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Chapter 1
Introduction

Abstract In order to precisely model a real-life system or a man-made device,
both nonlinear and dynamic properties of such an entity need usually to be taken
into account. The generic, black-box model based on Volterra and Wiener series
is capable of representing rather complicated nonlinear and dynamic interactions;
however, the resulting identification algorithms are impractical, mainly due to
their computational complexity. One of the alternatives, offering fast identification
algorithms, is the block-oriented approach, in which systems of relatively simple
(and known) structure are considered. In the book, the nonparametric identification
algorithms designed for the systems from such a class are proposed, and their
asymptotic and computational properties are investigated.

A majority of real-life phenomena are both nonlinear and dynamic. That is, in a
given time, their outputs depend on the nonlinearly transformed present and past
inputs [97, 152]. To model such relations, several algorithms, based on the Volterra
and Wiener series (black-box) approach or on the block-oriented one, were proposed
(see, e.g., [10, 81, 93, 123, 127, 137] and [4–7, 39, 42, 61, 74]). The former allow
modeling a wide class of nonlinear systems of an a priori unknown structure,
however, at the cost of a prohibitively high computational complexity of their iden-
tification algorithms (cf. e.g. [150]). In the latter, the structure of a system is known
and consists of simple interconnected static (memoryless) nonlinear blocks and
linear dynamic elements. One of the most exploited instances of the block-oriented
systems is the Hammerstein one, which is a cascade of the input static nonlinearity
followed by the dynamic linear subsystem. The importance of the Hammerstein
model results from the fact that the algorithms proposed for it are computationally
tractable (i.e., fast) and can easily be fine-tuned to work with several other structures,
like parallel or serial-parallel, or Uryson and MISO systems (see, e.g., [6, 56, 61,
71, 72, 110]). All these systems—as natural extensions of the linear ones—can be

P. Śliwiński, Nonlinear System Identification by Haar Wavelets, Lecture Notes
in Statistics 210, DOI 10.1007/978-3-642-29396-2 1,
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2 1 Introduction

found in various applications (e.g., in biocybernetics [83,92,97,151,152], chemistry
[79, 135, 139], control [2, 107, 140, 148], power delivery [75, 76, 82, 101], economy
[13], and signal processing [40, 80, 87, 88, 102, 108, 114, 126, 155]).

Depending on the a priori knowledge available for the user, one can distinguish
two main approaches to the block-oriented system identification problem:

• Parametric, used when models of the phenomenon are given (when, e.g., the
nonlinearity is a polynomial of known degree and an order of the dynamic system
is known) (see, e.g., [61])

• Nonparametric, applied when such a knowledge is not available, i.e., it is only
assumed that the nonlinearity is bounded or integrable function and the dynamics
is stable but of unknown order (see [57])

As both approaches have their strengths and weaknesses, one can easily ascertain
that rather than compete with, the parametric and nonparametric algorithms
complement each other: The former, if the parametric models selected a priori
are correct, reduces to the problem of proper estimation of the model parameters.
The resulting algorithms converge fast and thus work well even for small
measurement sets. However, if the models are not correct, the algorithms suffer
from the systematic (bias) error and the system characteristics remain unknown no
matter how many measurements are available. In turn, the nonparametric algorithms
are almost exclusively based on measurements and allow recovering the system
characteristics of arbitrary shape. The price we pay for such universality is their
slower convergence as a larger number of measurements is necessary to compensate
the lack of initial knowledge.1

In the book we focus on nonparametric recovery of the nonlinear part of
the system. All the presented algorithms are based on the observation made by
Greblicki and Pawlak in [52] that the system nonlinearity is equal to the regression
function of the system output on its input. The identification algorithms are thus the
nonparametric estimates of a regression function adjusted to the specific conditions
imposed by the system identification problem. We examine algorithms based on two
types of the Haar wavelet orthogonal series: the classic, invented by Haar in [59,60],
and the recently proposed unbalanced one, proposed by Girardi and Sweldens in
[41]. Orthogonal series seem to be a natural choice in the nonparametric approach
as they are able to represent any integrable function, while wavelets make such a
representation effective (sparse). Four types of algorithms implementing the local
averaging paradigm (see [58, Chaps. 3–8]) are examined:

• The quotient orthogonal series (QOS) algorithms
• The order statistics (OS) algorithms
• The empirical distribution (ED) algorithms
• The empirical orthogonal series (EOS) algorithms

1The third approach, the semiparametric one, combines the advantages of the former two (cf. e.g.,
[65, 67]) for a general introduction and [133] for the application to system identification.
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The first two are, respectively, the Haar wavelet versions of the quotient
orthogonal algorithms introduced by Greblicki in [46] (and applied to Hammerstein
system by Greblicki and Pawlak in [53]) and of the algorithms based on sorted
measurements (order statistics) introduced by Greblicki and Pawlak in [55]. The for-
mer, in the Haar wavelet version, have also been examined by Pawlak and Hasiewicz
[110] and Hasiewicz [68, 69] (see also [120]).

The latter two are the new identification algorithms. The ED one uses the input
measurements mapped by their empirical distribution, while the EOS algorithm
exploits the empirical orthogonal series—the unbalanced orthogonal Haar basis
generated by these measurements. Both algorithms are related to the similar routines
proposed in the statistical literature by Delouille et al. in [26] and by Györfi et al. in
[58, Chap. 18], respectively.

The following two variants of each algorithm type are examined:

• linear, based on the linear approximation of the system nonlinearity and obtained
from a truncated expansion series (in which the first expansion terms are used)

• nonlinear, in which not only the first but also the largest coefficients of the
expansion are used for nonlinearity estimation [29, 30]

The nonlinear scheme is specific for the wavelet series algorithms and allows
taking advantage of the compactness of the wavelet function supports (which
appears to be one of their most distinguishing properties among all orthogonal
series; see, e.g., [23, 96, 147]) and results in effective recovery of discontinuous
system nonlinearities.

In all presented algorithms, the higher-order compactly supported wavelets
can be employed instead of the Haar ones (see e.g., [27, 58, 71, 129, Chap. 18]).
Nevertheless, for the following reasons, we focus on the Haar wavelets
exclusively:

• Simplicity of algorithms. Haar wavelets are the only compactly supported
orthogonal wavelets which have explicit formulas. The other wavelets are given
implicitly—as the recursive procedures [24], and subsequently, they cannot be
used directly in identification algorithms when the input signal is random and
require designing special computational algorithms (see, e.g., [64,66,131,132]).

• Simplicity of presentation. Identification algorithms based on Haar functions are
usually of a simple form. This not only helps to demonstrate the ideas behind
the algorithms and present their main properties but also greatly simplifies the
corresponding proofs (cf. e.g., [16, 29, 32, 68, 69, 78, 109, 128, 147]).

• System identification specifics. The nonparametric identification tasks possess
several peculiarities (e.g., randomness of the input signal, presence of
dynamics-induced correlation of the outputs and a small signal-to-noise ratio),
which, in practice, can mask the theoretical advantages of the higher-order
wavelets; cf. [71, 130].
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The book is organized as follows. The next chapter presents the identification
problem under consideration and some examples of the Hammerstein-type systems
with their unified input–output descriptions. In the third chapter, the identification
goal is specified, and in the fourth, both classic and unbalanced Haar wavelets are
recollected. In the fifth, the main one, the identification algorithms are proposed, and
their asymptotic properties are presented. The effective computational counterparts
of the algorithms are developed in Chap. 6. A summary is placed in Chap. 7.
The appendix comprises all the technical materials, i.e., the proofs of theorems
characterizing the convergence and convergence rates of the algorithms.

I would like to gratefully thank Prof. Zygmunt Hasiewicz from Wrocław
University of Technology and Prof. Don Hong from Middle Tennessee State
University for their reviews and insightful comments. I would also like to thank
Dr. Eva Hiripi from Springer DE and Ms. Kumarasamy Vinodhini from SPi Global
for their patience and helpful guidance throughout the manuscript preparation
process.



Chapter 2
Hammerstein Systems

Abstract A discrete-time cascade of a static nonlinearity followed by a linear
dynamics, i.e. the Hammerstein system, is presented. Its equivalence (from the
proposed identification algorithms point of view) to some static nonlinear system
with the dynamics acting as the source of an additive noise is pointed out. The
ample classes of admissible memoryless nonlinear and linear dynamic elements are
defined, and the assumptions concerning the input and noise signals are imposed.
Selected examples of other block-oriented systems which can be described by the
equivalent static system input–output equation are shown. Possible applications to
high power amplifier or transmission line modeling are proposed.

We consider a discrete-time Hammerstein system (see Fig. 2.1), that is, a cascade of
a nonlinear static (memoryless) block followed by a linear dynamics.

The leitmotif of the book and the main goal of the presented algorithms is to
recover the nonlinear characteristics, m.u/, of the static part from the pairs of the
system input and output measurements f.uk; yk/g ; k D 1; 2; : : :. The system is
described by the input–output equation

yk D
1X

iD0
�im .uk�i /C zk (2.1)

We assume that the interconnecting signal vk D m.uk/, between the static and
the dynamic part, is not available and that the system output is disturbed by an
additive noise, zk . The following proposition founds a basis for the identification
algorithms considered in the book (cf. [52, 55, 57, Chap. 2]).

Proposition 2.1. The Hammerstein system in Fig. 2.1a is equivalent to the nonlin-
ear memoryless element in Fig. 2.1b, with the input–output equation; cf. (2.1):

P. Śliwiński, Nonlinear System Identification by Haar Wavelets, Lecture Notes
in Statistics 210, DOI 10.1007/978-3-642-29396-2 2,
© Springer-Verlag Berlin Heidelberg 2013
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a b

Fig. 2.1 (a) A generic Hammerstein system. (b) An equivalent static system seen from input–
output viewpoint

yk D �dm .uk�d /C
1P
iD0
i¤d

�im .uk�i /C zk

D � .uk�d /C �k C zk; (2.2)

in which the nonlinear system characteristics (the system nonlinearity), � .u/ D
�dm .u/ C bd , where �d ¤ 0 and bd D Em .u1/

P1
iD0;i¤d �i ,1 is observed in

the presence of the external noise zk and the (zero-mean) system noise, �k DP1
iD0;i¤d �im .uk�i / � bd .

Our a priori knowledge about the system characteristics and the signals is
nonparametric, and we assume that:

1. The input, uk; is a stationary white noise signal with a probability density
function, f .u/ being Lipschitz or piecewise-Lipschitz, and strictly positive in
the standardized identification interval Œ0; 1�.

2. The nonlinearity m.u/ is either a Lipschitz or a piecewise-Lipschitz function in
that interval.

3. The dynamic part is linear and asymptotically stable and has the impulse
response, f�i g ; i D 0; 1; : : :, which is of a finite or an infinite length. We assume
that there is no delay in the system, i.e., �0 ¤ 0.

4. The external noise, zk , is any zero-mean second-order stationary signal, white or
correlated.

Assumptions 1–4—being of the nonparametric nature—express rather poor prior
information about the target system before the identification experiment and impose
rather weak restriction on the system characteristics and on the identification condi-
tions. In particular, the input signal can have virtually any bounded and compactly
supported probability density function, viz. uniform, triangular, piecewise-constant
distribution or Gauss, Cauchy, or Laplace one (truncated to the identification
interval).

1Note that the multiplicative constant factor �d depends only on the system impulse response,
while the additive second one, bd , also on the probability density function of the input signal (i.e.,
on the identification conditions).
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Fig. 2.2 The Hammerstein system with both the interconnecting signal vk and the system output
wk disturbed by the external noise signals

The target nonlinearity, m.u/, can have isolated (jump) discontinuities.
The number of jumps is unknown but finite. This assumption is satisfied by,
e.g. piecewise-constant, or piecewise-Lipschitz, or, in particular, by piecewise-
polynomial functions.

The next assumption, about the dynamic part, admits any discrete-time linear
stable systems, that is, the systems with an absolutely summable impulse response,P1

iD0 j�i j < 1. The system can thus have a finite or infinite impulse response. The
response can have damped oscillations as shown in the following example:

Example 2.1. Let the dynamic system transfer function,K� .z/, possess only simple
poles and no pole at the origin (i.e., there is no delay in the system). With �r ; r D
1; : : : ; p, denoting real and .�r ; N�r/, r D 1; : : : ; q, denoting pairs of complex poles
of K� .z/, the impulse response is of the well-known form

�n D K� .0/ ın C
pP
rD1

˛r�
n
r C 2

qP
rD1

jˇr j j�r jn cos .n!r C 'r/

where ˛r D limz!�r .z � �r/K� .z/ =�r ; ˇr D limz!�r .z � �r/K� .z/ =�r ; and
'r D argˇr (ın is the Kronecker’s delta function). In particular, if there exist com-
plex poles .�r ; N�r/ or some real poles, �r , are negative, then the impulse response,
f�ng, includes oscillating components (in our—stable—system, all j�r j ; j�r j < 1,
i.e., all poles are located within the unit circle, and the oscillations are damped).

Note that the “no-delay” assumption, �0 ¤ 0, is made for the clarity of
exposition. If �0 D 0, i.e., in the presence of a delay in the system, one can take
any other �d ¤ 0 and, in the following algorithms, use pairs f.uk; ykCd /g instead
of f.uk; yk/g; cf. for comparison [57, Chap. 2.2].

As it concerns the external noise, zk , it can—in general—be correlated and can
act on both the input and the output of the Hammerstein system dynamics (cf.
Figs. 2.2 and 2.5 in Example 2.5).

Example 2.2 (Multiple noise sources). Let the noise signals
˚
"0
k

�
and

˚
"00
k

�
in

Fig. 2.2 be zero-mean, finite variance i.i.d. processes. The equivalent external noise
is zk D z0

k C z00
k with z0

k D P1
iD0

P1
jD0 �j! 0

i "
0
k�.iCj / and z00

k D P1
iD0 ! 00

i "
00
k�i .

Assumption 4 holds provided that the noise filters, f!0
j g and f!00

j g, are stable.
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Fig. 2.3 The Uryson system

2.1 Other Systems

Several block-oriented structures can be represented in an equivalent Hammerstein
system-like form, and subsequently, their nonlinearities can be recovered using the
algorithms designed for the (canonical) Hammerstein systems; cf. [57, 71, 72, 110,
Chap. 12]. These systems can be, in turn, used to model any phenomenon having an
input nonlinearity followed by a linear dynamics of arbitrary structure, and below,
several illustrative examples of such systems and circuits are demonstrated.

Example 2.3 (Uryson system). The Uryson system is an example of a multichannel
nonlinear system. Its input–output equation has the following form (see Fig. 2.3 and
cf., e.g., [38]):

yk D
1X

iD0
�im .uk�i /C

UX

uD1

1X

iD0
!u;i �u .uk�i /C zk

D � .u/C �k C zk;

where the system nonlinearity is given by the formula

� .u/ D �0m .u/C
UX

uD1
!u;0�u .u/C b0

with b0 D P1
iD1 �iEm .uk�i / C PU

uD1
P1

iD1 !u;iE�u .uk�i /, i.e., the system
nonlinearity � .u/ is now a weighted sum of all nonlinearities from the system’s
branches (with unknown and system dependent weights). Observe however that the
single nonlinearity m.u/ can still be separated from other nonlinearities �u .u/ ;
u D 1; : : : ; U; when the dynamics in their channels have nonzero delays (cf.
Example 2.4). Moreover, when all the channel nonlinearities �u .u/ are active
(nonzero) in input signal ranges nonoverlapping with the active input range of
m.x/ ; i.e., if it holds that supp� .x/ \ supp�u .x/ D ; for all u D 1; : : : ; U ,
then again, the m.x/ is separated from other nonlinearities in its activity region.
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Fig. 2.4 The Hammerstein
system with a parasitic
dynamics

Fig. 2.5 The nonlinear
transmission line modeled
as a Hammerstein system

Example 2.4 (Parasitic parallel dynamics). A nonlinear system with a parallel
nuisance (parasitic, lumped) dynamics (Fig. 2.4) has the following Hammerstein
system representation:

yk D
1X

iD0
�i

"
m.uk�i /C

1X

iD0
!iuk�i

#
C zk D � .uk/C �k C zk;

where

� .u/ D �0 Œm .u/C !0u�C b0;

with b0 D b0
0 C b00

0 , and b0
0 D P1

iD1Œ�iEm .uk�i / C �0!iEuk�i �, b00
0 DP1

iD1
P1

jD0 �i!jEuk�i�j . Such system noise has a bit more complicated struc-
ture, �k D � 0

k C � 00
k , where � 0

k D P1
iD1Œ�im .uk�i / C �0!iuk�i � � b0

0 and
� 00
k D P1

iD1 �i
P1

jD0 !j uk�.iCj / � b00
0 . Note that if there is a delay in the parasitic

channel (and e.g. !0 D 0), then we get the “memoryless system” relation

� .u/ D �0m .u/C b0;

with b00
0 D P1

iD1
P1

jD1 �i!jEuk�i�j , and � 00
k D P1

iD1 �i
P1

jD1 !j uk�.iCj / � b00
0 .

Example 2.5 (Transmission line). A transmission line with an input nonlinearity
can be modeled as the Hammerstein system, see Fig. 2.5. The Assumptions 3–4
are clearly fulfilled if all noises, z.r/k ; r D 0; : : : ; � are zero-mean second-order
stationary processes and all the elementary components of the transmission line
f�.r/i g; r D 1; : : : ; �, are linear and asymptotically stable dynamics; cf. Example 2.2.

Example 2.6 (Doherty amplifier). The Doherty amplifier is a nonlinear circuit used
in radio amplifiers and has recently been applied in many microwave devices (e.g., in
OFDMA-based wireless transmitters; see [20,77,88,114]). It can be seen as a system
with the input nonlinearity composed of two parallel nonlinear static subsystems
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Fig. 2.6 The Doherty amplifier (	 denotes a pure (unit) delay subsystem, i.e., 	 Œm .uk/� D
m .uk�1/ and � .	 Œuk�/ D � .uk�1/)

m.u/ and � .u/ ; followed and preceded by the pure-delay elements	, respectively,
see Fig. 2.6. Such a model has thus an equivalent, Hammerstein-like, input–output
equation:

yk D
1X

iD0
�i f	 Œm .uk�i /�C � .	 Œuk�i �/g C zk

D
1X

iD1
�i�1 Œm .uk�i /C � .uk�i /�C zk D � .uk�1/C �k C zk;

where the system nonlinearity is a (weighted) sum of both nonlinearities

� .u/ D �0 Œm .u/C � .u/�C b0,

with b0 D P1
iD2 �i�1E Œm .u1/C � .u1/�, and �k D P1

iD2 �i�1ŒŒm .uk�i / C
� .uk�i / �E Œm .u1/C � .u1/��.

2.2 Notes

The assumption about the input signal independence, while often met in the
literature (see, e.g., the classical lectures by Wiener [153] and by Lee and Schetzen
[93]), can clearly be pointed out as a limitation in those applications where the input
signal is neither white nor can be controlled; cf. [123] and [97]. Still, in modern
transmission systems, one can find the i.i.d. input signals being generated by the
stream encoding/compressing transmitters (since a well-compressed datastream is,
in principle, a white (and, furthermore, often of uniform distribution) process; cf.
e.g. [143]).

In case when stochastic dependence of the input signal cannot be neglected, one
should consider the Wiener system model, in which (in the simplest case) a single
input nonlinearity is preceded by a linear dynamics or a sandwich structure, where
the Wiener and the Hammerstein systems are connected in a cascade; see Fig. 2.7.
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Fig. 2.7 The sandwich
system being a cascade of the
Wiener (f!g ; m .v/) and
Hammerstein systems
(m .v/ ; f�ig)

Nevertheless, it should be noted that nonparametric identification of these systems
and, in particular, recovery of their nonlinearities remains a challenging problem
(see the very recent results by Greblicki e.g. [48–50, 57, Chaps. 9 and 14] and [51],
Pawlak et al. [111], Mzyk [105], and cf. Giri and Bai [42]).



Chapter 3
Identification Goal

Abstract The fundamental relation between the Hammerstein system nonlinearity
and the regression function of the system output on the system input is presented.
It allows recovery of the system nonlinearity with the help of the nonparametric
regression function estimates. Several implications of this approach are discussed. In
particular, the fact that the nonlinearity is estimated independently of the dynamics
is emphasized. Some limitations, i.e., an ability of identification of the genuine
nonlinear characteristic up to some system-dependent constants and a small signal-
to-noise ratio of the measurement data, are also pointed out.

Recall that our goal is to recover the nonlinearity m.u/ from the input–output
measurements f.uk; yk/g of the whole system under the nonparametric Assump-
tions 1–4. The pivotal for our algorithms is the relation (2.2) in Proposition 2.1 and
the resulting therefrom, well-established observation, that the regression function of
the Hammerstein system output yk on its input uk equals to the system nonlinearity
� .u/, viz., to the genuine nonlinear characteristic m.u/ up to some system-
dependent constants �0 and b0 (see [52]):

E fyk juk D ug D � .u/ : (3.1)

Proof. We have that, cf. (2.1) and (2.2):

E fyk juk D ug D E

( 1X

iD0
�im .uk�i /C zk juk D u

)

D
1X

iD0
�iE fm.uk�i / juk D u g CE fzk juk D u g

D �0m .u/C E fm.u1/g
1X

iD1
�i D � .u/ ;

since uk and zk are mutually independent and uk is white and stationary. �
P. Śliwiński, Nonlinear System Identification by Haar Wavelets, Lecture Notes
in Statistics 210, DOI 10.1007/978-3-642-29396-2 3,
© Springer-Verlag Berlin Heidelberg 2013
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This observation associates directly the “memoryless system” input–output
equation (2.2) in Proposition 2.1 with the (nonparametric) regression function
estimation problem: Estimating the regression using only the system input–output
measurements f.uk; yk/g, we are thus able to recover the Hammerstein system
nonlinearity � .u/ D �0m .u/ C b0 using the nonparametric regression function
estimates. Before we present our Haar wavelet-based estimates, we nevertheless
will review several peculiarities of the nonparametric identification problem.

Remark 3.1. The presence of the scale and shift factors does not depend on the
algorithm used to estimate the regression in (3.1). Subsequently, the nonlinear
characteristic m.u/ cannot be, in general, recovered from the system input–output
measurements under the nonparametric Assumptions 1–4 (see, e.g., [57, Chap. 2]).
To find the actual m.u/, an additional a priori information is needed, e.g., the
parametric knowledge about the subsystems, cf. [15, 104, 154], or the active
experiment approach, viz. with a controlled input signal uk should be applied;
[14, Remark 3]. Specifically, if it is known that m.0/ D 0 (which is often the
case), then � .0/ D b0, and to recover scaled-only nonlinearity �0m .u/, it suffices
to estimate � .u/ � � .0/. Similarly, if Em .u1/ D 0, which holds when, e.g.,
the input distribution is symmetric and the nonlinearity is odd, then b0 D 0 and
� .u/ D �0m .u/ as well (see [57, Chap. 2] and cf. [105, Chap. 8.3.3]).

The following example shows that two different systems can be tantamount from
the input–output viewpoint and, in particular, can have the same system nonlinearity
� .u/ (and, subsequently, the same regression function).

Example 3.1. Let the input signal uk have a triangular distribution symmetric in
the unit interval Œ0; 1�. Let the static subsystem have the characteristic m.u/ D
2 b5 .u � 1=2/C 1=2c, and let the dynamic part have the impulse response �i D
1=2iC1. Let the other system have, respectively, m.u/ D b5 .u � 1=2/C 1=2c and
�i D 1=2i . Clearly, the system nonlinearities in both cases are equal.1

Observe further that the nonparametric system identification Assumptions 1–4
make the regression estimation problem rather difficult. In particular, the following
factors need to be taken into account during the construction (or adaptation) of the
identification algorithm:

• Randomness of the input signal uk indicates that the applicable regression
estimates have to be selected from the random setting design class rather
than from the fixed setting design one (where the inputs are assumed to be
deterministic and (usually) equispaced); see [58, 67].

• The presence of dynamics—and its interpretation as the system noise �k—
implies that the random input signal is carried to the output and acts as the
additional correlated system noise with an unknown distribution dependent on
both the input signal probability density f .u/ and the shape of the nonlinearity

1The symmetric triangular pdf function is further used in algorithms tests (see Sect. 5.1).
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Fig. 3.1 The data points drawn from the test Hammerstein systems with either the piecewise-
polynomial (left) or piecewise-constant (right) nonlinearity followed by the dynamics with the
infinite impulse response f�ig, � D �1=2 (SNR D 1)

m.u/. In result, the output measurements yk are correlated and (even in the
absence of the external noise zk) yield a rather poor signal-to-noise ratio:

SNR D maxu j� .u/j
maxk j�kj

D maxu j�0m .u/j
maxk

ˇ̌P1
iD1 �im .uk�i /

ˇ̌ D j�0jP1
iD1 j�i j : (3.2)

Clearly, the amplitude of the system noise exceeds the amplitude of the signal
when

P1
iD1 j�i j � j�0j. This can easily occur (for any nonlinearity) when, e.g.,

the system dynamics has a slowly vanishing impulse response or j�0j is smaller
than any j�i j, i D 1; 2; : : :.

Finally, we would like to emphasize the fact that, under the nonparametric
assumptions, the information about the system characteristics is conveyed solely
by the “cloud” of noisy measurements f.uk; yk/g. Moreover, as it can be seen
in Fig. 3.1, such unprocessed (raw) data are hardly discriminative and, prior
to the proper identification routine, two different systems may appear virtually
indistinguishable to a user.

3.1 Notes

The relation (3.1) between the nonlinear characteristicm.u/ of the static part of the
Hammerstein system and the regression function� .u/ was discovered by Greblicki
and Pawlak in [52] and then explored in a series of papers (see, e.g., [53–55], where
various types of nonparametric regression function estimates were proposed and
examined) and in their book [57].

In our book we focus on recovery of the system nonlinearity and do not consider
the problem of dynamic subsystem identification. However, for the completeness
of the presentation, we shortly recall the simple algorithm recovering the impulse
response of the subsystem proposed in, e.g., [57, Chap. 2.3].
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Proposition 3.1. Assume thatE fm.u1/g D 0 orE fu1g D 0 and thatE fm.u1/ u1g
¤ 0. For such a Hammerstein system, it holds that

cov fyiC1; u1g D �iE f� .uiC1/ u1g , i D 0; 1; : : : : (3.3)

Proof. Observe that

cov fyiC1; u1g D E fylC1u1g D E

(" 1X

lD0
�lm .ui�l /C zk

#
� u1

)

D
1X

lD0
�lE fm.ui�l / u1g D �iC1E f� .uiC1/ u1g .

�

The impulse response can therefore be recovered term-by-term with the help of
the following impulse response coefficient estimates:

O�i D 1

N

NX

kD1
yiCkuk; i D 0; 1; : : : (3.4)

Remark 3.2. The form of the algorithm in (3.4) does not depend on the system
nonlinearity. As we will see, the nonlinearity identification algorithms possess a
reciprocal property, viz., they are all independent of the structure of the dynamic
part. It means that both parts can be recovered independently and, in particular, that
the possible inaccuracy of the one subsystem identification routine does not impact
the performance of the other subsystem recovery procedure.



Chapter 4
Haar Orthogonal Bases

Abstract Two Haar wavelet bases, classic and the recently introduced unbalanced
one, are presented together with the corresponding fast wavelet transforms (in the
classic and lifting versions). Both linear and nonlinear (derived from the EZW
algorithm) Haar approximation schemes are examined. The effectiveness of these
schemes for Lipschitz and piecewise-Lipschitz functions is compared.

All the algorithms to be proposed in the remaining chapters are based on the two
classes of the Haar wavelet functions:

• The classic Haar functions, discovered by Haar (see, e.g., [59, 73])
• The unbalanced Haar functions, introduced by Girardi and Sweldens in [41]

The classic Haar wavelets founded a basis for a family of orthogonal compactly
supported wavelets invented by Daubechies in [22, 23] (and sometimes are referred
to as the first-generation wavelets). The unbalanced Haar wavelets became the
prototypes of the second-generation wavelets originated by Sweldens [142].

4.1 Classic Haar Wavelets

In this chapter (mainly based on the introduction to wavelets and multiresolution
analysis (MRA) presented in [147, Chaps. 1.2.2, 3.1, 8]) we recapitulate the features
of the Haar functions which are pertinent to the properties of the examined
estimates. We will start with the introduction of the renowned Haar’s scaling and
wavelet functions and then present the resulting wavelet series representations:

• The multiscale representation
• The reproducing kernel representation
• The multiresolution representation

P. Śliwiński, Nonlinear System Identification by Haar Wavelets, Lecture Notes
in Statistics 210, DOI 10.1007/978-3-642-29396-2 4,
© Springer-Verlag Berlin Heidelberg 2013
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Demonstrating the equivalence between them, we will further present two
versions of the fast wavelet transforms, the classic algorithm designed by Mallat,
[96, Chap. 7], and the lifting one, developed by Sweldens and having its roots in
polyphase filters and multirate signal processing, cf. [24, 141] and [95, 115].

4.1.1 Multiresolution Analysis

Let V0, a subspace of the square integrable (finite energy) functions space, L2 .R/,
contain all piecewise-constant functions with (possible) jumps at integer points. All
functions #0 .x/ 2 V0 can be represented by the expansion series

#0 .x/ D
1X

nD�1
˛0;n'0;n .x/ ; n D : : : ;�1; 0; 1; : : : ; (4.1)

where '0;n .x/ D ' .x � n/, n D : : : ;�1; 0; 1; : : : ; are translations of a single
function, ' .x/, called the Haar scaling function or the Haar father wavelet:

' .x/ D 
Œ0;1/ .x/ ; (4.2)

where 
Œ0;1/ .x/ is the index function of the right-open unit interval Œ0; 1/. These
translations, '0;n .x/, have compact and disjoint supports, supp'0;n D Œn; nC 1/,
and being orthonormal (i.e., satisfying the relation

˝
'0;n; '0;n0

˛ D ın;n0 , for all
i; j D : : : ;�1; 0; 1; : : : ; where ın;n0 D ı .n � n0/ stands for the Kronecker func-
tion), they constitute the orthonormal basis of the space V0.

The expansion coefficients, ˛0;n, are clearly the inner products:

˛0;n D ˝
#0; '0;n

˛ D
Z

R

#0 .x/ '0;n .x/ dx D
Z nC1

n

#0 .x/ dx: (4.3)

Let now V1 be the space of finite energy functions with jumps at half- integers.
Starting again from the Haar scaling function, ' .x/, we can easily find that its
scaled (twice, i.e., by the factor 21) and normalized (by the factor

p
2 D 21=2)

translations, '1;n .x/ D 21=2' .2x � n/, create an orthonormal basis of V1. Observe
also that

'0;0 .x/ D ' .x/ D ' .2x/C ' .2x � 1/ D
p
2�1 �'1;0 .x/C '1;1 .x/

�
: (4.4)

In general, the scaled and translated versions of the single Haar scaling function,
defined as

'mn .x/ D 2
m
2 ' .2mx � n/ , m D 0; 1; 2; : : : ; n D : : : ;�1; 0; 1; : : : ; (4.5)
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are orthonormal Z

R

'mn .x/ 'mn0

.x/ dx D ın;n0 (4.6)

and constitute bases of the spaces Vm of piecewise-constant functions with jumps at
binary rational points 2�mn. The supports of 'mn .x/ are compact:

supp'mn D
�
n

2m
;
nC 1

2m

�
: (4.7)

Note that Vm � VmC1. An infinite ladder of nested subspaces Vm, i.e.,

V0 � V1 � � � � � Vm�1 � Vm � VmC1 � � � �

is the Haar MRA of the space L2 .R/. The ladder has the property that

L2 .R/ D lim
m!C1Vm: (4.8)

4.1.2 Multiscale Approximation

An arbitrary (not necessarily piecewise-constant) function # .x/ 2 L2 .R/ can be
approximated by the orthogonal projection onto the space VK :

#K .x/ D
1X

nD�1
˛Kn'Kn .x/ (4.9)

with the expansion coefficients, ˛Kn, being weighted local averages of # .x/ in the
adjacent intervals

�
2�Kn; 2�K .nC 1/

�
, cf. (4.3):

˛Kn D
Z

R

# .x/ 'Kn .x/ dx D 2
K
2

Z nC1

2K

n

2K

# .x/ dx: (4.10)

4.1.3 Reproducing Kernel Approximation

Inserting (4.3) into (4.1) yields the kernel representation of piecewise-constant
functions, #0 .x/, from the space V0:

#0 .x/ D
Z

R

#0 .x/

1X

nD�1
'0;n .x/ '0;n .v/ dv D

Z nC1

n

#0 .x/ � .x; v/ dv
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where

� .x; v/ D
1X

nD�1
'0;n .x/ '0;n .v/ D ' .x/ ' .v/

is the Haar reproducing kernel in the space V0. It has the following compact form

� .x; v/ D 
Œ0;1/ .x � bvc/ ; (4.11)

and its scaled versions—associated with the subspaces Vm—are defined as (cf. (4.2)
and (4.11))

�m .x; v/ D 2m� .2mx; 2mv/ D 2m
Œ0;1/ .2
mx � b2mvc/ : (4.12)

For an arbitrary square integrable function # .x/ in a given (fixed) point x, we
have the following kernel approximation formula of # .x/ in the approximation
subspace VK :

#K .x/ D
Z

R

# .v/ �K .x; v/ dv D 2K
Z bxcC1

2K

bxc

2K

# .v/ dv: (4.13)

Note that both approximation forms, (4.9) and (4.13), are just weighted local
averages of # .x/. The main (and important in applications) difference between
them consists in the fact that the former accommodates the global information about
the whole function # .x/ (stored in the expansion coefficients ˛Kn), while the latter
contains the local information (around the given point x).

4.1.4 Multiresolution Representation

Assume that for some function #1 .x/ in the space V1 (i.e., the space of piecewise-
constant with jumps at integers and half-integers), we already have its approxima-
tion #0 .x/ in the space V0 and want to get the representation in V1.

We can compute the expansion coefficients, ˛1;n from the scratch or refine the
existing approximation by adding “the differences” between the approximations in
V1 and V0; cf. [29, Sect. 3.6]. These differences belong to some detail space W0

which are in V1 but not in V0: The function

 .x/ D 
Œ0; 12 /
.x/ � 
Œ 12 ;1/

.x/ D ' .2x/ � ' .2x � 1/ (4.14)

is called the Haar wavelet (or the Haar mother wavelet), and its translations,
 0;n .x/ D  .x � n/ ; n D : : : ;�1; 0; 1; : : : ; constitute an orthonormal basis of
the detail space W0 Fig. (4.1). These translated functions have also compact and
disjoint supports, supp 0;n D Œn; nC 1/. It can be verified that since for all n
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Fig. 4.1 The Haar functions family. The scaled translations '1;0 .x/ and '1;1 .x/ of the father
wavelet '0;0 .x/ D ' .x/ and the mother wavelet  0;0 .x/ D  .x/

Z

R

 0;n .x/ dx D 0; (4.15)

then for all translation indices, i; j , the scaling functions, '0;i .x/, and wavelets,
 0;j .x/, are orthogonal, i.e.,

Z

R

'0;i .x/  0;j .x/ dx D 0;

and the detail space W0 is orthogonal to V0. That is, W0 is the orthogonal
complement of V0 in V1:

V0 ˚W0 D V1: (4.16)

The representation of #1 .x/ has thus two equivalent forms:

#1 .x/ D
1X

nD�1
˛1;n'1;n .x/ D

1X

nD�1
˛0;n'0;n .x/C

1X

nD�1
ˇ0;n 0;n .x/ (4.17)

where ˇ0;n are the expansion coefficients of #1 .x/ in the wavelet space W1:

ˇ0;n D ˝
#1;  0;n

˛ D
Z

R

#1 .x/  0;n .x/ dx:

The relation (4.16) holds for any approximation spaces Vm and VmC1:

Vm ˚Wm D VmC1; (4.18)

that is, for all m, the finer approximation space VmC1 is an orthogonal sum of the
coarser space Vm and the corresponding wavelet space Wm: The detail subspaces
Wm are spanned by the scaled and translated versions of the single Haar wavelet
function:

 mn .x/ D 2
m
2  .2mx � n/ , m D 0; 1; 2; : : : ; n D : : : ;�1; 0; 1; : : : : (4.19)
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The supports of  mn .x/ are compact and the same as for the corresponding scaling
functions 'mn .x/:

supp mn D
�
n

2m
;
nC 1

2m

�
:

Clearly, such defined wavelet functions are orthonormal to each other and also to all
scaling functions at the lower scales m, i.e.,

Z 1

0

 mn .x/ m0n0

.x/ dx D ım;m0 � ın;n0 ; (4.20)

Z 1

0

'mn .x/ m0n0
.x/ dx D 0; form0 � m: (4.21)

Combining now (4.8), (4.18), and (4.20), we obtain that the whole space L2 .R/
can, for any integerM , be split into the sum of the approximation space VM and the
infinite orthogonal sum of details spaces Wm; m D M;M C 1; : : :

L2 .R/ D VM ˚WM ˚WMC1 C � � � D VM ˚
1M

mDM
Wm:

Subsequently, the scaling functions 'Mn .x/ and wavelets  mn .x/, m D M;M C
1; : : : compose an orthogonal basis of the entire space L2 .R/ (see, e.g., [147,
Chap. 1.2.2]) and can now represent (and not only approximate—as in multiscale
and kernel representations (4.9) and (4.13)) an arbitrary function # .x/ 2 L2 .R/ by
the following multiresolution series consisting on the (initial) approximation in the
space VM , some M; and on the details from the increasing scale (resolution) spaces
Wm, m D M;M C 1; : : :; cf. (4.17):

# .x/ D
1X

nD�1
˛Mn'Mn .x/

C
1X

nD�1
ˇMn Mn .x/C

1X

nD�1
ˇMC1;n MC1;n .x/C � � �

D
1X

nD�1
˛Mn'Mn .x/C

1X

mDM

1X

nD�1
ˇMC1;n MC1;n .x/ (4.22)

where the scaling function and wavelet expansion coefficients, ˛Mn and ˇmn, are
defined as

˛Mn D
Z nC1

2M

n

2M

# .x/ 'Mn .x/ dx and ˇmn D
Z nC1

2m

n
2m

# .x/ mn .x/ dx:



4.1 Classic Haar Wavelets 23

4.1.5 Equivalent Representations and Fast Wavelet Transform

For a given scaleK and fixed x, all three wavelet approximations are equivalent, i.e.,

#K .x/ D
1X

nD�1
˛Kn'Kn .x/ (4.23)

D
Z

R

# .v/ �K .x; v/ dv (4.24)

D
1X

nD�1
˛Mn'Mn .x/C

K�1X

mDM

1X

nD�1
ˇmn mn .x/ : (4.25)

The equivalence between the multiscale and kernel approximations, (4.23)
and (4.24), has already been demonstrated. To verify the equivalence between
the multiscale and multiresolution approximations, (4.23) and (4.25), we will use
easy-to-verify (and well-known) relations between the scaling function and wavelet
coefficients at the adjacent scales m� 1 and m (cf. (4.4) and (4.14)):

˛m�1;n D 1p
2
.˛m;2n C ˛m;2nC1/ and ˇm�1;n D 1p

2
.˛m;2n � ˛m;2nC1/ : (4.26)

Starting now from the multiscale approximation in (4.23), i.e., from the set of
scaling function coefficients, ˛Kn; at the scale K; we will get the multiresolution
one in (4.25) by repeating (4.26) for m D K; : : : ;M , and storing the wavelet
coefficients, ˇmn; m D K � 1; : : : ;M; together with the final scaling function
coefficients ˛Mn.

Remark 4.1. The procedures in (4.26) are the steps of the Mallat’s forward fast
wavelet transform for the Haar wavelet expansion (see, e.g., [96, Chap. 7.3]).

Conversely, to obtain the multiscale representation from the multiresolution
one, we need to reverse the fast wavelet transform routine: Given the scal-
ing function coefficients, ˛Mn, and the wavelet coefficients, ˇmn, at the scales
m D M; : : : ;K � 1, we need to compute the intermediate coefficients, ˛mn, for
m D M; : : : ;K � 1; and store those at the final scale m D K . Solving to this end,
the system of equations given in (4.26) with respect to ˛m;2n and ˛m;2nC1, we get:

˛m;2n D 1p
2

�
˛m�1;n C ˇm�1;n

�
and ˛m;2nC1 D 1p

2

�
˛m�1;n � ˇm�1;n

�
: (4.27)

Remark 4.2. The procedures in (4.27) are the steps of the Mallat’s inverse fast
wavelet transform for the Haar wavelets (see, e.g., [96, Chap. 7.3]).
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4.1.6 Lifting Transform for Haar Wavelets

The fast wavelet transform procedures have an equivalent form which allows
performing the wavelet transform computations in situ, that is, without an additional
memory.

Assume that we have the scaling function coefficients, ˛Kn, at the scale K . In
the first step, we compute the difference (wavelet) coefficients, ˇm�1;n; at the scale
K�1 using the standard forward transform routine in (4.26) and then put the results
in place of the odd coefficients ˛m;2nC1. Observing then that ˛m;2nC1 D ˛m;2n �p
2ˇm�1;n, and inserting the right-hand side of the equation into the formula for

˛m�1;n in (4.26), we obtain the following two-step sequence cf. ([24]):

ˇm�1;n D 1p
2
.˛m;2n � ˛m;2nC1/ and ˛m�1;n D 1p

2
˛m;2n � ˇm�1;n; (4.28)

which is the Haar wavelet implementation of the generic forward lifting wavelet
transform developed by Daubechies and Sweldens [24, 141].

Remark 4.3. Computations of the scaling and wavelet coefficients, ˇmn and ˛mn;
are, respectively, referred to as prediction and update steps of the lifting transform
[141].

The corresponding inverse lifting wavelet transform can be obtained by simple
reversing the sequence in (4.28), i.e.,

˛m;2n D p
2
�
˛m�1;n C ˇm�1;n

�
and ˛m;2nC1 D ˛m;2n � p

2ˇm�1;n: (4.29)

4.1.7 Convergence

Intuitively, the larger the scale factorK , the better approximation accuracy of # .x/
by #K .x/. In this section, we formally justify this intuition examining both the
pointwise and the global convergence properties of Haar approximations. The first
type of convergence will be useful during exploration of the global convergence
properties of the Haar estimates used in identification algorithms when the target
functions are piecewise-smooth.

4.1.8 Pointwise Convergence

The fact that the function # .x/ is square integrable does not imply that its series
expansion converge pointwise. In fact an additional smoothness condition needs to
be satisfied. Namely, the Haar series converges in every point of continuity of # .x/
as stated by the following lemma in which the kernel approximation form (4.24) is
used; cf. [147, Prop. 1.4]:
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Lemma 4.1. Let # .x/ be a piecewise-continuous function. Its approximation,
#K .x/, converges to # .x/ with growing K in every point of its continuity:

lim
K!1#K .x/ D lim

K!1

Z

R

# .v/ �K .x; v/ dv D # .x/ :

Proof. The proof is simple yet illustrative. Let # .x/ be continuous in x. For any
" > 0, there exists a K such that we have j# .x/ � # .v/j < " when jx � vj � 2�K .
The Haar reproducing kernels, �K .x; v/, are compactly supported, and

#K .x/ D 2K
Z bxcC1

2K

bxc

2K

# .v/ �
�
2Kx; 2Kv

�
dv D 2K

Z bxcC1

2K

bxc

2K

# .v/ dv D # .vK/

for some vK 2 supp�K .x; v/—by virtue of the mean value theorem (see e.g.,
[1, Chap. 3]). Since jx � vK j � 2�K , then j# .x/ � #K .x/j < ", and the lemma
holds.1 �

By using the representations equivalence argument from Sect. 4.1.5, the lemma
can immediately be applied to the multiscale and multiresolution forms (4.23)
and (4.25).

4.1.9 Convergence at Jumps

In this section we analyze an interesting (and rather nonintuitive) behavior of the
Haar series in discontinuity (jump) points of # .x/. Denote byH .x/ a step function,
that is, a function such thatH .x/ D 1 for x � 1 andH .x/ D 0 for x < 0. Observe
that any piecewise-continuous function can be split into a continuous part, #C .x/,
and a piecewise-constant one, #PC .x/, the latter being a sum of shifted and weighted
step functions:

# .x/ D #C .x/C #PC .x/ where #PC .x/ D
JX

jD1
hjH

�
x � vj

�

where J is a number of jumps located at points vj and where hj is the heights
of the j th jump. Because of compactness of the Haar function supports, we can
consider each jump point separately. The next lemma describes the behavior of the
Haar expansion in such points; cf. [43, Th. 2.4]:

1The continuity assumption can be relaxed. In fact, Haar series converges in all Lebesgue points of
f .x/, [85].
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Lemma 4.2. Let v be a point of a jump discontinuity of # . The Haar approximation
series converges to # .vC/, that is, to the right-hand limit of # , when v is a binary
rational number.

Proof. We already know that the Haar expansion converges to #C .x/ in all points
and will focus on the piecewise-constant part #PC .x/. Assume for simplicity that
# .x/ is just a single step function with a jump in v, i.e., let # .x/ D #PC .x/ D
H .x � v/, then

#K .v/ D
Z

R

�K .v; u/H .u � v/ du D 2K
Z b2K vcC1

2K

v
du D 1 � �

2Kv � 	
2Kv

˘�
:

For any binary rational v, there exists a scaleK0 such that 2Kv D 	
2Kv

˘
for allK �

K0, and hence limK!1 #K .v/ D 1 D # .vC/. Otherwise, the term 2Kv � 	
2Kv

˘

oscillates endlessly, and #K .v/ has no limit. �

Example 4.1. Let # .x/ D H .x � 1=3/ ; then #K .1=3/ D 2=3 for even and
#K .1=3/ D 1=3 for odd Ks.

One can now easily ascertain that such a behavior (i.e., divergence of the series
at nonbinary rational jump points) is caused by the discrete (dyadic) nature of the
Haar expansion: The support of �K .x; v/ shifts with continuously changing v in
the discrete manner (viz., with a dyadic step 2�K 	2Kv

˘
), and the convergence

properties are no longer shift invariant.

4.1.10 Convergence Rate

In the previous section the conditions of the pointwise convergence of Haar
expansion were established. Here, we examine the rate of this convergence, that
is, the rate, the following approximation error:

j# .x/ � #K .x/j (4.30)

vanishes for a given x; where #K .x/ is of either of the equivalent approximations
in (4.23)–(4.25) and where # .x/ is a Lipschitz function.

Definition 4.1. A function # .x/ is Lipschitz if it satisfies the Lipschitz condition,
i.e., if there exists a constant c > 0, such that

j# .x/ � # .v/j � c jx � vj : (4.31)

Example 4.2. Any differentiable function with a bounded derivative is Lipschitz
continuous. A piecewise-polynomial function with separate jump discontinuities is
Lipschitz continuous between jumps.
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To establish the approximation error, we will use the multiscale approximation
form in (4.23). Because the compact supports of 'Kn .x/ do not overlap, we have
for any fixed x that

# .x/ � #K .x/ D # .x/ �
1X

nD�1
˛Kn'Kn .x/ D # .x/ � ˛Kn'Kn .x/jnDb2Kxc

and, by virtue of the mean value theorem,

˛Kn D
Z

R

# .v/ 'Kn .v/ dv D 2
K
2

Z nC1

2K

n

2K

# .v/ dv D 2�K
2 # .vK/ ;

for some vK , which belongs to the support of the corresponding 'Kn .x/. Hence,

#K .x/ D ˛Kn'Kn .x/jnDb2Kxc D 2
K
2 � 2�K

2 # .vK/ D # .vK/

and

j# .x/ � #K .x/j � j# .x/ � # .vK/j :

Eventually, since jx � vK j � 2�K , we get2:

j# .x/ � #K .x/j � c jx � vK j � c2�K:

We have shown the following lemma:

Lemma 4.3. If # .x/ is Lipschitz in the neighborhood of some point x, then the
pointwise error of its Haar approximation (4.23)–(4.25) decays there exponentially
with the growth of the approximation scale K:

j# .x/ � #K .x/j � c2�K: (4.32)

Intuitively, the smoother the approximated function, the faster should be the
convergence rate; (see e.g., [96, Chap. 6.1]). Nevertheless, in the book, we consider
only Haar approximations for which the rate in (4.32) is the best possible even
for smoother, e.g., multiple differentiable, functions. That the best for Lipschitz
functions rate O �

2�K� does not accelerate further with a growing smoothness
of # .x/ is a well-known property of the Haar wavelet approximation (cf., e.g.,
[29, Sect. 3.1]) and explains why we can confine our analysis to the functions from
the Lipschitz class.

2In the book, we use the common symbol c, c > 0, to denote all generic constants.
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Remark 4.4. If # .x/ is piecewise-constant, then for all continuity points, there
exists a scale K0 such that for all K � K0, we have

j# .x/ � #K .x/j D 0:

Piecewise-constant functions are examples of trivial functions, for which the
approximation error is smaller than the otherwise best possible one established in
Lemma 4.3, and are subject of a saturation theorem in approximation theory (see,
e.g., [29, 31, Sect. 3.1]).

4.1.11 Global Convergence

Examining the global (integrated) approximation error, we assume that # .x/ has
a compact support and is defined in the unit interval Œ0; 1�. We will first consider
the classic linear approximation (nonadaptive) scheme which is equivalent to
the multiscale approximation. Then, we will propose and examine two nonlinear
(adaptive) approximation schemes, in which only selected expansion terms are
added to the multiscale approximation.

Remark 4.5. In the linear scheme, two approximants, # 0
K .x/ and # 00

K .x/, are in the
same approximation space VK , and so there is their linear combination, ˛# 0

K .x/C
ˇ# 00

K .x/. It is not the case in general for nonlinear approximations. Moreover, the
term nonlinear approximation expresses the fact that in these schemes the selection
of expansion terms to be included in the approximant,#K .x/, depends on the target
function # .x/; cf. again [29, Sect. 2].

4.1.12 Linear Approximation

We start the analysis with uniformly Lipschitz functions # .x/ in the interval Œ0; 1�.
Then, we will study the approximation error for piecewise-Lipschitz functions. We
will exploit the multiscale approximation form of #K .x/ but also will make use of
its multiresolution representation.

The Haar expansion was originally designed by A. Haar as the orthogonal basis
of the space L2 Œ0; 1�; see [59, 60]. Since we assume that # .x/ is square integrable
in Œ0; 1�, this implies that

lim
K!1

Z 1

0

Œ#K .x/ � # .x/�2 dx D 0; (4.33)
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where (cf. (4.23) and (4.25))

#K .x/ D
2K�1X

nD0
˛Kn'Kn .x/ (4.34)

D
2K�1X

nD0
˛Mn'Mn .x/C

K�1X

mDM

2m�1X

nD0
ˇmn mn .x/ : (4.35)

Moreover, since the following version of Parseval’s identity holds

Z 1

0

#2 .x/ dx D
2K�1X

nD0
˛2Kn C

1X

mDK

2m�1X

nD0
ˇ2mn; (4.36)

then the global (squared) error of the approximation of # .x/ by #K .x/ can be
expressed in terms of wavelet coefficients ˇmn; from all the scales m D K;

K C 1; : : : , which not incorporated in the approximation #K .x/; cf. (4.35)
and (4.36):

ISE#K D
Z 1

0

Œ#K .x/ � # .x/�2 dx D
Z 1

0

" 1X

mDK

2m�1X

nD0
ˇmn mn .x/

#2
dx

D
1X

mDK

2m�1X

nD0
ˇ2mn: (4.37)

To find a bound for this error, we need to compute a bound for the wavelet
coefficients. Using the compactness of the support of  mn .x/ and the vanishing
moment (4.15) arguments, we get

ˇmn D
Z

R

# .v/  mn .v/ dv D
Z nC1

2m

n
2m

# .v/  mn .v/ dv

D
Z nC1

2m

n
2m

Œ# .v/ � # .u/�  mn .v/ dv;

which, for Lipschitz functions, yields

jˇmnj � c2
m
2

Z nC1
2m

n
2m

j# .v/ � # .u/j dv

� c2�m
2 jv � uj � c2�m

2 2�m: (4.38)
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Inserting (4.38) into (4.37), we obtain the lemma which characterizes the rate of the
global convergence of the Haar approximation:

Lemma 4.4. Let # .x/ be square integrable in Œ0; 1�. The integrated error of the
approximation of # .x/ by #K .x/ vanishes exponentially with a growth of the
approximation scale K (cf. 4.32):

ISE#K � c

1X

mDK

2m�1X

nD0



2�m

2 2�m
�2 D c

1X

mDK
2�2m � c2�2K:

Let now # .x/ be a piecewise-Lipschitz function with an unknown arbitrary but
finite number of (separate) jump discontinuities. Denote the number of jumps by q.
Using the compactness support argument, we observe that, at each scale m, each
jump intersects with the support of only one wavelet function  mn .x/ and hence
impacts only one wavelet coefficient ˇmn. In particular, if the jump is at a point x,
then the affected coefficients at the scale m are the one with a translation factor
n D b2mxc.

The wavelet coefficients satisfy there the following inequality, cf. (4.38):

jˇmnj D
Z nC1

2m

n
2m

j# .v/  mn .v/j dv D 2
m
2

Z nC1
2m

n
2m

j# .v/j dv

� c2�m
2 (4.39)

Moreover, since the jumps are separated, then there exists a scale K such that
for all scales m D K;K C 1; : : : ; each jump belongs to the support of a different
wavelet function  mn .x/. Splitting the approximation error, ISE#K , into two parts
corresponding to the smooth and jump regions:

ISE#K D
1X

mDK

2m�1�qX

nD0
ˇ2mn C

1X

mDK

qX

nD1
ˇ2mn;

and inserting there the respective bounds (4.38) and (4.39)

ISE#K � c

1X

mDK

2m�1�qX

nD0
2�3m C c

1X

mDK

qX

nD1
2�m;

we get the following lemma:

Lemma 4.5. Let # .x/ be a piecewise-Lipschitz function in the interval Œ0; 1�. The
integrated approximation error vanishes exponentially with the growing scale K
and

ISE#K � c2�2K C c2�K � c2�K: (4.40)
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Observe that the rate in (4.40) is the best possible rate for linear (nonadaptive)
approximation schemes; cf. [18, Th. 2].

Remark 4.6. In case of the integrated approximation error, the class of trivial
functions, i.e., those for sufficiently large-scaleK; the approximation error is zero

ISE#K D 0;

consists of all piecewise-constant functions with jumps in binary rational points,
i.e., of all functions from any approximation space VK ; cf. Remark 4.4 and see [29,
Sect. 3.1].

From Lemma 4.5 and Remark 4.6, one can immediately conclude the following
interesting corollary:

Corollary 4.1. Let # .x/ be a piecewise-Lipschitz function in the interval Œ0; 1�with
an arbitrarily number of jumps located in dyadic (binary rational) points. Then, the
asymptotic convergence rate of the Haar approximation is the same (optimal) as for
uniformly Lipschitz functions, that is,

ISE#K D O �
2�2K� :

The nonlinear approximation scheme presented in the next chapter allows to
achieve the same optimal rate also for piecewise-Lipschitz functions with jumps
located in arbitrary points.

4.1.13 Nonlinear Approximation

In order to improve the approximation accuracy in a piecewise-Lipschitz case,
we propose the nonlinear approximation scheme derived from the heuristic EZW
(embedded zero-tree wavelet) algorithm invented for image compression; see [125]
and cf. [122].

EZW Approximation Scheme

In this chapter we assume that q; the number of discontinuities in # .x/, is known.3

In principle, the EZW scheme consists in adding to the linear approximation
(cf. (4.34) and (4.35)) the sets Qm the q wavelet coefficients ˇmn, located in the

3This assumption is further removed, and in all identification algorithms, it will be assumed that
the actual number of discontinuities is unknown (but finite).
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Fig. 4.2 In the EZW
nonlinear approximation
scheme, the wavelet
coefficients ˇmn;
m D M; : : : ; K � 1 added to
the linear model with the
scale M are located in the
cones of influence generated
by the discontinuity points x1
and x2 of f .x/

cones of influence of the jump points (rather than adding en masse the entire set of
the wavelet coefficients residing at the scalem D M; : : : ;K�1). The concatenation
of these sets,

QMK D
K�1[

mDM
Qm;

consists thus of the wavelet coefficients which approximation error is of a order
O �
2�m=2� at each additional scale m D M; : : : ;K � 1; cf. (4.39). These

coefficients—presented in the wavelet domain—form the discrete cones of influence
induced by the jump points of # .x/ (cf. e.g. [96, Chap. 9.2] and Fig. 4.2).

In order to find a bound for the resulting approximation error, consider again the
error bound in (4.40) and observe that for piecewise-Lipschitz functions, the latter
term, c2�K; corresponding the approximations error of the jump part, is of a larger
order than the former one, c2�2M , and is responsible for a slower decay of the order
of the overall approximation error, ISE#K: Using this observation, one can propose
the following approximant (cf. (4.25)):

#MK .x/ D
2M�1X

nD0
˛Mn'Mn .x/C

K�1X

mDM

X

n2Qm

ˇmn mn .x/ D #L .x/C #NL .x/

(4.41)
consisting of the linear (nonadaptive) multiscale approximation #L .x/ and of
the nonlinear (adaptive) part #NL .x/, with the wavelet coefficients ˇmn terms
corresponding to the wavelet function  mn .x/ whose supports include jumps. The
approximation error is now

ISE#MK �
1X

mDM

2m�1X

nD0
ˇ2mn C

1X

mDK

X

n2Qm

ˇ2mn � c2�2M C c2�K:

Selecting the scale K such that both linear and nonlinear error components, c2�2M
and c2�K , are of equal orders, viz., taking K D 2M; we obtain the lemma; cf.
Lemma 4.5 and [96, Prop. 9.4].
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Lemma 4.6. If # .x/ is piecewise-Lipschitz, then the approximant in (4.41) for the
approximation scales, M andK , selected such that

K D 2M;

approximates # .x/ with the error

ISE#MK � c2�2M : (4.42)

Comparing the errors (4.40) and (4.42), one can observe that:

• The order of the error bound, c2�2M , being the best possible for a Lipschitz
functions, cannot be improved and adding to #NL terms at the scales beyond the
scale K D 2M does not decrease the order of the overall error, ISE#MK .

• The nonlinear approximant in (4.41) consists of

2M C q .K �M/ D 2M C qM

terms, while the linear approximant (4.23) with the same order of approximation
error would have 2K D 22M terms.

• Conversely, given a budget of 2MCqM terms (which, for large scalesM; remains
of order O �

2M
�
), the linear approximant yields the error of order O �

2�M �, while
the nonlinear one offers the smaller error order O �

2�2M �.

Example 4.3. For the same order of accuracy, the linear approximant requires

22M

2M C qM
D O �

2M
�

times more terms than the nonlinear one, i.e., for # .x/ being piecewise-Lipschitz,
application of the nonlinear approximant results in O �

2M
�

less terms.

N -Term Approximation

The applied EZW technique is a version of the well-known N -term nonlinear
approximation scheme (see, e.g., [16–18, 29, 96]) and can be found in, e.g.,
[96, Chap. 9.2]. In this approximation scheme, the terms ˇmn mn .x/ with the
actually largest coefficients ˇmn are included in the approximant, while in the
EZW algorithm, the terms whose coefficients are potentially the largest (i.e., whose
coefficients bounds have the largest orders) are selected.

Remark 4.7. Both approaches are asymptotically equivalent since, for sufficiently
large-scaleM , all the wavelet coefficients ˇmn located inside the cones of influence
have larger values than those outside .because of their slower vanishing rate,
O �
2�m=2� vs. O .2�m//.
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4.2 Unbalanced Haar Wavelets

The classic Haar functions are generated by the scaled translations of a pair of father
and mother wavelets ' .x/ and  .x/, and both the scale and translation factors,
m and n; are known a priori (deterministic). The resulting functions 'mn .x/ and
 mn .x/, n D 0; : : : ; 2m � 1, are thus translated copies of themselves. This makes
the Haar functions well adapted to fixed design problems where the input data
are deterministic and equidistant (e.g., in time series and image processing) but
rather poorly performing in random design problems where the inputs are randomly
distributed. To address this problem, the design-adapted Haar functions (referred
to as unbalanced Haar wavelets or empirical Haar orthogonal series) have been
proposed in [41]. The functions are not known a priori but defined accordingly to
the given inputs fukg ; k D 1; : : : ; N .

We shortly recollect their construction (which appears to be related to order
statistics formalism). Assume for simplicity that all inputs are from the unit interval
and that N is a dyadic integer. Denote further by fxkg a sorted (ordered) version
of the inputs fukg ; k D 1; : : : ; N . The elements xk create a random partition
of the unit interval consisting of disjoint and adjacent intervals (sample blocks),

k D Œxk�1; xk/ ; k D 1; : : : ; N . Let Ik D j
kj D xk � xk�1 denote the spacing,
i.e., the lengths of the intervals 
k ; cf. [25]. The scaling functions constituting an
orthonormal base of the finest approximation space are directly generated by these
measurements

' log2 N;k
.x/ D

q
I�1
k 
k .x/ ;

where 
k .x/ denotes the indicator function of the sample block interval 
k D
Œxk�1; xk/.

In general, for any m D 0; : : : ; log2 N , the normalized unbalanced scaling
functions are defined as follows:

'mn .x/ D
q
I�1
mn
mn .x/ ; (4.43)

where 
mn .x/ are indicator functions of the intervals 
mn defined as concatenations
of the adjacent sample blocks


mn D
n2L�1[

kD.n�1/2L

k;

with L D log2 N �m and n D 1; : : : ; 2m and where Imn is the length of 
mn

Imn D j
mnj D
n2L�1X

kD.n�1/2L
Ik , (4.44)
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Fig. 4.3 The unbalanced Haar functions family. The scaling functions '1;0 .x/ and '1;1 .x/ are
defined by a random measurement x1. The father wavelet '0;0 .x/ D ' .x/ remains the same as in
classic Haar set, but the mother wavelet  0;0 .x/ D  .x/ is unbalanced too

viz., is the sum of the corresponding spacings Ik.4

Note that, by design, the unbalanced scaling functions are:

• Compactly supported
• Normalized
• Orthogonal to each other

and therefore are similar to their classic counterparts. However, one should keep
in mind the important difference: For a given scale m, the supports 
mn and
normalization factors

p
I�1
mn vary randomly for different translation factors n and

so do the corresponding scaling functions 'mn .x/. Therefore, the unbalanced Haar
scaling functions no longer possess the shift invariance property (w.r.t. to n) of the
classic Haar basis functions; see Fig. 4.3.

4.2.1 Linear Approximation

The set f'Kn .x/g constitutes the empirical Haar orthonormal basis in the interval.
Any function # .x/, piecewise-smooth in this interval, can be now approximated by
these functions similarly as in the classic case:

#K .x/ D
2K�1X

nD0
˛Kn'Kn .x/ (4.45)

with the approximation coefficients, ˛Kn, being the appropriate inner products

˛Kn D
Z


Kn

# .x/ 'Kn .x/ dx: (4.46)

4Note that Imn are spacings of order 2L; cf. [25, Chap. 11.2].
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Global (Integrated) Convergence

The following counterparts of the classic Haar convergence and convergence
rate lemmas exist for the unbalanced Haar approximation. Observe that all the
coefficients ǪKn in (4.46) are random variables, and hence the approximation errors
results hold in a probabilistic sense (viz., with probability one (w.p.1)). The first
lemma describes the convergence conditions.

Lemma 4.7. If the number of measurements N and the scale K tend to infinity so
that

K � log2 N; (4.47)

then the integrated squared error of the approximation of # .x/ by #K .x/ in (4.45)
vanishes (w.p.1)

ISE#K D
Z 1

0

Œ#K .x/ � # .x/�2 dx ! 0 as N;K ! 1: (4.48)

Proof. The proof is only sketched: One can follow the reasoning in [147,
Chap. 1.2.2] and exploit the fact that maxnD1;:::;2K fIKng vanishes (w.p.1) with
K tending to infinity (see e.g. [57, L. C.11] and [134, Theorem 2.1]). �

Convergence Rates

As in the classic case (cf. Lemma 4.4 and e.g., [96, 133, Chap. 9]), also in the
unbalanced Haar basis case, the rate of the approximation error decay depends on
the smoothness of the target function:

Lemma 4.8. If the approximated function # .x/ is Lipschitz, then (w.p.1)

ISE#K D O �
2�2K log3 N

�
: (4.49)

If # .x/ is piecewise-Lipschitz, then (w.p.1)

ISE#K D O �
2�K logN

�
: (4.50)

Proof. The proof is rather standard (cf., e.g., [72] and the counterpart in
Sect. 4.1.10) with the only modification that, due to the randomness of scaling
functions 'mn .x/, we have for all n D 0; : : : ; 2K � 1 that (cf. [57, L. C.11], [134,
Theorem 2.1] and (4.47)):

max
n

fIKng D O �
2�KK

� D O �
2�K logN

�
(4.51)

w.p.1, viz., that asymptotically all scaling functions at some scale K have their
support lengths bounded by a common quantity in (4.51), which (asymptotically)
is only slightly larger than the support length 2�K of the classic Haar functions.
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Denote supp'Kn D SKn and recall that
R
SKn

dx D IKn. We have that

ISE#K D
Z 1

0

2

4
2K�1X

nD0
aKn'Kn .x/ � # .x/

3

5
2

dx (4.52)

D
2K�1X

nD0

Z

SKn

2K�1X

nD0
ŒaKn'Kn .x/ � # .x/�2 dx

D
2K�1X

nD0

Z

SKn

ŒaKn'Kn .x/ � # .x/�2 dx;

where for the expression in square brackets, we have for any n such that x 2 SKn
that

aKn'Kn .x/ � # .x/ D
Z

SKn

# .v/ 'Kn .v/ dv � 'Kn .x/ � # .x/

D
Z

SKn

# .v/ 'Kn .v/ dv � 'Kn .x/

�# .x/ 'Kn .x/
Z

SKn

'Kn .v/ dv

„ ƒ‚ …
D1 since x2 SKn

D 'Kn .x/„ ƒ‚ …
D

p
I�1
Kn since x2 SKn

Z

SKn

Œ# .v/� # .x/� 'Kn .v/ dv:

For the Lipschitz functions, this leads to the following bound:

q
I�1
Kn

Z

SKn

j# .v/� # .x/j 'Kn .v/ dv � cI�1
Kn

Z

SKn

jv � xj dv (4.53)

� cI�1
Kn � IKn

Z

SKn

dv

D cIKn;

and hence

Z

SKn

ŒaKn'Kn .x/ � # .x/�2 dx � c

Z

SKn

I 2Kndx D cI 3Kn: (4.54)
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Eventually, for the approximation error ISE#K expressed in terms of IKn, it holds
that

ISE#K � c

2K�1X

nD0
I 3Kn:

Taking now the bound in (4.51) yields that with the probability one

ISE#K � c

2K�1X

nD0

�
2�K log2 N

�3 D c2�2K log32 N:

In case of piecewise-Lipschitz functions with q jumps, for the bound in (4.53), it
holds that

cI�1
Kn

Z

SKn

dv � c;

for all n D 0; : : : ; 2K � 1: Hence, the integral in (4.54) is bounded by cIKn, and for
the resulting approximation error, we eventually have that

ISE#K � c

2K�q�1X

nD0

�
2�K log2 N

�3 C q2�K log2 N (4.55)

� c2�K log2 N: �
Clearly, this is the randomness of the unbalanced scaling functions (viz., their

support lengths) which implies the presence of the multiplicative factor K �
logN in the bound (4.51) and makes the convergence rate of the approximation
errors (4.49) and (4.50) slightly slower than in the classic case.

4.2.2 Unbalanced Haar Wavelets

We will now shortly introduce the unbalanced Haar wavelets  mn .x/. Observe that
the crucial properties of the classic Haar wavelets, that is:

• Orthonormality
• Compactness of their support
• A single vanishing moment

will be preserved by the unbalanced ones if they are defined as

 m�1;n .x/ D
q
I�1
m�1;n

q
Im;2nC1

Im;2n
� 
m;2n .x/

�
q
I�1
m�1;n

q
Im;2n
Im;2nC1

� 
m;2nC1 .x/

D
q

Im;2nC1

Im�1;n
� 'm;2n .x/ �

q
Im;2n
Im�1;n

� 'm;2nC1 .x/ ; (4.56)
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in which the scaling function components are weighted so that, for any m; n the
following integral is zero Z 1

0

 mn .x/ dx D 0;

Due to the presence of the (random) normalization factor
p
I�1
mn , the unbalanced

wavelets remain equally normalized, i.e.,

Z 1

0

 2
mn .x/ dx D 1:

Finally, since they are piecewise-constant functions, they are orthogonal to each
other as well as the classic Haar wavelets.

We can now, for any given measurements number N (being a dyadic integer),
propose the following unbalanced multiresolution approximation (cf. the multiscale
form in (4.45)):

#MK .x/ D
2M�1X

nD0
˛Mn'Mn .x/C

K�1X

mDM

2m�1X

nD0
ˇmn mn .x/ ; (4.57)

whereK � log2 N and where the wavelet expansion coefficients are

ˇmn D
Z


mn

# .x/  mn .x/ dx:

Clearly, #MK .x/ D #K .x/ by virtue of the wavelet definition formula in (4.56),
and hence, the above Lemmas 4.7 and 4.8 hold true for the multiresolution
approximation #MK .x/.

4.2.3 Unbalanced Haar Transform

In spite of the fact that the unbalanced Haar functions are no more scaled translations
of the pair of their parent functions, the fast algorithm for computing the unbalanced
expansion coefficients is still available; cf. [41]. The lifting steps of the unbalanced
Haar wavelet transform are of the following form

ˇm�1;n D ˛m;2n

q
Im;2nC1

Im�1;n
� ˛m;2nC1

q
Im;2n
Im�1;n

; (4.58)

˛m�1;n D ˛m;2n

q
Im�1;n

Im;2n
� ˇm�1;n

q
Im;2nC1

Im;2n
:

To get the inverse transform step, we only need to perform the above operation
backwards, i.e.,



40 4 Haar Orthogonal Bases

˛m;2n D ˛m�1;n
q

Im;2n
Im�1;n

C ˇm�1;n
q

Im;2nC1

Im�1;n
; (4.59)

˛m;2nC1 D ˛m;2n

q
Im;2nC1

Im;2n
� ˇm�1;n

q
Im�1;n

Im;2n
:

4.2.4 UHT and EZW Nonlinear Approximation

We examine the nonlinear approximation which, as in the classic Haar case, has the
form

#MK .x/ D
2M�1X

nD0
˛Mn'Mn .x/C

K�1X

mDM

X

n2Qm

ˇmn mn .x/ (4.60)

D #L .x/C #NL .x/ ;

consisting of the linear (nonadaptive) multiscale approximation, #L .x/, and of
the nonlinear (adaptive) part, #NL .x/, constructed by the EZW approximation
scheme, with the wavelet coefficientsˇmn corresponding to the unbalanced wavelets
 mn .x/ whose supports include jumps.

Convergence and Convergence Rates

The convergence conditions for the nonlinear approximation in (4.60) remain the
same as for the linear one in (4.57)—with the scale M taking the role of K (in
other words, the convergence is not affected by the presence of the nonlinear part).
To establish the convergence rate of the nonlinear approximation based on the EZW
scheme, we will exploit the equivalent form of the nonlinear algorithm (4.57), which
uses only unbalanced scaling functions. Recall that EZW algorithm creates the
“vertical” structures corresponding to the influence cones generated by the jumps
of # .x/. The cones consist of stacked wavelet function coefficients associated with
wavelet functions which supports at all scales m D M; : : : ;K � 1 contain the jump
points; cf. Fig. 4.2. As a result, we get the approximant which scale varies from M

to K and depends on the translation factor n:

#MK .x/ D
NX

kD1
˛K.n/;n'K.n/;n;K .n/ 2 fM; : : : ;Kg : (4.61)

The function # .x/ is therefore approximated at the scale 2K in the q jump
intervals of the length of order O �

2�.K�1/ .K � 1/� and, then, in the q intervals
of the length of order O �

2�.K�2/ .K � 2/� at the scale 2K�1. In general, in
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the q intervals 	K�m�1 of the length of order O �
2�.K�m�1/ .K �m � 1/

�
, the

approximation scale is 2K�m. Hence, the integrated approximation error ISE#MK
can be decomposed as follows (cf. (4.52) and (4.55)):

ISE#MK D
Z 1

0

2

4
2K�1X

nD0
aK.n/;n'K.n/;n .x/ � � .x/

3

5
2

dx

� cq

2M�1X

nD0
I�3
Mn C cq max

nD0;:::;2K�1
I�1
Kn

� c2Mq max
nD0;:::;2M�1

I�3
Mn C cq max

nD0;:::;2K�1
I�1
Kn;

where the first term is the linear approximation error bound while the other is the
approximation error bound of the nonlinear part. By virtue of the bound in (4.51),
we have thus obtained the lemma:

Lemma 4.9. If # .x/ is piecewise-Lipschitz, then the nonlinear approximant
in (4.60) for the approximation scale K selected such that

K D 2M;

approximates # .x/ with the error of order

ISE#MK � c2�2M log32 N: (4.62)



Chapter 5
Identification Algorithms

Abstract Four nonparametric Haar regression estimates are proposed and applied
to the system nonlinearity identification (recovery). The algorithms are various
implementations of the local average paradigm and produce regressograms of the
nonlinearity. Three of them are based on the classic Haar series expansion. The
first is of a quotient form and resembles the Nadaraya-Watson kernel regression
estimate. The second utilizes ordered measurements, while the third maps the
measurements using the empirical distribution function. The last one is a version of
the second algorithm but exploits the unbalanced Haar series. Two variants of each
algorithm, linear and nonlinear, are introduced and studied. The former is based on
standard linear Haar approximations. The latter employs the nonlinear (EZW-based)
approximation schemes. Convergence conditions and convergence rates of all
algorithms are established. The interpolation routine, based on the regressograms
(and applicable when the continuous estimate is desired), is eventually derived.

In this chapter we present four Haar wavelet identification algorithms:

• Quotient orthogonal series (QOS) algorithm
• Order statistics (OS) algorithm
• Empirical distribution (ED) algorithm
• Empirical orthogonal series (EOS) algorithm

All algorithms use Haar bases; all implement a local (weighted) averaging
paradigm (cf., e.g., [58, Chap. 2]) and have a common piecewise-constant (i.e.,
regressogram; see [103]) form, but nevertheless, they are derived from various
approaches and in distinct ways cope with the randomness of the input–output
signals:

1. In the QOS algorithm, the empirical expansion coefficients are computed as
simple local averages of the output measurements, yk’s.

2. In the order statistics algorithm, these outputs are weighted by the random
distances (spacings) between the adjacent-ordered input measurements.

P. Śliwiński, Nonlinear System Identification by Haar Wavelets, Lecture Notes
in Statistics 210, DOI 10.1007/978-3-642-29396-2 5,
© Springer-Verlag Berlin Heidelberg 2013
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3. In the empirical distribution algorithm, the empirical coefficients are again
simple local averages (as in QOS algorithm) since the randomly scattered input
data are—prior to averaging—mapped onto to the equidistant grid by their
empirical distribution function.

4. In the EOS algorithm, the coefficients are averages of output measurements
yk weighted by the corresponding spacings as in OS algorithm; however, the
orthogonal basis is unknown a priori and design-adapted, that is, generated from
the input data collected during the identification experiment; cf. Sect. 4.2.

In attempt to exploit the localization properties of wavelet expansion and to
improve the convergence rates of the identification algorithms in case when the
identified nonlinearities are discontinuous (piecewise-Lipschitz), we propose the
nonlinear approximation-based variants of the above algorithms. They utilize a com-
mon heuristic EZW-like nonlinear approximation scheme and are founded on the
following observations (see sections “EZW Approximation Scheme” and 4.2.4):

• The order of the wavelet expansion coefficients decays slower (as their scale
grows) in regions where the nonlinearity is discontinuous

• Furthermore, these coefficients are localized around the jump points (within the
cones of influence of these points; see Fig. 4.2)

• All expansion coefficient estimates (referred further to as empirical coefficients)
have variances of the same order (cf. e.g., [62, 63])1

The conditions for the global (integrated) mean square convergence and asymptotic
convergence rates are presented for each algorithm. In all cases—if not explicitly
stated—Assumptions 1–4 about the underlying systems from the Chap. 2 are in
force. We show, in particular, that all linear algorithms converge to the true system
nonlinearity � .x/2 with the optimal (or near optimal3) convergence rates for
Lipschitz nonlinearities. For nonlinear algorithms, we establish both the best and
the worst-case convergence rates.

Remark 5.1. The EZW scheme presented in section “EZW Approximation
Scheme” assumes (for the simplicity of its presentation) that the number of
discontinuities is known. Since it is rather unrealistic assumption (yet considered in
the literature, cf., e.g., [63, Sect. 2.5.3]), we relax it and in all nonlinear identification

1In nonparametric regression estimation the estimates of the orthogonal wavelet coefficients have
the same variance error order O .1=N / ; regardless of the scale and translation factors. This fact
is well known in the statistical wavelet literature and commonly used in nonlinear algorithms
constructions (cf., e.g., [63]). Our goal is focused on showing that this property holds (and can be
exploited) in the proposed algorithms under the specific conditions imposed by the nonparametric
system identification assumptions.
2In the algorithm description, we will rather use x and xk to denote the algorithm inputs (instead
of the u and uk previously used to describe the inputs of the identified systems).
3In case of the EOS algorithm, the rate is actually log-optimal (i.e., slowered by the logN factor).
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algorithms, we allow the number of jumps in the nonlinearity and in the input
probability density function to be unknown.

5.1 Numerical Illustrations

The formal examinations of the algorithms’ asymptotic properties are intertwined
with several numerical experiments illustrating their behavior for small and moder-
ate measurement sets.4 The test Hammerstein systems (common for all algorithms)
consist of an input nonlinearity being either a piecewise-constant function

m.u/ D 1
2

	
1
2

C 5
�
u � 1

2

�˘
; (5.1)

or a piecewise-polynomial one

m.u/ D �10 �2u3 � 3u2 C u
�� 1

5
sgn

�
u � 1

2

�
; (5.2)

where sgn .u/ D u= juj (with sgn .0/ D 0) denotes the standard signum function.
The linear dynamic element accompanying the identified nonlinear part has one

of the following infinite length (and oscillating) impulse responses5

�i D ��i with � D 0;� 1
4
;� 1

2
or � 3

4
: (5.3)

The systems input is driven by a random i.i.d. signal with a triangular

f .u/ D 2 .1 � j2u � 1j/ � 
Œ0;1� .u/ ; (5.4)

or a piecewise-constant probability density function

f .u/ D 9

9X

iD1
fi � 
Œ i�19 ; i9 /

.u/ ; (5.5)

with fi D f0:1; 0:2; 0:02; 0:05; 0:26; 0:05; 0:02; 0:2; 0:1g. The system outputs are
disturbed by a white zero-mean uniformly distributed noise zk � U Œ�0:1; 0:1� :
Remark 5.2. Note that all test functions (5.1), (5.2), (5.4), and (5.5) have infi-
nite representations in the Haar wavelet basis (including the piecewise-constant

4The C++ implementations of the algorithms are available for download from the author’s site
http://diuna.iiar.pwr.wroc.pl/sliwinski/software/Book.zip.
5The case � D 0 corresponds to the memoryless (static) nonlinear system. Taking other �s makes
the experimental systems dynamic and results in SNR D 3; 1 and 1=3; respectively; cf. 3.2 and
Fig. 3.1.

http://diuna.iiar.pwr.wroc.pl/sliwinski/software/Book.zip
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characteristic in (5.1) and the density function in (5.5) which both have jumps
located in nondyadic points).

The experimental outcomes are displayed with the help of two types of diagrams.
The first demonstrates a single experiment run performance of an estimate for the
systems with impulse responses as in (5.3) and for sets of N D 4; 8; : : : ; 512

measurement pairs. The other, for a given input pdf function f .u/ and the dynamic
subsystem with � D �1=4 (viz., for SNR D 3; cf. 3.2), shows the shapes of the
tested nonlinear characteristic m.u/ and of the density function f .u/ against the
estimate realization O�K .u/ computed for N D 512; see Figs. 5.2–5.13.

5.2 Quotient Orthogonal Series Algorithm

Let f.xk; yk/g be the measurements set (i.e., let the algorithms inputs xk be just the
system inputs uk). The QOS algorithm has the form

O�K .x/ D

2K�1P
nD0

ǪKn'Kn .x/
2K�1P
nD0

OaKn'Kn .x/
; (5.6)

where the empirical expansion coefficients ǪMn and OaMn are the empirical means6:

� ǪMn

OaMn

�
D 1

N

NX

kD1

�
yk
1

�
'Mn .xk/ : (5.7)

Because of compactness of the supports of the Haar scaling functions and because
their supports do not overlap, the algorithm can be written in a simpler form

O�K .x/ D ǪKn
OaKn

ˇ̌
ˇ̌
nDb2Kxc

; (5.8)

since for each x; only single coefficients from the numerator and denominator are
active and determine the algorithm output; cf. the implementation in Sect. 6.1.1. We
can now easily recognize that the QOS algorithm simply computes local averages of
the nonlinearity � .x/ in each interval supp'Kn D �

2�Kn; 2�K .nC 1/
�
; using a

random numberNKn of those output measurements yk , which corresponding inputs
xk fall into this interval (see Fig. 5.1):

6The formulas for the empirical coefficients in the algorithm numerator and denominator are
presented in a joint compact matrix-like form to emphasize their close similarity.
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Fig. 5.1 The illustration of the idea behind the QOS algorithm. Note that the number of
measurements taken into account is random and each measurement is weighted by the same factor
1=NKn

O�K .x/ D 1

NKn

X

fkWxk2supp'Kng
yk: (5.9)

Remark 5.3. The equivalent kernel-like representation of the QOS algorithm can be
derived from (5.7) and (5.8):

O�K .x/ D

NP
kD1

yk#K .x; xk/

NP
kD1

#K .x;xk/

; (5.10)

observing that, at the scale K , the Haar reproducing kernel is of the form

#K .x; v/ D 'Kn .x/ 'Kn .v/ D 2K
Œ0;1/
�
2Kx � 	

2Kv
˘�

with nD 	
2Kx

˘
(cf. (4.12)). The form (5.10) naturally resembles the classic

Nadaraya-Watson regression function estimate with the simple window (rectangu-
lar) kernelK .x/ D 
Œ0;1/ .x/:

O�K .x/ D

NP
kD1

ykK
�
x�xk
h

�

NP
kD1

K
�
x�xk
h

� ;

where h is the so-called bandwidth parameter; cf. [106, 149] and [58, 65, Chap. 5].
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In the following theorems we characterize the convergence properties of the QOS
algorithm (5.6) assuming that the output noise, zk , is bounded. This is a slight
departure from the Assumption 4, where it is assumed that its variance, var zk , is
bounded but not the noise signal itself. It, however, allows to examine the global
(integrated) mean square error convergence properties of the estimate and then
to compare them directly with the properties of the estimates produced by other
proposed algorithms. All proofs are located in the corresponding Appendix A.1.

5.2.1 Convergence

In the theorem below we present the simple conditions for the algorithm to converge
globally in the MISE error sense, defined in the standard way

MISE O�K D E

Z 1

0

Œ O�K .x/ � � .x/�2 dx: (5.11)

Theorem 5.1. If the scale K of the estimate in (5.6) is selected so that

K ! 1 and 2K=N ! 0 as N ! 1;

then the QOS algorithm converges to the nonlinearity � .x/ globally with growing
number of measurementsN , that is, the MISE error vanishes with the measurements
numberN growing large:

MISE O�K ! 0 as N ! 1:

In a view of Assumptions 1–3, the theorem shows that with the increasing
number of measurements N and for the estimate scale K selected (for instance)
so that KD � log2 N , any � 2 .0; 1/, the algorithm converges globally to any
piecewise-continuous nonlinearity for:

• Any piecewise-continuous input probability density function
• Any asymptotically stable system dynamics
• Any bounded noise (correlated or white)

5.2.2 Convergence Rates

Once we have established the convergence, we can characterize the convergence
rates of the QOS algorithm. In the following theorems, we derive the rates for
Lipschitz and piecewise-Lipschitz nonlinearities and input probability densities.
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Theorem 5.2. Let the nonlinearity � .x/ and the input probability density function
f .x/ be Lipschitz. If the scale K of the estimate in (5.6) is selected using the
formula7

K D 1
3

log2 N; (5.12)

then the QOS algorithm converges to this nonlinearity globally, in the MISE error
sense, with the rate

MISE O�K D O �
N�2=3� : (5.13)

Recall that the convergence rate O �
N�2=3� is known to be optimal (the fastest

possible) for such a class of nonlinearities; cf. [138]. The next theorem establishes
the convergence rate of the QOS algorithm when either or both � .x/ and f .x/ are
piecewise-Lipschitz (discontinuous) functions.

Theorem 5.3. Let the nonlinearity � .x/ or the input probability density function
f .x/ be piecewise-Lipschitz. If the scaleK of the estimate in (5.6) is selected using
the formula

K D 1
2

log2 N; (5.14)

then the QOS algorithm converges to this nonlinearity globally (in the MISE error
sense) with the rate

MISE O�K D O �
N�1=2� : (5.15)

The theorem shows that in the presence of discontinuities the convergence rate is
of order O �

N�1=2�, that is, becomes slower than for uniformly Lipschitz functions.
Observe also that this rate is also optimal for such discontinuous functions and is
not attained by the classic (trigonometric or polynomial series) orthogonal series
estimates; see [29] and cf. [57, Chap. 6]. Note that in practice we rarely know in
advance whether the nonlinearity is continuous or not. The above theorem assures
however that the slower rate in (5.15) is guaranteed in either case. The next corollary
describes, in turn, the consequences of a wrong assumption that the nonlinearity is
Lipschitz (when in fact it possesses jumps).

Corollary 5.1. If the nonlinearity (or the density function) is piecewise-Lipschitz
but the scale selection rule (5.12) is used, then the algorithm still converges, but the
convergence rate is slowed down to O �

N�1=3�.

The final theorem reveals that the Lipschitz convergence rate O �
N�2=3� can

nevertheless be preserved for some discontinuous piecewise-Lipschitz nonlineari-
ties (and/or density functions); cf. Corollary 4.1 and Remark 4.6.

Theorem 5.4. If the nonlinearity � .x/ or the density function f .x/ (or both)
is discontinuous but has jumps only at dyadic (binary rational) points, then for

7Since K is an integer, one should quantize the formula 1=3 � log2 N using, e.g., either ceiling
d�e or floor b�c functions (cf., e.g., [44]). It however does not influence the asymptotic properties
considered in the chapter.
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Fig. 5.2 The quotient orthogonal series (QOS) estimate is robust against the dynamics (left) but
rather poorly localizes jumps at nondyadic points (right); cf. Fig. 3.1

the scale selection rule (5.12), the algorithm converges globally with the rate
O �
N�2=3�.

That the estimate is “blind” to the presence of jumps located in binary rational
points is an advantageous consequence of the construction of the classical Haar
functions which, being dyadic translations of the father and mother wavelet
functions, have jumps at these points as well; cf. Sect. 4.1.

5.3 Nonlinear QOS Algorithm

In attempt to improve the convergence rate of the identification algorithm in the
more general case when discontinuous characteristic and/or input density function
have jumps in arbitrary points (e.g., at a nondyadic point x D 0:1), we propose
the nonlinear counterpart of the above QOS algorithm which implements the EZW
scheme presented in Sect. 4.1.13.

The nonlinear quotient orthogonal series algorithm (NQOS) employs both Haar
scaling and wavelet functions, and is of the following form, cf. (5.6):

O�MK .x/ D

2M�1P
nD0

ǪMn'Mn .x/C
K�1P
mDM

P
n2Qm

Ǒ
mn mn .x/

2M�1P
nD0

OaMn'Mn .x/C
K�1P
mDM

P
n2Qm

Obmn mn .x/

; (5.16)

where the empirical coefficients are given similarly as in the linear variant (5.7):

"
ǪMn

Ǒ
mn

OaMn
Obmn

#
D 1

N

NX

kD1

�
yk 0

1 0

� �
'Mn .xk/  mn .xk/

 mn .xk/ 'Mn .xk/

�
; (5.17)

and where Qm are sets containing, at each scale m, the qM translation indices n of
the empirical wavelet coefficients Ǒ

mn; determined by the EZW algorithm as being
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Fig. 5.3 In the NQOS algorithm, the EZW scheme detects discontinuities generated by both the
nonlinearity and the density function. All empirical cones are displayed against the nonlinearities,
(5.1) and (5.2), and input densities (5.4) and (5.5), on the left and right diagram, respectively

located in the cones of influence. The number qM will be referred to as the empirical
cone number. The implementation of the EZW is based on the heuristic observation
that, likewise the genuine coefficients ˇmn, the large empirical coefficients Ǒ

mn are
clustered in the vicinity of the jump points of � .x/ or f .x/ (and is given in detail
in Sect. 6.3).8 In result, the numerator of the estimate consists of the linear part
comprising the empirical scaling function coefficients ǪMn evaluated at the scaleM
and of the adaptive nonlinear part which includes qM .K �M/ empirical wavelet
coefficients Ǒ

mn (that is, qM coefficients per each scalem D M; : : : ;K�1) forming
the empirical influence cones; see Fig. 5.3. The empirical wavelet coefficients Obmn
in the denominator are not selected in a separate run of the EZW routine but are
simply chosen to match those in the numerator. In effect, the translation factors n of
the coefficients Obmn are taken from the same sets Qm.

Remark 5.4. The numerator of the quotient algorithms estimates in fact a product of
the nonlinearity and of the input probability density function, g .x/ D � .x/ f .x/.
Thus, in particular, the locations of jumps of f .x/ remain in g .x/ in the same
points (along with the jumps induced by the nonlinearity � .x/); see Appendix A.1
for details. Subsequently, if the locations of the empirical coefficients Ǒ

mn selected
by the EZW algorithm are valid for the numerator, they are also valid for the
denominator.

8We emphasize that the heuristic implementation of the EZW nonlinear approximation scheme
does not take into account the fact that the empirical wavelet coefficients are heavily disturbed
by the random (system and external) noises and, subsequently, that the values of the empirical
coefficients Ǒ

mn need not to precisely indicate the locations of the actual jumps and the
corresponding cones of influence in the nonlinearity. Nevertheless, since each empirical cone is
selected according to the values of K � M empirical coefficients rather than according to the
value of the single one (as it would occur in a naive implementation of the N -term nonlinear
approximation scheme where isolated coefficients would have been included into the nonlinear
part), the EZW-based approach seems to be more robust against the noise.
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5.3.1 Convergence

The next two theorems establish the convergence conditions and the rates of the
convergence for the worst case (e.g., for the most pessimistic case when all wavelet
coefficients Ǒ

mn are selected incorrectly) and for the best case (i.e., when all the
cones of influence are properly detected), respectively.

Theorem 5.5. If the scale M of the estimate in (5.16) and the empirical cone
number qM are selected so that

(
M ! 1
qM ! 1 and

2M

N
! 0

qMM

2M
! 0

; as N ! 1; (5.18)

and moreover the scale K is selected as

K D �M; (5.19)

for any � � 0, then the nonlinear QOS algorithm converges to the nonlinearity
� .x/ globally, in the MISE error sense, with a growing number of measurements,
i.e., it holds that

MISE O�MK ! 0 as N ! 1:

The theorem says that the convergence conditions of the nonlinear algorithm
are basically the same as for the linear one. That is, application of the EZW
nonlinear algorithm does not actually interfere with the convergence provided that
the rather weak restrictions imposed on qM and K are satisfied. The restrictions
in (5.18) imposed on qM assure that the number of the empirical cones created
in the algorithm will eventually exceed any arbitrarily large (but finite) number
of jumps of the identified nonlinearity and the input probability density function.
Simultaneously, the rate of growth of the scale factor K selected according to
any rule compatible with (5.19) prevents the overall number of empirical wavelet
coefficients qM .K �M/ to eventually exceed the number of empirical scaling
function coefficients.

5.3.2 Convergence Rates

The other theorem provides with the convergence rates attainable by the algorithm.

Theorem 5.6. If the linear part scale M of the estimate in (5.16) is selected using
the formula

M D 1
3

log2 N; (5.20)
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the scale K of nonlinear part equals

K D 2M;

and the number of empirical cones is

qM D log2 M; (5.21)

then the nonlinear QOS algorithm (5.16)–(5.17) converges to the nonlinearity
globally, in the MISE error sense, no faster than

MISE O�MK D O �
N�2=3� ;

but no slower than
MISE O�MK D O �

N�1=3� :

Observe that the best-case rate of the nonlinear algorithm (5.16) is the same as the
rate of the linear algorithm (5.6) when � .x/ and f .x/ are Lipschitz (or have jumps
at binary points, cf. Theorem 5.4). That is, if the empirical wavelet coefficients are
properly selected, then the presence of arbitrarily located discontinuities does not
deteriorate the nonlinear algorithm convergence rate. Moreover, if the nonlinearity
and the density function have no jumps, the convergence rate remains the same as
for the linear algorithm, i.e., the best possible O �

N�2=3�.

Remark 5.5. The worst-case convergence rate O �
N�1=3� of the proposed nonlinear

algorithm is equal to the rate obtained by the linear algorithm with the same scale
selection rule K D 1=3 log2 N but slower than the rate O �

N�1=2� of the linear
algorithm with K D 1=2 log2 N ; cf. (5.13) and (5.15), respectively.

As the final note, observe that all the established convergence rates for the QOS-
type algorithms are independent of:

• The type of system dynamics
• The correlation structure of the external (bounded) noise

Nevertheless, the performance of the linear and nonlinear QOS algorithms depends
on the smoothness of both the nonlinearity � .x/ and the probability density
function f .x/.

Selection of the Empirical Cone Number qM

The conditions for proper selection of qM in (5.18) are rather weak as they allow
the number of empirical cones to grow with the scale M as a polynomial (in M )
of any degree. Therefore, we set qM as in (5.21) quite arbitrarily (only taking into
account the computational aspects; cf. Sect. 6.3—for this selection rule the number
of empirical cones grows at the slow (iterated logarithm-like) rate O .log logN/;
cf. (5.20).
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Fig. 5.4 The nonlinear quotient orthogonal series (NQOS) estimate is strongly affected by the
dynamics (left) but quite well restores the shape of the nolinearity (right); cf. Fig. 3.1

5.4 Order Statistics (OS) Algorithm

The QOS algorithms identify the nonlinearity � .x/ indirectly, using the raw set
of measurement data f.uk; yk/g to estimate the quotient of the product g .x/ D
� .x/ f .x/ and the input probability density function f .x/; cf. Remark 5.4
and Appendix A.1. In the following algorithm, the nonlinearity is estimated in
a direct way; however, prior to the identification routine, the measurement set
f.uk; yk/g, kD 1; : : : ; N , is sorted pairwise w.r.t. the increasing input values uk .
The resulting set of ordered pairs is further denoted by f.xk; yk/g, k D 1; : : : ; N ,
and supplemented by the (artifact) boundary measurements .x0; y0/ D .0; 0/ and
.xNC1; yNC1/ D .1; 0/.

The algorithm, referred to as the order statistics algorithm (OS), takes the simple
form9

O�K .x/ D
2K�1X

nD0
ǪKn'Kn .x/ ; (5.22)

where the empirical coefficients,

ǪKn D
NX

kD1
yk

Z xk

xk�1

'Kn .x/ dx; (5.23)

estimate the scaling function coefficients of � .x/ in the approximation space VK
(that is, the integrals corresponding to the inner products of the scaling functions
'Kn .x/ and the recovered nonlinearity � .x/; see Fig. 5.5 and cf. (4.10)):

˛Kn D
Z 1

0

� .u/ 'Kn .x/ dx D
NC1X

kD1

Z xk

xk�1

� .x/ 'Kn .x/ dx; (5.24)

9The name of the algorithm is derived from the fact that the sorted input sequence fxkg becomes
the order statistics of the original input measurements (cf., e.g., [25, 57, App. C.4]).
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Fig. 5.5 The illustration of the idea behind the OS algorithm. The empirical coefficients are
averages of the output measurements, yks, weighted by the distance between the spacings
xk � xk�1 generated by the corresponding inputs

In practice, to avoid integration, we can—by virtue of the fundamental theorem of
calculus (see, e.g., [1, Th. 5.3])—use the equivalent integration-free version of the
empirical coefficients

ǪKn D
NX

kD1
yk ŒˆKn .xk/ �ˆKn .xk�1/� ; (5.25)

whereˆKn D p
2�Kˆ

�
2Kx � n� are the indefinite integrals of the scaling functions

'Kn, i.e., the scaled and translated versions of the indefinite integral of the father
wavelet ' .x/, cf. [129, 133],

ˆ.x/ D x � 
Œ0;1/ .x/C 
Œ1;1/ .x/ :

Remark 5.6. One can consider a yet another integration-free version of the empir-
ical coefficients in (5.23), derived directly from the Riemann definition (see, e.g.,
[119, Chap. 6])

L̨Kn D
NX

kD1
yk'Kn .xk/ .xk � xk�1/ D

NX

kD1
yk

Z xk

xk�1

'Kn .xk/ dx:

It has been shown however that this formula may lead to worse performance of
the estimates since the knowledge of the scaling function (its exact integral) is not
exploited (see e.g., [57, Chap. 7]).

We will present the limit properties of the OS algorithm utilizing the pattern
similar to the one used for the QOS algorithm: We first establish the convergence
conditions and then the convergence rates for Lipschitz and piecewise-Lipschitz
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nonlinearities, for both linear and nonlinear algorithm variants (all the correspond-
ing proofs are in Appendix A.2).

5.4.1 Convergence

The first theorem formulates the global (integrated) convergence conditions of the
linear algorithm in the MISE error sense (defined as previously in (5.11)).

Theorem 5.7. If the scale K of the estimate in (5.22) is selected so that

K ! 1 and 2K=N ! 0 as N ! 1; (5.26)

then the order statistics algorithm converges to the nonlinearity � .u/ globally, in
the MISE error sense, with growing number of measurements, i.e., we have

MISE O�K ! 0 as N ! 1:

Observing that the 2K factor in the (5.26) is just a number of empirical
coefficients in the OS estimate (5.22), the convergence conditions are rather plain:
To make the algorithm converge with the growing number of measurements N; it
suffices to increase the scale K at any rate so that the number of these coefficients
(2K) is of order o .N /. Furthermore, in a view of Assumptions 1–4, the theorem
shows that the algorithm converges globally to any piecewise-Lipschitz nonlinearity,
for:

• Any piecewise-continuous input probability density function
• Any asymptotically stable system dynamics
• Any second-order noise (correlated or white)

The first two properties are shared with the QOS algorithm. Additionally, the
current algorithm converges globally also in presence of the unbounded external
noise signals.

5.4.2 Convergence Rates

In the following theorems, the asymptotic convergence rates of the linear OS
algorithm are described for different types of nonlinearities.

Theorem 5.8. Let the nonlinearity� .u/ be Lipschitz. If the scaleK of the estimate
in (5.22) is selected using the formula

K D 1
3

log2 N; (5.27)
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then the order statistics algorithm converges to the nonlinearity globally, in the
MISE error sense, with the rate

MISE O�K D O �
N�2=3� :

The theorem says that the convergence rate of the OS algorithm (optimal for such
class of nonlinearities, cf. [138]) is independent of:

• The type of system dynamics
• The noise correlation structure
• The (lack of) smoothness of the input probability density function

The following theorem establishes the convergence rate of the OS algorithm
when � .u/ is discontinuous.

Theorem 5.9. Let the nonlinearity � .u/ be piecewise-Lipschitz. If the scale K of
the estimate in (5.22) is selected using the formula

K D 1
2

log2 N; (5.28)

then the order statistics algorithm converges globally to this nonlinearity in the
MISE error sense with the rate

MISE O�K D O �
N�1=2� :

As in the QOS algorithm case, the guaranteed convergence rate decelerates (in
general) in the presence of discontinuities. Furthermore, taking an improper scale
selection rule has similar consequences as well; cf. Corollary 5.1:

Corollary 5.2. If the nonlinearity is piecewise-Lipschitz but the scale selection rule
in (5.27) is used instead of that in (5.28), then the algorithm convergence rate
decelerates further to the rate O �

N�1=3�.

To complete description of the linear OS algorithm convergence properties,
we inspect the case when the nonlinearity is dyadic piecewise-Lipschitz; cf.
Corollary 4.1, Remark 4.6, and the analogue Theorem 5.4 (Fig. 5.6).

Theorem 5.10. If the nonlinearity � .u/ is discontinuous with the jumps located
only in dyadic (binary rational) points, then for the scale selection rule (5.12), the
algorithm converges globally with the rate O �

N�2=3�.

The theorem says that the convergence rate optimal for Lipschitz nonlinearities
is maintained for the piecewise-Lipschitz ones if only the jump points are dyadic.
Note that—in contrast to the QOS algorithm—this rate remains unaffected even if
the input density functions have arbitrarily located jumps.
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Fig. 5.6 The order statistics (OS) estimate perform well against the dynamics (left), but less
effectively restores the shape of the nonlinearity (right); cf. Fig. 5.2

5.5 Nonlinear OS Algorithm

The nonlinear version of the order statistics algorithm (NOS) produces the estimate
consisting of the linear part with the empirical scaling function coefficients and of
the nonlinear one, with the empirical wavelet coefficients selected with the help of
EZW scheme (cf. section “EZW Approximation Scheme”)

O�MK .x/ D
2M�1X

nD0
ǪMn'Mn .x/C

K�1X

mDM

X

n2Qm

Ǒ
mn mn .x/ ; (5.29)

with the empirical coefficients computed as10

ǪMn D
NX

kD1
yk

Z xk

xk�1

'Mn .x/ dx and Ǒ
mn D

NX

kD1
yk

Z xk

xk�1

 mn .x/ dx:

Each set Qm, being a subset of the set QMK of all wavelet empirical coefficients,
contains qM translation indices corresponding to the empirical coefficients Ǒ

mn

at the scales m D M; : : : ;K � 1, which are created by the EZW algorithm and
are (tentatively) located in the cones of influences of the jumps; see Sect. 6.3 for
implementation of the EZW.

5.5.1 Convergence and Convergence Rates

The following pair of theorems describes the algorithm convergence conditions
and the best- and worst-case convergence rates. The first is the counterpart of
Theorem 5.5.

10The equivalent integration-free versions of these coefficients are easy to derive from (5.25).
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Theorem 5.11. If the scale M of the estimate in (5.29) and the empirical cone
number qM are selected so that

(
M ! 1
qM ! 1 and

2M

N
! 0

qMM

2M
! 0

; as N ! 1; (5.30)

and the scale K is selected as
K D �M;

for any � � 0, then the nonlinear orthogonal series algorithm converges to the
nonlinearity � .x/ globally, in the MISE error sense, with the growing number of
measurementsN , i.e., it holds that

MISE O�MK ! 0 as N ! 1:

The theorem says that the convergence conditions of the nonlinear algorithm are
virtually the same as for the linear one. That is, the application of the EZW nonlinear
algorithm is “asymptotically safe” and does not make the algorithm diverge. The
only extra requirements imposed on qM and K assure that the number of empirical
cones created in the algorithm will eventually exceed any arbitrarily finite number
of jumps of the identified nonlinearity and, simultaneously, that the size of the
nonlinear part (namely the number of wavelet empirical coefficients Ǒ

mn) will be
kept smaller than the size of the linear part.

By virtue of the next theorem, the convergence rate O �
N�2=3� can be attained by

the nonlinear OS algorithm even if the piecewise-Lipschitz nonlinearity has jumps
in arbitrary points (cf. Theorem 5.6 and Corollary 5.2).

Theorem 5.12. Let the nonlinearity � .u/ be piecewise-Lipschitz. If the scales M
andK of the estimate in (5.29) are selected using the formulas

M D 1
3

log2 N and K D 2M;

and the number of empirical cones is

qM D log2 M; (5.31)

then the nonlinear order statistics algorithm converges to this nonlinearity globally,
in the MISE error sense, with the best-case rate

MISE O�MK D O �
N�2=3� ;

or with the worst-case rate

MISE O�MK D O �
N�1=3� :
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Fig. 5.7 The nonlinear order statistics (NOS) estimate performance is strongly affected by the
dynamics (left), but the estimate localizes the nondyadic jumps well (right); cf. Fig. 5.4

These convergence rates are similar to those in the nonlinear QOS algorithm, i.e.,
they are independent of:

• The type of system dynamics
• The correlation structure of the external noise (which can now have an

unbounded density function)
• In contrast to the QOS algorithms,—independent of the smoothness of the

probability density function of the input signal

5.6 Empirical Distribution Algorithm

In the empirical distribution algorithm (ED), we recover � .u/ estimating an
equivalent composite function �F ı F .u/ D �F .F .u//, where F .u/ is the
cumulative distribution function of the input signal (having a probability density
function f .u/).

Let f.uk; yk/g, kD 1; : : : ; N denote the set of the system input–output measure-
ments sorted pairwise w.r.t. to the increasing values of the inputs uk . The algorithm
is based on two observations:

• The empirical distribution, FN .u/, generated by such ordered inputs uk; maps
the randomly scattered sequence fukg onto the equidistant grid fxkg:

xk D FN .uk/ D k
N
: (5.32)

• By virtue of Assumption 1, the cumulative distribution function F .u/ is contin-
uous, strictly increasing (viz., invertible).

Throughout the chapter, we assume, for simplicity, that N is a dyadic integer
and hence fxkg forms a dyadic grid with grid points, xk D 2� log2 N k, being binary
rationals.
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Fig. 5.8 The illustration of
the idea behind the ED
algorithm. Note that input
measurements are equidistant
and each empirical coefficient
is computed using the same
number of measurements
(weighted by the same factor
1=N )

The empirical distribution estimate of the nonlinearity � .x/ is of the form:

O�K .x/ D
2K�1X

nD0
ǪKn'Kn .x/ where x D FN .u/ ; (5.33)

and where the empirical coefficients ǪKn are the following estimates

ǪKn D
NX

kD1
yk

Z k
N

k�1
N

'Kn .x/ dx (5.34)

of the unknown coefficients ˛Kn of the nonlinearity � .x/ approximation in the
space VK ; see Fig. 5.8 and cf. (4.10) and (5.24)):

˛Kn D
Z 1

0

� .x/ 'Kn .x/ dx D
NX

kD1

Z k
N

k�1
N

� .x/ 'Kn .x/ dx: (5.35)

The algorithm based on similar application of the empirical distribution function
has been proposed in the statistical literature; see [26]. Moreover, the empirical
coefficients used there are calculated using the formula

L̨Kn D 1

N

NX

kD1
yk'Kn .xk/ ; (5.36)

which seems to be simpler to compute than ours. Nevertheless, applying (like in OS
algorithm) the fundamental theorem of calculus (see, e.g., [1, Th. 5.3]), we have that

Z k
N

k�1
N

'Kn .x/ dx D ˆKn
�
k
N

� �ˆKn
�
k�1
N

�
;

where ˆKn .x/ are indefinite integrals of the scaling functions, 'Kn .x/, and the
resulting equivalent form of our estimate:
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Fig. 5.9 The empirical distribution (ED) estimate is robust against the dynamics (left) but rather
poorly localizes jumps at nondyadic points (right). Note the nonuniform, density-dependent
estimate scale; cf. Fig. 5.2, Fig. 5.6 and Fig. 5.12

ǪKn D
NX

kD1
yk
�
ˆKn

�
k
N

� �ˆKn
�
k�1
N

��
; (5.37)

is, in fact, equally simple since, in case of the Haar function, the indefinite integrals,
ˆKn .x/ have the common compact form ˆKn .x/ D p

2�Kˆ
�
2Kx � n� ; where

ˆ.x/ D x � 
Œ0;1/ .x/C 
Œ1;1/ .x/; cf. (5.25). Observing further that

L̨Kn D
NX

kD1
yk

Z k
N

k�1
N

'Kn .xk/ dx;

we can expect in general a better performance of our estimate due to its more
accurate approximation of the integral in (5.35); cf. Remark 5.6 in the previous
chapter.11

Note that the number of measurements used to evaluate each of the ED algorithm
empirical coefficient ǪKn equals 2�KN and thus is fixed, deterministic, and the
same for all coefficients; cf. (5.34). In effect, the algorithm scale adapts to the
local density of the input measurements (the local scale grows in regions where
the number of measurement is larger than in the others; cf. Figs. 5.8, 5.9 and 7.1).
This is a significant property which differentiates the ED algorithm from, e.g., the
previous ones, where the number of measurements used to compute each of the
empirical coefficients is random and changes from coefficient to coefficient; cf. (5.9)
and (5.23).

5.6.1 Convergence

The mapping made by the empirical distribution FN .u/ turns the randomly
scattered inputs into the equidistant grid and may suggest that the initially random
setting design regression estimation problem is turned into the fixed design one.
Unfortunately, the presence of dynamics in the system (resulting in correlation

11For dyadic N , these formulas are actually equivalent; see Sect. 6.1.3.
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of the output data) does not allow to directly apply the fixed design results (see,
e.g., [67, 116, 121]) to establish the algorithm properties. Nonetheless, since the
input measurements xk are—in some sense—ordered versions of the raw inputs uk ,
then the ED algorithm properties appear to be comparable to those possessed by the
OS one.

The first theorem describes the convergence conditions of the algorithm.

Theorem 5.13. If the scale K of the estimate in (5.33) is selected so that

K ! 1 and 2K=N ! 0 as N ! 1;

then the empirical distribution algorithm converges to the nonlinearity � .u/
globally, in the MISE error sense, with growing number of measurements, i.e., we
have

MISE O�K ! 0 as N ! 1:

Likewise, the OS algorithm, the current one, converges globally to any piecewise-
continuous nonlinearity for:

• Any piecewise-continuous input probability density function
• Any asymptotically stable system dynamics
• Any second-order noise (correlated or white)

5.6.2 Convergence Rates

In the theorems below, dealing with convergence rates, we assume the nonlinearity
is Lipschitz or piecewise-Lipschitz. It is interesting to note that in spite of the fact
that the nonlinearity is identified indirectly—via the composite function�F ıF .u/ ;
the convergence rates are not dependent on the smoothness of the input probability
density function.

Theorem 5.14. Let the nonlinearity � .u/ be a Lipschitz function. If the scale K of
the estimate in (5.33) is selected using the formula

K D 1
3

log2 N; (5.38)

then the empirical series algorithm converges to the nonlinearity globally, in the
MISE error sense, with the rate

MISE O�K D O �
N�2=3� :

The theorem implies that, similarly to the OS algorithm, the rate is indepen-
dent of:

• The type of system dynamics
• The noise correlation structure
• The smoothness of the input probability density function
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and depends only on smoothness of the nonlinearity � .u/. The next theorem is an
analogue to Theorem 5.9 which demonstrated the slower convergence rate of the
algorithm for � .u/ being discontinuous (piecewise-Lipschitz).

Theorem 5.15. Let the nonlinearity � .u/ be a piecewise-Lipschitz function. If the
scale K of the estimate in (5.33) is selected using the formula

K D 1
2

log2 N; (5.39)

then the empirical distribution algorithm converges to this nonlinearity, globally in
the MISE error sense, with the rate

MISE O�K D O �
N�1=2� :

The theorem reveals that also the ED algorithm convergences slower to the
piecewise-Lipschitz nonlinearities than to the uniformly smooth ones. Observe
further that even in the special case, when the nonlinearity � .u/ has jumps at
dyadic points, the convergence rate of the ED algorithm does not accelerate to the
O �
N�2=3�—as it does for QOS and OS algorithms; cf. Theorems 5.4 and 5.10.

This is because not the nonlinearity itself but the composite function �F .F .u//,
where the dyadic jump points are, in general, mapped by the distribution function
into arbitrary locations, is identified. Clearly, the following corollary remains true
for the ED algorithm; cf. Corollaries 5.1 and 5.2.

Corollary 5.3. If the nonlinearity is piecewise-Lipschitz and the scale selection
rule in (5.38) is used instead of that in (5.39), then the algorithm convergence rate
is limited to O �

N�1=3�.

5.7 Nonlinear ED Algorithm

The nonlinear variant of the empirical distribution algorithm (NED) shares the EZW
routine with the previous algorithms. It consists of the linear part with the empirical
scaling functions coefficients ǪMn and the nonlinear one, with the empirical wavelet
coefficients Ǒ

mn selected with the help of EZW scheme. The resulting algorithm is
therefore of the already familiar form (cf., e.g., (5.29))

O�MK .x/ D
2M�1X

nD0
ǪMn'Mn .x/C

K�1X

mDM

X

n2Qm

Ǒ
mn mn .x/ ; (5.40)

with the empirical coefficients computed now as

ǪMn D
NX

kD1
yk

Z k
N

k�1
N

'Mn .x/ dx and Ǒ
mn D

NX

kD1
yk

Z k
N

k�1
N

 mn .x/ dx:
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As in the previous algorithms, each subset Qm stores qM translation indices of
that wavelet empirical coefficients Ǒ

mn, which—according to the EZW algorithm—
are situated in the cones of influences induced by the jumps of the identified
nonlinearity.

5.7.1 Convergence and Convergence Rates

The first theorem describes the convergence conditions of the nonlinear ED
algorithm.

Theorem 5.16. If the scale M of the estimate in (5.40) and the empirical cone
number qM are selected so that

(
M ! 1
qM ! 1 and

2M

N
! 0

qMM

2M
! 0

; as N ! 1; (5.41)

and the scale K is selected as
K D �M;

for any � � 0, then the nonlinear empirical distribution algorithm converges to
the nonlinearity � .x/ globally, in the MISE error sense, with growing number of
measurements, i.e., it holds that

MISE O�MK ! 0 as N ! 1:

The theorem says that the convergence conditions of the nonlinear ED algorithm
are actually the same as for the nonlinear QOS and OS versions, that is, the
convergence properties are neither improved nor deteriorated by the presence of
the EZW-generated nonlinear part. The restrictions in (5.41) imposed on qM and
K control the number and the “height” of the cones, respectively (cf. Fig. 4.2), and
jointly ensure that the size of the nonlinear add-on (namely, the number of wavelet
empirical coefficients) will not exceed the size of the linear basis.

In the next theorem the worst- and the best-case convergence rates of the ED
algorithm are both established.

Theorem 5.17. Let the nonlinearity� .u/ be piecewise-Lipschitz. If the scaleM of
the estimate in (5.40) is selected using the formula

M D 1
3

log2 N;

while the scale K depends on M so that

K D 2M;

and the number of empirical cones is

qM D log2 M; (5.42)
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then the nonlinear empirical distribution algorithm converges to this nonlinearity
globally, in the MISE error sense, with the best-case rate

MISE O�MK D O �
N�2=3� ;

or with the worst-case rate

MISE O�MK D O �
N�1=3� :

The convergence rates are thus similar to those in the previous QOS and OS
nonlinear algorithms, i.e., they are robust against:

• The type of system dynamics
• The correlation structure of the external noise (which can now have an

unbounded distribution)
• The smoothness of the probability density function of the input signal

5.8 Empirical Orthogonal Series Algorithm

The last identification algorithm considerably differs from all the previously
presented: It is no longer based on the classic Haar basis but on the unbalanced
Haar one (cf. Sect. 4.2).

Let f.xk; yk/g ; k D 1; : : : ; N , be—like in the OS algorithm—the set of the mea-
surement pairs obtained from the original measurements set f.uk; yk/g by sorting
the pairs .uk; yk/ w.r.t. increasing input values (Fig. 5.10). Let further f'Kn .x/g ;
n D 0; : : : ; 2K�1, someK < log2 N , be the family of the unbalanced Haar scaling
function generated empirically (adaptively) from the ordered measurement pairs;
see formulas (4.43)–(4.44). Although the randomness of the input signal means that
the supports (and the related normalization factors) of each basis function 'Kn .x/
vary for different translation factors n and are unique for each realization of the
measurements sets, the EOS algorithm is of rather familiar form, cf. (5.22) and
(5.33)

O�K .x/ D
2K�1X

nD0
ǪKn'Kn .x/ where x D u; (5.43)

where the empirical coefficients are given as follows (cf. (5.23) and (5.34)):

ǪKn D
NX

kD1
yk

Z xk

xk�1

'Kn .x/ dx: (5.44)

Clearly, replacing the integration operations in (5.44) by subtractions of the
indefinite integralsˆKn .x/ of the unbalanced Haar scaling functions 'Kn .x/ leads
to the equivalent integration-free formula (cf. (5.25) and (5.37))
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Fig. 5.10 The nonlinear empirical distribution (NED) estimate is heavily affected by the dynam-
ics (left) but quite well represents the shape of the nolinearity (right); cf. Fig. 5.4, Fig. 5.7 and
Fig. 5.13

ǪKn D
NX

kD1
yk ŒˆKn .xk/�ˆKn .xk�1/� :

Remark 5.7. Our estimate is a variant of the EOS one proposed in [58, Chap. 18.2],
where the empirical coefficients are computed as follows (cf. also (5.36) in the ED
algorithm):

N̨Kn D 1

N

NX

kD1
yk'Kn .xk/ : (5.45)

One can also consider another integration-free mutation of the formula in (5.44),

L̨Kn D
NX

kD1
yk .xk � xk�1/ 'Kn .xk/ D

NX

kD1
yk

Z xk

xk�1

'Kn .xk/ dx;

which, however, may in general perform worse than the original one; cf.
Remark 5.6.12

Note that the way the empirical coefficients ǪKn in the EOS algorithm are
computed resembles that in the OS one (where each output measurement yk is
weighted by the corresponding spacing .xk � xk�1/); however, since the unbalanced
orthogonal Haar basis is adapted to the input measurements, the number of output
measurements taken into account by each coefficient routine is nonrandom (and
equal to 2�KN for all coefficients for the assumed dyadic N ); see Fig. 5.11 and
Sect. 6.1.4 and Appendix A.4. In consequence, the local scale of the algorithm is
not fixed (as the form of the algorithm in (5.43) may suggest) but actually varies
according to the local density of the input measurements; cf. Figs. 5.11, 5.12 and 7.1.
In this aspect, the ED and EOS algorithms are much alike.

12For dyadic N , these formulas are actually equivalent; see Sects. 6.1.4 and 6.1.3.
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Fig. 5.11 The illustration of the idea behind the EOS algorithm. Note that input measurements are
random, but each empirical coefficient is computed using the same number of measurements
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Fig. 5.12 The empirical orthogonal series (EOS) estimate is quite robust against the dynamics
(left) but weakly restores the nonlinearity shape (right). Note the varying, density-dependent,
estimate scale; cf. Fig. 5.9

5.8.1 Convergence

In spite of application of the unbalanced Haar family, the properties of the
EOS algorithm are similar to those of previously presented algorithms. The only
difference is that the convergence rates are slightly slower (by a logarithmic factor).
The main reason for that is that the unbalanced orthogonal basis is generated by
random inputs, and thus it is itself a collection of random (but still orthonormal)
functions.

The following theorem describes the convergence conditions for the EOS
algorithm.

Theorem 5.18. If the scale K of the estimate in (5.43) is selected so that

K ! 1 andK22K=N ! 0 as N ! 1; (5.46)

then the EOS algorithm converges to the nonlinearity � .u/ globally, in the MISE
error sense, with growing number of measurements, i.e., we have

MISE O�K ! 0 as N ! 1:
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While the convergence condition in (5.46) are slightly different than for the
previous algorithms (note the presence of the factor K2), the EOS one converges
globally to any piecewise-continuous nonlinearity for

• Any piecewise-continuous input probability density function
• Any asymptotically stable system dynamics
• Any second-order noise (correlated or white)

that is, its asymptotic properties can be expected to be similar to those of the OS and
ED algorithms.

5.8.2 Convergence Rates

The following pair of theorems establishes the convergence rates of the algorithm
for Lipschitz and piecewise-Lipschitz nonlinearities. Note that the rates are slightly
slower (by a logarithmic factor) when compared to the rates attained by the previous
algorithms.

Theorem 5.19. Let the nonlinearity � .u/ be a Lipschitz function. If the scale K of
the estimate in (5.43) is selected using the formula

K D 1
3

log2 N;

then the empirical series algorithm converges to the nonlinearity globally, in the
MISE error sense, with the rate

MISE O�K D O �
N�2=3 log3 N

�
:

As for the OS and ED algorithms, the rate is independent of:

• The type of system dynamics
• The correlation structure of the external noise
• The smoothness of the input probability density function

and depends only on smoothness of the identified nonlinearity � .u/. The next
theorem is a copy of the appropriate theorems for the OS and for the ED algorithms,
for the case when � .u/ is discontinuous.

Theorem 5.20. Let the nonlinearity � .u/ be piecewise-Lipschitz. If the scale K of
the estimate in (5.43) is selected using the formula

K D 1
2

log2 N

then the empirical distribution algorithm converges to this nonlinearity, globally in
the MISE error sense, with the rate
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MISE O�K D O �
N�1=2 log3 N

�
:

Recall that in the EOS algorithm, the basic functions 'Kn .x/ have—by design—
random supports. One consequence of this fact is that its convergence rate remains
slower (like in the ED algorithm) even if the discontinuous nonlinearities have jumps
at dyadic points (i.e., there are no counterparts of the “saturation” Corollaries 5.1
and 5.2 for the EOS algorithm).

5.9 Nonlinear EOS Algorithm

The nonlinear version of the empirical orthogonal series algorithm (NEOS), exploit-
ing the common EZW nonlinear approximation scheme, also consists of the linear
part with the empirical scaling functions coefficients, ǪMn; and of the nonlinear one,
with the empirical wavelet coefficients selected adaptively by the EZW routine. The
resulting algorithm is of the form

O�MK .x/ D
2M�1X

nD0
ǪMn'Mn .x/C

K�1X

mDM

X

n2Qm

Ǒ
mn mn .x/ ; (5.47)

with the Qm being collection of the translation indices n corresponding, at each
scalemDM; : : : ;K�1, with qM coefficients inside the selected empirical influence
cones. The empirical coefficients are computed as (cf. (5.44))

ǪMn D
NX

kD1
yk

Z xk

xk�1

'Mn .x/ dx and Ǒ
mn D

NX

kD1
yk

Z xk

xk�1

 mn .x/ dx:

5.9.1 Convergence and Convergence Rates

The first theorem describes the convergence conditions of the nonlinear EOS
algorithm (compare the analogous Theorem 5.16 derived for ED algorithm).

Theorem 5.21. If the scale M of the estimate in (5.47) and the cone number qM
are selected so that

(
M ! 1
qM ! 1 and

2M

N
M2 ! 0

qM
2M
M ! 0

; as N ! 1; (5.48)

and the scale K is selected as
K D �M;
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Fig. 5.13 The nonlinear empirical orthogonal series (NEOS) estimate is strongly affected by the
dynamics (left) but very localizes nondyadic jumps (right); cf. Fig. 5.10

for any � � 0, then the nonlinear empirical orthogonal series algorithm converges
to the nonlinearity � .x/ globally, in the MISE error sense, with growing number of
measurements, i.e., it holds that

MISE O�MK ! 0 as N ! 1:

The convergence conditions established for the nonlinear EOS algorithm are the
same as for the nonlinear ED variant, and all the respective comments concerning
the selection of the scales M , K , and cone number qM are valid. The last theorem
describes the worst- and the best-case convergence rates of the algorithm.

Theorem 5.22. Let the nonlinearity� .u/ be piecewise-Lipschitz. If the scaleM of
the estimate in (5.47) is selected using the formula

M D 1
3

log2 N;

and
K D 2M;

and the number of empirical cones is

qM D log2 M; (5.49)

then the nonlinear empirical orthogonal series algorithm converges to this nonlin-
earity globally, in the MISE error sense, with the best-case rate

MISE O�MK D O �
N�2=3 log3 N

�
;

or with the worst-case rate

MISE O�MK D O �
N�1=2 log3 N

�
:
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The convergence rates of the nonlinear EOS algorithm are slower than those
obtained for the rest of the algorithms; however, they remain (cf. Assumptions 1–4)
not influenced by:

• The type of system dynamics
• The correlation structure of the external noise
• The smoothness of the probability density function of the input signal

5.10 Remarks and Comments

The first two linear identification algorithms, QOS and OS, are the Haar wavelet
versions of the existing algorithms exploiting nonparametric regression estimates
and based on either kernel or on classic (trigonometric or polynomial) orthogonal
series functions; see [57, 68, 69, 110]. The other two, ED and EOS, are new and
inspired by some techniques proposed in the statistical literature; see [26, 58]. The
nonlinear variants of all algorithms are all new.

5.10.1 Convergence Rates Comparison

In Table 5.1, the (best-case) convergence rates of the proposed algorithms are
summarized. In the worst-case scenarios, all rates slow down to O �

N�1=3� (or
to O.N�1=3 log3 N / for NEOS algorithm) when the nonlinearity is piecewise-
Lipschitz.

5.10.2 Common Representation

At the beginning of the chapter, we have stated that our algorithms are derived from
the common local averaging paradigm, and—in the subsequent chapters—we have
implemented that paradigm in the proposed algorithms constructions. Somehow
naturally, the resulting estimates can therefore be represented by a single multiscale
formula, viz., as the regressograms of the identified nonlinearity; cf. Sect. 4.1.5.
This is particularly easy to observe in case of the linear algorithms which—for the
measurement pairs f.xk; yk/g ordered w.r.t. ascending input values—share the same
generic form (see (5.6), (5.22), (5.33), (5.43) and Figs. 5.1, 5.5, 5.8 and 5.11, and
cf. [58, 68, 69, Chap. 2.1])13

13Recall, that in the EOS case, 'Kn .x/ stands for the scaling functions of the unbalanced Haar
basis. Also in all algorithms x D u but x D OFN .u/ in the ED one.
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Table 5.1 The (best-case)
convergence rates of the
algorithms

Lipschitz

Uniform Piecewise

Dyadic Non-dyadic

QOS
OS

O
�
N�2=3

�
O
�
N�1=2

�

ED O
�
N�2=3

�
O
�
N�1=2

�

EOS O
�
N�2=3 log2 N

�
O
�
N�1=2 log2 N

�

NQOS
NOS
NED

O
�
N�2=3

�

NEOS O
�
N�2=3 log2 N

�

O�K .x/ D
2K�1X

nD0
ǪKn'Kn .x/ with ǪKn D

NX

kD1
yk � �Kn;k; (5.50)

but have only different weighting factors �Kn;k in their empirical coefficients
formulas14:

�Kn;k D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Z k
NKn

k�1
NKn

'Kn .xk/ dx; xk D uk (5.7)—QOS,
Z xk

xk�1

'Kn .x/ dx; xk D u.k/ (5.23)—OS,
Z xk

xk�1

'Kn .x/ dx; xk D k
N

(5.34)—ED,
Z xk

xk�1

'Kn .x/ dx; xk D u.k/ (5.44)—EOS.

(5.51)

Analogously, the nonlinear algorithms can have a common multiscale represen-
tation similar to that in (5.50)–(5.51). Nevertheless, in the nonlinear algorithms,
the scale factor is no longer fixed but varies between the M and K and is locally
determined by the EZW scheme (viz., it is dependent on the measurement data at
hand; cf. (4.61) and (A.10)–(A.11))15

14Where u.k/, k D 1; ; N , is the kth input measurement after ordering (sorting) the raw
measurements set f.uk; yk/g.
15The existence of this representation is essential for the properties of the nonlinear version of the
QOS algorithm and helpful in the EOS algorithm analysis; see Appendices A.1 and A.4.
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O�MK .x/ D
2K�1X

nD0
ǪK.n/;n'K.n/;n .x/ , K .n/ 2 fM; : : : ;Kg (5.52)

with accordingly modified empirical coefficients formulas.

Remark 5.8. One can further recognize the similarities between the nonlinear
algorithm’s representation in (5.52) and radial basis function-based (RBF) estimates
(cf., e.g., [37, 84, 91]; see also, e.g., [11, 12], for the surveys, and [9], where the
relations between wavelets and RBFs are thoroughly examined).

5.10.3 Application of Interpolation Schemes

The generic multiscale representation in (5.50) can also be interpreted as the first-
order (or zero-degree B-spline) interpolation of the identified nonlinearity where
the interpolation coordinates f.xn; O�K .xn//g, n D 0; : : : ; 2K � 1; are generated by
the interpolation knots, xn D 2�K .nC 1=2/ ; located in the middle of the scaling
functions 'Kn .x/ supports and the filtered (averaged by any of the identification
algorithm O�K .x/) output observations; cf. [28, 112]. One can thus easily ascertain
(cf., e.g., [70]) that these coordinates may serve as a basis for a higher-order
interpolation scheme (see, e.g., [8, 100, 144])—if the direct estimate output (i.e.,
a discontinuous function) is not appropriate.

Example 5.1. A piecewise-linear (second-order) interpolation offers a simple (yet
continuous) representation of the target nonlinearity and simultaneously main-
tains our algorithms’ localization properties without a significant computational
overhead. Such an interpolation scheme—written in the vein of (5.50)—has the
following formula

O�K;int .x/ D
2K�1X

nD0
O�K .xn/ƒKn .x/ with O�K .xn/ D 2

K
2 ǪKn; (5.53)

where ƒKn .x/ D ƒ
�
2Kx � n� are contracted and translated (respectively, by

factors 2K and n) versions of the well-known linear B-spline (hat/tent function),
ƒ.x/ D 
Œ0;1� .1 � jxj/. The Fig. 5.14 compares the basis ED estimate O�K .x/ and
the built upon it interpolant O�K;int .x/ for the piecewise-polynomial nonlinearity
(5.2). Note that the knots do not form an equidistant grid.

Higher-order interpolation schemes—popular in image processing applications
(like, e.g., cubic splines, [86, 144])—should carefully be used as they could
introduce the Gibbs-like oscillation artifacts if the identified nonlinearities are
discontinuous (cf., e.g., [144, 146, 147, Chap. 8]). Also, the classic Lagrange
interpolation, due to its nonlocal nature and poor performance at boundaries (caused
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Fig. 5.14 Combination of
the Haar estimate (here of the
ED type) and linear
interpolation (lerp) can be
beneficial when the identified
nonlinearity is smooth (e.g.,
polynomial of higher order)
between jumps

by the Runge’s oscillations, see e.g., [21, Chap. 4.3.4] and [98, Chap. 6.1]), should
rather not be allowed for; cf. also [113, Chap. 3.0].

Remark 5.9. The convergence rate of the estimation-interpolation assembly in
(5.53) is—for all smooth interpolation schemes—limited by the approximation
capabilities of the Haar basis, and application of higher-order interpolations does
not improve the asymptotic behavior (convergence rate) of such composite estimates
(cf., e.g., [145]).



Chapter 6
Computational Algorithms

Abstract Effective (that is, fast and involving only elementary arithmetic and
comparison operations) computational counterparts of the identification algorithms
are proposed. The implementations of the linear and nonlinear variants are typically
split into the analysis and synthesis phases, and both are substantially based on
the lifting wavelet transforms. The complexity of the algorithms is examined and
compared.

It is widely recognized that “good identification algorithms” should possess the
following prerequisites:

• Working for a broad class of characteristics of the system components, the input
signals and noises

• Offering the effective (parsimonious) representations of these characteristics
• Having a form which can easily be evaluated from random measurements.

Clearly, these prerequisites are not exclusive for system identification algorithms.
The similar postulates have been formulated in the renowned paper [36], by Donoho
et al., in the related context of data compression:

There is a “Grand Challenge” facing the disciplines of both theoretical and practical
data compression in the future: the challenge of dealing with the particularity of naturally
occurring phenomena. This challenge has three facets:

• Obtaining accurate models of naturally occurring sources of data
• Obtaining “optimal representations” of such models
• Rapidly computing such “optimal representations”

In the previous chapter, we have proposed algorithms which, by construction,
comply with the first two postulates: The nonparametric assumptions meet the first
requirement, while the application of wavelets allows successful implementation
of the second one. Nevertheless, the specific system identification assumptions
(in particular, the randomness of the input signal) complicate the adoption of the
fast wavelet transforms, i.e., the fast wavelet coefficient computation algorithms

P. Śliwiński, Nonlinear System Identification by Haar Wavelets, Lecture Notes
in Statistics 210, DOI 10.1007/978-3-642-29396-2 6,
© Springer-Verlag Berlin Heidelberg 2013
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commonly used in signal and image processing tasks (see e.g., [24, 96] and cf.
[41, 131, 132]). Hence, to make our identification algorithms comply with the third
requirement, in the subsequent chapters, we develop and examine such ‘rapid’
computational implementations.

6.1 Linear and Nonlinear Algorithms Implementations

The essential difference between the implementations of the linear and nonlinear
algorithms is that in the former the empirical scaling function coefficients are only
computed, while in the latter both the empirical scaling function and wavelet coef-
ficients need to be evaluated. Nevertheless, all—linear and nonlinear—algorithm
implementations share a common two-phase template (they are often referred to as
the analysis and synthesis phases in the wavelet literature—see, e.g., [24, 27, 118]):
The first phase consists in computing the empirical coefficients, while in the second,
the estimates outputs are evaluated. Eventually, all these routines produce tabulated
values of the estimate outputs, i.e., the regressograms of the identified nonlinearities.

The implementation design takes into account both the order of their com-
putational complexity, and the number of the algorithms passes over the data.
In particular, to reduce the number of passes, the nonlinear approximation EZW
scheme is ‘sandwiched’ between the linear algorithm analysis and synthesis phases
and implemented as a plug-in procedure intertwined with the forward and inverse
transforms steps.

6.1.1 QOS Algorithm

In the following section we propose a fast one-pass implementation of the QOS
algorithm. The implementation does not require the measurement data to be ordered.

Analysis Phase

Let Ǫ .k/Kn and Oa.k/Kn denote the empirical coefficients computed for k measurements.
The proposed routine consists of two steps performed for each measurement pair
.xk; yk/ ; k D 1; : : : ; N :

• The translation index, n, of the coefficients Ǫ .k/Kn and Oa.k/Kn affected by the current
pair .xk; yk/ ; is calculated as

n D 	
2Kxk

˘
;

• The selected coefficients Ǫ .k/Kn and Oa.k/Kn are updated by the trivial recurrence
formula
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"
Ǫ .k/Kn
Oa.k/Kn

#
D
"

Ǫ .k�1/
Kn

Oa.k�1/
Kn

#
C
�
yk

1

�
; (6.1)

where, again, the matrix-like form is used for compactness of the notation and to
emphasize the similarity between the estimate numerator and denominator.

The formulas in (6.1) are simply the recursive versions of the summation
formulas in (5.7); cf. (5.9). Note also that the weighting factor N (and the implicit
scaling factor 2K=2), present in (5.7), can be omitted due to the quotient form of the
estimate.

Complexity

Both algorithm steps are performed in a constant time and hence have the cost O .1/.
The overall algorithm complexity is thus O .N / ; i.e., it is linear w.r.t. the number
of measurementsN .

Remark 6.1. While the measurements need not to be sorted, the first step of the
algorithm—determining the coefficients to be updated—can be seen as a version of
bucket sorting (without the in-bucket ordering step) (cf., e.g., [89, Chap. 5.2.5]).

Synthesis Phase

The following formula (cf. (5.6) and (5.9))

O�K .x/ D ǪKn
OaKn

ˇ̌
ˇ̌
nDb2Kxc

;

can be used in fast (i.e., with the constant cost O .1/) calculations of the QOS
estimate output for a given argument x.

6.1.2 OS Algorithm

Introducing the OS algorithm in Sect. 5.4, we have already suggested a possible
simplification of the empirical coefficients computation routine (i.e., the analysis
phase) by replacing integrations with subtractions; cf. (5.23) and (5.25). In order
to further reduce the computation burden, we propose here a convenient recursive
one-pass implementation of that phase (where, in particular, the raw measurement
data set f.uk; yk/g ; k D 1; : : : ; N; is not ordered in a separate routine).

Analysis Phase

Initially, the set of algorithm data measurements f.xk; yk/g consists of two artificial
‘boundary’ measurement pairs (cf. Sect. 5.4)
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f.x�1; y�1/; .x0; y0/g D f.0; 0/; .1; 0/g ;

and all empirical coefficients are zero, i.e., Ǫ .0/Kn D 0. Denote now by Ǫ .k/Kn the
empirical coefficient ǪKn obtained for k D 1; : : : ; N measurements.

Given the sequence ordered w.r.t. inputs, f.x1; y1/; : : : ; .xl ; yl /; .xlC1; ylC1/;
: : : ; .xk; yk/g, assume that the .k C 1/th measurement pair .ukC1; ykC1/ (from the
raw measurement set) falls between the measurement pairs .xl ; yl / and .xlC1; ylC1/,
i.e., assume that xl < ukC1 < xlC1. Then,

• The new data pair .xkC1 D ukC1; ykC1/ is created and inserted between the
pairs .xl ; yl / and .xlC1; ylC1/ to maintain the ascending order of the updated
measurement set.

• The translation index n of the empirical coefficient Ǫ .k/Kn to be updated is selected
as

n D 	
2KxkC1

˘
:

Eventually,
• The following recurrence formula is applied to this coefficient:

Ǫ .kC1/
Kn D Ǫ .k/Kn C .ykC1 � ylC1/ ŒˆKn .xkC1/�ˆKn .xl /� : (6.2)

The formula in (6.2) can easily be derived by subtraction of the estimate in (5.25),
computed for k measurements, from the one obtained for k C 1 measurements and
by the subsequent rearrangement of the residue terms (cf., e.g., [133]). Indeed, from

Ǫ .k/Kn D
lX

iD1
yi ŒˆKn .xi /�ˆKn .xi�1/�C

kX

iDlC2
yi ŒˆKn .xi /�ˆKn .xi�1/�

CylC1 ŒˆKn .xlC1/�ˆKn .xl /�

and

Ǫ .kC1/
Kn D

lX

iD1
yi ŒˆKn .xi / �ˆKn .xi�1/�C

kX

iDlC2
yi ŒˆKn .xi / �ˆKn .xi�1/�

CykC1 ŒˆKn .xkC1/ �ˆKn .xl /�C ylC1 ŒˆKn .xlC1/�ˆKn .xkC1/� ;

we get

Ǫ .kC1/
Kn � Ǫ .k/Kn D ykC1 ŒˆKn .xkC1/ �ˆKn .xl/�

CylC1 ŒˆKn .xlC1/ �ˆKn .xkC1/�

�ylC1 ŒˆKn .xlC1/�ˆKn .xl /� ;

which, after terms regrouping, yields the required recurrence relation
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Ǫ .kC1/
Kn � Ǫ .k/Kn D ykC1 ŒˆKn .xkC1/ �ˆKn .xl /�

CylC1 ŒˆKn .xl / �ˆKn .xkC1/�

D .ykC1 � ylC1/ ŒˆKn .xkC1/ �ˆKn .xl /� :

Complexity

The insertion step has the complexity O .log k/ when the self-balancing AVL or
red-black trees are used to store the measurement set f.xk; yk/g; cf. [89] and [3].
Also the formula in (6.2) requires O .log k/ operations to find the adjacent pairs
.xl ; yl / and .xlC1; ylC1/ in such trees. The complexity of the analysis phase of the
OS algorithm is thus O .N logN/, i.e., it is larger by a log factor than the complexity
of this phase in the QOS algorithm.

Synthesis Phase

Given the set of empirical coefficients ǪKn, the OS estimate reduces, for each
argument x, to the form

O� .x/ D 2
K
2 ǪKn

ˇ̌
ˇ
nDb2Kxc ;

i.e., to find the output of the estimate for a given x, it suffices to take the value of
the empirical coefficient ǪKn (with the translation index n D 	

2Kx
˘

) and multiply
it by the scaling factor 2K=2. The OS algorithm synthesis phase complexity is thus
O .1/ and equals the complexity of this phase in the QOS algorithm.

6.1.3 ED Algorithm

In order to present the fast implementation of the ED algorithm—which will be
based on direct application of the standard fast wavelet transform (FWT) in (4.26)—
we need some preliminary derivations.

First, we need to show that, given the empirical coefficients at the scale m, the
fast wavelet transform can be used to compute the empirical coefficients at the scale
m � 1 (cf. (4.4) and (4.26)):

Ǫm�1;n D
NX

kD1
yk

Z k
N

k�1
N

'm�1;n .x/ dx

D 1p
2

NX

kD1
yk

Z k
N

k�1
N

�
'm;2n .x/C 'm;2nC1 .x/

�
dx
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D 1p
2

NX

kD1
yk

Z k
N

k�1
N

'm;2n .x/ dx C 1p
2

NX

kD1
yk

Z k
N

k�1
N

'm;2nC1 .x/ dx

D 1p
2
. Ǫm;2n C Ǫm;2nC1/ : (6.3)

and that, for dyadicN , the properly scaled versions of the output measurements yk
can serve as the initial empirical coefficients Ǫ log2;n for the fast wavelet transform,
i.e., that

Ǫ log2 N;n D 2
log2 N
2 ynC1 D

p
N
N
ynC1: (6.4)

Exploiting now the piecewise-constant form of Haar scaling functions and the
compactness of their supports (4.7), we infer that for each n and each m � log2 N ,
the formula (5.34) is equivalent to the (scaled) sums of 2�mN consecutive output
measurements yk; k D 2�mNnC 1; : : : ; 2�mN .nC 1/1:

Ǫmn D
NX

kD1
yk

Z k
N

k�1
N

'mn .x/ dx D
2�mN.nC1/X

kD2�mNnC1
yk

Z k
N

k�1
N

'mn .x/ dx

D
2�mN.nC1/X

kD2�mNnC1
yk'mn

�
k�1
N

� Z k
N

k�1
N

dx D 1

N

2�mN.nC1/X

kD2�mNnC1
yk'mn

�
k�1
N

�

D 2
m
2

N

2�mN.nC1/X

kD2�mNnC1
yk (6.5)

To verify (6.4), we examine the empirical coefficients Ǫmn at the scale m D
log2 N . Combining (6.3) and (6.5), we get for this scale (since 2� log2 NN D 2) that:

Ǫ log2 N�1;n D 1p
2

p
N
N

2.nC1/C1X

kD2nC1
yk D 1p

2

p
N
N
.yk C ykC1/

D 1p
2


p
N
N
y2nC1 C

p
N
N
y2nC2

�

D 1p
2

� Ǫ log2 N;2n C Ǫ log2 N;2nC1
�
: (6.6)

Analysis Phase

The fast implementation of the analysis phase of the ED algorithm is now rather
straightforward and consists of the following three steps:

1Observe that, for dyadic N , also the formulas (5.34) and (5.36) are equivalent.
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• Sorting the set of the raw measurement pairs f.uk; yk/g w.r.t. the ascending values
of the input measurements in order to construct the empirical distribution FN .u/
of the input measurements.

• Performing the fast wavelet transform routine on the output measurements scaled
by a factor

p
N�1. The routine starts from the scale m D log2 N � 1 and is

repeated down to m D K .
• Storing every 2�KN th entry of the original empirical distribution FN .u/ as a

new map function FK .u/ :

The function FK .u/ constructed in the last step consists of 2K entries and is used
in the subsequent synthesis phase to map the input arguments u onto the translation
indexes n of the corresponding to these arguments empirical coefficients ǪKn.

Complexity

The first step consists in sorting of the measurements w.r.t. the ascending input
values and requires O .N logN/ operations when, e.g., heapsorting algorithm is
employed (cf. e.g., [89, Chap. 5.2.3]). To verify that the second step needs only
O .N / operations, observe that the number of operations at each scale m is of order
O .2m/ since the single operation in (4.26) is performed for n D 0; : : : ; 2m�1 times.
To find the empirical coefficients at the scale m D K � 0, we thus need to perform

log2 N�1X

mDK
O .2m/ D O �

2log2 N � 2K
� D O .N /

operations; cf. [96, Chap. 7.3.1]. Construction of the map function FK .x/ requires

O �
2K
� D O



3

p
N
�

operations. This yields O .N logN/ as the overall cost of the

analysis phase:

Synthesis Phase

The synthesis phase implements the following formula:

O� .u/ D 2
K
2 ǪKn

ˇ̌
ˇ
nDb2KFK.u/c ;

and the estimate output can be thus computed in two simple steps:

• Determining the translation index n for a given argument u using the map FK .u/
• Evaluating the output value, i.e., scaling the selected coefficient ǪKn by the factor
2K=2

Remark 6.2. The second step can be performed as the last one in the analysis phase
as well.
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Complexity

The first step can be implemented using a binary search algorithm, which for the
sets of 2K elements requires O .K/ operations; cf., e.g., [89, Chap. 6.2.1]. Since
K D 1=3 log2 N and the evaluation of the output is clearly an O .1/ operation, we
conclude that the overall cost of the synthesis phase of the ED algorithm, being of
order

O



log 3
p
N
�

D O .logN/ ;

is larger than the constant one obtained for QOS and OS implementations.

6.1.4 EOS Algorithm

The implementation of the EOS algorithm is similar to the ED’s one, and we start
with showing that the analysis phase (i.e., computing the empirical coefficients ǪKn)
can be performed by a direct application of the unbalanced Haar transform (UHT)
to the properly scaled measurement data from the pairwise-ordered set f.xk; yk/g.

In the following preparatory step, we will demonstrate that the unbalanced
transform can be used to compute empirical coefficients at the scale m � 1 given
the coefficients at the scale m (cf. (4.58) and (6.3)):

Ǫm�1;n D
NX

kD1
yk

Z xk

xk�1

'm�1;n .x/ dx

D
NX

kD1
yk

Z xk

xk�1

� p
Im;2np
Im�1;n

' .x/m;2n C
p
Im;2nC1p
Im�1;n

' .x/m;2nC1
�

dx

D
p
Im;2np
Im�1;n

NX

kD1
yk

Z xk

xk�1

' .x/m;2n dx

C
p
Im;2nC1p
Im�1;n

NX

kD1
yk

Z xk

xk�1

' .x/m;2nC1 dx

D
p
Im;2np
Im�1;n

Ǫm;2n C
p
Im;2nC1p
Im�1;n

Ǫm;2nC1; (6.7)

where Imn stands for the length of the support of the unbalanced scaling function
'mn .x/ as in (4.44). To prove that the scaled measurement data can be used as the
initial empirical coefficients for the unbalanced transform, i.e., that

Ǫ log2 N;n D
q
Ilog2 N;nynC1 D p

InC1ynC1; (6.8)
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we need first to show that the following equivalence holds for dyadicN and for each
m � log2 and each n:

Ǫmn D
2�mN.nC1/X

kD2�mNnC1
yk

Z xk

xk�1

'mn .x/ dx D 1p
Imn

2�mN.nC1/X

kD2�mNnC1
yk

Z xk

xk�1

dx

D 1p
Imn

2�mN.nC1/X

kD2�mNnC1
Ikyk; (6.9)

that is, that the empirical unbalanced scaling function coefficients Ǫmn are scaled (by
the normalization factor 1=

p
Imn) sums of 2�mN consecutive output measurements

yk; k D 2�mNn C 1; : : : ; 2�mN .nC 1/ ; weighted by the corresponding to them
spacings Ik.

Combining (6.7) and (6.9) for m D log2 N , we verify that (cf. (6.6)):

Ǫ log2 N�1;n D 1p
Ilog2 N�1;n

2nC2X

kD2nC1
Ikyk

D I2nC1p
Ilog2 N�1;n

y2nC2 C I2nC2p
Ilog2 N�1;n

y2nC2

D
p
Ilog2 N;2np
Ilog2 N�1;n

Ǫ log2 N;2n C
p
Ilog2 N;2nC1p
Ilog2 N�1;n

Ǫ log2 N;2n; (6.10)

and (6.8) holds. Note that in parallel to the computations of the empirical coefficients
in (6.7), in each transform step also the intervals Im�1;n are simply computed as

Im�1;n D Im;2n C Im;2nC1: (6.11)

Analysis Phase

The fast implementation of the analysis phase of the EOS consists now of three
steps:

• Sorting the set of the raw measurement pairs f.uk; yk/g w.r.t. the ascending values
of the input measurements (the ordered set will further be denoted by f.xk; yk/g)

• Applying the unbalanced Haar transform routine starting from the scale m D
log2 N � 1 down to m D K to the output measurements yk prescaled by their
corresponding factors

p
xk � xk�1

• Restoring the positions of the unbalanced scaling functions borders from the
sequence of interval lengths IKn computed by (6.11)
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Complexity

To sort the measurement pairs, we can apply, e.g., heapsorting algorithm which has
a cost of O .N logN/ operations (cf., e.g., [89, Chap. 5.2.3]). The second step needs
O .N / operations since—like in the classic fast wavelet transform—the number of
constant time operations in (6.7),2 for each scale m; is of order O .2m/, and to find
the empirical coefficients at the scale m D K � 0, we also require

log2 N�1X

mDK
O .2m/ D O �

2log2 N � 2K
� D O .N /

operations; cf. [96, Chap. 7.3.1]. The restoring procedure takes O �
2K
� D

O



3
p
N
�

operations. The overall cost of the analysis phase is therefore of order

O .N logN/—like in the ED algorithm.

Synthesis Phase

Evaluation of the estimate output can be implemented by the following formula:

O� .u/ D
q
I�1
Kn ǪKn

ˇ̌
ˇ̌
nDb2KFK.u/c

;

where the operation
	
2KFK .u/

˘
maps the input arguments u onto the translation

index n of the corresponding empirical coefficients ǪKn.
The synthesis phase can be therefore computed in the same two-step way as in

the ED algorithm:

• Determining the translation index n for a given argument u using the empirical
distribution FK .u/

• Evaluating the output value, i.e., scaling the selected coefficient ǪKn by the

associated factor
q
I�1
Kn

Remark 6.3. The second step of this phase can also be performed in parallel with
the last step of the analysis phase.

Complexity

The overall complexity of the synthesis phase equals the complexity of this phase
in the ED algorithm, i.e., it is of order

2The lifting procedure (4.58) is also a constant time operation and can be used instead of (6.7)
when the transform is to be executed in situ; cf. [24, 96].
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O



log
3

p
N
�

D O .logN/ ;

and is larger than the constant one obtained for QOS and OS implementations.

6.2 Linear Algorithms Complexities

Taking into account the results of the linear algorithms complexity analyses, we
infer the following corollary:

Corollary 6.1. The computational complexities of the linear algorithms are log-
linear w.r.t. the number of measurement data N .

Table 6.1 Computational complexities of the linear algorithms

Complexity
Analysis Synthesis Overall

QOS O .N / O.1/ O .N /

OS O .N logN/ O .N logN/

ED O .N logN/ O .logN/ O .N logN/
EOS

6.3 Nonlinear Algorithms

The implementation of the EZW nonlinear approximation scheme from section
“EZW Approximation Scheme” is, in fact, an adaptive, data-driven, and empirical
transformation of the set of the empirical coefficients Ǒ

mn, m D M; : : : ;K � 1,
n D 0; : : : ; 2m � 1, produced by the analysis phase of the nonlinear algorithm,
into the new set of coefficients Ǒ

mn;m D M; : : : ;K � 1, n 2 Qm, which form qM
empirical cones of influence. As such, the implementation is independent of the type
of the linear algorithm it is plugged-in, and in the subsequent chapters, we present
the implementation without a reference to the particular identification algorithm.

The proposed EZW algorithm implementation follows the two-phase analysis
and synthesis template and consists of:

• Execution of the fast wavelet transform routine computing the wavelet empirical
coefficients Ǒ

mn at the scalesm D K � 1; : : : ;M along with the detection of the
empirical cones of influence
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• Removal of the unwanted (located outside the empirical cones) empirical wavelet
coefficients Ǒ

mn during the fast inverse transform (to yield back the empirical
scaling function coefficients ǪKn at the scale K)

6.3.1 Implementation of the EZW Scheme

We assume that the number qM of the empirical cones is selected according to the
common to all nonlinear algorithms rule qM D log2 M (see, e.g., (5.21)).3 Clearly,
the actual number of jumps q and their locations is unknown, and the selected qM
empirical cones not necessary correspond to the actual jumps (in particular, when
qM < q, then not all jumps can be detected).

To find the empirical cones, we use the auxiliary vector

Ǒ D
h Ǒ

0 � � � Ǒ
2K�1�1

i
; (6.12)

storing the sums of the squares of the empirical coefficients Ǒ
mn grouped in all 2K�1

possible cones of influence.

Remark 6.4. The sums in (6.12) have the explicit form,

Ǒ
p D

K�1X

mDM
Ǒ 2
ml ; where l D 	

2M�mp
˘
; (6.13)

for p D 0; : : : ; 2K�1 � 1 and can be computed in a separate routine; however, we
will exploit the flexibility of the lifting transform scheme and will evaluate these
sums in line with the forward wavelet transform routine.

We also need a list, L , which will store the qM pairs . Ǒ
p; p/ of the largest sums

Ǒ
p and their indices p, indicating the locations of the empirical cones.

Remark 6.5. The proposed implementation of the EZW is based on the heuristic
assumption that in all presented algorithms, the large empirical wavelet coefficients
Ǒ
mn are located in the vicinity of each jump points of the nonlinearity (like their

theoretical counterparts ˇmn; cf. Fig. 4.2).

3Clearly, for a given number of measurements N; the scale M is fixed, and q D log2 M is, from
the implementation viewpoint, fixed as well.
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Analysis Phase

Recall that the nonlinear algorithm starts when the empirical scaling function coef-
ficients ǪKn are already computed by the linear analysis part of the selected identifi-
cation algorithm. Then, for eachmDK; : : : ;MC1 and for each n D 0; : : : ; 2m � 1;

the following steps are performed:

• Execution of the standard forward transform step to evaluate the scaling function
and wavelet empirical coefficients, Ǫm�1;n and Ǒ

m�1;n, from the scaling function
empirical coefficients at the scale m (cf. (4.26) and (4.28))

Ǫm�1;n D 1p
2
. Ǫm;2n C Ǫm;2nC1/ (6.14)

Ǒ
m�1;n D 1p

2
. Ǫm;2n � Ǫm;2nC1/

• Updating the appropriate sums Ǒ
p , i.e., all sums with the index p such that

p D n � 2m�M ; : : : ; .nC 1/ � 2m�M � 1; (6.15)

by adding to them the squared value of the newly computed empirical wavelet
coefficient Ǒ

mn:

• Inserting the pair . Ǒ
p; p/ into the list L—if the value of the updated sum Ǒ

p is
larger than the smallest currently stored there. If the pair is already present in the
vector, then the value of Ǒ

p is only updated. Otherwise, it is replaced with the
pair with the smallest sum.

At the end of this phase, we have at our disposal two sets of data: one with
the vectors of empirical scaling function and wavelet coefficients ǪMn and Ǒ

mn,
m D M; : : : ;K � 1; and the other, comprising the list L of qM indices pointing out
the largest sums, i.e., the selected empirical cones of influence.

Synthesis Phase

The synthesis phase is essentially a reverse of the analysis one and consists in
removing (resetting) each of the wavelet empirical coefficients located outside the
empirical cones of influence constructed prior to the inverse fast transform step.
Namely, in this phase, one should, for each m D M C 1; : : : ; K � 1 and each
n D 0; : : : ; 2m � 1, perform the following steps:

• Check whether the currently processed empirical wavelet coefficient, Ǒ
m�1;n,

belongs to one of the empirical cones of influence, i.e., test whether the
translation index n satisfies the condition

n D 	
2m�Kp

˘
;
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for at least one of the qM indices p from the list L. If not, reset it, i.e., set
Ǒ
m�1;n D 0.

• Then, execute of inverse FWT routine step (cf. (4.27) and (4.29))

Ǫm;2n D 1p
2



Ǫm�1;n C Ǒ

m�1;n
�

(6.16)

Ǫm;2nC1 D 1p
2



Ǫm�1;n � Ǒ

m�1;n
�
:

After completion of the synthesis phase, we obtain the vector of new scaling
function empirical coefficients ǪKn which are ready to be scaled by the factor
2K=2 in order to produce (like in the linear algorithms) the final estimate of the
nonlinearity.

Remark 6.6. The routine presented above needs to be adjusted to the NQOS
algorithm quotient form, and in the analysis phase, the coefficients from the
denominator, Oamn and Obmn, should be computed analogically to the numerator
coefficients Ǫmn and Ǒ

mn, using the formula in (6.14). In the synthesis phase,
the empirical wavelet coefficients from numerator and denominator, Ǒ

mn and Obmn,
should also be jointly considered. That is, if for a given m and n, the coefficient
Ǒ
mn is qualified for rejection, then so is its counterpart Obmn in the denominator; cf.

Sect. 5.3. Finally, the estimate regressogram is produced as in the linear variant, by
computing the quotients ǪKn= OaKn.
Remark 6.7. In the NEOS algorithm, the unbalanced transform steps in (4.58)
and (4.59) should be used instead of those from (6.14) and (6.16). Furthermore,
in order to obtain a proper regressogram, the resulting coefficients ǪKn need to be
scaled by their random factors 1=

p
IKn rather than by the constant one 2K=2.

6.3.2 Complexity of the EZW Scheme Implementation

In this chapter, we examine the complexity of the EZW analysis and synthesis
routines to show that the overall complexity of the nonlinear plug-in implementation
does not exceed the complexity of the preceding and following linear routines and
hence that the orders of the computational complexity of both linear and nonlinear
algorithms are equal.

Analysis Phase

For 2K coefficients ǪKn, the standard FWT algorithm requires O �
2K
�

steps;
however, in our one-pass implementation of the EZW scheme, in each transform
step, we:
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• Compute the new coefficients as in (6.14)—at the fixed cost O .1/.
• Add the newly computed empirical coefficient Ǒ

mn to 2K�m sums Ǒ
p—this

requires O �
2K�m� extra operations; cf. (6.13) and (6.15).

• Check whether each new sum Ǒ
p should be inserted into the list L. If the list

is implemented as a min-heap (see, e.g., [89, Chap. 5.2.3]) with all the initial
sums equal to zero, then, in the worst case, such an insertion operation requires
checking whether Ǒ

p is larger than the smallest sum in the heap, removing it

and inserting the new pair . Ǒ
p; p/. It costs O .1/, O .log qM / and O .log qM /,

respectively.

Hence, for each m D K; : : : ;M , we perform O �
2K log qM

�
operations, and the

resulting complexity of the analysis phase of the EZW implementation is of order
O �
2KK logM

� D O.N 2=3 logN log logN/.

Synthesis Phase

The standard inverse FWT algorithm has the complexity O �
2K
�
, i.e., the same as

the forward one. For each coefficient, checking for the inclusion in the empirical
influence cone takes O .log qM / D O .log logM/ D O .log log logN/—if the
list is implemented as a min-heap. Hence, the overall complexity of this phase of
the EZW implementation is O �

2K log qM
� D O �

N2=3 log log logN
�
; i.e., slightly

smaller than in the analysis phase.4

6.4 Overall Complexity of the Nonlinear Algorithms

From the previous chapters, we know that the joint complexity of the analysis
and synthesis phases of the linear algorithms is of the linear O .N / or the log-
linear orders O .N logN/. Hence, in the view of the above analysis, the following
corollary holds true (cf. Corollary 6.1 and Table 6.1).

Corollary 6.2. The overall computational complexities of the proposed linear and
nonlinear algorithms are the same and at most of order O .N logN/, i.e., they are
log-linear w.r.t. the number of measurement data N ; see Table 6.2.

4In most practical situations, the iterated logarithm factor log log logN can be neglected.



92 6 Computational Algorithms

Table 6.2 Computational complexities of the nonlinear algorithms

Complexity
Analysis Synthesis Overall

NQOS O .N / O.N 2=3 log log logN/ O .N /

NOS O .N logN/ O.N 2=3 log log logN/ O .N logN/
NED
NEOS

6.5 Computational Stability

Here, we shortly examine the computational stability of the implementations, that is,
we check whether they produce bounded estimates for sets of bounded but random
measurements (cf., e.g., [124, Prop. 3]). This kind of stability prevents from the
overflow errors during computations (and can be seen as a counterpart of the classic
BIBO-stability of linear systems).

Observe first that for both (linear and nonlinear) variants of the QOS algorithm,
this property can be derived from the fact that they are bounded for any set of
bounded measurements f.xk; yk/g; see Lemmas A.4 and A.6 in Appendix A.1 (note
that the stability of the NQOS algorithm is strictly related to application of the EZW
nonlinear approximation scheme and may not hold for, e.g.,N -term approximation-
based one).

One can also easily observe that the ED-type algorithms share this property as
well: For the scaling function empirical coefficients in these algorithms, we have the
inequality (cf. (5.34)):

j ǪKnj �
NX

kD1
jykj

Z k
N

k�1
N

'Kn .x/ dx � 2�KN2
K
2 N�1 � max

kD1;:::;N fykg

D 2�K
2 max
kD1;:::;N jyk j ;

which implies that, for each x, the estimate value is bounded for bounded output
measurements (cf. (5.33))

j O�K .x/j � max
kD1;:::;N jyk j :

Recall now that for any measurements number N , the corresponding scale K is
fixed. To establish the stability of the OS algorithm, consider the scaling function
empirical coefficient of the OS algorithm, where we have that (cf. (5.23))
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j ǪKnj �
NX

kD1
jykj

Z xk

xk�1

'Kn .x/ dx

� 2
K
2 N2�K � max

kD1;:::;N jykj max
kD1;:::;N .xk � xk�1/

� 2�K
2 N � max

kD1;:::;N jykj ;

since the input signal is bounded, then the differences xk � xk�1 are all bounded as
well and so is the estimated value (cf. (5.22))

j O�K .x/j � N � max
kD1;:::;N jykj :

Consider finally the EOS algorithm, where (cf. (5.44))

j ǪKnj �
NX

kD1
jykj

Z xk

xk�1

'Kn .x/ dx � 2�KN
P2�KN

kD1 IkqP2�KN
kD1 Ik

� max
kD1;:::;N jykj

D 2�KN max
kD1;:::;N jykj

vuut
2�KNX

kD1
Ik;

where the spacings Ik are bounded since the input signal is bounded. Thus, in this
case (cf. (5.43)),

j O�K .x/j � 2�KN � max
kD1;:::;N jykj :

Remark 6.8. The analysis for nonlinear variants of the OS, ED, and EOS algorithms
can be performed using the analogous arguments with the help of their common
representation in (5.52); cf. Sect. 5.10.2.



Chapter 7
Final Remarks

Abstract The features of the proposed algorithms are summarized. Their asymp-
totic properties and computational complexities are collected and compared. Finally,
the performances of the linear and nonlinear algorithms in the considered nonpara-
metric system identification tasks are discussed.

In this chapter we recapitulate the properties of the proposed Haar wavelet identifi-
cation algorithms, highlight their advantages and shortcomings, and compare their
asymptotic and computational properties.

7.1 Asymptotic Properties

Comparing the asymptotic properties of the proposed algorithms, we can point out
their common advantages:

– They converge globally (in the MISE sense) to any (piecewise-)Lipschitz
nonlinearities for any (piecewise-)Lipschitz input probability density functions.1

– For Lipschitz nonlinearities, the convergence rates of the linear algorithms are of
order O �

N�2=3� and are optimal; cf. [58, 138, Chap. 4.2] and [72].2

– For discontinuous piecewise-Lipschitz nonlinearities, the linear algorithms
achieve the guaranteed convergence rate O �

N�1=2�, while the best-case
convergence rates of the nonlinear algorithms are of order O �

N�2=3�. The latter

1In fact, the class of piecewise-Lipschitz nonlinearities and input probability density functions can
further be extended to the class of piecewise-Hölder functions (at the expense of more burdensome
analysis, however); cf. e.g. [55, 110, 131, 132].
2Clearly, the convergence rates of the EOS-type algorithms are slowered by a logarithmic factor–
and hence only near optimal.

P. Śliwiński, Nonlinear System Identification by Haar Wavelets, Lecture Notes
in Statistics 210, DOI 10.1007/978-3-642-29396-2 7,
© Springer-Verlag Berlin Heidelberg 2013
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96 7 Final Remarks

is of the same order as the rates of the linear algorithms for uniformly Lipschitz
(i.e., continuous) nonlinearities. Such rates are not attainable by the algorithms
based on any classic orthogonal series due to their global nature; cf. [16, 18, 29].

All these beneficial properties are achieved for any structure of linear (stable)
dynamics in the system and for any second-order stationary external noise and make
the algorithms robust against the system properties and the identification conditions;
cf. [47, 55, 71, 72, 110]. Several weak points of the algorithms should however be
also signalized:

– For discontinuous piecewise-Lipschitz nonlinearities, the worst-case conver-
gence rate of the nonlinear algorithms O �

N�1=3� is slower than the rate
O �
N�1=2� guaranteed for linear algorithms.

– The maximum rate of convergence is limited by the approximation abilities of
Haar bases. In particular, that convergence rate cannot be faster that O �

N�2=3�

even if the identified nonlinearities are smoother than Lipschitz (like, e.g.,
polynomials).

Remark 7.1. To overcome the first drawback, more efficient nonlinear approxi-
mation schemes need to be developed. To deal with the second deficiency and
obtain faster convergence rates for (piecewise-)smoother nonlinearities, one should
apply higher-order (and possessing more vanishing moments) compactly supported
Daubechies wavelets (e.g., the wavelet bases constructed on interval as in [19]); see
also [71, 131–133].

In addition to the above-mentioned common properties, there are also some
algorithm specific attributes worth to be reported:

• Both QOS and OS linear algorithms maintain the asymptotic convergence rate
O �
N�2=3� even when the nonlinearity is piecewise-Lipschitz but have jumps

at dyadic points. Note that for such nonlinearities, application of the nonlinear
variants of these algorithms cannot yield better convergence rate but, conversely,
could rather deteriorate the estimate performance.

• All algorithms—except both variants of the quotient one—are not affected by
the (lack of) smoothness of the input probability density function. Particularly,
the nonlinear version of the QOS algorithms appears to be the least effective
with the performance affected by discontinuities in the nonlinearity and in the
density function.

• The scale of the estimates in ED and EOS algorithms self-adapts locally to the
amplitude of the input density function. In this sense, their behavior is similar to
nearest neighbor algorithms and to optimal quantizers; see Fig. 7.1 and cf. [58,
Chap. 6] and [45, 94, 99, 136], respectively.
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Fig. 7.1 The OS algorithm has the constant scale across the identification interval regardless of
the density function shape. The EOS one self-adapts to the scale to the local measurements density
(i.e., to the local height of the density function)

7.2 Computational Properties

The expedient computational properties are an important facet of our algorithms,
and we deliberately have made a substantial effort to demonstrate (see the whole
Chap. 6) that in spite of the random character of the processed measurement data,
all the proposed implementations are computationally effective.3 In particular, the
number of operations performed in our implementations is of order O .N / or
O .N logN/, i.e., it is linear or log-linear w.r.t. number of measurements N and
stays in line with the complexity of the typical wavelet transform algorithms (cf. e.g.
[96, Chap. 7.3]). Furthermore, despite of the extra overhead of the EZW nonlinear
approximation scheme, the complexities of both linear and nonlinear variants of the
algorithms are also the same (compare Tables 6.1 and 6.2). In the list below, we
underline some of the algorithm-type specific aspects:

• The QOS algorithm is the only one which does not require sorting of the
measurement sequence. However, due to its quotient form, the number of
coefficients to be evaluated and stored is twice as much.

• The OS algorithm requires no explicit sorting, but the measurements set is
implicitly sorted during its analysis phase. Note further that in spite of the form
of the OS estimate empirical coefficients, they are computed without the use of
numerical integration.

• Both QOS and OS algorithms require specific procedures for empirical coeffi-
cients evaluation. In contrast (for dyadic measurement numbers), the coefficients
in the ED and EOS algorithms are computed directly from the measurements
using the fast wavelet transform algorithms (the standard and unbalanced one,
respectively).

3Such good properties were—to much extent—easier to accomplish due to the utmost simplicity
of Haar functions and hierarchical construction of (both standard and unbalanced) orthogonal Haar
bases which yields simple and fast transform routines.
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Observe eventually that all algorithms enjoy the numerical stability property—a
somehow surprising feature for the QOS algorithms which have the quotient form
with random denominators, see Sect. 6.5.

7.3 Linear Versus Nonlinear Algorithms

Nonlinear algorithms have been proposed in attempt to improve the performance
of identification in case when the nonlinearities are discontinuous and exploit the
most distinguishing feature of the wavelet function—their local approximation
property—which allows them to localize and isolate the separate jumps in nonlin-
earities and results in the fast, not available for other nonlocal orthogonal systems,
convergence rates (see Table 5.1).

We emphasize however that the specific identification conditions imposed by the
nonparametric assumptions and the presence of the dynamics-induced correlated
system noise4 make together the design of any nonlinear identification/estimation
algorithm a much more arduous task than for other signal and image processing
estimation problems (recall that the benchmark wavelet nonlinear algorithm—the
thresholding routine by Donoho and Johnstone for signal denoising—was developed
and formally examined for deterministic inputs and for normal white noise (see e.g.,
[33–35, 90]).5

Our nonlinear algorithms are clearly in their infancy. Nevertheless, they allow to
formulate several observations which give a useful picture of nonlinear algorithms’
potential and limitations in the nonparametric system identification area:

• Nonlinear algorithms faster (more aggressively) than their linear prototypes
adapt the local estimate scale to the jumps’ locations, for a given number of
measurements N .

• Simultaneously, the nonadaptive linear algorithms are naturally more robust
against the small signal-to-noise ratio (SNR).

Consequently, the data-dependent nature of nonlinear algorithms can neutralize their
potential advantage over the linear ones as the SNR degrades.

4Also, in order to improve the performance of the EZW scheme, one can consider reduction of the
system-induced noise by inverse filtering (as proposed in [104]).
5These conditions are—in our case—met only if the system is static, the external noise is normal,
and the ED algorithm is used.



Appendix A
Technical Derivations

Abstract A detailed and more technical insight in the proposed algorithms is given.
It starts from some preliminary lemmas. Then, the asymptotic properties, i.e., the
convergence conditions and convergence rates of the algorithms, presented in the
‘Identification Algorithms’ chapter, are formally established.

In the remaining chapters, all the asymptotic results presented in Chap. 5 and
describing the convergence conditions and the convergence rates are derived
formally. The proofs follow a common scheme:

• The MISE error is decomposed and expressed in terms of the empirical coeffi-
cients errors.

• The convergence conditions are determined.
• The convergence rates for linear and nonlinear algorithms are derived.

The following three lemmas are exploited in the proofs of the algorithms’
asymptotic properties. The first enables examination of the global properties of the
QOS-type algorithms.

Lemma A.1 ([57, Chaps. 6.8 and Eq. (C.1)]). The following inequality holds

ˇ̌
ˇ̌yk
xk

� b

a

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌yk
xk

ˇ̌
ˇ̌
ˇ̌
ˇ
xk � a
a

ˇ̌
ˇC

ˇ̌
ˇ̌yk � b

b

ˇ̌
ˇ̌ :

The other two are extensively used in the proofs of the remaining types of
algorithms (recall that �k D P1

iD0;i¤d �im .uk�i / � bd with bd D Em .u1/P1
iD0;i¤d �i and thus E�k D 0; cf. (2.2)).1

1In the proofs, we will use the generic symbol c to denote any positive constant independent of the
accompanying factors.

P. Śliwiński, Nonlinear System Identification by Haar Wavelets, Lecture Notes
in Statistics 210, DOI 10.1007/978-3-642-29396-2,
© Springer-Verlag Berlin Heidelberg 2013

99



100 A Technical Derivations

Lemma A.2 (cf. [57, L. 7.1]). Let � .x/ be piecewise-Lipschitz in the interval
Œ0; 1�. Then, for any nonnegative Borel function � .x/ and for any i; j; k; l , all
different,

E
n
�2i

ˇ̌
ˇ �
�
xi ; xj

�o � cE
˚
�
�
xi ; xj

��
; (A.1)

and
E
˚ j�i �i jj �

�
xi ; xj ; xk; xl

�� � cN�1E
˚
�
�
xi ; xj ; xk; xl

��
: (A.2)

Lemma A.3 ([57, App. C.4.2]). Let fxkg, k D 1; : : : ; N , be the set of ordered
independent random variables with a density function f .x/ such that c � f .x/ �
C; for some C � c > 0; and all x 2 Œ0; 1�. Then, for all i; j; k D 1; : : : ; N C 1

(taking x0 D 0 and xNC1 D 1), we have for p D 1; 2; : : : ; that

E .xk � xk�1/p � cN�p

and, in particular
E .xi � xi�1/

�
xj � xj�1

� � cN�2: (A.3)

A.1 QOS Algorithms

The MISE error used to examine the QOS estimate O�K .x/ presented in Sect. 5.2 is
defined in a standard way as

MISE O�K D E

Z 1

0

Œ O�K .x/ � � .x/�2 dx:

The analysis of the error requires some preliminary steps. In the analysis, we will
exploit the explicit quotient form of the estimate. Denote by OgK .x/ the numerator
of the estimate and by OfK .x/ its denominator and recall that

ǪKn D 1

N

NX

kD1
yk'Kn .xk/ and OaKn D 1

N

NX

kD1
'Kn .xk/ :

Since �1 and z1 are both zero-mean and independent of � .x1/ and 'Kn .x1/, we get

E ǪKn D Ey1'Kn .x1/ D E Œ� .x1/C �1 C z1� 'Kn .x1/

D E� .x1/ 'Kn .x1/

D
Z 1

0

� .x/ f .x/ 'Kn .x/ dx D
Z 1

0

g .x/ 'Kn .x/ dx;
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where g .x/ D � .x/ f .x/ is a product of the identified nonlinearity � .x/ and the
input signal probability density function f .x/. This means that ǪKn’s are unbiased
estimates of the expansion coefficients ˛Kn’s of this product. Similarly, observing
that

E OaKn D E'Kn .x1/ D
Z 1

0

f .x/ 'Kn .x/ dx;

we infer that the coefficients OaKn are unbiased estimates of f .x/.
Because of unbiasedness of the empirical coefficients ǪKn and OaKn, for each

scale K , we have that E OgK .x/ D gK .x/ and E OfK .x/ D fK .x/. That is, for each
K , the numerator estimates the approximation gK .x/ of the product g .x/. Since
the denominator estimates the approximation fK .x/ of the density function f .x/,
then one can expect that the quotient O�K .x/ estimates an approximation �K .x/ of
the nonlinearity � .x/.

A.1.1 Convergence

To show the MISE error convergence, we will use an additional assumption that the
external noise signal is bounded, that is, we assume that there exists an unknown
constant c such that maxk fjzkjg � c (and hence jyk j � c for some c and all k D
0; 1; : : :); cf. Sect. 5.2. The following lemma holds by virtue of this assumption.

Lemma A.4. The estimate in QOS algorithm is bounded for any set of bounded
measurements.

Proof. The lemma says that for a bounded input, the QOS estimate yields bounded
output. It is rather intuitive observing that, in fact, the estimate computes local
average in the intervals determined by the supports of the estimate scaling functions;
cf. (5.9). To prove it formally, we exploit the equivalent kernel representation
in (5.10)

ˇ̌
ˇ̌
ˇ

OgK .x/
OfK .x/

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ

P2K�1
nD0 ǪKn'Kn .x/P2K�1
nD0 OaKn'Kn .x/

ˇ̌
ˇ̌
ˇ D

PN
kD1 jykj�K .xk; x/PN
kD1 �K .xk; x/

� max
k

jyk j (A.4)

where �K .v; x/ is the Haar reproducing kernel, i.e., a nonnegative window kernel
function; cf. Sect. 4.1.3 and [147, Chap. 3]. �

Recalling that, by Assumption 1, f .x/ is strictly positive in the identification
interval Œ0; 1� ; i.e., it holds that f .x/ � c > 0; we can now use the inequality (cf.
Lemma A.1):
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"
OgK .x/
OfK .x/

� g .x/

f .x/

#2
� 2

"
OgK .x/
OfK .x/

#2
1

f 2 .x/
Œ OgK .x/ � g .x/�2 (A.5)

C2 1

f 2 .x/

h OfK .x/ � f .x/
i2

to bound the MISE error of the estimate O�K .x/ by the following MISE errors of
the estimate numerator, OgK .x/, and the denominator, OfK .x/:

MISE O�K � 2cE

Z 1

0

Œ OgK .x/ � g .x/�
2 dx C 2cE

Z 1

0

h OfK .x/ � f .x/
i2

dx

D 2cMISE OgK C 2cMISE OfK:

In other words, if both the numerator Og .x/ and the denominator Of .x/ converge in
the MISE error sense to the product g .x/ and to the density f .x/, respectively,
then the whole estimate O� .x/ converges to the nonlinearity � .x/.

To examine the MISE error of the numerator Og .x/, we use its standard decom-
position into the integrated variance and integrated squared bias error components

MISE OgK D E

Z 1

0

Œ OgK .x/ � g .x/�2 dx

D E

Z 1

0

Œ Og .x/ � gK .x/C gK .x/ � g .x/�2 dx

D E

Z 1

0

Œ OgK .x/ � gK .x/�
2 dx C E

Z 1

0

ŒgK .x/ � g .x/�2 dx

D IV OgK C ISB OgK:

Both errors can be further decomposed and expressed in terms of the variance and
squared bias errors of the empirical coefficients.

ISB OgK D
Z 1

0

8
<

:

2K�1X

nD0
˛Kn'Kn .x/

�
2

4
2K�1X

nD0
˛Kn'Kn .x/C

1X

mDK

2m�1X

nD0
ˇmn mn .x/

3

5

9
=

;

2

dx

D
Z 1

0

2

4
1X

mDK

2K�1X

nD0
ˇmn mn .x/

3

5
2

dx:
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Applying wavelets orthonormality argument (see (4.20)) leads to the observation
that

ISB OgK D
1X

mDK

2K�1X

nD0

1X

m0DK

2K�1X

n0D0
ˇmnˇm0n0

Z 1

0

 mn .x/ m0n0

.x/ dx

D
1X

mDK

2K�1X

nD0
ˇ2mn D ISE gK;

i.e., that the integrated squared bias error is of pure deterministic nature and is
equal to the sum of squared wavelet expansion coefficients not present in the
approximation gK .x/. Clearly, by virtue of the Parseval’s identity,

ISB OgK D
1X

mDK

2K�1X

nD0
ˇ2mn ! 0 as K ! 1: (A.6)

We are now passing to the variance error analysis. We have

IV OgK D E

Z 1

0

2

4
2K�1X

nD0
ǪKn'Kn .x/ �

2K�1X

nD0
˛Kn'Kn .x/

3

5
2

dx:

Using now the scaling function orthonormality (see (4.6)), we get that

IV OgK D E

2K�1X

nD0

2K�1X

n0D0
Œ ǪKn � ˛Kn� Œ ǪKn0 � ˛Kn0 �

Z 1

0

'Kn .x/ 'Kn0

.x/ dx

D
2K�1X

nD0
E Œ ǪKn � ˛Kn�

2 D
2K�1X

nD0
var ǪKn: (A.7)

That is, that the integrated variance of the estimate OgK .x/ is just a sum of the
variances of its empirical coefficients ǪKn. For these variances, the following lemma
holds.

Lemma A.5. The variance of the empirical scaling function coefficients, ǪKn;
vanishes with growing number of measurements, N , and satisfies the following
inequality:

var ǪKn D cN�1: (A.8)

Proof. The proof is actually a Haar wavelet version of the proofs given in,
e.g., [57, Chap. 6.9] for ‘classic’ quotient orthogonal series estimates (cf. [110];
the versions for compactly supported wavelets can be found in, e.g., [71, 72]).
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It exploits the standard decomposition of the variance of the sum of correlated
random variables:

var ǪKn D var

(
1

N

NX

kD1
yk'Kn .xk/

)

D 1

N 2

NX

kD1
var fyk'Kn .xk/g

C 1

N 2

NX

iD1

NX

jD1
j¤i

cov
˚
yi'Kn .xi / ; yj 'Kn

�
xj
��
:

Starting with a variance part (we use 'k D 'Kn .xk/ for shortness), we get

1

N 2

NX

kD1
var fyk'kg D 1

N 2

NX

kD1
var f.�k C �k C zk/ � 'kg ;

where, because for each k, the random variables 'k , �k , and zk are independent and
zero-mean, we get

var f�k � 'k C �k � 'k C zk � 'kg � E�2k � '2k C E�2k �E'2k C Ez2k �E'2k
D E�21'

2
1 C

h
E�21 C Ez21

i
�E'21

� c;

for some c independent of K and n (as � .x/ is bounded and E'21 � 1).
The analysis of the covariance part seems to be much more intricate, and we skip

(for clarity) the external noise zk .
Recall now that using a stationarity argument, we have that cov

˚
yi'i ; yj 'j

� D
cov

˚
yj'j ; yi'i

�
. Hence,

NX

iD1

NX

jD1
j¤i

cov
˚
yi'i ; yj 'j

� D 2

NX

iD1

NX

jDiC1
cov

˚
yi'i ; yj 'j

�
:

Exploiting the standard decomposition of the covariance, we get

cov
˚
yi'i ; yj 'j

� D E
˚
yi'iyj 'j

� � E fyi'i gE
˚
yj 'j

�
;
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where for the latter expectations, we clearly have (since �i and �j are independent
for i � j and E�i D E�1 D 0) that

E fyi'i g D E f�i'i g C E f�i'i g D E f�i'i g ;

and similarly E
˚
yj 'j

� D E
˚
�j'j

�
. Next, observe that

E
˚
yi'iyj 'j

� D E
˚
.�i C �i /

�
�j C �j

�
'i'j

�

D E
˚
�i�j'i'j C �i�j 'i'j

�C E
˚
�i�j 'i'j C �i �j 'i'j

�

D E
˚
�i�j'i'j

�C E
˚
�i�j 'i'j

�

CE ˚�i�j 'i'j
�C E

˚
�i �j 'i'j

�

D E f�i'i gE
˚
�j 'j

�C E
˚
�i�j 'i'j

�

CE ˚�i�j 'i'j
�C E

˚
�i �j 'i'j

�
;

and hence

cov
˚
yi'i ; yj 'j

� D E
˚
�j�i'i

�
E
˚
'j
�CE f'i gE f�i gE

˚
�j 'j

�

CE ˚�i �j 'i'j
�

D E
˚
�j�i'i

�
E
˚
'j
�CE

˚
�i �j 'i'j

�
:

Thus,

2

NX

iD1

NX

jDiC1
cov

˚
yi'i ; yj 'j

� D 2

NX

iD1

NX

jDiC1
E
˚
'j
�
E
˚
�i'i �j

�

C2
NX

iD1

NX

jDiC1
E
˚
'j
�
E
˚
'i�i �j

�
:

Recalling now that �j D P1
iD1 �i �j�i , where �j�i D mj�i � Em1 (cf. Proposi-

tion 2.1), we get

E
˚
�i'i �j

� D E

(
�i'i

1X

kD1
�j�k�k

)
D E

˚
�i'i�i�j�i

� D �j�iE f'i�i �i g

and
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E
˚
'i�i �j

� D E

(
'i

1X

kD1
�i�k�k

1X

kD1
�j�k�k

)

D E

( 1X

kD1
'i �

2
i�k�k�jCk�i

)

D
1X

kD1
E'iE�

2
i�k�k�jCk�i :

Finally, noting that j� .x/j ; j� .x/j < c for all x (since the nonlinearity m.x/ is
bounded) and that

E j'Kn .x1/j D 2
K
2

Z

supp'Kn

f .x/ dx � 2�K
2 � 1; for all K � 0;

we obtain

2

NX

iD1

NX

jDiC1

ˇ̌
cov

˚
yi'i ; yj 'j

�ˇ̌ � 2

NX

iD1

NX

jDiC1
E'j

ˇ̌
�j�i

ˇ̌
E f'i�i �i g

C2
NX

iD1

NX

jDiC1

1X

kD1
E'jE'iE�

2
i�k j�kj

ˇ̌
�jCk�i

ˇ̌

� 2c

NX

iD1

NX

jDiC1

"
ˇ̌
�j�i

ˇ̌
E
ˇ̌
'j
ˇ̌
E j'i j C

1X

kD1
E
ˇ̌
'j
ˇ̌
E j'i j j�kj

ˇ̌
�jCk�i

ˇ̌
#

� 2c

NX

iD1

NX

jDiC1

"
ˇ̌
�j�i

ˇ̌C
1X

kD1
j�kj

ˇ̌
�j�iCk

ˇ̌
#

D 2cN

NX

kD1

�
1 � k

N

�
"

j�kj C
1X

lD1
j�l j j�kCl j

#

and

2

NX

iD1

NX

jDiC1
cov

˚
yi'i ; yj 'j

� � 2cN

NX

kD1

"
j�kj C

1X

lD1
j�l j j�kCl j

#

� N � c:
Hence, for each K and n, we get that

var ǪKn � c

N
C Nc

N2
� cN�1.

�
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Combining now the last lemma with the formula in (A.7), we get that the
integrated variance of the estimate OgK .x/ depends on both the scale of the estimate
and the number of measurements:

IV OgK � c
2K

N
. (A.9)

One can easily ascertain that:

• For a fixed scale K; the variance vanishes as number of measurements, N; tends
to infinity.

• For a fixed number of measurements, the variance grows (exponentially) with a
growing scale K .

Combining (A.6) and (A.9), we obtain that

MISE OgK �
1X

mDK

2K�1X

nD0
ˇ2mn C c

2K

N
.

To make the MISE error vanishing, we need both the approximation and variance
terms to vanish. However, with the scale factor K growing to infinity, the approx-
imation error decreases, but the variance increases. Thus, the rate of the growth of
the scale K needs to be selected in accordance with the number of measurements
N and slow enough to allow the variance part to vanish with the growing number
of measurementsN too. Clearly, taking K D � log2 N with any 0 < � < 1, we get
the MISE convergence since thenK ! 1 (i.e., ISB OgK ! 0) and 2K=N ! 0 (i.e.,
IV OgK ! 0) as N ! 1:

In the similar way, one can show that the same conditions need to be satisfied
to make the denominator estimate OfK converges in the MISE error sense. In this
way, by virtue of the convergences of the numerator and the denominator and the
inequality (A.5), we have shown the convergence of the whole estimate and proved
the Theorem 5.1.

A.1.2 Convergence Rates

We know from Lemma 4.4 that the approximation error ISB depends on smoothness
of the approximated function. In contrast, from the bounds in (A.8) and (A.9),
we conclude that the variance error is smoothness independent. Examining the
convergence rates, we first consider the case when both the nonlinearity � .x/ and
the input probability density function f .x/ are uniformly smooth (Lipschitz).

Lipschitz Case: Assume that � .x/ and f .x/ are Lipschitz. Then, the product
function g .x/ is also Lipschitz, since
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jg .x/ � g .v/j D j� .x/ f .x/ � � .v/ f .x/C � .v/ f .x/ � � .v/ f .v/j
� jf .x/j j� .x/ � � .v/j C j� .v/j jf .x/ � f .v/j
� c jx � vj C c jx � vj :

The approximation error in (A.6) satisfies the following inequality:

ISB OgK D ISE gK � c2�2K;

and for the MISE error, we get that

MISE OgK � c


2�2K C 2K

N

�
D c


2�2� log2 N C 2� log2 N

N

�
:

From the proof of Theorem 5.1, we already know that the convergence holds for
K D � log2 N with any 0 < � < 1, and now we will try to select � so that the
convergence rate is the fastest possible. Observing again the opposite behavior of
the MISE error components with respect to the estimate scale K , we conclude that
the asymptotically optimal convergence rate will be obtained when both the variance
and the bias errors vanish with the same rate (otherwise, the overall MISE error
would vanish with the rate of the slower component). To find such �, we need to
solve the equation

2�2� log2 N D 2� log2 N

N
;

which yields that � D 1=3. That is, taking as the scale selection rule

K D 1
3

log2 N

we obtain the following convergence rate of the estimate numerator OgK .x/:

MISE OgK � cN�2=3:

Applying the above arguments to the estimate denominator OfK .x/, we get

MISE OfK � cN�2=3;

which together with the inequality (A.5) yields the convergence rate of the estimate
O�K .x/ claimed in the Theorem 5.2.

Piecewise-Lipschitz Case: Assume now that both the nonlinearity and the density
function are piecewise-smooth. From Lemma 4.5, we derive the bound for the
approximation error of the product g .x/

ISB OgK D ISEgK � c2�K;



A.1 QOS Algorithms 109

that is (in accordance with intuition), the approximation error vanishes slower than
for uniformly smooth nonlinearities. For the MISE error, it holds that

MISE OgK � c


2�K C 2K

N

�
;

and—clearly—the scale selection rule which assures the same convergence rate of
both components is as in (5.14), i.e.,

K D 1
2

log2 N:

The resulting MISE error of the estimate OgK .x/ is thus

MISE OgK � cN�1=2:

Again, after applying the similar arguments to the estimate OfK .x/, we obtain that

MISE OgK � cN�1=2;

Inserting both inequalities into (A.5) ends the proof of Theorem 5.6.
To verify Corollary 5.1, it suffices to observe that for the scale selection rule

in (5.12) and piecewise-Lipschitz nonlinearity (or density function), the variance
error bound remains the same, but the approximation error components decay
slower as

ISB OgK; ISB OfK � c2� 1
3 log2 N D cN�1=3;

and are responsible for the slower convergence rate of the estimate, since now

MISE O�K � c
�
N�1=3 CN�2=3� � cN�2=3:

Binary Rational Case: The slower (asymptotic) convergence rate for piecewise-
continuous nonlinearities occurs only when the jump points are not located at
the binary rationals. To see this consider the function g .x/ with jumps at binary
rationals and Lipschitz between jumps. The following decomposition holds

g .x/ D g0 .x/C g00 .x/

where g0 .x/ is a Lipschitz-continuous function and where g00 .x/ is a piecewise-
constant function with jumps at binary rationals, 2�K0

n, for some K 0 (thus, it
is a trivial function belonging to the space VK0 ; cf. Remark 4.6). The error of
approximation of such function by the approximant gK .x/ can be decomposed into
the ‘smooth’ and ‘piecewise-constant’ terms:
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ISEgK .x/ D
Z 1

0

˚
g0
K .x/C g00

K .x/ � �
g0 .x/C g00 .x/

��2
dx

� 2

Z 1

0

�
g0
K .x/ � g0 .x/

�2
dx C 2

Z 1

0

�
g00
K .x/ � g00 .x/

�2
dx:

For all scales, K � K 0, the second term is zero. This is because the empirical
coefficients ǪKn are unbiased, and

E ǪKn D ˛Kn D
Z 1

0

�
g0 .x/C g00 .x/

�
'Kn .x/ dx

D
Z 1

0

g0 .x/ 'Kn .x/ dx C
Z 1

0

g00 .x/ 'Kn .x/ dx

D ˛0
Kn C ˛00

Kn; for all n D 0; : : : ; 2K � 1;

where ˛0
Kn and ˛00

Kn are clearly the scaling function coefficients of g0 .x/ and g00 .x/,
respectively. Hence,

E Og00 .x/ D g00
K .x/ D g00 .x/ 2 VK;

for all K � K 0, and the overall approximation error is equal to the error of the
smooth part; cf. Remark 4.6

ISEgK .x/ D ISE g0
K .x/ � c2�2K:

Observing that the same decomposition holds for the density f .x/, we can
conclude the proof.

A.1.3 Nonlinear Algorithm

In order to show the MISE error convergence (and the convergence rates) of the
nonlinear QOS algorithm, we need the following lemma; cf. also Sect. 4.2.4.

Lemma A.6. The nonlinear QOS algorithm with EZW scheme preserves the
boundedness property of its linear version.

Proof. The proof exploits the equivalent kernel representation employing the
standard Haar kernel function #K .x; v/, in which the kernel scale depends on the
argument x.

Assume for simplicity that the wavelet coefficients are in pth cone of influence.
Since by design, our EZW algorithm collects all the empirical wavelet coefficients
at the scales m D M; : : : ;K � 1 which belong to the cone, then for all x in the
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interval
�
2�.K�1/p; 2�.K�1/ .p C 1/

�
, the equivalent kernel has the scale K; in the

wider interval
�
2�.K�2/p; 2�.K�2/ .p C 1/

�
its scale equals K � 1, and so on down

to the scale M . We can thus represent the nonlinear estimate numerator as

OgMK .x/ D
NX

kD1
yk�K.x/ .x; xk/ : (A.10)

where K .x/ is some (data dependent) function of x. Since in the estimate
denominator only the coefficients Obmn with the same indices m and n are pruned,
then for the same K .x/, we get that

OfMK .x/ D
NX

kD1
�K.x/ .x; xk/ ; (A.11)

and therefore, we can show boundedness of the whole nonlinear estimate, O�K .x/ D
OgK .x/ = OfK .x/, using the same arguments as in the linear case; cf. (A.4). �

The next lemma, stating that all the empirical wavelet coefficients have the same
variance bound, has been pivotal for the nonlinear algorithm construction.

Lemma A.7. The variance of the empirical wavelet coefficients, Ǒ
Kn; vanishes

with growing number of measurements, N , and satisfies the following inequality

var Ǒ
Kn D cN�1 (A.12)

for some cvar Ǒ > 0, independent of the scale and translation factors m and n;
cf. [63].

Proof. The of the lemma is tantamount to the proof of Lemma A.5 (cf., e.g., [71,
72]). �

The lemma says that asymptotically the empirical wavelet coefficients are indistin-
guishable from the variance error viewpoint and therefore only their approximation
properties remain discriminative (in consequence, it allows for a direct implemen-
tation of the nonlinear approximation techniques from Sect. 4.1.13 in the nonlinear
identification algorithms from Chap. 5).

Selection Rule for qM : The number of the empirical cones constructed in the
algorithm qM needs to grow with the scale M to assure that asymptotically it
exceeds an arbitrarily large number of discontinuities in � .x/ and f .x/). The
restriction (A.13) imposed on the rate of that growth guarantees that the extra
variance, induced by qM .K �M/ additional empirical wavelet coefficients of the
nonlinear part, is at most of the same order as the variance of the linear base, that is,
we can take any qM which satisfies the inequality

qM .K �M/ � 2M :
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Recalling that K D 2M; we have

qM � 2MM�1;

and, in particular, the rate in (5.21) is valid.

Convergence: Using an orthonormality argument, we find that the integrated
variance of the nonlinear estimate OgMK .x/ equals to the sum of variances of all
empirical coefficients

IV OgMK D E

Z 1

0

Œ OgMK .x/ � gMK .x/� dx

D
2M�1X

nD0
E . ǪMn � ˛Mn/

2 C
K�1X

mDM

X

nDQm

E

 Ǒ

mn � ˇmn

�2

D
2M�1X

nD0
var ǪMn C

K�1X

mDM

X

n2Qm

var Ǒ
mn:

Since there are 2M empirical scaling function coefficients, ǪMn, and
qM .K �M/ empirical wavelet coefficients Ǒ

mn , we get from Lemmas A.5 and A.7
that

IV OgMK D O �
2M
�C O .qM .K �M// ; (A.13)

and hence, that for sufficiently large M and K and qM set like in Theorem 5.6, for
the variance of the nonlinear estimate OgMK .x/, the following bound holds:

IV OgMK D O

2M

N

�
;

that is, the variance asymptotically does not depend on the adaptive part but only
on the scale M of the linear part of the estimate (viz., on the number 2M of scaling
function empirical coefficients). This fact completes the proof of Theorem 5.5 since
the approximation error vanishes as M ! 1 and the error of the denominator
behaves analogously.

Convergence Rates: Lemma 4.6 gives us the bound for the bias (approximation)
error

ISB OgMK D ISEgMK D O �
2�2M � ;

for the estimate with the scaleK D 2M (i.e., for � D 2; the lemma reveals also that
the larger factors � do not further reduce the error order). Combining both variance
and approximation error bounds, we get

MISE OgMK � O

2�2M C 2M

N

�
;
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which for the scale selection rule in (5.20) yields the bound for the MISE error of
the estimate OgMK .x/

MISE OgMK D O �
N�2=3� :

Since we can easily derive the analogous bound for the MISE error of the estimate
OfMK;

MISE OfMK D O �
N�2=3� ;

then, by application of the inequality (A.5), we get the best-case convergence rate
for the estimate O�MK .x/

MISE O�MK D O �
N�2=3� :

Consider now the worst case. The approximation error of the numerator is now
equal to

ISB OgMK D ISE gMK D O �
2�M � ;

and, for the scale selection rule as in (5.20), we obtain

ISB OgMK D O �
N�1=3� :

The variance error remains the same (of order N�2=3). The resulting MISE error of
the NQOS estimate (since the same arguments are valid for the denominator error)
converges with the slower rate of the approximation error

MISE O�MK D O �
N�1=3 CN�2=3� D O �

N�1=3� .

A.2 OS Algorithms

In this chapter, the proofs of the global (in the MISE error sense) convergence of
the basic (linear) OS algorithm are presented in detail. The proofs of the remaining
theorems (dealing with both OS and NOS algorithms) can be completed by applying
the same reasoning as for the QOS-type algorithms (see the previous Appendix A.1).

A.2.1 Convergence

The mean integrated squared error (MISE) of the order statistics algorithm has a
standard form

MISE O�K D E

Z 1

0

Œ O�K .x/ � � .x/�2 dx

and can be expressed in terms of the coefficients errors
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MISE O�K D E

Z 1

0

2

4
2K�1X

nD0
. ǪKn � ˛Kn/ 'Kn .x/

C
1X

mDK

2m�1X

nD0
ˇmn mn .x/

#2
dx

� 2E

Z 1

0

2

4
2K�1X

nD0
. ǪKn � ˛Kn/ 'Kn .x/

3

5
2

dx

C2E
Z 1

0

" 1X

mDK

2m�1X

nD0
ˇmn mn .x/

#2
dx:

Applying the orthogonality arguments (cf. (4.6) and (4.20)) simplifies the above
bound to the following one

MISE O�K � 2

2K�1X

nD0
E . ǪKn � ˛Kn/

2 C 2

1X

mDK

2m�1X

nD0
ˇ2mn; (A.14)

where the latter term is just the integrated approximation error and consists of all
expansion terms not included in the estimate. From Sect. 4.1.11, we know that the
approximation error vanishes with growingK; cf. (4.33):

1X

mDK

2m�1X

nD0
ˇ2mn ! 0 as K ! 1.

Now, we need to examine the expectation terms. We have

E . ǪKn � ˛Kn/2 D E

(
NX

kD1

Z xk

xk�1

Œyk � � .x/� 'Kn .x/ dx

) 2

� 3E

(
NX

kD1

Z xk

xk�1

Œ� .xk/� � .x/� 'Kn .x/ dx

) 2

C3E
(

NX

kD1
�k

Z xk

xk�1

'Kn .x/ dx

) 2

C3E
(

NX

kD1
zk

Z xk

xk�1

'Kn .x/ dx

) 2

D 3V1 C 3V2 C 3V3:
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To find the bounds for the latter two ‘variance’ terms, we need the following
lemma.

Lemma A.8. Let all the Assumption 1–4 be in force and let k be a zero-mean,
second-order stationary process with a variance �2 . Then the following bound holds

E

(
NX

kD1
k

Z uk

uk�1

'Kn .u/ du

) 2
D O �

N�1� :

Proof. Because of compactness of the wavelets support, we have

E

(
NX

kD1
k

Z uk

uk�1

'Kn .u/ du

) 2
D E

(
~X

kD1
k

Z uk

uk�1

'Kn .u/ du

) 2
;

where ~ D 1; : : : ; N is a r.v., of a binomial distribution. Using now a basic property
of conditional expectation, we get

E

(
~X

kD1
k

Z uk

uk�1

'Kn .u/ du

) 2

D E

8
<

:E
~X

iD1

~X

jD1
 i j

Z ui

ui�1

'Kn .u/ du
Z uj

uj�1

'Kn .u/ du

ˇ̌
ˇ̌
ˇ̌~

9
=

; ;

where

E

8
<

:

~X

iD1

~X

jD1
 i j

Z ui

ui�1

'Kn .u/ du
Z uj

uj�1

'Kn .u/ du

ˇ̌
ˇ̌
ˇ̌~

9
=

;

D
~X

iD1

~X

jD1
E

(
ij

Z ui

ui�1

'Kn .u/ du
Z uj

uj�1

'Kn .u/ du

ˇ̌
ˇ̌
ˇ~
)
:

Applying the property again, we get

E

(
ij

Z ui

ui�1

'Kn .u/ du
Z uj

uj�1

'Kn .u/ du

ˇ̌
ˇ̌
ˇ~
)

D E

(
ijE

( Z ui

ui�1

'Kn .u/ du
Z uj

uj�1

'Kn .u/ du

ˇ̌
ˇ̌
ˇ ij ; ~

) )
:
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Recalling that (cf. Lemma A.3)

E

�Z uk

uk�1

du

� 2
D E .uk � uk�1/2 D O �

N�2� ;

E

(Z ui

ui�1

du
Z uj

uj�1

du

)
D E .ui � ui�1/

�
uj � uj�1

� D O �
N�2�

we obtain

E

( Z ui

ui�1

'Kn .u/ du
Z uj

uj�1

'Kn .u/ du

ˇ̌
ˇ̌
ˇ  ij ; ~

)
� cu2

KN�2;

and (since
ˇ̌
Eij

ˇ̌ � �2 for all i; j )

~X

iD1

~X

jD1
E

(
E
ˇ̌
ij

ˇ̌
E

( Z ui

ui�1

'Kn .u/ du
Z uj

uj�1

'Kn .u/ du

ˇ̌
ˇ̌
ˇ ij ; ~

) ˇ̌
ˇ̌
ˇ~
)

� c2K~2 � �2N�2:

For ~, we have

E
˚
~2
� � var~ � p .1 � p/N � pN � c2�KN;

Finally,

E

(
~X

kD1
k

Z uk

uk�1

'Kn .u/ du

) 2
� cE

˚
2K~2 � �2N�2�

� c2K2�KN � �2N�2 D O �
N�1� :

�

Taking k D �k and k D zk , respectively, we obtain that

V2 D O �
N�1� and V3 D O �

N�1� :

Consider now the remaining ‘bias’ term V1, where

V1 � 2E

(
NX

kD1

Z xk

xk�1

Œ� .xk/ � � .x/� 'Kn .x/ dx

) 2

C2E
�Z 1

xN

Œ� .xk/ � � .x/� 'Kn .x/ dx

� 2

D 2V11 C 2V12:
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Splitting the former error V11 into the Lipschitz continuous and jump regions, we
get

V11 � 2E

(
NX

kD1

Z xk

xk�1

Œ� .xk/� � .x/� 'Kn .x/ dx

) 2

C2E
(

qX

kD1

Z xk

xk�1

Œ� .xk/ � � .x/� 'Kn .x/ dx

) 2

D 2V111 C 2V112;

In continuous regions, it holds that

Z xk

xk�1

j� .xk/� � .x/j'Kn .x/ dx � 2
K
2 .xk � xk�1/2

Moreover, using the Cauchy–Schwarz inequality, we derive that (cf. [55, Lemma 1])

(
NX

kD1
.xk � xk�1/2

) 2
D
(

NX

kD1
.xk � xk�1/

1
2 .xk � xk�1/

3
2

) 2

�
NX

kD1
.xk � xk�1/

NX

kD1
.xk � xk�1/3 :

Hence, we have

V111 � c2KE

NX

kD1
.xk � xk�1/3 :

Exploiting again the compactness of the support of 'Kn .x/ and the conditional
expectation property, we get

V111 � c2KE

(
~X

kD1
E
n
.xk � xk�1/2�C1

ˇ̌
ˇ ~
o)
;

where (cf. again Lemma A.3)

E
n�
xj � xj�1

�3ˇ̌ˇ ~
o

� cN�3:

Eventually, we get

V111 � c2KE f~gN�.2�C1/ � c2K
�
2�KN

�
N�3 D O �

N�2� :
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In the jump regions, we have instead

Z xk

xk�1

j� .xk/� � .x/j 'Kn .x/ dx � c�2
K
2 .xk � xk�1/ :

Recalling that
E
˚
.xi � xi�1/

�
xj � xj�1

�� � c2N
�2;

for some c2 > 0; and denoting now by ~ D 1; : : : ; q a r.v. being a number of jumps
inside the support of 'Kn .x/ ; we get that

V112 � 2KE

8
<

:

~X

iD1

~X

jD1
E
˚
.xi � xi�1/

�
xj � xj�1

�ˇ̌
~
�
9
=

;

� c2KE
˚
~2
� �N�2 � c2K � q2�K �N�2 D cqN�2:

Consider the latter term, V12, related to the spacing between the last (ordered)
measurement xN and the right boundary point x D 1: Applying the Cauchy–
Schwarz inequality, we have

V12 � E

�Z 1

xN

Œ� .xk/ � � .x/� 'Kn .x/ dx

� 2

� E

�Z 1

xN

Œ� .xk/ .x/�
2 dx

Z 1

xN

'2Kn .x/ dx

�

� E

Z 1

xN

Œ� .xk/� � .x/�2 dx;

which yields O �
N�1� or O �

N�3� if � .x/ has (or does not have) jumps in the
interval .xN ; 1/, respectively. Eventually, we get that V1 D O �

N�1� ; and we
conclude that for any piecewise-Lipschitz nonlinearity � .x/, it holds that

E . ǪKn � ˛Kn/2 D O �
N�1� and

2K�1X

nD0
E . ǪKn � ˛Kn/

2 D O

2K

N

�
: (A.15)

In consequence, if K ! 1 as N ! 1 so slow that 2K=N ! 0, then

MISE O�K ! 0 as N ! 1;

and the proof of the linear OS algorithm convergence Theorem 5.7 is completed.
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A.3 ED Algorithms

We need some preliminary results concerning the smoothness of the composite
function �F .x/ : Denote x D F .u/ and u D F�1 .x/ and observe that:

• F .u/ has a derivative (a density function, f .u/), which, by Assumption 1, is
strictly positive, i.e., F 0 .u/ D f .u/ � c, some c > 0.

• The inverse F �1 .x/ has a derivative

f �1 .x/ D �
F �1�0 .x/ D 1

f .F�1 .x//

which is bounded (again, by virtue of the assumption that the density, f .u/, is
strictly positive).

• F �1 .x/ is Lipschitz continuous (since its derivative is bounded).

Hence, we get the lemma.

Lemma A.9. If the nonlinearity� .u/ is piecewise-Lipschitz, then so is�F .x/, that
is,

j�F .w/ � �F .v/j � c jw � vj ; for some constant c > 0:

Proof. We have

� .u/ D �
�
F�1 .x/

� D �F
�
F
�
F�1 .x/

�� D �F .F .u// D �F .x/

and hence,

j�F .w/ � �F .v/j D ˇ̌
�
�
F �1 .w/

� � �
�
F �1 .v/

�ˇ̌

� c
ˇ̌
F�1 .w/� F�1 .v/

ˇ̌

� c jw � vj ;

for each w; v in all Lipschitz regions of � .u/. �

Remark A.1. Note that the inverse of the cumulative distribution function (or its
empirical version) is not explicitly used in the algorithm.

We begin with the analysis of the MISE error of the estimate O�K .F .u// D
O�F .x/, where F .u/ is a distribution function of the input uk: We have here

MISE O�F D E

Z 1

0

Œ O�F .x/ � �F .x/�
2 dx: (A.16)

Observe that x D F .u/ (and hence dx D f .u/ du). Moreover, the integration
limits are 0 D F .umin/, and 1 D F .umax/ ; and hence,
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MISE O�F D E

Z umax

umin

Œ O�F .F .u//� � .u/�2 f .u/ du

D E

Z 1

0

Œ O�F .F .u//� � .u/�2 f .u/ du;

since by Assumption 1, we have also that umin D 0 and umax D 1. Furthermore, we
have 0 < c � f .u/ � C , for some constants c; C;which yields that

C MISE O�F � E

Z 1

0

Œ O�F .F .u// � � .u/�2 du � cMISE O�F ;

and to show the asymptotic properties of the ED algorithm it suffices to examine the
error in (A.16).

We also need to inspect the fact that we use the empirical distribution instead of
the genuine one, that is, that in fact O� .u/ D O�F .FN .u// D O�F .bNxc =N/ ; and
hence, we should rather consider the following MISE error allowing for the binning
error (cf. e.g. [66, 117, Chap. 12]):

MISE O�F D E

Z 1

0

h
O�F

 bNxc

N

�
� �F .x/

i2
dx:

Observe, however, that we assumed that the number of measurements,N , is a dyadic
integer and bNxc =N is simply the representation of x truncated after log2 N bits.
Thus, since K � log2 N , then if x 2 supp'Kn; then bNxc =N 2 supp'Kn for
all x: In consequence, we have that

O�F

 bNxc

N

�
� O�F .x/ D

2K�1X

nD0
ǪKn

h
'Kn


 bNxc
N

�
� 'Kn .x/

i
D 0;

for all x 2 Œ0; 1� ; that is, the binning error is zero and the MISE error formula
in (A.16) exactly describes our ED estimate.

A.3.1 Convergence

The MISE error of the ED estimate can be decomposed using the following terms
(cf. (A.14)):

MISE O�K � 2

2K�1X

nD0
E . ǪKn � ˛Kn/

2 C 2

1X

mDK

2m�1X

nD0
ˇ2mn:
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One can easily ascertain that the latter, ‘approximation’ term, vanishes as K
tends to infinity (cf. Sect. 4.1.11) since (from Lemma A.9) the nonlinearity �F .u/
derives its boundedness and smoothness properties from � .u/. In what follows, we
examine the ‘variance’ part in detail. Recall that we have the following equivalence,
cf. (5.34),

ǪKn D
NX

kD1
yk

Z k
N

k�1
N

'Kn .�/ d� D
NX

kD1
yk

Z FN .uk/

FN .uk�1/

'Kn .�/ d�:

Moreover, it holds that

˛kn D
Z 1

0

�F .�/ 'Kn .�/ d� D
Z F .1/

F .0/

�F .�/ 'Kn .�/ d�

D
NX

kD1

Z F .uk/

F .uk�1/

�F .�/ 'Kn .�/ d�;

and thus for the input-output measurements, we have

yk D � .uk/C �k C zk D �N .uk/C �k C zk

D � ı FN .uk/C �k C zk; (A.17)

where �N .u/ D � ı FN .u/ is the composite function of the nonlinearity and
the empirical distribution. Observe that in all measurement points uk , we have
that �N .uk/ D � .uk/ ; that is, �N .uk/ is equal to the genuine nonlinearity in
these points. Denote by �N .u/ D � ı FN .u/ the composite functions of the
nonlinearity and of the empirical distribution FN .u/. The following decomposition
of the empirical coefficients in the ED algorithm holds true

ǪKn � ˛kn

D
NX

kD1
yk

Z FN .uk/

FN .uk�1/

'Kn .�/ d� �
NX

kD1
�N .uk/

Z FN .uk/

FN .uk�1/

'Kn .�/ d�

„ ƒ‚ …
variance error

C
NX

kD1
�N .uk/

Z FN .uk/

FN .uk�1/

'Kn .�/ d� �
NX

kD1
�F .uk/

Z FN .uk/

FN .uk�1/

'Kn .�/ d�

„ ƒ‚ …
bias error
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C
NX

kD1
�F .uk/

Z FN .uk/

FN .uk�1/

'Kn .�/ d� �
NX

kD1

Z FN .uk/

FN .uk�1/

�F .�/ 'Kn .�/ d�

„ ƒ‚ …
approximation error

C
NX

kD1

Z FN .uk/

FN .uk�1/

�F .�/ 'Kn .�/ d� �
NX

kD1

Z F .uk/

F .uk�1/

�F .�/ 'Kn .�/ d�

„ ƒ‚ …
empirical distribution error

:

And hence, using (A.17), we get

ǪKn � ˛kn D
2�KNX

kD1
�k

Z k
N

k�1
N

'Kn .�/ d�

C
2�KNX

kD1
zk

Z k
N

k�1
N

'Kn .�/ d�

C
2�KNX

kD1
Œ�N .uk/� �F .uk/�

Z k
N

k�1
N

'Kn .�/ d�

C
2�KNX

kD1

�
�F .uk/� �F

�
k
N

�� Z k
N

k�1
N

'Kn .�/ d�

C
2�KNX

kD1

Z k
N

k�1
N

�
�F

�
k
N

� � �F .�/
�
'Kn .�/ d�

C
2�KNX

kD1

Z k
N

F .uk/
�F .�/ 'Kn .�/ d�

C
2�KNX

kD1

Z k�1
N

F .uk�1/

�F .�/ 'Kn .�/ d�

D V1 C � � � C V7, say.

For each of the V -terms, we have respectively that (see Lemmas A.2 and A.3; cf.
the proof of Lemma A.8):
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EV 2
1 D 2K E

2

4
2�KNX

kD1
�k

Z k
N

k�1
N

d�

3

5
2

� cN�1;

EV 2
2 D 2K E

2

4
2�KNX

kD1
zk

Z k
N

k�1
N

d�

3

5
2

� cN�1:

Moreover, recalling that � .u/ and F .u/ are both Lipschitz and that OFN .u/ is an
empirical distribution of F .u/ (i.e., its unbiased estimate), we derive that for each

u 2 Œ0; 1�, it holds that E
h
� .F .u// � �


 OFN .u/
�i2 � cN�1 and subsequently

that

EV 2
3 D 2K E

2

4
2�KNX

kD1
Œ�N .uk/ � �F .uk/�

Z k
N

k�1
N

d�

3

5
2

� cN�1:

Furthermore,

EV 2
4 D 2K E

2

4
2�KNX

kD1

�
�F .uk/� �F

�
k
N

�� Z k
N

k�1
N

d�

3

5
2

� cN�1;

EV 2
5 D 2K E

2

4
2�KNX

kD1

Z k
N

k�1
N

�
�F

�
k
N

� � �F .�/
�

d�

3

5
2

� cN�1:

Using the same arguments, we infer that for the ‘empirical distribution’ terms, we
have that

EV 2
6 D 2K E

2

4
2�KNX

kD1

Z k
N

F .uk/
�F .�/ d�

3

5
2

� cN�1;

EV 2
7 D 2K E

2

4
2�KNX

kD1

Z k�1
N

F .uk�1/

�F .�/ d�

3

5
2

� cN�1;

and hence, for each empirical coefficient ǪKn in the ED algorithm, we have that

E . ǪKn � ˛Kn/2 D O �
N�1� :

which ends the proof of the convergence of the ED algorithm, since one can easily
determine that (cf. A.15)



124 A Technical Derivations

E . ǪKn � ˛Kn/
2 D O �

N�1� and
2K�1X

nD0
E . ǪKn � ˛Kn/

2 D O

2K

N

�
:

The remaining convergence and convergence rate theorems for both linear and
nonlinear versions of the empirical distribution algorithm can be proven using
the reasoning applied to the corresponding results for the QOS-type algorithms;
see Appendix A.1. In particular, recall that by virtue of Lemma A.9, if � .u/ is
(piecewise-)Lipschitz, then so is the nonlinearity �F .u/ D � ı F .u/.

A.4 EOS Algorithms

The analysis of the EOS algorithm convergence properties differs from those
performed for previous algorithms in that the unbalanced wavelet basis, being
generated by the measurements set, is not known a priori and in fact is random;
cf. Sect. 4.2.1 and see [41]. The proof scenario remains nevertheless similar thanks
to the observations that—in spite of this randomness—the compact supports of the
unbalanced Haar basis functions vanish as in the classic Haar case (only slower by
a logarithmic factor; cf. 4.51).

A.4.1 Convergence

We start with a decomposition of the MISE error:

MISE O�K D E

Z 1

0

Œ O�k .x/ � � .x/�2 dx

D 2E

Z 2

4
2K�1X

nD0
. ǪKn � aKn/ 'Kn .x/

3

5
2

dx

C2E
Z 2

4
2K�1X

nD0
aKn'Kn .x/ � � .x/

3

5
2

dx

For the former, we know from Sect. 4.2.4 that it vanishes as K ! 1 (along with
N ! 1). Applying the orthonormality property of the unbalanced Haar basis, we
get for the first term that

E

Z 2

4
2K�1X

nD0
. ǪKn � aKn/ 'kn .x/

3

5
2

dx D E

2K�1X

nD0
. ǪKn � aKn/

2 :
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And we can now focus on the expectation term

E . ǪKn � aKn/2 D E

"
NX

kD1

Z xk

xk�1

Œyk � � .x/� 'Kn .x/ dx

#2

� 3E

"
NX

kD1

Z xk

xk�1

Œ� .xk/� � .x/� 'Kn .x/ dx

#2

C3E
"

NX

kD1

Z xk

xk�1

�k'Kn .x/ dx

#2

C3E
"

NX

kD1

Z xk

xk�1

zk'Kn .x/ dx

#2

D 3 .V1 C V2 C V3/

where for the former term we have

V1 D
2�KNX

iD1

2�KNX

jD1
E

�Z xi

xi�1

Œ� .xi / � � .x/� 'Kn .x/ dx

�
Z xj

xj�1

�
�
�
xj
� � � .x/

�
'Kn .x/ dx

)

with
Z xi

xi�1

j� .xi /� � .x/j 'Kn .x/ dx � c

q
I�1
k I 2k D cI

3
2

k ;

for Lipschitz regions, and

Z xi

xi�1

j� .xi / � � .x/j 'Kn .x/ dx � c

q
I�1
k Ik D cI

1
2

k

in the intervals with jumps. Since we know that with probability one (cf. (4.51))
Ik D O �

N�1 logN
�
, then

V1 � c

2�KNX

iD1

2�KNX

jD1
I 3k C c

qX

iD1

qX

jD1
Ik D O

 
2�2K log3 N

N
C logN

N

!
:
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Since K D 3�1 log2 N; then

V1 D O
 

log2 N

N2=3

logN

N
C logN

N

!
D O


logN

N

�
:

Examining V2, we have due to Lemma A.2 that

V2 �
2�KNX

iD1

2�KNX

jD1
E

(
ˇ̌
�i �j

ˇ̌ Z xi

xi�1

'Kn .x/ dx
Z xj

xj�1

'Kn .x/ dx

)

� c
1

N
E

Z xi

xi�1

'Kn .x/ dx
Z xj

xj�1

'Kn .x/ dx:

Applying again (4.51), we get w.p.1

E

Z xi

xi�1

'Kn .x/ dx
Z xj

xj�1

'Kn .x/ dx � c2K
log2 N

N2
:

And hence,

V2 � c

2�KNX

iD1

2�KNX

jD1

1

N
2K

log2 N

N2
D O

 
log2 N

N

!
:

A similar bound holds for V3, and thus, we have established that for any K and any
n, we have

E . ǪKn � aKn/
2 D O


logN

N

�
C O

 
log2 N

N

!
D O

 
log2 N

N

!
;

and hence
2K�1X

nD0
E . ǪKn � aKn/2 D O

 
2K

log2 N

N

!
:

Collecting now the above bounds and the results from Sect. 4.2.4 concerning
the convergence rates of the approximation error of the unbalance approximant for
Lipschitz and piecewise-Lipschitz nonlinearities, one can complete the proofs of the
remaining theorems from Sect. 5.8 as for the previous algorithms.



Appendix B
Common Symbols

Notation Name

' .x/ Haar scaling function (father wavelet)
 .x/ Haar wavelet (mother wavelet)
� .x/ Haar reproducing kernel
ˆ.x/ Indefinite integral of ' .x/
'mn .x/ ;  mn .x/ Scaled and translated wavelet functions
Vm Approximation space
Wm Detail space

Œa;b� .x/ Indicator function of the interval Œa; b�

k; 
k .x/ kth sample block and its indicator function

mn Support of unbalanced Haar functions 'mn .x/ ;  mn .x/


mn .x/ Indicator function of 
mn
Ik kth spacing, length of 
k
Imn Length of 
mn
m .u/ Nonlinear characteristic
f�i g Linear dynamics impulse response
� .u/ Identified system nonlinearity
uk System inputs
yk System outputs
zk External noise
�k ‘System’ noise
xk Algorithm inputs
N Number of measurement pairs .uk; yk/ (or .xk; yk/)
O�K .x/ Linear estimate

P. Śliwiński, Nonlinear System Identification by Haar Wavelets, Lecture Notes
in Statistics 210, DOI 10.1007/978-3-642-29396-2,
© Springer-Verlag Berlin Heidelberg 2013
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O�MK .x/ Nonlinear estimate
˛mn; ˇmn Scaling function and wavelet expansion coefficients
Ǫmn; Ǒ

mn Estimates of ˛mn; ˇmn (empirical coefficients)
Qm Set of indices n of the empirical coefficients Ǒ

mn

Residing in the empirical cones of influence
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58. Györfi, L., Kohler, M., A. Krzyżak, Walk, H.: A Distribution-Free Theory of Nonparametric
Regression. Springer-Verlag, New York (2002)

59. Haar, A.: Zur Theorie der Orthogonalen Funktionen-Systeme. Annals of Mathematics 69
(1910)

60. Haar, A.: On the theory of orthogonal function systems. In: C. Heil, D.F. Walnut (eds.)
Fundamental papers in wavelet theory, pp. 155–188. Priceton University Press, Princeton and
Oxford (2006)

61. Haber, R., Keviczky, L.: Nonlinear System Parameter Identification. Kluwer Academic
Publishers, Dordrecht-Boston-London (1999)

62. Hall, P., Kerkyacharian, G., Picard, D.: Block threshold rules for curve estimation using kernel
and wavelet methods. The Annals of Statistics 26(3), 922–942 (1998)

63. Hall, P., Patil, P.: On the choice of smoothing parameter, threshold and truncation in
nonparametric regression by non-linear wavelet methods. Journal of the Royal Statistical
Society. Series B (Methodological) 58(2), 361–377 (1996)

64. Hall, P., Turlach, B.: Interpolation methods for nonlinear wavelet regression with irregularly
spaced design. The Annals of Statistics 25(5), 1912–1925 (1997)
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67. Härdle, W., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semiparametric
Models. Springer-Verlag, Berlin Heidelberg (2004)

68. Hasiewicz, Z.: Hammerstein system identification by the Haar multiresolution approximation.
International Journal of Adaptive Control and Signal Processing 13(8), 697–717 (1999)

69. Hasiewicz, Z.: Modular neural networks for non-linearity recovering by the Haar approxima-
tion. Neural Networks 13, 1107–1133 (2000)



132 References

70. Hasiewicz, Z.: Wavelet network for recursive function learning. In: Neural Networks and Soft
Computing, Advances in Soft Computing, pp. 710–715. 6th IEEE International Conference
on Neural Networks and Soft Computing, Physica-Verlag, Springer-Verlag Company, Heidel-
berg, Zakopane 2002 (2003)
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