the metric is a symmetric tensor,
there are at first sight 10 fluctuating degrees of freedom in δgµν .

There are four degrees of freedom which correspond to scalar metric fluc-
tuations (the only four ways of constructing a metric from scalar functions):

δgµν = a2
(

2φ −B,i
−B,i 2

(
ψδij − E,ij

)) , (38)

where the four fluctuating degrees of freedom are denoted (following the not-
ation of [5]) φ,B,E, and ψ, a comma denotes the ordinary partial derivative
(if we had included spatial curvature of the background metric, it would have
been the covariant derivative with respect to the spatial metric), and δij is
the Kronecker symbol.

There are also four vector degrees of freedom of metric fluctuations, consi-
sting of the four ways of constructing metric fluctuations from three vectors:

δgµν = a2
(

0 −Si
−Si Fi,j + Fj,i

)
, (39)

where Si and Fi are two divergence-less vectors (for a vector with non-
vanishing divergence, the divergence contributes to the scalar gravitational
fluctuation modes).
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Finally, there are two tensor modes which correspond to the two polariza-
tion states of gravitational waves:

δgµν = −a2
(

0 0
0 hij

)
, (40)

where hij is trace-free and divergence-less

hii = hjij = 0 . (41)

Gravitational waves do not couple at linear order to the matter fluctua-
tions. Vector fluctuations decay in an expanding background cosmology and
hence are not usually cosmologically important. The most important fluctua-
tions, at least in inflationary cosmology, are the scalar metric fluctuations,
the fluctuations which couple to matter inhomogeneities and which are the
relativistic generalization of the Newtonian perturbations considered in the
previous section.

3.3 Gauge Transformation

The theory of cosmological perturbations is at first sight complicated by the
issue of gauge invariance (at the final stage, however, we will see that we can
make use of the gauge freedom to substantially simplify the theory). The co-
ordinates t,x of space-time carry no independent physical meaning. They are
just labels to designate points in the space-time manifold. By performing a
small-amplitude transformation of the space-time coordinates (called “gauge
transformation” in the following), we can easily introduce “fictitious” fluc-
tuations in a homogeneous and isotropic Universe. These modes are “gauge
artifacts”.

We will in the following take an “active” view of gauge transformation.
Let us consider two space-time manifolds, one of them a homogeneous and
isotropic Universe M0, the other a physical Universe M with inhomogenei-
ties. A choice of coordinates can be considered to be a mapping D between
the manifolds M0 and M. Let us consider a second mapping D̃ which will
map the same point (e.g. the origin of a fixed coordinate system) inM0 into
different points inM. Using the inverse of these maps D and D̃, we can assign
two different sets of coordinates to points inM.

Consider now a physical quantity Q (e.g. the Ricci scalar) onM, and the
corresponding physical quantity Q(0) on M0 Then, in the first coordinate
system given by the mapping D, the perturbation δQ of Q at the point
p ∈M is defined by

δQ(p) = Q(p)−Q(0)(D−1(p)
)
. (42)

Analogously, in the second coordinate system given by D̃, the perturbation
is defined by

˜δQ(p) = Q(p)−Q(0)(D̃−1(p)
)
. (43)
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The difference
∆Q(p) = ˜δQ(p)− δQ(p) (44)

is obviously a gauge artifact and carries no physical significance.
Some of the metric perturbation degrees of freedom introduced in the first

subsection are gauge artifacts. To isolate these, we must study how coordinate
transformations act on the metric. There are four independent gauge degrees
of freedom corresponding to the coordinate transformation

xµ → x̃µ = xµ + ξµ . (45)

The zero (time) component ξ0 of ξµ leads to a scalar metric fluctuation. The
spatial three vector ξi can be decomposed

ξi = ξitr + γijξ,j (46)

(where γij is the spatial background metric) into a transverse piece ξitr which
has two degrees of freedom which yield vector perturbations, and the second
term (given by the gradient of a scalar ξ) which gives a scalar fluctuation.
To summarize this paragraph, there are two scalar gauge modes given by
ξ0 and ξ, and two vector modes given by the transverse three vector ξitr.
Thus, there remain two physical scalar and two vector fluctuation modes.
The gravitational waves are gauge-invariant.

Let us now focus on how the scalar gauge transformations (i.e. the trans-
formations given by ξ0 and ξ) act on the scalar metric fluctuation variables
φ,B,E, and ψ. An immediate calculation yields:

φ̃ = φ− a′

a
ξ0 − (ξ0)

′

B̃ = B + ξ0 − ξ′
(47)

Ẽ = E − ξ

ψ̃ = ψ +
a′

a
ξ0 ,

where a prime indicates the derivative with respect to conformal time η.
There are two approaches to deal with the gauge ambiguities. The first

is to fix a gauge, i.e. to pick conditions on the coordinates which completely
eliminate the gauge freedom, the second is to work with a basis of gauge-
invariant variables.

If one wants to adopt the gauge-fixed approach, there are many different
gauge choices. Note that the often used synchronous gauge determined by
δg0µ = 0 does not totally fix the gauge. A convenient system which com-
pletely fixes the coordinates is the so-called longitudinal or conformal
Newtonian gauge defined by B = E = 0.

If one prefers a gauge-invariant approach, there are many choices of gauge-
invariant variables. A convenient basis first introduced by [31] is the basis Φ, Ψ
given by
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Φ = φ+
1
a

[
(B − E′)a

]′
(48)

Ψ = ψ − a′

a
(B − E′) . (49)

It is obvious from the above equations that the gauge-invariant variables Φ
and Ψ coincide with the corresponding diagonal metric perturbations φ and
ψ in longitudinal gauge.

Note that the variables defined above are gauge-invariant only under li-
near space-time coordinate transformations. Beyond linear order, the struc-
ture of perturbation theory becomes much more involved. In fact, one can
show [38] that the only fluctuation variables which are invariant under all
coordinate transformations are perturbations of variables which are constant
in the background space-time.

3.4 Equation of Motion

We begin with the Einstein equations

Gµν = 8πGTµν , (50)

where Gµν is the Einstein tensor associated with the space-time metric gµν ,
and Tµν is the energy-momentum tensor of matter, insert the ansatz for
metric and matter perturbed about a FLRW background

(
g
(0)
µν (η), ϕ(0)(η)

)
:

gµν(x, η) = g(0)
µν (η) + δgµν(x, η) (51)

ϕ(x, η) = ϕ0(η) + δϕ(x, η) , (52)

(where we have for simplicity replaced general matter by a scalar matter field
ϕ) and expand to linear order in the fluctuating fields, obtaining the following
equations:

δGµν = 8πGδTµν . (53)

In the above, δgµν is the perturbation in the metric and δϕ is the fluctuation
of the matter field ϕ.

Note that the components δGµν and δTµν are not gauge invariant. If we
want to use the gauge-invariant approach, we note [5] that it is possible to
construct a gauge-invariant tensor δG(gi)µ

ν via

δG
(gi) 0
0 ≡ δG0

0 + ((0)G
′ 0
0 )(B − E′)

δG
(gi) 0
i ≡ δG0

i + ((0)G0
i −

1
3

(0)Gkk)(B − E′),i (54)

δG
(gi) i
j ≡ δGij + ((0)G

′ i
j )(B − E′) ,

where (0)Gµν denote the background values of the Einstein tensor. Analo-
gously, a gauge-invariant linearized stress-energy tensor δT (gi)µ

ν can be defi-
ned. In terms of these tensors, the gauge-invariant form of the equations of
motion for linear fluctuations reads
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δG(gi)
µν = 8πGδT (gi)

µν . (55)

If we insert into this equation the ansatz for the general metric and matter
fluctuations (which depend on the gauge), only gauge-invariant combinations
of the fluctuation variables will appear.

In a gauge-fixed approach, one can start with the metric in longitudinal
gauge

ds2 = a2[(1 + 2φ)dη2 − (1− 2ψ)γijdxidxj
]

(56)

and insert this ansatz into the general perturbation equations (53). The short-
cut of inserting a restricted ansatz for the metric into the action and deriving
the full set of variational equations is justified in this case.

Both approaches yield the following set of equations of motion:

−3H
(
HΦ+ Ψ

′)
+∇2Ψ = 4πGa2δT

(gi) 0
0(

HΦ+ Ψ
′)
,i

= 4πGa2δT
(gi) 0
i (57)[(

2H′
+H2)Φ+HΦ′

+ Ψ
′′

+ 2HΨ ′]
δij

+
1
2
∇2Dδij −

1
2
γikD,kj = −4πGa2δT

(gi) i
j ,

where D ≡ Φ − Ψ and H = a′/a. If we work in longitudinal gauge, then
δT

(gi) i
j = δT ij , Φ = φ and Ψ = ψ.
The first conclusion we can draw is that if no anisotropic stress is present

in the matter at linear order in fluctuating fields, i.e. δT ij = 0 for i = j, then
the two metric fluctuation variables coincide:

Φ = Ψ . (58)

This will be the case in most simple cosmological models, e.g. in theories with
matter described by a set of scalar fields with canonical form of the action,
and in the case of a perfect fluid with no anisotropic stress.

Let us now restrict our attention to the case of matter described in terms
of a single scalar field ϕ with action

S =
∫
d4x
√
−g

[1
2
ϕ,αϕ,α − V (ϕ)

]
(59)

(where g denotes the determinant of the metric) and we expand the matter
field as

ϕ(x, η) = ϕ0(η) + δϕ(x, η) (60)

in terms of background matter ϕ0 and matter fluctuation δϕ(x, η), then in
longitudinal gauge (57) reduce to the following set of equations of motion
(making use of (58))

∇2φ− 3Hφ′ −
(
H′

+ 2H2)φ = 4πG
(
ϕ

′
0δϕ

′
+ V

′
a2δϕ

)
φ

′
+Hφ = 4πGϕ

′
0δϕ (61)

φ
′′

+ 3Hφ′
+
(
H′

+ 2H2)φ = 4πG
(
ϕ

′
0δϕ

′ − V ′
a2δϕ

)
,
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where V
′
denotes the derivative of V with respect to ϕ. These equations can

be combined to give the following second order differential equation for the
relativistic potential φ:

φ
′′

+ 2

(
H− ϕ

′′
0

ϕ
′
0

)
φ

′ −∇2φ+ 2

(
H′ −Hϕ

′′
0

ϕ
′
0

)
φ = 0 . (62)

Let us now discuss this final result for the classical evolution of cosmolo-
gical fluctuations. First of all, we note the similarities with the equation (13)
obtained in the Newtonian theory. The final term in (62) is the force due to
gravity leading to the instability, the second to last term is the pressure force
leading to oscillations (relativistic since we are considering matter to be a
relativistic field), and the second term is the Hubble friction term. For each
wavenumber there are two fundamental solutions. On small scales (k > H),
the solutions correspond to damped oscillations, on large scales (k < H) the
oscillations freeze out and the dynamics is governed by the gravitational force
competing with the Hubble friction term. Note, in particular, how the Hub-
ble radius naturally emerges as the scale where the nature of the fluctuating
modes changes from oscillatory to frozen.

Considering the equation in a bit more detail, observe that if the equation
of state of the background is independent of time (which will be the case if
H′

= ϕ
′′
0 = 0), that then in an expanding background, the dominant mode of

(62) is constant, and the sub-dominant mode decays. If the equation of state
is not constant, then the dominant mode is not constant in time. Specifically,
at the end of inflation H′

< 0, and this leads to a growth of φ (see the
following subsection).

To study the quantitative implications of the equation of motion (62),
it is convenient to introduce [39, 40] the variable ζ (which, up to correction
terms of the order ∇2φ which are unimportant for large-scale fluctuations is
equal to the curvature perturbation R in comoving gauge [41]) by

ζ ≡ φ+
2
3

(
H−1φ̇+ φ

)
1 + w

, (63)

where
w =

p

ρ
(64)

characterizes the equation of state of matter. In terms of ζ, the equation of
motion (62) takes on the form

3
2
ζ̇H(1 + w) = 0 +O(∇2φ) . (65)

On large scales, the right hand side of the equation is negligible, which leads
to the conclusion that large-scale cosmological fluctuations satisfy

ζ̇(1 + w) = 0. (66)
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This implies that except possibly if 1 + w = 0 at some points in time du-
ring cosmological evolution (which occurs during reheating in inflationary
cosmology if the inflaton field undergoes oscillations - see [42] and [43, 44] for
discussions of the consequences in single and double field inflationary models,
respectively) ζ is constant. In single matter field models it is indeed possible
to show that ζ̇ = 0 on super-Hubble scales independent of assumptions on
the equation of state [45, 46]. This “conservation law” makes it easy to relate
initial fluctuations to final fluctuations in inflationary cosmology, as will be
illustrated in the following subsection.

3.5 Application to Inflationary Cosmology

Let us now return to the space-time sketch of the evolution of fluctuations
in inflationary cosmology (Fig. 1) and use the conservation law (66) - in
the form ζ = const on large scales - to relate the amplitude of φ at initial
Hubble radius crossing during the inflationary phase (at t = ti(k)) with the
amplitude at final Hubble radius crossing at late times (at t = tf (k)). Since
both at early times and at late times φ̇ = 0 on super-Hubble scales as the
equation of state is not changing, (66) leads to

φ(tf (k)) �
(1 + w)(tf (k))
(1 + w)(ti(k))

φ(ti(k)) . (67)

This equation will allow us to evaluate the amplitude of the cosmological
perturbations when they re-enter the Hubble radius at time tf (k), under the
assumption (discussed in detail in the following section) that the origin of
the primordial fluctuations is quantum vacuum oscillations.

The time-time perturbed Einstein equation (the first equation of (57))
relates the value of φ at initial Hubble radius crossing to the amplitude of
the relative energy density fluctuations. This, together with the fact that the
amplitude of the scalar matter field quantum vacuum fluctuations is of the
order H, yields

φ(ti(k)) ∼ H
V

′

V
(ti(k)) . (68)

In the late time radiation dominated phase, w = 1/3, whereas during slow-roll
inflation

1 + w(ti(k)) �
ϕ̇2

0

V
(ti(k)) . (69)

Making, in addition, use of the slow roll conditions satisfied during the infla-
tionary period

Hϕ̇0 � −V
′

H2 � 8πG
3

V , (70)

we arrive at the final result
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φ(tf (k)) ∼
V 3/2

V ′ (ti(k)) , (71)

which gives the position space amplitude of cosmological fluctuations on a
scale labelled by the comoving wavenumber k at the time when the scale
re-enters the Hubble radius at late times, a result first obtained in the case
of the Starobinsky model [47] of inflation in [48], and later in the context of
scalar field-driven inflation in [49, 50, 51, 39].

In the case of slow roll inflation, the right hand side of (71) is, to a
first approximation, independent of k, and hence the resulting spectrum of
fluctuations is scale-invariant.

4 Quantum Theory of Cosmological Fluctuations

4.1 Overview

As already mentioned in the last subsection of the previous section, in many
models of the very early Universe, in particular in inflationary cosmology, but
also in the Pre-Big-Bang and in the Ekpyrotic scenarios, primordial inhomo-
geneities emerge from quantum vacuum fluctuations on microscopic scales
(wavelengths smaller than the Hubble radius). The wavelength is then stret-
ched relative to the Hubble radius, becomes larger than the Hubble radius at
some time and then propagates on super-Hubble scales until re-entering at
late cosmological times. In the context of a Universe with a de Sitter phase,
the quantum origin of cosmological fluctuations was first discussed in [48] -
see [52] for a more general discussion of the quantum origin of fluctuations
in cosmology, and also [53, 54] for earlier ideas. In particular, Mukhanov [48]
and Press [53] realized that in an exponentially expanding background, the
curvature fluctuations would be scale-invariant, and Mukhanov provided a
quantitative calculation which also yielded the logarithmic deviation from
exact scale-invariance.

To understand the role of the Hubble radius, consider the equation of a
free scalar matter field ϕ on an unperturbed expanding background:

ϕ̈+ 3Hϕ̇− ∇
2

a2 ϕ = 0 . (72)

The second term on the left hand side of this equation leads to damping
of ϕ with a characteristic decay rate given by H. As a consequence, in the
absence of the spatial gradient term, ϕ̇ would be of the order of magnitude
Hϕ. Thus, comparing the second and the third term on the left hand side, we
immediately see that the microscopic (spatial gradient) term dominates on
length scales smaller than the Hubble radius, leading to oscillatory motion,
whereas this term is negligible on scales larger than the Hubble radius, and
the evolution of ϕ is determined primarily by gravity.
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To understand the generation and evolution of fluctuations in current
models of the very early Universe, we thus need both Quantum Mechanics
and General Relativity, i.e. quantum gravity. At first sight, we are thus faced
with an intractable problem, since the theory of quantum gravity is not yet
established. We are saved by the fact that today on large cosmological scales
the fractional amplitude of the fluctuations is smaller than 1. Since gravity
is a purely attractive force, the fluctuations had to have been - at least in
the context of an eternally expanding background cosmology - very small in
the early Universe. Thus, a linearized analysis of the fluctuations (about a
classical cosmological background) is self-consistent.

From the classical theory of cosmological perturbations discussed in the
previous section, we know that the analysis of scalar metric inhomogeneities
can be reduced - after extracting gauge artifacts - to the study of the evolution
of a single fluctuating variable. Thus, we conclude that the quantum theory
of cosmological perturbations must be reducible to the quantum theory of a
single free scalar field which we will denote by v. Since the background in
which this scalar field evolves is time-dependent, the mass of v will be time-
dependent. The time-dependence of the mass will lead to quantum particle
production over time if we start the evolution in the vacuum state for v. As we
will see, this quantum particle production corresponds to the development
and growth of the cosmological fluctuations. Thus, the quantum theory of
cosmological fluctuations provides a consistent framework to study both the
generation and the evolution of metric perturbations. The following analysis
is based on Part II of [5].

4.2 Outline of the Analysis

In order to obtain the action for linearized cosmological perturbations, we ex-
pand the action to quadratic order in the fluctuating degrees of freedom. The
linear terms cancel because the background is taken to satisfy the background
equations of motion.

We begin with the Einstein-Hilbert action for gravity and the action of a
scalar matter field (for the more complicated case of general hydrodynamical
fluctuations the reader is referred to [5])

S =
∫
d4x
√
−g

[
− 1

16πG
R+

1
2
∂µϕ∂

µϕ− V (ϕ)
]
, (73)

where g is the determinant of the metric.
The simplest way to proceed is to work in a fixed gauge, longitudinal

gauge, in which the metric and matter take the form

ds2 = a2(η)
[
(1 + 2φ(η,x))dη2 − (1− 2ψ(t,x))dx2] (74)

ϕ(η,x) = ϕ0(η) + δϕ(η,x) .

The next step is to reduce the number of degrees of freedom. First, as
already mentioned in the previous section, the off-diagonal spatial Einstein
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equations force ψ = φ since δT ij = 0 for scalar field matter (no anisotropic
stresses to linear order). The two remaining fluctuating variables φ and ϕ
must be linked by the Einstein constraint equations since there cannot be
matter fluctuations without induced metric fluctuations.

The two nontrivial tasks of the lengthy [5] computation of the quadratic
piece of the action is to find out what combination of ϕ and φ gives the
variable v in terms of which the action has canonical form, and what the
form of the time-dependent mass is. This calculation involves inserting the
ansatz (74) into the action (73), expanding the result to second order in
the fluctuating fields, making use of the background and of the constraint
equations, and dropping total derivative terms from the action. In the context
of scalar field matter, the quantum theory of cosmological fluctuations was
developed by Mukhanov [55, 56] (see also [57]). The result is the following
contribution S(2) to the action quadratic in the perturbations:

S(2) =
1
2

∫
d4x

[
v′2 − v,iv,i +

z′′

z
v2] , (75)

where the canonical variable v (the “Mukhanov variable” introduced in [56]
- see also [52]) is given by

v = a
[
δϕ+

ϕ
′
0

H φ
]
, (76)

with H = a′/a, and where

z =
aϕ

′
0

H . (77)

In both the cases of power law inflation and slow roll inflation, H and ϕ
′
0 are

proportional and hence
z(η) ∼ a(η) . (78)

Note that the variable v is related to the curvature perturbation R in como-
ving coordinates introduced in [41] and closely related to the variable ζ used
in [39, 40]:

v = zR . (79)

The equation of motion which follows from the action (75) is

v
′′ −∇2v − z

′′

z
v = 0 , (80)

or, in momentum space

v
′′
k + k2vk −

z
′′

z
vk = 0 , (81)

where vk is the k’th Fourier mode of v. As a consequence of (78), the mass
term in the above equation is given by the Hubble scale
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k2
H ≡

z
′′

z
� H2 . (82)

Thus, it immediately follows from (81) that on small length scales, i.e. for
k > kH , the solutions for vk are constant amplitude oscillations . These
oscillations freeze out at Hubble radius crossing, i.e. when k = kH . On longer
scales (k � kH), the solutions for vk increase as z:

vk ∼ z , k � kH . (83)

Given the action (75), the quantization of the cosmological perturbations
can be performed by canonical quantization (in the same way that a scalar
matter field on a fixed cosmological background is quantized [58]).

The final step in the quantum theory of cosmological perturbations is to
specify an initial state. Since in inflationary cosmology, all pre-existing clas-
sical fluctuations are red-shifted by the accelerated expansion of space, one
usually assumes (we will return to a criticism of this point when discussing
the trans-Planckian problem of inflationary cosmology) that the field v starts
out at the initial time ti mode by mode in its vacuum state. Two questions
immediately emerge: what is the initial time ti, and which of the many pos-
sible vacuum states should be chosen. It is usually assumed that since the
fluctuations only oscillate on sub-Hubble scales, that the choice of the initial
time is not important, as long as it is earlier than the time when scales of
cosmological interest today cross the Hubble radius during the inflationary
phase. The state is usually taken to be the Bunch-Davies vacuum (see e.g.
[58]), since this state is empty of particles at ti in the coordinate frame deter-
mined by the FLRW coordinates (see e.g. [59] for a discussion of this point),
and since the Bunch-Davies state is a local attractor in the space of initial
states in an expanding background (see e.g. [60]). Thus, we choose the initial
conditions

vk(ηi) =
1√
2ωk

(84)

v
′
k(ηi) =

√
ωk√
2

where here ωk = k, and ηi is the conformal time corresponding to the physical
time ti.

Let us briefly summarize the quantum theory of cosmological perturba-
tions. In the linearized theory, fluctuations are set up at some initial time ti
mode by mode in their vacuum state. While the wavelength is smaller than
the Hubble radius, the state undergoes quantum vacuum fluctuations. The
accelerated expansion of the background redshifts the length scale beyond
the Hubble radius. The fluctuations freeze out when the length scale is equal
to the Hubble radius. On larger scales, the amplitude of vk increases as the
scale factor. This corresponds to the squeezing of the quantum state present
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at Hubble radius crossing (in terms of classical general relativity, it is self-
gravity which leads to this growth of fluctuations). As discussed e.g. in [61],
the squeezing of the quantum vacuum state leads to the emergence of the
classical nature of the fluctuations.

4.3 Application to Inflationary Cosmology

In this subsection we will use the quantum theory of cosmological perturba-
tions developed in this section to calculate the spectrum of curvature fluc-
tuations in inflationary cosmology.

We need to compute the power spectrum PR(k) of the curvature fluctua-
tion R defined in (79), namely

R = z−1v = φ+ δϕ
H
ϕ

′
0

(85)

The idea in calculating the power spectrum at a late time t is to first relate
the power spectrum via the growth rate (83) of v on super-Hubble scales to
the power spectrum at the time tH(k) of Hubble radius crossing, and to then
use the constancy of the amplitude of v on sub-Hubble scales to relate it to
the initial conditions (84). Thus

PR(k, t) ≡ k3R2
k(t) = k3z−2(t)|vk(t)|2 (86)

= k3z−2(t)
( z(t)
z(tH(k))

)2|vk(tH(k))|2

= k3z−2(tH(k))|vk(tH(k))|2

∼ k3a−2(tH(k))|vk(ti)|2 ,

where in the final step we have used (78) and the constancy of the amplitude
of v on sub-Hubble scales. Making use of the condition

a−1(tH(k))k = H (87)

for Hubble radius crossing, and of the initial conditions (84), we immediately
see that

PR(k, t) ∼ k3k−2k−1H2 , (88)

and that thus a scale invariant power spectrum with amplitude proportional
to H2 results, in agreement with what was argued on heuristic grounds in
Sect. 3.5.

4.4 Quantum Theory of Gravitational Waves

The quantization of gravitational waves parallels the quantization of scalar
metric fluctuations, but is more simple because there are no gauge ambigui-
ties. Note again that at the level of linear fluctuations, scalar metric fluctua-
tions and gravitational waves are independent. Both can be quantized on the
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same cosmological background determined by background scale factor and
background matter. However, in contrast to the case of scalar metric fluctua-
tions, the tensor modes are also present in pure gravity (i.e. in the absence
of matter).

Starting point is the action (73). Into this action we insert the metric
which corresponds to a classical cosmological background plus tensor metric
fluctuations:

ds2 = a2(η)
[
dη2 − (δij + hij)dxidxj

]
, (89)

where the second rank tensor hij(η,x) represents the gravitational waves,
and in turn can be decomposed as

hij(η,x) = h+(η,x)e+ij + hx(η,x)exij (90)

into the two polarization states. Here, e+ij and exij are two fixed polarization
tensors, and h+ and hx are the two coefficient functions.

To quadratic order in the fluctuating fields, the action separates into se-
parate terms involving h+ and hx. Each term is of the form

S(2) =
∫
d4x

a2

2
[
h′2 − (∇h)2

]
, (91)

leading to the equation of motion

h
′′
k + 2

a′

a
h

′
k + k2hk = 0 . (92)

The variable in terms of which the action (91) has canonical kinetic term is

µk ≡ ahk , (93)

and its equation of motion is

µ
′′
k +

(
k2 − a′′

a

)
µk = 0 . (94)

This equation is very similar to the corresponding equation (81) for scalar
gravitational inhomogeneities, except that in the mass term the scale factor
a(η) is replaced by z(η), which leads to a very different evolution of scalar
and tensor modes during the reheating phase in inflationary cosmology during
which the equation of state of the background matter changes dramatically.

Based on the above discussion we have the following theory for the gene-
ration and evolution of gravitational waves in an accelerating Universe (first
developed by Grishchuk [62]): waves exit as quantum vacuum fluctuations at
the initial time on all scales. They oscillate until the length scale crosses the
Hubble radius. At that point, the oscillations freeze out and the quantum
state of gravitational waves begins to be squeezed in the sense that

µk(η) ∼ a(η) , (95)

which, from (93) corresponds to constant amplitude of hk. The squeezing of
the vacuum state leads to the emergence of classical properties of this state,
as in the case of scalar metric fluctuations.
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5 The Trans-Planckian Window

Whereas the contents of the previous sections are well established, this and
the following section deal with aspects of the theory of cosmological pertur-
bations which are currently under investigation and are at the present time
rather controversial. First, we consider the trans-Planckian issue (this section
is adapted from [63]).

The same background dynamics which yields the causal generation me-
chanism for cosmological fluctuations, the most spectacular success of infla-
tionary cosmology, bears in it the nucleus of the “trans-Planckian problem”.
This can be seen from Fig. 3. If inflation lasts only slightly longer than the
minimal time it needs to last in order to solve the horizon problem and to
provide a causal generation mechanism for CMB fluctuations, then the corre-
sponding physical wavelength of these fluctuations is smaller than the Planck
length at the beginning of the period of inflation. The theory of cosmologi-
cal perturbations is based on classical general relativity coupled to a weakly
coupled scalar field description of matter. Both the theories of gravity and of
matter will break down on trans-Planckian scales, and this immediately leads
to the trans-Planckian problem: are the predictions of standard inflationary
cosmology robust against effects of trans-Planckian physics [64]?

The simplest way of modeling the possible effects of trans-Planckian phy-
sics, while keeping the mathematical analysis simple, is to replace the linear
dispersion relation ωphys = kphys of the usual equation for cosmological pertur-
bations by a non standard dispersion relation ωphys = ωphys(k) which differs
from the standard one only for physical wavenumbers larger than the Planck
scale. This method was introduced [65, 66] in the context of studying the de-
pendence of the thermal spectrum of black hole radiation on trans-Planckian
physics. In the context of cosmology, it has been shown [67, 68, 69] that this
amounts to replacing k2 appearing in (81) with k2

eff(n, η) defined by

k2 → k2
eff(k, η) ≡ a2(η)ω2

phys

(
k

a(η)

)
. (96)

For a fixed comoving mode, this implies that the dispersion relation becomes
time-dependent. Therefore, the equation of motion of the quantity vk(η) takes
the form (with z(η) ∝ a(η))

v′′
k +

[
k2
eff(k, η)− a′′

a

]
vk = 0 . (97)

A more rigorous derivation of this equation, based on a variational principle,
has been provided [70] (see also [71]).

The evolution of modes thus must be considered separately in three pha-
ses, see Fig. 3. In Phase I the wavelength is smaller than the Planck scale,
and trans-Planckian physics can play an important role. In Phase II, the wa-
velength is larger than the Planck scale but smaller than the Hubble radius.
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Fig. 3. Space-time diagram (physical distance vs. time) showing the origin of
the trans-Planckian problem of inflationary cosmology: at very early times, the
wavelength is smaller than the Planck scale �Pl (Phase I), at intermediate times
it is larger than �Pl but smaller than the Hubble radius H−1 (Phase II), and at
late times during inflation it is larger than the Hubble radius (Phase III). The
line labeled a) is the physical wavelength associated with a fixed comoving scale k.
The line b) is the Hubble radius or horizon in SBB cosmology. Curve c) shows the
Hubble radius during inflation. The horizon in inflationary cosmology is shown in
curve d).

In this phase, trans-Planckian physics will have a negligible effect (this state-
ment can be quantified [72]). Hence, by the analysis of the previous section,
the wave function of fluctuations is oscillating in this phase,

vk = B1 exp(−ikη) +B2 exp(ikη) (98)

with constant coefficients B1 and B2. In the standard approach, the initial
conditions are fixed in this region and the usual choice of the vacuum state
leads to B1 = 1/

√
2k, B2 = 0. Phase III starts at the time tH(k) when

the mode crosses the Hubble radius. During this phase, the wave function is
squeezed.

One source of trans-Planckian effects [67, 68] on observations is the pos-
sible non-adiabatic evolution of the wave function during Phase I. If this
occurs, then it is possible that the wave function of the fluctuation mode is
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not in its vacuum state when it enters Phase II and, as a consequence, the
coefficients B1 and B2 are no longer given by the standard expressions above.
In this case, the wave function will not be in its vacuum state when it crosses
the Hubble radius, and the final spectrum will be different. In general, B1
and B2 are determined by the matching conditions between Phase I and II.
If the dynamics is adiabatic throughout (in particular if the a′′/a term is
negligible), the WKB approximation holds and the solution is always given
by

vk(η) �
1√

2keff(k, η)
exp

(
−i

∫ η

ηi

keffdτ
)
, (99)

where ηi is some initial time. Therefore, if we start with a positive frequency
solution only and use this solution, we find that no negative frequency solution
appears. Deep in Region II where keff � k the solution becomes

vk(η) �
1√
2k

exp(−iφ− ikη), (100)

i.e. the standard vacuum solution times a phase which will disappear when we
calculate the modulus. To obtain a modification of the inflationary spectrum,
it is sufficient to find a dispersion relation such that the WKB approximation
breaks down in Phase I.

A concrete class of dispersion relations for which the WKB approximation
breaks down is

k2
eff(k, η) = k2 − k2|bm|

[
�pl

λ(η)

]2m

, (101)

where λ(η) = 2πa(η)/k is the wavelength of a mode. If we follow the evolution
of the modes in Phases I, II and III, matching the mode functions and their
derivatives at the junction times, the calculation [67, 68, 73] demonstrates
that the final spectral index is modified and that superimposed oscillations
appear.

However, the above example suffers from several problems. First, in infla-
tionary models with a long period of inflationary expansion, the dispersion
relation (101) leads to complex frequencies at the beginning of inflation for
scales which are of current interest in cosmology. Furthermore, the initial
conditions for the Fourier modes of the fluctuation field have to be set in a
region where the evolution is non-adiabatic and the use of the usual vacuum
prescription can be questioned. These problems can be avoided in a toy model
in which we follow the evolution of fluctuations in a bouncing cosmological
background which is asymptotically flat in the past and in the future. The
analysis [74] shows that even in this case the final spectrum of fluctuations
depends on the specific dispersion relation used.

An example of a dispersion relation which breaks the WKB approximation
in the trans-Planckian regime but does not lead to the problems mentioned
in the previous paragraph was investigated in [70]. It is a dispersion relation
which is linear for both small and large wavenumbers, but has an intermediate
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interval during which the frequency decreases as the wavenumber increases,
much like what happens in (101). The violation of the WKB condition occurs
for wavenumbers near the local minimum of the ω(k) curve.

A justified criticism against the method summarized in the previous ana-
lysis is that the non-standard dispersion relations used are completely ad
hoc, without a clear basis in trans-Planckian physics. There has been a lot
of recent work [75, 76, 77, 78] on the implication of space-space uncertainty
relations [79, 80] on the evolution of fluctuations. The application of the un-
certainty relations on the fluctuations lead to two effects [81, 82]. Firstly, the
equation of motion of the fluctuations in modified. Secondly, for fixed como-
ving length scale k, the uncertainty relation is saturated before a critical time
ti(k). Thus, in addition to a modification of the evolution, trans-Planckian
physics leads to a modification of the boundary condition for the fluctua-
tion modes. The upshot of this work is that the spectrum of fluctuations is
modified.

In [83], the implications of the stringy space-time uncertainty relation
[84, 85]

∆xphys∆t ≥ l2s (102)

on the spectrum of cosmological fluctuations was studied. Again, application
of this uncertainty relation to the fluctuations leads to two effects. Firstly, the
coupling between the background and the fluctuations is nonlocal in time,
thus leading to a modified dynamical equation of motion (a similar modi-
fication also results [86] from quantum deformations, another example of a
consequence of non-commutative basic physics). Secondly, the uncertainty
relation is saturated at the time ti(k) when the physical wavelength equals
the string scale ls. Before that time it does not make sense to talk about
fluctuations on that scale. By continuity, it makes sense to assume that fluc-
tuations on scale k are created at time ti(k) in the local vacuum state (the
instantaneous WKB vacuum state).

Let us for the moment neglect the nonlocal coupling between background
and fluctuation, and thus consider the usual equation of motion for fluctua-
tions in an accelerating background cosmology. We distinguish two ranges of
scales. Ultraviolet modes are generated at late times when the Hubble radius
is larger than ls. On these scales, the spectrum of fluctuations does not differ
from what is predicted by the standard theory, since at the time of Hubble
radius crossing the fluctuation mode will be in its vacuum state. However,
the evolution of infrared modes which are created when the Hubble radius is
smaller than ls is different. The fluctuations undergo less squeezing than they
do in the absence of the uncertainty relation, and hence the final amplitude
of fluctuations is lower. From the equation (86) for the power spectrum of
fluctuations, and making use of the condition

a(ti(k)) = kls (103)
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for the time ti(k) when the mode is generated, it follows immediately that
the power spectrum is scale-invariant

PR(k) ∼ k0 . (104)

In the standard scenario of power-law inflation the spectrum is red (PR(k) ∼
kn−1 with n < 1). Taking into account the effects of the nonlocal coupling
between background and fluctuation mode leads [83] to a modification of this
result: the spectrum of fluctuations in a power-law inflationary background
is in fact blue (n > 1).

Note that, if we neglect the nonlocal coupling between background and
fluctuation mode, the result of (104) also holds in a cosmological background
which is NOT accelerating. Thus, we have a method of obtaining a scale-
invariant spectrum of fluctuations without inflation. This result has also been
obtained in [87], however without a micro-physical basis for the prescription
for the initial conditions.

A key problem with the method of modified dispersion relations is the
issue of back-reaction [88, 89]. If the mode occupation numbers of the fluc-
tuations at Hubble radius crossing are significant, the danger arises that the
back-reaction of the fluctuations will in fact prevent inflation. Another con-
straint arises from the observational limits on the flux of ultra-high-energy
cosmic rays. Such cosmic rays would be produced [90] in the present Universe
if Trans-Planckian effects of the type discussed in this section were present.

An approach to the trans-Planckian issue pioneered by Danielsson [91]
which has recently received a lot of attention is to avoid the issue of the
unknown trans-Planckian physics and to start the evolution of the fluctuation
modes at the mode-dependent time when the wavelength equals the limiting
scale. Obviously, the resulting spectrum will depend sensitively on which state
is taken to be the initial state. The vacuum state is not unambiguous, and the
choice of a state minimizing the energy density depends on the space-time
splitting [92]. The signatures of this prescription are typically oscillations
superimposed on the usual spectrum. The amplitude of this effect depends
sensitively on the prescription of the initial state, and for a fixed prescription
also on the background cosmology. For a discussion of these issues and a list
of references on this approach the reader is referred to [93].

In summary, due to the exponential red-shifting of wavelengths, present
cosmological scales originate at wavelengths smaller than the Planck length
early on during the period of inflation. Thus, Planck physics may well en-
code information in these modes which can now be observed in the spectrum
of microwave anisotropies. Two examples have been shown to demonstrate
the existence of this “window of opportunity” to probe trans-Planckian phy-
sics in cosmological observations. The first method makes use of modified
dispersion relations to probe the robustness of the predictions of inflationary
cosmology, the second applies the stringy space-time uncertainty relation on
the fluctuation modes. Both methods yield the result that trans-Planckian
physics may lead to measurable effects in cosmological observables. An im-
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portant issue which must be studied more carefully is the back-reaction of
the cosmological fluctuations (see e.g. [94] for a possible formalism).

6 Back-Reaction of Cosmological Fluctuations

The presence of cosmological fluctuations influences the background cosmo-
logy in which the perturbations evolve. This back-reaction arises as a second
order effect in the cosmological perturbation expansion. The effect is cumu-
lative in the sense that all fluctuation modes contribute to the change in the
background geometry, and as a consequence the back-reaction effect can be
large even if the amplitude of the fluctuation spectrum is small. In this sec-
tion (based on the review [95]) we discuss two approaches used to quantify
back-reaction. In the first approach [96, 94], the effect of the fluctuations
on the background is expressed in terms of an effective energy-momentum
tensor. We show that in the context of an inflationary background cosmo-
logy, the long wavelength contributions to the effective energy-momentum
tensor take the form of a negative cosmological constant, whose absolute va-
lue increases as a function of time since the phase space of infrared modes
is increasing. This then leads to the speculation [97, 98] that gravitational
back-reaction may lead to a dynamical cancellation mechanism for a bare cos-
mological constant, and yield a scaling fixed point in the asymptotic future in
which the remnant cosmological constant satisfies ΩΛ ∼ 1. We then discuss
[99] how infrared modes effect local observables (as opposed to mathemati-
cal background quantities) and find that the leading infrared back-reaction
contributions cancel in single field inflationary models. However, we expect
non-trivial back-reaction of infrared modes in models with more than one
matter field.

It is well known that gravitational waves propagating in some background
space-time affect the dynamics of the background. This back-reaction can be
described in terms of an effective energy-momentum tensor τµν . In the short
wave limit, when the typical wavelength of the waves is small compared with
the curvature of the background space-time, τµν has the form of a radiative
fluid with an equation of state p = ρ/3 (where p and ρ denote pressure and
energy density, respectively). As we have seen in previous section, in infla-
tionary cosmology it is the long wavelength scalar metric fluctuations which
are more important. Like short wavelength gravitational waves, these cosmo-
logical fluctuations will contribute to the effective energy-momentum tensor
τµν . The work of [96, 94] is closely related to work by Woodard and Tsamis
[100, 101] who considered the back-reaction of long wavelength gravitational
waves in pure gravity with a bare cosmological constant. The recent paper
[99] is related to the work of Abramo and Woodard [102, 103] who initiated
the study of back-reaction of infrared modes on local observables. We first
review the derivation of the effective energy-momentum tensor τµν which de-
scribes the back-reaction of linear cosmological fluctuations on the backgro-
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und cosmology, and summarize the evaluation of this tensor in an inflationary
cosmological background. This gravitational back-reaction calculation is re-
lated to the early work on the back-reaction of gravitational waves by Brill,
Hartle and Isaacson [104], among others. The idea is to expand the Einstein
equations to second order in the perturbations, to assume that the first order
terms satisfy the equations of motion for linearized cosmological perturba-
tions discussed in previous section (hence these terms cancel), to take the
spatial average of the remaining terms, and to regard the resulting equations
as equations for a new homogeneous metric g(0,br)

µν which includes the effect
of the perturbations to quadratic order:

Gµν(g
(0,br)
αβ ) = 8πG

[
T (0)
µν + τµν

]
(105)

where the effective energy-momentum tensor τµν of gravitational back-
reaction contains the terms resulting from spatial averaging of the second
order metric and matter perturbations:

τµν =< T (2)
µν −

1
8πG

G(2)
µν > , (106)

where pointed brackets stand for spatial averaging, and the superscripts in-
dicate the order in perturbation theory.

As analyzed in detail in [96, 94], the back-reaction equation (105) is co-
variant under linear space-time coordinate transformations even though τµν
is not invariant 2. In the following, we will work in longitudinal gauge.

For simplicity, we shall take matter to be described in terms of a single
scalar field. By expanding the Einstein and matter energy-momentum tensors
to second order in the metric and matter fluctuations φ and δϕ, respectively,
it can be shown that the non-vanishing components of the effective back-
reaction energy-momentum tensor τµν become

τ00 =
1

8πG

[
+12H〈φφ̇〉 − 3〈(φ̇)2〉+ 9a−2〈(∇φ)2〉

]

+
1
2
〈(δϕ̇)2〉+ 1

2
a−2〈(∇δϕ)2〉

+
1
2
V ′′(ϕ0)〈δϕ2〉+ 2V ′(ϕ0)〈φδϕ〉 , (107)

and

2 See [105], however, for important questions concerning the covariance of the
analysis under higher order coordinate transformations.
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τij = a2δij

{
1

8πG

[
(24H2 + 16Ḣ)〈φ2〉+ 24H〈φ̇φ〉

+ 〈(φ̇)2〉+ 4〈φφ̈〉 − 4
3
a−2〈(∇φ)2〉

]
+ 4ϕ̇0

2〈φ2〉

+
1
2
〈(δϕ̇)2〉 − 1

6
a−2〈(∇δϕ)2〉 − 4ϕ̇0〈δϕ̇φ〉

− 1
2
V ′′(ϕ0)〈δϕ2〉+ 2V ′(ϕ0)〈φδϕ〉

}
, (108)

where H is the Hubble expansion rate.
The metric and matter fluctuation variables φ and δϕ are linked via the

Einstein constraint equations, and hence all terms in the above formulas
for the components of τµν can be expressed in terms of two point functions
of φ and its derivatives. The two point functions, in turn, are obtained by
integrating over all of the Fourier modes of φ, e.g.

〈φ2〉 ∼
∫ ku

ki

dkk2|φk|2 , (109)

where φk denotes the amplitude of the k’th Fourier mode. The above expres-
sion is divergent both in the infrared and in the ultraviolet. The ultraviolet
divergence is the usual divergence of a free quantum field theory and can
be “cured” by introducing an ultraviolet cutoff ku. In the infrared, we will
discard all modes k < ki with wavelength larger than the Hubble radius
at the beginning of inflation, since these modes are determined by the pre-
inflationary physics. We take these modes to contribute to the background.

At any time t we can separate the integral in (109) into the contribution
of infrared and ultraviolet modes, the separation being defined by setting the
physical wavelength equal to the Hubble radius. Thus, in an inflationary Uni-
verse the infrared phase space is continually increasing since comoving modes
are stretched beyond the Hubble radius, while the ultraviolet phase space is
either constant (if the ultraviolet cutoff corresponds to a fixed physical wave-
length), or decreasing (if the ultraviolet cutoff corresponds to fixed comoving
wavelength). In either case, unless the spectrum of the initial fluctuations
is extremely blue, two point functions such as (109) will at later stages of
an inflationary Universe be completely dominated by the infrared sector. In
the following, we will therefore restrict our attention to this sector, i.e. to
wavelengths larger than the Hubble radius.

In order to evaluate the two point functions which enter into the expressi-
ons for τµν , we make use of the known time evolution of the linear fluctuations
φk discussed in previous section. On scales larger than the Hubble radius, and
for a time-independent equation of state, φk is constant in time. From the
Einstein constraint equations relating the metric and matter fluctuations, and
making use of the inflationary slow roll approximation conditions we find

δϕ = −2V
V ′ φ . (110)
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Hence, in the expressions (107) and (108) for τµν , all terms with space and
time derivatives can be neglected, and we obtain

ρbr ≡ τ0
0
∼=
(

2
V ′′V 2

V ′2 − 4V
)
< φ2 > (111)

and
pbr ≡ −

1
3
τ ii
∼= −ρbr , (112)

The main result which emerges from this analysis is that the equation of
state of the dominant infrared contribution to the energy-momentum tensor
τµν which describes back-reaction takes the form of a negative cosmological
constant

pbr = −ρbr with ρbr < 0 . (113)

The second crucial result is that the magnitude of ρbr increases as a function
of time. This is due in part to the fact that, in an inflationary Universe, as
time increases more and more wavelengths become longer than the Hubble
radius and begin to contribute to ρbr.

How large is the magnitude of back-reaction? The basic point is that since
the amplitude of each fluctuation mode is small, we need a very large phase
space of infrared modes in order to induce any interesting effects. In models
with a very short period of primordial inflation, the back-reaction of long-
wavelength cosmological fluctuations hence will not be important. However,
in many single field models of inflation, in particular in those of chaotic
inflation type [106], inflation lasts so long that the infrared back-reaction
effects can build up to become important for the cosmological background
dynamics. To give an example, consider chaotic inflation with a potential

V (ϕ) =
1
2
m2ϕ2 . (114)

In this case, the values of φk for long wavelength modes are well known
(see e.g. [5]), and the integral in (109) can be easily performed, thus yielding
explicit expressions for the dominant terms in the effective energy-momentum
tensor. Comparing the resulting back-reaction energy density ρbr with the
background density ρ0, we find

ρbr(t)
ρ0

� 3
4π

m2ϕ2
0(ti)

M4
P

[
ϕ0(ti)
ϕ0(t)

]4

, (115)

where MP denotes the Planck mass. Without back-reaction, inflation would
end [106] when ϕ0(t) ∼ MP . Inserting this value into (115), we see that
if ϕ0(ti) > ϕbr ∼ m−1/3M

4/3
P , then back-reaction will become important

before the end of inflation and may shorten the period of inflation. It is
interesting to compare this value with the scale ϕ0(ti) ∼ ϕsr = m−1/2M

3/2
P

above which the stochastic terms in the scalar field equation of motion arising
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in the context of the stochastic approach to chaotic inflation [107, 108] are
dominant. Notice that since ϕsr 	 ϕbr (recall that m�MP ), back-reaction
effects can be very important in the entire range of field values relevant to
stochastic inflation.

Since the back-reaction of cosmological fluctuations in an inflationary
cosmology acts (see (113)) like a negative cosmological constant, and since
the magnitude of the back-reaction effect increases in time, one may speculate
[97] that back-reaction will lead to a dynamical relaxation of the cosmological
constant (see Tsamis & Woodard [100] for similar speculations based on the
back-reaction of long wavelength gravitational waves).

The background metric g
(0,br)
µν including back-reaction evolves as if the

cosmological constant at time t were

Λeff(t) = Λ0 + 8πGρbr(t) (116)

and not the bare cosmological constant Λ0. Hence one might hope to identify
(116) with a time dependent effective cosmological constant. Since |ρbr(t)|
increases as t grows, the effective cosmological constant will decay. Note that
even if the initial magnitude of the perturbations is small, eventually (if
inflation lasts a sufficiently long time) the back-reaction effect will become
large enough to cancel any bare cosmological constant.

Furthermore, one might speculate that this dynamical relaxation mecha-
nism for Λ will be self-regulating. As long as Λeff(t) > 8πGρm(t), where ρm(t)
stands for the energy density in ordinary matter and radiation, the evolution
of g(0,br)

µν is dominated by Λeff(t). Hence, the Universe will be undergoing
accelerated expansion, more scales will be leaving the Hubble radius and the
magnitude of the back-reaction term will increase. However, once Λeff(t) falls
below ρm(t), the background will start to decelerate, scales will enter the
Hubble radius, and the number of modes contributing to the back-reaction
will decrease, thus reducing the strength of back-reaction. Hence, it is likely
that there will be a scaling solution to the effective equation of motion for
Λeff(t) of the form

Λeff(t) ∼ 8πGρm(t) . (117)

Such a scaling solution would correspond to a contribution to the relative
closure density of ΩΛ ∼ 1.

There are important concerns about the above formalism, and even more
so about the resulting speculations (many of these were first discussed in print
in [105]). On a formal level, since our back-reaction effect is of second order in
cosmological perturbation theory, it is necessary to demonstrate covariance
of the proposed back-reaction equation (105) beyond linear order, and this
has not been done. Next, it might be argued that by causality super-Hubble
fluctuations cannot affect local observables. Thirdly, from an observational
perspective one is not interested in the effect of fluctuations on the back-
ground metric (since what the background is cannot be determined precisely
using local observations). Instead, one should compute the back-reaction of
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cosmological fluctuations on observables describing the local Hubble expan-
sion rate. One might then argue that even if long-wavelength fluctuations have
an effect on the background metric, they do not influence local observables.
Finally, it is clear that the speculations in the previous section involve the
extrapolation of perturbative physics deep into the non-perturbative regime.

These important issues have now begun to be addressed. Good physical
arguments can be given [102, 103] supporting the idea that long-wavelength
fluctuations can effect local physics. Consider, for example, a black hole of
mass M absorbing a particle of mass m. Even after this particle has disap-
peared beyond the horizon, its gravitational effects (in terms of the increased
mass of the black hole) remain measurable to an external observer. A similar
argument can be given in inflationary cosmology: consider an initial localized
mass fluctuation with a characteristic physical length scale λ in an exponen-
tially expanding background. Even after the length scale of the fluctuation
redshifts to be larger than the Hubble radius, the gravitational potential asso-
ciated with this fluctuation remains measurable. On a more technical level, it
has recently been shown that super-Hubble scale (but sub-horizon-scale) me-
tric fluctuations can be parametrically amplified during inflationary reheating
[109, 42, 43, 44]. This clearly demonstrates a coupling between local physics
and super-Hubble-scale fluctuations.

These arguments, however, make it even more important to focus on back-
reaction effects of cosmological fluctuations on local physical observables rat-
her than on the mathematical background metric. In recent work [99], the
leading infrared back-reaction effects on a local observable measuring the
Hubble expansion rate were calculated.

Consider a perfect fluid with velocity four vector uα in an inhomogeneous
cosmological geometry, then the local expansion rate which generalizes the
Hubble expansion rate H(t) of homogeneous isotropic Friedmann-Robertson-
Walker cosmology is given by 1

3Θ, where Θ is the four divergence of uα:

Θ = uα;α , (118)

the semicolon indicating the covariant derivative. In [99], the effects of cos-
mological fluctuations on this variable were computed to second order in
perturbation theory. To leading order in the infrared expansion, the result is

Θ = 3
a′

a2

(
1− φ+

3
2
φ2)− 3

φ′

a
, (119)

where the prime denotes the derivative with respect to conformal time. If we
now calculate the spatial average of Θ, the term linear in φ vanishes, and -
as expected - we are left with a quadratic back-reaction contribution.

Superficially, it appears from (119) that there is a non-vanishing back-
reaction effect at quadratic order which is not suppressed for super-Hubble
modes. However, we must be careful and evaluate Θ not at a constant value
of the background coordinates, but rather at a fixed value of some physical
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observable. For example, if we work out the value of Θ in the case of a matter-
dominated Universe, and express the result as a function of the proper time
τ given by dτ2 = a(η)2(1+2φ)dη2 instead of as a function of conformal time
η, then we find that the leading infrared terms proportional to φ2 exactly
cancel, and that thus there is no un-suppressed infrared back-reaction on the
local measure of the Hubble expansion rate.

A more relevant example with respect to the discussion in earlier sections
is a model in which matter is given by a single scalar field. In this case, the
leading infrared back-reaction terms in Θ are again given by (119) which looks
different from the background value 3H. However, once again it is important
to express Θ in terms of a physical background variable. If we choose the
value of the matter field ϕ as this variable, we find after easy manipulations
that, including only the leading infrared back-reaction terms,

Θ(ϕ) =
√

3
√
V (ϕ) . (120)

Hence, once again the leading infrared back-reaction contributions vanish,
as already found in the work of [103] which considered the leading infrared
back-reaction effects on a local observable different than the one we have
used, and applied very different methods 3.

However, in a model with two matter fields, it is clear that if we e.g. use the
second matter field as a physical clock, then the leading infrared back-reaction
terms will not cancel inΘ, and that thus in such models infrared back-reaction
will be physically observable. The situation will be very much analogous to
what happens in the case of parametric resonance of gravitational fluctuations
during inflationary reheating. This process is a gauge artifact in single field
models of inflation [42] (see also [45, 110, 46]), but it is real and unsuppressed
in certain two field models [43, 44]. In the case of two field models, work on
the analysis of the back-reaction effects of infrared modes on the observable
representing the local Hubble expansion rate is in progress.

Provided that it can indeed be shown that infrared modes have a nontri-
vial gravitational back-reaction effect in interesting models at second order in
perturbation theory, it then becomes important to extend the analysis beyond
perturbation theory. For initial attempts in this direction see [111, 112].
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Abstract. Space is not a boring static stage on which events unfold over time,
but a dynamic entity with curvature, fluctuations and a rich life of its own which
is a booming area of study. Spectacular new measurements of the cosmic micro-
wave background, gravitational lensing, type Ia supernovae, large-scale structure,
spectra of the Lyman α forest, stellar dynamics and x-ray binaries are probing the
properties of spacetime over 22 orders of magnitude in scale. Current measurements
are consistent with an infinite flat everlasting universe containing about 30% cold
dark matter, 65% dark energy and at least two distinct populations of black holes.

1 Introduction

Traditionally, space was merely a three-dimensional static stage where the
cosmic drama played out over time. Einstein’s theory of general relativity [1,
2, 3] replaced this by four-dimensional spacetime, a dynamic geometric entity
with a life of its own, capable of expanding, fluctuating and even curving
into black holes. Now the focus of research is increasingly shifting from the
cosmic actors to the stage itself. Triggered by progress in detector, space and
computer technology, an avalanche of astronomical data is revolutionizing
our ability to measure the spacetime we inhabit on scales ranging from the
cosmic horizon down to the event horizons of suspected black holes, using
photons and astronomical objects as test particles. The goal of this article
is to review these measurements and future prospects, focusing on four key
issues:

1. The global topology and curvature of space
2. The expansion history of spacetime and evidence for dark energy
3. The fluctuation history of spacetime and evidence for dark matter
4. Strongly curved spacetime and evidence for black holes

In the process, I will combine constraints from the cosmic microwave backgro-
und [4], gravitational lensing, supernovae Ia, large-scale structure, the Lyman
α forest[5], stellar dynamics and x-ray binaries. Although it is fashionable to
use cosmological data to measure a small number of free “cosmological pa-
rameters”, I will argue that improved data allow raising the ambition level
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189 (2004)
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beyond this, testing rather than assuming the underlying physics. I will di-
scuss how with a minimum of assumptions, one can measure key properties
of spacetime itself in terms of a few cosmological functions: the expansion
history of the universe, the spacetime fluctuation spectrum and its growth.

Fig. 1. Summary of the spacetime issues discussed in this article. One can use
photons and astronomical objects as test particles to measure spacetime over 22
orders of magnitude in scale, ranging from the cosmic horizon (probing the global
topology of and curvature of space — top) down to galaxies (giving evidence for
dark matter), galactic nuclei and binary stellar systems (giving evidence for black
holes). The figure illustrates how spacetime ripples at the 10−5 level will be imaged
by the cosmic microwave background satellite MAP [6] and has grown via gravita-
tional instability into cosmic large-scale structure [7], galaxies and, it seems, black
holes [8].
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1.1 Goals and Tools

Before embarking on our survey of spacetime, let us briefly review what it is
we want to measure, the basic tools at our disposal [2, 3, 9] and the broad-
brush picture of how our topics fit together. According to general relativity,
spacetime is what mathematicians call a manifold, characterized by a topo-
logy and a metric. The topology gives the global structure (Fig. 1, top): is
space infinite in all directions like in high-school geometry or multiply connec-
ted like say a hypersphere or doughnut so that traveling in a straight line
could in principle bring you back home — from the other direction? The
metric determines the local shape of spacetime, i.e., the distances and time
intervals we measure, and is mathematically specified by a 4 × 4 matrix at
each point in spacetime.

General relativity theory (GR) consists of two parts, each providing a
tool for measuring the metric. The first part of GR states that in the absence
of non-gravitational forces, test particles (objects not heavy enough to have
a noticeable effect on the metric) move along geodesics in spacetime, gene-
ralized straight lines, so the observed motions of photons and astronomical
objects allow the metric to be reconstructed. I will refer to this as geometric
measurements of the metric. The second part of GR states that the curvature
of spacetime (expressions involving the metric and its first two derivatives)
is related to its matter content — in most cosmological situations simply the
density and pressure, but sometimes also bulk motions and stress energy. I
will refer to such measurements of the metric as indirect, because they assume
the validity of the Einstein field equations of GR.

1.2 The Broad Brush Picture

The current consensus in the cosmological community is that spacetime is
extremely smooth, homogeneous and isotropic (translationally and rotatio-
nally invariant) on large (∼ 1023m−1026m) scales, with small fluctuations
that have grown over time to form objects like galaxies and stars on smaller
scales. Cosmic Microwave Background (CMB) observations have shown [10]
that space is almost isotropic on the scale of our cosmic horizon (∼ 1026m),
with the metric fluctuating by only about one part in 105 from one direction
to another, and combining this with the so-called cosmological principle, the
assumption that there is nothing special about our vantage point, implies
that space is homogeneous as well. Three-dimensional maps of the galaxy
and quasar distribution give more direct evidence for large-scale homogeneity
[11, 12, 13].

The fact that the CMB fluctuations are so small is useful, because it al-
lows the intimidating nonlinear partial differential equations governing spa-
cetime and its matter content to be accurately solved using a perturbation
expansion. To zeroth order (ignoring the fluctuations), this fixes the global
metric to be of the so-called Friedman-Robertson-Walker (FRW) form, which
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is completely specified except for a curvature parameter and a free function
giving its expansion history. To first order, density perturbations grow due to
gravitational instability and gravitational waves propagate through the FRW
background spacetime, all governed by linear equations. Only on smaller sca-
les (∼< 1023m) do the fluctuations get large enough that nonlinear dynamics
becomes important — in the realm of galaxies, stars and, perhaps, black ho-
les. This review is organized analogously: Sections 2 and 3 discuss spacetime
to 0th order (curvature, topology and expansion history), Section+4 descri-
bes spacetime to 1st order (fluctuations) and Sect. 5 focuses on nonlinear
objects, mainly black holes.

2 Overall Shape of Spacetime

2.1 Curvature of Space

The question of whether space is infinite was answered last year with a reso-
unding maybe. For an FRW metric, answering this question is equivalent to
measuring the curvature of space as illustrated by the top left three cases in
Fig. 1, specifically a single number R known as the radius of curvature. R is
the radius of the hypersphere if space is finite, R =∞ if space is flat, and R
is an imaginary number(R2 < 0) for saddle-like curvature. Because the three
angles of a triangle will add up to 180◦ in flat space, more if R2 > 0 (like on
a sphere) and less if R2 < 0 (like on a saddle) cosmologists have measured R
using the largest triangle available: one with us at one corner and the other
two corners on the hot opaque surface of ionized hydrogen that delimits the
visible universe and emits the CMB, merely 400,000 years after the Big Bang.
Photographs of this surface reveal hot and cold spots of a characteristic angu-
lar size that can be predicted theoretically. This characteristic spot size (or,
more rigorously, the first peak in the CMB power spectrum [14]) subtends
about 0.5◦ — like the Moon — if space is flat. Sphere-like curvature would
make all angles appear larger, so characteristic spots much larger than the
Moon would indicate a finite universe curving back on itself, whereas smaller
spots would indicate infinite space with negative curvature.

By 1994, evidence was mounting that there really was a peak in the CMB
power spectrum [16], or at least a rise towards smaller scales. Data kept im-
proving, and in 1998 the Toco experiment provided the first unambiguous
detection and localization of a peak. The BOOMERanG experiment measu-
red it with great precision in 2000, and by now the BOOMERanG, DASI and
MAXIMA [17] teams have all seen both this peak and hints of additional
smaller scale peaks matching theoretical predictions.

So is the universe infinite? The answer so far is still maybe, because the
characteristic spot size has turned out to be so close to 0.5◦ that we still
cannot tell whether space is perfectly flat or very slightly curved either way.
The sharpest current limits on the curvature radius, obtained by combining
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all CMB experiments with galaxy clustering data [18, 19] to constrain other
parameters affecting the spot sizes (mainly the cosmic matter budget), are
|R| > 20h−1Gpc≈ 1027m. This is in sharp contrast to a few years ago, when
the most popular models had negatively curved space with |R| ≈ 4h−1 Gpc.
In other words, space now seems to be either infinite or much larger than the
observable universe, whose radius is about 9h−1 Gpc.

In 1900, Karl Schwarzschild discussed the possibility that space was cur-
ved and published a paper with a lower limit R > 2500 light-years≈ 2×1019m
[20]. A century later, we thus know that the universe is at least another 40
million times larger!

2.2 Topology of Space

Even if space turns out to be negatively curved or perfectly flat, it might be
finite. General relativity does not prescribe the global topology, so various
possibilities are possible (Fig. 1, top). The simplest non-trivial model has
flat space and the topology of a three-dimensional torus, where opposing
faces of a cube of size L × L × L are identified to be one and the same.
Living in such a universe would be indistinguishable from living in a perfectly
periodic one: if L = 10 m, you could see the back of your own head 10
meters away, and additional copies at 20 m, 30 m, and so on — searches for
multiple images of cosmological objects have constrained such models [21].
Also, just as a finite guitar string has a fundamental tone and overtones, linear
spacetime fluctuations in such a toroidal universe could have only certain
discrete wavenumbers. As a result, its CMB power spectrum would differ on
large scales, and the COBE [17] data was used to show that if the universe
were such a torus, then L must be at least of the order of the cosmic horizon
[22, 23]. Indeed, it was shown that all three dimensions of the torus must
at least about this large to explain the absence of a type of approximate
reflection symmetry in the COBE map [24]. This early work triggered dozens
of papers in so-called cosmic crystallography, which turned out to be a rich
mathematical subject — for an up-to-date review, see [25]. For instance,
circles in the sky with near-identical temperature patterns were shown to be
smoking-gun signals of compact topology. Unfortunately from an aesthetic
point of view, many of the most mathematically elegant models, negatively
curved yet compact spaces, have been abandoned after the recent evidence
for spatial flatness. NASA’s Microwave Anisotropy Probe(MAP) [6] will allow
the cosmic topology to be probed with a new level of precision.

The interim conclusion about the overall shape of space is thus “back to
basics” : although mathematicians have discovered a wealth of complicated
manifolds to choose from and both positive and negative curvature would
have been allowed a priori, all available data so far is consistent with the
simplest possible space, the infinite flat Euclidean space that we learned about
in high school. That is in regards to three-dimensional space. The global
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structure of our four-dimensional spacetime also depends on the beginning
and end of time, to which we turn in the next section.

3 Spacetime Expansion History

One of the key quantities that cosmologists yearn to measure is the function
a(t), describing the expansion of the universe over time — if space is curved,
a is simply the magnitude of the radius of curvature, a = |R|. A mathema-
tically equivalent function more closely related to observations is the Hubble
parameter as a function of redshift, H(z), giving the cosmic expansion rate
and defined by H ≡ d

dt ln a, 1 + z ≡ a(tnow)/a(t). Let us first discuss how
this function encodes key information about the cosmic matter budget, the
origin and the ultimate fate of the universe, and then turn to how it can be,
has been and will be measured.

3.1 What ρ(z) Tells Us About Dark Energy

As illustrated in Fig. 2, squaring our curve H(z) gives us the cosmic matter
density. If the Einstein Field equations of GR are correct, then the mean
density of the universe is given by the Friedmann equation [2]

ρ(z) =
3H(z)2

8πG
. (1)

Here G is Newton’s gravitational constant and, if space is curved, ρ is defined
to include an optional curvature contribution ρcurv ≡ − 3c2

8πGR2 , where c is the
speed of light. Conveniently, all standard components of the cosmic matter
budget contribute simple straight lines to this plot, because their densities
drop as various power laws as the universe expands. For instance, the densities
of both ordinary and cold dark matter particles are inversely proportional to
the volume of space, scaling as ρ ∝ (1 + z)3.

Figure 2 shows that although the cosmic density ρ(z) measured from
SN Ia and CMB was indeed higher in the past, the curve rises slower than
this towards higher redshift, with a shallower slope than 3 at recent times.
This is evidence for the existence of dark energy, a substance whose density
does not rise rapidly with z. Adding a cosmological constant contribution
ρΛ ≈ 4 × 10−26 kg/m3 (about 2/3 of the current matter budget) whose

density is, by definition, constant, provides a good fit to the measurements
(Fig. 2 ). This discovery, made independently by two teams in 1998 [27,
28], stunned the scientific community and triggered a worldwide effort to
determine the nature of the dark energy. A model-independent approach
will be to measure the curve ρ(z) more accurately with a variety of different
techniques as illustrated in the figure and described below, thereby answering
two separate questions;
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Matter density

Vacuum density constant

CURRENT SN 1a

SNAP

Fig. 2. Solid curve shows the concordance model [18] for the evolution of the
cosmic mean density ρ(z) ∝ H(z)2. This curve uniquely characterizes the space-
time expansion history. The horizontal bars indicate the rough redshift ranges over
which the various cosmological probes discussed are expected to constrain this fun-
ction. Because the redshift scalings of all density contributions except that of dark
energy are believed to be straight lines with known slopes in this plot (power laws),
combining into a simple quartic polynomial, an estimate of the dark energy den-
sity ρX(z) can be readily extracted from this curve. Specifically, ρ ∝ (1 + z)4 for
the cosmic microwave background (CMB), ρ ∝ (1 + z)3 for baryons and cold dark
matter, ρ ∝ (1 + z)2 for spatial curvature, ρ ∝ (1 + z)0 for a cosmological constant
and ρ ∝ (1 + z)3(1+w) for dark energy with a constant equation of state w. Mea-
surement errors are for current SN Ia constraints (yellow band) and a forecast for
what the SNAP satellite [26] can do (green band), assuming flat space as favored
by the CMB. Error bars are for a non-parametric reconstruction with SNAP.

1. Do independent measurements of ρ(z) agree, so that we can rule out
problems with observations and their interpretation?

2. Subtracting out the slope 3 line contributed by ordinary and dark mat-
ter, what is the time-dependence of dark energy density ρX(z)? If it is
constant, we may have measured vacuum energy/Einstein’s cosmological
constant, and if not, we should learn interesting physics about a new
scalar quintessence field, or whatever is responsible.
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A less ambitious approach that is currently popular is assuming that the
equation of state (pressure-to-density ratio) w of the dark energy is constant
[29, 30, 31], which is equivalent to assuming that ρX(z) is a straight line in
Fig. 2 with a free amplitude and slope.

3.2 What ρ(z) Tells Us about Our Origin and Destiny

If we can understand the different components of the cosmic matter budget
well enough to extrapolate the curve ρ(z) from Fig. 2 to the distant past
and future, we can use the Friedmann equation to solve for a(t) and obtain
information about the origin and ultimate fate of spacetime. a(t) = 0 in
the past or future would correspond to a singular Big Bang or big crunch,
respectively, with infinite density ρ(z). As to the past, such extrapolation
seems justified at least back to the first seconds after the big bang, given the
success of big bang nucleosynthesis in accounting for the primordial light
element abundances [32, 33]. Regarding the very beginning, the jury is still
out. Extrapolation back to the very beginning is more speculative. According
to the currently most popular scenario, a large and nearly constant value of
ρ at t ∼< 10−34 seconds caused exponential expansion a(t) ∝ eHt during a
period known as inflation [34, 35, 36], successfully predicting both negligible
spatial curvature and, as discussed in the next section, a nearly scale-invariant
adiabatic scalar power spectrum[14] with subdominant gravitational waves.
A rival “ekpyrotic” model inspired by string theory and a related eternally
oscillating model have attracted recent attention[37, 38, 39]. If the density
approaches the Planck density (1097kg/m3) as t→ 0, quantum gravity effects
for which we lack a fundamental theory should be important, and a host of
speculative scenarios have been put forward for what happened at t ∼ 10−43

seconds. A very incomplete sample includes the Hawking-Hartle no-boundary
condition [40], God creating the universe, the universe creating itself [41], and
so-called pre-big-bang models [42]. Another possibility is that the Planck
density was never attained and that there was no beginning, just an eternal
fractal mess of replicating inflating bubbles, with our observed spacetime
being merely one in an infinite ensemble of regions where inflation has stopped
[35, 43].

As to the distant future, the expansion can clearly only stop (H = 0) if
the effective density ρ(z) drops to zero. The only two density contributions
that can in principle be negative are those of curvature (which now seems to
be negligible) and dark energy (which seems to be positive), suggesting that
the universe will keep expanding forever. Indeed, if the dark energy density
stays constant, we are now entering another inflationary phase of exponential
expansion (a(t) ∝ eHt), and in about 1011 years, our observable universe will
be dark and lonely with almost all extragalactic objects having disappeared
across our cosmic horizon [44]. However, such conclusions must clearly be
taken with a grain of salt until the nature of dark energy is understood.
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3.3 How to Measure ρ(z)

In conjunction with the curvature radius R, the curve H(z) can be mea-
sured purely geometrically, using photons as test particles. Given objects
of known luminosity (“standard candles”) or known physical size (“stan-
dard yardsticks”) at various redshifts, one simply compares their measured
brightness or angular size with theoretical predictions. Because predictions,
which follow from computing the trajectories of nearly parallel light rays, de-
pend on only H(z) and the (apparently negligible) curvature of space, objects
at multiple redshifts can be used to reconstruct the curve H(z) [45, 46].

The best standard candles to date are supernovae of type Ia, and the 92
SN Ia published by the two search teams [27, 28] were used [46] to measure
H(z) and thereby ρ(z) in Fig. 2. These cosmic bombs all have the same mass,
since they result when a white dwarf accretes enough gas from a compan-
ion star to exceed the Chandrashekar mass limit of 1.4 solar masses. They
therefore have similar luminosity, and it has been shown that their actual
luminosity can be accurately calibrated using their dimming rate and color
[27, 28]. The best standard yardstick so far is the characteristic CMB spot
size discussed above, suggesting that space is flat. As reviewed in [47, 46],
numerous other candles and yardsticks have been discussed, especially in the
Hubble parameter literature [48] focused on measuring H(z) for z ≈ 0, and
although many have proven hard to standardize because of issues like galaxy
evolution, it is far from clear that new multicolor surveys will not be able to
measure H(z) independently of SN Ia.

H(z) can also be measured indirectly. As discussed in the next section,
H(z) affects the growth of density fluctuations and can therefore be probed
by galaxy clustering and other techniques as indicated in Fig. 2. Such fluc-
tuation measures have constrained matter to make up no more than about a
third of the critical density needed to explain why space is flat. This Enron-
like accounting situation provides supernova-independent evidence for dark
energy [18, 19, 49].

4 Growth of Cosmic Structure

While SN Ia and CMB peak locations have recently revolutionized our know-
ledge of the metric to 0th order (curvature, topology and expansion history),
other observations are probing its 1st order fluctuations with unprecedented
accuracy. These perturbations come in two important types. The first are
gravitational waves, hitherto undetected ripples in spacetime that propagate
at the speed of light without growing in amplitude. The second are density
fluctuations, which can get amplified by gravitational instability (Fig. 1) and
are being measured by CMB, gravitational lensing and the clustering of ex-
tragalactic objects, notably galaxies and gas clouds absorbing quasar light
(the so-called Lyman α forest, LyαF) over a range of scales and redshifts
(Fig. 3).
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Fig. 3. Shaded regions show ranges of scale and redshift over which various obser-
vations are likely to measure spacetime fluctuations over the next few years. The
lower left region, delimited by the dashed line, is the non-linear regime where rms
density fluctuations exceed unity in the “concordance” model from [18].

Plane wave perturbations of different wavenumber evolve independently
by linearity, and are so far consistent with having uncorrelated Gaussian-
distributed amplitudes [50] as predicted by most inflation models [36]. The 1st
order density perturbations are therefore characterized by a single function
P (k, z), the power spectrum [14], which gives the variance of the fluctuations
as a function of wavenumber k and redshift z. P (k, z) depends on (and can
therefore teach us about) three things:

1. The cosmic matter budget
2. The seed fluctuations created in the Early Universe
3. Galaxy formation: reionization, “bias”, etc.

A key challenge is to robustly disentangle the three. We are not there yet, but
new data is making this increasingly feasible because each of the probes in
Fig. 3 involve different physics and is affected by the three in different ways
as outlined below.

Given the profusion of recent measurements of H(z) and P (k, z), it is stri-
king that there is a fairly simple model that currently seems to fit everything
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Fig. 4. Measurements of the current (z = 0) power spectrum of density fluctuations
computed as described in [63], assuming the matter budget of [19] and reionization
at z = 8. The CMB measurements combine the information from all experiments
to date as in [63]. LSS points are from a recent analysis [64] of the 3D distribution
of 2dF galaxies [11], and correcting them for bias shifts them vertically (b = 1.3
assumed here) and should perhaps blue-tilt them slightly. The cluster error bars
reflect the spread in the literature. The lensing points are based on [65]. The LyαF
points are from a reanalysis [66] of [52] and have an overall calibration uncertainty
around 17%. The curve shows the concordance model of [19].

(Fig. 2 and Fig. 4). In this so-called concordance model [18, 19, 49, 51], the
cosmic matter budget consists of about 5% ordinary matter (baryons), 30%
cold dark matter, 0.1% hot dark matter (neutrinos) and 65% dark energy ba-
sed on CMB and LSS observations, in good agreement with LyαF [18, 52, 53],
lensing [54, 55, 56, 57, 58, 59, 60] and SN Ia [27, 28]. The seed fluctuations
created in the early universe are consistent with the inflation prediction of a
simple power law P (k, z) ∝ kn early on, with n = 0.9± 0.1 [18, 19]. Galaxy
formation appears to have heated and reionized the universe not too long
before redshift z = 6 based on the LyαF [61, 62].

Although the mere existence of a concordance model is a striking success,
inferences about things like the expansion history, the matter budget and the
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early universe involve many assumptions — about the nature of dark energy
and dark matter (e.g., interactions, temperature, pressure, sound speed, vis-
cosity [75]), about gravity, about galaxy formation, and so on. Since the
avalanche of new cosmology data is showing no sign of slowing down, it is
becoming feasible to to raise the ambition level to test rather than assume
the underlying physics, probing the nature of dark energy, dark matter and
gravity. Given the matter budget and the expansion history H(z), theory
predicts the complete time-evolution of linear clustering, so measuring its
redshift dependence (Fig. 3) offers redundancy and powerful cross-checks.

Let us briefly summarize the status of our five power spectrum probes
in Fig. 3. Gravitational lensing uses photons from distant galaxies as test
particles to measure the metric fluctuations caused by intervening matter,
as manifested by distorted images of distant objects. The first measurements
of P (k, z) with this “weak lensing” technique [54] were reported in 2000
[55, 56, 57, 58, 59, 60]. 3D mapping of the universe with galaxy redshift
surveys offers another window on the cosmic matter distribution, through
its gravitational effects on galaxy clustering. This field is currently being
transformed by the 2 degree Field (2dF) survey and the Sloan Digital Sky
Survey, which will jointly map more than 106 galaxies, and complementary
surveys will map high redshifts and the evolution of clustering. Additional
information can be extracted from galaxy velocities [67]. The abundance of
galaxy clusters at different epochs, as probed by optical, x-ray, CMB or
gravitational lensing surveys, is a sensitive probe of P (k, z) on smaller scales
[68, 69, 70] and the LyαF offers a new and exciting probe of matter clustering
on still smaller scales when the universe was merely 10-20% of its present age
[52, 71, 72, 66]. CMB experiments probe P (k, z) through a variety of effects
as far back as to redshifts z > 103 [73, 74]. The MAP satellite will publicly re-
lease CMB temperature measurements of unprecedented quality in December
2002 [6], and two new promising CMB fronts are opening up — CMB pola-
rization (still undetected) and CMB fluctuations on tiny (arcminute) angular
scales.

There is a rich literature on how all these complementary probes can
be combined to break each others’ degeneracies and independently measure
the matter budget, the primordial power spectrum and galaxy formation
details [45, 46, 75, 76, 77], so I will merely give a few examples here. The
power spectra measured by CMB, LSS, lensing and LyαF are the product of
the three terms: (i) the primordial power spectrum, (ii) a so-called transfer
function quantifying the subsequent fluctuation growth, and (iii) (for LSS and
LyαF only) a so called bias factor accounting for the fact that the measured
galaxies/gas clouds may cluster differently than the underlying matter.

Disentangling Bias and Systematic Errors: Galaxy bias has now
been directly measured from data and found to be of order unity for typical
2dF galaxies [51, 78], and LyαF bias may be computable with hydrodyna-
mics simulations [52, 72, 66]. Although CMB, LSS, lensing and LyαF each
comes with caveats of their own, their substantial overlap (Fig. 3) should al-
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low disagreements between data sets to be distinguished from disagreements
between data and theory.

Disentangling Primordial POWER from the Matter Budget: The
transfer function can be disentangled from the primordial power because it
depends on the matter budget, and conveniently in rather opposite ways for
CMB than for low redshift P (k) measurements (LSS, lensing, LyαF). For
instance, increasing the cold dark matter density h2Ωc shifts the galaxy po-
wer spectrum up to the right and the CMB peaks down to the left if the
primordial spectrum is held fixed. Adding more baryons boosts the odd-
numbered CMB peaks but suppresses the galaxy power spectrum rightward
of its peak and also makes it wigglier. Increasing the dark matter percentage
that is hot (neutrinos) suppresses small-scale galaxy power while leaving the
CMB almost unchanged. This means that combining CMB with other data
allows unambiguous determination of the matter budget, and the primordial
power spectrum can then be inferred. Combining CMB temperature and po-
larization measurements also helps in this regard, because the characteristic
wiggles imprinted by the baryons and dark matter are out of phase for the
two, whereas wiggles due to the primordial spectrum would of course line up
for the two [63].

Although the best is still to come in this area, the basic conclusion that the
universe is awash in nonbaryonic dark matter already appears quite solid, sup-
ported independently by CMB, LyαF, galaxy surveys, cluster counting and
lensing — and by additional evidence in the next section. The agreement on
the baryon density between fluctuation studies (CMB + galaxy surveys) and
nucleosynthesis and on the dark energy density between fluctuation studies
and SN Ia are both indications that spacetime fluctuation measurements are
on the right track and will live up to their promise in this decade of precision
cosmology.

5 Nonlinear Clustering and Black Holes

On small scales, the linear perturbation expansion eventually breaks down
as density fluctuations grow to be of order unity, collapsing to form a variety
of interesting astrophysical objects. Although the theoretical predictions are
more difficult in this regime, the metric can still be accurately measured
using photons and astrophysical objects as test particles. The gravitational
potential well is probed by strong gravitational lensing of photons through
its distorting effect on background objects [79] and also by the motions of
massive objects like galaxies, stars or gas clouds. The orbital parameters
in a binary system reveal the masses of the two objects, just as we once
weighed the Sun by exploiting Earth’s orbit around it. In more complicated
systems, the central mass distribution can be inferred statistically from velo-
city dispersions observed in the vicinity. Below I review how these basic tools
have revealed surprises on three vastly different scales: dark matter in gala-
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xies and clusters (∼ 1020−23m), supermassive black holes in galactic bulges
(∼ 1010 − 1013m) and stellar-mass black holes (∼ 104 − 105m). Recent black
hole reviews include [80, 81, 82, 83, 84].

5.1 Dark Matter in Galaxies and Clusters

As noted by Zwicky in 1933 [85], the amount of mass in galaxies and galaxy
clusters inferred from rotation curves or velocity dispersions exceeds the mass
of luminous matter by a large factor. Precision measurements with a variety of
techniques have confirmed this finding, providing evidence that both galaxies
and clusters are accompanied by roughly spherical halos of cold dark matter.
This dark matter evidence is independent of that from linear perturbation
theory described above, yet produces roughly consistent estimates of the total
cosmic dark matter density [86, 87].

New measurements such as mapping tidal streamers, stripy remnants of
galaxies cannibalized by the Milky Way in the past, are raising the ambition
level towards a full 3D reconstruction of our own dark matter halo, and early
results suggest that it may be elliptical rather than perfectly spherical [88].
Measurements of the shape and substructure of dark matter halos can probe
the detailed nature of the dark matter. Indeed, computer simulations with
cold dark matter composed of weakly interacting particles appear to predict
overly dense cores in the centers of galaxies and clusters, and that there
should be about 103 discrete dark matter halos in our Galactic neighborhood
(the Local Group), in contrast to the less than 102 galaxies actually observed.
These halo profile and substructure problems have triggered talk of a cold
dark matter crisis and much recent interest in self-interacting dark matter
[89], warm dark matter [90] and other more complicated dark matter models
which suppress cores and substructure. It is not obvious that there really is
a crisis, since baryonic feedback properties may be able to reconcile vanilla
cold dark matter with observations and since substantial halo substructure
has recently been detected with gravitational lensing [91], but this active
research area should teach us more about dark matter properties whatever
they turn out to be.

5.2 Supermassive Black Holes

Karl Schwarzschild was allegedly so distressed by his 1916 solution to the
Einstein field equations that he hoped that such sinister objects, later chri-
stened black holes by Wheeler, did not exist in the real universe. The irony is
that monstrous black holes are nowadays considered the least exotic explana-
tion for the phenomena found in the centers of most — if not all — massive
galaxies.

The spatial and velocity distribution of stars have unambiguously revealed
compact objects weighing 106−1010 solar masses at the centers of over a dozen
galaxies. The most accurate measurements are for our own Galaxy, giving a
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mass around 3 × 106M� [92]. Here even individual stellar orbits have been
measured and shown to revolve around a single point [92] that coincides with
a strong source of radio and x-ray emission.

In many cases, gas disks have been found orbiting the mystery object.
For instance, Hα emission from such a disk in the galaxy M87 has revealed a
record mass of 3.2× 109M� in a region merely 10 light-years across, and 1.3
cm water maser emission from a disk in the galaxy NGC4258 has revealed
3.6×107M� in a region merely 0.42 light-years across (1 light-year≈ 1016 m).
This is too compact to be a stable star cluster, so the only alternatives to the
black hole explanation involve new physics — like a “fermion ball” made of
postulated new particles [93].

Although impressive, all these spacetime measurements were still at > 104

Schwarzschild radii, and so probe no strong GR effects and give only indirect
black hole evidence. X-ray spectroscopy provides another powerful probe, be-
cause x-rays can be produced closer to the event horizon, less than a light
hour from the central engine where the material is hotter and the detailed
shape of spacetime can imprint interesting signatures on the emitted radia-
tion. For instance, a strong emission line from the Kα fluorescent transition
of highly (photo-)ionized iron atoms has been observed by the ASCA and
Beppo-SAX satellites [94] to have spectacular properties. Doppler shifts in-
dicate a gas disk rotating with velocities up to 10% of the speed of light, and
extremely broadened and asymmetric line profiles are best fit when including
both Doppler and gravitational redshifts at 3-10 Schwarzschild radii.

In addition to all this geometric evidence for supermassive black holes,
further support comes from the processes by which they eat and grow. Infal-
ling gas is predicted to form a hot accretion disk around the hole that can
radiate away as much as 10% of its rest energy. It was indeed this idea that
led to the suggestions of supermassive black holes in the early 1960s, promp-
ted by the discovery of quasars. About 50% of all galaxies are now known
to have active galactic nuclei (AGN) at least at some low level — any black
holes in the other half are presumed to have quieted down after consuming
the gas in their vicinity. AGN’s can produce luminosities exceeding that of
1012 suns in a region less than a light-year across, and no other mechanism is
known for converting matter into radiation with the high efficiency required.
In some cases, emission has been localized to a region ∼< a light-hour across
(smaller than our solar system) by changing intensity in less than an hour.

Furthermore, magnetic phenomena in accretion discs can radiate beams
of energetic particles, and such jets have been observed to up to 106 light-
years long, perpendicular to the disk as predicted. This requires motions near
the speed of light as well as a stable preferred axis over long (	 106 year)
timescales, as naturally predicted for black holes [82, 95].
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5.3 Stellar-Mass Black Holes

Numerous stars have been found to orbit a binary companion weighting too
much to be a white dwarf or a neutron star (∼> 3M�), and being too faint
(often invisible) to be a normal star. For example, after a transient outburst
of soft x-rays in 1989, all orbital parameters of the binary system V404 Cygni
were measured and the black hole candidate was found to weigh 12±2M� [96].
Just as for supermassive BH’s, x-ray variability has placed upper limits on
the size of such objects that rule out all conventional black hole alternatives.

To counter such indirect arguments for black holes, unconventional com-
pact objects such as “strange stars” and “Q-stars” have been proposed
[97, 98]. However, the accretion disk model for soft x-ray transients such
as V404 Cygni might require the object to have an event horizon that gas
can disappear through — a hard surface could cause radiation to come back
out. Indeed, the similarities between galactic and stellar accretion disk and jet
observations are so striking that a single unified explanation seems natural,
and black holes provide one.

There is thus strong evidence for existence of black holes in two separate
mass ranges, each making up perhaps 10−6 or 10−5 of all mass in the uni-
verse. Still smaller classes of black holes have been speculated about without
direct supporting evidence, both microscopic ones created in the early uni-
verse perhaps making up the dark matter [99] and transient ones constituting
“spacetime foam” on the Planck scale [3].

5.4 Black Hole Prospects and Gravitational Waves

Whereas it is fairly well-understood how stellar-mass black holes can be for-
med by dying massive stars [100, 80], the origin and evolution of the ap-
parently ubiquitous supermassive black holes are open questions, as is their
relation to the formation of galaxies and galactic bulges. Another challenge
involves measuring spacetime more accurately near the event horizon, parti-
cularly for evidence of black hole rotation [101]. Observations to look forward
to include galactic center flashes as individual stars get devoured, multiwa-
velength accretion disk observations, and, in particular, detection of gravita-
tional waves. These tiny ripples in spacetime should be produced whenever
masses are accelerated, and binary pulsars have been measured to lose energy
at precisely the rate gravitational wave emission predicts [102]. They should
thus be copiously produced in inspiraling mergers involving black holes, both
stellar-mass ones (measurable by ground-based detectors such as the Laser
Interferometer Gravitational wave Observatory, LIGO) and and supermassive
ones (measurable by space-based detectors such as the Laser Interferometer
Space Antenna, LISA) [103]. At still longer wavelengths, the hunt for gravi-
tational waves goes on using pulsar timing [104] and microwave background
polarization that can constrain cosmological inflation [105, 106].
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6 Outlook

I have surveyed recent measurements of spacetime over a factor of 1022 in
scale, ranging from the cosmic horizon down to the event horizon of black
holes. On the largest scales, evidence supports “back to basics” flat infinite
space and eternal future time. The growth of spacetime fluctuations has sug-
gested that about 30% of the cosmic matter budget is made up of (mostly
cold) dark matter, about 5% ordinary matter and the remainder dark energy.
There is further evidence for the same dark matter in the halos of galaxies
and clusters. Finally, spacetime seems to be full of black holes, both super-
massive ones in the centers of most galaxies and stellar mass ones wherever
high mass stars have died. How much of this have we really measured and how
much is based on assumptions? The above-mentioned geometric test particle
observations have measured the spacetime metric, but all inferences about
dark energy, dark matter and the inner parts of black holes assume that
the Einstein Field Equations (EFEs) of GR are valid. Indeed, attempts have
been made to explain away all three by modifying the EFEs. So-called scalar-
tensor gravity has been found capable of giving accelerated cosmic expansion
without dark energy [107]. Although not an ab initio theory, the approach
known as Modified Newtonian Dynamics (MOND) attempts to explain ga-
laxy rotation curves without dark matter [108, 109]. It is not inconceivable
that the EFEs can be modified to avoid black hole singularities [110], even
though the perhaps most publicized model with this property [111] has been
argued to be flawed [112].

So could dark energy, dark matter and black holes be merely a modern
form of epicycles, which just like those of Ptolemy can be eliminated by
modifying the laws of gravity [46, 109, 113, 114]? The way to answer this
question is clearly to test the EFEs observationally, by embedding them in a
larger class of equations and quantifying the observational constraints. This
program has been pioneered by Clifford Will and others [9, 115], showing that
the true theory of gravity must be extremely close to GR in the regime probed
by solar system dynamics and binary pulsars, and has also been pursued to
close the MOND-loophole with some success [116, 117, 118]. However, this
does not imply that the true theory of gravity must be indistinguishable
from GR in all contexts, in particular for very compact objects [103] or for
cosmology [9, 115], so testing gravity remains a fruitful area of research. Such
tests continue even in the laboratory [119], testing the gravitational inverse
square law down to millimeter scales to probe possible extra dimensions [120].

In conclusion, the coming decade will be exciting: an avalanche of astro-
physical observations are measuring spacetime with unprecedented accuracy,
allowing us to test whether it obeys Einstein’s field equations, and conse-
quently whether dark energy, dark matter and black holes are for real.
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Abstract. I discuss the use of Type Ia supernovae (SNe Ia) for cosmological di-
stance determinations. Low-redshift SNe Ia (z ∼< 0.1) demonstrate that the Hubble
expansion is linear, that H0 = 72 ± 8 km s−1 Mpc−1, and that the properties of
dust in other galaxies are similar to those of dust in the Milky Way. The light cur-
ves of high-redshift (z = 0.3–1) SNe Ia are stretched in a manner consistent with
the expansion of space; similarly, their spectra exhibit slower temporal evolution
(by a factor of 1 + z) than those of nearby SNe Ia. The measured luminosity di-
stances of SNe Ia as a function of redshift have shown that the expansion of the
Universe is currently accelerating, probably due to the presence of repulsive dark
energy such as Einstein’s cosmological constant (Λ). From about 200 SNe Ia, we
find that H0t0 = 0.96 ± 0.04, and ΩΛ − 1.4ΩM = 0.35 ± 0.14. Combining our data
with the results of large-scale structure surveys, we find a best fit for ΩM and ΩΛ

of 0.28 and 0.72, respectively — essentially identical to the recent WMAP results
(and having comparable precision). The sum of the densities, ∼ 1.0, agrees with
extensive measurements of the cosmic microwave background radiation, including
WMAP, and coincides with the value predicted by most inflationary models for the
early Universe: the Universe is flat on large scales. A number of possible systema-
tic effects (dust, supernova evolution) thus far do not seem to eliminate the need
for ΩΛ > 0. However, during the past few years some very peculiar low-redshift
SNe Ia have been discovered, and we must be mindful of possible systematic effects
if such objects are more abundant at high redshifts. Recently, analyses of SNe Ia
at z = 1.0–1.7 provide further support for current acceleration, and give tentative
evidence for an early epoch of deceleration. The dynamical age of the Universe is
estimated to be 13.1±1.5 Gyr, consistent with the ages of globular star clusters and
with the WMAP result of 13.7 ± 0.2 Gyr. Current projects include the search for
additional SNe Ia at z > 1 to confirm the early deceleration, and the measurement
of a few hundred SNe Ia at z = 0.2–0.8 to more accurately determine the equation
of state of the dark energy, w = P/(ρc2), whose value is now constrained by SNe Ia
to be in the range −1.48 ∼< w ∼< −0.72 at 95% confidence.

1 Introduction

Supernovae (SNe) come in two main varieties (see Filippenko 1997b for a
review). Those whose optical spectra exhibit hydrogen are classified as Type
II, while hydrogen-deficient SNe are designated Type I. SNe I are further
subdivided according to the appearance of the early-time spectrum: SNe Ia
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http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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are characterized by strong absorption near 6150 Å (now attributed to Si II),
SNe Ib lack this feature but instead show prominent He I lines, and SNe Ic
have neither the Si II nor the He I lines. SNe Ia are believed to result from
the thermonuclear disruption of carbon-oxygen white dwarfs, while SNe II
come from core collapse in massive supergiant stars. The latter mechanism
probably produces most SNe Ib/Ic as well, but the progenitor stars previously
lost their outer layers of hydrogen or even helium.

It has long been recognized that SNe Ia may be very useful distance
indicators for a number of reasons; see Branch & Tammann (1992), Branch
(1998), and references therein. (1) They are exceedingly luminous, with peak
MB averaging −19.0 mag if H0 = 72 km s−1 Mpc−1. (2) “Normal” SNe Ia
have small dispersion among their peak absolute magnitudes (σ ∼< 0.3 mag).
(3) Our understanding of the progenitors and explosion mechanism of SNe Ia
is on a reasonably firm physical basis. (4) Little cosmic evolution is expected
in the peak luminosities of SNe Ia, and it can be modeled. This makes SNe Ia
superior to galaxies as distance indicators. (5) One can perform local tests of
various possible complications and evolutionary effects by comparing nearby
SNe Ia in different environments.

Research on SNe Ia in the 1990s has demonstrated their enormous poten-
tial as cosmological distance indicators. Although there are subtle effects that
must indeed be taken into account, it appears that SNe Ia provide among the
most accurate values of H0, q0 (the deceleration parameter), ΩM (the matter
density), and ΩΛ [the cosmological constant, Λc2/(3H2

0 )].
There have been two major teams involved in the systematic investigation

of high-redshift SNe Ia for cosmological purposes. The “Supernova Cosmo-
logy Project” (SCP) is led by Saul Perlmutter of the Lawrence Berkeley
Laboratory, while the “High-Z Supernova Search Team” (HZT) is led by
Brian Schmidt of the Mt. Stromlo and Siding Springs Observatories. I have
been privileged to work with both teams (see Filippenko 2001 for a personal
account), but my primary allegiance is now with the HZT.

2 Homogeneity and Heterogeneity

Until the mid-1990s, the traditional way in which SNe Ia were used for cosmo-
logical distance determinations was to assume that they are perfect “standard
candles” and to compare their observed peak brightness with those of SNe Ia
in galaxies whose distances had been independently determined (e.g., with
Cepheid variables). The rationale was that SNe Ia exhibit relatively little
scatter in their peak blue luminosity (σB ≈ 0.4–0.5 mag; Branch & Miller
1993), and even less if “peculiar” or highly reddened objects were elimina-
ted from consideration by using a color cut. Moreover, the optical spectra of
SNe Ia are usually rather homogeneous, if care is taken to compare objects
at similar times relative to maximum brightness (Riess et al. 1997, and refe-
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rences therein). Over 80% of all SNe Ia discovered through the early 1990s
were “normal” (Branch, Fisher, & Nugent 1993).

From a Hubble diagram constructed with unreddened, moderately distant
SNe Ia (z ∼< 0.1) for which peculiar motions are small and relative distances
(given by ratios of redshifts) are accurate, Vaughan et al. (1995) find that

〈MB(max)〉 = (−19.74± 0.06) + 5 log (H0/50) mag. (1)

In a series of papers, Sandage et al. (1996) and Saha et al. (1997) combine
similar relations with Hubble Space Telescope (HST) Cepheid distances to
the host galaxies of seven SNe Ia to derive H0 = 57± 4 km s−1 Mpc−1.

Over the past two decades it has become clear, however, that SNe Ia do
not constitute a perfectly homogeneous subclass (e.g., Filippenko 1997a,b).
In retrospect this should have been obvious: the Hubble diagram for SNe Ia
exhibits scatter larger than the photometric errors, the dispersion actually
rises when reddening corrections are applied (under the assumption that all
SNe Ia have uniform, very blue intrinsic colors at maximum; van den Bergh &
Pazder 1992; Sandage & Tammann 1993), and there are some significant ou-
tliers whose anomalous magnitudes cannot be explained by extinction alone.

Spectroscopic and photometric peculiarities have been noted with increa-
sing frequency in well-observed SNe Ia. A striking case is SN 1991T; its
pre-maximum spectrum did not exhibit Si II or Ca II absorption lines, yet
two months past maximum brightness the spectrum was nearly indistinguis-
hable from that of a classical SN Ia (Filippenko et al. 1992b; Phillips et al.
1993). The light curves of SN 1991T were slightly broader than the SN Ia
template curves, and the object was probably somewhat more luminous than
average at maximum. Another well-observed, peculiar SNe Ia is SN 1991bg
(Filippenko et al. 1992a; Leibundgut et al. 1993; Turatto et al. 1996). At
maximum brightness it was subluminous by 1.6 mag in V and 2.5 mag in B,
its colors were intrinsically red, and its spectrum was peculiar (with a deep
absorption trough due to Ti II). Moreover, the decline from maximum was
very steep, the I-band light curve did not exhibit a secondary maximum like
normal SNe Ia, and the velocity of the ejecta was unusually low. The photo-
metric heterogeneity among SNe Ia is well demonstrated by Suntzeff (1996)
with objects having excellent BV RI light curves.

3 Cosmological Uses: Low Redshifts

Although SNe Ia can no longer be considered perfect “standard candles,”
they are still exceptionally useful for cosmological distance determinations.
Excluding those of low luminosity (which are hard to find, especially at large
distances), most of the nearby SNe Ia that had been discovered through the
early 1990s were nearly standard (Branch et al. 1993; but see Li et al. 2001b
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for more recent evidence of a higher intrinsic peculiarity rate). Also, after
many tenuous suggestions (e.g., Pskovskii 1977, 1984; Branch 1981), Phil-
lips (1993) found convincing evidence for a correlation between light curve
shape and the luminosity at maximum brightness by quantifying the photo-
metric differences among a set of nine well-observed SNe Ia, using a parame-
ter [∆m15(B)] that measures the total drop (in B magnitudes) from B-band
maximum to t = 15 days later. In all cases the host galaxies of his SNe Ia
have accurate relative distances from surface brightness fluctuations or from
the Tully-Fisher relation. The intrinsically bright SNe Ia clearly decline more
slowly than dim ones, but the correlation is stronger in B than in V or I.

Using SNe Ia discovered during the Calán/Tololo survey (z ∼< 0.1), Ha-
muy et al. (1995, 1996b) refine the Phillips (1993) correlation between peak
luminosity and ∆m15(B). Apparently the slope is steep only at low lumi-
nosities; thus, objects such as SN 1991bg skew the slope of the best-fitting
single straight line. Hamuy et al. reduce the scatter in the Hubble diagram
of normal, unreddened SNe Ia to only 0.17 mag in B and 0.14 mag in V ; see
also Tripp (1997). Yet another parameterization is the “stretch” method of
Perlmutter et al. (1997) and Goldhaber et al. (2001): the B-band light curves
of SNe Ia appear nearly identical when expanded or contracted temporally
by a factor (1 + s), where the value of s varies among objects. In a similar
but distinct effort, Riess, Press, & Kirshner (1995) show that the luminosity
of SNe Ia correlates with the detailed shape of the overall light curve.

By using light curve shapes measured through several different filters,
Riess, Press, & Kirshner (1996a) extend their analysis and objectively elimi-
nate the effects of interstellar extinction: a SN Ia that has an unusually red
B − V color at maximum brightness is assumed to be intrinsically sublumi-
nous if its light curves rise and decline quickly, or of normal luminosity but
significantly reddened if its light curves rise and decline more slowly. With a
set of 20 SNe Ia consisting of the Calán/Tololo sample and their own objects,
they show that the dispersion decreases from 0.52 mag to 0.12 mag after
application of this “multi-color light curve shape” (MLCS) method. The re-
sults from an expanded set of nearly 50 SNe Ia indicate that the dispersion
decreases from 0.44 mag to 0.15 mag (Fig. 1). The resulting Hubble constant
is 65 ± 2 (statistical) ±7 (systematic) km s−1 Mpc−1, with an additional
systematic and zeropoint uncertainty of ±5 km s−1 Mpc−1. (Re-calibrations
of the Cepheid distance scale, and other recent refinements, lead to a best
estimate of H0 = 72 ± 8 km s−1 Mpc−1, where the error bar includes both
statistical and systematic uncertainties; Parodi et al. 2000; Freeman et al.
2001.) Riess et al. (1996a) also show that the Hubble flow is remarkably li-
near; indeed, SNe Ia now constitute the best evidence for linearity. Finally,
they argue that the dust affecting SNe Ia is not of circumstellar origin, and
show quantitatively that the extinction curve in external galaxies typically
does not differ from that in the Milky Way (cf. Branch & Tammann 1992,
but see Tripp 1998).
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Fig. 1. Hubble diagrams for SNe Ia (A. G. Riess 2001, private communication)
with velocities (km s−1) in the COBE rest frame on the Cepheid distance scale.
The ordinate shows distance modulus, m−M (mag). Top: The objects are assumed
to be standard candles and there is no correction for extinction; the result is σ = 0.42
mag and H0 = 58 ± 8 km s−1 Mpc−1. Bottom: The same objects, after correction
for reddening and intrinsic differences in luminosity. The result is σ = 0.15 mag
and H0 = 65±2 (statistical) km s−1 Mpc−1, subject to changes in the zeropoint of
the Cepheid distance scale. (Indeed, the latest results with SNe Ia favor H0 = 72
km s−1 Mpc−1.)

The advantage of systematically correcting the luminosities of SNe Ia
at high redshifts rather than trying to isolate “normal” ones seems clear in
view of evidence that the luminosity of SNe Ia may be a function of stellar
population. If the most luminous SNe Ia occur in young stellar populations
(e.g., Hamuy et al. 1996a, 2000; Branch, Baron, & Romanishin 1996; Ivanov,
Hamuy, & Pinto 2000), then we might expect the mean peak luminosity of
high-z SNe Ia to differ from that of a local sample. Alternatively, the use
of Cepheids (Population I objects) to calibrate local SNe Ia can lead to a
zeropoint that is too luminous. On the other hand, as long as the physics
of SNe Ia is essentially the same in young stellar populations locally and at
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high redshift, we should be able to adopt the luminosity correction methods
(photometric and spectroscopic) found from detailed studies of low-z SNe Ia.

Large numbers of nearby SNe Ia are now being found by my team’s Lick
Observatory Supernova Search (LOSS) conducted with the 0.76-m Katzman
Automatic Imaging Telescope (KAIT; Li et al. 2000; Filippenko et al. 2001;
Filippenko 2003; see http://astro.berkeley.edu/∼bait/kait.html). CCD ima-
ges are taken of ∼ 1000 galaxies per night and compared with KAIT “tem-
plate images” obtained earlier; the templates are automatically subtracted
from the new images and analyzed with computer software. The system re-
observes the best candidates the same night, to eliminate star-like cosmic
rays, asteroids, and other sources of false alarms. The next day, undergra-
duate students at UC Berkeley examine all candidates, including weak ones,
and they glance at all subtracted images to locate SNe that might be near
bright, poorly subtracted stars or galactic nuclei. LOSS discovered 20 SNe
(of all types) in 1998, 40 in 1999, 38 in 2000, 68 in 2001, and 82 in 2002, ma-
king it by far the world’s leading search for nearby SNe. The most important
objects were photometrically monitored through BV RI (and sometimes U)
filters (e.g., Li et al. 2001a, 2003; Modjaz et al. 2001; Leonard et al. 2002a,b),
and unfiltered follow-up observations (e.g., Matheson et al. 2001) were made
of most of them during the course of the SN search. This growing sample of
well-observed SNe Ia should allow us to more precisely calibrate the MLCS
method, as well as to look for correlations between the observed properties
of the SNe and their environment (Hubble type of host galaxy, metallicity,
stellar population, etc.).

4 Cosmological Uses: High Redshifts

These same techniques can be applied to construct a Hubble diagram with
high-redshift SNe Ia, from which the value of q0 = (ΩM/2) − ΩΛ can be
determined. With enough objects spanning a range of redshifts, we can mea-
sure ΩM and ΩΛ independently (e.g., Goobar & Perlmutter 1995). Contours
of peak apparent R-band magnitude for SNe Ia at two redshifts have diffe-
rent slopes in the ΩM–ΩΛ plane, and the regions of intersection provide the
answers we seek.

4.1 The Search

Based on the pioneering work of Norgaard-Nielsen et al. (1989), whose goal
was to find SNe in moderate-redshift clusters of galaxies, the SCP (Perlmutte-
ret al. 1995a, 1997) and the HZT (Schmidt et al. 1998) devised a strategy that
almost guarantees the discovery of many faint, distant SNe Ia “on demand,”
during a predetermined set of nights. This “batch” approach to studying di-
stant SNe allows follow-up spectroscopy and photometry to be scheduled in
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Fig. 2. Discovery image of SN 1997cj (28 April 1997), along with the template
image and an HST image obtained subsequently. The net (subtracted) image is
also shown.

advance, resulting in a systematic study not possible with random discover-
ies. Most of the searched fields are equatorial, permitting follow-up from both
hemispheres. The SCP was the first group to convincingly demonstrate the
ability to find SNe in batches.

Our approach is simple in principle; see Schmidt et al. (1998) for details,
and for a description of our first high-redshift SN Ia (SN 1995K). Pairs of first-
epoch images are obtained with wide-field cameras on large telescopes (e.g.,
the Big Throughput Camera on the CTIO 4-m Blanco telescope) during the
nights around new moon, followed by second-epoch images 3–4 weeks later.
(Pairs of images permit removal of cosmic rays, asteroids, and distant Kuiper-
belt objects.) These are compared immediately using well-tested software,
and new SN candidates are identified in the second-epoch images (Fig. 2).
Spectra are obtained as soon as possible after discovery to verify that the
objects are SNe Ia and determine their redshifts. Each team has already
found over nearly 200 SNe in concentrated batches, as reported in numerous
IAU Circulars (e.g., Perlmutter et al. 1995b, 11 SNe with 0.16 ∼< z ∼< 0.65;
Suntzeff et al. 1996, 17 SNe with 0.09 ∼< z ∼< 0.84). The observed SN Ia rate
at z ≈ 0.5 is consistent with the low-z SN Ia rate together with plausible
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star-formation histories (Pain et al. 2002; Tonry et al. 2003), but the error
bars on the high-z rate are still quite large.

Intensive photometry of the SNe Ia commences within a few days after
procurement of the second-epoch images; it is continued throughout the en-
suing and subsequent dark runs. In a few cases HST images are obtained. As
expected, most of the discoveries are on the rise or near maximum brightn-
ess. When possible, the SNe are observed in filters that closely match the
redshifted B and V bands; this way, the K-corrections become only a second-
order effect (Kim, Goobar, & Perlmutter 1996; Nugent, Kim, & Perlmutter
2002). We try to obtain excellent multi-color light curves, so that reddening
and luminosity corrections can be applied (Riess et al. 1996a; Hamuy et al.
1996a,b).

Although SNe in the magnitude range 22–22.5 can sometimes be spec-
troscopically confirmed with 4-m class telescopes, the signal-to-noise ratios
are low, even after several hours of integration. Certainly Keck, Gemini, the
VLT, or Magellan are required for the fainter objects (22.5–24.5 mag). With
the largest telescopes, not only can we rapidly confirm a substantial num-
ber of candidate SNe, but we can search for peculiarities in the spectra that
might indicate evolution of SNe Ia with redshift. Moreover, high-quality spec-
tra allow us to measure the age of a SN: we have developed a method for
automatically comparing the spectrum of a SN Ia with a library of spectra
from many different epochs in the development of SNe Ia (Riess et al. 1997).
Our technique also has great practical utility at the telescope: we can de-
termine the age of a SN “on the fly,” within half an hour after obtaining its
spectrum. This allows us to decide rapidly which SNe are best for subsequent
photometric follow-up, and we immediately alert our collaborators elsewhere.

4.2 Results

First, we note that the light curves of high-redshift SNe Ia are broader than
those of nearby SNe Ia; the initial indications (Leibundgut et al. 1996; Gold-
haber et al. 1997), based on small numbers of SNe Ia, are amply confirmed
with the larger samples (Goldhaber et al. 2001). Quantitatively, the amount
by which the light curves are “stretched” is consistent with a factor of 1 + z,
as expected if redshifts are produced by the expansion of space rather than by
“tired light” and other non-expansion hypotheses for the redshifts of objects
at cosmological distances. [For non-standard cosmological interpretations of
the SN Ia data, see Narlikar & Arp (1997) and Hoyle, Burbidge, & Narlikar
(2000).] We also demonstrate this spectroscopically at the 2σ confidence level
for a single object: the spectrum of SN 1996bj (z = 0.57) evolved more slowly
than those of nearby SNe Ia, by a factor consistent with 1 + z (Riess et al.
1997). More recently, we have used observations of SN 1997ex (z = 0.36)
at three epochs to conclusively verify the effects of time dilation: temporal
changes in the spectra are slower than those of nearby SNe Ia by roughly the
expected factor of 1.36. Although one might be able to argue that something
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other than universal expansion could be the cause of the apparent stretching
of SN Ia light curves at high redshifts, it is much more difficult to attribute
apparently slower evolution of spectral details to an unknown effect.

The formal value of ΩM derived from SNe Ia has changed with time.
The SCP published the first result (Perlmutter et al. 1995a), based on a
single object, SN 1992bi at z = 0.458: ΩM = 0.2± 0.6± 1.1 (assuming that
ΩΛ = 0). The SCP’s analysis of their first seven objects (Perlmutter et al.
1997) suggested a much larger value of ΩM = 0.88 ± 0.6 (if ΩΛ = 0) or
ΩM = 0.94± 0.3 (if Ωtotal = 1). Such a high-density universe seemed at odds
with other, independent measurements of ΩM . However, with the subsequent
inclusion of just one more object, SN 1997ap at z = 0.83 (the highest known
for a SN Ia at the time; Perlmutter et al. 1998), their estimates were revised
back down to ΩM = 0.2±0.4 if ΩΛ = 0, and ΩM = 0.6±0.2 if Ωtotal = 1; the
apparent brightness of SN 1997ap had been precisely measured with HST, so
it substantially affected the best fits.

Meanwhile, the HZT published (Garnavich et al. 1998a) an analysis of
four objects (three of them observed with HST), including SN 1997ck at
z = 0.97, at that time a redshift record, although they cannot be absolutely
certain that the object was a SN Ia because the spectrum is too poor. From
these data, the HZT derived that ΩM = −0.1 ± 0.5 (assuming ΩΛ = 0)
and ΩM = 0.35 ± 0.3 (assuming Ωtotal = 1), inconsistent with the high ΩM
initially found by Perlmutter et al. (1997) but consistent with the revised
estimate in Perlmutter et al. (1998). An independent analysis of 10 SNe Ia
using the “snapshot” distance method (with which conclusions are drawn
from sparsely observed SNe Ia) gave quantitatively similar conclusions (Riess
et al. 1998a). However, none of these early data sets carried the statistical
discriminating power to detect cosmic acceleration.

The SCP’s next results were announced at the 1998 January AAS mee-
ting in Washington, DC. A press conference was scheduled, with the stated
purpose of presenting and discussing the then-current evidence for a low-ΩM
universe as published by Perlmutter et al. (1998; SCP) and Garnavich et al.
(1998a; HZT). When showing the SCP’s Hubble diagram for SNe Ia, howe-
ver, Perlmutter also pointed out tentative evidence for acceleration! He said
that the conclusion was uncertain, and that the data were equally consistent
with no acceleration; the systematic errors had not yet been adequately as-
sessed. Essentially the same conclusion was given by the SCP in their talks
at a conference on dark matter, near Los Angeles, in February 1998 (Gold-
haber & Perlmutter 1998). Although it chose not to reveal them at the same
1998 January AAS meeting, the HZT already had similar, tentative evidence
for acceleration in their own SN Ia data set. The HZT continued to perform
numerous checks of their data analysis and interpretation, including fairly
thorough consideration of various possible systematic effects. Unable to find
any significant problems, even with the possible systematic effects, the HZT
reported detection of a nonzero value for ΩΛ (based on 16 high-z SNe Ia)
at the Los Angeles dark matter conference in February 1998 (Filippenko &
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Fig. 3. The upper panel shows the Hubble diagram for the low-z and high-z HZT
SN Ia sample with MLCS distances; see Riess et al. (1998b). Overplotted are three
world models: “low” and “high” ΩM with ΩΛ = 0, and the best fit for a flat universe
(ΩM = 0.28, ΩΛ = 0.72). The bottom panel shows the difference between data and
models from the ΩM = 0.20, ΩΛ = 0 prediction. Only the 10 best-observed high-z
SNe Ia are shown. The average difference between the data and the ΩM = 0.20,
ΩΛ = 0 prediction is ∼ 0.25 mag.

Riess 1998), and soon thereafter submitted a formal paper that was publis-
hed in September 1998 (Riess et al. 1998b). Their original Hubble diagram
for the 10 best-observed high-z SNe Ia is given in Fig. 3. With the MLCS
method applied to the full set of 16 SNe Ia, the HZT’s formal results were
ΩM = 0.24±0.10 if Ωtotal = 1, or ΩM = −0.35±0.18 (unphysical) if ΩΛ = 0.
If one demanded that ΩM = 0.2, then the best value for ΩΛ was 0.66± 0.21.
These conclusions did not change significantly when only the 10 best-observed
SNe Ia were used (Fig. 3; ΩM = 0.28± 0.10 if Ωtotal = 1).

Another important constraint on the cosmological parameters could be
obtained from measurements of the angular scale of the first acoustic peak of
the CMB (e.g., Zaldarriaga, Spergel, & Seljak 1997; Eisenstein, Hu, & Teg-
mark 1998); the SN Ia and CMB techniques provide nearly complementary
information. A stunning result was already available by mid-1998 from exi-
sting measurements (e.g., Hancock et al. 1998; Lineweaver & Barbosa 1998):
the HZT’s analysis of the SN Ia data in Riess et al. (1998b) demonstrated
that ΩM + ΩΛ = 0.94 ± 0.26 (Fig. 4), when the SN and CMB constraints
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Fig. 4. The HZT’s combined constraints from SNe Ia (left) and the position of
the first acoustic peak of the cosmic microwave background (CMB) angular power
spectrum, based on data available in mid-1998; see Garnavich et al. (1998b). The
contours mark the 68.3%, 95.4%, and 99.7% enclosed probability regions. Solid
curves correspond to results from the MLCS method; dotted ones are from the
∆m15(B) method; all 16 SNe Ia in Riess et al. (1998b) were used.

were combined (Garnavich et al. 1998b; see also Lineweaver 1998, Efstathiou
et al. 1999, and others).

Somewhat later (June 1999), the SCP published almost identical results,
implying an accelerating expansion of the Universe, based on an essentially
independent set of 42 high-z SNe Ia (Perlmutter et al. 1999). Their data,
together with those of the HZT, are shown in Fig. 5, and the corresponding
confidence contours in theΩΛ vs.ΩM plane are given in Fig. 6. This incredible
agreement suggested that neither group had made a large, simple blunder;
if the result was wrong, the reason must be subtle. Had there been only one
team working in this area, it is likely that far fewer astronomers and physicists
throughout the world would have taken the result seriously.

Moreover, already in 1998–1999 there was tentative evidence that the
“dark energy” driving the accelerated expansion was indeed consistent with
the cosmological constant, Λ. If Λ dominates, then the equation of state of
the dark energy should have an index w = −1, where the pressure (P ) and
density (ρ) are related according to w = P/(ρc2). Garnavich et al. (1998b)
and Perlmutter et al. (1999) were able to set an interesting limit, w ∼< −0.60
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Fig. 5. As in Fig. 3, but this time including both the HZT (Riess et al. 1998b)
and SCP (Perlmutter et al. 1999) samples of low-redshift and high-redshift SNe Ia.
Overplotted are three world models: ΩM = 0.3 and 1.0 with ΩΛ = 0, and a flat
universe (Ωtotal = 1.0) with ΩΛ = 0.7. The bottom panel shows the difference
between data and models from the ΩM = 0.3, ΩΛ = 0 prediction.

at the 95% confidence level. However, more high-quality data at z ≈ 0.5
are needed to narrow the allowed range, in order to test other proposed
candidates for dark energy such as various forms of “quintessence” (e.g.,
Caldwell, Davé, & Steinhardt 1998).

Although the CMB results appeared reasonably persuasive in 1998–1999,
one could argue that fluctuations on different scales had been measured with
different instruments, and that suble systematic effects might lead to er-
roneous conclusions. These fears were dispelled only 1–2 years later, when
the more accurate and precise results of the BOOMERANG collaboration
were announced (de Bernardis et al. 2000, 2002). Shortly thereafter the MA-
XIMA collaboration distributed their very similar findings (Hanany et al.
2000; Balbi et al. 2000; Netterfield et al. 2002; see also the TOCO, DASI,
and many other measurements). Figure 6 illustrates that the CMB measu-
rements tightly constrain Ωtotal to be close to unity; we appear to live in a
flat universe, in agreement with most inflationary models for the early Uni-
verse! Combined with the SN Ia results, the evidence for nonzero ΩΛ was
fairly strong. Making the argument even more compelling was the fact that
various studies of clusters of galaxies (see summary by Bahcall et al. 1999)
showed that ΩM ≈ 0.3, consistent with the results in Figs. 4 and 6. Thus, a
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Fig. 6. The combined constraints from SNe Ia (see Fig. 5) and the position of the
first acoustic peak of the CMB angular power spectrum, based on BOOMERANG
and MAXIMA data. The contours mark the 68.3%, 95.4%, and 99.7% enclosed
probability regions determined from the SNe Ia. According to the CMB, Ωtotal ≈
1.0.

“concordance cosmology” had emerged: ΩM ≈ 0.3, ΩΛ ≈ 0.7 — consistent
with what had been suspected some years earlier by Ostriker & Steinhardt
(1995; see also Carroll, Press, & Turner 1992).

Yet another piece of evidence for a nonzero value of Λ was provided by
the Two-Degree Field Galaxy Redshift Survey (2dFGRS; Peacock et al. 2001;
Percival et al. 2001; Efstathiou et al. 2002). Combined with the CMB maps,
their results are inconsistent with a universe dominated by gravitating dark
matter. Again, the implication is that about 70% of the mass-energy den-
sity of the Universe consists of some sort of dark energy whose gravitational
effect is repulsive. Very recently, results from the Wilkinson Microwave Ani-
sotropy Probe (WMAP) appeared; together with the 2dFGRS constraints,
they confirm and refine the concordance cosmology (ΩM = 0.27, ΩΛ = 0.73,
Ωbaryon = 0.044, H0 = 71± 4 km s−1 Mpc−1; Spergel et al. 2003).

The dynamical age of the Universe can be calculated from the cosmolo-
gical parameters. In an empty Universe with no cosmological constant, the
dynamical age is simply the “Hubble time” t0 (i.e., the inverse of the Hubble
constant); there is no deceleration. In the late-1990s, SNe Ia gave H0 = 65±7
km s−1 Mpc−1, and a Hubble time of 15.1 ± 1.6 Gyr. For a more complex
cosmology, integrating the velocity of the expansion from the current epoch



204 A.V. Filippenko

(z = 0) to the beginning (z =∞) yields an expression for the dynamical age.
As shown in detail by Riess et al. (1998b), by mid-1998 the HZT had obtained
a value of 14.2+1.0

−0.8 Gyr (with H0 = 65) using the likely range for (ΩM , ΩΛ)
that they measured. (The precision was so high because their experiment was
sensitive to roughly the difference between ΩM and ΩΛ, and the dynamical
age also varies in approximately this way.) Including the systematic uncer-
tainty of the Cepheid distance scale, which may be up to 10%, a reasonable
estimate of the dynamical age was 14.2±1.7 Gyr (Riess et al. 1998b). Again,
the SCP’s result was very similar (Perlmutter et al. 1999), since it was based
on nearly the same derived values for the cosmological parameters. The most
recent results, reported by Tonry et al. (2003) and adopting H0 = 72± 8 km
s−1 Mpc−1, give a dynamical age of 13.1±1.5 Gyr for the Universe — again,
in agreement with the WMAP result of 13.7± 0.2 Gyr.

This expansion age is also consistent with ages determined from various
other techniques such as the cooling of white dwarfs (Galactic disk > 9.5
Gyr; Oswalt et al. 1996), radioactive dating of stars via the thorium and
europium abundances (15.2 ± 3.7 Gyr; Cowan et al. 1997), and studies of
globular clusters (10–15 Gyr, depending on whether Hipparcos parallaxes of
Cepheids are adopted; Gratton et al. 1997; Chaboyer et al. 1998). The ages of
the oldest stars no longer seem to exceed the expansion age of the Universe;
the long-standing “age crisis” has evidently been resolved.

5 Discussion

Although the convergence of different methods on the same answer is reassu-
ring, and suggests that the concordance cosmology is correct, it is important
to vigorously test each method to make sure it is not leading us astray.
Moreover, only through such detailed studies will the accuracy and precision
of the methods improve, allowing us to eventually set better constraints on
the equation of state parameter, w. Here I discuss the systematic effects that
could adversely affect the SN Ia results.

High-redshift SNe Ia are observed to be dimmer than expected in an
empty Universe (i.e., ΩM = 0) with no cosmological constant. At z ≈ 0.5,
where the SN Ia observations have their greatest leverage on Λ, the difference
in apparent magnitude between an ΩM = 0.3 (ΩΛ = 0) universe and a flat
universe with ΩΛ = 0.7 is only about 0.25 mag. Thus, we need to find out if
chemical abundances, stellar populations, selection bias, gravitational lensing,
or grey dust can have an effect this large. Although both the HZT and SCP
had considered many of these potential systematic effects in their original
discovery papers (Riess et al. 1998b; Perlmutter et al. 1999), and had shown
with reasonable confidence that obvious ones were not greatly affecting their
conclusions, if was of course possible that they were wrong, and that the data
were being misinterpreted.
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5.1 Evolution

Perhaps the most obvious possible culprit is evolution of SNe Ia over cosmic
time, due to changes in metallicity, progenitor mass, or some other factor.
If the peak luminosity of SNe Ia were lower at high redshift, then the case
for ΩΛ > 0 would weaken. Conversely, if the distant explosions are more
powerful, then the case for acceleration strengthens. Theorists are not yet sure
what the sign of the effect will be, if it is present at all; different assumptions
lead to different conclusions (Höflich et al. 1998; Umeda et al. 1999; Nomoto
et al. 2000; Yungelson & Livio 2000).

Of course, it is extremely difficult, if not effectively impossible, to obtain
an accurate, independent measure of the peak luminosity of high-z SNe Ia,
and hence to directly test for luminosity evolution. However, we can more
easily determine whether other observable properties of low-z and high-z
SNe Ia differ. If they are all the same, it is more probable that the peak
luminosity is constant as well — but if they differ, then the peak luminosity
might also be affected (e.g., Höflich et al. 1998). Drell, Loredo, & Wasserman
(2000), for example, argue that there are reasons to suspect evolution, because
the average properties of existing samples of high-z and low-z SNe Ia seem
to differ (e.g., the high-z SNe Ia are more uniform).

The local sample of SNe Ia displays a weak correlation between light
curve shape (or peak luminosity) and host galaxy type, in the sense that the
most luminous SNe Ia with the broadest light curves only occur in late-type
galaxies. Both early-type and late-type galaxies provide hosts for dimmer
SNe Ia with narrower light curves (Hamuy et al. 1996a). The mean luminosity
difference for SNe Ia in late-type and early-type galaxies is ∼ 0.3 mag. In
addition, the SN Ia rate per unit luminosity is almost twice as high in late-
type galaxies as in early-type galaxies at the present epoch (Cappellaro et
al. 1997). These results may indicate an evolution of SNe Ia with progenitor
age. Possibly relevant physical parameters are the mass, metallicity, and C/O
ratio of the progenitor (Höflich et al. 1998).

We expect that the relation between light curve shape and peak luminosity
that applies to the range of stellar populations and progenitor ages encounte-
red in the late-type and early-type hosts in our nearby sample should also be
applicable to the range we encounter in our distant sample. In fact, the range
of age for SN Ia progenitors in the nearby sample is likely to be larger than
the change in mean progenitor age over the 4–6 Gyr lookback time to the
high-z sample. Thus, to first order at least, our local sample should correct
the distances for progenitor or age effects.

We can place empirical constraints on the effect that a change in the
progenitor age would have on our SN Ia distances by comparing subsamples
of low-redshift SNe Ia believed to arise from old and young progenitors. In the
nearby sample, the mean difference between the distances for the early-type
hosts (8 SNe Ia) and late-type hosts (19 SNe Ia), at a given redshift, is 0.04
± 0.07 mag from the MLCS method. This difference is consistent with zero.
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Fig. 7. Spectral comparison (in fλ) of SN 1998ai (z = 0.49; Keck spectrum) with
low-redshift (z < 0.1) SNe Ia at a similar age (∼ 5 days before maximum brightn-
ess), from Riess et al. (1998b). The spectra of the low-redshift SNe Ia were resam-
pled and convolved with Gaussian noise to match the quality of the spectrum of
SN 1998ai. Overall, the agreement in the spectra is excellent, tentatively suggesting
that distant SNe Ia are physically similar to nearby SNe Ia. SN 1994B (z = 0.09)
differs the most from the others, and was included as a “decoy.”

Even if the SN Ia progenitors evolved from one population at low redshift
to the other at high redshift, we still would not explain the surplus in mean
distance of 0.25 mag over the ΩΛ = 0 prediction. Moreover, in a major study
of high-redshift SNe Ia as a function of galaxy morphology, the SCP found
no clear differences (except for the amount of scatter; see Sect. 5.2) between
the cosmological results obtained with SNe Ia in late-type and early-type
galaxies (Sullivan et al. 2003).

It is also reassuring that initial comparisons of high-z SN Ia spectra ap-
pear remarkably similar to those observed at low redshift. For example, the
spectral characteristics of SN 1998ai (z = 0.49) appear to be essentially indi-
stinguishable from those of normal low-z SNe Ia; see Fig. 7. In fact, the most
obviously discrepant spectrum in this figure is the second one from the top,
that of SN 1994B (z = 0.09); it is intentionally included as a “decoy” that
illustrates the degree to which even the spectra of nearby, relatively normal
SNe Ia can vary. Nevertheless, it is important to note that a dispersion in lu-
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Fig. 8. Heavily smoothed spectra of two high-z SNe (SN 1999ff at z = 0.455 and
SN 1999fv at z = 1.19; quite noisy below ∼3500 Å) are presented along with several
low-z SN Ia spectra (SNe 1989B, 1992A, and 1981B), a SN Ib spectrum (SN 1993J),
and a SN Ic spectrum (SN 1994I); see Filippenko (1997) for a discussion of spectra
of various types of SNe. The date of the spectra relative to B-band maximum is
shown in parentheses after each object’s name. Specific features seen in SN 1999ff
and labeled with a letter are discussed by Coil et al. (2000). This comparison shows
that the two high-z SNe are most likely SNe Ia.

minosity (perhaps 0.2 mag) exists even among the other, more normal SNe Ia
shown in Fig. 7; thus, our spectra of SN 1998ai and other high-z SNe Ia are
not yet sufficiently good for independent, precise determinations of peak lu-
minosity from spectral features (Nugent et al. 1995). Many of them, however,
are sufficient for ruling out other SN types (Fig. 8), or for identifying gross
peculiarities such as those shown by SNe 1991T and 1991bg; see Coil et al.
(2000).

We can help verify that the SNe at z ≈ 0.5 being used for cosmology do not
belong to a subluminous population of SNe Ia by examining restframe I-band
light curves. Normal, nearby SNe Ia show a pronounced second maximum in
the I band about a month after the first maximum and typically about 0.5
mag fainter (e.g., Ford et al. 1993; Suntzeff 1996). Subluminous SNe Ia, in
contrast, do not show this second maximum, but rather follow a linear decline
or show a muted second maximum (Filippenko et al. 1992a). As discussed by
Riess et al. (2000), tentative evidence for the second maximum is seen from
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Fig. 9. The MLCS fit (Riess et al. 1998b; left panel) and the stretch method fit
(Perlmutter et al. 1999; right panel) for SN 2000cx. The MLCS fit is the worst we
had ever seen through 2000. For the stretch method fit, the solid line is the fit
to all the data points from t = −8 to 32 days, the dash-dotted line uses only the
premaximum datapoints, and the dashed line only the postmaximum datapoints.
The three fits give very different stretch factors. From Li et al. (2001a).

the HZT’s existing J-band (restframe I-band) data on SN 1999Q (z = 0.46);
see Fig. 10. Additional tests with spectra and near-infrared light curves are
currently being conducted.

Another way of using light curves to test for possible evolution of SNe Ia
is to see whether the rise time (from explosion to maximum brightness) is the
same for high-redshift and low-redshift SNe Ia; a difference might indicate
that the peak luminosities are also different (Höflich et al. 1998). Riess et
al. (1999c) measured the risetime of nearby SNe Ia, using data from KAIT,
the Beijing Astronomical Observatory (BAO) SN search, and a few amateur
astronomers. Though the exact value of the risetime is a function of peak
luminosity, for typical low-redshift SNe Ia it is 20.0 ± 0.2 days. Riess et al.
(1999b) pointed out that this differs by 5.8σ from the preliminary risetime of
17.5±0.4 days reported in conferences by the SCP (Goldhaber et al. 1998a,b;
Groom 1998). However, more thorough analyses of the SCP data (Aldering,
Knop, & Nugent 2000; Goldhaber et al. 2001) show that the high-redshift
uncertainty of ±0.4 days that the SCP originally reported was much too small
because it did not account for systematic effects. The revised discrepancy with
the low-redshift risetime is about 2σ or less. Thus, the apparent difference
in risetimes might be insignificant. Even if the difference is real, however, its
relevance to the peak luminosity is unclear; the light curves may differ only
in the first few days after the explosion, and this could be caused by small
variations in conditions near the outer part of the exploding white dwarf that
are inconsequential at the peak.
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Fig. 10. Restframe I-band (observed J-band) light curve of SN 1999Q (z = 0.46,
5 solid points; Riess et al. 2000), and the I-band light curves of several nearby
SNe Ia. Subluminous SNe Ia exhibit a less prominent second maximum than do
normal SNe Ia.

Although there are no clear signs that cosmic evolution of SNe Ia seriously
compromises our results, it is wise to remain vigilant for possible problems. At
low redshifts, for example, we already know that some SNe Ia don’t conform
with the correlation between light curve shape and luminosity. SN 2000cx in
the S0 galaxy NGC 524, for example, has light curves that cannot be fit well
by any of the fitting techniques currently available (Li et al. 2001a; Filippenko
2003); see Fig. 9. Its late-time color is remarkably blue, inconsistent with the
homogeneity described by Phillips et al. (1999). The spectral evolution of
SN 2000cx is peculiar as well: the photosphere appears to have remained hot
for a long time, and both iron-peak and intermediate-mass elements move
at very high velocities. An even more peculiar object is SN 2002cx (Li et al.
2003; Filippenko 2003). It is spectroscopically bizarre, with extremely low
expansion velocities and almost no evidence for intermediate-mass elements.
The nebular phase was reached incredibly soon after maximum brightness,
despite the low velocity of the ejecta, suggesting that the ejected mass is
small. SN 2002cx was subluminous by ∼ 2 mag at all optical wavelengths
relative to normal SNe Ia, despite the early-time spectroscopic resemblance to
the somewhat overluminous SN 1991T. The R-band and I-band light curves
of SN 2002cx are completely unlike those of normal SNe Ia. No existing
theoretical model successfully explains all observed aspects of SN 2002cx. If
there are more strange beasts like SNe 2000cx and 2002cx at high redshifts
than at low redshifts, systematic errors may creep into the analysis of high-z
SNe Ia.
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5.2 Extinction

Our SN Ia distances have the important advantage of including corrections
for interstellar extinction occurring in the host galaxy and the Milky Way.
Extinction corrections based on the relation between SN Ia colors and lumi-
nosity improve distance precision for a sample of nearby SNe Ia that includes
objects with substantial extinction (Riess et al. 1996a); the scatter in the
Hubble diagram is much reduced. Moreover, the consistency of the measured
Hubble flow from SNe Ia with late-type and early-type hosts (see Sect. 5.1)
shows that the extinction corrections applied to dusty SNe Ia at low reds-
hift do not alter the expansion rate from its value measured from SNe Ia in
low-dust environments.

In practice, the high-redshift SNe Ia generally appear to suffer very little
extinction; their B−V colors at maximum brightness are normal, suggesting
little color excess due to reddening. The most detailed available study is that
of the SCP (Sullivan et al. 2003): they found that the scatter in the Hub-
ble diagram is minimal for SNe Ia in early-type host galaxies, but increases
for SNe Ia in late-type galaxies. Moreover, on average the SNe in late-type
galaxies are slightly fainter (by 0.14 ± 0.09 mag) than those in early-type
galaxies. Finally, at peak brightness the colors of SNe Ia in late-type galaxies
are marginally redder than those in early-type galaxies. Sullivan et al. (2003)
conclude that extinction by dust in the host galaxies of SNe Ia is one of the
major sources of scatter in the high-redshift Hubble diagram. By restricting
their sample to SNe Ia in early-type host galaxies (presumably with minimal
extinction), they obtain a very tight Hubble diagram that suggests a nonzero
value for ΩΛ at the 5σ confidence level, under the assumption that Ωtotal = 1.
In the absence of this assumption, SNe Ia in early-type hosts still imply that
ΩΛ > 0 at nearly the 98% confidence level. The results for ΩΛ with SNe Ia
in late-type galaxies are quantitatively similar, but statistically less secure
because of the larger scatter.

Riess, Press, & Kirshner (1996b) found indications that the Galactic ra-
tios between selective absorption and color excess are similar for host galaxies
in the nearby (z ≤ 0.1) Hubble flow. Yet, what if these ratios changed with
lookback time (e.g., Aguirre 1999a)? Could an evolution in dust-grain size de-
scending from ancestral interstellar “pebbles” at higher redshifts cause us to
underestimate the extinction? Large dust grains would not imprint the red-
dening signature of typical interstellar extinction upon which our corrections
necessarily rely.

However, viewing our SNe through such gray interstellar grains would
also induce a dispersion in the derived distances. Using the results of Ha-
tano, Branch, & Deaton (1998), Riess et al. (1998b) estimate that the ex-
pected dispersion would be 0.40 mag if the mean gray extinction were 0.25
mag (the value required to explain the measured MLCS distances without a
cosmological constant). This is significantly larger than the 0.21 mag disper-
sion observed in the high-redshift MLCS distances. Furthermore, most of the
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observed scatter is already consistent with the estimated statistical errors,
leaving little to be caused by gray extinction. Nevertheless, if we assumed
that all of the observed scatter were due to gray extinction, the mean shift in
the SN Ia distances would be only 0.05 mag. With the existing observations,
it is difficult to rule out this modest amount of gray interstellar extinction.

Gray intergalactic extinction could dim the SNe without either telltale
reddening or dispersion, if all lines of sight to a given redshift had a similar
column density of absorbing material. The component of the intergalactic
medium with such uniform coverage corresponds to the gas clouds producing
Lyman-α forest absorption at low redshifts. These clouds have individual H I
column densities less than about 1015 cm−2 (Bahcall et al. 1996). However,
they display low metallicities, typically less than 10% of solar. Gray extinction
would require larger dust grains which would need a larger mass in heavy
elements than typical interstellar grain size distributions to achieve a given
extinction. It is possible that large dust grains are blown out of galaxies by
radiation pressure, and are therefore not associated with Lyman-α clouds
(Aguirre 1999b).

But even the dust postulated by Aguirre (1999a,b) and Aguirre & Hai-
man (1999) is not completely gray, having a size of about 0.1 µm. We can test
for such nearly gray dust by observing high-redshift SNe Ia over a wide wa-
velength range to measure the color excess it would introduce. If AV = 0.25
mag, then E(U−I) and E(B−I) should be 0.12–0.16 mag (Aguirre 1999a,b).
If, on the other hand, the 0.25 mag faintness is due to Λ, then no such red-
dening should be seen. This effect is measurable using proven techniques; so
far, with just one SN Ia (SN 1999Q; Fig. 11), our results favor the no-dust
hypothesis to better than 2σ (Riess et al. 2000). More work along these lines
is in progress.

5.3 The Smoking Gun

Suppose, however, that for some reason the dust is very gray, or our color
measurements are not sufficiently precise to rule out Aguirre’s (or other) dust.
Or, perhaps some other astrophysical systematic effect is fooling us, such as
possible evolution of the white dwarf progenitors (e.g., Höflich et al. 1998;
Umeda et al. 1999), or gravitational lensing (Wambsganss, Cen, & Ostriker
1998). The most decisive test to distinguish between Λ and cumulative sy-
stematic effects is to examine the deviation of the observed peak magnitude
of SNe Ia from the magnitude expected in the low-ΩM , zero-Λ model. If Λ is
positive, the deviation should actually begin to decrease at z ≈ 1; we will be
looking so far back in time that the Λ effect becomes small compared with
ΩM , and the Universe is decelerating at that epoch. If, on the other hand, a
systematic bias such as gray dust or evolution of the white dwarf progenitors
is the culprit, we expect that the deviation of the apparent magnitude will
continue growing, unless the systematic bias is set up in such an unlikely way
as to mimic the effects of Λ (Drell et al. 2000). A turnover, or decrease of
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Fig. 11. Color excess, EB−I , for SN 1999Q and different dust models (Riess et al.
2000). The data are most consistent with no dust and ΩΛ > 0.

the deviation of apparent magnitude at high redshift, can be considered the
“smoking gun” of Λ.

In a wonderful demonstration of good luck and hard work, Riess et al.
(2001) report on HST observations of a probable SN Ia at z ≈ 1.7 (SN 1997ff,
the most distant SN ever observed) that suggest the expected turnover is in-
deed present, providing a tantalizing glimpse of the epoch of deceleration.
(See also Beńıtez et al. 2002, which corrects the observed magnitude of SN
1997ff for gravitational lensing.) SN 1997ff was discovered by Gilliland &
Phillips (1998) in a repeat HST observation of the Hubble Deep Field–North,
and serendipitously monitored in the infrared with HST/NICMOS. The peak
apparent SN brightness is consistent with that expected in the decelerating
phase of the concordance cosmological model, ΩM ≈ 0.3, ΩΛ ≈ 0.7 (Fig. 12).
It is inconsistent with gray dust or simple luminosity evolution, when com-
bined with the data for SNe Ia at z ≈ 0.5. On the other hand, it is wise to
remain cautious: the error bars are large, and it is always possible that we
are being fooled by this single object. The HZT and SCP currently have pro-
grams to find and measure more SNe Ia at such high redshifts. For example,
SN candidates at very high redshifts (e.g., Giavalisco et al. 2002) have been
found by “piggybacking” on the Great Observatories Origins Deep Survey
(GOODS) being conducted with the Advanced Camera for Surveys aboard
HST; see Fig. 13
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Fig. 12. Hubble diagram for SNe Ia relative to an empty universe (Ω = 0) compared
with cosmological and astrophysical models (Riess et al. 2001). Low-redshift SNe Ia
are from Hamuy et al. (1996a) and Riess et al. (1999a). The magnitude of SN 1997ff
at z = 1.7 has been corrected for gravitational lensing (Beńıtez et al. 2002). The
measurements of SN 1997ff are inconsistent with astrophysical effects that could
mimic previous evidence for an accelerating universe from SNe Ia at z ≈ 0.5.

Fig. 13. SN 2002hp, a high-redshift supernova from the GOODS program using
HST. One can see it brightening and subsequently fading with time. The assumed
host galaxy is at the top of each frame.

Less ambitious programs, concentrating on SNe Ia at z ∼> 0.8, have al-
ready been completed (HZT: Tonry et al. 2003) or are nearing completion
(SCP). Tonry et al. (2003) measured several SNe Ia at z ≈ 1, and their de-
viation of apparent magnitude from the low-ΩM , zero-Λ model is roughly the
same as that at z ≈ 0.5 (Fig. 14), in agreement with expectations based on
the results of Riess et al. (2001). Moreover, the new sample of high-redshift
SNe Ia presented by Tonry et al., analyzed with methods distinct from (but
similar to) those used previously, confirm the result of Riess et al. (1998b) and
Perlmutter et al. (1999) that the expansion of the Universe is accelerating.

By combining all of the available data sets, Tonry et al. (2003) are able
to use about 200 SNe Ia, obtaining an incredibly firm detection of ΩΛ > 0
(Fig. 15). They place the following constraints on cosmological quantities:
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Fig. 14. The new Tonry et al. (2003) data and other data points are shown in
a residual Hubble diagram: apparent magnitude difference between the expected
magnitude in an empty universe and the observed magnitude of SNe Ia at each
redshift. The highlighted points correspond to median values in eight redshift bins.
From top to bottom the curves show (ΩM , ΩΛ) = (0.3, 0.7), (0.3,0.0), and (1.0,0.0),
respectively.

Fig. 15. From Tonry et al. (2003), the probability contours for ΩΛ versus ΩM are
shown at 1σ, 2σ, and 3σ [assuming w = −1, where w = P/(ρc2)]. Also shown are the
corresponding contours when a prior of ΩMh = 0.20 ± 0.03 (where H0 = 100h km
s−1 Mpc−1) is adopted from the 2dFGRS (Percival et al. 2001). These constraints
use the full sample of 172 SNe Ia with z > 0.01 and AV < 0.5 mag.

(1) If the equation of state parameter of the dark energy is w = −1, then
H0t0 = 0.96 ± 0.04, and ΩΛ − 1.4ΩM = 0.35 ± 0.14. (2) Including the con-
straint of a flat universe, they find that ΩM = 0.28±0.05, independent of any
large-scale structure measurements. (3) Adopting a prior based on the 2dF-
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GRS constraint on ΩM (Percival et al. 2001) and assuming a flat universe,
they derive that −1.48 < w < −0.72 at 95% confidence. (4) Adopting the
2dFGRS results, they find ΩM = 0.28 and ΩΛ = 0.72, independent of any
assumptions about Ωtotal. These constraints are similar in precision and in
value to very recent conclusions reported using WMAP (Spergel et al. 2003),
also in combination with the 2dFGRS. Complete details on the SN Ia results
can be found in Tonry et al. (2003).

5.4 Measuring the Dark Energy Equation of State

Every energy component in the Universe can be parameterized by the way its
density varies as the Universe expands (scale factor a), with ρ ∝ a−3(1+w),
and w reflects the component’s equation of state, w = P/(ρc2), where P
is the pressure exerted by the component. So for matter, w = 0, while an
energy component that does not vary with scale factor has w = −1, as in the
cosmological constant Λ. Some really strange energies may have w < −1: their
density increases with time (Carroll, Hoffman, & Trodden 2003)! Clearly, a
good estimate of w becomes the key to differentiating between models.

The CMB observations imply that the geometry of the universe is close
to flat, so the energy density of the dark component is simply related to the
matter density by Ωx = 1 − ΩM . This allows the luminosity distance as a
function of redshift to be written as

DL(z) =
c(1 + z)
H0

∫ z

0

[1 +Ωx((1 + z)3w − 1)]−1/2

(1 + z)3/2
dz ,

showing that the dark energy density and equation of state directly influence
the apparent brightness of standard candles. As demonstrated graphically in
Fig. 16, SNe Ia observed over a wide range of redshifts can constrain the dark
energy parameters to a cosmologically interesting accuracy.

But there are two major problems with using SNe Ia to measure w. First,
systematic uncertainties in SN Ia peak luminosity limit how wellDL(z) can be
measured. While statistical uncertainty can be arbitrarily reduced by finding
thousands of SNe Ia, intrinsic SN properties such as evolution and proge-
nitor metallicity, and observational limits like photometric calibrations and
K-corrections, create a systematic floor that cannot be decreased by sheer
force of numbers. We expect that systematics can be controlled to at best
3%, with considerable effort.

Second, SNe at z > 1.0 are very hard to discover and study from the
ground. As discussed above, both the HZT and the SCP have found a few
SNe Ia at z > 1.0, but the numbers and quality of these light curves are
insufficient for a w measurement. Large numbers of SNe Ia at z > 1.0 are
best left to a wide-field optical/infrared imager in space, such as the proposed
Supernova/ Acceleration Probe (SNAP; Nugent et al. 2000) satellite.

Fortunately, an interesting measurement of w can be made at present.
The current values of ΩM from many methods (most recently WMAP: 0.27;
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Fig. 16. Constraints on Ωx and w from SN data sets collected at z = 0.2 (solid li-
nes), z = 0.7 (dashed lines), and z = 1.6 (dash-dot lines). The shaded area indicates
how an independent estimate of ΩM with a 10% error can help constrain w.

Fig. 17. Expected constraints on w with the desired final ESSENCE data set of
200 SNe Ia, 30 of which (in the redshift range 0.6 < z < 0.8) are to be observed with
HST. The thin lines are for SNe alone while the thick lines assume an uncertainty
in ΩM of 7%. The final ESSENCE data will constrain the value of w to ∼10%.

Spergel et al. 2003) make an excellent substitute for those expensive SNe
at z > 1.0. Figure 16 shows that a SN Ia sample with a maximum redshift
of z = 0.8, combined with the current 10% error on ΩM , will do as well
as a SN Ia sample at much higher redshifts. Within a few years, the Sloan
Digital Sky Survey and WMAP will solidify the estimate of ΩM and sharpen
w further.

Both the SCP and the HZT are involved in multi-year programs to dis-
cover and monitor hundreds of SNe Ia for the purpose of measuring w. For
example, the HZT’s project, ESSENCE (Equation of State: SupErNovae trace
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Cosmic Expansion), is designed to discover 200 SNe Ia evenly distributed in
the 0.2 < z < 0.8 range. The CTIO 4-m telescope and mosaic camera are
being used to find and follow the SNe by imaging on every other dark night
for several consecutive months of the year. Keck and other large telescopes
are being used to get the SN spectra and redshifts. Project ESSENCE will
eventually provide an estimate of w to an accuracy of ∼10% (Fig. 17).

Farther in the future, large numbers of SNe Ia to be found by the SNAP
satellite and the Large-area Synoptic Survey Telescope (the “Dark Matter
Telescope”; Tyson & Angel 2001) could reveal whether the value of w de-
pends on redshift, and hence should give additional constraints on the nature
of the dark energy. High-redshift surveys of galaxies such as DEEP2 (Davis et
al. 2001), as well as space-based missions to map the CMB (Planck), should
provide additional evidence for (or against) Λ. Observational cosmology pro-
mises to remain exciting for quite some time!
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Abstract. Dark energy accounts for about 70% of the content of our Universe.
Perhaps the best candidate to parametrize the dark energy is a scalar field with
only gravitational interactions called quintessence.

We first present a generic theoretical approach to quintessence. We show that if
the minimum of the scalar potential is at V |min = 0 (i.e. there is no arbitrary scale)
then the behavior of scalar fields can be determined in a model independent way. Its
equation of state parameter wφ takes most of the time the values wφ = 1, −1, wφo.
The size of the different regions can also be calculated in a model independent way.
The number of free parameters for quintessence models is therefore quite limited.

We show that late time phase transition models are good candidates for quint-
essence and they could explain why the acceleration of the Universe is at such a
late time. We show how these models can be obtained from particle physics and
in particular from non-abelian gauge dynamics. The only free parameter for these
gauge models is its particle content as it is the case for the standard model of
particle physics.

In the second part, we show how a phenomenological approach to the CMB can
be implemented. We show that with only four parameters we cover a great number
of theoretical models, including quintessence. By varying these parameters and
comparing with the CMB we can, in principle, determine the relevant cosmological
quantities such as the phase transition scale (when the quintessence field appears)
and the present equation of state parameter wφo.

1 Introduction

In recent time the cosmological observations on the cosmic microwave back-
ground radiation (“CMB”) [1] and the supernova project SN1a [2] have lead
to conclude that the universe is flat and it is expanding with an accelera-
ting velocity. These conclusions show that the universe is now dominated
by an energy density with negative pressure with ΩDE = 0.7 ± 0.1 and
wDE ≡ pDE/ρDE < −0.78 [1]. This energy is generically called the dark
energy. Structure formation also favors a non-vanishing dark energy [3]. Be-
sides dark energy we also have baryonic matter Ωb � 0.05 and dark matter
ΩDM = 0.25±0.1, necessary for structure formation, but we still do not know
its origin. So, we have a universe which contains only 5% of particles of the
well known Standard Model (“SM”) of particle physics and 95% of matter
unknown to us on earth.

A. de la Macorra, Quintessence and Dark Energy, Lect. Notes Phys. 646, 225–257 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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It is not clear yet what the dark energy is. It could be a true cosmological
constant, quintessence (scalar field with gravitationally interaction) [9] or
some other kind of exotic energy density. Perhaps the best way of determining
the nature of dark energy is trough its equation of state parameter wDE .
The survey of redshifts of the different objects should in principle allow as to
determine the value of wDEo (o subscript referees to present day quantities)
but only at small redshifts z ≤ 2 with zo = 0. The result from the SN1A
project [2] sets an upper limit to wφo < −2/3 but does not distinguish a
true cosmological constant with wΛ ≡ −1, quintessence or any other form of
exotic energy with wφo < −2/3. It would be very interesting if in the future
the SN1a survey could constrain better the value of wφo. On the other hand,
the CMB could give us information not only on the value of wDEo but also
on its evolution during matter domination era, i.e. for a redshift z ≤ 8.

Energy density of elementary particles of the Standard Model (e.g. quarks,
leptons and bosons) have a non-negative pressure p = wρ with w = 1/3
for relativistic and w = 0 non-relativistic particles. Therefore, an energy
density with negative pressure, the “dark energy”, has to be explain from a
particle physics point via particles that are not contained in the SM. The
only particles that can give a negative pressure are particles with a non
trivial self potential V and since fermions and bosons cannot have a vacuum
expectation value (these particles transform non-trivially under the Lorentz
transformation) the only possibility left are scalar fields. The scalar fields can
be fundamental fields, as the Higgs field or the supersymmetric partners of
the SM fermion particles, or they could be composite fields as meson fields
in QCD.

In order to determine what the nature of the dark energy is we can pro-
ceed with two different approaches. On the one hand we can propose models
derived from particle physics and see if these models give the correct obser-
vable data. On the other hand we could set a model independent analysis
on the evolution of the equation of state parameter wDE and determine its
impact on the observed CMB spectrum and compare it with the data in order
to infer the type of dark energy density.

In Sect. 2 we will discuss the theoretical approaches to obtain a dark
energy from field theory. In Sect. 3 we introduce a particle physics model,
based on gauge dynamics, that gives a dark energy field in a natural way. In
Sect. 4 we study the possibility that the gauge group responsible for giving
the dark energy gives at the same time the missing dark matter. In Sect. 5
we analyze a model independent phenomenological approach to dark energy
and in Sect. 6 we present our conclusions.



Quintessence and Dark Energy 227

2 Theoretical Approach

2.1 Cosmological Evolution of Quintessence

We will now determine the cosmological evolution of a scalar field φ with
arbitrary potential V (φ) and with only gravitational interaction with all other
fields. This field is called quintessence.

The cosmological evolution of φ with an arbitrary potential V (φ) can be
determined from a system of differential equations describing a spatially flat
Friedmann–Robertson–Walker universe in the presence of a barotropic fluid
energy density ρb that can be either radiation or matter. The equations are

Ḣ = −1
2
(ρb + pb + φ̇2),

ρ̇ = −3H(ρ+ p), (1)

φ̈ = −3Hφ̇− dV (φ)
dφ

,

where H is the Hubble parameter, φ̇ = dφ/dt, ρ (p) is the total energy density
(pressure). We will be working in a flat universe so that H2 = ρ/3 and we
use natural units m2

p = G/8π ≡ 1. If is useful to make a change of variables

x ≡ φ̇√
6H

and y ≡
√
V√
3H

and the equations (1) take the following form [27, 26]:

xN = −3x+

√
3
2
λ y2 +

3
2
x[2x2 + γb(1− x2 − y2)]

yN = −
√

3
2
λx y +

3
2
y[2x2 + γb(1− x2 − y2)] (2)

HN = −3
2
H[2x2 + γb(1− x2 − y2)]

where N is the logarithm of the scale factor a, N ≡ Log(a); fN ≡ df/dN for
f = x, y,H; γb = 1 + wb and λ(N) ≡ −V ′/V with V ′ = dV/dφ. In terms
of x, y the energy density parameter is Ωφ = x2 + y2 while the equation of
state parameter is given by γφ − 1 = wφ ≡ pφ/ρφ = x2−y2

x2+y2 . It is clear that
0 ≤ x2, y2 ≤ 1.

The Friedmann or constraint equation for a flat universe Ωb + Ωφ = 1
must supplement equations (2) which are valid for any scalar potential as long
as the interaction between the scalar field and matter or radiation is gravita-
tional only. This set of differential equations is non-linear and for most cases
has no analytical solutions. A general analysis for arbitrary potentials is per-
formed in [25, 26]. All model dependence falls on two quantities: λ(N) and
the constant parameter γb = 1, 4/3 for matter or radiation, respectively. We
will be interested in studying scalar fields that lead to a late time accelerated
universe, i.e. to quintessence, and in this case we will have a decreasing λ(N)
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[26] and a late time behavior λ(N)→ 0. For constant λ(N) (exponential po-
tential) one can have an accelerating universe if λ(N) <

√
6 but its dynamics

would lead to an accelerating universe too rapidly, i.e. not at a late time as
ours, unless we fine tune the initial conditions.

It is also useful to have the evolution of Ωφ = ρφ/3H2 = x2 + y2 and
γφ = 1 + wφ (0 ≤ γφ ≤ 2) derived from (2), [21]

(Ωφ)N = 3(γb − γφ)Ωφ(1−Ωφ) (3)

(γφ)N = 3γφ(2− γφ)
(
λ

√
Ωφ
3γφ
− 1

)
. (4)

2.2 Evolution of x, y, and H

We are interested in studying scalar potentials that lead to quintessence, i.e. a
late time (present day) acceleration period of the universe. For this to happen
one needs λ = −mplV

′/V → 0 in the asymptotic limit (or to a constant less
then one). An accelerating universe (slow roll conditions) requires |λ| < 1
and we want this period to be at a late time. We will consider potentials
with V ≥ 0 and since the φ field evolves to its minimum V ′ < 0 and λ ≥ 0
where we are assuming, without loss of generality, models with φ ≥ 0. We
will define the phase transition scale Λc in terms of the potential by [35]

Λc = V (φi)1/4 (5)

where V (φi) ≡ Vi is the initial value of the potential and we will consider
models that have an initial value

λi = −mpl
V ′(φi)
V (φi)

	 1. (6)

From now on the subscript i stands for initial conditions, i.e. at the con-
densation Λc when V appears. From dimensional analysis we expect λi =
O(mpl/Λc) 	 1. If we have a phase transition at a scale Λc which leads to
the appearance of the φ field (e.g. composite field) then we would also expect
φi � Λc since Λc is the relevant scale of the process. We will be working
with a late time phase transition but Λc could be as large as 1016GeV and
we would still have λi 	 1. An interesting general property of these mo-
dels is the presence of a many e-folds scaling period in which λ is practically
constant and Ωφ � 1.

A semi-analytic approach [18] is useful to study some properties of the
differential equation system given by (2). To do this we initially consider
only the terms that are proportional to λ, since λi 	 1, then we follow the
evolution of x, y and H so every period has a characteristic set of simplified
differential equations. We see from (2) that the leading terms in x and y, for

λ 	 1, are xN =
√

3
2λ y

2 and yN = −
√

3
2λx y. Combining these equations

we have
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xNx = −yNy (7)

with a constant circular solution [18]

Ωφ ≡ x2 + y2 = x2
i (Ni) + y2

i (Ni) ≡ Ωφi(Ni). (8)

Since xN is positive x will grow while yN is negative giving a decreasing y.
This initial period ends at a scale Nmin with x2(Nmin) � Ωφi(Ni) 	 y2

min.
Since λi 	 1, the x and y derivatives are quite large and the amount of e-
folds between the initial value yi until y reaches its minimal value ymin is very
short. An easy estimate can be derived from yN/y = −cλ 	 1, c =

√
3/2x

giving 1 	 Nmin − Ni = Log[ymin/yi]/cλi = O(1/λi), in the assumption
cλi = cte.

The minimal value of y, given at Nmin, can be obtained from (2) with
yN = 0. At his point we have [35]

λ(Nmin) = −
√

2
3
HN

Hx
=

√
3
2

[γb +Ωφi(2− γb)]√
Ωφi

� 1√
Ωφi

(9)

where we have taken x2(Nmin) � Ωφi and HN/H = −3/2(γb +Ωφi(2− γb))
since y2

min � 1. We see that λ in (9) is of order 1/
√
Ωφi and we have

λi/λ(Nmin)	 1.
The value of ymin depends on the functional form of V (φ), which sets the

functional form of λ = −V ′/V . In general we have y2
min = V (φmin)/(3H2

min)
but without specifying V (φ) it is not possible to determine ymin. For an
inverse power law potential with V = Λ4+n

c φ−n = 3y2H2 one has

ymin =
Λ

4+n
2

c φ
−n/2
min√

3Hmin

(10)

= yi

(
φi
φmin

)n
2

= yi

(
1

λi
√
Ωφi

)n
2

where we have approximated H2
min � H2

i = Vi/3y2
i = Λ4+n

c φ−n
i /3y2

i in (10)
since Nmin −Ni � 1 and we have taken from (9) φmin = n/λmin � n

√
Ωφi

and φi = n/λi. Taking the initial value of φi = n/λi = nΛc then (10) gives

ymin = yi

(
Λc√
Ωφi

)n/2
. (11)

We see that ymin = O(λ−n/2
i ) � O(Λn/2c )� yi if Ωφi is not too small. At the

end of the initial period we have y2 � 1 and λx = O(1). Since xN/x is now
negative

xN � (−3 + 3/2γb)x (12)

|x| decreases as
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x(N) = x(Nmin)e(−3+ 3
2γb)(N−Nmin). (13)

leading to the scaling period. The transition between the initial period
and the second (scaling) period is short because x decreases rapidly (for
x(N)/x(Nmin) = 1/10 one has N −Nmin � 1.5) and we get 1	 x	 y. The
scaling period is defined by the validity of the equation

yN
y

= −HN

H
. (14)

This period takes place when λx � 1 as seen from (2). During the scaling
period one has yH = Hminymin = cte which leads to a constant Hy and
potential since V = 3H2y2. Therefore, λ and φ will also be constant during
this scaling period [35], i.e.

λ(Nmin) � λ(N2) (15)

where we have defined the scaleN2 as the end of the scaling period. Neglecting
the quadratic terms on x and y in the third equation of system (2) we get
the expressions

H = Hmine
− 3

2γb(N−Nmin)

y = ymine
3
2γb(N−Nmin). (16)

We can take in (16) Nmin � Ni and Hmin � Hi as discussed above, but
ymin � yi.

Since during the scaling period y increases as seen from (16) and λ is
constant the term λy2 in xN will eventually dominate and lead to an increase
of x. The end of the scaling period will happen when λx is again of order
one and (14) is no longer valid. At this point we have λx ∼ 1 and x ∼ λy2

which leads to an x of the same order of y, i.e. γφ will be significant larger
then zero (say γφ ∼ 0.1). At the end of the scaling period we have 1/x2 ∼
λ(N2) = λ(Nmin) and [35]

Ωφ(N2) = y2(N2) + x2(N2) ∼ λ(Nmin)−2 ∼ Ωφi (17)

as seen from (9) and (15). The value of Ωφ(N2) depends on the initial Ωφi and
can be much smaller than one. After the end of the scaling period Ωφ(N2)
grows to its present day value Ωφo = 0.7± 0.1. If Ωφ(N2) � 1 then there is
enough time for γφ to grow to its tracker value γφtr = λ2Ωφ/n

2. However,
when Ωφ(N2) is of the order 0.1 then there is not enough time to allow γφ to
grow to its tracker value and one has at present day 0 < γφo ≤ γφtr. Finally,
the late time behavior has λ→ 0 and Ωφ ∼ y2 → 1 with γφ → 0.

2.3 Parameters and Summary

There are only four independent parameters that fix the cosmological evolu-
tion of the models from its initial value to present day. These parameters are
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Ωφi, Λc, ymin and the value of γφo today. All other quantities can be derived
from them.

Let us summarize the evolution of x and y obtained in the previous section
[35]
1) Regardless of the value of xi, yi we have a very short period (Nmin−Ni �
1) with increasing x and decreasing y ending with x(Nmin)2 � Ωφi and with
ymin � 1 model dependent.
2) Shortly afterwards the scaling period starts with x(Nmin)2 	 y2

min and
γφ � 2. During this period x decreases while y increases and it finishes when
x ∼ y � 1. The size of the period γφ = 2 depends on how small ymin is.
3) After having x ∼ y � 1, we still have a decreasing x and increasing y
and the period with γφ = 0 (with 1	 y 	 x) starts. When λy2 becomes of
order of x, xN becomes positive and x increases until λx ∼ 1 making (14) no
longer valid and ending the period with γφ � 0 and the scaling period at N2.
The value of λ remains (almost) constant during all the scaling period which
starts at Nmin and finishes at N2.
4) The tracking period starts with a increasing γφ → γφo and Ωφ.

3 Late Time Phase Transition as Dark Energy

The evolution of the scalar field φ depends on the functional form of its
potential V (φ) and a late time accelerating universe constrains the form
of the potential and when it appears [18, 30]. A late time appearance of
a scalar field is a signal that a phase transition took place and that the
scalar field is probably not a fundamental but a composite field. Here, we
will present a model where quintessence field appears as a consequence of
a phase transition due to a strong gauge coupling constant. This is a very
physical assumption since it only requires to have an extra gauge group to
the already known gauge groups of the SM. It is well known that the gauge
coupling constant of a non-abelian asymptotically free gauge group increases
with decreasing energy and the free elementary fields will eventually condense
due to the strong interaction, e.g. mesons and baryons in QCD. The scale
where the coupling constant becomes strong is called the condensation scale
Λc and below it there are no more free elementary fields. These condensates,
e.g. “mesons”, develop a non trivial potential which can be calculated using
Affleck’s potential [22]. The potential is of the form V = Λ4+n

c φ−n, where φ
represents the “mesons”, and depending on the value of n the potential V may
lead to an acceptable phenomenology. The final value of wφo (from now on
the subscript “o” refers to present day quantities) depends n and the initial
condition Ωφi [18]. A wφo < −2/3, which is the upper limit of [6], requires
n < 2.74 for Ωφi ≥ 0.25 [18]. For smaller Ωφi one obtains a larger wφo for a
fixe n. The position of the third CMBR peak favors models with n < 1 [7]
and for some class of models with V = M4+nφ−neφ

β/2, with n ≥ 1, β ≥ 0,
the constraint on the equation of state is even stricter −1 ≤ wφo ≤ −0.93
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[8]. In this kind of inverse power potential models (i.e. n < 2) the tracker
solution is not a good approximation to the numerical solution because the
scalar field has not reached its tracker value by present day.

Here we focus on a non-abelian asymptotically free gauge group whose
gauge coupling constant is unified with the couplings of the standard model
(“SM”) ones [17, 18]. We will call this group the dark group (“DG”). The
cosmological picture in this case is very pleasing. We assume gauge coupling
unification at the unification scale Λgut for all gauge groups (as predicted by
string theory) and then let all fields evolve. At the beginning all fields, SM
and DG model, are massless and red shift as radiation until we reach the
condensation scale Λc of DG. Below this scale the fields of the quintessence
gauge group will dynamically condense and we use Affleck’s potential to study
its cosmological evolution. The energy density of the quintessence field Ωφ
drops quickly, independently of its initial conditions, and it is close to zero
for a long period of time, which includes nucleosynthesis (NS) if Λc is larger
than the NS energy ΛNS (or temperature TNS = 0.1−10MeV ), and becomes
relevant only until very recently. On the other hand, if Λc < ΛNS than the
NS bounds on relativistic degrees of freedom must be imposed on the models.
Finally, the energy density of φ grows and it dominates at present time the
total energy density with the Ωφo � 0.7 and a negative pressure wφo < −2/3
leading to an accelerating universe [5].

The initial conditions at the unification scale and at the condensation scale
are fixed by the number of degrees of freedom of the models given in terms
of Nc, Nf . Imposing gauge coupling unification fixes Nc, Nf and we do not
have any free parameters in the models (but for the susy breaking mechanism
which we will comment in Sect. 2). It is surprising that such a simple model
works fine. As we will see the restriction on Nc, Nf by gauge unification rules
out models with a condensation energy scale between 2 × 10−2GeV < Λc <
6×103GeV or for models with 2 < n < 4.27 (the scale Λc is given in terms of
Ho and n by Λc � H

2/(4+n)
o [23],[18]). Since wφo < −2/3 requires n < 2.74 all

models must then have Λc < 2×10−2GeV . The number of models that satisfy
gauge coupling unification with a wφo < −2/3 is quite limited and in fact
there are only three different models [18]. All acceptable models have n ≤ 2/3
which implies that the condensation scale is smaller than the NS scale. The
preferred model has Nc = 3, Nf = 6, n = 2/3 and it gives wφo = −0.90 with
an average value weff = −0.93 agreeing with recent CMBR analysis [6, 7].

3.1 Condensation Scale and Scalar Potential

We start be assuming that the universe has a matter content of the supersym-
metric gauge groups SU(1)×SU(2)×SU(3)×SU(DG) where the first three
are the SM gauge groups while the last one corresponds to the dark group
and that the couplings are unified at Λgut with g1 = g2 = g3 = gDG = ggut.

The condensation scale Λc of a gauge group SU(Nc) with Nf (chiral +
antichiral) matter fields has in N = 1 susy a one-loop renormalization group
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equation given by

Λc = Λgute
− 8π2

bog2
gut (18)

where bo = 3Nc−Nf is the one-loop beta function and Λgut, ggut are the unifi-
cation energy scale and coupling constant, respectively. From gauge coupling
unification we know that Λgut � 1016GeV and ggut �

√
4π/25.7 [33].

A phase transition takes place at the condensation scale Λc, since the
elementary fields are free fields above Λc and condense at Λc. In order to
study the cosmological evolution of these condensates, which we will call φ,
we use Affleck’s potential [22]. This potential is non-perturbative and exact
[36].

The superpotential for a non-abelian SU(Nc) gauge group with Nf (chiral
+ antichiral) massless matter fields is [22]

W = (Nc −Nf )(
Λbo
c

det < QQ̃ >
)1/(Nc−Nf ) (19)

where bo is the one-loop beta function coefficient. Taking det < QQ̃ >=
Π
Nf

j=1φ
2
j one has W = (Nc − Nf )(Λbo

c φ
−2Nf )1/(Nc−Nf ). The scalar potential

in global supersymmetry is V = |Wφ|2, with Wφ = ∂W/∂φ, giving [23, 24,
17, 30]

V = c2Λ4+n
c φ−n (20)

with c = 2Nf , n = 2+4 Nf

Nc−Nf
and Λc is the condensation scale of the gauge

group SU(Nc). The natural initial value for the condensate is φi = Λc since
it is precisely Λc the relevant scale of the physical process of the field binding.

In (20) we have taken φ canonically normalized, however the full Kahler
potential K is not known and for φ � 1 other terms may become relevant
[23] and could spoil the runaway and quintessence behavior of φ. Expanding
the Kahler potential as a series power K = |φ|2 +Σiai|φ|2i/2i the canonically
normalized field φ′ can be approximated1 by φ′ = (Kφ

φ )1/2φ and (20) would
be given by V = (Kφ

φ )−1|Wφ|2 = (2Nf )2Λ4+n
c φ−n(Kφ

φ )(n/2−1). For n < 2 the
exponent term of Kφ

φ is negative so it would not spoil the runaway behavior
of φ [17, 18].

If we wish to study models with 0 < n < 2, which are cosmologically fa-
vored [18] we need to consider the possibility that not all Nf condensates φi
become dynamical but only a fraction ν are (with Nf ≥ ν ≥ 1) and we also
need Nf > Nc [17, 18]. It is important to point out that even though it has
been argued that for Nf > Nc there is no non-perturbative superpotential
W generated [22], because the determinant of QQ̃ in (19) vanishes, this is
not necessarily the case [29]. If we consider the elementary quarks Qαi , Q̃

α
i

(i, j = 1, 2, ..., Nf , α = 1, 2, ..., Nc) to be the relevant degrees of freedom,
1 The canonically normalized field φ′ is defined as φ′ = g(φ, φ̄)φ with Kφ

φ = (g +
φgφ + φ̄gφ̄)2
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then for Nc < Nf the quantity det(QiαQ̃
α
j ) vanishes since, being the sum of

dyadics, always has zero eigenvalues. However, we are interested in studying
the effective action for the “meson” fields φij =< QiαQ̃

α
j >, and the determi-

nant of φij , i.e. det < QiαQ̃
α
j >, being the product of expectation values does

not need to vanish when Nc < Nf (the expectation of a product of operators
is not equal to the product of the expectations of each operator).

One can have ν = Nf with a gauge group with unmatching number of
chiral and anti-chiral fields or if some of the chiral fields are also charged under
another gauge group. In this case we have c = 2ν, n = 2+4 ν

Nc−Nf
and Nf−ν

condensates fixed at their v.e.v. < QQ̃ >= Λ2
c [17]. Another possibility is by

giving a mass term to Nf −ν condensates ϕ =< Q̄kQk >, (k = 1, ..., Nf −ν)
while leaving ν condensates φ2 =< Q̄jQj >, (j = 1, ..., ν) massless. Notice
that we have chosen a different parameterization for ϕ and φ. The mass
dimension for ϕ is 2 while for φ it is 1. The superpotential now reads [30]

W = (Nc −Nf )(
Λbo
c

φ2νϕNf −ν )1/(Nc−Nf ) +mϕ (21)

with m the mass of Q̄kQk. If we take the natural choice φi = Λc, as discussed
above, and m = Λc [17] and we integrate out the condensates ϕ using

∂W

∂ϕ
= ϕ−1

(
(ν −Nf )Λ(bo−2ν)/(Nc−Nf )

c ϕ−(Nf −ν)/(Nc−Nf ) +mϕ
)

= 0 (22)

we obtain ϕ = (Nf − ν)(Nc−Nf )/(Nc−ν)Λ2
c . By integrating out the ϕ field

the second terms in (21), which is proportional to the first term, can be
eliminated. Substituting the solution of (22) into (21) one finds

W = (Nc − ν)(Nf − ν)(Nf −ν)/(Nc−ν)Λ3+a
c φ−a (23)

with a = 2ν/(Nc −Nf ).
The scalar potential V = |∂W |2 is now given by [30]

V = c′2Λ4+n′
c φ−n′

(24)

with c′2 = 4ν2( Nc−ν
Nc−Nf

)2(Nf − ν)(Nf −ν)/(Nc−ν) and n′ = 2 + 4ν/(Nc − Nf ).
Notice that for ν = Nf we recover (20). From now on we will work with (24)
and we will drop the quotation on n′.

The radiative corrections to the scalar potential (24) are V ∼ Λ4+n
c φ−n(1+

O(Λ2
cφ

−2)) [28]. They are not important because we have φ ≥ Λc and are
negligible at late times when φ	 Λc.

3.2 Gauge Unification Condition

In order to have a model with gauge coupling unification the scale Λc given
in (20) or (24) must be identified with the energy scale in (18). However,



Quintessence and Dark Energy 235

Table 1. We show the matter content for the three different models and we give
the number of degrees of freedom for the susy and non susy Q group in the last two
columns, respectively. Notice that the condensation scale and bo is the same for all
models.

Num Nc Nf ν n bo Λc(eV ) gQs

I 3 6 1 2/3 3 42 97.5
II 6 15 3 2/3 3 42 468.5
III 7 18 4 6/11 3 42 652.5

not all values of Λc will give an acceptable cosmology. The correct values of
Λc depend on the cosmological evolution of the scalar condensate φ which is
determined by the power n in (24). The Λc scale can be expressed in terms
of present day quantities from (20) by [18, 30]

Λc =
(
3H2

oyo
2φno c

−2) 1
4+n

�
(
3H2

oΩφo
) 1

4+n (25)

where y2 ≡ V/3H2 � Ωφ, with Ωφo = 0.7. A rough estimate of (25) gives
Λc � H

2/(4+n)
o since we also expect φo = O(1) [18] today (we are living at the

beginning of an accelerating universe). The number of models that satisfy the
unification and cosmological constraints of having Ωφo = 0.7, ho = 0.7 (with
the Hubble constant given by Ho = 100ho km/Mpc sec) and wφo < −2/3
[5] is quite limited [18]. In fact there are only three models given in Table 1.
These models are obtained by equating Λc from (18), which is a function of
Nc, Nf through bo, and (24), which is also a function of Nc, Nf , ν through n.
The exact value of yo, φo must be determined by the cosmological evolution
of φ (c.f. (1)) starting at Λc until present day. For an acceptable model the
parameters Nc, Nf and ν must take integer values. We consider an acceptable
model when Λc in (18) and (25) do not differ by more than 50%. With this
assumption there are only 3 models, given in Table 1, that have (almost)
integer values for Nf . In all these models one has n ≤ 2/3 and the quantum
corrections to the Kahler potential are, therefore, not dangerous. All other
combinations of Nc, Nf , ν do not lead to an acceptable cosmological model.
From (25) one has for n ≤ 4.27 a scale Λc ≤ 6.5 × 103GeV and from (18)
this implies that bo ≤ 5.7. Since bo = 3Nc −Nf = 2Nc + 4ν/(n− 2) and the
minimum acceptable value for Nc is two one finds bo ≥ 4+4ν/(n−2). Taking
2 < n ≤ 4.27 gives a value of bo ≥ 5.7. The value of n = 4.27 gives the upper
limiting value for which we can find a solution of (18) and (25). We see that
it is not possible to have quintessence models with gauge coupling unification
with 2 < n < 4.27. In terms of the condensation scale the restriction for
models with 2× 10−2GeV < Λc < 6× 103GeV .

Using n = 2 + 4ν/(Nc − Nf ) or equivalently Nf = Nc + 4ν/(n − 2)
with bo = 3Nc − Nf = 2Nc + 4ν/(n − 2) we can write from (18) as bo =
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8π2/g2
gut(Log(

Λgut

Λc
))−1 and Nc [30]

Nc =
1
2
bo +

2ν
2− n

=
4π2

g2
gut

(Log[
Λgut
Λc

])−1 +
2ν

2− n (26)

From (25) we have Λc as a function of n (with the approximation of y2
oφ

n
o = 1)

and Nc in (26) becomes a function of n and ν only. For 2×10−2GeV < Λc <
6.5 × 103GeV we have a Nc < 2 and therefore are ruled out. In terms of n
the condition is that models with 2 < n < 4.27 are not viable. In deriving
these conditions, we have taken ν = 1 which gives the smallest constraint to
Nc as seen from (26).

The upper limit Λc > 6.5×103GeV has n > 4.27 (c.f. (25)). As mentioned
in the introduction, the value of wφo depends on the initial condition Ωφi and
on n [18]. The larger n the larger wφo will be (same is true for the tracker value
wtr = −2/(2+n)). It has been shown that assuming an initial value of Ωφi no
smaller than 0.25 then the value of wφo will be less then wφo < −2/3 only if
n < 2.74 [18]. Therefore, the models with n > 4.27 are not phenomenological
acceptable and since 4.27 > n > 2 are also ruled out by the constraint on
gauge coupling unification, we are left with models with [30]

Λc < 2× 10−2GeV or n < 2. (27)

So, only models with a cosmological late time phase transition are allowed.

3.3 Thermodynamics, Nucleosynthesis Bounds,
and Initial Conditions

Before determining the evolution of φ we must analyze the initial conditi-
ons for the SU(DG) gauge group. The general picture is the following: The
“DG” gauge group is by hypothesis, unified with the SM gauge groups at
the unification energy Λgut. For energies scales between the unification and
condensation scale, i.e. Λc < Λ < Λgut, the elementary fields of SU(DG) are
massless and weakly coupled and interact with the SM only gravitationally.
The DG gauge interaction becomes strong at Λc and condense the elementary
fields leading to the potential in (24).

Since for energies above Λgut we have a single gauge group it is naturally
to assume that all fields (SM and DG) are in thermal equilibrium. However,
at temperatures T < Tgut the gauge group DG is decoupled since it interacts
with the SM only via gravity.

The energy density at the unification scale is given by ρTot = π2

30 gTotT
4,

where gTot = ΣBosons + 7/8ΣFermions is the total number of degrees of
freedom at the temperature T . The minimal models have gTot = gsmi+gDGi,
with gsmi = 228.75 and gDGi = (1+7/8)(2(N2

c −1)+2NfNc) for the minimal
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supersymmetric standard model MSSM and for the SU(DG) supersymmetric
gauge group with Nc colors and Nf (chiral + antichiral) massless fields,
respectively. The initial energy density at the unification scale for each group
is simply given in terms of number of degrees of freedom, Ω = ρ/ρc,

ΩDGi(Λgut) =
gDGi
gTot

, Ωsmi(Λgut) =
gsmi
gTot

(28)

with Ω = ΩDG+Ωsm = 1. Since the SM and DG gauge groups are decoupled
below Λgut, their respective entropy, Sk = gka

3T 3 with gk the degrees of
freedom of the k group and a the scale factor of the universe (see (2)), will
be independently conserved. The total energy density ρ as a function of the
photon’s temperature T above Λc (i.e. Λc < Λ < Λgut), with the DG fields
still massless and redshifting as radiation, is given by

ρ =
π2

30
g∗T 4 (29)

with

g∗ = gsmf + gDGf

(
TDG
T

)4

= gsmf + gDGf

(
gsmfgDGi
gsmigDGf

)4/3

(30)

and gsmi, gsmf , gDGi, gDGf are the initial (i.e. at decoupling) and final stan-
dard model and DG model relativistic degrees of freedom, respectively. From
the entropy conservation, we know that the relative temperature between the
standard model and the DG model is given by

TDG
T

=
(
gsmfgDGdec
gsmdecgDGf

)1/3

(31)

where gsmdec stands for the degrees of freedom when the DG-particle decouple
from the SM. It is clear that the energy density for the DG model ρDG =
π2/30gDGT 4

DG in terms of the photon’s temperature T is fixed by the number
of degrees of freedom,

ΩDGf =
gDGfT

4
DG

g∗T 4

=
gDGf (TDG/T )4/3

gsmf + gDGf (TDG/T )4/3
. (32)

Equation (32) permits us to determine the energy density of the DG group
at any temperature above the condensation scale.

3.4 Energy Density at the Condensation Scale

We would like now to determine the energy density at the condensation scale
which will set the initial energy density for the scalar composite field φ.
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Just above the condensation scale Λc we take, for simplicity of argument,
that all particles in the DG group are still massless and we can use (32) to
determine the ΩDG(Λc) with gDGi = gDGf giving [30]

ΩDGf =
gDGf (TDG/T )4/3

gsmf + gDGf (TDG/T )4/3
. (33)

If the decoupling of DG particles is above neutrino decoupling (around
1MeV ) then for temperatures below 1MeV one has TDG/T = (43/11/
gsmdec)1/3. At Λc we have a phase transition and we no longer have ele-
mentary free particles in the DG group. They are bind together through the
strong gauge interaction and the acquire a non-perturbative potential and
mass given by (24). In other words, below the condensation scale there are
no free “quarks” DG and we have “meson” and “baryon” fields.

If we consider only the SM and the DG group, the energy density within
the particles of the DG group must be conserved since they are decoupled
from the SM (the interaction is by hypothesis only gravitational). All the
energy density of the DG group is transmitted into dark energy (and possible
dark matter, see Sect. 4) at the condensation scale Λc. This is a natural
assumption from a particle point of view but is not crucial from a cosmological
point of view, in the sense that any “reasonable” fraction of the energy density
in the DG group would give a correct cosmological evolution of the φ field.
We would like to stress out that the initial condition for φ is no longer a free
parameter but it is given in terms of the degrees of freedom of the MSSM
and the DG group.

3.5 Nucleosynthesis Constraint on the Energy Density

The big-bang nucleosynthesis (NS) bound on the energy density from non
SM fields, relativistic or non-relativistic, is quite stringent ΩDG < 0.1 − 0.2
[31, 32].

If the DG gauge group condense at temperatures much higher than NS
then, the evolution of the condensates will be given by (2) with the potential
of (20) and we must check that ΩDG at NS is no larger than 0.1-0.2. This will
be, in general, no problem since it was shown that even for a large initial ΩDG
at the condensation scale the evolution of φ is such that ΩDG decreases quite
rapidly and remains small for a long period of time (see figure 2) [17, 18].

On the other hand, if the gauge group condenses after NS we must de-
termine if the DG energy density is smaller than ΩDG < 0.1 − 0.2 at NS.
Since the condensations scale Λc is smaller than the NS scale, all fields in
the DG group are still massless and the energy density is given in terms of
the relativistic degrees of freedom and from (32) to set a limit on gDGf and
gDGi,

∆gDG ≡ g
−1/3
DGf g

4/3
DGi =

ΩDG
1−ΩDG

g
−1/3
smf g

4/3
smi (34)
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and for gDGf = gDGi = gDG

∆gDG = gDG =
ΩDG

1−ΩDG
g

−1/3
smf g

4/3
smi (35)

where we should take gsmf = 10.75 at the final stage (i.e. NS scale) and
gsmi = 228.75 at the initial stage (i.e. at unification) for the minimal super-
symmetric standard model MSSM. For ΩDG ≤ 0.1, 0.2 (34) gives un upper
limit on the number of relativistic degrees of freedom ∆gDG ≤ 70, 158 res-
pectively (or gDG ≤ 70, 158 if gDGf = gDGi = gDG).

The l.h.s. of (34) depends on the initial (i.e. at unification) and final
(at NS) number of degrees of freedom of the gauge group DG. The smaller
(larger) the initial (final) degrees of freedom of DG the smaller ∆gDG and
ΩDG will be.

4 Dark Matter

We would like to see now if the dark group responsible for giving the dark
energy through its scalar condensates can at the same time account for the
missing dark matter [34].

The restrictions on DM is that it must have ΩDM = 0.25 ± 0.1 and it
should allow for structure formation at scales larger than Mpc. As we will
see later our models have a warm DM with a mass of the order of keV .
There are still problems with cold and warm DM models. Cold DM have
an overproduction of substructure of galactic halos which a warm DM model
does not have [11]. On the other hand, recent observations on the reionization
redshift [1] seem to indicate that warm dark matter is not a good candidate.
However, the value of the parameters used are still not well established which
makes the conclusion not definite [10]. So, we believe that further studies need
to be done in order to fully set the nature of dark matter.

If we have a dark gauge group with Nc < Nf then on top of the gauge
singlet meson fields we can have gauge singlet dark baryons Bi,...,Nc =∏Nc

i Qi and anti–baryons. These particles get a non-vanishing mass due to
non-perturbative effects (like protons and neutrons in QCD). These baryons
could be degenerated in mass or there could be a lightest massive stable
baryon. The order of magnitude of the mass of the DM particle can be esti-
mated by dimensional analysis and it must be given by the condensation
scale

m = k Λc (36)

with k = O(1) a constant. In this picture we have at high energies E > Λc a
DG with massless particles. At Λc non-perturbative effects, due to a strong
coupling, generate a mass for dark baryons and a scalar potential for dark
meson. The DM is the massive stable particle with mass given by (36) while
the quintessence with potential (20) gives the DE.
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Before studying the dynamics of the DG let us determine the constraint
on the temperature and mass for DM in order to agree with structure for-
mation. The relative temperature of the decoupled particle compared to
the photon temperature T is given by (31). For a neutrino one has at
decoupling gsmdec = 11/2, gsmf = 2 and with gDGf = gDGdec one has
Tν = T (4/11)1/3 = (1/1.76)T . However, if the decoupling is at a high energy
scale, say T 	 103GeV , then all particles of the standard model are still
relativistic and gdec = 106.75, 228.75 for the non-susy and susy standard
model respectively giving a temperature TD = T (43/11/gsmdec)1/3 (below 1
MeV with gsmf = 43/11 that takes into account neutrino decoupling) with
TD � (1/3)T for non-susy SM and TD � (1/3.88)T for the susy-SM. The
temperature of DG is in these cases 3 − 4 times smaller then the photon
temperature and 2 − 3 times smaller then Tν . If there are more relativistic
degrees of freedom coupled to the susy-SM (could be Kaluza-Klein states or
other gauge groups, e.g. gauge group responsible for susy breaking [30]) at
decoupling then TD would be even smaller.

We can set an upper and lower limit to ΩDG. The smallest number of
degrees of freedom would be for a gauge group with Nc = 2, Nf = 1 gi-
ving gDG = 18.75. While the upper limit on gDG comes from Nucleosyn-
thesis “NS” bounds which requires an upper limit to any extra energy den-
sity. This limit is ΩDG(NS) ≤ 0.1 − 0.2 [31]. Since from (34) gDG/g

4/3
dec =

(10.75)−1/3ΩDG(NS)/(1 − ΩDG(NS)) the NS bound sets un upper limit
gDG ≤ 0.05g4/3

dec , 0.113g4/3
dec for ΩDG(NS) ≤ 0.1, 0.2, respectively. Taking

gDG ≤ 0.113g4/3
dec ∼ 158(gdec/228.75)4/3 we obtain un upper limit ΩDGc ≤

0.17 at any condensation scale below 1MeV .
The free streaming scale λfs gives the minimum size at which perturbati-

ons survive. For scales smaller than the λfs the perturbations are wiped out.
For structure formation it is required that λfs ≤ O(1)Mpc. One has [12]

λfs � 0.2(ΩDMh2)1/3(1.5/g′
DM )1/3(keV/m)4/3 (37)

= 0.079(ΩDMh2)−1(g′
DM/1.5)(228.75/gdec)4/3

where g′
DM = gbDM + 3/4gfDM with gbDM the bosonic, gbfDM the fermion

degrees of freedom of DM and we used (38) in the second equality of (37).
The energy density of the DG will be divided in DE (quintessence) and

DM. For DM the entropy conservation gives nDM/nγ = (g′
DM/2)(TD/T )3

where nDM , nγ = 2(ζ(3)/π2)T 3 are the number density for DM and photon
respectively. Since the energy density for matter is ρm = nm and using ργ =
nγ(π4/30ζ(3))T we can write ΩDMo = Ωγo(ζ(3)30/π4)(nDM/nγ)(m/Tγo) =
Ωγo(ζ(3)30/π4)(g′

DM/2)(m/Tγo)(TD/T )3 giving [34]

ΩDMo = 0.25
(

0.71
ho

)2 (
g′
DMm

gdec1.66 eV

)
(38)

where we have used in the last equation the present day quantities h2
oΩγ =

2.47× 10−5, Tγo = 2.37× 10−13GeV . Equation (38) is valid for all DM that
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decouples at temperature Ti 	 103GeV from the susy-SM. Taking the central
values of wmap [1] ΩDMoh

2
o = 0.135−0.0224 = 0.1126 (where Ωbh2 = 0.0224)

one gets a neutrino mass m = 12 eV and λfs = 36Mpc giving the usual hot
DM problem. It cannot form structure at small scales. For a model that
decouples from the susy-SM at T 	 103GeV one has TD/T ≤ 1/3.88 with
gdec ≥ 228.75, a mass m ≥ 381(254) eV for g′

DM = 1(1.5), respectively, and
(37) gives λfs � 0.62(0.41)Mpc. Allowing for a more conservative variation
of ΩDMo = 0.25±0.1 and ho = 0.7±0.05 the constraint on g′

DM m/gdec from
(38) is 0.83gdeceV ≤ g′

DM m ≤ 2.59gdeceV . The number of degrees of freedom
g′
DM is not arbitrary since 0.113g4/3

dec ≥ gDG > g′
DM ≥ 1, as discussed above.

This bound implies that the mass of the DM particle must be [34]

1.2(228.75/gdec)1/3 eV ≤ m ≤ 593(gdec/228.75) eV. (39)

For gdec ≤ 228.75 one has m ≤ 593 eV while for m ≥ 750 eV, 1keV one
requires gdec ≥ 450(676), 600(901) for g′

DM = 1(1.5), respectively.
If we do not want to relay on having the same initial temperature between

the SM and DG we can estimate the amount of DM by the backward evolution
of DM from present day to the phase transition scale Λc where the particles
acquire a mass. The evolution of the DM is ρDMo = ρDM (a/ao)3 where a(t)
is the scale factor. In terms of ΩDM = 3H2ρDM (we have taken 8πG =
1/m2

pl = 1) we can write the DM energy density as

ΩDMo = ΩDMc(Ωro/Ωrc)
3
4 (H2

c /H
2
o )

1
4 (40)

where we have expressed ac/ao = (ΩroH2
o/ΩrcH

2
c )

1/4. The evolution of the
DE depends on the specific potential. However, the non-abelian gauge dyna-
mics leads to an inverse power potential of the form [23, 17, 30]

V = Λ4+n
c φ−n (41)

where φ =< Q̄Q > is the condensate of the elementary fields. Here we will
treat n as a free parameter but it can be related to Nc, Nf by n = 2 +
4ν/(Nc −Nf ) and ν counts the number of light condensates [17, 30]. When
the kinetic term is much smaller than the potential energy one has ΩDE �
Λ4+n
c φ−n/3H2. This is certainly valid for present day since we require ρDE

to accelerate the universe and the slow roll condition Ek � V must be
satisfied. Since the beginning of an accelerated epoch is very recently one has
φo � 1 [23]. Of course, a numerical analysis must be performed [17, 30] in
order to obtain the precise values of φo, wφo but the analytic solution is a
reasonable approximation. At the condensation scale Λc the initial value of
the condensate φc must be giving by Λc and taking φc = Λc [17] we have

ΩDEc =
Λ4
c

3H2
c

, ΩDEo =
Λn+4
c

3H2
o

. (42)

Using (40) and (25) we can write [34]
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ΩDMo = ΩDMc(Ωro/Ωrc)
3
4 (ΩDEo/ΩDEc)

1
4Λ

− n
4

c (43)

where we have used H2
o/H

2
c = (ΩDEc/ΩDEo)Λnc . Using Λc = (3ΩDEoH2

o )
1

4+n

in (43) we can determine the allowed range of values of n and Λc. The al-
lowed range is quite limited. Taking the central wmap values ho = 0.71,
ΩDMo = 0.25 [1] with g′

DM = 1.5 (i.e. gDM = 7/4) and taking as examples
gDG = 97.5(160) we get for gdec = 228.75, 676, 901 an inverse power n =
0.78(0.79), 0.87(0.88), 0.90(0.91) and Λc = 189(214), 559(634), 745(845) eV ,
respectively. If we allow for a conservative variation ΩDMo = 0.25± 0.1 and
ho = 0.7±0.05 and taking gDGc = 97.5 and the upper value gDGc = 0.113g4/3

dec

(results in parenthesis) then the range for n and Λc for gdec = 228.75, 676, 901
is 0.34, 0.42, 0.44 (0.31, 0.29, 0.28) ≤ n ≤ 0.87,0.96,0.98 (0.88, 1.0, 1.04) and
0.55, 1.63, 2.17 (0.34, 0.23, 0.21) eV ≤ Λc ≤518, 1530, 2040 (585, 2484,
3645) eV , respectively, where the lower limit has gDMc = gDGc − 1, ho =
0.65, ΩDMo = 0.15 and the upper limit has gDMc = 1, ho = 0.75, ΩDMo =
0.35. We see that the allowed range is [34]

0.28 ≤ n ≤ 1.04 ⇔ 0.21 eV ≤ Λc ≤ 3645 eV (44)

given for gdec ≤ 901. Increasing gdec would enlarge the range of n,Λc but
not significantly. In Fig. 1 we show the behavior of ΩDMo as a function
of n for different values of gDGc = 0.113g4/3

dec with gdec = 228.75, 676, 901
(solid,dashed and dotted lines, respectively) for the extreme values of gDMc

given by gDG−1 ≥ gDMc ≥ 1. The allowed region is in between the horizontal
lines ΩDMo = 0.15−0.35. From (44) we see that there is only a limited range
of condensation energy scales and IPL parameter n that allows for a gauge
group to give the correct DM and DE densities. It is also interesting to note
that the lower limit on Λc is very similar to the one obtain by CMB analysis
[30] where the minimum scale was Λc = 0.2 eV . On the other hand, the
evolution of quintessence requires for ΩDEc < 0.17 an IPL parameter n to
be smaller than n ≤ 1.6 for wDEo ≤ −0.78 which is the upper value of
wmap. For smaller ΩDEc we will need a smaller n, e.g. ΩDEc = 0.05 requires
n ≤ 1.05. So, once again there is a consistency within the acceptable values
of n coming form different considerations (amount of DM and observable
wDEo). The constraint on Λc is very similar to the constraint obtained for
the DM particle mass m obtained in (39). The similarity m ∼ Λc is required
by non-abelian gauge dynamics and it is indeed satisfied as can be verified
using (38), (25) and (43) [34]

k ≡ m

Λc
=

π4

ζ(3)30
gDMc

g
1/4
DEcg

′
DM

(45)

with π4/(ζ(3)30) � 2.7. Equation (36) should be compared with (45). There
is a subtle point on the values of gDMc, gDEc, g

′
DM . The “true” degrees of

freedom of the dark matter particles (i.e. the lightest field of the dark gauge
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Fig. 1. We plot ΩDMo as a function of the IPL parameter n. The allowed region is
the one between the horizontal lines ΩDMo = 0.15 − 0.35 and the curves with the
limiting values of gDM = 1.5 and gDG − 1 for gdec = 228.75, 676, 901 (solid,dashed
and dotted lines, respectively).

group) are given by g′
DM while gDMc and gDEc represent the proportion of

energy density that goes intoΩDMc andΩDEc. It is reasonable to assume that
the particles of the dark group will decay into the lightest state. Therefore
we expect gDMc > g′

DM and m > Λc.

5 Phenomenological Approach

The best way to determine what kind of energy is the dark energy is trough
the equation of state parameter wDE we and through its imprint on the CMB.
This presentation is based on [35]. We will analyze the contribution to the
CMB from a dark energy with a γDE = wDE + 1 that takes four different
values [35]. It will have a wDE = 1/3 for energies above a certain scale Λc,
which we will call the phase transition scale. Starting at Λc we will have a
region with wDE = 1 and duration ∆N1, where N is the logarithm of the
scale factor a (N = Log[a]). Thirdly we will have wDE = −1 for almost the
same amount of time as in the previous period, ∆N2 � ∆N1, and finally we
will end up in a region with −1 ≤ wDEo = cte ≤ −2/3 for a duration of
∆No. The cosmological evolution and the resulting CMB will have only four
new parameters ∆N1, ∆N2, ∆No and wDEo. By varying these parameters we
will cover a wide range of models. In particular we will cover all quintessence
models.

The analysis of the CMB with this kind of dark energy does not depend
on its nature, it could be a scalar field (quintessence) or any other form of
dark energy that gives the four sectors described above. In Fig 2 we show
an example with an IPL potential with n = 1 and ΩDEi = 0.05 and we see
that the w = 1/3, 1,−1, wtr = cte approximation fits well with the numerical
wDE . The strategy is to analyze the spectra of CMB, using a modified version
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Fig. 2. We show the evolution of wDE and ΩDE , solid and dashed lines respectively
for an IPL potential with n = 1 and ΩDEi = 0.05 as a function of N = Log[a],
where a is the scale factor. The dotted line represents the theoretical approximation
wDE and we see that it makes a good fit to the numerical solution. Ni is given at the
initial scale Λc and N1, N2 give the end of the regions with wDE = 1, −1 respectively
while the solid vertical line at No denotes present day. Notice that for N < Ni we
are assuming that the energy density ρDE redshifts as radiation with wDE = 1/3.

[13, 14] of CMBFAST [15] to include an energy density with a varying w, in a
model independent way and see from its result if we can distinguish between
different quintessence models, tracker, cosmological constant or other kinds
of exotic energy densities.

In the case of a scalar field, we will assume that the scalar field appears
at a scale Λc with an energy density ΩDE(Λc). The late time appearance of
the φ field suggests that a phase transition takes place creating the scalar
field. We are not concern with the precise mechanism of its appearance (see
[17, 30]). However, energy conservation would suggest that the energy density
of the φ field after the phase transition would be given in terms of the energy
density of the system before the phase transition and we will take them to
be equal. It is natural to assume that all the energy density before the phase
transition, in this sector, was relativistic. If the phase transition takes place
after nucleosynthesis “NS” then the primordial creation of nuclei puts an
upper limit to the relativistic energy density to be less than 0.1-0.2 of the
critical energy density [31, 32]. If Λc is larger than the NS scale then we do
not need to worry about the NS bound since independent of its initial value,
ΩDE will drop rapidly and remain small for a long period of time (covering
NS).

In a chronological order, we would start with a universe filled with the
SM particles and a DG sector (could be another gauge group) and with
gravitational interaction between the two sectors only. In both sectors all
fields start massless, i.e. they redshift as radiation. The evolution of the SM
is the standard one and we have nothing new to say. However, the DG sector
will have a phase transition at Λc leading to the appearance of a scalar field
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φ with a potential V (φ), the quintessence field. Above Λc the fields in this
sector behave as radiation. The evolution of φ for energies below Λc is that
of a scalar field with given potential V . However, the precise form of V is
unknown. In Table 1 we show the different model independent regions that
we consider. The model dependence lies only on the size of these different
periods and on the value of γDE in the last region.

From a cosmological point of view we have only 4 free parameters ∆N1 =
Ni − N1, ∆N2 = N1 − N2, ∆No = N2 − No and γDEo (the value of γDE
during the third period), where N ≡ log[a] with a the scale factor. With
these parameters we cover all models. The cosmological parameters can be
expressed in terms of the field theoretical parameters ΩDEi, Λc, ymin and
γDEo.

Table 2. We show the different regions, its duration and the value of γDE in each
region with N = Log[a] and No is at present day.

Sector Energy Duration γDE = wDE + 1
Radiation E > Λc Ni < N 4/3

First E1 < Λc Ni < N < N1 2
Second E2 < E1 N1 < N < N2 0
Third E3 < E2 No < N < N2 λ2ΩDE/3

5.1 Evolution of w

We have seen the evolution of x, y,H in the preceding subsection and we
would like now to show how wDE evolves in a general framework.

The evolution of the equation of state parameter, γDE = 1+wDE , as given
by (4) has a generic behavior for all scalar fields independent of its potential.
We see that (γDE)N = 0 has three solutions, γDE = 2, 0 and λ2ΩDE/3 [35] (or
wDE = 1,−1 and λ2ΩDE/3−1). The parameter γDE will be most of the time
in either of the three critical points. Independent of its initial value it will go
quite rapidly to γDE = 2 and remain there for a long period of time. The fast
increase in γDE is because λi 	 1. This stage represents a scalar field whose
kinetic energy density dominates (Ek 	 V ), it is called the kinetic region,
and the energy density redshifts as ρDE ∼ a−6 = e−6N . Afterwards it will
sharply go to γDE = 0 and stay there during almost the same amount of time
as in the first stage. This second period is valid when the potential energy
dominates (Ek � V ) and the energy density redshifts as a cosmological
constant with ρDE ∼ a0 ∼ cte. Finally it will go to its last period given
by the tracker value γtr = λ2ΩDE/3 where it will remain. This last critical
value γtr = λ2ΩDE/3 is not necessarily constant (λ,ΩDE evolve in time).
The energy density redshifts as a tracker field ρDE ∼ a−3γtr = e−3Nγtr .

Let us define the quantity
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A ≡ λ

√
ΩDE
3γDE

. (46)

We see from (4) that the sign of γφN depends if A > 1 or A < 1. For A > 1 we
have γφN ≥ 0 and the value γφmax = 2 or wDE = 1, which is the maximum
value for γDE , is a stable point. For A < 1 we have γφN ≤ 0 and the value
γDE = wDE + 1 = 0 will be a stable point also.

We will denote the beginning of the kinetic term by Ni and the end by
N1. The second period (γDE = 0) starts at N1 and finishes at N2 while
the last period starts at N2 and lasts until present day No. We have then,
∆N1 ≡ N1 − Ni and ∆N2 ≡ N2 − N1, the amount of e-folds during the
γDE = 2 and γDE = 0 periods, respectively, and ∆No ≡ No −N2 the size of
the tracking period.

First Period, w=1

At the initial time since λi 	 1 we have A > λ
√
ΩDEi/6	 1 since γDE ≤ 2.

From (4) we see that the derivative (γDE)N 	 1 and γDE will rapidly go
to its maximum value 2. The period of γDE � 2 remains valid for a long
period of time since for x(Nmin)2 = ΩDEi 	 y2

min one has γDE(Nmin) =
2x(Nmin)2/(x(Nmin)2 + y2

min) � 2(1 − y2
min/x(Nmin)2) � 1. So we expect

γDE to be close to two until y ∼ x. We will have at the end of the period
N = N1, γDE ∼ 2 and ΩDE(N1) = r1/(1 + r1)� 1 with

r1 ≡
ρDE(N1)
ρb(N1)

=
ρDE(Ni)
ρb(Ni)

e−3(N1−Ni)(2−γb). (47)

Second Period, w=-1

The second stage starts when 1 	 x ∼ y and γDE ∼ 0. The transition time
between γDE = 1.9 and γDE = 0.1 is quite short, about ∆N = 1− 1.5, so we
do not take it into account. In this second region we are still in the scaling
regime with yH = cte and since we have ΩDE � 1 we have A � 1 and
(γDE)N < 0. The quantity γDE has been decreasing and it will arrive at its
minimum possible value γDE � 0 or wDE � −1. As long as A < 1 the value
of γDE ∼ 0 will remain constant.

During the second period we have, γDE ∼ 0, φ ∼ cte, λ = λmin and the
evolution of ΩDE(N2) = r2/(1 + r2) is given by

r2 ≡
ρDE(N2)
ρb(N2)

=
ρDE(N1)
ρb(N1)

e3(N2−N1)γb . (48)

Since in this period ρDE redshifts much slower than radiation or matter,
ΩDE will increase and A will eventually become larger than one again. The
second period ends (as the scaling period) when (14) is no longer valid and
the first term in the equation yN of (2) cannot be neglected. This happens
for x(N2) ∼ λ(N2)−1 (c.f. discussion below (16)).
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Third Period, w=wtr

The third period starts when γDE is not too small (i.e. x is comparable
to y and γDE = O(1/10)). During this region we will have A > 1 and a
growing γDE . However, in this case γDE will not arrive at the maximum
value γDE = 2 since λ is not very large and γDE will be stabilized at the
critical point γφN � 0 with

γtr = λ2ΩDE/3. (49)

We will have ΩDE(No) = r3/(1 + r3) with

r3 ≡
ρDE(No)
ρb(No)

=
ρDE(N2)
ρb(N2)

e−3(No−N2)(γtr−γb) (50)

If γtr < γb then ΩDE → 1. While λ2ΩDE remains constant we have the
constant tracker value for γDE or wDE . A constant γDE is possible when
ΩDE � 1. However, at late times the attractor value will be γtr → 0 and
ΩDE → 1 since ΩDE is constrained to be smaller than one and λ → 0.
But, even for γtr not constant the evolution of γtr in (49) is valid and the
value generalizes the tracker behavior. For an inverse power law potential
V = Voφ

−n we have λ = n/φ and γtr = n2ΩDE/3φ2 which is the valued
obtained by [9],[18].

5.2 Duration of the Periods and Relation to the Field Parameters

In order to know the relative size of the different periods we can use (47) and
(48). Combining both (47) and (48) we have

r2
ri

=
ρDE(N2)ρb(Ni)
ρb(N2)ρDE(Ni)

= e−3∆N1(2−γb)+3∆N2γb (51)

Solving for ∆N2 in (51) we obtain [35]

∆N2 = ∆N1

(
2
γb
− 1

)
+

1
3γb

Log

[
r2
ri

]
(52)

If we use the result of quintessence evolution at the beginning and end of
the scaling period ΩDE(N2) = ΩDEi(Ni) given in (17) we have r2 = ri. For
matter, γb = 1, and (52) gives ∆N2 = ∆N1 while for radiation, γb = 4/3,
and ∆N2 = ∆N1/2. The universe has been dominated by matter for a period
of No − Nrm � 8, where No stands for present day value and Nrm for the
scale at radiation-matter equivalence.

Including the third period we have from (47), (48) and (50) [35]

r3
ri

=
ρDE(No)ρb(Ni)
ρb(No)ρDE(Ni)

= e−3∆N1(2−γb(N1))+3∆N2γb(N2)−3∆No(γtr−1)

=
r2
ri

e−3∆No(γtr−1), (53)
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∆No =
3

1− γtr
Log

[
r3
r2

]
=

3
1− γtr

Log

[
ΩDEo

1−ΩDEo
1−ΩDE(N2)
ΩDE(N2)

]
(54)

where we have assumed that the third period is already at the matter domina-
ted epoch, γb(No) = 1. If we take in (54) the equality ΩDEi(Ni) = ΩDE(N2)
the size ∆No and the value of γtr will set the initial energy density ΩDEi. Of
course, on the other hand, if we know ΩDEi then we can determine ∆Noγtr.

Let us now relate the four field parameters Λc, ΩDEi, ymin, γDEo to the
size of the different periods. The amount of e-folds between the initial time
Ni at Λc and N1, the scale where w goes from w = 1 to w = −1 is set by the
condition x ∼ y � 1. We use the evolution of x from (16) and (13) to get

∆N1 ≡ N1 −Ni =
1
3
Log

[
x(Nmin)
ymin

]
(55)

were we have assumed Ni � Nmin. Equation (55) is independent of γb. We
can take x(Nmin) =

√
ΩDEi, yi �

√
ΩDEi and for an IPL model we have

ymin � yi(Λc/
√
ΩDEi)n/2 and (55) gives

∆N1 =
n

6
Log

[√
ΩDEi
Λc

]
. (56)

The amount of e-folds between the initial time Ni at Λc and the end of the
scaling period N2 is given by (16), (9) and (17) with y ∼ x but this time we
have with x = 1/λ(Nmin) ∼

√
ΩDEi, yi ∼

√
ΩDEi giving

∆N1 +∆N2 = N2 −Ni =
2

3γb
Log

[
y2
ymin

]
=

n

3γb
Log[

√
ΩDEi
Λc

]. (57)

Notice that (57) minus (56) gives ∆N2 in (52). Summing (57) and (54) we
have [35]

∆NT ≡ No −Ni =
n

3γb
Log[

√
ΩDEi
Λc

] +
3

1− γtr
Log

[
ΩDEo

1−ΩDEo
1−ΩDEi
ΩDEi

]

(58)
which gives the total scale∆NT between the initial time at Λc and present day
and we taken ΩDEi = ΩDE(N2) in (58). Alternatively we can estimate the
magnitude of the phase transition scale Λc. From Λc ≡ V

1/4
i = (3ΩDEiH2

i )
1/4

and using the approximation that ΩDE � 1 during almost all the time
between present day and initial time (at Λc) we have

Hi = Ho e
3γb∆NT /2 (59)

giving a scale
Λc = (3ΩDEiH2

o )
1/4 e3γb∆NT /4. (60)

The scale Λc increases with larger ∆NT . From (58) and (60) we can derive
the order of magnitude for Λc in terms of n and Ho giving Λc � H

2/(4+n)
o
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which is the well known result for IPL potentials [18]. If we know ∆NT then
we can determine Λc and the power n for IPL models. We see that the size of
the different regions can be determine by the four parameters Λc, ΩDEi, ymin
and γDEo.

How long do the periods last depends on the models and by vary-
ing the size of ∆N2, ∆No and γtr we cover all models. If ∆No = 0 and
∆N2 > ∆Nrm = No − Nrm then the model would be undistinguishable
from a true cosmological constant γDE = wDE + 1 = 0 since during all the
matter domination era the equation of state would be γDE = 0. If we have
∆No > ∆Nrm then the model reduces to tracker models with a constant γDEo
during all the matter domination era. So, our model contains the tracker and
cosmological constant as limiting cases.

More interesting is to see if we can determine the nature and scale of the
dark energy. For this to happen a late time phase transition must take place
such that Λc is at ∆NT = O(∆Nrm).

5.3 Analysis of CMB spectra

We will now analyze the generic behavior of a fluid with equation of state
divided in four different regions with wDE = 1/3, 1,−1, wDEo [35]. We will
vary the sizes of the regions and we will determine the effect of having regions
with wDE = 1/3 or wDE = 1 in contrast to a cosmological constant or
a tracker field (with −1 < wDEo = cte < −2/3). We compare the CMB
spectra with the data given in RADPACK [16]. This analysis is valid for all
kinds of fluids with the specific equation of state and it is also the generic
behavior of scalar fields. We will compare to the model wtr = −0.82 which
was found to be a better fit to CMB than a true cosmological constant [6].

5.4 Effect of Radiation Period, w=1/3

The first section we have wDE = 1/3 and the fluid (scalar field) redshifts
as radiation. As long as the fluid has wDE = 1/3 its energy density will
remain the same compared to radiation. If during nucleosynthesis the fluid
has wDE = 1/3 then the BBNS bound requires the ΩDE(NS) < 0.1 − 0.2
[31, 32].

In Fig. 3 we show the different CMB for wDE = 1/3, 0,−1 for ∆NT =
No − Ni = 9, ∆N2 = N2 − N1 = 4.5 and ∆No = No − N2 = 0. We have
chosen ∆NT = 9 because it is the smallest value satisfying the condition
∆N1 = ∆N2, ∆No = 0 and giving the correct CMB spectrum. We have
taken wDE = 1,−1 for Ni < N < N1 and N1 < N < N2 = No, respectively.

We see that the first and second peaks are suppressed for wDE = 1/3
compared to wDE = −1 while the third peak is enhanced. The positions of
the first two peaks is basically the same and the position of the third peak is
moved from 868 to 864 (0.4%), for w = 1/3,−1 respectively. For smaller Ni,
i.e. more distant from present day, the effect is suppressed. It is not surprising
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Fig. 3. We show the effect of the radiation on the CMB era for N < Ni by
changing wDE = 1/3, 0, −1 with ∆NT = ∆N1/2∆N2/2 = 9. The vertical axes is
l(l + 1)cl/2π(µK2).

since the Ni would be further way from energy-matter equality and its effect
on CMB would be less important. The total χ2 obtained by comparing the
CMB spectrum with the data [16] gives χ2 = 75, 74, 80 for wDE = 1/3, 0,−1
respectively.

5.5 Effect of First Period, w=1

In Fig. 4 we show the CMB for different values of wDE = 1, 0,−1 during Ni <
N < N1 and take w = 1/3 for N < Ni while wDE = −1 for N1 < N2 = No.
The effect of having a kinetic period enhances the first three peaks and shifts
the spectrum to higher modes, i.e. higher l. The curve for wDE = 0 is indi-
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Fig. 4. We show the effect of the kinetic era with Ni < N < N1 by varying
wDE = 1, 0, −1 with ∆NT = ∆N1/2 = ∆N2/2 = 9. The curves with wDE = 0 and
wDE = −1 cannot be distinguished. The vertical axes is l(l + 1)cl/2π(µK2).
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stinguishable from the wDE = −1 one. The position and height of the peaks
are p1 = (227, 5275), p2 = (559, 2605), p3 = (868, 2240) for wDE = 1 while
for wDE = −1 we have p1 = (224, 5138), p2 = (545, 2310), p3 = (832, 2165)
giving a percentage difference p1 = (1.3%, 2.6%), p2 = (2.5%, 12.7%), p3 =
(4.3%, 3.4%). We see that the largest discrepancy is the altitude of the se-
cond peak. The total χ2 gives 75, 78, 78 for w = 1, 0,−1 respectively.

The difference in height and positions may in principle distinguish bet-
ween a cosmological constant and a scalar field, or any fluid with the specific
equation of state behavior.

5.6 Equal Length Periods

We have studied the case with ∆N1 = ∆N2, ∆No = 0. In Fig. 5 we show the
behavior for different values of ∆NT = 2∆N2 = 6, 8, 9, 12, 16 giving a total
χ2 of 1685, 465, 75, 75, 78, respectively.

There is a lower limit of ∆NT that gives an acceptable CMB spectrum.
The lower limit is ∆NT ≥ 9. For smaller ∆NT the peaks move to the right of
the spectrum and the height increases giving a spectrum not consistent with
the CMB data.

For larger ∆NT > 9 the curves tend to the cosmological constant. It is not
surprising since for large ∆NT = 2∆N2 it means that we have a larger time
with w = −1 and in the case that ∆N2 > No − Nrm the universe content,
after matter radiation equality, would have been given by matter and a fluid
with wDE = −1, i.e. a cosmological constant.
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Fig. 5. We show the effect on the CMB by varying the ∆NT = ∆N1/2 = ∆N2/2 =
6, 8, 9, 12, 16 with ∆No = 0. The curves with ∆NT = 12, 16 cannot be easily distin-
guished. The vertical axes is l(l + 1)cl/2π(µK2).
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Fig. 6. We show the effect on the CMB by varying the ∆NT = No − Ni =
5, 7.1, 9.5, 12.5, with the constraint ΩDEi(Ni) = ΩDE(N2) = 0.1 and wDEo =
−1, ∆N2 = 1.03 and we include the cosmological constant wtr ≡ −1, for compa-
rison. The curves with ∆NT = 9.5, 12.5 cannot be easily distinguished from the
cosmological constant. The vertical axes is l(l + 1)cl/2π(µK2).

5.7 Scaling Condition

Following the discussion in Sect. 2.2, we now that a scalar field will end up
its scaling period with a ΩDE equal to its starting value, i.e. ΩDE(Ni) =
ΩDE(N2) = 0.1. We have taken this value of ΩDE since for N > Ni the
energy density behaved as radiation and we have to impose the nucleosyn-
thesis bound on relativistic degrees of freedom ΩDE(NS) ≤ 0.1− 0.2. Impo-
sing this condition we have determined the evolution of the CMB for three
different values of wDEo = −1,−0.82,−0.7. We have chosen to analyze the
wDEo = −0.82 because it was found to be the best fit tracker model by [6]
and we take the other two cases as the extreme ones. We have wDE = 1/3
for N ≤ Ni, w = 1 for Ni ≤ N ≤ N1, wDE = −1 for N1 ≤ N ≤ N2
and wDEo = wtr for N2 ≤ N ≤ No. The value of N2 is determined so
that the energy density grows from ΩDE(N2) = 0.1 to ΩDE = 0.7 today.
This conditions sets the range of the period to No −N2 = 1.03, 1.25, 1.47 for
wDEo = −1,−0.82,−0.7 respectively.

In Figs. 6 and 7 we show the curves for different values of Ni with the
restriction that ΩDE(Ni) = ΩDE(N2) = 0.1 and for wDEo = −1,−0.82,
respectively. In the case of wDEo = −1 we have ∆No = 1.03 and that the
smallest acceptable model has ∆NT = 8.5, ∆N2 = 3.6, see Fig. 6. The best
model has ∆NT = 8.88, N1 − No = 3.7 and peaks p1 = (224, 5133), p2 =
(549, 2363), p3 = (840, 2178) with χ2 = 75. The total χ2 obtained gives
697, 597, 77.3, 75.3 for ∆NT = 5, 7.1, 9.5, 12.5, respectively, and χ2 = 78 for a
cosmological constant.

For wDEo = −0.82, Fig. 7 we have ∆No = No − N2 = 1.25 and the
minimum acceptable distance is ∆NT = Ni −No = 7.19, ∆N2 = 3.9. Smal-
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Fig. 7. We show the effect on the CMB by varying the ∆NT = No − Ni =
5.3, 7, 7.2, 7.4, with the constraint ΩDEi(Ni) = ΩDE(N2) = 0.1 and wDEo =
−0.82, ∆N2 = 1.25. We also include the tracker with constant wtr ≡ −0.82. The
curves with ∆N1 = 7.2, 7.4 cannot be distinguished from the tracker one. The
vertical axes is l(l + 1)cl/2π(µK2).

ler values of ∆NT give a spectrum with peaks too large and second and
third peaks moved to the right (high l modes). For large ∆NT the spectrum
tends to the tracker spectrum wtr = −0.82. The total χ2 obtained gives
1004, 1285, 78, 75 for ∆NT = 5.3, 7, 7.2, 7.4, respectively, and χ2 = 98 for the
tracker wtr = −0.82.

The best model has ∆NT = N1 − No = 7.4, ∆N2 = 3 with peaks and
position p1 = (225, 5101), p2 = (555, 2493), p3 = (860, 2110) and it has a
better fit than the tracker model with constant wtr = −0.82 which was found
to be the best tracker fit [6]. We see that having a dynamical wDE is not only
more reasonable from a theoretical point of view but it fits the data better.

Finally, we consider wDEo = −0.7 for N > N2. In this case we have
∆No = No − N2 = 1.47 and the minimum acceptable model has ∆NT =
6.8, ∆N2 = 3.6, while the best model has ∆NT = 7.3, ∆N2 = 3.8 with peaks
p1 = (222, 4954), p2 = (550, 2422), p3 = (853, 2035). The total χ2 obtained
gives 711, 218, 82 for ∆NT = 5.5, 6.8, 7.3, respectively, and χ2 = 144 for the
tracker wtr = −0.7

We see that in all three cases wDEo = −1,−0.82,−0.7, with condition
ΩDE(Ni) = ΩDE(N2) = 0.1 we have a minimum acceptable value of ∆NT
and for smaller ∆NT the peaks move to the right of the spectrum and the
height of the peaks increases considerably. This conclusion is generic and
sets a lower limit to ∆NT , the distance to the phase transition scale Λc, or
equivalently it sets a lower limit to Λc.

The smallest ∆NT is set by the largest acceptable wDEo (here we have
taken it to be wDEo = −0.7) giving in our case a ∆NT = 6.8 for ΩDEi = 0.1.
This result puts a constraint on how late the phase transition can take place.
In terms of the energy Λc = ρ

1/4
DEi = [ΩDEi3H2

i ]
1/4 we can set a lower value

for the transition scale. Using (60) with ΩDEi = 0.1 and∆NT = 6.82 we get
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Λc = ρ
1/4
DEi = 2× 10−10GeV = 0.2 eV (61)

i.e. for models with a phase transition below (61) the CMB will not agree
with the observations. This result is independent of the type of potential.

Furthermore, we now that for inverse power potential there is an up-
per limit to Λc coming by requiring that wDEo < −2/3. The limiting value
assuming ΩDEi ≤ 0.1, for V = Λ4+nφ−n, is n < 1.8 giving Λc = 4MeV �
H

2/(4+n)
o . Therefore, for IPL potentials the only acceptable models have phase

transition scale
4 MeV > Λc > 0.2 eV. (62)

6 Conclusions

We have studied the dark energy necessary for explaining the positive accele-
ration and flatness of the universe and structure formation. We have derived
the model independent evolution of quintessence,i.e. a scalar field with only
gravitational coupling with the SM particles.

We proposed a quintessence model based on a non-abelian asymptotically
free gauge group. This group forms dynamically gauge invariant particles
below the condensation scale (as mesons and baryons in QCD) and it is these
scalar condensates that acquire a non trivial potential V and parameterize
the quintessence field. We have shown that an unification scheme, where
all coupling constants are unified, as predicted by string theory, leads to
an acceptable dark energy parameterized in terms of the condensates of a
non-abelian gauge group. Above the unification scale we have all fields in
thermal equilibrium and the number of degrees of freedom for the SM and
DG model determines the initial conditions for each group. Below Λgut the
DG group decouples, since it interacts with the SM only through gravity.
For temperatures above the condensation scale of the DG group its fields are
relativistic and redshift as radiation. Below Λc we have the gauge invariant
condensates.

We have also studied the possibility that the dark gauge group contains
the dark matter and energy. The allowed values of the different parameters are
severely restricted by different considerations. However, the constraints on the
dark energy and dark matter overlap allowing for the possibility of having a
gauge group containing both dark energy and dark matter. The NS constraint
on gDG sets a limit to the dark energy density at Λc of ΩDGc ≤ 0.17. The
evolution and acceptable values of DM and DE leads to a constraint of Λc
and n giving 0.21 eV ≤ Λc ≤ 3645 eV and 0.24 ≤ n ≤ 0.104 for gdec ≤ 901.
The evolution of the quintessence field requires also a small n in order to
have a small wDEo. For ΩDE ≤ 0.17 and wDEo ≤ −0.78 one needs n < 1.6.
On the other hand, the analysis of the CMB spectrum sets also a lower
scale for the condensation scale Λc > 0.2 eV with n > 0.27. So, from three
different analysis (quintessence, dark matter and CMB spectrum) we are led
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to conclude that the most acceptable models have a low condensation scale
Λc of the order of 1− 103 eV . The fact that the condensation is low explains
why the acceleration of the universe is at such a late time.

Finally, we have analyzed the CMB spectra for a fluid with an equation
of state that takes different values. The values are wDE = 1/3, 1,−1, wDEo
for N in the regions Ni −NPlanck, N1 −Ni, N2 −N1, No −N2, respectively.
The results are independent of the type of fluid we have. The cosmological
constant and the tracker models are special cases of our general set up.

We have shown that the evolution of a scalar field, for any potential
that leads to an accelerating universe at late times, has exactly the kind of
behavior described above. It starts at the condensation scale Λc and enters a
period with wDE = 1, then it undergoes a period with wDE = −1 and finally
ends up in a region with −1 ≤ wDEo ≤ −2/3. We have shown that the energy
density at the end of the scaling period (end of wDE = −1 region) has the
same energy ratio as in the beginning, i.e. ΩDE(Ni) = ΩDE(N2). The time
it spends on the last region depends on the value of ΩDE(N2) and on wDEo
during this time. Before the phase transition scale Λc we are assuming that
all particles were at thermal equilibrium and massless in the quintessence
sector. At the phase transition scale Λc the particles acquire a mass and a
non trivial potential.

We have shown that models with wDE = 1/3, 1,−1, wDEo have a better
fit to the data then tracker or cosmological constant. Furthermore, we have
determined the effect on the CMB of the first two periods wDE = 1/3 and
wDE = 1 compared to a cosmological constant and even though the effect is
small it is nonetheless observable.

In general, the CMB spectrum sets a lower limit to ∆NT , which implies a
lower limit to the phase transition scale Λc. For smaller ∆NT the CMB peaks
are moved to the right of the spectrum and the height increases considerably.
For any ΩDEi the CMB sets a lower limit to the phase transition scale. In the
case of ΩDEi(Ni) = 0.1 the limit is Λc = 0.2eV for any scalar potential. We
do not take ΩDEi much larger because we should comply with the NS bound
on relativistic degrees of freedom ΩDEi ≤ 0.1 − 0.2. If we take ΩDEi � 0.1
then the constraint on the phase transition scale will be less stringent since
the effect of the scalar field is only relevant recently (ΩDE � 1 during all the
time before present time). For inverse power law potentials we can also set
an upper limit to Λc and for ΩDEi ≤ 0.1 it gives an inverse power n ≤ 1.8
and Λc ≤ 4 × MeV . In this class of potentials only models with 4MeV >
Λc > 0.2 eV would give the correct wDEo and CMB spectrum.

This work allows for the possibility of distinguishing the kind of physical
process that gives rise to the dark energy.
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Abstract. There is great interest in understanding a possible late accelerated ex-
pansion of the universe. Data suggest that the universe was still decelerating around
redshift 1 and started to accelerate more recently at redshift 0.5. In models where
the expansion is driven by a cosmological constant the acceleration should become
increasingly greater with time, thus inflation never ends. This could also be the
case with most models of quintessence or quintessential inflation where the late
accelerated expansion is produced by a monotonically decreasing scalar potential.
Here we would like to explore the possibility that a recent inflation has already or is
about to end. This possibility is not ruled out by existing data and could be testable
with far more, higher accuracy, supernovae on the Hubble diagram. We construct
a two-stage inflationary model which can accommodate early inflation as well as a
second stage of inflation (quintessence) with a single scalar field φ. Using an analogy
from a mechanical problem we propose an inflaton field solution to the equations
of motion which can account for two inflationary epochs. Inflation occurs close to
the maxima of the potential. As a consequence both inflations are necesarilly finite.
A first inflation is produced when fluctuations displace the inflaton field from its
higher maximum rolling down the potential as in new inflation. Instead of rolling
towards a global minimum the inflaton approaches a lower maximum where a se-
cond inflation takes place. The model is not realistic, however, because matter has
not been taken into account at the end of the first inflation where particle produc-
tion should occur as in non-oscillatory models. This is a delicate problem which
will be treated elsewhere.

1 Introduction

The idea that the universe underwent an early inflationary expansion is now
widely accepted [1]. This era of inflation makes plausible certain initial condi-
tions for standard cosmology and provides a mechanism for structure forma-
tion. More speculatively the idea that the universe is at present undergoing
inflation (usually denoted by the term quintessence) is the subject of much
current interest [2]. Several models have been proposed where typically the
potential energy of a scalar field, in general different from the one produ-
cing early inflation, is dominating the dynamics of the universe. Usually the
potential is an inverse power of the field decreasing monotonically towards

G. Germán and A. de la Macorra, Quintessential Inflation at the Maxima of the Potential, Lect.
Notes Phys. 646, 259–271 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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x

U�x�

A B

M1 M2

Fig. 1. The potential energy U(x) of a particle in classical mechanics. In the
absence of friction if we leave the particle at the point A with vanishing velocity
it will eventually reach B, with U(A) = U(B), also with vanishing velocity. In the
limit when A → M1 it will take an infinite amount of time for the particle to reach
B → M2.

zero. In the present work we are interested in studying a model which accom-
modates two stages of inflation by the evolution of a single scalar field [3].
Here, however, we look at the possibility that both inflations are produced
when the inflaton is close to the maxima of the potential. The fact that both
inflations occur at the maxima implies that they are necesarilly finite. This
opens the interesting possibility where the second inflation has already or is
about to end. This possibility is not ruled out by existing data and could be
testable with far more, higher accuracy, supernovae on the Hubble diagram
[4]. In what follows we construct a two-stage inflationary model by using
an analogy with a problem from classical mechanics. The resulting potential
could be obtained from supergravity (see Appendix).

Let us consider a potential U(x) as shown in Fig. 1. When there is no
friction the equation of motion for a particle of mass m = 1 is given by

ẍ+ U ′(x) = 0. (1)

We study the problem of a particle that leaves with vanishing velocity some-
where from the left of the minimum, let us say A and reaches B some time
later. If we fix the origin of time at the minimum of U(x) then the particle
leaves A in the past reaching B sometime in the future. As A becomes close
to the maximum at M1 the particle spends longer close to the maxima. In
the limit when A → M1 it takes an infinite amount of time for the particle
to reach M2. The particle would spend most of the time leaving M1 and
trying to reach M2. As a result the kinetic energy is negligible close to the
maxima; the potential energy dominates. We call this the limiting solution.
The maximum at M1 is located at x = 0 thus we require x(t = −∞) = 0 and
x(t = +∞) locates the maximum at M2.
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t

U�t�

Fig. 2. The potential energy of the particle of Fig. 1 now as a function of time.
The particle spends most of its time close to the maxima M1, M2 where the kinetic
energy is negligible.

As a concrete example let us consider the potential

U(x) = cos2(x). (2)

It is easy to check that the limiting solution is

x(t) = 2 arctan[tanh(
t√
2
)] +

π

2
, (3)

where x(t = −∞) = 0, x(t = +∞) = π and ẋ(t = −∞) = ẋ(t = +∞) = 0.
The potential U(x) is already illustrated in Fig. 1. As a function of time
the potential is shown in Fig. 2. If we could lower the r.h.s. branch of this
potential we could use this mechanical problem as an analogy to construct
a model with two stages of inflation. Actually this can be done as follows.
Instead of the potential U(x) let us consider a new potential Ū(x) illustrated
in Fig. 3. Now the maximum at M2 is much smaller than the maximum
at M1. If we impose a solution of the type given by (3) it is clear that we
need a friction term in the corresponding (1) to stop the particle precisely
at M2. Thus imposing a limiting solution to the potential Ū(x) determines
the friction term and, as before the particle will spend most of the time close
to M1 and close to M2 with negligible kinetic energy. As a function of time
the potential of Fig. 4 shows the two plateaus at t → −∞ and t → +∞
corresponding to the maxima at M1 and M2 respectively.

In inflationary models of the “new” type one typically starts with a very
flat potential and inflation occurs close to the maximum at φ = 0, where φ is
the inflaton field. There could be a previous “primordial” stage of inflation
probably of the chaotic type setting the initial conditions for new inflation.
For simplicity in what follows we will call this new inflationary epoch a first
stage or simply first inflation (although probably there was inflation before)
characterized by a scale Λ1. This scenario is illustrated in Fig. 5. Here we
study the possibility of a second stage of inflation at a scale Λ2, where Λ2 �
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x

U
�
�x�

M1

M2

Fig. 3. A particle leaves the maximum at M1 with vanishing velocity. It will just
reach M2 also with vanishing velocity if there is a friction term which stops the
particle precisely at M2.

t

U
�
�t�

Fig. 4. The potential Ū(x) of Fig. 3 as a function of time. With an appropriate
friction term the particle which leaves M1 with vanishing velocity will just manage
to reach M2 in an infinite time. The particle spends most of its time close to the
maxima with vanishing kinetic energy. Two plateaus appear at different energy
scales.

Φ

V�Φ�

�1

Fig. 5. A typical new inflationary potential gives rise to an early epoch of inflation
(which in this work we call first inflation). Note, however, that there could have
been a previous “primordial” stage of inflation providing initial conditions for new
inflation to occur.
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Fig. 6. The scenario studied here requires the presence of a second maximum at
a scale Λ2. There is a solution to the field equations wich makes the inflaton (due
to the expansion of the universe) to evolve very slowly close to both maxima thus
providing an inflationary model with two stages of inflation. In the limiting solution
it takes an infinite amount of time for the scalar field to reach M2 starting to roll
from M1. In a more realistic situation fluctuations displace φ from the maximum
at M1 thus allowing for the possibility of a finite second inflation. The scalar field
ending in oscillations around one of its minima (see Fig. 9).

Λ1. The mechanical analogy indicates that the second inflation will occur also
close to a maximum, we then expect something like Fig. 6.

In Sect. 2 we construct a two-stage inflationary model. Section 3 deals with
the problem of initial conditions and conclude in Sect. 4 with a discussion of
the main results.

2 The Model

The inflaton field and Friedmann’s equations are, as usual, given by

φ̈+ 3Hφ̇+ V ′(φ) = 0, (4)

3H2 = V +
1
2
φ̇2, (5)

where we have set the reduced Planck mass M = 2.44 × 1018GeV to unity.
The equations above can be rewritten as

3H2 + Ḣ = V, (6)

Ḣ = −1
2
φ̇2, (7)

where the dot means derivative w.r.t. cosmic time and a prime denotes a field
derivative. The limiting solution is conveniently written as
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φ(t) =
2b√

6(1− b2)

(
2 arctan[tanh[

√
3a(1− b)

2b
(t+ to)]] +

π

2

)
, (8)

where the parameters a, b, to are determined by imposing physical conditions
on the potential. The peculiar way in which these parameters are introduced
above simplifies the analysis on the resulting potential. The main difference
w.r.t. the mechanical problem is that the limiting solution determines (up
to an integration constant) the “friction” term 3Hφ̇ through (7) and the
potential through (6). Equivalently by providing H(t) we could get φ(t) and
V . The derivative of the Hubble function is

Ḣ = −a2 1− b
1 + b

sech2[
√

3a(1− b)
b

(t+ to)]. (9)

Integrating this expression we get the Hubble function

H(t) =
a√

3(1 + b)

(
1− b tanh[

√
3a(1− b)

b
(t+ to)]

)
, (10)

the arbitray integration constant a/(
√

3(1 + b)) has been chosen this way to
get an overall scale for H(t) and to guarantee a positive Hubble function for
b < 1. This choice also makes the potential very simple when t→ −∞. From
(6) the potential follows

V (t) =
a2

(1 + b)2

(
b− tanh[

√
3a(1− b)

b
(t+ to)]

)2

. (11)

We can invert (8) and from (11) obtain the potential as a function of φ, this
is given by

V (φ) =
a2

(1 + b)2

(
b+ cos[

√
3(1− b2)

2b2
φ]

)2

. (12)

A potential of this type could follow from supergravity (see Appendix). The
parameters are determined from the following conditions. The potential at
t→ −∞ should reach the scale Λ1 of the first inflation, this fixes a

V (t→ −∞) = a2 ≡ Λ4
1, ⇒ a = Λ2

1. (13)

At t→ +∞ the potential reaches the second scale Λ2 of inflation, this fixes b

V (t→ +∞) = a2 (1− b)2
(1 + b)2

≡ Λ4
2, ⇒ b =

1− d
1 + d

; d ≡ (
Λ2

Λ1
)2. (14)

Actually, (14) has two solutions for b but the second solution leads eventually
to a negative Hubble function and thus to a contracting universe. This case
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is not studied here. Inflation ends (or starts) at points where the acceleration
of the scale factor a(t) vanishes

ä(t)
a(t)

= H2 + Ḣ = 0. (15)

This equation has two solutions. The end of the first inflation is taken at
t = 0 thus fixing to

to = − b√
3a(1− b)

arctanh[
√

6(1− b2)− b
3− 2b2

]. (16)

The beginning of the second inflation is given by

ts2 = − ln(49− 20
√

6)
2
√

3
b

a(1− b) , (17)

which, by virtue of (14), can be written as

ts2 = − ln(49− 20
√

6)
4
√

3Λ2
2

(1− (
Λ2

Λ1
)2) ≈ 0.662

Λ2
2
, (18)

the last result follows because Λ2/Λ1 � 1.
Corresponding to ρφ ≈ 0.7ρc with ρφ ≈ V (φ), we take Λ2 = 2.744 ×

10−12
√
hGeV , where h is somewhere between 0.68 and 0.75. Thus, (18) gives

the time when the second inflation starts with respect to the end of the first
inflation at t = 0, which for any practical purpose could be taken as the
Big-Bang. Using the reduced Planck time T = 2.7× 10−43sec, (18) gives

ts2 ≈
4.5× 109

h
years. (19)

This is not, however, a realistic model because particle production at the end
of the first inflation tend1 has not been considered. Shortly after tend1 the
radiation, followed by matter energy density should dominate the inflaton
energy density. Because we want a second stage of inflation to occur at a
second maximum then reheating after the first inflation should be produced
as in non-oscillatory models [5], a delicate problem which will be dealt with
elsewhere.

In Fig. 7 we show the total, potential and kinetic energies, as well as
the acceleration of the scale factor of the universe as functions of time for
the limiting solution given by (8). Finally Fig. 8 shows the equation of state
parameter ω = p/ρ. The example above was developed using the limiting
solution. This is only an approximation to a more general situation where
the scalar field is initially displaced from its maximum at M1.
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Fig. 7. We show the total, potential and kinetic energies, as well as the acceleration
of the scale factor of the universe, ä(t)/a(t), as functions of time for the limiting
solution given by (8). The origin of time has been chosen so that the end of the
first inflation occurs at t = 0. Thus we find that the start of the second inflation
denoted by ts2 is given by ts2 ≈ 4.5 × 109/h years.

t

Ω

�
1
����
3

-1

1

Fig. 8. The equation of state parameter ω = p/ρ as a function of time. For t → ±∞
ω takes the cosmological constant value of −1. Inflation occurs for ω ≤ −1/3.

3 Initial Conditions

In a more realistic situation the inflaton leaves not from the maximum at
M1 but from a slightly displaced position. The potential is shown in Fig. 6.
A mechanism setting the field away from M1 is provided by its fluctuations.
We have that

δφ ≈ H(t→ −∞)
2π

≈ Λ2
1

2π
√

3
. (20)

Depending on the initial conditions the scalar field approaches M2 ending in
oscillations around one of the minima. The time evolution of φ is illustrated in
Fig. 9. Figure 9a corresponds to a field which is unable to reach the maximum
at M2 ending in oscillations around the first minimum while Fig. 9b shows
the time evolution of the field when this is able to overcome the maximum
M2 ending at the second minimum. In both cases the flat part of the figure
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t
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M1

M2

t

Φ

M1

M2

Fig. 9. The inflaton leaves from close to M1 where it has been displaced due to its
fluctuations δφ ≈ H(t → −∞)/2π ≈ Λ2

1/2π
√

3. After some time it approaches the
second maximum at M2 (see Fig. 6) ending in oscillations around the first minimum
Fig. 9a or the second Fig. 9b.

is where the second inflation occurs and its duration clearly depends on the
initial conditions with which the universe was prepared.

The equivalent to Fig. 7 for this case is shown in Fig. 10 where we plot the
total, potential and kinetic energies as well as the acceleration of the scale
factor of the universe. Finally Fig. 11 shows the behaviour of the equation of
state parameter ω = p/ρ. This should be compared with Fig. 8 for the case
of the limiting solution.

4 Conclusions

We have studied a model of inflation which can accommodate two inflationary
eras. Both stages of inflation are drived by the potential energy of a single
scalar field. The new feature is that inflation occurs close to the maxima of
the potential where the kinetic energy is negligible. As a consequence both
inflations are of finite duration. It is then possible that the second inflation
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Fig. 10. Corresponding to Fig. 7 where now the scalar field starts its rolling dis-
placed from the maximum at M1 due to its fluctuations. All the curves are flat to
the left of the figure with the inflaton close to M1. It finally approaches M2 (second
plateau). After some time close to the second maximum at M2 the inflaton rolls to
a minimum (see Fig. 6) with the oscillatory behaviour shown at the far right of the
figure.

t

Ω

1
����
3

Fig. 11. The equation of state parameter ω = p/ρ as a function of time when
the scalar field has been displaced from the maximum at M1. Note how during the
oscillations of the inflaton there are short periods of inflation.

has already or is about to end which should be testable by substantially
increasing the number and accuracy of supernovae on the Hubble diagram.
In the ideal case, which we call the limiting solution, the scalar field takes an
infinite amount of time to reach the second, smaller, maximum. In a more
realistic case the scalar field is displaced from the higher maximum by its
fluctuations ending in oscillations in one of the minima of the potential. The
origin of time is fixed by the requirement that H2+Ḣ vanishes at t = 0. Thus
the end of the first inflation defines the origin of time which for any practical
purpose could be taken as the Big-Bang. A realistic model should incorporate
an era of radiation followed by matter domination after the end of the first
inflation. Potentially problematic is that the initial conditions are fine-tuned
to avoid the scalar field undershoot or overshoot the second maximum of the
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potential. On the other hand we have been able to show that a potential of
the type (12) could be derived from supergravity. In supergravity the only
natural scale is the Planck scale and we can find arguments to explain the
possible origin of the first scale of inflation [6] while the second could be
understood in terms of the first one by considering friction terms due to the
expansion of the universe and possible interactions of the inflaton with matter
fields.

Appendix

Let us consider the supergravity potential for one chiral superfield with scalar
component z and without D-terms [7]

V = eK
[
F ∗(Kzz∗)−1F − 3|W |2

]
, (21)

where

F ≡ ∂W

∂z
+
(
∂K

∂z

)
W, Kzz∗ ≡ ∂2K

∂z∂z∗ . (22)

The reduced Planck mass M ∼ 2.4×1018 GeV has been set equal to one. The
superpotential and Kähler potential denoted W and K respectively. Here we
are interested in models where W and K are given by polynomial expressions
such as

W =
∞∑
n=0

anz
n, (23)

and

K =
∞∑
n=1

bn(zz∗)n, (24)

where an and bn are real coefficients. In general this structure leads to ex-
pressions that contain cos-form potentials for the angular field φ which is a
real field defined from z in the following way

z = χeiφ . (25)

By using the superpotential and Kähler potential as given by (23) and (24),
it is straightforward to show that the supergravity potential can be written
in the form

V = eK
∞∑
n=0

∞∑
m=0

[
(n+K1)(m+K1)

K2
− 3

]
anamz

nz∗m, (26)

where Ki denote the sums

K1 =
∞∑
n=1

nbn(zz∗)n , (27)
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K2 =
∞∑
n=1

n2bn(zz∗)n . (28)

Notice that for superpotentials and Kähler potentials of the form (23) and
(24), respectively, (26) is entirely equivalent to the supergravity potential
given by (21). Let us now insert the radial and angular fields by writing z in
the way expressed by (25), z = χeiφ. The potential is then given by [8]

V = eK
∞∑
n=0

∞∑
m=0

[
(n+K1)(m+K1)

K2
− 3

]
anamχ

n+m cos[(n−m)φ], (29)

It is easy to show that (29) can give rise to potentials of the type (12). Let
us write the superpotential and Käler potential in the form

W = a0 + a1z + a2z
2, (30)

and
K = zz∗ = χ2, (31)

Assuming that the χ field has relaxed to its v.e.v., χ0 and eliminating e.g.,
a1 we get

V (φ) = c1(c2 + cos[φ])2, (32)

where
c1 = 2eχ

2
0χ0

√
(χ2

0 − 1)a0a2, (33)

and

c2 =
((χ2

0 − 2)a0 + (χ4
0 + 2)a2)

√
(χ2

0 − 3)a2
0 − 2χ2

0(χ
2
0 − 1)a0a2 + χ2

0(χ
4
0 + χ2

0 + 4)a2
2√

(χ2
0 − 2)2a2

0 − 2(χ6
0 − 2χ4

0 + 2χ2
0 + 2)a0a2 + (χ4

0 + 2)2a2
2

.

(34)

It is then not untinkable that a model of the type (12) could arise from a
particle physics model.
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Abstract. We give a brief introduction into the formalism of the effective action.
We use the effective action to investigate the stability of scalar quintessence po-
tentials under quantum fluctuations both for uncoupled models and models with a
coupling to fermions. We find that uncoupled models are usually stable in the late
universe. However, a coupling to fermions is severely restricted. We check whether a
graviton induced fermion-quintessence coupling is compatible with this restriction.

1 Introduction

Observations indicate that dark energy constitutes a substantial fraction of
our Universe [1, 2, 3, 4, 5]. The range of possible candidates includes a cosmo-
logical constant and – more flexibly – some form of dark energy with a time
dependent equation of state, called quintessence [6]. Commonly, realizations
of quintessence scenarios feature a light scalar field [7, 8, 9].

The evolution of the scalar field is usually treated at the classical level.
However, quantum fluctuations may alter the classical quintessence potential.
In this contribution which is mainly based on [10, 11], we will investigate
one-loop contributions to the effective potential from both quintessence and
fermion fluctuations. We will show that in the late universe, quintessence
fluctuations are harmless for most of the potentials used in the literature.
For inverse power laws and SUGRA inspired models, this has already been
demonstrated in [12]. That the smallness of the quintessence mass needs to
be protected by some symmetry has been pointed out in [13, 14].

In contrast with the rather harmless quintessence field fluctuations, fer-
mion fluctuations severely restrict the magnitude of a possible coupling of
quintessence to fermionic dark matter, as we will show.

In Euclidean conventions, the action we use for the quintessence field Φ
and a fermionic species Ψ to which it may couple [15, 16, 17] is

S =
∫
d4x
√
g

[
M2

PR+
1
2
∂µΦ(x)∂µΦ(x) + V (Φ(x))

+Ψ(x)
[
i /∇+ γ5mf(Φ)

]
Ψ(x)

]
, (1)
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V ′′(Φcl)

...

V ′′(Φcl)

...

V ′′(Φcl)

...

(a) (b)

Fig. 1. Pure quintessence fluctuations (depicted as dashed lines). The loop of the
fluctuating quintessence field modifies the potential. Since the potential involves in
principle arbitrary powers of Φ, we depict V ′′ as multiple external lines.

with mf(Φ) as a Φ dependent fermion mass. This Φ dependence (if existent
in a model) determines the coupling of the quintessence field to the fermions.
As long as one is not interested in quantum gravitational effects, one may set√
g = 1, R = 0 and replace /∇ → /∂ in the action (1).

By means of a saddle point expansion, we arrive at the effective action
Γ [Φcl] to one-loop order of the quintessence field. The equation governing the
dynamics of the quintessence field is then determined by δΓ [Φcl]|Φcl=Φ


cl
= 0.

When estimating the magnitude of the loop corrections, we will assume that
Φ�cl is close to the solution of the classical field equations: δS = 0. Evaluating
Γ for constant fields, we can factor out the space-time volume U from Γ =
UV . This gives the effective potential

V1-loop(Φcl) = V (Φcl) +
Λ2

32π2 V
′′(Φcl)−

Λ2
ferm

8π2 [mf(Φcl)]
2
. (2)

Here, primes denote derivatives with respect to Φ; Φcl is the classical field
value and Λ and Λferm are the ultra violet cutoffs of scalar and fermion
fluctuations. The last term in (2) accounts for the fermionic loop corrections
as shown in Fig. 5. The second term in (2), is the leading order scalar loop,
depicted in Fig. 1(a). We neglect graphs of the order (V ′′

|cl)
2 and higher like

the one in Fig. 1(b), because V and its derivatives are of the order 10−120

(see Sect. 4). We have also ignored Φ-independent contributions, as these will
not influence the quintessence dynamics.

However, the Φ-independent contributions add up to a cosmological con-
stant of the order Λ4 ≈ O(M4

P). This is the old cosmological constant pro-
blem, common to most field theories. We hope that some symmetry or a more
fundamental theory will force it to vanish. The same symmetries or theories
could equally well remove the loop contribution by some cancelling mecha-
nism. After all, this mechanism must be there, for the observed cosmological
constant is far less than the naively calculated O(M4

P). Unfortunately, SUSY
is broken too badly to be this symmetry [13].

In addition, none of the potentials under investigation can be renormalized
in the strict sense. However, as we will see, terms preventing renormalization
may in some cases be absent to leading order in V ′′

|cl. As the mass of the
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quintessence field is extremely small, one may for all practical purposes view
these specific potentials (such as the exponential potential) as renormalizable.

There is also a loophole for all models that will be ruled out in the follo-
wing: The potential used in a given model could be the full effective potential
including all quantum fluctuations, down to macroscopic scales. For coupled
quintessence models, this elegant argument is rather problematic and the
loophole shrinks to a point (see Sect. 4).

After a brief review of some basic features of the effective action and its
calculation we derive (2) and apply it to various quintessence models in order
to check their stability against one-loop corrections. We do this separately for
coupled and uncoupled models. We use units in which MP = 1. For clarity,
we restore it when appropriate.

2 Effective Action

The effective action Γ [18, 19, 20] is a very useful tool in quantum field theory
(QFT). It allows us to calculate interesting quantities like vacuum expectation
values, propagators and correlation functions more or less by simply taking
(functional) derivatives. Indeed, we can promote a classical equation to full
quantum status by replacing the action by the effective action S → Γ and
the fields by their expectation values φ → 〈φ〉. E.g. the equation of motion
becomes

δΓ [〈φ〉]
δ〈φ〉 = 0. (3)

Knowledge of the effective action is equivalent to knowledge of the full
quantum theory. From this one can already deduce that calculating the effec-
tive action is a quite difficult task and can usually be done only approximately.

Before going into more detail let us briefly review the definition of the
(1PI) effective action3, and some of its basic properties. In the following we
will write φ̃ for the fluctuating quantum field and φ = 〈φ̃〉. We suppress all
indices. Indeed, φ might also contain fermionic degrees of freedom. A typical
φ might therefore look like (σ, σ�, V µ, Aµ, . . . , ψi, ψj . . .) with several bosonic
and fermionic species. If we keep track of the order of fields and differential
operators, no problems arise from this notation.

Moreover, we work in Euclidean space. That is why we have a minus sign
in the path integrals instead of an i in front of the action. The transition
to Euclidean time is usually done via a Wick rotation. We do not want to
go into detail, here, however, for fermions there are some slight difficulties
because the action is no longer necessarily Hermitian [21, 22].

The generating functional (or partition function if one prefers the statisti-
cal mechanics language) of a quantum field theory is defined by the following
functional integral
3 1PI abbreviates one particle irreducible (cf. Fig. 2).
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(a) (b)

Fig. 2. An example of a diagram which is 1PI 2(a) and one which is not 2(b). The
latter one can be split into two by cutting the line between the two bubbles.

Z[j] =
∫
Dφ̃ exp(−S[φ̃] + jφ̃). (4)

Here, S[φ̃] is the classical action and j is an external source. We recall that
in our matrix notation jφ̃ =

∫
ddxj(x)φ̃(x).

Using the generating functional, expectation values of fields (and products
of fields) can be calculated by taking derivatives with respect to j

φ[j](q) = 〈φ̃(q)〉 =
∫
Dφ̃ φ̃(q) exp(−S[φ̃] + jφ̃)∫
Dφ̃ exp(−S[φ̃] + jφ̃)

=
1

Z[j]
δZ[j]
δj(q)

=
δW [j]
δj(q)

, (5)

with
W [j] = ln(Z[j]). (6)

Physical values are obtained at vanishing external sources e.g. φ[0].
The (1PI) effective action is now the Legendre transform of W ,

Γ [φ] = −W [j[φ]] + j[φ]φ (7)

and depends on the expectation value of the field. Combining (4), (6), (7)
and shifting the integration variable to φ̂ = φ̃ − φ we obtain the following
very useful formula

Γ [φ] = − ln
∫
Dφ̂ exp

(
−S[φ+ φ̂] +

δΓ [φ]
δφ

φ̂

)
, (8)

since
δΓ [φ]
δφ

= j. (9)

We note that due to the shift of the integration variable 〈φ̂〉 = 0. Finally,
we would like to comment on the notion of one particle irreducibility (1PI).
This is explained most easily in terms of Feynman diagrams. A diagram is one
particle irreducible if it is impossible to split it into two parts by cutting an
internal line (cf. Fig. 2). The effective action is now the generating functional
of the 1PI diagrams. For a proof of this statement and further details about
the 1PI effective action we refer to textbooks as e.g. [22, 23, 24, 25].
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2.1 Calculating the Effective Action – Loop Expansion

The loop expansion is a perturbative technique to calculate the effective
action. It can be shown that the effective action is nothing but the sum of
all 1PI vacuum diagrams in a background field φ as depicted in Fig. 3. An
easy way to obtain this expansion is to make a saddle-point approximation
of (8) about the solution of the field equation. In lowest non-trivial order one
obtains,

Γ [φ] = S[φ] +
1
2

STr ln(S(2)[φ]) + · · · , (10)

where

S(2)[φ] =
−→
δ

δφT S[φ]
←−
δ

δφ
. (11)

In the diagrammatic language (Fig. 3) the second term of (10) corresponds
to the one-loop diagram, and we have omitted the higher loop diagrams in
(10). The supertrace (STr) comes around due to our notation where bosonic
as well as fermionic degrees of freedom are contained in φ. However, its effect
is very simple as it only provides a minus sign in the fermionic sector of the
matrix.

Γ [φ] = S[φ] + + + + · · ·

Fig. 3. Perturbative expansion of the effective action. To be explicit we choose a
theory which has a quartic interaction. The propagators are propagators in a back-
ground field φ. For the example of a theory with a λ

12 φ̃4 interaction the propagator
in the background field would be (p2 + m2 + λφ2)−1.

An advantage of perturbation theory is that it can usually be constructed
to preserve symmetries order by order in the expansion. However, it is usually
not suited for calculations in the non-perturbative domain (hence the name)
where the coupling is not small. Nevertheless, for our modest aim of getting
an overview over the size of the quantum contributions to the effective action
one-loop perturbation theory seems reasonable. Moreover, in the late universe
the couplings of the quintessence field are usually reasonably small.

2.2 Details of the One-Loop Calculation

Let us now demonstrate how the somewhat abstract formula given in (10)
works in our case and leads to (2). In our case of a one component scalar
quintessence field Φ and one species of Dirac fermions Ψ we have φ(p) =
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(Φ(p), Ψ(p), Ψ
T
(−p)). For the moment we are only interested in the correction

to the quintessence potential, therefore we can restrict ourselves to a back-
ground field constant in space, i.e. Φ(p) = Φδ(p) and Ψ = Ψ = 0. Moreover,
we neglect graviton fluctuations and use a flat background metric,

√
g = 1,

R = 0 and ∇/ = ∂/. With this we find,

S(2)(p1, p2) =
−→
δ

δφT(−p1)
S[φ]

←−
δ

δφ(p2)
(12)

=


p2

1 + V ′′(Φ) 0 0
0 0 −p/T

1 −mf(Φ)γ5

0 −p/1 +mf(Φ)γ5 0


 δ(p1 − p2).

We could now insert directly into (10). However, the following trick simplifies
the calculation,

∆Γ 1-loop =
1
2

STr(S(2)) =
1
4

STr((S(2)S(2)�)), (13)

where the last equality holds because the eigenvalues of S(2) are real. With

(S(2)S(2)�)(p1, p2) =


 (p2

1 + V ′′)2 0 0
0 p2

1 +m2
f (Φ) 0

0 0 p2
1 +m2

f (Φ)


 δ(p1−p2) (14)

we can now easily evaluate the STr ln (including the integration over momen-
tum space),

∆Γ 1-loop =V4

(
1

16π2

∫ Λ

0
dp p3 ln(p2 + V ′′(Φ))− 1

4π2

∫ Λferm

0
dp p3 ln(p2 +m2

f (Φ))

)
.

(15)
We note that the STr includes integration over momentum space. Hence, we
have to set p1 = p2 = p and integrate over p. The four volume factor V4
originates from the δ(0) appearing under the integral. The minus sign is from
the STr. Dividing by the volume factor V4 and expanding to lowest order in
powers of V ′′ and m2

f , respectively, yields the correction equation (2) to the
effective potential.

Finally, let us mention the connection to the diagrams depicted in Figs. 1,
5, 6. The trick (13), does not always diagonalize the matrix. In particular, this
is true when we are interested in the corrections to the fermionic couplings
and evaluate at non-vanishing Ψ and Ψ . In this case we can split S(2) = P+F
into a field-independent part P, which is the inverse propagator, and a field-
dependent part F . Expanding the logarithm,

∆Γ 1-loop =
1
2

STr{
(

1
P F

)
} − 1

4
STr{

(
1
P F

)2

} (16)

+
1
6

STr{
(

1
P F

)3

} − 1
8

STr{
(

1
P F

)4

}+ · · · ,
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effectively corresponds to an expansion in the number of vertices. In this
language Fig. 1(a) corresponds to a first order term, while Fig. 1(b) is second
order and Fig. 4.2(a) is of third order. In this way the evaluation of Feynman
diagrams reduces to calculating powers of matrices.

3 Uncoupled Quintessence

Here, we are going to discuss inverse power law, pure and modified exponen-
tial, and cosine-type potentials.

3.1 Inverse Power Law and Exponential Potentials

Inverse power laws [7, 8], exponential potentials [9, 26] and mixtures of both
[27] can be treated by considering the potential V = AΦ−α exp(−λΦγ) [28].
Limiting cases include inverse power laws, exponentials, and SUGRA inspired
models. Deriving twice with respect to Φ, we find

V ′′ = AΦ−α exp(−λΦγ)
{
α(α+ 1)Φ−2 + 2αλγΦγ−2

+ λ2γ2Φ2γ−2 − λγ(γ − 1)Φγ−2
}
. (17)

Inverse Power Laws

For inverse power laws, we set γ = λ = 0. This gives the classical potential
V ipl

cl = AΦ−α
cl and by means of (2) the loop corrected potential

V ipl
1-loop = V ipl

cl

(
1 +

1
32π2 Λ

2α(α+ 1)Φ−2
cl

)
. (18)

The potential is form stable if 1
32π2 Λ

2α(α + 1)Φ−2 � 1, which today is
satisfied, as Φ ≈ MP [27].

However, if the field is on its attractor today, then Φ ∝ (1 + z)−3/(α+2),
where z is the redshift [27]. Using this, we have for z 	 1

V ipl
1-loop ≈ V ipl

cl

(
1 +

1
32π2 Λ

2α(α+ 1)z6/(α+2)
)
. (19)

Thus, the cutoff needs to satisfy Λ2 � 32π2

α(α+1) × z−6/(α+2). Cosmologically
viable inverse power law potentials seem to be restricted to α < 2 [29, 30].
Using α = 1 and z ≈ 104 for definiteness, the bound becomes Λ2 � 10−6.

So, at equality (and even worse before that epoch), the cutoff needs to be
well below 1012 Gev, if classical calculations are meant to be valid. In [12] it
is argued that for inverse power laws, the quintessence content in the early
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universe is negligible and hence the fluctuation corrections are important
only at an epoch where quintessence is subdominant. As the loop corrections
introduce only higher negative powers in the field, it is hoped that, even
though one does not know the detailed dynamics, the field will nevertheless
roll down its potential (which at that time is supposed to be much steeper)
and by the time it is is cosmologically relevant, the classical treatment is once
again valid. Having no means of calculating the true effective potential for
the inverse power law in the early universe, this view is certainly appealing.

Pure Exponential Potentials

The pure exponential potential is special because its derivatives are multiples
of itself. The classical potential (with α = 0, γ = 1) is V ep

cl = A exp(−λΦcl)
and to one-loop order

V ep
1-loop = V ep

cl

{
1 +

1
32π2 Λ

2λ2
}
. (20)

It is easy to see that a rescaling of A→ A/
(
1 + 1

32π2 Λ
2λ2

)
absorbs the loop

correction, leading to a stable potential up to order V ′′
cl . Working to next to

leading order, i.e. restoring terms of order (V ′′
cl )

2, we get

V ep
1-loop, n.l. =

1
32π2 (V ′′

cl )
2 ln

(
V ′′

cl

Λ2

)
.

It is this term which in four dimensions spoils strict renormalizability.

3.2 Nambu-Goldstone Cosine Potentials

Cosine type potentials resulting from a quintessence axion were introduced in
[31, 32] and their implications for the CMB have been studied in [33]. They
take on the classical potential V ng

cl = A [1− cos (Φcl/fQ)] and including loop
corrections

V as
1-loop = A

[
1−

{
1− 1

32π2

Λ2

f2
Q

}
cos

(
Φcl

fQ

)]
.

Upon a redefinition A→ A/
{

1− 1
32π2

Λ2

f2
Q

}
and, recalling that the loop cor-

rection is only defined up to a constant, one arrives at the same functional
form as the classical potential.

3.3 Modified Exponentials

In the model proposed by Albrecht and Skordis [34], the classical potential
is V as

cl = Vp exp(−λΦcl), where Vp is a polynomial in the field. To one-loop
order, this leads to
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V as
1-loop = V as

cl

{
1 +

1
32π2 Λ

2
(
V ′′
p

Vp
− 2λ

V ′
p

Vp
+ λ2

)}
. (21)

Let us for definiteness discuss the example given in [34], where the authors
chose Vp(Φ) = (Φ−B)2 + C. With this choice, we have

V as, exmpl
1-loop = V as, exmpl

cl

{
1 +

1
32π2 Λ

2
( 1
Vp

[
2

− 4λ(Φcl −B)
]
+ λ2

)}
. (22)

Now consider field values close to the minimum of Vp, i.e., let the absolute
value of ξ ≡ Φcl −B be small compared to

√
C. Then

V as, exmpl
1-loop = V as, exmpl

cl

{
1 +

Λ2

32π2

(
2− 4λξ
C + ξ2

+ λ2
)}

, (23)

and to leading order in ξ

V as, exmpl
1-loop ≈ V as, exmpl

cl

{
1 +

Λ2

32π2

(
1
C

[2− 4λξ] + λ2
)}

. (24)

Now consider, as was the case in the example given in [34], C = 0.01 for
definiteness. If we assume a cutoff Λ and a Plank mass of approximately the
same order, we get

V as, exmpl
1-loop ≈ V as, exmpl

cl

{
1 +

1
32π2

(
100 [2− 4λξ] + λ2)} . (25)

The ξ (and hence Φcl) dependent contribution in the curly brackets of (25)
is −25/(2π2)λξ which for the value λ = 8 chosen in the example gives
−200/(2π2)ξ ≈ −10ξ.

If we now look at the behaviour of the loop correction as a function of Φcl
and hence ξ in the vicinity of the minimum of this example polynomial, we
see that for, e.g., ξ = 0.01, the one-loop contribution dominates the classical
potential giving rise to a linear term in Φcl unaccounted for in the classical
treatment. For many values of the parameters B and C, this just changes
the form and location of the bump in the potential. In principle, however the
loop correction can remove the local minimum altogether (see Fig. 4).

Needless to say that this finding depends crucially on the cutoff. If it is
chosen small enough, the conclusion is circumvented. In addition, only the
specific choice of Vp above has been shown to be potentially unstable. The
space of polynomials is certainly large enough to provide numerous stable
potentials of the Albrecht and Skordis form.
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34.8 34.9 35 35.1
Φ

1.1

1.2

1.3

1.4

1.5

V
(Φ

)

classical
1−loop

Fig. 4. Classical and 1-loop corrected potential [in 10−123M4
P] for V as

cl =[
(Φ − B)2 + C

]
exp(−λΦcl) with B = 34.8, C = 0.013, Λ = 1.2. The classical

potential has a local minimum, which is absent for the loop corrected one. This is
a hand-picked example and in most cases, the bump will not vanish but move and
change its form.

4 Coupled Quintessence

Various models featuring a coupling of quintessence to some form of dark
matter have been proposed [35, 16, 36, 37, 17]. From the action equation (1),
we see that the mass of the fermions could be Φ dependent: mf = mf(Φcl).
Two possible realization of this mass dependence are, for instance, mf =
m0

f exp(−βΦcl) and mf = m0
f +c(Φcl), where in the second case, we may have

a large field independent part together with small couplings to quintessence.4

For the model discussed in [16], the coupling is of the first form, whereas in
[17], the coupling is realized by multiplying the cold dark matter Lagrangian
by a factor f(Φ). This factor is usually taken of the form f(Φ) = 1 + α(Φ−
Φ0)β . Hence, the coupling is mf(Φ) = f(Φ)m0

f , if we assume that dark matter
is fermionic. If it were bosonic, the following arguments would be similar.

We will first discuss general bounds on the coupling and in a second step
check whether these bounds are broken via an effective gravitational coupling.

4.1 General Bounds on a Coupling

We will discuss only the new effects coming from the coupling and set

V1-loop = Vcl −∆V, (26)
4 The constant m0

f is not the fermion mass today, which would rather be mtoday =
mf(Φcl(today)).
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where ∆V = Λ2
ferm [mf(Φcl)]

2
/
(
8π2

)
. If we assume that the potential energy

of the quintessence field constitutes a considerable part of the energy density
of the universe today, i.e. ρq ∼ ρcritical, we see from the Friedmann equation

3H2 = ρcritical, (27)

that Vcl ∼ H2. With today’s Hubble parameter H = 8.9 × 10−61 h (h =
0.5 . . . 0.9), we have

Vcl ∼ 7.9× 10−121 h2. (28)

The ratio of the ‘correction’ to the classical potential is

∆V

Vcl
=

1
8π2

Λ2
ferm [mf(Φcl)]

2

Vcl
. (29)

Let us first consider the case that all of the fermion mass is field dependent,
i.e., we consider cases like mf = m0

f exp(−βΦcl). As an example, we choose a
fermion cutoff at the GUT scale Λferm = 10−3, and a fermion mass, mf(Φcl)
of the order of 100 Gev = 10−16MP. Then (29) gives the overwhelmingly large
ratio

∆V

Vcl
≈ 1080. (30)

Thus, the classical potential is negligible relative to the correction induced
by the fermion fluctuations.

Having made this estimate, it is clear that the fermion loop corrections are
harmless only, if the square of the coupling takes on exactly the same form as
the classical potential itself. If, for example, we have an exponential potential
Vcl = A exp(−λΦcl) together with a coupling mf(Φcl) = m0

f exp(−βΦcl), then
this coupling can only be tolerated, if 2β = λ.5 Taken at face value, this
finding restricts models with these types of coupling. It is however interesting
to note that for exponential coupling, the case 2β = λ is not ruled out by
cosmological observations [37].

Turning to the possibility of a fermion mass that consists of a field inde-
pendent part and a coupling, i.e., mf = m0

f + c(Φcl), (29) becomes

∆V

Vcl
=

1
8π2

Λ2
ferm

[
2m0

f c(Φcl) + c(Φcl)2
]

Vcl
, (31)

where we have ignored a quintessence field independent contribution pro-
portional to (m0

f )
2. Assuming c(Φcl) � m0

f , and demanding that the loop
corrections should be small compared to the classical potential, (31) yields
the bound

c(Φcl)�
4π2 Vcl

Λ2
fermm

0
f
. (32)

5 Of course, a sufficiently small β will lead to a more or less constant contribution,
where mf(Φcl) ≈ m0

f − βΦcl.
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mf(Φcl) mf(Φcl)

Fig. 5. Correction to the quintessence potential due to fermion fluctuations. Fer-
mion lines are solid, quintessence lines dashed. Shown is the case where mf(Φ)
gives a Yukawa coupling, i.e. c(Φ) = βΦ, corresponding to one quintessence line.
Of course, for more complicated mf(Φ) such as mf(Φcl) = m0

f exp(−βΦcl), several
external lines as in Fig. 1 would appear.

If, as above, we assume Λferm = 10−3MP, m0
f = 10−16MP and Vcl from (28),

this gives
c(Φcl)� 3× 10−97, (33)

in units of the Planck mass. Once again, the bound from (32) applies only if
the functional form of the loop correction differs from the classical potential.
Assuming a Yukawa-type coupling c(Φcl) = βΦcl and field values of at least
the order of the Plank mass, we get β � 10−97.

For the coupling c(Φ) = m0
f α(Φ − Φ0)β with the values α = 50, β =

8, Φ0 = 32.5 given in [17], c(Φ) is usually larger than m0
f . Therefore we take

mf(Φcl) ≈ c(Φcl). With mf(Φcl) = 10−16 as before, we get the same result as
in (30).

The coupled models share one property: the loop contribution from the
coupling is by far larger than the classical potential. At first sight, the golden
way out of this seems to be to view the potential as already effective: all
fluctuations would be included from the start. However, there is no particular
reason, why any coupling of quintessence to dark matter should produce just
exactly the effective potential used in a particular model: there is a relation
between the coupling and the effective potential generated. Put another way,
if the effective potential is of an elegant form and we have a given coupling,
then it seems unlikely that the classical potential could itself be elegant or
natural.

4.2 Effective Gravitational Fermion Quintessence Coupling

The bound in (32) is so severe that the question arises whether gravitational
coupling between fermions and the quintessence field violates it. To give an
estimate, we calculate6 two simple processes depicted in Fig. 6. We evaluate
6 Unfortunately, the field-dependent propagator matrix is non-diagonal (Φcl 
= 0

usually). This is a subtle point. We split the full propagator into a field-
independent part P and a field-dependent part F . The logarithm in STr log(P +
F ) is then expanded in powers of F . For the Weyl-Frame calculation in Section 5
this is not longer possible, as the graviton-graviton propagator involves the field
χ2 and thus the field-independent part P is non-invertible. For simplicity, we
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V (Φcl)

· · ·

V (Φcl)

· · ·

(a) (b)

Fig. 6. Effective fermion-quintessence coupling via graviton exchange. The fermi-
ons (solid lines) emit gravitons (wiggled lines) which are caught by the quintessence
field (dashed lines). As the graphs involve couplings of the gravitons to the clas-
sical quintessence potential, the generated coupling is proportional to the classical
potential. Since the potential involves arbitrary powers of Φ, we depict it as several
Φ-lines. A Yukawa type coupling, corresponding to just one line, is then generated
by power expanding V (Φ) = V (Φcl) + V ′

|cl (Φ − Φcl) in the fluctuating field.

the diagrams for vanishing external momenta. This is consistent with our
derivation of the fermion loop correction equation (2), in which we have
assumed momentum independent couplings. The effective coupling due to
the graviton exchange contributes to the fermion mass, which becomes Φcl
dependent. We assume that this coupling is small compared to the fermion
mass and write mf(Φcl) = m0

f + c(Φcl).
From the first diagram, Fig. 4.2(a) we get (see the Appendix 6):

c(Φcl) =
1

8π2 m
0
f V (Φcl)×

[
ln

(
Λ2

Λ2 + [m0
f ]

2

)

− ln

(
λ2

λ2 + [m0
f ]

2

)]
, (34)

whereas 4.2(b) gives

c(Φcl) =
5

8π2 m
0
f V (Φcl) ln

(
Λ

λ

)
. (35)

Here, we have introduced infrared and ultraviolet cutoffs λ and Λ for the
graviton momenta. We assume Λ to be of the order MP and λ about the
inverse size of the horizon. Since the results depend only logarithmically on
the cutoffs, this choice is not critical, and in addition ln(MP/H) ≈ 140,
which is small. From (31, 35, 34), we see that, in leading order, the change
in the quintessence potential due to this effective fermion coupling would

ignored the gravity part in the Weyl-Frame calculation (including the coupling
of gravitons to χ).
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V (Φcl)

...

Fig. 7. Fermion loop contribution to the quintessence potential involving the effec-
tive coupling Fig. 4.2(a). The cross in the fermion line depicts the field independent
fermion mass m0

f .

be proportional to V (Φcl) and could hence be absorbed upon redefining the
pre-factor of the potential (see also Fig. 7). In next to leading order, the
contribution is proportional to V (Φcl)2, which is negligible.

From the Appendix 6, in which we present the calculation in more detail,
it is clear that there are processes where the vertices are more complicated.
However, to this order all diagrams are proportional to V (Φcl). Thus, they
can be absorbed just like the two processes presented above.

5 Weyl Transformed Fields

So far, we have assumed a constant Planck mass together with a field in-
dependent cutoff. We could, however, assume that the Planck mass is not
constant, but rather given by the expectation value of a scalar field χ. We
will call the frame resulting from this Weyl scaling the Weyl frame, as oppo-
sed to the frame with a constant Plank mass which we will call the Einstein
frame. From the classical point of view, both frames are equivalent. On calcu-
lating quantum corrections, we have to evaluate a functional integral. Usually,
the functional measure in the Einstein frame is set to unity. In principle, the
variable change associated with the Weyl scaling leads to a non-trivial Jaco-
bian and therefore a different functional measure. Taking the position that
the Weyl frame is fundamental, this measure could equally well be set to unity
in the Weyl frame. Therefore, it is a priori unclear whether the loop corrected
potential in the Weyl frame, when transformed back into the Einstein frame,
will be the same as the one from (2).

As the cutoff in the Einstein frame is a constant mass scale and hence
proportional to the Plank mass, it seems natural to assume that the cutoff in
the Weyl frame is proportional to χ. We restrict our discussion to this case.
For other choices of the χ-dependence of the cutoff, the results may differ.

The Weyl transformation is achieved by scaling the metric, the curvature
scalar, all fields, and the tetrad by appropriate powers of χ/MP (see Table 1)
[9, 35]:
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S̃ =
∫
d4x

√
g̃

[
χ2R̃+

z

2
∂µχ∂

µχ+W (χ)

+ Ψ̃

(
i γ̃µ(x)∇µ + χ

mf(Φcl)
MP

γ5 − 3
2
iγ̃µ(x) lnχ,µ

)
Ψ̃

]
, (36)

where Φ = (12 + z)1/2MP ln(χ/MP) and

W (χ) ≡
(

χ

MP

)4

V (Φ(χ)). (37)

Table 1. Weyl scaling of various quantities. The transformation of the curvature
scalar R follows from the scaling of the metric. This scaling, in turn, originates from
the condition that instead of the Plank mass squared multiplying R in the action
in the Einstein frame, a factor χ2 should appear. Here, we have set σ = ln(χ/MP).

gµν → (χ/MP)2 g̃µν

gµν → (χ/MP)−2 g̃µν

√
g → (χ/MP)4

√
g̃

R → (χ/MP)−2
(
R̃ − 6g̃µνσ;̃µν − 6g̃µνσ,µσ,ν

)

eµ
a(x) → (χ/MP)−1 ẽµ

a(x)

Ψ → (χ/MP)−3/2 Ψ̃

The term proportional to lnχ,µ in (36) is somewhat inconvenient. Adopting
the position that the Weyl frame is fundamental, this term is unnatural.
Instead, one could formulate the theory with canonical couplings for the
fermions. Dropping this term,

S̃can. =
∫
d4x

√
g̃

[
χ2R̃+

z

2
∂µχ∂

µχ+W (χ)

+ Ψ̃

(
i γ̃µ(x)∇µ +

χ

MP
mf(Φ(χ)) γ5

)
Ψ̃

]
, (38)

we observe by going back to the usual action S̃can. → S,

S =
∫
d4x
√
g

[
1
2
∂µΦ(x)∂µΦ(x) + V (Φ(x))

+ Ψ(x)
(
i/∇+ γ5mf(Φ) +

3
2MP

i γµ(x)φ,µ

)
Ψ(x)

]
, (39)
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that the canonical form of the action in the Weyl frame gives rise to a deriva-
tive coupling of the quintessence field to the fermions in the Einstein frame,
which we can safely ignore.7

Working with (38), we get the loop correction in the Weyl frame by re-
placing V → W and Φ → χ in (2). In addition, the constant cutoffs Λ and
Λferm are replaced by const · χ:

W1-loop = W (χ) +
(Cχ)2

32π2 z2 W
′′(χ)

− (Cfχ)2

8π2

[
χ

MP
mf(χ)

]2

. (40)

Transforming W1-loop back into the Einstein frame, the potential V is modi-
fied by

V1-loop = V (Φcl) +
(CfMP)2

8π2 [mf(Φcl)]
2 +

(CMP)2

32π2 z2

×
[
12

V (Φcl)
M2

P
+ 7
√

12 + z
V ′(Φcl)

MP
+ (12 + z)V ′′(Φcl)

]
. (41)

As an example, lets calculate the correction to the pure exponential potential
V ep

cl = A exp(−λΦcl), once again setting MP = 1. The Weyl frame potential
is

W (χ) = Aχ4 exp(−λΦcl(χ)) = Aχ(4−λ√
12+z). (42)

Neglecting fermion fluctuations and choosing z = 1,

W1−loop =
[
1 +

C2
32π2 z2 (4− λ

√
13)(3− λ

√
13)

]
W (χ). (43)

Again (and not surprisingly) we can absorb the terms in the square brackets
in a redefinition of the pre-factor A. In the case of an inverse power law,
the term proportional to V ′ in (41) leads to a slightly different contribution
compared to (18) (a term ∝ Φ−α−1

cl arises). For the modified exponential
potentials the expressions corresponding to V ′ in (41) make no structural
difference.

6 Conclusions

We have calculated quantum corrections to the classical potentials of various
quintessence models. In the late universe, most potentials are stable with
7 Actually, this coupling is non-renormalizable in the strict sense. Since the theory

is non-renormalizable anyway, this is not of great concern. In addition, if one
believes that the Weyl frame is fundamental, there is no need to go back to the
Einstein frame and hence no need to face this nuisance.
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respect to the scalar quintessence fluctuations. The pure exponential and
Nambu-Goldstone type potentials are form invariant up to order V ′′, yet
terms of order (V ′′)2 prevent them from being renormalizable in the strict
sense.

For the modified exponential potential introduced by Albrecht and Skor-
dis, stability depends on the specific form of the polynomial factor Vp in the
potential. In some cases the local minimum in the potential can even be re-
moved by the loop. An explicit coupling of the quintessence field to fermions
(or similarly to dark matter bosons) seems to be severely restricted. The
effective potential to one-loop level would be completely dominated by the
contribution from the fermion fluctuations. All models in the literature share
this fate. One way around this conclusion could be to view these potentials
as already effective. They must, however, not only be effective in the sense
of an effective quantum field theory originating as a low–energy limit of an
underlying theory, but also include all fluctuations from this effective QFT.
In this case, there is a strong connection between coupling and potential and
it is rather unlikely that the correct pair can be guessed.

The bound on the coupling is so severe that for consistency, we have
calculated an effective coupling due to graviton exchange. To lowest order in
V (Φ), this coupling leads to a fermion contribution which can be absorbed
by redefining the pre-factor of the potential.

To check that the results are not artefacts from the Einstein frame, we
switched to the Weyl frame. As the transition from Φ → χ involves a non-
trivial Jacobian, the details of the results differ. However, the basic results
stay the same.

Surely, the one-loop calculation does not give the true effective potential.
Symmetries or more fundamental theories that make the cosmological con-
stant as small as it is, could force loop contributions to cancel. In addition,
the back reaction of the changing effective potential on the fluctuations re-
mains unclear in the one-loop calculation. A renormalization group treatment
would therefore be of great value. We leave this to future work.
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Appendix: Coupling to Gravitons

Fermions in general relativity are usually treated within the tetrad formalism.
The γ matrices become space-time dependent: γµ(x) ≡ γaeµa(x). Together
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with the spin connection ω, one uses (see, e.g., [22, 38]):

/∇ = eµa(x)γa
(
∂µ +

i

4
σbcω

bc
µ

)
. (44)

The action (1) can then be expanded in small fluctuations around flat space:
gµν = δµν + hµν/MP.

Using the gauge fixing term − 1
2 (∂νhµν − 1

2 ∂µh
ν
ν)

2 and expanding the
action to second order in h, we find the propagator [38]:

P−1
grav(k) =

δµαδνβ + δµβδνα − δµνδαβ
k2 . (45)

The diagrams in Fig. 6 are generated by the expansion of
√
g = 1 + 1

2 h
µµ −

1
4 (hµν)2+ 1

8 (hµµ)2 multiplying the matter Lagrangian. Additional (and more
complicated) vertices originate from the spin connection and the tetrad.

However, we do not consider external graviton lines, which would only
give corrections to the couplings and wave function renormalization of the
gravitons. Therefore only internal gravitons appear. In order to contribute a
quintessence dependent part to the fermion mass, the gravitons starting from
the fermion-graviton vertices (complicated as they may be) have to touch
quintessence-graviton vertices. As these quintessence vertices are proportional
to V (Φcl), all diagrams to lowest order in V (Φcl) will only produce mass
contributions proportional to V (Φcl).

Evaluating the diagrams in Fig. 6 for vanishing external momenta we get
(34) and (35).
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57130, México. gabriela@astroscu.unam.mx

2 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
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Abstract. The origin of the matter-antimatter asymmetry of the universe remains
one of the outstanding questions yet to be answered by modern cosmology, and also
one of only a handful of problems where the need of a larger number of degrees of
freedom than those contained in the standard model (SM) is better illustrated. An
appealing scenario for the generation of baryon number is the electroweak phase
transition that took place when the temperature of the universe was about 100 GeV.
Though in the minimal version of the SM, and without considering the interaction
of the SM particles with additional degrees of freedom, this scenario has been
ruled out given the current bounds for the Higgs mass, this still remains an open
possibility in supersymmetric extensions of the SM. In recent years it has also been
realized that large scale magnetic fields could be of primordial origin. A natural
question is what effect, if any, these fields could have played during the electroweak
phase transition in connection to the generation of baryon number. Prior to the
electroweak symmetry breaking, the magnetic modes able to propagate for large
distances belonged to the U(1) group of hypercharge and hence receive the name
of hypermagnetic fields. In this contribution, we summarize recent work aimed
to explore the effects that these fields could have introduced during a first order
electroweak phase transition. In particular, we show how these fields induce a CP
asymmetric scattering of fermions off the true vacuum bubbles nucleated during
the phase transition. The segregated axial charge acts as a seed for the generation
of baryon number. We conclude by mentioning possible research venues to further
explore the effects of large scale magnetic fields for the generation of the baryon
asymmetry.

1 Introduction

The standard model (SM) of electroweak interactions meets all the require-
ments –known as Sakharov conditions [1] – to generate a baryon asymmetry
during the electroweak phase transition (EWPT), provided that this last be
of first order. However, it is also well known that neither the amount of CP
violation within the minimal SM nor the strength of the EWPT are enough
to generate a sizable baryon number [2, 3]. Supersymmetric extensions of the
SM, with a richer particle content, contain new sources of CP violation [4].

G. Piccinelli and A. Ayala, Electroweak Baryogenesis and Primordial Hypermagnetic Fields,
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They also allow a stronger first order phase transition [5]. In spite of these
improvements with respect to the SM, the minimal supersymmetric model
(MSSM) is severely constrained from experimental bounds on the chargino
properties [6] leaving only a small corner of parameter space for the MSSM
as a viable candidate for baryogenesis. Further possibilities to accommodate
an explanation for the generation of baryon number during the EWPT in-
clude non-minimal supersymmetric models which, nonetheless, all share the
unappealing feature of containing an even larger set of parameters than the
already extensive number contained in the MSSM.

Though it might appear tempting to abandon the idea of electroweak
baryogenesis (EWB) given the above difficulties, in recent years this possi-
bility has been revisited due to the observation that magnetic fields are able
to generate a stronger first order EWPT [7, 8, 9]. The situation is similar to
what happens to a type I superconductor where an external magnetic field
modifies the nature of the superconducting phase transition, changing it from
second to first order due to the Meissner effect.

In spite of this observation, it has also been realized that the sphaleron bo-
und becomes more restrictive due to the interaction between the sphaleron’s
magnetic dipole moment and the external field [10]. Nevertheless, these ar-
guments are either classical or resort to perturbation theory to lowest order.
However, in the absence of magnetic fields, it is well known that the phase
transition picture is influenced by non-perturbative effects cast in terms of the
resummation of certain classes of diagrams [11] and it might also be expected
that the same is true in the presence of magnetic fields. The situation with
regards to the strength of the phase transition in the presence of magnetic
fields is thus far from being settled and requires further research.

However, the influence of the magnetic fields on the enhancement of CP
violation has received much less attention. In a series of recent papers [12,
13, 14], it has been shown that the external field is able to produce an axially
asymmetric scattering of fermions off first order phase transition bubbles
during the EWPT. This CP violating reflection is due to the chiral nature of
the couplings of right- and left-handed modes with the external field in the
symmetric phase (where right- and left-handed modes can be thought of as
the spin projection with respect to the movement direction). This mechanism
produces an axial charge segregation which can then be transported in the
symmetric phase where sphaleron induced transitions can convert it into
baryon number [15]. The main purpose of our work is the description of the
mechanism for the generation of this axial charge segregation.

As was briefly presented in this introduction, the process of baryogenesis
involves several physical ingredients which all deserve to be addressed in order
to cover the entire topic; here we will concentrate on those aspects related to
hypermagnetic fields, which are also one of the most recent and less explored
parts of this field. For other aspects on the subject, we refer the reader to
recent reviews [16, 17, 18].
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The work is organized as follows: in Sect. 2 we present the basic framework
for electroweak baryogenesis. Section 3 is devoted to generalities of hyperma-
gnetic fields and phase transitions. In Sect. 4 we summarize the current ideas
for the origin of large scale magnetic fields as well as the experimental bo-
unds on their strength set by different observations. In Sect. 5 we describe
the mechanism whereby the asymmetric reflection of fermions off first order
EWPT bubbles in the presence of external magnetic fields leads to an axial
charge segregation that can then be converted into baryon number in the
symmetric phase. Finally, in Sect. 6 we summarize and give a brief account
of some possible research venues to further explore the influence of primordial
magnetic fields in the generation of the baryon asymmetry of the universe.

2 Electroweak Baryogenesis

2.1 Baryogenesis

The theory of baryogenesis is an intent to explain the existence of matter in
the Universe. As Cohen, Kaplan and Nelson [4] put it: why is there something
rather than nothing?

From the point of view of elementary particle physics, there is a symmetry
between particles and antiparticles which suggests that there should be an
overall balance between the amount of matter and antimatter in the universe.
However the observed universe is composed almost entirely of matter, with no
traces of present or primordial antimatter (see. e.g. [19] pp 158–159, or [20] for
a recent review). On the other hand, from the cosmological approach, there is
also some evidence that some ingredients are missing. In the hot early epoch
of the universe evolution one expects to have particles and antiparticles in
thermal equilibrium with radiation; particle/antiparticle pairs would then
annihilate each other until their annihilation rate becomes smaller than the
rate of expansion of the universe. The remaining density of all the species
can thus be estimated and it comes to be only a very small fraction of the
closure density of the universe. In this way, if we do not wish to postulate
that the universe was just born with ad hoc asymmetric initial conditions,
we must find a mechanism to generate a net baryon number (B = nb − nb̄).

In 1966, Sakharov [1] laid out the conditions for the development of a net
excess of baryons over antibaryons: (1) Existence of interactions that violate
baryon number; (2) C and CP violation and (3) departure from thermal
equilibrium. (The implications of each one of these criteria is discussed in
many places, see e.g. the review [16]).

It must be stressed however that some scenarios (possibly exotic) have
been recently proposed where one of these conditions is not achieved (see
e.g. [21] and references therein).

It is important to notice that a successful model for baryon generation
has to put together two ingredients:
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1) the generation of a baryon asymmetry
2) its preservation In the following subsection, we will review the neces-

sary conditions for both situations in the framework of EWB.

2.2 Electroweak Baryogenesis

Sakharov Conditions in the Standard Model

The sphaleron (the name is based on the classical greek adjective meaning
“ready to fall”) [22] is an static and unstable solution of the field equations
of the EW model, corresponding to the top of the energy barrier between two
topologically distinct vacua. Transitions between these vacua are associated
with the violation of baryon (B) and lepton number (L) [23], in the combi-
nation B + L, with leptons and baryons produced at the same rate (i.e. B -
L conservation). For this reason, they can either induce baryogenesis, or be
a mechanism for washing out the previously created baryon asymmetry. It is
therefore important to define the epoch at which the sphaleron transitions
fall out of thermal equilibrium.

As we mentioned, C and CP violation are present in the SM but are
too tiny to be at the origin of the present baryon asymmetry [2, 24]. The
generation of a sizable CP violation in the SM is the central part of this work
and we will return to it later.

For the out of equilibrium requirement, we rely on the phase transition
(PT). This is the only possible source of departure from thermal equilibrium,
since, at electroweak scale, the rate of expansion of the universe is small
compared to the rate of baryon number violating processes. But the PT is
efficient in producing out-of-equilibrium conditions only if it is strongly first
order [25], i.e. if the Higgs field -which is the order parameter in this case-
undergoes a discontinuous change. In effect, in a first order PT, the conversion
from one phase to another happens through nucleation and propagation of the
true vacuum bubbles. The region separating both phases is called the wall.
As the bubble wall sweeps a point in space, the order parameter changes
rapidly, leading to a departure from thermal equilibrium.

Preservation of the Baryon Asymmetry

In order to freeze out the produced baryon number, the rate of fermion num-
ber non conservation in the broken phase, at temperatures below the bubble
nucleation temperature, must be smaller than the rate of expansion of the
universe.

The rate, per unit volume, of baryon number violating events depends, at
low temperatures T < Tc (more precisely for MW << T << MW /αW ), on
the sphaleron energy:

Γ = µ

(
MW

αWT

)3

M4
W exp

(
Esph(T )

T

)
, (1)
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with µ a dimensionless constant and Esph ∼MW (T )/αW (αW = g2/4π, with
g the SU(2)L gauge coupling). Comparing this rate with the rate of expansion
of the universe H ∼ g

1/2
∗ T 2/mPl [19] pp 60–65 (g∗ is the effective number

of degrees of freedom and mPl is the Planck mass), the following bound is
found [26]:

Esph(Tnucl)/Tnucl > A ; A � 35− 45 . (2)

Here, we assume that the major wash-out is achieved near the nucleation
epoch and we therefore consider only the nucleation temperature (Tnucl).

In principle, this condition can be translated to a bound on the order
parameter of the PT, or on the Higgs mass [3]. However, there are a number
of approximations and nontrivial steps involved in this procedure. The con-
dition (2) is on the sphaleron energy at the temperature of bubble nucleation
and it has to be related to the vacuum expectation value of the Higgs field
(vev), at critical temperature (Tc). These two temperatures are not exactly
the same since, though the quantum tunneling phenomenon starts at Tc, in-
itially the bubbles are not large enough for their volume energy to overcome
the surface tension and they shrink. We have to wait for a lower temperature
Tnucl, when bubbles are large enough to grow. Besides, MH is assumed to be
equal to MW and there are a number of poorly known prefactors involved. In
spite of these difficulties, a condition to avoid the sphaleron erasure is found
and at present generally accepted:

(φ/T )min � 1.0− 1.5 . (3)

This bound represents a condition on the order of the PT, requiring a remar-
kable jump in the Higgs field.

On another hand, the order of the EWPT depends on the mass of all the
particles of the theory (SU(2)L ×U(1)Y SM) and in particular on the Higgs
boson mass MH , which is at present not known. We only have constraints on
it: the current lower bound on the Higgs mass from LEP [27] is: mH

>∼ 114
GeV.

The effective potential for the Higgs field , at finite temperature, can be
written, including the radiative corrections from all the known SM particles:

Veff � −
1
2
(µ2 − αT 2)φ2 − Tδφ3 +

1
4
(λ− δλT )φ4 , (4)

where the coefficients depend on the masses of the heaviest particles, on the
temperature and on the vev (for details, see e.g. [8]). The cubic term in the
effective potential is responsible for the existence of the barrier between the
two degenerate vacua at Tc which makes the transition first order.

From the effective potential, the value of (φ/T ) can be estimated at the
critical value Tc, when the two minima of the potential become degenerate:
φ/T = 2δ/(λ−δλT ). This is proportional to the inverse of the Higgs mass, and
its maximum value is 0.55 formH = 0. The transition weakens with increasing
Higgs mass, a result that is basically in agreement with lattice calculations
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for the EWPT in the standard model [3]. These values for (φ/T ) do not
overlap with those for the requirement (3) to avoid the sphaleron wash-out.

3 Hypermagnetic Fields and Phase Transitions

For temperatures above the EWPT, the SU(2)L × U(1)Y symmetry is re-
stored, the magnetic fields correspond to the U(1)Y group instead of to the
U(1)em group and they are therefore properly called hypermagnetic fields.
The only fields able to propagate for long distances are the Abelian vector
modes that represent a magnetic field. On the other hand, electric fields [28]
as well as non-Abelian fields are screened due to the development of a tem-
perature dependent mass.

The hypercharge field BY contains a component of the vector field Z,
which becomes massive in the broken phase and is thus screened, such
as a magnetic field in a superconductor. The presence of a hypermagnetic
field consequently introduces an extra contribution in the pressure term in
the symmetric phase, enhancing the difference in free energies between the
two phases, making the PT more strongly first order. Recently, it has been
shown [8], [7] and [29], using quite different methods (perturbatively, at tree
level and at one loop, and non perturbatively, with lattice calculations) that
hypermagnetic fields strengthen the PT, although the calculations differ so-
mewhat on the level of strength reached and on the viable range for the Higgs
mass and the field value. Reference [8] concludes that for BY c ≥ 0.33T 2

c ,
the bound (3) is preserved. Lattice calculations [29] have shown that, even
high magnetic field values do not suffice to obtain a first-order transition for
mH ≥ 80 GeV.

Unfortunately, in the presence of an external magnetic field, the relation
between the vev and the sphaleron energy is altered and even if condition (3)
is respected, condition (2) may not be fulfilled anymore. In fact, another as-
pect that needs to be considered is the effect of the magnetic field on the
height of the sphaleron barrier, through the coupling with the sphaleron’s
dipole moment. Reference [10] has found that in this case the barrier is lo-
wered, facilitating the transition between topologically inequivalent vacua.
These calculations conclude that there is no value of BY that is enough to
push the sphaleronic transitions out of thermal equilibrium. (See also [30]).

4 Magnetic Fields in the Universe

Magnetic fields seem to be pervading the entire universe. They have been
observed in galaxies, clusters, intracluster medium and high-redshift ob-
jects [31]. Estimation of magnetic fields strength -by synchrotron emission
and Faraday rotation- require the independent estimation or assumption of
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the local electron density and the spatial structure of the field. Both quanti-
ties are reasonably known for our galaxy, where the average field strength is
measured to be 3− 4µG; various spiral galaxies in our neighborhood present
fields that are homogeneous over galactic size, with similar magnetic field
intensities [31, 32]. At larger scales, only model dependent upper limits can
be established. These limits are also in the few µG range. In the intracluster
medium, recent results detect the presence of µG magnetic fields [33, 34].
For intergalactic large scale fields (dissociated from any particular galaxy
or cluster), an upper bound of 10−9G has been estimated, adopting some
reasonable values for the magnetic coherence length [31].

The origin of these fields is nowadays unknown but it is widely believed
that two ingredients are needed for their generation: a mechanism for creating
the seed fields and a process for amplifying both their amplitude and their
coherence scale [9, 35].

Generation of the seed field (magnetogenesis) may be either primordial or
associated to the process of structure formation. In the early universe, which
is the case of interest here, there are a number of proposed mechanisms that
could possibly generate primordial magnetic fields. Among the best suited
are first order phase transitions, [36, 37, 38], which provide favorable condi-
tions for magnetogenesis such as charge separation, turbulence and out-of-
equilibrium conditions. Local charge separation, creating local currents, can
be achieved through the high pressure effect on the different equations of state
of baryons and leptons, behind the shock fronts which precede the expanding
bubbles. Turbulent flow near the bubble walls is then expected to amplify
and freeze the seed field and when two shock fronts collide, turbulence and
vorticity -and hence magnetic fields- can be generated to larger scales. Other
proposals include bubble wall collisions, which produce phase gradients of the
complex order parameter that act as a source for gauge fields [39]. A low ex-
pansion velocity of the bubbles wall then allows the magnetic flux generated
in the intersection region to penetrate the colliding bubbles.

When interested in larger coherence scales, a plausible scenario is infla-
tion, where super-horizon scale fields are generated through the amplification
of quantum fluctuations of the gauge fields. This process needs however a me-
chanism for breaking conformal invariance of the electromagnetic field [40].
Several possibilities have been proposed, introducing non-minimal coupling
of photons to curvature [41], to the dilaton/inflaton field [42] or to fermions
[43].

The most promising way to distinguish between primordial and protoga-
lactic fields is searching for their imprint on the cosmic microwave background
radiation (CMBR). A homogeneous magnetic field would spoil the universe
isotropy, giving rise to a dipole anisotropy in the background radiation; on
this basis, COBE results set an upper bound on the present equivalent field
strength [44] at the level of 10−9G. On the other hand, primordial magnetic
fields affect the wave patterns generating fluctuations in the energy density,
producing distortions in the Planckian spectrum [45] and on the Doppler
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peaks [46]. Here the bounds depend on the coherence scale [45, 47]. The po-
larization can also be affected by primordial magnetic fields, through depo-
larization [48] and cross-correlations between temperature and polarization
anisotropies [49]. The future CMBR satellite mission PLANCK may reach
the required sensitivity for the detection of these last signals.

Although there is at present no conclusive evidence about the origin of
magnetic fields, their existence prior to the EWPT epoch cannot certainly be
ruled out. We will then work with primordial hypermagnetic fields, homoge-
neous over bubble scales.

5 CP Violating Fermion Scattering
with Hypermagnetic Fields

During the EWPT, the properties of the bubble wall depend on the effec-
tive, finite temperature Higgs potential. Under the assumption that the wall
is thin and that the phase transition happens when the energy densities of
both phases are degenerate, it is possible to find a one-dimensional analytical
solution for the Higgs field φ called the kink. When scattering is not affected
by diffusion, the problem of fermion reflection and transmission through the
wall can be cast in terms of solving the Dirac equation with a position depen-
dent fermion mass, proportional to the Higgs field [50]. In order to simplify
the discussion, let us consider a situation in which we take the limit when the
width of the wall approaches zero. In this case, the kink solution becomes a
step function Θ(z), where z is the coordinate along the direction of the phase
change [12]. Since the mass of the particles is dictated by its coupling to the
Higgs field, in our approximation, the former is given by

m(z) = m0Θ(z) . (5)

In terms of (5), we can see that z ≤ 0 represents the region outside the
bubble, that is the region in the symmetric phase where particles are massless.
Conversely, for z ≥ 0, the system is inside the bubble, that is in the broken
phase and particles have acquired a finite mass m0.

In the presence of an external magnetic field, we need to consider that
fermion modes couple differently to the field in the broken and the symmetric
phases. Let us first look at the symmetric phase.

For z ≤ 0, the coupling is chiral. Let

ΨR =
1
2

(1 + γ5)Ψ

ΨL =
1
2

(1− γ5)Ψ (6)

represent, as usual, the right and left-handed chirality modes for the spinor
Ψ , respectively. Then, the equations of motion for these modes, as derived
from the electroweak interaction Lagrangian, are
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(i∂ − yL
2
g′A )ΨL −m(z)ΨR = 0

(i∂ − yR
2
g′A )ΨR −m(z)ΨL = 0 , (7)

where yR,L are the right and left-handed hypercharges corresponding to the
given fermion, respectively, g′ the U(1)Y coupling constant and we take Aµ =
(0,A) representing a, not as yet specified, four-vector potential having non-
zero components only for its spatial part, in the rest frame of the wall.

The set of equations (7) can be written as a single equation for the spinor
Ψ = ΨR + ΨL by adding up the former equations

{
i∂ −A

[yR
4
g′ (1 + γ5) +

yL
4
g′ (1− γ5)

]
−m(z)

}
Ψ = 0 . (8)

Hereafter, we explicitly work in the chiral representation of the gamma ma-
trices

γ0 =
(

0 −I
−I 0

)
γ =

(
0 σ

−σ 0

)
γ5 =

(
I 0
0 −I

)
, (9)

and thus write (8) as
{
i∂ − GAµγµ −m(z)

}
Ψ = 0 , (10)

where we have introduced the matrix

G =
(
yL

2 g
′I 0

0 yR

2 g
′I

)
. (11)

We now look at the corresponding equation in the symmetry broken phase.
For z ≥ 0 the coupling of the fermion with the external field is through
the electric charge e and thus, the equation of motion is simply the Dirac
equation describing an electrically charged fermion in a background magnetic
field, namely, {

i∂ − eAµγ
µ −m(z)

}
Ψ = 0 . (12)

For definiteness, let us consider a constant magnetic field B = Bẑ pointing
along the ẑ direction. In this case, the vector potential A can only have com-
ponents perpendicular to ẑ and the solution to the above equations factorize,
namely

Φ(t,x) = ζ(x, y)Φ(t, z) . (13)

We concentrate on the solution describing the motion of fermions perpendicu-
lar to the wall, i.e., along the ẑ axis and thus effectively treating the problem
as the motion of fermions in one dimension. The case where the width of the
wall is allowed to become finite has been addressed in [13] and we will briefly
present below the results of this more realistic case; whereas the motion of
the fermions in three dimensions has been given a solution in [14]. Equati-
ons (10) and (12) can be solved analytically. We look for the scattering states
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appropriate to describe the motion of fermions in the symmetric and broken
symmetry phases. For our purposes, these are fermions incident toward and
reflected from the wall in the symmetric phase. There are two types of such
solutions; those coupled with yL and those coupled with yR. For an incident
wave coupled with yL (yR), the fact that the differential equation mixes up
the solutions means that the reflected wave will also include a component
coupled with yR (yL). In analogy, the solution to (12) is found by looking
for the scattering states appropriate for the description of transmitted waves.
The solutions are explicitly constructed in [12] to where we refer the reader
for details. For the purposes of this work, we proceed to describe how to use
these solutions to construct the transmission and reflection probabilities.

In order to quantitatively describe the scattering of fermions, we need
to compute the corresponding reflection and transmission coefficients. These
are built from the reflected, transmitted and incident currents of each type.
Recall that for a given spinor wave function Ψ , the current normal to the wall
is given by

J = Ψ †γ0γ3Ψ . (14)

The reflection and transmission coefficients, R and T , are given as the ratios
of the reflected and transmitted currents, to the incident one, respectively,
projected along a unit vector normal to the wall.

The probabilities for finding a left or a right-handed particle in the sym-
metric phase after reflection, PRL, PRR are given, respectively by

PRL = RL→L +RR→L (15)

PRR = RL→R +RR→R , (16)

whereas the probabilities for finding a left or a right-handed particle in the
symmetry broken phase after transmission, PTL, PTR are given, respec-
tively by

PTL = TL→L + TR→L (17)

PTR = TL→R + TR→R . (18)

Figure 1 shows the probabilities PRL and PRR as a function of the magnetic
field parametrized as B = bT 2 for a temperature T = 100 GeV, a fixed
E = 184 GeV and for a fermion taken as the top quark with a mass m0 = 175
GeV, yR = 4/3, yL = 1/3 and for a value of g′ = 0.344, as appropriate for
the EWPT epoch. Notice that when b→ 0, these probabilities approach each
other and that the difference grows with increasing field strength. We have
considered the top quark since it is assumed to be the heaviest particle in the
broken phase, and hence to have the larger Yukawa coupling. The τ -lepton
may also be a good candidate.

In the case that we allow for the vacuum expectation value of the Higgs
field and m(z) to vary continuously through the wall, we work in the thin
wall regime with the kink solution:
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Fig. 1. Probabilities PRL and PRR as a function of the magnetic field parametrized
as B = bT 2 for T = 100 GeV, E = 184 GeV and a top quark with a mass m0 = 175
GeV, yR = 4/3, yL = 1/3. The value for the U(1)Y coupling constant is taken as
g′ = 0.344, corresponding to the EWPT epoch.

ϕ(x) = 1 + tanh(x) , (19)

where the dimensionless position coordinate x is proportional to z. In this
case, we have to solve the same equation (8), but with a different m(z) profile.
We achieved this with a combination of analytical and numerical methods
and we report here only the results for the reflection probabilities.

Figure 2 shows the coefficients Rl→r and Rr→l as a function of the

magnetic field parameter b ≡
(
δT/
√

2λ
)−2

B, an energy parameter ε ≡(
δT/
√

2λ
)−1

E = 7.03 (slightly larger than the height of the barrier, in order
to avoid the exponential damping of the transmitted waves), and the other
parameters as in the previous case. Again, notice that, when b → 0, these
coefficients approach each other and that the difference grows with increasing
field strength. The results are in good agreement with the simplest case. This
scheme is more realistic then the former since the height and width of the
wall are typically related to each other in such a way that it is not entirely
realistic to vary one without affecting the other.

Though not explicitly worked out here, it is easy to convince oneself that
when considering the scattering in three dimensions, the quantum mechanical
motion of the fermion will include in general the description of its velocity
vector with a component perpendicular to the field. In this case, due to
the Lorentz force, the particle circles around the field lines maintaining its
velocity along the direction of the field. The motion of the particle is thus
described as an overall displacement along the field lines superimposed to
a circular motion around these lines [14]. These circles are labeled by the
principal quantum number. We see that if we have fermions that start off
moving by making a nonzero angle with the field lines, all of these trajectories
will result at the end in the same overall direction of incidence. Also, since
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Fig. 2. Coefficients Rl→r and Rr→l, in the case of a smooth variation of m(z), as a
function of the magnetic field parameter b for an energy parameter ε = 7.03, yR =
4/3, yL = 1/3. The value for the U(1)Y coupling constant is taken as g′ = 0.344,
corresponding to the EWPT epoch. The dots represent the computed values.

the fermion coupling with the external field is through its spin, changing the
direction of the field exchanges the role of each spin component but since
each chirality mode contains both spin orientations, this does not affect the
final probabilities and thus the asymmetry is independent of the orientation
of the field with respect to the ẑ axis.

It is interesting to notice that, with this mechanism, we are not generating
a net excess of one type of particle (left- or right- handed) over the other; it
is merely a segregation between the two sides of the bubble wall.

We also emphasize that, under the very general assumptions of CPT inva-
riance and unitarity, the total axial asymmetry (which includes contributions
both from particles and antiparticles) is quantified in terms of the particle
axial asymmetry. Let ρi represent the number density for species i. The net
densities in left-handed and right-handed axial charges are obtained by ta-
king the differences ρL − ρL̄ and ρR − ρR̄, respectively. It is straightforward
to show [15] that CPT invariance and unitarity imply that the above net
densities are given by

ρL − ρL̄ = (fs − f b)(Rr→l −Rl→r)
ρR − ρR̄ = (fs − f b)(Rl→r −Rr→l) , (20)

where fs and f b are the statistical distributions for particles or antiparticles
(since the chemical potentials are assumed to be zero or small compared to the
temperature, these distributions are the same for particles or antiparticles)
in the symmetric and the broken symmetry phases, respectively. From (20),
the asymmetry in the axial charge density is finally given by

(ρL − ρL̄)− (ρR − ρR̄) = 2(fs − f b)(Rr→l −Rl→r). (21)

This asymmetry, built on either side of the wall, is dissociated from non-
conserving baryon number processes and can subsequently be converted to
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baryon number in the symmetric phase where sphaleron induced transitions
are taking place with a large rate. This mechanism receives the name of non-
local baryogenesis [4, 15, 51, 52] and, in the absence of the external field, it
can only be realized in extensions of the SM where a source of CP violation is
introduced ad hoc into a complex, space-dependent phase of the Higgs field
during the development of the EWPT [53].

In our case, the relation of this axial asymmetry to CP violation is un-
derstood as follows: recall that for instance, in the SM, CP is violated in the
quark sector through the mixing between different weak interaction eigensta-
tes to form states with definite mass. However, in the present scenario, no
such mixing occurs since we are concerned only with the evolution of a single
quark (e.g., the top quark) species. The relation is thus to be found in the
dynamics of the scattering process itself and becomes clear once we notice
that this can be thought of as describing the mixing of two levels, right- and
left-handed quarks coupled to an external hypermagnetic field. When the two
chirality modes interact only with the external field, they evolve separately.
It is only the scattering with the bubble wall what allows a finite transition
probability for one mode to become the other. Since the modes are coupled
differently to the external field, these probabilities are different and give rise
to the axial asymmetry. CP is violated in the process because, though C is
conserved, P is violated and thus is CP.

6 Summary and Outlook

In this work we have given a quantitative outline of the CP violating scatte-
ring of fermions off (a simplified picture of) EWPT bubbles in the presence
of hypermagnetic fields. This scattering produces an axial asymmetry built
on either side of the bubble walls. The origin of this asymmetry is the chiral
nature of the fermion coupling to the hypermagnetic field in the symmetric
phase. We have shown how to compute reflection and transmission coefficients
and also that these differ for left and right-handed incident particles.

Primordial hypermagnetic fields thus provide with a much needed ingre-
dient, namely, additional CP violation, for the possible generation of baryon
number during the EWPT. A second ingredient, the strengthening of the
order of the phase transition and thus the avoidance of the sphaleron bound
seems at the moment a difficult to surmount problem. Nonetheless, it is im-
portant to bear in mind that so far, the calculations that provide insight into
the effect of the hypermagnetic fields on the order of the EWPT do not ac-
count for the non-perturbative effects, cast in the language of resummation,
which are otherwise well known to play a very important role for the dyna-
mics of the phase transition in the absence of magnetic fields. Much work is
needed in this direction. This is for the future.
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37. For EWPT: G. Baym, D. Bödeker and L. McLerran, Phys. Rev. D 53, 662
(1996).

38. For a PT at a critical temperature larger than EW scale: D. Boyanovsky, H. J.
de Vega and M. Simionato, Large scale magnetogenesis from a non-equilibrium
phase transition in the radiation dominated era, Phys. Rev. D 67, 123505
(2003), hep-ph/0211022.

39. T. Vachaspati, Phys. Lett. B 265, 258 (1991); T. W. B. Kibble and A. Vilenkin,
Phys. Rev. D 52, 679 (1995); E.J. Copeland, P. M. Saffin and O. Törnqvist,
Phys. Rev. D 61, 105005 (2000).

40. For an overview of the subject, see e.g., A. D. Dolgov, Generation of magnetic
fields in cosmology, hep-ph/0110293.

41. M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743 (1988).
42. B. Ratra, Ap. J. 391, L1 (1992); M. Gasperini, M. Giovannini and G. Vene-

ziano, Phys. Rev. Lett. 75, 3796 (1995); D. Lemoine and M. Lemoine, Phys.
Rev. D 52, 1955 (1995).

43. T. Prokopec, Cosmological magnetic fields from photon coupling to fermions
and bosons in inflation, astro-ph/0106247.

44. J.D. Barrow, P. Ferreira and J. Silk, Phys. Rev. Lett. 78, 3610 (1997).
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Abstract. Applying the microcanonical definition of entropy to a weakly interac-
ting and self–gravitating neutralino gas, we evaluate the change in the local entropy
per particle of this gas between the freeze out era and present day virialized halo
structures. An “entropy consistency” criterion emerges by comparing the obtained
theoretical entropy per particle of the virialized halos with an empirical entropy
per particle given in terms of dynamical halo variables of actual galactic structu-
res. We apply this criterion to the cases when neutralinos are mostly B-inos and
mostly Higgsinos, in conjunction with the usual “abundance” criterion requiring
that present neutralino relic density complies with 0.2 < Ωχ̃1

0
< 0.4 for h � 0.65.

The joint application of both criteria reveals that a much better fitting occurs for
the B-ino than for the Higgsino channels, so that the former seems to be a favored
channel along the mass range of 150 GeV < mχ̃1

0
< 250 GeV. These results are con-

sistent with neutralino annihilation patterns that emerge from recent theoretical
analysis on cosmic ray positron excess data reported by the HEAT collaboration.
The suggested methodology can be applied to test other annihilation channels of
the neutralino, as well as other particle candidates of thermal WIMP gas relics.

1 Introduction

There are strong theoretical arguments favoring lightest supersymmetric par-
ticles (LSP) as making up the relic gas that forms the halos of actual galactic
structures. Assuming that R parity is conserved and that the LSP is stable, it
might be an ideal candidate for cold dark matter (CDM), provided it is neu-
tral and has no strong interactions. The most favored scenario [1, 2, 3, 4, 5, 6]
considers the LSP to be the lightest neutralino (χ̃0

1), a mixture of supersym-
metric partners of the photon, Z boson and neutral Higgs boson [2]. Since
neutralinos must have decoupled once they were non-relativistic, it is reason-
able to assume that they constituted originally a Maxwell-Boltzmann (MB)
gas in thermal equilibrium with other components of the primordial cosmic
plasma. In the present cosmic era, such a gas is practically collision–less and
is either virialized in galactic and galactic cluster halos, in the process of
virialization or still in the linear regime for superclusters and structures near
the scale of homogeneity[7, 8, 9].

L.G. Cabral–Rosetti, X. Hernández, and R.A. Sussman, Infering Annihilation Channels of Neu-
tralinos in Galactic Halos, Lect. Notes Phys. 646, 309–320 (2004)
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Besides the constraint due to their present abundance as main constitu-
ents of cosmic dark matter (Ωχ̃1

0
∼ 0.3), it is still uncertain which type of

annihilation cross section characterizes these neutralinos. In this paper we
present a method that discriminates between different cross sections, based
on demanding (together with the correct abundance) that a theoretically
estimated entropy per particle matches an empiric estimate of the same en-
tropy, but constructed with dynamic variables of actual halo structures. The
application of this “entropy consistency” criterion is straightforward because
entropy is a state variable that can be evaluated at equilibrium states, ir-
respectively of how enormously complicated could be the evolution between
each state. In this context, the two fiducial equilibrium states of the neu-
tralino gas are (to a good approximation) the decoupling (or “freeze out”)
and their present state as a virialized relic gas. Considering simplified forms
of annihilation cross sections. the joint application of the abundance and
entropy–consistency criteria favors the neutralinos as mainly “B–inos” over
neutralinos as mainly “higgsinos”. These results are consistent with the theo-
retical analysis of the HEAT experiment [10, 11, 12] which aims at relating
the observed positron excess in cosmic rays with a possible weak interaction
between neutralinos and nucleons in galactic halos. The paper is organized
as follows. In Sect. 2 we describe the thermodynamics of the neutralino gas
as it decouples. Section 3 applies to the post–decoupling neutralino gas the
entropy definition of the microcanonical ensemble entropy, leading to a sui-
table theoretical estimate of the entropy per particle. In Sect. 4 we obtain
an empiric estimate of this entropy based on actual halo variables, while in
Sect. 5 we examine the consequences of demanding that these two entropies
coincide. Section 6 provides a summary of these results.

2 The Neutralino Gas

The equation of state of a non-relativistic MB neutralino gas is [7, 8, 9]

ρ = mχ̃1
0
nχ̃1

0

(
1 +

3
2x

)
, p =

mχ̃1
0
nχ̃1

0

x
, (1)

x ≡
mχ̃1

0

T
, (2)

where mχ̃1
0

and nχ̃1
0

are the neutralino mass and number density. Since we
will deal exclusively with the lightest neutralino, we will omit henceforth the
subscript χ̃1

0
, understanding that all usage of the term “neutralino” and all

symbols of physical and observational variables (i.e. Ω0, m, ρ, n, etc.) will
correspond to this specific particle. As long as the neutralino gas is in thermal
equilibrium, we have

n ≈ n(eq) = g

[
m√
2π

]3

x−3/2 exp (−x) , (3)
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where g = 1 is the degeneracy factor of the neutralino species. The number
density n satisfies the Boltzmann equation [2, 7]

ṅ+ 3H n = −〈σ|v|〉
[
n2 − (n(eq))2

]
, (4)

where H is the Hubble expansion factor and 〈σ|v|〉 is the annihilation cross
section. Since the neutralino is non-relativistic as annihilation reactions “fre-
eze out” and it decouples from the radiation dominated cosmic plasma, we
can assume for H and 〈σ|v|〉 the following forms

H = 1.66 g1/2
∗

T 2

mp
, (5)

〈σ|v|〉 = a + b〈v2〉, (6)

where mp = 1.22× 1019 GeV is Planck’s mass, g∗ = g∗(T ) is the sum of rela-
tivistic degrees of freedom, 〈v2〉 is the thermal averaging of the center of mass
velocity (roughly v2 ∝ 1/x in non-relativistic conditions) and the constants
a and b are determined by the parameters characterizing specific annihila-
tion processes of the neutralino (s-wave or p-wave) [2]. The decoupling of the
neutralino gas follows from the condition

Γ ≡ n 〈σ|v|〉 = H, (7)

leading to the freeze out temperature Tf. Reasonable approximated solutions
of (7) follow by solving for xf the implicit relation [2]

xf = ln
[
0.0764mp c0(2 + c0) (a+ 6 b/xf)m

(g∗f xf)
1/2

]
, (8)

where g∗f = g∗(Tf) and c0 ≈ 1/2 yields the best fit to the numerical solution
of (4) and (7). From the asymptotic solution of (4) we obtain the present
abundance of the relic neutralino gas [2]

Ω0 h
2 = Y∞

S0m

ρcrit/h
2 ≈ 2.82× 108 Y∞

m

GeV
, (9)

Y∞ ≡ n0

S0

=
[
0.264 g1/2

∗f mpm
{
a/xf + 3(b− 1/4 a)/x2

f

}]−1
,

(10)

where S0 ≈ 4000 cm−3 is the present radiation entropy density (CMB plus
neutrinos), ρcrit = 1.05× 10−5 GeV cm−3.

Since neutralino masses are expected to be in the range of tens to hundreds
of GeV’s and typically we have xf ∼ 20 so that Tf > GeV, we can use g∗f �
106.75 [3] in equations (8) – (10). Equation (8) shows how xf has a logarithmic
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dependence on m, while theoretical considerations [1, 2, 3, 4, 5, 6] related to
the minimal supersymetric extensions of the Standard Model (MSSM) yield
specific forms for a and b that also depend on m. Inserting into (9)–(10) the
specific forms of a and b for each annihilation channel leads to a specific range
of m that satisfies the “abundance” criterion based on current observational
constraints that require 0.1 < Ω0 < 0.3 and h ≈ 0.65 [9].

Suitable forms for 〈σ|v|〉 can be obtained for all types of annihilation re-
actions [2]. If the neutralino is mainly pure B-ino, it will mostly annihilate
into lepton pairs through t-channel exchange of right-handed sleptons. In this
case the cross section is p-wave dominated and can be approximated by (6)
with [3, 13, 14]

a ≈ 0, b ≈ 8π α2
1

m2 [1 +m2
l /m

2]2
, (11)

where ml is the mass of the right-handed slepton (ml ∼ m [3]) and
α2

1 = g2
1/4π � 0.01 is the fine structure coupling constant for the U(1)Y gauge

interaction. If the neutralino is Higgsino-like, annihilating into W-boson pairs,
then the cross section is s-wave dominated and can be approximated by (6)
with [3, 13, 14]

b ≈ 0, a ≈ π α2
2 (1−m2

W /m
2)3/2

2m2 (2−m2
W
/m2)2

, (12)

where m
W

= 80.44 GeV is the mass of the W-boson and α2
2 = g2

2/4π � 0.03
is the fine structure coupling constant for the SU(2)L gauge interaction.

In the freeze out era the entropy per particle (in units of the Boltzmann
constant k

B
) for the neutralino gas is given by [7, 9, 8]

sf =
[
ρ+ p

nT

]
f

=
5
2

+ xf, (13)

where we have assumed that chemical potential is negligible and have used the
equation of state (1). From (8) and (13), it is evident that the dependence
of sf on m will be determined by the specific details of the annihilation
processes through the forms of a and b. In particular, we will use (11) and
(12) to compute sf from (8)-(13).

3 The Microcanonical Entropy

After the freeze out era, particle numbers are conserved and the neutralinos
constitute a weakly interacting and practically collision–less self–gravitating
gas. This gas is only gravitationally coupled to other components of the cos-
mic fluid. As it expands, it experiences free streaming and eventually un-
dergoes gravitational clustering forming stable bound virialized structures
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[9, 8, 15, 16]. The evolution between a spectrum of density perturbations at
the freeze out and the final virialized structures is extremely complex, invol-
ving a variety of dissipative effects characterized by collisional and collision–
less relaxation processes [15, 16, 17]. However, the freeze out and present day
virialized structures roughly correspond to “initial” and “final” equilibrium
states of this gas. Therefore, instead of dealing with the enormous complexity
of the details of the intermediary processes, we will deal only with quanti-
ties defined in these states with the help of simplifying but general physical
assumptions.

The microcanonical ensemble in the “mean field” approximation yields
an entropy definition that is well defined for a self–gravitating gas in an
intermediate scale, between the short range and long range regimes of the
gravitational potential. This intermediate scale can be associated with a re-
gion that is “sufficiently large as to contain a large number of particles but
small enough for the gravitational potential to be treated as a constant” [15].
Considering the neutralino gas in present day virialized halo structures as a
diluted, non-relativistic (nearly) ideal gas of weakly interacting particles, its
microcanonical entropy per particle under these conditions can be given in
terms of the volume of phase space [16]

s = ln
[

(2mE)3/2 V
(2π�)3

]
, (14)

where V and E are local average values of volume and energy associated
with the intermediate scale. For non-relativistic velocities v/c � 1, we have
V ∝ 1/n ∝ m/ρ and E ∝ mv2/2 ∝ m/x. In fact, under these assumptions
the definition (14), evaluated at the freeze out, is consistent with (3) and
(13), and so it is also valid immediately after the freeze out era (once par-
ticle numbers are conserved). Since (14) is valid at both the initial and final
states, respectively corresponding to the decoupling (sf, xf, nf) and the va-
lues (s(h), x(h), n(h)) associated with a suitable halo structure, the change in
entropy per particle that follows from (14) between these two states is given
by

s(h) − sf = ln
[
nf
n(h)

( xf
x(h)

)3/2
]
, (15)

where (13) can be used to eliminate sf in terms of xf. Considering present
day halo structures as roughly spherical, inhomogeneous and self-gravitating
gaseous systems, the intermediate scale of the microcanonical description is
an excellent approximation for gas particles in a typical region of ∼ 1 pc3

within the halo core, near the symmetry center of the halo where the gas
density enhancement is maximum but spacial gradients of all macroscopic
quantities are negligible [18, 19]. Therefore, we will consider current halo
macroscopic variables as evaluated at the center of the halo: s(h)

c , x(h)
c , n(h)

c .
In order to obtain a convenient theoretical estimate of s(h)

c from (15), we
need to relate nf with present day cosmological parameters like Ω0 and h.
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Bearing in mind that density perturbations at the freeze out era were very
small (δ nf/nf < 10−4, [7, 8, 9]), the density nf is practically homogeneous
and so we can estimate it from the conservation of particle numbers: nf =
n0 (1 + zf)

3, and of photon entropy: g∗fSf = g∗0 S0 (1 + zf)
3, valid from the

freeze out era to the present for the unperturbed homogeneous background.
Eliminating (1 + zf)

3 from these conservation laws yields

nf = n0
g∗f
g∗0

[
Tf

TCMB
0

]3

� 27.3n0

[
xCMB

0

xf

]3

, (16)

where xCMB
0 ≡ m

TCMB
0

= 4.29 × 1012 m

GeV

where g∗0 = g∗(TCMB
0 ) � 3.91 and TCMB

0 = 2.7 K. Since for present day
conditions n0/n

(h)
c = ρ0/ρ

(h)
c and ρ0 = ρcritΩ0 h

2, we collect the results from
(16) and write (15) as

s(h)
c |th = xf + 93.06 + ln

[( m

GeV

)3 h2Ω0

(xf x
(h)
c )3/2

ρcrit
ρ(h)
c

]

= xf + 81.60 + ln

[( m

GeV

)3 h2Ω0

(xf x
(h)
c )3/2

GeV/cm3

ρ(h)
c

]
, (17)

Therefore, given m and a specific form of 〈σ|v|〉 associated with a and b,
equation (17) provides a theoretical estimate of the entropy per particle of
the neutralino halo gas that depends on the initial state given by xf in (8)
and (13), on observable cosmological parameters Ω0, h and on generic state
variables associated to the halo structure.

4 Theoretical and Empiric Entropies

If the neutralino gas in present halo structures strictly satisfies MB stati-
stics, the entropy per particle, s(h)

c , in terms of ρ(h)
c = mn(h)

c and x(h)
c =

mc2/(k
B
T (h)
c ), follows from the well known Sackur–Tetrode entropy formula

[20]

s(h)
c |MB =

5
2

+ ln
[

m4 c3

�3 (2π x(h)
c )3/2 ρ(h)

c

]

= 94.42 + ln

[( m

GeV

)4
(

1
x(h)
c

)3/2 GeV/cm3

ρ(h)
c

]
. (18)

Such a MB gas in equilibrium is equivalent to an isothermal halo if we identify
[21]

c2

x(h)
=

k
B
T (h)

m
= σ2

(h), (19)

where σ2
(h) is the velocity dispersion (a constant for isothermal halos).



Infering Annihilation Channels of Neutralinos in Galactic Halos 315

However, an exactly isothermal halo is not a realistic model, since its
total mass diverges and it allows for infinite particle velocities (theoretically
accessible in the velocity range of the MB distribution). More realistic halo
models follow from “energy truncated” (ET) distribution functions [16, 21,
22, 23, 24] that assume a maximal “cut off” velocity (an escape velocity).
Therefore, we can provide a convenient empirical estimate of the halo entropy,
s(h)
c , from the microcanonical entropy definition (14) in terms of phase space

volume, but restricting this volume to the actual range of velocities (i.e.
momenta) accessible to the central particles, that is up to a maximal escape
velocity ve(0). From theoretical studies of dynamical and thermodynamical
stability associated with ET distribution functions [22, 23, 26, 24, 27, 28, 25]
and from observational data for elliptic and LSB galaxies and clusters [29,
30, 18, 31, 32], it is reasonable to assume

v2
e(0) = 2 |Φ(0)| � ασ2

(h)(0), 12 < α < 18, (20)

where Φ(r) is the newtonian gravitational potential. We have then

s(h)
c |em � ln

[
m4 v3

e

(2π�)3 ρ(h)
c

]

= 89.17 + ln

[( m

GeV

)4
(

α

x(h)
c

)3/2 GeV/cm3

ρ(h)
c

]
, (21)

where we used x(h)
c = c2/σ2

(h)(0) as in (19). As expected, the scalings of (21)
are identical to those of (18). Similar entropy expressions for elliptic galaxies
have been examined in [33].

Comparison between s(h)
c obtained from (21) and from (17) leads to the

constraint

s(h)
c |th = s(h)

c |em ⇒

xf = 7.57 + ln

[
(αxf)

3/2

h2Ω0

m

GeV

]
. (22)

which does not depend on the halo variables x(h)
c , ρ(h)

c , hence it can be inter-
preted as the constraint on sf = 5/2 + xf that follows from the condition
s(h)
c |th = s(h)

c |em . Since we can use (9) and (10) to eliminate h2Ω0, the
constraint (22) becomes a relation involving only xf, m, a, b, α. This con-
straint is independent of (8), which is another (independent) expression for
sf = 5/2 + xf, but an expression that follows only from the neutralino an-
nihilation processes. Therefore, the comparison between s(h)

c |th and s(h)
c |em ,

leading to a comparison of two independent expressions for sf, is not trivial
but leads to an “entropy consistency” criterion that can be tested on suitable
desired values of m, a, b, α. This implies that a given dark matter particle
candidate, characterized by m and by specific annihilation channels given by
xf through (8), will pass or fail to pass this consistency test independently of
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the details one assumes regarding the present day dark halo structure. This
is so, whether we conduct the consistency test by comparing (8) and (22) or
(17) and (21). However, the actual values of s(h)

c for a given halo structure,
whether obtained from (21) or from (17), do depend on the precise values
of ρ(h)

c and x(h)
c . Since the matching of either (8) and (22) or (17) and (21)

shows a weak logarithmic dependence on m, the fulfillment of the “entropy
consistency” criterion identifies a specific mass range for each dark matter
particle. This allows us to discriminate, in favor or against, suggested dark
matter particle candidates and/or annihilation channels by verifying if the
standard abundance criterion (9) is simultaneously satisfied for this range of
masses.

5 Testing the Entropy Consistent Criterion

Since we can write (22) as:

ln(h2Ω0) = 7.57− xf + ln
[
(αxf)

3/2m
]
. (23)

this constraint becomes a new estimate of the cosmological parameters h2Ω0,
given as in terms of a structural parameter of galactic dark matter halos, α,
the mass of the neutralino, m, and the temperature of the neutralino gas at
freeze out, xf. This last quantity depends explicitly not only on m, but also on
its interaction cross section, and hence on the details of its phenomenological
physics viz (8).

At this point we consider values for the constants a and b that define
the interaction cross section of the neutralino, and use (23) to plot Ω0 as a
function of m in GeV’s. Using h = 0.65 and given the uncertainty range of
α, we will obtain not a curve, but a region in the Ω0 −m plane. Considering
first condition (12), corresponding to Higgsino–like neutralinos, leads to the
shaded region in Fig. 1a. On this figure we have also plotted the relation which
the abundance criterion (9) yields on this same plane. Firstly, we notice that
the mass range that results from our entropy criterion intersects the one
resulting from the abundance criterion. However, it is evident that within
the observationally determined range of Ω0 (the horizontal dashed lines 0.2-
0.4), there is no intersection between the shaded region and the abundance
criterion curve. This implies that both criteria are mutually inconsistent, thus
the possibility that Higgsino-like neutralinos make up both the cosmological
dark matter and galactic dark matter appears unlikely.

Repeating the same procedure for mainly B–ino neutralinos, (11) yields
Fig. 1b. In this case, we can see that the abundance criterion curve falls well
within the shaded region defined by the entropy criterion. Although we can
not improve on the mass estimate provided by the abundance criterion alone,
the consistency of both criteria reveals the B-ino neutralino as a viable option
for both the cosmological and the galactic dark matter.
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Fig. 1. Figures (a) and (b) respectively correspond to the Higgsino and B-ino
channels. The shaded regions display Ω0 vs m from our entropy criterion (23) with
the solid curve giving Ω0 from the cosmological abundance criterion (9), in all cases
for h = 0.65. The horizontal dashed lines give current estimates of Ω0 = 0.3 ± 0.1.
It is evident that only the B-ino channels allow for a simultaneous fitting of both
the abundance and the entropy criteria.

It is also interesting to evaluate (21) and (17) for the two cases of
neutralino channels: the B-ino and Higgsino, but now considering nume-
rical estimates for x(h) and ρ(h) that correspond to central regions of ac-
tual halo structures. Considering terminal velocties in rotation curves we
have v2

term � 2σ2
(h)(0), so that x(h)

c � 2(c/vterm)2, while recent data from
LSB galaxies and clusters [31, 32, 34, 19, 35] suggest the range of values
0.01 M�/pc3 < ρ(h)

c < 1 M�/pc3. Hence, we will use in the comparison
of (17) and (21) the following numerical values: ρ(h)

c = 0.01 M�/pc3 =
0.416 GeV/cm3 and x(h)

c = 2 × 106, typical values for a large elliptical or
spiral galaxy with vterm � 300 km/sec [34, 19, 35].

Figure 2a displays s(h)
c |th and s(h)

c |em as functions of log10 m, for the halo
structure described above, for the case of a neutralino that is mostly Higgs-
ino. The shaded region marks s(h)

c |em given by (21) for the range of values
of α, while the vertical lines correspond to the range of masses selected by
the abundance criterion (9) for Ω0 = 0.2, 0.3, 0.4. The solid curves are s(h)

c |th
given by (17) for the same values of Ω0, intersecting the shaded region asso-
ciated with (21) at some range of masses. However, the ranges of coincidence
of a fixed (17) curve with the shaded region (21) occurs at masses which
correspond to values of Ω0 that are different from those used in (17), that is,
the vertical lines and solid curves with same Ω0 intersect out of the shaded
region. Hence, this annihilation channel does not seem to be favored.

Figure 2b depicts the same variables as Fig. 2a, for the same halo struc-
ture, but for the case of a neutralino that is mostly B-ino. In this case, the
joint application of the abundance and entropy criteria yield a consistent
mass range of 150 GeV < mχ̃1

0
< 250 GeV), which allows us to favor this

annihilation channel as a plausible dark matter candidate, with m lying in
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Fig. 2. Figures (a) and (b) respectively correspond to the Higgsino and B-ino
channels. The figures display s(h)

c |em from (20)–(21) (gray strip), s(h)
c |th from (17)

for h = 0.65 and the uncertainty strip Ω0 = 0.3 ± 0.1 (thick curves) and s(h)
c |MB

from (18) (crosses), all of them as functions of log10 m. The vertical strip marks the
range of values of m that follow from (9)–(10) for the same values of Ω0 and h. It
is evident that only the B-ino channels allow for a simultaneous fitting of both the
abundance and the entropy criteria.

the narrow ranges given by this figure for any chosen value of Ω0. As noted
above, the results of Figs. 1a and 1b are totally insensitive to the values of
halo variables, x(h)

c and ρ(h)
c , used in evaluating (21) and (17). Different values

of these variables (say, for a different halo structure) would only result in a
relabeling of the values of s(h)

c along the vertical axis of the figures.

6 Conclusions

We have presented a robust consistency criterion that can be verified for
any annihilation channel of a given dark matter candidate proposed as the
constituent particle of the present galactic dark matter halos. Since we require
that the empirical estimate s(h)

c |em of present dark matter haloes must match
the theoretical value s(h)

c |th , derived from the microcanonical definition and
from freeze out conditions for the candidate particle, the criterion is of a
very general applicability, as it is largely insensitive to the details of the
structure formation scenario assumed. Further, the details of the present
day halo structure enter only through an integral feature of the dark halos,
the central escape velocity, thus our results are also insensitive to the fine
details concerning the central density and the various models describing the
structure of dark matter halos. A crucial feature of this criterion is its direct
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dependence on the physical details (i.e. annihilation channels and mass) of
any particle candidate.

Recent theoretical work by E. A. Baltz et al. [10] confirmed that neutralino
annihilation in the galactic halo can produce enough positrons to make up
for the excess of cosmic ray positrons experimentally detected by the HEAT
collaboration [11, 12]. Baltz et al. concluded that for a boost factor Bs ∼ 30
the neutralinos must be primarily B-inos with mass around 160 GeV. For a
boost factor 30 < Bs < 100, the gaugino–dominated SUSY models complying
with all constraints yield neutralino masses in the range of 150 GeV < mχ̃1

0
<

400 GeV. On the other hand, Higgsino dominated neutralinos are possible but
only for Bs ∼ 1000 with masses larger than 2 TeV. The results that we have
presented in this letter are in agreement with the predictions that follow from
[10], as we obtain roughly the same mass range for the B-ino dominated case
(see Fig. 1b) and the Higgsino channel is shown to be less favored in the mass
range lower than TeV’s.

We have examined the specific case of the lightest neutralino for the
mostly B-ino and mostly Higgsino channels. The joint application of the
“entropy consistency” and the usual abundance criteria clearly shows that
the B-ino channel is favored over the Higgsino. This result can be helpful in
enhancing the study of the parameter space of annihilation channels of LSP’s
in MSSM models, as the latter only use equations (8) and (9)–(10) in order
to find out which parameters yield relic gas abundances that are compatible
with observational constraints [1, 2, 3, 4, 5, 6]. However, equations (8) and
(9)–(10) by themselves are insufficient to discriminate between annihilation
channels. A more efficient study of the parameter space of MSSM can be
achieved by the joint usage of the two criteria, for example, by considering
more general cross section terms (see for example [2]) than the simplified
approximated forms (11) and (12). This work is currently in progress.
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Abstract. We first give an overview of several brane models, and show how to deal
with a higher-dimensional brane world scenario. We then discuss one formalism in
detail, which is the four-dimensional (4D) effective approach. It is applied to the
case where gravity is confined in the brane. We then present the effective equations
to describe the 4D gravity of a brane world, assuming the Z2 symmetry.

Applying this formalism to the Randall-Sundrum II model, we find two addi-
tional terms in the Einstein equations: One is the quadratic term of the energy-
momentum tensor of matter and the other is the 5-dimensional (5D) Weyl curvature
term. Although the 4D system of effective equations is not closed and further in-
formation from the bulk is required, those terms may provide us a window for
the search of extra dimensions. We discuss some effects induced by those terms in
cosmology.

Using this formalism, we also analyze other brane models: a model with a bulk
dilaton field motivated by the Hořava-Witten model, and one with a bulk Yang-
Mills field. The induced gravity brane model proposed by Dvali, Gabadadze and
Porrati and its extension are also discussed. In the latter case, we find that the
effective cosmological constant on a brane can be extremely reduced in contrast
to that of the Randall-Sundrum model even if a bulk cosmological constant and a
brane tension are not fine-tuned.

1 Introduction

Gravity is a very interesting interaction. When we discuss great achievements
in physics, gravity is often deeply related. Newton unified the gravity on Earth
with the force acting between the planets and the Sun as a universal attractive
force, which was the dawn of modern science. This universal interaction was
extended by Einstein’s general relativity. General relativity not only gives a
precise description of the gravitational force but also has completely changed
the idea of space and time. Gravity is described as a geometrical object, and
energy and momentum densities of matter fields deform a spacetime. As a
result, a spacetime becomes a dynamic object, which allows us to think about
the universe as a whole.

Another great achievement in physics in 20th century is quantum me-
chanics. This has completely changed our world view at microscopic scales.
To understand this microscopic world, particle physics has played a very im-
portant role. Among the achievements in particle physics, the unification of
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fundamental interactions is one of the most important subjects. All interac-
tions except gravity could be unified by grand unified theories. The matter
(fermions) and the forces (bosons) may also be unified by supersymmetry.
When we discuss quantization of fields, gravity is again exceptional because
it is not renormalizable. We have not so far been able to quantize the gravita-
tional interaction. Therefore, if we could solve those fundamental problems of
gravity, we may reach the next revolution in physics. One of the most promi-
sing approaches is a superstring theory, or M-theory [1]. Such unified theories
are usually formulated in higher dimensions than four. However, the dimen-
sion of our spacetime is certainly four. How can one obtain a realistic world
from such a higher-dimensional theory? Kaluza and Klein first discussed a 5D
spacetime to unify gravity and electromagnetism [2]. In their model, the fifth
direction is curled up to very small scales such that our effective 4D spacetime
is recovered. From a view point of gravity, a supergravity theory, which may
unify all interactions and particles, is just an extension of the Kaluza-Klein
theory. The extra dimensions should also be compactified into below 10−17

cm because of the constraints placed by high-energy experiments. The size
of extra dimensions is usually assumed to be the Planck length 10−33 cm.

Then the idea of “superstring” appeared in physics. A string theory
has predicted a new object, a brane, on which edges of open strings stand
[3]. The existence of such natural boundaries changes our world view com-
pletely. Particles in the standard model are expected to be confined to a
three-dimensional (3D) brane, whereas the gravitons propagate in a higher-
dimensional bulk spacetime. This suggests a new perspective in cosmology:
a brane world scenario, that is, we live in a brane world, which is a 3D hy-
persurface in a higher-dimensional spacetime [4]. Such a world view is very
interesting because TeV gravity might be realistic and a quantum gravity
effect could be observed by a next-generation particle collider [5].

New approaches for extra dimensions proposed by Randall and Sundrum
are also very important [6, 7]. In their first paper [6], they proposed a me-
chanism to solve the hierarchy problem by a small extra dimension, while in
their second paper [7], they proposed a single brane model with a positive
tension, where 4D Newtonian gravity is recovered at low energies even if the
extra dimension is not compact. This mechanism provides us an alternative
compactification of extra dimensions.

If the brane world is realistic, we may find some evidence of higher-
dimensions in strong gravity phenomena. Here we first present an overview of
several brane models in Sect. 2, and summarize the approaches which allow
us to deal with a higher-dimensional brane world in Sect. 3. We then discuss
a class of the brane models, in which gravity is confined on the brane just
as in the Randall-Sundrum second model. In Sect. 4, we derive the effective
gravitational equations for the induced 4D metric obtained by projecting the
5D metric onto the brane world-volume [8, 9, 10]. The gravitational action on
the brane, which may be induced via quantum effects of matter fields, could
be included in the present approach.
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We apply our formalism to the Randall-Sundrum second model (RSII) in
Sect. 5 [8]. We find two new terms in the “Einstein equations” [11]: One is the
quadratic term of the energy-momentum tensor of matter and the other is
the 5D Weyl curvature term. Although the 4D system of effective equations
are not closed and further information from the bulk is required, here we
explore a window to look for extra dimensions in the context of cosmology.
The quadratic term of the energy-momentum tensor will change the dynamics
of the early universe, while the Weyl curvature term will play a new role in
strong gravitational phenomena.

Using this formalism, we also analyze other brane models in Sect. 6 and
Sect. 7; a model with a bulk dilaton field [9] motivated by the Hořava-Witten
model [12, 13], and one with a bulk Yang-Mills field [14]. The induced gravity
brane model proposed by Dvali, Gabadadze and Porrati [15] and the curva-
ture squared inflationary model first proposed by Starobinsky [16, 17, 18] are
also discussed [10]. Concluding Remarks follow in Sect. 8.

2 Several Models for a Brane World

String theory predicts a new type of nonlinear structure, which is called a
brane, a nomenclature created artificially from “membrane.” It is a boundary
layer on which edges of open strings stand. The idea of a brane with duality
plays an important role in a statistical derivation of a black hole entropy. This
also suggests a new perspective in cosmology: we are living in a brane world,
which is a 3D hypersurface in a higher-dimensional spacetime. In contrast
to the familiar Kaluza-Klein theory, our world view appears to be changed
completely. In the following, we present a brief overview of several brane
world models.

2.1 Brane Models with Large Extra Dimensions

Based on a brane world picture, a new type of Kaluza-Klein cosmology was
proposed by Arkani-Hamed, Dimopoulos and Dvali [5]. Ordinary matter fields
are confined on the brane which is infinitesimally “thin” mathematically,
though it may be thick physically, probably of the order of the Planck length.
Compared with this thickness, on the other hand, the extra dimensions where
only gravitons propagate could be larger. How large can they be is a question
that can be answered only by gravitational experiments. Since the experi-
ments probe the Newtonian gravity to scales above 1 mm, the laws of gravity
might be different below this scale.

Suppose that the fundamental theory of gravity is given by the Einstein-
Hilbert action in D(= 4 + n) dimensions and the spacetime is compactified
into (4D spacetime)×(n extra dimensions). The action is reduced as:

S =
1

2πκ2
D

∫
dDx R ≈ 1

2πκ2
D

Vn

∫
d4x R =

1
2πκ2

∫
d4x R, (1)
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where Vn is the volume of extra dimensions, while κ2
D is a gravitational

constant in D-dimensional spacetime. Defining the D-dimensional Planck
mass (D)mPL by κ2

D =
(
(D)mPL

)−(n+2)
, we obtain from (1)

m 2
PL =

(
(D)mPL

)(n+2)
× Vn. (2)

In the old Kaluza-Klein idea, the size of extra dimensions should be much
smaller than 10−17 cm (∼TeV−1) in order to keep them unobservable by
high-energy experiments. We have even assumed that the size is nearly as
small as the Planck length, the inverse of mPL. If we believe, however, that
ordinary matter fields are confined on a brane world, the extra dimensions
are not necessarily required to be so small. This might also be connected with
a conjecture that the mass scale (D)mPL in D-dimensional spacetime at the
more fundamental level is as low as ∼ TeV, nearly the same as the electroweak
mass scale. This removes what is called a “hierarchy problem”. Once we
accept this idea, we can derive a typical size rn of the extra dimensions
from (2):

rn ∼ (Vn)1/n ∼ 10(30/n)−17cm. (3)

If n = 1, we expect r1 ∼ 1013 cm (∼ 1 astronomical unit), which is
excluded. If n = 2, however, we find r2 ∼ 1 mm, precisely the shortest
distance only above which the Newtonian law of the inverse-square law has
been tested. This is very interesting model because it shows a possibility of
the unification scale within reach of our near-future experiments.

2.2 Randall-Sundrum Model

Randall and Sundrum [6, 7] proposed a very simple brane model, in which our
brane is identical to a domain wall in 5D anti-de Sitter (AdS) spacetime with
a negative cosmological constant (5)Λ(< 0). The 5D spacetime is described
by the metric, which is not factorizable as

ds2 = e−2|y|/�gµν(x)dxµdxν + dy2, (4)

where � =
√
−6/(5)Λ is a typical curvature scale of the AdS spacetime. To

find the Minkowski space on the brane (gµν = ηµν), the tension λ of the
brane must satisfy |λ| = 6/�κ2

5. The “warp” factor e−2|y|/�, which is rapidly
changing in the extra dimension, plays a very important role in contrast to
the usual Kaluza-Klein compactification. They discussed two models.

(1) two-brane model (RSI)
In their first model [6], they proposed a mechanism to solve the hierarchy
problem by a small extra dimension bounded by two boundary branes, with
positive and negative tension, located at y = 0 and y = s, respectively, as
illustrated in Fig. 1.
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Fig. 1. Randall-Sundrum type I model. We are living in a negative tension brane
(y = s). The circles describe the warp factor e−2|y|/�

If we are living in a negative tension brane, we find a solution to the
hierarchy problem. We first estimate the 4D Planck mass scale by integrating
the 5D action in the 5-th direction as

Sg ∼
1

2κ2
5

∫ s

0
dye−2|y|/� ·

∫
d4x
√
−gR, (5)

where we made an approximate estimate (5)R ∼ R, without solving Einstein’s
equation in 5 dimensions rigorously. We then find

m 2
PL =

1
κ2 ∼

1
2κ2

5

∫ s

0
dye−2|y|/� =

�

2κ2
5

(
1− e−2s/�

)
. (6)

This means that mPL depends weakly on the distance s, as long as e−s/� � 1.
To show how the hierarchy problem is resolved, we consider a fundamental
Higgs field confined in the visible brane with negative tension. The action is
given by

Svis =
∫
d4x
√
−gvis

[
gµνvisDµH

†DνH − λ
(
|H|2 − v2

0
)2]

, (7)

where gvis
µν is the 4D components of the 5D metric evaluated at y = s, i.e.

gvis
µν = e−2s/�gµν . This, together with redefinition of the Higgs field, H →
es/�H, leads to

Seff
vis =

∫
d4x
√
−g

[
gµνDµH

†DνH − λ
(
|H|2 − v2

eff
)2]

, (8)

where veff = e−s/�v0 gives the physical symmetry-breaking energy scale,
which could be much smaller than the original energy scale v0. In fact, if
s/� ∼ 35, this produces TeV energy scale from the 4D Planck scale mPL.
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(2) one-brane model (RSII)
In their second model [7], on the other hand, we assume to live in the positive-
tension brane surrounded by AdS. There is no second brane with negative
tension, which is obtained from a two-brane model in the limit of s → ∞.
Although hierarchy is still left unsolved, 4D Newtonian gravity is recovered
at low energies even if the extra dimension is not compact. This is proved
by applying a perturbation approximation to the above solution (4) with a
positive-tension Minkowski brane at y = 0. Consider perturbation to the 4D
components, (5)gµν = e−2|y|/�ηµν +hµν . By setting h(x, y) = ψ̂(z)e−|y|/2�eipx

with z = �(e|y|/� − 1) and p2 = −m2, we find the perturbation equations for
the graviton as

[
−1

2
∂2
z + V (z)

]
ψ̂ = m2ψ̂, (9)

where

V (z) =
15

8�2(|z|/�+ 1)
− 3

2�
δ(z), (10)

is a volcano-shaped potential (see Fig. 2).

Fig. 2. Volcano-shape potential in the Randall-Sundrum type II model. Since gra-
vity is confined on the brane B, gravity on the brane can be described by the
induced metric of B.

This potential confines a massless graviton mode on the brane. As a result,
even if the 5-th dimension is not compact, Newtonian gravitational potential
is recovered in low energy limit as

V (r) ∼ G
m1m2

r

(
1 +

�2

r2

)
, (11)

where m1 and m2 are masses of two particles on the brane. This “compactifi-
cation” is completely different from the Kaluza-Klein type compactification.
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2.3 Brane Models with Bulk Fields

According to the recent progress in superstring theory, different string theo-
ries are connected with each other via dualities, which unify them to the
M theory in 11 dimensions. Among string theories, the 10-dimensional (10D)
E8×E8 heterotic string theory is a strong candidate for our real world because
the theory may contain the standard model. Hořava and Witten showed that
this heterotic string model is equivalent to an 11-dimensional (11D) realiza-
tion of M theory compactified on the orbifold R10 × S1/Z2 [12]. Each gauge
field on E8 is confined to the 10D boundary brane of S1/Z2. The 10D spa-
cetime is compactified to M4×CY 6, where M4 and CY 6 are 4D Minkowski
spacetime (our Universe) and Calabi-Yau space, respectively. Lukas, Ovrut
and Waldram then derived an effective 5D action by dimensional reduction
from 11D M-theory [13, 19, 20]. In their reduction, we find a dilaton field,
which corresponds to a volume of CY 6 space, as well as a U(1) “gauge” field
in the 5D bulk spacetime. Hence, when we reduce our model from most fun-
damental higher-dimensional spacetime to an effective bulk spacetime, one
would usually expect scalar fields associated with many moduli fields as well
as “gauge” fields in the gravitational sector, which are allowed to propa-
gate in the 5D “bulk” spacetime. We may find non-Abelian gauge field from
some type of dimensional reduction of a unified theory. There is another in-
teresting point in discussing non-Abelian gauge fields in a bulk spacetime.
Using a brane structure, new mechanism of spontaneous symmetry breaking
of gauge interactions has been proposed [21]. In this picture, the present stan-
dard model (SU(3)×SU(2)×U(1)) is obtained on the brane assuming some
higher-symmetric gauge interactions such as SU(5) in the bulk.

2.4 Induced Gravity on a Brane

In a brane world, usual matter fields are confined on a brane. We may have
to include quantum effects of those matter fields, because we have extra di-
mensions. This idea is closely related to AdS/CFT correspondence, by which
we expect some equivalence between classical dynamics in AdS background
and a conformal field theory in its flat Minkowski boundary [22]. We then
find modification of gravitational interaction on the brane, which is the so-
called induced gravity. In particular, when we consider conformal field theory
on a brane, we will obtain a trace anomaly term in 4D brane world. Those
additional gravitational action on the brane induced via quantum effects of
matter fields should be included.

This type of brane model (a flat brane in a 5D Minkowski bulk space)
was first discussed by Dvali, Gabadadze and Porrati [15]. This model is in-
teresting because, phenomenologically, 4D Newtonian gravity on a 3-brane
is recovered at high energy scale, whereas 5D gravity emerges at low energy
scale (see, however, [23]). Applying this model to cosmology, they showed



330 K. Maeda

that there exists an exponential expansion of the universe without a cosmo-
logical constant. This would be the present acceleration of the universe, if we
fine-tuned a 5D Planck mass (m5 ∼ 100 MeV).

We also generalize their model to the case with a bulk cosmological con-
stant and a tension of the brane. Assuming the energy scale of the tension is
much larger than the 5D Planck mass, we show that the effective cosmological
constant on the brane is extremely suppressed in contrast to the RS model
even if the cosmological constant and the tension are not fine-tuned [10].
This might explain the present acceleration of the universe. We also study
the curvature-squared model motivated by the appearance of trace anomaly
[24, 16, 17].

3 Approaches to a Brane World

Recently there has been tremendous interest in a brane world scenario and
many works have been done in cosmology as well as in particle physics. Here
we classify those into three approaches: (1) 4D effective approach; (2) holo-
graphic approach; (3) higher-dimensional approach, which we shall explain
those three in order.

3.1 Four-Dimensional Approach

Since a brane world is localized on a hypersurface in a bulk spacetime, this
entire spacetime is quite inhomogeneous. Hence, even if we are interested in
dynamics of our isotropic and homogeneous 3D universe, this set up is very
complicated. Since the system is described by partial differential equations, it
may be difficult to solve the basic equations without any additional ansatz [11,
13]. However, because we are living in a brane world, which is simply isotropic
and homogeneous, we may not need to know what happens in a complicated
bulk spacetime. We are interested only in a brane world. Therefore, if one
can construct an effective theory which is applied to our brane world, the
analysis of our universe will be very simplified. If gravity is confined just as
the RS II model, such construction would be possible because an induced
metric describes the brane gravity. Projecting the basic equations in a bulk
spacetime onto a brane, we can construct an effective gravitational theory.
We will show how to obtain such an effective theory in the following sections.

3.2 Holographic Approach

The holographic principle has been proposed based on the equivalence bet-
ween classical dynamics of superstring (supergravity) in AdS background
spacetime and a conformal field theory on its Minkowski boundary. If this
AdS/CFT correspondence is true, when we discuss the dynamics of a brane
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world, we have to include its quantum effects, because of the existence
of extra-dimensions. There are two ways: one where we analyze a high-
dimensional classical spacetime, and the other one where we solve 4D ef-
fective models including quantum effects. If we adopt the latter approach,
including quantum corrections on a brane gravity, we can apply the above
4D approach. Nojiri, Odintsov, and Zerbini [16], and Hawking, Hertog, and
Reall [17] studied such models. We will discuss those as an induced gravity
brane model in Sect. 7.

3.3 Higher-Dimensional Approach

Although the 4D approach is very effective for some specified situations,
most interesting aspects in a brane world may be found in analyzing highly
inhomogeneous bulk spacetime. Here we just list up some subjects which
should be discussed in higher dimensions.

(1) Stability and perturbations
Since a bulk spacetime with branes is inhomogeneous, it is not trivial whether
such a spacetime is stable or not. In fact, two branes in the RS I model are
marginally stable because spacetimes with two branes at any distance are
allowed. In order to explain the hierarchy problem, we have to fix the distance
around s ∼ 35�. Such a spacetime should be realized as a stable spacetime
[25]. It is also very important to study perturbation equations of a brane
world in the bulk spacetime, when we analyze density fluctuations in brane
cosmology [26].

(2) Higher-dimensional black hole and brane black hole
The black hole solution is important from two points of view: One is in the
context of a brane cosmology. Our universe may be regarded just as a domain
wall in a bulk black hole spacetime [27, 14]. The other view point is related
to the TeV gravity. If a fundamental unification scale is about TeV energy
scale, a black hole could be formed in a particle-collider. Then we may have
a chance to find quantum gravity effects in current high-energy experiments
[28]. There is another interesting topic, which is very fundamental [29]. We
know that various types of black hole spacetimes become possible in higher
dimensions. In particular, a topology of a event horizon is not always Sn,
but it could be a torus or other type of geometry. Many questions on higher-
dimensional black holes are still open.

(3) Brane collision and new scenario of the early universe
One of typical phenomena in brane dynamics is a collision of branes. With
this idea, one interesting scenario for the early universe model has been pro-
posed, the so called ekpyrotic universe [30, 31]. Starting with two parallel
branes, we find a brane collision, which initiates the Big Bang. It could pro-
vide an alternative to an inflationary scenario. Although there may be so far
some serious troubles in density perturbations [32], we should pursue such
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possibilities furthermore, including the detail analysis of collision mechanism
and its dissipation process [33].

(4) Creation of a brane world
We also have to discuss how the universe appears in a brane world scenario.
The conventional quantum cosmology may be applied to a spacetime with a
brane. Some instanton solution might describe what kind of a brane world
is created quantum mechanically [34]. We may have another scenario for
creation of our universe, which is based on an instability of a brane system.
The system with D-brane and anti D-brane will decay by collision and then
more stable lower-dimensional brane world (which could be our universe) is
formed [35]. This may provide an alternative for creation of our brane world,
although we still have to discuss about how such a system with two parallel
branes appears in the beginning.

4 The Effective Gravitational Equations
on a Brane World

Now we discuss how to describe our brane world by an effective 4D theory.
We consider a 5D bulk spacetime with one 3-brane, on which we assume that
gravity is confined. We derive the effective 4D gravitational equations, which
describe our 4D brane world.

Suppose that the 4D brane world (M, gµν) is located at a hypersurface
(B(XA) = 0) in the 5D bulk spacetime (M, (5)gAB), which coordinates are
described by XA (A = 0, 1, 2, 3, 5). We assume the Einstein-Hilbert action in
the 5D bulk spacetime. The action discussed here is

S = Sbulk + Sbrane (12)

where

Sbulk =
∫
d5X

√
−(5)g

[
1

2κ2
5

(5)R+ (5)Lm

]
(13)

and

Sbrane =
∫

B=0
d4x
√
−g

[
1
κ2

5
K± + Lbrane(gαβ , ψ)

]
, (14)

κ2
5 is the 5D gravitational constant, (5)R and (5)Lm are the 5D scalar curva-

ture and the matter Lagrangian in the bulk, respectively. xµ (µ = 0, 1, 2, 3)
are the induced 4D brane world coordinates on the brane, K± is the trace of
extrinsic curvature on either side of the brane [36, 37]. Lbrane(gαβ , ψ) is the
effective 4D Lagrangian, which is given by a generic functional of the brane
metric gαβ as well as matter field ψ because we may include an additional
gravitational interaction induced on a brane via quantum effects.
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The 5D Einstein equations in the bulk are

(5)GAB = κ2
5

(
(5)TAB + τAB δ(B)

)
, (15)

where

(5)TAB ≡ −2
δ(5)Lm

δ(5)gAB
+ (5)gAB

(5)Lm (16)

is the energy-momentum tensor of bulk matter fields, while τµν is the “effec-
tive” energy-momentum tensor localized on the brane which is defined by

τµν ≡ −2
δLbrane

δgµν
+ gµνLbrane . (17)

The δ(B) denotes the localization of brane contributions. The basic equations
in the brane world is obtained by projection of the variables onto the 3-brane,
because we assume that gravity is confined on the brane. The induced 4D
metric is gAB = (5)gAB − nAnB , where nA is the spacelike unit-vector field
normal to the brane hypersurface M .

We first project the 5D Riemann tensor onto the brane spacetime as

(5)RMNRS g
M
A g

N
B g

R
C g

S
D = (4)RABCD −KACKBD +KADKBC (18)

(5)RMNRS g
M
A g

N
B g

R
C n

S = 2D[AKB]C (19)
(5)RMNRS g

M
A g

R
C n

N nS = −£nKAC +KABK
B
C , (20)

where the extrinsic curvature of M is denoted by KMN = gAMg
B
N∇AnB , DM

is the covariant differentiation with respect to gMN , and £n denotes the Lie
derivative in the n-direction. The first equation is called the Gauss equation.
Combining (18) and (20), and contracting it and (19), we find

(5)RMN gMA gNB = −£nKAB −KKAB + 2KAC K
C
B + (4)RAB (21)

(5)RRS n
SgRM = DNK

N
M −DMK . (22)

The last equation is called the Codazzi equation.
To find the effective “Einstein equations” of the induced metric, we use

(18) and (22). Contracting the Gauss equation (18), we find the effective 4D
equations as

Gµν =
2κ2

5

3

[
(5)TRS g

R
µg
S
ν + gµν

(
(5)TRS n

RnS − 1
4

(5)T

)]

+KKµν −K λ
µ Kνλ −

1
2
gµν

(
K2 −KαβKαβ

)
− Eµν , (23)

where
Eµν ≡ (5)CARBS n

AnBgRµ g
S
ν (24)
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is some projected components of the 5D Weyl curvature. Here we have used
the 5D Einstein equations (15).

In (23), we have so far three unknown variables; (5)TAB , Eµν , and Kµν .
Although the first two variables are described by bulk information, we can
determine the extrinsic curvature Kµν from brane information as follows.

We assume that the brane is infinitely thin. The singular behavior in
5D bulk spacetime appears in the 5D Einstein equations (15) as a delta
function. Inserting (15) into (21), we find that the extrinsic curvature must
be discontinuous on the brane. Then, integrating (21) in the n-direction, we
obtain the so-called Israel’s junction condition [38],

[gµν ]± = 0 and [Kµν ]± = −κ2
5

(
τµν −

1
3
gµντ

)
, (25)

where we define the difference between values evaluated on the + or − side
of the brane by [X]± ≡ X+−X−. Because of the Z2-symmetry, the extrinsic
curvature of the brane is uniquely determined in terms of τµν as

K+
µν = −K−

µν = −1
2
κ2

5

(
τµν −

1
3
gµντ

)
. (26)

In what follows, we omit the indices ± below for brevity.
Substituting (26) into (23), we obtain the gravitational equations on the

3-brane in the form,

Gµν =
2κ2

5

3

[
(5)TRS g

R
µg
S
ν + gµν

(
(5)TRS n

RnS − 1
4

(5)T

)]

+ κ4
5πµν − Eµν , (27)

where

πµν = −1
4
τµατ

α
ν +

1
12
ττµν +

1
8
gµνταβτ

αβ − 1
24
gµντ

2 . (28)

Together with (15) and (26), the Codazzi equation (22) gives

Dντ
ν
µ = −2 (5)TRS n

RgSµ . (29)

Equations (27), (28) and (29) give the effective gravity theory on the
brane. If the brane Lagrangian Lbrane contains only a matter field ψ, τµν
is just the energy-momentum tensor of matter field, and then the gravity is
described by the 4D Einstein tensor in (27). Then we recover the Einstein
gravitational theory in the 4D brane world. We will discuss this case in detail
in the next section. However, if Lbrane includes some additional contribution
to gravity such as an induced gravity on the brane, the effective energy-
momentum tensor τµα gives modification of gravitational interaction in the
effective theory. We will analyze such cases in Sect. 6 and Sect. 7 .
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5 Randall-Sundrum Type II Brane World Model

5.1 The “Einstein Equations” in the RS II Model

First we study the RS II brane world model in our approach [8]. Since this
compactification is completely different from conventional Kaluza-Klein pic-
ture, we may find much difference from the Einstein gravity. Following Ran-
dall and Sundrum [7], we assume a negative cosmological constant (5)Λ(< 0)
in a bulk spacetime and a positive tension λ(> 0) of the brane. We also
assume matter field (Tµν) on the brane to discuss cosmology. From (27) with

τµν = −λgµν + Tµν . (30)

we find the effective 4D gravitational equations as

Gµν = −Λgµν + 8πGNTµν + κ4
5Πµν − Eµν , (31)

where

Λ =
1
2

(
(5)Λ+

1
6
κ4

5λ
2
)
, (32)

GN =
κ4

5λ

48π
, (33)

Πµν = −1
4
TµαT

α
ν +

1
12
TTµν +

1
8
gµνTαβT

αβ − 1
24
gµνT

2 . (34)

It resembles the conventional Einstein equations. The Codazzi equation (29)
now implies the conservation law for the matter,

DνT
ν
µ = 0 . (35)

The existence of non-zero Newton’s gravitational constant GN strongly
relies on the presence of the tension λ. If λ < 0, although we have the wrong
sign of GN , it does not mean anti-gravity. We have to be careful to conclude
our result in this case because gravity is not confined on the brane. Gravity
may not only be described by the induced metric on the brane, but a gravi-
tational effect from the bulk, which is described by Eµν , should be included.
(see the analysis for two-brane model by Garriga and Tanaka [39].)

The Πµν term, which is quadratic in Tµν , could play a very important
role, especially when the energy density is very high as in the early universe
[11]. In addition, (31) contains a new term, Eµν , which is a part of the 5D
Weyl tensor and carries information of the gravitational field outside the
brane. Eµν satisfies the trace free condition , Eµµ = 0, which is from the
property of the Weyl tensor. Since we have the contracted Bianchi identities
(DνGµν = 0), with the energy-momentum conservation (35), we find one
additional constraint equation on Eµν as

DνEµν = κ4
5D

νΠµν(Tαβ) . (36)
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This equation, however, does not fix Eµν completely. Hence the effective
gravitational equations on the brane (31) are not closed. We have to solve
the gravitational field in the bulk as well in generic cases. However, in the
case of cosmology, it is not the case. We discuss it in the next subsection.

5.2 Cosmology as a Window to Extra Dimensions

Using the effective equations on the brane, we shall discuss some applications.
Since the Randall-Sundrum model is completely different from conventional
Kaluza-Klein theory, we expect new aspects in strong gravitational pheno-
mena. In fact, we found two new terms, the quadratic term in the energy-
momentum tensor and the 5D Weyl curvature. In this subsection, we discuss
on cosmology.

Suppose we have a perfect fluid in the brane, where the energy-momentum
tensor is given by Tµν = ρ uµuν + Phµν , where hµν = gµν + uµuν with uµ

being a timelike fluid four-velocity. Using the energy-momentum conserva-
tion, we find DνΠ

µν = 1
6 (ρ+P )hµνDνρ . This means that DνΠ

µν = 0 if the
matter density is spatially uniform, which is usually assumed in cosmology.

Assuming Friedmann-Robertson-Walker (FRW) spacetime on the brane,
(36) for Eµν turns out to be

Ė00 + 4
ȧ

a
E00 = 0, (37)

leading to E00 = E0/a4 where E0 is an integration constant. Appart from the
fact that we need extra information about the bulk spacetime to determine
E0, our system becomes closed. The Friedmann equation is now

H2 +
k

a2 = Λ+
8πGN

3
ρ+

κ4
5

36
ρ2 − E0

a4 , (38)

where H = ȧ/a is the Hubble parameter, a is the scale factor of the universe,
and k is a curvature constant taking either value of 0, or ±1. The third
and last terms on the right hand side have again appeared in the brane
cosmology. The ρ2-term comes from the quadratic term Πµν , while the last
one corresponds to the so-called “dark radiation” [11]. Since these two terms
do not appear in the conventional big bang cosmology, such terms could be
a window to the extra dimensions.

Here we list up some possible cosmological consequence due to those new
terms in order.

(1) The effects of ρ2 term
Since the energy density decreases as the universe expands, the quadratic
term must be very important in the early stage of the universe. In fact it
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becomes dominant when

ρ > ρcr ≡ 12
m6

5

m2
PL

= 2λ , (39)

where m5 = κ
−2/3
5 .

(1-i) If matter field is described by the perfect fluid with the equation of state
P = (γ − 1)ρ, the energy momentum conservation of matter fluid implies
ρ = ρ0a

−3γ , resulting in the Friedmann equation written by the equation for
the scalar factor a as

1
2
ȧ2 + U(a) = 0 ,

with U(a) = −Λ
2
a2 − ρ0

6m2
PL

a−3γ+2 − ρ2
0

72m6
5
a−6γ+2 +

E0
6
a−2 +

k

2
. (40)

If Λ = 0 and E0 = 0, the expansion law of the flat universe is given by
a ∝ t1/3γ in the ρ2-term dominant stage, which eventually comes to the con-
ventional expansion phase (a ∝ t2/3γ) after the linear term dominates.
(1-ii) If a scalar field φ is confined on the brane, its dynamics will be dra-
stically changed. The power-law expansion of the universe is found for the
potential V (φ) = µ6φ−2. The expansion law of the universe is a ∝ tp with
p = 1

6 [1 + 1
8 (µ/m5)6]. Then, if µ > 401/6m5(≈ 1.85m5), we find a power-law

inflationary solution. For the potential V (φ) = µα+4φ−α (α > 0), we also
find some interesting behaviors. If α < 2, we have an inflationary solution
as a ∝ exp[H0t

(2−α)/2], where H0 is a constant determined by µ, m5 and α.
While, for α > 2, the perfect fluid (if it exists) will eventually dominate for
any initial conditions. The density parameter of the scalar field decreases as
Ωφ ∝ a−2(α−2)/(α+2) in the radiation-dominated stage. This may provide us
a natural initial condition for a quintessence scenario [40].
(1-iii) Inflation could be modified if the quadratic term is dominant during
inflation. The quadratic term makes inflation stronger [41]. The preheating
mechanism is also changed [42]. It is important to study the density pertur-
bations, which is beyond the present approach.

(2) The effect of “dark radiation” Eµν
(2-i) In the case of E0 < 0, the term of Eµν behaves just as radiation, which is
constrained by a successful nucleosynthesis [11]. If inflation occurs, however,
this radiation is suppressed by the exponential expansion. Then, this window
will be closed unless Eµν is produced again after inflation.
(2-ii) If E0 > 0, we have “negative” radiation, which changes the dynamics of
the universe completely. For the universe filled by the perfect fluid, it is easy
to analyze it by (40). If 0 ≤ γ < 2/3, the universe has no initial singularity.
Even if the universe is contracting initially, it will bounce and eventually
expand. For γ = 0, we find the analytic solution as
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a2 =
1

2H0

[
k +

√
k2 + 2H0E0 cosh(2H0t)

]
→ e2H0t, (41)

where H2
0 = ρ0/(3m2

PL) + ρ2
0/(36m6

5). Inflation will occur via non-singular
universe.

If 2/3 ≤ γ < 4/3, which includes the case of dust fluid, the large value of E0
guarantees the existence of a bounce solution. For the case with 4/3 ≤ γ ≤ 2,
which includes the case of radiation fluid or stiff matter, we find a bounce
solution only for the k = −1 universe and large E0. In the case of positive E0,
although all models are not always non-singular, it seems to have a tendency
of singularity avoidance.

Why we have “radiation” in the beginning of the universe in addition to
the conventional radiation fluid ? In order to understand this, we re-interpret
the present cosmological model as follow: Suppose we have 5D Schwarzschild-
AdS spacetime

ds25 = −
(
k +

r2

�2
− M

r2

)
dt2 +

(
k +

r2

�2
− M

r2

)−1

dr2 + r2dΣ2
k, (42)

which is a solution of the bulk spacetime in the present model. Put a sphe-
rically symmetric singular thin shell with a radius a, and throw the outside
spacetime away. Then, preparing two sets of such a spacetime, we identify
each shell, which guarantees Z2 symmetry. It turns out that the motion of
the shell is exactly the same as the previous Friedmann equation (38) [27].
We then find E00 = −M/a4 . This means that Eµν is the 5D tidal force by
the “mass” M of a black hole in the bulk spacetime. Since the tidal force is
proportional to a−4 in 5 dimensions, we realize that the radiation-like beha-
vior is just coming from its dimensionality. If we impose the condition that
a regular horizon exists for the Schwarzschild-AdS spacetime, M is positive
for k = 0 or 1, which implies E0 <. However, for the open universe (k = −1),
the condition is M > −�2/4 and then E0 could be positive. This domain wall
interpretation of the brane universe is extended to the model with the bulk
Yang-Mills fields (see Sect. 6.2).

6 Brane Model with a Bulk Field

6.1 Brane Model with a Dilaton Field [9]

It is easy to apply our effective 4D approach to the model with a bulk dilaton
field Φ, which is motivated by the Hořava-Witten model [12]. The matter
Lagrangians in the bulk and on the brane are now

(5)Lm = −
[
1
2
(∇Φ)2 + V (Φ)

]
and Lbrane = Lmatter − λ(Φ), (43)
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where V (Φ) and λ(Φ) are a potential of the dilaton and a tension of the
brane, respectively. Equation (27) can be rewritten using the bulk energy-
momentum tensor, (5)TAB(Φ), and τµν = −λ(Φ)gµν + Tµν , as

Gµν =
2κ 2

5

3

[
T (φ)
µν +∆T (φ)

µν

]
+ 8πGN (φ)Tµν + κ4

5Πµν − Eµν , (44)

where φ(x) is the value of the dilaton field Φ on the brane,

T (φ)
µν = DµφDνφ− gµν

[
1
2
(Dφ)2 + Ueff

]
, (45)

∆T (φ)
µν =

1
4
gµν

[
Ueff −

1
2
(Dφ)2

]
. (46)

8πGN =
κ4

5

6
λ(φ) , (47)

with

Ueff =

[
V +

1
6
κ2

5 λ
2 − 1

8

(
dλ

dφ

)2
]

(48)

and Πµν is given by (34)
Choosing a Gaussian normal coordinate χ such that the hypersurface

χ = 0 coincides with our brane (B = 0), we expand the dilaton field Φ near
the brane as

Φ = φ(x) + Φ1(x)|χ|+ 1
2
Φ2(x)χ2 +O(χ3), (49)

and, inserting this into

Φ+K£nΦ+ £ 2
n Φ−

dV

dΦ
− dλ

dΦ
δ(B) = 0, (50)

we find the jump condition for a dilaton field as

Φ1 =
1
2
dλ

dφ
, (51)

and the equation for φ as

φ− dUeff
dφ

= −∆Φ2 , (52)

where

∆Φ2 ≡ Φ2 −
1
4
dλ

dφ

d2λ

dφ2 . (53)
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Introducing a vector field Jµ = ∆Φ2 ·Dµφ, we find that (52) yields

DνT (φ)
µν = −Jµ . (54)

Thus we regard Jµ as the energy-momentum lost from the scalar field on the
brane to the bulk.

In order to find 4D Minkowski spacetime on the brane, Ueff should vanish
at some point (φ = φ0), i.e.

V +
κ2

5

6
λ2 =

1
8

(
dλ

dφ

)2

(55)

An example is provided by the 5D effective action obtained by Lukas, Ovrut
and Waldram [13] from a dimensional reduction of an 11D Hořava-Witten
model, in which

V =
α2

0

6κ2
5
e−2

√
2κ5Φ and λ =

√
2α0

κ 2
5

e−√
2κ5Φ (56)

where α0 is a constant. In this case, Ueff vanishes for any value of φ. This
fact (Ueff ≡ 0 ) is also true for a supersymmetric model [43], in which V and
λ are given by a superpotential W (Φ) as

2κ2
5V =

1
4κ2

5

(
dW

dΦ

)2

− 1
3
W 2

κ2
5λ(φ) = W (φ) . (57)

It is also possible to find FRW cosmological solutions on the brane with
time-dependent scale factor, a(t), and scalar field, φ(t), where t is cosmic
proper time, if we know, or make some assumption about the energy transfer
from brane to bulk, J0 = φ̇∆Φ2.

The scalar field equation of motion (52) is

φ̈+ 3Hφ̇ =
dUeff
dφ

+∆Φ2 , (58)

while the Friedmann equation is

H2 +
k

a2 =
2κ 2

5

9
(ρφ +∆ρφ) +

1
3
E0

0 . (59)

The energy density of the scalar field ρφ and the effect from the scalar field
in the bulk ∆ρφ are given by

ρφ = −T 0
0 =

1
2
φ̇2 + Ueff and ∆ρφ = −∆T 0

0 = −1
4
ρφ (60)

The equation for E0
0 is given by (44) with the contracted Bianchi identity as

Ė0
0 + 4HE0

0 =
2κ 2

5

3

[
1
4
ρ̇φ − J0

]
, (61)

where we have used Eµµ = 0 and ∆Tµν = (ρφ/4)gµν .
Here we give two simple examples:
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(1) No energy transfer from a bulk (J0 = 0)
When there is no energy transfer from brane to bulk, i.e. J0 = 0, we find a
closed set of equations (58–61) for the dilaton-vacuum universe, for a given
Ueff . Equations (58) and (61) can then be integrated, if the bulk and brane
potentials obey the generalized Randall-Sundrum condition given in (55), so
that Ueff = 0. Equation (58) can be simply integrated to give φ̇ = Cφ/a

3,
where Cφ is an integration constant, and (61) can be integrated to give

E0
0 =

κ 2
5 C

2
φ

4a6 − E0
a4 , (62)

where E0 is another integration constant. Inserting those solutions into (59),
we find

H2 +
k

a2 =
κ 2

5 C
2
φ

6a6 − E0
3a4 . (63)

This is the same as the standard Friedmann equation with stiff matter and
radiation, which is easily integrated [9].

(2) energy transfer from a bulk (J0 ∝ φ̇3)
Next we discuss the case with an energy transfer between the scalar field on
the brane, φ(t), and the radion field b, described by J0 ∝ (ḃ/b)ρφ. At the
same time the expansion of the bulk metric is itself determined by the local
density. In order to obtain separable solutions for the bulk metric, Lukas et
al [13] require some ansatz in the bulk, corresponding to J0 ∝ φ̇3 on the
brane. Then we assume that the energy transfer is given by

J0 = −
√

2Γκ5φ̇
3 , (64)

where Γ is a constant, then (58), with dUeff/dφ = 0, can be integrated to
give φ̇ = Cφa

−3e−√
2Γκ5φ . The remaining equations (61) and (59) can be

integrated if we make the power-law ansatz

a ∝ |t|p and e
√

2κ5φ ∝ |t|q . (65)

Equation (61) yields

E0
0 = − (4p− 1)q2

8(2p− 1)
|t|−2 − E0|t|−4p. (66)

We find

p = p(±) =
3(2Γ 2 + 1)± 2

√
3Γ
√

3Γ 2 + 1
3(8Γ 2 + 3)

(67)

q = q(±) =
2[Γ ∓

√
3(3Γ 2 + 1)]

8Γ 2 + 3
. (68)

For Γ = 1 we recover the solutions of Lukas et al [13] with
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p(±) =
3
11

(
1± 4

√
3

9

)
and q(±) =

2
11

(
1∓ 2

√
3
)
. (69)

We recover the stiff-matter dominated solution with p(±) = 1/3, q(±) =
∓2/
√

3 for Γ = 0. Over the entire range −∞ < Γ < ∞, p(+) changes
monotonically from 0 to 1/2, while q(+) always takes negative values from
zero to zero, having its minimum value −

√
6/2 at Γ = −

√
6/12.

6.2 Brane Model with Bulk Yang-Mills Field [14]

Next we study the 5D Einstein-Yang-Mills system with a cosmological con-
stant and discuss a brane universe model. In the brane world cosmology [11], a
higher-dimensional black hole solution plays an important role. Our universe
is just a domain wall expanding in the black hole background spacetime [27].
The black hole mass gives a contribution as dark radiation through its tidal
force. Hence, a higher-dimensional black hole or a globally regular solution
with a cosmological constant is now a very important subject. However, from
a view point of brane cosmology, although a black hole singularity is covered
by a horizon, the universe can pass through the horizon and hit on the singu-
larity, which is the end of our world. If a string/M theory is fundamental, such
a singularity should not exist. Then, if we can construct some non-singular
object in the bulk spacetime, it might be a manifestation of singularity avoi-
dance immanent in a fundamental theory. In four dimensions, Bartnik and
McKinnon found a particle-like solution as a globally regular spacetime in
a spherically symmetric Einstein-Yang-Mills system with SU(2) gauge group
[44]. Soon after, a colored black hole with a nontrivial non-Abelian struc-
ture was also found [45]. These solutions were also extended to those in the
system with a cosmological constant [46, 47, 21]. From stability analysis, it
turns out that the solutions with zero or positive cosmological constant are
unstable [48], while those with negative cosmological constant are stable [49].
Since a negative cosmological constant is naturally expected in a brane world
scenario just as the RS model [6, 7], the above fact becomes very important.
Then, we study a nontrivial particle-like solution or black hole solution in
five dimensions with a cosmological constant [14].

Here, assuming that non-Abelian gauge field appears in 5D bulk space-
time, we first discuss a spherically symmetric Einstein-Yang-Mills system in
5-dimensions. The action we discuss here is given by

S =
1
2

∫
d5x
√
−g5

[
1
κ2

5
(R− 2(5)Λ)− 1

8πg2 TrF2
]
, (70)

where g is a gauge coupling constant. F = Fµνdx
µ ∧ dxν is a field strength

of the gauge field, which is described by the vector potential A = Aµdx
µ as

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ]. (71)
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Defining a fundamental mass scale of the gauge field by mg = g−2, we nor-
malize the present system by a typical length scale given by (8πmg/m

3
5)

1/2 =
(8πκ2

5/g
2)1/2.

A spherically symmetric and static spacetime is given by

ds2 =
[
−f(r)e−2δ(r)dt2 +

dr2

f(r)
+ r2dΩ2

3

]
, (72)

where

f(r) = 1− µ(r)
r2

+ ε
r2

�2
. (73)

We set (5)Λ = −6ε/�2 with ε = 0 or ±1, corresponding to the signature of
(5)Λ. We call µ a ‘mass’ function.
We find the following solutions:

(1) “electrically” charged solutions
If we take only an “electric” part of the field, we find the Reissner-Nordstrom
type solution such as

µ =M− 2Q2

3r2
, δ = 0, A = −Q

r2
. (74)

(2) “magnetically” charged solutions
If the “magnetic” part of the gauge field appears, the gauge potentials is
given by one scalar function w(r) as

Aat = 0, Aar = 0, (75)
Aaψ = (0, 0, w), (76)
Aaθ = (w sinψ,− cosψ, 0), (77)
Aaϕ = (cosψ sin θ, w sinψ sin θ,− cos θ), (78)

resulting in the Einstein-Yang-Mills equation of the present system as

µ′ = 2r
[
fw′2 +

(1− w2)2

r2

]
, (79)

δ′ = −2
r
w′2, (80)

1
r
(rfe−δw′)′ +

2
r2
e−δw(1− w2) = 0. (81)

(2-i) analytic solutions
The above differential equations (79-81) have two analytic solutions. One
analytic solution is

w = ±1, µ =M, δ = 0, (82)
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which corresponds to the Schwarzschild or the Schwarzschild-AdS (or dS)
spacetime, which properties are well known.

Another analytic solution is given by

w = 0, µ =M+ 2 ln r, δ = 0. (83)

In the 4D spacetime, this type of solution describes the Reissner-Nordstrom
type geometry with a magnetic charge. In the 5D spacetime, 2 ln r term ap-
pear in the mass function µ. Although µ diverges, the metric itself approaches
that of well-known symmetric spacetime for each ε, i.e. the Minkowski, de
Sitter and anti de Sitter one. There is no singularity except for the origin
which is covered by an event horizon. We regard this spacetime as a localized
object (a magnetically charged black hole).

(2-ii) non-trivial particle solution and black holes
Like in the four dimensional case [44, 45, 49], we can find non-trivial structure
of self-gravitating Yang-Mills field. We obtain those solutions numerically.
There are two types of solutions; a particle solution and a black hole. Here,
we show only a particle-like solution in the case of ε = 0 or 1 ((5)Λ ≤ 0).

Imposing regularity at the origin r = 0, we find non-singular particle-like
solutions. For the case of ε = 0, the spacetime approaches to Minkowski as
r → ∞ for bmin(≈ −0.635607) < b < 0, where an expansion parameter b is
defined by w ≈ 1 + br2 near r ≈ 0. We show the numerical result in Fig. 3.

Fig. 3. The potential function w(r), the mass function µ(r) and the metric function
δ(r) for a particle-like solution with ε = 0. The solid, dotted and dash lines depict
those for b = −0.01, −0.1 and −0.5, respectively.

The potential function w is oscillating between ±1 and the mass function
µ is increasing without bound just as a step function. There is no finite mass
particle-like solution. The mass function increases as ln r asymptotically like
the analytic solution (83). The periodic steps in µ in terms of ln r are caused
by infinite set of t’Hooft-Polyakov instantons in the radial direction [14].

For the case of ε=1, we also find a regular solution for bmin<b<0. bmin
depends on �, and decreases as � decreases. For example, bmin≈−0.644036 for
�=10, bmin≈−1.105002 for �=1. We show the numerical result in Fig. 4.
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Fig. 4. The potential function w(r), the mass function µ(r) and the metric function
δ(r) for a particle-like solution with ε = 1. The solid, dotted and dash lines depict
those for b = −0.01, −0.1 and −0.5, respectively.

In this case, the potential w does not oscillate, and converge to some
value w∞, then the number of node is finite. The mass function increases
monotonically as

µ→ 2(1− w2
∞)2 ln r (84)

as r →∞.

Universe as a domain wall in a non-singular spacetime
Using this non-singular solution, we can construct the oscillating universe
without any singularity, neither in a bulk nor on a brane. The Friedmann
equation is given by

H2 +
f(a)
a2 =

[
κ2

5

3
(λ+ ρ)

]2

. (85)

We can rewrite (85) as

1
2
ȧ2 + U(a) = 0

with U(a) =
1
2

[
1− µ(a)

a2 −
Λ

3
a2
]
. (86)

In Fig. 5, we depict the potential U(a) with Λ = 0, and show how the universe
oscillates.

7 Models with Induced Gravity on a Brane

Finally, we study models with an induced gravity on the brane due to quan-
tum corrections. Since the matter fields are confined on the brane, if we take
into account of quantum effects of matter fields, the gravitational action on
the brane will be modified. Here we shall discuss two models: First one is
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Fig. 5. The bouncing universe in non-singular bulk spacetime. The bulk spacetime
is described by a particle-like solution with a negative cosmological constant. The
brane universe oscillates between two scale factors as shown by the solid line with
arrows.

the model of a brane world proposed by Dvali, Gabadadze, and Porrati [15].
Secondly, if we have conformally invariant fields on the brane, trace anomaly
appears naturally in 4D brane world via quantum effects. This type of cur-
vature squared term was first discussed by Starobinsky in his inflationary
scenario [18].

We consider the brane Lagrangian

Lbrane = −λ+ Lm +
µ2

2
R+ βR2. (87)

It is just a simple version of the R2 inflationary model. If we set β = 0, the ac-
tion gives the Dvali-Gabadadze-Porrati’s model, or its generalization. When
we take into account quantum effects such as a trace anomaly, the other
curvature terms should also be included in the basic equations as quantum
corrections of the energy-momentum tensor. Although we can apply the pre-
sent approach to such a model [24], here we study only the model with the
Lagrangian (87).

In order to find the basic equations on the brane, we just calculate the
“energy-momentum” tensor of the brane τµν by the definition (17) from the
Lagrangian (87). We find

τµν = −λδµν + Tµν − µ2Gµν

−4β
[
RGµν −∇µ∇νR+ Rδµν +

1
4
R2δµν

]
(88)
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7.1 Dvali-Gabadadze-Porrati’s Induced Gravity Model [10]

Setting β = 0, we find the effective equations as
(

1 +
λ

6
κ4

5µ
2
)
Gµν + κ4

5µ
2Kµνρσ(Tαβ)Gρσ + Λgµν

=
λ

6
κ4

5Tµν + κ4
5

[
Πµν + µ4π(G)

µν

]
− Eµν , (89)

where

Kµνρσ =
1
4

(gµνTρσ − gµρTνσ − gνσTµρ)

+
1
12

[
Tµνgρσ + T (gµρgνσ − gµνgρσ)

]
, (90)

Λ =
1
2

[
(5)Λ+

1
6
κ4

5λ
2
]
, (91)

π(G)
µν = −1

4
GµαG

α
ν +

1
12
GGµν +

1
8
gµνGαβG

αβ − 1
24
gµνG

2. (92)

The Codazzi equation is nowDντµν = 0, which implies the energy momentum
conservation, i.e. DνTµν = 0 because of the contracted Bianchi identity.

Now we discuss the FRW universe with a perfect fluid P = (γ − 1)ρ.
Since the spacetime is isotropic and homogeneous, we can show Dνπµν = 0
following [8], which implies DνEµν = 0.

The basic equations (27) are written as

3X =
1
2

(5)Λ+ E0
0 +

κ4
5

12
(
λ+ ρ− 3µ2X

)2
, (93)[

1 +
κ4

5

6
µ2 (λ+ ρ− 3µ2X

)]
Y

= −2
3
E0

0 −
κ4

5

12
(ρ+ P )

(
λ+ ρ− 3µ2X

)
, (94)

where

X ≡ H2 +
k

a2 , Y ≡ Ḣ − k

a2 . (95)

The equation for E0
0 is reduced to Ė0

0 + 4HE0
0 = 0. This equation is

the same as the dark radiation in the case of the RS model [8], and is easily
solved as E0

0 = E0/a4, where E0 is just an integration constant.
We now have to solve one equation (93), which is a quadratic equation

with respect to X, we rewrite it in the form of the conventional Friedmann
equation as

H2 +
k

a2 =
1
3
Λ

(ε)
eff +

8πG(ε)
eff

3

(
ρ+ ρ

(ε)
DR

)
, (96)
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where

Λ
(ε)
eff =

ρ0

µ2 (1 + εA0) , 8πG(ε)
eff =

1
µ2 [1 + εF(ρ, a)] ,

8πG(ε)
eff ρ

(ε)
DR = −εF(ρ, a)

E0
a4 , (97)

with

F(ρ, a) =
2η

A0 +A(ρ, a)
. (98)

ρ0, η, A and A0 are defined by

ρ0 = m4
λ + 6

m6
5

µ2 , η =
6m6

5

ρ0µ2 (0 < η ≤ 1) ,

A ≡
[
A2

0 +
2η
ρ0

(
ρ− µ2 E0

a4

)] 1
2

, A0 =

√
1− 2η

µ2Λ

ρ0
. (99)

ε denotes either +1 or −1. The choice of the sign of ε also has a geometrical
meaning as shown by Deffayet [50].

Using the above expression, we discuss the evolution of the universe. Λ(ε)
eff

acts as a cosmological constant in each branch. The effective gravitational
“constant” G

(ε)
eff changes in the history of the universe. As ρ decreases from

∞ to zero (and a increases from 0 to ∞),

8πG(ε)
eff :

1
µ2 →

1
µ2

(
1 +

εη

A0

)
. (100)

In particular, in the negative branch (ε = −1), if η > ηcr, where

ηcr ≡ −µ2 Λ

ρ0
+

√
1 +

(
µ2 Λ

ρ0

)2

, (101)

G
(−)
eff vanishes at some density and becomes negative below that density. In

this case, η ≤ 1 implies ηcr < 1, which requires Λ > 0. Although the effective
gravitational constant becomes negative, it does not naively mean the ob-
served “Newtonian gravitational constant” is negative. The expansion of the
universe first slows down after this critical point, and then approaches some
constant given by Λ

(−)
eff (> 0). This cosmological model could be interesting

because the expansion gets slow in some period of the universe and then it
might help a structure formation process.

Equation (94) is also rewritten in the conventional form as

Ḣ − k

a2 = −4πG(ε)
eff

(
γ

(ε)
eff ρ+ γDRρ

(ε)
DR

)
, (102)
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where

γ
(ε)
eff = γ

[
1− εη(ρ− µ2E0/a4)F(ρ, a)

ρ0A(ρ, a)[A(ρ, a) +A0 + 2εη]

]
, γDR =

2
3

[
1 +

A0

A(ρ, a)

]
. (103)

γ
(ε)
eff and γDR denote the effective adiabatic indexes of matter fluid and of

“dark radiation”. We depict the behavior of the effective adiabatic indexes
γ

(ε)
eff when ρ (or 1/a) changes from∞ to 0 in Fig. 6. This behavior is interesting

because the “effective” negative pressure (γ(+)
eff < 1) can be obtained during

the evolution of the universe from standard matter fluid such as dust (γ = 1).
Although γ

(−)
eff diverges at some density, (102) is not singular because G(−)

eff
vanishes at the same density.

Fig. 6. The behavior of γ
(±)
eff . On the left ((a)), we show one typical example for

positive branch (ε = +1) , while, on the right ((b)), we depict the figures for negative
branch ((ε = −1)) in the following three typical cases; (1) η < ηcr, (2) η = ηcr and
(3) η > ηcr. For an expanding universe, the universe evolves from the right hand
side to the left in the figures.

Here we discuss the late time behavior of the universe (ρ � ρ0 and a →
∞), and focus on the value of a cosmological constant. In this limit, if we
take positive branch (ε = 1), since Λ(+)

eff = ρ0 (1 +A0) /µ2 (> 0), we find an
inflationary expansion in the late stage of the universe if Λ < ρ2

0/(12m6
5). The

case of Λ = 0 corresponds to the original Dvali et al’s model. The present
gravitational constant in the Friedmann equation, which is given by 8πG(+)

N ,
becomes larger than that in the early stage (1/µ2).

If we take negative branch (ε = −1), in the case of Λ = 0, we have zero
cosmological constant (Λ(−)

eff = 0) on the brane, which is the conventional
Friedmann equation with dark radiation. The gravitational constant becomes
smaller than that in the early stage.

If 0 < Λ ≤ ρ2
0/(12m6

5), however, we expect a positive cosmological con-
stant on the brane, which could be very small. Suppose that λ 	 m6

5/µ
2

(η � 1). We then approximate the cosmological constant in the Friedmann
equation as
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Λ
(−)
eff ≈ ηΛ ≈ 6m6

5

λµ2 Λ� Λ. (104)

This means that the 4D cosmological constant is suppressed in the Fried-
mann equation from its proper value (Λ). Hence, we might have a possibility
to explain the tiny value of the present cosmological constant, of which ob-
servational limit is Λ(−)

eff /m2
PL
<∼10−120. In the RS model, Λ is fine-tuned to

zero, but in more realistic brane models such as the Hořava-Witten model,
the 4D cosmological constant may automatically vanish if a supersymme-
try is preserved (see Sect. 6.1). In the present universe, however, super-
symmetry must be broken, and then we expect that non-zero value of Λ
is created by the SUSY breaking, which may occur at 1 TeV. This gives
Λ/m2

PL ∼ (1TeV/mPL)4 ∼ 10−60.
Then the constraint by observation (ΩΛ<∼1) is now

mλ

mPL

>∼ 1015 ×
(
m5

mPL

)3/2

. (105)

If the equality in (105) holds, then we can explain the present value of a
cosmological constant. Assuming two mass scales (mλ and m5) are larger
than TeV scale as well as smaller than the Planck scale mPL, we find

1 TeV <∼ m5 <∼108 GeV, 1010 GeV <∼ mλ <∼ mPL. (106)

7.2 the R2 Inflationary Model

Next we discuss cosmology in the case with R2-term. For the FRW universe
with a perfect fluid, from (88), we have

τ0
0 = −(λ+ ρ)− (µ2 + 4βR)G0

0 − βR2 + 12βHṘ (107)
τ ij = (P − λ)δij − (µ2 + 4βR)Gij − βR2δij + 4β(R̈+ 2HṘ)δij . (108)

We also find

π0
0 = − 1

12
(
τ0

0
)2

πij =
1
12
τ0

0
(
τ0

0 − 2τ1
1
)
δij . (109)

Inserting the above equations into (27), we obtain the “Friedmann” equation
on the brane:

β

[
Ẏ + 3HY − Y

2H

(
Y +

2k
a2

)]

=
1

12H

[
−µ

2

2

(
H2 +

k

a2

)
+
λ+ ρ

6
± 1
κ2

5

√
H2 +

k

a2 +
1
�2
− E0

0

3

]
, (110)

where Y = Ḣ − k/a2. Note that another dynamical equation becomes trivial
if we assume the energy-momentum conservation of matter field, just as in
the conventional Einstein system.
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We set k = 0, E0
0 = 0 and Λ = 0 for brevity. We also consider only the

vacuum case, i.e. ρ = 0. Then we find the following dynamical equation:

Ḧ = −3HḢ +
Ḣ2

2H
− d

dH
U

(±)
eff , (111)

where the “effective potential” U
(±)
eff , which describes the dynamics of the

universe, is defined by

U
(±)
eff (H) =

∫
dH

(
µ2

24β
H − λ

72βH

[
1±

√
1 +

36H2

κ4
5λ

2

])
. (112)

It is integrated as

U
(+)
eff =

µ2H2

48β
− λ

72β

[
2 lnH +

√
1 +

36H2

κ4
5λ

2 − ln
∣∣∣1 +

√
1 +

36H2

κ4
5λ

2

∣∣∣
]
. (113)

U
(−)
eff =

µ2H2

48β
+

λ

72β

[√
1 +

36H2

κ4
5λ

2 − ln
∣∣∣1 +

√
1 +

36H2

κ4
5λ

2

∣∣∣
]
. (114)

The dynamical equation is written in the following form:

dE(±)

dt
=
Ḣ2

2H

(
Ḣ − 6H2

)
(115)

where the “energy” E(±) is defined by

E(±) =
1
2
Ḣ2 + U

(±)
eff (116)

Then, if we discuss the expanding universe (H > 0), the “energy” E(±) is
increasing for Ḣ > 6H2, while decreasing for Ḣ < 6H2.

If µ = 0 (Fig. 7), we have the asymptotic behavior of the “potential” as
U

(±)
eff ≈ µ2H2/(48β) for large value of H. Assuming a slow-rolling condition

and setting H ≈ H0 + Y0t, which describes the R2-inflation found by Staro-
binsky [18], we obtain Y0 = −µ2/(72β). To satisfy the slow rolling condition,
we require H2

0 	 µ2/(72β). For the “potential” U (+)
eff , we find one minimum,

which gives another inflationary solution. The Hubble constant H1 is given
by

H2
1 =

2
3µ2

[
λ+

6
κ4

5µ
2

]
(117)

This is a second inflation, which might correspond to the present acceleration
of the universe.
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Fig. 7. The potential U
(±)
eff for µ 
= 0.

Fig. 8. The potential U
(±)
eff for µ = 0.

If µ = 0 (Fig. 8), which corresponds to the model only with the trace
anomaly, the asymptotic behaviors of the potential is changed to be

U
(±)
eff ≈ ∓ H

12κ2
5β

as H →∞. (118)

Then, in order for the universe to reach the present small-H stage, β < 0 is
required for U (+)

eff , while β > 0 for U (−)
eff . The slow-rolling solution is given by

H = H0 + Y0t where Y0 = ±1/(36βH0). The slow-rolling condition implies
that H3

0 	 1/(κ2
5|β|).

In the 4D spacetime, if we have only the R2 term, the universe ex-
pands exponentially forever, and inflation will never end. However, in the
present brane scenario, the inflation will finish because of the existence of the
Einstein-Hilbert action in 5D bulk spacetime. After the inflationary stage,
we find either the conventional Hubble expansion or a curvature singularity,
instead of the second inflationary stage.
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8 Concluding Remarks

We have first given an overview of several models for a brane world, and
then listed up how to deal with such a higher-dimensional spacetime. Three
approaches are introduced: (1) 4D effective approach, (2) holographic ap-
proach, and (3) higher-dimensional approach. We have discussed the first
approach in detail. We derive the effective 4D gravitational equations in 5 di-
mensions, (27), assuming that gravity is confined on a brane. This approach
yields the most general form of the 4D gravitational field equations for a
brane world observer whatever the form of the bulk metric, in contrast to
the usual Kaluza-Klein type dimensional reduction which relies on taking a
particular form for the bulk metric in order to integrate over the extra di-
mensions. The price to be paid for such generality, is that the brane world
observer may be subject to influences from the bulk, in particular gravitatio-
nal waves, which are not constrained by local brane quantities, i.e., the set of
4D equations does not form a closed system in general. Nonetheless, when a
brane is localized, the energy-momentum tensor on the brane is sufficient to
determine the extrinsic curvature of the brane, and together with the local
induced metric, this strongly constrains the brane world gravity. The effect
of the bulk gravity can be described by the projected 5D Weyl tensor as well
as the energy-momentum tensor of bulk matter fields. It turns out that this
5D object may provide us a window to see the extra dimensions. We then
studied the Randall-Sundrum model in detail and applied our formalism to
cosmology. The effective theory is reduced to the conventional Einstein equa-
tions in the low-energy limit. There appear two new terms: One is a quadratic
term of the energy-momentum tensor of matter field and the other is the 5D
Weyl curvature term. We discussed about some effects of those new terms on
cosmological models.

We also studied other brane models, i.e. the model with a bulk dilaton
field motivated by the Hořava-Witten model, the models with bulk Yang-Mills
field, the induced gravity brane model by by Dvali, Gabadadze and Porrati,
and the R2 inflationary model based on trace anomaly quantum correction.
Note that the action of brane gravity may be modified by quantum effect (or
via the AdS/CFT correspondence).

Although our 4D approach is very efficient for some specified situations,
the analysis of an entire higher-dimensional spacetime is definitely required
in order to clarify the brane world scenario. We hope that those attempts
will reveal new physics in the early universe.
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Abstract. An introductory review of the Randall-Sundrum type II braneworld
scenario is presented, with emphasis on the relationship between the density and
gravitational wave perturbations that are generated during inflation. The implica-
tions of relaxing the reflection symmetry in the fifth dimension are considered. The
effects of including a Gauss-Bonnet combination of higher-order curvature invari-
ants in the bulk action are briefly discussed.

1 Introduction

A unified description of the origin and very early evolution of the universe that
is consistent both with our understanding of unified field theory and astrophy-
sical observations is one of the primary goals of particle cosmology. A synthe-
sis of these two disciplines provides a unique window to high energy physics
that would otherwise be inaccessible to any form of terrestrial experiment.

From the observational side, recent years have witnessed rapid advances
in the quality and availability of high precision data from numerous cosmic
microwave background (CMB) and high redshift surveys. This is resulting in
ever more stringent constraints on models of the early universe and the trend
is certain to continue in light of the anticipated data that will become availa-
ble in the near future. Specifically, recent measurements from the Wilkinson
Microwave Anisotropy Probe (WMAP) [1] are entirely consistent with a uni-
verse that has a total density that is very close to the critical density, implying
that the curvature of the universe is very close to spatial flatness [2]. On the
other hand, there is by now considerable evidence from a variety of sources
– including the CMB power spectrum, galaxy clustering statistics, peculiar
velocities, the baryon mass fraction in galaxy clusters and Lyman–α forest
data – that the density of clumped baryon and non–baryonic matter can be
no more than 30% of the critical density. Moreover, spectral and photometric
data from high redshift surveys of type Ia supernovae [3] indicate that the
expansion of the universe may be accelerating at the present epoch, thereby
requiring the existence of some form of exotic ‘dark energy’ or ‘quintessence’
field that contributes the remaining 70% of the total energy density.

The popular explanation of this diverse set of observations is the infla-
tionary scenario [4], whereby the universe underwent an epoch of very rapid,
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accelerated expansion sometime before the electroweak phase transition. In-
flation is presently the cornerstone of modern, early universe cosmology. (For
a review, see, e.g., [5]). Not only is inflation able to resolve the horizon and
flatness problems of the hot, big bang model, it also provides the mechanism
for generating the primordial density perturbations necessary for galaxy for-
mation [6]. In the simplest class of inflationary models, the accelerated ex-
pansion is driven by the potential energy arising through the self–interactions
of a single quantum scalar field, referred to as the inflaton field and denoted
φ. If the potential is sufficiently flat and smooth, the field is able to slowly
roll towards the minimum of its potential. In this case, the kinetic energy
of the field is subdominant and its pressure becomes sufficiently negative for
the strong energy condition of General Relativity to become violated. Infla-
tion ends as the field reaches its ground state and the hot big bang model is
recovered through a reheating process.

It is now widely believed that the observed large–scale structure in the
universe evolved through the process of gravitational instability from density
perturbations that were generated quantum mechanically during the infla-
tionary expansion. In single field inflationary models, the perturbations are
predicted to be adiabatic, nearly scale–invariant and Gaussian distributed.
Moreover, inflation results in an effectively flat universe. The current CMB
data, most notably from WMAP [2, 7, 8, 9], supports these predictions whilst
simultaneously providing strong constraints on such models [10, 11]. In parti-
cular, an anti–correlation between the temperature and polarization E–mode
maps of the CMB on degree scales has been detected by WMAP [8], thereby
providing strong evidence for correlations on length scales beyond the Hubble
radius [12].

Despite the success of inflationary cosmology in passing these key observa-
tional tests, there is presently no canonical theory for explaining the origin of
the inflaton field. Consequently, it is imperative to establish that inflation can
arise generically within the context of unified field theory. Superstring theory
has emerged as the leading candidate for such a theory of the fundamen-
tal interactions, including gravity. Developments over recent years towards
a non–perturbative formulation of the theory have indicated that the five,
anomaly–free, supersymmetric perturbative string theories – known respec-
tively as types I, IIA, IIB, SO(32) heterotic and E8×E8 heterotic – represent
different limits of a more fundamental theory referred to as M–theory. (For
reviews, see, e.g., [13, 14]). M–theory was originally defined as the strong
coupling limit of the type IIA superstring [15]. However, since its infra–red
(low–energy) limit is eleven–dimensional supergravity, it must be more than
another theory of superstrings [15, 16].

Given this change of perspective, it is crucial to study the cosmological
consequences of string/M–theory [17]. Supersymmetry implies that a consi-
stent quantum string theory can only be formulated if spacetime is higher–
dimensional. Given that these extra dimensions are not observed, some me-
chanism is required to ensure that they remain undetected. One possibility is
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that the dimensions are compactified through the Kaluza–Klein mechanism.
In this case, tests of quantum electrodynamics limit the size of the extra
dimensions to be less than 10−17 cm.

On the other hand, a key theoretical development has been the realiza-
tion that the standard model fields (quarks, electrons, photons, etc.) may be
confined to a four–dimensional domain wall or ‘membrane’ that is embed-
ded in a higher–dimensional space (referred to as the bulk). This picture has
developed following the discovery that the quantum dynamics of D–branes
can be described by open strings whose ends are fixed on the brane [18].
In string theory, branes are static, solitonic configurations extending over a
number of spatial, tangential dimensions. Thus, a 0–brane may be viewed as
a pointlike particle or a black hole, a 1–brane represents a string, a 2–brane
a membrane, and so forth. In this picture, our observable, four–dimensional
universe is interpreted as a 3–brane. The spatial dimensions tangential to our
3–brane describe our familiar three–dimensional space of length, width and
height. The only long–range interaction that propagates in the bulk dimen-
sions is gravitational. In this case, corrections to Newton gravity necessarily
arise, but the weak nature of gravity implies that any modifications can not
presently be observed below scales of 1 mm. In principle, therefore, the extra
dimensions may extend over scales that are many orders of magnitude larger
than previously thought possible and, depending on the model, may even be
infinite in extent. This paradigm shift in our understanding of the observable
universe is referred to as the braneworld scenario.

The radical proposal, therefore, is that our universe is a brane embedded
in a higher–dimensional space. The implications for cosmology, and for our
understanding of the inflationary scenario in particular, are significant and
there is presently a high level of active research in this field. Broadly speaking,
the key objectives from the astrophysical and cosmological perspectives are:

• To determine the nature of cosmological solutions that are possible in
braneworld scenarios, to investigate their asymptotic early– and late–time
behaviours, and to uncover important differences and similarities between
braneworld scenarios and conventional cosmologies based on Einstein gra-
vity.

• To establish the conditions whereby inflation may occur, both in the arena
of the early universe and at the present epoch (quintessence scenarios)
and to determine whether inflation is more or less generic in this new
paradigm.

• To investigate the production of scalar (density), vector (electromagne-
tic) and tensor (gravitational wave) perturbations during braneworld in-
flation.

• To develop cosmological tests of inflationary braneworld scenarios and de-
termine whether the perturbations generated are compatible with limits
imposed by the CMB power spectrum and large–scale structure observa-
tions.
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Ultimately, such a programme will yield unique information on the dimen-
sionality of the universe.

2 Types of Braneworlds

It is impossible in a talk of this nature to fully review the vast body of work
in this field. The emphasis from a cosmological point of view has focused
on models consisting of a single brane or of two or more parallel branes; for
early papers see, e.g., [19]. These configurations are shown schematically in
Fig. 1. From an historical point of view, a significant development was the
interpretation by Hořava and Witten of the strongly coupled limit of the
E8×E8 heterotic string as M–theory compactified on the eleven–dimensional
orbifold R10×S1/Z2 [20]. The weakly coupled limit of this string theory then
corresponds to the limit where the radius of the circle (as parametrized by the
value of the dilaton field) tends to zero. The orbifold S1/Z2 may be viewed
as the segment of the real line bounded by two fixed points on the circle,
such that the orientation of the circle is reversed by the Z2 transformation,
y → −y. Gravitational anomalies are cancelled by placing the two sets of E8
gauge supermultiplets on each of the ten–dimensional orbifold fixed planes.
An effective five–dimensional theory may then be derived by compactifying
on an appropriate Calabi–Yau surface [21].

Cosmological solutions admitted in this theory were found and analyzed
[22]. In particular, models where the branes approach and move away from
each other were found and interpreted in terms of the pre–big bang scenario,
an earlier string–inspired inflationary scenario driven by the kinetic energy of
a scalar field [23]. Recently, the idea of interpreting the big bang in terms of
brane collisions has been advocated through the ‘ekpyrotic’ scenario [24]. In
these models, the brane dynamics is reduced to an effective four–dimensional
theory, where a scalar field parametrizes the brane separation.

A further key development was the proposal that the hierarchy problem
of particle physics (namely the problem of understanding why the weak scale
is so much smaller than the Planck scale) could be alleviated if the volume
of the extra dimensions were to be made sufficiently large [25]. In general,
the four–dimensional Planck scale, m4, is related to the (4 + n)–dimensional
Planck scale, M , through the relationship m2

4 = Mn+2Vn, where Vn is the
volume of the compact space. In the model of [25], the extra dimensions were
assumed to be topologically equivalent to a n–torus and a single brane confi-
guration was considered. Pursuing such ideas further, Randall and Sundrum
considered two parallel branes, with equal and opposite tension, embedded in
five–dimensional Anti–de Sitter (AdS) space, with a Z2 reflection symmetry
imposed in the fifth dimension [26]. In this model, the weak scale is generated
from a larger (Planck) scale through an exponential hierarchy arising directly
from the five–dimensional AdS geometry.
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a)

b)

c)

Fig. 1. Illustrating possible braneworld configurations: (a) a single brane embedded
in a higher–dimensional space; (b) two parallel branes with equal and opposite
tension; (c) intersecting branes.

Perhaps of more interest from a cosmological viewpoint is the second
Randall–Sundrum ‘type II’ (RSII) scenario, consisting of a single brane em-
bedded in five–dimensional AdS space [27]. Formally, this model may be
interpreted in terms of the first Randall–Sundrum model, where the nega-
tive tension brane is taken to infinity. The bulk space may also contain a
black hole. In this case it corresponds to the five–dimensional Schwarzschild–
AdS solution. The RSII model is interesting because it is simple enough for
analytical results to be derived, yet is sufficiently rich for new physics to be
uncovered. Indeed, one of the key areas of interest in theoretical physics at
present is focused towards the ‘holographic principle’ [28]. In short, the ho-
lographic principle implies that the number of degrees of freedom associated
with gravitational dynamics is determined by the boundary of the spacetime
rather than by its volume. This follows naturally from the idea that the state
of maximal entropy for a given volume, V , is determined by the size of the
largest black hole that can be contained within V [28]. The AdS/Conformal
Field Theory (CFT) correspondence provides a realization of this principle
within the context of string theory by establishing a duality between semi–
classical d–dimensional gravity in AdS space and a quantum CFT located on
its boundary [29]. It has recently become apparent that the AdS/CFT corre-
spondence is closely related to braneworld cosmology and the RSII scenario
in particular [30]. More specifically, one may view the RSII braneworld as
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being dual to a CFT (with an ultra–violet cut off) that is coupled to gra-
vity on the brane. Remarkably, when one identifies the entropy, mass and
Hawking temperature of the AdS black hole with the entropy, energy and
temperature of the CFT, it is found that the Cardy entropy formula of the
CFT coincides precisely with the Friedmann equation when the brane passes
the black hole event horizon [31].

We focus on the RSII scenario in the remainder of this talk. Before pro-
ceeding, however, it is worth highlighting an alternative class of ‘intersecting’
braneworlds. Configurations in supergravity theories that describe the inters-
ection of two or more p–branes have played a prominent role in advances in
string theory [32]. A p–brane can be supported, for example, when the compo-
nents of the antisymmetric form fields that arise in the string and M–theory
effective actions have non–trivial flux over the compactifying manifold. De-
pending on the degree of the form field and the nature of the internal space,
such a model may represent the intersection of two higher–dimensional bra-
nes (See Fig. 1c). One specific example is the intersection of two 5–branes
over a 3–brane [32]. In this picture, our observable four–dimensional universe
corresponds to the intersection of the branes. Solutions representing curved
(time–dependent), intersecting domain walls were recently found [33].

3 The Randall–Sundrum Type II Braneworld

In the Randall–Sundrum type II scenario, a co–dimension one brane is em-
bedded in five–dimensional AdS space with a Z2 reflection symmetry imposed
on the bulk. The action is given by

S =
∫

M
d5x
√
G
[
2M3R̂− Λ

]
+
∫
∂M

d4x
√
h (λ+ Lmatter) , (1)

where R̂ is the Ricci curvature scalar of the bulk spacetime, M, with
metric GAB , Λ is the five–dimensional (negative) cosmological constant,
G ≡ detGAB , h is the determinant of the metric induced on the bound-
ary ofM, λ is the tension of the brane, Lmatter is the Lagrangian density of
the matter on the brane and M is the five–dimensional Planck mass.

The bulk solution has a metric of the form [27]

ds2 = e−2k|y| (−dt2 + dx2
3
)

+ dy2 (2)

for a given constant, k. This geometry is non–factorizable due to the pre-
sence of the exponential warp factor, in contrast to the standard Kaluza–
Klein compactification schemes based on the periodic boundary conditions.
Consequently, the fifth dimension (y) may extend to infinity. Imposing four–
dimensional Poincaré invariance on the brane world–volume such that the
metric corresponds to flat Minkowski spacetime requires the bulk cosmologi-
cal constant to be fine–tuned with the brane tension [27]:
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Λ = −24M3k2, λ = 24M3k. (3)

The remarkable feature of this model is that the graviton equation of
motion admits a zero energy ground state solution that is localized aro-
und the domain wall. This ground state is naturally interpreted (by a four–
dimensional observer) as the four–dimensional, massless spin–2 graviton. A
continuum of massive states also arises in the spectrum and these lead to
corrections to the form of the Newton potential. However, these corrections
fall as the cube of the distance, r [27]:

V (r) ≈ GNm1m2

r

(
1 +

1
k2r2

)
(4)

and, if the warping of the bulk geometry is sufficiently strong (i.e. the con-
stant k is sufficiently large), these massive states are suppressed near the
brane and are therefore harmless. This indicates that the curvature of the
five–dimensional world effectively determines the four–dimensional physics.
The cosmology of the RSII scenario arises due to the motion of the brane
through the bulk space. An observer confined to the surface of the brane in-
terprets such motion in terms of cosmic expansion or contraction [34, 35, 36].
The ‘Friedmann’ equation describing the cosmic dynamics may be derived
within the context of the thin wall formalism of (five–dimensional) General
Relativity. Since we are interested primarily in late–time inflationary dyna-
mics, we focus on the simplest case where the world–volume of the brane
corresponds to the spatially flat, Friedmann–Robertson–Walker (FRW) me-
tric and consider a pure AdS bulk. The effect of a bulk black hole on the
four–dimensional brane dynamics is formally equivalent to that of a relati-
vistic perfect fluid contribution to the energy–momentum tensor and so is
rapidly redshifted away by the accelerated motion of the brane.

It is convenient to work with the five–dimensional metric expressed in
static coordinates:

ds2 = GABdx
AdxB = − r

2

L2 dt
2 +

L2

r2
dr2 + r2dE2

3 , (5)

where the constant L is related to the bulk cosmological constant. The indu-
ced metric on the wall then has the desired form:

hAB = GAB + nAnB

ds24 = −dτ2 + a2(τ)dE2
3 , (6)

where nA is the unit normal vector to the brane. Cosmic time as measured
on the brane is parametrized by τ , defined such that

dτ2 =
r2

L2 dt
2 − L2

r2
dr2 (7)

and the radial coordinate of the brane in the bulk space determines the scale
factor, a(τ):
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r = r [a(τ)] . (8)

The effective Friedmann equation is then derived directly from the Israel
junction conditions [37]:

KAB = −4πG5

(
TAB −

1
3
ThAB

)
, (9)

where G5 is the five–dimensional Newton constant. These conditions relate
the energy–momentum tensor, TAB , of the matter confined on the brane
directly to the brane’s extrinsic curvature, KAB ≡ hC (AhB)

D∇CnD. Note
that we have taken into account the Z2 symmetry in this expression and that
T ≡ TAA is the trace of the energy–momentum.

Conservation of energy–momentum on the brane then follows as a direct
consequence of the Codazzi equation:

∇BKB
A −∇AK = R̂BCG

B
An

C . (10)

It is straightforward to verify that for the case of a pure AdS bulk geometry,
the right–hand side of (10) is identically zero. Thus, substitution of the Israel
junction conditions (9) into (10) implies conservation of energy–momentum
on the brane:

(4)∇µTµν = 0. (11)

We will further assume that the energy–momentum tensor of the matter on
the brane is given by the perfect fluid form

TAB |brane = δ(y)diag(−ρ, p, p, p, 0), (12)

where ρ and p represent the energy density and pressure, respectively. Hence,
we recover the standard expression of conventional cosmology:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0, (13)

where a dot denotes d/dτ .
The spatial components of the Israel junction conditions (9), as given by

Kij = −
√

1
L2 +

ȧ2

a2 δij , (14)

are now sufficient to derive the effective Friedmann equation. (The time–
time components of (9) provide no new information for the model we are
considering). We therefore deduce that [38, 39, 40, 34, 36, 41]

ȧ2

a2 =
(

4πG5ρ

3

)2

− 1
L2 . (15)

Although the quadratic dependence of the Friedmann equation (15) may
appear to be inconsistent with the Hubble expansion, and particularly with
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constraints form primordial nucleosynthesis, we must recall that the vacuum
brane has a tension, λ. This implies that the total matter content on the brane
can effectively be separated into two components, the dynamical matter, ρB ,
and the tension. Substituting into (15) then implies that

H2 =
8πG4

3
ρB

(
1 +

ρB
2λ

)
+
(

4πG5λ

3

)2

− 1
L2 , (16)

where G4 ≡ 4πλG2
5/3. The constant terms are then cancelled by imposing

the fine–tuning condition (3), resulting in a Friedmann equation of the form
[38, 39, 40, 34, 36, 41]

H2 =
8π

3m2
4
ρ
[
1 +

ρ

2λ

]
, (17)

where the subscript ‘B’ is dropped for notational simplicity and we define
the four–dimensional Planck mass, m4 ≡ G

−1/2
4 . The standard form of the

Friedmann equation is recovered at low energy scales, ρ � λ, whereas the
dependence on the energy density is modified to a quadratic form at high
energies, ρ	 λ.

We now consider the implications of this term for inflationary cosmology.

4 Braneworld Inflation

4.1 Scalar Field Dynamics

Equations (13) and (17) are sufficient to fully determine the cosmic dynamics
on the brane once an equation of state has been specified for the matter
sources. In what follows, we assume that the brane matter consists of a single
scalar field that is confined to the brane and is self–interacting through a
potential, V (φ). The conservation equation (13) then implies that

φ̈+ 3Hφ̇+ V ′ = 0, (18)

where a prime denotes differentiation with respect to the scalar field. We
further assume the slow–roll approximation, φ̇2 � V and |φ̈| � H|φ̇|. Equa-
tion (18) then simplifies to 3Hφ̇ ≈ −V ′.

The slow–roll parameters, ε ≡ −Ḣ/H2 and η ≡ V ′′/(3H2), may then be
written in the form [42]

ε � m2
4

4π

(
V ′

V

)2
[

1 + V/λ

(2 + V/λ)2

]
(19)

η � m2
4

8π

(
V ′′

V

)[
2λ

2λ+ V

]
(20)

and inflation occurs for ε < 1. Self–consistency of the slow–roll approxima-
tion requires that max{ε, |η|} � 1. The number of e–foldings of inflationary
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expansion that occur when the scalar field rolls from some value, φ, to the
value, φe, corresponding to the end of inflation is given by

N ≡ ln a =
∫ te

t

dtH ≈ − 8π
m2

4

∫ φe

φ

V

V ′

(
1 +

V

2λ

)
dφ. (21)

The effect of the brane corrections is to enhance the value of the Hub-
ble parameter relative to what it would be for a given pure Einstein gravity
model of the same energy density [42]. This introduces additional friction
on the scalar field and further resists its motion down the potential, thereby
enabling a steeper class of potentials to support inflation. This is the basis
behind the steep inflationary scenario [43]. The quadratic correction rela-
xes the condition for slow–roll inflation in the RSII scenario relative to the
corresponding condition for the standard model. Generically, steep inflation
proceeds in the region of parameter space where ρ 	 λ and naturally co-
mes to an end when ρ ≈ λ, since the conventional cosmological dynamics is
recovered in this regime.

4.2 Density Perturbations

We now consider the generation of scalar and tensor perturbations in RSII
inflation. Since many of the issues of perturbation theory in conventional
inflationary models have already been covered in lectures at this school, we
omit detailed discussions here and focus instead on the differences that arise
between the two scenarios. We employ the normalization conventions of [44].

We begin by recalling that the scalar perturbations generated during in-
flation that is driven by a single, self–interacting scalar field are adiabatic.
The curvature perturbation on uniform density hypersurfaces is then given
by ζ = Hδφ/φ̇ and is determined by the scalar field fluctuation, δφ, on spati-
ally flat hypersurfaces [6]. Conservation of energy–momentum implies that ζ
is conserved on large scales, a result that is independent of the specific form
of the gravitational physics [45]. This implies that the amplitude of a mode
when it re–enters the Hubble radius after inflation is related to the curvature
perturbation by A2

S = 4〈ζ2〉/25, where the right–hand side is evaluated when
the mode with comoving wavenumber, k, goes beyond the Hubble radius
during inflation, i.e., when

k(φ) = aeH(φ) exp[−N(φ)], (22)

where a subscript ‘e’ denotes values at the end of inflation and N =
∫
dtH(t)

corresponds to the number of e–foldings of inflationary expansion that elapse
between the time when the scale crosses the Hubble radius and the end of
inflation [cf. (21)]. Finally, the Gibbons–Hawking temperature of de Sitter
space determines the magnitude of the field fluctuation, 〈δφ2〉 = H2/(4π2),
and we therefore deduce that the scalar perturbation amplitude has the form
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A2
S =

1
25π2

H4

φ̇2

∣∣∣∣
k=aH

(23)

This is given in terms of the potential by [42]

A2
S =

512π
75m6

4

V 3

V ′2

(
1 +

V

2λ

)3

(24)

after substitution of the Friedmann equation (17). We see that the amplitude
is enhanced over that of the standard scenario by the bracketed term.

4.3 Gravitational Waves

Although to first–order the gravitational waves decouple from the matter,
the calculation of the tensor perturbation spectrum is more involved in bra-
neworld cosmology because the perturbations extend into the bulk. In this
subsection we review the method of Langlois, Maartens and Wands [46]. To
proceed analytically, it is necessary to assume pure de Sitter expansion on the
brane and this is a good approximation if the inflation field is slowly rolling.
It proves convenient to express the perturbed, five–dimensional metric in the
form

ds25 = A2[−dt2 + a2(δij + Eij)dxidxj ] + dy2, (25)

where Eij represents the perturbations. The warp factor is given by

A = (H/α) sinh[α(yh − |y|)], (26)

where the Cauchy horizons, g00(±yh) = 0, are located at y = ±yh, and the
constant α = κ4/κ5 = (−Λ/6)1/2 is determined by the bulk cosmological
constant, Λ. Here and throughout, κ2

4 ≡ 8πm−2
4 and κ2

5 ≡ 8πM−3.
The standard approach is to expand the metric perturbations as a Fourier

series. In this case, and assuming that any anisotropic stresses are negligible,
the linearly perturbed junction conditions (9) reduce to

dE

dy

∣∣∣∣
y=0

= 0, (27)

where E(t, y; k) denotes the amplitude of the modes. Assuming a pure de Sit-
ter expansion of the brane world–volume allows us to separate the correspon-
ding gravitational wave equation of motion and then expand the amplitude
into eigenmodes such that E(t, y; k) =

∫
dmϕm(t; k)Em(y), where ϕm(t; k)

and Em(y) depend on the world–volume and bulk coordinates, respectively,
and m represents the separation constant. It can then be shown that the
solution for the zero mode (m = 0) is determined in full generality up to a
quadrature [46]:

E0 = C1 + C2

∫ y

dy′ 1
A4(y′)

, (28)
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where C1,2 are constants. In general, if a given mode diverges at the Cauchy
horizon, it can not form part of the spectrum of orthonormal modes that
constitute the basis of the Hilbert space for the quantum field. (Heuristically,
this is because such a mode would produce an infinite contribution to the
action and so it would cost too much energy to excite it). However, we must
specify C2 = 0 to satisfy the boundary condition (27) and this removes the
divergent part of the zero–mode. Thus, the physically relevant solution for
the zero–mode is E0 = C1. The non–zero modes are not excited – modes
where m < 3H/2 remain divergent at the Cauchy horizon even when (27) is
satisfied and modes satisfying m > 3H/2 remain in the vacuum state during
inflation [46].

The zero–mode, ϕ0, remains constant on super–Hubble radius scales, as in
the four–dimensional scenario. The amplitude of the quantum fluctuation in
this mode is then calculated by deriving an effective, five–dimensional action
for the tensor perturbations and integrating over the fifth dimension. This
results in a four–dimensional action that corresponds formally to a massless
scalar field propagating in a FRW universe. The standard four–dimensional
analysis may then be employed to determine the amplitude if the action
is normalized appropriately when integrating over the fifth dimension. This
requires that

2
∫ yh

0
dyC2

1A2 = 1 (29)

and implies that C1 =
√
αF (x), where

1
F 2 =

√
1 + x2 − x2sinh−1

(
1
x

)
(30)

and x ≡ H/α. Finally, the tensorial amplitude follows once each polariza-
tion state is interpreted as a quantum field propagating in a time–dependent
potential [46]:

A2
T =

κ2
4

50π2H
2F 2

∣∣∣∣
k=aH

. (31)

The effects of the brane modifications are parametrized in terms of the ‘cor-
rection’ function F . In the low–energy limit (ρ� λ, x� 1), F ≈ 1, whereas
F 2 ≈ [27H2m2

4/(16πλ)]1/2 in the high–energy limit.

4.4 The Consistency Equation

Since the scalar field slowly rolls down its potential, the amplitudes of the
perturbations are not precisely scale–invariant. These variations are parame-
trized in terms of the spectral indices, or tilts, of the spectra and are defined
by

nS ≡ 1 + d lnA2
S/d ln k, nT ≡ d lnA2

T /d ln k (32)
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for the scalar and tensor perturbations, respectively. The scalar spectral index
may be expressed in terms of the slow–roll parameters:

nS − 1 = −6ε+ 2η. (33)

In the high energy limit (ρ 	 λ, x 	 1), the tilts are given in terms of the
potential and its first two derivatives by

nS − 1 ≈ −m
2
4λ

2πV

[
3
V ′2

V 2 −
V ′′

V

]
(34)

nT ≈ −
3m2

4

4π
λV ′2

V 3 . (35)

It is well known that since the scalar and tensor perturbations share a
common origin through the inflaton potential, V (φ), it is possible to relate
them in a way that is independent of the functional form of the potential.
(For a review, see, e.g., [44]). This relationship is known as the consistency
equation and, to lowest–order in the slow–roll approximation, determines the
relative amplitudes of the tensor and scalar perturbations directly in terms
of the tilt of the gravitational wave spectrum:

A2
T

A2
S

= −1
2
nT . (36)

Since it is independent of the potential, (36) represents a powerful test
of single–field inflationary models and, in principle, failure to satisfy such a
constraint could be employed to rule out such a class of models. At present,
the contribution of tensor perturbations to the large–angle CMB power spec-
trum is constrained to be no more than 30 % and, in practice, it will be very
difficult, if not impossible, to measure the tilt of the tensor spectrum to a
sufficient level of accuracy. Nevertheless, a cosmological background of gravi-
tational waves could be detected through their contribution to the B–mode
(curl) of the CMB polarization [47] and interest is growing in this possibility
in light of the recent detections of polarization in the CMB [48, 8]. In any
case, even in the event that such a detection is not made, the consistency re-
lation remains important because it removes a free parameter (usually chosen
to be nT ) when determining the best–fit models to the data.

Given the importance of the consistency equation, it is clearly of inte-
rest to determine the form of the corresponding relations in braneworld cos-
mologies [49, 50]. We have seen that in the case of the RSII scenario, the
amplitudes of the perturbations are modified by the brane effects and these
modifications become progressively more important at higher energy scales.
Consequently, it is to be anticipated that the form of the consistency equa-
tion should reflect these differences. If so, this would provide a potentially
observable test of RSII inflation.

In the standard scenario, the consistency equation (36) is derived by first
differentiating the tensorial spectrum with respect to comoving wavenumber,
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k, and then relating a given scale to the corresponding value of the inflaton
field through (22). Any dependence on the first derivative of the inflaton
potential may then be eliminated by substituting for the scalar perturbation
amplitude and any remaining dependence on the inflaton potential itself may
be removed by substituting for the tensor perturbation amplitude.

In principle, an identical approach could be followed to derive the con-
sistency equation in RSII inflation. However, given the complicated form of
the amplitudes, this is algebraically very difficult (but not impossible) to ac-
complish. In view of this, we adopt a more elegant approach and proceed by
defining a pair of new variables [50]

b ≡ 1
2

sinh−1 x (37)

β ≡ κ4
dφ

dN
, (38)

where x is defined after (30). This implies that the Friedmann equation (17)
and scalar field equation (18) reduce to a first–order, non–linear system of
differential equations:

ḃ = −
(

3κ2
4

8λ

)1/2

φ̇2 (39)

β = −
(

8λ
3

)1/2
b′

H
. (40)

Moreover, the correction function (30) arising in the gravitational wave am-
plitude (31) depends only on the single variable, b, and may be expressed in
terms of a single quadrature:

1
F 2 = −4 sinh2 2b

∫
db

sinh3 2b
, (41)

whereas the scalar perturbations (23) depend on β:

A2
S =

κ2
4

25π2

H2

β2 . (42)

We are now in a position to derive the form of the consistency equa-
tion in this scenario. By employing the definitions (22), (37) and (38) and
substituting (31), (40) and (42) into (41), we find that

1
A2
T

= 2
∫

d ln k
A2
S

. (43)

Thus, differentiation with respect to comoving wavenumber recovers the con-
sistency equation [49, 50]

A2
T

A2
S

= −1
2
nT . (44)
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Remarkably, the form of the consistency equation is identical to that of
standard, single–field inflation. This is particularly surprising given that the
gravitational physics is manifestly different in the two scenarios. Formally,
this degeneracy between the consistency equations arises because the combi-
nation of observable parameters in (44) is independent of the brane tension,
but it is not immediately transparent from (24), (30) and (31) why this should
be so.

5 Asymmetric Braneworld Inflation

We now proceed in this section to consider an extension of the RSII scenario
where the Z2 reflection symmetry in the bulk dimension is no longer imposed.
This implies that the brane may be embedded in five–dimensional AdS space
where the value of the cosmological constant differs on either side of the
brane (Fig. 2). Similar analyses to those summarized in Sects. 3 and 4 may be
followed to derive the Friedmann equation and the inflationary perturbation
spectra. Here, we omit many of the details and simply highlight the main
results.

The spatial components of the junction conditions reduce to [34, 51, 52]

(
α+ +H2)1/2 +

(
α− +H2)1/2 =

κ2
5ρ

3
, (45)

where
α± ≡ −κ2

5Λ±/6 (46)

and Λ± are the bulk cosmological constants either side of the brane. Dimen-
sional reduction relates the four– and five–dimensional Newton constants:

κ2
5

κ2
4

=
1
2

(
1√
α+

+
1
√
α−

)
. (47)

Λ +

Λ −

Fig. 2. In the asymmetric RSII braneworld scenario, there is no reflection symmetry
imposed on the bulk dimension and the cosmological constant may take different
values on either side of the brane.
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Solving (45) yields the Friedmann equation [34, 51, 52]:

H2 =
κ4

5ρ
2

36
− 1

2
(α− + α+) +

9
4κ4

5ρ
2 (α− − α+)2 (48)

and, as in the symmetric scenario, a brane tension may be introduced in order
to recover the required linear dependence on the energy density at low energy
scales. Relaxing the Z2 symmetry results in the appearance of the third term
on the right–hand side of (48). Note how this term is proportional to ρ−2

and becomes negligible at high energies. (However, this does not imply that
such a term diverges at very low energies, since the density as shown here
represents the total energy density on the brane. This consists of both the
matter contributions as well as the brane tension, λ). It is worth remarking
that the Friedmann equation (48) exhibits an infra–red/ultra–violet duality,
in the sense that it is invariant under the transformation of the energy density,
κ2

5ρ↔ 9|α+ − α−|/(κ2
5ρ).

Since the bulk space on either side of the brane is AdS, the Gauss–Codazzi
equation (10) once more implies that energy–momentum is conserved on the
brane and (13) therefore remains valid. This is important because it implies
that the argument of Sect. 4.2 may be employed once more to determine the
amplitude of the scalar perturbations. Consequently, the amplitude is given
by (23), although its specific dependence on the inflaton potential is altered
from that of the symmetric scenario due to the additional term arising in
the Friedmann equation (48). Indeed, substituting (48) and the scalar field
equation (18) into (23) implies that [50]

A2
S =

9
25π2

1
V ′2

[
κ4

5(V + λ)2

36
− 1

2
(α− + α+)

+
9

4κ4
5(V + λ)2

(α− − α+)2
]3
∣∣∣∣∣
k=aH

(49)

The tensor spectrum for this model has been calculated in [50] by exten-
ding the method of [46]. The result is

A2
T =

κ2
5

50π2H
2J2

∣∣∣∣
k=aH

(50)

where
1
J2 =

1
2√α−F 2(x−)

+
1

2√α+F 2(x+)
, (51)

the functional form of F = F (x±) is given by (30) and x± ≡ H/
√
α±. At low

energy scales (x± � 1), we find that J → κ4/κ5, implying that the standard
expression is recovered in this limit, as expected.

The consistency equation can be derived in this model [50]. Given the
results of Sect. 4, the simplest approach is to assume a priori that the con-
sistency equation has the same form as that of (36) and to then verify that
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this is indeed the case. Let us therefore substitute the scalar and tensor per-
turbations, (23) and (50), directly into (36). We find that

d ln(HJ)
dH

dH

dN
= −κ

2
5

18
J2V ′2

H4 , (52)

where we have employed the slow–roll approximation in the form d ln k ≈
d ln a = dN . Noting that the scalar field equation, 3Hφ̇ = −V ′, may be
expressed in the somewhat unconventional form

dH

dN
= −dH

dV

V ′2

3H2 (53)

then allows us to simplify (52) through substitution of (53) [50]:

H4 dH

dV

d(HJ)−2

dH
= −κ

2
5

3
. (54)

Equation (54) represents a necessary condition for the consistency equation
(36) to hold. It should be emphasized that this condition applies to any
(single field) braneworld scenario, where energy–momentum is conserved on
the brane. In general, a given braneworld model may be characterized by
the functional form of its Friedmann equation, i.e., by the dependence of the
Hubble parameter on the inflaton potential, H = H(V ). Once this relation
has been established, (54) may then be interpreted as a constraint that must
be satisfied by the correction function, J = J(H), if the consistency equation
is to remain degenerate. To illustrate this, consider the standard scenario,
where H ∝ V 1/2. We see immediately that the left–hand side of (54) is
constant when J = 1.

It is possible, after some lengthy algebra, to confirm that (54) is indeed
satisfied for the asymmetric RSII scenario when the correction to the tensor
spectrum takes the form given by (51) and we therefore conclude that even in
this generalized, asymmetric RSII model, the consistency equation remains
degenerate [50]:

A2
T

A2
S

= −1
2
nT . (55)

Before concluding this section, we briefly consider the braneworld model
of [53], where the brane is embedded in a five–dimensional bulk space with
a stabilized radius. This model differs from the RSII scenario in that the
Friedmann equation, and therefore the scalar perturbation spectrum, remain
unmodified. However, the presence of the fifth dimension becomes apparent
through a correction to the tensor spectrum. Thus, one would certainly expect
the consistency equation to be modified in this model. However, surprisingly,
this is not the case – the correction to the gravitational wave amplitude
is given by J2 = (1 − αH2)−2, where α is a constant with a numerical
value determined by the radius of the extra dimension [53]. One may readily
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deduce that a correction of this form satisfies (54) and, moreover, represents
the general solution to (54) when the Friedmann equation has the standard
form. Thus, we now know of four classes of inflationary cosmologies, modelled
on different gravitational physics, where the consistency equation remains
robust.

Such a degeneracy implies that the task of identifying the correct inflatio-
nary model through observations will be more difficult. On the other hand,
although the consistency equation may be interpreted as a prediction of single
field inflation, it should be emphasized that it is a prediction relating the pri-
mordial perturbations. In particular, in the above analyses we have neglected
the influence of the bulk space on the subsequent evolution of the perturbati-
ons. This is equivalent to assuming that the projection of the five–dimensional
Weyl tensor vanishes to linear order. More generally, however, the backreac-
tion of the bulk will perturb the bulk space away from conformal invariance
and generate a non–trivial Weyl tensor in five dimensions. This results in a
non–local energy–momentum source in the gravitational field equations when
projected down to four dimensions [54]. As a result, the background dyna-
mics is altered. The subsequent evolution of the perturbations is difficult to
determine in general, because the system of equations is not closed, although
it is expected that it will be model–dependent to some extent.

A further assumption that we have made is that the field is rolling suf-
ficiently slowly down its potential. This assumption can be relaxed in the
standard scenario by working to the ‘next–to–leading’ order in the slow–roll
approximation. In this regime, it has been shown that the consistency equa-
tion (36) receives modifications [55]:

nT = −2
A2
T

A2
S

[
1− A2

T

A2
S

+ (1− nS)
]
. (56)

The question that naturally arises, therefore, is whether the corresponding
consistency equations in the RSII scenarios receive similar corrections or
whether the degeneracy can be lifted by moving away from the slow–roll
approximation. The answer to this and related questions must be left for
future work.

6 Gauss–Bonnet Braneworld Cosmology

As well as developing the framework for testing braneworld inflation through
a confrontation with observations, another important task is to enhance
the connection of the scenario with string/M–theory. One approach towards
this goal is to include combinations of higher–order curvature invariants in
the bulk action [56, 57, 58, 59, 60, 61, 62, 63]. Within the context of the
AdS/CFT correspondence, such terms arise as next–to–leading order correc-
tions in the 1/N expansion of the CFT [64]. The Gauss–Bonnet combination,
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R̂2−4R̂abR̂ab+R̂abcdR̂
abcd, is of particular relevance, given that it is the uni-

que combination in five dimensions that results in second–order field equati-
ons in the metric and it also appears as a leading–order quantum correction
in the heterotic string theory action [65, 66, 67].

The extension of the RSII scenario to include this term is presently at-
tracting attention. The five–dimensional field equations admit Schwarzschild–
AdS space as a solution [66, 68] and the Friedmann equation may be derived
through a variety of methods. These include generalizing Birkhoff’s theorem
[59], varying the boundary terms in the action [60], or by employing the for-
malism of differential forms [61]. When the bulk space is Z2 symmetric, the
Friedmann equation takes the form [59, 60, 61]

H2 =
c+ + c− − 2

8α
, (57)

where

c± =



[(

1 +
4
3
αΛ

)3/2

+
α

2
κ4

5ρ
2

]1/2

±
√
α

2
κ2

5ρ




2/3

, (58)

the bulk cosmological constant is Λ and α > 0 represents the Gauss–Bonnet
coupling constant. As in the models discussed above, conservation of energy–
momentum on the brane follows directly from the Gauss–Codazzi equations.

Despite the rather complicated form of (57), it is possible to make progress
analytically by introducing a new variable, r [63]:

ρ ≡
(

2b
ακ4

5

)1/2

sinh r (59)

and defining the constant

b ≡
(

1 +
4
3
αΛ

)3/2

. (60)

Substituting (59) and (60) into (58) then implies that

c± = b1/3 exp(±2r/3) (61)

and, as a result, the Friedmann equation (57) simplifies considerably [63]:

H2 =
1
4α

[
b1/3 cosh

(
2r
3

)
− 1

]
. (62)

It may be verified that the Friedmann equation (62) exhibits a quadratic
dependence on the total energy density in the low energy limit corresponding
to the RSII model. At sufficiently high energies, however, the dependence
scales as H2 ∝ ρ2/3. The condition for inflation to proceed in this regime is
simply that the pressure of the matter be negative, p < 0. More precisely,



376 J.E. Lidsey

slow–roll parameters may be introduced and, in the slow–roll limit where the
inflaton potential dominates the brane tension, λ, they are given by [63]

ε =
(

2λ
κ2

4

V ′2

V 3

)[
2b2/3

27
sinh(2r/3) tanh r sinh2 r[
b1/3 cosh(2r/3)− 1

]2
]
, (63)

η =
(

2λ
κ2

4

V ′′

V 2

)[
2b1/3

9
sinh2 r

b1/3 cosh(2r/3)− 1

]
. (64)

The terms in the square brackets parametrize the effects of the Gauss–Bonnet
contribution. These are monotonically decreasing functions of r and tend to
unity from above as {r, α} → 0. In this limit, the slow–roll parameters reduce
to those of the RSII model. It follows, therefore, that the Gauss–Bonnet
contribution tightens the constraints for inflation to proceed relative to the
RSII scenario.

A further consequence of introducing a Gauss–Bonnet term is that the
spectrum of perturbations is altered. For example, in the high–energy limit
where H2 ∝ ρ2/3, we find that A2

S ∝ H4/φ̇2 ∝ H6/V ′2 ∝ (V/V ′)2. Thus,
for the case of an exponential potential, the spectrum is pushed very close
to a scale–invariant form [63]. This is interesting given that potentials of this
nature generically arises in a number of particle physics inspired settings.

Finally, it would be of interest to determine whether the degeneracy of
the inflationary consistency equation is lifted by introducing a Gauss–Bonnet
term into the bulk action. To date, the gravitational wave spectrum in this
model has yet to be determined. The calculation of the spectrum is more in-
volved than that of the RSII scenario, because the linearly perturbed junction
conditions must be employed to impose the necessary boundary conditions
on the perturbations.

7 Concluding Remark

To summarize, inflationary cosmology based on Randall–Sundrum brane-
worlds remains a rich environment for future work. The scenario has already
revealed unexpected surprises and surely has more to offer. It is well motiva-
ted from a string theoretic perspective in view of its close relationship with
the AdS/CFT correspondence. It is sufficiently simple to provide a framework
for performing analytical calculations and thereby making observational pre-
dictions. Thus, it provides a unique window into higher–dimensional physics.
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Abstract. The presence of a 4-form field in a fixed background spacetime can give
rise to the creation of brane universes, that mimic the Swinger pair production. By
means of a canonical quantum approach, we study the birth of a brane universe
involving its intrinsic curvature. The nucleation probability for the brane is calcu-
lated taking into account both an instanton method and a WKB approximation.
We discuss some cosmological implications resulting from the model.

1 Introduction

One of the most fundamental questions of human history is: “Where did it all
come from?” Standard cosmology does not have a convincing answer, for this
reason a new description is necessary. Cosmologists during a long time have
believed that quantum cosmology can shed light on this question [1, 2, 3, 4]
but some issues are still controversial, e.g. the lack of an intrinsic time varia-
ble in the theory [5], the problem of cosmological boundary conditions [6], to
mention some. Among the several ideas that try to give a possible answer to
the fundamental question, the so-called Brane World Scenarios (BWS) [7, 8]
became a promising way to understand the birth and then the evolution of
our universe. Based in the proposal that our universe can be understood as
a 4-dimensional spacetime object embedded in an N-dimensional spacetime,
N > 4, the main physical idea behind BWS is that matter fields are confined
to a 3-dimensional space (brane) while gravitational fields can extend into a
higher-dimensional space (bulk), where graviton can travel into the extra di-
mensions. BWS, besides resolving the hierarchy problem, have been applied
to a great diversity of situations such as dark matter/energy, quintessence,
cosmology, inflation and particle physics. Furthermore, BWS have been the
motivation for other related applications of embedding theory such as gene-
ration of internal symmetries, quantum gravity and alternative Kaluza-Klein
theories [9, 10, 11, 12, 13]. In the context of cosmology, there are predictions
that could be tested by astronomical observations, this constitutes one of the
several reasons why BWS is so attractive [14].

This new approach should be able to reproduce all known features of a
gravitational theory. Even so, there are some questions that puzzle cosmolo-
gists: the origin of these branes (universes) still is a matter of research. In

R. Cordero and E. Rojas, Creation of Brane Universes, Lect. Notes Phys. 646, 381–399 (2004)
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these brane world programs, gravity on the brane can be recovered by com-
pactifying the extra dimensions [7] or by introducing an AdS background
spacetime [8]. However, Dvali, Gabadadze and Porrati [15] (DGP) showed
that, even in an asymptotically Minkowski bulk, 4-dimensional gravity can
be recovered if one includes a brane curvature term in the action. Further-
more, DGP considered the Z2 reflection symmetry with respect to the brane
finding that gravity is 4-dimensional on scales smaller than a certain scale
and that it is 5-dimensional on larger distances [16, 17]. It is noteworthy
to mention that the reflection symmetry is not the only possibility in these
models. In this regard, several works have been devoted to antisymmetric
cases [18, 19, 20, 21, 22, 23, 24, 25], for instance, when the brane is coupled
to a 4-form field [23]. In a pioneering work, Brown and Teitelboim worked
out the process of membrane creation by an antisymmetric field motivated
by Schwinger process of pair creation induced by the presence of an electric
field [26]. Garriga [27] has also studied the creation of membranes for this
field in dS background. Other authors have been interested in brane world
creation in AdS spacetime or in other particular situations [28, 29, 30, 31, 32]
but, to our knowledge, nobody has been devoted to the nucleation of Brane
World Universes (BWU) induced by a 4-form field and a brane curvature
term included in the action. Mostly, BWS are studied in AdS/dS as well as
in empty (Minkowski) backgrounds.

In this contribution we are going to discuss the nucleation of BWU with
a curvature term induced by a 4-form field in a dS background spacetime.
We get the Friedman like equation when 5-dimensional gravity is fixed and
perform geometric Hamiltonian analysis in order to obtain, by means of cano-
nical quantization, the corresponding Wheeler-DeWitt equation. The setup
for the induced brane production is as follows. There is an external homoge-
neous field that produces a brane. Then, the natural question is: What is the
probability of such a process? In the present paper we calculate the creation
probability for a brane universe embedded in a de Sitter space, produced by
a 4-form potential gauge field in the same way that the standard electro-
magnetic potential bears to a charged particle. Within quantum analysis we
shall use the WKB approximation getting the same results by the instanton
method. We could try to answer the question: Is our universe one of the more
probable universes produced in this model? or Is it a very special one? Para-
meters of this model must be constrained by cosmological requirements like
nucleosynthesis [23].

The work is organized as follows. In Sect. 2 we present the equations of
motion of a brane with matter and a curvature term that lives in AdS/dS or
Minkowski bulk when there is no Z2 symmetry. We show that under a certain
limit the former equations describe a brane interacting with a 4-form field in a
fixed background. A geometric Hamiltonian approach is done in Sect. 3, where
the fundamental canonical structure is obtained and the canonical constraints
are listed. The next step is to specialize the general canonical analysis to the
case of a spherical 3-brane floating in dS5 background spacetime which is the



Creation of Brane Universes 383

topic of Sect. 4. The last section provides the preamble to obtain the WdW
equation in the canonical quantization context, which is done in Sect. 5. The
creation probability is calculated in Sect. 6 by two methods, the first one
is an instanton approach and the other one is a WKB approach for barrier
tunneling of the WdW equation. Finally in Sect. 7 we present our conclusions
as well as some perspectives on this work.

2 The Model

As we mention before, BWS is based on the proposal that our universe can be
thought as a 4-dimensional spacetime object embedded in a fixed background
spacetime of dimension N , (N > 4). The main physical idea behind BWS
is that matter fields are confined to a 3-dimensional space (brane) while
gravitational fields can extend into the bulk. The extra dimensions maybe
larger or even infinite and also there exists the possibility of detecting them,
which is another reason why BWS is so interesting.

Strong motivation for BWS comes from string/M-theory where the gene-
ral idea of a brane world appears naturally [33]. For example, some kind of
branes are able to carry matter fields like D-branes.

In these theories, low energy physics is effectively 4-dimensional due to
localization of matter on the brane. However, gravity is multidimensional and
the corresponding action has the bulk curvature term

S
(N)
G =

MN−2
(N)

2

∫
dNx
√
−g(N)R. (1)

where MN is the bulk Planck mass. One way to recover 4-dimensional gravity
is, as proposed in [7], to neglect the brane tension and to consider compact
extra dimensions. In this approach the 4-dimensional gravity is mediated by
the graviton zero mode and the metric is independent of extra dimensions.
The integration on the extra coordinates is straightforward and the effective
4-dimensional action is

S
(4)
G =

MN−2
(N)

2
Ved

∫
d4ξ
√
−γR. (2)

where Ved ∼ Rd is the volume of extra dimensions. We have now a relation
between 4-dimensional Planck mass and bulk Planck mass (up to a numerical
factor)

M(4) = M(N)(M(N)R)d/2. (3)

In fact, this can be used to address the hierarchy problem: the big difference
between the Planck scale and the electroweak scale. Now we can accept that
the fundamental gravity scale is of the same order as the electroweak scale,
M(N) ∼ 1Tev. From this point of view, the hierarchy between M(4) and
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MEW is a consequence of the large size of extra dimensions, i.e. gravity
is very weak because it spreads into the extra dimensions. For d = 2 and
M(N) ∼ 30Tev (M(N) ∼ 1Tev is excluded by astrophysics and cosmology),
the size of R ∼ 1 − 10µm has motivated the search for deviations from
Newton’s law in the scale of micro-meter [34].

Also, the 4D gravity on the brane can be recovered by introducing a large
negative cosmological constant in the bulk

S(N)
m =

∫
dNx
√
−GΛ, (4)

that causes the bulk space to warp, confining low-energy gravitons to the
brane [8].

Very recently, DGP [15] have pointed out that 4D gravity can be reco-
vered even in an asymptotically Minkowski bulk, provided that one includes
the brane curvature action (2). Assuming a 5-dimensional bulk and a Z2
symmetry of reflections with respect to the brane, they found that gravity
on the brane is effectively 4D on scales r << r0, with

r0 =
M2

(4)

2M3
(5)
, (5)

and becomes 5D on larger scales. Analysis of cosmological solutions with a
Robertson-Walker metric on the brane indicates the same crossover scale (5)
in this class of models [16].

The DGP model can be extended in several directions. One possible ex-
tension is to lift the requirement of Z2 symmetry. This symmetry is cer-
tainly a necessary condition and actually cannot be enforced in 5D models
where the brane is coupled to a 4-form field, so that the 5D cosmologi-
cal constant is different on the two sides of the brane. Brane world cos-
mology without Z2 symmetry has been discussed by a number of authors
[18, 19, 20, 21, 22, 23, 24, 25], but in most of this work, the brane curvature
term (2) has not been included in the action. Some effects of including the
brane curvature term have been discussed in [25].

The effective action that we are interested in is the corresponding to a 3-
brane with an intrinsic curvature term considered from its worldsheet and no
Z2 symmetry in the presence of a fixed background spacetimeM. We assume
the 3-brane immersed inM by means of the embedding xµ = Xµ(ξa) where
xµ are coordinates on the bulk and ξa are coordinates on the worldsheet. For
concreteness, we consider the following action (N = 5),

S =
∫ √
−g

(
1
2k

(5)R+ Lm
)

+
∫ √

−γ
(

1
2k′R− Lm

)
, (6)

where Lm and Lm = ρv stand for matter Lagrangians for the bulk and the
brane, respectively, and we have absorbed the differentials d5x, d4ξ, through-
out the paper in the integral sign, for simplicity. In our case, we will consider
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those as cosmological constants. The constants k = M−3
(5) and k′ = M−2

(4) ,
where M(4) and M(5) are the brane Planck and bulk masses, respectively.
The corresponding equations of motion for the brane are [19],

[K]γab − [Kab] = kT̃ab, (7)

T̃ ab < Kab > = [Tnn], (8)
∇a(T ab) = −[Tbn]. (9)

where Kab = −gµνnµDaX
ν
b is the extrinsic curvature of the brane, nµ stands

for the normal vector to the worldsheet, Xµ
a = ∂aX

µ denote the tangent
vectors to the worldsheet and Da = Xµ

aDµ = eµaDµ where Dµ is the
covariant derivative compatible with gµν . γab denotes the worldsheet metric.
Tan = (Tbulk)µνeµanν and Tnn = (Tbulk)µνnµnν are projections of the bulk
energy-momentum tensor. T̃ab = Tab− 1

k′
(
Rab − 1

2γabR
)

and Tab is the brane
energy-momentum tensor. The square and angular brackets represent the
difference and the average of the corresponding embraced quantity, on the
two sides of the brane, respectively, i.e., [Kab] = K+

ab −K
−
ab and < Kab >=

1
2 (K+

ab + K−
ab), where the superscripts ‘+’ and ‘-’ denote the exterior and

interior for a spherical brane, respectively.
Taking into account that the bulk energy momentum tensor has the form

T ±
µν = −k−1Λ±gµν , (10)

and by means of the generalized Birkhoff theorem, the 5-dimensional FRW
metric can be written as

dS2
5 = −A±dτ2 +A−1

± da2 + a2dΩ2
3 , (11)

where

A± = κ− Λ±

6
a2 − 2M±

M3
(5)a

2 , (12)

and dΩ2
3 denotes the metric of a 3-sphere, a is the cosmic scale factor and

M± is the mass. Furthermore, in the cosmic time gauge the 4-dimensional
metric on the brane reduces to

dS2
4 = −dt2 + a2dΩ2

3 . (13)

Using the junction conditions, and due to isotropy and homogeneity in (11),
the matter can be parametrized completely via a perfect fluid brane energy-
momentum tensor

T ab = diag(−ρ, P, P, P ), (14)

so the relevant equations of motion for the model read

(
ȧ2 +A−

)1/2 − (
ȧ2 +A+

)1/2
=
ka

3

(
ρ− 3(ȧ2 + 1)

k′a2

)
, (15)
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ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (16)

The equation on the second line, represents the energy-momentum conser-
vation on the brane. The former system was discussed in [35] where several
interesting cases were treated. Suppose nowM− = 0, ρ = const, and consider
at the same time the limits of fixed bulk gravity, M(5) →∞ and, Λ+ → Λ−

but restricted to the following relation

Lim(M(5),Λ+)→(∞,Λ−)(Λ+ − Λ−)M3
(5) = α, (17)

so, expanding the second term of the LHS of Eq. (15), this equation trans-
forms to (

ρ

3
−M2

(4)
ȧ+ 1
a2

)(
ȧ+ 1
a2 − Λ

6

)1/2

=
α

12
+
M
a4 . (18)

In order to get the Friedman like equation we define Υ through the relation

ȧ+ 1
a2 ≡ ρ

3M2
(4)
Υ ≡ H2Υ. (19)

Note that Υ is only a function of a and it is a solution of the following relation

M4
(4)(1− Υ )2

(
Υ − Λ

6H2

)
= H−6

(
α

12
+
M
a4

)2

. (20)

As we will see below, this approach is equivalent to a brane interacting with
a 4-form field and propagating in a fixed background spacetime.

3 Hamiltonian Approach

The Hamiltonian framework has been a fundamental tool in the study of the
dynamics of field theories and a preliminary step towards canonical quan-
tization of physical theories. Canonical quantization is the oldest and most
conservative approach to quantization and we will use it to study quantum
cosmology for our model. To carry out the previous goal, we must begin by
casting the theory in a canonical form, then we shall proceed to its quantiza-
tion.

To begin with, we are going to mimic the well known ADM procedure
for canonical gravity to get a hamiltonian description of the brane. We shall
assume that the worldsheet m admits a foliation, i.e., we will begin with a
time like 4-manifold m of the topology Σ × R, equipped with a metric γab,
such that m is an outcome of the evolution of a space like 3-manifold Σt,
representing “instants of time”, each of which is diffeomorphic to Σ. Then
we shall identify the several geometric quantities inherent to the hypersurface
Σt. The ADM decomposition of the action, computation of the momenta as
well as the recognition of the constraints, are the next stages. Before going
on, we would like to glimpse onto the ADM decomposition of some important
geometric quantities defined on the branes in our geometrical approach.



Creation of Brane Universes 387

3.1 Embedding Theory

Consider a brane, Σ, of dimension d whose worldsheet, m, is an oriented
timelike manifold living in a N -dimensional arbitrary fixed background spa-
cetime M with metric gµν . For hamiltonian purposes, we shall foliate the
worldsheet m in spacelike leaves Σt.

Employing geometry of surfaces, as well as novelty variational techniques
developed in [36, 37], we can write the Gauss-Weingarten equations associated
with the embedding of Σt in M (xµ = Xµ(uA)), i.e., the gradients of the Σt
basis {εµA, ηµ, nµi}. These spacetime vectors can be decomposed with respect
to the adapted basis to Σt, as

DAεµB = −Γµαβ εαAεβB + kAB η
µ −Ki

AB n
µ
i (21)

DAηµ = kAB ε
µB −KA

i nµi (22)
D̃Anµ i = Ki

AB ε
µB −KA

i ηµ (23)

where Γαβγ are the Christoffel coefficients of the background manifold and
KA

i is a piece of the generalized extrinsic twist potential and both kAB and
Ki
AB are the extrinsic curvatures of Σt associated with the normals ηµ and

nµi, respectively. DA denotes the covariant derivative adapted to Σt and
D̃A is the covariant derivative that preserves invariance under rotations of
the normals nµi, i.e., D̃iA = DiA − ωijA nj . In a similar way, we can write
the Gauss-Weingarten equations associated with the embedding of Σt in the
worldsheet m, (xa = Xa(uA)), i.e., the gradients of the Σt basis {εaA, ηa}.
These worldsheet vectors can be decomposed with respect to the adapted
basis to Σt, as

∇AεaB = γCAB ε
a
C + kAB η

a (24)
∇Aηa = kAB ε

aB , (25)

where ∇A is the gradient along the tangent basis, i.e., ∇A = εaA∇a, where
∇a is the covariant derivative compatible with γab (µ, ν = 0, 1, 2, . . . , N−1;
a, b = 0, 1, . . . , d and A,B = 1, 2, . . . , d).

The time vector field, written in terms of the adapted basis of a leaf Σt,
is given by

tµ = Ẋµ = Nηµ +NA εµA , (26)

which represents the flow of time throughout spacetime. Furthermore, from
(26) note that the following relations hold:

N = −gµνηµẊν and NA = gµνh
ABεµBẊ

ν .

3.2 Model ADM Decomposed

Following the results obtained in [39, 40, 41], we are going to display the
standard procedure. We start by considering the action
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S =
k1

2

∫
m

√
−γ (R+ Λb) +

k2

4!

∫
m

√
−γAµνρσεµνρσ , (27)

where R is the Ricci scalar curvature of the worldsheet m, k1 = M2
(4) and

Λb = −2ρv/M2
(4) being the cosmological constant on the brane; Aµνρσ is a

gauge 4-form Ramond-Ramond field onto the bulk, µ, ν = 0, 1, . . . , N − 1;
εµνρσ is an antisymmetric bulk tensor which can be expressed in terms of
the worldsheet Levi-Civita tensor as εµνρσ = εabcdeµae

ν
be
ρ
ce
σ
d, where a, b =

0, 1, 2, 3. k2 is the coupling constant between the brane and the antisymmetric
tensor.

Taking into account the Gauss-Codazzi relations for the embedding of Σt
in m, Eqs. (24) and (25), we obtain an equation involving the extrinsic and
intrinsic curvatures, up to a divergence term,

R = R+ (kABkAB − k2) , (28)

where R denotes the intrinsic curvature3 of Σt which does not have any
dependence of the velocity and kAB its extrinsic curvature associated with
the unit timelike normal ηµ, given by

kAB = −gµνηµ(DAενB + Γ ναβε
α
Aε

β
B)

:= −gµνηµD̃AενB . (29)

Besides (29), in Σt we have another curvature tensor associated with the i-th
unit normal nµ i

Ki
AB = −gµνnµ iD̃AενB , (30)

where gµν denotes the background spacetime metric and i = 1, 2, . . . , N −
d; A,B = 1, 2, 3. Note that the configuration space consists of the embedding
functions Xµ for the brane, instead of 3-metrics as is customary in the ADM
approach to general relativity.

In order to simplify the computations below, we use the next relations
where the velocities appear explicitly

κAB = N kAB (31)
= −gµνẊµD̃AενB .

For canonical purposes it will be useful also the time derivative

∂N

∂Ẋµ
= −ηµ = − gµνην . (32)

As before, we will need the derivatives of the extrinsic curvature
3 We will adhere to Wald’s convention concerning the definitions of Riemannian

curvature, namely, 2∇[a∇b]t
c = −Rabd

c td [42]
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∂κAB

∂Ẋµ
= −gµνD̃AενB (33)

= −kAB ηµ +Ki
AB nµ i,

where in the second line on the RHS we have used the Gauss-Weingarten
equations (21).

The ADM decomposed action (27) now looks like

S =
∫
Σt

∫
R

k1

2
N
√
h
[
R̄+ kABk

AB − k2] +
∫
Σt

∫
R

k2

3!
AµνρσẊ

µενAε
ρ
Bε

σ
C ε

ABC

(34)
where we have defined R̄ := R+Λb, h is the determinant of the hypersurface
metric hAB and εABC is the Σt Levi-Civita antisymmetric symbol.

3.3 Primordial Tensor

We define for convenience the following symmetric tensor that is independent
of the velocities

Θµν := (hABhCD − hAChBD) D̃AεµBD̃Cεν D
= (k2 − kABkAB) ηµην − (kLi −Ki

ABk
AB)nµiην

− (kLi −Ki
ABk

AB) ηµnν i + (LiLj −Ki
ABK

AB j)nµinν j , (35)

where Li denotes the trace of the curvature Ki
AB , i.e., Li = hABKi

AB . This
tensor will keep track of the dynamics of the theory as we will see below. The
tensor (35) was previously defined in [38] where a Hamiltonian analysis for
geodetic brane gravity was performed. We will have in mind some ideas of
the classical approach developed there.

Some important properties of the tensor (35) are the following

Θµαε
α
A = 0 ,

ΘµαẊ
α = −N(k2 − kABkAB) ηµ +N(kLi −Ki

ABk
AB)nµi,

gµνẊ
µΘναẊ

α = N2(k2 − kABkAB).

We shall adopt the notation Ẋ · Θ · Ẋ := gµνẊ
µΘναẊ

α throughout the
paper. Taking advantage of the previous results we are able to rewrite the
Lagrangian density,

L =
k1

2
N
√
h

[
R̄− 1

N2 Ẋ ·Θ · Ẋ
]

+
k2

3!
AµνρσẊ

µενAε
ρ
Bε

σ
C ε

ABC . (36)

Using the tensor (35), the momenta associated to the embedding functions
are
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Pµ =
∂L
∂Ẋµ

= −k1

2

√
h

{[
R̄+

1
N2 Ẋ ·Θ · Ẋ

]
ηµ +

2
N
ΘµνẊ

ν

}

+
k2

3!
Aµαβγ ε̄

αβγ , (37)

where we have defined the Σt tangent tensor ε̄µνρ = εABCεµAε
ν
Bε

ρ
C with

normalization ε̄µνρε̄µνρ = 3! .

3.4 Canonical Constraints

A natural question to ask in an invariant reparametrization theory is: What
are the primary constraints? This is part of the fundamental structure of
constrained field theories. According to the standard Dirac-Bergmann algo-
rithm, we will get the constraints from the momenta (37). It is convenient for
the computation to define the matrix Ψµν := Θµν − λgµν where λ(x) is not
a dynamical field that is gauge dependent [38] and that should to be find. If
we assume that the form of momenta has the following pattern,

Pµ = −
√
hk1 (Θ − λ g)µν ην +

k2

3!
Aµαβγ ε̄

αβγ , (38)

we are free to compare both expressions (37) and (38) to get a condition to
be satisfied

R̄+ η ·Θ · η + 2λ = 0 . (39)

This expression will transform in a primary constraint after we express it in
terms of phase space variables.

Profitably is the introduction of the field λ(x) since we can solve Eq.(38)
for the timelike unit normal vector

ηµ =
−1√
hk1

(
Ψ−1)µ

αg
αβPβ , (40)

where we have defined Pµ = Pµ − k2
3! Aµαβγ ε̄

αβγ , but we have to increase
the number of constraints as we will see below. Inserting this form of the
unit time-like vector in the relation (39) we obtain the main scalar primary
constraint. In a similar way, inserting ηµ in its square relation, g(η, η) = −1,
we determine another scalar constraint.

The complete set of primary constraints are

C0 = P · (Ψ−1) · P + hλ0k
2
1 = 0 , (41)

C0 = P · (Ψ−2) · P + hk2
1 = 0 , (42)

CA = PµεµA = 0 , (43)
Cλ = Pλ = 0 , (44)
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where we have defined λ0 = λ+R̄. The third constraint is the usual constraint
of parametrized theories while the last one came from the fact that λ is not
a dynamical field, i.e., its time derivative does not appear in the Lagrangian.
It is worth to mention that the constraint C0 is a byproduct of C0 taking
advantage of the identity ∂(Ψ−1)µν/∂λ = (Ψ−2)µν .

4 Brane Universe Floating in a de Sitter Space

The main idea in this section is to adapt the previous dynamical description
to the case of a spherical brane immersed in a specific background spacetime
in order to apply the quantum approach to our BW model.

Consider a 3-dimensional spherical brane evolving in a de Sitter 5-
dimensional background spacetime, dS2

5 = −A± dτ2+A−1
± da2+a2dΩ2

3 , where
A± is given by (12). The worldsheet generated by the motion of the brane
can be described by the following embedding

xµ = Xµ(τ, χ, θ, φ) =




t(τ)
a(τ)
χ
θ
φ


 . (45)

The line element induced on the worldsheet is given by

ds2 = (−A±ṫ2+A−1
± ȧ2) dτ2+a2 dχ2+a2 sin2 χdθ2+a2 sin2 χ sin2 θ dφ2, (46)

where the dot stands for derivative with respect to cosmic time τ . For conve-
nience in notation we define ∆ = −A±ṫ2 + A−1

± ȧ2. The frequently appealed
cosmic gauge will be set up by ∆ = −1.

In order to evaluate the extrinsic curvature tensors involved in our ap-
proach, (29) and (30), we need the orthonormal Σt basis

ηµ =
1√
−∆

(
ṫ, ȧ, 0, 0, 0

)
, nµ =

1√
−∆

(
A−1

± ȧ, A± ṫ, 0, 0, 0
)
.

The only non null components for the extrinsic curvatures are

kχχ =
aȧ

(−∆)1/2
Kχχ =

aṫ

(−∆)1/2
A±

kθθ =
aȧ

(−∆)1/2
sin2 χ Kθθ =

aṫ

(−∆)1/2
A± sin2 χ

kφφ =
aȧ

(−∆)1/2
sin2 χ sin2 θ Kφφ =

aṫ

(−∆)1/2
A± sin2 χ sin2 θ .

It is a straightforward task to compute the tensor (35) for the present
case, which give us
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(Θ)µ ν =


0 0 0

0 6
a2 A± 0

0 0 03×3




5×5

. (47)

The next step is to compute the matrix Ψ so, in order to know Ψ it is necessary
to evaluate λ. It is easily calculated from the relation (39) to give

λ = − 1
2a2

(
6 + Λba

2 +
6ȧ2

(−∆)

)
. (48)

This seems to contradict the functional dependence previously assumed for
this field, but we are free to implement a trick to convert the velocity de-
pendence to the right form by means of the generalized evolution equation,
(ȧ2 + 1)/a2 = ΥH2, avoiding any misunderstanding.

We turn now to compute a first integral for our specific model. This is
done using (37) by setting up P0 proportional to the brane energy, P0 :=
3EΦ = 3E(sin2 χ sin θ). Furthermore, since we have a homogeneous isotropic
space in (46), we can invoke the typical value A0χθφ = F

4 a
4Φ for the gauge

field, which is supported by some kind of cosmological solutions [23, 43],
where F is a constant and the corresponding gauge independent field tensor
Fµνρδγ = 5∇[µAνρδγ] is expressed in terms of it Fµνρδγ = Fεµνρδγ . Explicitly,
we have

P0 =
3k1aṫΦA±√
−∆

(
1 +

Λb
6
a2 +

ȧ2

(−∆)

)
+
k2F

4
a4Φ . (49)

Now, taking into account the generalized evolution equation with Λb being
the cosmological constant on the brane, we find the desired result

E = M2
(4)a

4H3
(
Υ − Λ

6H2

)1/2

(Υ − 1) +
k2F

12
a4 , (50)

where Λ is the cosmological constant living in the bulk appearing in Eq. (12)
and we have used the cosmic gauge in the last step. Note that (50) is in
agreement with Eq. (20), then confirming the equivalence with the limiting
process developed in Sect. 2.

5 Quantum Brane Cosmology

From the point of view of quantum cosmology, the whole universe is treated
quantum mechanically and it is described by a wave function. DeWitt [44] in-
troduced this quantum approach to cosmology long time ago, but recently it
has attracted a lot of interest. In the original 4-dimensional quantum cosmo-
logy, a small closed universe can be spontaneously nucleate out from nothing
[1, 2, 3, 45], where nothing refers to the absence of matter, space and time.

Unlike ordinary quantum mechanics, where boundary conditions for the
wave function are specified by the physical setup external to the system, in
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4-dimensional quantum cosmology there is nothing external. In fact, there is
a debate about the right boundary conditions for the wave function of the
universe [46].

However, there is an important difference due to the presence of an em-
bedding space. We can think that our universe was a small nearly spherical
brane nucleating in de Sitter space time induced by a totally antisymmetric
field. We believe that tunneling boundary condition is the right one, in agre-
ement with the idea that a tunneling process was the mechanism involved in
the nucleation of the universe.

We turn now in this section to develop the quantum description for our
specific problem. The canonical quantization procedure is well known and it
just remains to apply it to our case.

We shall set Pµ → −i δ
δXµ in such a way that scalar constraints (41) and

(42) transform into quantum equations(
−i δ

δXµ
− pA µ

)
(Ψ−1)µν

(
−i δ

δXν
− pA ν

)
ψ = −hλ0k

2
1 ψ , (51)

(
−i δ

δXµ
− pA µ

)
(Ψ−2)µν

(
−i δ

δXν
− pA ν

)
ψ = −hk2

1 ψ , (52)

where we have defined pA µ := k2Aµαβγ ε̄
αβγ/3! .

For the universe we are considering, (45), it is necesary to know expli-
citly the matrix Ψ . Taking into account Eq. (47) as well as Eq. (48), it is a
straightforward task to compute the full expression for Ψ ,

(Ψ)µν =




− 1
2a2A±

[
6 + Λba

2 + 6ȧ2

(−∆)

]
0 0 0

0 A±
2a2

[
6 + Λba

2 + 6ȧ2

(−∆) + 12A±
]

0 0

0 0 1
2a4

[
6 + Λba

2 + 6ȧ2

(−∆)

]
0

0 0 0 M2×2




(53)
The previous matrix, in the cosmic gauge, reduces to a more manageable
form

(Ψ)µν =




3H2A−1
± (1− Υ ) 0 0 0
0 3A±a−2[−H2a2(1− Υ ) + 2A±] 0 0
0 0 −3a−2H2(1− Υ ) 0
0 0 0 N2×2


 ,

(54)
where M2×2 and N2×2 denote 2× 2 diagonal matrices.

Taking the embedding (45) and having in mind the matrix (54) in the
cosmic gauge, we are able to get the inverse matrix

(Ψ−1)µν ≡


A 0 0

0 B 0
0 0 N−1

3×3


 =




−1
3H2(1−Υ ) 0 0

0 a2

3[−H2a2(1−Υ )+2A±] 0
0 0 N−1

3×3


 , (55)

in such a way that (51) and (52) transform into the pair of relations
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−A−1
± AP̃ 2

0 ψ +A±BP̃ 2
1 ψ = −hλ0k

2
1 ψ, (56)

−A−1
± A2P̃ 2

0 ψ +A±B2P̃ 2
1 ψ = −hk2

1 ψ, (57)

where we introduced the notation P̃µ = −i δ
δXµ−pA µ. Taking into account the

value λ0 = 3
[
−H2(1 + Υ ) + 2

a2

]
expressed in the cosmic gauge, the couple

of quantum relations can be rewritten as,

P̃ 2
0 ψ = k2

1(3Φ)2a8H6(1− Υ )2
(
Υ − Λ

6H2

)
ψ, (58)

P̃ 2
1 ψ = −k2

1(3Φ)2a2 (1−H2Υa2)[H2a2(1− Υ )− 2 + Λa2

3 ]2

(1− Λa2

6 )2
ψ . (59)

At this time, we are more interested in identifying the potential governing
the dynamics of our model instead of solving exactly the WdW equation so
we propose the wave function to be of separable form, ψ(t, a) = ψ1(t)Ψ(a).
The WdW equation acquires the form

−∂
2Ψ

∂a2 =
a2M4

(4)

[
2− Λa2

3 + (Υ − 1)H2a2
]2 (
−1 + ΥH2a2

)
(
1− Λa2

6

)2 Ψ, (60)

accompanied by the energy equation(
E − k2F

12
a4
)2

= H6a8M4
(4)(1− Υ )2

(
Υ − Λ

6H2

)
, (61)

where we redefined the momenta P̃0 → (3Φ)Pµ and assumed ψ1 = e−iEt.

6 Nucleation Rate

At this stage, we are ready to compute the creation probability for the uni-
verse to be created. Some simplifications are necessary since the general pro-
blem itself is hard to solve.

From WdW equation (60), the potential is easily read off

V (a) =
a2M4

(4)[2− Λa2

3 + (Υ − 1)H2a2]2(1− ΥH2a2)

(1− Λa2

6 )2
. (62)

Note that this is a very hard expression to work out if one is interested in
the general integration, specially if, as in the cosmological context, creation
probability is the desired calculation. Taking into account the tunneling bo-
undary conditions, the probability nucleation [47] is written in terms of the
potential extracted from the WdW equation, namely,

P ∼ e
−2

∫ ar
al

√
V da

. (63)

In order to get some interesting results from the quantum approach, we shall
consider some special cases.
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6.1 Case A

If E = 0 from Eq. (61) then Υ is just a constant given by

(k2F/12M2
(2))

2

H6 = (1− Υ )2(Υ − Λ

6H2 ) . (64)

and the probability rate in this case is

P ∼ e
4((Υ −1)−Λ/3H2)

Υ Λ +2(Υ−1)H2( 6
Λ )2[1− 1

X tan−1X], (65)

where X2 = ( Λ
6H2 )2

(
Υ − Λ

6H2

)−1
. If k2F,Λ << H2 to first order the proba-

bility rate is
P ∼ e− 4

3H2 + 16k2F

15H5 . (66)

This means that it is more probable to create a universe when k2F > 0 than
if k2F < 0. We will comment it below.

Now, we would like to calculate the probability nucleation using the in-
stanton method.

The corresponding Euclidean action in de Sitter bulk can be found by
complexifying the temporal coordinate and keeping the field strength Fµνρδγ
fixed

S(E) =
∫
m

√
−γ

(
−
M2

(2)

2
R+ ρv

)
+
k2

4!

∫
m

√
−γAµνρσεµνρσ . (67)

In Euclidean space we have now closed worldsheets that split the deSitter
background spacetime of radius H−1

dS = (Λ/6)−1/2 in two regions. This is the
basic geometry of the instanton calculation.

Following [27], by using Stoke’s theorem we can transform (67) to an
instanton action that involves a volume of the spacetime enclosed by the
brane

S(E) =
∫
m

√
−γ

(
−
M2

(2)

2
R+ ρv

)
− k2F

∫
v

√
−g . (68)

For spherical worlsheets the former action is expressed through the radius R0
of the brane

S(E) =

(
ρv −

12M2
(4)

R2

)
S4(R0)− k2FV4(R0), (69)

where

S(4) =
8π2

3
R4

0, (70)

is the surface of a worldsheet of radius R0, and

V4 = π2H−5
dS φ0 −

π2H−4
dS

R0
(1−R0HdS)1/2

(
1 +

2
3
R0

)
, (71)



396 R. Cordero and E. Rojas

is the volume enclosed by the brane of radius R0 and sin(φ0) = R0HdS .
Extremizing (69) we find that the radius of the Euclidean brane is a solution
of

M2
(4)H

3
(
Υ − Λ

6H2

)1/2

(1− Υ ) =
k2F

12
, (72)

where Υ ≡ H2
dS(R0H)−2. The resulting Euclidean action is

S(E) = −6π2M2
(4)

{
4
[
(Υ − 1)− Λ

3H2

]
ΥΛ

+ 2(Υ − 1)
(

6H
Λ

)2 [
1− 1

X
tan−1X

]}
,

(73)
and the nucleation probability P ∼ e−S(E) is in agreement with (65) modulo
a normalizing factor. We now turn back to the meaning of equation (66).
The behavior of strength field Fµνρδγ is the key in this process. When k2 > 0
the value of the field decreases with respect to the original one in the region
inside and it corresponds to the screening membrane discussed in [27]. In
contrast, when k2 < 0 the field increases its value, corresponding it to the
antiscreening membrane and, as it is expected, it is less probable to produce
such a Universe. This situation resembles phenomena of vacuum decay, where
ordinary transition from false to true vacuum corresponds to k2 > 0, and the
decay of true vacuum, by means of false vacuum bubbles, corresponds to
k2 < 0 and k2F represents the difference in energy density between the false
and true vacuum.

6.2 Case B

We proceed to calculate an approximate expression for the nucleation rate at
first order, when both E and F are small. The potential is

V (a) = 4a2(1−H2a2 − EH − k2FHa
4) (74)

and the nucleation probability is

P ∼ e− 4
3H2 +EH−1+ 16k2F

15H5 (75)

in complete agreement with (66) when E vanishes.
The potential for case A, is plotted in Fig. 1 and the corresponding one for

the case B in Fig. 2. Using this kind of plots for the potential and the analytic
expressions for the nucleation rate, we can deduce that creation probability is
enhanced when the nucleation process takes place in the de Sitter background
spacetime with small radius H−1

dS .

7 Conclusions

We have calculated the nucleation probability of brane world universes in-
duced by a totally antisymmetric tensor living in a dS fixed background
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Fig. 1. Potential for case A. In this case E = 0 and k = k2F taking the values:
k = 0 (Einstein case) for the upper curve and k 
= 0 for the lower curve.
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Fig. 2. Potential for case B. In this case E 
= 0 and the background is a de Sitter
space. k = 0 for the upper curve and k 
= 0 for the lower curve.

spacetime. This was done by means of canonical quantum approach where
the Wheeler-DeWitt equation was found. Besides, we determined, for one
specific case, the nucleation rate by computing the corresponding instanton.
When the energy of the brane is zero, E = 0, in the bulk space and the cou-
pling constant of the brane with the antisymmetric field, k2, is positive, the
creation probability is enhanced with respect to the situation when there is
no interaction of the brane with the 4-form. For k2 < 0 the nucleation rate
decreases as it is expected. This situation resembles phenomena of vacuum
decay, where ordinary transition from false to true vacuum corresponds to
k2 > 0, and the decay of true vacuum by means of false vacuum bubbles
corresponds to k2 < 0. Furthermore, k2F represents the difference in energy
density between the false and true vacuum. For large expansion rate of the
de Sitter bulk we observed an increasing nucleation rate. At this point we
ask ourselves about possible brane collisions, and what is the most important
factor. The branes will be driven apart by the exponential expansion of the
bulk reducing brane collision but at the same time, there is an increase in
nucleation rate. We expect now that the problem of old inflationary model
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of the universe turns out to be an advantage: bubbles may not be produced
fast enough to completely cover the bulk.

Once the brane universe has been created it still could be hit by stealth
branes [35], however, constraining some parameters of the model the rate
of brane collisions can be reduced to an acceptable level. We think that
cosmological constraints can impose bounds on the values of k2F and with
this value one could try to answer the question: Is our universe very special?
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D.F., México. tmatos@fis.cinvestav.mx

2 Instituto de F́ısica de la Universidad de Guanajuato, A.P. E-143, 37150, León,
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Abstract. This work is a review for the progress of the scalar field dark matter
(SFDM) hypothesis. Here we outline a possible brane world model justifying the
hypothesis of the scalar field origin for the dark matter (DM). This model contains
two branes, on one of the branes lives the matter of the standard model of particles
but on the other one, only spin-0 fundamental interactions are present. In this model
these spin-0 fields are the DM and maybe the dark energy (DE). Thus, DM and DE
interact only through the gravitational force with the matter brane. Starting with
this hypothesis, we write a Lagrangian where the dark matter is of scalar origin
with a cosh scalar field potential. The scalar field with a cosh potential behaves
exactly in the same way as dust at cosmological scales. In this sense the scalar field
mimics very well cold dark matter (CDM). The free parameters of the Lagrangian
can be fixed using cosmological observations. After fixing all the free parameters of
the model, we found that a scalar field fluctuation collapses forming objects with
a preferred mass of ∼ 1012M�. Nevertheless, at galactic scales there exist some
strong differences with the CDM paradigm. The scalar field contains an effective
pression which avoids the collapse of a scalar field fluctuation, implying that scalar
field objects like galaxies contain a flat density profile in the center. This implies
that the SFDM paradigm could resolve the cusp density profile problem of galaxies.

1 Introduction

The clarification of the origin of the dark matter in the universe is doubtless
one of the most important challenges for theoretical physics and cosmology
at the present time. Several models have been proposed to get a possible
answer, but at some point they seem to have serious flaws. At the present
time, the best model we have is the so called Lambda Cold Dark Matter
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model (ΛCDM) [1, 2, 3], which can be considered as the standard cosmologi-
cal model. The most recent observations of the WMAP satellite [2] confirm
that stars and dust (made of baryons) represent something like 4% of the
whole energy density of the universe; this amount of baryonic matter is in
concordance with the limits imposed by nucleosynthesis. The new measure-
ments of the neutrino mass indicate that neutrinos contribute with less than
0.2% of the whole matter. As the WMAP observations also confirm that our
universe is flat, then we should admit that most of the matter content of the
cosmos is of unknown nature. In other words, the matter component has the
following contributions, ΩM = Ωb + Ων + · · ·+ ΩCDM ∼ 0.04 + ΩCDM ∼ 0.27,
where ΩCDM represents the cold dark matter (CDM) part of the contribu-
tions, which implies ΩCDM ∼ 0.23. Even at this point, we are still missing
matter as required for a flat universe. The next breakpoint came with the
observations of supernovae type Ia [4], which indicate an actual accelerated
expansion of the cosmos. The simplest explanation is to introduce the exi-
stence of some vacuum energy (also generically called dark energy), in the
form of a cosmological constant Λ. Then, the ΛCDM model considers a flat
universe ( ΩΛ + ΩM ≈ 1) containing 96% of unknown matter.

The dark matter candidates in the ΛCDM model are the WIMP’s, (We-
akly Interacting Massive Particles), most of them being supersymmetric par-
ticles. WIMP’s behave as dust particles, i.e., as a (cold) pressureless fluid, and
then they are very appropriate for the cosmological scales. However, CDM
seems not to be completely appropriate at galactic scales. High resolution
numerical simulations show that dust fluids follow the Navarro-Frenk-White
(NFW) density profile [5] #NFW ∼ 1/[r(r+ b)2] for galaxies, which is singular
at r → 0. This fact disagrees with recent observations on LSB galaxies [6, 7],
showing that the density profile of the dark matter in the center of galaxies
seems to be flat #obs(r → 0) ∼ const. rather than cusp. Also, CDM seems to
predict an excess of subgalactic structure [8, 9], an excess that has not been
detected at all.

There are some arguments stating that such disagreements are not fun-
damental. For example, it could be that actual telescopes have not enough
resolution to see the dark matter density cusp in the center of galaxies due
to baryonic dust or something else. Also, the excess of subgalactic structure
could be made only of CDM, and then we cannot see them because they
do not have baryonic matter at all [10]. Maybe, it is a matter of time that
we will find the right CDM physics and the disagreements will disappear.
However, it can also be argued that these disagreements between theory and
observations could be because we do not have the right candidate for CDM.
This is the reason we propose to look for other candidates which could give us
all the successful predictions of ΛCDM at cosmological scales, and the right
behavior at galactic scales.

As a motivation for the present work, let us start with the following rea-
soning. In the actual status of our understanding of the universe, there is an
apparent asymmetry in the kind of interactions that take part in Nature. The
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known fundamental interactions are either spin-1, or spin-2. Electromagne-
tic, weak and strong interactions are spin-1 interactions, while gravitational
interactions are spin-2. Of course, this could be just a coincidence. Neverthe-
less, we know that the simplest particles are the spin-0 ones. The asymmetry
lies in the fact that there is no spin-0 fundamental interactions. Why did
Nature forget to use spin-0 fundamental interactions? On the other hand, we
know from the success of the ΛCDM model that two fields currently take the
main role in the Cosmos, the dark matter and the dark energy. Recently, we
have indeed proposed that dark matter is a scalar field, that is, a spin-0 fun-
damental interaction. This is the so called Scalar Field Dark Matter (SFDM)
hypothesis [11, 12, 13, 14]. If true, this hypothesis could solve the problem of
the apparent asymmetry in our picture of nature.

Let us go further. All unification theories which try to unify gravitation
with the rest of the interactions always contain scalar fields. For instance, in
brane theory there is a scalar field, the radion, that must be stabilized, and
then this scalar field must be endowed somehow with a scalar field potential
with a minimum. This point discards that the scalar field could be identified
with the dark energy, because a dark energy scalar field (the so called Quint-
essence), must be running away when the dark energy dominates [15, 16, 17],
its potential must be exponential–like, without a minimum. On the other
hand, we know that the scalar field with a scalar field potential containing a
minimum sometimes behaves as a dust fluid 6. From the ΛCDM model, we
expect the dark matter to behave as a dust fluid at cosmic scales [1]. Then,
the radion or some scalar field of this theory could be identified with the dark
matter.

Second, it is known that a exponential–like scalar field potential fits very
well the constraints from big bang nucleosynthesis, due to its (so called)
tracker solutions [15, 16, 18], and then fine tunning can be avoided. The
most simple example of a potential with both exponential behavior and a
minimum is a cosh potential.

And third, the anisotropies of the CMB suggest that the universe should
have had an early inflationary epoch in order to solve the horizon and the
flatness problem, among others. Recently, braneworld scenarios [19, 20],
where a 3-brane hypersurface represents our observable universe, have at-
tracted a lot of interest [21, 22, 23, 24, 25, 26, 27, 28]. Originally proposed
to solve the hierarchy problem, this kind of ideas have been applied to cos-
mology where they can be confronted to astronomical observations. In brane
cosmology, the Friedmann equation (see (12) below) contains an extra qua-
dratic density term, which permits inflation to occur even in the cases not
permitted within standard cosmology [29]. As the universe expands, the qua-
dratic term of the density in the Friedmann equation becomes negligible and
then inflation comes to an end while at the same time the dynamics of stan-

6 The existence of a minimum is a necessary condition but not a sufficient one,
see [17]



404 T. Matos et al.

dard cosmology is recovered. Furthermore, it is possible for the inflaton field
to survive and become part of the dark matter at late times [29, 30, 31, 32].

This paper is organized as follows. In Sect. 2 we propose a consistent
model of inflationary dark matter within the so called braneworld model. In
Sect. 3 we study the standard cosmology for the surviving radion field, and
in Sect. 4 we discuss the behavior of this scalar field at galactic level and the
issue of structure formation under the SFDM hypothesis. Finally in Sect. 5
we give some conclusions.

2 Scalar Field Matter from Brane Cosmology

A series of theories and models like the superstring theory, have shown certain
success as fundamental theories. The main feature they show is the existence
of many scalar fields called dilatons, inflatons, radions, etc., depending on
the type of fields they are coupled to. Nevertheless, fundamental scalar fields
have not been observed in nature, and then this fundamental theories should
postulate a mechanism to decouple those scalar fields at some point in the
history of the universe.

Using the previous analysis, we start with a model which contains two
branes [33], as in the Randal-Sundrum (RS) model. Like in the RS model,
we suppose that in one of the branes lives the matter of the standard model
of particles, in this brane the fundamental interactions are all of them of
spin-1. The difference is that we suppose that in the other brane lives a set of
fundamental spin-0 interactions which interact only through the gravitational
interaction on the bulk with the first brane. Of course, we suppose that in this
second brane, with only spin-0 fundamental interactions, lives the dark mat-
ter and maybe the dark energy, if it is modelled by Quintessence. This could
explain why we are not able to see the dark matter, because it is living in the
other brane, but we are able to feel it, because it acts through the gravitatio-
nal interactions with our brane (see [33] for a extended explanation). This is
also the reason why we cannot see spin-0 fundamental interactions in the uni-
verse. They determine the structure and maybe the behavior of the universe,
but they live in the other brane, we cannot detect them, we can only feel them
through their gravitation. The universe is then, a higher-dimensional mani-
fold, which contains two three-dimensional submanifolds, i.e., two branes. In
one of them there are only spin-0 fundamental interactions while in the other
one there are only spin-1 fundamental interactions. In the higher-dimensional
manifold the fundamental interaction is the gravitational one, i.e., the spin-2
interaction. Our brane, with only spin-1 fundamental interactions, lives very
close to the other brane, feeling its presence, but not being able to see it at
all. Then, in our brane, the dark matter can be modelled effectively using a
scalar feel Lagrangian in the main action. In the next section we see that this
model contains some very nice features.



The Scalar Field Dark Matter Model: A Braneworld Connection 405

2.1 Brane World Scalar Field Dynamics

The effective action describing the scalar field dynamics in the brane world
paradigm can be obtained from the following Lagrangian

S =
∫
dx4dy

√
−G (R+ Λ) +

∫
dx4√−g

(
λb −

1
2
(∂Φ)2 − V (Φ)

)
, (1)

where
V (Φ) = V0 [cosh(

√
κ0λΦ)− 1] , (2)

is a convenient potential for the scalar field and λb is the brane tension. The
5-dimensional metric can be written as

dS2
5 = −A±dτ2 +A−1

± da2 + a2dΩ2
3 , (3)

A± = κl −
Λ±

6
a2 − 2M±

M3
(5)a

2 , (4)

being κl an integrations constant. In the cosmic time gauge the 4-dimensional
inherited metric of the brane is

dS2
4 = −dt2 + a2dΩ2

3 . (5)

The relevant equations of motion for the model are the following

(
ȧ2 +A−

)1/2 − (
ȧ2 +A+

)1/2
=
κ5aρ

3
, (6)

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 . (7)

where κ5 is the five dimensional gravitational constant. The last equation
represents the energy-momentum conservation on the brane. Here P is the
total pressure and ρ is the total energy density. If we assume that Φ = Φ(t),
the scalar field energy and pressure are expressed respectively as

#Φ =
1
2
Φ̇2 + V (Φ) , (8)

pΦ =
1
2
Φ̇2 − V (Φ) . (9)

These equations can be cast as

ȧ2 +
1
2
(A+ +A−) =

3
4
κ2

5a
2#2 +

(
3

2κ5a#

)2

(A+ −A−)2 , (10)

where ρ = #Φ + λb. For Z2 symmetry the former equation can be written in
the following way
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H2 =
ȧ2

a2 =
−κ2

l

a2 +
3
2
κ2

5λ#Φ(1 + #Φ/2λb) +
Λ
6

+
3
4
κ2

5λ
2
b +

2M
M3

(5)a
4 . (11)

For flat geometry (κl = 0) and vanishingM we get

H2 =
3
2
κ2

5λb#Φ(1 + #Φ/2λb) +
Λ
6
. (12)

Einstein cosmology in four-dimensions is recovered when the brane tension is
significantly higher than energy density λb 	 #Φ. The quadratic correction
is important at high energies and means that the expansion rate is increased
with respect to the standard Einstein cosmology. Analysis of the dynamics
of this system has been done in [36, 29, 30, 31, 32, 38].

If we were interested in a zero effective cosmological constant Λ we would
require fine-tuning, but the changes to the former analysis would be negli-
gible.

2.2 Inflation in the Braneworld Scenario

The appealing feature of the braneworld model described above is that it in-
spired new ideas about inflationary cosmology, which would have taken place
in the high-energy regime of (12) corresponding to the early universe. Under
quite general conditions, there is an extra-friction induced on the KG equa-
tion due to the quadratic density term in (12). This allows for the existence
of inflationary solutions for steep scalar field potentials, which are otherwise
not capable of supporting inflation in standard cosmology[29, 30, 31].

We assume that the scalar (inflaton) field Φ was initially displaced from
the global minimum of its cosh potential, κ0λ

2Φ2 	 1, which is a reasonable
assumption if we think of the high energy scales of the very early universe. In
this limit, the potential (2) can be approximated by an exponential function.
Braneworld inflation driven by such a potential has been studied in [29, 31,
32].

Recalling the main results, the COBE normalization of the cosmic micro-
wave background (CMB) power spectrum relates the value of the brane ten-
sion to the scalar field self–coupling such that λ1/4

b λ3/2 ≈ 1015 GeV. For the
favored value of the latter, as implied by (21) below, we deduce that

λb �
(
6× 10−7M4

)4
= 2.88× 1051 GeV4 . (13)

For these given values of {λ, λb}, the magnitude of the potential energy at the
end of inflation is Vend � (3.2×10−6M4)4 = 2.33×1054 GeV4 and this implies
that Φend ≈ 2M4, thus justifying the exponential approximation during the
inflationary era.

An important inflationary parameter is the spectral index ns of the scalar
fluctuation spectrum, which is given by to be [31]
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ns = 1− 4
N + 1

= 0.94 , (14)

where N ≈ 70 is the number of e-foldings that elapse between the epoch that
a given observable mode crosses the Hubble radius during inflation and the
end of the inflationary epoch. Remarkably, the tilt of the scalar perturbation
spectrum in this scenario is uniquely determined by the number of e–foldings
and is independent of the parameters in the potential (2). Furthermore, the
amplitude of the primordial gravitational wave spectrum, AT , relative to that
of the density perturbations, AS , can be estimated as [29]

r = 4π
A2
T

A2
S

� 0.4 (15)

implying after COBE normalization that A2
T ≈ 1.7×10−10. This ratio is also

independent of the model’s parameters and is within the projected sensitivity
of the Planck satellite. It provides a potentially powerful test of the model.

Inflation ends when the quadratic corrections to the Friedmann equation
(12) become negligible. Due to the steep nature of its potential, the inflaton
then behaves as a massless field, where its energy density redshifts as #Φ ∝
a−6. For the reheating of the universe after inflation, we can think of different
mechanisms. One first option would be reheating via gravitational particle
production due to the time–variation of the gravitational field [37].

However, there are some caveats of the model that should be mentioned.
First, the tilted spectral index (14) is at variance with current observations
of the CMB anisotropies [2], which favor a flat spectral index ns � 1. Second,
there is an excess of gravitational waves produced between the end of inflation
and the expected recovering of standard cosmology that the latter is not
recovered at all. After inflation we have a gravitational waves dominated
universe, which seems to be a typical feature of these models[31].

Fortunately, these caveats can be cured if we consider the existence of
another scalar field within the so called curvaton hypothesis [38]. Such ano-
ther scalar field is not rare since most super theories consider the existence
of more than one scalar field. The curvaton field takes the main role for the
predictions, and then both a flat ns and a low density of gravitational wa-
ves can be achieved. Moreover, the universe is reheated through the decay
of the curvaton field, which is a more efficient reheating mechanism than
gravitational particle production.

Notice then that, even within the curvaton hypothesis, the decay of the
inflaton field after inflation is not a necessary condition for reheating to occur.
This implies that the inflaton field can survive until late times to play other
roles in the evolution of the universe, like being part of the missing (dark)
matter revealed by observations. In particular, we describe here how the
inflaton field associated to the potential (2) could become the CDM at late
times[30, 31, 32].
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3 Scalar Field Dark Matter in the Cosmological Context

As we mentioned before, the CDM model has become a paradigm for the
missing matter responsible for the formation of the large scale structure in
the universe, from galaxies to clusters of galaxies. In this respect, we can
determine the values of the free parameters of a scalar field dark matter
model by comparing its evolution to CDM. Such comparison should be done
also at the level of linear perturbations. The latter are important, since we
should recover the successful picture of structure formation of CDM, in which
primordial perturbations grow by means of gravitational instability.

As mentioned in a previous section, after inflation, we expect to recover
the standard Big Bang scenario in which nucleosynthesis can proceed suc-
cessfully, as suggested by observations and the Standard Model of Particles.
This occurs during the epoch of radiation domination, in which the scalar
field dark matter evolves with an effective exponential potential. The coexi-
stence of the two fluids, radiation and scalar field, is restricted by a successful
nucleosynthesis scenario. The ratio of the scalar field (#Φ) and radiation (#γ)
energy densities at that time should be [18]

#Φ

#γ
=

4
λ2 − 4

< 0.2 . (16)

Observe that the ratio is a constant determined uniquely by the self-coupling
λ, that indicates that the scalar field evolves, along its attractor solution, as
radiation.

After that, the scalar field reaches the minimum of its potential, and starts
to oscillate around it so rapidly that the universe only feels the average energy
density and pressure of the field. In fact it can be shown that

< #Φ >� #CDM , (17)

and then the scalar field evolves now as pressureless matter, < pΦ >� 0
[17, 14, 39, 12, 40, 41]. In order to have a scalar field dark matter model
equivalent to CDM at cosmic scales, it is required that the free parameters
of the cosh potential obey the following relation,

κ0V0 �
1.7
3

(
λ2 − 4

)3 (Ω0CDM

Ω0γ

)3

Ω0CDMH
2
0 , (18)

where Ω0i is the current density parameter of the ith-matter component.
Equation (18) shows the allowed values of {λ , V0} to have an appropriate

model of scalar dark matter, one that can mimic the standard CDM mo-
del. Up to now, the parameters of the cosh potential cannot be determined
uniquely, but more information is necessary. As we shall see below, such in-
formation can be taken from the theory of linear perturbations.
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3.1 Damping of the Scalar Power Spectrum

As more and new cosmological observations are appearing, it is always a must
to check whether the correspondence between SFDM and CDM is preserved
at the level of linear perturbations, where CDM is very successful.

When a detailed analysis of scalar perturbations is made [12, 40], it is
found that the processed mass power spectrum for the SFDM, in the linear
regime, is much the same as the CDM spectrum. Actually, the two spectra
are related through the formula[39]

PΦ(k) =
[
cos(x3)
1 + x8

]2

PCDM(k) , (19)

where x = k/kc, with k the wave number of the different cosmological scales
involved in the analysis. kc corresponds to a cutoff scale below which linear
perturbations are highly suppressed, and whose value is given by

kc � 1.3λ
√
λ2 − 4

Ω0CDM√
Ω0γ

H0 . (20)

If we take a cut-off of the mass power spectrum at kc = 4.5hMpc−1[8], we
find that

λ � 20.3,

V0 �
(
3.0× 10−27mPl � 36.5 eV

)4
, (21)

mΦ � 9.1× 10−52mPl � 1.1× 10−23 eV.

All parameters of potential (2) are now completely determined.
We would like to mention that the results shown in (21) are not unchange-

able, since the cutoff scale kc could take a larger value; in fact, the larger the
cutoff wavenumber value the more similar the SFDM is to the CDM model.
However, it is worth to mention that the free parameters of the particular
model (2) can be determined from cosmological observations only. As we shall
see below, the values in (21) seem to be the appropriate ones for the model
to fulfill the requisites of non-linear structure formation.

4 Scalar Field Dark Matter and Structure Formation

At galactic scale, the CDM paradigm predicts a density profile which corre-
sponds to the Navarro-Frenk-White (NFW) profile [5] given by

#NFW =
#0

(r/r0)(r/r0 + 1)2
, (22)

where r is the radial coordinate and r0 is a parameter. However, this profile
seems to have some differences with the inferred profiles from observations on
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LSB galaxies[6]. The evidence points to the fact that, in the central regions,
galaxies prefer to follow an almost constant density profile. The point is that
the NFW model has the support of N-body simulations and has proved to be
consistent with observations at cosmic scales, whereas the new observations
have no cosmic counterpart that could support them, and it is here where
the SFDM shows some advantages with respect to NFW as shown below [9].

The formation of galaxies through gravitational collapse of dark matter is
not an easy problem to understand. A good model for galaxy formation has
to take into account all the observed features of real galaxies. For example, it
seems that many disk galaxies contain a black hole in their center, but others
do not [42]. Typical galaxies are spiral, elliptical or dwarf galaxies (irregular
galaxies may be galaxies still evolving). In most spiral and elliptical galaxies
the luminous matter extends to ∼ 10−30 kpc, and the total content of matter
(including dark matter) is of the order of 1010−1012 M�, with about 10 times
more dark matter than luminous component. The central density profile of
the dark matter in galaxies should not be cusp[43]. Even though the luminous
matter is only a small fraction of the total amount of matter in galaxies, it
plays an important role in galaxy formation and stability, etc.

Let us now draw the general picture for the gravitational collapse of a
scalar field. It is known that the final stage of a collapsed scalar field could be
a massive object made of scalar field particles in quantum coherent states, like
boson stars (for a complex scalar field) or oscillatons (for a real scalar field)
[44, 45]. It is thus important to investigate whether the scalar field would
collapse to form structures of the size of galaxies and provide the correct
properties of any galactic dark matter candidate, like growing rotation curves
and appropriate dark matter distribution functions. Also, we need to know
which are the conditions that must be imposed on the scalar field particles.

For instance, axions are massive scalar particles with no self–interaction.
In order for axions to be an essential component of the dark matter content
of the Universe, their mass should be m ∼ 10−5 eV. With this axion mass,
the scalar field collapses forming compact objects with masses of order of
Mcrit ∼ 0.6m2

Pl/m ∼ 10−6 M� [44, 45], which corresponds to objects with
the mass of a planet. Since the amount of dark matter in galaxies is ten times
bigger than the luminous matter, we would need tenths of millions of such
objects around the solar system, which is clearly not the case. Also, these
candidates behave just like standard CDM, and then they cannot explain the
observed scarcity of dwarf galaxies and the smoothness of the galactic-core
matter densities. That is, they should behave as objects made of baryonic
matter do, except that they do not emit light; in such case this type of stars
should be distributed as luminous matter is. In one word, such scalar field
stars have been proposed as dark matter simply because they could account
for the total amount of matter in the whole universe, without taking care of
the local effect like rotation curves.

Let us return to the SFDM hypothesis for a real scalar field Φ (for a
complex counterpart picture, see [46]). If a galaxy is an oscillaton, i.e., an
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oscillating soliton object, it must correspond to coherent scalar oscillations
around the minimum of the scalar potential (2). The scalar field Φ and the me-
tric coefficients (considering the spherically symmetric case) would be time-
dependent, though it has been shown that such a configuration can be stable,
non-singular and asymptotically flat [44, 47, 48, 49, 50]. For the collapse of a
real scalar field, the critical value for the mass of an oscillaton (the maximum
mass for which a stable configuration exists) will depend on the mass of the
boson. Roughly speaking, if we take mΦ = 10−23 eV (see (21)), and use the
formula for the critical mass of the oscillaton corresponding to a scalar field
with a Φ2 potential (i.e. just a mass term), we expect the critical mass to
be [44, 45, 50]

Mcrit ∼ 0.6
m2

Pl

mΦ
∼ 1012 M� . (23)

which means that the critical mass of the cosmological model depicted in
Sect. 3 is of the order of magnitude of the dark matter content of a standard
galactic halo.

The scenario of galactic formation we assume is the following. A sea of
scalar field particles fills the Universe and forms localized primordial fluctua-
tions that could collapse to form stable objects, which we will interpret as the
dark matter halos of galaxies. The equations governing the evolution of such
scalar galaxy halos correspond to the Einstein-Klein-Gordon (EKG) system,
which we show below applied to the simplest case of spherical symmetry.

The spherically symmetric line element is written in the form

ds2 = −α2(r, t)dt2 + a2(r, t)dr2 + r2dΩ2 , (24)

with α(r, t) the lapse function and a2(r, t) the radial metric function, and
where we have chosen the polar-areal slicing condition (i.e. we force the line
element to have the above form at all times, so that the area of a sphere with
r = R is always equal to 4πR2). This choice of gauge will force the lapse
function α(r, t) to satisfy an ordinary differential equation in r (see below).
The energy momentum tensor of the scalar field is

Tµν = Φ,µΦ,ν −
1
2
gµν [Φ,σΦ,σ + 2V (Φ)] . (25)

We now introduce the first order variables Ψ = Φ,r and Π = aΦ,t/α, with
which the Hamiltonian constraint becomes

a,r
a

=
1− a2

2r
+
κ0r

4
[
Ψ2 + Π2 + 2a2V

]
, (26)

and the polar-areal slicing condition takes the form:

α,r
α

=
a,r
a

+
a2 − 1
r
− κ0ra

2V . (27)
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All other components of Einstein’s equations either vanish, or are a con-
sequence of the last two equations. The Klein-Gordon (KG) equation now
reads

Φ,t =
α

a
Π , (28)

Π,t = 3
∂

∂(r3)

(
r2αΨ
a

)
− aα dV

dΦ
(29)

Ψ,t =
(
αΠ
a

)
,r

. (30)

Equations (26-30) form the complete set of differential equations to be solved
numerically.

The study of the evolution of oscillatons is a very interesting field by itself
and its description would deserve more space in this text [44, 47, 48, 49, 50].
However, we will focus our attention on the results related to the SFDM
hypothesis and the non-linear collapse of density perturbations.

Fortunately, the collapse of scalar fluctuations under realistic conditions
does not require the solution of the relativistic EKG system. We can make
use of some approximations to show the promising features of the SFDM at
galactic level.

4.1 The Flat Space-Time Approximation

In order to show some properties of scalar halos, we start by taking the
simplest approximation, that is, the flat space-time approximation. A scalar
field object (an oscillaton) in flat space-time contains a flat central density
profile, as it seems to be the case in galaxies [47, 51]. In order to see this,
we study a massive oscillaton with potential V = 1

2m
2
ΦΦ2 in the Minkowski

background. Even though it is not a solution to the Einstein equations as
we are neglecting the gravitational force provoked by the scalar field, the
solution is analytic and helps us to understand some features that appear in
the non-flat oscillatons.

Using spherical coordinates, the KG equation in the Minkowski spacetime
reads

Φ′′ +
2
r
Φ′ −m2

ΦΦ = Φ̈ (31)

where over-dot denotes ∂/∂t and prime ∂/∂r. The exact general solution for
the scalar field Φ is

Φ(t, r) =
e±ikr

r
e±iωt (32)

from which we obtain the dispersion relation k2 = ω2−m2
Φ. For ω > mΦ the

solution is non-singular and vanishes at infinity. We will restrict ourselves to
this case. It is more convenient to use trigonometric functions and to write
the particular solution in the form



The Scalar Field Dark Matter Model: A Braneworld Connection 413

Φ(t, x) = Φ0
sin(x)
x

cos(ωt) (33)

where x = kr. It oscillates in harmonic manner in time. The scalar field
spreads over all space, i.e., it is not confined to a finite region, as we are
neglecting the gravitational interactions.

The analytic expression for the scalar field energy density derived from
(33) is

#Φ =
1
2
Φ0

2

{[(
x cos (x)− sin (x)

x2

)2

− sin2 (x)
x4

]
k4 cos2 (ω t) +

ω2k2 sin2 (x)
x2

}

(34)
which oscillates with a frequency 2ωt. Observe that close to the central regions
of the object, the density of the oscillaton behaves like

#Φ ∼
1
2
Φ0

2k2 [ω2 − k2 cos2 (ω t)
]
+O(x2) (35)

which implies that the density is almost constant in the central regions, i.e.
when x→ 0 the central density oscillates around a fixed value.

On the other hand, the asymptotic behavior when x → ∞, is such that
#Φ ∼ 1/x2, i.e., far away from the center, the flat oscillaton density profile be-
haves like that of an isothermal halo sphere (IHS): the mass function oscillates
around M ∼ x at large distances from the center. Nevertheless, if the gra-
vitational interaction is taken into account, the object must be confined[47]
and the integrated mass of the scalar field gives a finite value. In Fig. 1 we
show the comparison between the NFW, the IHS and a flat oscillaton for the
same galaxy. Observe that the flat oscillaton and NFW profiles remain very
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Fig. 1. Comparison between the energy density profile for the Scalar Field Dark
Matter model with the NFW and the Isothermal models. The parameters for the
isothermal model are ρISO = 0.3/(r2 + 82) and for the NFW profile are ρNFW =
10/(r(r + 8)2). The parameter used for the SFDM model are k = 0.2,

√
κ0Φ0 =

5 × 10−2 in 33.
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similar up to 100 kpc, then the flat oscillaton profile starts to follow the 1/r2

behavior, as the IHS one. The parameters used in the figures, correspond to
a middle size galaxy.

As simple as the flat-spacetime approximation can be, it still shows that
the density profile at the center of a scalar halo should be flat, as suggested by
observations in galaxies. The self–gravity of the latter, if taken into account,
will just change the profile at large distances from the center [47].

4.2 The Formation of Scalar Field Galaxy Halos

When the scalar field fluctuations reaches the non-linear regime, the scalar
field collapses in a different way as the standard CDM. In a normal dust
collapse, as for example in CDM, there is in principle nothing to avoid that
the dust matter collapses all the time. There is only a radial gravitational
force that provokes the collapse, and to stop it, one needs to invoke some
virialization phenomenon.

In the scalar field paradigm the collapse is different. The radial and an-
gular pressures are two natural components of the scalar field which prevent
the collapse, avoiding the cusp density profiles in the centers of the collapsed
objects (for details, see [50]). This is the main difference between the nor-
mal dust collapse and the SFDM one. The pressures play an important role
in the SFDM equilibrium. In order to see this, as galaxies have an almost
flat background, the Newtonian approximation of the EKG system (26-30)
should be sufficient to understand them. This time, we will fully incorporate
the influence of gravity in the process [52].

The weak field limit of the EKG equations arises when α2 − 1, a2 −
1,
√

8πGΦ < 10−3 [45, 47]. We start by writing the scalar field and the
metric coefficients in terms of the Newtonian fields ψ,U, U2, A,A2 as

√
8πGΦ = e−iτψ(τ, x) + C.C. , (36)

α2 = 1 + 2U(τ, x) + e−2iτU2(τ, x) + C.C. , (37)
a2 = 1 + 2A(τ, x) + e−2iτA2(τ, x) + C.C. , (38)

where we have also introduced the dimensionless quantities τ = mt, x = mr.
Notice that only U,A are real fields. Next, we assume that all the new fields
are of order O(ε2) � 1, and that their derivatives obey the standard post-
Newtonian rules ∂τ ∼ ε∂x ∼ O(ε4). Therefore, considering the leading order
terms only, the EKG equations now read

i∂τψ = − 1
2x
∂2
x(xψ) + Uψ , (39)

∂2
x(xU) = xψψ∗ , (40)
∂xU2 = −xψ2 . (41)

In addition, A(τ, x) = x∂xU and A2 ∼ O(ε4), that is, the metric coefficient
grr can be taken plainly as time-independent.
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It should be stressed here that the whole dynamics of the EKG system is
contained in (39) and (40), which are the so-called Schrödinger–Newton (SN)
equations[45, 46, 47, 53, 54, 55]; which also stand for the post-Newtonian
expansion with complex scalar fields [45]. For example, under appropriate
boundary conditions, stationary solutions of (39), (40) and (41) are in turn
the so-called Newtonian oscillatons[47]. Indeed, (41) only arises for real scalar
fields and represents the particular oscillatory behavior of the metric for
oscillatons [44, 47, 49, 50].

For the initial data, we take the profile

ψi(0, x < x0) = ψ0
sin(x/σ)
(x/σ)

, (42)

ψi(0, x > x0) = ψ1

exp
[
−
√

2|U0|σ2 − 1 (x/σ)
]

x
.

where (x0/σ) � (n+1)π <
√

2|U0|x0, where n = 0, 1, 2, ... labels the number
of nodes of the initial profile, and x0 = mR0 with R0 is the physical size of
the initial matter fluctuation. ψ1 is evaluated from the continuity condition
of the radial function at x = x0. This profile is the simplest we can imagine
that depicts the expected characteristics of a realistic scalar fluctuation: a
confined wave function with nodes. More details can be found in[52].

We mention here that SN system is invariant under the scaling transfor-
mation

{τ, x, U, U2, ψ} →
{
β−2τ̂ , β−1x̂, β2Û , β2Û2, β

2ψ̂
}

(43)

where β is an arbitrary parameter. By means of (43) and an appropriate β,
the collapse of our fluctuation can be reduced to the study of a conveniently
sized configuration concerning hat-quantities only. Once the hat-configuration
has been evolved, we apply the inverse transformation to recover the physical
(no-hat) quantities.

We focus now on the numerical solution to the SN equations. Once the
initial profile ψi(0, x) is given, the Poisson equation (40) is integrated with a
second order accurate upwind method inwards under the boundary condition
U(τ, xf ) = GM(τ, xf )/xf (being xf the last point of our spherical grid),
which is valid at each time slice according to the Newton theorems regarding
spherical objects. The next scalar configuration is determined by solving the
Schrödinger equation (39) using a second order finite differences fully implicit
Cranck-Nicholson method [56]. The procedure is then repeated forward in
time.

The accuracy depends on the time step ∆τ and the grid resolution ∆x,
which should be chosen appropriately to assure that |∆ψ|/|ψ| � 1 in a time
step. Thus, we should comply with both ∆τ/(∆x)2 ≤ 1 and [∆τ/(∆x)2]|1 +
U(∆x)2| < 1. The former is the condition applied to a free wave function,
and the latter takes into account the presence of a potential in (39).
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Fig. 2. Evolution of a 5-node initial scalar fluctuation of the form (42), see the text
for details. Left: Profiles of the rotation curves v(r) =

√
GM(r)/r at different times.

Right: Evolution of the ratio Kinetic Energy/|Gravitational Potential Energy| (solid
line), which shows the virialization of the two systems, and the total integrated mass
M (dotted line). It is worth to notice the so called gravitational cooling after free
fall of the system.

In Fig. 2 we show the run of an initial 5–node scalar fluctuation for a
single scalar halo, whose initial physical parameters are M0 = 1011 M� and
R0 = 70 kpc. The corresponding scale parameter is β2 = 6.38×10−6, and then
σ̂ = 14.6. The grid spacing is ∆x̂ = 0.25 with the boundary at x̂f = 1250.
The time step is ∆τ̂ = 3 × 10−2, and the run was followed up to a physical
time of T0 = 30 Gyr.

We see in Fig. 2 that the initial rotation curve profile is almost flat, but
such flatness is lost at late times during the collapse. The scalar configuration
rapidly virializes and forms a giant Newtonian oscillaton, almost as large as
a realistic dwarf galaxy. The study of the SN system can be extended to the
3-dimensional case where the inclusion of a matter fluid is made through the
r.h.s. of the Poisson equation (40). This issue will be reported elsewhere.

4.3 Supermassive Black Holes

It is worth to mention here that we can study the interaction between a scalar
halo and a supermassive black hole at its center [57], as recent observations
indicate is the case in real galaxies [42].

In this respect, for the SFDM hypothesis to survive, it should be shown
that the central black hole does not represent a serious threat for the exi-
stence of a scalar halo. This is done, in first approximation, by solving the
KG equation for a scalar field living in a fixed Schwarzschild background.
This approximation is valid since the Schwarzschild radius of a typical su-
permassive black hole is smaller compared to the Compton length of a scalar
particle of dark matter7, rS � m−1

Φ . The manifestation of the self-gravity of
the scalar halo occurs at larger scales than m−1

Φ .
7 rS � 10−13 (Mbh/M�) pc.
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From approximate analytical solutions of the KG equation, we can deter-
mine the fraction of incoming particles absorbed by the black hole (Γ), and
the corresponding accretion rate of scalar matter. The results are, respec-
tively,

Γ = 4π (mΦrS)3 , (44)
dMΦ

dt
= 4π (Φ0mΦrS)2 , (45)

where Φ0 is the value of the scalar field (in units of κ−1/2
0 ) near the horizon.

For typical values of the parameters involved, we get that Γ ∼ 10−20 and
an accretion rate of around 10−14M� y−1. This simple calculation shows that
a scalar galaxy halo and a supermassive black hole can coexist.

5 Conclusions

In principle, it is possible to consider a braneworld model with an adequate
Lagrangian in order to construct a consistent inflaton–dark matter scenario.
The price we have to pay is that the inflaton remains after inflation and
behaves as dark matter at the present epoch.

After inflation, the scalar dark matter we studied reproduces the success of
the standard model of CDM, which seems to be correct at cosmological scales.
We would like to stress that the SFDM gives the same results as the CDM
model for both the homogeneous and the linearly perturbed cosmological
evolutions.

On the non-linear realm of perturbations, we can track the evolution of
scalar matter fluctuations through the use of numerical General Relativity.
For the case of real scalar fields, scalar fluctuations collapse to form objects,
called oscillatons, with a preferred mass of ∼ 1012 M�. These objects are
virialized and stable during periods of time longer than the actual age of the
universe. Moreover, their density profiles are completely regular, i.e., without
cusp centers, in a similar way as for real galaxies. This is encouraging enough
[49, 58], to continue considering the scalar field as a good candidate to be the
dark matter in the universe.

As a caution remark, we would like to mention that even if it is possible
to identify the inflaton with the scalar field dark matter within braneworld
models, this might not be necessarily the case. Despite the feasibility of the
braneworld models, the results presented for epochs after inflation are still
valid even if the dark matter scalar field were not fundamental. We should
wait for more accurate observations to restrict the free parameters of the
SFDM model and its relation to an inflationary epoch.

In conclusion, we have proposed a simple and unified model of inflatio-
nary dark matter, where the same scalar field provides the origin for the
primordial spectrum of density perturbation (which are produced quantum–
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mechanically) and later plays an important role evolving them to form the
cosmological structures we observe today.
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We would like to thank Aurelio Esṕıritu for technical suport. This work was
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References

1. N. A. Bahcall, J. P. Ostriker, S. Perlmutter and P. J. Steinhardt, Science 284,
1481-1488. V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 9, 373-444 (2000).

2. D. N. Spergel et al, astro-ph/0302209. J. L. Sievers et al, astro-ph/0205387.
3. A. R. Liddle and D. H. Lyth, Cosmological inflation and large-scale structure

(Cambridge University Press, 2000). T. Padmanabhan, Structure formation in
the universe (Cambridge University Press, 1993).

4. S. Perlmutter et al. ApJ 517 (1999)565. A. G. Riess et al., Astron.J. 116
(1998)1009-1038.

5. J. Navarro, C. S. Frenk and S. S. M. White. ApJ 490, 493 (1997).
6. W. J. G. de Blok, S. S. MacGaugh, A. Bosma and V. C. Rubin, ApJ 552, L23

(2001). S. S. MacGaugh, V. C. Rubin and W. J. G. de Blok, ApJ 122, 2381
(2201). W. J. G. de Blok, S. S. MacGaugh and V. C. Rubin, ApJ 122, 2396
(2001).

7. J. J. Binney and N. W. Evans, MNRAS 327 L27 (2001). Blais-Ouellette, C.
Carignan, and P. Amram, E-print astro-ph/0203146. C. M. Trott and R. L.
Wesbster, E-print astro-ph/0203196. P. Salucci, F. Walter and A. Borriello,
E-print astro-ph/0206304.

8. M. Kamionkowski and A. R. Liddle, Phys. Rev. Lett. 84, 4525 (2000).
9. D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000); B. D.

Wandelt, R. Dave, G. R. Farrar, P. C. McGuire, D. N. Spergel, and P. J. Stein-
hardt, astro-ph/0006344; C. Firmani, E. D’Onghia, V. Avila-Reese, G. Chin-
carini, and X. Hernández, MNRAS 315, L29 (2000); C. Firmani, E. D’Onghia,
G. Chincarini, X. Hernández, and V. Avila-Reese, MNRAS 321, 713 (2001);
M. Kaplinghat, L. Knox, and M. S. Turner, Phys. Rev. Lett. 85, 3335 (2000).

10. N. Trentham, O. Moeller and E. Ramirez-Ruiz, MNRAS 322 658 (2001).
11. F. S. Guzmán and T. Matos, Class. Quant. Grav. 17, L9-L16 (2000). E-print

gr-qc/9810028.
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16. L. A. Ureña-López and T. Matos, Phys. Rev. D 62, 081302 (2000).
17. V. Sahni and L. Wang, Phys. Rev. D 62, 103517 (2000).
18. P. G. Ferreira and M. Joyce, Phys. Rev. D 58, 023503 (1998).
19. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998);

I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett.
B436, 257 (1998).

20. L. Randall and R. Sundrum, Phys. Rev. Lett 83, 3370 (1999); 4690 (1999).
21. G. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B 484, 112 (2000).
22. C. Deffayet, Phys. Lett. B 502, 199 (2001).
23. G. Dvali, G. Gabadadze, Phys. Rev. D 63, 065007 (2001).
24. P. Binetruy, C. Defayyet, and D. Langlois Nucl. Phys. B 565, 269 (2000).
25. D. Ida, JHEP 0009, 014 (2000).
26. N. Deruelle and T. Dolezel, Phys. Rev. D 62, 103502 (2001).
27. P. Bowcock, C. Charmousis and R. Gregory, Class. Quant. Grav. 17, 4745

(2000).
28. A. C. Davis, S. C. Davis, W. B. Perkins and I. R. Vernon, Phys.Lett B 504,

254 (2001).
29. E. J. Copeland, A. R. Liddle, and J. E. Lidsey, Phys. Rev. D 64, 023509 (2001).
30. G. Huey and J. Lidsey, Phys. Lett. B514, 217 (2001).
31. V. Sahni, M. Sami, and T. Souradeep, Phys.Rev. D 65, 023518 (2002).
32. J.E. Lidsey, T. Matos and L.A. Ureña-López, Phys. Rev. D 66 023514 (2002).
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Abstract. After a brief introduction to classical and quantum gravity we discuss
applications of loop quantum gravity in the cosmological realm. This includes the
basic formalism and recent results of loop quantum cosmology, and a computation of
modified dispersion relations for quantum gravity phenomenology. The presentation
is held at a level which does not require much background knowledge in general
relativity or mathematical techniques such as functional analysis, so as to make the
article accessible to graduate students and researchers from other fields.

1 Introduction

According to general relativity, not only the gravitational field but also the
structure of space and time, the stage for all the other fields, is governed by
the dynamical laws of physics. The space we see is not a fixed background, but
it evolves on large time scales, even to such extreme situations as singularities
where all of space collapses into a single point. At such a point, however,
energy densities and tidal forces diverge; all classical theories break down,
even general relativity itself. This implies that general relativity cannot be
complete since it predicts its own breakdown. Already for a long time, it has
been widely expected that a quantum theory of general relativity would cure
this problem, providing a theory which can tell us about the fate of a classical
singularity.

Most of the time, quantum gravity has been regarded as being far away
from observational tests. In such a situation, different approaches would have
to be judged purely on grounds of internal consistency and their ability to
solve conceptual problems. Those requirements are already very restrictive for
the quantization of a complicated theory as general relativity, to the extent
that in all the decades of intense research not a single completely convincing
quantum theory of gravity has emerged yet, even though there is a number
of promising candidates with different strengths. Still, the ultimate test of a
physical theory must come from a confrontation with observations of the real
world. For quantum gravity, this means observations of effects which happen
at the smallest scales, the size of the Planck length �P ≈ 10−32cm.
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In particular in the light of recent improvements in precision cosmology,
the cosmological arena seems to be most promising for experimental tests.
This is fortunate since also many conceptual issues arise in the cosmological
setting where the universe is studied as a whole. Examples are the singularity
problem mentioned above and the so-called problem of time which we will
address later. Therefore, one can use the same methods and approximations
to deal with conceptual problems and to derive observational consequences.

One of the main approaches to quantum gravity is based on a canonical
quantization of general relativity, which started with the formal Wheeler–
DeWitt quantization and more recently evolved into quantum geometry. Its
main strength is its background independence, i.e. the metric tensor which
describes the geometry of space is quantized as a whole and not split into a
background and a dynamical part. Since most familiar techniques of quantum
field theory rely on the presence of a background, for this ambitious approach
new techniques had to be invented which are often mathematically involved.
By now, most of the necessary methods have been developed and we are
ready to explore them in simple but physically interesting situations.

Being the quantization of a complicated, non-linear field theory, quantum
gravity cannot be expected to be easily understood in full generality. As
always in physics, one has to employ approximation techniques which isolate
a small number of objects one is interested in without taking into account
all possible interactions. Prominent examples are symmetric models (which
are usually called minisuperspaces in the context of general relativity) and
perturbations of some degrees of freedom around a simple solution. This
opens the possibility to study the universe as a whole (which is homogeneous
and isotropic at large scales) as well as the propagation of a single particle
in otherwise empty space (where complicated interactions can be ignored).

These two scenarios constitute the two main parts of this article. In the
context of the first one (Sect. 5) we discuss the basic equations which govern
the quantum evolution of an isotropic universe and special properties which
reflect general issues of quantum gravity. We then analyze these equations
and see how the effects of quantum geometry solve and elucidate important
conceptual problems. Quantum gravity effects in these regimes also lead to
modifications of classical equations of motion which can be used in a phe-
nomenological analysis. A different kind of phenomenology, related to the
propagation of particles in empty space, is discussed in Sect. 6. In this con-
text cosmological scales are involved for many proposals of observations, and
so they fit into the present scheme.

Both settings are now at a stage where characteristic effects have been
identified and separated from the complicated, often intimidating technical
foundation. This is a natural starting point for phenomenological analyzes
and opens a convenient port of entry for beginners to the field.

The article is intended to describe the basic formalism to an extent which
makes it possible to understand the applications without requiring too much
background knowledge (the presentation cannot be entirely background inde-
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pendent, though). The general framework of quantum geometry is reviewed
briefly in Sect. 4 after recalling facts about general relativity (Sect. 2) and the
Wheeler–DeWitt quantization (Sect. 3). For the details we provide a guide
to the literature including technical reviews and original papers.

2 General Relativity

General relativity is a field theory for the metric gµν on a space-time M which
determines the line element4 ds2 = gµν(x)dxµdxν . The line element, in turn
specifies the geometry of space-time; we can, e.g., measure the length of a
curve C : R→M, t �→ xµ(t) using

�(C) =
∫

ds =
∫ √

gµν(x(t))ẋµ(t)ẋν(t) dt .

2.1 Field Equations

While a space-time can be equipped with many different metrics, resulting
in different geometries, only a subclass is selected by Einstein’s field equati-
ons of general relativity which are complicated non-linear partial differential
equations with the energy density of matter as a source.

They can be understood as giving the dynamical evolution of a space-like
geometry in a physical universe. Due to the four-dimensional covariance,
however, in general there is no distinguished space-like slice which could
be used to describe the evolution. All possible slices are allowed, and they
describe the same four-dimensional picture thanks to symmetries of the field
equations.

Selecting a slicing into space-like manifolds, the field equations take on
different forms and do not show the four-dimensional covariance explicitly.
However, such a formulation has the advantage that it allows a canonical
formulation where the metric qab only of space-like slices plays the role of co-
ordinates of a phase space, whose momenta are related to the time derivative
of the metric, or the extrinsic curvature Kab = − 1

2 q̇ab of a slice [1]. This is in
particular helpful for a quantization since canonical quantization techniques
become available. The momentum conjugate to the metric qab is related to
the extrinsic curvature by

πab = − 1
2

√
det q (Kab − qabKc

c )

where indices are raised by using the inverse qab of the metric. The dynamical
field equation, the analog of Einstein’s field equations, takes the form of a
4 In expressions with repeated indices, a summation over the allowed range is

understood unless specified otherwise. We use greek letters µ, ν, . . . for space-
time indices ranging from zero to three and latin letters from the beginning of
the alphabet, a, b, . . . for space indices ranging from one to three.
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constraint,5 the Hamiltonian constraint

8πG
√

det q (qacqbd + qadqbc − qabqcd)πabπcd −
1

16πG

√
det q 3R(q)

+
√

det q ρmatter(q) = 0 (1)

where G is the gravitational constant, 3R(q) the so-called Ricci scalar of
the spatial geometry (which is a function of the metric q), and ρmatter(q) is
the energy density of matter depending on the particular matter content (it
depends on the metric, but not on its momenta in the absence of curvature
couplings).

The complicated constraint can be simplified slightly by transforming to
new variables [2], which has the additional advantage of bringing general
relativity into the form of a gauge theory, allowing even more powerful ma-
thematical techniques. In this reformulation, the canonical degrees of freedom
are a densitized triad Eai which can be thought of as giving three vectors la-
belled by the index 1 ≤ i ≤ 3. Requiring that these vectors are orthonormal
defines a metric given by

qab =
√
|detEcj |(E−1)ia(E

−1)ib .

Its canonical conjugate is the Ashtekar connection

Aia = Γ ia − γKi
a (2)

where Γ ia is the spin connection (given uniquely by the triad such that ∂aEbi +
εijkΓ

j
aE

b
k = 0) and Ki

a is the extrinsic curvature. The positive Barbero–
Immirzi parameter γ also appears in the symplectic structure together with
the gravitational constant G

{Aia(x), Ebj (y)} = 8πγGδbaδ
i
jδ(x, y) (3)

and labels equivalent classical formulations. Thus, it can be chosen arbitrarily,
but the freedom will be important later for the quantum theory. The basic
variables can be thought of as a “vector potential” Aia and the “electric field”
Eai of a gauge theory, whose gauge group is the rotation group SO(3) which
rotates the three triad vectors: Eai �→ ΛjiE

a
j for Λ ∈ SO(3) (such a rotation

does not change the metric).
Now, the Hamiltonian constraint takes the form [3]:

|detEcl |−1/2εijkF
i
abE

a
jE

b
k − 2(1 + γ2)|detEcl |−1/2Ki

[aK
j
b]E

a
i E

j
b

+8πG
√
|detEcl | ρmatter(E) = 0 (4)

where F iab the curvature of the Ashtekar connection, and the matter energy
density ρmatter(E) now depends on the triad via the metric.
5 Note that this requires a relation between the basic fields in every point of space;

there are infinitely many degrees of freedom and infinitely many constraints.
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2.2 Approximations

Given the complicated nature of the field equations, one has to resort to
approximation schemes in order to study realistic situations. In the case of
gravity, the most widely used approximations are:

– Assume symmetries. This simplifies the field equations by eliminating
several degrees of freedom and simplifying the relations between the re-
maining ones. In a cosmological situation, for instance, one can assume
space to be homogeneous such that the field equations reduce to ordinary
differential equations in time.

– Perturbations around a simple known solution. One can, e.g., study a
small amount of matter, e.g. a gravitational wave or a single particle, and
its propagation in Minkowski space. To leading order, the back reaction of
the geometry, which changes due to the presence of the particle’s energy
density, on the particle’s propagation can be ignored.

– Asymptotic regimes with boundary conditions. In many situations it is
possible to isolate interesting degrees of freedom by looking at boundaries
of space-time with special boundary conditions capturing the physical
situation. It can then be possible to ignore interactions with the bulk
degrees of freedom which simplifies the analysis. This strategy is most
widely used in the context of black hole physics, in its most advanced
form with isolated horizon conditions; see, e.g. [4].

The first two approximation schemes and their applications in quantum
geometry will be discussed on Sects. 5 and 6, respectively. Since the last one
so far does not have many cosmological applications, it will not be used here.
It does have applications in quantum geometry, however, in the calculation
of black hole entropy [5]. In this section we only illustrate the first one in the
context of isotropic cosmology.

2.3 Cosmology

In the simplest case of a cosmological model we can assume space to be
isotropic (looking the same in all its points and in all directions) which implies
that one can choose coordinates in which the line element takes the form

ds2 = −dt2 + a(t)2((1− kr2)dr2 + r2(dϑ2 + sinϑdϕ2)) (5)

with the scale factor a(t) (the evolving “radius” of the universe). The constant
k can take the values k = 0 for a spatially flat model (planar), k = 1 for a mo-
del with positive spatial curvature (spherical), and k = −1 for a model with
negative spatial curvature (hyperbolic). Einstein’s field equations restrict the
possible behavior of a(t) in the form of the Friedmann equation [6]

(
ȧ

a

)2

=
16π
3
Gρ(a)− k

a2 . (6)
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Since also the matter density ρ(a) enters, we can find a(t) only if we specify
the matter content. Common choices are “dust” with ρ(a) ∝ a−3 or “radia-
tion” with ρ(a) ∝ a−4 (due to an additional red-shift factor), which describe
the matter degrees of freedom collectively. After choosing the matter con-
tent, we just need to solve an ordinary differential equation. For radiation in
a spatially flat universe, e.g., all solutions are given by a(t) ∝

√
t− t0 where

t0 is an integration constant.
In a more complicated but also more fundamental way one can describe

the matter by using additional matter fields6 which enter via their Hamilto-
nian (or total energy). This results in a system of coupled ordinary differential
equations, one for the scale factor and others for the matter fields. A common
example in cosmology is a scalar φ which has Hamiltonian

Hφ(a) = 1
2a

−3p2
φ + a3W (φ) (7)

with its potential W and the scalar momentum pφ = a3φ̇. Note that it is
important to keep track of the a-dependence in cosmology since a is evolving;
in the usual formulas for Hamiltonians on Minkowski space a does not appear.

The Friedmann equation is now given by (6) with energy density ρ(a) =
Hφ(a)/a3. Now, the right hand side depends explicitly on φ and pφ which
both depend on time. Their evolution is given by the Hamiltonian equations
of motion

φ̇ = {φ,Hφ} = pφ/a
3 (8)

ṗφ = {pφ, Hφ} = −a3W ′(φ) . (9)

By using the first equation one can transform the second one into a second
order equation of motion for φ:

φ̈ = −3 ȧa−1 φ̇−W ′(φ) (10)

which in addition to the usual force term from the potential has a friction
term proportional to the first derivative of φ. The friction is strongest for a
rapid expansion.

When we come close to a = 0, the kinetic term usually dominates and
even diverges when a = 0. This is problematic and leads to the singularity
problem discussed in the following subsection. However, the divergence occurs
only when pφ = 0 for small a, so one could try to arrange the evolution of
the scalar such that the divergence is avoided. In addition to suppressing
the diverging kinetic term, we have the additional welcome fact that pφ ≈ 0
implies φ ≈ φ0 = const. The right hand side of the Friedmann equation then
becomes constant, (ȧ/a)2 ≈ Λ = (16πG/3)W (φ0) for k = 0. Its solutions
are given by a(t) ∝ exp(

√
Λt) which describes an accelerated expansion, or

6 In a homogeneous model, matter “fields” are also described by a finite number
of parameters only, e.g. a single one for a scalar φ.
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inflation. Though motivated in a different way here, inflation is deemed to
be an important ingredient in cosmological model building, in particular for
structure formation.

Unfortunately, however, it is very difficult to arrange the evolution of the
scalar in the way described here; for – in addition to introducing a new field,
the inflaton φ – it requires very special scalar potentials and also initial values
of the scalar. A common choice is a quadratic potential W (φ) = 1

2mφ
2 (e.g.,

for chaotic inflation) which requires a very small m (a very flat potential) for
inflation to take place long enough, and also a huge initial value φ0 pushing it
up to Planck values. There is a plethora of models with intricate potentials,
all requiring very special choices.

Inflation in general is the term for accelerated expansion [7], i.e. ä > 0. It is
not necessarily of the exponential form as above, but can be parameterized by
different ranges of the so-called equation of state parameter w which needs to
be less than w < − 1

3 for inflation. It can be introduced by a phenomenological
a-dependence of the energy density,

ρ(a) ∝ a−3(w+1) . (11)

Note, however, that this is in general possible only with a-dependent w except
for special cases. Solutions for a (with k = 0) are then of the form

a(t) ∝




(t− t0)2/(3w+3) for − 1 < w < − 1
3 (power-law inflation)

exp(
√
Λt) for w = −1 (standard inflation)

(t0 − t)2/(3w+3) for w < −1 (super-inflation)
(12)

where t0 is an initial value (replaced by Λ = (16π/3)Gρ with the con-
stant energy density ρ for standard inflation). Note in particular that super-
inflation (also called pole-law inflation) can be valid only during a limited
period of time since otherwise a would diverge for t = t0. While these possibi-
lities add more choices for model building, they share with standard inflation
that they are difficult to arrange with scalar potentials.

2.4 Singularities

Trying to suppress the kinetic term has led us to introduce inflation as an
ingredient in cosmological models. Can it lead to a regular evolution, provided
we manage to arrange it in some way? The answer is no, for the following
intuitive reason: We can get pφ to be very small by making special choices,
but it will not be exactly zero and eventually the diverging a−3 will win
if we only go close enough to a = 0. In the end, we always have to face
the singularity problem illustrated by the simple solution a(t) ∝

√
t− t0 for

radiation: a(t0) = 0 such that all of space collapses to a single point (any
length of a space-like curve at t0 measured with the line element (5) is zero)
and the energy density diverges. The most dooming consequence is that the
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evolution breaks down: We cannot set up an initial value problem at t0 and
evolve to values of t smaller than t0. The theory does not tell us what happens
beyond t0. This consequence is a general property of general relativity which
cannot be avoided. We used the symmetric situation only for purposes of
illustration, but the singularity problem remains true for any solution [8].
There will always be points which can be reached in a finite amount of time,
but we will not be able to know anything as to what happens beyond such
a point. General relativity cannot be complete since it predicts situations
where it breaks down.

This is the classical situation. Can it be better in a quantum theory of
gravity? In fact, this has been the hope for decades, justified by the following
motivation: The classical hydrogen atom is unstable, but we know well that
quantum mechanics leads to a ground state of finite energy E0 = − 1

2mee
4/�2

which cures the instability problem. One can easily see that this is the only
non-relativistic energy scale which can be built from the fundamental para-
meters purely for dimensional reasons. In particular, a non-zero � is necessary,
for in the classical limit �→ 0 the ground state energy diverges leading to the
classical instability. As an additional consequence we know that the existence
of a non-zero � leads to discrete energies.

In gravity the situation is similar. We have its fundamental parameter G
from which we can build a natural length scale7 �P =

√
8πG�, the Planck

length. It is very tiny and becomes important only at small scales, e.g. close
to classical singularities where the whole space is small. Where the Planck
length becomes important we expect deviations from the classical behavior
which will hopefully cure the singularity problem. In the classical limit, �→
0, the Planck length becomes zero and we would get back the singularity.
Completing our suggestions from the hydrogen atom, we also expect discrete
lengths in a quantum theory of gravity, the explicit form of which can only
be concluded from a precise implementation.

3 Wheeler–DeWitt Quantum Gravity

As discussed, one can bring general relativity into a canonical formulation
where the metric qab and its momenta πab play the role of phase space coor-
dinates (infinitely many because they depend on the points of space), together
with possible matter degrees of freedom and their momenta. This allows us
to perform a canonical quantization (see, e.g., [9]) by representing quantum
states as functionals Ψ(qab, φ) of the metric and matter fields, corresponding
to a metric representation. The metric itself then acts as a multiplication
operator, and its conjugate πab by a functional derivative π̂ab = −i�∂/∂qab.
These are the basic operators from which more complicated ones can be con-
structed.

7 Sometimes the Planck length is defined as
√

G�.
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3.1 The Wheeler–DeWitt Equation

In a canonical formulation of general relativity, the dynamics is determined
by a constraint equation, (1) in the variables used here. Replacing qab and πab

by the respective operators yields a complicated constraint operator ĤADM
acting on a wave function Ψ . Since the classical expression must vanish, only
states Ψ are allowed which are annihilated by the constraint operator, i.e.
they have to fulfill the Wheeler–DeWitt equation ĤADMΨ = 0. Since the
constraint is quadratic in the momenta, this is a second order functional
differential equation. However, it is only formal since it contains products
of functional derivatives which have to be regularized in a way which does
not spoil the properties of the theory, in particular its background indepen-
dence. Such a regularization is complicated because the classical constraint
is not even a polynomial in the basic fields, and so far it has not been done
successfully in the ADM formulation.

There is another apparent difficulty with the constraint equation: It is
supposed to give us the dynamics, but there is no time dependence at all,
and no time derivative part as in a Schrödinger equation. This is a gene-
ral property of theories as general relativity which are invariant under four-
dimensional coordinate transformations. We do not have an absolute notion
of time, and thus it cannot appear in the basic evolution equation. Clas-
sically, we can introduce a time parameter (coordinate time t), but it just
serves to parameterize classical trajectories. It can be changed freely by a
coordinate transformation. In the quantum theory, which is formulated in
a coordinate independent way, coordinate time cannot appear explicitly. In-
stead, one has to understand the evolution in a relational way: there is no
evolution with respect to an absolute time, but only evolution of all the de-
grees of freedom with respect to each other. After all, this is how we perceive
time. We build a clock, which is a collection of matter degrees of freedom
with very special interactions with each other, and observe the evolution of
other objects, degrees of freedom with weak interactions with the clock, with
respect to its progression. Similarly, we can imagine to select a particular
combination of matter or metric degrees of freedom as our clock variable
and re-express the constraint equation as an evolution equation with res-
pect to it [10, 11]. For instance, in a cosmological context we can choose
the volume of space as internal time and measure the evolution of matter
degrees of freedom with respect to the expansion or contraction of the uni-
verse. In general, however, a global choice of a time degree of freedom which
would allow us to bring the full Wheeler–DeWitt equation into the form of
an evolution equation, is not known; this is the problem of time in general
relativity.

Due to the complicated regularization and interpretational issues, appli-
cations of the full Wheeler–DeWitt equation have been done only at a formal
level for semiclassical calculations.
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3.2 Minisuperspaces

In order to study the theory explicitly, we again have to resort to approxi-
mations. A common simplification of the Wheeler–DeWitt formalism is the
reduction to minisuperspace models where the space is homogeneous or even
isotropic. Therefore, the metric of space is specified by a finite number of
parameters only – only the scale factor a in the isotropic case. While this
is similar in spirit to looking for symmetric classical solutions as we did in
Sect. 2, there is also an important difference: If we want the symmetry to be
preserved in time we need to restrict the time derivative of the metric, i.e.
its canonical conjugate, in the same symmetric form. This is possible classi-
cally, but in quantum mechanics it violates Heisenberg’s uncertainty relations
for the excluded degrees of freedom. Minisuperspace models do not just give
us particular, if very special exact solutions as in the classical theory; their
results must be regarded as approximations which are valid only under the
assumption that the interaction with the excluded parameters is negligible.

An isotropic minisuperspace model has the two gravitational parameters
a and its conjugate pa = 3aȧ/8πG together with possible matter degrees of
freedom which we simply denote as φ and pφ. Using a Schrödinger quan-
tization of the momenta acting on a wave function ψ(a, φ), the Friedmann
equation (6) is quantized to the Wheeler–DeWitt equation

3
2

(
−1

9
�4Pa

−1 ∂

∂a
a−1 ∂

∂a
+ k

)
aψ(a, φ) = 8πGĤφ(a)ψ(a, φ) (13)

with matter Hamiltonian Ĥφ(a). This equation is not unique due to ordering
ambiguities on the left hand side. Here, we use the one which is related
to the quantization derived later. Without fixing the ordering ambiguity,
consequences derived from the equation are ambiguous [12].

The Wheeler–DeWitt equation quantizes the dynamical classical equation
and thus should describe the quantum dynamics. As described before, in an
isotropic model we can select the scale factor a as an internal time; evolution
of the matter fields will then be measured not in absolute terms but in relation
to the expansion or contraction of the universe. Interpreting a as a time
variable immediately brings (13) to the form of a time evolution equation,
albeit with an unconventional time derivative term.

An unresolvable problem of the Wheeler–DeWitt quantization, however, is
that it is still singular. Energy densities, all depending on the multiplication
operator a−1 are still unbounded, and the Wheeler–DeWitt equation does
not tell us what happens at the other side of the classical singularity at
a = 0. Instead, the point of view has been that the universe is “created”
at a = 0 such that initial conditions have to be imposed there. DeWitt
[10] tried to combine both problems by requiring ψ(0) = 0 which can be
interpreted as requiring a vanishing probability density to find the universe
at the singularity. However, this very probability interpretation, which is
just taken over from quantum mechanics, is not known to make sense in a
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quantum cosmological context. Furthermore, at the very least one would also
need appropriate fall-off conditions for the wave function since otherwise we
can still get arbitrarily close to the singularity. Appropriate conditions are
not known, and it is not at all clear if they could always be implemented. The
worst problem is, however, that DeWitt’s initial condition is not well-posed
in more general models where its only solution would vanish identically.

DeWitt’s condition has been replaced by several proposals which are mo-
tivated from different intuitions [13, 14]. However, they do not eliminate the
singularity; with them the wave function would not even vanish at a = 0 in
the isotropic case. They accept the singularity as a point of creation.

Thus, the hope motivated from the hydrogen atom has not materialized.
The isotropic universe model is still singular after quantizing. Do we have
to accept that singularities of gravitational systems cannot be removed, not
even by quantization? If the answer would be affirmative, it would spell severe
problems for any desire to describe the real world by a physical theory. It
would mean that there can be no complete description at all; any attempt
would stop at the singularity problem.

Fortunately, the answer turns out not to be affirmative. We will see in
the following sections that singularities are removed by an appropriate quan-
tization. Why, then, is this not the case for the Wheeler–DeWitt quantiza-
tion? One has to keep in mind that there is no mathematically well-defined
Wheeler–DeWitt quantization of full general relativity, and systematic inve-
stigations of even the formal equations are lacking. What one usually does
instead is merely a quantum mechanical application in a simple model with
only a few degrees of freedom. There is no full theory which one could use to
see if all quantization steps would also be possible there. General relativity is
a complicated theory and its quantization can be done, if at all, only in very
special ways which have to respect complicated consistency conditions, e.g.
in the form of commutation relations between basic operators. In a simple
model, all these problems can be brushed over and consistency conditions
are easily overlooked. One hint that this in fact happened in the Wheeler–
DeWitt quantization is the lacking discreteness of space. We expected that
a non-zero Planck length in quantum gravity would lead to the discreteness
of space. While we did see the Planck length in (13), there was no associa-
ted discreteness: the scale factor operator, which is simply the multiplication
operator a, still has continuous spectrum.

After the discussion it should now be clear how one has to proceed in
a more reliable way. We have to use as much of the full theory of quantum
gravity as we know and be very careful to use only techniques in our sym-
metric models which can also be implemented in the full theory. In this way,
we would respect all consistency conditions and obtain a faithful model of
the full theory. Ideally, we would even start from the full theory and define
symmetric models there at the level of states and operators.

By now, we have good candidates for a full theory of quantum gravity,
and in the case of quantum geometry [15, 16, 17] also a procedure to de-
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fine symmetric models from it [18]. We will describe the main results in the
following two sections.

4 Quantum Geometry

While the Wheeler–DeWitt quantization is based on the ADM formulation
whose basic variables are the metric and extrinsic curvature of a spatial slice,
quantum geometry is a newer approach based on Ashtekar’s variables. Quan-
tization, in particular of a non-linear field theory, is a delicate step whose suc-
cess can depend significantly on the formulation of a given classical theory.
Classical theories can usually be formulated in many different, equivalent
ways, all being related by canonical transformations. Not all of these transfor-
mations, however, can be implemented unitarily at the quantum level which
would be necessary for the quantum theories to be equivalent, too. For in-
stance, when quantizing one has to choose a set of basic variables closed under
taking Poisson brackets which are promoted unambiguously to operators in
such a way that their Poisson brackets are mapped to commutation relati-
ons. There is no unique prescription to quantize other functions on phase
space which are not just linear functions of the basic ones, giving rise to
quantization ambiguities. In quantum mechanics one can give quite general
conditions for a representation of at least the basic variables to be unique
(this representation is the well-known Schrödinger quantization). However,
such a theorem is not available for a field theory with infinitely many degrees
of freedom such that even the basic variables cannot be quantized uniquely
without further conditions.

One can often use symmetry requirements together with other natural
conditions in order to select a unique representation of the basic variables,
e.g. Poincaré invariance for a field theory on Minkowski space as a back-
ground [19]. For general relativity, which is background independent, it has
recently been proven in the context of quantum geometry that diffeomor-
phism invariance, i.e. invariance under arbitrary deformations of space, can
replace Poincaré invariance in strongly restricting the class of possible repre-
sentations [20]. It is clear that those precise theorems can only be achieved
within a theory which is mathematically well-defined. The Wheeler–DeWitt
quantization, on the other hand, does not exist beyond a purely formal level
and it is unknown if it can give a well-defined quantum representation of the
ADM variables at all. In any case, it is based on basic variables different from
the ones quantum geometry is based on so that any representation it defines
would likely be inequivalent to the one of quantum geometry.

From the beginning, quantum geometry was striving for a mathematically
rigorous formulation. This has been possible because it uses Ashtekar’s varia-
bles which bring general relativity into the form of a gauge theory. While not
all standard techniques for quantizing a gauge theory can be applied (most
of them are not background independent), new powerful techniques for a
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background independent quantization have been developed [21, 22, 23]. This
was possible only because the space of connections, which is the configuration
space of quantum geometry, has a structure much better understood than the
configuration space of the Wheeler–DeWitt quantization, namely the space
of metrics.

We do not describe those techniques here and instead refer the interested
reader to the literature where by now several technical reviews are available
[17, 24]. In this section, instead, we present an intuitive construction which
illustrates all the main results.

4.1 Basic Operators and States

As usually in gauge theories (for instance in lattice formulations), one can
form holonomies as functions of connections for all curves e : [0, 1]→ Σ in a
manifold Σ,

he(A) = P exp
(∫

e

Aia(e(t)) ė
a(t)τidt

)
∈ SU(2) (14)

where ėa is the tangent vector to the curve e and τi = − i
2σi are generators

of the gauge group SU(2) in terms of the Pauli matrices. The symbol P
denotes path ordering which means that the non-commuting su(2) elements
in the exponential are ordered along the curve. Similarly, given a surface
S : [0, 1]2 → Σ we can form a flux as a function of the triads,

E(S) =
∫
S

Eai (y)na(y)τ
id2y (15)

where na is the co-normal8 to the surface S. Holonomies and fluxes are the
basic variables which are used for quantum geometry, and they represent the
phase space of general relativity faithfully in the sense that any two confi-
gurations of general relativity can be distinguished by evaluating holonomies
and fluxes in them.

One can now prove that the set of holonomies and fluxes is closed under
taking Poisson brackets and that there is a representation of this Poisson alge-
bra as an operator algebra on a function space. Moreover, using the action of
the diffeomorphism group on Σ, which deforms the edges and surfaces invol-
ved in the above definitions, this representation is the unique covariant one.
Note that unlike the functional derivatives appearing in the Wheeler-DeWitt
quantization, these are well-defined operators on an infinite dimensional Hil-
bert space. Note in particular that holonomies are well-defined as operators,
but not the connection itself. A Wheeler–DeWitt quantization, on the other
8 The co-normal is defined as na = 1

2 εabcε
de(∂xb/∂yd)(∂xc/∂ye) without using a

background metric, where xa are coordinates of Σ and yd coordinates of the
surface S.
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hand, regards the extrinsic curvature, related to the connection, as one of the
basic fields and would try to promote it to an operator. This is not possible
in quantum geometry (and it is not known if it is possible at a precise level
at all) which demonstrates the inequivalence of both approaches. The fact
that only the holonomies can be quantized can also be seen as one of the
consistency conditions of a full theory of quantum gravity mentioned earlier.
In a minisuperspace model one can easily quantize the isotropic extrinsic cur-
vature, which is proportional to pa/a. However, since it is not possible in the
full theory, the model departs from it already at a very basic level. A reliable
model of a quantum theory of gravity should implement the feature that only
holonomies can be quantized; we will come back to this issue later.

We did not yet specify the space of functions on which the basic opera-
tors act in the representation of quantum geometry. Understandably, a full
definition involves many techniques of functional analysis, but it can also be
described in intuitive terms. As mentioned already, it is convenient to define
the theory in a connection representation since the space of connections is
well-understood. We can then start with the function 1 which takes the value
one in every connection and regard it as our ground state.9 The holonomies
depend only on the connection and thus act as multiplication operators in
a connection formulation [25]. Acting with a single holonomy he(A) on the
state 1 results in a state which depends on the connection in a non-trivial
way, but only on its values along the curve e. More precisely, since holonomies
take values in the group SU(2), we should choose an SU(2)-representation,
for instance the fundamental one, and regard the matrix elements of the ho-
lonomy in this representation as multiplication operators. This can be done
with holonomies along all possible curves, and also acting with the same
curve several times. Those operators can be regarded as basic creation ope-
rators of the quantum theory. Acting with holonomies along different curves
results in a dependence on the connection along all the curves, while acting
with holonomies along the same curve leads to a dependence along the curve
in a more complicated way given by multiplying all the fundamental repre-
sentations to higher ones. One can imagine that the state space obtained in
this way with all possible edges (possibly intersecting and overlapping) in
arbitrary numbers is quite complicated, but not all states obtained in this
way are independent: one has to respect the decomposition rules of repre-
sentations. This can all be done resulting in a basis of states, the so-called
spin network states [26]. Furthermore, they are orthonormal with respect to

9 Note that we do not call it “vacuum state” since the usual term “vacuum”
denotes a state in which matter is unexcited but the gravitational background is
Minkowski space (or another non-degenerate solution of general relativity). We
will see shortly, however, that the ground state we are using here represents a
state in which even gravity is “unexcited” in the sense that it defines a completely
degenerate geometry.
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the diffeomorphism invariant measure singled out by the representation, the
Ashtekar–Lewandowski measure [22].

Note also that the quantum theory should be invariant under SU(2)-
rotations of the fields since a rotated triad does not give us a new metric.
Holonomies are not gauge invariant in this sense, but as in lattice gauge
theories we can use Wilson loops instead which are defined as traces of ho-
lonomies along a closed loop. Repeating the above construction only using
Wilson loops results in gauge invariant states.

Since we used holonomies to construct our state space, their action can
be obtained by multiplication and subsequent decomposition in the inde-
pendent states. Fluxes, on the other hand, are built from the conjugate of
connections and thus become derivative operators. Their action is most easy
to understand for a flux with a surface S which is transversal to all cur-
ves used in constructing a given state. Since the value of a triad in a given
point is conjugate to the connection in the same point but Poisson commu-
tes with values of the connection in any other point, the flux operator will
only notice intersection points of the surface with all the edges which will
be summed over with individual contributions. The contributions of all the
intersection points are the same if we count intersections with overlapping
curves separately. In this way, acting with a flux operator on a state returns
the same state multiplied with the intersection number between the surface
of the flux and all the curves in the state. This immediately shows us the
eigenvalues of flux operators which turn out to be discrete. Since the fluxes
are the basic operators representing the triad from which geometric quan-
tities like length, area and volume are constructed, it shows that geometry
is discrete [27, 28, 29, 30]. The main part of the area spectrum for a given
surface S (the one disregarding intersections of curves in the state) is

A(S) = γ�2P
∑
i

√
ji(ji + 1) (16)

where the sum is over all intersections of the surface S with curves in the
state, and the SU(2)-labels ji parameterize the multiplicity if curves overlap
(without overlapping curves, all ji are 1

2 ). Thus, quantum geometry predicts
that geometric spectra are discrete, and it also provides an explicit form.
Note that the Planck length appears (which arises because the basic Poisson
brackets (3) contain the gravitational constant while � enters by quantizing a
derivative operator), but the scale of the discreteness is set by the Barbero–
Immirzi parameter γ. While different γ lead to equivalent classical theories,
the value of the parameter does matter in the quantum theory. If γ would be
large the discreteness would be important already at large scales despite the
smallness of the Planck length. Calculations from black hole entropy, however,
show that γ must be smaller than one, its precise value being log(2)/π

√
3 [5].

Thus, quantum geometry already fulfills one of our expectations of Sect. 2,
namely that quantum gravity should predict a discreteness of geometry with
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a scale set roughly by the Planck length. Note that the use of holonomies
in constructing the quantum theory, which was necessary for a well-defined
formulation, is essential in obtaining the result about the discreteness. This
fact has been overlooked in the Wheeler–DeWitt quantization which, conse-
quently, does not show the discreteness.

4.2 Composite Operators

We now have a well-defined framework with a quantization of our basic quan-
tities, holonomies and fluxes. Using them we can construct composite ope-
rators, e.g. geometric ones like area and volume or the constraint operator
which governs the dynamics. Many of them have already been defined, but
they are quite complicated. The volume operator, for instance, has been con-
structed and it has been shown to have a discrete spectrum [27, 29, 31];
determining all its eigenvalues, however, would require the diagonalization
of arbitrarily large matrices. Since it plays an important role in constructing
other operators, in particular the Hamiltonian constraint [32, 33], it makes
explicit calculations in the whole theory complicated.

The constraint, for instance can be quantized by using a small Wilson
loop along some loop α, which has the expansion hα = 1+Asa1s

b
2F

i
abτi where

A is the coordinate area of the loop and s1 and s2 are tangent vectors to
two of its edges, to quantize the curvature of the connection. The product
of triads divided by the determinant appears to be problematic because the
triad can be degenerate resulting in a vanishing determinant. However, one
can make use of the classical identity [32]

Eai E
b
j ε
ijk√

|detE|
=

1
4πγG

εabc{Akc , V } , (17)

replace the connection components by holonomies hs and use the volume
operator to quantize this expression in a non-degenerate way. For the first
part10 of the constraint (4) this results in

Ĥ =
∑
v∈V

∑
v(∆)=v

εIJK tr(hαIJ (∆)hsK(∆)[h−1
sK(∆), V̂v]) (18)

where we sum over the set V of vertices of the graph belonging to the state
we act on, and over all possible choices (up to diffeomorphisms) to form a
tetrahedron ∆ with a loop αIJ(∆) sharing two sides with the graph and a
third transversal curve sK(∆). The first holonomy along αIJ(∆) quantizes the
curvature components while hsK(∆) together with the commutator quantizes
the triad components.
10 The remaining part of the constraint involving extrinsic curvature components

can be obtained from the first part since the extrinsic curvature can be written
as a Poisson bracket of the first part of the constraint with the volume [32].
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A similar strategy can be used for matter Hamiltonians which usually
also require to divide by the determinant of the triad at least in their kinetic
terms. Here it is enough to cite some operators as examples to illustrate the
general structure which will later be used in Sect. 6; for details we refer to
[33]. For electromagnetism, for instance, we need to quantize

HMaxwell =
∫
Σ

d3x
qab

2Q2
√

det q
[EaEb +BaBb] (19)

where (Aa, E
a/Q2) are the canonical fields of the electromagnetic sector with

gauge group U(1) and coupling constant Q, related to the dimensionless fine
structure constant by αEM = Q2

�. Furthermore, Bb is the magnetic field of
the U(1) connection A, i.e. the dual of its curvature.

Along the lines followed for the gravitational Hamiltonian we obtain the
full electromagnetic Hamiltonian operator [33] (with a weight factor w(v)
depending on the graph)

ĤMaxwell =
1

2�4PQ2

∑
v∈V

w(v)
∑

v(∆)=v(∆′)=v

tr
(
τi hsL(∆)

[
h−1
sL(∆),

√
V̂v

])

× tr
(
τihsP (∆′)

[
h−1
sP (∆′),

√
V̂v

])

×εJKLεMNP
[(

e−iΦ̂B
JK − 1

)(
e−iΦ̂′B

MN − 1
)
− Φ̂EJKΦ̂′E

MN )
]
.

(20)

Let us emphasize the structure of the above regularized Hamiltonian. There
is a common gravitational factor included in the SU(2) trace. The basic ent-
ities that quantize the electromagnetic part are the corresponding fluxes (as
operators acting on a state for the electromagnetic field): one is associated
with the magnetic field, which enters through a product of exponential flux
factors exp(−iΦ(′)B) constructed from holonomies in ∆ and ∆′, respectively,
while the other is related to the electric field, entering in a bilinear product
of electric fluxes Φ(′)E .

Similarly, one can set up a theory for fermions which would be coupled to
the gauge fields and to gravity. For a spin-1

2 field θA one obtains the kinetic
part (with the Planck mass mP = �/�P)

Ĥspin−1/2 = −mP

2�3P

∑
v∈V

∑
v(∆)=v

εijkεIJK tr
(
τihsI(∆)

[
h−1
sI(∆),

√
V̂v)

])

× tr
(
τjhsJ (∆)

[
h−1
sJ (∆),

√
V̂v)

])

×
[[

(τkhsK(∆)θ)|sK(∆) − θ|v
]
A

∂

∂θA(v)
+ h.c.

]
. (21)

All of these matter Hamiltonians are well-defined, bounded operators,
which is remarkable since in quantum field theories on a classical background
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matter Hamiltonians usually have ultraviolet divergences. This can be inter-
preted as a natural cut-off implied by the discrete structure. Compared to the
Wheeler–DeWitt quantization it is a huge progress that well-defined Hamil-
tonian constraint operators are available in the full theory. Not surprisingly,
their action is very complicated for several reasons. The most obvious ones
are the fact that Wilson loops necessary to quantize curvature components
create many new curves in a state which is acted on, and that the volume
operator is being used to quantize triad components. The first fact implies
that complicated graphs are created, while the second one shows that even a
single one of those contributions is difficult to analyze due to the unknown
volume spectrum. And after determining the action of the constraint opera-
tor on states we still have to solve it, i.e. find its kernel. Furthermore, there
are always several possible ways to quantize a classical Hamiltonian such
that the ones we wrote down should be considered as possible choices which
incorporate the main features.

The complicated nature should not come as a surprise, though. After
all, we are dealing with a quantization of full general relativity without any
simplifying assumptions. Even the classical equations are difficult to solve and
to analyze if we do not assume symmetries or employ approximation schemes.
Those simplifications are also available for quantum geometry, which is the
subject of the rest of this article. Symmetries can be introduced at the level of
states which can be rigorously defined as distributional, i.e. non-normalizable
states (they cannot be ordinary states since the discrete structure would break
any continuous symmetry). Approximations can be done in many ways, and
different schemes are currently being worked out.

5 Loop Quantum Cosmology

Loop quantum cosmology aims to investigate quantum geometry in simplified
situations which are obtained by implementing symmetries. In contrast to a
Wheeler–DeWitt quantization and its minisuperspace models, there is now
also a full theory available. It is then possible to perform all the steps of the
quantization in a manner analogous to those in the full theory. In particular,
one can be careful enough to respect all consistency conditions as, e.g., the
use of holonomies.11 There is a tighter relation between symmetric models
and the full theory which goes beyond pure analogy. For instance, symmetric
states can be defined rigorously [18, 34, 35] and the relation between operators
is currently being investigated. In this section, as already in the previous one,
we use intuitive ideas to describe the results.

11 This sometimes requires to perform manipulations which seem more complicated
than necessary or even unnatural from the point of view of a reduced model.
However, all of this can be motivated from the full theory, and in fact exploiting
simplifications which are not available in a full theory can always be misleading.
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In addition to testing implications of the full theory in a simpler context,
it is also possible to derive physical results. Fortunately, many interesting and
realistic physical situations can be approximated by symmetric ones. This is
true in particular for cosmology where one can assume the universe to be
homogeneous and isotropic at large scales.

5.1 Symmetric States and Basic Operators

As seen before, the canonical fields of a theory of gravity are completely
described by two numbers (depending on time) in an isotropic context. For
Ashtekar’s variables, isotropic connections and triads take the form

Aia(x)dxa = c ωi , Eai
∂

∂xa
= pXi (22)

where ωi are invariant 1-forms and Xi invariant vector fields. For a spatially
flat configuration, ωi = dxi are just coordinate differentials, while Xi are the
derivatives; for non-zero spatial curvature the coordinate dependence is more
complicated. In all isotropic models, c and p are functions just of time. Their
relation to the isotropic variables used before is

c = 1
2 (k − γȧ) , |p| = a2 (23)

such that {c, p} = (8π/3)γG. An important difference is that p can have both
signs, corresponding to the two possible orientations of a triad. In a classical
theory we would ultimately have to restrict to one sign since p = 0 represents
a degenerate triad, and positive and negative signs are disconnected. But the
situation can (and will) be different in a quantum theory.

We can now perform an analog of the construction of states in the full
theory. The symmetry condition can be implemented by using only invariant
connections (22) in holonomies as creation operators, i.e.

hi(c) = exp(cτi) = cos(c/2) + 2τi sin(c/2) .

Consequently, all the states we construct by acting on the ground state 1
will be functions of only the variable c. All the complication of the full states
with an arbitrary number of curves has collapsed because of our symmetry
assumption. The analog of the spin network basis, an orthonormal basis in
the connection representation, is given by12 [37]

〈c|n〉 =
exp(inc/2)√

2 sin(c/2)
(24)

for all integer n.
12 A more careful analysis shows that the Hilbert space of loop quantum cosmology

is not separable [36]. For our purposes, however, we can restrict to the separable
subspace used here which is left invariant by our operators.
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An analog of the flux operator is given by a quantization of the isotropic
triad component p,

p̂|n〉 = 1
6γ�

2
Pn|n〉 . (25)

This immediately allows a number of observations: Its spectrum is discrete
(n corresponds to the intersection number in the full theory) which results in
a discrete geometry. The scale factor â =

√
|p̂| also has a discrete spectrum

which is very different from the Wheeler–DeWitt quantization where the scale
factor is just a multiplication operator with a continuous spectrum. Thus, we
obtain a different quantization with deviations being most important for small
scale factors, close to the classical singularity. The quantization p̂ also tells
us that the sign of the “intersection number” n determines the orientation of
space. There is only one state, |0〉, which is annihilated by p̂; we identify it
with the classical singularity.

We can also use p̂ in order to obtain a quantization of the volume [38];
here we use the convention

V(|n|−1)/2 =
( 1

6γ�
2
P
) 3

2
√

(|n| − 1)|n|(|n|+ 1) (26)

for its eigenvalue on a state |n〉. Thus, we achieved our aims: We have a
quantization of a model which simplifies the full theory. This can be seen
from the simple nature of the states and the explicit form of the volume
spectrum which is not available in the full theory. As we will see later, this
also allows us to derive explicit composite operators [39, 37]. At the same
time, we managed to preserve essential features of the full theory leading
to a quantization different from13 the Wheeler–DeWitt one which lacks a
relation to a full theory.

5.2 Inverse Powers of the Scale Factor

We can now use the framework to perform further tests of essential aspects
of quantum cosmology. In the Wheeler–DeWitt quantization we have seen
that the inverse scale factor a−1 becomes an unbounded operator. Since its
powers also appear in matter Hamiltonians, their quantizations will also be
unbounded, reflecting the classical divergence. The situation in loop quan-
tum cosmology looks even worse at first glance: â still contains zero in its
spectrum, but now as a discrete point. Then its inverse does not even exist.
There can now be two possibilities: It can be that we cannot get a quantiza-
tion of the classically diverging a−1, which would mean that there is no way
to resolve the classical singularity. As the other possibility it can turn out
that there are admissible quantizations of a−1 in the sense that they have
the correct classical limit and are densely defined operators. The second pos-
sibility exists because, as noted earlier, there are usually several possibilities
13 Both quantizations are in fact inequivalent because, e.g., the operator â has

discrete spectrum in one and a continuous spectrum in the other quantization.
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to construct a non-basic operator like a−1. If the simplest one fails (looking
for an inverse of â), it does not mean that there is no quantization at all.

It turns out that the second possibility is realized [40], in a way special to
quantum geometry. We can use the identity (17), which has been essential in
quantizing Hamiltonians, in order to rewrite a−1 in a classically equivalent
form which allows a well-defined quantization. In this way, again, we stay
very close to the full theory, repeating only what can be done there, and at
the same time obtain physically interesting results.

The reformulation can be written in a simple way for a symmetric context,
e.g.,14

a−1 =
(

1
2πγG

{c, |p|3/4}
)2

=

(
1

3πγG

∑
i

tr(τihi(c){hi(c)−1,
√
V })

)2

=

(
(2πγG j(j + 1)(2j + 1))−1

∑
i

trj(τihi(c){hi(c)−1,
√
V })

)2

(27)

indicating in the last step that we can choose any SU(2)-representation when
computing the trace without changing the classical expression (the trace with-
out label is in the fundamental representation, j = 1

2 ). Note that we only need
a positive power of p at the right hand side which can easily be quantized. We
just have to use holonomy operators and the volume operator, and turn the
Poisson bracket into a commutator. This results in a well-defined operator
which has eigenstates |n〉 and, for j = 1

2 , eigenvalues

â−1|n〉 =
16
γ2�4P

(√
V|n|/2 −

√
V|n|/2−1

)2
|n〉 (28)

in terms of the volume eigenvalues (26).
It has the following properties [40, 41]; see Fig. 1:

1. It is a finite operator with upper bound15 (a−1)max = 32(2−√
2)

3�P
at a

peak at n = 2. Now we can see that the situation is just as in the case
of the hydrogen atom: The classically pathological behavior is cured by
quantum effects which – purely for dimensional reasons – require � in the
denominator (recall �P =

√
8πG�). A finite value for the upper bound is

possible only with non-zero �P; in the classical limit �P → 0 we reobtain
the classical divergence.

14 One can easily see that there are many ways to rewrite a−1 in such a way.
Essential features, however, are common to all these reformulations, for instance
the fact that always the absolute value of p will appear in the Poisson bracket
rather than p itself. We will come back to this issue shortly in the context of
quantization ambiguities.

15 We only use the general form of the upper bound. Its precise value depends on
quantization ambiguities and is not important in this context.
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Fig. 1. Two examples for eigenvalues of inverse scale factor operators with j = 5
(+) and j = 10 (×), compared to the classical behavior (dashed) and the approxi-
mations (30) [41].

2. The first point demonstrates that the classical behavior is modified at
small volume, but one can see that it is approached rapidly for volumes
larger than the peak position. Thus, the quantization (28) has the correct
classical limit and is perfectly admissible.

3. While the first two points verify our optimistic expectations, there is also
an unexpected feature. The classical divergence is not just cut off at a
finite value, the eigenvalues of the inverse scale factor drop off when we go
to smaller volume and are exactly zero for n = 0 (where the eigenvalue of
the scale factor is also zero). This feature, which will be important later,
is explained by the fact that the right hand side of (27) also includes
a factor of sgn(p)2 since the absolute value of p appears in the Poisson
bracket. Strictly speaking, we can only quantize sgn(p)2a−1, not just a−1

itself. Classically, we cannot distinguish between both expressions – both
are equally ill-defined for a = 0 and we would have to restrict to positive
p. As it turns out, however, the expression with the sign does have well-
defined quantizations, while the other one does not. Therefore, we have
to use the sign when quantizing expressions involving inverse powers of a,
and it is responsible for pushing the eigenvalue of the inverse scale factor
at n = 0 to zero.

4. As already indicated in (27), we can rewrite the classical expression in
many equivalent ways. Quantizations, however, will not necessarily be
the same. In particular, using a higher representation j = 1

2 in (27), the
holonomies in a quantization will change n by amounts larger than one.
In (28) we will then have volume eigenvalues not just with n−1 and n+1,
but from n− 2j to n+ 2j corresponding to the coupling rules of angular
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Fig. 2. The function p(q) of (29), derived in [41]. For small q, p(q) increases like
p(q) = 12

7 q5/4(1 − q + O(q2)) (dashed).

momentum. Quantitative features depend on the particular value of j (or
other quantization ambiguities), but qualitative aspects – in particular
the ones in points 1 to 3 – do not change. Thus, the quantization is robust
under ambiguities, but there can be small changes depending on which
particular quantization is used. Such a freedom can also be exploited in
a phenomenological analysis of some effects.

Let us make the last point more explicit. The exact formula for eigenvalues
with a non-fundamental representation is quite complicated. It can, however,
be approximated using a rather simple function [41]

p(q) = 8
77 q

1/4
[
7
(
(q + 1)11/4 − |q − 1|11/4

)

− 11q
(
(q + 1)7/4 − sgn(q − 1)|q − 1|7/4

)]
, (29)

see Fig. 2, such that the eigenvalues of a quantization of a−m with positive
m are given by

(a−m)(j)n = V
−m/3
|n|/2 p(|n|/2j)2m (30)

with the ambiguity parameter j. There are many other ambiguities which can
change also the function p, but the one indicated by j is most important. It
parameterizes the position of the peak in an inverse power of the scale factor,
which roughly coincides with the boundary between classical behavior and
quantum modifications.

Note also that (30) displays the observation that inverse powers of the
scale factor annihilate the singular state |0〉, thanks to limq→0(q−1/4p(q)) =
0. This has important consequences for matter Hamiltonians: they usually
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consist of a kinetic term containing components of the inverse metric and a
potential term containing metric components. In the isotropic case, a widely
used example in cosmology is the scalar Hamiltonian (7). We have already
discussed the divergence at the singularity of the classical kinetic term, unless
pφ = 0. The potential term, on the other hand, vanishes there. When we
quantize this expression, we have to use an inverse power (30) in the kinetic
term; for the potential term we can just use volume eigenvalues. Now, the
potential term still vanishes at n = 0, but so does the kinetic term after
quantization. Similarly, one can check that any matter Hamiltonian Ĥmatter
(assuming for simplicity the absence of curvature couplings) fulfills

Ĥmatter|0〉 = 0 (31)

irrespective of the particular kind of matter and its quantization.
All these observations indicate that the quantum behavior is much better,

less singular, than the classical one. The real test, however, can only come
from studying the quantum evolution. An absence of singularities can be
confirmed only if it is possible to extend the evolution through the singular
boundary; the theory has to tell us what happens at the singularity and
beyond.

5.3 Dynamics16

To study the dynamics of a theory we need its evolution equation which
for gravity is given by the Hamiltonian constraint. In the Wheeler–DeWitt
quantization we have seen that the constraint equation takes the form of an
evolution equation after quantizing in a metric or triad representation and
choosing an internal time a.

We can follow the same steps here if we first transform from the connec-
tion representation used so far in quantum geometry to a triad representa-
tion. This can be done straightforwardly since we already know the triad
eigenstates |n〉. A state |ψ〉 can then be expanded in these eigenstates,
|ψ〉 =

∑
n ψn(φ)|n〉 denoting possible matter degrees of freedom collectively

by φ. The coefficients ψn(φ) in the expansion then define, as usually, the
state in the triad representation. Since n denotes the eigenvalues of p̂, it will
now play the role of an internal time. Here we observe another difference to
the Wheeler–DeWitt quantization: due to the discrete geometry, also time is
discrete in an internal time picture.

The Wheeler–DeWitt quantization now proceeded by quantizing the gra-
vitational momentum pa by a differential operator as in quantum mechanics.
An analogous step is not possible in quantum geometry; momenta here, i.e.
connection components, have to be quantized using holonomies which do not
act as differential operators. Instead, they act according to the SU(2) coupling
rules, e.g.
16 A brief summary of the results in this subsection can be found in [42].
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〈c|hi(c)|n〉 = 〈c| cos(c/2) + 2τi sin(c/2)|n〉
= 1

2 (〈c|n+ 1〉+ 〈c|n− 1〉)− 1
2 iτi(〈c|n+ 1〉 − 〈c|n− 1〉) .

Thus, in a triad representation holonomies act by changing the label n in
ψn(φ) by ±1 since, e.g.,

(sin(c/2)ψ)n = − 1
2 i
∑
n

ψn(|n+ 1〉 − |n− 1〉) = 1
2 i
∑
n

(ψn+1 − ψn−1)|n〉 .

The constraint operator contains several holonomy operators and also the
volume operator. It leads to the constraint equation [37, 43]

(V|n+4|/2 − V|n+4|/2−1)eikψn+4(φ)− (2 + γ2k2)(V|n|/2 − V|n|/2−1)ψn(φ)

+(V|n−4|/2 − V|n−4|/2−1)e−ikψn−4(φ)

= −8π
3
Gγ3�2PĤmatter(n)ψn(φ) (32)

which is a difference equation rather than a differential equation thanks to the
discrete internal time. The parameter k again signifies the intrinsic curvature;
for technical reasons the above equation has only been derived for the values
k = 0 and k = 1, not for k = −1.

While the left hand side is very different from the Wheeler–DeWitt case,
the right hand side looks similar. This is, however, only superficially so; for we
have to use the quantizations of the preceding subsection for inverse metric
components, in particular in the kinetic term.

We can eliminate the phase factors e±ik in (32) by using a wave function
ψ̃n(φ) := eink/4ψn(φ) which satisfies the same equation without the phase
factors (of course, it is different from the original wave function only for
k = 1). The phase factor can be thought of as representing rapid oscillations
of the wave function caused by non-zero intrinsic curvature.

Large Volume Behavior

Since the Wheeler–DeWitt equation corresponds to a straightforward quan-
tization of the model, it should at least approximately be valid when we are
far away from the singularity, i.e. when the volume is large enough. To check
that it is indeed reproduced we assume large volume, i.e. n	 1, and that the
discrete wave function ψn(φ) does not display rapid oscillations at the Planck
scale, i.e. from n to n+1, because this would indicate a significantly quantum
behavior. We can thus interpolate the discrete wave function by a continuous
one ψ̃(p, φ) = ψ̃n(p)(φ) with n(p) = 6p/γ�2P from (25). By our assumption of
only mild oscillations, ψ̃(p, φ) can be assumed to be smooth with small higher
order derivatives. We can then insert the smooth wave function in (32) and
perform a Taylor expansion of ψ̃n±4(φ) = ψ̃(p(n)± 2

3γ�
2
P) in terms of p/γ�2P.

It is easy to check that this yields to leading order the equation
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1
2

(
4
9
�4P

∂2

∂p2 − k
)
ψ̃(p, φ) = −8π

3
GĤmatter(p)ψ̃(p, φ)

which with a =
√
|p| is the Wheeler–DeWitt equation (13) in the ordering

given before [44]. Thus, indeed, at large volume the Wheeler–DeWitt equation
is reproduced which demonstrates that the difference equation has the correct
continuum limit at large volume. It also shows that the old Wheeler–DeWitt
quantization, though not the fundamental evolution equation from the point
of view of quantum geometry, can be used reliably as long as only situations
are involved where the discreteness is not important. This includes many
semiclassical situations, but not questions about the singularity.

When the volume is small, we are not allowed to do the Taylor expansions
since n is of the order of one. There we expect important deviations between
the difference equation and the approximate differential equation. This is
close to the classical singularity, where we want corrections to occur since
the Wheeler–DeWitt quantization cannot deal with the singularity problem.

Non-singular Evolution

To check the issue of the singularity in loop quantum cosmology we have to
use the exact equation (32) without any approximations [45]. We start with
initial values for ψn(φ) at large, positive n where we know that the behavior is
close to the classical one. Then, we can evolve backwards using the evolution
equation as a recurrence relation for ψn−4(φ) in terms of the initial values. In
this way, we evolve toward the classical singularity and we will be able to see
what happens there. The evolution is unproblematic as long as the coefficient
V|n−4|/2−V|n−4|/2−1 of ψn−4 in the evolution equation is non-zero. It is easy
to check, however, that it can be zero, if and only if n = 4. When n is four,
we are about to determine the value of the wave function at n = 0, i.e. right
at the classical singularity, which is thus impossible. It seems that we are
running into a singularity problem again: the evolution equation does not
tell us the value ψ0(φ) there.

A closer look confirms that there is no singularity. Let us first ignore the
values ψ0(φ) and try to evolve through the classical singularity. First there
are no problems: for ψ−1(φ) we only need ψ3(φ) and ψ7(φ) which we know
in terms of our initial data. Similarly we can determine ψ−2(φ) and ψ−3(φ).
When we come to ψ−4(φ) it seems that we would need the unknown ψ0(φ)
which, fortunately, is not the case because ψ0(φ) drops out of the evolution
equation completely. It does not appear in the middle term on the left hand
side because now, for n = 0, V|n|/2−V|n|/2−1 = 0. Furthermore, we have seen
as a general conclusion of loop quantizations that the matter Hamiltonian
annihilates the singular state |0〉, which in the triad representation translates
to Ĥmatter(n = 0) = 0 independently of the kind of matter. Thus, ψ0(φ) drops
out completely and ψ−4 is determined solely by ψ4. The further evolution to
all negative n then proceeds without encountering any problems.
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Intuitively, we obtain a branch of the universe at times “before” the clas-
sical singularity, which cannot be seen in the classical description nor in the
Wheeler–DeWitt quantization. Note, however, that the classical space-time
picture and the notion of time resolves around the singularity; the system
can only be described by quantum geometry. The branch at negative times
collapses to small volume, eventually reaching volume zero in the Planck re-
gime. There, however, the evolution does not stop, but the universe bounces
to enter the branch at positive time we observe. During the bounce, the uni-
verse “turns its inside out” in the sense that the orientation of space, given
by sgn(p), changes.

In the discussion we ignored the fact that we could not determine ψ0(φ) by
using the evolution equation. Is it problematic that we do not know the values
at the classical singularity? There is no problem at all because those values
just decouple from values at non-zero n. Therefore, we can just choose them
freely; they do not influence the behavior at positive volume. In particular,
they cannot be determined in the above way from the initial data just because
they are completely independent.

The decoupling of ψ0(φ) was crucial in the way we evolved through the
classical singularity. Had the values not decoupled completely, it would have
been impossible to continue to all negative n. It could have happened that
the lowest order coefficient is zero at some n, not allowing to determine ψn−4,
but that this unknown value would not drop out when trying to determine
lower ψn. In fact, this would have happened had we chosen a factor ordering
different from the one implicitly assumed above. Thus, the requirement of a
non-singular evolution selects the factor ordering in loop quantum cosmology
which, in turn, fixes the factor ordering of the Wheeler–DeWitt equation (13)
via the continuum limit. One can then re-check results of Wheeler–DeWitt
quantum cosmology which are sensitive to the ordering [12] with the one we
obtain here. It is not one of the orderings usually used for aesthetic reasons
such that adaptations can be expected. An initial step of the analysis has
been done in [43].

To summarize, the evolution equation of loop quantum cosmology allows
us, for the first time, to push the evolution through the classical singularity.
The theory tells us what happens beyond the classical singularity which me-
ans that there is no singularity at all. We already know that energy densities
do not diverge in a loop quantization, and now we have seen that the evolu-
tion does not stop. Thus, none of the conditions for a singularity is satisfied.

Dynamical Initial Conditions

In the Wheeler–DeWitt quantization the singularity problem has been glossed
over by imposing initial conditions at a = 0, which does have the advantage
of selecting a unique state (up to norm) appropriate for the unique universe
we observe. This issue appears now in a new light because n = 0 does not
correspond to a “beginning” so that it does not make sense to choose initial
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conditions there. Still, n = 0 does play a special role, and in fact the behavior
of the evolution equation at n = 0 implies conditions for a wave function [46].
The dynamical law and the issue of initial conditions are intertwined with
each other and not separate as usually in physics. One object, the constraint
equation, both governs the evolution and provides initial conditions. Due to
the intimate relation with the dynamical law, initial conditions derived in
this way are called dynamical initial conditions.

To see this we have to look again at the recurrence performed above. We
noted that the constraint equation does not allow us to determine ψ0(φ) from
the initial data. We then just ignored the equation for n = 4 and went on to
determine the values for negative n. The n = 4-equation, however, is part of
the constraint equation and has to be fulfilled. Since ψ0 drops out, it is a linear
condition between ψ4 and ψ8 or, in a very implicit way, a linear condition for
our initial data. If we only consider the gravitational part, i.e. the dependence
on n, this is just what we need. Because the second order Wheeler–DeWitt
equation is reproduced at large volume, we have a two-parameter freedom
of choosing the initial values in such a way that the wave function oscillates
only slowly at large volume. Then, one linear condition is enough to fix the
wave function up to norm. When we also take into account the matter field,
there is still more freedom since the dependence of the initial value on φ is
not restricted by our condition. But the freedom is still reduced from two
functions to one. Since we have simply coupled the scalar straightforwardly
to gravity, its initial conditions remain independent. Further restrictions can
only be expected from a more universal description. Note also that there
are solutions with a wave length the size of the Planck length which are
unrestricted (since the evolution equation only relates the wave function at
n and n ± 4). Their role is not understood so far, and progress can only be
achieved after the measurement process or, in mathematical terms, the issue
of the physical inner product is better understood.

In its spirit, the dynamical initial conditions are very different from the
old proposals since they do not amount to prescribing a value of the wave
function at a = 0. Still, they can be compared at least at an approximate
level concerning implications for a wave function. They are quite similar to
DeWitt’s original proposal that the wave function vanishes at a = 0. The
value at a = 0 itself would not be fixed, but quite generally the wave function
has to approach zero when it reaches n = 0. In this sense, the dynamical
initial conditions can be seen to provide a generalization of DeWitt’s initial
condition which does not lead to ill-posed initial value problems [47].

For the closed model with k = 1 we can also compare the implications
with those of the tunnelling and the no-boundary proposals which have been
defined only there. It turns out that the dynamical initial conditions are
very close to the no-boundary proposal while they differ from the tunnelling
one [43].
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5.4 Phenomenology

So far, we have discussed mainly conceptional issues. Now that we know that
loop quantum cosmology is able to provide a complete, non-singular descrip-
tion of a quantum universe we can also ask whether there are observational
consequences. We already touched this issue by comparing with the older bo-
undary proposals which have been argued to have different implications for
the likelihood of inflation from the initial inflaton values they imply. Howe-
ver, the discussion has not come to a definite conclusion since the arguments
rely on assumptions about Planck scale physics and also the interpretation
of the wave function about which little is known. Loop quantum cosmology
provides a more complete description and thus can add substantially to this
discussion. An analysis analogous to the one in the Wheeler–DeWitt quan-
tization has not been undertaken so far; instead a strategy has been used
which works with an effective classical description implementing important
quantum geometry effects and thus allows to sidestep interpretational pro-
blems of the wave function. It provides a general technique to study quantum
effects in a phenomenological way which is currently being used in a variety
of models.

Effective Friedmann Equation

The central idea is to isolate the most prominent effects of quantum geo-
metry and transfer them into effective classical equations of motion, in the
case of isotropic cosmology an effective Friedmann equation [48]. The most
prominent effect we have seen is the cut-off observed for inverse powers of
the scale factor (which can be thought of as a curvature cut-off). It is a non-
perturbative effect and has the additional advantage that its reach can be
extended into the semiclassical regime by choosing a large ambiguity para-
meter j.

In the equations for the isotropic model, inverse powers of the scale factor
appear in the kinetic term of the matter Hamiltonian, e.g. (7) for a scalar. We
have discussed in Sect. 2 that it is difficult to suppress this term by arranging
the evolution of φ. Now we know, however, that quantum geometry provides
a different suppression mechanism in the inverse scale factor operator. This
has already played an important role in showing the absence of singularities
since in fact the matter Hamiltonian vanishes for n = 0. Instead of a−3 we
have to use a quantization of the inverse scale factor, e.g. in the form â−3

whose eigenvalues (30) with m = 3 are bounded above. We can introduce the
effect into the classical equations of motion by replacing d(a) = a−3 with the
bounded function dj(a) = a−3p(3a2/jγ�2P)6 where p(q) is defined in (29) and
we choose a half-integer value for j. The effective scalar energy density then
can be parameterized as

ρeff(a) = 1
2x a

l(a)−3�
−l(a)−3
P p2

φ +W (φ)
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Fig. 3. Behavior of the scale factor (left) and the scalar field (right) during quantum
geometry inflation (ending at t ≈ 0.4 for j = 100) [43], both plotted in Planck units.
The potential is just a mass term 8πGW (φ) = 10−3

�φ2/2, and initial conditions
for the numerical integration are φ0 = 0,

√
κφ̇0 = 10−5�−1

P at a0 = 2�P.

with parameters x and l which also depend on quantization ambiguities,
though not significantly. Note that �P appears in the denominator demon-
strating that the effect is non-perturbative; it could not be obtained in a
perturbative quantization in an expansion of G. With our function p(q) we
have l = 12 for very small a (but it decreases with increasing a), and it is
usually larger than 3, even taking into account different quantization choices,
thanks to the high power of p(q) in dj(a). Thus, the effective equation of state
parameter w = −l/3 in the parametrization (12) is smaller than −1; quantum
geometry predicts that the universe starts with an initial phase of inflation
[48]. It is a particular realization of super-inflation, but since w increases with
a, there is no pole as would be the case with a constant w. Note that this
does not require any special arrangements of the fields and their potentials,
not even an introduction of a special inflaton field: any matter Hamiltonian
acquires the modified kinetic term such that even a vanishing potential im-
plies inflation. Inflation appears as a natural part of cosmological models in
loop quantum cosmology. Moreover, the inflationary phase ends automati-
cally once the expanding scale factor reaches the value a ≈

√
jγ/3 �P where

the modified density reaches its peak and starts to decrease (Fig. 3).

Inflation

Thus, inflation appears as a natural consequence, but it is less clear what role
it can play. For an inflationary period responsible for structure formation it
has to last long enough (in terms of e-foldings, i.e. a large ratio of the final a
and the initial a) and to be very close to standard inflation, i.e. w = −1. The
final scale factor for quantum geometry inflation is easy to find, a ≈

√
jγ/3 �P

as just discussed. The initial value, however, is more complicated. In a flat
model, the inflationary period starts as close to a = 0 as we want, but at those
small values the effective classical description must break down. Moreover, in
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a closed model the region close to a = 0 is classically forbidden17 which also
sets a lower limit for the initial a. All these issues depend more sensitively
on the kind of matter added to the model and have not yet been analyzed
systematically.

An alternative application of quantum geometry inflation can be seen in
combination with standard inflation. We have discussed that the standard
scenario requires a special potential and also special, very large initial values
for the inflaton. For instance, for chaotic inflation with the potential W (φ) =
1
2mφ

2 we need to start with φ0 > mP = �/�P which is huge compared to its
own mass m. If we couple quantum geometry inflation with chaotic inflation,
we would first observe an inflationary expansion at small volume which can
stop at small a (i.e. j can be of the order one). During this phase also the
evolution of the scalar is modified compared to the standard one since now
dj(a) appears in the Hamiltonian equations of motion instead of a−3. This
leads to a differential equation

φ̈ =
d log dj(a)

da
ȧφ̇− a3dj(a)W ′(φ)

for φ. For the always decreasing a−3 instead of dj(a) we obtain the previous
equation (10) with the friction term. The modified dj(a), however, is increa-
sing for small a such that we obtain a friction term with the opposite sign.
This will require the inflaton to move up the potential, reaching large values
even if it would start in φ(a = 0) = 0 [43]; see Fig. 3.

5.5 Homogeneous Cosmology

The framework of loop quantum cosmology is available for all homogeneous,
but in general anisotropic models [35]. When we require that the metric of a
homogeneous model is diagonal, the volume operator simplifies again allowing
an explicit analysis [49]. One obtains a more complicated evolution equation
which is now a partial difference equation for three degrees of freedom, the
three diagonal components of the metric. Nevertheless, the same mechanism
for a removal of the classical singularity as in the isotropic case applies.

This is in particular important since it suggests an absence of singulari-
ties even in the full theory. It has been argued [50] that close to singularities
points on a space-like slice decouple from each other such that the metric in
each one is described by a particular homogeneous model, called Bianchi IX.
If this is true and extends to the quantum theory, it would be enough to have
a non-singular Bianchi IX model for singularity freedom of the full theory.
Even though the classical evolution of the Bianchi IX model is very compli-
cated and suspected to be chaotic [51], one can see that its loop quantization
17 There is, however, a mechanism which leads to a small classically allowed region

for small a including a = 0 even in a closed model [43]. This comes from a
suppression of intrinsic curvature analogous to the cut-off of a−1 which would
be a suppression of extrinsic curvature.
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is singularity-free [52]. In fact, again the cut-off in the inverse scale factor
leads to modified effective classical equations of motion which do not show
the main indication for chaos. The Bianchi IX universe would still evolve in a
complicated way, but its behavior simplifies once it reaches small volume. At
this stage, a simple regular transition through the classical singularity occurs.
This issue is currently being investigated in more detail. Also other homoge-
neous models provide a rich class of different systems which can be studied
in a phenomenological way including quantum geometry modifications.

6 Quantum Gravity Phenomenology

Since quantum gravity is usually assumed to hold at scales near the Planck
length �P ∼ 10−32cm or, equivalently, Planck energy EP := �/�P ∼ 1018GeV
experiments to probe such a regime were considered out of reach for most of
the past. Recently, however, phenomena have been proposed which compen-
sate for the tiny size of the Planck scale by a large number of small corrections
adding up. These phenomena include in vacuo dispersion relations for gamma
ray astrophysics [53, 54, 55], laser-interferometric limits on distance fluctua-
tions [56, 57], neutrino oscillations [58], threshold shifts in ultra high energy
cosmic ray physics [59, 60, 61, 62], CPT violation [63] and clock-comparison
experiments in atomic physics [64]. They form the so called quantum gravity
phenomenology [65].

The aim is to understand the imprint which the structure of space-time
predicted by a specific theory of quantum gravity can have on matter pro-
pagation. Specifically, dispersion relations are expected to change due to a
non-trivial microscopic structure (as in condensed matter physics where the
dispersion relations deviate from the continuum approximation once atomic
scales are reached). For particles with energy E � EP and momentum p the
following modified vacuum dispersion relations have been proposed [54]:

p2 = E2 (1 + ξ E/EP +O
(
(E/EP)2

))
, (33)

where ξ ∼ 1 has been assumed, which still has to be verified in concrete
realizations. Furthermore, this formula is based on a power series expansion
which rests on the assumption that the momentum is analytic at E = 0 as
a function of the energy. In general, the leading corrections can behave as
(E/EP)Υ+1, where Υ ≥ 0 is a positive real number.

Since the Planck energy is so large compared to that of particles which
can be observed from Earth, the correction would be very tiny even if it is
only of linear order. However, if a particle with the modified dispersion rela-
tion travels a long distance, the effects can become noticeable. For instance,
while all photons travelling at the speed of light in Minkowski space would
arrive at the same time if they had been emitted in a brief burst, (33) implies
an energy dependent speed for particles with the modified dispersion relati-
ons. Compared to a photon travelling a distance L in Minkowski space, the
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retardation time is

∆t ≈ ξ LE/EP . (34)

If L is of a cosmological scale, the smallness of E/EP can be compensated,
thus bringing ∆t close to possible observations. Candidates for suitable sig-
nals are Gamma Ray Bursts (GRB’s), intense short bursts of energy around
E ∼ 0.20MeV that travel a cosmological distance L ∼ 1010 ly until they reach
Earth. These values give ∆t ∼ 0.01ms which is only two orders of magnitude
below the sensitivity δt for current observations of GRB’s [66, 67] (for plan-
ned improvements see [68]). For the delay of two photons detected with an
energy difference ∆E, the observational bound EP/ξ ≥ 4 × 1016 GeV was
established in [69] by identifying events having ∆E = 1 TeV arriving to Earth
from the active galaxy Markarian 421 within the time resolution ∆t = 280 s
of the measurement. Moreover, GRB’s also seem to generate Neutrino Bursts
(NB) in the range 105−1010 GeV in the so-called fireball model [70, 71] which
can be used for additional observations [72, 58, 73].

In summary, astrophysical observations of photons, neutrinos and also
cosmic rays could make tests of quantum gravity effects possible, or at least
restrict possible parameters in quantum gravity theories.

Within loop quantum gravity attention has focused on light [74, 75] and
neutrino propagation [76]. Other approaches aimed at investigating similar
quantum gravity effects include string theory [77], an open system approach
[78], perturbative quantum gravity [79, 80] and non commutative geome-
try [81]. A common feature to all these approaches is that correction terms
arise which break Lorentz symmetry. These studies overlap with a systema-
tic analysis providing a general power counting renormalizable extension of
the standard model that incorporates both Lorentz and CPT violations [82].
Progress in setting bounds to such symmetry violation has been reported in
[55, 64, 83, 84, 85].

6.1 An Implementation in Loop Quantum Gravity

In order to implement the central idea, one needs states approximating a
classical geometry at lengths much larger than the Planck length. The first
proposed states of this type in loop quantum gravity were weave states [86].
Flat weave states |W 〉 with characteristic length L were constructed as in
Sect. 4 using collections of circles of Planck size radius (measured with the
classical background geometry to be approximated) in random orientation.
At distances d 	 L the continuous flat classical geometry is reproduced,
while for distances d � L the discrete structure of space is manifest. The
search for more realistic coherent states, which not only approximate the
classical metric, but also its conjugate, the extrinsic curvature, is still ongoing
[87, 88, 89, 90]. Current calculations have been done at a heuristic level by
assuming simple properties of semiclassical states. The prize to pay is that
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lP

λ

L

Fig. 4. Representation of the different scales of the problem. A coarse graining
scale L ∼ λ indicates Planck length features �P are minute as compared to matter
scales. L here represents the size of a large piece of space.

some parameters, and even their order of magnitude, remain undetermined.
Thus, these studies explore possible quantum gravity effects without using
details of specific semiclassical states. Once properties of semiclassical states
become better known, one can then check if the existing calculations have to
be modified.

The setup requires to consider semiclassical states |S〉 for both gravity,
the background for the propagation, and the propagating matter. One has
to require that they are peaked at the classical configurations of interest
with well defined expectation values such that there exists a coarse-grained
expansion involving ratios of the relevant scales of the problem. Those are the
Planck length �P, the characteristic length L and the matter wavelength λ
satisfying �P � L ≤ λ; see Fig. 4. The effective Hamiltonian is thus defined by

Heff
Matter :=< S|ĤMatter|S > . (35)

Light

The full quantum Hamiltonian for the electromagnetic field is of the form
(20). With the above assumptions about semiclassical states one can arrive
at an effective electromagnetic Hamiltonian [75]

Heff
EM =

1
Q2

∫
d3x

[
1
2

(
1 + θ7 (�P/L)2+2Υ

)(
B2 + E2

)

+ θ3 �
2
P

(
B · ∇2B + E · ∇2E

)

+θ8�P
(
B · (∇×B) + E · (∇×E)

)
+ · · ·

]
, (36)

up to order �2P and neglecting non linear terms. The coefficients θi have not
yet been derived systematically; rather, the expression is to be understood
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as a collection of all the terms which can be expected. Precise values, and
even the order of magnitude, can depend significantly on the explicit proce-
dure followed to obtain the values from a semiclassical state. Moreover, as
usual there are quantization ambiguities in the quantum Hamiltonian which
influence the coefficients of the correction terms [41].

From the effective Hamiltonian (36) we obtain the equations of motion

A(∇×B)− ∂E

∂t
+ 2�2Pθ3∇2(∇×B)− 2θ8�P∇2B = 0, (37)

A(∇×E) +
∂B

∂t
+ 2�2Pθ3∇2(∇×E)− 2θ8�P∇2E = 0, (38)

where

A = 1 + θ7 (�P/L)2+2Υ
. (39)

The above equations are supplemented by ∇ · B = 0, together with the
constraint ∇ ·E = 0, appropriate for vacuum.

Modifications in the Maxwell equations (37) and (38) imply a modified
dispersion relation which, neglecting the non-linear part, can be derived by
introducing the plane wave ansatz

E = E0 ei(kx−ωt), B = B0 ei(kx−ωt), k = |k| . (40)

The result is

ω = k
(
1 + θ7 (�P/L)2+2Υ − 2 θ3 (k�P)2 ± 2θ8 (k�P)

)
(41)

where the two signs of the last term correspond to the different polarizations
of the photon. The speed of a photon becomes

v =
dω
dk

∣∣∣
L=1/k

= 1± 4 θ8 (k�P)− 6θ3(k�P)2 + θ7 (k�P)2+2Υ + · · · (42)

The scale L has been estimated by its maximal value 1/k. Clearly (42) is
valid only for momenta satisfying (�P k)� 1.

There are also possible non-linear terms in the effective Maxwell equations
[75]. They can become significant in strong magnetic fields, but the correc-
tions obtained in the corresponding refraction indices are much smaller than
similar effects in Quantum Electrodynamics. Nevertheless, quantum gravity
corrections have distinct signatures: a main difference is that the speed of
photons with polarization parallel to the plane formed by the background
magnetic field and the direction of the wave is isotropic.

Spin-1/2 Particles

Similarly, one can derive an effective Hamiltonian for a spin-1
2 field of mass

m [76]:
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Heff
spin 1

2
= ı

∫
d3x

{
π(x)τd∂d Â ξ(x) + c.c.+ (4L)−1 π(x) Ĉ ξ(x) (43)

+
m

2�
[ ξT (x) σ2 (α+ β�Pτ

a∂a) ξ(x) + πT (x) (α+ β�Pτ
a∂a)σ2π(x)]

}
,

where

Â =
(
1 + κ1 (�P/L)Υ+1 + κ2 (�P/L)2Υ+2 + 1

2 κ3 �
2
P ∇2

)
,

Ĉ = 1
2 κ7 (�P/L)Υ �2P ∇2

α = 1 + κ8 (�P/L)Υ+1
, β = κ9 + κ11 (�P/L)Υ+1

, (44)

This leads to wave equations

i�

[
∂

∂t
− Â σ · ∇ − i

Ĉ

2L

]
ξ(t,x) +m

(
α− 1

2 iβ�P σ · ∇
)
χ(t,x) = 0 (45)

i�

[
∂

∂t
+ Â σ · ∇+ i

Ĉ

2L

]
χ(t,x) +m

(
α− 1

2 iβ�P σ · ∇
)
ξ(t,x) = 0 (46)

with χ(t,x) = i σ2ξ
∗(t,x). As before, the dispersion relation can be obtained

by inserting plane wave solutions, this time positive and negative energy
solutions

W (p, h)e∓iEt/�±ip·x/� (47)

where W (p, h) are helicity (σ · p̂) eigenstates, with h = ±1, so that

W (p, 1) =
(

cos(θ/2)
eiφ sin(θ/2)

)
, W (p,−1) =

(
−e−iφ sin(θ/2)

cos(θ/2)

)
. (48)

For ultra-relativistic neutrinos (p	 m) one obtains

�PE±(p,L) = p�P + �Pm
2/2p± 1

2 (�Pm)2 κ9 − 1
2 κ3 (�Pp)

3 (49)

+ (�P/L)Υ+1
[
κ1p�P ∓ 1

4 κ7 (�Pp)
2
]

+ (�P/L)2Υ+2
κ2 p�P

and

v±(p,L) = 1−m
2

2p2−
3
2 κ3 (�Pp)

2+(�P/L)Υ+1 (
κ1 ∓ 1

2 κ7�Pp
)
+(�P/L)2Υ+2

κ2.

There are two physically interesting effects related to the dispersion rela-
tions just described for neutrinos. Namely neutrino oscillations for different
flavors and time delay between neutrinos and photons coming from the same
GRB. Estimates in this respect have been obtained in [76].
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6.2 Summary

The phenomenological considerations described here are intended to give an
idea of possible consequences of quantum gravity corrections. They start with
assumptions about a state approximating a classical flat metric, a classical
flat gravitational connection and a generic classical matter field, at scales
larger than the coarse-grained characteristic length L 	 �P. Under these
assumptions, modified dispersion relations can be expanded in the Planck
length. In general, there are different types of corrections, which can have
different dependence on, e.g., the helicity or the scale L. This also inclu-
des the parameter Υ encoding our (current) ignorance of the scaling of the
gravitational connection in a semiclassical expectation value.

The following motivations for the value of Υ have been made [75]: (i)
Υ = 0 can be understood as that the connection can not be probed below
the coarse graining scale L. The corresponding correction scales as (k�P)2.
(ii) Υ = 1 may be interpreted as the analog of a simple analysis [91], based
on a saturation of Heisenberg’s uncertainty relation inside a box of volume
L3: ∆E ∼ �P/L, ∆A ∼ �P/L2 and ∆E∆A ∼ G�/L3. Then the correction
behaves as (k�P)4. (iii) A value Υ = − 1

2 would lead to a helicity independent
first order correction (i.e. (k�P)); a negative value, however, is not allowed.
Further fractional values have been obtained in [92] from a detailed proposal
for coherent states in loop quantum gravity [87, 88]. From an observational
point of view, lower order correction terms would certainly be preferable.
Most of the evaluations so far have been done for first order terms, but
recently also higher order corrections have been started to be compared with
observations [61, 93].

7 Outlook

As discussed in this article, loop quantum gravity is at a stage where physical
results are beginning to emerge which will eventually be confronted by ob-
servations. To obtain these results, as usually, approximation schemes have
to be employed which capture the physically significant contributions of a
full theory. In our applications we used the minisuperspace approximation
to study cosmological models and a semiclassical approximation for the pro-
pagation of particles. We have to stress, however, that these approximation
schemes are currently realized at different levels of precision, both having
open issues to be filled in. Loop quantum cosmological models are based
on symmetric states which have been explicitly constructed as distributional
states in the full theory. There are no further assumptions besides the cen-
tral one of symmetries. A partially open issue is the relation of symmetric
operators to those of the full theory. A precise derivation of this relation will
complete our understanding of the models and also of the full theory, but it
is not expected to imply changes of the physical results since we know that
they are robust under quantization ambiguities.
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As for loop quantum gravity phenomenology its central ingredient are
semiclassical states which are being investigated with different strategies lea-
ding to different proposals. The present explicit calculations are based on
simple assumptions about semiclassical states which have to be probed in an
eventual realization. Thus, there is not only a central simplifying assump-
tion, semiclassicality, but also additional assumptions about its realization.
These assumptions affect the presence as well as the magnitude of possible
correction terms. It is not just the relation between phenomenology and ob-
servations, but also the one between phenomenology and the basic theory
which has to be understood better.

Furthermore, there are important conceptual issues which are not yet
completely understood. For instance, it would be essential to see the emer-
gence of a classical space-time from semiclassical quantum states in order to
study a particle moving in a state which approximates Minkowski space. A
related issue is the fact that the discreteness of quantum geometry is suppo-
sed to lead to correction terms violating Lorentz symmetry. Such a violation,
in turn, implies the existence of a distinguished time-like vector. An open
conceptual issue is how such a distinguished vector can arise from the di-
screte formulation.18 For this purpose one would need a distinguished rest
frame which could be identified using the cosmic background radiation [74].

Future work will progress along several lines according to the different
open problems. First, at a basic level, the conceptual issues will have to be
understood better. In the case of quantum gravity phenomenology this will
come as a consequence of additional insights into semiclassical states which
are under investigation [87, 88, 89, 90]. This will also change the way how
explicit calculations are implemented, and the precision of known results will
be enhanced leading to a stronger confrontation with observations. Finally,
there are many phenomenological effects which have not yet been investigated
in the context of loop quantum gravity. Loop effects will lead to changes whose
significance regarding observations has to be studied.

Already the present stage of developments proves that loop quantum gra-
vity is a viable description of aspects of the real world. It offers natural
solutions to problems, as e.g. the singularity problem, which in some cases
have been open for decades and plagued all other theories developed so far.
At the same time, sometimes surprising consequences emerged which lead to
a coherent picture of a universe described by a discrete geometry. All this
establishes the viability of loop quantum gravity, and we are beginning to
test the theory also observationally.

18 Models to understand modifications of the usual Lorentz symmetry have been
developed in [94, 95].
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bubbles, 44, 397

Fermi
distribution, 11

Fermion, 13, 226, 273, 274, 277, 285,
287, 289, 293, 295, 296, 300, 301,
437

ball, 183
couplings, 278, 305
cuttoff, 283
degrees of freedom, 240, 275
distribution, 11
fluctuations, 273, 274, 284, 289, 299
loop correction, 285
scattering, 300

Fine-tuning
λ..., 350, 362, 406
in the pre-Big Bang, 82
initial conditions, 21, 23, 26, 268
parameters, 64
problems, 82, 323, 330, 365

Flatness
problem, 1, 22, 61, 64, 67, 82, 403

Free streaming, 30, 34, 312
scale, 31, 240

Freeze out
fluctuations..., 144, 149, 151, 312
neutralino..., 310, 311, 316
neutron..., 58
particles..., 14, 309, 318

Friedmann-Robertson-Walker (FRW)
accelerated...models, 110
GR Eqs., 8
GR, flat solution, 10
metric, 77

five dims, 385

metric, see Robertson-Walker metric,
8

models, 7, 138, 347, 350
on a brane, 336
singularity, 10
with scalar fields, 227

General relativity (GR)
field Eqs., 7

Graceful exit, 44, 84, 85
Grand Unified Theories (GUT), 16,

28
SU(5), 26
..and baryon-lepton conservation,

26
phase transition, 35, 43
reheating, 47

Graviton
decoupling, 15

Harrison-Zel’dovich power spectrum,
30, 71, 87, 136

Hawking temperature, 42, 362, 366
Higgs

field, 226, 296, 297, 302, 327
mass, 293, 298, 300
potential, 66, 300

Higgsino, 309, 312, 317–319
-like neutralino, 316

High-Z Supernova Search Team (HZT),
192, 196, 199, 200, 202, 208, 212

Homogeneity
and Heterogeneity, 192
and isotropy problem, 20

Horizon
black hole event..., 169, 183–185,

331, 344, 362
causal...

and comoving length scales, 38
de Sitter, 36
FRW, 20

event..., 37
Hubble..., 36, 118
mass, 25
problem, 1, 20, 62, 65, 71, 82, 152,

358, 403
Hubble

constant, 2, 48, 194, 203, 235, 351
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174, 177, 227, 283, 336, 366, 373

Space Telescope (HST), 48, 193,
197, 199, 212, 213, 216

Inflation, 35, 36
e-folds of..., 37, 39, 115, 228, 246,

248
chaotic..., 46, 68, 70, 74, 101, 160,

161, 263, 427, 451
hybrid..., 46
new..., 44, 259, 261
old..., 43, 44, 398
power law solution, 10, 69, 81, 148,

179
pressure, 10, 35

Inflationary
scenario, 36

Inflaton, 1, 46, 69, 76, 101, 117, 145,
259, 267–269, 299, 358, 404, 406,
407, 427, 449–451

-dark matter scenario, 417
energy, 69, 265
mass, 73
potential, 68, 69, 72, 73, 119, 120,

125, 261, 263, 369, 370, 372, 376
Instanton, 26, 92, 95, 332, 344, 383,

395, 397
method, 381, 382, 395

Last scattering surface, 17, 57
Loop quantum

cosmology, 1, 421, 438, 451, 458
gravity, 4, 421, 453, 457, 458

M-theory, 53, 76, 92, 103, 324, 329, 383
Mach principle, 36
Mass

contrast, Fourier expansion..., 29
Matter fluid, 137, 337, 349, 416

temperature, 15, 16
MAXIMA, 1, 2, 59, 73, 116, 172, 186,

202, 203
Monopole problem, 27, 62

Neutrino
decoupling, 15, 238, 240
mass, 241, 402
oscillations, 452, 456

Neutron star, 184
Neutron–proton ratio, 14, 58
New inflation

potential, 45
No hair conjecture (Cosmological), see

cosmic no hair conjecture, 47
No hair theorem (black hole), 37
Nucleosynthesis, 2, 15, 17, 22, 53, 58,

61, 62, 65, 111, 117, 176, 181, 232,
236, 244, 249, 337, 365, 382, 408

and the baryon to photon ratio, 11,
13, 22, 24

and the neutron to proton ratio, 14
and the quark to anti–quark ratio,

26
constraints, 59, 238, 240, 252, 402
quintessence field at..., 97

Original patch, 36, 38, 65
Out-of-equilibrium decay, 26

Perturbations
back reaction, 92, 127, 156–158,

160–163, 167, 289, 425
in the inflationary cosmology, 42
super-horizon, 30, 299
theory of gravitational..., 71, 91,

150, 161, 177, 353, 367, 407
theory of..., 3, 127, 128, 146–148

Newtonian, 130
relativistic, 138

within the horizon, 30
Phase transition

as dark energy, 231
in the Big Bang, 16

Photon density, 58
Photon diffusion, 30
Planckian

spectrum, 299
trans-...problem, 127, 149, 152, 156
trans-...window, 152

Potential
containing metric components, 444
effective..., 1, 70, 273–275, 278, 280,

284, 289, 297, 351
energy, 416
Higgs field..., 66, 300
maxima of the..., 259
radiative corrections, 234, 297
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scalar..., 232, 397, 426, 427
quantum corrections of..., 273

supersymmetric..., 233
vector, 424

Power spectrum, 29, 59, 71, 87, 136,
150, 201, 203, 357, 359, 369, 406

damping of..., 409
dark energy..., 103

Preheating, 45, 69, 337

Quasi-stellar objects (quasars), 20,
177, 183, 186

clustering and dark energy, 102
distribution, 171
gravitational lensing of..., 59
spectra, 128

Quintessence, 48, 95, 225, 227, 273
coupled..., 282
coupling, 284
equation of state of..., 101
evidence for..., 102
fluctuations, 274
specific models of..., 97
uncoupled..., 279

Radiation fluid
density, 12
number density, 13
pressure, 12, 211
solution, 338
temperature, 13

Randall-Sundrum
model, 323, 326, 336, 353, 354, 381
type I model, 327
type II model, 4, 324, 325, 328, 335,

357, 360–362
Reaction rate, 14
Redshift

definition, 33, 57, 174
high-...objects, 298
high-...SNe Ia, 202, 206, 216
high-...SNe Ia, 191–193, 196, 198,

204, 206, 213
low-...SNe Ia, 202, 206, 213
low-...SNe Ia, 191, 193, 206

Reheating, 1, 9, 41, 69, 145, 151, 162,
163, 265, 407

temperature, 41, 65
Robertson-Walker metric, 8

Root-mean-square (rms)
density fluctuation, 29
mass fluctuation, 29, 135

Sachs-Wolf effect, 32, 103
Silk scale, 30
Singularity

in loop quantum gravity, 446
problem, 19, 426, 427

Slow rollover conditions, 145, 146,
148, 159, 228, 241, 351

Spectral index, 28, 74, 75, 87, 90–92,
118–120, 128, 154, 369, 406, 407

Sphaleron, 26, 294, 296, 298, 305
Standard model of cosmology, 7, 72
Standard model of particle physics,

13, 17, 26, 64, 225, 226, 232, 237,
293, 296, 298, 329, 359, 401, 408,
453

Strings
cosmic..., 164
fundamental..., 48, 76, 84, 167, 291,

324, 325
super-..., 358

SU(5) GUT
symmetry–breaking, 16

Supernova Cosmology Project (SCP),
192, 196, 199, 204, 212, 213

Supersymmetric
breaking, 64
extensions of the SM, 293
gauge field theory, 271
gauge groups, 232
minimal...standard model, 236, 239
partners, 226, 309
perturbative string theories, 358
QCD, 98

Survey
Calán-Tololo..., 194
galaxy...:2dF, 180, 203
galaxy...:Sloan, 180, 216
GOODS, 212
gravitational lensing..., 128, 180
high redshift..., 357
SNAP, 217
SNIa..., 226
spacetime..., 171

Symmetry breaking
electroweak..., 293
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gauge..., 64
spontaneous..., 16

Temperature
above the condensation scale, 237
and degrees of freedom, 236
at condensation scale, 254
at nucleosynthesis, 232
contrast, Fourier expansion..., 32
critical, 41
photon and neutrino..., 240
SM..., 237
SUSY-SM..., 241

Top–down scenario, 34
Topological defects, 70, 71, 128, 164,

360

Topology of space, 173

Universe
age, 48
lifetime, 18

Vacuum energy
equation of state, 9, 55

Weakly Interacting Massive Particles
(WIMPs), 34, 309, 402

Wilkinson Microwave Anisotropy Probe
(WMAP), 1, 29, 40, 59, 69, 73,
75, 191, 203, 204, 215, 216, 241,
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