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Preface

Algebraic tools have been used in statistical research since the very begin-
ning of the field. In recent years, the interaction between statistics and pure
mathematics has intensified and many new directions are now explored. One
instance of that is a growing interest in algebraic statistics, an emerging field
aimed at solving statistical inference problems using concepts from algebraic
geometry as well as related computational and combinatorial techniques. As a
result, algebraic statistics provides a dictionary that enables mathematicians
and statisticians to work together on statistically relevant problems.

There is a natural question: Is algebraic statistics useful or is it just a way
to redefine statistical objects in a more algebraic language with no real benefit
to the field? More concretely, are there some real statistical problems which
were previously unsolved before applying the algebraic machinery? There are
many such problems that have been solved only after translating them into
algebraic geometry. There are even more problems that are naturally formu-
lated in terms of algebraic geometry but statisticians did not have the tools
to solve them from that perspective. Some examples of both types include de-
signing procedures to sample exactly from a given conditional distribution for
discrete exponential families (see Diaconis and Sturmfels [1998]), using com-
mutative algebra to study the structure of conditional independence models
(see [Drton et al., 2009, Chapter 4]), and identifiability of statistical mod-
els with or without hidden variables (see Allman et al. [2009], Drton et al.
[2011]).

Algebro-geometric methods are very important in the study of statistical
models with hidden variables, which are generally poorly understood within
statistics. Lazarsfeld and Henry [1968] studied algebraic constraints on prob-
ability distributions in the mixture model. More recently, algebraic geometry
has been used to establish the identifiability of many models with hidden
variables, which amounts to studying the parameterization of those models.
In addition to that, the work of Watanabe [2009] uses algebraic geometry to
study the asymptotic behavior of empirical processes arising in the context
of hidden data, where the classical asymptotic theory does not apply.

The focus of this book is on statistical models with hidden variables. The
first part is a general introduction to some important concepts in algebraic
statistics with an emphasis on methods that are helpful in the study of models
with hidden variables. The three main ideas behind this approach are

xiii

© 2016 by Taylor & Francis Group, LLC

 



xiv PREFACE

(i) Using tensor geometry as a natural language to deal with multivariate
probability distributions,

(ii) Developing new combinatorial tools that can be used to study models
with hidden data, and

(iii) Focusing on the semialgebraic structure of statistical models.

The last item is the most important here. In algebraic statistics the geome-
try of statistical models is typically studied over the complex numbers. This
approach is based on the fact that many statistical models correspond, from
the parameterization point of view, to geometric objects described by poly-
nomial equations. This is useful in a wide variety of contexts, but it gives
unsatisfactory results in the case of models with hidden variables where the
geometry over the real numbers is always much richer and it admits addi-
tional polynomial inequalities.

An important example of models with hidden variables is given by the
latent tree models studied in the second part of this book. Models of this type
are widely used in biology and they generalize various popular models used
in machine learning like the hidden Markov model, the naive Bayes model,
and various state-space models. A general statistical understanding of these
models is very limited and typically estimation is done using fragile numerical
procedures with no guarantees of convergence to the global maximum. This
book shows how combinatorics and algebraic geometry can give a better
understanding of these models. It contains many results on the geometry of
these models, which includes a very detailed analysis of identifiability and
the defining polynomial constraints.

I would like to thank all of the collaborators who worked with me
on the material presented in this book. I am grateful to Jan Draisma,
Mathias Drton, Diane Maclagan, Mateusz Micha lek, John Rhodes, and
Jim Q. Smith for many helpful discussions. This book also benefited from
the comments of Elizabeth Allman, Steffen Klaere, and anonymous referees.
I am especially thankful to Bernd Sturmfels for being a great mentor, col-
laborator, and for reading an early version of this book. Kaie Kubjas helped
me to get rid of many typos. This book was written partly during my Marie
Sk lodowska-Curie Fellowship at the University of California, Berkeley and
Università degli Studi di Genova. I thank Eva Riccomagno and both institu-
tions for hosting me, and the European Commission for funding my research.

Genoa, Italy
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Chapter 1

Introduction

[]

1.1 A statistical model as a geometric object

Let X be a discrete random variable with values in a finite set X . If X has m
elements, then without loss of generality, we assume that X = {1, . . . ,m} and
we identify the probability distribution of X with a point p = (p1, . . . , pm) ∈
Rm such that px ≥ 0 for every x ∈ X and

∑
x∈X px = 1. The probability

simplex is the set of all such points

∆X := {p ∈ Rm : px ≥ 0,
∑

x∈X
px = 1}. (1.1)

Any statistical model for X is by definition a family of probability distribu-
tions and hence a family of points in ∆X . This gives a basic identification
of discrete statistical models with geometric objects. In this book we study
only parametric models and hence we are always given a parameter space
Θ ⊆ Rd and a map p : Θ → ∆X such that the model is equal to the image
of Θ under p. The coordinates of this map are typically denoted by px(θ) or
p(x; θ) for x ∈ X and θ ∈ Θ.

For most interesting models, possibly after some reparameterization, we
can assume that all px(θ) are polynomials in θ = (θ1, . . . , θd). Important
examples are the discrete exponential families and their mixtures.

Example 1.1. Let X ∈ X = {0, 1, 2}, then the probability distribution for
X lies in ∆X , which is a triangle in R3 with vertices given by (1, 0, 0), (0, 1, 0),
and (0, 0, 1). Assume that X follows the binomial Bin(2, θ) distribution for
some θ ∈ [0, 1]. Then px(θ) =

(
2
x

)
(1− θ)2−xθx and hence

p(θ) = (p0(θ), p1(θ), p2(θ)) = ((1− θ)2, 2θ(1− θ), θ2).

The model is part of a curve contained in the probability simplex depicted
in Figure 1.1, which is parameterized by θ ∈ [0, 1]. For example, p(0) =
(1, 0, 0), p(0.3) = (0.49, 0.42, 0.09), p(0.6) = (0.16, 0.48, 0.36), and p(1) =
(0, 0, 1). Alternatively, the model is given as a subset of ∆X defined by a
single equation p2

1 − 4p0p2 = 0, namely,

Bin(2, θ) = {p ∈ ∆X : p2
1 − 4p0p2 = 0}.

The curve containing this model is the intersection of two hypersurfaces in
R3 given by p0 + p1 + p2− 1 = 0 and p2

1− 4p0p2 = 0 presented in Figure 1.2.

1
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θ = 0.3

θ = 0.6

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

Figure 1.1 Graphical representation of Bin(2, θ) model in ∆X projected on a plane.

Figure 1.2: Graphical representation of Bin(2, θ) model in R3.

1.2 Algebraic statistics

The geometric representation of statistical models has been known for a long
time. The most classical example is the linear model; see Herr [1980] for
the historical sketch of how geometric ideas developed in this context. There
are, however, many other examples of how geometric representation of models
became important in understanding their statistical properties. These include
probability (see Diaconis [1977]), graphical models (see Geiger et al. [2001],
Mond et al. [2003]), contingency tables (see Fienberg and Gilbert [1970]),
phylogenetics (see Chor et al. [2000], Kim [2000]), information theory (see
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ALGEBRAIC STATISTICS 3

Amari [1985]), and asymptotic theory (see Kass and Vos [1997], Watanabe
[2009]).

In this book, we focus on geometric aspects of statistical models that
can be systematically studied from the algebraic geometry point of view. A
seminal paper by Diaconis and Sturmfels [1998] began intensified research on
applying computational algebraic geometry in various parts of statistics (see
also Drton et al. [2009], Pachter and Sturmfels [2005], Pistone et al. [2001]).
A historical sketch of these developments was given by Riccomagno [2009].
The geometric analysis of statistical models is focused on understanding the
structure of the model in order to understand and improve existing inference
procedures. This involves three closely related concepts:

1. understanding the geometry of the parameterization defining the
model,

2. providing explicit description of all probability distributions in the
model, and

3. understanding the geometry of the likelihood function and various
pseudo-likelihoods.

Understanding the geometry of the parameterization defining the model
is necessary to address the issue of model identifiability and multimodality
of the likelihood function. A statistical model is identifiable if and only if
the parameterization is injective, that is p(θ) = p(θ′) implies θ = θ′. For
many interesting classes of models, identifiability does not hold, and then for
a given θ it is important to understand the structure of all θ′ ∈ Θ such that
p(θ) = p(θ′). A typical question is whether this set is finite. If it is finite, then
one may ask if there is a natural group acting on this set so that modulo this
group action, the model is identifiable; see Allman et al. [2009].

Providing explicit description of all probability distributions in the model
is important for a number of reasons. The most basic is in the construction
of simple diagnostic tests. Suppose that we are given two models M , M ′

and sample proportions p̂ for a random variable X ∈ X = {1, . . . ,m}. Since
both models and p̂ lie in the probability simplex ∆X , then we can compare
minp∈M d(p, p̂) and minp∈M ′ d(p, p̂) for a suitable distance d in ∆X and pick
the model with the minimum distance.

The complete description of a model as a subset of the probability simplex
gives also a potentially better understanding of the behavior of the likelihood
function and other inference procedures. In case of the likelihood function we
may, for example, want to understand how many local maxima it has, how
many of them are critical points, and how many lie on the boundary of the
model. An example of such an analysis will be given later in Section 7.4.

A typical approach to address all three aspects above is to pass to the
geometry over complex numbers, possibly in the projective space. In this set-
ting, algebraic problems are typically much easier to study. However, none of
the three aspects above can be studied in full detail from this purely algebraic
point of view, which is why recently more researchers become interested in
semialgebraic statistics.
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4 INTRODUCTION

1.3 Toward semialgebraic statistics

The algebraic structure of a statistical model typically involves providing all
polynomial equations defining the model inside the simplex ∆X . For instance
in Example 1.1 there is only one equation given by p2

1− 4p0p2 = 0. However,
for many interesting statistical models, the defining equations make only part
of the whole story. Geometric analysis typically becomes harder when some
of the variables in the system are not observed.

Example 1.2. Let X ∈ {0, 1, 2} be a random variable with a distribution
described as follows. Consider two biased coins, a θ1-coin and a θ2-coin. We
pick one of the coins so that P(C = 1) = π = 1− P(C = 2), where π ∈ [0, 1].
After we pick a coin, we toss it twice and record the number of heads X. The
distribution of X is a mixture of Bin(2, θ1) and Bin(2, θ2). For each x = 0, 1, 2
we have

P(X = x) = P(C = 1)P(X = x|C = 1) + P(C = 2)P(X = x|C = 2)

and hence the possible points in the model are parameterized by θ =
(π, θ1, θ2) as

p(θ) = π ·
(
(1− θ1)2, 2θ1(1− θ1), θ2

1

)
+ (1− π) ·

(
(1− θ2)2, 2θ2(1− θ2), θ2

2

)
,

where θ1, θ2 ∈ [0, 1]. The image of this map is a mixture model denoted
by Mmix. Every point in Mmix can be described (non-uniquely!) as a
convex combination of two points from Bin(2, θ) as described in Example
1.1. The model is depicted in Figure 1.3. For example p((0.2, 0.3, 0.6)) =
(0.226, 0.468, 0.306). The model has dimension two and hence there are no

θ = 0.3

θ = 0.6

π = 0.2

Figure 1.3: The mixture of two Bin(2, θ) distributions.
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LATENT TREE MODELS 5

non-trivial equations defining it as a subset of ∆X . In fact the model is given
by a single non-trivial inequality p2

1 − 4p0p2 ≤ 0.

What is not illustrated by the above example is that the likelihood func-
tion for models with hidden variables is usually multimodal and the inference
has to be supported with fragile numerical algorithms. This has been pointed
out in many places; see for example the discussion of Dempster et al. [1977],
Lindsay [1995], Chickering and Heckerman [1997], Bartholomew et al. [2011].
The resulting optima will often lie on the boundary of the parameter space
and they will not be critical points of the likelihood function, which gives
another example of why inequality constraints are relevant.

Classical algebraic geometry is usually studied over the complex numbers
which makes the analysis much easier due to the Fundamental Theorem of
Algebra. In this case, we usually embed the original problem into the complex
domain by neglecting the inequality constraints on Θ ⊆ Rd and ∆X ⊆ Rm.
Thus we consider the map pC : Cd → Cm given by exactly the same poly-
nomials. In this case we have some efficient algorithms to obtain equations
defining the image of pC. However, as illustrated by Example 1.2, in general,
there is no hope to obtain in this way the full description of the model.

Example 1.3. Let pC : C→ C3 given by θ 7→ ((1− θ)2, 2θ(1− θ), θ2) as in
Example 1.1, then the image of pC is

pC(C) = {p ∈ C3 : p2
1 − 4p0p2 = 0, p0 + p1 + p2 = 1}.

In this case, pC(C) ∩ ∆X = MBin(2,θ) and hence considering the complex
parameterization still allows us to recover the original model by constraining
to the probability simplex ∆X . However, for the map pC : C3 → C3 given in
Example 1.2, we have

pC(C3) = {p ∈ C3 : p0 + p1 + p2 = 1}.

For example, the point (0, 1, 0), which is in ∆X but not in Mmix, can be

obtained as an image of a point in R3 given by π = 2, θ1 = 2+
√

2
4 and

θ2 = 1+
√

2
2 . Therefore, pC(C3)∩∆X = ∆X 6=Mmix and hence the equations

fail to provide the complete description of the model.

Semialgebraic statistics is a new approach within algebraic statistics that
aims at studying models in their natural habitat of real numbers. The focus
is on understanding the full structure of models under consideration. Such a
description can be used to better understand the statistical inference in non-
regular settings — for example, where the only tractable way to do inference
is by the EM algorithm and the likelihood function is highly complicated
with a lot of local maxima.

1.4 Latent tree models

Latent tree models are graphical models defined as Bayesian networks on
rooted trees such that each inner vertex of the tree is assumed to represent a
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hidden random variable; for a formal definition see Section 5.2. They seem to
have been first defined by Pearl [1986, 1988], Pearl and Dechter [1989] as tree-
decomposable distributions. Latent tree models or their submodels are widely
used in phylogenetic analysis (see Semple and Steel [2003], Yang [2006]), in
causal modeling (see Pearl and Tarsi [1986]) and in machine learning (see
Choi et al. [2011], Zhang [2003/04]). They also contain other well-known
classes of models like hidden Markov models, naive Bayes models, and many
popular models used in phylogenetics. For example, the models of Cavender
[1978, 1979], Jukes and Cantor [1969], Kimura [1980], among others, are all
latent tree models with some additional constraints on the parameters. Latent
tree models for continuous data were also considered Pearl and Xu [1987],
Choi et al. [2011].

The algebraic structure of latent tree models has been studied extensively
over the last two decades. This focused on the study of phylogenetic invari-
ants; see for example Cavender and Felsenstein [1987], Allman and Rhodes
[2003], Sturmfels and Sullivant [2005], Casanellas and Fernández-Sánchez
[2007], Allman and Rhodes [2007]. However, the semialgebraic structure of
the model has been largely neglected. The main reason is that this prob-
lem is generally considered to be hard, which was pointed out, for example,
by Drton and Sullivant [2007], Garcia et al. [2005], and Settimi and Smith
[2000]. Only very recently more work has been done to understand the full
geometric structure of these models; see Matsen [2009], Zwiernik and Smith
[2011], Allman et al. [2014], Klaere and Liebscher [2012], Allman et al. [2015].

To realize how important it may be to include inequalities in the model
description, consider a simple model of three binary random variables, which
are conditionally independent given a hidden binary variable; for details, see
Section 6.1.1. The algebraic structure of this model is trivial because there
are no equations on the probability distributions. Consequently, every proba-
bility distribution on three binary variables satisfies the equality constraints.
However, basic Monte Carlo simulation reveals that the model covers only
about 8% of the total volume of the probability simplex. This shows that
using only the algebraic description may lead to invalid conclusions.

The complicated structure of models with hidden variables usually leads
to difficulties in establishing the identifiability of their parameters; see e.g.
Allman et al. [2009]. The models are not regular in the classical statistical
sense, which in certain cases requires the singular learning theory of Watan-
abe [2009]. Consequently, the behavior of inferential procedures for models
with hidden variables is often unexpected and hard to handle. In particular,
the likelihood function typically has many maxima, which lie on the bound-
ary of the parameter space and thus need not correspond to the critical
points. This book gives a geometric perspective that allows us to study these
questions in a more systematic way.

One of the main concepts developed in this book is the link between
latent tree models and various tree spaces like the space of tree metrics or
the space of phylogenetic oranges. This link is underlying most of the learning
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STRUCTURE OF THE BOOK 7

algorithms created for this model class. We believe that developing a good
intuition behind how these algorithms are constructed is more important that
a detailed analysis of any of them.

1.5 Structure of the book

The book is divided in two parts. The first part contains preliminaries for
the second part and some standard results in algebraic statistics. Chapter 2
introduces basic concepts in algebraic geometry, real algebraic geometry, and
other closely related notions. We introduce there also the tensor notation,
which is going to be used throughout the book. In Chapter 3 we introduce
results that allow us to study discrete statistical models from the geometric
viewpoint. In Chapter 4 we discuss some less standard results on tensors in
statistics. The concepts of L-cumulants is one of the most important devel-
opments of this book.

The second part of this book focuses on latent tree models. In Chapter 5
we present some standard results defining trees, their underlying models and
various related combinatorial concepts. In Chapter 6 we introduce a change
of coordinates in which the latent tree models are easily studied and then use
it to analyze in detail their local geometry. Chapter 7 extends these results to
the global geometry. In particular, we provide the complete semialgebraic de-
scription of latent tree models. In Chapter 8 we extend the results of previous
chapters to Gaussian latent tree models.
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Part I

Semialgebraic statistics

9
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Chapter 2

Algebraic and analytic geometry

Even very basic algebraic geometry provides a powerful set of tools to study
discrete statistical models. In this chapter we provide some elementary in-
troduction to polynomial algebra and algebraic and analytic geometry. This
material is by no means complete, but may help to focus on the study of
more specialized textbooks like Cox et al. [2007] and Smith et al. [2000]. In
addition, we provide a basic account of real algebraic geometry and tensor
algebra. See the bibliographical notes at the end of this chapter for further
references.

In this book we typically work with the field of real numbers R. However,
sometimes we may also consider other fields of numbers: the field of complex
numbers C and the field of rational numbers Q. Whenever we do not want to
specify the field, we let k denote any of R, C, orQ. The choice of the field plays
an important role in this book. An applied statistician works over the rational
numbers and a theoretical statistician works over the real numbers. On the
other hand, an algebraic statistician often works with complex numbers, in
which case the geometric analysis is typically much simpler.

2.1 Basic concepts

2.1.1 Polynomials and varieties

Let f(x) be a function in n indeterminates x = (x1, . . . , xn) such that x ∈ Rn,
where Rn denotes the real n-dimensional space. If n ≤ 3, the indeterminates
are often denoted by x, y, z. Also in the statistical context we frequently
denote unknowns with other letters like p, µ, κ.

Polynomials A monomial in indeterminates x = (x1, . . . , xn) is a product
of the form

xα = xα1
1 xα2

2 · · ·xαnn , (2.1)

where α = (α1, . . . , αn) ∈ Nn0 . The degree of monomial xα is the sum |α| :=
α1 + · · · + αn. For example, x2yz4 is a monomial in x, y, z of degree 7. A
polynomial is any sum of the form:

f(x) =
∞∑

α1=0

· · ·
∞∑

αn=0

cα1···αnx
α1
1 · · ·xαnn , cα1···αn ∈ R,

such that only a finite number of cα = cα1···αn is non-zero. This is written
in a shorter way as f(x) =

∑
α cαxα. We call cα the coefficient of xα. If

11
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12 ALGEBRAIC AND ANALYTIC GEOMETRY

cα 6= 0, then we call cαxα a term of f . The degree of f , denoted deg(f),
is the maximum |α| such that the coefficient cα is non-zero. We denote the
set of all polynomials in x1, . . . , xn with coefficients in the field k by k[x] or
k[x1, . . . , xn]. This set forms a commutative ring with standard addition and
multiplication of polynomials, with 0 denoting the zero polynomial.

Algebraic sets Every polynomial f =
∑
α cαxα defines a function

f : Rn → R, which is called a polynomial function. We distinguish between
polynomials and the maps they define. Thus f = 0 will mean that f is a
zero polynomial, and f(x1, . . . , xn) = 0 denotes that a polynomial function
takes value zero. Whenever we say that a polynomial vanishes at some point,
we implicitly mean that the corresponding polynomial function evaluated to
zero at this point. The distinction between a polynomial and the correspond-
ing polynomial function allows us to link algebra and geometry by relating a
polynomial f with the set of zeros of the function it defines.

Definition 2.1. Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. The affine
algebraic variety defined by f1, . . . , fs is

Vk(f1, . . . , fs) := {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}.

Thus an affine algebraic variety Vk(f1, . . . , fs) is the set of all solutions in
kn to the system of equations

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0. (2.2)

For example, the variety VR(x2 + y2 − 1) is the circle of radius 1 in R2 and
VR(x2 + y2 + 1) gives the empty set. In Example 1.1 the affine algebraic vari-
ety VR(p0 + p1 + p2 − 1, p2

1 − 4p0p1) is the smallest (with respect to inclusion)
affine algebraic variety in R3 containing the binomial model.

Remark 2.2. Over the real numbers, every affine algebraic variety can be
represented by vanishing of a single polynomial. In particular, the set of
equations (2.2) is equivalent to

f1(x1, . . . , xn)2 + · · ·+ fs(x1, . . . , xn)2 = 0.

For example, x2
1 + x2

2 = 0 defined a point in R2 and a curve in C2. This
curve contains the real point (0, 0) but also the point (1, i), whose second
coordinate is imaginary.

An affine algebraic variety is irreducible if it cannot be written as a union
of two proper algebraic varieties. For example, the set VR(x1x2) is reducible
because in R2 it forms a union of two coordinate lines VR(x1) and VR(x2).
Note that irreducibility depends on the field; for example, the polynomial

f(x) = x3 − x2 + x− 1 = (x− 1)(x2 + 1)

defines an irreducible variety over R and a reducible variety over the complex
numbers.
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BASIC CONCEPTS 13

Zariski closure and Zariski topology Another important concept is that of
Zariski closure. The simplest way to define the Zariski closure S of a set
S ⊆ kn is as the smallest (with respect to inclusion) algebraic variety in kn

containing S. We now present a more elegant way to obtain this definition
by introducing the concept of the Zariski topology.

Definition 2.3. A topological space is a set M together with a collection of
subsets of M called the closed sets satisfying the following:

(i) Both M and the empty set ∅ are closed.

(ii) Any intersection of a collection of closed sets is closed.

(iii) Any union of finitely many closed sets is closed.

An open set is a complement of a closed set. A topology is any collection of
open sets such that their complements are closed sets satisfying (i)–(iii).

We now show that kn forms a topological space with closed sets given
by affine algebraic varieties. Indeed, the empty set is the set of zeros of
a constant non-zero polynomial function and therefore it forms an affine
algebraic variety. Similarly, the whole space kn is given as the set of zeros
of the zero polynomial function. The intersection of any number of affine
algebraic varieties in kn is an algebraic variety, because it is defined by the
union of the sets of polynomials defining the given varieties. The union of
two affine algebraic varieties in kn is an affine algebraic variety. This union
is defined by the set of all pairwise products of the polynomials defining the
original varieties:

Vk({fi}i∈I) ∪ Vk({gi}i∈J) = Vk({figj}(i,j)∈I×J).

This implies by induction that the union of a finite number of affine algebraic
varieties is an affine algebraic variety.

We have verified that the empty set, the whole kn, the intersection of
arbitrarily many affine algebraic varieties, and the union of finitely many
affine algebraic varieties are all affine algebraic varieties. It follows that the
set of all affine algebraic varieties satisfies the three axioms in Definition 2.3.
The corresponding topology is called the Zariski topology on kn.

Similarly, as in the classical (Euclidean) topology, we define the closure
S of the set S ⊆ kn as an intersection of all closed sets in kn containing
S. In the Zariski topology this procedure gives that the Zariski closure of
S is the smallest algebraic variety containing S, so it is consistent with the
definition given earlier. For instance, the model in Example 1.2 is not an affine
algebraic variety. Its closure M in R3 is the whole affine subspace given by
p0 + p1 + p2 = 1.

2.1.2 Ideals and morphisms

Ideals Consider the set of all polynomials vanishing at a point a ∈ kn. For
any two such polynomials, their sum is a polynomial which also vanishes at
a. Moreover, every such polynomial multiplied by an arbitrary polynomial
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14 ALGEBRAIC AND ANALYTIC GEOMETRY

also vanishes at a. In addition, the zero polynomial 0 ∈ k[x1, . . . , xn], which
vanishes everywhere, vanishes at a as well. This motivates the following def-
inition.

Definition 2.4. A subset I ⊆ k[x1, . . . , xn] is an ideal if it satisfies:

(i) 0 ∈ I.

(ii) If f, g ∈ I, then f + g ∈ I.

(iii) If f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I.

The first very important example of an ideal is the ideal generated by a
finite number of polynomials.

Definition 2.5. Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then we set

〈f1, . . . , fs〉 :=

{
s∑

i=1

hifi : h1, . . . , hs ∈ k[x1, . . . , xn]

}
.

In other words, 〈f1, . . . , fs〉 is the set of all polynomial combinations of
f1, . . . , fs. It is easily checked that 〈f1, . . . , fs〉 is an ideal. We call it the
ideal generated by f1, . . . , fs.

Example 2.6. Let I = 〈x2
1 − x2, x2x3〉 ⊆ k[x1, x2, x3]. The monomial x2

1x3

lies in I. To see this, we write x2
1x3 as a polynomial combination of the

generators of I:

x2
1x3 = x3(x2

1 − x2) + x2x3.

We say that I is finitely generated if there exist f1, . . . , fs ∈ k[x1, . . . , xn]
such that I = 〈f1, . . . , fs〉. When this is so, we say that f1, . . . , fs form a basis
of I. By the following important theorem, finitely generated polynomials as
in Definition 2.5 are the only ones we need to consider.

Theorem 2.7 (Hilbert Basis Theorem). Every ideal in k[x1, . . . , xn] is
finitely generated.

There is a close relation between affine algebraic varieties and ideals. More
specifically, a variety depends only on the ideal generated by its defining
equations.

Lemma 2.8. If f1, . . . , fs and g1, . . . , gt are two bases of the same ideal
in k[x1, . . . , xn], so that 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, then Vk(f1, . . . , fs) =
Vk(g1, . . . , gt).

This Lemma allows us to define Vk(I) for any ideal I in k[x1, . . . , xn].

Definition 2.9. Let S ⊂ kn be any subset. Define the ideal of S by

I(S) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ S}.

We leave it as an exercise to check that I(S) is an ideal.

Proposition 2.10. If S ⊂ kn, the affine algebraic variety Vk(I(S)) is the
Zariski closure S.
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BASIC CONCEPTS 15

Morphisms The definition of a polynomial function can be generalized to
maps between arbitrary affine or projective algebraic varieties.

Definition 2.11. We say that a function φ : V → W is a polynomial
mapping from V ⊂ km to W ⊂ kn if there exist polynomials f1, . . . , fn
in k[x1, . . . , xm] such that

(f1(a1, . . . , am), . . . , fn(a1, . . . , am)) ∈W

for all (a1, . . . , am) ∈ V . Moreover, a polynomial mapping φ : V → W is a
polynomial isomorphism if there exists a polynomial mapping ψ : W → V
such that ψ ◦ φ = idV and φ ◦ ψ = idW , where idV denotes the identity map
on V defined by

idV (a1, . . . , am) = (a1, . . . , am) for all (a1, . . . , am) ∈ V.

The identity map idW is defined in the same way.

If ψ : V → W is a polynomial mapping, then for any subset U ⊆ V the
set

ψ(U) := {ψ(a) : a ∈ U}
is a subset of W called the image of U under ψ. We say that ψ is surjective
(or onto) if ψ(V ) = W , and we say that ψ is injective if for any a, a′ ∈ V we
have ψ(a) = ψ(a′) only if a = a′. For example, the identity map idV : V → V
is both surjective and injective. Note that every polynomial isomorphism is
necessarily both surjective and injective.

An important case of a polynomial mapping is when W = k, in which
case φ simply becomes a polynomial function on V . We usually specify a
polynomial function by giving an explicit polynomial representative which
is rarely uniquely defined. For example, consider the variety V = VR(p0 +
p1 + p2 − 1, p2

1 − 4p0p2) ⊂ R3 in Example 1.1. The polynomial f = p3
0 + p3

1

represents a polynomial function on V . However, for instance,

g = p3
0 + p3

1 + (p0 + p1 + p2 − 1)2 + (p2
1 − 4p0p2)

defines the same polynomial function on V . Indeed, we have p0+p1+p2−1 = 0
and p2

1 − 40p2 = 0 on V and hence f − g is zero on V .
In general let V ⊂ km be an affine algebraic variety. Then f and g

in k[x1, . . . , xm] define the same polynomial function on V if and only if
f − g ∈ I(V ). We denote by k[V ] the collection of polynomial functions
φ : V → k. It is easy to check that k[V ] forms a commutative ring with
the usual pointwise operations on functions. We sometimes call k[V ] the co-
ordinate ring of V .

To study coordinate rings we need to understand the quotient of
k[x1, . . . , xm] by an ideal I, which is a partition of k[x1, . . . , xm] into equiv-
alence classes of polynomials which define the same polynomial functions on
V(I). Let I ⊂ k[x1, . . . , xm] be an ideal, and let f, g ∈ k[x1, . . . , xm]. We say
that f and g are congruent modulo I, written f ≡ g mod I, if f − g ∈ I. The
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16 ALGEBRAIC AND ANALYTIC GEOMETRY

congruence modulo I is an equivalence relation on k[x1, . . . , xm]. Hence it
partitions k[x1, . . . , xm] into equivalence classes. For any f ∈ k[x1, . . . , xm],
the class of f is the set

[f ] = {g ∈ k[x1, . . . , xm] : g ≡ f mod I}.
Definition 2.12. The quotient of k[x1, . . . , xm] modulo I, written
k[x1, . . . , xm]/I, is the set of equivalence classes for congruence modulo I:

k[x1, . . . , xm]/I = {[f ] : f ∈ k[x1, . . . , xm]}.
It is a standard result in algebra (see for example [Cox et al., 2007, The-

orem 6, Section 5.2]) that k[x1, . . . , xm]/I is a commutative ring, where the
algebraic operations are defined in a natural way

[f ] + [g] = [f + g]
[f ] · [g] = [f · g].

(2.3)

Moreover there is a one-to-one correspondence between k[x1, . . . , xm]/I(V )
and k[V ].

2.1.3 Projective space and projective varieties

The projective line, denoted by P1, is the set of all lines in k2 through the
origin. Formally, we form an equivalence class in k2 \ (0, 0) such that (x, y) ∼
(x′, y′) if there exists λ ∈ k such that (x, y) = λ(x′, y′) and hence when (x, y)
and (x′, y′) lie on the same line through the origin in R2. We denote this
equivalence class by (x : y). In the same way, we define the projective space
Pm for m ≥ 1 as a set of lines through the origin in km+1. The equivalence
class in km+1 \ {0} is constructed in the same way as for P1 and we write
(x0 : . . . : xm) to denote a point in Pm.

An important fact is that Pm can be covered by m + 1 copies of km.
Indeed, let Ui for i = 0, . . . ,m be a subset of Pm defined by xi 6= 0. Note
that in Ui

(x0 : · · · : xi : · · · : xm) ∼
(
x0

xi
: · · · : 1 : · · · : xm

xi

)
.

Thus, if we denote yj =
xj
xi

we can identify Ui with kn. Moreover, every point
x ∈ Pm lies in at least one of Ui so that these sets really cover Pm.

Definition 2.13. We say that a polynomial f ∈ k[x0, . . . , xm] is homoge-
neous of degree d if all its terms have degree d or equivalently f(λx) = λdf(x)
for any λ ∈ k.

Note that the notion of a polynomial mapping Pm → k is not well defined
because for an arbitrary function typically f(x) 6= f(λx) even though x and
λx define the same point in Pm. However, if f ∈ k[x0, . . . , xm] is homoge-
neous, then at least the condition f(x0, . . . , xm) = 0 is well defined. Moreover,
if f, g are homogeneous of the same degree, then f/g forms a well-defined
function on Pm.
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BASIC CONCEPTS 17

Definition 2.14 (Projective variety). An ideal is said to be homogeneous
if it is generated by homogeneous polynomials. Let I ⊆ k[x0, . . . , xn] be a
homogeneous ideal. We define a projective variety as the set of zeros of the
elements of I.

If f ∈ k[x1, . . . , xm], then f(x) = 0 describes an affine algebraic variety
V in U0 = km. By multiplying each term of f by an appropriate power of
x0, we obtain a homogeneous polynomial, which defines a projective variety.
This process is called homogenization. For example, take

f(x1, x2) = x3
1x2 − x2

2 + 1;

this can be extended to a homogeneous polynomial given by

f(x0, x1, x2) = x3
1x2 − x2

0x
2
2 + x4

0.

The equation f(x0, x1, x2) = 0 defines a projective variety in P2, which on
the open subset U0 is equal to the original affine algebraic variety.

2.1.4 Parametric representation and toric varieties

Both in statistics and in algebraic geometry it is often convenient to define
a variety as a family of points parameterized by a simpler set. A typical
example is when a single parameter θ ∈ k describes a curve in the affine
space kn as in Example 1.1.

Definition 2.15. Let V = Vk(f1, . . . , fs) ⊂ kn. Then a polynomial para-
metric representation ψ : kd → kn of V consists of polynomial functions
ψ1, . . . , ψn ∈ k[t1, . . . , td] such that the points given by

xi = ψi(t1, . . . , td) for all i = 1, . . . , n

lie in V . We also require that V = ψ(kd). The original defining equations
f1 = · · · = fs = 0 of V are called the implicit representation of V .

For instance, in Example 1.1 we considered V = VR(p2
1− 4p0p2, p0 + p1 +

p2 − 1). The polynomial parametric representation of this affine algebraic
variety is given precisely by θ 7→ ((1− θ)2, 2θ(1− θ), θ2), where θ ∈ R. Note,
however, that not every affine algebraic variety has a polynomial parametric
representation.

Example 2.16. Let n = 4 and index the indeterminates with the set {0, 1}2.
Consider the affine algebraic variety defined by x11x00 − x01x10 = 0 and
x00 + x01 + x10 + x11 − 1 = 0. It is an exercise to verify that this variety is
parameterized by

x00 = (1− t1)(1− t2) x01 = (1− t1)t2
x10 = t1(1− t2) x11 = t1t2.

Statisticians refer to this example as the independence model of two binary
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18 ALGEBRAIC AND ANALYTIC GEOMETRY

random variables. In this probabilistic setting we additionally assume that
xij ≥ 0 for all i, j ∈ {0, 1}, or equivalently, t1, t2 ∈ [0, 1] and xij is interpreted
as the probability that the first random variable takes value i and the second
random variable takes value j.

Definition 2.17. With any parameterization, we associate the Jacobian ma-
trix, which is the following matrix of partial derivatives

∂ψ

∂t
(t) =




∂ψ1

∂t1
(t) · · · ∂ψ1

∂td
(t)

...
...

∂ψn
∂t1

(t) · · · ∂ψn
∂td

(t)


 ,

where t = (t1, . . . , td). If d = n, we define the Jacobian of g as the determinant
of the Jacobian matrix ∂ψ

∂t (t).

An important notion related to affine algebraic varieties is the dimension,
denoted by dim(V ). In full generality, the definition of the dimension of an
affine algebraic variety is subtle and can be defined in many ways usually
related to some invariants of the coordinate ring. In this book we focus on
real algebraic varieties that are given in a parametric form. In this case, the
dimension can be defined by studying the rank of the Jacobian matrix of
the corresponding parameterization. It turns out that this rank is constant
outside of a measure zero set and the dimension of V is equal to that constant.
The codimension of an affine algebraic variety V ⊆ kn is equal to n−dim(V ).

The main distinction between the complex and the real numbers is that
over the complex numbers we have the Fundamental Theorem of Algebra
which states that every non-constant polynomial f ∈ C[x] has a root in
C. Of course, over the real numbers, it is usually not true as, for example,
x2 + 1 = 0 has no real solutions. An important consequence is that over the
complex numbers, parameterization always very closely approximates the
Zariski closure of its image.

Theorem 2.18. Let ψ : Cd → Cn be a polynomial parametric representation
of V = ψ(Cd). Then

dim(V \ ψ(Cd)) < dim(ψ(Cd)).

This theorem does not hold over the real numbers. For example, if ψ :
R→ R is given by ψ(x) = x2, then ψ(R) = [0,∞) but VR(I(ψ(Rd))) = R and
hence the difference has full dimension. The real case is discussed in more
detail in Section 2.2.

Ideals and parameterizations Given a parametric representation ψ : kd →
kn of a variety V given by

ψ = (ψ1(t1, . . . , td), . . . , ψn(t1, . . . , td)),

we may be interested in its implicit representation in the form of the
ideal I(V ). In order to obtain this, we define the ring homomorphism
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ψ∗ : k[x1, . . . , xn] → k[t1, . . . , td] given by ψ∗(xi) = ψi(t1, . . . , td). Hence
ψ∗ is a map such that

ψ∗(1) = 1, ψ∗(fg) = ψ∗(f)ψ∗(g) and ψ∗(f + g) = ψ∗(f) + ψ∗(g)

for every f, g ∈ k[x1, . . . , xn]. Note that in particular ψ∗(cxα) =
c
∏n
i=1 ψi(t1, . . . , td)

αi for every c ∈ k and α ∈ Nn0 . The kernel of ψ∗ is
defined as

ker(ψ∗) = {f ∈ k[x1, . . . , xn] : ψ∗(f) = 0}.
A polynomial f ∈ k[x1, . . . , xn] lies in the kernel of ψ∗ if and only if it
evaluates to zero for every fixed value of t1, . . . , td. This observation gives the
following result.

Proposition 2.19. The kernel ker(ψ∗) forms an ideal in k[x1, . . . , xn]. More-
over, Vk(ker(ψ∗)) defines the Zariski closure of the image of ψ : kd → kn.

The computations of the kernel of a polynomial ring map are done typ-
ically with computer algebra software like CoCoA, Macaulay2, Singular;
see CoCoATeam, Grayson and Stillman, Decker et al. [2011]. In Exam-
ple 2.16, the corresponding kernel is generated by x11x00 − x01x10 = 0 and
x00 + x01 + x10 + x11 − 1 = 0.

Toric varieties One of the simplest instances of a parametric family is when
its parameterization is given by monomials. Toric varieties form an important
part of algebraic geometry and statistics. We define toric varieties as subsets
of the complex projective space Pn, that is, always with a concrete embedding
into the projective space.

Definition 2.20. Let A = {m0, . . . ,mn} ⊂ Zd. A projective toric variety YA
is given as the Zariski closure of the image of a monomial parameterization

ψA : (C∗)d → Pn (2.4)

t = (t1, . . . , td) 7→ [tm0 , . . . , tmn ], (2.5)

where m0, . . . ,mn ∈ Nd are some non-negative exponents and C∗ = C \ 0.

To describe the set parameterized by ψA, we need to compute the Zariski
closure of its image. Equivalently, we need to describe the ideal of polynomials
in C[x0, . . . , xn] vanishing on the image of ψA.

Definition 2.21. The toric ideal IA is the homogeneous ideal of polynomials
whose vanishing defines the projective toric variety YA. Equivalently, IA is
the ideal of all the homogeneous polynomials vanishing on ψA((C∗)d).

Denote by A the d × (n + 1)-matrix obtained by putting elements of A
as columns. Here we assume that the vector (1, . . . , 1) lies in the rowspan of
A. For a vector u ∈ Zn+1, we write u = u+ − u−, where u+, u− ∈ Nn+1

0 and
they have disjoint supports. We have the following result.

Theorem 2.22. The toric ideal IA is the linear span of all homogeneous
binomials xu − xv with Au = Av. Even more,

IA = 〈xu+ − xu− : u ∈ ker(A)〉.
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20 ALGEBRAIC AND ANALYTIC GEOMETRY

The fact that this ideal is homogeneous follows from the fact that the vector
of ones lies in the rowspan of A.

2.2 Real algebraic and analytic geometry

The geometry of algebraic varieties and their relation to ideals is substantially
different in the complex than in the real case. For example, the equation
x2 +y2 +1 = 0 defines a curve in the complex plane and the empty set in R2.
Moreover, a projection of a real affine algebraic variety on one of the axes
need not be an affine algebraic variety anymore.

Example 2.23. Consider the parabola VR(y − x2) ⊆ R2. Its projection on
the y axis is the half-line R≥0. This is not an affine algebraic variety. The
smallest affine algebraic variety containing a half-line is the whole real line
R.

Another difference between the complex and the real algebraic varieties is
that every real affine algebraic variety is given by a single polynomial equation
since VR(f1, . . . , fs) = VR(f2

1 + · · · + f2
s ). There are also rational functions

which are defined everywhere but they are not polynomial. An example is
(1 + x2)−1.

2.2.1 Real analytic manifolds

A power series is any sum of the form:

f(x) =
∞∑

α1=0

· · ·
∞∑

αn=0

cα1···αn(x1 − b1)α1 · · · (xn − bn)αn ,

where cα1···αn ∈ R, bi ∈ R; this is written in a shorter way as f(x) =∑
α cα(x − b)α. If there exists an open set U ⊂ Rn, which contains b such

that for every x ∈ U ∑

α

|cα||x− b|α < ∞

then f(x) is called an absolutely convergent power series. If f(x) is an abso-
lutely convergent power series then it uniquely defines a function f : U → R.
This function is called a real analytic function.

If f(x) is a real analytic function, then the coefficient of the Taylor series
expansion around b satisfies

cα =
1

α!

∂α f

∂xα
(b),

where α! = α1! · · ·αn! and

∂α

∂xα
:=

∂α1

∂xα1
1

· · · ∂
αn

∂xαnn
.

The concept of a polynomial ideal can be extended to ideals in the ring of
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analytic functions. Although, we will not use this fact explicitly in this book,
in statistics the concept of an analytic ideal helps in singular learning theory
to understand the asymptotic behavior of some empirical processes ; see for
example Watanabe [2009], Lin [2011].

Definition 2.24 (Function of class Cr). Let U ⊂ Rn be an open set. A map
f : U → Rm is said to be of class Cr in U , which we denote by f ∈ Cr(U),
if partial derivatives

∂αf

∂xα
(x)

are well defined and continuous for all α ∈ Nn0 such that |α| ≤ r. If f ∈ Cr(U)
for all r ≥ 0, we say it is C∞(U). If a function f is real analytic in U , we say
it is Cω(U).

The following definition generalizes the polynomial isomorphism.

Definition 2.25 (Cr isomorphism). Let U, V be two open subsets of Rd.
If there exists a one-to-one map f : U → V such that f ∈ Cr(U) and
f−1 ∈ Cr(V ), then U is said to be Cr isomorphic to V , and f is called a Cr

isomorphism. If both f and f−1 are analytic functions, then U is said to be
analytically isomorphic to V and f is called an analytic isomorphism.

A topological space M with the topology of open sets U is called a Haus-
dorff space if, for arbitrary x, y ∈M (x 6= y), there exist open sets U, V ∈ U
such that x ∈ U , y ∈ V and U ∩ V = ∅.
Definition 2.26 (System of local coordinates). Let M be a Hausdorff space
with topology U = (Uα) such that the open sets in U cover M (every point
x ∈ M lies in some element of U). Suppose that for each Uα there exists a
map φα : Uα → Rd. The pair {Uα, φα} is called a system of local coordinates
if for every α and any open set U in Uα, φα is a continuous and one-to-one
map from U to φα(U), whose inverse is also continuous.

Definition 2.27 (Manifold). A Hausdorff space that has a system of local
coordinates is called a manifold . For each r = 0, 1, . . . ,∞, ω, a manifold M
is said to be of class Cr if it has a system of local coordinates such that, if
U∗ = U1 ∩ U2 6= ∅, both of the maps

φ1(U∗) 3 x 7→ φ2(φ−1
1 (x)) ∈ φ2(U∗),

φ2(U∗) 3 x 7→ φ1(φ−1
2 (x)) ∈ φ1(U∗)

are of class Cr. If M is a manifold of class Cω, it is called a real analytic
manifold.

The concepts of the affine algebraic variety and the real analytic manifold
are related. Roughly speaking, M is a real analytic manifold if one can cover
M with small sets (charts) such that M constrained to each of the charts
looks like a set of zeros of a real analytic map.
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22 ALGEBRAIC AND ANALYTIC GEOMETRY

2.2.2 Semialgebraic sets

Real affine algebraic varieties and real analytic manifolds cannot be studied
without also considering inequality constraints. In this section we provide a
very basic introduction to semialgebraic geometry.

Definition 2.28. A basic semialgebraic set is a subset of Rn given by poly-
nomial equations and inequalities. More formally, it is a set of the form

r⋂

i=1

{x ∈ Rn : fi ∗i 0},

where fi ∈ R[x1, . . . , xn] and ∗i is either < or =, for i = 1, . . . , r. A semial-
gebraic subset of Rn is a finite union of basic semialgebraic sets.

Remark 2.29. Semialgebraic subsets of Rn form the smallest family of subsets
containing all sets of the form

{x ∈ Rn : f(x) > 0}, where f ∈ R[x1, . . . , xn],

and closed under taking finite intersections, finite unions, and complements.

The following result shows that the family of semialgebraic sets is stable
under certain transformations (c.f. Example 2.23).

Theorem 2.30. If S is a semialgebraic subset of Rn, and π : Rn → Rm is
the projection on the first m coordinates, then π(S) is a semialgebraic subset
of Rn. Moreover, the closure and the interior of S are semialgebraic subsets
of Rn.

Note that the closure of a basic semialgebraic set is not always obtained
just by relaxing the strict inequalities describing it. Consider the following
example.

Example 2.31. The closure of the set

A = {(x, y) ∈ R2 : x3 − x2 − y2 > 0}

is not the set
B = {(x, y) ∈ R2 : x3 − x2 − y2 ≥ 0}.

The closure of A is obtained by removing the point (0, 0) from B, and can
be described as

cl(A) = {(x, y) ∈ R2 : x3 − x2 − y2 ≥ 0, x ≥ 1}.

This situation is depicted in Figure 2.1.

Let y = f(x) be a function in n indeterminates x = (x1, . . . , xn) ∈ Rn.
The graph of this function is the set in Rn+1 defined by

{(x, f(x)) : x ∈ Rn} = {(x, y) : y − f(x) = 0}.

In the same way we define a graph of any polynomial map f : Rn → Rm.
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Figure 2.1 The closure of a semialgebraic set given by x3−x2− y2 > 0 (left) is not
equal to the set given by x3 − x2 − y2 ≥ 0 (right).

Definition 2.32. Let A ⊂ Rm and B ⊂ Rn be two semialgebraic sets. A
mapping f : A → B is semialgebraic if its graph is a semialgebraic set in
Rm+n.

Semialgebraic sets are stabilized by semialgebraic maps in the following
sense.

Proposition 2.33. Let f : A → B be a semialgebraic mapping. If S ⊂ A
is semialgebraic, then its image f(S) is semialgebraic. If T ⊂ B is semialge-
braic, then the inverse image f−1(T ) is semialgebraic.

Checking if a map is semialgebraic may be complicated. In our case,
however, we work with polynomial maps which are semialgebraic by the
following proposition.

Proposition 2.34. The composition of two semialgebraic mappings is semi-
algebraic. Moreover, any polynomial mapping is semialgebraic.

The importance of this result follows from the fact that in statistics many
interesting discrete models are parameterized by polynomials with the param-
eter space being a semialgebraic subset of Rd. In this case, the resulting model
can be identified with a set of points that forms a semialgebraic subset. All
statistical models considered in this book will correspond to semialgebraic
sets. In particular, since polynomial maps are semialgebraic, both Bin(2, θ)
in Example 1.1 and Mmix in Example 1.2 are semialgebraic.

To understand the structure of a semialgebraic set S ⊆ Rn, in algebraic
statistics we often first want to find the Zariski closureS. This already gives
us some insight into the geometry of S. For example, the dimension of S is
equal to the dimension of S. The following definition lists some aspects of
the geometry of S that cannot be studied without taking into account the
underlying inequalities of S.

Definition 2.35. The relative interior of S, denoted by int(S), is the set of
points a in S such that a sufficiently small neighborhood of a in S is contained
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24 ALGEBRAIC AND ANALYTIC GEOMETRY

in S. Moreover, the boundary of S is bd(S) = S \ int(S) and the algebraic
boundary is the Zariski closure of bd(S).

If S has the full dimension (codimension zero), then the relative interior
and the interior of S coincide. We now illustrate these concepts in a basic
example.

Example 2.36. Consider the set S described in R3 by z = x2+y2 and z ≤ 1;
see Figure 2.2. Its Zariski closure is given by z = x2 + y2. The boundary is
given by the circle x2 + y2 = z = 1 and the relative interior is given by
z = x2 + y2 and z < 1. The dimension of S is 2, and S is isomorphic to the
disc x2 + y2 ≤ 1 in R2, which can be realized by projecting down onto the
z = 0 plane.

1–1
0

1

1

2

3

2

–1

–2

–2

2

Figure 2.2: The semialgebraic set given by z = x2 + y2 and z ≤ 1.

2.2.3 Real toric varieties, toric cubes, and the moment map

Real toric varieties Denote the real projective space by RPm and by RPm≥0

denote its nonnegative part , that is, the set of points (x0 : . . . : xm) ∈ RPm
such that xi ≥ 0 for all i. The following Lemma shows that the probability
simplex can be identified with RPm≥0 and hence every discrete statistical model
lies naturally in RPm≥0 for some m ∈ N; see Definition 3.1.

Lemma 2.37. Let ∆m be the probability simplex defined in (1.1). Then

∆m ' RPm≥0.

Proof. If (x0 : . . . : xm) ∈ RPm≥0, then
∑m
i=0 xi > 0, and hence we have

(x0, . . . , xm) ∼ 1∑m
i=0 xi

(x0, . . . , xm) = (x′0, . . . , x
′
m),
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where x′i ≥ 0 and
∑m
i=0 x

′
i = 1. It follows that every point in RPm≥ corresponds

to a unique point in ∆m.

By definition the toric variety YA (see Section 2.1.4) is obtained as the
Zariski closure of the image of the parameterization (C∗)d → Pm defined by
t 7→ (ta1 , . . . , tam), where A = {a1, . . . , am}. The real part YA(R) of the toric
variety YA is the intersection of YA with the real projective space RPm. The
following result can be found, for example, in [Sottile, 2003, Section 6].

Proposition 2.38. The real part YA(R) of the toric variety YA can be defined
by the three equivalent conditions:

• the intersection of YA with the real projective space RPm,

• the variety of points in RPm described by the toric ideal IA

• the closure in RPm of the parameterization (R∗)d → Rm given by
t 7→ (ta1 , . . . , tam).

The non-negative part (YA)≥ of a toric variety YA is the intersection
of YA with RPm≥ . Consider the torus (R∗)d, which forms a dense subset of

YA(R). This torus has 2d components called orthants, each identified by the
sign vector ε ∈ {±1}d recording the signs of coordinates of points in that
component. The nonnegative component is the orthant containing identity
and it has sign vector (1, . . . , 1). Denote this component by Rd>. For the
following result we again refer to [Sottile, 2003, Section 6].

Proposition 2.39. The non-negative part (YA)≥ of a toric variety YA can
be defined by any of the three equivalent conditions:

• the intersection of YA with RPm≥ ,

• the variety of points in RPm≥ described by the toric ideal IA,

• the closure in YA(R) of the parameterization (R>)d → Rm given by
t 7→ (ta1 , . . . , tam).

By the isomorphism between RPm≥0 and the probability simplex ∆m, the
points in the non-negative part of YA are exactly the points on YA corre-
sponding to probability distributions.

Remark 2.40. By the equivalence of the three conditions in Proposition 2.39
it follows that to understand the semialgebraic description of (YA)≥ it suffices
to understand the algebraic description of YA and then add the inequalities
xi ≥ 0 defining RPm≥ .

We could also consider the closures of other components of the torus
(R∗)d, obtaining 2d−1 other pieces analogous to the non-negative part (YA)≥.
Since the component of (R∗)d having sign vector ε is simply εRd>, these other
pieces are transformations of (YA)≥ by the appropriate sign vector, and hence
are all isomorphic. Since YA(R) is the closure of (R∗)d and each piece ε ·X≥
is the closure of the orthant ε ·Rd>, we obtain a concrete picture of YA(R): it
is pieced together from 2d copies of its non-negative part.
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The moment map The analysis of the boundary of (YA)≥ plays an impor-
tant role in statistics in the study of discrete exponential families; see Sec-
tion 3.2. For this study it is important to note that the non-negative part of
any projective toric variety YA admits an identification with the convex hull
PA of A, which enables us to use tools from combinatorics and polyhedral
geometry.

Proposition 2.41. Let YA ⊂ Pn be a projective toric variety given by a col-
lection of exponent vectors A ⊂ Rd with convex hull PA. Define the algebraic
moment map as:

αA : (YA)≥ → Rd (2.6)

x 7→
∑

u∈A
xu u.

Then αA is a homeomorphism onto PA.

Example 2.42. Let A = {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1)}. The
convex hull of this set forms a square PA ⊂ R4. This square lies in a plane
given y1 + y2 = y3 + y4 = 1.

Let P3 have coordinates x00, x01, x10, x11. Then A induces a parameteriza-
tion ψA : (C∗)4 → P3 given by xij = sitj for i, j = 0, 1. The Zariski closure of
its image gives a real toric variety YA. Its intersection with RP3

≥0 is isomorphic
to the independence model of two binary random variables; see Example 2.16.
Note that this model lies in the hyperplane given by x00 +x01 +x10 +x11 = 1.
This enables us to draw it as a two-dimensional object in a three-dimensional
probability simplex; see Figure 3.1 in the next chapter. The vertices of this
simplex correspond to setting one of the xij ’s to one and the rest to zero.
The algebraic moment map constitutes a homeomorphism between the inde-
pendence model and a square.

Toric cubes In applications we are often interested in a set which is strictly
smaller than the nonnegative part of a toric variety. An important case is
the semialgebraic set obtained as the image of the hypercube [0, 1]d under
the toric map t 7→ (ta1 , . . . , tam).

Definition 2.43. A toric cube in [0, 1]m is an image of a hypercube [0, 1]d,
for any positive integer d, under a monomial map. By Proposition 2.33 it is
a semialgebraic set.

An interesting example of toric cubes is given by the space of phylogenetic
oranges described in Chapter 7; see also Kim [2000], Moulton and Steel [2004].
Here we give the easiest example.

Example 2.44. Consider a map f : [0, 1]3 → R3 given by

x12 = t1t2, x13 = t1t3, x23 = t2t3,

where x12, x13, x23 are coordinates of R3. Let M = f([0, 1]3). A point x =
(x12, x13, x23) ∈ R3 lies in M if and only if x ∈ [0, 1]3 and either

(a) min{x12, x13, x23} > 0 and max{x12x13

x23
, x12x13

x23
, x12x13

x23
} ≤ 1, or
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(b) min{x12, x13, x23} = 0 and the minimum is attained at least twice.

We leave it as an exercise to show that this set can be more compactly
described as the set of points in [0, 1]3 satisfying

x12 ≥ x13x23, x13 ≥ x12x23, x23 ≥ x12x13.

In particular, the points in (b) lie in the closure of (a). This toric cube is
depicted in Figure 2.3.

0.0

0.0

0.0

0.5

0.5

0.5

1.0
1.0

1.0

Figure 2.3: The phylogenetic orange space defined in Example 2.44.

In the above example the considered toric cube had a nice description in
terms of binomial inequalities. Define a toric precube as any subset of [0, 1]m

defined by some binomial inequalities and hence constraints of the form

xu ≤ xv where u, v ∈ Nd0. (2.7)

By definition, toric precubes are basic semialgebraic sets. We say that a set
V ⊆ RPm≥ is equal to the closure of its strictly positive part V + := V ∩RPm>
if the closure of V + is equal to V . Here we mean the closure in the classical
topology. The following has been proved in Engström et al. [2012].

Theorem 2.45. Toric cubes correspond to toric precubes which are equal to
the closure of its strictly positive points. In particular, toric cubes are basic
semialgebraic sets.

To see why toric cubes are toric precubes, let C be a toric cube given
by monomial parameterization induced by A = {a1, . . . , am} like in Sec-
tion 2.1.4. Denote by A ∈ Nd×m the matrix with the ai’s as columns. The
set C+ of strictly positive points of C has an extremely nice structure. Let
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log C+ denote the transformation of C+ by taking minus logarithm on each
of the coordinates. For example, the transformed toric cube in Example 2.44
is depicted in Figure 2.4. Denote yi = − log xi. The cone log C+ is the image
of the positive orthant log((0, 1]d) = Rd≥ under the linear map A : Rd → Rn.
By the Weyl–Minkowski Theorem (see for example Ziegler [1995]), every such
cone can be written as a solution set of a finite system of linear inequalities
of the form

u1y1 + · · ·+ unyn ≥ v1y1 + · · ·+ vnyn.

By applying the exponential map, conclude that C+ is defined as a subset of
(0, 1]n by a finite set of binomial inequalities. Since C is equal to the closure
of C+, then also C is given by those inequalities. For details, see Engström
et al. [2012].

10

5

0
0 0

5

10

5 10

Figure 2.4 The cone obtained from the strictly positive part of the toric cube in
Figure 2.3 by taking minus logarithms.

As we mentioned when discussing semialgebraic sets in Section 2.2.2, in
applications, researchers are often interested in a very detailed description of
a given semialgebraic set. For toric cubes, this structure is remarkably beau-
tiful. It turns out that every toric cube can be subsequently decomposed into
smaller toric cubes. To introduce this result we need the following definition.

Definition 2.46. An n-dimensional CW-complex is a topological subspace
Xm of Rm that is constructed recursively in the following way:

(1) If n = 0, then X0 is a discrete set of points.

(2) If n > 1, then Xn is given by:

(i) an (n− 1)-dimensional CW-complex Xn−1 in Rm,

(ii) a partition qα∈Iσnα of Xn \Xn−1 into open n-cells,
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(iii) for every index α ∈ I, there is a characteristic map Φα : Dn → Xn

such that Φα(∂Dn) ⊆ Xn−1 and the restriction of Φα to the open cell
D̊n is a homeomorphism with image σnα.

The simplest case is when the image of each ∂Dn is homeomorphic to a
sphere. Such a CW-complex is called regular. For example, the toric cube in
Example 2.44 forms a regular CW-complex. It turns out that all toric cubes
are regular CW-complexes.

Theorem 2.47. Every toric cube can be realized as a CW-complex whose
open cells are interiors of toric cubes. This CW-complex has the further prop-
erty that the boundary of each open cell is a subcomplex.

Manifold with corners The concept if a toric cube can be extended in many
ways. For example, the manifold with corners can be informally obtained
by gluing in a smooth way nonnegative parts of toric varieties; see Kottke
and Melrose [2013]. Formally a manifold with corners is a manifold (see Def-
inition 2.27) which locally is diffeomorphic to Rk≥ × Rm−k for some m and
k ≤ m.

In this book we consider a very concrete example which directly general-
izes toric cubes (c.f. Section 6.3.3). In this case we consider the image in Rm
of the hypercube [−1, 1]d under the toric map t 7→ (ta1 , . . . , tam). Modulo the
sign this image is a toric cube. Thus it suffices to analyze which sign patterns
are possible in the image and how these toric cubes are glued together.

Example 2.48. Consider the map f defined as in Example 2.44. The image
M ′ of [−1, 1]3 satisfies x12x23x13 ≥ 0. In particular, M ′ consists of four copies
of the toric cube M = f([0, 1]3) as given in Figure 2.5. In particular, each
toric cube in M has dimension 3, and any two cubes are glued along an
interval. The intersection of all four cubes is the origin (0, 0, 0).

2.3 Tensors and flattenings

In this section we define tensors, multilinear transformations on tensors, and
we set up the basic notation that will be used throughout the book.

2.3.1 Basic definitions

For every vector space in this section we fix a basis. With this, we can think
about tensors as generalizations of matrices to higher dimensions and hence
as n-dimensional arrays of numbers, functions, or polynomials.

Definition 2.49 (Tensor product v ⊗ w). Let V ' Rr+1 and W ' Rs+1

be two linear spaces. The tensor product v ⊗ w of vectors v = [vi] ∈ V and
w = [wj ] ∈W is the array

α = [αij ] = [vi · wj ]

of products of the coordinates of v and w. Any tensor product of two vectors
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1.0
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Figure 2.5: The set M = f([−1, 1]3) defined in Example 2.48.

is called a rank-one matrix. By definition ⊗ is a bilinear operation, i.e.,

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w
v ⊗ (w + w′) = v ⊗ w + v ⊗ w′
(cv)⊗ w = v ⊗ (cw) = c(v ⊗ w)

for all v, v′ ∈ V , w,w′ ∈W and c ∈ R.

Definition 2.50 (Tensor product V ⊗W ). Let e0, . . . , er and e′0, . . . , e
′
s be

the standard basis vectors for V and W . Then the tensor product V ⊗W of
V and W is the space of all linear combinations

∑
i,j αij ei⊗e′j . In particular,

V ⊗W ' R(r+1)×(s+1).

Both definitions generalize to a bigger number of components. Thus a
tensor product of tensors v1 ∈ V1,. . . , vm ∈ Vm is the tensor

α = [αi1···im ] = [v1i1 · · · vmim ],

called a rank-one tensor . Similarly, the tensor product V1 ⊗ · · · ⊗ Vm is the
space of all linear combinations of rank-one tensors. If Vi ' Rrj+1, then
V1 ⊗ · · · ⊗ Vm ' R(r1+1)×···×(rm+1).

The order of a tensor is the dimension of its array of coordinates. For
instance, vectors are tensors of order one while matrices have order two. We
say that a tensor α has (real) rank k if k is the minimal number such that α
can be written as a sum of k rank-one tensors.
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If V is a vector space, then its dual V ∗ is the vector space of linear maps
V → R. If e0, . . . , er is the basis of V , then the basis of V ∗ is e0, . . . , er such
that ei(ej) = δij , where δij is the Kronecker delta

δij =

{
1 if i = j,

0 otherwise.

When working in a tensor product of vector spaces and their duals, we
denote the coordinates by

v = (vj1···jni1···im) ∈ Va1
⊗ · · · ⊗ Vam ⊗ V ∗b1 ⊗ · · · ⊗ V ∗bn ,

where the superscripts and subscripts indicate the vector spaces involved.
Thus the indices of dual bases are written as superscripts.

Given a tensor α ∈ V ⊗W of order two, we define its inverse

α−1 ∈ V ∗ ⊗W ∗

to be the unique (if exists) tensor that satisfies

∑
j αij(α

−1)kj = δik and
∑
i αij(α

−1)ik = δkj .

Given a tensor
α = (αi1···in) ∈ V ⊗n = V ⊗ · · · ⊗ V,

we say α is symmetric if αi1···in = αiσ(1)···iσ(n)
for all permutations σ on

{1, . . . , n}. If v ∈ V , then for a fixed k ≥ 1, the diagonal diagk is a tensor in
V ⊗k given by

diagk(v) =
∑

i

viei ⊗ · · · ⊗ ei (2.8)

and it is symmetric by definition. If k = 2 we often omit k in the notation.

2.3.2 Multilinear transformations and contractions

A linear transformation A : V → W is represented by a matrix, which is
a tensor in W ⊗ V ∗. If v ∈ V , then A · v ∈ W . Linear transformations are
generalized to tensor products of vector spaces.

Definition 2.51. Consider tensor products V1⊗ · · ·⊗Vd and W1⊗ · · ·⊗Wd

and linear transformations Ai : Vi → Wi on each of the components. Then
the multilinear transformation

(A1, . . . , Ad) : V1 ⊗ · · · ⊗ Vd →W1 ⊗ · · · ⊗Wd

α 7→ α̃ = (A1, . . . , Ad) · α

is defined for every tensor α ∈ V1 ⊗ · · · ⊗ Vd by

α̃i1···id =
∑

j1,...,jd

(A1)j1i1 · · · (Ad)
jd
id
αj1···jd .
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Example 2.52. Let d = 2, Vi = Wi = R2. In this case, A1, A2 and α are
represented by 2× 2 matrices and we have

(A1, A2) · α = A1αA
T
2 .

Lastly, we come to an important class of linear transformations known
as contractions. Contraction is an operation on tensors that comes from the
natural pairing of a vector space and its dual. In its simplest form, a contrac-
tion V ⊗ V ∗ → R corresponds to the bilinear form u⊗ v 7→ 〈u, v〉 =

∑
i uiv

i

defined for all rank-one tensors, which is then extended to all other elements
of V ⊗ V ∗ by bilinearity of the tensor product.

Scalar products and matrix traces are instances of contractions. Matrix
multiplication can also be expressed as a contraction. Given matrices (αji ) ∈
U ⊗ V ∗ and (βkj ) ∈ V ⊗W ∗, the contraction

(αji )⊗ (βkj ) 7→ (γki ), γki =
∑
j α

j
iβ
k
j (2.9)

of the tensor product α⊗ β gives us the matrix product γ.

2.3.3 Multivariate notation and the operators vec and mat

In this section, we introduce convenient index notation, which we are going
to use throughout the book. Motivated by computer implementations, we
also introduce two operations that map tensors to vectors and matrices.

Fix integers r1, . . . , rm ≥ 1 and consider the set

X = {0, . . . , r1} × · · · × {0, . . . , rm}. (2.10)

For every subset A = {i1, . . . , id} ⊆ [m] such that i1 < · · · < id, define

XA := {0, . . . , ri1} × · · · × {0, . . . , rid}.
In particular, Xi = {0, . . . , ri} for every i ∈ [m]. Consider the vector space
RXi = Rri+1 with the standard basis e0, . . . , eri for every i = 1, . . . ,m and a
tensor space

RX := RX1 ⊗ · · · ⊗ RXm
with the basis (ex)x∈X , where x = (x1, . . . , xm) and ex = ex1

⊗ · · · ⊗ exm . If
v ∈ RX , then its coordinates are denoted by vx. In a similar way we define
RXA for every A ⊆ [m]. By CX we denote the complex tensor space and by
PX its projectivization.

There is a canonical total ordering ≺ of the basis elements of RX , which
comes from the lexicographic ordering of X . For example, if X = {0, 1}3, the
elements of X are ordered by

(0, 0, 0) ≺ (0, 0, 1) ≺ (0, 1, 0) ≺ (0, 1, 1) ≺ (1, 0, 0) ≺ (1, 0, 1) ≺ (1, 1, 0) ≺ (1, 1, 1).

The vec operator acts on a tensor space and returns a vector. Thus
vec : RX → R|X | takes a tensor v = [vx] ∈ RX and stacks its elements in
a vector in the order given by the total ordering ≺. The resulting vector is
denoted by vec(v). We have the same definition on the tensor space RXA for
any A ⊆ [m].
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Definition 2.53. For two matrices A = [aij ] ∈ Rk×l, B = [bij ] ∈ Rm×n we
define their Kronecker product as the matrix C ∈ Rkm×ln given in a block
form by 


a11B · · · a1lB

...
. . .

...
ak1B · · · aklB


 .

The Kronecker product of an m-tuple of matrices is also well defined because
taking a Kronecker product is associative.

In the literature, the Kronecker product is typically denoted by the tensor
product ⊗. Here, to avoid confusion, we refrain from doing that. Instead, we
realize the Kronecker product of matrices as a special instance of the mat
operator, which we now define. The vec and mat operators help to translate
tensor operations to operations on vectors and matrices, which can then be
used in concrete computations.

Definition 2.54. Let VA := RXA . For any disjoint A,B ⊆ [m], the mat oper-
ator takes a tensor in VA⊗V ∗B and returns a matrix in R|XA|×|XB | whose rows
and columns are ordered by the total ordering ≺ on XA and XB , respectively.

Let A ∈ V1 ⊗W ∗1 , B ∈ V2 ⊗W ∗2 ; then their tensor product is

A⊗B ∈ (V1 ⊗W ∗1 )⊗ (V2 ⊗W ∗2 ) = (V1 ⊗ V2)⊗ (W1 ⊗W2)∗.

Now mat(A ⊗ B) is exactly the Kronecker product of A and B. Similarly
mat(A1 ⊗ · · · ⊗ An) for matrices Ai ∈ Vi ⊗W ∗i is their Kronecker product.
Now a multilinear transformation can be written in linear algebra terms as

vec(α̃) = mat(A1 ⊗ · · · ⊗An) · vec(α). (2.11)

Definition 2.55. Let A ⊆ [m]; then we split [m] into two sets: A and its
complement B := [m] \A. This split induces a map

FA|B : RX → VA ⊗ V ∗B
v = [vi1···im ] 7→ [viBiA ].

The matrix

vA;B := mat(FA|B(v)) (2.12)

is called the (matrix) flattening map of the tensor v.

Example 2.56. Let m = 4 and X = {0, 1}4. Consider the flattening map
induced by A = {1, 3}. Every element v = [vijkl] is mapped to the matrix

v12;34 =




v0000 v0001 v0100 v0101

v0010 v0011 v0110 v0111

v1000 v1001 v1100 v1101

v1010 v1011 v1110 v1111


 .
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2.4 Classical examples

In this section we present some classical algebraic varieties, which have some
interesting links to statistics that will be developed in later chapters.

Segre variety Let X1 = X2 = {0, 1} for i = 1, 2, X = X1 × X2 and consider
two copies of the projective line PXi ' P1 with coordinates (s0 : s1) and
(t0 : t1). Their Cartesian product PX1 ×PX2 is a two-dimensional variety. To
realize it as a projective variety, we need to embed PX1×PX2 into a projective
space. We now show that such an embedding is possible into PX ' P3. The
map PX1 × PX2 → PX is given by (s, t) 7→ y = s ⊗ t, or in coordinates
yij = sitj for i, j = 0, 1. Denote this variety by Seg(1, 1). To show that this
map is well defined, we need to show that at least one yij is nonzero for any
choice of s = (s0 : s1) and t = (t0 : t1). This follows from the fact that at
least one coordinate of both points (s0 : s1) and (t0 : t1) needs to be nonzero.
For example, if s1 and t0 are nonzero, then y10 is nonzero in the image.

To show that (s, t) 7→ s⊗t is an embedding, we need to show that for every
point in the image we can uniquely identify the points (s0 : s1) and (t0 : t1)
mapping to it. Consider a point y ∈ PX which lies in Seg(1, 1) ∩ U00, where
U00 = {y ∈ PX : y00 6= 0}. Then s0t0 6= 0, and hence we can assume s0 =
t0 = 1 in PX1 and PX2 , respectively. In this case y = (1 : s1 : t1 : s1t1) for some
s1, t1 ∈ C, which identifies s1 and t1. We easily check that the same holds for
every open subset Ux covering PX and hence for every point on Seg(1, 1).

The Segre variety Seg(1, 1) ⊆ PX is given by a single equation

y00y11 − y01y10 = 0,

which is the determinant of the flattening V 7→ V1 ⊗ V ∗2 . In other words, the
points y ∈ PX , which lie in the Segre embedding of PX1 ×PX2 , correspond to
rank-one matrices.

More generally, let r1, . . . , rm ≥ 1 and consider m projective spaces
PX1 , . . . ,PXm , where Xi = {0, . . . , ri}. By ti = (ti0 : · · · : tiri), denote the
coordinates on PXi for i = 1, . . . ,m. The Segre variety Seg(r1, . . . , rm) is the
embedding of the product PX1 × · · · × PXm into PX with coordinates (yx),
where x ∈ X . This embedding is defined by

yx = t1x1 · · · tmxm for every x ∈ X ,

which in tensor notation can be written by

y = t1 ⊗ · · · ⊗ tm. (2.13)

This map is well defined by exactly the same argument as for Seg(1, 1). It
describes the set of all rank-one tensors of PX denoted by Seg(r1, . . . , rm).

Remark 2.57. Consider the parameterization of the Segre variety constrained
to ∆X1 × · · · ×∆Xm → ∆X . The image is given by all rank-one tensors y in
∆X , where ∆Xi , ∆X are probability simplices in RXi and RX , respectively.
In particular, by Lemma 2.37, it is isomorphic to the real non-negative part
of the Segre variety.

© 2016 by Taylor & Francis Group, LLC

  



CLASSICAL EXAMPLES 35

Veronese embedding Let r1, . . . , rm, n ≥ 1 and let X be as before. Consider
the set U of all tensors in RX with integer entries whose sum is equal to n

U := U(X , n) = {u = (ux) ∈ NX0 :
∑

x∈X
ux = n}. (2.14)

Consider the projective space PX with coordinates t = (tx)x∈X and PU with
coordinates yu for u ∈ U .

Definition 2.58. The Veronese embedding of PX into PU is defined by

yu = tu :=
∏

x∈X
tuxx for u ∈ U(X , n).

The multinomial embedding is given by

yu =
n!∏
ux!

tu for u ∈ U(X , n).

The fact that both maps are embeddings is easy to verify.

For example, if n = 2, m = 1, r1 = 1, then the Veronese embedding is
defined by

y20 = t20, y11 = t0t1, y02 = t21.

The multinomial embedding is y20 = t20, y11 = 2t0t1, y02 = t21 and it corre-
sponds to the model defined in Example 1.1 by setting t1 = 1− t0 = θ.

Secants and mixtures Consider the Segre embedding Seg(r1, . . . , rm) ⊆ PX .
For any two points in Seg(r1, . . . , rm), consider the line in PX through
them. Take the union of all such lines obtained for all pairs of points on
Seg(r1, . . . , rm). The first secant variety Sec(r1, . . . , rm) is defined as the
Zariski closure in PX of this union. This variety is parameterized by two
copies of each of PX1 , . . . ,PXm that give us two points on Seg(r1, . . . , rm),
and by P1, with coordinates s1, s2, which tells us where on the line between
these two points we are. The parameterization is

((s1, s2), (t
(i)
1,0, . . . , t

(i)
1,k1

)2
i=1, . . . , (t

(i)
m,0, . . . , t

(i)
m,km

)2
i=1) 7→

7→ (yx =
∑2
i=1 si

∏m
j=1 t

(i)
j,xj

)x∈X ,

where (t
(i)
j,0, . . . , t

(i)
j,kj

) ∈ PXj .
Recall the definition of the flattening map in Definition 2.55. The following

was conjectured in Garcia et al. [2005] and proved by Raicu [2012].

Theorem 2.59. Let r1, . . . , rm = 1. The ideal defining the secant variety
Sec(1, . . . , 1) is generated by all 3× 3 minors of all the (matrix) flattenings.

Example 2.60. If m = 3, then all flattenings are 2× 4 matrices and hence
there are no 3× 3 minors so in this case Sec(1, 1, 1) is equal to PX . If m = 4,
then there are three non-trivial flattenings corresponding to splits 12|34, 13|24
and 14|23.
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36 ALGEBRAIC AND ANALYTIC GEOMETRY

The concept of the first secant variety can be generalized. The r-th secant
variety Secr(k1, . . . , km) ⊂ PX = P(k1+1)···(km+1)−1 is parameterized by Pr
and r+1 copies of Pk1 , . . . , Pkm via the map, which is a direct generalization
of the r = 1 case above. Using tensor notation, this variety consists of points
of the form

r+1∑

i=1

si (t
(i)
1 ⊗ · · · ⊗ t(i)m ). (2.15)

In the applications, we are often interested in another related variety,
when the parameterization in (2.15) is constrained to RPr≥ and r + 1 copies

of RPX1

≥ , . . . , RPXm≥ . In this case, the variety is called the mixture model.
The difference between the image of this parameterization and its Zariski
closure is of a major interest in algebraic statistics. The description of the
image of this parameterization is not very complicated if r = 1 but it requires
developing some theory; see Section 7.3.4.

2.5 Birational geometry

In this section we present some classical constructions of algebraic geometry
which are used in statistical learning theory.

2.5.1 Rational functions on a variety

The polynomial ring k[x1, . . . , xn] is included as a subring in the field of
rational functions

k(x1, . . . , xm) =

{
f

g
: f, g ∈ k[x1, . . . , xn], g 6= 0

}
.

The word “rational” refers to the fact that in the definition we consider
quotients of polynomials.

Let V ⊂ km and W ⊂ kn be irreducible affine varieties. A rational map-
ping from V to W is a function φ represented by

φ(x1, . . . , xn) =

(
f1(x1, . . . , xm)

g1(x1, . . . , xm)
, . . . ,

fn(x1, . . . , xm)

gn(x1, . . . , xm)

)
,

where

(i) φ is defined at some point of V .

(ii) For every (a1, . . . , am) ∈ V where φ is defined, φ(a1, . . . , am) ∈W .

Note that a rational mapping φ from V to W may fail to be a function from
V to W in the usual sense because φ may not be defined everywhere on V .
For this reason we write a rational map with a dashed line φ : V 99KW .

Definition 2.61. Let φ, ψ : V 99KW be rational mappings represented by

φ =

(
f1

g1
, . . . ,

fn
gn

)
and ψ =

(
f ′1
g′1
, . . . ,

f ′n
g′n

)
.
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Then we say that φ = ψ, if for each i, 1 ≤ i ≤ n,

fig
′
i − f ′igi ∈ I(V ).

We say that two irreducible varieties V ⊂ km and W ⊂ kn are birationally
equivalent if there exist rational mappings φ : V 99K W and ψ : W 99K V
such that φ ◦ ψ is defined (i.e., there exists a point p in W such that ψ is
defined at p and φ is defined at ψ(p)) and equal to the identity map idW (as
in Definition 2.61), and similarly for ψ ◦ φ. Less formally, we say that V and
W are birationally equivalent if they are isomorphic everywhere outside of
the subsets where ψ ◦ φ and φ ◦ ψ are not defined.

2.5.2 Blow-up and resolution of singularities

An important example of birational equivalence is the blow-up of a Euclidean
space at a point p. The idea is to leave kn unaltered except at a point p, which
is then replaced by the set of all lines through p and hence by Pn−1. To make
this precise, choose a suitable coordinate system for kn so that p can be
assumed to be the origin.

Definition 2.62. Let B be the set of all pairs (x, l), where x ∈ kn and
l ∈ Pn−1 is a line through the origin containing x, so

B = {(x, l) ∈ kn × Pn−1 : x ∈ l} ⊂ kn × Pn−1.

The blow-up of kn at p is by definition the projection to the affine factor

B
π→ kn,

(x, l) 7→ x.

Let x = (x1, . . . , xn) ∈ kn and l = (y1 : . . . : yn). Then x lies on l if and
only if the matrix [

x1 · · · xn
y1 · · · yn

]

has rank less than or equal to 1. This is precisely when all the 2× 2 minors
vanish and hence

B = Vk(xiyj − xjyj : 0 ≤ i < j ≤ n) ⊆ kn × Pn−1. (2.16)

Recall that Pn is covered by n copies of kn. It is instructive to see how the
blow-up looks on one of the copies of kn×kn covering kn×Pn. For example,
on U1 (c.f. Section 2.1) where y1 6= 0, we can assume y1 = 1 and hence from
(2.16) we see that, in particular,

(x1, . . . , xn) = (x1, x1y2, · · · , x1yn). (2.17)

The operation of blowing-up is closely related to the resolution of singular-
ities. Its importance is due to the fundamental theorem of Heisuke Hironaka
on the resolution of singularities.
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38 ALGEBRAIC AND ANALYTIC GEOMETRY

Theorem 2.63 (Hironaka’s Theorem). Let f : Rd → R be a real analytic
function in the neighborhood of the origin such that f(0) = 0. Then there
exists a neighborhood of the origin W and a proper real analytic map π :
U → W where U is a d-dimensional real analytic manifold such that the
following holds:

1. The map π is an isomorphism between U \U0 and W \W0, where W0 =
{x ∈W : f(x) = 0} and U0 = {u ∈ U : f(π(u)) = 0}.

2. For an arbitrary point P ∈ U0, there is a local coordinate system u =
(u1, . . . , ud) of U in which P is the origin and

f(π(u)) = a(u)ur11 · · ·urdd , (2.18)

where a(u) is a nowhere vanishing function on this local chart and
r1, . . . , rd are nonnegative integers, and the Jacobian of x = π(u) is

π′(u) = b(u)uh1
1 · · ·uhdd ,

where, again, b(u) 6= 0 and h1, . . . , hd are nonnegative integers.

Moreover, π can be always obtained as a composition of blow-ups along smooth
centers.

Example 2.64. Let f(x1, . . . , xd) = x2
1 + · · ·+x2

c for some c ≤ d. The blow-
up of Rc, with coordinates given by x1, . . . , xc, at the origin satisfies all the
properties of Theorem 2.63. Let W be an ε-ball around the origin in Rc. We
have π : U →W , where U ⊂ Rc × RPc−1. Over Rc × U1 by (2.17) we have

f(π(u)) = u2
1 + u2

1u
2
2 + · · ·+ u2

1u
2
c = u2

1(1 + u2
2 + · · ·+ u2

c)

and a1(u) = 1+u2
2 + · · ·+u2

c never vanishes if ε is sufficiently small. Similarly
over each of the charts Rc×Ui for i = 1, . . . , c the function f(π(u)) = u2

i ai(u),
where ai(u) never vanishes. The Jacobian of π on each Rc × Ui is equal to
uc−1
i .

Example 2.65. Let f(x, y, z) = x2y2 +x2z2 +y2z2. Then f(π(u)) = u4
1(u2

2 +
u2

3 + u2
2u

2
3) with the Jacobian of π equal to u2

1. We make another blow-up
along R2, which gives f(π̃(v)) = u4

1v
2
2(1+v2

3 +v2
2v

2
3). Here again 1+v2

3 +v2
2v

2
3

never vanishes in a small neighborhood of the origin and hence f(π̃(v)) is of
the form in (2.18).

2.6 Bibliographical notes

The basic reference for algebraic geometry is Cox et al. [2007] and Smith et al.
[2000]. The first book is written on the undergraduate level and it has an
algebraic flavor. The second book elegantly introduces some main geometric
concepts of algebraic geometry. Section 2.1 is almost entirely based on these
two books. A good idea is also to read introductory chapters of other books
on algebraic statistics such as those written by Pachter and Sturmfels [2005],
Pistone et al. [2001], Watanabe [2009]. For a more detailed discussion on
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Zariski topology; see for example Chapter 1 in Smith et al. [2000] or Chapter
1 in Shafarevich [1994]. We presented only a very informal discussion of
real analytic manifolds. A more detailed treatment is given in [Krantz and
Parks, 2002, Section 2.7] and Spivak [1965]. Our presentation of the basics
of the real algebraic geometry is based on Basu et al. [2006], Bochnak et al.
[1998]. The section on real toric varieties is based on Sottile [2003]. Standard
references on toric varieties are Cox et al. [2011], Fulton [1993], Sturmfels
[1996]. Toric cubes are introduced and discussed in Engström et al. [2012];
see also Basu et al. [2012], Basu et al. [2010]. There are several good references
on tensors. For statisticians, McCullagh [1987] is a natural choice. A more
algebraic introduction is given in [Roman, 2008, Chapter 14] and [Eisenbud,
1995, Appendix 2]. The most complete reference is Landsberg [2012]. Most
of the classical examples in Section 2.4 can be looked up in any of the books
cited above. A good introduction to secant varieties in the statistical context
is given in Drton et al. [2009]. A good introduction to birational geometry is
given, for example, in Shafarevich [1994]. Basic constructions are described in
Smith et al. [2000]. Following Watanabe [2009], we formulated the resolution
of singularities theorem of Hironaka in the analytic form given by Atiyah
[1970].

In this introduction we completely ignored the concept of Gröbner bases,
which forms an essential tool of computational algebraic geometry. Another
algebro-geometric notion which was almost entirely ignored here was the
theory of toric varieties. Together with Gröbner bases, toric geometry lies
behind the great success of algebraic statistics over the last years, which
started with the seminal paper by Diaconis and Sturmfels [1998]. The reason
why we decided to skip these two important topics in this book is mainly
because they are used here only implicitly. A well-written introduction to
Gröbner bases is provided for example in Cox et al. [2007], Sturmfels [1996].
Also, Pistone et al. [2001] is a good place to start for a statistician. Standard
references on toric varieties are Cox et al. [2011] and Fulton [1993]. However,
Sturmfels [1996] may be more suitable for purposes of algebraic statistics.
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Chapter 3

Algebraic statistical models

In this chapter we define the algebraic statistical model. Our focus is on
models of conditional independence and in particular on graphical models.
In this context we discuss some standard notions in statistics like maximum
likelihood estimation and model identifiability.

3.1 Discrete measures

3.1.1 Discrete statistical models

Let X = (X1, . . . , Xm) be a random vector such that each Xi takes ri + 1
possible values, where each ri ≥ 1 is finite. Thus X takes values in a finite
discrete set X =

∏m
i=1 Xi ⊆ Rm such that |Xi| = ri + 1 for i = 1, . . . ,m.

Without loss of generality Xi = {0, . . . , ri} and thus

X = {0, . . . , r1} × · · · × {0, . . . , rm}. (3.1)

Any probability distribution of X can be written as a point (or tensor)
P = [p(x)] ∈ RX such that p(x) ≥ 0 for all x ∈ X and

∑
x∈X p(x) = 1.

The set of all such points is called the probability simplex and it is denoted
by ∆X . By Lemma 2.37,

∆X ' RPX≥ ,

where RPX≥ is the nonnegative part of the projective space PX as defined in
Section 2.2.3.

Definition 3.1 (Statistical model). A statistical model of a random vector
X ∈ X is any subset M ⊆ ∆X . We say that a discrete statistical model is
parametric if there exists Θ ⊆ Rd for some d ≥ 1 called the parameter space
and a map p : Θ → RX , called the parameterization, such that M = p(Θ).
We indicate this by writing M = [p(x; θ)]x∈X .

In this book we are interested in a special type of parametric statistical
model where the parameterization is given by polynomial maps.

Definition 3.2 (Algebraic statistical model). An algebraic statistical model
is a statistical model M that forms a semialgebraic set. An algebraic sta-
tistical model is said to be parametric if Θ is a basic semialgebraic set and
there exist polynomials gx ∈ R[θ] for x ∈ X such that the parameterization
p satisfies:

p(x; θ) = Z(θ)−1gx(θ) for all x ∈ X ,

41
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42 ALGEBRAIC STATISTICAL MODELS

where Z(θ) is the normalizing constant, that is, Z(θ) =
∑
x gx(θ). The fact

that a parametric algebraic statistical model also forms a semialgebraic set
follows directly from Propositions 2.33 and 2.34.

Example 3.3 (Multinomial model). By U = U(X , n), denote the space of all
(r1 + 1)×· · ·× (rm+ 1) tensors with nonnegative integer entries all summing
to n. We have u ∈ U if u ∈ NX0 and

∑
x∈X u(x) = n (see also (2.14)).

Define the multinomial model as the set of the probability distributions on
U parameterized by ∆X . Thus, for every q ∈ ∆X we have

p(u; q) =
n!∏

x∈X u(x)!

∏

x∈X
q(x)u(x) for every u ∈ U .

By Section 2.4 it follows that, modulo the constant terms, the multinomial
model is the Veronese embedding of ∆X in ∆U .

The algebraic constraints on statistical models may look restrictive. How-
ever, as we see later in this chapter, many known discrete statistical models
are algebraic. In particular, discrete exponential families and their mixtures
are algebraic.

Given an algebraic statistical model M that forms a basic semialgebraic
set, its semialgebraic description is a set of polynomial equations and in-
equalities

f1(p) = · · · = fr(p) = 0, g1(p) ≥ 0, . . . , gs(p) ≥ 0

such that p ∈ M if and only if p satisfies these constraints. Because the
equation

∑
x∈X p(x) = 1 and the inequalities p(x) ≥ 0 for x ∈ X hold for all

statistical models, they are called trivial constraints.

Remark 3.4. In many interesting cases a full description of algebraic statisti-
cal models is hard to obtain. In the algebraic statistics literature, a common
approach is to replace the parameterization g : Θ→ ∆X with g : Cd → PX
and so assuming that parameters can take any complex values. The focus is
then on the set MC = g(Cd) ∩∆X of all probability distributions in g(Cd).
The analysis of this map follows the standard algebraic procedures. Although
M = g(Θ) ⊆MC, typically the inclusion is strict; see Example 1.3.

Example 3.5. Let m = 2 and r1 = r2 = 1 so that X = {0, 1}2. Define
p1(x1) = p(x1, 0) + p(x1, 1) and p2(x2) = p(0, x2) + p(1, x2). The model of
independence is given by all probability distributions satisfying

p(x1, x2) = p1(x1)p2(x2)

for all x = (x1, x2) ∈ X . This is a parametric model given by parameterization

ψ : [0, 1]2 → ∆X , θ = (θ1, θ2) 7→ ∆X ,

which is defined by p(0, 0) = (1− θ1)(1− θ2), p(0, 1) = (1− θ1)θ2, p(1, 0) =
θ1(1 − θ2) and p(1, 1) = θ1θ2. Thus, two free parameters θ1, θ2 correspond
to p1(1) and p2(1), respectively. The model of independence is equal to the
subset of all rank-one matrices in ∆X , which is equal to the nonnegative part
of the Segre variety Seg(1, 1). This set is depicted in Figure 3.1.
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Figure 3.1: The model of independence of two binary random variables.

3.1.2 Independence and conditional independence

Let A ⊂ [m], then the marginal distribution of XA = (Xi)i∈A ∈ XA is a
tensor pA ∈ RXA defined by

pA(x̃) =
∑

x∈X : xA=x̃

p(x) for all x̃ ∈ XA. (3.2)

Note in particular that p∅ ≡ 1. Here, by writing that pA is a tensor we mean
only that it is an element of the vector space RXA . We exploit tensor algebra
more in Chapter 4.

For any two disjoint subsets A,B ⊆ [m], we say that XA and XB are
independent, which we denote by A ⊥⊥ B (or XA ⊥⊥ XB), if and only if

pA∪B(xA∪B) = pA(xA)pB(xB) for all x ∈ X .

This can be generalized to B1 ⊥⊥ · · · ⊥⊥ Br
In statistical modeling a more important concept is that of conditional

independence. We often adopt another notational convention writing AB for
A ∪ B and a for the singleton {a}. Let A,B be two disjoint subsets of [m].
We define the conditional distribution of XA given XB = xB as a tensor pA|B
such that

pA|B(xA|xB) =
pAB(xA, xB)

pB(xB)
, (3.3)

for every xA ∈ XA and xB ∈ XB such that pB(xB) 6= 0.

Definition 3.6. Given disjoint subsets A,B,C ⊂ [m] we say that A,B are
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44 ALGEBRAIC STATISTICAL MODELS

conditionally independent given C if

pAB|C(xA, xB |xC) = pA|C(xA|xC)pB|C(xB |xC)

for each xA ∈ XA, xB ∈ XB , xC ∈ XC .

For many interesting statistical models the vector on which we condition
is assumed to be hidden. In this case we are interested only in the marginal
distribution over the observed variables. Let, for example, A ⊥⊥ B|C, then

pAB(xA, xB) =
∑

xC∈XC

pC(xC)pA|C(xA|xC)pB|C(xB |xC). (3.4)

The following result is easy to prove.

Lemma 3.7. If A ⊥⊥ B, then pA|B(xA|xB) = pA(xA) for every xA ∈ XA,
xB ∈ XB.

Definition 3.8. The chain rule states that the joint distribution of X
can be written as a product of successive conditional distributions. Define
Ai := {j < i}, then

p(x) =

m∏

i=1

pi|Ai(xi|xAi).

Any other total ordering on [m] will lead to a different valid formula.

Example 3.9. Let m = 3 and r1 = r2 = r3 = 1. The model of marginal
independence X1 ⊥⊥ X2 is now given by all probability distributions satisfying
p12(x1, x2) = p1(x1)p2(x2) for all x1 ∈ X1, x2 ∈ X2. There is a canonical
parameterization of this model. Write the joint distribution of (X1, X2, X3)
using the chain rule

p(x1, x2, x3) = p1(x1)p2|1(x2|x1)p3|12(x3|x1, x2).

Since X1 ⊥⊥ X2, by Lemma 3.7, p2|1(x2|x1) = p2(x2), and the model is pa-
rameterized by p : [0, 1]6 → ∆X , where the six free parameters correspond
to p1(1), p2(1) and p3|12(1|i, j) for i, j = 0, 1.

Note that we do not develop the theory of the conditional independence
(CI) in its full generality. For a complete introduction to the topic we suggest
the monograph of Studený [2004]. For an exposition of the importance of this
concept in the statistical theory; see Dawid [1979].

Define a conditional independence model (or CI model) as a statistical
model defined by a collection of conditional independence statements. The
following result shows that any conditional independence model is an alge-
braic statistical model.

Lemma 3.10. The probability distribution p = [p(x)] satisfies A ⊥⊥ B|C for
some disjoint A,B,C ⊂ [m] if and only if

pABC(xA, xB , xC)pABC(x′A, x
′
B , xC) −
pABC(x′A, xB , xC)pABC(xA, x

′
B , xC) = 0

holds for every xC ∈ XC , xA, x
′
A ∈ XA and xB , x

′
B ∈ XB.
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Note that if A ∪ B ∪ C = [m], then A ⊥⊥ B|C is described by a quadratic
equation

p(xA, xB , xC)p(x′A, x
′
B , xC)− p(x′A, xB , xC)p(xA, x

′
B , xC) = 0.

Therefore, every conditional independence model described only by condi-
tional independencies of that form is toric, that is, defined by binomial equa-
tions; see Section 2.2.3. An important example is given in Section 3.4 by
undirected graphical models.

3.1.3 Moments and moment aliasing

Let X be given as in (3.1) and let 〈·, ·〉 be a scalar product on RX . For
any function f : X → R and any random variable X ∈ X with probability
distribution p, the expectation of f(X) is

E[f(X)] = 〈p, f〉 =
∑

x∈X
p(x)f(x).

In search of a convenient notation for dealing with moments, we first define
a multiset as a set with multiplicities. More precisely, let A′ be a set, called
a ground set , and f : A′ → N0 be a function counting multiplicity of each
element. Then the pair A = (A′, f) is a multiset. We typically write elements
of a multiset as af(a) ignoring the elements of multiplicity zero, so, for ex-
ample, {13, 20, 31} = {13, 31} is a multiset that we also sometimes write as
{1, 1, 1, 3}. A submultiset of a multiset A = (A′, f) is a multiset B = (B′, g)
such that B′ is a subset of A′ and g(b) ≤ f(b) for every b ∈ B′. So, for
example, {12, 31} is a submultiset of {13, 31} but {12, 32} is not.

Fix the ground set to be [m]. Then any multiset A = {iu1
1 , . . . , iukk } can

be identified with a vector (u1, . . . , um) of multiplicities. Given A we define
the corresponding moment

µA = E[

m∏

i=1

Xui
i ]

and the central moment

µ′A = E[
m∏

i=1

(Xi − µi)ui ].

In particular, µi = E(Xi) is the mean of Xi, µ
′
ii = var(Xi) is the variance of

Xi and µ′ij = cov(Xi, Xj) is the covariance between Xi and Xj . We always
have µ′i = 0.

Example 3.11. Let X1, X2 be two binary random variables with the joint
distribution p = [p(i, j)]. Then the covariance satisfies

cov(X1, X2) = p(1, 1)− p1(1)p2(1) = det p.
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In our geometric approach we can switch between probabilities and mo-
ments. To make it more formal, for each u = (u1, . . . , um) ∈ X , denote the
corresponding multiset as A(u), that is,

A(u) = {1u1 , . . . ,mum} = {1, . . . , 1︸ ︷︷ ︸
u1 times

, . . . ,m, . . . ,m︸ ︷︷ ︸
um times

} (3.5)

and let
A(X ) = {A(u) : u ∈ X}.

In particular, if r1 = · · · = rm = 1, then A(X ) is equal to the set of all
subsets of [m].

Let u ∈ Nm0 and A = A(u). A traditional way to compute the moment
µA is using the moment generating function

MX(t) = E(exp(〈t,X〉)) =
∑

x∈X
p(x) exp(〈t, x〉),

where t = (t1, . . . , tm) and 〈t, x〉 =
∑m
i=1 tixi. We first compute the u-

derivatives of MX

DuMX(t) :=
∂|u|

∂tu1
1 · · · ∂tunn

MX(t) = E[Xu exp(〈t,X〉)].

If the moment generating function is analytic in the neighborhood of 0, then

EXu = µA(u) = DuMX(t)
∣∣∣
t=0

.

In this case we have

MX(t) =
∑

u∈Nm0

1

u!
DuMX(t)

∣∣∣
t=0

tu =
∑

u∈Nm0

1

u!
µA(u)t

u,

where u! = u1! · · ·un!.
In the setting of Example 3.11, the moment generating function is

MX(t) = p(0, 0) + p(0, 1)et2 + p(1, 0)et1 + p(1, 1)et1+t2 .

We have

∂

∂t1
MX(t) = p(1, 0)et1 + p(1, 1)et1+t2 ,

∂2

∂t1∂t2
MX(t) = p(1, 1)et1+t2

and hence µ1 = p(1, 0) + p(1, 1) and µ12 = p(1, 1).
The cardinality of the set A(X ) is (r1 + 1) · · · (rn + 1), which is equal to

the cardinality of X and hence RA(X ) ' RX . Consider two tensors in RA(X )

given by moments µ = [µA(x)]x∈X and by central moments µ′ = [µ′A(x)]x∈X .

Proposition 3.12 (The moment aliasing principle). There exists a polyno-
mial isomorphism between p = [p(x)]x∈X and µ. The equation

∑
x∈X p(x) = 1

becomes µ∅ = 1.
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Figure 3.2 The image of the probability simplex in the space of µ1, µ2 and the
central moment µ′

12.

In particular, every model M ⊆ ∆X , after a change of coordinates, can
be equivalently expressed in terms of µ. As we will see later in Section 4.2.1,
the list of other helpful coordinate systems includes cumulants and their
generalizations.

Example 3.13. Let m = 2, r1 = r2 = 1 and hence Xi = {0, 1} for i = 1, 2
and A(X ) = {∅, {1}, {2}, {1, 2}}. Consider the model of independence in
Example 3.9. We leave it as an exercise to check that the determinant of
the joint distribution matrix p = [p(x)]x∈X is equal to the covariance µ′12.
This determinant vanishes if and only if X1 ⊥⊥ X2. Hence the independence
model is linearized by the transformation to the central moments because it
is described by a single equation µ′12 = 0; see Figure 3.2.

The moment aliasing principle (see Pistone et al. [2001], Pistone and
Wynn [2006]) implies that every moment µA, where A is any multiset of
elements of [m], can be written as a function of µ. This is particularly easy
to see in the binary case when r1 = · · · = rm = 1. In this case, Xk

i = Xi for
every i and for every k ≥ 1 because Xi ∈ {0, 1}. Thus every monomial Xα is
equal to X ind(α), where the indicator function β = ind(α) such that βi = 1
if αi 6= 0 and is zero otherwise. In particular, µA = µI(A), where I(A) is a
subset of [m] with the same elements as A (counted with multiplicity one).

We formulate the following alternative definition of independence; see
Feller [1971], page 136.

Lemma 3.14. Let X and X be as usual. For any two disjoint subsets A,B ⊆
[m] we have A ⊥⊥ B, if and only if for every two functions f : RXA → R,
g : RXB → R we have

E[f(XA)g(XB)] = E[f(XA)]E[g(XB)].

The following formulation of independence in terms of moments will be
helpful.
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Lemma 3.15. We have A ⊥⊥ B for some disjoint sets A,B ⊆ [m] if and only
if

µI∪J = µIµJ for all I ∈ A(XA), J ∈ A(XB).

Proof. The “if” direction of the lemma is immediate by Lemma 3.14.
The “only if” direction uses the fact that the set of values of X is discrete
and finite. In this case any function on X is a polynomial function (can be
represented as a polynomial in the entries of X), where the terms of these
polynomials are

∏
i∈I Xi for all I ∈ A(X ). Thus, to check if A ⊥⊥ B, it remains

to check if
E[f(XA)g(XB)] = E[f(XA)]E[g(XB)]

for all polynomials f, g such that each f has only terms
∏
i∈I Xi for all

I ∈ A(XA) and g has only terms
∏
i∈J Xi for all J ∈ A(XB). By expanding

the terms of f and g and using linearity of the expectation, it suffices to check
that this property holds for each monomial, which is true by assumption.

Example 3.16. Suppose X1 = {0, 1} and X2 = {0, 1, 2}. The distribution of
X = (X1, X2) is uniquely identified by the value of µ1 = E[X1], µ2 = E[X2],
µ22 = E[X2

2 ], µ12 = E[X1X2] and µ122 = E[X1X
2
2 ]. We have 1 ⊥⊥ 2 if and only

if µ12 − µ1µ2 = 0 and µ122 − µ1µ22 = 0.

Lemma 3.15 easily generalizes.

Lemma 3.17. We have B1 ⊥⊥ B2 ⊥⊥ · · · ⊥⊥ Br for some disjoint sets
B1, . . . , Br ⊆ [m] if and only if

µA1∪···∪Ar =
r∏

i=1

µAi , for all Ai ∈ A(XBi), i = 1, . . . , r. (3.6)

One of the central concept of this book will be the conditional expectation.
From the probabilistic point of view the conditional expectation should be
thought of as the expectation with respect to the conditional distribution.
Let X1 and X2 be two discrete random variables and f : X1 → R. Then the
conditional expectation of f(X1) given X2 = x2 is defined as

E[f(X1)|X2 = x2] =
∑

x1∈X1

f(x1) p1|2(x1|x2). (3.7)

For each x2 ∈ X2 such that p2(x2) > 0 the right-hand side is a well-defined
number. We should think of the conditional expectation as a function on X2,
which we denote by E[X1|X2]. Since X2 is a random variable, E[X1|X2] is
also a random variable with its own distribution. There are some immediate
consequences of (3.7).

Proposition 3.18. For any two functions f : X1 → R, g : X2 → R and
a ∈ R,

1. E[E[f(X1)|X2]] = E[f(X1)],

2. E[f(X1)− a|X2] = E[f(X1)|X2]− a, and
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3. E[f(X1)g(X2)|X2] = g(X2)E[f(X1)|X2].

Moreover, if X1 ⊥⊥ X2, then

E[f(X1)|X2] = E[f(X1)].

Proof. Left as an exercise.

Since E[X1|X2] is a function on X2, it has a polynomial representation
and this polynomial has degree r2. It is instructive to write the conditional
expectation in the binary case, which we then generalize in Chapter 4. Be-
cause X2 is binary, the conditional expectation E(X1|X2) is a linear function
of X2, which without loss of generality can be written for some a, b ∈ R as

E[X1|X2] = a+ b(X2 − E[X2]). (3.8)

Using the first formulas in Proposition 3.18 we find that a = E[X1]. This can
be further rewritten as

E[X1 − E[X1]|X2] = b(X2 − E[X2]).

Now multiply both sides by X2 −E[X2] and use the third formula in Propo-
sition 3.18 to obtain

E[(X1 − E[X1])(X2 − E[X2])|X2] = b(X2 − E[X2])2.

Taking expectations yields

E[(X1 − E[X1])(X2 − E[X2])] = bE(X2 − E[X2])2,

which gives

b =
cov(X1, X2)

var(X2)
(3.9)

whenever X2 is not a degenerate random variable, that is, if var(X2) > 0. In
this way we have obtained the formula for the conditional expectation when
X2 is a binary random variable:

E[X1|X2] = E[X1] + cov(X1, X2)var(X2)−1(X2 − E[X2]). (3.10)

A general discrete random variable is non-degenerate if its distribution
has no zeros. Suppose that Xi is degenerate. This means that Xi can never
take at least one of its ri + 1 possible values. In that case we can consider a
copy of Xi with a reduced state space. Hence, without loss of generality, we
always assume that X is a random vector such that all Xi are non-degenerate
and in particular var(Xi) > 0. Now we can define X̄ = (X̄1, . . . , X̄m), where

X̄i = Xi−E(Xi)
var(Xi)

. Let ρij = corr(Xi, Xj) = E(X̄iX̄j) denote the correlation

between Xi and Xj . In the binary case (3.10) can be rewritten as

E[X̄1|X̄2] = ρ12X̄2. (3.11)
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Let X1, X2, X3 be binary random variables. If they are non-degenerate,
then X1 ⊥⊥ X3|X2 implies

ρ13 = ρ12ρ23.

This can be further generalized. For a multiset A of elements of {1, . . . ,m},
define the standardized moment ρA by

ρA = E[
∏

i∈A
X̄i].

For example, ρii = 1 and ρiii = EX̄3
i is the skewness of the distribution of

Xi.

Lemma 3.19. Let X1, . . . , Xm be binary random variables. If they are non-
degenerate, then X1 ⊥⊥ · · · ⊥⊥ Xm−1|Xm implies

ρA = ρm···m
∏

i∈A
ρim for every A ⊆ {1, . . . ,m},

where m · · ·m is a sequence of length |A|.

3.1.4 Identifiability of statistical models

Let p(θ) = (p(x; θ))x∈X and let M = {p(θ) : θ ∈ Θ} be a parametric
statistical model. We say that M is identifiable if and only if p(θ0) = p(θ1)
implies that θ0 = θ1.

Example 3.20. Let X = {0, . . . , n} and consider the binomial model
Bin(n, θ) parameterized by

p(x; θ) =

(
n

x

)
(1− θ)n−xθx for x ∈ X , θ ∈ [0, 1].

The fact that this model is identifiable follows from the fact that p(n; θ) = θn

and hence p(n; θ0) = p(n; θ1) already implies that θ0 = θ1.

Remark 3.21. Establishing identifiability is important since it informs, for
example, how the maximum likelihood method or Bayes estimation might
behave; see e.g., Rothenberg [1971]. For instance, in Bayesian statistics iden-
tifiability affects the asymptotics for the posterior distribution of parameters;
see e.g., Gustafson [2009], Kadane [1974], Poirier [1998], Sahu and Gelfand
[1999]. Moreover, if the model is not identified, the posterior analysis may
strongly depend on the prior specification even for small sample sizes.

In our algebraic setting, identifiability can be formulated as follows. Let
M be an algebraic discrete parametric model given by the map p : Θ→ ∆X .
ThenM is identifiable if and only if the map p is one-to-one onto its image. In
other words, if θ1 6= θ2, then p(x; θ1) 6= p(x; θ2) for some x ∈ X . In practice,
there is another useful concept related to identifiability.

Definition 3.22. A model M is locally identifiable if for each θ0 there exists
a neighborhood W of θ0 in Θ such that for every θ ∈W we have Pθ = Pθ0 if
and only if θ = θ0.
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A necessary condition for local identifiability is that

p−1(q) = {θ ∈ Θ : p(θ) = q}

is a finite set for each q ∈M . This motivates the following definition.

Definition 3.23. Let q ∈M = p(Θ). The preimage Θq := p−1(q) ⊆ Θ, that
is, the set of values of the parameters which are consistent with the known
probability model q, is called the q-fiber .

Although for many parametric statistical models used in practice identi-
fiability does not hold, the following milder version may still hold.

Definition 3.24. We say that a model is generically identifiable if the set
of points q whose q-fiber is not finite forms a lower dimensional subvariety of
the model.

The q-fiber is always a semialgebraic set by Proposition 2.33 and the fact
that p : Θ → ∆X is a polynomial map. The geometry of q-fibers affects
statistical inference. In particular, we are often interested when q-fibers are
finite, when they are smooth subsets of Θ, and when they are singular. These
ideas link to the singular learning theory. We refer to Watanabe [2009] for
details and to Drton and Plummer [2013] for more recent ideas.

Example 3.25. Consider again the binomial model in Example 3.20. Be-
cause the model is identifiable, the preimage of every [p(x; θ)] in the model
has exactly one point. Consider now the mixture of this model like in Exam-
ple 1.2. This model is not (locally, generically) identifiable. Geometrically,
it can be seen in Figure 1.3 that every point in the interior of the shaded
area can be written as a convex combination of many pairs of points in the
binomial model.

An example of a model that is generically identifiable but not identifiable
is given by latent tree models, which we analyze in the second part of the
book. Establishing generic identifiability for various models with latent data
became an important part of tensor decomposition methods; see for example
Allman et al. [2009].

3.2 Exponential families and their mixtures

Discrete exponential families form a very important family of discrete statis-
tical models. Discrete exponential families are usually described by a param-
eterization of the form

p(x; θ) = q(x) exp(
d∑

i=1

θiai(x)− logZ(θ)), θ ∈ Rd, (3.12)

where x ∈ X , Z(θ) is a normalizing constant, q is a base measure, and A =
[ai(x)] is called the sufficient statistic. For given A, the corresponding discrete
exponential family is denoted by EA. The discrete exponential family EA is
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unchanged under the row operations onA. Also, because of the normalization,
we can without loss assume that the vector (1, . . . , 1) is one of the rows of A.

The name and representation in (3.12) suggests that these discrete models
are not algebraic. However, it turns out that the model can be reformulated
so that its description is given by polynomials. Let A = [ai(x)] be a matrix
with |X | columns such that all ai(x) are integers and a(x) = [ai(x)] is the
column of A related to x ∈ X . Define the set of probability distributions
given as the image of the following map

φA : Rd> → ∆X , t = (t1, . . . , td) 7→ Z(t)−1
(
q(x)ta(x)

)
x∈X

, (3.13)

where ta(x) =
∏d
i=1 t

ai(x)
i . To see that classes of models in (3.12) and (3.13)

are identical, apply the transformation ti = exp(θi).

Remark 3.26. The representation of closures of discrete exponential families
is induced from (3.13) by considering φA : Rd≥0 → ∆X . In this case we

adopt the convention that t0 = 1 for t ≥ 0. By Proposition 2.39 these
families of probability distributions correspond to the nonnegative parts of
toric varieties. This enables us to investigate the boundary of the closure of
exponential families using the moment map introduced in Section 2.2; see
[Kähle, 2010, Theorem 1.2.11].

By Remark 2.40, the semialgebraic description of discrete exponential
families is obtained from the algebraic description of their Zariski closure by
adding the nonnegativity constraints defining the probability simplex.

Proposition 3.27. Let M be a discrete exponential family defined by φA as
in (3.13) and let M be the Zariski closure of M . Then

M = M ∩∆0
X .

In particular, the only inequalities describing M as a semialgebraic set are
trivial inequalities.

Proof. Since M ⊆ M and M ⊆ ∆0
X , one inclusion is immediate. For

the opposite inclusion, note that M ⊆ PX is an image of a toric variety
YA obtained by scaling each coordinate by q(x) > 0. This toric variety is
parameterized by t 7→ (ta(x))x∈X . By Proposition 2.39, the nonnegative part
(YA)≥ of this variety is the Euclidean closure of the image of φ̃ : Rd> → RPX>0,
or equivalently it is equal to YA ∩ RPX≥0. Each of the points in (YA)≥ \
φ̃(Rd>) has at least one coordinate zero. Therefore, all points in YA∩RPX>0 lie

necessarily in φ̃(Rd>). Scaling again by q(x) gives us that M ∩RPX>0 is given
by φA(Rd>). Finally, by Lemma 2.37, RPX>0 ' ∆0

X .

In this context it is easy to explain the name of the moment map in (2.6).
The sufficient statistics A is a random variable with values a(x) for j ∈ X
obtained with probability p(x; t) = Z−1(t)ta(x). Its mean EA is

EA :=
∑

x∈X
p(x; t)a(x) =

∑

a∈A
p(a; t)a

© 2016 by Taylor & Francis Group, LLC

  



EXPONENTIAL FAMILIES AND THEIR MIXTURES 53

where A = {a(x) : x ∈ X} and p(a(x); t) := p(x; t). This expectation map is
precisely the algebraic moment map defined in (2.6). In the theory of expo-
nential families, the parameterization in terms of the moment of A is called
the mean parameterization. From the general properties of the exponential
families it follows that for the cumulant function K(θ) = logZ(θ) we have

EA = ∇θK(θ) = Z−1(θ)∇θZ(θ).

By Proposition 2.19, to obtain the implicit description of a discrete expo-
nential family, it suffices to identify the defining ideal ker(φ∗A). In the statis-
tical context, when the input data is given by the A matrix, this can be done
efficiently using the computer software 4ti2; see Hemmecke et al. [2005].

Example 3.28. Let X = (X1, X2, X3, X4) be a vector of four binary random
variables, so that Xi = {0, 1} for all i. Consider an exponential family with
the parameterization φA : R12

> → ∆X defined by

A =




1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1




.

This model is a special graphical model that plays an important role in this
book; see also Example 5.40. Here the columns correspond to elements of X
ordered lexicographically so that (0, 0, 0, 0) corresponds to the first column,
(0, 0, 0, 1) to the second, (0, 0, 1, 0) to the third, and finally (1, 1, 1, 1) to the
last column. The first block of rows corresponds to parameters s00, s01, s10,
and s11, respectively. The second block of rows corresponds to parameters
t00, t01, t10, and t11. The last block corresponds to parameters u00, u01, u10,
and u11. The first column is the vector of exponents of the parameter vector
in the expression for p((0, 0, 0, 0); t). The other columns are obtained in the
same way. The Zariski closure of the model can be described by quadratic
equations of the form

p(0, 0, 1, 1)p(1, 1, 0, 1)− p(0, 1, 0, 1)p(1, 0, 1, 1) = 0.

The complete list can be easily obtained using 4ti2.

Mixtures of exponential families A powerful approach to probabilistic mod-
eling involves supplementing a set of observed variables with additional hid-
den variables. By defining a joint distribution over visible and latent variables,
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the corresponding distribution of the observed variables is then obtained by
marginalization. This allows relatively complex distributions to be expressed
in terms of more tractable joint distributions over the expanded variable
space. One well-known example of a hidden variable model is the mixture
distribution in which the hidden variable is the discrete component label.

Note that mixtures of discrete exponential families are also algebraic
models. Suppose that the system under consideration consists of both the
observed variables X and the hidden variables H. Let (X,H) ∈ X × H,
where

H = {0, . . . , s1} × · · · × {0, . . . , sn}.
Suppose that the model p(x, h; θ) for (X,H) is a discrete exponential family.
We call it a fully observed model . In practice we never observe H and there-
fore we are interested in the family p(x; θ) of possible marginal probability
distributions of X, where

p(x; θ) =
∑

h∈H

p(x, h; θ) for all x ∈ X .

Geometrically, the model for X is a projection of a toric variety defining
the model for (X,H). It is significantly harder to describe than a discrete
exponential family, and in particular, there is no equivalent of Proposition
3.27. A simple example is given in Example 1.2. A more general example
is given by latent tree models, which are studied in the second part of this
book.

Example 3.29 (X1 ⊥⊥ X2|H). Consider a simple model with X = {0, 1}2,
H = {0, 1} given by

p(x1, x2, h) = pH(h)p1|H(x1|h)p2|H(x2|h),

where pH denotes the marginal distribution of H and pi|H for i = 1, 2 denotes
the conditional distribution of Xi given H. Since H is hidden, we are inter-
ested in the marginal distribution of (X1, X2). Thus the parameterization is
given by a polynomial map, p : [0, 1]5 → ∆X given for each x1, x2 ∈ {0, 1} by

p12(x1, x2) = pH(0)p1|H(x1|0)p2|H(x2|0) + pH(1)p1|H(x1|1)p2|H(x2|1),

where the five free parameters are pH(1), p1|H(1|h) and p2|H(1|h) for h ∈
{0, 1}. As it is shown by Gilula [1979], every possible probability distribution
for (X1, X2) can be obtained in this way for some parameters or in other
words p([0, 1]5) = ∆X . Using a more statistical language we say that the
model is saturated.

3.3 Maximum likelihood of algebraic models

3.3.1 The likelihood function

Let X be a finite discrete random variable with values in X and probability
distribution q ∈ M ⊆ ∆X , where M is a parametric algebraic statistical
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model with parameterization p(x; θ). In particular, there exists θ∗ ∈ Θ such
that

q(x) = p(x; θ∗)

for every x ∈ X . Suppose that we observe a random sample X(1) =
x(1), . . . , X(n) = x(n) of n independent copies of X from q ∈ M . The aim
of statistical inference is to obtain valid estimates of the “true” distribution
q or equivalently a “true” parameter θ∗ based on the observed data. In this
section we focus on the maximum likelihood inference.

Because observations X(1) = x(1), . . . , X(n) = x(n) are independent and
identically distributed, the probability of observing this sample can be rewrit-
ten as

n∏

i=1

p(x(i); θ) =
∏

x∈X
p(x; θ)u(x), (3.14)

where
u(x) = #{i : x(i) = x}

are entries of the contingency table u = [u(x)]. By construction u(x) ≥ 0 and∑
x∈X u(x) = n and hence u ∈ U = U(X , n) as defined in (2.14).

Remark 3.30. The assumption that our data are collected in this way is just a
convention called the multinomial sampling assumption. It is, however, often
done in statistics and we are not going to consider other sampling schemes.

The most popular method to make inference about q or θ∗ is the maximum
likelihood method. The idea is to estimate θ∗ by the parameter maximizing the
probability of observing random sample x(1), . . . , x(n). By (3.14) this means
maximizing the likelihood function L : Θ→ R given by

L(θ;u) =
∏

x∈X
p(x; θ)u(x). (3.15)

The global maximum of L(θ;u), if it exists, is called the maximum likelihood

estimator (or the MLE ) and is denoted by θ̂.
To maximize L(θ;u) it is convenient to take the logarithm of (3.15), which

does not change the optima. The resulting log-likelihood function is

`(θ;u) =
∑

x∈X
u(x) log p(x; θ) for all θ ∈ Θ ⊆ Rd,

and hence it is a linear function in λ(x; θ) := log p(x; θ). Define the sample
proportions p̂ by

p̂(x) =
u(x)

n
for all x ∈ X .

For a fixed sample size n, there is a one-to-one correspondence between p̂
and u. We then can write

`(θ; p̂) = n〈λ(θ), p̂〉 for all θ ∈ Θ ⊆ Rd,
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where 〈λ, p〉 =
∑
x∈X λ(x)p(x) denotes the usual scalar product in RX . To

maximize, we compute the derivatives

∂`(θ; p̂)

∂θi
= n

∑

x∈X

p̂(x)

p(x; θ)

∂p(x; θ)

∂θi
for i = 1, . . . , d, (3.16)

and if the global maximum lies in the interior of Θ, then it is given by the
solution of

∂`(θ; p̂)

∂θi
= 0 for all i.

The maximum likelihood estimate can be alternatively obtained by min-
imizing the Kullback–Leibler divergence. For two discrete probability distri-
butions over X that are strictly positive we define the Kullback–Leibler di-
vergence K(p||q) as

K(p||q) :=
∑

x∈X
log

(
p(x)

q(x)

)
p(x).

It is well known that K(p||q) ≥ 0 and is zero precisely when p(x) = q(x) for
all x ∈ X . The following proposition links the Kullback–Leibler divergence
to maximum likelihood estimation.

Proposition 3.31. Let M = {p(θ) : θ ∈ Θ} be a discrete model over
X parameterized by the set Θ. Let p̂ be sample proportions obtained from a
random sample from some true distribution. Then θ∗ maximizes `(θ; p̂) if and
only if it minimizes K(p̂||p(θ)).

Proof. Directly from the definition

K(p̂||p(θ)) =
∑

x∈X
log(p̂(x))p̂(x)−

∑

x∈X
log(q(x; θ))p̂(x).

The first term does not depend on θ and the second term is − 1
n`(θ; p̂).

A special case of (3.15) is whenM is equal to the interior of ∆X , which we
denote by ∆0

X . Then Θ = ∆0
X and we chose the parameters to be λ̄ = [λ̄(x)],

where λ̄(x) = λ(x)− λ(0). In this case the log-likelihood function, called the
multinomial log-likelihood, is given by

`(λ̄; p̂) = n〈λ, p̂〉 = n(〈λ̄, p̂〉 −K(λ̄)), (3.17)

where K(λ̄) = −λ(0) = log[1 + 〈1, exp(λ̄)〉] is the cumulant function and
hence it is convex.

Proposition 3.32. Given p̂(x) > 0 for all x ∈ X , the multinomial log-
likelihood is a concave function with the unique maximum p∗ given by the
sample proportions, that is, p∗ = p̂.

Proof. Since K(λ̄) is convex, `(λ̄; p̂) is concave in λ̄. Therefore it has at
most one maximum. The form of the maximum can be obtained by differen-
tiation.
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3.3.2 MLE for exponential families

An important feature of discrete exponential families is that they admit a
unique MLE. In this case the likelihood can be written as

L(t;u) = Z(t)−1tA·u,

where u : X → NX0 is the tensor of sample counts and ti = eθi . A concept
closely related to the maximum likelihood estimation for exponential families
is that of the maximum entropy principle. For every probability distribution
p, define its Shannon entropy , as

H(p) := −
∑

x∈X
p(x) log p(x).

The following result is the central result of the theory of exponential families.

Theorem 3.33 (Maximum entropy principle). Let p̂ be the sample propor-
tions such that p̂(x) > 0 for all x ∈ X . If M is a discrete exponential family,
then the likelihood function always has a unique maximum. It is given by the
unique point p∗ in the model satisfying Ap̂ = Ap∗.

Proof. See, for example, Wainwright and Jordan [2008], Theorem 3.4.

Note that in Theorem 3.33 we do not require p∗ to lie in M . The fact
that indeed p∗ ∈M is part of the theorem. This also shows that we obtain
two equivalent ways to describe the MLE for discrete exponential families.

Remark 3.34. Theorem 3.33 is true also if we extendM by adding its limiting
distributions.

In many interesting situations there exist closed form formulas for the
unique MLE in Theorem 3.33. In the case when such a formula is not available
a popular way to find the maximum likelihood estimate is to use the Iterative
Scaling algorithm; see Darroch and Ratcliff [1972].

3.3.3 Constrained multinomial likelihood

There are two alternative ways of thinking about the likelihood function of
a parametric algebraic statistical model M . The first is to define it as a
function on Θ like in (3.15). The second uses that fact that the model M is
parameterized by Θ→M ⊆ ∆X . Write the multinomial likelihood

Lm(p;u) =
∏

x∈X
p(x)u(x).

Comparing this with (3.15) shows that alternatively the maximum likelihood
estimate θ∗ can be obtained by finding a constrained maximum p∗ of the
multinomial likelihood constrained to the image of Θ in the probability sim-
plex and then mapping p∗ back to Θ. In this case we call the likelihood
function the constrained multinomial likelihood.
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These two ways of thinking about the multinomial likelihood can be use-
ful when we toggle between the parametric and implicit representation of the
model. It gives a good framework for understanding the model selection prob-
lems. Thinking about the likelihood function as a constrained multinomial
likelihood function also gives intuition about how intrinsic multimodality
arises in certain type of models. For example, even if the constrained multi-
nomial likelihood is unimodal but the parameterization of the model is not
one-to-one, the likelihood function of the model will not be unimodal; see
Example 3.39 below. In that case the best solution is to reparameterize the
model to get rid of this non-uniqueness.

The following proposition follows immediately from the observation that
M is a subset of ∆X .

Proposition 3.35. Let M be given by p : Θ → ∆X be an algebraic para-
metric model. If p̂ ∈ M such that all entries of p̂ are strictly positive, then
any point in the p̂-fiber Θp̂ (c.f. Definition 3.23) is the maximum likelihood
estimator for the unknown true parameter θ∗.

Typically, M has a much smaller dimension than the ambient probability
simplex ∆X . In this case, p̂ /∈M almost surely and consequently we cannot
use the above proposition. However, this insight will be useful anyway for our
understanding of the likelihood geometry. An example is the following basic
result.

Proposition 3.36. Let M be a statistical model whose intersection with
∆0
X is non-empty. If p̂ > 0, then the maximum of the multinomial likelihood

constrained to M lies in the interior of the probability simplex.

Proof. By Proposition 3.32 the multinomial likelihood is concave and
has a unique maximum at p̂. Its value goes to −∞ at the boundary of the
probability simplex. Therefore, the constrained maximum must be attained
in ∆0

X .

We now discuss a number of examples in which we give a brief overview
of possible obstacles in the maximum likelihood estimation.

Example 3.37. Consider the Bin(2, θ) model from Example 1.1. Suppose
that the experiment was repeated n times out of which u0 times no success
was observed, u1 times exactly one success was observed, and u2 times two
successes were observed. The multinomial likelihood in this case is given by

Lm(p;u) = pu0
0 pu1

1 pu2
2 .

The model is given in ∆X by the single equation p2
1 − 4p0p1 = 0. Project ev-

erything on R2 by using the fact that p0 = 1−p1−p2. The probability simplex
∆X becomes a triangle p1, p2 ≥ 0, p1 + p2 ≤ 1. Consider three situations:
u = [8, 6, 5], u = [6, 3, 5], and u = [6, 10, 6]. The multinomial likelihood and
the corresponding constrained multinomial likelihood are depicted in Figure
3.3. In the last case, the MLE under the constrained model lies very close
to the multinomial MLE. In the second case, both estimators lie far apart.
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Observe also that both unconstrained and constrained likelihood functions
have unique maxima; see Theorem 3.33.

Figure 3.3 The multinomial likelihood and the constrained multinomial likelihood
on the Bin(2, θ) model (given by the solid black).

Remark 3.38. The ratio between the multinomial (unconstrained) likelihood

at the maximum p̂ and the constrained likelihood at its maximum θ̂ gives
some evidence of how likely our model is to hold. A formal treatment of this
idea is given by the likelihood ratio statistics. For a geometric insight into
this notion; see Fan et al. [2000].

For more general models with non-trivial inequality constraints, the situ-
ation may of course get more complicated even in this low-dimensional case.

Example 3.39. Consider the mixture model from Example 1.2. The model
is given in ∆3 by a single inequality p2

1−4p0p2 ≤ 0. Consider three situations:
u = [8, 6, 5], u = [3, 9, 5], and u = [4, 20, 8]. The multinomial likelihood and
the corresponding constrained multinomial likelihood are depicted in Figure
3.4. In the first situation, the multinomial likelihood and the constraint multi-
nomial likelihood share the maximum. In the second situation, the global and
the constraint maxima are different but close to each other. In the last sit-
uation, the multinomial likelihood has its unique maximum far outside the
constrained model space. In the last two cases, the constrained maximum
lies on the boundary of the model space. Thus, we have two possible sit-
uations; either the global and the constrained optima of the multinomial
likelihood function coincide or not. In the second situation, the constrained
optimum lies always on the boundary of the constrained model space, which
is given by p2

1 − 4p0p1 = 0 and hence corresponds to the binomial model.
The maximum of the constrained multinomial likelihood function is always
uniquely defined, however, the likelihood function of the model is more com-
plicated.
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Figure 3.4 The multinomial likelihood and the constrained multinomial likelihood
on the mixture model of the binomial model Bin(2, θ).

In Example 3.39 the situation is still relatively simple. The constrained
model forms a convex set. In this case the maximum of the constrained
multinomial likelihood is always unique by the following result.

Proposition 3.40. Let L be the multinomial likelihood Lm : ∆X → R con-
strained to a convex set M ⊆ ∆X . If p̂ > 0, then L has a unique maximum.
If M is full dimensional, then this maximum lies in the interior of M if Lm
has a global maximum in M or on the boundary of M otherwise.

Proof. Since Lm is strictly concave over ∆0
X , it remains strictly concave

over any convex subset. For details; see for example [Davis–Stober, 2009,
Theorem 1] or [Boyd and Vandenberghe, 2004, Section 4.2.2].

In this book we are interested in models for which finding the maximum
likelihood estimator is far more challenging than in the above examples. The
two main reasons are that these models are non-convex subsets of ∆X and
their dimension is typically much smaller than the dimension of the ambient
space. The problem is not only that the likelihood function is multimodal but
also that we can have many distant maxima that give similar value of the
likelihood function. A similar problem will arise in Bayesian statistics when
studying the maximum aposteriori estimator.
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3.3.4 Hidden variables and the EM algorithm

Let (X,H) ∈ X × H be a random vector, where X is its observed part and
H is hidden. For simplicity, assume that the model p(x, h; θ) for (X,H) is a
discrete exponential family. Our task is to maximize the likelihood function
L(θ;u) in (3.15) for the marginal model of X. In the presence of hidden data,
even in simple cases the numerical maximization can be hard, as explained
in the previous section. On the other hand, maximizing the fully observed
likelihood

L(θ;x, h) =
∏

(x,h)∈X×H

p(x, h; θ)u(x,h), (3.18)

is relatively simple because it always has a unique solution by Theorem 3.33.
The maximum can be found using a closed form formula if such a formula is
available, or numerically by the Iterative Scaling algorithm.

Of course, in practice, h is never known. The idea of the EM algorithm
is as follows. First, make an initial guess on the parameter vector θ. For
this fixed θ we compute the expectation of u(x,H = h) given the observed
data. This is called the expectation step (E-step). Now we maximize the
fully observed likelihood this estimation of the complete data table u(x, h).
This step is called the maximization step (or M -step). Let θ∗ be the optimal
solution found at the M -step. We now replace this value for θ and repeat the
E-step. We repeat this procedure until we reach some optimality criterion,
typically, when changes in the estimated value of θ in subsequent M -steps
are very small.

Algorithm 3.41 (EM Algorithm).
Input: A tensorp(x, h; θ) of polynomials in θ for (x, h) ∈ X ×H representing
the fully observed model and the observed data u(x) for x ∈ X .

Output: A local maximum θ̂ ∈ Θ of the likelihood function L(θ;u).
Step 0: Select a threshold ε > 0 and select starting parameters θ0 ∈ Θ
satisfying p(x, h; θ0) > 0 for all (x, h) ∈ X ×H.
E-step: Define the expected hidden data by

u(x, h) := u(x)p(h|x; θ) =
u(x)

p(x; θ0)
p(x, h; θ0)

for all (x, h) ∈ X ×H.
M -step: Find the unique maximum θ∗ ∈ Θ of the fully observed likelihood
function in (3.18).
Step 3: If L(θ∗;x) − L(θ;u) > 0, then set θ0 := θ∗ and go back to the
E-step.
Step 4: Output the parameter θ̂ := θ∗ and the corresponding probability
distribution p(x; θ̂) for x ∈ X .

What is less obvious is that in every iteration, the likelihood increases.

Theorem 3.42 (Dempster et al. [1977]). The value of the likelihood function
L(θ;u) strictly increases with each iteration of the EM-algorithm until a local
maximum is attained.
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This result has good and bad implications. On one hand, we are guaran-
teed to always find a local optimum. On the other hand, we often get stuck
in a local minimum, and to find the global maximum we need to repeat the
procedure many times from different starting points. For this reason it is
important to study fixed points of the EM algorithm for interesting model
classes and develop procedures to obtain good starting points.

3.4 Graphical models

Graphical models form a popular family of statistical models, which enable
us to efficiently encode large sets of conditional independence statements in
terms of graphs. The aim of this chapter is to introduce only very basic models
and elementary related concepts. We focus on two model classes: undirected
graphical models, also known as Markov random fields, and directed graphical
models, also known as Bayesian networks. To study the latter we also briefly
discuss the chain graph models. Most of this section is based on Lauritzen
[1996]. We refer there for the proofs and a more detailed discussion.

3.4.1 Basic graphical notions

Let G = (V,E) be a graph with set of vertices V and set of edges E ⊆ V ×V .
We always assume there are no loops and no multiple edges. A directed edge
from i to j is denoted by i → j and an undirected edge between i and j is
denoted by i−j. We write i · · · j, and say that i and j are linked, whenever we
mean that either i→ j, or i← j, or i−j. A hybrid graph is a graph with both
directed and undirected edges; see for example Figure 3.5. We exclude also
a situation when two vertices are connected by an undirected and a directed
edge.

1
4

2

3

5

Figure 3.5: An example of a hybrid graph with both directed and undirected edges.

A path between i and j in a hybrid graph G is any sequence k1, . . . , kn of
vertices such that k1 = i, kn = j and ki · · · ki+1 in G for every i = 1, . . . , n−1.
We say that a path is undirected if ki − ki+1 in G for every i = 1, . . . , n− 1.
It is said to be directed if ki → ki+1 in G for every i = 1, . . . , n− 1. A semi-
directed path between i and j is any sequence k1, . . . , kn of vertices such that
k1 = i, kn = j and either ki−ki+1 or ki → ki+1 in G for every i = 1, . . . , n−1
and ki → ki+1 for at least one i. A semi-directed cycle in a hybrid graph G
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is a sequence k1, . . . , kn+1 = k1, n ≥ 3 of vertices in G such that k1, . . . , kn
are distinct, and this sequence forms a semi-directed path. In a similar way
we define a undirected cycle and directed cycle.

Definition 3.43. We say that G is undirected if it contains only undirected
edges. A graph is directed if it contains only directed edges. A chain graph
is a hybrid graph without semi-directed cycles. A directed acyclic graph (or
DAG) is a directed graph without directed cycles.

For example, the hybrid graph in Figure 3.5 is not a chain graph because
2→ 3−1−2 forms a semi-directed cycle. An example of a DAG and a chain
graph is given in Figure 3.6. Of course, every DAG and every undirected
graph are also chain graphs.

1 3

2

45

1
4

2

3

5

Figure 3.6: An example of a DAG and a chain graph.

We say that two vertices i, j are neighbors if i−j. In this case we say that
the edge (i, j) is incident with i and j. If G is a directed graph and i→ j in
G (and hence when (i, j) ∈ E), then we call i a parent of j and j a child of i.
Let i ∈ V , the degree of i is denoted by deg(i), and is the number of vertices
j such that i · · · j in G.

Let A ⊂ V , then GA denotes the induced subgraph with vertices A and
edges E ∩ (A×A). A skeleton of a directed graph G is the undirected graph
with all arrows of G replaced with undirected edges. By a moral graph Gm

of G we mean an undirected graph obtained from G by first joining by an
undirected edge any two vertices sharing a child, and then replacing all arrows
with undirected edges.

3.4.2 Undirected models and decomposable graphs

Consider a random vector X = (Xi)i∈V together with a graph G = (V,E)
whose vertices index the components of X. Lack of an edge between Xi and
Xj indicates some form of conditional independence between Xi and Xj .
These constraints are known as the Markov properties of the graph G. The
graphical model associated with G is a family of multivariate probability
distributions for which these Markov properties hold.

Undirected graphical models. Let G be an undirected graph and let X ∈
X = (Xv)v∈V be a discrete random vector. The undirected pairwise Markov
property associates the following conditional independence constraints with

© 2016 by Taylor & Francis Group, LLC

  



64 ALGEBRAIC STATISTICAL MODELS

the non-edges of G:

Xi ⊥⊥ Xj |XV \{i,j}, for all (i, j) /∈ E. (3.19)

A more general concept is that of the undirected global Markov property . For
any three disjoint subsets A,B,C of V we define a relation ⊥G and we write
A ⊥G B|C if and only C separates A and B in G, i.e., every path from a
vertex in A to a vertex in B necessarily crosses C. The undirected global
Markov properties (UG) are given by

XA ⊥⊥ XB |XC , for all A ⊥G B|C. (3.20)

Obviously (3.20) implies (3.19) but the opposite implication in general does
not hold.

Definition 3.44. Let X = (Xv)v∈V be a random vector and let G = (V,E)
be an undirected graph. The undirected graphical model of G is the CI model
satisfying all global Markov properties in (3.20).

By Lemma 3.10, every discrete graphical model is an algebraic statistical
model. Equations in Lemma 3.10 together with the trivial constraint defining
∆X give the implicit description of the model. Undirected graphical models
also have their parametric version.

Definition 3.45. Let G be an undirected graph. A clique C ⊆ V in an
undirected graph is a collection of vertices such that (i, j) ∈ E for every pair
i, j ∈ C. The set of maximal cliques of G is denoted by C(G).

The probability distribution p on X factorizes according to G, which we
denote by (UF), if there exist a parameter vector [θC(xC)]xC∈XC ∈ RXC≥0 for
all C ∈ C(G) such that

p(x) =
1

Z(θ)

∏

C∈C(G)

θC(xC) for all x ∈ X , (3.21)

where Z(θ) is the normalizing constant. This class of models, when restricted
to positive distributions, lies in the class of discrete exponential families.
However, it is important to note that in general the family of distributions
induced by this parameterization need not exactly coincide with the undi-
rected graphical model. One inclusion follows from the following proposition.

Proposition 3.46. For any undirected graph G and any probability distri-
bution on X it holds that

(UF ) =⇒ (UG) =⇒ (UP ).

These three families of probability distributions coincide on the subset
∆0
X of positive probability distributions by the following important result.

Theorem 3.47 (Hammersley–Clifford Theorem). Let p ∈ ∆0
X , then p sat-

isfies (UP) with respect to an undirected graph G if and only if it satisfies
(UF).
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This shows that the difference between the undirected graphical model (as
given in Definition 3.44) and the models defined by (UF) and (UP) can occur
only on the boundary of the probability simplex ∆X . For distributions with
zeros, this characterization in general is not clear and the reason is precisely
that XA ⊥⊥ XB |XC is not well defined for z ∈ XC such that pC(z) = 0.

Decomposable models Decomposable models form an important family of
undirected graphical models.

Definition 3.48. An undirected graph is said to be decomposable (or trian-
gulated) if it contains no induced cycle of length greater than 3.

Note that if G is decomposable and A ⊆ V , then GA is decomposable.
For decomposable graphs we mention the following important result.

Proposition 3.49. Let G be decomposable. Then

(UF )⇐⇒ (UG).

Decomposable graphs admit a useful decomposition of its set of vertices.
Let B1, . . . , Bk be a sequence of subsets of the vertex set V of an undirected
graph G. Let

Hj = B1 ∪ · · · ∪Bj , Rj = Bj \Hj−1, Sj = Hj−1 ∩Bj .

The sequence is said to be perfect if the following conditions are fulfilled:

(i) for all i > 1 there is a j < i such that Si ⊂ Bj ,
(ii) the sets Si are complete for all i.

Call the sets Hj histories, Rj the residuals, and Sj the separators of the
sequence.

Lemma 3.50. Let B1, . . . , Bk be a perfect sequence of sets which contains
all cliques of an undirected graph G. Then for every j, Sj separates Hj−1 \Sj
from Rj in GHj .

The aim of this section is to show why decomposable graphs are im-
portant especially from the inferential point of view. We have the following
proposition.

Proposition 3.51. Assume A,B, S are three disjoint subsets of V such that
S separates A from B and S forms a clique. Then a probability distribution
P factorizes with respect to G if and only if both marginal distributions PA∪S
and PB∪S factorize with respect to GA∪S and GB∪S, respectively, and the
probability mass functions satisfy

p(x)pS(xS) = pAS(xAS)pBS(xBS) (3.22)

for every x ∈ X .

In Proposition 3.51 we described how the factorization (and hence the
global Markov property) behaves across decompositions of the graph. Using
the factorization, an especially simple expression for the vector of means can
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be obtained. Consider a graphical model with a decomposable graph. By
[Lauritzen, 1996, Proposition 2.17] the cliques of G can be numbered to form
a perfect sequence exactly when G is decomposable. The repeated use of
(3.22) gives the formula

p(x) =

∏k
j=1 pCj (xCj )∏k
j=2 pSj (xSj )

,

where Sj = Hj−1 ∩ Cj is the sequence of separators. Alternatively, we can
collect the terms in the denominator in groups and obtain the formula

p(x) =

∏
C∈C pC(xC)∏

S∈S pS(xS)ν(S)
, (3.23)

where C is the set of maximal cliques of G, S is the set of separators, and
ν(S) is an index that counts the number of times a given separator S occurs
in a perfect sequence. The main application of this formula is the following
proposition.

Proposition 3.52. Let u be the data tensor. In a decomposable graphical
model with graph G, the maximum likelihood estimate of the mean vector is
given as

û(x) =

∏
C∈C u(xC)∏

S∈S u(xS)ν(S)
,

where u(xA) is the number of times the event {XA = xA} was observed.

Suppose that X = (Xv) ∈ X has distribution in M(G), the graphical
model of G. Consider the multinomial likelihood Lm(q;u) on ∆X as in (3.17).
The likelihood function L(θ;u) of M(G) can be treated as a constrained
version of Lm on ∆X as explained in Section 3.3.3. Then Lm is maximized in
sample frequencies and its constrained version is maximized in 1

n û(x), where
û is given in Proposition 3.52.

Corollary 3.53. Let G be a decomposable graph. Suppose that some of the
vertices represent observed variables and some of them are hidden. Then the
M step in Algorithm 3.41 can be effectively implemented using Proposition
3.52.

3.4.3 DAGs, chain graphs, and DAG equivalence

Bayesian networks Let G = (V,E) be a directed acyclic graph (DAG).
For each v ∈ V , the set pa(v) denotes the set {u ∈ V : (u, v) ∈ E} of
parents of v. The set de(v) of descendants is the set of vertices w such that
there is a directed path from v to w in G. The non-descendants of v are
nd(v) = V \ (v ∪ de(v)). For a subset C ⊂ V , we define an(C) to be the set
of vertices w that are ancestors of some vertex v ∈ C. Here, w is an ancestor
of v if there is a directed path from w to v.

The conditional independence statements defining a Bayesian network are

© 2016 by Taylor & Francis Group, LLC

  



GRAPHICAL MODELS 67

derived from the graph in a different way than in the undirected case. The
directed local Markov property (DL) associates the conditional independence
constraints

Xv ⊥⊥ Xnd(v)\pa(v)|Xpa(v), v ∈ V (3.24)

with the directed acyclic graph G. For every triple A,B,C of pairwise disjoint
subsets of V , consider the set an(A ∪ B ∪ C) and the induced moral graph
Gman(A∪B∪C). The directed global Markov properties (DG) are given by

XA ⊥⊥ XB |XC for all A ⊥H B|C, H = Gman(A∪B∪C) (3.25)

and hence by all A,B,C such that C separates A and B in the moral graph
Gman(A∪B∪C).

1 4

2

3

Figure 3.7: This DAG encodes: 1 ⊥⊥ 4|{2, 3} and 2 ⊥⊥ 3|1.

Remark 3.54. To check if A ⊥⊥ B|C in a given DAG model we study the moral
graph Gman(A∪B∪C). In particular, it is not enough to check if C separates A
and B in Gm. As an example, consider the graph in Figure 3.7. We have
2 ⊥⊥ 3|1 even though 2− 3 in the moral graph Gm.

We say that a probability distribution satisfies the recursive factorization
property (DF) if there exists a parameter vector [θj| pa(j)(xj |xpa(j))]xj∈Xj ∈
RXj≥0 for all xpa(j) ∈ Xpa(j) and j ∈ V such that

∑
xj
θj| pa(j)(xj |xpa(j)) = 1

and

p(x) =
m∏

j=1

θj|pa(j)(xj |xpa(j)), for all x ∈ X . (3.26)

For example, factorization in Example 3.9 corresponds to the parameteriza-

tion of a simple Bayesian network of the form
1• → 3• ← 2•.

In the case of directed acyclic graphs, all three characterizations of
Bayesian networks are equivalent.

Theorem 3.55. Let G be a directed acyclic graph. For a probability distri-
bution p on X the following conditions are equivalent:

(DF) p admits a recursive factorization according to G,

(DG) p obeys the directed global Markov property relative to G,

(DL) p obeys the directed local Markov property relative to G.
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DAG equivalence Theorem 3.55 shows that at least in the case of various
Markov properties the DAG model seems to be easier to work with than
models of undirected graphs. However, this model class has a drawback not
present in the undirected case, namely, two different DAGs may define the
same statistical model. For example, the three DAGs in Figure 3.8 all lead
to the same statistical model defined by a single conditional independence
statement X1 ⊥⊥ X3|X2. This is equivalent to the undirected graphical model
1• − 2• − 3•.

1 2 3 1 2 3 1 2 3

Figure 3.8: Three equivalent DAGs.

Let G be a DAG. Write [G] for the equivalence class of all DAGs defining
the same statistical model as G. It turns out that this equivalence class
has a very simple description. Define an immorality as an induced subgraph
i• → j• ← k• (there is no arrow between i and k in G). We have the result,
which has been discovered independently by Frydenberg [1990] and Verma
and Pearl [1991].

Theorem 3.56. Two DAGs with the same set of vertices are equivalent if
and only if they have the same skeleton and the same immoralities.

From the point of view of model selection, this non-uniqueness of DAGs
was worrying. For that reason, researchers often work with a special chain
graph that represents the equivalence class [G]. This graph is called the es-
sential graph and is denoted by G∗.

To understand equivalence classes of DAGs, we need to introduce chain
graph models. Recall that a chain graph is a hybrid graph without semi-
directed cycles. Chain graph models form a family of graphical models which
generalize both the undirected models and Bayesian networks. In this section
we only very briefly introduce this important model class.

Two non-equivalent definitions of chain graph models can be found in
the literature and they are referred to as LWF or AMP chain graph models
in Andersson et al. [2001], which refers to: Lauritzen-Wermuth-Frydenberg
Frydenberg [1990], Lauritzen and Wermuth [1989] and Andersson-Madigan-
Perlman Andersson et al. [2001]. These two definitions differ in how exactly
a graph encodes the defining set of conditional independence statements.
Define a flag as an induced subgraph of the form i→ j − k. In this book we
consider only chain graphs without flags (NF-CG). This subfamily is sufficient
for our purposes of discussing the equivalence of DAGs. Moreover, it has the
important property that for NF-CGs both the LWF and AMP chain graph
models coincide; see [Andersson et al., 2001, Theorem 1, Theorem 4].

For every A ⊂ V , denote by An(A) the set of vertices containing A
together with all vertices i in V such that there exists either a directed,
undirected, or semi-directed path from i to some a ∈ A. The set of global
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Markov properties (CG) induced by a chain graph G is given by A ⊥⊥ B|C
whenever C separates A from B in the moral graph GmAn(A∪B∪C).

Theorem 3.57. Let G be a DAG. The essential graph G∗ is the unique
chain graph with no flags, with the same skeleton and immoralities as G and
with the maximal number of undirected edges. Moreover, the statistical models
defined by the DG properties on G and CG properties on G∗ are equal.

By definition, G∗ has the same skeleton as G, and i → j in G∗ if and
only if i → j in every H ∈ [G], all other edges are undirected. For example,
the essential graph for any of the graphs in Figure 3.8 is the undirected

graph
1• − 2• − 3•, whereas the essential graph of G =

1• → 2• ← 3• is G itself.
Another example is given in Figure 3.9. By Theorem 3.56, every arrow that
participates in an immorality in G is essential, but G∗ may contain other
arrows. For example, in the DAG in Figure 3.10 is equal to its essential
graph G∗ even though not all arrows participate in immoralities.

1 4

2

3

1 4

2

3

Figure 3.9: A DAG and its essential graph.

1 3

2 4

Figure 3.10 A NF-CG whose edges are all essential but not all part of immoralities.

Note that if a chain graph is an undirected graph, then the global undi-
rected Markov properties coincide with chain graph Markov properties.

Corollary 3.58. Let G be a DAG such that the essential graph G∗ is an
undirected graph. Then

(DF ) ⇐⇒ (UG).

3.5 Bibliographical notes

All basic definitions like marginal distribution and conditional are completely
classical. Good textbooks on basic probability and statistics are, for example,
Casella and Berger [1990], Grimmett and Stirzaker [2001], Young and Smith
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[2005]. Discrete statistical models are discussed in detail, for example, in
Agresti [1996, 2002]. The notion of an algebraic statistical model was defined
in Drton et al. [2009], Pachter and Sturmfels [2005]. Its most refined version
can be found in Drton and Sullivant [2007]. The moment structures in the al-
gebraic setting are discussed for example in Pistone et al. [2001]. The moment
aliasing principle was formulated in [Pistone and Wynn, 2006, Lemma 3]. The
notion of identifiability and its importance in statistics was discussed for ex-
ample by Rothenberg [1971]. It turns out that identifiability is also a problem
in the Bayesian setting, which was raised by Gustafson [2009], Kadane [1974],
Poirier [1998], Sahu and Gelfand [1999]. Recently a more mathematical, gen-
eral treatment of identifiability for models with hidden data has been given by
Allman et al. [2009]. The best reference for conditional independence models
is Dawid [1979], Studený [2004]. A general reference on exponential families
is Barndorff–Nielsen [1978], Brown [1986], Efron [1978]. Discrete exponential
families are linked to toric geometry in Geiger et al. [2006], Diaconis and
Sturmfels [1998]. More general links between exponential families and alge-
braic geometry has been recently developed by Micha lek et al. [2014]. The
moment map can then be used to analyze possible supports of a model Kähle
[2010], Rauh et al. [2009]. Mixture models are treated in detail for example
in Bartholomew et al. [2011], Lindsay [1995]. The algebraic geometry of the
mixture model is discussed in Garcia et al. [2005], Drton et al. [2009], Lindsay
[1995]. Also here the analysis of possible supports is possible; see Montúfar
[2013]. The maximum likelihood method is described in any textbook on
statistics like Casella and Berger [1990], Young and Smith [2005]. A more al-
gebraic treatment is given in Catanese et al. [2006], which led to unexpected
links in algebraic geometry by Huh [2012], Huh and Sturmfels [2014]. The
constrained multinomial likelihood theory is summarized in Davis–Stober
[2009]. The EM algorithm was proposed by Dempster et al. [1977]. We use
its special version, explicitly written in the most convenient form, which can
be also found in Pachter and Sturmfels [2005]. The use of graphs to represent
statistical models dates back to Wright [1921]. The books Whittaker [1990],
Pearl [2000], Neapolitan [1990], Lauritzen [1996], Koller and Friedman [2009]
summarize these developments. Recently the variational approach to graph-
ical models has become popular; see Wainwright and Jordan [2008]. Most of
the results of Section 3.4 are based on Lauritzen [1996]; see also references
therein. The analysis of the equivalence classes of DAGs and the correspond-
ing link to chain graph models is given in Andersson et al. [1997], Frydenberg
[1990], Roverato [2005], Studený [2004], Verma and Pearl [1991].
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Chapter 4

Tensors, moments, and combinatorics

[]
In this chapter we develop techniques to work efficiently with arbitrary

discrete distributions. We create deep links between statistics and geometry,
which provide a set of tools for symbolic computations useful in the analysis
of various algebraic varieties. The final aim, however, is to construct a coor-
dinate system suitable for the study of hidden tree models in the second part
of this book.

4.1 Posets and Möbius functions

4.1.1 Basic concepts

A partially ordered set P (or poset) is a set, together with a binary relation
denoted ≤, satisfying the following three axioms:

1. For all x ∈ P, x ≤ x (reflexivity).

2. If x ≤ y and y ≤ x, then x = y (antisymmetry).

3. If x ≤ y and y ≤ z, then x ≤ z (transitivity).

We use the obvious notation x ≥ y to mean y ≤ x, x < y to mean x ≤ y,
and x 6= y. We consider only finite posets.

Example 4.1. The following two examples are very important.

a. Let m ∈ N0. We can make the set of all subsets of [m] into a poset Bm.
For any two subsets A,B ⊆ [m] we say that A ≤ B in Bm if A ⊆ B.

b. Let m ∈ N. We say that π = B1| · · · |Br is a set partition (or partition)
of [m], if the blocks Bi 6= ∅ are disjoint sets whose union is [m].
The set Πm of all set partitions of [m] becomes a poset by defining
π ≤ ν in Πm whenever every block of π is contained in a block of ν.
For instance, if n = 9, π = 137|2|46|58|9 and ν = 13467|2589, then
π ≤ ν. It follows that [m] (the one-block partition) is always the
maximal element of Πm and the partition 1|2| · · · |m into singletons
is the minimal element of Πm.

Two posets P1, P2 are isomorphic, which we denote by P1 ' P2, if there
exists a bijection φ : P1 → P2 such that

x ≤ y in P1 ⇐⇒ φ(x) ≤ φ(y) in P2.

By a subposet of P, we mean a subset P ′ of P together with a partial ordering
of P ′ such that for x, y ∈ P ′ we have x ≤ y in P ′ if and only if x ≤ y in P. A

71
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special type of a subposet of P is the (closed) interval [x, y] = {z ∈ P : x ≤
z ≤ y}, defined whenever x ≤ y.

If x, y ∈ P, then we say that y covers x if and only if x < y and [x, y] =
{x, y}. The Hasse diagram of a finite poset P is the graph whose vertices are
the elements of P, whose edges the cover relations, and such that if x < y,
then y is drawn above x.

Example 4.2. Consider the poset Π3 of all set partitions of {1, 2, 3}. The
poset has five elements 1|2|3, 1|23, 2|13, 12|3, and 123. The poset Π4 has 15
elements. The Hasse diagrams of both posets are given in Figure 4.1.

123

1|23 13|2 12|3

1|2|3
1234

1|234 2|134 12|34 14|23 13|24 124|3 123|4

1|2|34 1|3|24 1|4|23 14|2|3 13|2|4 12|3|4

1|2|3|4

Figure 4.1: The Hasse diagrams of Π3 and Π4.

4.1.2 The Möbius function

Let P be a poset. We say that a function f : P × P → R is triangular if
f(x, y) 6= 0 only if (x, y) ∈ P × P is such that x ≤ y. For any two triangular
functions f, g : P × P → R we define their product as another triangular
function given by

fg(x, y) =
∑

x≤z≤y

f(x, z)g(z, y) for all x, y ∈ P.

The identity of this product is a function δ(x, y) defined by δ(x, x) = 1 and
δ(x, y) = 0 for all x 6= 0. For every triangular function f we define its inverse
as the function satisfying ff−1 = f−1f = δ.
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We say that a total order≺ of elements of P is consistent with the ordering
of P if for every x, y ∈ P if x < y in P, then x ≺ y in this total ordering.
For example, for Π3 the total ordering 1|2|3 ≺ 1|23 ≺ 2|13 ≺ 3|12 ≺ 123 is
consistent with the ordering of Π3. In the theory of partially ordered sets,
every such a total ordering is called a linear extension.

Given any linear extension of P every triangular function f can be rep-
resented uniquely by an upper triangular matrix F = [Fxy] ∈ RP×P such
that Fxy = f(x, y) and the rows and columns of F are ordered according to
the given linear extension. For example, for the linear extension of Π3 given
above the possible triangular matrices are of the form




∗ ∗ ∗ ∗ ∗
0 ∗ 0 0 ∗
0 0 ∗ 0 ∗
0 0 0 ∗ ∗
0 0 0 0 ∗



,

where stars indicate entries that can take nonzero values.

For any two triangular functions f, g with corresponding matrices F,G,
the matrix of their product fg is given by the matrix product FG. Moreover,
the matrix of the inverse f−1 is given by the inverse matrix F−1. From now
on we are going to use the same notation for a triangular function and the
corresponding upper triangular matrix.

The zeta function ζ is a triangular function defined by

ζ(x, y) =

{
1 if x ≤ y
0 otherwise.

(4.1)

The matrix representing the zeta function ζ of a finite poset P is invertible;
its inverse ζ−1 is called the Möbius function of P and denoted by m (or mP
if there is a possible ambiguity). We can define m inductively. The matrix
relation m = ζ−1 is equivalent to

m(x, x) = 1, for all x ∈ P
m(x, y) = −∑x≤z<y m(x, z) for all x < y in P. (4.2)

Directly from (4.2), or equivalently from the fact that mζ = δ, it follows that

(mζ)(x, y) =
∑

x≤z≤y

m(x, z) =

{
0 if x < y
1 if x = y.

(4.3)

Example 4.3. A chain poset is a totally ordered set Cm = {a1, . . . , am}
such that ai covers ai−1 for every i = 2, . . . ,m. The Möbius function on Cm
satisfies m(ai, ai) = 1, m(ai, ai+1) = −1 and is zero otherwise.

The importance of the Möbius function is due to the following basic result.

© 2016 by Taylor & Francis Group, LLC

  



74 TENSORS, MOMENTS, AND COMBINATORICS

Proposition 4.4 (Möbius inversion formula). Let P be a finite poset. Let
f, g : P → R. Then

g(x) =
∑

y≤x

f(y), for all x ∈ P,

if and only if

f(x) =
∑

y≤x

g(y)m(y, x) for all x ∈ P.

Proof. The Möbius inversion formula is nothing but the following state-
ment for upper triangular matrices

ζf = g ⇐⇒ f = ζ−1g = mg.

Example 4.5. For the posets in Example 4.1, the Möbius functions are well
known.

(i) The Möbius function on Bm is defined by

m(A,B) = (−1)|B\A| for all A ⊆ B.

(ii) Let π ∈ Πm be a set partition of [m]. Then

m(π) := m(π, [m]) = (−1)|π|−1(|π| − 1)!,

where |π| denotes the number of blocks of π.

Example 4.6. Consider the poset Π3 in Example 4.2. We order the elements
of Π3 by 1|2|3 ≺ 1|23 ≺ 2|13 ≺ 3|12 ≺ 123. The zeta function is represented
by the following matrix

ζ =




1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1



.

Its inverse is representing the Möbius function

m =




1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1



. (4.4)

We easily verify that this complies with the recursive formula in (4.2).
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For any two posets P1,P2 we define the poset P1 × P2 as a set with the
ordering (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′.
Proposition 4.7. Let P1 × P2 be a product of two finite posets P1,P2. If
(x, y) ≤ (x′, y′) in P1 × P2, then

mP1×P2
((x, y), (x′, y′)) = mP1

(x, x′)mP2
(y, y′).

Proof. See [Stanley, 2002, Proposition 3.1.2].

This proposition gives a very efficient way of computing the Möbius func-
tion for certain posets.

Lemma 4.8. The Boolean lattice Bm is isomorphic to the product (C2)m,
where C2 is the chain poset of length 2; see Example 4.3.

Recall that the Möbius function on C2 satisfies m(a1, a1) = m(a2, a2) = 1
and m(a1, a2) = −1. Now Lemma 4.8 and Proposition 4.7 give another way
to confirm the form of the Möbius function on Bm given in Example 4.5.

Remark 4.9. If ≺1, ≺2 are total orderings consistent with the ordering of
P1 and P2, then there is a natural (lexicographic) total ordering of P1 × P2

given by (x, y) ≺ (x′, y′) if either x ≺1 x
′ or x = x′ and y ≺2 y

′. Given any
such ordering, Proposition 4.7 phrased in terms of matrix representations
of triangular functions states that the matrix of mP1×P2

is the Kronecker
product of matrices mP1 and mP2 .

Example 4.10. To illustrate Remark 4.9, let P1 = Π3 and let P2 be
Π({4, 5}) ' Π2. The product P1 × P2 is isomorphic to the interval
[1|2|3|4|5, 123|45] in Π5. The matrix mP1

is given in (4.4). The Kronecker
product (we use notation of Section 2.3.3) of matrices mP1

and mP2
is

mat







1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1



⊗
[

1 −1
0 1

]


.

In particular,

mP1
(1|2|3, 123) ·mP2

(4|5, 4|5) = 2 · 1 = 2,

which is equal to mΠ5(1|2|3|4|5, 123|4|5). Similarly,

mP1
(1|2|3, 123) ·mP2

(4|5, 45) = 2 · (−1) = −2,

which is equal to mΠ5(1|2|3|4|5, 123|45).

In the previous example we use the fact that the Möbius function on an
interval in P is naturally induced from the Möbius function on P; see for
example [Rota, 1964, Proposition 4].

Proposition 4.11. The Möbius function of any interval [x, y] of a poset P
equals the restriction to [x, y] of the Möbius function on P.
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4.1.3 Lattices and partition lattices

We say that poset P has a 0̂ if there exists an element 0̂ ∈ P such that x ≥ 0̂
for all x ∈ P. Similarly, P has a 1̂ if there exists 1̂ ∈ P such that x ≤ 1̂ for
all x ∈ P. If x and y belong to a poset P, then a least upper bound of x and
y is an element z such that z ≥ x, z ≥ y and z ≤ w for any other w such
that w ≥ x, w ≥ y. If a least upper bound of x and y exists, then it is clearly
unique and it is denoted by x∨ y and called the join of x and y. Dually, one
can define the greatest lower bound x ∧ y, which is called the meet of x and
y.

A lattice is a poset L such that for every x, y ∈ L both x ∨ y and x ∧ y
exist. A sublattice of a lattice L is a nonempty subset of L which is a lattice
with the same meet and join operations as L. Clearly, all finite lattices have
a 0̂ and 1̂. We say that S is a meet-semilattice if S is a poset such that x∧ y
exists for all x, y ∈ S. The following result will be useful.

Lemma 4.12. If S is a finite meet-semilattice with 1̂, then S is a lattice.

Proof. Let x, y ∈ S. A natural definition for x ∨ y is as a meet of all the
elements of A := {z ∈ S : x, y ≤ z}. Since x, y ≤ 1̂, A is always nonempty.
By constriction, w =

∧
z∈A z is the smallest element satisfying w ≥ x, y.

Recall that π = B1| . . . |Bk is called a set partition of [m], if the blocks
Bi 6= ∅ are disjoint sets, whose union is [m]. Equivalently, a partition of [m]
corresponds to an equivalence relation ∼π on [m] where i ∼π j if i and j lie
in the same block. Now let A be a multiset A = {i1, . . . , id} of elements of
[m] such that 1 ≤ i1 ≤ · · · ≤ id ≤ n. We can define a partition of A using a
partition of [d] by ij ∼π ik if j ∼π k in Πd. The set of all partitions of A is
denoted by Π(A). For example, if A = {1, 1, 1} = {13}, then Π(A) contains
three different partitions of the form 1|11.

The poset Πm has the 0̂ given by the m-block partition 1|2| · · · |m and the
1̂ given by the one-block partition [m]. If π = B1| · · · |Br and ν = B′1| · · · |B′s,
then π ∧ ν is a partition with blocks given by all the non-empty sets of the
form Bi ∩ B′j for i = 1, . . . , r, j = 1, . . . , s. This shows that Πm is a meet-
semilattice and by Lemma 4.12 it forms a lattice.

Any set partition with two blocks is called a split . Let S be a set of splits.
We say that π ∈ Πm is generated by S if π = π1 ∧ · · · ∧πd, where πi ∈ S. By
convention, the one-block partition [m] is generated by S as it can be written
as the empty meet of elements from S. The set of all partitions generated
by S is denoted by 〈S〉. By construction, 〈S〉 forms a finite meet-semilattice
and hence a lattice by Lemma 4.12. If S is the set of all splits in Πm, then
〈S〉 = Πm. For special subsets S we obtain a useful generalization of the
lattice of all set partitions.

Definition 4.13. A partition lattice is the lattice 〈S〉, where S is any set of
splits in Πm such that 0̂ ∈ 〈S〉.

Note that a partition lattice need not be a sublattice of Πm in the sense
that the join operators need not coincide.
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Definition 4.14. We say that a split A|B is trivial if min{|A|, |B|} = 1. The
set of trivial splits is denoted by S0.

Definition 4.15. The following is a list of interesting set partition lattices:

(1) An interval partition of [m] is a partition π such that if i ∼π j for i < j,
then i ∼π k for every i < k < j. This poset of all interval partitions is
denoted by Im. It is a partition lattice generated by splits of the form
1 · · · k|(k+1) · · ·m for k = 1, . . . ,m−1. It is an easy exercise to show that
Im is a sublattice of Πm, isomorphic to the Boolean lattice of [m− 1].

(2) A partition π ∈ Πm is called a one-cluster partition if it contains at most
one block of size greater than one. In particular, the one-block partition
[m] and the minimal partition 1|2| · · · |n are one-cluster partitions. The
poset of all one-cluster partitions forms a lattice Cm, which is not a sub-
lattice of Πm. It is isomorphic to the poset of all subsets of [m] excluding
singletons. We have Cm = 〈S0〉.

(3) A partition π ∈ Πm is non-crossing if there is no quadruple of elements
i < j < k < l such that i ∼π k, j ∼π l, and i �π j. The noncrossing
partitions of [m] form a lattice which we denote by NCm. This lattice
is not a sublattice of Πm. We have S0 ⊆ NCm.

For every lattice, denote m(π) := m(π, 1̂). Later we will see that it is
important to identify values of m(π) for various partition lattices. By Example
4.5, for Πm we have

m(π) = (−1)|π|−1(|π| − 1)!

The lattice of interval partitions Im is isomorphic to the Boolean lattice of all
subsets of [m− 1] and hence m(π) = (−1)|π|−1. For the lattice of one-cluster
partitions we have

m(π) =

{
(−1)n−1(n− 1) if π = 1|2| · · · |n, and
(−1)|π|−1 otherwise.

(4.5)

For any two π ≤ ν ∈ Πm, the interval [π, ν] can be written as the following
product

[π, ν] '
∏

B∈ν
[π(B), B],

where π(B) is the restriction of π to elements in B. For an arbitrary partition
lattice a weaker result holds.

Lemma 4.16. Let L be a partition lattice; see Definition 4.13. Then for any
π ∈ L

[0̂, π] '
∏

B∈π
L(B).

In particular, by Proposition 4.7

m(0̂, π) =
∏

B∈π
mB(0̂, B) for any π ∈ L,

where mB is the Möbius function on L(B).
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Proof. Let δ ∈ [0̂, π]. Since δ(B) ∈ L(B) for all B ∈ π, there is a canonical
order-preserving map from [0̂, π] to

∏
B∈π L(B). We now construct the inverse

of this map. Let S be the set of splits generating L. For every B ∈ π, define
S(B) = {ν ∈ S : ν(B) 6= B} and SB = {ν(B) : ν ∈ S(B)}. Then L(B) is a
partition lattice generated by splits in SB and there is an obvious bijection
between SB and S(B). In addition, define Sπ = {ν ∈ S : ν ≥ π} and note
that Sπ = S\⋃B∈π S(B). Suppose we are given a collection of partitions δB ∈
L(B) for B ∈ π, which is an element of

∏
B∈π L(B). Each δB is generated by

some partitions in S(B). Now, for each B ∈ π, we are using the isomorphism
between SB and S(B) to get the corresponding splits in S. The meet of all
these splits together with the splits in Sπ defines some partition δ ∈ [0̂, π]. So
the defined map is the inverse of the first map and is also order preserving.

4.1.4 Lattices and their Möbius rings

The aim of this section is to introduce the main technical lemma of this
chapter given by Lemma 4.19. A standard way of proving this result can be
derived from the proof of Theorem 4.27 in Aigner [1997]. Here, we present
an alternative proof extending ideas in Section 3.9 of Stanley [2002]. Let L
be a lattice and let R[L] be the polynomial ring over R with indeterminates
x ∈ L. By A(L) we denote the quotient (see Definition 2.12) R[L]/I, where
I is the ideal generated by x · y−x∧ y for x, y ∈ L. We call A(L) the Möbius
ring of L.

For f ∈ R[L] we denote by [f ] the equivalence class of f in A(L). As in
(2.3) the operations in the Möbius ring are defined so that we have that for
all a, b ∈ R and f, g ∈ R[L]

[af + bg] = a[f ] + b[g]

[f · g] = [f ] · [g].

Also, by construction, for every x, y ∈ L we have [x · y] = [x ∧ y].

Example 4.17. Let L be the Boolean lattice B3. Consider two linear poly-
nomials in R[B3]:

ρ12 = {1, 2} − {1} − {2}+ ∅ and ρ1 = {1} − ∅.
Then

[ρ1] · [ρ12] = [({1} − ∅)] · [({1, 2} − {1} − {2}+ ∅)] =

= [{1} · {1, 2}]− [{1} · {1}]− [{1} · {2}] + [{1} · ∅]−
−[∅ · {1, 2}] + [∅ · {1}] + [∅ · {2}]− [∅ · ∅] = 0,

where 0 is the zero of the ring A(L).

We generalize the above example in the following way. Define for x ∈ L
the element ρx ∈ R[L] by

ρx =
∑

y≤x

m(y, x)y. (4.6)
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POSETS AND MÖBIUS FUNCTIONS 79

By the Möbius inversion formula,

x =
∑

y≤x

ρy. (4.7)

Proposition 4.18. For every x ∈ L, let ρx be given by (4.6). Then [ρx] ·
[ρx] = [ρx] and for every x 6= y

[ρx] · [ρy] = 0.

Proof. From (4.7) and the definition of A(L) it follows that for every
x, y ∈ L

[x] · [y] = [x ∧ y] =
∑

z≤x∧y

[ρz]. (4.8)

On the other hand, we can expand separately x and y in terms of the ρ’s,
which implies that for every x, y ∈ L

[x] · [y] =
∑

u≤x,w≤y

[ρu] · [ρw]. (4.9)

First note that [ρ0̂] · [ρ0̂] = [ρ0̂]. Taking y = 0̂ and comparing (4.8) and (4.9)
gives that ∑

u≤x

[ρu] · [ρ0̂] = [ρ0̂] · [ρ0̂].

If x covers 0̂ in L, then we obtain [ρx] · [ρ0̂] = [ρ0̂] · [ρx] = 0. Now by taking
y = x in (4.9) we obtain

[x] = [ρ0̂] · [ρ0̂] + [ρx] · [ρx].

Because [ρ0̂] · [ρ0̂] = [ρ0̂] = [0̂] and [ρx] = [x]− [0̂] we obtain [ρx] · [ρx] = [ρx].
Let now x, y be arbitrary. By induction we may assume that [ρu]·[ρw] = 0

for all u < x and w ≤ y or for all u ≤ x and w < y. We can also assume that
[ρz] · [ρz] = [ρz] for all z < x∧y. If x = y, then equating (4.8) with (4.9) gives

∑

z≤x

[ρz] =
∑

z<x

[ρz] + [ρx] · [ρx],

which implies that [ρx] = [ρx] · [ρx]. If x 6= y, then again equating (4.8) with
(4.9) gives

∑

z≤x∧y

[ρz] =
∑

z<x∧y
[ρz] + [ρx∧y] · [ρx∧y] + [ρx] · [ρy].

Since, by induction, [ρx∧y] · [ρx∧y] = [ρx∧y] (both if x ∧ y < x, y and if
x ∧ y ∈ {x, y}) we conclude that [ρx] · [ρy] = 0.

As an immediate corollary we get the following result.
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Lemma 4.19. Let L be a finite lattice with at least two elements, and let
1̂ 6= a ∈ L. Then for any y 6= 1̂

∑

x:x∧a=y

m(x, 1̂) = 0.

Proof. By (4.7) and by Proposition 4.18 we have

[a] · [ρ1̂] =


∑

x≤a

[ρx]


 · [ρ1̂] = 0, since a 6= 1̂. (4.10)

On the other hand,

[a] · [ρ1̂] = [a] ·
∑

x∈L
m(x, 1̂)[x] =

∑

x∈L
m(x, 1̂)[a ∧ x]. (4.11)

Since a · ρ1̂ is an element in R[L], it is of the form
∑
y∈L cyy and hence

[a · ρ1̂] =
∑
y∈L cy[y]. From (4.10) we conclude that cy = 0 for all y ∈ L and

from (4.11) that cy =
∑
x:x∧a=y m(x, 1̂).

4.2 Cumulants and binary L-cumulants

In this section, we discuss the links between cumulants and combinatorics.
This will enable us to propose a generalization of cumulants, which in par-
ticular will give us a better understanding of tree models in the second part
of the book.

4.2.1 Cumulants

Cumulants, like moments, give an alternative way of storing information
about probability distributions. Their importance comes from the observa-
tion that many properties of random variables can be better represented by
cumulants than by moments. The key features of cumulants are:

(i) For independent random variables, the cumulant of a sum becomes the
sum of cumulants.

(ii) For random vectors with independent components, the joint cumulant
is zero.

(iii) Where approximate normality is involved, high-order cumulants can be
neglected.

Let X = (X1, . . . , Xm) be a finite discrete random vector with values in
X = X1 × · · · × Xm, where Xi = {0, . . . , ri}. Let

MX(t) = E(exp(〈t,X〉)),
where t = (t1, . . . , tm) ∈ Rm, and 〈t,X〉 =

∑m
i=1 tiXi be the moment gen-

erating function of X as defined in Section 3.1.3. The cumulant generating
function is defined as

KX(t) = logMX(t).
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The moment generating function MX and the cumulant generating function
KX are convex and analytic. The cumulants of X are defined in a similar way
as the moments by derivatives of the cumulant generating function. Thus, for
every u ∈ Nm0 , denote by A(u) the multiset defined in (3.5). Then

kA(u) := DuKX(t)
∣∣∣
t=0

=
∂|u|

∂tu1
1 · · · ∂tunn

KX(t)
∣∣∣
t=0

(4.12)

is the corresponding cumulant of the vector XA(u) = (Xi)i∈A(u). Hence the
cumulant generating function can be written as

KX(t) =
∑

u∈Nm0

1

u!
kA(u)t

u.

Remark 4.20. It follows from Marcinkiewicz [1939], Lukacs [1958] that the
normal distribution is the only probability distribution such that all cumu-
lants of order greater than a certain number vanish. In a more algebraic
language, the normal distribution is the only distribution such that its cu-
mulant generating function KX(t) is a polynomial function.

The relationship between cumulants and moments can be found by taking
the Taylor expansion of the both sides of the identity KX(t) = log(MX(t)).
For example, in the univariate case it is easily checked that

k1 = µ1, k11 = µ11 − µ2
1, k111 = µ111 − 3µ11µ1 + 2µ3

1. (4.13)

We now explore this relationship in a more combinatorial context; see for
example [McCullagh, 1987, Section 2.3].

Theorem 4.21. The cumulant of the vector X is defined as

k[m] =
∑

π∈Πm

(−1)|π|−1(|π| − 1)!
∏

B∈π
µB , (4.14)

where the sum is over all set partitions of [m], the product is over all blocks
of a partition, and |π| denotes the number of blocks of π.

For example, if m = 3, then there are five partitions in Π3: 123, 1|23,
2|13, 12|3, and 1|2|3 and (4.14) gives

k123 = µ123 − µ1µ23 − µ2µ13 − µ12µ3 + 2µ1µ2µ3. (4.15)

The formula for k[m] in Theorem 4.21 can be easily extended to any kA
for A ⊆ [m] just by replacing Πm with Π(A). What is less clear is
that the same procedure can be used to generalize (4.14) to any multiset
A = {1u1 , . . . ,mum}. Let d =

∑
i ui and write A as {i1, . . . , id}. We use the

bijection between A and [d] to write

kA =
∑

π∈Π([d])

(−1)|π|−1(|π| − 1)!
∏

B∈π
µiB , (4.16)
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where iB = {ij : j ∈ B}. Hence, for instance, the formula for k111 in (4.13)
can be derived from the formula for k123 in (4.15) by replacing {1, 2, 3} by
{1, 1, 1}. Similarly,

k112 = µ112 − 2µ1µ12 − µ11µ2 + 2µ2
1µ2. (4.17)

Formula (4.16) also shows that kA depends only on µB for which B is
a submultiset of A. Thus, in our computation, instead of working with the
generating function M(t), we can take the truncation of its power series up
to order u ∈ Nm0 , where u is such that A = A(u). So, for example, to obtain
formulas in (4.13) it is enough to consider the polynomial

1 + µ1t+
1

2
µ11t

2 +
1

6
µ111t

3.

We obtain k1, k11, and k111 by computing derivatives and evaluating them at
zero. Equation (4.13) can be verified using the following Mathematica code

M[t_]:=1+Sum[m[i]*t^i/Factorial[i],{i,1,3}]

List[D[Log[M[t]],{t,1}],D[Log[M[t]],{t,2}],

D[Log[M[t]],{t,3}]] /. t-> 0

Similarly, to confirm (4.17) we run

M[s_,t_]:=Sum[m[i,j]*s^i*t^j/(Factorial[i]*

Factorial[j]),{i,0,3},{j,0,3}] /. m[0,0]->1

D[Log[M[s,t]],{s,2},{t,1}] /. {s-> 0,t-> 0}

In certain situations we may want to generalize the well-known formula
for the covariance in terms of conditional covariance

k12 = cov(X1, X2) = cov(E[X1|Y ],E[X2|Y ]) + E[cov(X1, X2|Y )].

It is not hard to provide a formula for general conditional cumulants; see
Brillinger [1969]. For any A ⊆ [m] denote the corresponding conditional cu-
mulant by kA|Y . Each of these is a random variable itself and we have

kA =
∑

π∈Π(A)

k((kB|Y )B∈π),

where k((kB|Y )B∈π) denotes the order |π| cumulant of random variables kB|Y
for B ∈ π. In particular, if all Xi are conditionally independent given Y , then
kB|Y = 0 unless |B| = 1, which simplifies the above sum to one term.

4.2.2 Binary L-cumulants

We assume in this section that X = {0, 1}m, in which case A(X ), defined
by (3.5), becomes the set of all subsets of [m]. Let L ⊆ Πm be a partition
lattice, c.f. Definition 4.13. For every A ⊆ [m], consider L(A) as the subposet
of Π(A) obtained from L by constraining each partition to the subset A.
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The Möbius function on L(A) is also denoted by m unless it may lead to
ambiguity, in which case we write explicitly mA.

A multiplicative function on a partition lattice L is any function such that
there exists a collection fB ∈ R for B ⊆ [m], and for every π ∈ L

f(π) =
∏

B∈π
fB .

For every ν ∈ Πm, define

k(ν) :=
∑

π≤ν

m(π, ν)µ(π), (4.18)

where µ(π) =
∏
B∈π µB is a multiplicative function and the sum is taken

over all π in the interval [0̂, ν] in Πm. The Möbius function on Πm satisfies
m(π) := m(π, [m]) = (−1)|π|−1(|π| − 1)! for all π ∈ Πm. It follows, by (4.16),
that the cumulant k[m] is equal to k([m]) defined by (4.18) with ν = [m]. The
formula for kA, A ⊆ [m], is obtained in the same way by replacing Πm with
Π(A).

To get the inverse formula for moments in terms of cumulants we need
the following result.

Lemma 4.22. Let k(ν) be given by (4.18). For every ν ∈ Π(A), we have
k(ν) =

∏
B∈ν kB.

Proof. By Lemma 4.16, every interval [0̂, ν] ⊆ Π(A) is isomorphic to the
product

∏
B∈ν Π(B). By Proposition 4.7, the Möbius function on a product

of posets is equal to the product of Möbius functions for each individual
factor. Hence, (4.18) can be rewritten as

k(ν) =
∏

B∈ν


 ∑

δ∈Π(B)

mB(δ)µ(δ)


 =

∏

B∈ν
kB ,

which finishes the proof.

Now the inverse formula for moments in terms of cumulants follows di-
rectly by the Möbius inversion formula in Proposition 4.4 and Lemma 4.22.
For every A ⊆ [m] we have

µA =
∑

π∈Π(A)

k(π) =
∑

π∈Π(A)

∏

B∈π
kB , (4.19)

where the second equation follows by Lemma 4.22. By Proposition 3.12, the
probability distribution of a binary vector X is uniquely identified by the set
of moments µA for all A ⊆ [m]. We call this set of moments binary moments.
Similarly, the set of cumulants kA for A ⊆ [m] is called binary cumulants.

We now generalize the combinatorial definition of binary cumulants to
binary L-cumulants `A for A ⊆ [m].
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Definition 4.23 (Binary L-cumulants). Let X = (X1, . . . , Xm) be a binary
random vector and let L be a partition lattice of [m]. For any A ⊆ [m] and
ν ∈ L(A) define

`(ν) =
∑

π≤ν

mA(π, ν)µ(π), (4.20)

where µ(π) =
∏
B∈π µB . Then `A := `(A) is the L-cumulant of XA . In other

words,

`A =
∑

π∈L(A)

mA(π)
∏

B∈π
µB for every A ⊆ [m]. (4.21)

The map in (4.20) is invertible with the inverse given by the Möbius
inversion formula. In particular, for every A ⊆ [m],

µA =
∑

π∈L(A)

`(π) =
∑

π∈L(A)

∏

B∈π
`B . (4.22)

The fact that `(π) is equal to the product
∏
B∈π `B is proved in a similar

way as in Lemma 4.22.

Suppose that we are given a statistical model M for a binary vector
X ∈ X = {0, 1}m. Binary L-cumulants offer a polynomial change of coordi-
nates from the raw probabilities. The map from p(x) for x ∈ X to moments
µB for B ⊆ [m] is a simple linear map of the form

µB =
∑

x:A(x)⊇B

p(x). (4.23)

By definition, for every A ⊆ [m], the maximal and minimal element of
the lattice L(A) coincide with the minimal and maximal element of Π(A). In
particular, for every L we have `i = µi for i = 1, . . . , n; and `ij = µij − µiµj
for all 1 ≤ i < j ≤ n. However, already when m = 3 not all L-cumulants
coincide with cumulants.

Example 4.24. Let m = 3 and consider L-cumulants induced by the lattice
of interval partitions. The lattice I3 has four elements: 123, 1|23, 12|3, and
1|2|3. The Möbius function satisfies m(π) = (−1)|π|−1 and we have

`123 = µ123 − µ1µ23 − µ12µ3 + µ1µ2µ3.

Compare this with the formula for k123 in (4.15) to note that not only term
µ2µ13 is missing now in the formula for `123, but also the coefficient of µ1µ2µ3

is 1 not 2.

Unlike in the case of cumulants, for general L-cumulants no generating
function is known. It may be then useful to realize that L-cumulants can be
expressed in terms of classical cumulants in a rather simple manner.
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Proposition 4.25. Let L ⊆ Πm be a partition lattice and let Π∗ denote the
set of elements π ∈ Πm such that [π, [m]] ∩ L = {[m]}, where the interval
[π, [m]] is taken in Πm. We have

`[m] =
∑

π∈Π∗

k(π) =
∑

π∈Π∗

∏

B∈π
kB .

The formula for `A for A ⊆ [m] is obtained in the same way.

Proof. In this proof, δ ≤Π π means that δ ≤ π and δ ∈ Πm. Similarly,
π ≥L δ denotes π ≥ δ and π ∈ L. Expressing the L-cumulant in terms of
moments and then the moments in terms of classical cumulants gives

`[m] =
∑

π∈L
m(π)

∏

B∈π


 ∑

δB∈Π(B)

∏

C∈δB

kC


 =

=
∑

π∈L
m(π)

∑

δ≤Ππ

∏

B∈δ

kB .

For every δ ∈ Πm, let δ̄ denote the smallest element of L such that δ ≤Π

δ̄. Then, by changing the order of summation, the above equation can be
rewritten as

`[m] =
∑

δ∈Πm

∏

B∈δ

kB


∑

π≥Lδ̄

m(π)


 .

By (4.3), the sum in brackets vanishes whenever δ̄ 6= [m] and is equal to 1 if
δ̄ = [m]. Therefore the whole expression is equal to

∑
δ∈Π∗

∏
B∈δ kB .

Example 4.26. Consider again L-cumulants defined by interval partitions in
Example 4.24. If m = 3, we have Π∗ = {123, 2|13} and hence, by Proposition
4.25, `123 = k123 + k2k13, which we easily verify directly.

4.2.3 Basic properties of binary L-cumulants

Lemma 3.17 shows how, under marginal independences, joint moments fac-
torize. In the binary case this gives the following result.

Lemma 4.27. Let X = (X1, . . . , Xm) be a binary random vector. If π0 =
B1| · · · |Br is a partition of [m], then B1 ⊥⊥ · · · ⊥⊥ Br if and only if

µA = µ(π0(A)) = µB1∩A · · ·µBr∩A for all A ⊆ [m],

where µ(π) =
∏
B∈π µB and π(A) is the partition π constrained to elements

in A.

The following result is well known for binary cumulants.

Proposition 4.28. Let X be a binary random vector. There exists a partition
π0 = B1| · · · |Br of [m] such that B1 ⊥⊥ · · · ⊥⊥ Br if and only if kA = 0 for all
A ⊆ [m] unless A ⊆ Bi for some i.
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Proof. The proof will follow from Theorem 4.31.

As an example consider the cumulant k123 given in (4.15). If 1 ⊥⊥ {2, 3},
then, by Lemma 4.27, µ123 = µ1µ23, µ12 = µ1µ2, and µ13 = µ1µ3. It follows
that (4.15) becomes

k123 = µ1µ23 − µ1µ23 − µ1µ2µ3 − µ1µ2µ3 + 2µ1µ2µ3 = 0.

It turns out that Proposition 4.28 is a special instance of a more general
result linking vanishing L-cumulants and the independence statements.

Definition 4.29. We say that a partition lattice L of [m] is saturated if the
set S0 of all trivial splits (see Definition 4.15) is contained in L.

Among the partition lattices in Definition 4.15, only the lattice of interval
partitions is not saturated. Note also that for every m ≤ 3 there exists
precisely one saturated partition lattice.

Lemma 4.30. If L is saturated, then all one-cluster partitions lie in L.

Proof. By definition, every partition lattice shares the meet operator with
Πm. Hence, S0 ⊂ L implies that 〈S0〉 ⊆ L. The result follows because Cm =
〈S0〉.

Theorem 4.31. Let L ⊆ Πm be a partition lattice and consider the L-
cumulant of X = (X1, . . . , Xm) as in Definition 4.23. Let π0 = B1| · · · |Br be
a fixed partition in L. The following are equivalent:

(i) B1 ⊥⊥ · · · ⊥⊥ Br.
(ii) µA = µ(π0(A)) for all A ⊆ [m].

(iii) `A = 0 unless A is contained in a block of π0.

Moreover, if L is saturated, then the above three conditions are equivalent to
any of the following:

(iv) µ(π) = µ(π ∧ π0) for every π ∈ L.

(v) `(π) = 0 for all π 6≤ π0.

Proof. The equivalence of (i) and (ii) is given by Lemma 4.27. To show
that (ii)⇒(iii), note that for every A ⊆ [m]

`A =
∑

π∈L(A)

mA(π)
∏

B∈π
µB

(ii)
=

∑

π∈L(A)

mA(π)
∏

B∈π
µ(π0(B)) =

=
∑

π∈L(A)

mA(π)µ(π∧π0(A))
a:=π0(A)

=
∑

δ≤a


 ∑

π∈L(A),π∧a=δ

mA(π)


µ(δ),

where, by Lemma 4.19, each summand in the last formula is zero whenever
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a = π0(A) 6= A or equivalently A is not contained in a block of π0, which
proves (iii). To show that (iii) implies (ii), use (4.22) to write

µA =
∑

π∈L(A)

∏

B∈π
`B

(iii)
=

∑

π≤π0(A)

∏

B∈π
`B =

∏

B∈π0(A)


 ∑

π∈L(B)

∏

C∈π
`C


 ,

which implies (ii).

Now suppose that L is saturated. If (ii) holds, then

µ(π)
def.
=

∏

B∈π
µB

(ii)
=

∏

B∈π
µ(π0(B)) = µ(π ∧ π0)

and hence (iv) holds. To show (iv)⇒(ii) we use the fact that L is saturated.
In this case, by Lemma 4.30, the one-cluster partition with the cluster given
by A lies in L. Fix π to be that partition. By (iv), µ(π) = µ(π∧π0). Dividing
both sides of this equation by

∏
i∈[m]\A µi yields (ii). Here, we could divide

by
∏
i∈[m]\A µi because X is non-degenerate and hence µi 6= 0, 1. We now

prove (iv)⇒(v). Using Definition 4.23 we obtain

`(ν)
def.
=

∑

π≤ν

m(π, ν)µ(π)
(iii)
=
∑

π≤ν

m(π, ν)µ(π ∧ π0) =

=
∑

δ≤ν

( ∑

π∧π0=δ

m(π, ν)

)
µ(δ),

where the inner sum in the last expression is over all π ∈ L such that π ≤ ν
and π ∧ π0 = δ (or π ∧ (π0 ∧ ν) = δ). If ν 6≤ π0, then

• π0 ∧ ν 6= ν,

• L′ = [0̂, ν] is a lattice with at least two elements, and

• π ∧ π0 = (π ∧ (π0 ∧ ν)) for every π ∈ L′ (π ≤ ν).

Denoting π̃0 = π0 ∧ ν we use Lemma 4.19 for L′ to obtain that for every
δ 6= ν (δ ∈ L′) the sum

∑
π∧π̃0=δ m(π, ν) is zero. Since π ∧ π0 = π ∧ π̃0,∑

π∧π0=δ m(π, ν) vanishes, which shows that `(ν) = 0 unless ν ≤ π0 and
hence (v). To show (v)⇒(iv), note that if `(δ) = 0 for all δ 6≤ π0, then for
every π ∈ L

µ(π) =
∑

δ≤π

`(δ) =
∑

δ≤π∧π0

`(δ) = µ(π ∧ π0).

Remark 4.32. We want to stress that the equivalence in Theorem 4.31 breaks
down if π0 /∈ L. More precisely, if π0(A) /∈ L(A), then `A is generically
nonzero even if (i) and (ii) in Theorem 4.31 hold.
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Example 4.33. Consider the situation of Example 4.24, where m = 3 and
L-cumulants are defined by the lattice of interval partitions. If X1 ⊥⊥ (X2, X3),
then µ123 = µ1µ23, µ12 = µ1µ2, and µ13 = µ1µ3. It follows that `12 = `13 =
`123 = 0. On the other hand, the condition X2 ⊥⊥ (X1, X3) does not imply
that `123 = 0 because in this case

`123 = µ2µ13 − µ1µ2µ3,

which is zero only when in addition µ13 = µ1µ3 and hence when X1 ⊥⊥ X3.
Here there is no contradiction with Theorem 4.31 because 2|13 /∈ I3.

Theorem 4.31 shows one of the important applications of L-cumulants.
Because Πm contains all set partitions, all marginal independences imply
that k[m] = 0. By Remark 4.32, in the case of L-cumulants, only some of
the independences imply vanishing. Hence, this new coordinate system can
be designed to better fit the model under consideration. This concept will be
explained in more detail for tree cumulants in the second part of the book.

An important property of central moments and cumulants is that they
are invariant with respect to translations of the random vector X. It turns
out that L-cumulants have the same feature whenever L is saturated.

Proposition 4.34. Suppose that L is a saturated partition lattice. For a
binary random vector X, let X̃ = X + a, where a ∈ Rn and, for every
A ⊆ [m], by ˜̀A denote the corresponding L-cumulant of the subvector X̃A.

Then ˜̀i = `i + ai for all i = 1, . . . , n and ˜̀A = `A for any A ⊆ [m] such that
|A| ≥ 2.

Proof. Because `i = µi = E[Xi], it is clear that ˜̀i = E[Xi + ai] = `i + ai.
Suppose that |A| ≥ 2 and without loss of generality assume A = [m]. Since
a =

∑
aiei, where the ei’s are the unit vectors in Rn, it suffices to prove this

result only in the case when a is such that a1 is the only non-zero entry. In
this case write X̃1 = X1 + a1 as X1 − µ1 + (a1 + µ1), where µ1 = EX1 and

a1 + µ1 = EX̃1. Let π0 = 1|{2, . . .m} ∈ L, then for every π ∈ L,

µ̃(π) = µ(π)− µ(π ∧ π0) + µ̃(π ∧ π0).

It follows that

˜̀
[m] =

∑
π∈Lm(π)µ(π)−

−∑π∈Lm(π)µ(π ∧ π0) +
∑
π∈Lm(π)µ̃(π ∧ π0).

(4.24)

Since L is a lattice and π0 6= [m], by Lemma 4.19 we have that∑
π∧π0=ν m(π) = 0 for each ν ∈ L and hence the second and third sum-

mands in (4.24) are zero. The proof is completed because the first summand
is exactly `[m].

4.2.4 Central cumulants

Define central binary L-cumulants by replacing moments µB in (4.21) by
central moments µ′B . For every A ⊆ [m] the corresponding central binary
L-cumulant is denoted by `′A.
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Lemma 4.35. If L is saturated, then `′A = `A for every A ⊆ [m] such that
|A| ≥ 2.

Proof. Central binary L-cumulants of X can be alternatively defined as
binary L-cumulants of X̃, where X̃i = Xi − EXi. The lemma follows from
Proposition 4.34.

We now show that central moments are L-cumulants induced by the lat-
tice of one-cluster partitions Cm = 〈S0〉.
Proposition 4.36. Let X be a random vector with values in X = {0, 1}m.
Then the central moment µ′A for |A| ≥ 2 is equal to the corresponding L-
cumulants induced by C(A).

Proof. Let A ∈ A(X ) be such that |A| ≥ 2. Denote the L-cumulants
induced by C(A) by cA. Since C(A) is saturated, by Lemma 4.35, we can
write cA in terms of the central moments

cA =
∑

π∈C(A)

m(π)
∏

B∈π
µ′B for all |A| ≥ 2.

However, µ′i = 0 for every i ∈ [m] and hence the only non-zero term of the
above sum is where π = A, which proves that cA = µ′A.

The correspondence between the lattice of one-cluster partitions and cen-
tral moments gives also the following explicit formula for central moments in
terms of moments.

Proposition 4.37. Let X be a random vector with values in X . For every
A ∈ A(X ) such that |A| ≥ 2 we have:

µ′A =
∑

B⊆A

(−1)|A\B|µB
∏

i∈A\B

µi = (4.25)

=
∑

B⊆A,|B|≥2

(−1)|A\B|µB
∏

i∈A\B

µi + (−1)|A|−1(|A| − 1)
m∏

i=1

µi.

If L is saturated we sometimes use the following strategy to compute the
corresponding L-cumulants.

Proposition 4.38. Let L = 〈S〉, where S is a set of splits of [m] containing
the set S0 of all trivial splits. If K = 〈S ′〉 is such that S ′ ∪ S0 = S, then

∑

π∈L
mL(π)

∏

B∈π
µB =

∑

π∈K
mK(π)

∏

B∈π
µ′B .

In particular, the formula for L-cumulants in terms of moments can be writ-
ten as a composition of the change from moments to central moments and
then from central moments to K-cumulants.
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Proof. Since S0 ⊆ S, then by Lemma 4.35
∑

π∈L
mL(π)

∏

B∈π
µB =

∑

π∈L
mL(π)

∏

B∈π
µ′B .

Since µ′i = 0 for every i ∈ [m], we can replace “π ∈ L” with “π ∈ K” in
the sum on the right. It now suffices to show that mL(π) = mK(π) for all
π ∈ K ⊆ L such that π does not contain singleton blocks. It is enough to
show that the intervals [π, 1̂] in K and L are equal (as sets). Let δ ∈ L
be such that π < δ < 1̂. Since π has no singleton blocks, δ also has no
singleton blocks and hence δ is a meet of non-trivial splits in S. However,
by assumption, the set of non-trivial splits of S is contained in S ′. It follows
that δ ∈ K. By Proposition 4.11 the Möbius functions mL and mK are equal
when constrained to the interval [π, 1̂].

Proposition 4.38 is helpful in a situation, in which computing the Möbius
function for L is complicated and it is simple for K. We will see such an
example in Section 6.3.1.

4.3 Tensors and discrete measures

In this section we present how discrete probability distributions can be effi-
ciently represented by tensors. We use the basic theory of tensors introduced
in Section 2.3. The results presented below can be used in computations.

4.3.1 Tensor notation in statistics

Let X = X1 × · · · × Xm, where Xi = {0, . . . , ri} and let p ∈ RX be the
probability distribution tensor of a random variable X ∈ X . For A ⊆ [m], let
VA denote the tensor space RXA . The marginal distribution pA is a tensor
in VA defined in terms of coordinates by (3.2). The marginalization in (3.2)
can be defined in terms of multilinear transformations. We illustrate this first
with an example.

Example 4.39. Suppose that m = 3 and r1 = r2 = r3 = 1 so that X ∈
{0, 1}3. The marginal distribution p12 is a 2×2 tensor obtained from the joint
distribution tensor p by p12 = (I2, I2,1

T
2 ) · p, where I2 is the 2 × 2 identity

matrix and 12 is a vector of ones of length two. Using the vec-mat notation
defined in Section 2.3.3 we have vec(p12) = mat(I2 ⊗ I2 ⊗ 1T2 ) · vec(p), where
mat(I2 ⊗ I2 ⊗ 1T2 ) is the Kronecker product of I2, I2 and 1T2 :




p12(0, 0)
p12(0, 1)
p12(1, 0)
p12(1, 1)


 =




1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1







p(0, 0, 0)
p(0, 0, 1)
p(0, 1, 0)
p(0, 1, 1)
p(1, 0, 0)
p(1, 0, 1)
p(1, 1, 0)
p(1, 1, 1)




.
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More generally, pA is computed from p by a multilinear transformation
(A1, . . . , Am), where Ai = Iri+1 if i ∈ A and Ai = 1Tri+1 otherwise.

For pB ∈ VB we defined pBB = diag2(pB) ∈ VB ⊗ VB by

pBB(xB , yB) =

{
pB(xB) if xB = yB ,
0 otherwise.

The inverse of pBB is p−1
BB ∈ V ∗B⊗V ∗B , where V ∗B is the space dual to VB . The

conditional distribution defined by (3.3) is a tensor pA|B ∈ VA ⊗ V ∗B , which
in the tensor notation can be written as a contraction

(VA ⊗ VB)⊗ (V ∗B ⊗ V ∗B) → VA ⊗ V ∗B ,
pAB ⊗ p−1

BB 7→ pA|B .

Indeed, by definition pBB(x′B , xB) = δxBx′BpB(xB) and hence writing this
contraction explicitly in coordinates gives

pA|B =
∑

x′B

pAB(xA, x
′
B)pBB(x′B , xB)−1 = pAB(xA, xB)pB(xB)−1.

Recall from Section 2.3.3 the definition of a flattening pA;B of a tensor
p. In the probabilistic setting, pA;B is just the matrix representing the joint
distribution of vectors XA and XB , where their possible values are ordered
lexicographically. Using the vec-mat notation and flattenings we can rewrite
this as

mat(pA|B) = pA;B · p−1
B;B ,

where pA;B is defined by (2.12) and pB;B is the flattening of the tensor pBB .
Recall from Section 3.1.2 that for any two disjoint subsets A,B ⊆ [m] we

have A ⊥⊥ B (or XA ⊥⊥ XB), if and only if

pAB(xAB) = pA(xA)pB(xB) for all x ∈ X .

In tensor notation this means that pAB ∈ VAB can be written as

pAB = pA ⊗ pB ∈ VA ⊗ VB .

Here VA ⊗ VB is isomorphic to VAB and we identify both spaces. In the
vec-mat notation we have

pA;B = vec(pA) · vec(pB)T = (pA ⊗ pB)A;B .

The notion of independence can be generalized to the joint independence of
any set partition of [m]. Given a partition B1| · · · |Br of B ⊆ [m] we have

B1 ⊥⊥ · · · ⊥⊥ Br if and only if pB = pB1
⊗ · · · ⊗ pBr . (4.26)

The full independence model is given by 1 ⊥⊥ 2 ⊥⊥ · · · ⊥⊥ m. In geometry the full
independence model corresponds to the Segre variety; see Section 2.4.
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Proposition 4.40. The nonnegative part of Seg(Pr1×· · ·×Prn) is isomorphic
to the full independence model.

This follows directly from the parameterization in (2.13).

Definition 4.41. Given disjoint subsets B,C ⊂ [m] and a partition
B1| · · · |Br of B we say that B1, . . . , Br are conditionally independent given
C if

pB|C( · |xC) = pB1|C( · |xC)⊗ · · · ⊗ pBr|C( · |xC)

for each xC ∈ XC . We write B1 ⊥⊥ · · · ⊥⊥ Br|C.

Suppose that A ⊥⊥ B|C and XC is not observed. We are then interested
in the marginal distribution of (XA, XB). In tensor notation (3.4) can be
written as a multilinear transformation

pAB = (pA|C , pB|C) · pCC , (4.27)

where pCC = diag2(pC) ∈ VC ⊗ VC as defined in (2.8). Using (2.11) we can
equivalently rewrite it using the vec-mat notation as

vec(pAB) = mat(pA|C ⊗ pB|C) vec(pCC).

This last representation admits a generalization to the case when
B1 ⊥⊥ · · · ⊥⊥ Br|C. We have

vec(pB1···Br ) = mat(pB1|C ⊗ · · · ⊗ pBr|C) vec(pC···C). (4.28)

Note that vec(pC···C) is a sparse vector.

4.3.2 Alternative moment tensors

Let X ∈ X , where X = X1 × · · · Xm and Xi = {0, . . . , ri}. By the mo-
ment aliasing principle of Proposition 3.12, the probability distribution p of
X can be uniquely represented by the moments M = [µA(x)]x∈X or central
moments M ′ = [µ′A(x)]x∈X . The problem is that in general the representa-
tion in terms of moments is more complicated than in the binary case. In
particular, the conditional expectation does not have a linear form anymore
(c.f. (3.10)). In this section we present a simple alternative. We show how
appropriately organized marginal distributions can replace moments. This
alternative representation resembles moments, it is simple to compute us-
ing linear transformations, and it specializes to moments in the binary case.
Moreover, it enables us to work efficiently with conditional expectations.

Suppose temporarily that X = X1×X2, where Xi = {0, 1, . . . , ri}. Denote
pi+ = p1(i) and p+j = p2(j). By adding all rows of p to its first row and all
its columns to the first column we obtain a new matrix

µ̇12 =




1 p+1 · · · p+r2

p1+ p11 · · · p1r2
... · · ·

...
pr1+ pr11 · · · pr1r2


 . (4.29)
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We denote the top left corner of this matrix by µ∅ = 1 ∈ R, the bottom left
block by µ1 ∈ Rr1 , the top right block by µ2 ∈ Rr2 , and the remaining block
by µ12 ∈ Rr1×r2 .

To extend this construction in a notationally compact way to the gen-
eral case, we can represent the row and column operations with elementary
matrices that we will call M(r) for r ∈ N, defined as follows

M(r) =

[
1 1T

0 Ir

]
, so M(r)−1 =

[
1 −1T

0 Ir

]
. (4.30)

Here 0,1 ∈ Rr denotes the vector of zeros and ones, respectively, and Ir is the
r× r identity matrix. The matrix µ̇12 in (4.29) is equal to (M(r1),M(r2)) · p
(c.f. Definition 2.51). For the case of general m where p is a higher-order
tensor, for each multiset A ⊆ [m] we let M(A) := ⊗i∈AM(ri), and define

µ̇A := M(A) · pA. (4.31)

Note that pA = M(A)−1 · µ̇A, where M(A)−1 = ⊗i∈AM(ri)
−1. Moreover,

µA is defined as the block of µ̇A corresponding to entries with no 0 in their
index.

Example 4.42. Suppose m = 2, X1 = {0, 1, 2}, and X2 = {0, 1}. Writing
pi+ for p1(i), p+1 for p2(1), and pij for p(i, j) we obtain

µ̇12 =




1 p+1

p1+ p11

p2+ p21


 =

[
1 µ2

µ1 µ12

]
, µ̇1 =




1
p1+

p2+


 =

[
1
µ1

]
, and

µ̇11 =




1 p1+ p2+

p1+ p1+ 0
p2+ 0 p2+


 =

[
1 µ1

µ1 µ11

]
, so

µ12 =

[
p11

p21

]
, µ1 =

[
p1+

p2+

]
and µ11 =

[
p1+ 0
0 p2+

]
.

Note that X1 ⊥⊥ X2 if and only if µ12 = µ1 ⊗ µ2. As in Example 4.39 we
can write the transformation from p to µ̇12 using the vec-mat notation. We
obtain

vec(µ̇12) = mat(M(2)⊗M(1)) · vec(p).

By explicitly computing the Kronecker product mat(M(2)⊗M(1)), this can
be written as




1
p2(1)
p1(1)
p(1, 1)
p1(2)
p(2, 1)




=




1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1



·




p(0, 0)
p(0, 1)
p(1, 0)
p(1, 1)
p(2, 0)
p(2, 1)



.
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Tensors µ̇A for A ⊆ [m] generalize regular moments in two ways. First, if
X = {0, 1}m, then µA is a number that coincides with µA = E[

∏
i∈AXi] for

every A ⊆ [m]. Moreover, for any discrete data, µA is indeed a moment of a
multivariate random variable.

Definition 4.43. Let Xi be a random variable with values in
{0, e1, . . . , eri} ⊂ Rri , where ei are unit vectors in Rri . We fix the joint
distribution of all Xi to be equal to the joint distribution of X, that is, the
event {X1 = x1, . . . , Xm = xm} corresponds to {X1 = x1, . . . ,Xm = xm},
where xi = 0 if xi = 0 and xi = exi otherwise. Define Ẋi = (1,Xi), so that
Ẋi ∈ {e0, e0 + e1, . . . , e0 + eri} ⊆ RXi and for every A ⊆ [m] let

XA :=
⊗

i∈A
Xi, ẊA :=

⊗

i∈A
Ẋi.

The following result has a straightforward proof.

Proposition 4.44. The tensor moment µ̇A is equal to E[ẊA]. Moreover,
µA = E[XA].

Marginal independence implies factorization of joint moments.

Proposition 4.45. Let B1| · · · |Br be a partition of A. Then

B1 ⊥⊥ · · · ⊥⊥ Br if and only if µ̇A = µ̇B1
⊗ · · · ⊗ µ̇Br .

This is equivalent to

µA∩C = µB1∩C ⊗ · · · ⊗ µBr∩C for all C ⊆ A, |C| ≥ 2.

Proof. By definition in (4.26), B1 ⊥⊥ · · · ⊥⊥ Br is equivalent to pA = pB1
⊗

· · · ⊗ pBr . Applying M(A) on both sides yields µ̇A = µ̇B1
⊗ · · · ⊗ µ̇Br .

Next, we show how to generalize central moments in this setting. For
every i ∈ [m] let

M ′(i) :=

[
1 0T

−µi Iri

]
·M(ri), so (M ′(i))−1 = M(ri)

−1·
[

1 0T

µi Iri

]

and let M ′(A) :=
⊗

i∈AM
′(i). Now define

µ̇′A := M ′(A) · pA. (4.32)

We define µ′A as the block of µ̇′A entries with no 0 in their index. To get a
sense of how these quantities behave, observe that µ′i = 0 for i = 1, . . . ,m.
For any i, j ∈ [m], we have

µ̇ij =

[
1 µj
µi µij

]
and µ̇′ij =

[
1 0
0 µij − µi ⊗ µj

]

and hence µ′ij = µij − µi ⊗ µj , and in particular,

rank(µ̇ij) = rank(µ̇′ij) = 1 + rank(µ′ij).

This is convenient, because rank(µ̇ij) = rank(pij) ≤ 1 if and only if i ⊥⊥ j. We
record this as a proposition:

Proposition 4.46. For any two i, j ∈ [m], we have i ⊥⊥ j ⇐⇒ µ′ij = 0.
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4.3.3 Kronecker products and binary moments

In this section, X ∈ {0, 1}m is a binary distribution with probability tensor
p. By (4.31) the moment tensor µ̇1···m is given by

µ̇1···m = A⊗m · p,

where

A =

[
1 1
0 1

]
.

By (4.32) the tensor of central moments is obtained using a multilinear trans-
formation

µ̇′1···m = (B1 ⊗ · · · ⊗Bm) · p,
where

Bi =

[
1 1
−µi 1

] [
1 1
0 1

]
=

[
1 1

−pi(1) pi(0)

]
.

These formulas give very efficient ways of computing moments for binary
variables. In practice, we compute the Kronecker products A = mat(A⊗m)
and B = mat(B1 ⊗ · · · ⊗Bm) and use the identities (see also [Teugels, 1990,
Theorem 1])

vec(µ̇1···m) = A vec(p),

vec(µ̇′1···m) = B vec(p).
(4.33)

The inverse expressions are easily obtained because A−1 = mat((A−1)⊗m)
and B−1 = mat(B−1

1 ⊗ · · · ⊗B−1
m ), where

A−1 =

[
1 −1
0 1

]
, B−1

i =

[
pi(0) −1
pi(1) 1

]
.

It is also not hard to give an explicit form of A and B. We provide such
a formula for A.

Lemma 4.47. We have A(x,y) = 1 if x ≤ y and A(x,y) = 0 otherwise.
By (4.1), A represents the zeta function on the Boolean lattice. By Möbius
inversion,

A−1(x,y) =

{
(−1)|y−x| if x ≤ y,
0 otherwise.

4.4 Submodularity and log-supermodularity

4.4.1 Basic definitions

We say that a lattice L is distributive if for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
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An important example is the Boolean lattice. In this section we fix a finite
distributive lattice and consider functions f : L → R. We say that such a
function is submodular if

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) for all x, y ∈ L.

Two alternative definitions are popular when L is the Boolean lattice of
subsets of [m].

Proposition 4.48. A function f : 2[m] → R is submodular if and only if
one of the following holds:

1. for all A ⊆ B, i ∈ [m] \B

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B)

2. for all A ⊆ [m] and i, j ∈ [m] \A

f(A ∪ {i}) + f(A ∪ {j}) ≥ f(A ∪ {i, j})− f(A).

In this book we are going to use a notion closely related to submodularity.

Definition 4.49. A nonnegative set function f : L → [0,∞) is log-
supermodular if

f(x)f(y) ≤ f(x ∨ y)f(x ∧ y) for all x, y ∈ L.

Remark 4.50. A strictly positive function f is log-supermodular if and only
if − log(f) is submodular.

Example 4.51. Let L = {0, 1}m, where x ∨ y and x ∧ y are
given by componentwise maximum and minimum. The log-supermodular
functions p : {0, 1}m → [0,∞) that satisfy the normalizing equation∑

x∈{0,1}m p(x) = 1 are said to satisfy the MTP2 (multivariate total posi-

tivity of order 2) constraints. If m = 2, then there is only one constraint

p(0, 1)p(1, 0) ≤ p(1, 1)p(0, 0). (4.34)

If m = 3, then there are 9 constraints

p(0, 0, 1)p(1, 1, 0) ≤ p(0, 0, 0)p(1, 1, 1) p(0, 1, 0)p(1, 0, 1) ≤ p(0, 0, 0)p(1, 1, 1)

p(1, 0, 0)p(0, 1, 1) ≤ p(0, 0, 0)p(1, 1, 1) p(0, 1, 1)p(1, 0, 1) ≤ p(0, 0, 1)p(1, 1, 1)

p(0, 1, 1)p(1, 1, 0) ≤ p(0, 1, 0)p(1, 1, 1) p(1, 0, 1)p(1, 1, 0) ≤ p(1, 0, 0)p(1, 1, 1)

p(0, 0, 1)p(0, 1, 0) ≤ p(0, 0, 0)p(0, 1, 1) p(0, 0, 1)p(1, 0, 0) ≤ p(0, 0, 0)p(1, 0, 1)

p(0, 1, 0)p(1, 0, 0) ≤ p(0, 0, 0)p(1, 1, 0).

Note that the inequality in (4.34) is equivalent to the covariance being
nonnegative. There is a remarkable connection between the MTP2 property
and positive dependence, which we are going to present in the next section.
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4.4.2 The Ahlswede–Daykin inequality

For any collections C, C′ of elements of L define

C ∨ C′ = {x ∨ y : x ∈ C, y ∈ C′}
C ∧ C′ = {x ∧ y : x ∈ C, y ∈ C′}.

Theorem 4.52 (Four Function Theorem, Ahlswede and Daykin [1978]). If
α, β, γ, δ are non-negative functions defined on a finite distributive lattice L
satisfying

α(x)β(y) ≤ γ(x ∨ y)δ(x ∧ y) for all x, y ∈ L,

and if C, C′ are any two collections of elements of L, then

α(C)β(C′) ≤ γ(C ∨ C′)δ(C ∧ C′),

where we use short-hand notation f(C) =
∑
x∈C f(x).

Theorem 4.52 has a couple of useful corollaries. For example, take α(x) =
p(x)f(x), β(x) = p(x)g(x), γ(x) = p(x), and δ(x) = p(x)f(x)g(x), where f, g
are decreasing functions (f(x) ≥ f(y) if x ≤ y in L) and where p is a log-
supermodular function on L. If α(x)β(y) ≤ γ(x∨y)δ(x∧y), then equivalently

p(x)p(y)f(x)g(y) ≤ p(x ∨ y)p(x ∧ y)f(x ∧ y)g(x ∧ y).

If p is a probability distribution, that is,
∑
x∈L p(x) = 1 holds, then for any

collection C

α(C) =
∑

x∈C
p(x)f(x),

β(C) =
∑

x∈C
p(x)g(x),

γ(C) =
∑

x∈C
p(x) = p(C),

δ(C) =
∑

x∈C
p(x)f(x)g(x).

Note that 1
p(C)

∑
x∈C p(x) = 1 and hence

p(x; C) =
1

p(C)p(x) for x ∈ C

is a probability distribution. Denote

EC [f ] :=
∑

x∈C
p(x; C)f(x), covC(f, g) := EC [fg]− EC [f ]EC [g].

We obtain the following corollary.
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Proposition 4.53 (The FKG inequality). If p is a log-supermodular (MTP2)
probability distribution on L and if f and g are both decreasing (or both
increasing) functions on L, then for any collection C of elements of L

covC(f, g) ≥ 0.

Example 4.54. Consider again Example 4.51. Every monomial xa, where
a ∈ Nm, defines an increasing function on {0, 1}m. Let m = 3 and take C
be all points in {0, 1}3 with the last coordinate 0. Then taking f(x) = x1,
g(x) = x2 we obtain

EC [f ] =
1

p(C) (p(1, 0, 0) + p(1, 1, 0))

EC [g] =
1

p(C) (p(0, 1, 0) + p(1, 1, 0))

EC [fg] =
1

p(C)p(1, 1, 0)

and therefore for every probability distribution over {0, 1}3 that satisfies the
MTP2 constraints,

p(C)p(1, 1, 0)− (p(1, 0, 0) + p(1, 1, 0))(p(0, 1, 0) + p(1, 1, 0)) ≥ 0.

The above quantity is just the conditional covariance of random variables X1

and X2 given X3 = 0.

We use our standard notation X = X1×· · ·×Xm, where Xi = {0, . . . , ri}.
A tensor p = [p(x)] ∈ RX is log-supermodular if

p(x) · p(y) ≤ p(x ∨ y) · p(x ∧ y) for any two x,y ∈ X , (4.35)

where ∨, ∧ are the coordinate maximum and minimum, respectively. If L is
a set is equal to X , we prefer to use the following more direct result, which
follows from Theorem 4.52 by taking all four functions to be equal.

Proposition 4.55. Fix m ≥ 2 and a set X as above and let p be a tensor
in RX . If p is log-supermodular, then for any two collections C, C′, we have

p(C) · p(C′) ≤ p(C ∨ C′) · p(C ∧ C′).

In particular, the computation in Example 4.54 can also be easily derived
from Proposition 4.55 by taking ∧,∨ to be the coordinatewise minimum and
maximum, and by taking C = {(1, 0, 0), (1, 1, 0)}, C′ = {(0, 1, 0), (1, 1, 0)}.
Theorem 4.56. Let X =

∏m
i=1 Xi and X ′ =

∏m−1
i=1 Xi. If p ∈ RX is log-

supermodular, then the marginalization p′ of p defined by

p′ = (I, . . . , I,1) · p ∈ RX
′

is also log-supermodular. In particular, if p is a probability distribution
of X = (X1, . . . , Xm), then every marginal distribution pA is also log-
supermodular.
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Proof. Let x,y ∈ X ′ and Cx and Cy two collections of elements of X such
that they agree with x and y over the first m−1 coordinates. By Proposition
4.55, p(Cx)p(Cy) ≤ p(Cx ∨ Cy)p(Cx ∧ Cy). The result follows because p(Cx) =
p′(x), p(Cy) = p′(y), p(Cx ∨ Cy) = p′(x ∨ y), and p(Cx ∧ Cy) = p′(x ∧ y).

4.5 Bibliographical notes

Section 4.1 is mostly based on Chapter 3 in Stanley [2002]. Other good ref-
erences are Davey and Priestley [2002] and Aigner [1997]. A special case of
Lemma 4.19 was first formulated by Weisner [1935] and then the result was
generalized by Rota et al. [1973]. Our proof strategy follows the proof of a
similar result in [Stanley, 2002, Section 3.9]. The basic examples of partition
lattices are motivated by the free probability theory in Lehner [2002], Speicher
[1997]. Non-crossing partitions are analyzed in Kreweras [1972], Krawczyk
and Speicher [2000], Speicher [1994, 1997]. The interval partitions are dis-
cussed for example in Speicher and Woroudi [1997]. Cumulants were first
defined and studied by Danish scientist T.N. Thiele [1899] (cited after Hald
[2000]) who called them semi-invariants. They were first called cumulants in
Fisher and Wishart [1932]. In the definition of cumulants we underline the
links with combinatorics (see Rota and Shen [2000], Speed [1983]) and com-
putational algebraic geometry (see Pistone and Wynn [1999], Pistone and
Wynn [2006]). The general references are Barndorff–Nielsen and Cox [1989],
McCullagh [1987]. Binary cumulants were defined and used in algebraic ge-
ometry in Sturmfels and Zwiernik [2012] and Pistone and Wynn [2006]. The
generalization to L-cumulants has been developed in Zwiernik [2012]. The
application of these ideas in algebraic geometry is given in Ciliberto et al.
[2014], Manivel and Micha lek [2014], Micha lek et al. [2015]. Our exposition
on Ahlswede–Daykin inequality comes mostly from [Anderson, 1987, Section
6.2]. For the original result, see Ahlswede and Daykin [1978]. For the FKG
inequality, see Fortuin et al. [1971]. For more on submodularity, see, for ex-
ample, Bach [2011], Fujishige [2005].
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Chapter 5

Phylogenetic trees and their models

[]
In this chapter, we introduce the main object of study of this book, which

are trees and their statistical models. In the beginning, the main motivation
will be to provide first examples of how various geometric spaces are associ-
ated to trees. We discuss the space of tree metrics, the space of phylogenetic
oranges, and the latent tree model. Some necessary combinatorics, including
tree splits and the Tuffley poset, provides us a language to describe these
spaces and their special points. What we will try to indicate in this chapter
and prove in the following ones is that these various tree spaces have many
features in common and they should be studied together.

We start with some standard definitions.

5.1 Trees

5.1.1 Phylogenetic trees and semi-labeled trees

In Section 3.4.1 we introduced some basic graph-theoretic concepts. In this
section we extend this material specializing to trees. A tree T = (V,E) is a
connected undirected graph with no cycles. In particular, for any two u, v ∈ V
there is a unique path between them, which we denote by uv. A vertex of T
that has only one neighbor is called a leaf . A vertex of T that is not a leaf
is called an inner vertex. An edge of T is inner if both of its ends are inner
vertices, otherwise it is called terminal . A connected subgraph of T is called
a subtree of T .

A rooted tree T r is a directed graph whose underlying undirected graph
is a tree that has one distinguished vertex r, called the root, and all the edges
are directed away from r. For every vertex v of a rooted tree T r such that
v ∈ V \ r, the set pa(v) of parents of v is a singleton. As an example consider
the quartet tree in Figure 5.1 with one of its rooted versions, where the root
is given by an inner vertex.

1

2

3

4

1

2

3

4

Figure 5.1: A quartet tree and a rooted quartet tree.
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We often constrain ourselves to binary trees.

Definition 5.1. A tree T is binary if every inner vertex has exactly three
neighbors. A rooted tree T r is binary if every inner vertex has two children.

For example, the undirected quartet tree is a binary tree but its rooted
version on the right in Figure 5.1 is not because the root has three children.
In our analysis, leaves of a tree are always labeled and represented by solid
vertices. More generally, we consider so-called semi-labeled trees.

Definition 5.2. A semi-labeled tree on [m] is an ordered pair T = (T ;φ),
where T is a tree with vertex set V and φ : [m] → V is a map such that,
for each v ∈ V that has at most two neighbors, v ∈ φ([m]). We say that
T = (T ;φ) is a phylogenetic tree if φ is a bijection from [m] to the set of
leaves of T . In a similar way, we define a rooted semi-labeled tree and a rooted
phylogenetic tree.

If v ∈ φ([m]), then we say that v is labeled and we depict it by a solid
vertex. A vertex that is not labeled is called unlabeled . Note that multiple
labels at a vertex are allowed. The map φ, called the labeling map, is always
implicit and hence typically it is omitted in our notation. The tree T of T is
called the underlying tree of T . The set of vertices of the underlying tree T is
denoted by V (T ) and its set of edges by E(T ). An example of a semi-labeled
tree is given in Figure 5.2.

1

2

3

4
5, 6

Figure 5.2: A semi-labeled tree with the labeling set {1, 2, 3, 4, 5, 6}.

Although we mainly consider geometric spaces associated to phylogenetic
trees, the main reason to introduce semi-labeled trees is that they parameter-
ize some special subspaces. More generally we need to consider semi-labeled
forests that are disjoint unions of semi-labeled trees.

Definition 5.3 (Semi-labeled forest). Given a partition π = B1| · · · |Br of
[m], consider a collection of semi-labeled trees TBi with labeling sets Bi. The
union of these trees is called a semi-labeled forest

F = {TB : B ∈ π}.

The partition π is called the partition of F . Often we write F as a pair (F, φ),
where F is the underlying forest and φ the labeling map.

As an example, consider the graph in Figure 5.3, which is a semi-labeled
forest with partition 123|4|5|6.

As we show below, the connection between set partitions and trees is
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1

2

3 4 5 6

Figure 5.3: A semi-labeled forest with the partition 123|4|5|6.

much deeper. We now define two basic operations on semi-labeled forests
called edge deletion and edge contraction. This enables us later to introduce
a suitable partial ordering on the set of semi-labeled forests.

Definition 5.4 (Edge deletion). Let F = (F ;φ) be a semi-labeled forest and
let e be an edge of F . Then by F \ e, denote the semi-labeled forest obtained
from F by

1. removing from F the edge e,

2. suppressing all the resulting unlabeled vertices with only two neighbors.

Here in step 2, by suppressing we mean the following: if step 1 introduces
a subgraph u − v − w such that v is unlabeled and has no other neighbors
apart from u and w, we remove v together with both its edges from F and
add edge u− w.

It is easy to see that F \ e is indeed a semi-labeled forest. More generally,
for a subset E′ of edges of F , by F\E′ denote the semi-labeled forest obtained
from F by deleting edges of E′ and then

(i) recursively deleting all degree-one unlabeled vertices

(ii) suppressing degree-two unlabeled vertices.

This will be illustrated by the following example.

Example 5.5. Consider the semi-labeled tree T in Figure 5.4. Let e4, e5, e6

be edges incident with the labeled vertices 4, 5, 6. Then the semi-labeled forest
T \{e4, e5, e6} is given in Figure 5.3. It is obtained by first deleting the given
edges. The resulting forest on the left in Figure 5.5 is then corrected by
recursively deleting unlabeled degree-one vertices as in step (i). We then
apply step (ii) to the resulting forest, which is given on the right in Figure
5.5.

1

2

3 4

5

6

Figure 5.4: A binary tree with six leaves.
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1

2

3 4

5

6

1

2

3 4

5

6

Figure 5.5: An illustration for Example 5.5.

Example 5.6. Consider the quartet tree in Figure 5.1. After removing the
edges incident with the leaves 1 and 4 we obtain the following semi-labeled
forest with no unlabeled vertices

1 2 3 4

Definition 5.7 (Edge contraction). Let F = (F ;φ) be a semi-labeled forest
and let e be an edge of F . The semi-labeled forest obtained from F by
identifying the ends of e and then deleting e, denoted F/e, is said to be
obtained from F by contracting e. The semi-labeled forest obtained from F
by contracting each of the edges of E′ is denoted by F/E′.
Example 5.8. Consider again the tree T in Figure 5.4. Let e4, e5, e6 be like
in Example 5.5. Then the semi-labeled forest T /{e4, e5, e6} is given in Figure
5.2.

1
2

3

45

6

Figure 5.6: A star tree with m = 6 leaves.

Remark 5.9. More generally, any semi-labeled tree can be obtained in this
way from a binary phylogenetic tree. For example, the star tree in Figure 5.6
is obtained from the binary tree in Figure 5.4 by contracting all inner edges.

If either F ′ = F \ E′ or F ′ = F/E′ for some set of edges E′, then we
say that F ′ is a subforest of F . We discuss this concept and its link to set
partitions in the next section.

5.1.2 Splits and T -partitions

A split of [m] is a partition of [m] into two non-empty sets. Let now T = (T ;φ)
be a semi-labeled tree with the labeling set [m]. A tree split (or a split induced
by T ) is a split of the labeling set [m] obtained by removing an edge of the
underlying tree T and considering two connected components of T \ e. The
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set of all tree splits induced by T is denoted by S(T ). The labeling set [m]
is implicit in this notation.

Example 5.10. The splits of the quartet tree in Figure 5.1 are 1|234, 2|134,
3|124, 4|123, and 12|34.

Each split in S(T ) is a partition of [m] and thus an element of the lattice
Πm of all set partitions introduced in Section 4.1.3. Recall from Section 4.1.3
that if π = B1| · · · |Br and ν = B′1| · · · |B′s are two partitions in Πm, then π∧ν
is the common refinement of π and ν, that is, the partition with blocks given
by all the non-empty sets of the form Bi ∩B′j for i = 1, . . . , r, j = 1, . . . , s.

Definition 5.11. Let T be a semi-labeled tree with the labeling set [m] and
let S(T ) be the corresponding set of tree splits of [m]. We say that π ∈ Πm

is a T -partition if π = π1 ∧ · · · ∧ πk for some splits π1, . . . , πk ∈ S(T ). The
one-block partition 1̂ = [m] by convention is a T -partition. The set of all
T -partitions is denoted by Π(T ).

The set of all T -partitions forms a meet-semilattice and hence Π(T ) is a
lattice by Lemma 4.12. For a simple example, consider the phylogenetic tree
in Figure 5.1. The corresponding poset of T -partitions is given in Figure 5.7.
Note that Π(T ) shares the meet operation with Πm but the join operation
is not the same. For example, from the Hasse diagram in Figure 5.7 we see
that the join of 1|4|23 and 14|2|3 in Π(T ) is 1234, whereas in Πm it is 14|23;
see Figure 4.1. In other words, Π(T ) is a lattice and it is a subposet of Πm

but it is not a sublattice of Πm.

1234

1|234 2|134 12|34 124|3 123|4

1|2|34 1|3|24 1|4|23 14|2|3 13|2|4 12|3|4

1|2|3|4

Figure 5.7 The Hasse diagram of the poset of T -partitions for the quartet tree in
Figure 5.1.

Remark 5.12. Both the lattice of interval partitions and the lattice of one-
cluster partitions in Definition 4.15 are T -partitions. The lattice of interval
partitions is obtained as a T -partition lattice, when T is a chain graph like
in Figure 5.8. The lattice of one-cluster partitions is a T -partition lattice,
when T is a phylogenetic star tree model like in Figure 5.6.

Given a subset of splits S ⊂ Πm we may wonder if there exists a semi-
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1 2 3 m− 1 m
· · ·

Figure 5.8: A chain graph.

labeled tree T such that S = S(T ). The answer to this question is classically
known thanks to Buneman [1971].

Definition 5.13. A pair of different splits π1 = A1|B1 and π2 = A2|B2 of
[m] are compatible if exactly one of the sets A1 ∩A2, A1 ∩B2, A2 ∩B1, and
B1∩B2 is the empty set. Equivalently, the partition π1∧π2 has three blocks.

For example, 12|34 and 13|24 are not compatible and 1|234 and 12|34 are.

Theorem 5.14. Let S be a collection of splits of [m]. Then, there is a semi-
labeled tree T such that S = S(T ) if and only if the splits in S are pairwise
compatible. Moreover, if such a semi-labeled tree exists, then it is unique.

If T is a phylogenetic tree, then S(T ) contains the set S0 of trivial splits
(see Definition 4.15) that correspond to removing terminal edges of the un-
derlying tree T . Moreover, to every semi-labeled tree T ′ with splits S(T ′) we
can associate a phylogenetic tree with splits S(T ′)∪S0. This construction is
correct, which follows from Theorem 5.14 and the fact that trivial splits are
compatible with all other splits of [m] and hence the splits of S(T ′)∪ S0 are
pairwise compatible.

The fact that S0 ⊆ S(T ) for every phylogenetic tree T also implies that
the whole topological information that distinguishes Π(T ) and Π(T ′) for
two phylogenetic trees T , T ′ is contained in the set of non-trivial splits. The
corresponding posets are denoted by Π′(T ) and Π′(T ′). Consider, for exam-
ple, two different binary trees T and T ′, both with six leaves, given in Figure
5.9. Their associated posets Π′(T ) and Π′(T ′) are given in Figure 5.10.

1 2

a
b

c

3 4

d
5

6

1 2

a

b

c

4

3

d

5

6

Figure 5.9: Two non-isomorphic binary phylogenetic trees with six leaves.

Definition 5.15. Let T = (T ;φ) be a semi-labeled tree with a labeling set
[m]. For any B ⊆ [m], by T (B) denote the semi-labeled tree whose labeling
map is the restriction of φ to B. The underlying tree of T (B) is the smallest
subtree of T containing φ(B) (spanned over B) with all unlabeled vertices
that have two neighbors suppressed.
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123456

12|3456 1256|34 1234|56

12|34|56

123456

12|3456 123|456 1234|56

12|3|456 12|34|56 123|4|56

12|3|4|56

Figure 5.10 The Hasse diagrams of Π′(T ) and Π′(T ′), where T , T ′ are trees in
Figure 5.9.

1 2

3

Figure 5.11: The tripod tree.

Example 5.16. Suppose that T is the quartet tree in Figure 5.1. Then

T ({1, 2}) =
1• − 2•, T ({1, 3}) =

1• − 3•, and T ({1, 2, 3} is the tripod tree in
Figure 5.11.

Lemma 5.17. Define Π(T , B) as the induced subposet of Π(T ) obtained by
restricting each partition π ∈ Π(T ) to B. Then

Π(T , B) = Π(T (B)).

Proof. If π1, . . . , πk are splits generating Π(T ), then the poset Π(T , B)
is a semi-lattice generated by π1(B), . . . , πk(B), where we disregard πi such
that πi(B) = B. This is because the meet operation ∧ and restriction to B
commute. Also, the splits in S(T (B)) are precisely the non-trivial elements
of π1(B), . . . , πk(B).

By mB and m we denote the Möbius functions on Π(T , B) and Π(T ).
Their minimal and maximal elements are denoted by 0̂B , 0̂ and 1̂B ≡ B,
1̂ ≡ [m], respectively. Recall that, by construction, the maximal element
always corresponds to the one-block partition B or [m].

For any partition π ∈ Π(T ), the interval [0̂, π] has a natural structure
of a product of posets

∏
B∈π Π(T , B) and so [ν, π] ' ∏B∈π[νB , 1̂B ], where
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νB ∈ Π(T , B) is the restriction of ν ∈ Π(T ) to the block containing only
elements from B ⊂ [m]. By Proposition 4.7, the Möbius function on the
product of posets

∏
B∈π Π(T , B) can be written as the product of Möbius

functions for each of the posets Π(T , B). Thus for ν ≤ π in Π(T )

m(ν, π) =
∏

B∈π
mB(νB , B). (5.1)

Example 5.18. Consider the semi-labeled forest in Figure 5.13 and take
π = 12|34|56, ν = 12|3|4|56. We have

m(ν, π) = m12(12, 12)m34(3|4, 34)m56(56, 56).

Now directly from definition in (4.2) we have m12(12, 12) = m56(56, 56) = 1
and m34(3|4, 34) = −1 and therefore m(ν, π) = −1.

5.1.3 Tree-based metrics

In this section we follow [Semple and Steel, 2003, Chapter 7] introducing
tree-based metrics, which is the first geometric object that we relate to semi-
labeled trees. Understanding this space is very important because many of
its features are recurrent also in the context of other spaces we are going to
discuss later.

Definition 5.19. A metric on a set S is a function d : S × S → R≥ such
that, for all x, y, z ∈ S, the following hold

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The pair (S, d) is called a metric space.

In our case, S is always a finite set.
We consider metrics on [m] induced by semi-labeled trees in the following

sense. Let T = (V,E) be a tree and suppose that w : E → R+ is a map
that assigns lengths to the edges of T . Recall that for any pair u, v ∈ V
by uv we denote the path in T joining u and v. We now define the map
dT,w : V × V → R by setting, for all u, v ∈ V ,

dT,w(u, v) =

{ ∑
e∈uv w(e), if u 6= v,

0, otherwise.

Suppose now we are interested only in the distances between labeled vertices.

Definition 5.20. An arbitrary function d : [m] × [m] → R is called a tree
metric if there exists a semi-labeled tree T = (T ;φ) (T = (V,E)) with the
labeling set [m] and a positive length assignment w : E → R+ such that for
all i, j ∈ [m]

d(i, j) = dT,w(φ(i), φ(j)).

We will call d a T -metric if we want to make T explicit.
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Example 5.21. Consider a quartet tree with edge lengths as indicated in
Figure 5.12. The distance between vertices 1 and 3 is d(1, 3) = 9.5 and the
whole distance matrix is




0 5.5 9.5 8
· 0 11 9.5
· · 0 3.5
· · · 0


 ,

where the dots indicate that this matrix is symmetric.

1

2

3

4

5

3.5

2

1

2.5

Figure 5.12: A metric on a quartet tree.

It is easy to describe the set of all possible tree metrics.

Definition 5.22. We say that a map d : [m] × [m] → R satisfies the four-
point condition if for every four (not necessarily distinct) elements i, j, k, l ∈
[m],

d(i, j) + d(k, l) ≤ max

{
d(i, k) + d(j, l)
d(i, l) + d(j, k).

Since the elements i, j, k, l ∈ [m] in Definition 5.22 need not be distinct,
every such map is a metric on [m] given that d(i, i) = 0 and d(i, j) = d(j, i)
for all i, j ∈ [m]. The following fundamental theorem links tree metrics with
the four-point condition.

Theorem 5.23 (Tree-Metric Theorem, Buneman [1974]). Suppose that
d : [m]× [m]→ R is such that d(i, i) = 0 and d(i, j) = d(j, i) for all
i, j ∈ [m]. Then, d is a tree metric on [m] if and only if it satisfies the four-
point condition. Moreover, a tree metric defines the defining semi-labeled tree
uniquely.

Some intuition on how the proof of this result should work comes from
the following example.

Example 5.24. Let m = 4 and let

∆ = d(1, 3) + d(2, 4)− d(1, 2)− d(3, 4),

∆′ = d(1, 4) + d(2, 3)− d(1, 2)− d(3, 4).
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There are three possible phylogenetic trees on four leaves. On one of them
∆ > 0,∆′ > 0, on another ∆ < 0,∆′ = 0, and on the third ∆ = 0,∆′ < 0:

1

2

3

4∆ > 0

∆′ > 0

1

3

2

4∆ < 0

∆′ = 0

1

4

2

3∆ = 0

∆′ < 0

In particular, for each tree either ∆ ≥ 0 or ∆′ ≥ 0 and the values of ∆
and ∆′ enable us to distinguish between all possible trees with four leaves.

We can extract from Theorem 5.23 the constraints on the space of T -
metrics for a fixed phylogenetic tree T .

Proposition 5.25. Let T be a fixed phylogenetic tree. The set of all T -
metrics is the set of all metrics d on [m] satisfying

d(i, j) + d(k, l) ≤ d(i, k) + d(j, l) = d(i, l) + d(j, k)

for all disjoint i, j, k, l ∈ [m] such that the split {i, j}|{k, l} lies in
Π(T , {i, j, k, l}).

The proof can be completed by using an idea like in Example 5.24.
Whenever we write inequalities like those above, we want to think about

constrained geometric spaces. There are many ways to embed a metric space
in an affine space. For statistical reasons we implicitly always embed metric
spaces in the space of |S|×|S| symmetric matrices with zeros on the diagonal
(c.f. Example 5.21). If d is a metric, then ρ := e−d corresponds to a matrix
whose (x, y)-element is ρ(x, y) = e−d(x,y). Note that ρ has ones on the di-
agonal and all its elements lie in [0, 1]. The triangle inequality implies sign
constraints on certain minors

ρ(x, z)ρ(y, y) ≥ ρ(x, y)ρ(y, z).

If T is fixed, then the space of all T -metrics forms a polyhedral cone described
in Proposition 5.25. By Theorem 5.23, the space of all tree metrics on [m]
can be identified by a subset obtained by gluing together all these various
cones; see Billera et al. [2001]. For a fixed T , the analysis of ρ = e−d leads to
simple rank constraints on the space of T -metrics. Directly from Proposition
5.25 it follows that if A|B is a tree split, then the submatrix of ρ with rows
in A and columns in B has rank one.

In the next section we take a closer look at the space of all ρ = e−d, where
d is a tree metric. More precisely, we are going to study its compactification,
called the space of phylogenetic oranges.

5.1.4 Phylogenetic oranges and the Tuffley poset

An object very closely related to the space of all tree metrics, described in
Theorem 5.23, is the space of phylogenetic oranges. It was first defined by
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Kim [2000] and then further studied by Moulton and Steel [2004], Gill et al.
[2008]. Let T be a semi-labeled tree with the labeling set [m] and edge set

E(T ). Given a map λ : E(T )→ [0, 1] define a map p(T ,λ) : [0, 1]E(T ) → R(m2 )

defined for any two labeled vertices i, j by

p(T ,λ)(i, j) =
∏

e∈ij

λ(e), (5.2)

where ij denotes the set of edges on the path between i and j. The image of
this map is denoted by E(T ). The union of all E(T ) for all binary phylogenetic
trees T on [m] is called the edge product space or the space of phylogenetic
oranges and is denoted by E(m).

The connection between the space of tree metrics and the space of phylo-
genetic oranges is immediate. Taking − log(·) on the both sides of (5.2) gives
the tree metric because

− log p(T ,λ)(i, j) =
∑

e∈ij

− log λ(e),

and − log λ(e) ∈ (0,+∞). A subtlety arises when some of λ(e) are zero. Here
we set − log 0 =∞, which also shows that E(T ) is a compactification of the
space of all T -metrics.

In our applications it is important to understand the geometry of E(m).
Directly by Definition 2.43, for any phylogenetic tree T , the space E(T ) is a
toric cube. In particular, by Theorem 2.45, E(T ) is a basic semialgebraic set
given by binomial inequalities and equal to the closure of its interior. The
space of strictly positive points of E(m) and E(T ) for every T is in one-to-
one correspondence with the space of tree metrics. Therefore, the inequalities
describing E(m) and E(T ) can be derived from the four-point condition in
Definition 5.22 and from Proposition 5.25.

Proposition 5.26. A point x = [xij ] with nonnegative coordinates lies in

E(m) ⊂ R(m2 ) if and only if for every four (not necessarily distinct) leaves
i, j, k, l in V ,

xijxkl ≥ min

{
xikxjl
xilxjk.

Moreover, if this holds, then (T , λ) such that xij = p(T ,λ)(i, j) is defined
uniquely.

Proof. Consider the set of strictly positive points in E(m). The space is
isomorphic with the space of tree metrics via ρ 7→ − log(ρ). Thus, constraints
on this open space can be derived directly from the four-point condition and
are exactly the constraints above. Now note that these constraints describe
a larger closed set, the smallest closed set containing this open space. By
Theorem 2.45 this closed set is precisely E(m).

A proof of the next result is essentially the same.
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Proposition 5.27. If T is given, then the space E(T ) has dimension |E(T )|
and is described by all points with nonnegative coordinates satisfying the fol-
lowing set of constraints. For any four (not necessarily distinct) leaves i, j, k, l
such that the split {i, j}|{k, l} is compatible with T we have

xikxjl = xilxjk ≤ xijxkl. (5.3)

Note that (5.3) implies that for any three distinct leaves i, j, k

xikxjk ≤ xij .

By Theorem 2.47, E(T ) forms a CW-complex, with the simplest instance
given by Example 2.44. This CW-complex structure was analyzed in detail by
Moulton and Steel [2004] and it is closely linked to the so-called Tuffley poset
denoted by Tuff(m). The poset structure of Tuff(m) is defined as follows. For
two forests F , F ′ we have F ′ � F in Tuff(m) if:

(O1) π′ ≤ π in Πm.

(O2) Given A ∈ π and ν = π′(A) = B1| · · · |Br (restriction of π′ to A):

(i) for every B ∈ ν, Π(T ′B) ⊆ Π(TA, B),

(ii) for any two distinct Bi, Bj ∈ ν there exists a split Fi|Fj ∈ Π(TA)
with Bi ⊆ Fi and Bj ⊆ Fj .

For a semi-labeled tree T by Tuff(T ) we denote the poset of all F � T .
We now describe how the Tuffley poset is related to the CW-complex

structure of E(T ) (c.f. Definition 2.46). To a semi-labeled tree T we associate
a closed ball B(T ) = [0, 1]E(T ). Further, for a semi-labeled forest F = {TA :
A ∈ π} we define

B(F) =
∏

A∈π
B(TA).

We can extend the map in (5.2) to forests as follows. If F = {TA : A ∈ π} is

a semi-labeled forest, then let ψF : B(F) → [0, 1](
m
2 ) be defined by setting,

for λ = (λA : A ∈ π),

ψF (λ)(i, j) =

{
p(TA,λA)(i, j) if i, j ∈ A for A ∈ π,
0 otherwise.

The following example should make clear that the image of ψF (λ) can be
realized as a subset of E(T ) for any phylogenetic tree T such that F is
obtained from T by removing and contracting its edges.

Example 5.28. Let F be a semi-labeled forest
1• − 2• 3• −4•. Then

ψF (λ)(1, 2) = λ12, ψF (λ)(3, 4) = λ34, ψF (λ)(i, j) = 0 otherwise,

where λ12, λ34 ∈ [0, 1] are some parameters of the edges of F . Let T be the
quartet tree in Figure 5.1. Consider a point in E(T ) parameterized by

(λ′0, λ
′
1, λ
′
2, λ
′
3, λ
′
4) = (0, 1, λ12, 1, λ34),
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where λ′0 is the parameter of the inner edge, and λ′i for i = 1, 2, 3, 4 are
the parameters of the terminal edges of the corresponding leaves. With this
choice of parameters, we have p(T ,λ′)(i, j) = ψF (λ)(i, j) for all i, j. Note that
setting λ′e = 0 or λ′e = 1 corresponds to edge deletion or edge contraction,
respectively.

We formulate the following theorem without proof; see [Moulton and
Steel, 2004, Theorem 3.3].

Theorem 5.29. E(m) is a CW-complex with cell decomposition

{(B(F), ψF ) : F ∈ Tuff(m)}.

Furthermore, Tuff(m) is isomorphic to the face poset of E(m) under the map
that sends F to ψF (B(F)). Similarly, for every phylogenetic tree T , Tuff(T )
is isomorphic to the face poset of E(T ).

To better understand the Tuffley poset it is convenient to reformulate
the partial ordering given by (O1) and (O2). Let F be a semi-labeled forest
and π the corresponding partition of [m], F = {TB : B ∈ π} (c.f. Definition
5.3). Define Π(F) to be the set of induced partitions defined as a product of
Π(TBi) for all components TBi of F :

Π(F) =
∏

B∈π
Π(TB). (5.4)

In particular, π is the maximal element of Π(F) and we consider Π(F) as
a subset of Π(T ) in a natural way. It is clear that Π(F \ e) ⊂ Π(F) and
Π(F/e) ⊂ Π(F) for all e ∈ E(F).

Now we are ready to define a poset structure on the set of all semi-labeled
forests with labeling set [m].

Definition 5.30. Given two semi-labeled forests F ,F ′, both with the label-
ing set [m], we say that F ′ is a semi-labeled subforest of F if Π(F ′) ⊆ Π(F).

Example 5.31. Consider again a semi-labeled tree T in Figure 5.2. Let F
be the semi-labeled forest in Figure 5.13. Every element in Π(F) lies in Π(T )
and hence F is a semi-labeled subforest of T .

1 2 3 4 5, 6

Figure 5.13: A semi-labeled forest.

The product structure of Π(F) given by (5.4) implies the following lemma.

Lemma 5.32. Let F ,F ′ be two semi-labeled forests with the same labeling set
[m] and π, π′ the corresponding partitions of [m]. Then F ′ is a semi-labeled
subforest of F , or equivalently Π(F ′) ⊆ Π(F), if and only if:

(O1) π′ ≤ π in Πm,
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(O2’) for every block A ∈ π
∏

B∈π′(A)

Π(T ′B) ⊆ Π(TA),

where π′(A) denotes restriction of π′ to elements of A.

In other words, F ′ was obtained from F by some edge deletions and contrac-
tions.

Proof. We prove the “if” direction by contradiction. If π′ 6≤ π, then Π(F ′)
cannot be contained in Π(F) because π′ is the maximal element of Π(F ′)
and every element of Π(F) is less than or equal to π. So suppose that (O1)
holds. Now if (O2’) fails to hold, then there must be a block A ∈ π and an
element ν ∈ Π(F ′) such that ν(A) /∈ Π(TA), which is a contradiction with
the fact that Π(F ′) ⊆ Π(F). The “only if” part of the proof follows from
(5.4).

The following result shows that Tuff(T ) is equal to the set of all semi-
labeled forests with the partial order given by Definition 5.30. This provides
a clearer description of the ordering in terms of the corresponding partition
lattices.

Theorem 5.33. The Tuffley poset Tuff(m) is the set of all semi-labeled
forests with [m] as the labeling set. We have F ′ � F if and only if Π(F ′) ⊆
Π(F).

Proof. It suffices to show that (O1) and (O2’) are equivalent to condi-
tions (O1) and (O2) in Lemma 5.32. Suppose first that (O1) and (O2) hold.
Condition (O2’)(i) follows directly. If Bi, Bj ∈ ν, then by (O2)

Π(T ′Bi)×Π(T ′Bj ) ⊆ Π(TA, Bi ∪Bj),

which implies that in Π(TA) there must exist an element Fi|Fj that con-
strained to Bi ∪Bj becomes Bi|Bj and hence (O2’)(ii) also holds. Now sup-
pose (O1) and (O2’) hold. Because π′ ≤ π, to show (O2), it suffices to show
that for every A ∈ π,

∏
B∈π′(A) Π(T ′B) ⊆ Π(TA). Let 0̂ be the minimal ele-

ment of Π(TA). Suppose that ν ∈ Π(TA), then by (O2’)(i) the interval [0̂, ν] is
precisely

∏
B∈π′(A) Π(T ′B) and hence (O2) holds. Thus, it is enough to show

that ν ∈ Π(TA). By (O2’) for every two Bi, Bj ∈ ν there exists an edge eij in
TA separating Bi from Bj . We can require that eij does not split any other
Bk ∈ ν. Indeed, suppose that for every Fi|Fj like in (O2’)(ii) there exists
k 6= i, j such that Bk ∩ Fi 6= ∅ and Bk ∩ Fj 6= ∅. In addition to a fixed Fi|Fj ,
consider any split F ′i |F ′k in Π(TA) such that Bi ⊆ F ′i and Bk ⊆ F ′k, which
exists by (O2’)(ii). These two splits are necessarily compatible and hence

∅ ∈ {Fi ∩ F ′i , Fi ∩ F ′k, Fj ∩ F ′i , Fj ∩ F ′k}.

However, Bi ⊆ Fi ∩ F ′i and hence Fi ∩ F ′i cannot be empty. By assumption,
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Bk∩Fi 6= ∅ and Bk∩Fj 6= ∅ and hence also Fi∩F ′k 6= ∅ and Fj∩F ′k 6= ∅. This
implies that necessarily Fj ∩ F ′i = ∅ and hence Fi = f ′i, Fj = f ′k and finally
Bk ⊆ Fj , which leads to contradiction. It follows that there exists a set of
edges separating all Bi from each other. Removing all these edges induces
the partition ν.

For every π ∈ Π(T ) we define two semi-labeled forests:

Fπ := {T (B) : B ∈ π}, (5.5)

where T (B) is the subtree of T spanned over B (see Definition 5.15) and

Fπ := {TB : B ∈ π}, (5.6)

such that each TB is a single vertex labeled with B. Note that Fπ depends
both on T and π, whereas Fπ depends only on π. For example, if T is the
phylogenetic tree in Figure 5.4 and π = 123|4|5|6, then Fπ is the semi-labeled
forest in Figure 5.3 and Fπ is given in Figure 5.14.

1, 2, 3 4 5 6

Figure 5.14: A semi-labeled forest Fπ induced by the partition π = 123|4|5|6.

Proposition 5.34. The maximal elements of Tuff(m) correspond to binary
phylogenetic trees. The minimal elements are forests Fπ for π ∈ ⋃T Π(T ),
where the union is taken over all binary phylogenetic trees.

The Tuffley poset is very big even for very small m. The simplest case,
when m = 3, is depicted in Figure 5.15.

5.2 Markov process on a tree

5.2.1 Graphical model formulation

Let T r = (V,E) be a rooted tree and Y = (Yv)v∈V be a vector of random
variables such that every Yv takes kv + 1 values in Yv := {0, . . . , kv}. Denote
the state space of Y by Y =

∏
v∈V Yv.

Definition 5.35. The Markov process on a rooted tree T r is the space of all
distributions for Y = (Yv)v∈V of the form

p(y; θ, T ) = θr(yr)
∏

u→v
θv|u(yv|yu) for y = (yv)v∈V ∈ Y, (5.7)

for some nonnegative parameters θr ∈ Rkr+1 and θv|u ∈ R(ku+1)×(kv+1) for

every u→ v in T r. We assume that
∑kr
y=0 θr(y) = 1 and

∑kv
x=0 θv|u(x|y) = 1

for every y.
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Figure 5.15: The Tuffley poset for the tripod tree.

The marginal distribution pr induced from (5.7) is equal to θr and so
θr is the root distribution. For each u → v ∈ E, the matrix θv|u is called a
transition matrix — it is a stochastic matrix, in which each row sums to 1.
If the marginal distribution pu induced from (5.7) contains no zeros, then
pv|u = θTv|u, in which case we interpret θv|u as the conditional distribution of
Yv given Yu. This interpretation may break down if some of the parameters
in (5.7) are zero.

It is convenient to think about a Markov process on a tree as a general-
ization of a (non-homogeneous) Markov chain, which is a Markov process on
a tree 1→ 2→ · · · → m such that k1 = . . . = km = k for some k.

Remark 5.36. Comparing (5.7) to (3.26) shows that the Markov process on
T r is a DAG model on T r. Since T r has no immoralities, the essential graph of
T r (see Section 3.4.3) is equal to the undirected version T of T r. By Corollary
3.58 the Markov process on T r is equal to the undirected graphical model on
T . In particular, the model does not depend on the rooting and we denote it
by N(T ) (or N(T,k + 1) if k = (ki) needs to be made explicit).

The model N(T ) is completely specified by setting all transition ma-
trices θv|u for u → v ∈ E together with the root distribution θr. Since∑kr
y=0 θr(y) = 1 and

∑kv
x=0 θv| pa(v)(x|y) = 1 for all v ∈ V \ {r} and

y ∈ {0, . . . , kpa(v)}, then the set of parameters consists of exactly d =
(m + 1)m|E| + m free parameters. We denote the parameter space by
ΘT = [0, 1]d. For instance in the binary case, kv = 1 for all v ∈ V , we
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have two free parameters: θv|u(1|0), θv|u(1|1) for each edge u → v ∈ E and
one parameter θr(1) for the root.

By Remark 5.36 we can freely switch between the parametric and the im-
plicit representation of N(T ), where the latter is given by Markov properties.

Proposition 5.37. Since T is decomposable, by Proposition 3.49, all differ-
ent Markov properties on T are equivalent. By the global Markov properties,
A ⊥⊥ B|C as long as C separates A and B in T . In particular, taking A = {u},
B = {v} and C = V \ {u, v}, Lemma 3.10 gives the defining equations of
N(T ).

The undirected factorization in (3.21) shows that N(T ), when restricted
to positive distributions, forms a discrete exponential family. In the two-state
case this exponential family formulation links N(T, (2, . . . , 2)) to the Ising
model on T widely studied in statistical physics. Then the joint distribution
in N(T ) has the following exponential form (c.f. (3.12))

p(x;ω, T ) = exp




∑

v∈V (T )

ωvxv +
∑

(u,v)∈E(T )

ωuvxuxv − logZ(ω)



 ,

where Z(ω) is the normalizing constant and ωv, ωuv are real parameters. Thus
there are |V |+ |E| functions forming the sufficient statistics: xv for v ∈ V (T )
and xuxv for u−v in E(T ). The matrix A representing the sufficient statistics
has 2|V | columns and |V | + |E| rows. If p̂ are sample proportions, then Ap̂
computes the sample moments of order ≤ 2 given by the marginal sample
probabilities p̂v(1) for v ∈ V (T ) and p̂uv(1, 1) for (u, v) ∈ E(T ).

In biology there is a special interest in models where kv = k for all v and
some k ∈ N. This model is denoted by N(T, k). In the phylogenetic context
we usually make the following simplifying assumptions for N(T, k):

(M1) θr(x) > 0, for all x ∈ {0, . . . , k}, and

(M2) det(θv|u) 6= 0, for each u→ v ∈ E.

Using the fact that pr = θr and pv = pv|upu for every u→ v, conditions (M1)
and (M2) imply the following weaker condition

pv(x) > 0, for all v ∈ V and all x ∈ {0, . . . , k}. (5.8)

Indeed, let u → v, then by a recursive argument we can assume pu > 0. By
(M2) each row of pv|u is nonzero and hence pv = pv|upu > 0.

5.2.2 Edge contraction and deletion

We generalize the Markov process on a tree to a Markov process on a forest
by defining it as a Cartesian product of its tree components. Formally, if F is
a forest and T1, . . . , Ts are its tree components with vertices V1, . . . , Vs, then

p(y; θ, F ) = p(y1; θ, T1) · · · p(ys; θ, Ts), (5.9)
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where y is a vector indexed by Vi, y = (y1, . . . ,ys) and each p(yi; θ, Ti) is of
the form (5.7). The Markov process on a forest F is denoted by N(F ).

By a similar argument as in the case of the phylogenetic oranges (c.f.
Example 5.28) model N(F ) can be realized as a submodel of N(T ) for any
tree T such that F can be obtained from T by edge contraction and deletion.

Lemma 5.38. Let T be a tree and N(T ) the corresponding Markov process
on T . If e = u → v is an edge of T , then the model of the forest T \ e is
obtained as a submodel of N(T ), where the parameters are constrained to
satisfy rank(θv|u) = 1.

Proof. A matrix has rank one if and only if each row is a multiple of
the first row. Since θv|u is a stochastic matrix of rank one, each row has
to be equal. However, directly from (5.7), if θv|u(yv|yu) does not depend
on yu, yv, then p(y; θ, T ) factorizes into p(y1; θ, T1)p(y2; θ, T2), where T1, T2

are two components of T \ e. The fact that it factorizes is immediate. The
fact that the components are themselves probabilities follows from the fact
that marginalizing over any of yi yields a probability distribution. Since
p(y; θ, T ) = p(y1; θ, T1)p(y2; θ, T2), it factorizes N(T \ e).

Lemma 5.39. Let T be a tree and N(T ) the corresponding Markov process
on T . If e = u → v is an edge of T , then the model of the forest T/e is
obtained as a submodel of N(T ), where the parameters are constrained to
satisfy θv|u(x|y) = 1 if x = y and θv|u(x|y) = 0 otherwise, that is, θv|u is the
identity matrix.

Proof. This again follows directly from (5.7).

5.2.3 The Chow–Liu algorithm

Let T be a tree and N(T ) the corresponding tree Markov process on T . Let

Y = (Yv) ∈ Y =
∏

v∈V (T )

Yv

be a vector of discrete random variables represented by vertices of T . Suppose
that a random sample of length n was observed. We report it in the form
of an observed counts table u or the sample proportions p̂ = u/n, which we
assume have only strictly positive entries. Since N(T ) is a graphical model of
a decomposable graph, the maximum likelihood estimate is easily obtained
for any fixed T (see Proposition 3.52)

θ̂r(yr) = p̂r(yr).

Similarly, for any edge u → v the maximum likelihood estimate of θv|u is
given by

θ̂v|u(yv|yu) =
p̂uv(yu, yv)

p̂u(yu)
.
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Suppose now that the tree T is also considered to be a (discrete) parameter
of our model. In this case, at least in principle, we should search over the space
of all possible trees with a given number of vertices and find the one that
gives the highest value of the likelihood function. The Chow–Liu algorithm,
proposed by Chow and Liu [1968], is a remarkably simple algorithm, which
gives an efficient way to find the best tree approximation that maximizes the
likelihood.

For two random variables Yi, Yj with joint distribution pij we define their
mutual information I(Yi, Yj) as the Kullback–Leibler divergence between pij
and the product of marginals pipj

Ip(Yi, Yj) =
∑

yi,yj

pij(yi, yj) log
pij(yi, yj)

pi(yi)pj(yj)
.

The mutual information satisfies Ip(Yi, Yj) ≥ 0 and is zero precisely when Yi
and Yj are independent.

Fix a tree T . The model N(T ) is a closure of an exponential family. By
Theorem 3.33 and Remark 3.34, maximizing the likelihood function of the
model N(T ) under data p̂ is equivalent to finding the unique distribution q
such that

(i) q ∈N(T ),

(ii) qij(yi, yj) = p̂ij(yi, yj) for all i, j ∈ V and yi ∈ Yi, yj ∈ Yj .
If q ∈N(T ), then

q(y) = qr(yr)
∏

u→v∈T
qv|u(yv|yu) =

∏

v

qv(yv)
∏

u→v∈E(T )

quv(yu, yv)

qu(yu)qv(yv)
.

(5.10)
Further, using (ii) we obtain

q(y) =
∏

v

p̂v(yv)
∏

u→v∈E(T )

p̂uv(yu, yv)

p̂u(yu)p̂v(yv)
.

The log-likelihood function n
∑

y∈Y log(q(y))p̂(y) becomes

n
∑

y

∑

v

p̂(y) log p̂v(yv) + n
∑

y

∑

u→v∈E(T )

p̂(y) log
p̂uv(yu, yv)

p̂u(yu)p̂v(yv)
.

Note that for a fixed v the sum
∑

y p̂v(y) log p̂v(yv) is just
∑
yv
p̂(yv) log p̂v(yv).

A similar simplification holds for the second term. Hence, by changing the
order of summation in both terms above, we can rewrite the log-likelihood
function as

n
∑

v

∑

yv

p̂(yv) log p̂v(yv) + n
∑

u→v∈E(T )

I p̂(Yu, Yv). (5.11)
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The value of that expression yields the maximum value of the log-
likelihood function over the model N(T ) for a fixed tree T . Now to find
the highest value over all possible trees we note that the first term of the
above sum does not depend on the tree topology. It follows that the maxi-
mum log-likelihood over all possible models N(T ) will be attained for a tree
T such that the second summand in (5.11) is maximized.

Since all I p̂(Yu, Yv) are nonnegative, we interpret them as edge weights.
With this interpretation, the link to minimum-cost spanning trees is imme-
diate. More precisely, let KV be the complete graph on the set V . For each
edge u − v in KV , let I p̂(Yu, Yv) be its weight. The Chow–Liu algorithm is
essentially the same as the minimum-cost spanning tree algorithm on KV

proposed by Kruskal [1956] and Prim [1957]:

• Compute all mutual informations of p̂ and order them from the largest
to the smallest.

• Move along this ordered sequence adding subsequently the corresponding
edges unless adding an edge introduces a cycle.

If all weights are different, then there is a unique best solution. If some of
the weights are equal, then multiple solutions are possible, but as we showed
above they will all give the same value of the likelihood function.

Example 5.40. Suppose that four binary random variables are given with
the joint distribution that comes from the tripod tree model in Figure 5.16.
Fixing parameter values, q4(1) = 0.6 and

1 2

3

4

Figure 5.16: The tripod tree with all vertices observed.

q1|4 =

[
0.7 0.3
0.4 0.6

]
, q2|4 =

[
0.8 0.2
0.5 0.5

]
, q3|4 =

[
0.6 0.4
0.4 0.6

]

we can quickly obtain the true distribution q, for example, using the following
R code

q <- array(0,c(2,2,2,2))

p4 <- c(0.4,0.6)

p14 <- matrix(c(0.7,0.4,0.3,0.6),2,2)

p24 <- matrix(c(0.8,0.5,0.2,0.5),2,2)

p34 <- matrix(c(0.6,0.4,0.4,0.6),2,2)

for (i in 1:2){

for (j in 1:2){
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for (k in 1:2){

for (l in 1:2){

q[i,j,k,l] <- p4[l]*p14[l,i]*p24[l,j]*p34[l,k]}}}}

Now generate a random sample of size n from q. Note that our computations
will make sense even if p̂ has zeros as long as two-way margins are strictly
positive. We use the following R code

n <- 200

dat <- sample(1:16,n,replace=TRUE,c(q))

phat <- tabulate(dat)/n

dim(phat) <- c(2,2,2,2)

Given sample proportions p̂ we compute mutual informations

MI <- matrix(0,4,4)

for (i in 1:3){

for (j in (i+1):4){

pi <- apply(phat,c(i),sum)

pj <- apply(phat,c(j),sum)

pij <- apply(phat,c(i,j),sum)

MI[i,j]=sum(log(pij/outer(pi,pj))*pij)}}

The six possible mutual informations truncated to three decimal points are
given in the matrix below




· 0.000 0.003 0.043
· · 0.004 0.027
· · · 0.045
· · · ·


 .

We start building the maximum likelihood tree by first adding the edge 3−4
corresponding to the mutual information value 0.045. Then, the next two
biggest values of the mutual information correspond to edges 1−4 and 2−4.
No cycles are formed by adding these edges and so we can include them.
Since no more edges can be added, we stop recovering the original tree.

5.2.4 Markov tree models in biology

The models used in phylogenetics are usually defined via continuous time
Markov processes evolving on a tree. In this formulation, to each edge e we
associate a rate matrix Qe = [q(x, y)]. We assume that the state space of each
random variable is the same and equal to k ≥ 2. Thus Q is a k × k matrix
whose (x, y)-th entry is the instantaneous rate of substitution from state x
to state y. By conservation, each row of Qe sums to 0. The product q(x, y)∆t
gives the probability that x changes to y in an infinitely small time interval
∆t. On each edge e = u → v the rate matrix Qe operates with intensity λe
for time te. The triple (Qe, λe, te) corresponds to the transition matrix θv|u
via

θv|u = exp(Qeαe), (5.12)
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where αe = λete and exp(A) :=
∑
k≥0

1
k!A

k is the matrix exponential.
In this section, we want to show how the continuous time Markov process

on a tree relates to the graphical model on T . By Jacobi’s identity, for every
square matrix A,

det(exp(A)) = etr(A).

Note that because

det(θv|u) = det(exp(Qeαe)) = exp(Tr(Qe)αe),

in particular det(θv|u) > 0. It turns out that for binary data this is the only
constraint that distinguishes the two models.

Proposition 5.41. A continuous time Markov process on T with two
states corresponds to the submodel of the Markov process N(T, 2) such that
det(θv|u) > 0 (or equivalently Tr(θu|v) > 1) for all edges u→ v of T r.

Proof. It is a classical result (see [Kingman, 1962, Proposition 2]) that
det(θu|v) > 0 if and only if there exists a 2 × 2 matrix Q such that θu|v =
exp(Q), or equivalently if θu|v has representation (5.12).

For general state spaces this result does not hold. By [Kingman, 1962,
Proposition 3] if k ≥ 3, then the space of transition matrices that have an
exponential representation as in (5.12) is relatively closed (in the classical
topology) in the space of all transition matrices with positive determinant. It
is an interesting open question to list all constraints that assure a continuous
time representation.

5.3 The general Markov model

The model we want to study in this book is given as a collection of marginal
distributions of the Markov process N(T ) on T . Of course such a marginal
model is necessarily more complicated. In this section we introduce this model
and show some of its basic properties. This helps to set up the scene for the
coming chapters.

5.3.1 Definition and examples

Let T = (T ;φ) be a semi-labeled tree with the labeling set [m]. In this
section we consider the marginal model of N(T ) over the random variables
represented by the labeled vertices of T . The parameterization of this new
model is easily induced from the parameterization of N(T ) by summing
over all possible values of unlabeled vertices. More precisely, the vector Y ∈
Y =

∏
v∈V {0, . . . , kv} has as its components all variables Yv for v ∈ V (T ),

both those that are observed and those that are hidden. The observed vector
X = (X1, . . . , Xn) is identified with a subvector of Y by Xi = Yφ(i). The
subvector of the remaining (hidden) variables in Y is denoted by H. The
corresponding state spaces are denoted by X and H.
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Definition 5.42. The latent tree model on T , denoted by M(T ), is the
marginal model for X induced from probability distributions over Y =
(X,H) in N(T ) by

p(x; θ, T ) =
∑

v/∈φ([m])

∑

hv∈Yv

p((x, h); θ, T ), (5.13)

where p(y; θ, T ) for y = (x, h) is given by (5.7). In other words M(T ) =
fT (ΘT ), where fT : ΘT → ∆X is the parameterization given by (5.13).

When we want k = (kv)v∈V explicit we write M(T ,k+ 1), and when all
kv are equal, we write M(T , k + 1). In the case where all ki are equal, the
corresponding latent tree model is called a general Markov model . We pay
special attention to the two-state general Markov model M(T , 2).

Remark 5.43. Parameterization (5.13) also makes sense if T has vertices
with multiple labels. However, if φ(i) = φ(j) for some i, j, then the support
of distributions in the resulting model is concentrated over points x such that
xi = xj , which corresponds to setting Xi = Xj .

Example 5.44. Let T r be a rooted quartet tree in Figure 5.1, where we
denote the root by r and the other inner vertex by a. Assume that all the
variables in this system have two states, that is, kv = 1 for all v. Then the
general Markov model M(T , 2) is given as the image of fT : ΘT → ∆X ,
where X = {0, 1}4 and where the parameter spaceΘT has exactly 11 free
parameters: θr(1) and θv| pa(v)(1|0), θv| pa(v)(1|1) for each v ∈ V \r. For every
x ∈ X

p(x; θ, T ) =

1∑
hr,ha=0

θr(hr)θa|r(ha|hr)θ1|r(x1|hr)θ2|r(x2|hr)θ3|a(x3|ha)θ4|a(x4|ha).

5.3.2 Reduction to non-degenerate vertices

In our general setting we always assume (5.8). In the two-state case this means
that all variables in the system are non-degenerate, that is, that Var(Yv) > 0
for all v. It is important to note that this assumption does not change the
model space as long as the observed vectorX is non-degenerate, which we can
always assume with no loss of generality because a binary random variable is
degenerate if and only if it is constant. The following proposition makes this
statement more precise.

Proposition 5.45. Suppose that Θ∗T is the set of all parameters in ΘT such
that var(Yv) = pv(0)pv(1) > 0 for all inner vertices v. Then fT (ΘT ) =
fT (Θ∗T ).

Proof. It is clear that fT (Θ∗T ) ⊆ fT (ΘT ). For the opposite inclusion it is
enough to show that if θ ∈ ΘT is such that the induced variance of Yv is zero
for some inner vertex v, then there exists θ′ ∈ Θ∗T such that fT (θ) = fT (θ′).
Suppose that θ is such that the variance of Yr is zero, where r is the root,
which we can assume to be an inner vertex. This means that θr(0)θr(1) = 0
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and thus θr is a unit vector ei ∈ R2, where i is either 1 or 2. Let θ′r = (1/2, 1/2)
be the uniform distribution and for every u such that r → u in T define θ′v|r as
the matrix in which every row is equal to the i-th row of θv|r. Suppose that all
other coordinates of the parameter vector θ′ coincide with the corresponding
coordinates of θ. It is easy to check that fT (θ) = fT (θ′). If v is any inner
vertex, we proceed in exactly the same way — if u → v in T , then θv|u is
zero apart from the i-th column in which all entries are 1. We can replace
it with a new matrix θ′v|u in which all entries are equal. Now we need only
adjust θw|v in exactly the same way as above.

5.3.3 Reduction to binary phylogenetic trees

Binary phylogenetic trees form an important subclass of semi-labeled trees in
the study of latent tree models. We show that assuming that each inner vertex
has exactly three neighbors and only the leaves are labeled, we still keep the
full structure of the problem. More precisely, any model for an arbitrary semi-
labeled tree is a submodel of a tree model of a binary phylogenetic tree. To
show this we formulate the following definition.

Definition 5.46. Let T be a semi-labeled tree. A binary expansion of T ,
denoted by T ∗, is any phylogenetic tree T ∗ whose underlying tree is binary
and there exists E′ ⊆ E(T ∗) such that T = T ∗/E′, that is, T is obtained
from T ∗ by contracting edges in E′.

To see that such T ∗ always exists, consider the following procedure on
T = (T, φ), which gives a (non-unique) construction of T ∗. For simplicity,
assume that T has no multiple labels but a general procedure is very similar.

Definition 5.47 (A construction of T ∗). Let T = (T, φ) be a semi-labeled
tree with the labeling set [m]. The proposed recursive procedure gives a
binary phylogenetic tree with the same labeling set such that T = T ∗/E′ for
some E′ ⊆ E(T ∗). Set T0 := T . The following two basic operations will be
used. Each takes as the input a semi-labeled tree Tj = (Tj , φj) and outputs
a semi-labeled tree Tj+1 = (Tj+1, φj+1):

1. If v is a labeled inner vertex with label i, that is, v = φj(i) for some
i ∈ [m], then Tj+1 is obtained as follows: Extend V (Tj) and E(Tj) by
adding another vertex v′ and an edge v − v′. Now define φj+1 so that
φj(i

′) = φj+1(i′) for all i′ 6= i, φj+1(i) = v′.

2. Suppose v is an unlabeled inner vertex of Tj with d > 3 neighbors
u1, . . . , ud. Then define V (Tj+1) extending V (Tj) by adding vertices
v1, . . . , vd−3 and E(Tj+1) by modifying E(Tj) in such a way that the
induced subgraph of Tj+1 over u1, . . . , ud, v, v1, . . . , vd−3 is a binary tree
with inner vertices given by v, v1, . . . , vd−3; see Figure 5.17.

First, use Step 1 recursively until the output is a semi-labeled tree T ′ such
that only its leaves are labeled. Now use Step 2 for each inner vertex of T ′ with
more than three neighbors. The procedure will stop when all inner vertices
have exactly three neighbors. In this way we obtain a binary phylogenetic
tree that is a binary expansion of T .
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u1

u5

u2

u4

u3

v u1

u5

u2 u3

u4

v

v1

v2

Figure 5.17 An illustration of the second step of the procedure in Definition 5.47 of
constructing a binary expansion.

Lemma 5.48. Let T be a semi-labeled tree and T ∗ its binary expansion with
E′ ⊆ E(T ∗) such that T = T ∗/E′. Then M(T ) ⊆M(T ∗).

Proof. This follows from Theorem 5.49 below.

We can extend this analysis to a semi-labeled forest F defining M(F) as
the Cartesian product of M(TA), where TA are the tree components of F .
More precisely, like in (5.13) we parameterize M(F) by

p(x; θ,F) =
∑

v/∈φ([m])

∑

hv∈Yv

p((x, h); θ, F ), (5.14)

where F is the underlying forest of F and p((x, h); θ, F ) is a Markov process
on a forest given in (5.9). We have the following result.

Theorem 5.49. Let F ,F ′ be two semi-labeled forests with common labeling
set [m]. If F � F ′, then M(F) ⊆M(F ′).

Proof. SinceM(F) is a product ofM(TB) for all its tree components TB ,
without loss of generality we can assume that F ′ is a semi-labeled tree, that is,
F ′ is connected. By Lemma 5.32, F � F ′ if and only if F is obtained from F ′
by some edge deletions and contractions. Thus, without loss of generality we
can assume that there exists e = u→ v ∈ E(F ′) such that either F = F ′ \ e
or F = F ′/e. If F = F ′/e, then M(F) is a submodel of M(F ′), where θu|v
is set to be the identity matrix, which follows from Lemma 5.39. Similarly,
by Lemma 5.38, F = F ′ \ e, then M(F) is a submodel of M(F ′), where θu|v
is set to be the matrix with all rows equal.

5.3.4 Degree-two vertices

We say that a vertex v in a graph has degree d if it has exactly d neighbors.
In the next chapter it will be important for us to consider latent tree models
M(T ) in the case when T is allowed to have unlabeled vertices of degree two.
In that case, the parameterization in (5.13) still makes sense. The following
result shows that from a model selection point of view allowing degree-two
unlabeled vertices does not change anything.

Lemma 5.50. Suppose that T is allowed to have degree-two unlabeled ver-
tices. Let v be such a vertex and let T ′ be the tree obtained from T by sup-
pressing v. Then M(T ) and M(T ′) are equal.
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Proof. Let u and w be neighbors of v. By Remark 5.36, the rooting of T
does not matter and we can assume that u→ v, v → w in E(T ). The product
θw|vθv|u defines a transition matrix which we denote by θw|u. From this it is
clear that M(T ) ⊆M(T ′). The opposite inclusion is also immediate. Let p
be a point in M(T ′) for a given parameter vector in ΘT ′ . Now in ΘT we can
set θv|u = θw|u and θw|v equal to the identity matrix, which also implies that
p ∈M(T ).

Although degree-two unlabeled vertices can be ignored in the sense of
Lemma 5.50, including this case in our analysis is still useful in some situa-
tions. Let T be a semi-labeled tree and B ⊆ [m]. Recall Definition 5.15 of the
induced semi-labeled tree T (B) and consider the following related object.

Definition 5.51. Let T = (T ;φ) be a semi-labeled tree with a labeling set
[m]. For any B ⊆ [m], by T 0(B) denote the pair (T (B), φ

∣∣
B

), where T (B) is

the smallest subtree of T containing φ(B) and φ
∣∣
B

is the restriction of φ to
B.

Note that T 0(B) in general is not a semi-labeled tree because it is allowed
to have degree-two unlabeled vertices. For example, consider the tree on
the left of Figure 5.18. If i, j, k are three leaves, then T 0({i, j, k}) is the
boldfaced subtree with four degree-two vertices and one degree-three vertex.
The corresponding phylogenetic tree T ({i, j, k}) is obtained from T 0({i, j, k})
by suppressing all degree-two vertices.

i

j

k

h

i j

k

h

Figure 5.18 The boldfaced tree on the left is T 0({i, j, k}), which defines the same
general Markov model as the tree T ({i, j, k}) on the right.

Proposition 5.52. Suppose that X has distribution in M(T ) for some phy-
logenetic tree T . If B ⊆ [m], then the space of all possible marginal distribu-
tions of the subvector XB is M(T 0(B)), which by Lemma 5.50 is equal to
M(T (B)).

5.3.5 Continuous time formulation

In this section we consider again the Markov process on a tree induced by
a continuous time Markov process as discussed in Section 5.2.4. Proposition
5.41 motivates the following definition.
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Definition 5.53. Let T be a semi-labeled tree. By M++(T , 2), denote the
positive part of M(T , 2), that is the model parameterized like M(T , 2) but
with assumption that det(θu|v) > 0 for every u → v. By Proposition 5.41
the positive part M++(T , 2) represents exactly the distributions in M(T , 2)
that come from a continuous Markov process on T .

By M+(T , 2) we denote the nonnegative part of M(T , 2), that is the
model parameterized like M(T , 2) but with assumption that det(θu|v) ≥ 0
for every u→ v. The set M+(T , 2) is the (Euclidean) closure of M++(T , 2).
We extend this definition on semi-labeled forests. If F = {TB : B ∈ π}, then
M++(F , 2) is the Cartesian product of M++(TB , 2).

The models used in phylogenetic analysis typically have some additional
constraints. The most general of those constrained models is the General
Time Reversible (GTR) model ; see Tavaré [1986].

Definition 5.54 (GTR model). Let T r be a rooted tree. The General Time-
Reversible (GTR) model on T r is a Markov process on T r satisfying:

(i) there exists Q such that for every e = u→ v in T r, θv|u = exp(Qαe),

(ii) there exists π such that πQ = 0 and θr = π,

(iii) diag(π)Q is symmetric (time reversibility).

Some of the reasons why the GTR model became popular in phylogenetic
analysis is its computational tractability, identifiability, and interpretability.
However, recently some bad features of this model class have been pointed
out by Sumner et al. [2012a,b], who showed that the model is not multiplica-
tively closed. That is, the result of multiplying of two GTR matrices is not
necessarily GTR, which has important consequences for estimation. Also it
is important to note that time reversibility has no biological reason and is
just a mathematical convenience; see [Yang, 2006, Section 1.5.2].

Other models popular in biology are submodels of the GTR model with
some additional constraints on the matrix Q. From a mathematical point of
view, these models have been studied in algebraic statistics as general group-
based models; see Eriksson et al. [2005], Sturmfels and Sullivant [2005] and
references therein. It is important to realize the modeling assumptions under-
lying all these models. The Markov process on a tree, being a graphical model,
is itself a fairly constrained model, which assumes a number of conditional in-
dependence statements. The GTR model assumes further constraints, which,
as we pointed out above, are problematic. All these constraints seem very
restrictive given that we expect our model only to conveniently represent
evolution along a tree. Constraining this model further produces low dimen-
sional models with good computational tractability but possibly with some
robustness issues. The geometric viewpoint of this book enables us to obtain
a unique perspective on the above problem as we show in the next sections.
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5.4 Phylogenetic invariants

Given a phylogenetic tree T and the general Markov model M(T ) on T , we
associate to it an ideal IT of all polynomials vanishing on M(T ) and we call
it the phylogenetic ideal . Every polynomial f ∈ IT is called a phylogenetic
invariant . Some authors call phylogenetic invariants only the polynomials
that lie in IT but do not lie in IT ′ for any other tree T ′. In this short section
we present briefly some aspects of the theory of phylogenetic invariants giving
references to the existing literature.

5.4.1 The basic idea

One motivation for investigating phylogenetic invariants is that they provide
techniques for developing new methods for tree reconstruction. The basic idea
behind application of phylogenetic invariants is as follows. Let M ⊆ ∆m−1

be an algebraic parametric model for a discrete random variable X with m
possible values and let IM be the corresponding ideal. Given n independent
observations of X we compute the sample proportions p̂. If the data were
generated from p∗ = p(θ∗) ∈ M for some θ∗ ∈ Θ, then p̂ converges almost
surely to p∗ by the law of large numbers. It follows that for large sample sizes
p̂ should be close to a point in M; see Figure 5.19. Because f(p∗) = 0 for
every f ∈ IM, for large n also f(p̂) ≈ 0. Note that this procedure will never
require parameter estimation.

p̂

M

Figure 5.19: The basic idea behind the application of phylogenetic invariants.

To give an idea of how we could make inference based on phylogenetic in-
variants we provide the following example. Let X,Y be two binary variables.
The independence model is given by a simple equation

p00p11 − p01p10 = 0. (5.15)
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Given sample proportions p̂ for sample size n, to test if (5.15) holds when
evaluated at the unknown true data generating distribution, we can equiva-
lently test whether the log-odds ratio satisfies

LOR(p) := log
p00p11

p01p10
= 0.

The reason why the log-odds ratio may be preferred here is that its sample
distribution is easier to understand. More specifically, if a random sample
of size n from the true distribution p∗ is observed, then LOR(p̂) has ap-
proximately normal distribution with mean LOR(p∗) and variance, which is
approximately

1

n

(
1

p̂00
+

1

p̂01
+

1

p̂10
+

1

p̂11

)
.

For a more detailed analysis, see [Agresti, 2002, Section 3.1.1].

5.4.2 The practice of phylogenetic invariants

The methods proposed in the phylogenetic literature are mainly simple di-
agnostic tests. A nice recent overview is given by Allman and Rhodes [2007].
The first papers developing the theory of phylogenetic invariants focused on
linear invariants; see Cavender [1989], Lake [1987], and Navidi et al. [1993].
These were used to distinguish between different tree topologies under various
simplified phylogenetic tree models. This method was showed by Huelsenbeck
[1995] to produce rather bad results. However, using recent developments in
the field, this simplified method was extended leading to powerful and ro-
bust algorithms, as shown for example by Fernández–Sánchez and Casanellas
[2014].

The basic setting is as follows. Given a collection of phylogenetic trees
T ,. . . , T ′ and their corresponding models, we provide the set of defining
phylogenetic ideals IT ,. . . , IT ′ . Until very recently, the complete ideals were
not available so the main idea was to list as many phylogenetic invariants
as possible. Considering simple quadratic invariants allows us to generalize
directly asymptotic chi-square tests for independence in a contingency table;
see Sankoff [1990]. General quadratic invariants are considered in Drolet and
Sankoff [1990].

One of the problems with this method is that the number of phylogenetic
invariants grows exponentially with the tree size. Moreover, for phylogeny
reconstruction we need to check invariants for each possible tree. A basic idea
of Eriksson [2007] is to use the phylogenetic invariants that are related with
rank constraints on various flattenings of the observed frequencies tensor; see
Section 7.1.4 for details. These so-called edge invariants can be shown to be
the only invariants relevant from the phylogeny reconstruction point of view;
see Casanellas and Fernández–Sánchez [2011] for details. We state it more
precisely below.

Theorem 5.55. Let C = {T ,. . . ,T ′} be a collection of phylogenetic trees on
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m leaves with corresponding general Markov models M(T ),. . . , M(T ′). For
each tree T in this collection there exists an open set UT such that if p lies
in
⋃
T ∈C UT , then p belongs to the Zariski closure of M(T ) for some T if

and only if p belongs to the zero set of the edge invariants of T .

To test the edge invariants Eriksson [2007] uses the singular value de-
composition and the Frobenius norm to compute the distance of a matrix to
the set of matrices of certain rank. Recently this method has been further
improved by Fernández–Sánchez and Casanellas [2014]. In its current form
the method is robust and simulations show that it outperforms most of the
commonly used methods.

A significant deficiency of the method of phylogenetic invariants is that
they all ignore additional constraints on models that can be used to improve
estimation. This issue will be addressed later in the book. The basic idea can
be, however, easily described by a picture. Let M be an algebraic parametric
model. By construction it is a semialgebraic set. The phylogenetic invariants
of the model define the Zariski closure M of M. Informally speaking, all
the diagnostic tests based on phylogenetic invariants analyze how far a given
data point is from M. Given two different data sets imagine that, with a
fixed metric, p̂2 is “closer” than p̂1 to M. We have to be very careful to draw
conclusions based solely on this fact. In particular, as it is shown in Figure
5.20, it is theoretically possible for p̂1 to lie actually closer to model M.
Analogously, we can consider two different tree topologies with two different

p̂1 M

p̂2

M

Figure 5.20: Inequality constrains matter.

phylogenetic ideals. Again, the data may support one of the ideals better but
still come from another topology. The method of phylogenetic invariants may
perform poorly in picking the correct tree if a model is misspecified, that is,
if the true distribution does not lie in any of M(T ).
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5.4.3 Toward basic statistical analysis

The method of phylogenetic invariants gives a way to select the best tree
under a given criterion. It does not, however, give any way of quantifying
how well the chosen tree fits the data. There is currently no literature on
testing the semialgebraic structures in the phylogenetic context. In simplistic
situations, tests can be developed using a more general approach for con-
strained multinomial models; see for example Davis–Stober [2009], Shapiro
[1985, 1988].

In view of Theorem 5.55 we can constrain our analysis only to edge in-
variants. These are given as minors of flattenings of the tensor of sample
proportions. Thus, every such minor is a polynomial in sample proportions,
and thus as a random variable, it has its mean and variance. This informa-
tion can then be used to construct simple diagnostic statistics. An alternative
route is to understand the distribution of singular values of every flattening.
We expect this line of research to become increasingly active.

5.5 Bibliographical notes

A large part of this chapter is based on Semple and Steel [2003] and we
also use their combinatorial approach as the starting point for the geometric
analysis. A good introduction to trees and tree models can be also found
in Felsenstein [2004], Yang [2006]. Another book on combinatorics of tree
models is Dress et al. [2012]. Some of the corresponding links to geometry
are exploited in Billera et al. [2001, 2002] and Zwiernik and Smith [2012].

In the biology literature, the general Markov model is also known as
Barry Hartigan’s model; see Barry and Hartigan [1987]. Recently this model
is becoming increasingly more popular in biological analysis; see for example
Allman and Rhodes [2008], Jayaswal et al. [2005, 2007].
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Chapter 6

The local geometry

[]
Our strategy is to define a new parameterization for the tree models

defined in Section 5.3. The new coordinate system is based on moments rather
than conditional probabilities. This helps us to exploit various invariance
properties of tree models, which in turn enables us to express the dependence
structure implied by the tree more elegantly. In most of this chapter we focus
on the two-state caseM(T , 2). We show that using special L-cumulants gives
a great understanding of the model M(T , 2). Throughout this chapter we
assume that (5.8) holds, that is, the marginal distribution over each variable
in the system has only positive entries. By Proposition 5.45 this assumption
does not change the model.

6.1 Tree cumulant parameterization

In this section we present tree cumulants. The motivation is given by a simple
example with three leaves, which we treat in detail below.

6.1.1 The tripod tree

Let T be the tripod tree in Figure 6.1 and let M(T , 2) be the corresponding
general Markov model. Here the black vertices represent three observed vari-
ables X1, X2, X3, and the white vertex indicates a variable H that remains
hidden. Since all variables in the system are binary, the parameterization is

p(x) =
1∑

y=0

θh(y)θ1|h(x1|y)θ2|h(x2|y)θ3|h(x3|y) for all x ∈ {0, 1}3. (6.1)

There are seven free parameters needed to specify p(x): θh(1) together with
θ1|h(1|y), θ2|h(1|y) and θ3|h(1|y) for y = 0, 1. The Zariski closure of this model
corresponds exactly to the first Secant Sec(1, 1, 1) as defined in Section 2.4;
see also Example 2.60.

Following Section 3.1.3, define

X̄i :=
Xi − EXi

var(Xi)
, H̄ :=

H − EH
var(H)

and ρij = E(X̄iX̄j), ρih = E(X̄iH̄), ρ123 = E(X̄1X̄2X̄3), ρhhh = E(H̄3). We
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1 2

3

Figure 6.1: The tripod tree.

always assume that (5.8) holds and therefore all the above quantities are well
defined. By Proposition 3.12 there is a one-to-one correspondence between the
probabilities p(x) for x ∈ {0, 1}3 and the four central moments µ′ij for i, j =
1, 2, 3 and µ′123 supplemented by the three means µi for i = 1, 2, 3. Thus,
probabilities are in one-to-one correspondence with µ1, µ2, µ3, ρ12, ρ13, ρ23

and ρ123. What we will show later explicitly, is that the original parameters
θh(1) and θi|h(1|0), θi|h(1|1) are in one-to-one correspondence with seven new
parameters ρ111, ρ222, ρ333, ρhhh and ρ1h, ρ2h, ρ3h.

Because X1 ⊥⊥ X2 ⊥⊥ X3|H, by Lemma 3.19

µi ∈ [0, 1],

ρij = ρihρjh for all i < j and

ρ123 = ρhhhρ1hρ2hρ3h

(6.2)

and in particular there are no non-trivial constraints on the means µi or the
corresponding skewnesses ρiii. Moreover, there are no equality constraints in
this model.

The product form of this parameterization enables us to derive constraints
on the observed vertices. For example, (6.2) implies that

ρ12ρ13ρ23 = (ρ1hρ2h)(ρ1hρ3h)(ρ2hρ3h) = ρ2
1hρ

2
2hρ

2
3h

and hence ρ12ρ13ρ23 ≥ 0 must hold for every distribution in M(T , 2). It also
allows us to find explicit formulas for the parameters of the model for every
distribution in M(T , 2) such that ρ12ρ13ρ23 > 0. Indeed, from (6.2) it follows
that

ρ2
hhh =

ρ2
123

ρ12ρ13ρ23
, ρ2

hi =
ρijρik
ρjk

, (6.3)

which, up to a sign, identifies parameters in terms of the distribution of
(X1, X2, X3).

Remark 6.1. Given formulas (6.3), the corresponding formulas for the original
parameters θh(1) and θi|h(1|j) can be given; see Theorem 7.6.

6.1.2 The general tree case

Let T be a semi-labeled tree. Consider the general Markov model M(T , 2).
The lattice of T -partitions Π(T ) defined in Section 5.1.2 leads to the defi-
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nition of tree cumulants (or T -cumulants if we want to make T explicit).
We follow the general construction of L-cumulants given in Definition 4.23,
where L now stands for Π(T ). We denote tree cumulants by t and their
standardized version by t̄. Thus, for any subset of leaves A we have

tA =
∑

π∈Π(T ,A)

mA(π)
∏

B∈π
µB , (6.4)

where mA(π) := mA(π, 1̂) is the Möbius function on Π(T , A). The expression
for t̄A is the same with µB replaced by ρB = E[

∏
i∈B X̄i]. In the formula for t̄,

by Proposition 4.38, the poset Π(T , A) can be replaced with a much smaller
poset Π′(T , A) generated by non-trivial splits of T .

The Möbius inversion formula (c.f. Proposition 4.4) gives the expression
for moments in terms of cumulants

µA =
∑

π∈Π(T ,A)

∏

B∈π
tB . (6.5)

Remark 6.2. The map between the probabilities p(x) for x ∈ {0, 1}m and
moments µB for B ⊆ [m] is a simple linear map in (4.23). It follows that the
change from the raw probabilities to tree cumulants is a polynomial map.
Hence, the map to standardized tree cumulants is an algebraic map.

Remark 6.3. For any phylogenetic tree T with at most three leaves, the
corresponding Π(T ) coincides with the lattice of all partitions. It follows that
tA for |A| ≤ 3 coincides with the corresponding cumulant (or central moment)
kA = µ′A. For the standardized tree cumulants we have t̄A = k̄A = ρA.

Example 6.4. Let T be a quartet phylogenetic tree from Example 5.44. The
T -cumulants are given by 15 coordinates tA for all non-empty A ⊆ {1, 2, 3, 4}.
By Remark 6.3 we have ti = µi, tij = µ′ij = kij for 1 ≤ i < j ≤ 4 and
tijk = µ′ijk = kijk for all 1 ≤ i < j < k ≤ 4. Finally, we have three ways of
computing t1234. One way is to use Proposition 4.25, which gives

t1234 = k1234 + k13k24 + k14k23,

where the formula for cumulants kA in terms of moments is given by (4.16).
Another way is to compute directly the Möbius function and use (6.4). There
is also a third simpler way, which generalizes to bigger caterpillar trees; see
Section 6.3.3. Let L = Π(T ) with the Hasse diagram given in Figure 5.7. By
K denote the partition lattice defined by interval splits: 1|234, 12|34, 123|4,

which is also a tree partition for the semi-labeled tree
1•−2•−3•−4•. Both K and

L have only one non-trivial split 12|34 and we easily check that assumptions
of Proposition 4.38 are satisfied, which gives

t1234 =
∑

π∈K
mK(π)

∏

B∈π
µ′B = µ′1234 − µ′12µ

′
34,

where the second equation follows from the fact that K is isomorphic to the
Boolean lattice on {1, 2, 3} and hence mK(π) = (−1)|π|−1. The formula for
µ′1234, µ′12 and µ′34 can be derived from Proposition 4.37.
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Definition 6.5 (Moment parameters). Consider the change of parameters
from θr(1), θv|u(1|y) for y = 0, 1 to a new set of parameters given by skewness
ρvvv = EȲ 3

v for all v ∈ V (T ) and edge correlation ρuv = E(ȲuȲv) for all u−v
in T . This new parameter space is denoted by ΩT .

To write the map to moment parameters explicitly, first note that µv =
EYv = P(Yv = 1). We first compute µr = θr(1) and the remaining means
are computed recursively for each v assuming that the formula for µpa(v) is
given. The recursive formula is

µv = (1− µpa(v))θv| pa(v)(1|0) + µpa(v)θv| pa(v)(1|1). (6.6)

Recall that the variance µ′vv of Yv is given by σv = µv(1−µv) and the formula
for the skewness of Yv by

ρvvv =
1− 2µv√

σv
for all v ∈ V (T ), (6.7)

which can be obtained by rewriting (Yv−µv)3 as Yv(1−3µv+2µ2
v)−µ3

v using
the fact that Y kv = Yv for all k ≥ 1. The formula for an edge correlation ρuv
is

ρuv = (θv|u(1|1)− θv|u(1|0))

√
σu
σv
, (6.8)

which for simplicity we write partly in terms of the means µu, µv, whose
explicit expressions in terms of the θ parameters is given in (6.6).

Simple linear constraints defining ΘT become slightly more complicated
when expressed in the new parameters ω ∈ ΩT .

Lemma 6.6 (Constraints on ΩT ). Suppose that the values of means µv ∈
[0, 1] are fixed for every vertex v (equivalently, by (6.7), ρvvv ∈ R are fixed).
Then the correlations are constrained to satisfy

−min{tutv,
1

tutv
} ≤ ρuv ≤ min{ tu

tv
,
tv
tu
},

where tu =
√

1−µu
µu

.

Proof. We first fix means µv in the interval (0, 1). Given this choice, edge
correlations ρe cannot now take any value in [−1, 1]. To obtain the induced
constraints on ρuv induced by this choice note that

max{0, pu(1) + pv(1)− 1} ≤ puv(1, 1) ≤ min{pu(1), pv(1)},

where pu(1) = µu and puv(1, 1) = µuv. Since µ′uv = µuv − µuµv, we further
obtain that

max{−µuµv,−(1− µu)(1− µv)} ≤ µ′uv ≤ min{µu(1− µv), (1− µu)µv},

which after normalizing by
√
σuσv gives the final constraint.
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The following result provides a partial understanding of why tree cumu-
lants are well suited for general Markov models.

Proposition 6.7. Let T be a phylogenetic tree with the labeling set [m] and
let X be a binary vector with distribution in M(T , 2). There exists a tree split
B1|B2 ∈ Π(T ) such that XB1

⊥⊥ XB2
if and only if tA = 0 for all A ⊆ [m]

unless either A ⊆ B1 or A ⊆ B2. Moreover, this in general is not true if
B1|B2 /∈ Π(T ).

Proof. Because for every phylogenetic tree T the T -partition lattice is
saturated (see Definition 4.29), Theorem 4.31 and Remark 4.32 apply as
long as the vector X is non-degenerate.

A generic distribution in M(T , 2) does not satisfy any marginal inde-
pendencies. Suppose that q ∈ M(T , 2) satisfies XB1

⊥⊥XB2
but no other

marginal independences. This can happen if and only if B1|B2 ∈ Π(T ) and
Yu ⊥⊥ Yv, where u− v is the edge inducing the tree split B1|B2. This in turn
is equivalent to ρuv = 0 and by Proposition 6.7 to tA = 0 for all A such
that u− v ∈ E(T 0(A)) (c.f. Definition 5.51). This informally shows that the
parameter ρe can be a factor in all tA such that u − v ∈ E(T 0(A)). The
following result, which also generalizes (6.2), shows that this is true.

Theorem 6.8. Let T = (T, φ) be a binary phylogenetic tree with the labeling
set [m]. Then M(T , 2) in the space of standardized tree cumulants is given
by

t̄A =
∏

v∈V (T 0(A))

ραvvvv
∏

e∈E(T 0(A))

ρe for |A| ≥ 2, (6.9)

where T 0(A) is the tree in Definition 5.51, αv := max{0,deg(v) − 2} and
the degree of v is taken in T 0(A). Moreover, there are no constraints on the
means µi ∈ (0, 1) for i = 1, . . . ,m.

Proof. We prove a more general formulation of this theorem when T
is allowed to have unlabeled degree-two vertices. In this case all the inner
vertices of T have degree 2 or 3 and the same holds true for T 0(B) for any
B ⊆ [m]. It is then sufficient to show that the theorem is true for A = [m].
The proof proceeds by induction with respect to m. Let m = 2. Since by
definition t̄12 = ρ12, (6.9) becomes

ρ12 =
∏

e∈E(T )

ρe. (6.10)

By Proposition 5.37, X1 and X2 are independent given any vertex, say v,
separating them. By Lemma 3.19 ρ12 = ρ1vρ2v. To prove (6.10) we imply use
this result recursively.

Now assume that m ≥ 3 and the theorem is true for all k ≤ m − 1. We
can always find two leaves separated from all the other leaves by an inner
vertex. Denote the leaves by 1, 2 and the separating inner vertex by a. The
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global Markov properties in (3.20) give that for each C ⊆ A := {3, . . . , n}
and any distribution in M(T , 2) we have

ρ12C = ρ12ρC + ρ12ρaaaρaC . (6.11)

To prove (6.11) use Proposition 3.18 and the fact that X1 ⊥⊥ X2 ⊥⊥XC |Ha to
write

ρ12C = E(X̄1X̄2

∏

i∈C
X̄i) = E

(
E(X̄1|H̄a)E(X̄2|H̄a)E(

∏

i∈C
X̄i|H̄a)

)
.

Because Ha is binary, we can use (3.10) to write

E(X̄1|H̄a) = ρ1aH̄a, E(X̄2|H̄a) = ρ2aH̄a, E(
∏

i∈C
X̄i|H̄a) = ρC + ρC∪aH̄a.

Since ρ12 = ρ1aρ2a, (6.11) follows.
The inner vertex a separates three sets {1}, {2}, A and it has degree ≤ 3.

Therefore its degree must be exactly 3. Let E′ = 12 ⊂ E(T ). The tree T /E′
is obtained from T by contracting all edges between 1 and 2, and hence it
contains a multiple labeled vertex a with label {1, 2}. Define Ta as the tree
with labeling set {a}∪A obtained from T /E′ by replacing the multiple label
{1, 2} with {a}. Let π0 = 12|0̂A ∈ Π(T ). The trimming map with respect to
{1, 2} is the map

[π0, 1̂] = Π(T /E′) → Π(Ta), π 7→ π̃

that changes the block 12C in π ∈ [π0, 1̂] to aC. Note that the trimming map
constitutes an isomorphism of posets between [π0, 1̂] and Π(Ta).

The definition of T -cumulants implies that

t̄[m] =
∑

π∈[π0,1̂]

m(π)
∏

B∈π
ρB +

∑

π/∈[π0,1̂]

m(π)
∏

B∈π
ρB . (6.12)

The second summand in (6.12) is zero since every π ∈ Π(T ) such that π /∈
[π0, 1̂] necessarily contains either 1 or 2 as one of the blocks and ρ1 = ρ2 = 0.
Let π1 = 12|A. Applying (6.11) to each ρ12C for each π ∈ [π0, 1̂] we obtain

∏

B∈π
ρB =

∏

B∈π∧π1

ρB + ρ12ρaaa
∏

B∈π̃

ρB ,

where π̃ denotes the map of the partition π under the trimming map described
above. We can rewrite

t̄[m] =
∑

π∈[π0,1̂]

m(π)
∏

B∈π∧π1

ρB + ρ12ρaaa
∑

π∈[π0,1̂]

m(π)
∏

B∈π̃

ρB . (6.13)

The first summand in (6.13) can be rewritten as

∑

δ∈[π0,π1]

[( ∑

π∧π1=δ

m(π)

) ∏

B∈δ

ρB

]
. (6.14)
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However, from Lemma 4.19, since π1 6= 1̂, for each δ the sum
∑
π∧π1=δ m(π)

in (6.14) is zero. It follows that

t̄[m] = ρ12ρaaa
∑

π∈[π0,1̂]

m(π)
∏

B∈π̃

ρB .

By Proposition 4.11 the Möbius function of [π0, 1̂] is equal to the restric-
tion of the Möbius function on Π(T ) to the interval [π0, 1̂]. The trimming
map constitutes an isomorphism between [π0, 1̂] and Π(Ta). Consequently,
the Möbius function on [π0, 1̂] is equal to the Möbius function on Π(Ta). It
follows that

t̄[m] = ρ12ρaaa t̄aA

and by induction we can write t̄aA in the form (6.9), which already implies
the final result because ρ12 =

∏
e∈12 ρe by case m = 2.

Recall from Definition 5.46 a binary expansion T ∗ of a semi-labeled tree
T . By Lemma 5.48 M(T , 2) ⊆ M(T ∗, 2) and we can use this fact to ob-
tain the parameterization of M(T , 2) for any semi-labeled tree T using the
parameterization for its binary expansion T ∗. Let E′ ⊂ E(T ∗) such that
T ∗/E′ = T . For a vertex w ∈ V (T ), let bwc denote the subset of vertices in
V (T ∗) that get identified with w in the process of going from T ∗ to T .

The following theorem generalizes Theorem 6.8. Here we first conveniently
extend the definition of the degree.

Definition 6.9. Let T = (T, φ) be a semi-labeled tree and let v ∈ V (T ) of
degree deg(v). The T -degree of v is defined as

deg(v; T ) := deg(v) + |φ−1(v)|.

In particular, the degree of v is equal to its T -degree if v is unlabeled but is
strictly lower otherwise.

Theorem 6.10. Let T be a semi-labeled tree and let T ∗ be its binary ex-
pansion. If t̄∗A for A ⊆ [m] are T ∗-cumulants, then for all distributions in
M(T , 2), µi ∈ (0, 1) for i ∈ [m] and

t̄∗A =
∏

v∈V (T 0(A))

ρβvvvv
∏

e∈E(T 0(A))

ρe for |A| ≥ 2, (6.15)

where βv := max{0,deg(v; T 0(A))− 2} and the degree is taken in T 0(A).

Remark 6.11. Theorem 6.8 is a special case of this result. Indeed, if T is
a binary phylogenetic tree, which is allowed to have degree-two unlabeled
vertices, then

max{0,deg(v)− 2} = max{0,deg(v; T )− 2}.

This is elementary for unlabeled vertices and for labeled vertices this follows
from the fact that only the leaves are labeled.
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Proof of Theorem 6.10. Let T ∗ be a binary expansion of T obtained from
T by the procedure in Definition 5.47, and let E′ ⊆ E(T ∗) be such that
T = T ∗/E′. By the proof of Theorem 5.49,M(T , 2) is given as a submodel of
M(T ∗, 2) by setting θ∗v|u to be the identity matrix for every edge (u, v) ∈ E′.
In the new parameters, ΩT is isomorphic to the subset of ΩT ∗ given by

ρ∗e = ρe for all e /∈ E′,
ρ∗e = 1 for all e ∈ E′, and
ρ∗vvv = ρwww for all w ∈ V (T ) and v ∈ bwc.

(6.16)

Indeed, if θ∗v|u is the identity matrix, then by (6.6) µ∗u = µ∗v, that is ρ∗uuu =

ρ∗vvv. By (6.8) also ρ∗uv = 1.
We first show (6.15) for A = [m]. By Theorem 6.8 the model M(T ∗) is

parameterized by (c.f. Remark 6.11)

t̄∗[m] =
∏

v∈V (T ∗)

ρ∗vvv
max{0,deg(v;T ∗)−2} ∏

e∈E(T ∗)

ρ∗e. (6.17)

Since E(T ∗) = E(T ) ∪ E′, applying (6.16) to
∏
e∈E(T ∗) ρ

∗
e gives:

∏

e∈E(T ∗)

ρ∗e
(6.16)−→

∏

e∈E(T )

ρe.

If w ∈ V (T ) is an inner vertex, then we consider three cases. Case 1: If w is
labeled and T -degree is deg(w; T ) = 3, then w has degree 2 and |φ−1(w)| = 1.
In that case, by construction in Definition 5.47, bwc consists of one leaf (T ∗-
degree 2) and one unlabeled inner vertex of T ∗-degree 3. Therefore,

∏

v∈bwc

ρ∗vvv
max{0,deg(v;T ∗)−2} (6.16)−→ ρdeg(w;T )−2

www . (6.18)

Case 2: If w has T -degree ≥ 4, the set bwc has |φ−1(w)| + deg(w; T ) − 2
elements out of which |φ−1(w)| are leaves of T ∗ and the rest are inner vertices
of T ∗-degree 3. Indeed, going from T to T ∗ in Definition 5.47, in Step 1
we introduce |φ−1(w)| new leaves that are all in bwc, and in Step 2 we
introduce further deg(w; T )− 2 inner vertices. Therefore, (6.18) still applies
if deg(w; T ) ≥ 4, which implies that after applying (6.16) to (6.17) we obtain
exactly (6.15) with A = [m]. The proof for a general A ⊂ [m] is similar but
greater care must be paid to degree-two unlabeled vertices.

Remark 6.12. Note that the theorem holds also in the case when T has
vertices with multiple labels.

Example 6.13. Consider a simple model given by a semi-labeled tree T of

the form
1• − 2• − 3•. Since deg(2; T ) = 3, we have

t̄∗123 = ρ222ρ12ρ23.
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However, the deg(2; T 0({1, 3})) = 2 because in this tree the vertex 2 is unla-
beled. This gives

t̄∗13 = ρ12ρ23.

Here we use T ∗-cumulants, where T ∗ is the tripod tree model. By Remark 6.3,
T ∗-cumulants are equal to cumulants and so in particular t̄∗123 = ρ123 and
t̄∗13 = ρ13.

Example 6.14. Suppose now that T is a phylogenetic tree with one inner
vertex and m labeled leaves like in Figure 5.6. We denote the inner vertex
with letter h. In this case any phylogenetic binary tree with the same number
of leaves is a binary expansion of T . Computations are particularly simple
if T ∗ is a caterpillar tree; see Section 6.3.3. In tree cumulants, the model
M(T , 2) is parameterized by µi ∈ (0, 1) for i ∈ [m] and

t̄∗A = ρ
|A|−2
hhh

∏

i∈A
ρih for |A| ≥ 2.

It may be tempting to think that it is enough to consider T -cumulants in-
stead of T ∗-cumulants. However, for example, if T is a star tree, then Π(T )
is the lattice of one-cluster partitions (c.f. Remark 5.12) and hence by Propo-
sition 4.36 the T -cumulants are equal to central moments. This set of coordi-
nates gives some insight into the geometry of M(T , 2) but it is not sufficient
for our purposes; see the appendix in Geiger et al. [2001].

Recall the model M+(T , 2) from Definition 5.53.

Lemma 6.15. The constraint on the parameter space ΘT to satisfy
det(θu|v) > 0 for every u→ v translates to ρe > 0 for all e ∈ T in ΩT .

Proof. We have det θv|u = θv|u(1|1) − θv|u(1|0) and hence by (6.8)
det(θu|v) > 0 if and only if ρuv > 0.

6.2 Geometry of unidentified subspaces

In this section we analyze the geometry of q-fibers as defined in Definition
3.23 for q ∈M(T , 2). Here the q-fibers are taken assuming that Y = (Yv) is a
non-degenerate vector, which excludes some points of the original parameter
space; see Proposition 5.45. Although, in some applications (see Rusakov and
Geiger [2005], Zwiernik [2011]) it is important to understand fibers of the
parameterization of M(T , 2) without assuming non-degeneracy (so that the
parameter space is compact); in this book we restrict to the non-degenerate
case.

For a distribution q ∈ M(T , 2) let µqB , ρqB , t̄
q
B for B ⊆ [m] denote

the corresponding moments, standardized moments, and standardized T ∗-
cumulants, where T ∗ is any binary expansion of T . The q-fiber is the set of
all points of ΩT such that ρiii = ρqiii for all i ∈ [m] and for every A ⊆ [m]
such that |A| ≥ 2

∏

v∈V (T 0(A))

ρβvvvv
∏

e∈E(T 0(A))

ρe = t̄qA, (6.19)
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where βv = max{0, deg(v; T 0(A)) − 2}. Since the second-order standard-
ized tree cumulants are always equal to corresponding correlations, by The-
orem 6.10 for any ω = ((ρvvv), (ρe)) in the q-fiber we have that

∏

e∈ij

ρe = ρqij . (6.20)

Let Σq = [ρqij ] be the corresponding correlation matrix , which is a symmetric
positive semi-definitem×mmatrix. We show that the geometry of the q-fiber,
denoted by Ωq ⊆ ΩT , is determined by zeros in Σq.

Definition 6.16. An edge e ∈ E(T ) is isolated relative to q if ρqij = 0 for

all i, j ∈ [m] such that e ∈ ij. We denote the set of all edges of T which are
isolated relative to q by Eq ⊆ E(T ). We define the q-forest Fq as the forest
obtained from T by removing edges in Eq but keeping all the vertices. Often,
Fq will not be a semi-labeled forest because we allow it to have unlabeled
vertices of degree less than three.

We illustrate this construction in the example below.

Example 6.17. Let T be the phylogenetic tree given in Figure 6.2 (ignore
at first that some edges are dashed) and assume that the correlation matrix
contains zeros given in the provided 7 × 7-matrix where the asterisks mean
any non-zero values such that the matrix is positive semi-definite. We have

a b

c

d

e

1

2 3

4

5

6

7

Σq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ∗ ∗ 0 0 0 0
1 ∗ 0 0 0 0

1 0 0 0 0
1 ∗ 0 0

1 0 0
1 0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 6.2: An example of a phylogenetic tree and a correlation matrix Σq.

Eq = {b− c, c− d, c− e, e− 6, e− 7} and these edges are depicted in Figure
6.2 as dashed lines. The q-forest Fq is obtained by removing the edges in
Eq. It is not a semi-labeled forest because it contains degree zero and two
unlabeled vertices.

Lemma 6.18. All the unlabeled vertices of T have either degree zero in Fq
or the degree is strictly greater than one.

Proof. Suppose that v is an unlabeled vertex of T whose degree in Fq is
one. Denote by e the edge of v that is not isolated relative to q. Let i, j be
any two labeled vertices of T such that e ∈ ij. Since all other edges of v are
isolated relative to q, then ij necessarily contains such an edge and therefore
ρqij = 0. This gives a contradiction.
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Lemma 6.19. Let u, v be two distinct vertices of T such that each: is labeled
or unlabeled with degree ≥ 3 in Fq. Then the monomial

∏
e∈uv ρ

2
e is a constant

function on the q-fiber Ωq. Moreover, if there are no degree-zero vertices on
the path between u and v, then the value of this monomial is nonzero.

Proof. It is enough to prove this result only in the case when all vertices
on the path between u and v are unlabeled of degree ≤ 2 in Fq. If both u and
v are labeled, then there is nothing to show. Thus consider first the case when
both u and v are unlabeled of degree ≥ 3 in Fq. We can find four labeled
vertices i, j, k, l such that u separates i from j in Fq, v separates k and l, and
{u, v} separates {i, j} from {k, l}. In Figure 6.3 we depict this situation in
the case when there are no degree-zero vertices on the path between u and
v. By construction we can require ρqij , ρ

q
kl to be nonzero. Also ρqik, ρ

q
jl can be

u v

i

j

k

l

Figure 6.3: An illustration for the proof of Lemma 6.19.

required to be nonzero if all the vertices on the path between u and v have

degree exactly two in Fq. Consider the quantity
ρqikρ

q
jl

ρqijρ
q
kl

, which has a fixed

value in the q-fiber, and substitute (6.20) for each of the terms. A simple
rearrangement now gives that

∏

e∈uv
ρ2
e =

ρqikρ
q
jl

ρqijρ
q
kl

.

If u is labeled, then consider any two labeled vertices i, j of T such that v
separates u, i, j in Fq and ρqij 6= 0. We have

∏

e∈uv
ρ2
e =

ρquiρ
q
uj

ρqij

and again we can require ρqui, ρ
q
uj to be nonzero if there are no degree-zero

vertices on the path between u and v.

6.2.1 Regular q-fibers

Lemma 6.19 suggests that a particularly nice situation occurs when q is such
that all unlabeled vertices of T have degree ≥ 3 in Fq.
Theorem 6.20. Let T be a semi-labeled tree. Suppose that q ∈ M(T , 2)
is such that all unlabeled vertices of T have degree ≥ 3 in Fq. We have
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ρiii = ρqiii for i ∈ [m] in the q-fiber and up to sign also the other parameters
are identified from q.

• For every unlabeled v, let i, j, k be any three labeled vertices separated
from each other by v and such that ρqijρ

q
ikρ

q
jk 6= 0, then

ρ2
vvv =

ρqijk
2

ρqijρ
q
ikρ

q
jk

.

• For every edge u − v, where u, v are unlabeled, let i, j, k, l be any four
labeled vertices such that u separates {i}, {j} and {k, l} and v separates
{i, j}, {k}, {l}; and ρqij , ρ

q
kl, ρ

q
ik, ρ

q
jl are all nonzero. Then

ρ2
uv =

ρqikρ
q
jl

ρqijρ
q
kl

.

• For every edge u − v such that u is labeled but v is not, let j, k be any
two labeled vertices such that v separates u, j, k and ρquj , ρ

q
uk, ρ

q
jk are all

nonzero. Then

ρ2
uv =

ρqujρ
q
uk

ρqjk
.

The above choices of labeled vertices are typically not unique but the param-
eter values will not depend on these choices.

Proof. Because every unlabeled vertex v of T has degree ≥ 3 in Fq,
we can find three labeled vertices i, j, k separated by v such that ρqij , ρ

q
ik,

ρqjk are all nonzero. Now, the formula for ρ2
vvv follows directly by applying

Theorem 6.10 and the fact that t̄A = ρA if |A| ≤ 3 (c.f. Remark 6.3). The
formulas for ρ2

uv and ρ2
iv were obtained in the proof of Lemma 6.19.

Corollary 6.21. Let T be a semi-labeled tree and let M(T , 2) be the general
Markov model on T . Then dim(M(T , 2)) = |E(T )| + |V (T )| by which we
mean that there exists a dense open subset of M(T , 2) diffeomorphic to a
(|E(T )|+ |V (T )|)-dimensional manifold.

Proof. Let

U = {ω ∈ ΩT : ρe 6= 0, e ∈ E(T )}.
Every distribution q in the image of U satisfies ρqij 6= 0 for all 1 ≤ i < j ≤ m.
Thus by Theorem 6.20 the parameterization of M(T , 2) over U is a finite
map. Because ΩT and U have dimension |V (T )| + |E(T )|, it follows that
dimM(T , 2) = |V (T )|+ |E(T )|.

Remark 6.22. Formulas in Theorem 6.20 show that the parameters are iden-
tified (up to sign) from 3-way margins of q. This is a special case of a more
general result by Chang [1996], which we discuss in Section 6.4.
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Theorem 6.23 (The geometry of the q-fiber — the smooth case). Let T be
a semi-labeled tree and q ∈ M(T , 2). If each of the unlabeled vertices of T
has degree ≥ 3 in the q-forest Fq, then the q-fiber is a finite set of points. If
each of the unlabeled vertices of T has degree ≥ 2 in Fq, then the q-fiber is
diffeomorphic to a disjoint union of polyhedra. In particular, it is a manifold
with corners. Its dimension is 2l2 where l2 is the number of unlabeled degree-
two vertices in Fq.

Proof. If each unlabeled vertex of T has degree at least three in Fq, then
the q-fiber is finite by Theorem 6.20. Assume that some of the unlabeled
vertices have degree 2 in Fq. We proceed by describing the ideal I defining the
q-fiber in ΩT . This ideal contains in its set of generators all linear equations
of the form ρiii−ρqiii for i ∈ [m] and all polynomials of the form (6.19), where
ρqiii and t̄qB are constants.

Let u−v be an edge, isolated relative to q — we want to show that neces-
sarily ρuv = 0 in the q-fiber. If both u, v are labeled, then this is immediate.
Suppose that both u, v are unlabeled. Because both u, v have degree ≥ 2 in
Fq, we find leaves i, j, k, l such that ρqij , ρ

q
kl are nonzero and u ∈ ij, v ∈ kl.

Now using the fact how correlations are parameterized in M(T , 2), we easily
show that ρqik can be zero only if ρuv = 0 and if it is not zero, then u − v
cannot be isolated relative to q. The case when only one of them is labeled
can be proved in a similar fashion. This shows that ρe for all e ∈ Eq must
lie in I. Adding these generators allows us to remove all the generators in
(6.19), where E(T 0(B)) contains an edge in Eq.

The remaining generators depend solely on ρvvv for v ∈ V (T ) and ρe for
e ∈ E(T )\Eq. If v is unlabeled with degree ≥ 3 in Fq, then the value of ρvvv
is fixed (up to sign) in the q-fiber by an argument similar to the one used in
Theorem 6.20. If the degree of v is exactly 2, then every generator in (6.19)
that depends on ρvvv already lies in the ideal generated by ρqe for e ∈ Eq.
This follows from the fact that for such A the set of edges E(T 0(A)) must
contain at least three edges of v but then at least one of these edges, say e,
is isolated with respect to q. This implies that I does not depend on ρvvv
if v is an unlabeled degree-two vertex in Fq. Thus, it remains to describe
the remaining generators of I that involve only ρe for e ∈ E(T ) \ Eq. Using
Lemma 6.19 we can show that these remaining generators are of the form

∏

e∈uv
ρe = cuv 6= 0 (6.21)

for all vertices u, v of degree ≥ 3 in Fq such that all vertices separating
them have degree exactly two in Fq. It is now straightforward to show that
I defines a smooth set.

We now show that the q-fiber is diffeomorphic to a union of polyhedra.

Define tv =
√

1−µv
µv

and zv = log tv, which gives a change of coordinates

from µv ∈ (0, 1) (or alternatively from ρvvv ∈ R) to zv ∈ R. Since some of
the means are fixed (up to sign) in the q-fiber and some are unconstrained, it
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follows that some zv are fixed (up to sign) and some are unconstrained. We
also have ρe = 0 for all e ∈ Eq. Let s : E(T ) \Eq → {−1, 1} be any possible
sign assignment for corresponding edge correlations ρe for e ∈ E(T )\Eq such

that s(e) = sgn(ρe). Then s induces an open orthant R|E(T )\Eq|
s defined by

s(e)ρe > 0 for all e ∈ E(T )\Eq. Consider the space of all ρe for e ∈ E(T )\Eq
constrained to one of the orthants R|E(T )\Eq|

s . On this orthant we have a
change of coordinates νe = log(seρe). In each of these orthants the constraints
(6.21) either become linear or they describe an empty set. By Lemma 6.6 the
inequality constraints on νe are also linear in zv.

To show the dimension of the q-fiber is equal to 2l2 we show that the
dimension of its Zariski closure has dimension 2l2. All generators of I as
listed above involve disjoint lists of variables. Some indeterminates have fixed
values in the q-fiber so the only freedom is in the l2 indeterminates ρvvv for all
degree-two vertices v in Fq and an l2 dimensional set described by equations
of the form (6.21), where u, v have degree ≥ 3 and all vertices in uv have
degree exactly 2.

Corollary 6.24. If T is a binary phylogenetic tree, then a q-fiber is finite
if and only if q is such that ρqij 6= 0 for all 1 ≤ i < j ≤ m. If T is a
phylogenetic star tree, then a q-fiber is finite as long as there are at least two
nonzero correlations between the leaves.

Corollary 6.24 suggests that if ρ̂ij are all far enough from zero, then
estimation will be relatively stable. In the next section we describe cases in
which everything becomes much more complicated.

6.2.2 Singular q-fibers

By Lemma 6.18 all unlabeled vertices of T have either degree zero in Fq
or the degree is ≥ 2. The singular case occurs precisely if at least one inner
vertex of T has degree zero in Fq. We begin with an example.

Example 6.25. Let T be the phylogenetic tripod tree as in Figure 6.1 and
let q ∈ M(T , 2). The degree of h in the q-forest Fq is zero if and only if
ρqij = 0 for all 1 ≤ i < j ≤ 3. In this situation Eq = E(T ) and the q-fiber
Ωq is given as a subset of ΩT by equations ρiii = ρqiii for i = 1, 2, 3 together
with the three additional equations

ρ1hρ2h = ρ1hρ3h = ρ2hρ3h = 0.

Geometrically, in the subspace of ΩT given by ρiii = ρqiii for i = 1, 2, 3, this
is a union of three planes given by {ρ1h = ρ2h = 0}, {ρ1h = ρ3h = 0} and
{ρ2h = ρ3h = 0} subject to the additional inequality constraints defining ΩT
and given by Lemma 6.6. In particular, it is not a regular set since it has
self-intersection points.

This example together with Theorem 6.23 provides a fairly good under-
standing of the local geometry in the case of the tripod tree model. From
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(6.2) it follows that if one of the correlations, say ρ12, is zero, then at least
one of the remaining correlations has to be zero as well. By Theorem 6.23,
if q is such that all the correlations are non-zero, then there are exactly two
points in the preimage of q. If exactly two correlations are zero then the q-
fiber is a smooth subset of ΩT . By Example 6.25, if all three correlations are
zero, then the q-fiber is a collection of intersecting subvarieties.

Theorem 6.26 (The geometry of the q-fiber — the singular case). Let T be
a semi-labeled tree. If the q-forest Fq contains unlabeled degree-zero vertices,
then the q-fiber is a singular variety given as a union of intersecting manifolds
in R|V (T )|+|E(T )| restricted to ΩT . Their common intersection is given by
vanishing of all ρe for e ∈ Eq.

Proof. Like in the regular case we have ρiii = ρqiii for i ∈ [m] and ρ2
vvv

is fixed for all unlabeled vertices v with degree ≥ 3 in Fq. For all the other
inner vertices ρvvv is unconstrained. The constraints on ρe for e ∈ E(T ) \Eq
are also obtained like in the proof of Theorem 6.23 and they define a smooth
subset. It remains to study the constraints on ρe for e ∈ Eq. Let E0 ⊆ Eq

and

ΩE0
= {ω ∈ ΩT : ρe = 0 for all e ∈ E0}. (6.22)

We say that E0 is minimal for Σq if for every point ω in ΩE0 and for every
i, j ∈ [m] such that ρqij = 0 we have that ρij(ω) = 0 and furthermore that
E0 is minimal with such a property (with respect to inclusion). To illustrate
the motivation behind this definition, consider the tripod tree singular case
in Example 6.25. If T is rooted in the inner vertex, we have three minimal
subsets of Eq: {h− 1, h− 2}, {h− 1, h− 3}, and {h− 2, h− 3}. We now show
that the q-fiber satisfies

Ωq =
⋃

E0 min.

ΩE0 ∩ Ωq. (6.23)

The first inclusion “⊆” follows from the fact that if ω ∈ Ωq, then ρij(ω) = ρqij
for all i, j ∈ [m]. In particular, ρij(ω) = 0 whenever ρqij = 0. Therefore
ω ∈ ΩE0

∩Ωq for some minimal E0. The second inclusion is obvious. For each
minimal E0, the set ΩE0

∩Ωq is a smooth set because there are no constraints
on ρe for e ∈ Eq \ E0.

6.2.3 Sign patterns on parameters

Let T be a semi-labeled tree. Let q ∈ M(T , 2) be a distribution such that
each unlabeled vertex of T has degree ≥ 3 in the q-forest Fq. By Theo-
rem 6.23, there is a finite set Ωq of points ω ∈ ΩT mapping to q, which we
call a q-fiber. Theorem 6.20 gives the formulas for the parameters modulo
signs which may suggest that |Ωq| = 2|V (T )|+|E(T )|. However, not all sign
choices are possible. We will show that the number of possible choices of
signs is in fact equal to 2|V (T )|−m where |V (T )| −m is the number of inner
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vertices of T . We also show how to obtain all the points in Ωq given one of
them.

Let ω be a point in Ωq and consider again the general case so that Ωq is
not necessarily finite.

Definition 6.27. For every vertex v, we define the operation of local sign
switching δv : ΩT → ΩT such that δv(ω) = ω′ where ρ′e = −ρe if one of the
ends of e is equal to v and ρ′e = ρe otherwise; ρ′vvv = −ρvvv and ρ′uuu = ρuuu
for all vertices u 6= v.

Note that switching ρ′vvv = −ρvvv corresponds to label switching Yv 7→
1−Yv of the corresponding random variable. To show that δv is a well-defined
operator on ΩT we need to show that if ω ∈ ΩT , then ω′ = δv(ω) lies in ΩT .
By Lemma 6.6, it remains to check that for every neighbor u of v

−min{t′ut′v,
1

t′ut
′
v

} ≤ ρ′uv ≤ min{ t
′
u

t′v
,
t′v
t′u
},

where tu =
√

1−µu
µu

. However, ρ′uv = −ρuv, t′u = tu, and t′v = 1
tv

and we get

−min{ tu
tv
,
tv
tu
} ≤ −ρuv ≤ min{tutv,

1

tutv
},

which holds because ω ∈ ΩT .

Lemma 6.28. If h is an unlabeled vertex, then the local sign switching δh is
an automorphism of the q-fiber for every q ∈M(T ).

Proof. Let A ⊆ [m], |A| ≥ 2. By Theorem 6.10

t̄A(ω′) =
∏

v∈V (T 0(A))

(ρ′vvv)
max{0,deg(v)−2}

∏

e∈E(T 0(A))

ρ′e,

where t̄ are T ∗-cumulants and T ∗ is a binary expansion of T . We have two
cases: either h lies in the tree V (T 0(A)) spanned over A or it does not. If not,
then t̄A(ω′) = t̄A(ω) because none of the parameters whose sign is switched
appears in the formula for t̄A above. If yes, then without loss we can assume
that t̄A(ω′) 6= 0. If v has degree two in T 0(A), then

t̄A(ω′) = (−1)deg(h) t̄A(ω) = t̄A(ω).

If the degree of v is ≥ 3, then

t̄A(ω′) = (−1)deg(h)−2(−1)deg(h)tA(ω) = tA(ω).

The local sign switchings for all unlabeled vertices h form a group G
which is isomorphic to the multiplicative group Z

|V (T )|−m
2 , where Z2 is the

multiplicative group with two elements.
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Proposition 6.29. Let T be a semi-labeled tree with the labeling set [m].
Suppose that every unlabeled vertex of T has degree ≥ 3 in the q-forest Fq.
Then the q-fiber Ωq is finite and consists of exactly 2|V (T )|−m points that
form a single orbit of the group G.

Proof. The fact that Ωq is finite follows directly from Theorem 6.23. If Ωq
contains a point ω, then acting with G on ω gives 2|V (T )|−m different points
in Ωq. Hence the orbit of ω in Ωq has exactly 2|V (T )|−m elements. It remains
to show that there are no other orbits of G in Ωq. Let ω ∈ Ωq and let ω′ be a

point in ΩT such that (ρ′e)
2

= ρe
2 for all e ∈ E(T ) and (ρ′vvv)

2
= ρvvv

2 for all
unlabeled vertices v of T , which is a necessary condition for ω′ to be in Ωq.
Assume that ω′ is not in the orbit of ω. Proceed by contradiction. Let ω′ ∈ Ωq
and we want to show that ω′ = δ(ω) for some δ ∈ G. Since ω can be replaced
by any other point in its orbit, we can assume that sgn(ρvvv) = sgn(ρ′vvv) for
all unlabeled v ∈ V (T ). Since ω, ω′ ∈ Ωq, then for every i, j, k ∈ [m] by the
parameterization given in Theorem 6.10 applied for t̄ij and t̄ijk, respectively,
we have that

∏

e∈ij

sgn(ρe) =
∏

e∈ij

sgn(ρ′e),
∏

e∈E(T 0(ijk))

sgn(ρe) =
∏

e∈E(T 0(ijk))

sgn(ρ′e).

It follows that
∏
e∈vi sgn(ρe) =

∏
e∈vi sgn(ρ′e) for each unlabeled vertex v

and a labeled vertex i. It immediately implies that sgn(ρe) = sgn(ρ′e) for all
e ∈ E(T ) and hence ω = ω′. In this way we have shown that ω′ is in the
orbit of ω under G.

Motivated by biological applications, we consider again the positive part
M++(T ) of the general Markov model (c.f. Definition 5.53). By Lemma 6.15
it is parameterized by all ω ∈ ΩT such that ρe > 0 and we denote this
parameter space by ΩT ,++. We formulate the following result, which can be
also inferred from the more general result of Chang [1996], which we introduce
in Section 6.4.

Proposition 6.30. Let T be a semi-labeled tree and M++(T ) the positive
part of the general Markov model M(T ). For every q ∈M++(T ) the q-fiber
in ΩT ,++ consists of exactly one point.

Proof. This follows directly from the proof of Proposition 6.29 because
every local sign switching necessarily changes signs of some edge correlations.

6.3 Examples, special trees, and submodels

6.3.1 Caterpillar trees and star trees

Caterpillar trees In this section we focus first on the case when T is a
phylogenetic tree, whose underlying tree is a caterpillar tree like in Figure
6.4. As we show, in this case the formulas for T -cumulants are extremely
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simple. This case is also important because the hidden Markov model can be
realized as a submodel of M(T ); see Section 6.3.3.

1 2 3 m− 1 m

· · ·

Figure 6.4: A caterpillar tree with m leaves/legs.

Directly by definition, the standardized T -cumulants are given for all
|A| ≥ 2 by

t̄A =
∑

π∈Π(T ,A)

m(π)
∏

B∈π
ρB .

In general, the Möbius function m is not given explicitly. For caterpillar
trees we can use the method announced earlier in Example 6.4. To introduce
this method, first note that Π(T ) contains all trivial splits S0 obtained by
removing from T the terminal edges. Let T ′ be a semi-labeled tree obtained
from T by contracting all terminal edges of T apart from the first and the
last. Hence T ′ is a simple chain graph in Figure 5.8.

Denote by S ′ the set of splits in Π(T ′) so that Π(T ′) = 〈S ′〉. These are
the splits of the form 12 · · · k|(k+ 1) · · ·m for some 1 < k < m and so Π(T ′)
is the lattice of interval partitions I; see Definition 4.15. Let S be the set of
splits of T . Then S = S ′ ∪ S0 and by Proposition 4.38,

t̄A =
∑

π∈I(A)

m(π)
∏

B∈π
ρB for |A| ≥ 2.

The advantage of this formula is that the lattice of interval partitions I(A)
is isomorphic to the Boolean lattice of |A| − 1 elements and hence m(π) =
(−1)|π|−1 .

To compute the standardized T -cumulants for the caterpillar tree we
proceed as follows. First we change probabilities p(x) for x ∈ {0, 1}m to
moments µA for A ⊆ [m] using the formula in (4.23). In Mathematica, the
following code will do the job for any fixed m (here m = 4):

m=4;

Do[mu[A] = Sum[p[Union[A,B]], {B,

Subsets[Complement[Range[m],A]]}], {A, Subsets[Range[m]]}];

Note that in the code we index probabilities with subsets of [m] instead of
{0, 1}m. The identification is made in the obvious way so that x ∈ {0, 1}m
corresponds to the subset A = A(x); see the first two columns of Table 6.1. To
compute the central standardized moments ρA we first compute the central
moments µ′A using Proposition 4.37 and then normalize to get standardized
moments. In Mathematica this can be done by
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Do[cmu[A] = Simplify[Sum[(-1)^(Length[A]-Length[B])*mu[B]*

Product[mu[{i}],{i,Complement[A,B]}], {B, Subsets[A]}]],

{A, Subsets[Range[m]]}];

Do[rho[A] = cmu[A]/Product[Sqrt[mu[{i}]*(1-mu[{i}])],{i,A}],

{A, Subsets[Range[m]]}]

Finally, to get standardized T -cumulants we use (6.24):

t̄A =
∑

π∈I(A)

(−1)|π|−1
∏

B∈π
ρB for |A| ≥ 2. (6.24)

The set of all interval partitions of a given set can be found in Mathematica

using the following simple function:

<< Combinatorica‘

intparts=Function[A,Pick[SetPartitions[A],

Map[OrderedQ, Map[Flatten, SetPartitions[A]]]]];

Then, for example, running intparts[1,2,3,4] gives

{{{1, 2, 3, 4}}, {{1}, {2, 3, 4}}, {{1, 2}, {3, 4}},

{{1, 2, 3}, {4}}, {{1}, {2}, {3, 4}}, {{1}, {2, 3}, {4}},

{{1, 2}, {3}, {4}}, {{1}, {2}, {3}, {4}}}

Now the following code changes coordinates from standardized moments to
standardized T -cumulants

Do[k[A] = Simplify[Sum[(-1)^(Length[pa]-1)*Product[rho[B],

{B,pa}], {pa, intparts[A]}]], {A, Subsets[Range[m]]}];

In particular, we can write the change from probabilities to T -cumulants
as a sequence of simple and explicit maps. We do not recommend, however,
outputting tree cumulants in terms of probabilities because these are massive
polynomials. Expressions for cumulants in terms of moments are much more
tractable. Also, it is better to use this change of coordinates on parameterized
varieties. We give a numerical example for m = 4 in Section 6.3.2.

Star trees We now extend Example 6.14 on the star tree model. Since T
is not a binary phylogenetic tree, Theorem 6.8 does not apply and to ob-
tain a monomial parameterization we apply Theorem 6.10. To this end we
need a binary expansion T ∗. Since every binary phylogenetic tree is a bi-
nary expansion of a star tree, we can take T ∗ to be the caterpillar tree and
use T ∗-cumulants given in (6.24). The new parameters are m edge correla-
tions ρhi for i ∈ [m], and m + 1 skewnesses ρhhh and ρiii for i ∈ [m]. The
parameterization is

t̄A = ρ
|A|−2
hhh

∏

i∈A
ρhi for |A| ≥ 2,

and the skewnesses ρiii for i ∈ [m] are free.
By Corollary 6.24 the q-fiber is finite as long as at least two of the correla-

tions t̄ij = ρij are non-zero at q. In this case, by the above parameterization,
there exist distinct i, j, k ∈ [m] such that ρhiρhjρhk 6= 0 and hence in fact
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there are three correlations ρij , ρik, ρjk that are nonzero. In this case by The-
orem 6.19

ρ2
hhh is given by

ρ2
ijk

ρijρikρjk
,

and for each edge correlation ρhl

ρ2
hl is given by

ρliρlj
ρij

.

These formulas identify parameters up to sign. By Proposition 6.29 there are
exactly two points in the q-fiber. If

(ρ0
111, . . . , ρ

0
mmm, ρ

0
hhh, ρ

0
h1, . . . , ρ

0
hm)

is one of them, then the other, obtained by a local sign switching from Defi-
nition 6.27 and Lemma 6.28, is

(ρ0
111, . . . , ρ

0
mmm,−ρ0

hhh,−ρ0
h1, . . . ,−ρ0

hm).

If there is exactly one ρij that is nonzero, then we still have ρhk = 0 for all
k 6= i, j in the q-fiber. However, the q fiber is not finite because ρhi, ρhj can
take any value as long as ρhiρhj = ρij , which defines a smooth set because
there are also no constraints on ρhhh. Finally, if all ρij are zero, then the
q-fiber is a singular set. It is obtained as the union of sets given by vanishing
all but one edge correlations ρhi.

6.3.2 The quartet tree model

In this section we give a numerical example for the quartet phylogenetic tree
model given by the tree in Figure 5.1. The model is parameterized as in (5.13)
by the root distribution and conditional probabilities attached to each of the
edges. We first set the values of the parameters to θr(1) = 0.8, θ1|r(1|1) = 0.8,
θ1|r(1|0) = 0.3, θ2|r(1|1) = 0.7, θ2|r(1|0) = 0.3, θa|r(1|1) = 0.8, θa|r(1|0) =
0.3, θ3|a(1|1) = 0.7, θ3|a(1|0) = 0.3, θ4|a(1|1) = 0.7, and θ4|a(1|0) = 0.3.
Using (5.13), we can then calculate the corresponding probabilities over the
observed vertices, which are given in the third column in Table 6.1.

Remark 6.31. We do all our computations over algebraic numbers. This al-
lows us to use the full strength of symbolic computations and check our
formulas exactly.

To change from the raw probabilities p(x) to standardized T -cumulants,
we use the formulas and code provided in Section 6.3.1. The resulting values
are given in Table 6.1. Note that the last two columns in Table 6.1 are
exactly the same apart from the last element, where we get ρ1234 = 704

203
√

12369

and t̄1234 = 256
203
√

12369
. The fact that the other entries are the same is a

consequence of Remark 6.3.
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Table 6.1 Moments, standardized central moments, and standardized tree cumulants
for a probability assignment in M(T , 2), where T is a quartet tree.

x A = A(x) p(x) µA ρA t̄A
0000 ∅ 2221

50000
1 1 1

0001 4 1533
50000

29
50

0 0

0010 3 1533
50000

29
50

0 0

0011 34 2013
50000

37
100

4
29

4
29

0100 2 1729
50000

31
50

0 0

0101 24 1617
50000

931
2500

32√
358701

32√
358701

0110 23 1617
50000

931
2500

32√
358701

32√
358701

0111 234 2737
50000

1211
5000

− 256

609
√
589

− 256

609
√

589

1000 1 2409
50000

7
10

0 0

1001 14 2457
50000

211
500

8

21
√
29

8

21
√
29

1010 13 2457
50000

211
500

8

21
√
29

8

21
√
29

1011 134 4377
50000

11
40

− 64

609
√
21

− 64

609
√
21

1100 12 4141
50000

233
500

16√
12369

16√
12369

1101 124 4893
50000

7133
25000

− 32

7
√
17081

− 32

7
√
17081

1110 123 4893
50000

7133
25000

− 32

7
√
17081

− 32

7
√
17081

1111 1234 9373
50000

9373
50000

704

203
√
12369

256

203
√

12369

Similarly, we compute the values of the moment parameters as given in
Definition 6.5. We get

ρrrr = −3

2
, ρaaa = − 4√

21
,

ρr1 =
2√
21
, ρr2 =

8√
589

, ρra =
2√
21
, ρa3 =

2√
29
, ρa4 =

2√
29
.

It is easy to verify that (6.9) holds in this example. For instance, t̄1234 should
be equal to the product

ρrrrρaaaρr1ρr2ρraρa3ρa4 =
3

2

4√
21

2√
21

8√
589

2√
21

2√
29

2√
29

=
256

203
√

12369
,

which agrees with the value of t̄1234 in Table 6.1.
Suppose that we have the exact distribution from the model and want

to recover parameters. For the distribution in Table 6.1, all correlations are
nonzero and hence this can be done easily by Theorem 6.20. We have

ρ2
rrr is given by

ρ2
123

ρ12ρ13ρ23
=

9

4

ρ2
aaa is given by

ρ2
134

ρ13ρ14ρ34
=

16

21
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ρ2
ra is given by

ρ13ρ24

ρ12ρ34
=

4

21

ρ2
r1 is given by

ρ12ρ13

ρ23
=

4

21

and the formulas for ρ2
r2, ρ2

a3 and ρ2
a4 are obtained in a similar way as for ρ2

r1.
Note that the above formulas require some choices. For example, the formula
for ρ2

rrr requires picking a triple of leaves separated by r and {1, 2, 4} could
be used instead of {1, 2, 3}. By Theorem 6.20 the obtained values will not
depend on these choices. We have alternatively

ρ2
rrr is given by

ρ2
124

ρ12ρ14ρ24
=

9

4
.

By Proposition 6.29 there are exactly four points mapping to the probability
distribution in Table 6.1. One is given by the original set of parameters. The
remaining three, by Lemma 6.28, are obtained from this one by local sign
switchings.

6.3.3 Binary hidden Markov model

The binary hidden Markov model , denoted by HMM(m, 2), is often defined
as follows. Consider the directed caterpillar tree T r in Figure 6.5. Then
HMM(m, 2) is parameterized over this tree like in (5.13) but with assumption
that there exist transition matrices α, β ∈ R2×2 such that

θv|u(yv|yu) = αyu yv for all u→ v both internal,
θv|u(yv|yu) = βyu yv for all u→ v where v is a leaf.

The matrices α and β are referred to as transition and emission probabilities.
The root distribution is either assumed to be a free parameter or it is assumed
to be the stationary distribution for the Markov chain with the transition
matrix α, that is,

θr(1) =
α01

α10 + α01
.

In this case we say that the hidden Markov model is stationary.

1 2 3 m

· · ·

Figure 6.5: A directed caterpillar tree with m leaves/legs.

By definition HMM(m, 2) is contained in the general Markov model de-
fined by the directed caterpillar tree T r, where the two degree-two vertices
are suppressed. Since rooting does not matter in this model class, we con-
clude that HMM(m, 2) is contained in M(T , 2), where T is the caterpillar
tree in Figure 6.4.
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Proposition 6.32. Let T be the caterpillar tree in Figure 6.4. In the new
parameter space given by ρvvv for v ∈ V (T ) and ρe for e ∈ E(T ), the sta-
tionary binary hidden Markov model is given by

ρvvv = a for all unlabeled v ∈ V (T ),

ρiii = b for all i ∈ [m],

ρe = c for all internal e ∈ E(T ),

ρe = d for all terminal e ∈ E(T ),

where a, b, c, d are now the new parameters of HMM(m, 2). The parameteri-
zation in T -cumulants is

t̄i1...il = al−2cil−i1dl

for all {i1, . . . , il} ⊆ [m] with l ≥ 2.

6.4 Higher number of states

In the previous sections we focused on the two-state case, in which we had
a simple monomial parameterization given in Theorem 6.10. This enabled
us to perform the full analysis of the local geometry of M(T , 2) with a
special focus on the geometry of q-fibers. If k > 2, then we currently have
no equally nice description of M(T , k). However, like in the two-state case,
generically the model is identified up to permutations of the states of hidden
variables. Moreover, the parameters can be identified solely from the marginal
distributions over triples. In the remainder of this section we present this
result referring to Chang [1996] for proofs.

Recall that the model M(T , k) is parameterized by the root distribution
θr and transition matrices θv|u for each edge u→ v in T . As always, param-
eterization is given by a rooted version of T but the model does not depend
on the rooting. The transition matrix represents conditional independence of
Yv given Yu so that pv|u = θTv|u.

Theorem 6.33. Let T be a semi-labeled tree. If q is a generic probability
distribution from M(T , k), then the q-fiber is finite and it is identified from
marginal distributions over triples of X.

First, we say what we mean by “generic” in Theorem 6.33. A sufficient
condition for the q-fiber to be finite is:

(i) The root distribution θr has only positive entries (c.f. (5.8)).

(ii) The matrix θv|u is invertible for each u→ v in T and it is not equal to
a permutation matrix.

Second, by saying that a q-fiber is identified from triples of X we mean
that we do not actually need the whole distribution q to learn about the
preimage of q. It suffices to have only induced marginal distributions qijk for
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any triple 1 ≤ i < j < k ≤ m. A refinement of this statement is possible,
when all triples are reduced to only some triples.

The basic idea behind Theorem 6.33 is to identify rows of the matrices θv|u
as eigenvectors of certain matrices that can be formed from joint distributions
of triples of observed vertices. To show the idea behind the proof, suppose
for simplicity that T is the tripod tree and θ2|h has a column j such that all
entries of this column are distinct. Consider the probability P(X1 = i,X2 =
j|X3 = k). We have

P(X1 = i,X2 = j|X3 = k) =

=
∑

l

P(H = l|X3 = k)P(X2 = j|H = l,X3 = k)·

· P(X1 = i|X2 = j,X3 = k,H = l)

and using the Markov properties we obtain

P(X1 = i,X2 = j|X3 = k) =
∑

l

ph|3(l|k)p2|h(j|l)p1|h(i|l).

Denote J13;2(i, k; j) = P(X1 = i,X2 = j|X3 = k) to obtain

J13;2(i, k; j) = pTh|3diag(p2|h(j|·))pT1|h
where p2|h(j|·) denotes the j-th row of p2|h or equivalently the j-th column
of θ2|h. Note that p1|3 = p1|hph|3 and multiplying both sides of the above

equation by p−T1|3 = p−T1|hp
−T
h|3 we obtain

p−T1|3 J13;2(i, k; j) = θ−1
1|hdiag(p2|h(j|·))θ1|h, (6.25)

where θ1|h = pT1|h. Note that the left-hand side of (6.25) is a matrix that de-

pends only on the distribution of the vector (X1, X2, X3). The identity (6.25)
is the (left) eigenvalue decomposition, where the j-th column of θ2|h is the

vector of eigenvalues of p−T1|3 J13;2(i, k; j), which are distinct by assumption.

To recover θ1|h from this description, note that each eigenvalue corresponds
to a one-dimensional (left) eigenspace. Each eigenspace has a unique vector
with coordinates summing to 1.

6.5 Bibliographical notes

The moment structures have already been used to understand statistical
models with hidden variables by Lazarsfeld and Henry [1968]. Recently this
was used to better understand the class of naive Bayes models, that is, general
Markov models over a star tree. This was used by Rusakov and Geiger [2005]
to approximate a marginal likelihood where the sample size was large, by
Geiger et al. [2001] to understand the local geometry of the model class, and
by Auvray et al. [2006] to provide the full description of these models in
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terms of the defining equations and inequalities. More general tree models
were studied from this perspective by Settimi and Smith [1998] and Pearl
and Tarsi [1986]. Tree cumulants were first used in Zwiernik and Smith [2012]
and Zwiernik and Smith [2011]. The local geometry is closely related to the
concept of identifiability, which for this model class was studied by Chang
[1996] and for other related model classes by Allman et al. [2009].
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Chapter 7

The global geometry

[]
Recall that by Propositions 2.33 and 2.34 the image of a semialgebraic

set under a polynomial mapping is a semialgebraic set. Therefore, for every
semi-labeled tree, the model M(T ) is a semialgebraic set and hence it can
be described by polynomial equations and inequalities in the probabilities
p(x). By Remark 6.2, the map between probabilities and tree cumulants is a
polynomial isomorphism and therefore, there exists a polynomial description
in terms of tree cumulants.

In this chapter we obtain the full description of these models in terms of
implicit polynomial equations and inequalities. Like in the previous chapter,
the focus is on the two-state case M(T , 2). In this case an important part
of the information about the global geometry of the general Markov model
is contained in its second-order moments. By Theorem 6.10, the correlations
of p ∈M(T , 2) satisfy

ρij =
∏

e∈ij

ρe for all 1 ≤ i < j ≤ m. (7.1)

Here we used the fact that second-order standardized tree cumulants coincide
with correlations; see Remark 6.3. From this we easily infer the following set
of constraints that must be satisfied by any distribution in M(T , 2).

Lemma 7.1. Let T be a phylogenetic tree with labeling set [m]. For every
p ∈M(T , 2) the corresponding correlations satisfy

ρijρikρjk ≥ 0 for all 1 ≤ i < j < k ≤ m,

or equivalently

kijkikkjk ≥ 0 for all 1 ≤ i < j < k ≤ m.

Later in this chapter we supplement these inequalities with the complete
set of constraints describing M(T , 2) for any phylogenetic tree T .

7.1 Geometry of two-state models

7.1.1 The 2× 2× 2 hyperdeterminant

Let A be a 2 × 2 matrix. Consider a set of linear equations At = 0, where
t = (t0, t1). It is a well-known result of linear algebra that detA = 0 if and

161
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only if At = 0 has a nonzero solution. The following equivalent formulation
will be useful. Define f(s, t) = sTAt. Then detA = 0 if and only if there
exists a non-trivial solution to the set of equations

f(s, t) =
∂

∂s0
f(s, t) =

∂

∂s1
f(s, t) =

∂

∂t0
f(s, t) =

∂

∂t1
f(s, t) = 0.

Let now A = [ax] ∈ CX for X = {0, . . . , r1} × · · · × {0, . . . , rm} be a tensor.
Every such A defines a function

f(t) =
∑

x∈X
axt1,x1

· · · tm,xm ,

which is a multilinear function in m+
∑
i rr indeterminates ti,j . Consider the

set of m+
∑
i rr + 1 homogeneous multilinear equations of the form

f(t) =
∂f

∂ti,j
(t) = 0 for all i ∈ [m], j ∈ {0, . . . , ri}.

A hyperdeterminant of A, denoted by Det(A), is a generalization of a deter-
minant to higher-order arrays. In particular, Det(A) is a polynomial in the
entries of A such that it vanishes precisely when the above system of multi-
linear equations has a non-trivial solution. For a formal definition we refer to
Gelfand, Kapranov, Zelevinsky [Gelfand et al., 1994, Chapter 14].

Similar to the determinant, there is a formula for the hyperdeterminant.
However, this formula can be explicitly written down only in very small cases.
In this chapter we are going to use the hyperdeterminant for 2×2×2 tensors.

Definition 7.2. Let A = [aijk] be a 2× 2× 2 table. The hyperdeterminant
of A is given by

DetA = (a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

011a
2
100)

− 2(a000a001a110a111 + a000a010a101a111 + a000a011a100a111

+ a001a010a101a110 + a001a011a110a100 + a010a011a101a100)

+ 4(a000a011a101a110 + a001a010a100a111).

If
∑
aijk = 1, then treating all entries formally as joint cell probabilities

(without positivity constraints) we can simplify this formula expressing it in
terms of cumulants

DetA = k2
123 + 4k12k13k23. (7.2)

We verify this directly by first expressing cumulants in moments using (4.14),
which yields

k12 = µ12 − µ1µ2

k13 = µ13 − µ1µ3

k23 = µ23 − µ2µ3

k123 = µ123 − µ1µ23 − µ2µ13 − µ3µ12 + 2µ1µ2µ3.
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Then we express moments in the entries of A using (4.23)

µ∅ = a000 + a001 + a010 + a011 + a100 + a101 + a110 + a111 = 1

µ1 = a100 + a101 + a110 + a111

µ2 = a010 + a011 + a110 + a111

µ3 = a001 + a011 + a101 + a111

µ12 = a110 + a111

µ13 = a101 + a111

µ23 = a011 + a111

µ123 = a111.

Now (7.2) can be easily verified.

7.1.2 The group action and M+(T , 2)

In Section 6.2.3 we described the group that acts on the parameter space
by local sign switchings at each inner vertex. The group was generated by
local sign switchings at unlabeled vertices of T . In this section we show that
the model M(T , 2) is obtained as the (Euclidean) closure of the orbit of
the nonnegative part M+(T , 2) of M(T , 2) (see Definition 5.53) under the
action of a group generated by local sign switchings at the leaves of T .

Theorem 7.3. Let T be a phylogenetic tree with the labeling set [m]. There
exists a group G, which is isomorphic to Zm−1

2 , such that M(T , 2) is equal
to the G-orbit of the nonnegative part M+(T , 2).

The operation of local sign switching introduced in Definition 6.27 gives
an automorphism on any q-fiber by Lemma 6.28. Local sign switching is a
crucial tool in the proof of Theorem 7.3.

Lemma 7.4. Let q ∈M(T , 2), then there exists a point in the q-fiber such
that ρe ≥ 0 for all internal edges e.

Proof. Let ω be a point in the q-fiber with edge correlations ρe. We are
going to find another point ω′ in the q-fiber that satisfies conditions of the
lemma. Let v be an internal vertex and u its parent. If ρuv < 0, then act on
the parameter vector with the local sign switching δv, which switches signs
of all ρe for e incident with v. To construct ω′, after rooting T , we apply
this procedure recursively starting from children of the root and moving
toward the leaves. After each step, all the edges above v have nonnegative
correlations. Also by Lemma 6.28 the new parameter vector lies in the q-
fiber.

Proof of Theorem 7.3. Let q be a distribution in M(T , 2) parameterized by
parameters ω = ((ρvvv), (ρe)). By Lemma 7.4 we can assume that all edge
correlations for inner edges are nonnegative. By Theorem 6.10, the correla-
tions of q satisfy (7.1). The set of terminal edges of T is naturally identified
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with the labeling set [m]. Denote by ρ1, . . . , ρm the corresponding edge cor-
relations. Consider the sign-switching operators δi at all leaves i ∈ [m]. The

set {δ1, . . . , δm} generates a multiplicative group Ĝ isomorphic to Zm2 .

The Ĝ-orbit of ω contains ω′ such that the image of ω′ lies in M+(T , 2).

Indeed, just act on ω with g ∈ Ĝ given as a product of all δi such that ρi ≤ 0.
Since q was arbitrary, this shows that M(T , 2) can be described as a Ĝ-orbit
of M+(T , 2). However, if we define ḡ = g

∏m
i=1 δi, then the image of ḡ · ω

also lies in M+(T ). This shows that δ1 · · · δm maps M+(T , 2) to itself and
therefore, in fact, M(T , 2) can be described as a G-orbit of M+(T , 2).

By Theorem 7.3, given a distribution q in M(T , 2), we can always switch
labels of the observed variables to obtain another distribution q′ with non-
negative correlations between the leaves. For q′, without loss of generality,
we can assume that all edge correlations in the parameter vector mapping
to it are nonnegative and thus q′ ∈ M+(T , 2). By Proposition 6.30, if
q′ ∈ M++(T , 2), all parameters are identified uniquely. Moreover, to ob-
tain the corresponding parameter vector for q, we just need to adjust signs
of the edge correlations for terminal edges. We state this slightly informally
as follows.

Theorem 7.5. To understand the model M(T , 2) it is enough to understand
M+(T , 2).

The following result extends [Klaere and Liebscher, 2012, Theorem 6,
Proposition 11] and is a rephrased version of [Zwiernik and Smith, 2012,
Corollary 5.5].

Theorem 7.6. If q ∈ M++(T , 2), then the original parameters satisfy the
following formulas:

1. Let i, j, k be any three leaves separated in T by the root r. Then

θr(1) =
1

2

(
1− kijk√

Det(pijk)

)
.

2. If u→ i is a terminal edge and i, j, k are separated by u in T , then

θi|u(1|0) = µi +
kijk −

√
Det(pijk)

2kjk

θi|u(1|1) = µi +
kijk +

√
Det(pijk)

2kjk
.

(7.3)

3. If u → v is an inner edge and i, j, k, l are leaves such that u separates
i, j, {k, l} and v separates {i, j}, k, l in T , then

θv|u(1|0) =
1

2
+
kilkijk − kijkikl − kil

√
Det(pijk)

2kij
√

Det(pikl)

θv|u(1|1) =
1

2
+
kilkijk − kijkikl + kil

√
Det(pijk)

2kij
√

Det(pikl)
.

(7.4)
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Proof. By Theorem 6.8 (and Remark 6.3), if leaves i, j, k are separated
by v, then

ρijk = ρvvv
∏

e∈ijk

ρe,

where ijk denotes the set of edges in the induced tree T 0({i, j, k}) spanned
over {i, j, k} (c.f. Definition 5.51). Moreover, ρij =

∏
e∈ij ρe and hence

ρijρikρjk =
∏

e∈ijk

ρ2
e.

Denote σi =
√
µi(1− µi); then ρijk =

kijk
σiσjσk

and ρij =
kij
σiσj

. Since all edge

correlations are strictly positive and Det(pijk) = k2
ijk + 4kijkikkjk, we have

1

σiσjσk

√
Det(pijk) =

√
ρ2
vvv + 4

∏

e∈ijk

ρe.

Because ρvvv = 1−2µv√
µv(1−µv)

,

1

2
(1− kijk√

Det(pijk)
) =

1

2
(1− ρvvv√

4 + ρ2
vvv

) = µv.

Now the first formula follows by taking v = r and using the fact that θr(1) =
µr. For any edge u→ v we have

µv = (1− µu)θv|u(1|0) + µuθv|u(1|1) = θv|u(1|0) + µu
(
θv|u(1|1)− θv|u(1|0)

)
.

Moreover, because kuv = puv(1, 1)− pu(1)pv(1),

θv|u(1|1)− θv|u(1|0) =
puv(1, 1)

pu(1)
− puv(0, 1)

pu(0)
=

kuv
µu(1− µu)

,

and hence

θv|u(1|0) = µv −
kuv

1− µu
, θv|u(1|1) = µv + kuvµu. (7.5)

Now to prove formulas in (7.3) and (7.4) we proceed like in the first case. We
first use the parameterization in Theorem 6.8, then we show that everything
reduces to µv− kuv

1−µu or µv+kuvµu when we use (7.5). We follow this procedure

to show the formula for θi|u(1|0). We have

µi +
kijk −

√
Det(pijk)

2kjk
= µi +

σiσjσk
σjσk

ρijk −
√
ρ2
ijk + 4ρijρikρjk

2ρjk
=

= µi +
σiσjσk
σjσk

ρvvv
∏
e∈ijk ρe −

√
4 + ρ2

vvv

∏
e∈ijk ρe

2
∏
e∈jk ρe

=

= µi +
σi
2

(ρvvv −
√

4 + ρ2
vvv)

∏

e∈iv

ρe = µi − σi
µv√

µv(1− µv)
ρik =

= µi −
kvi

1− µv
,
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which is equal to θi|v(1|0) by (7.5). The other formulas are proved in a similar
fashion.

7.1.3 Model stratification

Every general Markov model M(T , 2) on a semi-labeled tree T admits a
natural stratification. More precisely, we can stratify M+(T , 2) into pieces
that are isomorphic to M++(F , 2), where F are semi-labeled subforests of
T (c.f. Definition 5.53). In this section we briefly discuss this construction.

Let q ∈ M+(T , 2) and let ρij for 1 ≤ i < j ≤ m be the corresponding
correlations. Define the equivalence relation on the labeling set [m] by i ∼ j
if and only ρij 6= 0. To show that this is indeed equivalence relation, we first
note that i ∼ i, since ρii = 1, and if i ∼ j, then j ∼ i. It remains to show that
the relation is transitive. This follows from the parameterization of M(T , 2)
given in Theorem 6.10 that either ρij , ρik, ρjk are all positive or at least two
of them vanish. Equivalently, if ρij 6= 0 and ρik 6= 0, then ρjk 6= 0 and hence
this relation is transitive.

Every equivalence relation on [m] defines a set partition. Recall from Sec-
tion 5.3.3 that M(F , 2) for a semi-labeled forest F is defined as a Cartesian
product of the latent graphical tree models M(TA, 2) where TA are the tree
components of F . We have the following result.

Theorem 7.7. Let T be a semi-labeled tree. For every partition π ∈ Π(T ),
denote by Mπ the set of all distributions q ∈M+(T , 2) that induce π, that
is i, j lie in the same block of π if and only if ρij 6= 0. Then

Mπ = M++(Fπ, 2), (7.6)

where Fπ is defined by (5.5). Moreover,

M++(T , 2) = M+(T , 2) \
⋃

π<[m]

M+(Fπ, 2). (7.7)

Proof. Note that for every edge u − v we have det(θu|v) = 0 if and only
if ρuv = 0 and det(θu|v) > 0 if and only if ρuv > 0. By (7.1) we have
ρij =

∏
e∈ij ρe for every i, j ∈ [m] and so a distribution in M+(T , 2) lies

in M++(T , 2) if and only if ρij > 0 for all labeled vertices i, j. This also
implies (7.6) for π = 1̂. For general π, note that the parameterization of the
underlying Markov process on Fπ given by (5.9) implies that all subvectors
of X corresponding to connected components of Fπ are independent. This
in turn implies that ρij = 0 in M+(Fπ) if i, j lie in two different blocks of
π. By definition of M++(Fπ, 2), there are no other marginal independencies
and so (7.6) holds for every π ∈ Π(T ). The same reasoning implies (7.7).

7.1.4 Phylogenetic invariants

The monomial parameterization of M(T , 2) given in Theorem 6.10 shows
that the Zariski closure VT of this model, in the complex space of standard-
ized tree cumulants, forms a toric variety; see Definition 2.20. By Theorem
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2.22, the ideal defining VT is generated by binomials. By Proposition 2.38,
the same ideal defines the real part of VT .

Theorem 7.8. Let T be a binary phylogenetic tree. Denote by tA the T ∗-
cumulants, where T ∗ is a binary expansion of T ; see Definition 5.46. The
Zariski closure VT of M(T , 2) is defined by all binomials

tI∪J tI′∪J′ − tI∪J′ tI′∪J for all nonempty I, I ′ ⊆ A, J, J ′ ⊆ B,

where A|B is a non-trivial tree split of [m] induced by T .

Proof. First note that the equations are formulated in terms of tree cu-
mulants instead of standardized tree cumulants. A tree cumulanttA is equal
to the corresponding central tree cumulantt′A as long as |A| ≥ 2; see Lemma
4.35. It follows that the standardized tree cumulants t̄A satisfy

t̄A =
tA∏

i∈A
√
σi
,

where σi = var(Xi). In particular, t̄I∪J t̄I′∪J′− t̄I∪J′ t̄I′∪J vanishes if and only
if tI∪J tI′∪J′ − tI∪J′ tI′∪J does.

Denote by V the toric variety defined by the equations in Theorem 7.8.
We first show that VT ⊆ V . Let u−v be an inner edge defining a non-trivial
tree split A|B such that leaves in A are closer to u than to v. By Theorem
6.10 we can rewrite

t̄I∪J = t̄I∪{u} t̄J∪{v}(ρ
deg(u;T 0(I∪J))−2
uuu ρdeg(v;T 0(I∪J))−2

vvv ρuv).

Moreover, deg(u; T 0(I ∪ J)) = deg(u; T 0(I ∪ {v})) and deg(v; T 0(I ∪ J)) =
deg(v; T 0(J ∪ {u})). This already implies that all equations of Theorem 7.8
must hold and therefore VT ⊆ V .

Now we show that V ⊆ VT . We constrain ourselves to the subset U of V
whose points have nonzero coordinates, which form a Zariski-open subset of
V . Because the toric variety V is irreducible, the Zariski closure of U is equal
to V and hence it is enough to show thatU admits the same parameterization
as VT . For any internal edge e = u−v, let e, e1, e2 be the edges incident with
u and e, e3, e4 be the edges incident with v. Consider any four non-empty
subsets I1, I2, J1, J2 of [m] such that u separates I1, I2 and J1 ∪ J2 and v
separates I1 ∪ I2, J1 and J2. Moreover, we assume that e1 is closer to I1, e2

is closer to I2, e3 is closer to J1, and e4 is closer to J2. We first check that in
U the ratio

t̄I1∪J1
t̄I2∪J2

t̄I1∪I2 t̄J1∪J2

=
tI1∪J1 tI2∪J2

tI1∪I2 tJ1∪J2

does not depend on the choice of I1, I2, J1, J2. That is, for any other choice
of four nonempty sets I ′1, I

′
2, J
′
1, J
′
2 satisfying the conditions above, this ratio

will be the same. Indeed, for a tree split induced by e1 equations of Theorem
7.8 give

L = tI1∪J1
tI2∪J2

tI′1∪I′1 tJ′1∪J′2 = tI1∪I′2 tI′1∪J1
tI2∪J′2 tJ′1∪J2

.
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Now for a tree split induced by e2 we further obtain

L = tI1∪I2 tJ1∪J2
tI′1∪J′1 tI′2∪J′2 ,

which implies that
tI1∪J1 tI2∪J2

tI1∪I2 tJ1∪J2

=
tI′1∪J′1 tI′2∪J′2
tI′1∪I′2 tJ′1∪J′2

as claimed. This allows us to denote

ρe :=

√
t̄I1∪J1 t̄I2∪J2

t̄I1∪I2 t̄J1∪J2

.

Similarly, for any terminal edge e = v − i we define

ρe :=

√
t̄{i}∪I t̄{i}∪J

t̄I∪J
,

which again in U does not depend on I, J as long as they are nonempty
subsets of [m] such that v separates i, I, and J . Finally, for each inner vertex
v, if I, J , K are any three nonempty subsets of [m] separated by v, then we
define

ρvvv :=

√
t̄2I∪J∪K

t̄I∪J t̄I∪K t̄J∪K
.

Now we show that with these definitions the parameterization in (6.15) holds.
We first prove it for A = {i, j} for some i, j ∈ [m], in which case t̄ij = ρij .
For every vertex h on the path between i and j, pick a leaf k such that h
separates i, j, and k. We label these leaves k1, . . . , kl. Then

ρij =

√
ρijρik1

ρjk1

√
ρik2ρjk1

ρik1
ρjk2

· · ·
√
ρiklρjkl−1

ρikl−1
ρjkl

√
ρijρjkl
ρikl

=
∏

e∈ij

ρe.

Now our argument proceeds by induction. We prove it holds for t̄[m] assuming
it holds for all subsets of cardinality ≤ m− 1. Take any non-trivial tree split
A|B and let i ∈ A, j ∈ B. Then in U

t̄[m] =
t̄{i}∪B t̄A∪{j}

t̄ij
.

The rest follows by induction.

A more popular approach to listing phylogenetic invariants for M(T , 2)
is by using tensor flattenings; see Definition 2.55.

Definition 7.9 (Edge flattenings). Let T be a phylogenetic tree and q ∈
M(T , 2). An edge flattening of q is any (matrix) flattening of q denoted
qA;B , where A|B is a tree split.
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The following theorem was proved by Allman and Rhodes [2008].

Theorem 7.10. Let T be a binary phylogenetic tree. The ideal describing the
Zariski closure of the model M(T , 2) is generated by all 3× 3 minors of all
edge flattenings of p = [p(x)] together with the trivial phylogenetic invariant∑
x∈X p(x)− 1.

Remark 7.11. If T is a tripod tree, then there are no non-trivial polynomials
in the corresponding ideal because each edge flattening is a 2× 4 matrix and
hence has no 3× 3 minors.

One direction of the proof of Theorem 7.10 is simple and it follows by a
purely probabilistic argument. Each edge flattening pA;B can be considered
as a joint probability table of two vector-valued random variables XA and
XB . By the global Markov properties on T (c.f. Proposition 5.37) we know
that XA ⊥⊥ XB |Xu, where Xu is a binary hidden variable corresponding to
one of the vertices of the edge inducing the tree split A|B. This means that
pA;B has rank at most two and hence all 3×3 minors must vanish. Note that
this reasoning easily extends to the case when all random variables in the
system have k states. In this case all (k + 1) × (k + 1) minors must vanish;
see also Section 7.2.4.

Instead of proving the other direction, we show that Theorem 7.10 is
equivalent to Theorem 7.8. The argument that we use also gives more insight
into the nature of tree cumulants. First consider a probability distribution
over {0, . . . , r} × {0, . . . , s}

p =




p00 p01 p02 · · · p0s

p10 p11 p12 · · · p1s

...
...

pr0 pr1 pr2 · · · prs


 .

We now add all rows to the first row and all columns to the first column
obtaining the matrix of moments (c.f. Section 4.3.2)




1 p+1 p+2 · · · p+s

p1+ p11 p12 · · · p1s

...
...

pr+ pr1 pr2 · · · prs


 .

This matrix has of course the same rank as p. We further perform elementary
operations to get rid of the first row by subtracting from the i-th column the
first column multiplied by p+i. Denoting yij = pij − pi+p+j and yi0 = pi+,
y0j = p+j for i, j > 0 we conclude that

rank(p) = rank




1 0 0 · · · 0
y10 y11 y12 · · · y1s

...
...

yr0 yr1 yr2 · · · yrs


 = 1+rank



y11 y12 · · · y1s

...
...

yr1 yr2 · · · yrs


 .
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The only thing that allowed us for this reduction was that the sum of
all elements of p is 1. More generally, let p be a binary probability tensor.
Suppose that a flattening pA;B of a probability tensor p has rank ≤ 2. Like
in Section 4.3.2, define

M =

[
1 1
1 0

]

and let MA be the Kronecker product of |A| times M , then

µA;B = MA pA;BM
T
B

is the flattening of the moment tensor, which has the same rank as pA;B . Since
the left-top entry of µA;B is 1, then it is clear that using elementary row and
column operations we can make all non-diagonal entries in the first row and
the first column to be zero. This shows that for flattenings of distributions,
after a change of coordinates, rank constraints can be reduced by one. The
magic of tree cumulants is that we can do it consistently for a collection of
flattenings.

Denote by tA;B the corresponding flattening of the tree cumulants tensor
t. By t̃A;B denote the flattening tA;B with the first row and the first column
removed. Here, the first row corresponds to elements tJ for J ⊆ B and the
first column corresponds to tI for I ⊆ A.

Proposition 7.12. Let T be a binary phylogenetic tree and let p be a prob-
ability distribution in M(T , 2). If A|B ∈ Π(T ), then rank(pA;B) ≤ 2 if and
only if rank(̃tA;B) ≤ 1.

Proof. First note that the flattening of the moment tensor µA;B =
MApA;BM

T
B has the same rank as pA;B . Let I ⊆ A, J ⊆ B. Then for each

π ∈ Π(T (I ∪ J)) there is at most one block containing elements from both
I and J . Otherwise, removing e would increase the number of blocks in π
by more than one, which is not possible. Denote this block by (I ′J ′) where
I ′ ⊆ I, J ′ ⊆ J . Note that, by construction, either both I ′, J ′ are empty sets
if π ≤ A|B in Π(T (I ∪ J)) or both I ′, J ′ 6= ∅ otherwise. Equation (6.5) gives
the formula for moments in terms of tree cumulants. It can be rewritten as

µIJ =
∑

π∈Π(T (IJ))


tI′J′

∏

I⊇C∈π

tC
∏

J⊇C∈π

tC


 . (7.8)

Note that tI′J′ is the (I ′, J ′)-th entry of a block diagonal matrix with the
first 1× 1 block 1 and the second block t̃. Denoting this matrix by 1⊕ t̃ we
can further write

µIJ =
∑

I′⊆I

∑

J′⊆J

uII′(1⊕ t̃)I′J′vJ′J

where

uII′ =
∑

π∈Π(T (I\I′))

∏

C∈π
tC and vJ′J =

∑

π∈Π(T (J\J′))

∏

C∈π
tC .
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Setting uII′ = 0 for I ′ * I, vJ′J = 0 for J ′ * J , we can write these coefficients
as elements of a lower triangular matrix U and an upper triangular matrix
V . By construction uII = 1 for all I ⊆ A and vJJ = 1 for all J ⊆ B and
hence detU = detV = 1. Therefore, µA;B has the same rank as 1⊕ t̃ and one
less than t̃.

Proposition 7.12 shows that the condition that each edge flattening has
rank ≤ 2 translates directly into all edge flattenings of t̃ having rank ≤ 1,
which is equivalent to vanishing all quadratic equations of Theorem 7.8.

7.2 Full semialgebraic description

7.2.1 The tripod tree model

Let T be the tripod tree in Figure 6.1 and M(T , 2) be the corresponding
general Markov model. By Proposition 5.45, to describe the set of all proba-
bility distributions in this model it is enough to restrict to the subspace of the
parameter space for which all variables in the system are non-degenerate. In
this case we can work with standardized moments. Simple parameterization
of M(T , 2) together with the constraints on ΩT given in Lemma 6.6 can now
be used to obtain the full description of this model; see Zwiernik and Smith
[2011].

Consider the conditional covariances

k12|3 = cov(X1, X2|X3), k12|3 = cov(X1, X2|X3), k12|3 = cov(X1, X2|X3).

They are themselves two-state random variables and we write k12|3(x) for
the value of k12|3 when X3 = x. Let p be the 2 × 2 × 2 probability tensor,
whose entries will be denoted by pijk. For x = 0, 1 we have

k12|3(x) = p11xp++x − p1+xp+1x = p11xp00x − p10xp01x

k13|2(x) = p1x1p+x+ − p1x+p+x1 = p1x1p0x0 − p1x0p0x1

k23|1(x) = px11px++ − px1+px+1 = px11px00 − px10px01,

(7.9)

where + denotes summing over all values in a given index.

Lemma 7.13. The following formulas express conditional covariances in
terms of unconditional cumulants:

k12|3(1) = k2
3k12 + k3k123 − k13k23

k12|3(0) = (1− k3)2k12 − (1− k3)k123 − k13k23

k13|2(1) = k2
2k13 + k2k123 − k12k23

k13|2(0) = (1− k2)2k13 − (1− k2)k123 − k12k23

k23|1(1) = k2
1k23 + k1k123 − k12k13

k23|1(0) = (1− k1)2k23 − (1− k1)k123 − k12k13.

(7.10)

We have the following proposition.
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Proposition 7.14. Let T be the tripod tree and M(T , 2) be the correspond-
ing general Markov model. Let p be a 2 × 2 × 2 probability table for three
binary random variables (X1, X2, X3) with cumulants (central moments)
k12, k13, k23, k123, and means µ1, µ2, µ3. Then p ∈ M+(T , 2) if and only
if

k12 ≥ 0, k13 ≥ 0, k23 ≥ 0,

k12|3(0) ≥ 0, k12|3(1) ≥ 0,

k13|2(0) ≥ 0, k13|2(1) ≥ 0,

k23|1(0) ≥ 0, k23|1(1) ≥ 0.

(7.11)

Proof. To show that the constraints are necessary, we write them in terms
of the parameters

k12 = p11+ − p1++p+1+ = θr(0)θr(1) det(θ1|r) det(θ2|r) ≥ 0,

k13 = p1+1 − p1++p++1 = θr(0)θr(1) det(θ1|r) det(θ3|r) ≥ 0,

k23 = p+11 − p+1+p++1 = θr(0)θr(1) det(θ2|r) det(θ3|r) ≥ 0

because det θi|r ≥ 0 in M+(T , 2). Moreover

k12|3(0) = θr(0)θr(1) det(θ1|r) det(θ2|r)θ3|r(1|1)θ3|r(1|0) ≥ 0,

k12|3(1) = θr(0)θr(1) det(θ1|r) det(θ2|r)θ3|r(0|1)θ3|r(0|0) ≥ 0

k13|2(0) = θr(0)θr(1) det(θ1|r) det(θ3|r)θ2|r(1|1)θ2|r(1|0) ≥ 0,

k13|2(1) = θr(0)θr(1) det(θ1|r) det(θ3|r)θ2|r(0|1)θ2|r(0|0) ≥ 0

k23|1(0) = θr(0)θr(1) det(θ2|r) det(θ3|r)θ1|r(1|1)θ3|r(1|0) ≥ 0,

k23|1(1) = θr(0)θr(1) det(θ2|r) det(θ3|r)θ1|r(0|1)θ3|r(0|0) ≥ 0.

Now we show that the constraints are also sufficient. If k12, k13, k23 ≥ 0,
then necessarily

Det(p) = k2
123 + 4k12k13k23 ≥ 0.

We consider two cases. First consider the case when p is such that Det(p) = 0.
This implies that k123 = 0 and k12k13k23 = 0 and so one covariance vanishes.
Suppose that k12 = 0. Now, since k12|3(1) ≥ 0, by (7.10), −k13k23 ≥ 0. This
implies that at least one more covariance vanishes, say k12 = k13 = 0. We
can now set ρ1h = 0, ρhhh = ρ222 (or equivalently µh = µ2) and ρ2h = 1,
ρ3h = ρ23. With this choice of parameters, parameterization in (6.2) holds.
It remains to check that the given parameter vector lies in ΩT ,++. The only
non-trivial check is for ρ2h and ρ3h. Constraints in Lemma 6.6 are satisfied
because ρhhh = ρ222. In the second case, when Det(p) > 0, we first show that
necessarily all covariances are strictly positive. Indeed, suppose that k12 = 0.
Since Det(p) > 0, k123 6= 0 and in particular k3 ∈ (0, 1). If k123 > 0, then
by (7.10) we obtain contradiction with k12|3(0) ≥ 0 and if k123 < 0, then we
obtain contradiction with k12|3(1) ≥ 0. This shows that if Det(p) > 0 and p
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satisfies (7.11), then k12, k13, k23 > 0. In this case we can directly compute
all parameters in the original parameterization of M+(T , 2) using Theorem
7.6. It remains to show that the following inequalities are satisfied for every
i = 1, 2, 3 and j < k ∈ {1, 2, 3} \ {i}

0 ≤ 1

2
(1− k123√

Det(p)
) ≤ 1

0 ≤ µi +
k123 −

√
Det(p)

2kjk
≤ 1

0 ≤ µi +
k123 +

√
Det(p)

2kjk
≤ 1.

The first equation is automatically satisfied when k12k13k23 > 0 and, because
k123 <

√
Det(p), the other two can be rewritten as

−µi ≤ k123 −
√

Det(p)

2kjk

k123 +
√

Det(p)

2kjk
≤ 1− µi.

(7.12)

Now note that
k123−

√
Det(p)

2kjk
is the unique negative root of quadratic equation

kjkx
2 − k123x− kijkik = 0

and
k123+

√
Det(p)

2kjk
is its unique positive root. Since this quadratic polynomial

is negative at zero, (7.12) translates into

kjk|i(1) = kjk(−µi)2 − k123(−µi)− kijkik ≥ 0

kjk|i(0) = kjk(1− µi)2 − k123(1− µi)− kijkik ≥ 0.

The inequality formulation in Proposition 7.14 is far from unique and
many other formulations have been proposed; see Allman et al. [2014], Auvray
et al. [2006], Pearl and Tarsi [1986], Settimi and Smith [1998], Zwiernik and
Smith [2011]. Here we used the formulation of [Klaere and Liebscher, 2012,
Theorem 7], which, we believe, is the most elegant one. This formulation
also links to the main results of Section 4.4. The approach of Allman et al.
[2014] is the most useful because it can be extended to general trees with any
number of states. We present this result in Section 7.2.4.

Consider again the constraints in Proposition 7.14. Note that by
k12|3(0), k12|3(1) ≥ 0 it follows that

(1− k3)k12|3(1) + k3k12|3(0) = k3(1− k3)k12 − k13k23 ≥ 0.
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By symmetry, this implies that 1
µi(1−µi)kijkik ≤ kjk, or after proper normal-

ization,

ρijρik ≤ ρjk for all 1 ≤ j < k ≤ 3,

which gives a set of simple necessary inequalities. Comparing this with in-
equalities in Example 2.44 shows that M+(T , 2) constrained to correlations
is a subset of the space of phylogenetic oranges on a tripod tree. This is
of course true for any tree, which follows directly from how both sets are
parameterized. We will generalize this result for any phylogenetic tree and
exploit links to phylogenetic oranges later in Section 7.2.3.

7.2.2 Semialgebraic description of M(T , 2)

If T is a tripod tree, then, as the previous section shows, the semialgebraic de-
scription ofM+(T , 2) is relatively simple, and the model has full dimension in
the ambient probability simplex. The situation gets much more complicated
for the quartet tree. In this section, we provide the complete semialgebraic
description of M(T , 2) for any phylogenetic tree T .

First note that, by Proposition 5.52, for any three leaves i, j, k of T the
corresponding marginal model over this triplet is a general Markov model on a
tripod tree. Therefore, for all triples i, j, k, inequalities like in Proposition 7.14
must hold. It turns out, however, that the model has additional constraints
that come from quartets.

Theorem 7.15. Let T be a phylogenetic tree with the labeling set [m].
Suppose p is a joint probability distribution on m binary variables. Then
p ∈M++(T , 2) if and only if the following conditions hold:

(C1) p satisfies the set of equations given in Theorem 7.8.

(C2) For all 1 ≤ i < j < k ≤ m, the corresponding marginal distribution
pijk satisfies constraints in Proposition 7.14.

(C3) For any distinct i, j, k, l ∈ [m] such that there exists u−v ∈ E(T ) with
a property that u separates i, j and {k, l} and v separates {i, j}, k, and
l we have

kikl −
√

Det(pikl)

2kil
≤ kijk −

√
Det(pijk)

2kij

kijk +
√

Det(pijk)

2kij
≤ kikl +

√
Det(pikl)

2kil
.

(7.13)

Proof. It is clear that (C1) and (C2) are necessary. By Theorem 7.6,
expressions in (7.4) need to be between 0 and 1, which gives (C3). Indeed,
the first expression in (7.4) gives

−1

2
≤ kilkijk − kijkikl − kil

√
Det(pijk)

2kij
√

Det(pikl)
≤ 1

2
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which is equivalent to

kikl −
√

Det(pikl)

2kil
≤ kijk −

√
Det(pijk)

2kij
≤ kikl +

√
Det(pikl)

2kil
.

If all correlations are positive, then the last inequality is void and thus can be
disregarded and we get the first inequality in (7.13). The second inequality
is obtained in the same way from the second expression in (7.4).

Now we show that (C1)–(C3) are sufficient. If p satisfies constraints in
(C1), then there exist, possibly in C, parameters θr(1) and θv|u(1|1), θv|u(1|0)
such that p is parameterized as in (5.13). Constraints (C2) and (C3) assure
that these parameters lie in ΘT .

Remark 7.16. Similar to the proof of Proposition 7.14, the constraints in (C3)
can be expressed in terms of relative positioning of roots of two quadratic
polynomials

kijx
2 − kijkx− kikkjk = 0 and kilx

2 − kiklx− kikkkl = 0,

which we denote by xL, xR and yL, yR, respectively. Together with (C2) we
necessarily have

−µi ≤ yL ≤ xL ≤ 0 ≤ xR ≤ yR ≤ 1− µi.

7.2.3 Constraints on the second-order moments

Equation (7.1) suggests a link between M(T , 2) and phylogenetic oranges
parameterized by (5.2). This further links this model to the space of tree
metrics.

The following proposition gives a set of simple constraints on probability
distribution in tree models. This may be particularly useful in practice since
it involves only computing pairwise margins of the data and it enables us to
check if a data point may come from a phylogenetic tree model.

Proposition 7.17. Let p ∈ ∆X be a probability distribution. If p ∈
M++(T , 2) for some tree T with the labeling set [m], then

0 < min

{
kikkjl
kijkkl

,
kilkjk
kijkkl

}
≤ 1 (7.14)

for all (not necessarily distinct) i, j, k, l ∈ [m].

We now present a very important generalization of this result that links
the concept of phylogenetic oranges and general Markov models M(T , k) for
k ≥ 2. For any two leaves i, j ∈ [m], the corresponding marginal distribution
pij ∈ Rk×k comes from a latent tree model of the following simple tree

i• ← vk◦ ← · · · ← v1◦ ← r(ij)◦ → u1◦ → · · · → ul◦ → i•
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The standard parameterization implies that

pij = θTi|vk · · · θ
T
v1|r(ij)diag(θr(ij))θu1|r(ij) · · · θj|ul .

Here θv|u for every edge u → v is the stochastic matrix of the conditional
distribution of Yv given Yu. Note that θr(ij), unless r(ij) is the root of T , is
not a parameter of the original model M(T , k) but only a function of the
parameter vector. We can write the marginal distributions of Xi and Xj as

diag(pi) = θTi|vk · · · θ
T
v1|rdiag(θr(ij)), diag(pj) = diag(θr(ij))θu1|r · · · θj|ul .

We now easily check that defining for all leaves i, j

uij :=
det pij√

det(diag(pi)) det(diag(pj))

we obtain

|uij | =
∏

u→v∈ij

√
|det θv|u|. (7.15)

For every stochastic matrix θv|u we have det θv|u ∈ [−1, 1] and this determi-
nant is equal to ±1 only if θv|u is a permutation matrix. This implies that
|uij | ∈ [0, 1] and |uij | = 1 only if Xi and Xj are functionally related. More-
over, it shows that the space of all (|uij |) for a fixed semi-labeled tree T is
equal to the space E(T ) defined in Section 5.1.4. In particular, Proposition
5.27 gives a set of simple equations that need to hold for M(T , k) for every
k. The following proposition was first formulated by Steel [1994]. The proof
follows immediately from the above considerations.

Proposition 7.18. Suppose that p ∈ M(T , k) for k ≥ 2; then, whenever
there is a T -split A/B of [m] such that i, j ∈ A and k, l ∈ B, we have

det pik det pjl − det pil det pjk = 0.

In the next section we provide a more complete set of inequalities for
M(T , k).

We conclude this section with two remarks.

Remark 7.19. For every three leaves i, j, k ∈ [m] we have uijuikujk ≥ 0. It
will follow from Proposition 8.7, that the space of all u is equal to the set of
all correlations in the Gaussian latent tree model.

Remark 7.20. If det θv|u > 0 for every u→ v, which is a common assumption
in phylogenetics, uij ∈ (0, 1] and so − log uij > 0 is well defined. By (7.15)
the collection of all dij := − log uij forms a tree metric.

7.2.4 Description of general M(T )

The problem in the case of general state spaces is that we do not have such
a nice parameterization as in the two-state case. In this section we present
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a more direct approach proposed by Allman et al. [2014]. In this approach
k ≥ 2 and the model M(T , k) are as given in Definition 5.13 where we also
assume that (M1) and (M2) hold; see Section 5.2.1. The model, where the
parameters satisfy (M1), (M2), will be denoted by M0(T , k). We describe
results on the tripod tree and the quartet tree and explain how we can obtain
the complete set of constraints for any binary phylogenetic tree.

In the beginning, T is assumed to be a tripod tree as in Figure 6.1. In this
case X = {0, . . . , k−1}3 and π ∈ Rk, Mi ∈ Rk×k denote the root distribution
and the transition matrices for i = 1, 2, 3. Using the tensor notation of Section
4.3.1 the model is given by all tensors in RX given by

p = (MT
1 ,M

T
2 ,M

T
3 ) · diag(π).

A principal minor of a matrix is the determinant of a submatrix chosen
with the same row and column indices, and the leading principal minor is
one of these where the chosen indices are {1, . . . , k} for any k.

Theorem 7.21 (Sylvester’s Theorem). Let A be an n × n real symmetric
matrix. Then

1. A is positive semidefinite if and only if, all leading principal minors of
A are nonnegative, and

2. A is positive definite, if and only if, all leading principal minors of A
are strictly positive.

For a k × k × k tensor and a vector v ∈ Rk we use the shortcut notation
vT ∗ip for (vT , I, I)·p, (I,vT , I)·p and (I, I,vT )·p for i = 1, 2, 3, respectively.
The following result was first formulated by Allman et al. [2013].

Theorem 7.22. Let T be the tripod tree model and p a k× k× k probability
distribution. Then p lies in M0(T , k) if and only if for all i = 1, 2, 3

(i) (eTj ∗i p)adj(xT ∗i p)(eTl ∗i p)− (eTl ∗i p)adj(xT ∗i p)(eTj ∗i p) = 0 for all
j, k = 1, . . . , k. Here adj denotes the classical adjoint.

(ii) fi(p;x) is not identically zero as a polynomial in x.

(iii) det(1T ∗i p) 6= 0.

(iv) All leading principal minors of

det(1T ∗3 p) · (1T ∗1 p)T · adj(1T ∗3 p) · (1T ∗2 p)

are positive, and all principal minors of the following matrices are non-
negative:

det(1T ∗3 p) · (eTi ∗1 p)T · adj(1T ∗3 p) · (1T ∗2 p) for i = 1, . . . , k,

det(1T ∗3 p) · (1T ∗1 p)T · adj(1T ∗3 p) · (eTi ∗2 p) for i = 1, . . . , k,

det(1T ∗1 p) · (1T ∗2 p) · adj(1T ∗1 p) · (eTi ∗3 p) for i = 1, . . . , k,

where ei are unit vectors in Rk.
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Similar to the two-state case, the main difficulty in obtaining the full
description for a general tree is to understand the constraints on the quartet
tree.

Proposition 7.23. Let T be the quartet tree 12|34, and p a k × k × k × k
probability distribution. Then p lies in M0(T , k) if and only if

(i) 1 ∗i p lies in M0(T ({1, 2, 3, 4} \ {i}, k) for every i = 1, 2, 3, 4.

(ii) All (k + 1)× (k + 1) minors of the matrix flattening p12;34 vanish.

(iii) The following k2 × k2 is positive definite

det(p+··+) det(p·+·+)p13;24

(
(p∗2(adj(pT+··+)pT·+·+))∗3(adj(p·+·+)p·++·)

)
.

Here for compactness we denote by + summation over all indices in a
given dimension of p.

Using the above result and following the ideas of Allman et al. [2014], the
complete set of constraints can be given for any tree and any k. This set,
however, will be complicated. It seems necessary to provide a list of simple
necessary conditions that can be easily tested and that closely approximate
M(T , k).

7.3 Examples, special trees, and submodels

7.3.1 The quartet tree model

We extend the numerical example given in Section 6.3.2 for the probability
distribution p provided in Table 6.1. By construction p lies in M++(T , 2),
where T is a quartet tree, and we first verify that all the constraints in
Theorem 7.15 are satisfied. Consider again the Mathematica code given in
Section 6.3.1. To verify constraints in Theorem 7.15 it is more convenient to
work with tree cumulants that are not standardized. The quickest way to do
it is to replace rho[B] with cmu[B] in the definition of tree cumulants. So
putting everything together we have

<< Combinatorica‘

m=4;

Do[mu[A] = Sum[p[Union[A,B]], {B,

Subsets[Complement[Range[m],A]]}], {A, Subsets[Range[m]]}];

Do[cmu[A] = Simplify[Sum[(-1)^(Length[A]-Length[B])*mu[B]*

Product[mu[{i}],{i,Complement[A,B]}], {B, Subsets[A]}]],

{A, Subsets[Range[m]]}];

intparts=Function[A,Pick[SetPartitions[A],

Map[OrderedQ, Map[Flatten, SetPartitions[A]]]]];

Do[k[A] = Simplify[Sum[(-1)^(Length[pa]-1)*Product[cmu[B],

{B,pa}], {pa, intparts[A]}]], {A, Subsets[Range[m]]}];
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In this way, for the given distribution p, we obtain

t1 =
7

10
t2 =

31

50
t3 =

29

50
t4 =

29

50

t12 =
4

125
t13 =

2

125
t14 =

2

125
t23 =

8

625

t24 =
8

625
t34 =

21

625
t123 = − 12

3125
t124 = − 12

3125

t134 = − 8

3125
t234 = − 32

15625
t1234 =

48

78125

where the tree cumulants up to order three are equal to the corresponding
cumulants and so we use interchangeably letter k and t. Recall also that
k1, k2, k3, k4 are equal to the means µ1, µ2, µ3, µ4. To verify (C1), check among
others that

t13t24 − t14t23 =
2

125
· 8

625
− 2

125
· 8

625
= 0,

t123t134 − t1234t13 = (− 12

3125
) · (− 8

3125
)− 48

78125
· 2

125
= 0

and other invariants can be checked in the same way. We now verify that
(C2) holds for the triple {1, 2, 3}. This follows because all covariances kij are
positive and the conditional covariances satisfy

k12|3(1) =
651

78125
k12|3(0) =

551

78125

k13|2(1) =
21

6250
k13|2(0) =

21

6250

k23|1(1) =
48

15625
k23|1(0) =

28

15625

and hence they are also positive. To verify (C3), compute

√
Det(p123) =

√
Det(p134) =

4

625
.

Now

k123 −
√

Det(p123)

2k12
= − 4

25

k123 +
√

Det(p123)

2k12
=

1

25

k134 −
√

Det(p134)

2k14
= − 7

25

k134 +
√

Det(p134)

2k14
=

3

25

and hence (7.13) holds. Note that the fact that

−k3 = −29

50
≤k123 −

√
Det(p123)

2k12
= − 4

25

k123 +
√

Det(p123)

2k12
=

1

25
≤ 1− k3 =

21

50
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follows already from (C2); see (7.12).
Suppose that we do not know the original parameters that mapped to p.

We can easily identify those using Theorem 7.6. We have

θr(1) =
1

2
(1− kijk√

Det(pijk)
) =

8

10
,

which is equal to the true value of θr(1) given in Section 6.3.2. To find the
values for θ1|r(1|1) and θ1|r(1|0) we compute

k1 +
k123 −

√
Det(p123)

2k23
=

3

10

k1 +
k123 +

√
Det(p123)

2k23
=

8

10
.

The value of θa|r(1|i) is verified in the same way.

Table 7.1 Moments, central moments, and tree cumulants for a probability assign-
ment that does not lie in M(T , 2).

x A = A(x) p(x) µA µ′
A tA

0000 ∅ 601
10000

1 1 1

0001 4 1533
50000

137
250

0 137
250

0010 3 1533
50000

137
250

0 137
250

0011 34 1229
50000

169
500

589
15625

589
15625

0100 2 413
10000

31
50

0 31
50

0101 24 1617
50000

907
2500

72
3125

72
3125

0110 23 1617
50000

907
2500

72
3125

72
3125

0111 234 2401
50000

1163
5000

− 864
390625

− 864
390625

1000 1 549
10000

7
10

0 7
10

1001 14 2457
50000

1031
2500

18
625

18
625

1010 13 2457
50000

1031
2500

18
625

18
625

1011 134 4041
50000

1327
5000

− 216
78125

− 216
78125

1100 12 857
10000

233
500

4
125

4
125

1101 124 4893
50000

7061
25000

− 108
15625

− 108
15625

1110 123 4893
50000

7061
25000

− 108
15625

− 108
15625

1111 1234 9229
50000

9229
50000

3652
1953125

1296
1953125

Consider now another probability distribution given in Table 7.1. We
check as before that all constraints in (C1) hold, so for example

t13t24 − t14t23 =
18

625
· 72

3125
− 18

625
· 72

3125
= 0,

t123t134 − t1234t13 = (− 108

15625
) · (− 216

78125
)− 1296

1953125
· 18

625
= 0.
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It turns out that conditions (C2) also hold for any triple of leaves but still p
does not lie in M+(T , 2) because (C3) fails to hold. Now, as expected, The-
orem 7.6 gives valid values for all parameters apart from the ones associated
to the inner edge. Equations in (7.4) become

1

2
+
k14k123 − k12k134 − k14

√
Det(p123)

2k12

√
Det(p134)

= − 1

10

1

2
+
k14k123 − k12k134 + k14

√
Det(p123)

2k12

√
Det(p134)

=
8

10
.

In particular, θa|r(1|0) is equal to − 1
10 and hence this parameter cannot

represent a conditional probability.

7.3.2 Two-state Neyman model

In phylogenetics, general Markov models are used to identify a tree underly-
ing the observed data. As we will see later, the tree topology can be uniquely
identified from the pairwise marginal distributions, that is, marginal distri-
butions over all pairs of observed variables. This motivates the analysis of a
special symmetric model of M(T , 2), which we now introduce.

Let T be a phylogenetic tree. Suppose that we constrain the parameters
in ΘT so that θv|u(1|1) = 1−θv|u(1|0) for each u→ v. Denote av = θv|u(1|1).
Then each transition matrix is of the form

[
av 1− av

1− av av

]
for some av ∈ [

1

2
, 1].

In particular, it is doubly stochastic, that is, both the row and the column
sums are 1. Often in this context it is also assumed that the root distri-
bution is [1/2, 1/2]. So constrained model is called the symmetric two-state
general Markov model and denoted by JN(T ) (for Jerzy Neyman, who first
introduced this model; see Neyman [1971]).

The root distribution (1
2 ,

1
2 ) is the stationary distribution for any doubly

stochastic matrix because
[

1

2
,

1

2

] [
av 1− av

1− av av

]
=

[
1

2
,

1

2

]
.

This implies that, if θr(1) = µr = 1/2, then µv = 1/2 for all v ∈ V (T ).
In the moment parameters this means that ρvvv = 0 for all v ∈ V (T ) and,
by Lemma 6.6, the edge correlations ρe can freely take values in [−1, 1]. By
Theorem 6.10, the model JN(T ) lies in the subspace of the space of all
T -cumulants given by two sets of constraints:

µi =
1

2
for i ∈ [m] and t̄A = 0 for all |A| ≥ 3.

In this space the coordinates are given by correlations t̄ij = ρij that are
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parameterized via ρij =
∏
e∈ij ρe. Applying Lemma 6.6 we see that the pa-

rameter space for this model is a subset of ΩT given by ρvvv = 0 for all inner
vertices and 0 ≤ ρuv ≤ 1. The model is exactly the space of phylogenetic
oranges for T (c.f. (5.2)), which we denoted by E(T ). If T is the tripod tree,
the model is described in Example 2.48 and depicted in Figure 2.3.

7.3.3 Submodularity on trees

Let T = (T, φ) be a semi-labeled tree. In this section we show that all distri-
butions in M+(T , 2) are log-supermodular; see Definition 4.49. Establishing
this fact is relatively simple and amounts to showing two basic results: first,
that all distributions inN+(T, 2) (in the fully observed Markov process on T )
are log-supermodular, and then that log-supermodularity is preserved under
taking margins. This result was first stated by Steel and Faller [2009].

Proposition 7.24. Let T be a semi-labeled tree. If p ∈M+(T , 2), then p is
log-supermodular, that is, pxpy ≤ px∨ypx∧y for all x, y ∈ {0, 1}m, where x∧y
and x ∨ y denote the coordinatewise minimum and maximum, respectively.

Proof. By definition, p is obtained as a marginal distribution of q over
the labeled vertices of T , where q is parameterized as in (5.7) by

qx = θr(xr)
∏

u→v
θv|u(xv|xu) for all x ∈ {0, 1}V (T )

where for every u→ v the determinant of the matrix θv|u is nonnegative. By
Theorem 4.56 it is enough to show that q is log-supermodular. To compare
L = qxqy and R = qx∨yqx∧y we proceed term by term. First note that in L we
have θr(xr)θr(yr), which is equal to θr(xr∨yr)θr(xr∧yr) in R. Now for every
u→ v in L we have θv|u(xv|xu)θv|u(yv|yu) and θv|u(xv ∨ yv|xu ∨ yu)θv|u(xv ∧
yv|xu ∧ yu) in R. If either xu = yu or xv = yv, then we have an equality.
Similarly, if either xu = xv or yu = yv, then we have an equality. Now we
have two remaining cases to consider, when xu = 1, xv = 0, yu = 0, yv = 1
and xu = 0, xv = 1, yu = 1, yv = 0. However, in this case

θv|u(0|1)θv|u(1|0) ≤ θv|u(0|0)θv|u(1|1)

follows from the fact that the determinant of the matrix θv|u is nonnegative.
In particular, q is log-supermodular.

A general log-supermodular probability distribution over {0, 1}m does not
come from a tree model, because it needs to satisfy some additional equations
and potentially also some further inequalities. However, if T is the tripod
tree, then M+(T , 2) are precisely the log-supermodular distributions over
{0, 1}3. Recall from Example 4.51 that these are the probability distributions
satisfying

p000p111 ≥ p001p110 p000p111 ≥ p010p101 p000p111 ≥ p100p011

p001p111 ≥ p011p101 p010p111 ≥ p011p110 p100p111 ≥ p101p110

p000p011 ≥ p001p010 p000p101 ≥ p001p100 p000p110 ≥ p010p100.
(7.16)
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Theorem 7.25. Let T be a tripod tree. A probability distribution p lies in
M+(T , 2) if and only if it satisfies (7.16).

Proof. Proposition 7.24 shows that (7.16) are necessary. To show that
they are sufficient it is now enough to show that they imply constraints of
Proposition 7.14. First we note that, by (7.9), the last six constraints above
are exactly the last six constraints in (7.11). Hence it is enough to show that
k12 ≥ 0, k13 ≥ 0, k23 ≥ 0 is implied by (7.16). By symmetry it is enough to
show the first. We have

k12 = k12|3(0) +k12|3(1) + (p000p111 +p110p001−p100p011−p010p101). (7.17)

We show that the expression in parentheses is nonnegative for p ∈M+(T , 2).
We write this expression as R = f00 + f11 − f01 − f10, where

f00 = p000p111, f01 = p010p101, f10 = p100p011, f11 = p110p001.

Note that, by (7.16), we have f00 ≥ max{f01, f10}. This implies R ≥ 0 if
either pijk = 0 for some i, j, k, or if f11 ≥ min{f01, f10}. Thus, we assume that
fij > 0 and f11 < min{f01, f10}. The supermodular inequalities p010p100 ≤
p000p110 and p101p011 ≤ p111p001 imply

f01f10 = p010p101p100p011 ≤ p000p111p110p001 = f00f11.

Hence [fij ] is supermodular itself. As a consequence, we have

f10

f00
− 1 ≤ f11

f01
− 1 ≤

(
f11

f01
− 1

)
f01

f00
,

where the second inequality holds since f11 < f01 ≤ f00.
After multiplying both sides by f00 we obtain

f10 − f00 ≤ f11 − f01

or equivalently R ≥ 0. It follows that k12 ≥ 0 and, by symmetry, that kij ≥ 0
for all 1 ≤ i < j ≤ 3.

It is instructive to look at a 3-dimensional picture of our 7-dimensional
model M(T , 2) of the tripod tree. We consider the slice given by

[
p000 p001

p010 p011

]
=

[
x y
z w

]
and

[
p100 p101

p110 p111

]
=

[
w z
y x

]
.

Under this specialization, the hyperdeterminant factors as

Det(p) = (x+y+z+w)(x+y−z−w)(x−y+z−w)(x−y−z+w). (7.18)

Consider the tetrahedron
{

(x, y, z, w) ∈ R4
≥0 : x+ y+ z+w = 1/2

}
. Fixing

the signs of the last three factors in (7.18) divides the tetrahedron into four
bipyramids and four smaller tetrahedra. Inside our slice, the four cells occupy
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the bipyramids. Each cell is precisely the toric cube in Figure 2.3, its convex
hull is the bipyramid, and it contains six of the nine edges. The whole slice
is depicted in Figure 2.5. Any two of the cells meet in a line segment such as
{x+y−z−w = x−y+z−w = 0, x−y−z+w ≥ 0}. The algebraic boundary
of each cell consists of the same three quadrics {xy = zw}, {xz = yw} and
{xw = yz}. Neither the three planes in (7.18) nor the four facet planes of the
tetrahedron are in the algebraic boundary.

The fact that the slice described above is isomorphic to the simplest toric
cube depicted in Figure 2.5 is not a coincidence. Indeed, this slice corresponds
to the two-state Neyman model on the tripod tree, and we observed in Section
7.3.2 that this corresponds to the space of phylogenetic oranges, that form
toric cubes.

7.3.4 The mixture model

In this section we study the model M(T ), where T is a star tree; the inner
vertex represents a binary random variable that is not observed but the leaves
have arbitrary number of states. In machine learning these type of models
are often referred to as naive Bayes models. We denote these models by MX ,
where X =

∏m
i=1 Xi and Xi = {0, . . . , ki}. The observed variables in the

system are X1, . . . , Xm and the hidden binary variable is denoted by H.
The parameters of the model are conditional probability matrices Mi ∈

R2×(ki+1) representing the conditional distribution of Xi given the binary
latent variable H. The first row of Mi is denoted by ai = [aij ] and the second
row by bi = [bij ]. The joint distributions p = [px] ∈MX are parameterized
by

px = (1− π)

m∏

i=1

aixi + π

m∏

i=1

bixi for all x = (x1, . . . , xm) ∈ X , (7.19)

where π ∈ [0, 1] and ai, bi ∈ ∆Xi for all i = 1, . . . ,m. By our identification
∆X ' RPX≥0 (see Lemma 2.37) this model corresponds exactly to the mixture
model discussed in Section 2.4.

We say that a probability distribution p ∈ ∆X has flattening rank ≤ 2
if for any split A|B of {1, . . . ,m} the resulting matrix flattening pA;B (c.f.
Section 4.3.1) has rank ≤ 2. In this section we discuss a general class of
models where log-supermodularity together with flattening conditions gives
the complete description.

Definition 7.26. The nonnegative part M+
X of MX is the image in ∆X of

the parameterization in (7.19) constrained to parameters such that all 2× 2
minors of all Mi are nonnegative.

Note that if X = {0, 1}m, then the above definition corresponds to the
regular definition of the nonnegative part of the model M(T , 2), where T is
a star graph. It turns out that the description of all probability distributions
in M+

X is extremely simple.
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Theorem 7.27. A probability distribution p ∈ ∆X lies in M+
X if and only

if p is log-supermodular and it has flattening rank ≤ 2.

This result follows from Theorem 1.1 in Allman et al. [2015], which gives
a full semialgebraic description of all tensors in RX of nonnegative rank ≤ 2,
that is, all tensors u that can be written as a sum of two nonnegative tensors
of rank 1

u = a1 ⊗ · · · ⊗ am + b1 ⊗ · · · ⊗ bm, ai, bi ∈ RXi≥0.

The reason why these two descriptions are equivalent is that the set of all
tensors in RX of nonnegative rank ≤ 2 is a cone over M+

X , which follows
from the following lemma.

Lemma 7.28. Let u ∈ RX . Then u has nonnegative rank ≤ 2 if and only if
u/
∑
x∈X ux lies in M+

X .

Proof. Let A = (1Ta1) · · · (1Tam) and B = (1T b1) · · · (1T bm). The sum
of elements of u is

∑

x∈X
ux = (1T , . . . ,1T ) · u = A+B.

Therefore

u∑
x ux

=
A

A+B

(
a1

1Ta1

)
⊗ · · · ⊗

(
am

1Tam

)
+

B

A+B

(
b1

1T b1

)
⊗ · · · ⊗

(
bm

1T bm

)
,

where by construction ai/(1
Tai) and bi/(1

T bi) lie in ∆Xi . We now compare
this with (7.19) to conclude that u/

∑
x∈X ux lies in M+

X . The opposite di-
rection is straightforward.

Similar to general Markov models, to get the full description of MX , it
is enough to describe its nonnegative part and the nonnegative part forms a
fundamental domain of the action of a group described as follows. Let SXi
be the symmetric group on Xi and denote SX =

∏m
i=1 SXi . The group SX

acts on the state space X by permutation x 7→ σ(x). This action induces the
action on the parameter space, so that SXi permutes columns of Mi, and on
the model MX so that p(x) is mapped by σ ∈ SX to p(σ(x)).

Proposition 7.29. The model MX is a SX -orbit of its nonnegative part
M+
X . Moreover, MX consists of (k1 + 1)! · · · (km + 1)!/2 cells that are copies

of M+
X .

Proof. By Theorem 7.27, it suffices to check that the only non-trivial
σ = (σi) ∈ SX such that it maps log-supermodular distributions to log-
supermodular distributions is such that each σi maps j to ki−j for j ∈ Xi.
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We now describe the algebraic boundary of this model, which follows from
[Allman et al., 2015, Theorem 1.2].

Theorem 7.30. The algebraic boundary of MX has
∑m
i=1(ki+1) irreducible

components, given by slices having rank ≤ 1. The algebraic boundary of M+
X

has the same irreducible components plus
∑m
i=1

(
ki+1

2

)
additional components

given by linearly dependent double slices.

A double slice is linearly dependent if its two slices are identical up to a
multiplicative scalar. In this situation, one Xi is marginally independent of
the other variables in the system. In the second component count of Theorem
7.30 we exclude the special case 2× 2× 2 because the “further components”
fail to be hypersurfaces.

7.4 Inequalities and estimation

In this section we show how our understanding of the geometry of the model
M(T ) gives an insight into potential estimation problems. For simplicity we
focus on the case where all variables in the system are binary.

Let X be a random vector with values in X = {0, 1}m. Suppose that a
random sample of size n was observed. We summarize the data in the tensor
of sample proportions p̂. Recall from Section 3.3.1 that the multinomial log-
likelihood is a function ` : ∆X → R defined for a fixed tensor p̂ ∈ ∆X by

`(p; p̂) = n〈log p, p̂〉 = n
∑

x∈X
p̂x log px.

In view of Section 3.3.3, the likelihood for the model M(T ) can be defined
as the multinomial likelihood above constrained to tensors in M(T ) ⊆ ∆X .
Therefore, we are interested in the following optimization problem

for given p̂ maximize `(p; p̂) s.t. p ∈M(T , 2). (7.20)

By Proposition 3.35 the maximum likelihood estimator in the parameter
space of the model is given by any point of the q-fiber, where q is the maxi-
mizer of (7.20).

In some applications, especially in phylogenetics, we replaceM(T , 2) with
M+(T , 2). However, by Theorem 7.3, M(T , 2) can be obtained as a (Z2)m-
orbit of M+(T , 2) and the multinomial likelihood function is invariant with
respect to the action of (Z2)m, namely `(g ·p; g · p̂) = `(p; p̂) for all g ∈ (Z2)m.
This also implies that `(g ·p; p̂) = `(p; g · p̂). So, even if our primary interest is
in M(T , 2), instead of optimizing the log-likelihood over M(T , 2) we can run
several optimization queries over M+(T , 2), one for each element of (Z2)m.

In the ideal situation, the likelihood function has a unique maximum.
However, for the model M(T ) it will never happen. Even if we find the
global maximum of (7.20), the corresponding q-fiber, and hence the set of
all points in the parameter space giving the same likelihood value, always
has more than one element. A straightforward way around this is to take a
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quotient with respect to the sign switching group given in Definition 6.27.
This can be done by assuming that the determinant of each transition matrix
in the model is nonnegative. By Proposition 6.30, at least generically, the
parameterization of the model becomes one-to-one.

Figure 7.1 The multinomial likelihood and a submodel of the saturated model given
by four disjoint regions.

Much more serious problems are related directly with the complicated
structure of the maximization problem (7.20). The multinomial likelihood
function constrained to M(T , 2) will typically have many local optima. One
reason is that the model consists of several regions that touch only along lower
dimensional faces; see Figure 7.1. Another reason is that each of these regions
is not convex itself. This, in turn, can make estimation schemes unstable,
which was observed in many applied analyzes of these models (see, e.g., Chor
et al. [2000]).

Probably the biggest problem with latent tree models is that the max-
ima of the constrained likelihood function will often lie on the boundary of
the parameter space. Moreover, these boundary points always correspond to
some degenerate cases where the usual interpretation of the hidden process
breaks down. This problem becomes especially serious if either the model is
misspecified or correlations between the observed variables are weak, which
was observed by Wang and Zhang [2006].

To illustrate all these issues, we focus on the simplest case of the tripod
tree model, whose complete description was given in Proposition 7.14 and
Theorem 7.25. The model has full dimension in the ambient probability sim-
plex and Figure 2.5 shows a slice of this 7-dimensional object. This slice is
a bit misleading because it suggests that the model fills a large proportion
of the ambient probability simplex. To get a better idea about this model
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Figure 7.2 The space of all possible correlations ρ12, ρ13, ρ23 for the tripod tree
model.

we draw several slices. Each slice assumes µ1 = µ2 = µ3 = 1/2 and is de-
picted in the space given by correlations for a fixed value of the third-order
standardized moment ρ123 ∈ {0, 0.005, 0.02}; see Figure 7.2. Simple Monte
Carlo simulations show that the volume of the model accounts for only 8%
of the ambient probability simplex. This means that typically the sample
proportions end up outside of the model even if the true data generating
distribution lies in the tripod tree model.

Let p̂ be the sample proportions for some observed data on the tripod
tree model. We have three possible scenarios:

(i) p̂ ∈M(T , 2) and then `(p; p̂) is unimodal.

(ii) p̂ /∈M(T , 2) and `(p; p̂) is multimodal but there exists only one global
maximum.

(iii) p̂ /∈M(T , 2) and `(p; p̂) has multiple global maxima.

Although the situation in (iii), generically never happens, it raises an in-
teresting question related to the model identifiability. For every data point
satisfying (iii) we are not able to identify the parameters using the maxi-
mum likelihood estimation even if we take into account the label switching
problem.

From the numerical point of view, the situation in (ii) and (iii) may de-
scribe equally bad scenarios since in both cases the algorithms become un-
stable. If the true data-generating distribution lies only approximately in
M(T , 2), then this happens even for arbitrary large sample sizes.

We illustrate this with a simple simulation. Suppose that a sample of size
10,000 has been observed

[
u000 u001 u100 u101

u010 u011 u110 u111

]
=

[
2069 16 2242 331
2678 863 442 1359

]
. (7.21)

By direct computations we check that the sample proportions obtained from
this table satisfy only some of the defining constraints and hence p̂ does not
lie in the tripod tree model. The corresponding maximum likelihood esti-
mator will lie on the boundary of the parameter space. The most popular
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way of estimating this model class is the EM algorithm presented in Section
3.3.4. The algorithm starts from an arbitrary point in the parameter space
and moves around it at each step strictly increasing the likelihood function.
We perform the following simulation. At each iteration, sample uniformly
from ΘT = [0, 1]7 the starting parameters for the EM algorithm (see Algo-
rithm 3.41) and record the corresponding EM estimate. For 100 iterations
the procedure found six different isolated maxima given in Table 7.2.

Table 7.2: Results of the EM algorithm for data in (7.21).

θ
(r)
1 θ

(1)
1|0 θ

(1)
1|1 θ

(2)
1|0 θ

(2)
1|1 θ

(3)
1|0 θ

(3)
1|1

1 0.466 0.337 0.552 1.000 0.000 0.416 0.074
2 0.534 0.552 0.337 0.000 1.000 0.074 0.416
3 0.257 0.361 0.658 0.420 0.865 0.000 1.000
4 0.743 0.658 0.361 0.865 0.420 1.000 0.000
5 0.437 0.000 1.000 0.629 0.412 0.156 0.386
6 0.563 1.000 0.000 0.412 0.629 0.386 0.156

Up to label switching on the inner vertex, these are three distinct max-
imizers of the log-likelihood function `(θ; p̂) corresponding to rows 2, 4, 6.
The value of the log-likelihood function is equal to −18,281 and −18,387 and
−18,881, respectively so the first point seems to be the global maximizer.
All points correspond to somewhat degenerate tripod tree models where one
of the observed variables is functionally related to the hidden variable. For
example, the first point lies on the submodel given by X1 ⊥⊥ X3|X2. In con-
junction with Corollary 6.24 we also can theoretically construct data for
which the likelihood function `(θ; p̂) is maximized over an infinite number
of points. This, for example, holds for any data such that the constrained
multinomial likelihood is maximized over a point such that p0ij = λp1ij for
some λ and each i, j = 0, 1. In this case ρ12 = ρ13 = 0 and the MLEs form a
set of a positive dimension by Corollary 6.24.

Finally, in situation (ii), even if we are able to identify the global maxi-
mum, often we will encounter a further complication, where another distant
parameter gives a similar likelihood value. In this case the maximum likeli-
hood estimate is meaningless.

7.5 Bibliographical notes

Various earlier papers listed some necessary constraints on general Markov
models in the binary case; see Pearl and Tarsi [1986] and Steel and Faller
[2009]. Under some special symmetric assumptions and in the case when
k = 4, Matsen [2009] gave a set of some necessary inequalities using the
Fourier transformation of the raw probabilities. The semialgebraic descrip-
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tion we obtain here also has an elegant mathematical structure. The basic
idea was given by Cavender [1997] who linked the correlation system on tree
models to tree metrics. The hyperdeterminant was first applied to the anal-
ysis of the semialgebraic structure of tensors of positive rank in de Silva
and Lim [2008]. A more detailed discussion of the cumulant representation
of this polynomial function is given in Sturmfels and Zwiernik [2012]. Log-
supermodularity constraints are interesting for its own sake. In statistics they
are typically referred to as MTP2 (multivariate positivity of order two); see,
for example, Bartolucci and Forcina [2000] and references therein. The two-
state Neyman model is studied from an algebraic point of view by Tuffley and
Steel [1997]. The discussion of the naive Bayes model is taken from Allman
et al. [2015]. A different perspective on the study of mixture models is given
in Montúfar [2013]. The tree metric structure given in Remark 7.20 was in-
dependently discovered by Chang and Hartigan [1991], Steel [1994] and then
further studied by Lake [1994], Lockhart et al. [1994].

In this book we focus on the general Markov model because we are in-
terested in applications outside of phylogenetics, where specific submodels
considered in biology may not make sense. In particular, we omitted a whole
series of beautiful results on the geometry of group-based models. For more
on this topic, see Draisma and Kuttler [2009], Eriksson et al. [2005], Evans
and Speed [1993], Matsen [2009], Sturmfels and Sullivant [2005]. In the end
we note that very little is known about models M(T ) where the state spaces
differ across vertices. Some basic results are provided by Zhang [2003/04].
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Chapter 8

Gaussian latent tree models

[]
In this chapter we extent our analysis of discrete models on trees to latent

Gaussian tree models. It turns out that this model has all the basic features
of other models introduced earlier.

8.1 Gaussian models

Denote by PDm the set of symmetricm×mmatrices that are positive definite.
We say that a random vector Y with values y in Rm has multivariate Gaussian
distribution with the mean parameter µ ∈ Rm and the covariance matrix
Σ ∈ PDm, which we denote by Y ∼ N(µ,Σ), if it has density with respect
to the Lebesgue measure on Rm of the form:

fµ,Σ(y) =
1

(2π)m/2
(det Σ)−1/2 exp(−1

2
(y − µ)TΣ−1(y − µ)).

The inverse of the covariance matrix Σ is denoted by K and called the concen-
tration matrix . In this section, for simplicity, we assume that µ = 0. In this
case a Gaussian model can be uniquely identified with a subset of PDm. By
the following proposition, conditional independence statements for Gaussian
models translate directly to minor constraints on the covariance matrix.

Proposition 8.1 (Proposition 3.1.13, Drton et al. [2009]). The conditional
independence statement YA ⊥⊥ YB |YC holds for a multivariate Gaussian ran-
dom vector Y ∼ N(µ,Σ) if and only if the submatrix ΣA∪C,B∪C has rank at
most |C|.

Given n independent observations Y 1, . . . , Y n of a Gaussian vector

Y ∼ N(0,Σ), we construct the sample covariance matrix S = 1
n

∑n
i=1 Y

iY i
T

,
which by construction is always positive semidefinite and it is positive defi-
nite with probability 1 as long as n ≥ m, which we always assume here. The
log-likelihood function in the Gaussian case is a function on PDm defined in
terms of concentration matrices by

`(K;S) =
n

2
log detK − n

2
Tr(SK). (8.1)

Proposition 8.2. The Gaussian likelihood defined in (8.1) is strictly con-
cave over the whole cone PDm. Its unique maximum, if it exists, is given by
K∗ = S−1 and thus Σ∗ = S.

191
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Proof. Because tr(SK) is a linear function of K, the first part of the
above result follows by showing that log detK is strictly concave over PDm.
This result is well known (see, e.g., [Boyd and Vandenberghe, 2004, Section
3.1.5]). The second statement follows directly by evaluating the derivatives
at zero.

8.2 Gaussian tree models and Chow–Liu algorithm

Let Y = (Yv)v∈V be a random vector whose components are indexed by the
vertices of an undirected tree T = (V,E). Denote by N(T ) the Gaussian tree
model for Y induced by T . The model N(T ) is the collection of all multivari-
ate Gaussian distributions on R|V | under which Yi and Yj are conditionally
independent given a subvector YC whenever the set C ⊂ V \ {i, j} contains
a vertex on ij. Suppose that k ∈ ij. Then Yi ⊥⊥ Yj |Yk and by Proposition 8.1
σijσkk = σikσjk. Equivalently

ρij = ρikρjk,

where ρij := σij/
√
σiiσjj is the correlation between Xi and Xj . Using this

argument recursively implies that a normal distribution belongs to N(T ) if
and only if

ρij =
∏

e∈ij

ρe, (8.2)

where ρe := ρkl for e = k − l ∈ E.
The model N(T ) is equivalently given by linear restrictions on K:

Kij = 0 whenever i 6= j and there is no edge between i and j in T .

Denote by N−1(T ) the space of all concentration matrices corresponding to
covariance matrices in N(T ). Let Eij be an |V | × |V | matrix with 1 on the
(i, j)-th entry and zeros otherwise. Every concentration matrix in N−1(T ) is
of the form

Kθ =
∑

i∈V
θiiEii +

∑

i−j∈E
θij(Eij + Eji),

where θ = (θii, θij) are real parameters such that Kθ is positive definite.
We are going to use this parametric representation in the analysis of the
likelihood function.

The fact that the set of concentration matrices in N(T ) forms a linear
subset of PD|V | implies that the likelihood function

`(θ) = log detKθ − tr(SKθ) (8.3)

is a strictly concave function. This follows from Proposition 8.2 and the fact
that a strictly concave function constrained to a linear subspace remains
strictly concave.
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Proposition 8.3. The maximum likelihood estimate over the model N(T )

is given by the unique matrix K̂ := Kθ̂ such that

(K̂−1)ii = Sii, (K̂−1)ij = Sij for all i ∈ V, i− j ∈ E.
Proof. Denote ∂ij := ∂

∂θij
, then

∂ii`(θ) =
n

2
tr(K−1

θ Eii)−
n

2
tr(SEii), (8.4)

∂ij`(θ) =
n

2
tr(K−1

θ (Eij + Eji))−
n

2
tr(S(Eij + Eji)), (8.5)

which vanishes only if (K−1
θ )ii = Sii and (K−1

θ )ij = Sij .

Corollary 8.4. If K̂ is a critical point of the likelihood function over N(T ),

then tr(SK̂) = |V |.

Proof. If the partial derivatives in (8.4) vanish, then in particular
∑

i∈V
θ̂ii∂ii`(θ) +

∑

i−j∈E
θ̂ij∂ij`(θ) = 0.

Using linearity of the trace, we conclude that tr(SKθ̂) = tr(K−1

θ̂
Kθ̂) and the

latter is equal to |V |.

The main aim of the remainder of this section is to show that the Chow–
Liu algorithm presented in Section 5.2.3 for discrete variables has a straight-
forward generalization to Gaussian tree models. Suppose that we observe
sample covariance matrix S ∈ PD|V | and we want to find the tree T with
vertices in V that yields the largest value of the maximum likelihood func-
tion over N(T ). In the corresponding maximum of (8.3), by Corollary 8.4,
the trace term does not depend on T and hence to find the best tree it suffices
to pick the one that yields the largest value of log det K̂.

Lemma 8.5. For every N(T ) we have

log det K̂ = −
∑

i∈V
logSii −

∑

i−j∈E
log(1− ρ̂2

ij),

where ρ̂ij := Sij/
√
SiiSjj are the sample correlations.

Proof. By [Lauritzen, 1996, Proposition 5.9],

det K̂ = n|V |
∏
i∈V (nSii)

deg(i)−1

∏
i−j∈E det(nSij,ij)

=

∏m
i=1 S

deg(i)−1
ii∏

i−j∈E det(Sij,ij)
.

Because det(Sij,ij) = SiiSjj(1− ρ̂2
ij), we have

det K̂ =
1∏

i∈V Sii

1∏
i−j∈E(1− ρ̂2

ij)

and the lemma follows by taking the logarithm on both sides.
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Since the first term in the expression for log det K̂ in Lemma 8.5 does not
depend on T , the tree that yields maximal value of log det K̂ is given as the
minimum-cost spanning tree (see Section 5.2.3) for a complete graph on m
vertices with weights given by log(1− ρ̂2

ij). To obtain such a tree, we order all

pairs (i, j) according to the increasing value of log(1− ρ̂2
ij) and subsequently

join vertices by edges as long as no cycles are introduced. Alternatively, we
could order pairs (i, j) according to the decreasing value of ρ̂2

ij .

8.3 Gaussian latent tree models

In latent Gaussian tree models, only the components of Y corresponding
to the leaves of T are observed. For a phylogenetic tree T = (T, φ), we
are thus interested in the Gaussian latent tree model M(T ), which is the
marginal model for X := (Yv)v∈φ([m]) induced from N(T ). The correlations
in this model are parameterized by (8.2) with parameters ω, given by all edge
correlations. This already describes all distributions in the model because
the variances of observed variables are not constrained and in the estimation
process they can be always fixed to their sample values.

Define a multiplicative group Zm2 = {−1, 1}m that acts on the sam-
ple space Rm by reflections across axes. A typical element of Zm2 is
ε = (ε1, . . . , εm), where εi ∈ {−1, 1} and it acts on Rm by x 7→ ε · x = (εixi).
The action of Zm2 on the sample space induces the action on the observed
correlations

R 7→ ε ·R = R′ = [ρ′ij ], where ρ′ij = εiεjρij .

It also induces the action on the parameter space. We have ε · ω = ω′, where
ω′ satisfies R(ε · ω) = R(ω′). More precisely, denote by ei the terminal edge
connected to the leave i. Then ε · ω =: ω′ is defined so that ω′e = ωe for
all inner edges e, and ω′ei = εiωei for the corresponding terminal edge. We
conclude the following result.

Proposition 8.6. For every T the Gaussian model M(T ) is invariant under
the action of Zm2 , that is, Zm2 ·M(T ) = M(T ). Moreover, the element
(−1, . . . ,−1) acts trivially on M(T ).

We distinguish the nonnegative part M+(T ) of M(T ) with correlation
matrices parameterized by (8.2) where ρe ≥ 0. Both from the geometric
and from the inferential point of view it is enough to understand the model
M+(T ), which follows from the proposition below.

Proposition 8.7. Let R = [ρij ] ∈ PDm be a correlation matrix. Then R ∈
M(T ) if and only if

(a) R′ = [|ρij |] ∈M+(T )

(b) ρijρikρjk ≥ 0 for any 1 ≤ i < j < k ≤ m.

Proof. For the “if” part, if R ∈M(T ), then each ρij has representation
(8.2). Thus |ρij | =

∏
e∈ij |ρe| and hence R′ lies in M+(T ). To show that
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(b) holds, note that the tree spanned over three leaves i, j, k has necessary a
unique vertex v that lies on the intersection of paths ij, ik and jk. Moreover,

ρijρikρjk =
∏

e∈ij

ρe
∏

e∈ik

ρe
∏

e∈jk

ρe =
∏

e∈iv

ρ2
e

∏

e∈jv

ρ2
e

∏

e∈kv

ρ2
e ≥ 0.

For the “only if” part we use the action of Zm2 . Let ε ∈ Zm2 be such that
for i = 1, . . . ,m, εi = −1 if ρ1i < 0 and εi = 1 otherwise. Then R = ε · R′
because: ε1εi|ρ1i| = ρ1i for all i = 2, . . . ,m and εiεj |ρij | = ρij for i, j > 1.
This last equality follows from the fact that by (b) the sign of ρ1iρ1j is equal
to the sign of ρij . Now, since R′ ∈M+(T ) and R = ε · R′, Proposition 8.6
implies that R ∈M(T ).

The complete description of M+(T ) follows from Proposition 5.27, which
gives the description of the space of phylogenetic oranges, and the following
result, which establishes the link between M+(T ) and phylogenetic oranges.

Theorem 8.8. Let T be a phylogenetic tree. The set of all possible correla-
tions in M+(T ) is equal to the model JN(T ) of Section 7.3.2, which in turn
is equal to the space of phylogenetic oranges; see Section 5.1.4.

The boundary points of M(T ) are given by some of the inequalities in
Proposition 5.27 becoming equations. The analysis of the boundary is, how-
ever, more complex because of complicated relations between these inequali-
ties (many become equalities simultaneously). An efficient boundary descrip-
tion of M+(T ) is obtained in Section 5.1.4 in terms of the Tuffley poset . For
example, if T is a star graph with m leaves, then the maximal dimensional
pieces of the boundary are represented by semi-labeled forests Ti with m− 1
leaves labeled by [m] \ {i} and the inner vertex labeled by {i}. These models
correspond to submodels where one of the edge correlations is equal to 1.
The underlying model is a fully observed graphical model, whose maximum
likelihood estimators σ∗ij are well understood. For example, on M(T1) we
have

σ∗ij = σ̂1iσ̂1j and σ∗1i = σ̂1i for i, j > 1, (8.6)

where σ̂ij are the elements of the sample covariance matrix . This shows that
for star graph trees, maximizing the log-likelihood function is easy on the
boundary and potentially hard in the relative interior of the model.

8.4 The tripod tree

In this section we provide a thorough analysis of the simplest non-trivial
Gaussian latent tree model given by the tripod tree. We denote the three
observed variables by X1, X2, X3 and the hidden variable by X0. Denote by
σij for 0 ≤ i ≤ j ≤ 3 the covariance between Xi and Xj and by ρij the
corresponding correlation. We denote the corresponding tripod tree model
by M .
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8.4.1 Shape of the model

By (8.2), ρij = ρ0iρ0j for all distributions in M . Because ρ0i ∈ [−1, 1] we will
be interested in a subset of the cube [−1, 1]3 given as the image of

f : [−1, 1]3 =: Θ 7→ C := [−1, 1]3,

(ρ01, ρ02, ρ03) 7→ (ρ01ρ02, ρ01ρ03, ρ02ρ03)

which we denote by U and often identify with the model M .
Although both the domain and the codomain of f are given by the cube

[−1, 1]3, it is important to distinguish them, which explains our notation
Θ, C. The coordinates on Θ are ρ01, ρ02, ρ03 and the coordinates on C are
ρ12, ρ13, ρ23. We identify the cube C with the space of symmetric 3× 3 ma-
trices with 1’s on the diagonal

(ρ12, ρ13, ρ23) ≡




1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1




and we often switch between these two representations. Such a matrix is a
correlation matrix if and only if

1− ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23 > 0.

The proof of the following result is straightforward.

Proposition 8.9. A matrix in the set U is positive definite if and only if it
lies in the image of the cube Θ with all faces of dimension ≤ 1 removed.

The symmetry group of the 3-cube, denoted by G, is the semidirect prod-
uct of the symmetric group S3, and the abelian group Z3

2 = {−1, 1}3. The
action of Z3

2 was given in the previous section and the action of S3 is by per-
muting indices. The group G plays an important role in our understanding
of the model M .

Proposition 8.10. The set of correlation matrices in the model M is given
by all correlation matrices satisfying

(ρ23 − ρ12ρ13)(ρ13 − ρ12ρ23)(ρ12 − ρ13ρ23) ≥ 0. (8.7)

Proof. Denote by W the subset of C described by (8.7). We are going to
show that W = U . This statement will imply our claim by constraining both
sets to PD3. The fact that U ⊆ W follows by replacing ρij with ρ0iρ0j . For
the opposite inclusion first expand (8.7) to obtain

ρ12ρ13ρ23(1 + ρ2
12 + ρ2

13 + ρ2
23)− (ρ2

12ρ
2
13 + ρ2

12ρ
2
23 + ρ2

13ρ
2
23 + ρ2

12ρ
2
13ρ

2
23) ≥ 0.

Since the second term is a sum of squares, we conclude that in W necessarily
ρ12ρ13ρ23 ≥ 0. Now define

W+ = {(ρ12, ρ13, ρ23) ∈W : 0 ≤ ρ12 ≤ ρ13 ≤ ρ23}.

© 2016 by Taylor & Francis Group, LLC

  



THE TRIPOD TREE 197

We claim that G ·W+ = W . The first inclusion G ·W+ ⊆ W follows from
W+ ⊆ W and the fact that the inequality (8.7) is G-invariant. For the op-
posite inclusion, let (ρ12, ρ13, ρ23) ∈W and define

ε = (ε1, ε2, ε3) := (1, sgn(ρ12), sgn(ρ13)),

where sgn(ρij) = −1 if ρij < 0 and it is 1 otherwise. We have

ε · (ρ12, ρ13, ρ23) = (sgn(ρ12)ρ12, sgn(ρ13)ρ13, sgn(ρ12)sgn(ρ13)ρ23).

Since ρ12ρ13ρ23 ≥ 0 in W , we have sgn(ρ12)sgn(ρ13) = sgn(ρ23) and hence
ε · (ρ12, ρ13, ρ23) has only nonnegative entries. We can now easily find a per-
mutation π ∈ G such that π · (ε · (ρ12, ρ13, ρ23)) lies in W+. This proves that
G ·W+ = W . Now, to show W ⊆ U it is enough to show that all points in
W+ lie in U . All these points satisfy ρ23 − ρ12ρ13 ≥ 0 and ρ13 − ρ12ρ23 ≥ 0.
Thus, by (8.7) also ρ12 − ρ13ρ23 ≥ 0. Now the claim follows by defining

ρ01 :=

√
ρ12ρ13

ρ23
, ρ02 :=

√
ρ12ρ23

ρ13
, ρ03 :=

√
ρ13ρ23

ρ12
(8.8)

and attaching appropriate signs.

The set defined by (8.7) is depicted in Figure 2.5 and it is strictly con-
tained in the closure of PD3.

It is convenient to think about the set U as a union of four isomorphic
blobs. The positive blob U+ is the image of [0, 1]3 → [0, 1]3 under the map
f , where now this map is one-to-one. Elementary analysis shows that the
volume of U+ is 1/4 and therefore the volume of U takes 1/8 of the volume
of the ambient cube C, and 2/π2 ≈ 0.202 of the volume of the set of all
3×3 correlation matrices. In particular, a “typical” Gaussian model on three
variables will not lie in U even though the model is full dimensional, which
we discuss in more detail in Section 8.4.2.

The usual way of providing constraints for M is by providing the descrip-
tion of U+ and taking advantage of the action of Z3

2 . Our approach of dealing
with the whole model enables the following compact reformulation in terms
of concentration matrices.

Proposition 8.11. The set of all concentration matrices in the model
M is given by all symmetric 3 × 3 positive definite matrices K satisfying
k12k13k23 ≤ 0.

Proof. Multiplying both sides of (8.7) by (σ11σ22σ33)2 we obtain that the
set of all covariance matrices in M is given by

(σ11σ23 − σ12σ13)(σ22σ13 − σ12σ23)(σ33σ12 − σ13σ23) ≥ 0. (8.9)

Let Σ = [σij ]. Direct computations show that

k12 =
σ33σ12 − σ13σ23

det(Σ)
, k13 =

σ22σ13 − σ12σ23

det(Σ)
, k23 =

σ11σ23 − σ12σ13

det(Σ)
.
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Thus dividing both sides of (8.9) by det(Σ)3, which is strictly positive, gives
k12k13k23 ≤ 0.

Proposition 8.11 can be rephrased by saying that the concentration ma-
trices in the model M are all positive definite matrices that lie in one of the
four orthants that satisfy k12k13k23 ≤ 0.

8.4.2 The maximum likelihood

By Proposition 8.11, the model M is given as a union of four orthants in the
space of concentration matrices. Over each of these orthants, maximizing the
likelihood function (8.1) is a convex optimization problem, which becomes
trivial if S−1, the inverse of the sample covariance matrix, lies in a given
orthant. This suggests the following procedure of finding the global maximum
of `(K;S) over M : First, check if the global unconstrained maximum given
by the sample covariance matrix S lies in M . If yes, then S is the maximum
likelihood estimate for M and the parameters can be recovered using (8.8).
Otherwise, compute the maximum likelihood estimators for each of the three
components of the boundary. Then the maximum over M is one of the three
reported maxima.

Each piece of the boundary corresponds to a simple conditional indepen-
dence model. For example, k12 = 0 correspond to the conditional indepen-
dence statement X1 ⊥⊥ X2|X3. These are special undirected graphical models
represented by chain graphs of the form •−•−•. To maximize the likelihood
over the boundary of M we use the fact that the three conditional indepen-
dence models are exactly all possible trees over three vertices {1, 2, 3}. Thus,
to find the maximum over the union of these three models we can use the
Chow–Liu algorithm. To this end, we compute three sample correlations ρ̂12,
ρ̂13, ρ̂23. Then we take a complete graph on {1, 2, 3} and we give weight ρ̂2

ij

to the edge joining vertices i and j. Now the boundary with the maximum
likelihood estimate is the one that corresponds to the maximal weight span-
ning tree. For example, if ρ̂2

12 ≤ min{ρ̂2
13, ρ̂

2
23}, the maximal spanning tree is

1• − 3• − 2• and the maximum likelihood estimate of the correlation matrix is

ρ∗12 = ρ̂13ρ̂23, ρ∗13 = ρ̂13, ρ∗23 = ρ̂23. (8.10)

For any permutation (i, j, k) of {1, 2, 3}, define the subset Uijk of PD3

Uijk := {(ρ12, ρ13, ρ23) ∈ PD3 : ρ2
ij ≤ ρ2

ik ≤ ρ2
jk},

so for example, U321 is given by ρ2
23 ≤ ρ2

13 ≤ ρ2
12. Each of these sets is a

fundamental domain for the action of S3 on PD3. The example in (8.10)
gives a straightforward proof of the following result.

Lemma 8.12. If (ρ̂12, ρ̂13, ρ̂23) lies in Uijk, then the maximum likelihood
estimate also lies in Uijk.
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Define further sets Vε for ε = (ε12, ε13, ε23) ∈ {−1, 1}3 that contain all
points such that the sign of ρij is εij . Every subset Vε is a fundamental
domain of the action of Z3

2 on PD3. Moreover, each set of the form Uijk ∩ Vε
is a fundamental domain of the G action.

Proposition 8.13. Suppose that (ρ̂12, ρ̂13, ρ̂23) ∈ Uijk ∩ Vε. If ε12ε13ε23 = 1,
then the maximum likelihood estimate also lies in Uijk∩Vε. If ε12ε13ε23 = −1,
then the maximum likelihood estimate lies in Uijk ∩ Vε′ , where ε′ij = −εij,
ε′ik = εik, and ε′jk = εjk.

Proof. The fact that the maximum likelihood estimate lies always in Uijk
follows from Lemma 8.12. If ρ̂2

ij ≤ ρ̂2
ik ≤ ρ̂2

jk, then ρ∗ik = ρ̂ik, ρ∗jk = ρ̂jk
and ρ∗ij = ρ̂ikρ̂jk. If ε12ε13ε23 = 1, then the sign of ρ∗ij must be the same as
the sign of ρ̂ij and hence the maximum likelihood estimate must lie in Vε.
Otherwise, the sign of ρ∗ij is the opposite of the sign of ρ̂ij and the maximum
likelihood estimate lies in Vε′ .

Corollary 8.14. Suppose that (ρ̂12, ρ̂13, ρ̂23) ∈ Uijk. Then the global maxi-
mum of the likelihood function over the model M can be found by maximizing
the likelihood function over a single orthant (in the space of concentration ma-
trices) given by sgn(kik) = sgn(ρ̂ik) =: εik, sgn(kjk) = sgn(ρ̂jk) =: εjk, and
sgn(kij) = −εikεjk.

Proof. Suppose that (ρ̂12, ρ̂13, ρ̂23) ∈ U123. By Lemma 8.12, (ρ∗12, ρ
∗
13, ρ

∗
23)

also lies in U123. In this case, because ρ∗12
2 ≤ min{ρ∗13

2, ρ∗23
2},

sgn(k∗23) = sgn(ρ∗12ρ
∗
13 − ρ∗23) = −sgn(ρ̂23)

sgn(k∗13) = sgn(ρ∗12ρ
∗
23 − ρ∗13) = −sgn(ρ̂13).

Because the maximum likelihood estimate lies in the model, it necessarily
satisfies k∗12k

∗
13k
∗
23 ≤ 0, which already determines the sign of k∗12. For any

other Uijk the proof is the same up to symmetry.

8.4.3 Boundary problem

The relative volume of the model in the ambient cube C is 2/π2 ≈ 0.202,
which suggests that the sample covariance may typically not fall into the
model and in consequence the maximum likelihood estimate will lie on the
boundary of the parameter space. The problem with this is that often in
applications the hidden variable has some interpretation and for the boundary
points this interpretation breaks down.

We present simulation results to illustrate how big this problem is. If Σ
is the covariance matrix of the true data generating distribution, then the
statistic nS has Wishart distribution W3(n,Σ). As our simulations show, the
probability that S lies in the model is typically small for reasonable sample
sizes even if the true data generating distribution lies in the model. So suppose
that the true correlation matrix comes from parameters ρ01 = 0.1, ρ02 = 0.8,
ρ03 = 0.9. The corresponding probabilities are
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n 10 20 50 100 1000
P(S ∈M) 0.24 0.26 0.28 0.33 0.68

.

For more centered parameter values, the probabilities are higher but still
small for reasonable sample sizes. For example, if ρ01 = 0.3, ρ02 = 0.6,
ρ03 = 0.7 we obtain the following estimates.

n 10 20 50 100 1000
P(S ∈M) 0.36 0.47 0.64 0.78 1

.

The points in the model that correspond to high values of the parameters also
lie closer to the boundary of the cone of positive definite matrices. Therefore,
on average the corresponding Wishart distribution should cover the model
better. So, for example, if ρ01 = 0.8, ρ02 = 0.8, ρ03 = 0.9, we obtain the
following estimates.

n 10 20 50 100 1000
P(S ∈M) 0.65 0.84 0.96 0.99 1

.

This suggests that the model M should be used with great care unless cor-
relations between variables are relatively high.

8.4.4 Different aspects of non-uniqueness

We conclude this chapter by discussing briefly three types of non-uniqueness
that can arise in the maximum likelihood estimation for the model M . Propo-
sition 8.13 enables us, for example, to easily understand how different data
sets may give the same maximum likelihood estimates. For example, every
data set that gives ρ̂13 = 0.5, ρ̂23 = 0.6 will give the same maximum likeli-

hood estimator for every value of ρ̂12 within the region ( 3
10 − 2

√
3

5 , 1
2 ), where

3
10 − 2

√
3

5 ≈ −0.39. The maximum likelihood estimator is given by ρ∗12 = 0.3,
ρ∗13 = 0.5, and ρ∗23 = 0.6.

Another type of non-uniqueness is related to the problem of identifiabil-
ity of this model. For a generic point in the model, we can easily recover the
corresponding parameters up to sign using (8.8). However, if any of the cor-
relations vanishes, these formulas cannot be used. For example, if ρ12 = 0,
then necessarily either ρ01 = 0 or ρ02 = 0. If ρ01 = 0, then also ρ13 = 0
and hence this point corresponds to a distribution in which X1 is marginally
independent from X2 and X3. Now there are infinitely many combinations
of parameters ρ02, ρ03 that give ρ02ρ03 = ρ12. Thus, if any of the sample cor-
relations is exactly zero, then we are guaranteed that the likelihood is going
to be maximized over a whole ridge in the parameter space.

Finally, suppose that ρ̂12 = ρ̂13 < ρ̂23. In that case, there are exactly two
points maximizing the likelihood. They are given by

(ρ̂12ρ̂23, ρ̂12, ρ̂23) and (ρ̂12, ρ̂12ρ̂23, ρ̂23).

For example, if ρ̂12 = ρ̂13 = 0.5, ρ̂23 = 0.8, then (0.4, 0.5, 0.8) and
(0.5, 0.4, 0.8) give the same likelihood value. Similarly, if all sample corre-
lations are equal, we have three maximizers of the likelihood function. Like

© 2016 by Taylor & Francis Group, LLC

  



BIBLIOGRAPHICAL NOTES 201

in the previous paragraph, all these cases happen with zero probability. How-
ever, if the data lie close to these extreme cases, this will be reflected in the
geometry of the likelihood function.

8.5 Bibliographical notes

Gaussian distributions and Gaussian graphical models are discussed in great
detail by Lauritzen [1996]. The Chow–Liu algorithm for Gaussian data is dis-
cussed for example by [Tan et al., 2010, Section II.B]. Linear concentration
models and their maximum likelihood inference are discussed by Anderson
[1970], Sturmfels and Uhler [2010]. The earliest examples of Gaussian la-
tent tree models are related to factor analysis with a single hidden factor;
see Spearman [1928], Thurstone [1934]. The inference for this model class is
generally very hard. The study of the underlying geometry was central to
developing estimation procedures at the early stage of the model develop-
ment. We refer to Bekker and de Leeuw [1987] for a very detailed account
of the history of this geometric approach. A more recent account is given in
Drton et al. [2007]. The full geometric description for the star tree is given by
Bekker and de Leeuw [1987]. More general trees were treated in some special
cases by Pearl and Xu [1987]. Defining equations in the general case were
provided by Sullivant [2008]. The set of implied equations contains so-called
tetrad equations; see Scheines et al. [1998]. Finally, the complete description
is given by Aston et al. [2015]. Latent Gaussian tree models were introduced
in the phylogenetic setting by Felsenstein [1973, 1981].
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Möbius Functions. Probability Theory and Related Fields, 2(4):340–368,
1964.

Gian-Carlo Rota and Jianhong Shen. On the combinatorics of cumulants.
J. Combin. Theory Ser. A, 91(1-2):283–304, 2000. ISSN 0097-3165. In
memory of Gian-Carlo Rota.

Gian-Carlo Rota, D. Kahaner, and A. Odlyzko. On the foundations of com-
binatorial theory. VIII- Finite operator calculus(Umbral/finite operator/
calculus in combinatorial theory of special polynomial sequences as tech-
nique for expressing one polynomial set in terms of another). Journal of
Mathematical Analysis and Applications, 42:684–760, 1973.

Thomas J. Rothenberg. Identification in parametric models. Econometrica:
Journal of the Econometric Society, pages 577–591, 1971.

Alberto Roverato. A unified approach to the characterization of equivalence
classes of DAGs, chain graphs with no flags and chain graphs. Scand. J.
Statist., 32(2):295–312, 2005. ISSN 0303-6898. doi: 10.1111/j.1467-9469.
2005.00422.x. URL http://dx.doi.org/10.1111/j.1467-9469.2005.

00422.x.

Dmitry Rusakov and Dan Geiger. Asymptotic model selection for naive
Bayesian networks. J. Mach. Learn. Res., 6:1–35 (electronic), 2005. ISSN
1532-4435.

Sujit K. Sahu and Alan E. Gelfand. Identifiability, Improper Priors, and
Gibbs Sampling for Generalized Linear Models. Journal of the American
Statistical Association, 94(445):247–254, 1999.

David Sankoff. Designer invariants for large phylogenies. Molecular Biology
and Evolution, 7(3):255, 1990.

Richard Scheines, Peter Spirtes, Clark Glymour, Christopher Meek, and
Thomas Richardson. The TETRAD project: Constraint based aids to

© 2016 by Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2F0022-247X%2873%2990172-8
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2F0022-247X%2873%2990172-8
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fj.1538-7305.1957.tb01515.x
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fj.1538-7305.1957.tb01515.x
http://www.crcnetbase.com/action/showLinks?crossref=10.1111%2Fj.1467-9469.2005.00422.x
http://www.crcnetbase.com/action/showLinks?crossref=10.1111%2Fj.1467-9469.2005.00422.x
http://www.crcnetbase.com/action/showLinks?crossref=10.1080%2F01621459.1999.10473840
http://www.crcnetbase.com/action/showLinks?crossref=10.1080%2F01621459.1999.10473840
http://www.crcnetbase.com/action/showLinks?crossref=10.1006%2Fjcta.1999.3017
http://www.crcnetbase.com/action/showLinks?crossref=10.2307%2F1913267
http://www.crcnetbase.com/action/showLinks?crossref=10.2307%2F1913267
http://www.crcnetbase.com/action/showLinks?crossref=10.2140%2Fant.2012.6.1817
http://www.crcnetbase.com/action/showLinks?crossref=10.2140%2Fant.2012.6.1817
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs00184-008-0222-3


BIBLIOGRAPHICAL NOTES 215

causal model specification. Multivariate Behavioral Research, 33(1):65–
117, 1998. ISSN 0027-3171. doi: 10.1207/s15327906mbr3301 3. URL http:

//www.tandfonline.com/doi/abs/10.1207/s15327906mbr3301_3.

Charles Semple and Mike Steel. Phylogenetics, volume 24 of Oxford Lec-
ture Series in Mathematics and Its Applications. Oxford University Press,
Oxford, 2003. ISBN 0-19-850942-1.

Raffaella Settimi and Jim Q. Smith. On the geometry of Bayesian graphical
models with hidden variables. In Gregory F. Cooper and Seraf́ın Moral,
editors, UAI, pages 472–479. Morgan Kaufmann, 1998.

Raffaella Settimi and Jim Q. Smith. Geometry, moments and conditional
independence trees with hidden variables. Ann. Statist., 28(4):1179–1205,
2000. ISSN 0090-5364.

Igor R. Shafarevich. Basic Algebraic Geometry. 1. Springer-Verlag, Berlin,
second edition, 1994. ISBN 3-540-54812-2. Varieties in projective space,
Translated from the 1988 Russian edition and with notes by Miles Reid.

A. Shapiro. Towards a unified theory of inequality constrained testing in
multivariate analysis. International Statistical Review, 56(1):49–62, 1988.

Alexander Shapiro. Asymptotic distribution of test statistics in the analysis
of moment structures under inequality constraints. Biometrika, 72(1):133–
144, 1985.
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tical model
algebraic statistics, 23, 42, 129
analytic function, see real analytic

function
analytic map, see real analytic map
ancestor, 66

base measure, 51
Bayesian network, 5, 62, 66–68, 118
binary cumulant, see cumulant
binary expansion, 126, 127, 141–143,

150, 153, 167
binary moment, see moment
binary tree, see tree
binomial model, 1, 12, 50, 51, 59, 60
birational equivalence, 37
block of a partition, 71, 74, 76, 77,

81, 86, 87, 90, 107, 108, 110,
116, 140, 166, 170

blow-up, 37, 38
Boolean lattice, 75, 77, 78, 95, 96,

137, 152
boundary, 3, 5, 6, 24, 26, 29, 52, 58–

60, 65, 186–188, 195, 198–
200

Cr isomorphism, 21
chain graph, see graph
chain graph model, 62, 68, 70

without flags, 68
chain poset, 73, 75
chain rule, 44
child, 63, 104, 163

Chow–Liu algorithm, 121, 122, 198,
201

CI model, see conditional indepen-
dence model

class Cr function, 21
clique, 64–66
closed set, 13, 113
closure, 13, 22, 25, 27, 28, 52, 113,

129, 163, 197
codimension, 18, 24
commutative ring, 12
compatible split, see split
complex numbers, 3, 5, 11, 12, 18–20,

32, 42, 166
concentration matrix, 191, 192, 197–

199
conditional covariance, 82, 98, 171,

179
conditional cumulant, see cumulant
conditional distribution, 43, 44, 48,

54, 69, 91, 118, 135, 154,
181, 184

conditional expectation, 48, 49, 92
conditional independence, 6, 41, 43–

45, 62, 63, 66–68, 82, 92,
129, 157, 191, 192, 198

model, 44, 45, 64, 70, 198
conditional probability, see condi-

tional distribution
contingency table, 2, 55, 131
contraction, see tensor
coordinate ring, 15, 18
correlation, 49, 138, 144, 147–149,

153–155, 161, 163, 164, 166,
174, 175, 181, 187, 188, 190,
192, 194–200

edge, 138, 148, 151, 153, 154,
163–165, 181, 194, 195

219
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sample, 193, 198, 200
covariance matrix, 191
covering relation, 72, 73, 79
cumulant, 47, 80–86, 88, 99, 137, 143,

153, 162, 179, 190
binary, 83, 85, 99
conditional, 82

cumulant generating function, 53, 56,
80, 81

CW-complex, 28, 29, 114, 115
regular, 29

cycle, 65, 103, 122, 123, 194
directed, 63
semi-directed, 62, 63, 68
undirected, 63

DAG, see directed acyclic graph
DAG model, see Bayesian network
decomposable graph, see graph
decomposable model, 65
degenerate random variable, see non-

degenerate random variable
degree of a polynomial, 11, 12, 16, 49
degree of a vertex, 63, 105, 127, 128,

139–142, 144–151, 156
descendant, 66
dimension, 4, 16, 18, 23, 24, 26, 28,

29, 34, 38, 51, 58–60, 114,
129, 146–148, 158, 174, 178,
183, 187, 189, 195–197

directed acyclic graph, see graph

edge contraction, 105, 106, 115, 116,
120, 127

edge correlation, see correlation
edge deletion, 105, 116, 120, 127
edge invariants, see phylogenetic in-

variant
edge isolated relative to q, 144, 147
edge product space, see phylogenetic

oranges, space of
EM algorithm, 5, 61, 62, 70, 189
empirical process, 21
equivalence class, 16, 68, 78
essential graph, 68, 69, 118

exponential family, 1, 26, 42, 51–54,
57, 61, 64, 70, 119, 121

factorization with respect to a graph,
64, 65, 67, 119

field, 11
flag, 68, 69
flattening, 33–35, 91, 131, 133, 168,

170, 178, 184, 185
edge, 168, 169, 171

forest, 105, 114, 117, 119, 120, 144
semi-labeled, 104–106, 110, 114–

117, 127, 129, 144, 166, 195
Four Function Theorem, 97
four-point condition, 111, 113
fully observed

likelihood, 61
model, 54, 61

fundamental domain, 198

Gaussian distribution, 191
general Markov model, 124, 125, 128,

130, 132, 133, 135, 136, 139,
146, 151, 156, 158, 161, 166,
171, 172, 174, 175, 181, 185,
189, 190

nonnegative part, 129
positive part, 129, 151
symmetric, 181

General Time Reversible model, 129
graph, 23, 62, 63, 65, 67, 68, 70, 72,

104, 127
chain, 63, 68, 69, 107
complete, 122, 194, 198
decomposable, 65, 66, 120
directed, 63, 103
directed acyclic, 63, 66–70
hybrid, 62, 63, 68
of a map, 22
star, 106, 107, 143, 148, 153, 158,

184, 195, 201
undirected, 63–65, 69, 103

graph of a polynomial function, 22
graphical model, 2, 5, 41, 53, 62–64,

66, 68, 70, 120, 124, 129,
195, 201
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directed, see Bayesian network
undirected, 45, 62, 64, 65, 68,

118, 198
ground set, 45
group action, 3, 151, 163, 194–199
group-based model, 129, 190
GTR model, see General Time Re-

versible model

Hasse diagram, 72, 107, 137
Hausdorff space, 21
hidden Markov model, 6, 152, 156,

157
homeomorphism, 26, 29
homogenization, 17
hyperdeterminant, 162, 183, 190

ideal, 14, 15, 17–20, 35, 53, 130–132,
147, 167, 169

analytic, 21
generated by polynomials, 14,

78, 147
homogeneous, 17, 19, 20
of a set, 14
phylogenetic, 130–132
toric, 19, 25

identifiability, 3, 6, 41, 50, 51, 70, 129,
136, 146, 157, 159, 164, 181,
188, 200

generic, 51
local, 50, 51

identity map, 15
image, 1, 4, 5, 15, 19, 23, 25, 26, 28,

29, 34, 36, 47, 52, 57, 113,
114, 125, 146, 161, 164, 184,
196, 197

immorality, 68, 69, 118
implicit description, 53, 64
implicit representation, 17, 18, 58,

119, 161
incident, 63, 105, 106
independence model, 17, 26, 47, 91,

92, 130
indeterminates, 11, 148
indicator function, 47
induced subgraph, 63, 68, 126

injective map, 15
inner edge, 106, 115, 163, 164, 167,

181, 194
inner vertex, 5, 103, 104, 125, 126,

139, 140, 142, 143, 148–150,
163, 168, 182, 184, 189, 195

interior, 22, 24, 29, 51, 56, 58, 60
interval, 75, 116
interval partition, see set partition
irreducible variety, 12, 36, 37, 167,

186
Iterative Scaling, 57, 61

Jacobian, 18, 38
matrix, 18

Jerzy Neyman, 181
join operator, 76, 107

kernel, 19
Kronecker delta, 31
Kronecker product, 33, 75, 90, 93, 95,

170
Kullback–Leibler divergence, 56, 121

L-cumulant, 7, 83–86, 88, 89, 99, 135,
137

label switching, 150, 188, 189
labeled vertex, 104, 105, 110, 113,

117, 124, 126, 140–147, 151,
166, 182

latent tree model, 5–7, 51, 54, 103,
125–127, 187

Gaussian, 7, 191, 194, 195, 201
lattice, 76–78, 80, 84, 87, 88, 107

distributive, 95
leaf, 103, 104, 106, 108, 112–115, 126,

128, 132, 135, 137, 139, 141–
143, 147, 148, 156, 163–165,
167, 168, 174, 181, 184, 194,
195

likelihood function, 3, 5, 6, 55, 57–61,
66, 121, 122, 186, 187, 189,
191–193, 195, 198, 199

likelihood ratio, 59
linear extension, 73
local maximum, 3, 5, 61, 62
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local sign switching, 150, 151, 154,
156, 163

log-odds ratio, 131
log-supermodular

distribution, 98, 182, 184, 185,
190

function, 96, 97
tensor, 98

Möbius function, 73–75, 77, 83, 84,
90, 109, 110, 137, 141, 152

Möbius inversion formula, 74, 79, 83,
84, 95, 137

Möbius ring, 78
manifold, 21, 29, 146, 149

real analytic, 21, 22, 38, 39
with corners, 29, 147

marginal distribution, 43, 44, 54, 65,
69, 90, 92, 98, 118, 121, 124,
128, 135, 157, 174, 181, 182

Markov chain, 156
Markov process on a forest, 119, 120,

127, 166
Markov process on a tree, 117–120,

123, 124, 129
continuous time, 124, 128, 129

Markov properties, 63–65, 67–69,
119, 140, 158, 169

mat operator, 33, 90–93
maximum entropy, 57
maximum likelihood estimator, 41,

55–58, 60, 66, 120, 123, 186,
188, 189, 193, 195, 198–200

meet operator, 76, 78, 86, 107, 109
meet-semilattice, 76, 107
metric space, 110, 112
minimum-cost spanning tree, 122,

194
minor, 35, 37, 112, 133, 169, 178, 184,

191
leading principal, 177
principal, 177

mixture model, 1, 4, 36, 42, 51, 54,
59, 60, 70, 184, 190

MLE, see maximum likelihood esti-
mator

moment, 45–47, 53, 70, 80, 81, 83–85,
88, 89, 92, 94, 95, 135, 137,
138, 143, 152, 153, 155, 158,
161–163, 169, 170, 181

binary, 83
central, 45–47, 88, 89, 92, 94,

136, 137, 143, 152, 172
sample, 119
standardized, 50, 143, 152, 153,

171, 188
moment aliasing, 46, 47, 70, 92
moment generating function, 46, 80,

81
moment map, 26, 52, 70

algebraic, 26, 53
moment tensor, 95, 170
monomial, 11, 14, 19, 47, 48, 98, 145
monomial map, 19, 26, 27, 153, 157,

166
moral graph, 63, 67, 69
MTP2 constraints, 96, 98, 190
multilinear transformation, 29, 31,

33, 90–92, 95
multinomial embedding, 35
multinomial likelihood, 56–60, 66, 70,

186, 187
constrained, 57–60, 186, 189

multinomial model, 42, 133
multinomial sampling, 55
multiplicative function, 83
multiplicative group, 150, 164, 194
multiset, 45–47, 50, 76, 81, 93
mutual information, 121–123

naive Bayes model, 6, 158, 184, 190
neighbor, 63, 103–105, 108, 126–128,

150
non-crossing partition, see set parti-

tion
non-degenerate random variable, 49,

50, 87, 125, 139, 143, 171
non-descendant, see descendant
non-trivial split, see split
nonnegative component, 25
nonnegative rank, 185
normalizing constant, 42, 51, 64, 119
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one-cluster partition, see set parti-
tion

open set, 13, 17, 20, 21, 28, 29, 34,
132, 146, 167

order
consistent total, 73
lexicographic, 32, 53, 75, 91
of a tensor, 30, 31
partial, see poset
total, 32, 33, 44, 73
total consistent, 75

parameter space, 1, 5, 6, 23, 41, 118,
125, 138, 143, 151, 157, 163,
171, 182, 186, 189

parameterization, 3, 5, 18, 19, 25, 26,
34–36, 41, 42, 44, 51, 53–55,
58, 64, 67, 92, 124, 125, 127,
135, 136, 141, 143, 146, 151,
153, 157, 165–168, 171–173,
176, 184, 187

monomial, see monomial map
parametric model, see statistical model

parametric algebraic, 41
parametric representation, 17, 18, 58,

119, 192
parent, 63, 66, 103, 163
partially ordered set, see poset
partition, see set partition
partition lattice, 76, 77, 82–86, 88, 99,

107, 116, 137
generated, 78
saturated, 86–89, 139

path, 62, 64, 103, 110, 113, 145, 168,
195

directed, 62, 66
semi-directed, 62, 63, 68
undirected, 62

phylogenetic invariant, 6, 130–133,
166, 168, 169, 179

phylogenetic oranges, space of, 26,
103, 112, 113, 120, 174, 175,
182, 184, 195

phylogenetic tree, see tree
phylogenetics, 2, 6, 123, 176, 181, 186,

190

polyhedral cone, 112
polynomial, 11

homogeneous, 16, 17, 19, 162
polynomial function, 12, 13, 15, 17,

20, 48, 81, 190
polynomial isomorphism, 15
polynomial map, 15, 16, 22, 23, 41,

51, 54, 137, 161
poset, 71–77, 83, 105, 107–110, 114–

116, 137, 140
bijection of, 71
isomorphism of, 71
Tuffley, 103, 114–117, 195

power series, 20
absolutely convergent, 20

preimage, 51, 149, 157
probability simplex, 1, 3, 5, 6, 24–26,

41, 47, 52, 57, 58, 65, 174,
187, 188

projection, 20, 22, 37, 54
projective space, 3, 16, 19, 24, 25, 34,

35, 41
nonnegative part, 24
real, 24

projective variety, 15, 17, 19, 26, 34

q-fiber, 51, 143–151, 153, 154, 157,
163, 186

q-forest, 144, 147–149, 151
quartet tree, see tree
quotient by an ideal, 15, 16, 78

random sample, 55, 56, 120, 123, 131,
186

rate matrix, 123
rational function, 20, 36
rational map, 36, 37
real analytic function, 20, 21, 38, 46,

81
real analytic map, 21, 38

isomorphism, 21
recursive factorization, 67
relative interior, 23, 24, 195
resolution of singularities, 37, 39
ring homomorphism, 18
root, 119, 125, 163, 164
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root distribution, 118, 154, 156, 157,
177, 181

sample covariance matrix, 191, 193,
195, 198, 199

sample proportions, 3, 55–57, 119,
120, 123, 130, 131, 133, 186,
188

saturated model, 54
saturated partition lattice, see parti-

tion lattice
secant variety, 35, 36, 39, 135
Segre variety, 34, 35, 42, 91, 92
semi-labeled tree, see tree
semi-lattice, 109
semialgebraic description, 6, 7, 25,

42, 52, 133, 174, 185, 189,
190

semialgebraic map, 23
semialgebraic set, 22, 23, 26, 28, 41,

42, 51, 52, 132, 161
basic, 22, 27, 41, 42, 113

semialgebraic statistics, 3–5, 7, 23,
36, 38, 39

semialgebraic structure, see semialge-
braic description

set partition, 71, 72, 74, 76–78, 81, 82,
85, 86, 88, 91, 92, 94, 104,
106–109, 115, 117, 140, 166

generated, 76, 77
interval, 77, 84–86, 88, 99, 107,

152, 153
non-crossing, 77, 99
one-block, 71, 76, 77, 107, 109
one-cluster, 77, 86, 87, 89, 107,

143
Shannon entropy, 57
singular learning theory, 21
skeleton, 63, 68, 69
skewness, 50, 136, 138, 153
split, 33, 35, 76–78, 89, 90, 106–109,

112, 114, 116, 137, 152, 184
compatible, 108, 114, 116
trivial, 77, 86, 89, 90, 108, 137,

152, 167, 168
standardized moment, see moment

star graph, see graph
star tree, see graph
statistical model, 1–4, 23, 41, 42, 44,

58, 62, 68–70, 84, 103, 158
algebraic, 41, 42, 44, 64, 70
discrete, 7, 11, 24, 41, 42, 51, 70
parametric, 1, 41, 42, 50, 51
parametric algebraic, 42, 50, 55,

57, 58, 130, 132
subforest, 106
sublattice, 76, 77, 107
submatrix, 191
submodular function, 96
submultiset, 45, 82
subposet, 71, 82, 107, 109
subtree spanned on, 150, 165, 195
subtree spanned over, 108, 117
sufficient statistics, 51, 52, 119
suppress, 105, 108, 127, 128, 156
surjective map, 15
symmetric matrix, 177
symmetric tensor, 31

T -cumulant, 88, 135, 137, 139, 143,
144, 153, 159, 161, 166, 167,
169, 170, 178, 179

T -degree, 141, 142
T -metric, 103, 110–113, 175, 176, 190
T -partition, 107, 136, 137, 139
tensor, 7, 11, 29–34, 36, 41–43, 46,

51, 57, 61, 66, 90–93, 95, 98,
131, 133, 162, 170, 171, 177,
185, 186, 190

contraction, 32, 91
inverse, 31
order, 93
rank-one, 30, 32, 34

tensor moment, 94
tensor product, 29–33
tensor rank, 30
terminal edge, 103, 108, 115, 152, 163,

164, 168, 194
topological space, 13, 21, 28
topology, 13, 21
toric cube, 26–29, 39, 113, 184
toric ideal, see ideal
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toric precube, 27

toric variety, 19, 25, 26, 45, 52, 166

nonnegative part, 26

real part, 25, 26

transition matrix, 118, 123, 124, 128,
156, 157, 177, 181, 187

tree, 5, 7, 103, 104, 106, 110, 112,
120–123, 127, 133, 140, 193,
194

binary, 104, 106, 108, 117, 126,
143, 148, 153, 167, 177

caterpillar, 137, 143, 151–153,
156, 157

phylogenetic, 104, 106–108, 112–
115, 117, 126, 128, 130, 131,
137, 139, 141, 143, 144, 148,
151, 153, 161, 163, 167–170,
174, 177, 181, 194, 195

quartet, 103, 104, 106, 107, 109,
111, 114, 125, 154, 174, 177,
178

rooted, 5, 103, 104, 117, 129

semi-labeled, 104, 106–108, 110,
111, 113–115, 124, 126–129,
136, 137, 139, 141, 142, 145–
147, 149, 151, 152, 157, 161,
166, 182

semialgebraic, 104

topology, 122, 131, 132, 181

tripod, 109, 122, 135, 143, 148,
149, 158, 169, 171, 172, 174,
177, 182–184, 187–189, 195

undirected, 192

tree cumulant, see T -cumulant

tree metric, see T -metric

tree partition, see T -partition

tree split, 103, 106, 107, 112, 139,
167–169, 176

trivial, 167

tree-decomposable distribution, see
latent tree model

triangular function, 72, 73, 75

inverse, 72

tripod tree, see tree

trivial constraints, 5, 42, 52, 59, 64,
136, 169

Tuffley poset, see poset

underlying forest, 104, 127
underlying tree, 104, 106, 108, 126,

151
unit vector, 88, 94, 126, 177
unlabeled vertex, 104–106, 108, 124,

126–128, 139, 141–151, 157,
163

vec operator, 32, 33, 90–93
vector space, 32

dual, 31, 32, 91
Veronese embedding, 35, 42

Wishart distribution, 199

Zariski closure, 13, 14, 18, 19, 23–26,
35, 36, 52, 53, 132, 135, 148,
166, 167, 169

Zariski topology, 13, 39
zero polynomial, 12–14
zeta function, 73, 74, 95

© 2016 by Taylor & Francis Group, LLC

  



© 2016 by Taylor & Francis Group, LLC

  


	Cit p_8:1: 
	Cit p_10:1: 
	Cit p_10:2: 
	Cit p_3:1: 
	Cit p_5:1: 
	Cit p_7:1: 
	Cit p_9:1: 
	Cit p_9:2: 
	Cit p_2:1: 
	Cit p_11:1: 
	Cit p_4:1: 
	Cit p_15:1: 
	Cit p_24:1: 
	Cit p_24:2: 
	Cit p_23:1: 
	Cit p_16:1: 
	Cit p_18:1: 
	Cit p_22:1: 
	Cit p_22:2: 
	Cit p_37:1: 
	Cit p_37:2: 
	Cit p_30:1: 
	Cit p_32:1: 
	Cit p_32:2: 
	Cit p_25:1: 
	Cit p_34:1: 
	Cit p_34:2: 
	Cit p_29:1: 
	Cit p_47:1: 
	Cit p_49:1: 
	Cit p_49:2: 
	Cit p_42:1: 
	Cit p_51:1: 
	Cit p_46:1: 
	Cit p_39:1: 
	Cit p_39:2: 
	Cit p_41:1: 
	Cit p_52:1: 
	Cit p_45:1: 
	Cit p_45:2: 
	Cit p_56:1: 
	Cit p_65:1: 
	Cit p_58:1: 
	Cit p_64:1: 
	Cit p_64:2: 
	Cit p_57:1: 
	Cit p_66:1: 
	Cit p_59:1: 
	Cit p_59:2: 
	Cit p_61:1: 
	Cit p_72:1: 
	Cit p_72:2: 
	Cit p_74:1: 
	Cit p_74:2: 
	Cit p_71:1: 
	Cit p_80:1: 
	Cit p_80:2: 
	Cit p_73:1: 
	Cit p_68:1: 
	Cit p_79:1: 
	Cit p_88:1: 
	Cit p_83:1: 
	Cit p_92:1: 
	Cit p_94:1: 
	Cit p_87:1: 
	Cit p_87:2: 
	Cit p_96:1: 
	Cit p_96:2: 
	Cit p_93:1: 
	Cit p_86:1: 
	Cit p_95:1: 
	Cit p_95:2: 
	Cit p_97:1: 
	Cit p_100:1: 
	Cit p_100:2: 
	Cit p_109:1: 
	Cit p_104:1: 
	Cit p_106:1: 
	Cit p_106:2: 
	Cit p_108:1: 
	Cit p_101:1: 
	Cit p_112:1: 
	Cit p_112:2: 
	Cit p_114:1: 
	Cit p_114:2: 
	Cit p_116:1: 
	Cit p_118:1: 
	Cit p_118:2: 
	Cit p_120:1: 
	Cit p_113:1: 
	Cit p_122:1: 
	Cit p_124:1: 
	Cit p_124:2: 
	Cit p_119:1: 
	Cit p_119:2: 
	Cit p_121:1: 
	Cit p_127:1: 
	Cit p_129:1: 
	Cit p_129:2: 
	Cit p_140:1: 
	Cit p_140:2: 
	Cit p_133:1: 
	Cit p_133:2: 
	Cit p_135:1: 
	Cit p_146:1: 
	Cit p_146:2: 
	Cit p_143:1: 
	Cit p_154:1: 
	Cit p_154:2: 
	Cit p_147:1: 
	Cit p_156:1: 
	Cit p_142:1: 
	Cit p_142:2: 
	Cit p_151:1: 
	Cit p_164:1: 
	Cit p_164:2: 
	Cit p_157:1: 
	Cit p_157:2: 
	Cit p_166:1: 
	Cit p_166:2: 
	Cit p_168:1: 
	Cit p_168:2: 
	Cit p_163:1: 
	Cit p_165:1: 
	Cit p_165:2: 
	Cit p_158:1: 
	Cit p_158:2: 
	Cit p_160:1: 
	Cit p_180:1: 
	Cit p_173:1: 
	Cit p_175:1: 
	Cit p_177:1: 
	Cit p_170:1: 
	Cit p_179:1: 
	Cit p_181:1: 
	Cit p_174:1: 
	Cit p_176:1: 
	Cit p_187:1: 
	Cit p_196:1: 
	Cit p_191:1: 
	Cit p_186:1: 
	Cit p_195:1: 
	Cit p_192:1: 
	Cit p_192:2: 
	Cit p_194:1: 
	Cit p_194:2: 
	Cit p_196:2: 
	Cit p_201:1: 
	Cit p_210:1: 
	Cit p_207:1: 
	Cit p_207:2: 
	Cit p_197:1: 
	Cit p_202:1: 
	Cit p_202:2: 
	Cit p_199:1: 
	Cit p_215:1: 
	Cit p_217:1: 
	Cit p_210:2: 
	Cit p_216:1: 
	Cit p_211:1: 
	Cit p_213:1: 


