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Introduction

Discrete probability deals with random elements taking their values in a finite space,
or an infinite yet denumerable space: integer-valued random variables, but also random
elements with values in a complex space, for instance a graph, a tree, or a combinatorial
stucture such as a set partition.

Many problems of a probabilistic nature arising in the applied sciences can be dealt
with in the framework of discrete probability. This is especially true in the information,
computing and communications sciences. For instance, the study of random graphs has
relatively recently been revived with the advent of social networks and community mar-
keting, and percolation graphs have become a popular model of connection in mobile
communications. The link between randomness and computation is an area of investi-
gation where discrete probability methods play a priviledged role. When does a logical
equation admits a solution, when does there exist a graph with a given property? If the
structure of the equation or of the graph is very complex, the probabilistic approach can
be efficient. It also features random algorithms that efficiently solve a variety of prob-
lems, such as sorting a list of numbers in increasing order or deciding if a given (large)
number is prime, and compete with the corresponding available deterministic algorithms.
Also of interest to computer science is the Markov chain theory of sampling, exact or
approximate, in view of evaluating the size of complex sets for instance. The theory of
Markov chains also finds applications in the performance evaluation of communications
systems as well as in signal processing.

Besides the information and communications sciences, discrete probability is of in-
terest to qualitative physics. Phenomena such as percolation, phase transition, simulated
annealing and thermodynamical irreversibility, can be explained by relatively simple dis-
crete probability models. In the other direction, physics has been a source of inspiration
for the information and computing sciences. For instance, Gibbs random fields find a
role in image processing, and entropy turns out to be the central concept of information
theory which has well-known applications in computer science, mainly for the efficient
use of memory resources and the preservation of stored data integrity.

Four main themes with interactions can be distinguished:

Methods and tools. Although the examples and illustrations relate to the possible
applications, mostly in the information, computing and communications sciences, but
also subsidiarily in operations research and physics, this book is in the first instance
concerned with theory. The emphasis is placed on universal methods (the probabilis-
tic method, the coupling method, the Stein–Chen method, martingale methods) and
tools (Chernoff’s bound, Hoeffding’s inequality, Holley’s inequality) whose domains of
application extend far beyond the present text.

Markov models. This includes Markov chains (Monte Carlo simulation, exact sam-
pling, the electrical network analogy, the convergence rate theory for reversible Markov
chains, the ergodicity theory of non-homogeneous Markov chains and its application to
simulated annealing) and Markov fields (Gibbsian representation of random fields and
their simulation).

Probability on trees and graphs. This refers to the classical random graphs such
as the Galton–Watson branching tree, the Erdös–Rényi graphs and percolation graphs,

xiii
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but it has a wider scope. In fact, a Markov chain can be viewed as a random walk on an
oriented graph, Gibbs fields involve by essence a graph structure. Boltzmann samplers
are intimately connected to graph theory in two ways: through the recursive procedures
which can be assimilated to random walks on a graph, and because many examples
of application concern the random generation of graph structures. The source coding
issue of information theory gives rise to optimization problems on trees, and so do the
algorithms for generating a random variable from a sequence of fair coin tosses.

Entropy and coding. This most important theme of applied discrete probability is
connected to the last one, as we just mentioned, and to the first one because Shannon’s
coding theorem is perhaps the first and certainly the most spectacular application of the
probabilistic method.

The book is self-contained. The mathematical level is that of a begining graduate
course. The prerequisites consist of basic calculus (series) and linear algebra (matrices)
and the reader is not assumed to be trained in probability. In fact, the first chapters
constitute an introduction to discrete probability. I have avoided the “dead-end effect”,
the curse of introductory texts in probability that do not involve the measure-theoretical
aspects of this subject. In this book, the terminology and notation are those of a standard
theoretical course in probability and the proofs of many important results, such as the
strong law of large numbers and the martingale convergence theorem, are the same as
the corresponding ones in the general (non-discrete) case. Therefore, the time spent in
absorbing the discrete theory will not be lost for the reader willing to pursue in the
direction of more theory. In fact, most of the methods of discrete probability such as
coupling, to name just one, can be easily adapted to the non-discrete case. Only, in the
discrete case, they are more easily formulated and already find spectacular applications.

This book is merely an introduction to a few vast and flourishing domains of applied
probability. However, since it reviews in detail the most important methods and tools
of discrete probability, the reader will be ready for a direct access to the specialized
and/or technical literature. The subsections entitled ”Books for Further Information”
at the end of each chapter provide a guide to both the advanced theory and its specific
applications.

Practical issues. The index gives the page where a particular notation or abbreviation
is explained. The position in the index of the corresponding item is the alphabetical one.
For instance “dV (α, β)” appears is in the sublist for the letter “d”. The index has several
lines under the general heading “Example” which concern linked examples (“take 1”,
“take 2”, etc.).
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Chapter 1

Events and Probability

1.1 Events

1.1.1 The Sample Space

The study of random phenomena requires a clear and precise language that allows
the neophyte to avoid the traps of fallacious intuition which pave the way. This
section introduces the terminology and notation.

Probability theory features familiar mathematical objects, such as points, sets and
functions, which however receive a particular interpretation: points are outcomes
(of an experiment), sets are events, functions are random numbers. The meaning
of these terms will be given just after we recall the notation concerning operations
on sets, union, intersection, and complementation.

If A and B are subsets of some set Ω, A ∪ B denotes their union and A ∩ B
their intersection. In this book we shall denote by A the complement of A in Ω.
The notation A + B (the sum of A and B) implies by convention that A and B
are disjoint, in which case it represents the union A ∪ B. Similarly, the notation∑∞

k=1 Ak used for ∪∞
k=1Ak implies that the Ak’s are pairwise disjoint. The notation

A−B implies that B ⊆ A, and it stands for A ∩B. In particular, if B ⊆ A, then
A = B+(A−B). Recall De Morgan’s identities for a sequence {An}n≥1 of subsets
of Ω:

(
⋂∞

n=1An) =
⋃∞

n=1An and (
⋃∞

n=1An) =
⋂∞

n=1An .

The indicator function of the subset A ⊆ Ω is the function 1A : Ω→ {0, 1} defined
by

1A(ω) =

{
1 if ω ∈ A ,
0 if ω �∈ A.

Let P be a property that an element x of some set E may or may not satisfy. By
definition

1P(x) =
{

1 if x satisfies P ,
0 if otherwise.

The cardinality of a set A (the number of its elements in case it is finite or denu-
merable) will be denoted by |A|.

© Springer International Publishing Switzerland 2017
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2 CHAPTER 1. EVENTS AND PROBABILITY

Random phenomena are observed by means of experiments (performed either by
man or nature). Each experiment results in an outcome. The collection of all
possible outcomes ω is called the sample space Ω. Any subset A of the sample
space Ω can be regarded as a representation of some event.

Example 1.1.1: Tossing a die, take 1. The experiment consists in tossing a
die once. The possible outcomes are ω = 1, 2, . . . , 6 and the sample space is the
set Ω = {1, 2, 3, 4, 5, 6}. The subset A = {1, 3, 5} is the event “result is odd.”

Example 1.1.2: Throwing a dart. The experiment consists in throwing a dart
at a wall. The sample space can be chosen to be the plane 2. An outcome is the
position ω = (x, y) hit by the dart. The subset A = {(x, y); x2 + y2 > 1} is an
event that could be named “you missed the dartboard” if the dartboard is a disk
centered at 0 and of radius 1.

Example 1.1.3: Heads and tails, take 1. The experiment is an infinite suc-
cession of coin tosses. One can take for sample space the collection of all sequences
ω = {xn}n≥1, where xn = 1 or 0, depending on whether the n-th toss results in
heads or tails. The subset A = {ω; xk = 1 for k = 1 to 1,000} is a lucky event for
anyone betting on heads!

1.1.2 The Language of Probabilists

The probabilists have their own dialect. They say that outcome ω realizes event
A if ω ∈ A. For instance, in the die model of Example 1.1.1, the outcome ω = 1
realizes the event “result is odd”, since 1 ∈ A = {1, 3, 5}. Obviously, if ω does
not realize A, it realizes A. Event A ∩B is realized by outcome ω if and only if ω
realizes both A and B. Similarly, A ∪B is realized by ω if and only if at least one
event among A and B is realized (both can be realized). Two events A and B are
called incompatible when A∩B = ∅. In other words, event A∩B is impossible: no
outcome ω can realize both A and B. For this reason one refers to the empty set ∅
as the impossible event. Naturally, Ω is called the certain event. Recall now that
the notation

∑∞
k=1Ak is used for ∪∞

k=1Ak only when the subsets Ak are pairwise
disjoint. In the terminology of sets, the sets A1, A2, . . . form a partition of Ω if

∞∑
k=0

Ak = Ω .

One then says that events A1, A2, . . . are mutually exclusive and exhaustive. They
are exhaustive in the sense that any outcome ω realizes at least one among them.
They are mutually exclusive in the sense that any two distinct events among
them are incompatible. Therefore, any ω realizes one and only one of the events
A1, . . . , An. In terms of indicator functions,
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∞∑
k=0

1Ak
= 1 .

If B ⊆ A, event B is said to imply event A, because ω realizes A whenever it
realizes B. In particular 1B(ω) ≤ 1A(ω).

1.1.3 The Sigma-field of Events

Probability theory assigns to each event a number, the probability of the said event.
The collection F of events to which a probability is assigned is not always identical
to the collection of all subsets of Ω. The requirement on F is that it should be a
sigma-field:

Definition 1.1.4 Let F be a collection of subsets of Ω, such that

(i) the certain event Ω is in F ,
(ii) if A belongs to F , then so does its complement A, and

(iii) if A1, A2, . . . belong to F , then so does their union ∪∞
k=1Ak.

One then calls F a sigma-field on Ω, here the sigma-field of events.

Note that the impossible event ∅ being the complement of the certain event Ω
is in F . Note also that if A1, A2, . . . belong to F , then so does their intersection
∩∞

k=1Ak (Exercise 1.4.1).

The trivial sigma-field and the gross sigma-field are respectively the collection
P(Ω) of all subsets of Ω, and the sigma-field with only two members: {Ω,∅}.
If the sample space Ω is finite or countable, one usually (but not always and not
necessarily) considers any subset of Ω to be an event. In other words, the sigma-
field of events is the trivial one.

Example 1.1.5: Borel sigma-field. The Borel sigma-field on n, denoted
B( n), is by definition the smallest sigma-field on n that contains all rectangles,
that is, all sets of the form

∏n
j=1 Ij, where the Ij’s are arbitrary intervals of . The

sets in this sigma-field are called Borel sets. The above definition is not constructive
and therefore one may wonder if there exist sets that are not Borel sets. It turns
out that such sets do exist, but they are in a sense “pathological”. In practice, it
is enough to know that all the sets for which you had been able to compute the
n-volume in your earlier life are Borel sets.

Example 1.1.6: Heads and tails, take 2. Take F to be the smallest sigma-
field that contains all the sets {ω ; xk = 1}, k ≥ 1. This sigma-field also contains
the sets {ω ; xk = 0}, k ≥ 1 (pass to the complements), and therefore (take
intersections) all the sets of the form {ω ; x1 = a1, . . . , xn = an} for all n ≥ 1, all
a1, . . . , an ∈ {0, 1}.
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1.2 Probability

1.2.1 The Axioms

The probability of an event measures the likeliness of its occurrence. As a function
defined on the sigma-field of events, it is required to satisfy a few properties, called
the axioms of probability.

Definition 1.2.1 A probability on (Ω,F) is a mapping P : F → such that

(i) 0 ≤ P (A) ≤ 1,

(ii) P (Ω) = 1, and

(iii) P (
∑∞

k=1Ak) =
∑∞

k=1 P (Ak) (sigma-additivity property).

The triple (Ω,F , P ) is called a probability space, or probability model.

Now is perhaps the best time to introduce a notation that will become standard
starting from the next chapter. In this notation, commas replace intersection sym-
bols, for instance P (A,B) := P (A ∩B).

Example 1.2.2: Tossing a die, take 2. Formula P (A) = |A|
6

defines a proba-
bility P on Ω = {1, 2, 3, 4, 5, 6}.

Example 1.2.3: Heads and tails, take 3. Choose probability P such that
for any event A = {x1 = a1, . . . , xn = an}, P (A) = 1

2n
. Note that this does not

define the probability of any event of F . But the theory tells us that there does
exist such a probability satisfying the above requirement and that this probability
is unique.

Example 1.2.4: Random point in the square, take 1. The following is a
model of a random point in the unit square Ω = [0, 1]2: F is the collection of Borel
sets of 2 contained in [0, 1]2. Measure theory tells us that there exists one and
only one probability P satisfying the requirement P ([a, b]×[c, d]) = (b−a)×(d−c),
called the Lebesgue probability on [0, 1]2, and that formalizes the intuitive notion
of “area”.

The probability of Example 1.2.2 suggests an unbiased die, where each outcome
1, 2, 3, 4, 5, or 6 has the same probability. As we shall soon see, the probability P
of Example 1.2.3 implies an unbiased coin and independent tosses (the emphasized
terms will be defined later).

The axioms of probability are motivated by the heuristic interpretation of probabil-
ity as empirical frequency. If n “independent” experiments are performed, among
which nA result in the realization of A, then the empirical frequency
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F (A) :=
nA

n

should be close to P (A) if n is “sufficiently large.” (This statement has to be made
precise. It is in fact a loose expression of the law of large numbers that will be
given later.) Clearly, the empirical frequency satisfies the axioms.

The properties of probability stated below follow directly from the axioms:

Theorem 1.2.5 For any event A ∈ F
P (A) = 1− P (A) , (1.1)

and in particular P (∅) = 0.

Proof. For (1.1), use additivity:

1 = P (Ω) = P (A+ A) = P (A) + P (A) .

Applying (1.1) with A = Ω gives P (∅) = 0. �

Theorem 1.2.6 Probability is monotone, that is,

A ⊆ B =⇒ P (A) ≤ P (B). (1.2)

(Recall the interpretation of the set inclusion A ⊆ B: event A implies event B.)

Proof. When A ⊆ B, B = A+ (B − A), and therefore

P (B) = P (A) + P (B − A) ≥ P (A).

�

Theorem 1.2.7 Probability is sub-sigma-additive, that is:

P (∪∞
k=1Ak) ≤

∑∞
k=1 P (Ak). (1.3)

Proof.

Observe that

∪∞
k=1Ak =

∞∑
k=1

A′
k,

where A′
k := Ak ∩

{
∪k−1

i=1Ai

}
. Therefore,

P (∪∞
k=1Ak) = P

( ∞∑
k=1

A′
k

)
=

∞∑
k=1

P (A′
k).

But A′
k ⊆ Ak, and therefore P (A′

k) ≤ P (Ak). �

We now introduce a central notion of probability theory.
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Definition 1.2.8 A set N ⊂ Ω is called P -negligible if it is contained in an event
A ∈ F of probability P (A) = 0.

Theorem 1.2.9 A countable union of negligible sets is a negligible set.

Proof. Let Nk, k ≥ 1, be P -negligible sets. By definition there exists a sequence
Ak, k ≥ 1, of events of null probability such that Nk ⊆ Ak, k ≥ 1. We have

N := ∪k≥1Nk ⊆ A := ∪k≥1Ak,

and by sub-sigma-additivity of probability, P (A) = 0. �

Example 1.2.10: Random point in the square, take 2. Each rational point
therein has null area and therefore null probability. Therefore, in this model, the
(countable) set of rational points of the square has null probability. In other words,
the probability of drawing a rational point is null.

Definition 1.2.11 A property P relative to the samples ω ∈ Ω is said to hold
P–almost surely (“P–a.s.”) if

P ({ω; ω verifies property P}) = 1.

If there is no ambiguity as to the underlying probability P , one usually abbreviates
“P–almost surely” in “almost surely”.

1.2.2 The Borel–Cantelli Lemma

The following property comes close to being a tautology and is of great use.

Theorem 1.2.12 Let {An}n≥1 be a non-decreasing sequence of events (that is, for
all n ≥ 1, An+1 ⊇ An). Then

P (∪∞
n=1An) = limn↑∞ P (An) . (1.4)

Proof. Write
An = A1 + (A2 − A1) + · · ·+ (An − An−1)

and
∪∞

k=1Ak = A1 + (A2 − A1) + (A3 − A2) + · · · .
Therefore,

P (∪∞
k=1Ak) = P (A1) +

∞∑
j=2

P (Aj − Aj−1)

= lim
n↑∞

{
P (A1) +

n∑
j=2

P (Aj − Aj−1)

}
= lim

n↑∞
P (An).
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�

Corollary 1.2.13 Let {Bn}n≥1 be a non-increasing sequence of events (that is,
for all n ≥ 1, Bn+1 ⊆ Bn). Then

P (∩∞
n=1Bn) = limn↑∞ P (Bn) . (1.5)

Proof. Using De Morgan’s identity and applying (1.4) with An = Bn, observing
that {Bn}n≥1 is a non-decreasing sequence of events:

P (∩∞
n=1Bn) = 1− P

(∩∞
n=1Bn

)
= 1− P (∪∞

n=1Bn)

= 1− lim
n↑∞

P (Bn) = lim
n↑∞

(1− P (Bn)) = lim
n↑∞

P (Bn) .

�

Example 1.2.14: Extinction of the bluepinkos. Let An be the event that
in the year n, the population of bluepinkos (a rare species of australian birds) is
not null. The event that the bluepinkos eventually become extinct is E = ∪n≥1An.
Obviously the sequence {An}n≥1 is non-increasing (if there is no bluepinko left
at time n, then there will be no bluepinko at all subsequent years). Therefore,
according to Theorem 1.2.12, P (E) = limn↑∞ P (An).

Example 1.2.15: You cannot always win. An event B can be logically im-
possible, that is B = ∅. It can also be negligible, that is P (B) = 0. Of course,
a logically impossible event is a fortiori negligible. Probabilistic computations sel-
dom lead to the conclusion that an event is impossible, but will tell that it has a
null probability, which is for all practical purposes sufficient. For instance, in an
infinite sequence of coin tosses with an unbiased coin, the event B that one always
obtain heads is not logically impossible, but it has a null probability. In fact, the
probability of the event Bn that the n first tosses give heads is 1

2n
, and therefore,

by sequential continuity (Bn is non-increasing and B = ∩n≥1Bn), P (B) = 0.

Consider a sequence of events {An}n≥1 where the index n may be interpreted as
time. We are interested in the probability that An occurs infinitely often, that is,
the probability of the event

{ω;ω ∈ An for an infinity of indicesn},
denoted by {An i.o.}, where i.o. is an abbreviation for “infinitely often”. We have
the direct Borel–Cantelli lemma:

Theorem 1.2.16 For any sequence of events {An}n≥1,

∞∑
n=1

P (An) <∞ =⇒ P (An i.o.) = 0.
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Proof. We first observe that

{An i.o.} =
∞⋂
n=1

⋃
k≥n

Ak.

(Indeed, if ω belongs to the set on the right-hand side, then for all n ≥ 1, ω belongs
to at least one among An, An+1, . . ., which implies that ω is in An for an infinite
number of indices n. Conversely, if ω is in An for an infinite number of indices n,
it is for all n ≥ 1 in at least one of the sets An, An+1, . . .)

The set ∪k≥nAk decreases as n increases, so that by the sequential continuity
property of probability,

P (An i.o.) = lim
n↑∞

P

(⋃
k≥n

Ak

)
. (1.6)

But by sub-σ-additivity,

P

(⋃
k≥n

Ak

)
≤
∑
k≥n

P (Ak),

and by the summability assumption, the right-hand side of this inequality goes to
0 as n ↑ ∞. �

Counting Models

A number of problems in Probability reduce to counting the elements in a finite
set. The general setting is the following. The set Ω of all possible outcomes is finite,
and for some reason (of symmetry for instance) we are led to believe that all the
outcomes ω have the same probability. Since the probabilities sum up to one, each
outcome has probability 1

|Ω| . Since the probability of an event A is the sum of the
probabilities of all outcomes ω ∈ A, we have

P (A) =
|A|
|Ω| . (�)

Thus, computing P (A) requires counting the elements in the sets A and Ω.

Recall the two basic facts of combinatorics (the art of counting): (a) the number
of permutations of a set with n elements is n!, and (b) in a set of n elements, the
number of subsets of k elements is

(
n
k

)
:= n!

k!(n−k)!
. Also recall Stirling’s equivalence

n! ∼ √2πn
(
n
e

)n
. A more precise formulation is: For all positive integers n,

√
2πn

(n
e

)n

≤ n! ≤
√
2πn

(n
e

)n

e
1

12n .

A simpler form is √
2πn

(n
e

)n

≤ n! ≤ 2
√
2πn

(n
e

)n

. (1.7)
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The following useful bound is a direct consequence of the above: For all positive
integers k < n, (

n

k

)
≤
(en
k

)k

. (1.8)

Indeed, (
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!

≤ nk

k!
≤ nk

√
2πk

(
k
e

)k ≤ 1√
2πk

(en
k

)k

≤
(en
k

)k

.

Example 1.2.17: Urn. There is an urn containing N1 black balls and N2 red
balls. You draw successively without replacement and at random n balls from the
urn (n ≤ N1 + N2). The probability of having drawn k black balls (0 ≤ k ≤
inf(N1, n)) is:

pk =

(
N1

k

)(
N2

n−k

)(
N1+N2

n

) .

Proof. The set of outcomes Ω is the family of all subsets ω of n balls among the
N1 +N2 balls in the urn. Therefore,

|Ω| =
(
N1 +N2

n

)
.

It is reasonable to suppose that all the outcomes are equiprobable. In this case,
formula (�) applies. One must therefore count the subsets ω with k black balls
and n− k red balls. To form such a set, a set of k black balls among the N1 black
balls is formed, and there are

(
N1

k

)
such sets. To each such subset of k black balls,

one must associate a subset of n− k red balls. This multiplies the possibilities by(
N2

n−k

)
. Thus, if A is the number of subsets of n balls among the N1 + N2 balls in

the urn which consist of k black balls and n− k red balls

|A| =
(
N1

k

)(
N2

n− k

)
,

and therefore pk =
|A|
|Ω| is as announced above. �



10 CHAPTER 1. EVENTS AND PROBABILITY

1.3 Independence and Conditioning

1.3.1 Independent Events

In the frequency interpretation of probability, a situation where nA∩B/n ≈
(nA/n)× (nB/n), or

nA∩B
nB

≈ nA

n

(here ≈ is a non-mathematical symbol meaning “approximately equal”) suggests
some kind of “independence” of A and B, in the sense that statistics relative to
A do not vary when passing from a neutral sample of population to a selected
sample characterized by the property B. For example, the proportion of people
with a family name begining with H is the same among a large population with
the usual mix of men and women as it would be among a large all-male population.
This prompts us to give the following formal definition of independence, the single
most important concept of probability theory.

Definition 1.3.1 Two events A and B are called independent if

P (A ∩ B) = P (A)P (B) . (1.9)

One should be aware that incompatibility is different from independence. As a
matter of fact, two incompatible events A and B are independent if and only if
at least one of them has null probability. Indeed, if A and B are incompatible,
P (A ∩B) = P (∅) = 0, and therefore (1.9) holds if and only if P (A)P (B) = 0.

The notion of independence carries over to families of events.

Definition 1.3.2 A family {An}n∈ of events is called independent if for all finite
indices i1, . . . , ir ∈ ,

P (Ai1 ∩ Ai2 ∩ · · · ∩ Air) = P (Ai1)× P (Ai2)× · · · × P (Air) .

One also says that the An’s are jointly independent.

Theorem 1.3.3 Suppose that the family of events {An}n∈ is independent. Then,
so is the family {Ãn}n∈ , where for each n, Ãn = An or An (the choice may vary
with the index).

Proof. Exercise 1.4.4. �

Example 1.3.4: The communications network. Two nodes A and B in a
communications network are connected by three different routes, each containing
a number of links that can fail, represented symbolically in the figure by switches
that are lifted if the link is not operational. In the figure, the number associated
with a switch is the probability of failure of the corresponding link. Link failures
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0.25 0.25

A
0.4

B

0.1 0.1 0.1

occur independently. What is the probability that nodes A and B are connected,
that is, that there exists at least one operational route between A and B?

Let U1 be the event “no link failure in the upper route”. Defining similarly U2 and
U3, the probability to be computed is that of U1 ∪ U2 ∪ U3, or by De Morgan’s
identity, that of the complement of U1 ∩ U2 ∩ U3:

1− P (U1 ∩ U2 ∩ U3) = 1− P (U1)P (U2)(PU3),

where the last equality follows from the independence assumption concerning the
links. Letting now U1

1 = “switch 1 (first from left) in the upper route is not lifted”
and U2

1 = “switch 2 in the upper route is not lifted”, we have U1 = U1
1 ∩ U2

1 ,
therefore, in view of the independence assumption,

P (U1) = 1− P (U1) = 1− P (U1
1 )P (U2

1 ).

With the given data, P (U1) = 1−(0.75)2. Similarly, P (U2) = 1−0.6 and P (U3) =
1− (0.9)3. The final result is 1− (0.4375)(0.4)(0.271) = 0.952575.

The formula (1.9) extends to a countable number of events:

Theorem 1.3.5 Let {Cn}n≥1 be a sequence of independent events. Then

P (∩∞
n=1Cn) = Π∞

n=1P (Cn) . (1.10)

Proof. Let Bn = ∩n
k=1Ck. By independence P (Bn) = P (∩n

k=1Ck) = Πn
k=1P (Ck),

a quantity which tends to Π∞
k=1P (Ck) as n ↑ ∞. Apply (1.10) to the decreasing

events Bn to obtain the announced result. �

Next, we give the so-called converse Borel–Cantelli lemma. It is not strictly speak-
ing a converse of the Borel–Cantelli lemma because it requires the additional as-
sumption of independence.

Theorem 1.3.6 Let {An}n≥1 be a sequence of independent events. Then,

∞∑
n=1

P (An) =∞ =⇒ P (An i.o.) = 1.
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Proof. We may assume without loss of generality that P (An) > 0 for all n ≥ 1
(why?). The divergence hypothesis implies that for all n ≥ 1 (see Section A.1),

∞∏
k=n

(1− P (Ak)) = 0 .

This infinite product equals, in view of the independence assumption (see Theorem
1.3.5),

∞∏
k=n

P
(
Ak

)
= P

( ∞⋂
k=n

Ak

)
.

Therefore,

P

( ∞⋂
k=n

Ak

)
= 0 .

Passing to the complement and using De Morgan’s identity,

P

( ∞⋃
k=n

Ak

)
= 1 .

Therefore, by (1.6),

P (An i.o.) = lim
n↑∞

P

( ∞⋃
k=n

Ak

)
= 1 .

�

1.3.2 Conditional Probability

We continue our heuristic discussion of probability in terms of empirical frequen-
cies. Dependence between A and B occurs when P (A ∩ B) �= P (A)P (B). In this
case the relative frequency nA∩B/nB ≈ P (A ∩ B)/P (B), which represents what
we expect concerning event A given that we already know that event B occured,
is different from the frequency nA/n. This suggests the following definition:

Definition 1.3.7 The conditional probability of A given B is the number

P (A |B) := P (A∩B)
P (B)

, (1.11)

defined when P (B) > 0. If P (B) = 0, one defines P (A |B) arbitrarily between 0
and 1.

The quantity P (A |B) represents our expectation of A being realized when the
only available information is that B is realized. Indeed, this expectation is based
on the relative frequency nA∩B/nB alone. Of course, if A and B are independent,
then P (A |B) = P (A).
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1.3.3 The Bayes Calculus

Probability theory is primarily concerned with the computation of probabilities of
complex events. The following formulas, called the Bayes formulas, will be recur-
rently used.

Theorem 1.3.8 For any events A and B of positive probability, we have the Bayes
formula of retrodiction:

P (B |A) = P (A |B)P (B)
P (A)

. (1.12)

Proof. Rewrite Definition 1.11 symmetrically in A and B:

P (A ∩ B) = P (A |B)P (B) = P (B |A)P (A) .

�

We now give two more basic formulas useful in computing conditional probability.

Theorem 1.3.9 Let the events B1, B2, . . . form a partition of Ω, that is,
∑∞

i=1 Bi =
Ω. Then for any event A, we have the Bayes formula of exclusive and exhaustive
causes, also called the Bayes formula of total causes:

P (A) =
∞∑
i=1

P (A |Bi)P (Bi) . (1.13)

Proof. Decompose A as follows:

A = A ∩ Ω = A ∩
( ∞∑

i=1

Bi

)
=

∞∑
i=1

(A ∩ Bi).

Therefore (sigma-additivity and definition of conditional probability):

P (A) = P

( ∞∑
i=1

(A ∩Bi)

)
=

∞∑
i=1

P (A ∩ Bi) =
∞∑
i=1

P (A |Bi)P (Bi).

�

Example 1.3.10: Can we always believe doctors? Doctors apply a test
that gives a positive result in 99% of the cases where the patient is affected by the
disease. However it happens in 2% of the cases that a healthy patient is “positive”.
Statistical data show that one individual out of 1000 has the disease. What is the
probability that a patient with a positive test is affected by the disease?

Solution: Let M be the event “the patient is ill,” and let + and − be the events
“the test is positive” and “the test is negative” respectively. We have the data

P (M) = 0.001, P (+ |M) = 0.99, P (+ |M) = 0.02,
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and we must compute P (M |+). By the retrodiction formula,

P (M |+) =
P (+ |M)P (M)

P (+)
.

By the formula of exclusive and exhaustive causes,

P (+) = P (+ |M)P (M) + P (+ |M)P (M).

Therefore,

P (M |+) =
(0.99)(0.001)

(0.99)(0.001) + (0.02)(0.999)
,

that is, approximately 0.05. What do you think?

Example 1.3.11: Hafmoron University alumni. A student from the famous
Veryhardvard University has with probability 0.25 a bright intelligence. Students
from the Hafmoron State University have a probability 0.10 of being bright. You
find yourself in an assembly with 10 Veryhardvard students and 20 Hafmoron State
University students. You meet a handsome girl (resp., boy) whose intelligence
is obviously superior. What is the probability that she (resp., he) registered at
Hafmoron State University?

With obvious notation:

P (HM |BI) =
P (HM ∩ BI)

P (BI)
=

P (BI |HM)P (HM)

P (BI)

=
P (BI |HM)P (HM)

P (BI |HM)P (HM) + P (BI |V H)P (V H)
,

that is, numerically,

P (HM |BI) =
0.1× 2

3

0.1× 2
3
+ 0.25× 1

3

=
20

45
.

Example 1.3.12: The ballot problem. In an election, candidates I and II
have obtained a and b votes respectively. Candidate I won, that is, a > b. What is
the probability that in the course of the vote counting procedure, candidate I has
always had the lead?

Solution: Let pa,b be the probability that A is always ahead. We have by the formula
of exclusive and exhaustive causes, conditioning on the last vote:

pa,b = P (A always ahead |A gets the last vote )P (A gets the last vote )

+ P (A always ahead |B gets the last vote )P (B gets the last vote )

= pa−1,b
a

a+ b
+ pa,b−1

b

a+ b
,
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with the convention that for a = b + 1, pa−1,b = pb,b = 0. The result follows by
induction on the total number of votes a+ b:

pa,b =
a− b

a+ b
.

Theorem 1.3.13 For any sequence of events A1, . . . , An, we have the Bayes se-
quential formula:

P
(∩k

i=1Ai

)
= P (A1)P (A2 |A1)P (A3 |A1 ∩ A2) · · ·P

(
Ak | ∩k−1

i=1 Ai

)
. (1.14)

Proof. By induction. First observe that (1.14) is true for k = 2 by definition of
conditional probability. Suppose that (1.14) is true for k. Write

P
(∩k+1

i=1Ai

)
= P

((∩k
i=1Ai

) ∩ Ak+1

)
= P

(
Ak+1 | ∩k

i=1 Ai

)
P
(∩k

i=1Ai

)
,

and replace P
(∩k

i=1Ai

)
by the assumed equality (1.14) to obtain the same equality

with k + 1 replacing k. �

1.3.4 Conditional Independence

Definition 1.3.14 Let A, B, and C be events, with P (C) > 0. One says that A
and B are conditionally independent given C if

P (A ∩ B |C) = P (A |C)P (B |C) . (1.15)

In other words, A and B are independent with respect to the probability PC defined
by PC(A) = P (A |C) (see Exercise 1.4.5).

Example 1.3.15: Cheap watches. Two factoriesA andB manufacture watches.
Factory A produces approximately one defective item out of 100, and B one out
of 200. A retailer receives a container from one of the factories, but he does not
know which. (It is however assumed that the two possible origins of the container
are equiprobable.) The retailer checks the first watch. It works!

(a) What is the probability that the second watch he will check is good?

(b) Are the states of the first 2 watches independent?

Solution: (a) Let Xn be the state of the n-th watch in the container, with Xn = 1
if it works and Xn = 0 if it does not. Let Y be the factory of origin. We express
our a priori ignorance of where the case comes from by
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P (Y = A) = P (Y = B) =
1

2
.

Also, we assume that given Y = A (resp., Y = B), the states of the successive
watches are independent. For instance,

P (X1 = 1, X2 = 0 |Y = A) = P (X1 = 1 |Y = A)P (X2 = 0 |Y = A).

We have the data

P (Xn = 0 |Y = A) = 0.01 , P (Xn = 0 |Y = B) = 0.005 .

We are required to compute

P (X2 = 1 |X1 = 1) =
P (X1 = 1, X2 = 1)

P (X1 = 1)
.

By the formula of exclusive and exhaustive causes, the numerator of this fraction
equals

P (X1 = 1, X2 = 1 |Y = A)P (Y = A) + P (X1 = 1, X2 = 1 |Y = B)P (Y = B),

that is, (0.99)2(0.5) + (0.995)2(0.5), and the denominator is

P (X1 = 1 |Y = A)P (Y = A) + P (X1 = 1 |Y = B)P (Y = B),

that is, (0.99)(0.5) + (0.995)(0.5). Therefore,

P (X2 = 1 |X1 = 1) =
(0.99)2 + (0.995)2

0.99 + 0.995
.

(b) The states of the two watches are not independent. Indeed, if they were, then

P (X2 = 1 |X1 = 1) = P (X2 = 1) = (0.5) (0.99 + 0.995) ,

a result different from what we obtained. This shows that for some event C, two
events A and B can very well be conditionally independent given C and condi-
tionally independent given C, and yet not be mutually independent.

1.4 Exercises

Exercise 1.4.1. Composed events

Let F be a sigma-field on some set Ω.
(1) Show that if A1, A2, . . . are in F , then so is ∩∞

k=1Ak.
(2) Show that if A1, A2 are in F , their symmetric difference A1�A2 := A1 ∪A2 −
A1 ∩ A2 is also in F .

Exercise 1.4.2. Identities
Prove the set identities
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P (A ∪ B) = 1− P (A ∩ B)

and

P (A ∪ B) = P (A) + P (B)− P (A ∩ B).

Exercise 1.4.3. Urns

1. An urn contains 17 red balls and 19 white balls. Balls are drawn in succession
at random and without replacement. What is the probability that the first 2 balls
are red?
2. An urn contains N balls numbered from 1 to N . Someone draws n balls (1 ≤
n ≤ N) simultaneously from the urn. What is the probability that the lowest
number drawn is k?

Exercise 1.4.4. About independence

1. Give a simple example of a probability space (Ω,F , P ) with three events
A1, A2, A3 that are pairwise independent, but not globally independent (that is,
the family {A1, A2, A3} is not independent).
2. If {Ai}i∈I is an independent family of events, is it true that {Ãi}i∈I is also an
independent family of events, where for each i ∈ I, Ãi = Ai or Ai (your choice; for
instance, with I = , Ã0 = A0, Ã1 = A1, Ã3 = A3, . . .)?

Exercise 1.4.5. Conditional independence and the Markov property

1. Let (Ω,F , P ) be a probability space. Define for a fixed event C of positive
probability, PC(A) := P (A |C). Show that PC is a probability on (Ω,F) and that
A and B are independent with respect to this probability if and only if they are
conditionally independent given C.

2. Let A1, A2, A3 be three events of positive probability. Show that events A1 and
A3 are conditionally independent given A2 if and only if the “Markov property”
holds, that is, P (A3 |A1 ∩ A2) = P (A3 |A2).

Exercise 1.4.6. Heads and tails as usual

A person, A, tossing an unbiased coin N times obtains TA tails. Another person,
B, tossing her own unbiased coin N+1 times has TB tails. What is the probability
that TA ≥ TB? Hint: Introduce HA and HB, the number of heads obtained by A
and B respectively, and use a symmetry argument.

Exercise 1.4.7. Apartheid University

In the renowned Social Apartheid University, students have been separated into
three social groups for “pedagogical” purposes. In group A, one finds students who
individually have a probability of passing equal to 0.95. In group B this probability
is 0.75, and in group C only 0.65. The three groups are of equal size. What is the
probability that a student passing the course comes from group A? B? C?

Exercise 1.4.8. Wise Bet

There are 3 cards. The first one has both faces red, the second one has both faces
white, and the third one is white on one face, red on the other. A card is drawn
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at random, and the colour of a randomly selected face of this card is shown to you
(the other remains hidden). What is the winning strategy if you must bet on the
colour of the hidden face?

Exercise 1.4.9. A sequence of liars

Consider a sequence L1, . . . , Ln of liars. The first liar L1 receives information about
the occurrence of some event in the form “yes or no”, and transmits it to L2,
who transmits it to L3, etc. . . Each liar transmits what he hears with probability
p ∈ (0, 1) and the contrary with probability q = 1− p. The decision of lying or not
is made independently by each liar. What is the probability xn of obtaining the
correct information from Ln? What is the limit of xn as n increases to infinity?

Exercise 1.4.10. The campus library complaint

You are looking for a book in the campus libraries. Each library has it with proba-
bility 0.60 but the book of each given library may have been stolen with probability
0.25. If there are 3 libraries, what are your chances of obtaining the book?

Exercise 1.4.11. Professor Nebulous

Professor Nebulous travels from Los Angeles to Paris with stopovers in New York
and London. At each stop his luggage is transferred from one plane to another. In
each airport, including Los Angeles, the probability that his luggage is not assigned
to the right plane is p. Professor Nebulous finds that his suitcase has not reached
Paris. What are the chances that the mishap took place in Los Angeles, New York,
and London, respectively ?

Exercise 1.4.12. Safari butchers
Three tourists participate in a safari in Africa. An elephant shows up, unaware of
the rules of the game. The innocent beast is killed, having received two out of the
three bullets simultaneously shot by the tourists. The respective probabilities of
hit are: Tourist A: 1

4
, Tourist B: 1

2
, Tourist C: 3

4
. Give for each of the tourists the

probability that he was the one who missed.

Exercise 1.4.13. The Hardy–Weinberg law

In diploid organisms, each heriditary character is carried by a pair of genes. Con-
sider the situation in which each given gene can take two forms called alleles,
denoted a and A. Such was the case in the historical experiments performed in
1865 by the Czech monk Gregory Mendel who studied the hereditary transmission
of the nature of the skin in a species of green peas. The two alleles correspond-
ing to the gene or character “nature of the skin” are a for “wrinkled” and A for
“smooth”. The genes are grouped into pairs and there are two alleles. Therefore,
three genotypes are possible for the character under study: aa,Aa (same as aA),
and AA. During the reproduction process, each of the two parents contributes to
the genetic heritage of their descendant by providing one allele of their pair. This
is done by the intermediary of the reproductive cells called gametes1 which carry
only one gene of the pair of genes characteristic of each parent. The gene carried

1In the human species, the spermatozoid and the ovula.
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by the gamete is chosen at random among the pair of genes of the parent. The
actual process occuring in the reproduction of diploid cells is called meiosis.

A given cell possesses two chromosomes. A chromosome can be viewed as a string
of genes, each gene being at a specific location in the chain. The chromosomes
double and four new cells are formed for every chromosome (see the figure below).
One of the four gametes of a “mate” (say, the ovula) chosen at random selects
randomly one of the four gametes of the other “partner” (here, the spermatozoid)
and this gives “birth” to a pair of alleles.

A

a

One parent cell

A

Aa

a

A

A

a

a F
ou

r
ga
m
et
es

Let us start from an idealistically infinite population where the genotypes are
found in the following proportions:

AA : Aa : aa

x : 2z : y.

Here, x, y, and z are numbers between 0 and 1, and x+2z+y = 1. The two parents
are chosen independently (random mating), and their gamete chooses an allele at
random in the pair carried by the corresponding parent. What is the genotype
distribution of the second generation?



Chapter 2

Random Variables

2.1 Probability Distribution and Expectation

2.1.1 Random Variables and their Distributions

The number of heads in a sequence of 10000 coin tosses, the number of days it
takes until the next rain and the size of a genealogical tree are random numbers.
All are functions of the outcome of a random experiment (performed either by
man or by nature) and taking discrete values, that is, values in a countable set.
These values are integers in the above examples, but they can be more complex
mathematical objects, such as graphs for instance. This chapter gives the elemen-
tary rules for computing expectations, a list of famous discrete random variables
or vectors (binomial, geometric, Poisson and multinomial), and the elementary
theory of conditional expectation.

Definition 2.1.1 Let E be a countable set. A function X : Ω → E such that for
all x ∈ E

{ω;X(ω) = x} ∈ F
is called a discrete random variable.

Since E is a countable set, it can always be identified with or , and therefore
we shall often assume that either E = or .

Being in F , the event {X = x} can be assigned a probability.

Remark 2.1.2 Calling a random variable a random number is an innocuous habit
as long as one is aware that it is not the functionX that is random, but the outcome
ω. This in turn makes the number X(ω) random.

Example 2.1.3: Tossing a die, take 3. The sample space is the set Ω =
{1, 2, 3, 4, 5, 6}. Take for X the identity: X(ω) = ω. In that sense X is the random
number obtained by tossing a die.
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Example 2.1.4: Heads and tails, take 4. The sample space Ω is the collection
of all sequences ω = {xn}n≥1, where xn = 1 or 0. Define a random variable Xn

by Xn(ω) = xn. It is the random number obtained at the n-th toss. It is indeed a
random variable since for all an ∈ {0, 1}, {ω ; Xn(ω) = an} = {ω ; xn = an} ∈ F ,
by definition of F .

The following are elementary remarks.

Theorem 2.1.5 Let E and F be countable sets. Let X be a random variable with
values in E, and let f : E → F be an arbitrary function. Then Y := f(X) is a
random variable.

Proof. Let y ∈ F . The set {ω; Y (ω) = y} is in F since it is a countable union of
sets in F , namely:

{Y = y} =
∑

x∈E; f(x)=y

{X = x} .

�

Theorem 2.1.6 Let E1 and E2 be countable sets. Let X1 and X2 be random vari-
able with values in E1 and E2 respectively. Then Y := (X1, X2) is a random
variable with values in E = E1 × E2.

Proof. Let x = (x1, x2) ∈ E. The set {ω; X(ω) = x} is in F since it is the
intersection of sets in F : {X = x} = {X1 = x1} ∩ {X2 = x2}. �

Definition 2.1.7 From the probabilistic point of view, a discrete random variable
X is described by its probability distribution function (or distribution, for short)
{π(x)}x∈E, where π(x) := P (X = x).

Example 2.1.8: The uniform distribution. Let X be a finite set. The random
variable with values in this set and having the distribution

P (X = x) =
1

|X | for all x ∈ X

is said to be uniformly distributed (or to have the uniform distribution) on X .

Example 2.1.9: Is this number the larger one? Let a and b be two numbers
in {1, 2, . . . , 10, 000}. Nothing is known about these numbers, except that they are
not equal, say a > b. Only one of these numbers is shown to you, secretely chosen
at random and equiprobably. Call X this random number. Is there a good strategy
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for guessing if the number shown to you is the largest of the two? Of course, we
would like to have a probability of success strictly larger than 1

2
.

Perhaps surprisingly, there is such a strategy, that we now describe. Select at
random uniformly on {1, 2, . . . , 10, 000} a number Y . If X ≥ Y , say that X is the
largest (= a), otherwise say that it is the smallest.

Let us compute the probability PE of a wrong guess. An error occurs when either
(i) X ≥ Y and X = b, or (ii) X < Y and X = a. These events are exclusive of one
another, and therefore

PE = P (X ≥ Y,X = b) + P (X < Y,X = a)

= P (b ≥ Y,X = b) + P (a < Y,X = a)

= P (b ≥ Y )P (X = b) + P (a < Y )P (X = a)

= P (b ≥ Y )
1

2
+ P (a < Y )

1

2
=

1

2
(P (b ≥ Y ) + P (a < Y ))

=
1

2
(1− P (Y ∈ [b+ 1, a]) =

1

2

(
1− a− b

10, 000

)
<

1

2
.

Example 2.1.10: Heads and tails, take 5. The number of occurrences of
heads in n tosses is Sn = X1 + · · · + Xn. This random variable is the fortune at
time n of a gambler systematically betting on heads. It takes the integer values
from 0 to n. We have

P (Sn = k) = 1
2n

(
n
k

)
.

Proof. The event {Sn = k} is “k among X1, . . . , Xn are equal to 1.” There are(
n
k

)
distinct ways of assigning k values 1 and n− k values 0 to X1, . . . , Xn, and all

have the same probability 2−n. �

One sometimes needs to prove that a random variable X taking its values in
(the value ∞ is a priori possible) is in fact almost surely finite, that is, one must
prove that P (X = ∞) = 0 or, equivalently, P (X < ∞) = 1. Since {X < ∞} =∑∞

n=0{X = n}, we have P (X <∞) =
∑∞

n=0 P (X = n).

Remark 2.1.11 We seize this opportunity to recall that in an expression such
as
∑∞

n=0, the sum is over and does not include ∞ as the notation seems to
suggest. A less ambiguous notation would be

∑
n∈ . In case we want to sum over

all integers plus ∞, we shall always use the notation
∑

n∈ .

The following result is highlighted as a theorem for the purpose of future reference:

Theorem 2.1.12 Let X be an integer-valued random variable (in particular, the
probability that X =∞ is null). Then
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lim
n↑∞

P (X > n) = 0 .

Proof. This follows by monotone sequential continuity since the sequence {X >
n}, n ≥ 0, is non-increasing and ∩n≥0{X > n} = ∅ since X takes only finite
values. �

Almost Surely, take 2

An expression like “X = Y P -almost surely” means that P ({ω ∈ Ω; X(ω) =
Y (ω)}) = 1. One interprets similarly expressions such as “f(X) = 0 P -almost
surely” and so on.

2.1.2 Independent Random Variables

Definition 2.1.13 Two discrete random variables X and Y are called independent
if for all i, j ∈ E,

P (X = i, Y = j) = P (X = i)P (Y = j) . (2.1)

The extension of the definition to a finite number of random variables is natural:

Definition 2.1.14 The discrete random variables X1, . . . , Xk taking their values
in E1, . . . , Ek respectively are said to be independent if for all i1 ∈ E1, . . . , ik ∈ Ek,

P (X1 = i1, . . . , Xk = ik) = P (X1 = i1) · · ·P (Xk = ik) . (2.2)

Theorem 2.1.15 Let X1, . . . , Xk be as in Definition 2.1.14. Then, for any gi :
Ei → (1 ≤ i ≤ n), the random variables gi(Xi) (1 ≤ i ≤ n) are independent.

Proof. We do the proof in the case n = 2:

P (g1(X1) = j1, g2(X2) = j2) =
∑

i1;g1(i1)=j1

∑
i2;g1(i2)=j2

P (X1 = i1, X2 = i2)

=
∑

i1;g1(i1)=j1

∑
i2;g1(i2)=j2

P (X1 = i1)P (X2 = i2)

=

⎛⎝ ∑
i1;g1(i1)=j1

P (X1 = i1)

⎞⎠⎛⎝ ∑
i2;g1(i2)=j2

P (X2 = i2)

⎞⎠
= P (g1(X1) = j1)P (g2(X2) = j2) .

�
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Definition 2.1.16 A sequence {Xn}n≥1 of discrete random variables indexed by
the set of positive integers and taking their values in the sets {En}n≥1 respectively
is called independent if for all n ≥ 2, the random variables X1, . . . , Xn are inde-
pendent. If in addition En ≡ E for all n ≥ 1 and the distribution of Xn does not
depend on n, the sequence {Xn}n≥1 is said to be iid (independent and identically
distributed).

Example 2.1.17: Heads and tails, take 6. We show that the sequence
{Xn}n≥1 is iid. Therefore, we have a model for independent tosses of an unbi-
ased coin.

Proof. Event {Xk = ak} is the direct sum of events {X1 = a1, . . . , Xk−1 =
ak−1, Xk = ak} for all possible values of (a1, . . . , ak−1). Since there are 2k−1 such
values and each one has probability 2−k, we have P (Xk = ak) = 2k−12−k, that is,

P (Xk = 1) = P (Xk = 0) =
1

2
.

Therefore,

P (X1 = a1, . . . , Xk = ak) = P (X1 = a1) · · ·P (Xk = ak)

for all a1, . . . , ak ∈ {0, 1}, from which it follows by definition that X1, . . . , Xk are
independent random variables, and more generally that {Xn}n≥1 is a family of
independent random variables. �

Definition 2.1.18 Let {Xn}n≥1 and {Yn}n≥1 be sequences of discrete random
variables indexed by the positive integers and taking their values in the sets {En}n≥1

and {Fn}n≥1 respectively. They are said to be independent if for any finite collec-
tion of random variables Xi1 , . . . , Xir and Yj1 , . . . , Yis extracted from their respec-
tive sequences, the discrete random variables (Xi1 , . . . , Xir) and (Yj1 , . . . , Yis) are
independent.

(This means that

P ((∩r
�=1{Xi� = a�}) ∩ (∩s

m=1{Yjm = bm}))
= P (∩r

�=1{Xi� = a�})P (∩s
m=1{Yjm = bm}) (2.3)

for all a1 ∈ E1, . . . , ar ∈ Er, b1 ∈ F1, . . . , bs ∈ Fs.)

The notion of conditional independence for events (Definition 1.3.14) extends nat-
urally to discrete random variables.

Definition 2.1.19 Let X, Y , Z be random variables taking their values in the
denumerable sets E, F , G, respectively. One says that X and Y are conditionally
independent given Z if for all x, y, z in E, F , G, respectively, events {X = x}
and {Y = y} are conditionally independent given {Z = z}.
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2.1.3 Expectation

Definition 2.1.20 Let X be a discrete random variable taking its values in the
countable set E and let g : E → be a function that is either non-negative or
such that ∑

x∈E |g(x)|P (X = x) <∞ . (2.4)

Then one defines E[g(X)], the expectation of g(X), by the formula

E[g(X)] =
∑

x∈E g(x)P (X = x) . (2.5)

If the summability condition (2.4) is satisfied, we say that the random variable
g(X) is integrable, and in this case the expectation E[g(X)] is a finite number. If
it is only assumed that g is non-negative, the expectation may well be infinite.

Example 2.1.21: Heads and tails, take 7. Consider the random variable
Sn = X1+ · · ·+Xn with values in {0, 1, . . . , n}. Its expectation is E[Sn] = n/2. In
fact,

E[Sn] =
n∑

k=0

kP (Sn = k) =
1

2n

n∑
k=1

k
n!

k!(n− k)!

=
n

2n

n∑
k=1

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!

=
n

2n

n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
=

n

2n
2n−1.

Example 2.1.22: Finite random variables with infinite expectations.

It is important to realize that a discrete random variable taking finite values may
have an infinite expectation. The canonical example is the random variable X with
values in E = + and such that

P (X = n) =
1

cn2
(n ∈ +)

where the constant c is chosen such that X actually takes its values in :

P (X <∞) =
∞∑
n=1

P (X = n) =
∞∑
n=1

1

cn2
= 1

(therefore c =
∑∞

n=1
1
n2 = π2

6
). In fact, the expectation of X is

E[X] =
∞∑
n=1

nP (X = n) =
∞∑
n=1

n
1

cn2
=

∞∑
n=1

1

cn
=∞.
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Remark 2.1.23 Although the above example is artificial, there are many natural
occurences of the phenomenon. Consider for instance Example 2.1.21, and let T
be the first integer n such that 2Sn − n = 0. Then, as it turns out, and as we
shall prove in Subsection 8.1.1 that T is a finite random variable with infinite
expectation. Note that the quantity 2Sn − n is the fortune at time n of a gambler
systematically betting one euro on heads.

The telescope formula below gives an alternative way of computing the expectation
of an integer-valued random variable.

Theorem 2.1.24 For a random variable X taking its values in ,

E[X] =
∑∞

n=1 P (X ≥ n) .

Proof.

E[X] = P (X = 1)+2P (X = 2) + 3P (X = 3) + . . .

= P (X = 1) +P (X = 2) + P (X = 3) + . . .

+P (X = 2) + P (X = 3) + . . .

+ P (X = 3) + . . .

�

We now list a few elementary properties of expectation.

Theorem 2.1.25 Let A be some event. The expectation of the indicator random
variable X = 1A is

E[1A] = P (A) . (2.6)

Proof. X = 1A takes the value 1 with probability P (X = 1) = P (A) and the
value 0 with probability P (X = 0) = P (A) = 1− P (A). Therefore,

E[X] = 0× P (X = 0) + 1× P (X = 1) = P (X = 1) = P (A).

�

Theorem 2.1.26 Let g1 and g2 be functions from E to such that g1(X) and
g2(X) are integrable (resp., non-negative), and let λ1, λ2 ∈ (resp., ∈ +). Ex-
pectation is linear, that is,

E[λ1g1(X) + λ2g2(X)] = λ1E[g1(X)] + λ2E[g2(X)] . (2.7)

Also, expectation is monotone, in the sense that if g1(x) ≤ g2(x) for all x such
that P (X = x) > 0 (in other words, g1(X) ≤ g2(X) almost surely)

E[g1(X)] ≤ E[g2(X)] . (2.8)

Also, we have the triangle inequality

|E[g(X)]| ≤ E[|g(X)|] . (2.9)
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Proof. These properties follow from the corresponding properties of series. �

Theorem 2.1.27 Let X be a random variable with values in E and let g : E →
+ be a non-negative function.

(a) If E [g(X)] = 0, then g(X) = 0 P -almost surely.

(b) If E [g(X)] <∞, then g(X) <∞ P -almost surely.

Proof. (a) Condition E [g(X)] = 0 reads
∑

x∈E g(x)P (X = x) = 0. In particular
P (X = x) = 0 whenever g(x) > 0. Therefore

P (g(X) > 0) =
∑

x∈E; g(x)>0

P (X = x) = 0

or, equivalently, P (g(X) = 0) = 1.

(b) Condition E [g(X)] < ∞ reads
∑

x∈E g(x)P (X = x) < ∞. In particular
P (X = x) = 0 whenever g(x) =∞. Therefore

P (g(X) =∞) =
∑

x∈E; g(x)=∞
P (X = x) = 0

or, equivalently, P (g(X) <∞) = 1. �

Product Formula for Expectations

Theorem 2.1.28 Let Y and Z be two independent random variables with values
in the (denumerable) sets F and G respectively, and let v : F → , w : G →
be functions that are either non-negative, or such that v(Y ) and w(Z) are both
integrable. Then

E[v(Y )w(Z)] = E[v(Y )]E[w(Z)] .

Proof. Consider the discrete random variable X with values in E = F ×G defined
by X = (Y, Z), and consider the function g : E → defined by g(x) = v(y)w(z)
where x = (y, z). Under the above stated conditions, we have

E[v(Y )w(Z)] = E[g(X)] =
∑
x∈E

g(x)P (X = x)

=
∑
y∈F

∑
z∈F

v(y)w(z)P (Y = y, Z = z)

=
∑
y∈F

∑
z∈F

v(y)w(z)P (Y = y)P (Z = z)

=

(∑
y∈F

v(y)P (Y = y)

)(∑
z∈F

w(z)P (Z = z)

)
= E[v(Y )]E[w(Z)].

�
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Mean, Variance and Covariance

Definition 2.1.29 Let X be an integrable random variable. In this case, we define
its mean as the (finite) number

μ = E[X] .

Let X be a square-integrable random variable. We then define its variance σ2 by

σ2 = E[(X − μ)2] .

(In the case of integer-valued random variables, the mean and variance, when they
are well-defined, are therefore given by the following sums:

μ =
+∞∑
n=0

nP (X = n) σ2 =
+∞∑
n=0

(n− μ)2P (X = n) .)

The variance is also denoted by Var (X). From the linearity of expectation, it
follows that E[(X −m)2] = E[X2]− 2mE[X] +m2, that is,

Var (X) = E[X2]−m2 .

The mean is the “center of inertia” of a random variable. More precisely,

Theorem 2.1.30 Let X be a real integrable random variable with mean m and
finite variance σ2. Then, for all a ∈ , a �= μ,

E[(X − a)2] > E[(X − μ)2] = σ2 .

Proof.

E
[
(X − a)2

]
= E

[
((X − μ) + (μ− a))2

]
= E

[
(X − μ)2

]
+ (μ− a)2 + 2(μ− a)E [(X − μ)]

= E
[
(X − μ)2

]
+ (μ− a)2 > E

[
(X − μ)2

]
whenever a �= μ. �

The following consequence of the product rule is extremely important. It says that
for independent random variables, variances add up.

Theorem 2.1.31 Let X1, . . . , Xn be independent square-integrable random vari-
ables. Then

σ2
X1 +···+Xn

= σ2
X1

+ · · · + σ2
Xn

.
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Proof. Let μ1, . . . , μn be the respective means of X1, . . . , Xn. The mean of the
sum X := X1 + · · · +Xn is μ := μ1 + · · ·+ μn. If i �= k, we have, by the product
formula for expectations,

E [(Xi − μi)(Xk − μk)] = E [(Xi − μi)]E [(Xk − μk)] = 0.

Therefore

Var (X) =E
[
(X − μ)2

]
= E

⎡⎣( n∑
i=1

(Xi − μi)

)2
⎤⎦

=E

[
n∑

i=1

n∑
k=1

(Xi − μi)(Xk − μk)

]

=
n∑

i=1

n∑
k=1

E [(Xi − μi)(Xk − μk)]

=
n∑

i=1

E
[
(Xi − μi)

2
]
=

n∑
i=1

Var (Xi).

�

Note that means always add up, even when the random variables are not indepen-
dent.

Let X be an integrable random variable. Then, clearly, for any a ∈ , aX is
integrable and its variance is given by the formula

Var (aX) = a2 Var (X) .

Example 2.1.32: Variance of the empirical mean. From this remark and
Theorem 2.1.31, it immediately follows that if X1, . . . , Xn are independent and
identically distributed integrable random variables with values in with common
variance σ2, then

Var

(
X1 + · · ·+Xn

n

)
=

σ2

n
.

2.1.4 Famous Distributions

A random variable X taking its values in {0, 1} with distribution given by

P (X = 1) = p,

where p ∈ (0, 1), is called a Bernoulli random variable with parameter p. This is
denoted

X ∼ Bern(p) .
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Consider the following heads and tails framework which consists of an iid sequence
{Xn}n≥1 of Bernoulli variables with parameter p. It is called a Bernoulli sequence
with parameter p.

Since P (Xj = aj) = p or 1− p depending on whether ai = 1 or 0, and since there

are exactly h(a) :=
∑k

j=1 aj coordinates of a = (a1, . . . , ak) equal to 1,

P (X1 = a1, . . . , Xk = ak) = ph(a)qk−h(a) ,

where q := 1 − p. (The integer h(a) is called the Hamming weight of the binary
vector a.) Comparing with Examples 1.1.3 and 1.2.3, we see that we have a prob-
abilistic model of a game of heads and tails, with a biased coin when p �= 1

2
.

The heads and tails framework gives rise to two famous discrete random variables:
the binomial random variable, and the geometric random variable.

The Binomial Distribution

Definition 2.1.33 A random variable X taking its values in the set E = {0, 1, . . . , n}
and with the distribution

P (X = i) =
(
n
i

)
pi(1− p)n−i

is called a binomial random variable of size n and parameter p ∈ (0, 1).

This is denoted
X ∼ B(n, p) .

Example 2.1.34: We place ourselves in the heads and tails framework. Define

Sn = X1 + · · ·+Xn .

This random variable takes the values 0, 1, . . . , n. To obtain Sn = i where 0 ≤ i ≤
n, one must have X1 = a1, . . . , Xn = an with

∑n
j=1 aj = i. There are

(
n
i

)
distinct

ways of having this, each one occuring with probability pi(1−p)n−i. Therefore, for
0 ≤ i ≤ n,

P (Sn = i) =
(
n
i

)
pi(1− p)n−i.

Theorem 2.1.35 The mean and the variance of a binomial random variable X
of size n and parameter p are given by

E[X] = np ,

Var (X) = np(1− p) .
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Proof. This can be proven by a direct computation. Later on, in the Exercises
section, you will prove this using generating functions. Another approach is to
start from the random variable Sn of Example 2.1.34. This is a binomial random
variable. We have

E [Sn] =
n∑

i=1

E [Xi] = nE [X1]

and, since the Xi’s are iid,

V (Sn) =
n∑

i=1

V (Xi) = nV (X1) .

Now,

E [X1] = 0× P (X1 = 0) + 1× P (X1 = 1) = P (X1 = 1) = p

and, since X2
1 = X1,

E
[
X2

1

]
= E [X1] = p .

Therefore

V (X1) = E
[
X2

1

]− E [X1]
2 = p− p2 = p(1− p) .

�

The following inequalities concerning the binomial coefficients are useful:

Theorem 2.1.36 Let p ∈ (0, 1) and H2(p) := −p log2 p−q log2 q, where q := 1−p.
Then for 0 < p ≤ 1

2
, (

n

�np�
)
≤ 2nH2(p). (2.10)

For 1
2
≤ p < 1, (

n

�np�
)
≤ 2nH2(p) . (�)

For 1
2
≤ p < 1,

2nH2(p)

n+ 1
≤
(

n

�np�
)
. (2.11)

For 0 < p ≤ 1
2
,

2nH2(p)

n+ 1
≤
(

n

�np�
)
. (†)

The proof uses the following lemma.

Lemma 2.1.37 Let n be an integer and let p ∈ (0, 1) be such that np is an integer.
Then

2nH2(p)

n+ 1
≤
(
n

np

)
≤ 2nH2(p) .
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Proof. The inequality (
n

np

)
pnp(1− p)n(1−p) ≤ 1

follows from the fact that the left-hand side is a probability, namely P (B(n, p) =
np). Therefore (

n

np

)
≤ p−np(1− p)−n(1−p) = 2nH2(p) .

The integer value k = np will be shown to maximize
(
n
k

)
among all integers k such

that 0 ≤ k ≤ n. Therefore

1 =
n∑

k=0

(
n

k

)
pk(1− p)n−k ≤ (n+ 1)

(
n

np

)
pnp(1− p)n(1−p)

= (n+ 1)

(
n

np

)
2−nH2(p) .

To prove that k = np maximizes
(
n
k

)
, compare two adjacent terms. We have(

n

k

)
pk(1− p)n−k −

(
n

k + 1

)
pk+1(1− p)n−k−1

=

(
n

k

)
pk(1− p)n−k

(
1− p(n− k)

(1− p)(k + 1)

)
.

This difference is non-negative if and only if

1− p(n− k)

(1− p)(k + 1)
≥ 0

or, equivalently, k ≥ pn− (1− p). This shows that the function k → (
n
k

)
increases

as k varies from 0 to pn and decreases afterwards. �

We now proceed to the proof of Theorem 2.1.36:

Proof. Proof of (2.10):(
n

�np�
)
ppn(1− p)(1−p)n ≤

(
n

�np�
)
p�np	(1− p)n−�np	

≤
n∑

k=0

(
n

k

)
pk(1− p)n−k = 1 .

Inequality (�) is proved in a similar way, or by an obvious symmetry argument.
Inequality (2.11) follows from Lemma 2.1.37, since(

n

�np�
)
≥ 2nH2(�np	/n)

n+ 1
≥ 2nH2(p)

n+ 1
.

The proof of (†) is proved in a similar way, or by a symmetry argument. �
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The Geometric Distribution

Definition 2.1.38 A random variable X taking its values in + := {1, 2, . . . , }
and with the distribution

P (T = k) = (1− p)k−1p , (2.12)

where 0 < p < 1, is called a geometric random variable with parameter p.

This is denoted
X ∼ Geo(p) .

Of course, if p = 1, P (T = 1) = 1, and if p = 0, P (T =∞) = 1. If 0 < p < 1,

P (T <∞) =
∞∑
n=1

(1− p)k−1p =
1

1− (1− p)
=

p

p
= 1 ,

and therefore P (T =∞) = 0.

Example 2.1.39: First “heads” in the sequence. We are in the heads and
tails framework. Define the random variable T to be the first time of occurrence
of 1 in the sequence X1, X2, . . ., that is,

T = inf{n ≥ 1;Xn = 1},
with the convention that if Xn = 0 for all n ≥ 1, then T =∞. The event {T = k}
is exactly {X1 = 0, . . . , Xk−1 = 0, Xk = 1}, and therefore,

P (T = k) = P (X1 = 0) · · ·P (Xk−1 = 0)P (Xk = 1),

that is, for k ≥ 1,
P (T = k) = (1− p)k−1p .

Theorem 2.1.40 The mean of a geometric random variable X with parameter
p > 0 is

E[X] = 1
p
.

Proof.

E [X] =
∞∑
k=1

k (1− p)k−1 p =
1

p2
× p =

1

p
.

�

Theorem 2.1.41 A geometric random variable T with parameter p ∈ (0, 1) is
memoryless in the sense that for any integers k, k0 ≥ 1, we have P (T = k+k0 |T >
k0) = P (T = k).
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Proof.

P (T > k0) =
∞∑

k=k0+1

(1− p)k−1 p = (1− p)k0

and therefore

P (T = k0 + k|T > k0) =
P (T = k0 + k, T > k0)

P (T > k0)
=

P (T = k0 + k)

P (T > k0)

=
p (1− p)k+k0−1

(1− p)k0
= p (1− p)k = P (T = k) .

�

Example 2.1.42: The coupon collector, take 1. In a certain brand of
chocolate tablets one can find coupons, one in each tablet, randomly and indepen-
dently chosen among n types. A prize may be claimed once the chocolate amateur
has gathered a collection containing all the types of coupons. We seek to compute
the average value of the number X of chocolate tablets bought when this happens
for the first time.

For 0 ≤ i ≤ n − 1, let Xi be the number of tablets it takes after (>) i different
types of coupons have been collected to find a new type of coupon (in particular,
X0 = 1), so that

X =
n−1∑
i=0

Xi ,

where each Xi (1 ≤ i ≤ n − 1) is a geometric random variable with parameter
pi = 1− i

n
. In particular,

E [Xi] =
1

pi
=

n

n− i
,

(still true for i = 0) and therefore

E [X] =
n−1∑
i=0

E [Xi] = n
n−1∑
i=0

1

n− i
= n

n∑
i=1

1

i
.

The sum H(n) :=
∑n

i=1
1
i
(called the n-th harmonic number) satisfies the inequal-

ity
log n ≤ H(n) ≤ log n+ 1 , (2.13)

as can be seen by expressing log n as the integral
∫ n

1
1
x
dx, partitioning the domain

of integration with segments of unit length, and using the fact that the integrand
is a decreasing function, which gives the inequalities

n∑
i=2

1

i
≤
∫ n

1

dx

x
≤

n−1∑
i=1

1

i
.

Therefore,
E [X] = (1 + o(1))n log n ,

where o(1) is a symbolic representation of a function of the positive integers that
tend to 0 as n ↑ ∞ (Landau’s notation; see Section A.5).
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The Hypergeometric Distribution

Recall Example 1.2.17. There is an urn containing N1 black balls and N2 red balls.
You draw successively without replacement and at random n balls from the urn
(n ≤ N1+N2). The probability of having drawn k black balls (0 ≤ k ≤ inf(N1, n))
is:

pk =

(
N1

k

)(
N2

n−k

)(
N1+N2

n

) .

This probability distribution is called the hypergeometric distribution of parame-
ters N1 and N2.

The Poisson Distribution

Definition 2.1.43 A random variable X taking its values in and such that for
all k ≥ 0,

P (X = k) = e−θ θk

k!
,

is called a Poisson random variable with parameter θ ≥ 0.

This is denoted by
X ∼ Poi(θ) .

If θ = 0, X ≡ 0 (the general formula applies if one uses the convention 0! = 1).

Example 2.1.44: The Poisson law of rare events, take 1. A veterinary
surgeon in the Prussian cavalry once gathered data concerning the accidents due to
horse kickbacks among soldiers. He deduced that the (random) number of accidents
of the kind had a Poisson distribution. Here is an explanation.

Suppose that you play “heads and tails” for a large number n of (independent)
tosses using a coin such that

P (Xi = 1) =
α

n
.

In the Prussian army example, n is the (large) number of soldiers, and Xi = 1 if
the i-th soldier has been hurt by a horse. Let Sn be the total number of heads (of
wounded soldiers). We show that

lim
n↑∞

P (Sn = k) = e−αα
k

k!
, (�)

and this explains the findings of the veterinary surgeon. (The average number of
casualties is α and the choice P (Xi = 1) = α

n
guarantees this. Letting n ↑ ∞

accounts for n being large but unknown.) Here is the proof of the mathematical
statement.

The random variable Sn follows a binomial law with mean n× α
n
= α:

P (Sn = k) =

(
n

k

)(α
n

)k (
1− α

n

)n−k

.
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In particular P (Sn = 0) =
(
1− α

n

)n → e−α as n ↑ ∞. Also,

P (Sn = k + 1)

P (Sn = k)
=

n−k
k+1

α
n

1− α
n

tends to α
k+1

as n ↑ ∞, from which (�) follows.

Theorem 2.1.45 The mean of a Poisson random variable with parameter θ is
given by

E[X] = θ ,

and its variance is
Var (X) = θ .

Proof.

E [X] = e−θ

∞∑
k=1

θk

k!
k = e−θθ

∞∑
j=0

θj

j!
= e−θθeθ = θ

and

E
[
X2 −X

]
= e−θ

∞∑
k=0

(
k2 − k

) θk
k!

= e−θ

∞∑
k=2

k (k − 1)
θk

k!

= e−θθ2
∞∑
k=2

θk−2

(k − 2)!
= e−θθ2

∞∑
j=0

θj

j!
= e−θθ2eθ = θ2 .

Therefore

Var (X) = E
[
X2
]− E [X]2

= E
[
X2 −X

]
+ E [X]− E [X]2 = θ2 + θ − θ2 = θ.

�

Theorem 2.1.46 Let X1 and X2 be two independent Poisson random variables
with means θ1 > 0 and θ2 > 0, respectively. Then X = X1 + X2 is a Poisson
random variable with mean θ = θ1 + θ2.

Proof. For k ≥ 0,

P (X = k) = P (X1 +X2 = k) = P

(
k∑

i=0

{X1 = i, X2 = k − i}
)

=
k∑

i=0

P (X1 = i, X2 = k − i) =
k∑

i=0

P (X1 = i)P (X2 = k − i)

=
k∑

i=0

e−θ1
θi1
i!
e−θ2

θk−i
2

(k − i)!
= e−(θ1+θ2)

(θ1 + θ2)
k

k!
,

where we used the binomial formula. �
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The Multinomial Distribution

Consider the random vector X = (X1, . . . , XN ) where all the random variables Xi

take their values in the same (this restriction is not essential, but it simplifies the
notation) denumerable space E. Let p : EN → + be a function such that∑

x∈EN

p(x) = 1 .

Definition 2.1.47 The discrete random vector X above is said to admit the prob-
ability distribution p if for all sets C ⊆ EN ,

P (X ∈ C) =
∑
x∈C

p(x) .

In fact, there is nothing new here since X is a discrete random variable taking its
values in the denumerable set X := EN .

Considerm balls to be placed inN boxes B1, . . . , BN independently of one another,
with the probability pi for a given ball to be assigned to box Bi. Of course,∑N

i=1 pi = 1 .

Box 1 Box 2 Box N

p1

p2 pN

m balls

After placing all the balls in the boxes, there are Xi balls in box Bi, where∑N
i=1 Xi = m.

The random vector X = (X1, . . . , XN ) is a multinomial vector of size (N,m) and
parameters p1, . . . , pN , that is, its probability distribution is

P (X1 = m1, . . . , XN = mN) =
k!∏N

i=1(mi)!

∏N
i=1 p

mi

i ,

where m1 + · · ·+mN = m.

Proof. Observe that (α): there are m!/
∏N

i=1(mi)! distinct ways of placing m balls
in N boxes in such a manner that m1 balls are in box B1,m2 are in B2, etc., and
(β): each of these distinct ways occurs with the same probabilty

∏N
i=1 p

mi

i . �
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The Uniform Distribution on [0, 1]

This subsection introduces non-discrete random variables. In fact, it gives just
what is strictly necessary in this book, in particular, the notion of independent
random numbers.

Definition 2.1.48 A function X : Ω→ such that for all x ∈
{ω;X(ω) ≤ x} ∈ F

is called a real random variable.

Its cumulative distribution function is the function F (x) := P (X ≤ x). If

F (x) =

∫ x

−∞
f(y) dy ,

for all x ∈ for some non-negative function f such that
∫ +∞
−∞ f(y) dy = 1, the

latter is called the probability density function, or pdf, of X.

The following example is all we need in this book.

Example 2.1.49: The uniform distribution. Let [a, b] ∈ . A real random
variable X with the pdf

f(x) =
1

b− a
1[a,b](x)

is called a uniform random variable on [a, b]. This is denoted by

X ∼ U([a, b]) .

Uniform random variables are used in simulation, more precisely, to generate a
discrete random variable Z with a prescribed distribution P (Z = ai) = pi (0 ≤
i ≤ K). The basic principle of the sampling algorithm is the following

Draw U ∼ U([0, 1]).
Set Z = a� if U ∈ I� := (p0 + p1 + . . .+ p�−1, p0 + p1 + . . .+ p�].

Indeed, since the interval I� has length pl, P (Z = a�) = P (U ∈ I�) = p�.

This method is called the method of the inverse.

Definition 2.1.50 A real random vector of dimension d is a mapping X =
(X1, . . . , Xd) : Ω→ such that each coordinate Xi is a real random variable.

A non-negative function f : d → such that
∫

d f(x) dx = 1 and

P (X1 ≤ x1, . . . , Xd ≤ xd) =

∫ x1

−∞
· · ·

∫ xd

−∞
f(x1, . . . , xd) dx1 · · · dxd

is called the probability distribution function of the random vector X.
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Definition 2.1.51 The real random variables X1, . . . , Xd admitting the respective
pdf’s f1, . . . , fd are said to be independent if the pdf of the random vector X =
(X1, . . . , Xd) is of the form

f(x1, . . . , xd) = f1(x1)× · · · × f(xd)

where the fi’s are non-negative functions such that
∫ +∞
−∞ fi(y) dy = 1.

The fi’s are then the pdf’s of the Xi’s. For instance with i = 1,

P (X1 ≤ x1) = P (X1 ≤ x1, X2 <∞ . . . , Xd <∞)

=

∫ x1

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
f1(x1)f2(x2) · · · fd(xd) dx1 · · · dxd

=

∫ x1

−∞
f1(x1) dx1

∫ +∞

−∞
f2(x2) dx2 · · ·

∫ +∞

−∞
fd(xd)dxd =

∫ x1

−∞
f1(x1) dx1 .

Definition 2.1.52 The real random variables X1, X2 . . . admitting the respective
pdf’s f1, f2, . . . are said to be independent if for all integers k ≥ 2, the random
variables X1, . . . , Xd are independent.

Example 2.1.53: Sequence of independent random numbers. The se-
quence {Un}n≥1 is called a sequence of independent random numbers if for all
k ≥ 1, U1, . . . , Uk are independent random variables uniformly distributed on the
interval [0, 1].

The Gilbert–Erdös–Rényi Random Graphs

A graph is a discrete object and therefore random graphs are, from the purely
formal point of view, discrete random variables. The random graphs considered in
this book are in fact described by a finite collection of iid {0, 1}-valued random
variables. They will be studied in more detail in Chapter 10. The basic definitions
of graph theory below will be complemented as the need arises.

A (finite) graph (V, E) consists of a finite collection V of vertices v and of a collec-
tion E of unordered pairs of distinct vertices, 〈u, v〉, called the edges. If 〈u, v〉 ∈ E ,
then u and v are called neighbours, and this is also denoted by u ∼ v. The degree
of vertex v ∈ V is the number of edges stemming from it.

In a few occasions, some redundancy in the notation will be useful: V and E will
be denoted by V (G) and E(G).

A subgraph (or induced subgraph) of a graph G = (V, E) is any graph G′ = (V ′, E ′)
with V ′ ⊆ V and E ′ = {〈u, v〉 ∈ E ; u, v ∈ V ′}. Such graph is also called the
restriction of G to V ′ and is denoted by G|V ′ .

A complete graph is one having all the possible
(
n
2

)
edges. It will be denoted by Kn

and its edge set by En. Note that a subgraph of a complete graph is also complete.
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A complete subgraph is called a clique of the graph. Note that a singleton of V is
a clique.

The complete pythagorean graph

A graph is connected if for all pairs of distinct vertices v, w, there is a sequence
v0 = v, v1, . . . , vn = w (called a path from v to w) and such that v0 ∼ v1 ∼ . . . ∼ vn.

A cycle of a graph is a sequence of distinct vertices v1, v2, . . . , vn such that v1 ∼
v2 ∼ . . . ∼ vn ∼ v1. A tree is a connected graph without cycles.

Let G1 = (V, E1) and G2 = (V, E2) be two graphs with the same set of vertices.
The graph G = G1 ∪ G2 is by definition the graph on the set of vertices V such
that e ∈ E if and only if e ∈ E1 ∪ E2. This graph is called the union of G1 and G2.
One defines similarly the intersection of G1 and G2, G = G1 ∩G2, to be the graph
on the set of vertices V such that e ∈ E if and only if e ∈ E1 ∩ E2. One writes
G2 ⊆ G1 if and only if E(G1) ⊆ E(G2).

Some graph properties may be difficult to verify on a given graph. However, there
exist results showing that they are satisfied (or not) for “large” and “typical”
graphs. The question of course is: what is a typical graph? One possible choice is
the Gilbert random graph (Definition 2.1.54 below).

Definition 2.1.54 (Gilbert, 1959) Let n be a fixed positive integer and let V =
{1, 2, . . . , n} be a finite set of vertices. To each unordered pair of distinct vertices
〈u, v〉, associate a random variable X〈u,v〉 taking its values in {0, 1} and suppose
that all such variables are iid with probability p ∈ (0, 1) for the value 1. This
defines a random graph denoted by G(n, p), a random element taking its values in
the (finite) set of all graphs with vertices {1, 2, . . . , n} and admitting for edge the
unordered pair of vertices 〈u, v〉 if and only if X〈u,v〉 = 1.

Note that G(n, p) is indeed a discrete random variable (taking its values in the
finite set consisting of the collection of graphs with vertex set V = {1, 2, . . . , n}).
Similarly, the set En,p of edges of G(n, p) is also a discrete random variable. If
we call any unordered pair of vertices 〈u, v〉 a potential edge (there are

(
n
2

)
such

edges forming the set En), G(n, p) is constructed by accepting a potential edge as
one of its edges with probability p independently of all other potential edges. The
probability of occurence of a graph G with exactly m edges is then

P (G(n, p) = G) = P (|En,p| = m) = pm(1− p)(
n
2)−m .
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Note that the degree of a given vertex, that is the number of edges stemming from
it, is a binomial random variable B(n − 1, p). In particular, the average degree is
d = (n− 1)p.

Another type of random graph is the Erdös–Rényi random graph (Definition 2.1.55
below). It is closely related to the Gilbert graph as we shall see below, in Theorem
2.1.56.

Definition 2.1.55 (Erdös and Rényi, 1959) Consider the collection Gm of graphs

G = (V, E) where V = {1, 2, . . . , n} with exactly m edges (|E| = m). There are
((n2)

m

)
such graphs. The Erdös–Rényi random graph Gn,m is a random graph uniformly
distributed on Gm.

(The notation is chosen for a quick differentiation between Gilbert graphs Gn,m
and Erdös–Rényi graphs G(n, p).)
Denoting by En,m the (random) collection of edges of Gn,m, the probability of
obtaining a given graph G ∈ Gm is

P (G) =

((n
2

)
m

)−1

.

The random graph Gn,m can be constructed by including m edges successively at
random. More precisely, denoting by Gk (0 ≤ k ≤ m) the successive graphs, and
by Ek the collection of edges of Gk, G0 = (V,∅) and for 1 ≤ k ≤ m, Ek = Ek−1∪ek,
where

P (ek = e | G0, . . . , Gk−1) = |En\Ek−1|−1

for all edges e ∈ En\Ek−1.

Theorem 2.1.56 The conditional distribution of G(n, p) given that the numner
of edges is m ≤ (

n
2

)
is uniform on the set Gm of graphs G = (V, E) where V =

{1, 2, . . . , n} with exactly m edges.

Proof. Let G be a graph with vertex set V have exactly m edges. Observing that
{G(n, p) = G} ⊆ {|En,p| = m}, we have that

P (G(n, p) = G | |En,p| = m) =
P (G(n, p) = G, |En,p| = m)

P (|En,p| = m)

=
P (G(n, p) = G)

P (|En,p| = m)

=
pm(1− p)(

n
2)−m((n2)

m

)
pm(1− p)(

n
2)−m

=

((n
2

)
m

)−1

.

�

Remark 2.1.57 In the sequel, we will follow the tradition of refering to Gilbert
graphs as Erdös–Rényi graphs.
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2.2 Generating functions

2.2.1 Definition and Properties

The computation of probabilities in discrete probability models often require an
enumeration of all the possible outcomes realizing this particular event. Generat-
ing functions are very useful for this task, and more generally, for obtaining the
probability distributions of integer-valued random variables. We first define the
expectation of a complex-valued function of a random variable.

Let X be a discrete random variable with values in , and let ϕ : → be
a complex function with real and imaginary parts ϕR and ϕI respectively. The
expectation E[ϕ(X)] is naturally defined by

E[ϕ(X)] := E[ϕR(X)] + iE[ϕI(X)] ,

provided the expectations on the right-hand side are well-defined and finite. This
is the case if E [|ϕ(X)|] <∞.

Definition 2.2.1 Let X be an integer-valued random variable. Its generating func-
tion (gf) is the function g : D → defined by

g(z) := E[zX ] =
∞∑
k=0

P (X = k)zk , (2.14)

and where D := D(0;R) := {z ∈ ; |z| ≤ R} is the closed disk of absolute conver-
gence of the above series.

Since
∑∞

n=0 P (X = n) = 1 <∞, R ≥ 1. In the next two examples, R =∞.

Example 2.2.2: gf of the binomial variable. For the binomial random
variable of size n and parameter p,

g(z) =
∑n

k=0

(
n
k

)
pk(1− p)n−kzk =

∑n
k=0

(
n
k

)
(zp)k(1− p)n−k ,

and therefore
g(z) = (1− p+ pz)n .

Example 2.2.3: gf of the Poisson variable. For the Poisson random vari-
able of mean θ,

g(z) = e−θ
∑∞

k=0
(θ)k

k!
zk = e−θ

∑∞
k=0

(θz)k

k!
,

and therefore
g(z) = eθ(z−1) .
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Next is an example where the radius of convergence is finite.

Example 2.2.4: gf of the geometric variable. For the geometric random
variable of (2.12),

g(z) =
∑∞

k=0 p(1− p)k−1 zk .

The radius of convergence of this generating function power series is 1
1−p

and its
sum is

g(z) =
∑∞

k=0 pz((1− p)z)k−1 = pz
1−qz

.

Theorem 2.2.5 The generating function characterizes the distribution of a ran-
dom variable.

This means the following. Suppose that, without knowing the distribution of X,
you have been able to compute its generating function g, and that, moreover, you
are able to give its power series expansion in a neighborhood of the origin1, say,

g(z) =
∞∑
n=0

anz
n.

Since g is the generating function of X,

g(z) =
∞∑
n=0

P (X = n)zn

and since the power series expansion around the origin is unique, P (X = n) = an
for all n ≥ 0. Similarly, if two integer-valued random variables X and Y have the
same generating function, they have the same distribution. Indeed, the identity
in a neighborhood of the origin of two power series implies the identity of their
coefficients.

Theorem 2.2.6 Let X and Y be two independent integer-valued random variables
with respective generating functions gX and gY . Then the sum X + Y has the gf

gX+Y (z) = gX(z)× gY (z).

Proof. Use the product formula for expectations:

gX+Y (z) = E
[
zX+Y

]
= E

[
zXzY

]
= E

[
zX
]
E
[
zY
]
.

�

Example 2.2.7: Sum of independant Poisson variables. Let X and Y be
two independent Poisson random variables with means α and β respectively. The

1
This is a common situation; see Theorem 2.2.10 for instance.
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sum X + Y is a Poisson random variable with mean α + β. Indeed, by Theorem
2.2.6,

gX+Y (z) = gX(z)× gY (z) = eα(z−1) eβ(z−1) = e(α+β)(z−1),

and the assertion follows directly from Theorem 2.2.5 since gX+Y is the gf of a
Poisson random variable with mean α + β.

The next result gives concerns the shape of the generating function restricted to
the interval [0, 1].

Theorem 2.2.8 (α) Let g : [0, 1]→ be defined by g(x) = E[xX ], where X is a
non-negative integer-valued random variable. Then g is nondecreasing and convex.
Moreover, if P (X = 0) < 1, it is strictly increasing, and if P (X ≤ 1) < 1, it is
strictly convex.

(β) Suppose P (X ≤ 1) < 1. If E[X] ≤ 1, the equation x = g(x) has a unique
solution x ∈ [0, 1], namely x = 1. If E[X] > 1, it has two solutions in [0, 1], x = 1
and x = x0 ∈ (0, 1).

Proof. Just observe that for x ∈ [0, 1],

g′(x) =
∞∑
n=1

nP (X = n)xn−1 ≥ 0,

and therefore g is nondecreasing, and

g′′(x) =
∞∑
n=2

n(n− 1)P (X − n)xn−2 ≥ 0,

and therefore g is convex. For g′(x) to be null for some x ∈ (0, 1), it is necessary
to have P (X = n) = 0 for all n ≥ 1, and therefore P (X = 0) = 1. For g′′(x) to be
null for some x ∈ (0, 1), one must have P (X = n) = 0 for all n ≥ 2, and therefore
P (X = 0) + P (X = 1) = 1.

1

P (X = 0)

0 1
E[X] ≤ 1

0

P (X = 0)

1

1

E[X] > 1

Two aspects of the generating function

The graph of g : [0, 1] → has, in the strictly increasing strictly convex case
P (X = 0) + P (X = 1) < 1, the general shape shown in the figure, where we
distinguish two cases: E[X] = g′(1) ≤ 1, and E[X] = g′(1) > 1. The rest of the
proof is then easy. �
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Moments from the Generating Function

Generating functions are powerful computational tools. First of all, they can be
used to obtain moments of a discrete random variable.

Theorem 2.2.9 We have

g′(1) = E[X] (2.15)

and

g′′(1) = E[X(X − 1)]. (2.16)

Proof. Inside the open disk D(0;R) centered at the origin and of radius R, the
power series defining the generating function g is continuous, and differentiable at
any order term by term. In particular, differentiating twice both sides of (2.14)
inside the open disk D(0;R) gives

g′(z) =
∞∑
n=1

nP (X = n)zn−1, (2.17)

and

g′′(z) =
∞∑
n=2

n(n− 1)P (X = n)zn−2. (2.18)

When the radius of convergence R is strictly larger than 1, we obtain the announced
results by letting z = 1 in the previous identities.

If R = 1, the same is basically true but the mathematical argument is more
subtle. The difficulty is not with the right-hand side of (2.17), which is always well-
defined at z = 1, being equal to

∑∞
n=1 nP (X = n), a non-negative and possibly

infinite quantity. The difficulty is that g may be not differentiable at z = 1, a
boundary point of the disk (here of radius 1) on which it is defined. However, by
Abel’s theorem (Theorem A.1.3), the limit as the real variable x increases to 1 of∑∞

n=1 nP (X = n)xn−1 is
∑∞

n=1 nP (X = n). Therefore g′, as a function on the
real interval [0, 1), can be extended to [0, 1] by (2.15), and this extension preserves
continuity. With this definition of g′(1), Formula (2.15) holds true. Similarly, when
R = 1, the function g′′ defined on [0, 1) by (2.18) is extended to a continuous
function on [0, 1] by defining g′′(1) by (2.16). �

2.2.2 Random Sums

How to compute the distribution of random sums? Here again, generating functions
help.

Theorem 2.2.10 Let {Yn}n≥1 be an iid sequence of integer-valued random vari-
ables with the common generating function gY . Let T be another random variable,
integer-valued, independent of the sequence {Yn}n≥1, and let gT be its generating
function. The generating function of
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X =
∑T

n=1 Yn ,

where by convention
∑0

n=1 = 0, is

gX(z) = gT (gY (z)) . (2.19)

Proof.

∑
n≥0

znP (X = n) =
∑
n≥0

zn

(∑
k≥0

P (X = n, T = k)

)

=
∑
n≥0

zn

(∑
k≥0

P

(
k∑

j=1

Yj = n, T = k

))

=
∑
n≥0

zn

(∑
k≥0

P

(
k∑

j=1

Yj = n, T = k

))

=
∑
n≥0

zn

(∑
k≥0

P

(
k∑

j=1

Yj = n

)
P (T = k)

)

=
∑
k≥0

P (T = k)

(∑
n≥0

znP

(
k∑

j=1

Yj = n

))
.

But (∑
n≥0

znP

(
k∑

j=1

Yj = n

))
= g∑k

j=1 Yj
(z) = (gY (z))

k .

Therefore, ∑
n≥0

znP (X = n) =
∑
k≥0

P (T = k) (gY (z))
k = gT (gY (z)) .

�

By taking derivatives in (2.19),

E [X] = g,X(1) = g,Y (1)g
,
T (gY (1)) = E[Y1]E[T ].

This is Wald’s formula. Exercise 2.4.16 gives more general conditions for its validity.

2.2.3 Counting with Generating Functions

The following example is typical of the use of generating functions in combinatorics
(the art of counting).

Example 2.2.11: Lottery. Let X1, X2, X3, X4, X5, and X6 be independent
random variables uniformly distributed over {0, 1, . . . , 9}. We shall compute the
generating function of Y = 27+X1 +X2 +X3−X4−X5−X6 and use the result
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to obtain the probability that in a 6-digit lottery the sum of the first three digits
equals the sum of the last three digits. We have

E[zXi ] =
1

10
(1 + z + · · ·+ z9) =

1

10

1− z10

1− z
,

and therefore

E[z−Xi ] =
1

10

1

z9
1− z10

1− z
,

and

E[zY ] = E[
[
z27+

∑3
i=1 Xi−

∑6
i=4 Xi

]
= E

[
z27

3∏
i=1

zXi

6∏
i=4

z−Xi

]
= z27

3∏
i=1

E[zXi ]
6∏

i=4

E[z−Xi ] .

Therefore,

gY (z) =
1

106
(1− z10)

6

(1− z)6
.

But P (X1 + X2 + X3 = X4 + X5 + X6) = P (Y = 27) is the factor of z27 in the
power series expansion of gY (z). Since

(1− z10)6 = 1−
(
6

1

)
z10 +

(
6

2

)
z20 + · · ·

and

(1− z)−6 = 1 +

(
6

5

)
z +

(
7

5

)
z2 +

(
8

5

)
z3 + · · ·

(recall the negative binomial formula:

(1− z)−p = 1 +

(
p

p− 1

)
z +

(
p+ 1

p− 1

)
z2 +

(
p+ 2

p− 1

)
z3 + · · · ),

we find that

P (Y = 27) =
1

106

((
32

5

)
−
(
6

1

)(
22

5

)
+

(
6

2

)(
12

5

))
.

2.3 Conditional Expectation

2.3.1 Conditioning with Respect to an Event

Chapter 1 introduced the notion of conditional probability and the Bayes calculus
associated with it. We now introduce the notion of conditional expectation and
the set of rules accompanying it.



2.3. CONDITIONAL EXPECTATION 49

Let Z be a discrete random variable with values in E, and let f : E → be
a non-negative function. Let A be some event of positive probability. The condi-
tional expectation of f(Z) given A, denoted by E [f(Z) |A], is by definition the
expectation when the distribution of Z is replaced by its conditional distribution
given A, P (Z = z |A). Therefore

E [f(Z) |A] :=
∑
z

f(z)P (Z = z |A) .

Let {Ai}i∈ be a partition of the sample space. Then

E [f(Z)] =
∑
i∈

E [f(Z) |Ai]P (Ai) .

Proof. This is a direct consequence of the Bayes formula of total causes:

E [f(Z)] =
∑
z

f(z)P (Z = z) =
∑
z

(∑
i

f(z)P (Z = z |Ai)P (Ai)

)

=
∑
i

(∑
z

f(z)P (Z = z |Ai)

)
P (Ai) =

∑
i

E [f(Z) |Ai]P (Ai) .

�

The following elementary result will often be used, and therefore, we shall promote
it to the rank of theorem:

Theorem 2.3.1 Let Z be a random variable with values in E, and let f : E �→
be a non-negative function. Let A be some event of positive probability. Then

E [f(Z)1A] = E [f(Z) |A]P (A) .

Proof.

E [f(Z) |A]P (A) =

(∑
z∈E

f(z)P (Z = z |A)
)

P (A) =
∑
z∈E

f(z)P (Z = z , A) .

Now, the random variable f(Z)1A takes a non-null value if and only if this value is
of the form f(z) > 0, and this happens with probability P (Z = z , A). Therefore

E [f(Z)1A] =
∑

z ;f(z)>0

f(z)P (Z = z , A) =
∑
z∈E

f(z)P (Z = z , A) .

�

Example 2.3.2: Poisson bounding of multinomial events. (Mitzenmacher
and Upfal, 2005.) The computation of expectations concerning multinomial vectors
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often turns out to be difficult, whereas it might be considerably simpler in the
Poisson case. The result of this subsection gives, under certain conditions, a bound
for the expectation of interest in terms of the expectation computed for the Poisson
case. Before the precise statement of this result, some preliminary remarks are in
order.

Balls are placed in N bins in the following manner. The number of balls in any
given bin is a Poisson variable of mean m

N
, and is independent of the numbers in

the other bins. In particular, the total number of balls Y1+ · · ·+YN is, as the sum
of independent Poisson random variables, a Poisson random variable whose mean
is the sum of the means of the coordinates, that is m.

Let f ≥ 0 be a function of N integer-valued arguments, and let (X1, . . . , XN ) be a
multinomial random vector of size (m,N) and with parameters pi =

1
N

(obtained
by placing m balls independently and at random in N bins). Then, with the Yi’s
as above,

E [f(X1, . . . , XN)] ≤ e
√
mE [f(Y1, . . . , YN)] . (2.20)

In particular, with f the indicator of some subset E of N , the probability that
(X1, . . . , XN ) ∈ E is less than e

√
m times the probability that (Y1, . . . , YN) ∈ E.

This can be rephrased in imprecise but suggestive terms as follows: An event that
has probability P in the Poisson case happens with probability at most e

√
mP in

the multinomial case.

Proof. For a given arbitrary integer k, the conditional probability that there are
k1 balls in bin 1, k2 balls in bin 2, . . . , given that the total number of balls is
k1 + · · ·+ kN = k is

P (Y1 = k1, . . . , YN = kN |Y1 + · · ·+ YN = k)

=
P (Y1 = k1, . . . , YN = kN , Y1 + · · ·+ YN = k)

P (Y1 + · · ·+ YN = k)

=
P (Y1 = k1, . . . , YN = kN)

P (Y1 + · · ·+ YN = k)
.

By independence of the Yi’s and since they are Poisson variables with mean m
N
,

P (Y1 = k1, . . . , YN = kN) =
N∏
i=1

(
e−

m
N

(
m
N

)ki
ki!

)
.

Also, P (Y1 + · · ·+ YN = k) = e−mmk

k!
. Therefore

P (Y1 = k1, . . . , YN = kN |Y1 + · · ·+ YN = k) =
k!

k1! · · · kN !
(

1

N

)N

.

But this is equal to P (Z1 = k1, . . . , ZN = kN), where Zi is the number of balls in
bin i when k = k1 + · · ·+ kN balls are placed independently and at random in the
N bins. Note that the above equality is independent of m.

Now:
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E [f(Y1, . . . , YN)] =
∞∑
k=0

E

[
f(Y1, . . . , YN) |

N∑
i=1

Yi = k

]
P

(
N∑
i=1

Yi = k

)

≥ E

[
f(Y1, . . . , YN) |

N∑
i=1

Yi = m

]
P

(
N∑
i=1

Yi = m

)

= E [f(X1, . . . , XN)]P

(
N∑
i=1

Yi = m

)

= E [f(X1, . . . , XN)]
mme−m

m!
.

The announced result will follow from the bound

m! ≤ e
√
m
(m
e

)m

. (�)

For this, use the fact that, by concavity of the function x→ log x,∫ i

i−1

log x dx ≥ log(i− 1) + log i

2
,

and therefore ∫ m

1

log x dx ≥
m∑
i=1

log i− logm

2
= log(m!)− logm

2
.

Integration by parts gives m logm − m + 1 =
∫ m

1
log x dx. Therefore m logm −

m + 1 ≥ log(m!) − logm
2

, from which the announced inequality follows by taking
exponentials. �

There exists a stronger version of (2.20):

E [f(X1, . . . , XN )] ≤ 4E [f(Y1, . . . , YN)] ,

but this time it is required in addition that E [f(X1, . . . , XN)] should be a quantity
increasing with the number m of balls.

Proof.

E [f(Y )] =
∞∑
k=0

E
[
f(Y ) |

∑
Yi = k

]
P
(∑

Yi = k
)

≥
∞∑

k=m

E
[
f(Y ) |

∑
Yi = k

]
P
(∑

Yi = k
)

≥ E
[
f(Y ) |

∑
Yi = m

]
P
(∑

Yi = k
)

≥ E [f(X)] P
(∑

Yi = k
)
≥ E [f(X)]× 1

4
,

since for any Poisson variable Z with a mean θ that is a positive integer, P (Z ≥
θ) ≥ 1

4
. �
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2.3.2 Conditioning with Respect to a Random Variable

Let X and Y be two discrete random variables taking their values in the denu-
merable sets F and G respectively. Let the function g : F ×G→ be either non-
negative, or such that E[|g(X, Y )|] <∞. For each y ∈ G such that P (Y = y) > 0,
define

ψ(y) :=
∑
x∈F

g(x, y)P (X = x |Y = y) , (2.21)

and let ψ(y) := 0 otherwise. The sum in (2.21) is well-defined (possibly infinite
however) when g is non-negative. Note that in the non-negative case, we have that∑

y∈G
ψ(y)P (Y = y) =

∑
y∈G

∑
x∈F

g(x, y)P (X = x |Y = y)P (Y = y)

=
∑
x

∑
y

g(x, y)P (X = x, Y = y) = E[g(X, Y )].

In particular, if E[g(X, Y )] < ∞,
∑

y∈G ψ(y)P (Y = y) < ∞, which implies that

(Theorem 2.1.27) P (ψ(Y ) < ∞) = 1. Therefore, E
[
EY [g(X, Y )]

]
< ∞. Let

now g : F × G → be a function of arbitrary sign such that E[|g(X, Y )|] <
∞, and in particular E[g±(X, Y )] < ∞. Denote by ψ± the functions associated
with g± as in (2.21). As we just saw, for all y ∈ G, ψ±(y) < ∞, and therefore
ψ(y) = ψ+(y)− ψ−(y) is well-defined (not an indeterminate ∞−∞ form). Thus,
the conditional expectation is well-defined also in the integrable case. From the
observation made a few lines above, in this case,

|EY [g(X, Y )]| = |EY [g+(X, Y )]|+ |EY [g−(X, Y )]| <∞, P -a.s.

Definition 2.3.3 The number ψ(y) defined by (2.21) is called the conditional ex-
pectation of g(X, Y ) given Y = y, and is denoted by EY=y[g(X, Y )] or, alterna-
tively, by E[g(X, Y ) |Y = y]. The random variable ψ(Y ) is called the conditional
expectation of g(X, Y ) given Y , and is denoted by EY [g(X, Y )] or E[g(X, Y ) |Y ].

Example 2.3.4: The hypergeometric distribution. Let X1 and X2 be in-
dependent binomial random variables of same size N and same parameter p. We
are going to show that

EX1+X2 [X1] = ψ(X1 +X2) =
X1 +X2

2
.

We have

P (X1 = k|X1 +X2 = n) =
P (X1 = k,X1 +X2 = n)

P (X1 +X2 = n)

P (X1 = k,X2 = n− k)

P (X1 +X2 = n)

P (X1 = k)P (X2 = n− k)

P (X1 +X2 = n)
.
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Inserting the values of the probabilities thereof, and using the fact that the sum
of two independent binomial random variables with size N and parameter p is a
binomial random variable with size 2N and parameter p, a straightforward com-
putation gives

P (X1 = k|X1 +X2 = n) =

(
N
k

)(
N

n−k

)(
2N
n

) .

This is the hypergeometric distribution. The right-hand side of the last display is
the probability of obtaining k black balls when a sample of n balls is randomly
selected from an urn containing N black balls and N red balls. The mean of such
a distribution is (by symmetry) n

2
, therefore

EX1+X2=n[X1] =
n

2
= ψ(n)

and this gives the announced result. A more elegant solution is given in Exercise
2.4.22 where the reader will also discover that the result is more general.

Example 2.3.5: Two Poisson variables. Let X1 and X2 be two independent
Poisson random variables with respective means θ1 > 0 and θ2 > 0. We seek to
compute EX1+X2 [X1], that is E

Y [X], where X = X1, Y = X1+X2. For y ≥ x, the
same computations as in Example 2.3.4 give

P (X = x |Y = y) =
P (X1 = x)P (X2 = y − x)

P (X1 +X2 = y)
.

Inserting the values of the the probabilities thereof, and using the fact that the
sum of two independent Poisson random variables with parameter θ1 and θ2 is a
Poisson random variable with parameter θ1 + θ2, a simple computation yields

P (X = x |Y = y) =

(
y

x

)(
θ1

θ1 + θ2

)x(
θ2

θ1 + θ2

)y−x

.

Therefore, with α = θ1
θ1+θ2

,

ψ(y) = EY=y[X] =

y∑
x=0

x

(
y

x

)
αx(1− α)y−x = αy .

Finally, EY [X] = ψ(Y ) = αY , that is,

EX1+X2 [X1] =
θ1

θ1 + θ2
(X1 +X2) .



54 CHAPTER 2. RANDOM VARIABLES

2.3.3 Basic Properties of Conditional Expectation

The first property of conditional expectation, linearity, is obvious from the defini-
tions: For all λ1, λ2 ∈ ,

EY [λ1g1(X, Y ) + λ2g2(X, Y )] = λ1E
Y [g1(X, Y )] + λ2E

Y [g2(X, Y )]

whenever the conditional expectations thereof are well-defined and do not produce
∞−∞ forms. Monotonicity is equally obvious: if g1 ≤ g2, then

EY [g1(X, Y )] ≤ EY [g2(X, Y )].

Theorem 2.3.6 If g is non-negative or such that E[|g(X, Y )|] <∞, we have

E[EY [g(X, Y )]] = E[g(X, Y )].

Proof.

E[EY [g(X, Y )]] = E[ψ(Y )]] =
∑
y∈G

ψ(y)P (Y = y)

=
∑
y∈G

∑
x∈F

g(x, y)P (X = x |Y = y)P (Y = y)

=
∑
x

∑
y

g(x, y)P (X = x, Y = y) = E[g(X, Y )].

�

Theorem 2.3.7 If w is non-negative or such that E[|w(Y )|] <∞,

EY [w(Y )] = w(Y ),

and more generally,

EY [w(Y )h(X, Y )] = w(Y )EY [h(X, Y )] ,

assuming that the left-hand side is well-defined.

Proof. We prove the second (more general) identity. We do this for non-negative
w and h, the general case following easily from this special case:

EY=y[w(Y )h(X, Y )] =
∑
x∈F

w(y)h(x, y)P (X = x |Y = y)

= w(y)
∑
x∈F

h(x, y)P (X = x |Y = y)

= w(y)EY=y[h(X, Y )].

�
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Theorem 2.3.8 If X and Y are independent and if v is non-negative or such that
E[|v(X)|] <∞, then

EY [v(X)] = E[v(X)].

Proof. We have

EY=y[v(X)] =
∑
x∈F

v(x)P (X = x |Y = y)

=
∑
x∈F

v(x)P (X = x) = E[v(X)].

�

Theorem 2.3.9 If X and Y are independent and if g : F×G→ is non-negative
or such that E[|g(X, Y )|] <∞, then, for all y ∈ G,

E[g(X, Y |Y = y] = E[g(X, y)].

Proof. Applying formula (2.21) with P (X = x |Y = y) = P (X = x) (by indepen-
dence), we obtain

ψ(y) =
∑
x∈F

g(x, y)P (X = x) = E [g(X, y)] .

�

Successive Conditioning

Suppose that Y = (Y1, Y2), where Y1 and Y2 are discrete random variables. In this
situation, we use the more developed notation

EY [g(X, Y )] = EY1,Y2 [g(X, Y1, Y2] .

Theorem 2.3.10 Let Y = (Y1, Y2) be as above, and let g : F × G → be either
non-negative or such that E[|g(X, Y )|] <∞. Then

EY2 [EY1,Y2 [g(X, Y1, Y2)]] = EY2 [g(X, Y1, Y2)].

Proof. Let
ψ(Y1, Y2) = EY1,Y2 [g(X, Y1, Y2)].

We must show that

EY2 [ψ(Y1, Y2)] = EY2 [g(X, Y1, Y2)].

But
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ψ(y1, y2) =
∑
x

g(x, y1, y2)P (X = x |Y1 = y1, Y2 = y2)

and

EY2=y2 [ψ(Y1, Y2)] =
∑
y1

ψ(y1, y2)P (Y1 = y1 |Y2 = y2),

that is,∑
y1

∑
x

g(x, y1, y2)P (X = x |Y1 = y1, Y2 = y2)P (Y1 = y1 |Y2 = y2).

But

P (X = x |Y1 = y1, Y2 = y2)P (Y1 = y1 |Y2 = y2)

=
P (X = x, Y1 = y1, Y2 = y2)

P (Y1 = y1, Y2 = y2)

P (Y1 = y1, Y2 = y2)

P (Y2 = y2)

= P (X = x, Y1 = y1 |Y2 = y2) .

Therefore

EY2=y2 [ψ(Y1, Y2)] =
∑
y1

∑
x

g(x, y1, y2)P (X = x, Y1 = y1 |Y2 = y2)

= EY2=y2 [g(X, Y1, Y2)].

�

Conditional Jensen’s Inequality

Theorem 2.3.11 Let I, ϕ and X be as in Theorem 3.1.5. Let Y be another ran-
dom variable. Then

E [ϕ(X) |Y ] ≥ ϕ(E [X |Y ]) .

Proof. The proof follows exactly the same lines as that of Theorem 3.1.5. �

The fkg Inequality

Theorem 2.3.12 Let E ⊆ and let f, g : En → be two bounded functions that
are non-decreasing in each of their arguments. Let Xn

1 := (X1, . . . , Xn) be a vector
of independent variables with values in E. Then,

E [f(Xn
0 )g(X

n
0 )] ≥ E [f(Xn

0 )]E [g(Xn
0 )] . (2.22)

In other words, f(Xn
0 ) and g(Xn

0 ) are positively correlated.
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Proof. By induction. For n = 1: Let X1 and Y1 be two independent and iden-
tically distributed E-valued random variables, and let f, g : E → + be two
non-decreasing bounded functions. Since f(X1) − f(Y1) and g(X1) − g(Y1) have
the same sign, their product is non-negative, and therefore

E [(f(X1)− f(Y1))(g(X1)− g(Y1))] ≥ 0 .

Developing the left-hand side

E [f(X1)g(X1)] + E [f(Y1)g(Y1)] ≥ E [f(X1)]E [g(Y1)] + E [f(Y1)]E [g(X1)] .

AsX1 and Y1 have the same distribution, the left-hand side equals 2E [f(X1)g(X1)].
Since X1 and Y1 have the same distribution and are independent, the right-hand
side equals 2E [f(X1)]E [g(X1)]. Therefore

E [f(X1)g(X1)] ≥ E [f(X1)]E [g(X1)] .

We now suppose that the result is true for n− 1 and show that it is then true for
n. From the independence of Xn−1

0 and Xn and Theorem 2.3.9,

E [f(Xn
0 )g(X

n
0 ) |Xn = xn] = E

[
f(Xn−1

0 , xn)g(X
n−1
0 , xn)

]
and since, by the result assumed for n− 1,

E
[
f(Xn−1

0 , xn)g(X
n−1
0 , xn)

] ≥ E
[
f(Xn−1

0 , xn)
]
E
[
g(Xn−1

0 , xn)
]

= E [f(Xn
0 ) |Xn = xn]E [g(Xn

0 ) |Xn = xn] ,

we have that

E [f(Xn
0 )g(X

n
0 ) |Xn = xn] ≥ E [f(Xn

0 ) |Xn = xn]E [g(Xn
0 ) |Xn = xn] ,

or

E [f(Xn
0 )g(X

n
0 ) |Xn] ≥ E [f(Xn

0 ) |Xn]E [g(Xn
0 ) |Xn] .

Taking expectations

E [f(Xn
0 )g(X

n
0 )] ≥ E [E [f(Xn

0 ) |Xn]E [g(Xn
0 ) |Xn]]

≥ E [E [f(Xn
0 ) |Xn]]E [E [g(Xn

0 ) |Xn]]

= E [f(Xn
0 ]E [g(Xn

0 ] ,

where the last inequality follows from the case n = 1 applied to the functions
xn → E [f(Xn

0 ) |Xn = xn] = E
[
f(Xn−1

0 , xn)
]
and xn → E [g(Xn

0 ) |Xn = xn] =
E
[
f(Xn−1

0 , xn)
]
which are non-decreasing. �

Remark 2.3.13 A stronger version of the above fkg inequality will be given in
Section 9.3.
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An Alternative Point of View

This subsection presents another definition of conditional expectation. It is the
starting point for a generalization to the case of random elements that are not dis-
crete. Even in the discrete case, this new perspective is indispensable (see Exercise
2.4.24).

Let X and Y be two discrete random variables with values in E and F respectively.
Let g : E×F → + be a function that is either non-negative or such that g(X, Y )
is integrable. For any non-negative bounded function ϕ : F → , we have

E
[
EY [g(X, Y )]ϕ(Y )

]
= E [g(X, Y )ϕ(Y )] . (�)

In fact,

E
[
EY [g(X, Y )]ϕ(Y )

]
= E [ψ(Y )ϕ(Y )] =

∑
y∈F

ψ(y)ϕ(y)P (Y = y)

=
∑
y∈F

(∑
x∈E

g(x, y)
P (X = x, Y = y)

P (Y = y)
dx

)
ϕ(y)P (Y = y)

=
∑
y∈F

∑
x∈E

g(x, y)ϕ(y)P (X = x, Y = y) = E [g(X, Y )ϕ(Y )] .

This suggests to take (�) as a basis for an extension of the definition of conditional
expectation. The conditioned variable is now any random element Z taking its
values in E, a denumerable subset of .

Definition 2.3.14 Let Z and Y be as above, and suppose that Z is either non-
negative or integrable. A conditional expectation EY [Z] is by definition a random
variable of the form ψ(Y ) such that equality

E [ψ(Y )ϕ(Y )] = E [Zϕ(Y )] (2.23)

holds for any non-negative bounded function ϕ : E → .

Theorem 2.3.15 In the situation described in the above definition, the conditional
expectation exists and is essentially unique.

By “essentially unique” the following is meant. If there are two functions ψ1 and
ψ2 that meet the requirement, then ψ1(Y ) = ψ2(Y ) almost surely.

Proof. The proof of existence is by the construction at the begining of the section,
replacing g(X, Y ) by Z (more explicitly, h : E → , X = Z, g(x, y) = h(z)).
For uniqueness, suppose that ψ1 and ψ2 meet the requirement. In particular
E [ψ1(Y )ϕ(Y )] = E [ψ2(Y )ϕ(Y )] (= E [Zϕ(Y )]), or E [(ψ1(Y )− ψ2(Y ))ϕ(Y )] =
0, for any non-negative bounded function ϕ : n → . Choose ϕ(Y ) =
1{ψ1(Y )−ψ2(Y )>0} to obtain
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E
[
(ψ1(Y )− ψ2(Y ))1{ψ1(Y )−ψ2(Y )>0}

]
= 0 .

Since the random variable (ψ1(Y )−ψ2(Y ))1{ψ1(Y )−ψ2(Y )>0} is non-negative and has
a null expectation, it must be almost surely null. In other terms ψ1(Y )−ψ2(Y ) ≤ 0
almost surely. Exchanging the roles of ψ1 and ψ2, we have that ψ1(Y )−ψ2(Y ) ≥ 0
almost surely. Therefore ψ1(Y )− ψ2(Y ) = 0 almost surely. �

Example 2.3.16: Let Y be a positive integer-valued random variable.

EY [Z] =
∞∑
n=1

E[Z1{Y=n}]
P (Y = n)

1{Y=n},

where, by convention,
E[Z1{Y =n}]

P (Y=n)
= 0 when P (Y = n) = 0 (in other terms, the sum

in the above display is over all n such that P (Y = n) > 0).

Proof. We must verify (2.23) for all bounded measurable ϕ : → . The right-
hand side is equal to

E

[(∑
n≥1

E[Z1{Y=n}]
P (Y = n)

1{Y=n}

)(∑
k≥1

ϕ(k)1{Y=k}

)]

=E

[∑
n≥1

E[Z1{Y=n}]
P (Y = n)

ϕ(n)1{Y=n}

]
=
∑
n≥1

E[Z1{Y=n}]
P (Y = n)

ϕ(n)E[1{Y=n}]

=
∑
n≥1

E[Z1{Y=n}]
P (Y = n)

ϕ(n)P (Y = n) =
∑
n≥1

E[Z1{Y=n}]ϕ(n)

=
∑
n≥1

E[Z1{Y=n}ϕ(n)] = E[Z(
∑
n≥1

ϕ(n)1{Y=n})] = E[Zϕ(Y )] .

�

2.4 Exercises

Exercise 2.4.1. Geometric

Let T1 and T2 be two independent geometric random variables with the same
parameter p ∈ (0, 1). Give the probability distribution of their sum X = T1 + T2.

Exercise 2.4.2. Variance of the coupon’s collector variable

In the coupon’s collector problem of Example 2.1.42, compute the variance σ2
X of

X (the number of chocolate tablets needed to complete the collection of the n

different coupons) and show that
σ2
X

n2 has a limit (to be identified) as n ↑ ∞.

Exercise 2.4.3. Poisson
1. Let X be a Poisson random variable with mean θ > 0. Compute the mean of
the random variable X! (factorial, not exclamation mark).
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2. Compute E
[
θX
]
.

3. What is the probability that X is odd?

Exercise 2.4.4. Random sum

Let {Xn}n≥1 be independent random variables taking the values 0 and 1 with
probability q = 1− p and p, respectively, where p ∈ (0, 1). Let T be a Poisson ran-
dom variable with mean θ > 0, independent of {Xn}n≥1. Compute the probability
distribution of S := X1 + · · ·+XT .

Exercise 2.4.5. The binomial random variable

(a) Let X ∼ B(n, p). Show that Y := n−X ∼ B(n, 1− p) .
(b) Let X1, . . . , X2n be independent random variables taking the values 0 or 1, and
such that for all i, P (Xi = 1) = p ∈ (0, 1). Give the probability distribution of the
random variable Z :=

∑n
i=1 Xi Xn+i.

Exercise 2.4.6. Null variance

Let X be a discrete random variable taking its values in E, with probability dis-
tribution p(x), x ∈ E.
(i) Let A := {ω; p(X(ω)) = 0}. Show that P (A) = 0.
(ii) Prove that a real-valued random variable with null variance is almost surely
constant.

Exercise 2.4.7. The blue pinko

The blue pinko is a bird owing its name to the fact that it lays eggs that are either
blue or pink. Suppose that it lays T eggs, with probability p that a given egg is
blue, and that the colours of the successive eggs are independent and independent
of the total number of eggs. The conclusion of Exercise 2.4.4 was that if the number
of eggs is Poisson with mean θ, then the number of blue eggs is a Poisson random
variable with mean θp and the number of pink eggs is a Poisson random variable
with mean θ(1 − p). Prove that the number of blue eggs and the number of pink
eggs are independent random variables.

Exercise 2.4.8. The entomologist

Each individual of a specific breed of insects has, independently of the others, the
probability θ of being a male.

(A) An entomologist seeks to collect exactly M > 1 males, and therefore stops
hunting as soon as she captures M males. What is the distribution of X, the
number of insects she must catch to collect exactly M males?

(B) What is the distribution of X, the smallest number of insects that the ento-
mologist must catch to collect at least M males and N females?

Exercise 2.4.9. Maximal bin load

N balls are thrown independently and at random in N bins. This results in Xi

balls in bin i (1 ≤ i ≤ N). Let Xmax = max{X1, . . . , XN} be the maximal bin
load. Prove the following: For sufficiently large N ,
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P

(
Xmax >

logN

log(2) N

)
≥ 1− 1

N
,

where log(2) N := log(logN).

Exercise 2.4.10. The matchbox

A smoker has one matchbox with n matches in each pocket. He reaches at random
for one box or the other. What is the probability that, having eventually found an
empty matchbox, there will be k matches left in the other box?

Exercise 2.4.11. Biased dice and uniformity

Is it possible to have two biased dice such that tossing them independently results
in a total number of points uniformly distributed on {2, 3, . . . , 12}?

Exercise 2.4.12. Residual time

Let X be a random variable with values in and with finite mean m. Show that
pn = 1

m
P (X > n) (n ≥ 0) defines a probability distribution on and compute its

generating function in terms of the generating function of X.

Exercise 2.4.13. Mean and variance via generating functions

(a) Compute the mean and variance of the binomial random variable B of size n
and parameter p from its generating function. Do the same for the Poisson random
variable P of mean θ.

(b) What is the generating function gT of the geometric random variable T with
parameter p ∈ (0, 1)? Compute its first two derivatives and deduce from the result
the variance of T .

(c) What is the n-th factorial moment (E [X(X − 1) · · · (X − n+ 1)]) of a Poisson
random variable X of mean θ > 0?

Exercise 2.4.14. From generating function to distribution

What is the probability distribution of the integer-valued random variable with
generating function g(z) = 1

(2−z)2
? Compute the fifth moment (E[X5]) of this

random variable.

Exercise 2.4.15. Throw a die

You perform three independent tosses of an unbiased die. What is the probability
that one of these tosses results in a number that is the sum of the two other
numbers? (You are required to find a solution using generating functions.)

Exercise 2.4.16. Generalized Wald’s formula

Let {Yn}n≥1 be a sequence of integer-valued integrable random variables such that
E[Yn] = E[Y1] for all n ≥ 1. Let T be an integer-valued random variable such that
for all n ≥ 1, the event {T ≥ n} is independent of Yn. Let X :=

∑T
n=1 Yn. Prove

that E [X] = E[Y1]E[T ].
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Exercise 2.4.17. When Wald’s formula does not apply

Let {Yn}n≥1 be a sequence of integer-valued integrable random variables such that
E[Yn] = E[Y1] for all n ≥ 1. Let T be an integer-valued random variable. Let
X :=

∑T
n=1 Yn. It is not true in general that E [X] = E[Y1]E[T ]. Give a simple

counterexample.

Exercise 2.4.18. The return of the entomologist

Recall the setup of Exercise 2.4.8. What is the expectation of X, the number of
insects the entomologist must capture to collect exactly M males? (In Exercise
2.4.8, you computed the distribution of X, from which you can of course compute
the mean. However, you can give the solution directly, and this is what is required
in the present exercise.)

Exercise 2.4.19. Conditioning by sampling

Let Z be a discrete random variable with values in E and let f : E → be a
non-negative function. Let {Zn}n≥1 be an iid sequence of random variables with
values in E and the same distribution as Z. Let A be some subset of E such that
P (Z ∈ A) > 0.

(1) Define the random variable τ to be the first time n ≥ 1 such that Zn ∈ A.
Prove that P (τ <∞) = 1.

(2) Let Zτ be the random variable equal to Zn when τ = n. Prove that

E [f(Zτ )] = E [f(Z) | Z ∈ A] .

Exercise 2.4.20. Multinomial distribution and conditioning

Let (X1, . . . , Xk) be a multinomial random vector with size n and parameters
p1, . . . , pk. Compute EX1 [X2 + · · ·+Xk−1] and EX1 [X2].

Exercise 2.4.21. XYZ

Let X, Y , and Z be three discrete random variables with values in E, F , and
G, respectively. Prove the following: If for some function g : E × F → [0, 1],
P (X = x |Y = y, Z = z) = g(x, y) for all x, y, z, then P (X = x |Y = y) = g(x, y)
for all x, y, and X and Z are conditionally independent given Y .

Exercise 2.4.22. A natural result

Let X1 and X2 be two integrable independent identically distributed discrete real-
valued random variables. Prove that

EX1+X2 [X1] =
X1 +X2

2
.

Exercise 2.4.23. Pólya’s urn

There is an urn containing black balls and white balls, the number of which varies
in time as follows. At time n = 0 there is one black ball and one white ball. At a
given time one of the balls is selected at random, its colour is observed, and the ball
is replaced in the urn together with a new ball of the same colour. In particular
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the number of balls increases by one unit at each draw. Let Bk be the number
of black balls after exactly k balls have been added. Prove that Bk is uniformly
distributed on {1, 2, . . . , k + 1}.

Exercise 2.4.24. Conditioning by the square

Let X be a random variable with values in and probability distribution
(p(n) , n ∈ ). Let h : → be a function such that E [|h(Z)|] < ∞. Prove
formally that

E
[
h(X) |X2

]
= h(|X|) p(|X|)

p(|X|) + p(−|X|) + h(−|X|) p(−|X|)
p(|X|) + p(−|X|) .

Exercise 2.4.25. Bayesian tests of hypotheses

Let Θ be a discrete random variable with values in {1, 2, ..., K} and let X be a
discrete random variable with values in E. The joint distribution of Θ and X is
specified in the following manner. For all 1 ≤ i ≤ K,

P (Θ = i) = π(i), P (X = x|Θ = i) = pi(x),

where π is a probability distribution on {1, 2, ..., K} and the pi’s are probability
disributions on E.

These random variables may be interpreted in terms of tests of hypotheses. The
variable Θ represents the state of Nature, and X — called the observation — is
the (random) result of an experiment that depends on the actual state of Nature.
If Nature happens to be in state i, then X admits the distribution pi.

In view of the observation X, we wish to infer the actual value of Θ. For this,
we design a guess strategy, that is a function g : E → {1, 2, ..., K} with the

interpretation that Θ̂ := g(X) is our guess (based only on the observationX) of the
(not directly observed) state Θ of Nature. An equivalent description of the strategy
g is the partition A = {A1, . . . , AK} of m given by Ai := {x ∈ E; g(x) = i}. The
decision rule is then

X ∈ Ai ⇒ Θ̂ = i .

Prove the following: Any partition A∗ such that

x ∈ A∗
i ⇒ π(i)pi(x) = max

k
(π(k)pk(x))

minimizes the probability of error PE.



Chapter 3

Bounds and Inequalities

3.1 The Three Basic Inequalities

3.1.1 Markov’s Inequality

Bounding is the core of analysis and of probability. This chapter features the
elementary inequalities and bounds, such as Markov’s inequality and Jensen’s in-
equality, the union bound and Chernoff’s bounds. Other important bounds will be
given as the need arises. For instance, Holley’s inequality and its corollaries Harris’
inequality and the fkg inequality will be presented in the context of random fields
(Chapter 9). The coupling inequalities and Chen’s Poisson approximation method
are the objects of Chapter 16.

We begin with Markov’s inequality, a simple consequence of the monotonocity and
linearity properties of expectation.

Theorem 3.1.1 Let Z be a non-negative random variable and let a > 0. Then

P (Z ≥ a) ≤ E[Z]

a
.

Proof. Take expectations in the inequality a× 1{Z≥a} ≤ Z. �

Corollary 3.1.2 Let X be an integrable real random variable with mean m and
finite variance σ2. Then, for all ε > 0,

P (|X −m| ≥ ε) ≤ σ2

ε2
.

Proof. This is a direct application of Theorem 3.1.1 with Z = (X − m)2 and
a = ε2. It is called Chebyshev’s inequality. �

Example 3.1.3: Weak law of large numbers. Let {Xn}n≥1 be an iid se-
quence of integrable real-valued discrete random variables with common mean m
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and common variance σ2 < ∞. The variance of the n-th order empirical mean
Xn := X1+···+Xn

n
equals σ2

n
, and therefore by Chebyshev’s inequality, for all ε > 0,

P (
∣∣Xn −m

∣∣ ≥ ε) = P

(∣∣∣∣∑n
i=1(Xi −m)

n
≥ ε

∣∣∣∣) ≤ σ2

n2ε
. (�)

In other words, the empirical mean Xn converges in probability to the mean m
according to the following definition: A sequence of random variable {Zn}n≥1 is
said to converge in probability to the random variable Z if, for all ε > 0,

lim
n↑∞

P (|Zn − Z| ≥ ε) = 0.

The specific result (�) is called the weak law of large numbers.

Example 3.1.4: Bernstein’s polynomial approximation. A continuous
function f from [0, 1] into R can be approximated by a polynomial. More pre-
cisely, for all x ∈ [0, 1],

f(x) = limn↑∞Pn(x) , (�)

where

Pn(x) =
n∑

k=0

f

(
k

n

)
n!

k!(n− k)!
xk(1− x)n−k,

and the convergence of the series in the right-hand side is uniform in [0, 1]. A proof
of this classical theorem of analysis using probabilistic arguments is as follows.

Let Sn := X1 + · · · + Xn, where {Xn}n≥1 is iid, with values in {0, 1}, and such
that P (Xn = 1) = x (n ≥ 1). Since Sn ∼ B(n, x),

E

[
f

(
Sn

n

)]
=

n∑
k=0

f

(
k

n

)
P (Sn = k) =

n∑
k=0

f

(
k

n

)
n!

k!(n− k)!
xk(1− x)n−k.

The function f is continuous on the bounded interval [0, 1] and therefore uniformly
continuous on this interval. Therefore to any ε > 0, one can associate a number
δ(ε) such that if |y−x| ≤ δ(ε), then |f(x)−f(y)| ≤ ε. Being continuous on [0, 1], f
is bounded on [0, 1] by some finite number, say M . Now

|Pn(x)− f(x)| =
∣∣∣∣E [f (Sn

n

)
− f(x)

]∣∣∣∣ ≤ E

[∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣]
= E

[∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣ 1A]+ E

[∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣ 1A] ,

where A := {ω ; |Sn(ω)/n) − x| ≤ δ(ε)}. Since |f(Sn/n) − f(x)|1A ≤ 2M1A, we
have

E

[∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣ 1A] ≤ 2MP (A) = 2MP

(∣∣∣∣Sn

n
− x

∣∣∣∣ ≥ δ(ε)

)
.

Also, by definition of A and δ(ε),
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E

[∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣ 1A] ≤ ε .

Therefore

|Pn(x)− f(x)| ≤ ε+ 2MP

(∣∣∣∣Sn

n
− x

∣∣∣∣ ≥ δ(ε)

)
.

But x is the mean of Sn/n, and the variance of Sn/n is nx(1−x) ≤ n/4. Therefore,
by Chebyshev’s inequality,

P

(∣∣∣∣Sn

n
− x

∣∣∣∣ ≥ δ(ε)

)
≤ 4

n[δ(ε)]2
.

Finally

|f(x)− Pn(x)| ≤ ε+
4

n[δ(ε)]2
.

Since ε > 0 is otherwise arbitrary, this suffices to prove the convergence in (�).
The convergence is uniform since the right-hand side of the latter inequality does
not depend on x ∈ [0, 1].

3.1.2 Jensen’s Inequality

Jensen’s inequality concerns the expectation of convex functions of a random vari-
able. We therefore start by recalling the definition of a convex function. Let I be
an interval of (closed, open, semi-closed, infinite, etc.) with non-empty interior
(a, b). The function ϕ : I → is called a convex function if for all x, y ∈ I, all
0 < θ < 1,

ϕ(θx+ (1− θ)y) ≤ θϕ(x) + (1− θ)ϕ(y) .

If the inequality is strict for all x �= y and all 0 < θ < 1, the function ϕ is said to
be strictly convex.

Theorem 3.1.5 Let I be as above and let ϕ : I → be a convex function. Let
X be an integrable real-valued random variable such that P (X ∈ I) = 1. Assume
moreover that either ϕ is non-negative, or that ϕ(X) is integrable. Then (Jensen’s
inequality)

E [ϕ(X)] ≥ ϕ(E [X]) .
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Proof. A convex function ϕ has the property that for any x0 ∈ (a, b), there exists
a straight line y = αx+ β, passing through (x0, ϕ(x0)), that is

ϕ(x0) = αx0 + β , (�)

and such that for all x ∈ (a, b),

ϕ(x) ≥ αx+ β , (��)

where the inequality is strict if ϕ is strictly convex. (The parameters α and β may
depend on x0 and may not be unique.) Take x0 = E[X]. In particular ϕ(E[X]) =
αE[X] + β. By (��), ϕ(X) ≥ αX + β, and taking expectations using (�),

E[ϕ(X)] ≥ αE[X] + β = ϕ(E[X]) .

�

Example 3.1.6: The arithmetic-geometric inequality. Let xi (1 ≤ i ≤ n)
be positive numbers, and let pi (1 ≤ i ≤ n) be non-negative numbers such that∑n

i=1 pi = 1. Then

p1x1 + p2x2 + · · ·+ pnxn ≥ xp1
1 xp2

2 · · · xpn
n .

Proof. Letting X be a random variable taking the values xi with probability pi
(1 ≤ i ≤ n), Jensen’s inequality applied to the convex function ϕ = − log gives

logE[X] ≥ E[logX] ,

that is

log(p1x1+p2x2+· · ·+pnxn) ≥ p1 log x1+p2 log x2+· · ·+pn log xn = log (xp1
1 xp2

2 · · · xpn
n ) ,

hence the result since log is an increasing function. The special case pi = 1
n
is

worth highlighting:

1

n
(x1 + x2 + · · ·+ xn) ≥ (x1x2 · · · xn)

1
n .

�

3.1.3 Schwarz’s Inequality

Definition 3.1.7 A random variable X taking real values is called integrable if
E[|X|] <∞ and square-integrable if E [|X|2] <∞.

From the inequality |a| ≤ 1 + a2, true for all a ∈ , we have that |X| ≤ 1 +X2,
and therefore, by the monotonicity and linearity properties of expectation, and
the fact that E[1] = 1, E[|X|] ≤ 1+E[X2]. Therefore a square-integrable random
variable is integrable.



3.2. FREQUENTLY USED BOUNDS 69

Theorem 3.1.8 Let X and Y be square-integrable real-valued random variables.
Then, the random variable XY is integrable and (Schwarz’s inequality)

E [|XY |] ≤ (
E
[
X2
]) 1

2
(
E
[
Y 2
]) 1

2

with equality if and only there exists a, b ∈ such that aX+bY = 0 almost surely.

Proof. Taking expectations in the inequality 2|XY | ≤ X2 + Y 2, we obtain
2E[|XY |] ≤ E[X2] + E[Y 2] < ∞. We may suppose that E [X2] > 0, since in
the other case X = 0 almost surely and Schwarz’s inequality is trivially satis-
fied. Also, we may suppose that X and Y are non-negative as they intervene only
through their absolute values. For any λ ∈ ,

E
[
X2
]
+ 2λE [XY ] + λ2E

[
Y 2
]
= E

[
(X + λY )2

] ≥ 0.

Therefore the discriminant of this binomial in λ must be negative or null:

E [XY ]2 − E
[
X2
]
E
[
Y 2
] ≤ 0 ,

and this is Schwarz’s inequality. It is null if and only there exists a real root,
that is if and only for some λ0 ∈ , E

[
(X + λ0Y )2

]
= 0 or, by Theorem 2.1.27,

X + λ0Y = 0 almost surely. �

The Correlation Coefficient

LetX and Y be two real-valued square-integrable random variables with respective
means μX and μY , and respective variances σ2

X and σ2
Y . Their covariance is, by

definition, the number

σXY := E [(X − μX)(Y − μY )] .

If X and Y both have positive variances, their intercorrelation is by definition the
number

ρXY :=
σXY

σXσY

.

By Schwarz’s inequality, |ρXY | ≤ 1, and ρXY = 0 if and only if there exists a, b ∈
such that

a(X − μX) + b(Y − μY ) = 0 .

If ρXY > 0 (resp., < 0, = 0) the random variables are said to be negatively
correlated (resp., positively correlated, uncorrelated).

3.2 Frequently Used Bounds

3.2.1 The Union Bound

This quite elementary and nevertheless very useful bound is just another name for
the sub-sigma-additivity property of probability (Theorem 1.2.7)
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P (∪∞
k=1Ak) ≤

∑∞
k=1 P (Ak).

Example 3.2.1: The coupon collector, take 2. Recall that the average
value of the number X of chocolate tablets needed to have the complete collection
of n coupons is E [X] = nH(n), where

H(n) :=
n∑

i=1

1

i
.

Recall (18.1.11):

|H(n)− log n| ≤ 1 .

Therefore E [X] = (1 + o(1))n log n. More precisely

log n− 1 ≤ E[X]

n
≤ log n+ 1 .

We now estimate the deviation of X from its mean. For all c > 0,

P (X > �n log n+ cn�) ≤ e−c .

To prove this, define Aα to be the event that no coupon of type α shows up in the
first �n log n+ cn� tablets. Then

P (X > �n log n+ cn�) = P (∪n
α=1Aα) ≤

n∑
α=1

P (Aα)

=
n∑

α=1

(
1− 1

n

)n log n+cn�
= n

(
1− 1

n

)n logn+cn�
,

and therefore, since 1 + x ≤ ex for all x ∈ ,

P (X > �n log n+ cn�) ≤ n
(
e−

1
n

)n logn+cn�

≤ n
(
e−

1
n

)n logn+cn

= ne− log n−c = ne− logne−c = e−c .

3.2.2 The Chernoff Bounds

These powerful bounds are obtained by a clever use of the elementary Markov
inequality.
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Theorem 3.2.2 Let X be a discrete real-valued random variable and let a ∈ R.
Then

P (X ≥ a) ≤ min
t>0

E
[
etX

]
eta

, (3.1)

and

P (X ≤ a) ≤ min
t<0

E
[
etX

]
eta

. (3.2)

Proof. By the increasing monotonicity of the function x → ex and Markov’s
inequality, for all t > 0,

P (X ≥ a) = P (etX ≥ eta) ≤ E
[
etX

]
eta

,

and for all t < 0,

P (X ≤ a) = P (etX ≥ eta) ≤ E
[
etX

]
eta

.

The announced result follows by minimizing the right-hand sides of the above
inequalities with respect to t > 0 and t < 0 respectively. �

Theorem 3.2.3 Let X1, . . . , Xn be iid discrete real-valued random variables and
let a ∈ R. Then

P

(
n∑

i=1

Xi ≥ na

)
≤ e−nh+(a) ,

where

h+(a) := sup
t>0
{at− logE

[
etX1

]} . (3.3)

Proof. First observe that since the Xi’s are independent and identically dis-
tributed,

E

[
exp

{
t

n∑
i=1

Xi

}]
= E [exp{tX1}]n .

For all t > 0, Markov’s inequality gives

P

(
n∑

i=1

Xi ≥ na

)
= P

(
et

∑n
i=1 Xi ≥ enta

)
≤ E

[
et

∑n
i=1 Xi

]
× e−nta

= E
[
etX1

]n × e−nta

= exp{−n (at− logE
[
etX1

])} ,
from which the result follows by optimizing this bound with respect to t > 0. �
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Remark 3.2.4 Of course this bound is useful only if h+(a) is positive. Suppose
for instance that the Xi’s are bounded. Let xi (i ≥ 1) be an enumeration of the
values taken by X1, and define pi = P (X = xi), so that

at− logE
[
etX1

]
= at− log

(∑
i≥1

pie
txi

)
.

The derivative with respect to t of this quantity is

a−
∑

i≥1 pixie
txi∑

i≥1 pie
txi

and therefore the function t → at − logE
[
etX1

]
is finite and differentiable on ,

with derivative at 0 equal to a−E [X1], which implies that when a > E [X1], h
+(a)

is positive1.

Similarly to (3.3), we obtain that

P

(
n∑

i=1

Xi ≤ na

)
≤ e−nh−(a) , (3.4)

where h−(a) := supt<0{at − logE
[
etX1

]}, and moreover, h−(a) is positive if a <
E[X1].

Example 3.2.5: Simplified Chernoff bound. The computation of the supre-
mum in (3.3) may be fastidious, and shortcuts leading to practical bounds not
as tight but nevertheless satisfactory are welcome. Suppose for instance that
the Xi’s take the values −1 and +1 equiprobably, and therefore, for all t > 0,
E
[
etX

]
= 1

2
e+t + 1

2
e−t. We do not keep this expression as such but instead replace

it by its upper bound e
t2

2 . (This bound is obtained from the following calculations:

1

2
e−a +

1

2
e+a =

∑
i≥0

a2i

(2i)!
≤
∑
i≥0

a2i

i!2i
= e

1
2
a2 .)

Therefore, for a > 0,

P

(
n∑

i=1

Xi ≥ na

)
≤ e−n(at−logE[etX1 ]) ≤ e−n(at− 1

2
t2) ,

so that, with t = a,

P

(
n∑

i=1

Xi ≥ na

)
≤ e−n 1

2
a2 .

By symmetry of the distribution of
∑n

i=1 Xi, we have for a > 0,

1
In fact, the boundedness assumption can be relaxed and replaced by E

[
etX1

]
< ∞ for all

t ≥ 0, and even by any assumption guaranteeing that t → ∑
i≥1 pie

txi is differentiable in a

neighborhood of zero with a derivative equal to
∑

i≥1 pixie
txi . See Exercise 4.3.9.
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P

(
n∑

i=1

Xi ≤ −na
)

= P

(
n∑

i=1

Xi ≥ na

)
≤ e−n 1

2
a2 ,

and therefore, combining the two inequalities above,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ na

)
≤ 2e−n 1

2
a2 .

Example 3.2.6: A non-equiprobable case. Let X =
∑n

i=1 Xi where the Xi’s
are independent (but not necessarily equiprobable) random variables taking their
values in {0, 1}. Denote by μ the mean of X.

A. For all δ > 0,

P (X ≥ (1 + δ)μ) ≤
(

eδ

(1 + δ)1+δ

)μ

. (3.5)

B. For all δ ∈ (0, 1],

P (X ≥ (1 + δ)μ) ≤ e−μ δ2

3 .

C. For all δ ∈ (0, 1],

P (X ≤ (1− δ)μ) ≤
(

e−δ

(1− δ)1−δ

)μ

.

D. For all δ ∈ (0, 1]

P (X ≤ (1− δ)μ) ≤ e−μ δ2

3 .

Combining bounds B and D yields for all δ ∈ (0, 1]

P (|X − μ| ≥ δμ) ≤ 2e−μ δ2

3 . (3.6)

Proof. With pi := P (Xi = 1), we have that μ =
∑n

i=1 pi and

E
[
etXi

]
= pie

t + (1− pi) = 1 + pi(e
t − 1) ≤ epi(e

t−1) ,

where we have used the standard inequality 1 + x ≤ ex. By the independence
assumption,

E
[
etX

]
= E

[
et(

∑n
i=1 Xi)

]
=

n∏
i=1

E
[
etXi

]
and therefore

E
[
etX

] ≤ n∏
i=1

epi(e
t−1) = eμ(e

t−1) .
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We now proceed to the proofs of A and B.

A. By Markov’s inequality, for all t > 0

P (X ≥ (1 + δ)μ) = P (etX ≥ et(1+δ)μ) ≤ E
[
etX

]
et(1+δ)μ

≤ eμ(e
t−1)

et(1+δ)μ
,

and the choice t = log(1 + δ) (> 0 when δ > 0) gives the announced inequality.

B. It suffices to prove that, if δ ∈ (0, 1],

eδ

(1 + δ)1+δ
≤ e−

δ2

3

or, equivalently, passing to the log,

f(δ) := δ − (1 + δ) log(1 + δ) +
1

3
δ2 ≤ 0 .

Computing the first derivative f ′(δ) = − log(1+ δ)+ 2
3
δ and the second derivative

f ′′(δ) = − 1
1+δ

+ 2
3
, we see that the latter is negative for δ ∈ [0, 1

2
) and positive for

δ > 1
2
. Therefore, f ′ starts by increasing and then decreases. Since f ′(0) = 0 and

f ′(1) < 0, it is non-negative for all δ ∈ [0, 1]. Therefore f decreases on [0, 1]. As
f(0) = 0, f(δ) ≤ 0 for all δ ∈ [0, 1].

C and D are proved with similar arguments. �

Remark 3.2.7 Concerning Chernoff bounds, the situation of interest is in general
when n is large. However, there are situations where n is not necessarily large
(tending to infinity). In this case, having the n in the numerator of the exponent
is not what is important. Consider for example the bound obtained in Example
3.2.5. If we replace therein a by a

n
, we obtain

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ a

)
≤ 2e−

a2

2n . (�)

The following example features an application of this bound.

Example 3.2.8: Set balancing. (Mitzenmacher and Upfal, 2005) Let A =
{ai,j}1≤i≤n,1≤j≤m be a given n×m matrix with entries in {0, 1}. Let {bj}1≤j≤m be
a column vector with entries in {−1,+1} and let {ci}1≤i≤n be the column vector
defined by c = Ab.

An interpretation of the above mathematical objects is as follows. The j-th column
of A, {ai,j}1≤i≤m describes subject j in some statistical experiment, who has prop-
erty Pi if and only ai,j = 1. For instance, in a medical experiment, the properties,
or features, of a subject could be “smoker”, “drinker”, or any aggravating factor
in cardiovascular problems. Vector b defines two categories of subjects. If bi = −1,
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subject i is placed in the placebo group, whereas if bi = +1, he is administered
an experimental pill. Each feature should be, as much as possible, roughly equally
represented in the two subgroups. A small value of the modulus |ci| of i-th entry
therefore indicates a fair balance of feature i. One is therefore looking for a choice
of vector b that minimizes ||c||∞ := max1≤i≤n |ci|.
The following method for finding an approximate solution is rather simple: draw
the values bi’s independently and equiprobably in {−1,+1}. How good is this
solution? We prove that

P
(
||c||∞ ≥

√
4m log n

)
≤ 2

n
.

Let k be the number of elements equal to 1 in the i-th row of A. If k ≤ √4m log n,
then |ci| ≤

√
4m log n. If k >

√
4m log n, ci is the sum of k iid random variables

taking equiprobably the values −1 and +1. Therefore, from the bound (�), since
k ≤ m,

P
(
|ci| ≥

√
4m log n

)
≤ 2e−

4m logn
2k ≤ 2e−2 log n =

2

n2
.

By the union bound,

P
(
||c||∞ ≥

√
4m log n

)
= P

(
∪n

i=1{|ci| ≥
√
4m log n}

)
≤

n∑
i=1

P
(
|ci| ≥

√
4m log n

)
≤ 2

n
.

3.2.3 The First- and Second-moment Bounds

These bounds will be particularly efficient in the asymptotic study of random
graphs.

Lemma 3.2.9 For any integer-valued random variable X,

P (X �= 0) ≤ E[X] .

Proof.

P (X �= 0) = P (X = 1) + P (X = 2) + P (X = 3) + · · ·
≤ P (X = 1) + 2P (X = 2) + 3P (X = 3) + · · · = E[X] .

�

Lemma 3.2.10 For any square-integrable real-valued discrete random variable X,

P (X = 0) ≤ Var (X)

E[X]2
.
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Proof. Since the event X = 0 implies the event |X − E[X]| ≥ E[X],

P (X = 0) ≤ P (|X − E[X]| ≥ E[X]) ≤ Var (X)

E[X]2
,

where the last inequality is Chebyshev’s inequality (Corollary 3.1.2). �

Lemma 3.2.11 For a square-integrable integer-valued discrete random variable
X,

P (X = 0) ≤ Var(X)

E[X2]
.

Proof. By Schwarz’s inequality,

E [X]2 = E
[
(X1{X≥1}

]2 ≤ E
[
X2
]
E
[
(1{X≥1})2

]
= E

[
X2
]
E
[
1{X≥1}

]
= E

[
X2
]
P (X ≥ 1) = E

[
X2
]
(1− P (X = 0)) ,

and therefore E [X2]− E [X]2 ≥ P (X = 0)E [X2]. �

The bound of Lemma 3.2.11 is tighter than that of Lemma 3.2.10 since E [X2] ≥
E [X]2 (by Jensen’s inequality for instance, or Schwarz’s inequality).

Remark 3.2.12 The above bounds will be used, mainly in the asymptotic anal-
ysis of random graphs, as follows. Suppose there is a sequence of integer-valued
random variables {Xn}n≥1, for instance, counting the number of cycles in a ran-
dom graph G(n, pn). If we can show that limn↑∞ E [Xn] = 0, then we can assert
that limn↑∞ P (Xn = 0) = 0: “asymptotically” there exists no cycle in the ran-
dom graph. This of course requires conditions on the asymptotic behaviour of the
sequence {pn}n≥1. Under other circumstances, suppose that limn↑∞ E [Xn] = ∞.
Does this imply that limn↑∞ P (Xn > 0) = 1? In fact, not (Exercise 3.3.1). There-
fore we have to find another way, for instance via Lemma 3.2.10, of proving that

limn↑∞
Var(Xn)
E[Xn]2

= 0.

Books for Furher Information

The classical bounds appear in virtually all textbooks of probability theory.
[Mitzenmacher and Upfal, 2005], especially Chapter 4 therein on Chernoff bounds,
contains examples of interest in the information and computing sciences.

3.3 Exercises

Exercise 3.3.1. When the first moment bound is not enough

Give a (very simple) example showing that for a sequence of integer-valued random
variables {Xn}n≥1, the fact that E[Xn] → +∞ is not sufficient to guarantee that
P (Xn �= 0)→ 1.
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Exercise 3.3.2. Existence of triangles

A “triangle” of a graph is the obvious object: 3 vertices mutually linked by an edge.
It is also called a 3-clique. Let G(n, pn) be an Erdös–Rényi graph with pn = d

n
. Prove

that “asymptotically almost surely”, there is at least one triangle if d ≥ 6
1
3 . In

other words, for such values of the average index d, P (Xn = 0) < 1 for sufficiently
large n, where Xn is the number of triangles of the random graph. (Hint: Lemma
3.2.11.)

Exercise 3.3.3. Tail of the Poisson distribution

Let X be a Poisson variable with mean θ and therefore E
[
etX

]
= eθ(e

t−1). Prove
that for c ≥ 0

P (X ≥ θ + c) ≤ exp

{
−1

e

(
θ + c

eθ

)θ+c
}

.

Exercise 3.3.4. Large deviations without independence

Let X =
∑n

i=1 Xi where the Xi’s are independent but not necessarily identically
distributed random variables taking their values in {0, 1}. Denote by μ the mean
of X. Therefore, with P (Xi = 1) = pi, μ =

∑n
i=1 pi. Then, for any ε > 0,

P (X − μ ≥ εμ) ≤ eμh(ε)

and
P (X − μ ≤ εμ) ≤ eμh(−ε)

where h(ε) = (1 + ε) log(1 + ε)− ε.

Exercise 3.3.5. Degree of a random graph

Let G(n, pn) be an Erdös–Rényi graph with set of vertices V (of size n). The degree
d(v) of any vertex v is a binomial random variable B(n, pn) of mean d = (n−1)pn.
Assume that limn↑∞

logn
(n−1)pn

= 0. Prove that the probability that one cannot find

a node that deviates from the mean (n − 1)pn by a factor larger that 2
√

logn
(n−1)pn

tends to 1 as n ↑ ∞. (Hint: apply the bound of Exercise 3.3.4.)

Exercise 3.3.6. Large deviations of a fair coin

Prove that for a sequence of n independent coin flips of a fair coin,

P
(|X − n

2
| ≥ 1

2

√
6n log n

) ≤ 2
n
,

where X is the number of heads.



Chapter 4

Almost Sure Convergence

4.1 Conditions for Almost Sure Convergence

4.1.1 A Sufficient Condition

This chapter gives the basic theory of almost sure convergence and Kolmogorov’s
strong law of large numbers (1933) according to which the empirical mean of an iid

sequence of integrable random variables converges almost surely to the probabilistic
mean (the expectation).

The emblematic result of Probability theory features a game of heads and tails
with a single, possibly biased, coin. Émile Borel proved in 1909 that the empirical
frequency of occurences of heads in this sequence converges almost surely to the
bias p of the coin. More precisely, let {Xn}n≥1 be an iid sequence of random
variables taking the values (1 for “heads”) and 0 (for “tails”) with P (Xn = 1) = p,
where p ∈ (0, 1) is the bias of the coin. Then:

P

(
lim
n↑∞

X1 +X2 + · · ·+Xn

n
= p

)
= 1 . (4.1)

Definition 4.1.1 A sequence {Zn}n≥1 of random variables with values in
(resp., ), is said to converge P-almost surely (P-a.s.) to the random variable
Z with values in (resp., ) if

P (lim
n↑∞

Zn = Z) = 1. (4.2)

Paraphrasing: For all ω outside a set N of null probability, limn↑∞ Zn(ω) = Z(ω).

The specification“discrete” for the random variables considered in this chapter and
elsewhere in this book will be omitted only when the definitions, results or proofs
apply to general random variables, although the proofs are given only for discrete
random variables. This is the case for instance for the forthcoming Kolmogorov’s
strong law of large numbers and martingale convergence theorem.

A notion closely related to that of almost sure convergence is that of convergence
in probability.

© Springer International Publishing Switzerland 2017
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Definition 4.1.2 A sequence {Zn}n≥1 of variables is said to converge in probabil-
ity to the random variable Z if for all ε > 0,

lim
n↑∞

P (|Zn − Z| ≥ ε) = 0. (4.3)

Theorem 4.1.7 below will show the links between convergence in probability and
convergence almost sure.

The following is a useful sufficient condition of almost sure convergence.

Theorem 4.1.3 Let {Zn}n≥1 and Z be random variables. If∑
n≥1

P (|Zn − Z| ≥ εn) <∞ (4.4)

for some sequence of non-negative numbers {εn}n≥1 converging to 0, then the se-
quence {Zn}n≥1 converges P-a.s. to Z.

Proof. If for a given ω, |Zn(ω)− Z(ω)| ≥ εn finitely often (or f.o.; that is, for all
but a finite number of indices n), then limn↑∞ |Zn(ω) − Z(ω)| ≤ limn↑∞ εn = 0.
Therefore

P (lim
n↑∞

Zn = Z) ≥ P (|Zn − Z| ≥ εn f.o.).

On the other hand,

{|Zn − Z| ≥ εn f.o.} = {|Zn − Z| ≥ εn i.o.}.
Therefore

P (|Zn − Z| ≥ εn f.o.) = 1− P (|Zn − Z| ≥ εn i.o.).

Hypothesis (4.4) implies (Borel–Cantelli lemma) that

P (|Zn − Z| ≥ εn i.o.) = 0.

By linking the above facts, we obtain P (limn↑∞ Zn = Z) ≥ 1, and of course, the
only possibility is = 1. �

Example 4.1.4: Borel’s strong law of large numbers. Theorem 4.1.3
will now be applied to prove (4.1). For this, we bound the probability that

∣∣Sn

n
− p

∣∣
exceeds some ε > 0. By Markov’s inequality (Theorem 3.1.1)

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
= P

((
Sn

n
− p

)4

≥ ε4

)

≤
E
[(

Sn

n
− p

)4]
ε4

=
E
[
(
∑n

i=1(Xi − p))
4
]

n4ε4
.

To simplify the notation, call Yi the random variables Xi − p, and remember that
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E[Yi] = 0.

Also, in view of the independence hypothesis,

E[Y1Y2Y3Y4] = E[Y1]E[Y2]E[Y3]E[Y4] = 0 ,

E[Y1Y
3
2 ] = E[Y1]E[Y 3

2 ] = 0 ,

and the like. Finally, in the development

E

⎡⎣( n∑
i=1

Yi

)4
⎤⎦ =

n∑
i,j,k,�=1

E[YiYjYkY�] ,

only the terms of the form E[Y 4
i ] and E[Y 2

i Y
2
j ] (i �= j) remain. There are n terms

of the first type and 3n(n− 1) terms of the second type. Therefore,

E

⎡⎣( n∑
i=1

Yi

)4
⎤⎦ = nE[Y 4

1 ] + 3n(n− 1)E[Y 2
1 Y

2
2 ] ≤ Kn2 ,

for some finite K. Therefore

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
≤ K

n2ε4
,

and in particular, with ε = n− 1
8 ,

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ n− 1
8

)
≤ K

n
3
2

,

from which it follows that

∞∑
n=1

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ n− 1
8

)
<∞ .

Therefore, by Theorem 4.1.3,
∣∣Sn

n
− p

∣∣ converges almost surely to 0.

Example 4.1.5: Borel sequences. Let (Xn, n ≥ 1), be an iid sequence of 0’s
and 1’s such that P (X1 = 1) = p ∈ (0, 1) (a Bernoulli sequence). Let (ni, 1 ≤ i ≤
k) be a strictly increasing finite sequence of positive integers. Let (εi, 1 ≤ i ≤ k)
be a sequence of 0’s and 1’s. The pair (ni, εi, 1 ≤ i ≤ k) is called a pattern. Define
for all n ≥ 1 the random variable with values 0 or 1 such that

Yn = 1 iff Xn+ni
= εi for all i (1 ≤ i ≤ k) .

Then it can be shown (Exercise 4.3.4) that

Y1 + . . .+ Yn

n

p.s.→ phqk−h where h :=
k∑

i=1

εi . (�)
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Since the Bernoulli sequence with p = 1
2
— the random sequence “par excellence”

— satisfies (�) for all possible patterns, Borel had the idea of defining a determin-
istic sequence (xn, n ≥ 1) of 0’s and 1’s as “random” if for all patterns

lim
n↑∞

y1 + . . .+ yn
n

=
1

2k
,

where the yn’s are defined in the same way as the Yn’s above. Although this
definition seems reasonable, it is not satisfactory. In fact, one can show that the
so-called Champernowne sequence

0110111001011101111000 . . . ,

consisting of the integers written in natural order and in binary digits (starting
with 0) is random in the Borel sense.

4.1.2 A Criterion

The sufficient condition of almost sure convergence of Theorem 4.1.3 is often all
that one needs in practice. The following theorem is a criterion (necessary and
sufficient condition) of convergence. Its interest is mainly theoretical. In particular
it will be used in Theorem 4.1.7 below to prove that convergence in probability is
a weaker notion than convergence almost sure convergence, but not much weaker.

Theorem 4.1.6 The sequence {Zn}n≥1 of complex random variables converges
P-a.s. to the complex random variable Z if and only if for all ε > 0,

P (|Zn − Z| ≥ ε i.o.) = 0. (4.5)

Proof. For the necessity, observe that

{|Zn − Z| ≥ ε i.o.} ⊆ {ω; lim
n↑∞

Zn(ω) = Z(ω)},

and therefore

P (|Zn − Z| ≥ ε i.o.) ≤ 1− P (lim
n↑∞

Zn = Z) = 0.

For the sufficiency, let Nk be the last index n such that |Zn−Z| ≥ 1
k
(let Nk =∞

if |Zn − Z| ≥ 1
k
for an infinity of indices n ≥ 1). By (4.5) with ε = 1

k
, we have

P (Nk = ∞) = 0. By sub-σ-additivity, P (∪k≥1{Nk = ∞}) = 0. Equivalently,
P (Nk <∞, for all k ≥ 1) = 1, which implies P (limn↑∞ Zn = Z) = 1. �

Theorem 4.1.7 A. If the sequence {Zn}n≥1 of complex random variables con-
verges almost surely to some complex random variable Z, it also converges in
probability to the same random variable Z.
B. If the sequence of complex random variables {Zn}n≥1 converges in probability
to the complex random variable Z, one can find a sequence of integers {nk}k≥1,
strictly increasing, such that {Znk

}k≥1 converges almost surely to Z.
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(B says, in other words: From a sequence converging in probability, one can extract
a subsequence converging almost surely.)

Proof. A. Suppose almost sure convergence. By Theorem 4.1.6 , for all ε > 0,

P (|Zn − Z| ≥ ε i.o.) = 0,

that is
P (∩n≥1 ∪∞

k=n (|Zk − Z| ≥ ε)) = 0,

or (sequential continuity of probability)

lim
n↑∞

P (∪∞
k=n (|Zk − Z| ≥ ε)) = 0,

which in turn implies that

lim
n↑∞

P (|Zn − Z| ≥ ε) = 0 .

B. By definition of convergence in probability, for all ε > 0,

lim
n↑∞

P (|Zn − Z| ≥ ε) = 0 .

Therefore one can find n1 such that

P

(
|Zn1 − Z| ≥ 1

1

)
≤
(
1

2

)1

.

Then, one can find n2 > n1 such that

P

(
|Zn2 − Z| ≥ 1

2

)
≤
(
1

2

)2

and so on, until we have a strictly increasing sequence of integers nk, k ≥ 1 such
that

P

(
|Znk

− Z| ≥ 1

k

)
≤
(
1

2

)k

.

It then follows from Theorem 4.1.3 that limk↑∞ Znk
= Z a.s. �

Exercise 4.3.8 gives an example of a sequence converging in probability, but not
almost surely. Thus, convergence in probability is a notion strictly weaker than
almost sure convergence.

4.1.3 Convergence under the Expectation Sign

Lebesgue’s Theorem for Series

Given a sequence {Xn}n≥1 of random variables, one seeks conditions guaranteeing
that, provided the limits thereafter exist,



84 CHAPTER 4. ALMOST SURE CONVERGENCE

lim
n↑∞

E [Xn] = E

[
lim
n↑∞

Xn

]
. (4.6)

We start by giving a simple example where this is not true.

Example 4.1.8: LetX be an integer-valued random variable with the probability
distribution

P (X = k) = e−kα
(
1− e−α

)
,

where α > 0. Define for all n ≥ 1,

Xn := enαX1{X≥n} .

Clearly, limn↑∞ Xn := X = 0. Also

E [Xn] = enα
∞∑
k=n

e−kα
(
1− e−α

)
= 1.

In particular,

lim
n↑∞

E [Xn] = 1 �= 0 = E

[
lim
n↑∞

Xn

]
.

In the case where the random variables involved and their limits are integer-valued,
the anwers can be given as consequences of general results on series. We begin with
the dominated convergence theorem for series.

Theorem 4.1.9 Let {ank}n≥1,k≥1 be an array of real numbers such that for some
sequence {bk}k≥1 of non-negative numbers satisfying

∑∞
k=1 bk < ∞, it holds that

for all n ≥ 1, k ≥ 1, |ank| ≤ bk. If moreover for all k ≥ 1, limn↑∞ ank = ak, then

lim
n↑∞

∞∑
k=1

ank =
∞∑
k=1

ak .

Proof. See Section A.1. �

Example 4.1.10: Let X be a discrete real-valued random variable that is inte-
grable. Then

lim
n↑∞

E
[|X|1{|X|≥n}

]
= 0.

In fact, denoting by xk, k ∈ , the values of X,

E
[|X|1{|X|≥n}

]
=
∑
k∈

|xk|1{xk≥n}P (X = xk).

It suffices to apply Theorem 4.1.9 with ank = xk1{xk≥n}P (X = xk) and bk =
|xk|1P (X = xk), since

∑
k bk = E [|X|] <∞ and limn↑∞ ank = 0.

We now recall the monotone convergence theorem for series.
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Theorem 4.1.11 Let {ank}n≥1,k≥1 be an array of non-negative real numbers such
that for all k ≥ 1, the sequence {ank}n≥1 is non-decreasing with limit ak ≤ ∞.
Then

lim
n↑∞

∞∑
k=1

ank =
∞∑
k=1

ak .

Proof. See Section A.1. �

Finally, we have Fatou’s lemma for series.

Theorem 4.1.12 Let {ank}n≥1,k≥1 be an array of non-negative real numbers. Then

∞∑
k=1

lim inf
n↑∞

ank ≤ lim inf
n↑∞

∞∑
k=1

ank.

Proof. See Section A.1. �

The Case of Random Variables

In probability theory, the analogue of the monotone convergence theorem for series
is also called Beppo Levi’s theorem:

Theorem 4.1.13 Let {Xn}n≥1 be a non-decreasing sequence of non-negative real-
valued (including the infinite value) random variables converging to the real random
variable X. Then (4.6) holds true.

Proof. The proof will be given in the case of integer-valued random variables.
From the telescope formula

E [Xn] =
∑
k≥1

P (Xn ≥ k).

By the assumption of non-decreasingness,

P (X ≥ k) = lim
n↑∞

P (Xn ≥ k)

and therefore, by the monotone convergence theorem for series,

E [X] =
∑
k≥1

P (X ≥ k) = lim
n↑∞

∑
k≥1

↑ P (Xn ≥ k) = lim
n↑∞

E [Xn] .

�

From Beppo Levi’s theorem, Fatou’s lemma for expectations follows almost imme-
diately:
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Theorem 4.1.14 Let {Xn}n≥1 be a sequence of non-negative real-valued (includ-
ing the infinite value) random variables. Then,

E
[
lim inf

n
Xn

]
≤ lim inf

n
E [Xn] .

Proof. Let Y = lim infn Xn := limn↑∞ infk≥nXk. By Beppo Levi’s,

E [Y ] = lim
n↑∞

E

[
inf
k≥n

Xk

]
.

But for all i ≥ n, by monotonicity of expectation,

E

[
inf
k≥n

Xk

]
≤ E [Xi] ,

and therefore

E

[
inf
k≥n

Xk

]
≤ inf

i≥n
E [Xi] .

Therefore,

E [Y ] = lim
n↑∞

E

[
inf
k≥n

Xk

]
≤ lim

n↑∞
inf
i≥n

E [Xi] := lim inf
n

E [Xn] .

�

Finally, we have the dominated convergence theorem for expectations, also called
Lebesgue’s theorem:

Theorem 4.1.15 Let {Xn}n≥1 and X be real random variables such that

(i) limn↑∞ Xn = X, and

(ii) there exists a non-negative real random variable Z with finite expectation
such that |Xn| ≤ Z for all n ≥ 1. Then (4.6) holds true.

Proof. Apply Fatou’s lemma to the (non-negative) sequence {Z+Xn}n≥1 to obtain

E [Z +X] = E
[
lim inf

n
(Z +Xn)

]
≤ lim inf

n
E [(Z +Xn)] ≤ E [Z] + lim inf

n
E [Xn] ,

that is E [X] ≤ lim infn E [Xn]. Replacing Z and Xn by their opposites and using
the same argument, we have that E [X] ≥ lim supn E [Xn]. �

Remark 4.1.16 The last two results have been proved for random variables tak-
ing their values in the set of relative integers including the infinite values, since
they depend on Beppo Levi’s theorem which was proved only in this case. Note
however that once the general version of the monotone convergence theorem is
taken for granted, the proofs just given for Fatou’s lemma and the dominated
convergence theorem remain valid also in the general case, as long as we have a
general definition of a random variable and of its expectation. Again, we shall not
need this generality in this book.



4.2. KOLMOGOROV’S STRONG LAW OF LARGE NUMBERS 87

4.2 Kolmogorov’s Strong Law of Large Numbers

4.2.1 The Square-integrable Case

The proof of Borel’s strong law of large numbers applies when the Xn’s are just
supposed uniformly bounded by a deterministic constant (this implying that the
moments at any order are finite, and that is all we really need in the proof). In
fact, there is a much stronger result, Kolmogorov’s strong law of large numbers:

Theorem 4.2.1 Let {Xn}n≥1 be an iid sequence of random variables such that

E[|X1|] <∞.

Then,

P

(
lim
n↑∞

Sn

n
= E[X1]

)
= 1.

We shall assume (without loss of generality) that E[X1] = 0. The main ingredient
of the proof is Kolmogorov’s inequality.

Lemma 4.2.2 Let X1, . . . , Xn be independent random variables such that E[|Xi|2] <
∞ and E[Xi] = 0 for all i, 1 ≤ i ≤ n. Let Sk = X1 + . . .+Xk. Then for all λ > 0,

P

(
max
1≤k≤n

|Sk| ≥ λ

)
≤ E[S2

n]

λ2
. (4.7)

Proof. Let T be the first (random) index k, 1 ≤ k ≤ n, such that |Sk| ≥ λ, with
T =∞ if max1≤k≤n |Sk| < λ. For k ≤ n,

E[1{T=k}S2
n] = E

[
1{T=k}

{
(Sn − Sk)

2 + 2Sk(Sn − Sk) + S2
k

}]
= E

[
1{T=k}

{
(Sn − Sk)

2 + S2
k

}] ≥ E[1{T=k}S2
k ] .

(We used the fact that 1{T=k}Sk is a function of X1, . . . , Xk and therefore indepen-
dent of Sn − Sk, so that, by the product rule for expectations, E[1{T=k}Sk(Sn −
Sk)] = E[1{T=k}Sk]E[Sn − Sk] = 0.) Therefore,

E[|Sn|2] ≥
n∑

k=1

E[1{T=k}S2
k ]

≥
n∑

k=1

E[1{T=k}λ2] = λ2

n∑
k=1

P (T = k)

= λ2P (T ≤ n) = λ2P

(
max
1≤k≤n

|Sk| ≥ λ

)
.

�

The next lemma is already the slln under the additional assumption E[|X1|2] <
∞.
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Lemma 4.2.3 Let {Xn}n≥1 be a sequence of independent random variables such
that E[|Xn|2] <∞ and E[Xn] = 0 for all n ≥ 1. If

∑
n≥1

E[X2
n]

n2
<∞ , (4.8)

then 1
n

∑n
k=1Xk → 0, P-a.s.

Proof. If 2k−1 ≤ n ≤ 2k, then |Sn| ≥ nε implies |Sn| ≥ 2k−1ε. Therefore, for all
ε > 0, and all k ≥ 1,

P

( |Sn|
n
≥ ε for some n ∈ [2k−1, 2k]

)
≤ P

(|Sn| ≥ ε2k−1 for some n ∈ [2k−1, 2k]
)

≤ P
(|Sn| ≥ ε2k−1 for some n ∈ [1, 2k]

)
= P

(
max

1≤n≤2k
|Sn| ≥ ε2k−1

)
≤ 4

ε2
1

(2k)2

2k∑
n=1

E[X2
n],

where the last inequality follows from Kolmogorov’s inequality. But

∞∑
k=1

1

(2k)2

2k∑
n=1

E[X2
n] =

∞∑
n=1

E[X2
n]

∞∑
k=1

1{2k≥n}
1

(2k)2

≤
∞∑
n=1

E[X2
n]
K

n2

for some finite K, since

∞∑
k=1

1{2k≥n}
1

(2k)2
=

∑
k≥log2 n

1

4k
≤ 1

n2

∑
k≥0

1

4k
.

Therefore, by (4.8),

∞∑
k=1

P

( |Sn|
n
≥ ε for some n ∈ [2k−1, 2k]

)
<∞,

and by the Borel–Cantelli lemma,

P

( |Sn|
n
≥ ε i.o.

)
= 0.

The result then follows from Theorem 4.1.6. �
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4.2.2 The General Case

We are now ready for the proof of Theorem 4.2.1.

Proof. It remains to get rid of the assumption E[|Xn|2] < ∞, and the natural
technique for this is truncation. Define

X̃n =

{
Xn if |Xn| ≤ n,
0 otherwise.

A. We first show that

lim
n↑∞

1

n

n∑
k=1

(X̃k − E[X̃k]) = 0 . (�)

In view of the preceding corollary, it suffices to prove that

∞∑
n=1

E[(X̃n − E[X̃n])
2]

n2
<∞.

But

E[(X̃n − E[X̃n])
2] = E[(X̃n)

2]− E[X̃n]
2 ≤ E[X̃2

n] = E[X2
11{|X1|≤n}].

It is therefore enough to show that

∞∑
n=1

E[X2
11{|X1|≤n}]
n2

<∞.

The left-hand side of the above inequality equals

∞∑
n=1

1

n2

n∑
k=1

E[X2
11{k−1<|X1|≤k}] =

∞∑
k=1

( ∞∑
n=k

1

n2

)
E[X2

11{k−1<|X1|≤k}].

Using the fact that

∞∑
n=k

1

n2
≤ 1

k2
+

∫ ∞

k

1

x2
dx =

1

k2
+

1

k
≤ 2

k

(draw the graph of x→ x−2), this is less than or equal to

∞∑
k=1

2

k
E[X2

11{k−1<|X1|≤k}] = 2
∞∑
k=1

E

[
X2

1

k
1{k−1<|X1|≤k}

]
≤ 2

∞∑
k=1

E[|X1|1{k−1<|X1|≤k}] = 2E[|X1|] <∞.

B. Since X1 is integrable, limn↑∞ E[X11{|X1|≤n}] = E[X1] by dominated conver-
gence (Example 4.1.10). Now Xn has the same distribution as X1, and therefore

lim
n↑∞

E[X̃n] = lim
n↑∞

E[Xn1{|Xn|≤n}] = lim
n↑∞

E[X11{|X1|≤n}] = E[X1].
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In particular (Cesaro’s lemma),

lim
n↑∞

1

n

n∑
k=1

E[X̃k] = 0 . (��)

C. In view of (�) and (��), it remains to show that

lim
n↑∞

S̃n

n
= lim

n↑∞
Sn

n
. (� � �)

We have, by the telescope formula (Theorem 2.1.24),

∞∑
n=1

P (|Xn| > n) =
∞∑
n=1

P (|X1| > n) ≤ E[|X1|] <∞,

and therefore, by Borel–Cantelli’s lemma,

P (X̃n �= Xn i.o.) = P (Xn > n i.o.) = 0 ,

which implies (� � �). �

Remark 4.2.4 The statement of the strong law of large numbers does not men-
tion any restriction on the range of the random variables concerned, which in this
book are discrete. The reason for this omission is that it remains true in the general
case, with exactly the same proof. Note however that the above proof of Theo-
rem 4.2.1 features only discrete random variables if the sequence {Xn}n≥0 takes
discrete values.

4.3 Exercises

Exercise 4.3.1. The geometric process

Let {Xn}n≥1 be a sequence of iid variables with values in {0, 1} such that P (X1 =
1) = p (0 < p < 1). Let Tk be the k-th index n ≥ 1 such that Xn = 1. Prove that
limk↑∞ Tk

k
= 1

p
.

Exercise 4.3.2. The repair shop

(The title of this exercise refers to a model that will be studied later in more
detail.) Consider the recurrence equation

Xn+1 = (Xn − 1)+ + Zn+1 (n ≥ 0)

(a+ := sup(a, 0)) where X0 = 0 and where {Zn}n≥1 is an iid sequence of random
variables with values in N. Denote by T0 the first index n ≥ 1 such that Xn = 0
(T0 =∞ if such index does not exist). Show that if E[Z1] < 1, P (T0 <∞) = 1.

Exercise 4.3.3. Convergence in the quadratic mean

A sequence of square-integrable real random variables {Zn}n≥1 is said to con-
verge in quadratic mean to the square-integrable real random variable Z if
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limn↑∞ E [|Zn − Z|2] = 0. Show that such a sequence also converges to Z in prob-
ability.

Exercise 4.3.4. Borel sequences

Prove the convergence result stated in Example 4.1.5.

Exercise 4.3.5. Asymptotics of the Poisson process

Let {Sn}n≥1 be an iid sequence of real random variables such that P (0 < S1 <
+∞) = 1 and E[S1] < ∞, and let for each t ≥ 0, N(t) :=

∑
n≥1 1(0,t](Tn), where

Tn := S1 + · · ·+ Sn.

(a) Prove that P -almost surely limn↑∞ Tn =∞ and limt↑∞ N(t) =∞.

(b) Prove that P -almost surely limt→∞
N(t)
t

= 1
E[S1]

.

Exercise 4.3.6. slnn, the infinite expectation case

Let {Zn}n≥1 be an iid sequence of non-negative random variables such that
E [Z1] =∞. Show that

lim
n↑∞

Z1 + . . .+ Zn

n
=∞ (= E [Z1]).

Exercise 4.3.7. Expectation of series

Prove the following.

(A) Let {Zn}n≥1 be a sequence of real-valued non-negative random variables. Then

E

[∑
n≥1

Zn

]
=
∑
n≥1

E [Zn] . (4.9)

(B) Let {Zn}n≥1 be a sequence of real-valued random variables such that∑
n≥1

E [|Zn|] <∞ .

Prove that (4.9) holds true.

Exercise 4.3.8. Convergence a.s. versus convergence in probability

Let {Xn}n≥1 be a sequence of independent random variables with values in {0, 1}.
(A) Prove that a necessary and sufficient condition of almost sure convergence to
0 is that ∑

n≥1

P (Xn = 1) <∞.

(B) Prove that a necessary and sufficient condition of convergence in probability
to 0 is that

lim
n↑∞

P (Xn = 1) = 0.
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(C) Deduce from the above that convergence in probability does not imply almost
sure convergence.

Exercise 4.3.9. Derivative of the Laplace transform

LetX be a discrete random variable with values xi ∈ + (i ≥ 1) and of distribution
pi = P (X = xi) (i ≥ 1). Suppose that for some t0 > 0,

∑
i≥1 pie

t0xi < ∞. Prove
that the function g : t → ∑

i≥1 pie
txi is differentiable in a neighborhhood of 0,

with derivative
∑

i≥1 pixie
txi .



Chapter 5

The probabilistic Method

5.1 Proving Existence

5.1.1 The Counting Argument

The techniques presented in this chapter for asserting the existence of mathemat-
ical objects with a certain property will at first sight appear as a collection of
tricks, but as one gets used to it, some unity emerges from the recurrence of these
tricks that henceforth deserve to be called “tools”. One can of course strive to
give a unified theoretical treatment to the probabilistic method. Even though this
may be fruitful at a more advanced level, we have chosen to proceed by means of
examples that will introduce the reader to what is an art as well as a science.

The original ideas involved in the probabilistic method are as ingenious as they
are simple. Suppose for instance that you are dealing with a countable collection
ai (i ∈ I) of “objects” and that you want to know if at least one of them has a
certain property P . It is sometimes convenient and efficient to imagine a random
element X taking the values ai (i ∈ I) and see if P (X satisfies property P) > 0,
in which case the answer is yes. In fact,

P (X satisfies property P) =
∑
i∈I

P (X = ai)1{ai satisfies property P}

a quantity which cannot be positive if 1{ai satisfies property P} = 0 for all i ∈ I.

This argument is called the counting argument.

The following examples of application of the probabilistic method concern graphs.

Example 5.1.1: Graph colouring. Let Kn be a complete graph with n ver-
tices. Coloring this graph consists in assigning a colour to each of its edges. Here we
consider the case with 2 colours, say, red and blue. Let k < n. We ask the following
question: does there exist a 2-colouring such that one cannot find a subgraph of
size k with all its edges of the same colour?

We are going to prove that if (
n

k

)
2−(

k
2)+1 < 1 , (5.1)
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there is no such colouring. For this, we use the probabilistic method, considering
a random colouring of the graph obtained by choosing independently the colours
of each edge, blue with probability 1

2
, red with probability 1

2
. There are exactly(

n
k

)
subgraphs of size k enumerated from 1 to

(
n
k

)
. Let Ai be the event that the

i-th subgraph is monochromatic. This occurs if, one of its edge being of any given
colour, the remaining

(
k
2

)− 1 edges are of the same colour. Therefore

P (Ai) = 2−(
k
2)+1.

Now the probability that there is no monochromatic subgraph of size k is

P

⎛⎜⎝(nk)⋂
i=1

Ai

⎞⎟⎠ = 1− P

⎛⎜⎝(nk)⋃
i=1

Ai

⎞⎟⎠ .

But, by sub-sigma-additivity,

P

⎛⎜⎝(nk)⋃
i=1

Ai

⎞⎟⎠ ≤
(nk)∑
i=1

P (Ai) =

(
n

k

)
2−(

k
2)+1 ,

a quantity which is, under assumption (5.1), strictly less than 1. Therefore the
probability that there is no monochromatic subgraph of size k is strictly positive.
In particular, there must exist at least one 2-colouring without monochromatic
subgraph of size k.

The next example features hypergraphs. A hypergraph is a pair H = (V, E) where
V is a finite set of vertices and E is a collection of subsets of V called the hyperedges.
If all the hyperedges have cardinality k, the hypergraph is called k-uniform. It is
called d-regular if each vertex is present in exactly d hyperedges. Let {1, 2, . . . , L}
be a set of ”colours”. A L-coloring of an hypergraph is an assignment of a colour to
each vertex. The hypergraph is called L-colourable if no hyperedge is monochro-
matic.

Example 5.1.2: Existence of a 2-colouring. Any k-uniform hypergraph
with less than 2k−1 hyperedges is 2-colourable. To see this, colour independently
the vertices with one of two colours, say red and blue, equiprobably. Let Ae be
the event that hyperedge e is monochromatic. Since P (Ae) =

1
2k−1 , the probability

that there exists a monochromatic hyperedge is, by the union bound,

P (∪eAe) ≤
∑
e

P (∪eAe) = |E| 1

2k−1
< 1 .

In particular, the probability that there exists no monochromatic hyperedge
is strictly positive. Consequently, by the counting argument, there exists a 2-
colouring with no monochromatic edge.
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The next example features tournaments. A tournament is a complete oriented
graph. More precisely a tournament Tn of size n is a complete graph Kn with the
additional feature that each edge 〈u, v〉 is oriented, either from u to v or from v to
u.

Example 5.1.3: Tournament with the Sk property. A tournament Tn is
said to have the property Sk (k ≤ n) if for any set of k vertices, there exists a
vertex that has an oriented edge towards each of these k vertices. Erdös has shown
that for a given k, there exists tournaments Tn with the Sk property provided
n > k22k.

Proof. Let Tn be a random tournament, that is, a complete graph Kn where the
directions of the edges are chosen independently and equiprobably, with probability
1
2
for each direction. Let S be a set of k vertices and let u be a vertex not in S. The

probability that u has an oriented edge to each vertex of S is 1
2k
, or, equivalently,

the probability that u fails to have an oriented edge to each vertex of S is 1− 1
2k
.

For different vertices, these events are independent and therefore the probability
that for all u /∈ S, u �→ S is equal to (1− 1

2k
)n−k. There are

(
n
k

)
sets of k vertices,

and therefore, by the union bound, the probability that there exists a set S of k
vertices such that for all u /∈ S, u �→ S (call it a “bad” set), is, using the bound(
n
k

) ≤ (
en
k

)k
(see (1.8)) and the inequality 1− x ≤ e−x

≤
(
n

k

)(
1− 1

2k

)n−k

≤
(en
k

)k

e−
n−k

2k .

If the last quantity is strictly less than 1, this means that there exists at least one
tournament on which no bad set exists, that is, a tournament with the Sk property.
Now (en

k

)k

e−
n−k

2k < 1⇔
(en
k

)k

< e
n−k

2k ,

and this is in turn equivalent to

k(1 + log(n/k))2k + k < n .

If n > 2k,

k(1 + log(n/k))2k + k < k(1 + log(2k))2k + k

= 2kk2 log 2

(
1 +

1

k log 2
+

1

k2k log 2

)
= 2kk2 log 2(1 +O(1))

Therefore, the Sk property is satisfied if n > 2kk2. �

5.1.2 The Expectation Argument

The following is another instance of the probabilistic method. Suppose again that
you have a countable collection ai (i ∈ I) of “objects”. In addition, there is a
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“performance index” for comparing them, that is, a function f : {ai, i ∈ I} → .
You want to check if there is at least one object whose performance is larger or
equal to some threshold α. For this again, you might imagine a random element X
taking the values ai(i ∈ I) and such that E[f(X)] ≥ α, in which case the answer
is yes. In fact,

E[f(X)] =
∑
i∈I

P (X = ai)f(ai) ,

a quantity which cannot be ≥ α if f(ai) < α for all i ∈ I. This is the expectation
argument.

Example 5.1.4: Large cuts, take 1. Let G = (V, E) be a graph with n vertices
and m edges. A cut of the graph is a partition (A,B), where B = A, of the set of
vertices. An edge e = 〈u, v〉 is said to connect A and B if either u ∈ A and v ∈ B
or v ∈ A and u ∈ B. The number N(A,B) of such edges is called the size of the
cut.

a cut

The size of this cut is 5

We shall prove that there exists at least one cut of size larger than 1
2
m (half the

number of edges). For this, we colour all the vertices independently of one another,
white or black with probability 1

2
. Call B the random set of black vertices.

Here, B is is the set of fat points and N(A,B) = 6

Since N(A,B) =
∑

e∈E 1{e connects A and B}, we have that E [N(A,B)] = 1
2
m

because the probability that a given edge e ∈ E connects A and B (the probability
that the end vertices of e have a different colour) is 1

2
. Therefore, by the expectation

argument, there exists at least one cut of size at least 1
2
m.

Example 5.1.5: Crossing number. The crossing number cr(G) of a graph G =
(V, E) with n vertices and m edges is the least number of edge crossings among
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all the planar representations of this graph. Recall that a planar graph is, by
definition, a graph with no edge crossing. We show that if m ≥ 4n, then

cr(G) ≥ 1

64

m3

n2
.

We first recall the following inequality:

m− cr(G) ≤ 3n . (�)

To prove it, we use Euler’s formula for planar graphs

n−m+ f = 2 ,

where f is the number of faces of the graph, that is the number of subsets of
the plane delimited by edges, including the exterior infinite one. To prove this
formula, observe that the removal of an edge is accompanied by the diminution
by 1 of the number of faces. Therefore the quantity n −m + f remains constant
through successive edge removals. Choose edge removals that each time break a
cycle, so that at the end we have a tree with n vertices, m = n − 1 and f = 1
faces, and therefore n −m + f = 2. The same value of n −m + f applies to the
original planar graph, and this yields Euler’s formula.

For the proof of (�), remove for each edge crossing one of the edges involved, to
obtain a planar graph with m − cr(G) edges, to which Euler’s formula applies.
This yields the announced result since by hypothesis m ≥ 4n.

We can now proceed to the probabilistic argument. Construct a subgraph H of
G whose vertex set V (H) is obtained by random independent thinning of V : a
vertex e ∈ V is accepted as a vertex of H with probability p = 4n

m
(< 1 since by

assumption m > 4n) independently of the other vertices. Then, by (�) applied to
H and with an obvious notation, cr(H) ≥ mH − 3nH . Taking expectations,

E [cr(H)] ≥ E [mH ]− 3E [nH ] .

Now, E [nH ] = np, E [mH ] = p2m (each edge is retained with probability p2) and
E [cr(H)] = p4E [cr(H)] (an edge crossing involves 4 vertices). Therefore

p4E [cr(G)] ≥ p2m− 3pn .

With p = 4n
m
, this is the announced result.

Example 5.1.6: Independent set of vertices. A subset B ⊂ V of vertices
of a graph G = (V, E) such that any pair of vertices in B has no edge linking
them is, by definition, an independent set of vertices. Denote by α(G) the largest
size of an independent set. Let n be the number of vertices and suppose that the
number of edges is m = nd

2
(therefore, d is the average index of a vertex). We shall

henceforth assume that d ≥ 1 and show that α(G) ≥ n
2d
.

Proof. Select a random set of vertices S ⊆ V as follows. Let {Zv}v∈V be a collection
of iid {0, 1}-valued random variables with common distribution P (Zv = 1) = p.
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Then decide to include v in S if and only if Zv = 1. The random number X = |S|
of vertices in S therefore has the mean

E[X] = np .

The number of edges of G|S, the restriction of G to S, is Y =
∑

e∈E Ye, where for
e = 〈u, v〉 ∈ E , Ye = ZuZv. In particular E[Ye] = p2 and by linearity of expectation,

E[Y ] =
nd

2
p2 .

Therefore

E[X − Y ] = np− nd

2
p2 ,

a quantity that is maximal for p = 1
d
(remember that d is assumed ≥ 1). With this

value,

E[X − Y ] =
n

2d
.

In particular, by the expectation argument, there exists a subset of vertices S for
which G|S has a number of vertices exceeding the number of edges by at least n

2d
.

Construct now an independent set B from S by deleting for each edge of G|S one
vertex so that B is an independent set of vertices (to help understanding what has
just been said, maybe you can draw a graph with, say, 10 vertices and 7 edges, and
suppress minimally vertices so as to obtain a set of at least 3 independent vertices).
There are ≤ Y such edges, the number of vertices in B is therefore X−Y ≥ n

2d
. �

The trick of eliminating vertices so as to obtain a subset of vertices with a desired
property is called the thinning argument.

Example 5.1.7: Dense graphs with large girth. A cycle of a graph G =
(V, E) is an ordered sequence of distinct vertices v1, . . . , v� (� ≥ 3) such that vi ∼
vi+1 (1 ≤ i ≤ � − 1) and v� ∼ v1. The length of the cycle is �. The girth of the
graph is the smallest length of a cycle of this graph. At first sight, one expects
that the more dense the graph, the smaller its girth. This is roughly true, however
there exists dense graphs with large girth. For instance:

Let k ≥ 3 be a fixed integer. For n sufficiently large, there exists a graph with n
nodes, at least m := 1

4
n1+ 1

k edges and girth ≥ k. (The average index d := 1
2
m
n
is

in this case 1
2
n

1
k and grows to infinity with the number of edges. Therefore we are

dealing with a “dense” graph.)

Proof. We apply the probabilistic method and the thinning argument of Example
5.1.6. Consider the Erdös–Rényi graph G(n, pn) with pn = n

1
k
−1 (its average index

is therefore of the order of n
1
k ). Let X be the number of its edges:

E[X] = pn

(
n

2

)
=

1

2

(
1− 1

n

)
n1+ 1

k .
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Let Y be the number of cycles of length ≤ k − 1. Any specific cycle of length
i occurs in G(n, p) with probability pi. Also there are

(
n
i

)
(i−1)!

2
possible cycles of

length i. In fact, one first chooses the i vertices:
(
n
i

)
choices, then, their order:

(i − 1)! choices (not i! because a cycle such as v1, v2, . . . , vi produces i identical
cycles: vk, vk+1 . . . , vk+i−1, 0 ≤ k ≤ i). The 1

2
factor comes from the fact that one

does not distinguish the order from the reversed order in the definition of a cycle.
Therefore

E[Y ] =
k−1∑
i=3

(
n

i

)
(i− 1)!

2
pi

≤
k−1∑
i=3

nipi =
k−1∑
i=3

n
i
k < kn

k−1
k .

Now, we eliminate from the graph one edge from each cycle of length ≤ k − 1,
so that the resulting graph has a girth ≥ k. The number of edges of the modified
graph is X − Y and

E[X − Y ] ≥ 1

2

(
1− 1

n

)
n1+ 1

k − kn
k−1
k .

When n is sufficiently large, this quantity is larger than 1
4
n1+ 1

k . Therefore, by the

expectation argument, there exists a graph with at least 1
4
n1+ 1

k edges and girth
≥ k. �

Example 5.1.8: Dominating set. A graph G = (V, E) being given, a subset D
of vertices is called dominating if every vertex v /∈ D is adjacent to D. Let δ be
the smallest vertex degree, assumed positive. Then, there exists a dominating set
of size ≤ n log(1+δ)+1

1+δ
.

Proof. Let S be a random set of vertices formed by the vertices selected indepen-
dently with probability p. Let T be the collection of vertices outside S without
neighbours in S. Note that D := S ∪ T is a dominating set. Then

E[D] = E[S] + E[T ] = np+ E[T ] ,

and

E[T ] =
∑
v∈V

1v/∈S ; (u∼v)⇒(u/∈S)

=
∑
v∈V

E
[
(1− p)d(v)+1

]
≤
∑
v∈V

(1− p)δ+1 = n(1− p)δ+1 .

Therefore,
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E[D] ≤ n
(
(1− p)δ+1 + p

) ≤ n
(
e−p(δ+1) + p

)
.

This function of δ has a minimum at p = log(1+δ)
1+δ

. For this value of p,(
(1− p)δ+1 + p

) ≤ n
(
e−p(δ+1) + p

)
=

log(1 + δ) + 1

1 + δ
.

�

Remark 5.1.9 Chapter 12 will give yet another spectacular application of the
probabilistic method, namely to the fundamental result of information theory,
Shannon’s capacity theorem.

5.1.3 Lovasz’s Local Lemma

In order to prove existence of objects with a given property, the probabilistic
method requires to show that the probability of some event is positive. For instance,
let A1, . . . , An be events, each of them having probability < 1. If they are mutually
independent, so are their complements, and therefore

P
(∩n

i=1Ai

)
> 0 . (5.2)

One may think of the Ai’s as “undesirable”, or “bad”, events (see the next example)
and therefore, if the above condition is satisfied, there exists at least one event
(namely ∩n

i=1Ai) not included in any of the bad events.

The statement is equivalent to P (∪n
i=1Ai) < 1. If the independence assumption

does not hold, one may think of applying the sub-σ-additivity property of proba-
bility and see if

∑n
i=1 P (Ai) < 1. This rough bound may be too coarse, and one

therefore has to resort to other methods. The following one applies when the events
are not independent, but “weakly” dependent.

In order to state the corresponding conditions, we introduce the notion of depen-
dency graph.

Definition 5.1.10 (i) An event B is said to be mutually independent of the events
B1, . . . , B� if

P (B| ∩j⊆I Bj) = P (B)

for all subsets I ⊆ {1, 2, . . . , �}.
(ii) A dependency graph for A1, . . . , An is a graph G = (V, E) where V =

{1, 2, . . . , n} and for all 1 ≤ i ≤ n, Ai is mutually independent of {Aj ; 〈i, j〉 �∈ E}.

Paraphrasing (ii): Ai is mutually independent of the events Aj such that j is not
directly connected to i by an edge of the dependency graph.

Observe (Exercise 5.3.5) that if B is mutually independent of the events B1, . . . , B�,
it is also mutually independent of the events B̃1, . . . , B̃�, where either B̃i = Bi or
B̃i = Bi, the choice varying arbitrarily from one index to the other.

We may now state Lovasz’s local lemma:
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Theorem 5.1.11 (Lovasz, 1993) Let A1, . . . , An be events with dependency graph
G = (V, E). Suppose there exist numbers xi ∈ (0, 1) such that for all 1 ≤ i ≤ n,

P (Ai) ≤ xi

∏
〈i,j〉∈E

(1− xj) .

Then

P
(∩n

i=1Ai

) ≥ n∏
i=1

(1− xi) .

Proof. Let S ⊂ {1, 2, . . . , n}. If we can show that

P
(
Ak | ∩j∈S Aj

) ≤ xk (�)

for all k �∈ S, then the proof follows from

P
(∩n

i=1Ai

)
=

n∏
i=1

P
(
Ai | ∩i−1

j=1 Aj

)
=

n∏
i=1

(
1− P

(
Ai | ∩i−1

j=1 Aj

))
≥

n∏
i=1

(1− xi) ,

a strictly positive quantity.

We now proceed to prove (�) by induction on s := |S|.
Step 1. For s = 0, (�) follows from the hypothesis since

P (Ak |∅) = P (Ak |Ω) = P (Ak) ≤ xk

∏
〈k,j〉∈E

(1− xj) ≤ xk .

Step 2. For s ≥ 1, we must first verify that P
(∪j∈SAj

)
> 0 so that the left-hand

side of (�) is meaningful. This is true for s = 1 because P
(
Aj

) ≥ 1− xj > 0. For
s ≥ 2, rename the elements of {1, 2, . . . , n} in such a way that S = {1, 2, . . . , s}.
Then

P
(∩s

i=1Ai

)
=

s∏
i=1

P
(
Ai | ∩i−1

j=1 Aj

)
=

s∏
i=1

(
1− P

(
Ai | ∩i−1

j=1 Aj

))
≥

s∏
i=1

(1− xi(1− x1) · · · (1− xi−1)) > 0 ,

according to the recurrence hypothesis.
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Step 3. Let S1 = {j ∈ S ; k ∼ j} (k ∼ j means that 〈i, j〉 is an edge of the
dependency graph of A1, . . . , An), and S2 = S\S1.

First case: S2 = S. This means that Ak is mutually independent of Ai, i ∈ S, and
therefore P

(
Ak| ∩j∈S Aj

)
= P (Ak) ≤ xk.

Second case: |S2| < s. With the notation BS = ∩j∈SAj, we have BS = BS1 ∩ BS2 .
Then

P
(
Ak | ∩j∈S Aj

)
:= P (Ak |BS)

=
P (Ak ∩ BS)

P (BS)
=

P (Ak ∩ BS1 ∩ BS2)

P (BS1 ∩ BS2)

=
P (Ak ∩ BS1 |BS2)P (BS2)

P (BS1 |BS2)P (BS2)

=
P (Ak ∩ BS1 |BS2)

P (BS1 |BS2)
:=

N

D
.

But, by the definition of a dependency graph and the hypothesis,

N ≤ P (Ak |BS2) = P (Ak) ≤ xk

∏
〈k,j〉∈E

(1− xj) .

Also, letting S1 := {j1, . . . , jr},
D = P

(∩i∈S1Ai | ∩j∈S2 Aj

)
=

r∏
�=1

(
1− P

(
Aj� |

(∩�−1
t=1Ajt

) ∩ (∩j∈S2Aj

)))
≥

r∏
�=1

(1− xj�) ≥
∏

〈k,j〉∈E
(1− xj) ,

where we used the induction hypothesis for the last inequality since in this second
case |S2| < |S| = s. Combining the bounds for N and D gives the announced
result. �

Corollary 5.1.12 Let A1, . . . , An be events. A sufficient condition for inequality
(5.2) is that the three conditions below be satisfied

(a) P (Ai) ≤ p (1 ≤ i ≤ n) for some p ∈ (0, 1),

(b) the largest degree of a vertex of the dependency graph is d (assumed ≥ 1,
otherwise we are in the known independent case), and

(c) ep(d+ 1) ≤ 1.

Proof. Take xi =
1

d+1
so that

xi

∏
〈i,j〉∈E

(1− xj) ≥ 1

d+ 1

(
1− 1

d+ 1

)d

=
1

d+ 1

(
d

d+ 1

)d
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and observe that
(

d
d+1

)d
=
(
1 + d

d+1

)d ≤ e. Therefore, for each i,

xi

∏
〈i,j〉∈E

(1− xj) ≥ ≥ p ≥ P (Ai) .

The result follows by applying the general version of Lovasz’s lemma. �

Since 1 ≤ d
2
, condition (c) is satisfied if

(c’) 6dp ≤ 1.

Example 5.1.13: The satisfiability problem. A logical formula is, roughly
speaking, an expression involving literals x1, x2, . . . with values in {0, 1} (where
1 and 0 mean true and false, respectively), their negations x1, x2, . . ., and the
operations and (conjunction, represented by the symbol ∧) and or (disjunction,
represented by the symbol ∨). In this example we shall consider the so-called sat

formulas. Such a formula is by definition a conjunction of clauses, a clause being
a disjunction of literals and their negations. For instance, (x1 ∨ x2), (x1 ∨ x4 ∨ x3)
and x2 are clauses, and

(x1 ∨ x2) ∧ (x1 ∨ x4 ∨ x3) ∧ x2

is a sat formula. A solution of the sat formula is any assignment of values to the
literals resulting in the value 1 (true). Equivalently, each clause must take the
value 1. In the above example, there is a solution (in fact several), for instance
x1 = x2 = 1, x3 = arbitrary, x4 = 0. There are sat formulas that do not have a
solution, for instance,

(x1 ∨ x3) ∧ (x1 ∨ x3) ∧ (x3).

In general, determining if a sat formula has a solution is np-hard. Here we shall
be interested in finding a sufficient condition ensuring the satisfiability of a sat

formula. It will be assumed that no clause contains a literal and its negation (in
this case the clause is trivially satisfied).

A k-sat formula is a sat formula in which each clause features exactly k literals.
We prove the following: In a k-sat formula with m clauses, if no variable appears
in more than 2k

6k
clauses, then it is satisfiable.

Proof. Let Xj (1 ≤ j ≤ k) be iid random variables taking equiprobably the
values 0 and 1. These are random values assigned to the literals xj (1 ≤ j ≤ k).
Let Ai be the event that clause i is not satisfied. Since a clause has k elements,
p := P (Ai) = 2−k. The event Ai is mutually independent of all the A� relative
to a clause � that shares no literal with clause i. Since by hypothesis no literal
appears in more that 2k

6k
clauses, the maximal degree d of the dependency graph of

(A� ; 1 ≤ � ≤ m) is such that d < k 2k

6k
= 2k

6
and therefore 6pd ≤ 1. The conditions

of Lovasz’s lemma are therefore satisfied and we can conclude that the event ∩m
i=1Ai

(all clauses are satisfied) has a positive probability. �
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Example 5.1.14: Non-colliding paths in a communications network.

We start with the following problem. There are n customers, and each consumer i
(1 ≤ i ≤ n) can choose goods from a list Li of m items. The lists are not disjoint,
but each given list shares no more that k items with any other given list. We shall
prove that under the condition 12nk ≤ m, there is at least one non-conflictual
assignment of goods (two customers who want the same object).

For this, let Xi be a random variable uniformly distributed on Li, and suppose
that the Xi’s are mutually independent. (The customers choose at random an item
from their list independently from one another.) Let Ei,j = {Xi = Xj} be the event
(of probability P (Ei,j) ≤ k

m
:= p) that there is a conflict between customers i and

j. Observe that Ei,j is mutually independent of the Er,s whenever r, s �∈ {i, j}.
Therefore, the events Ei,j, 1 ≤ i, j ≤ n, have a dependency graph with maximal
degree d ≤ 2(n − 1) < 2n (2(n − 1) is the number of unordered pairs (r, s) such
that one of them at least is not in {i, j}), so that 6pd < 12nk

m
, which is < 1 by

assumption. The conditions of Lovasz’s lemma are therefore satisfied and one can
therefore conclude that the event ∩m

i=1Ei (no conflict between customers) has a
positive probability.

We return to the title of the example, which refers to a communication network
with nodes and links between some pairs of distinct nodes. Such a network can
therefore be identified with a graph G = (V, E), the nodes and links being respec-
tively the vertices and edges. Let be given n distinct pairs of distinct nodes. Each
of these pairs of nodes seeks to establish a communications path between them
along the links. The possible paths available to the pair i (1 ≤ i ≤ n) form a list Li

of cardinal m. If a given path in Li shares at least a link with a path in Lj, these
paths are said to be colliding. Under the condition 12nk ≤ m, there is at least
one non-colliding assignment of paths, that is each one of the n pairs of nodes can
select a path of his list in such a way that all the paths selected are non-colliding.
The proof is the same as before, with a slight reinterpretation of the mathematical
objects involved (the event Ei,j is now “path Xi shares no link with path Xj”).

Example 5.1.15: 2-colourability of uniform regular hypergraphs. (a)
If

e
1

2k−1
(d− 1)k + 1 ≤ 1 , (�)

a k-uniform, d-regular hypergraph is 2-colourable.

(b) If k ≥ 9, a k-uniform, k-regular hypergraph is 2-colourable.

Proof. (a) Consider a random uniform 2-colouring of the set of vertices. Let Ae

denote the event that hyperedge e is monochrome. We have that P (Ae) =
1

2k−1 . We

want to show that the event ∩e∈EAe has a positive probability. Event Ae and Af are
dependent if e ∩ f �= ∅. Since e contains k vertices and each of them is contained
in d−1 other hyperedges, an upper bound for the degree of the dependency graph
is given by
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|{f ∈ E ; f ∩ e �= ∅}| ≤ (d− 1)k .

By Corollary 5.1.12, if (�) is satisfied, then

P
(∩e∈EAe

)
> 0 .

(b) With d = k, inequality (�) reads

e
1

2k−1
(k − 1)k + 1 ≤ 1 ,

and one checks that it is satisfied for k ≥ 9. �

5.2 Random Algorithms

5.2.1 Las Vegas Algorithms

Another aspect of the probabilistic method concerns random algorithms, that is
algorithms involving random steps, which produce correct results with high prob-
ability (even probability 1) in situations where deterministic algorithms are either
not available or too costly from a computational point of view.

Algorithms are devised to find a given mathematical object, for instance the great-
est common divisor of two integers, or to check if some property is satisfied, for
instance if a given integer is a prime number. Random algorithms are used when
the computational burden of the classical deterministic algorithms is too heavy.
This section consists of a collection of examples that will give some feeling as to
what is meant by a random algorithm. However, we shall not perform the com-
plete analysis of efficiency of these algorithms, for instance we shall not discuss in
detail their computational cost, in terms of time or of memory requirement, but
only deal with the purely probabilistic aspects, such as the performance analysis
in terms of probability of error.

We shall distinguish two types of random algorithms. The output of a Monte
Carlo algorithm is correct only with some probability (hopefully close to 1, but
not necessarily), whereas a Las Vegas algorithm, even though it involves some kind
of randomization, eventually gives the correct answer.

Example 5.2.1: Quicksort. Suppose that we need to sort a sequence of num-
bers in increasing order. For example 7, 6, 4, 2, 9, 3, 1, 8, 5. The quicksort algorithm
proposes to choose one at random, say, 4, called the pivot. It then scans the list
from left to right, comparing each number to the pivot, placing the ones that are
smaller than the pivot to the left, the others to the right. This creates three sets:

{2, 1, 3}, 4, {7, 6, 9, 8, 5}
It operates likewise on the two unordered subsets of the last list. For instance,
starting with subset {2, 1, 3}, and choosing at random the pivot for this sublist,
say 1, and then continuing with the subset {7, 6, 9, 8, 5} with the pivot 7, we obtain:
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1, {2, 3}, 4, {6, 5}, 7, {9, 8}.
We keep doing this until all the subsets have only one member. In this particular
example just one more iteration is needed.

The number of comparisons needed is 8 + (2 + 4) + (1 + 1 + 1) = 17. One would
like to know how well this algorithm does in terms of the number of comparisons.
The best case would be if at each splitting the median number is chosen, resulting
in a number of comparisons approximately equal to

n+ 2
n

2
+ 4

n

4
+ · · ·

where there are approximately log2 n terms in the sum. Therefore, one should
compare the average number of comparisons in the random quicksort to n log2 n.

Let Cn be the number of comparisons needed and let X be the rank of the initial
value selected. We have, with Mn = E [Cn],

Mn =
n∑

j=1

E [Cn|X = j]P (X = j)

=
n∑

j=1

(n− 1 +Mj−1 +Mn−j)× 1

n
= n− 1 +

2

n

n−1∑
k=1

Mk ,

and therefore

nMn = n(n− 1) + 2
n−1∑
k=1

Mk .

Subtracting the same expression with n− 1 instead of n, we have

nMn = (n+ 1)Mn−1 + 2(n− 1) ,

or
Mn

n+ 1
=

Mn−1

n
+

2(n− 1)

n(n+ 1)
.

By iteration,
Mn

n+ 1
= 2

n∑
k=1

k − 1

k(k + 1)
= 2

n∑
k=1

(
2

k + 1
− 1

k

)
and therefore, finally, using the bounds

log n ≤ H(n) :=
n∑

i=1

1

i
≤ log n+ 1

(see Example 2.1.42), Mn ∼ 2n log n. This compares quite well with the idyllic
best case.

Example 5.2.2: Large cuts, take 2.We know that in a graph G = (V, E) with
m edges, there exists at least one cut of size m

2
. If the cut is obtained by random
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selection in Example 5.1.4, the probability of success is p = P
(
N(A,B) ≥ m

2

)
. In

the following computations, we suppose that m is even. We have seen that

m

2
= E [N(A,B)] =

∑
i≤m

2
−1

iP (N(A,B) = i) +
∑
i≥m

2

iP (N(A,B) = i) .

But

∑
i≤m

2

iP (N(A,B) = i) ≤
(m
2
− 1

)⎛⎝ ∑
i≤m

2
−1

P (N(A,B) = i)

⎞⎠
=
(m
2
− 1

)
P (N(A,B) ≤ m

2
− 1) =

(m
2
− 1

)
(1− p)

and observing that N(A,B) ≤ m,∑
i≥m

2

iP (N(A,B) = i) ≤ m
∑
i≥m

2

P (N(A,B) = i) = mP (N(A,B) ≥ m

2
) = mp .

Therefore m
2
≤ (

m
2
− 1

)
(1− p)+mp, which gives p ≥ 1

m
2
+1

. Observe that the time

needed to check if a given cut is at least of size m
2
is polynomial in m (counting

the edges linking the partitioning sets A and B).

The above algorithm is, as such, a Monte Carlo algorithm. It only has a positive
probability of success. However, it can be iterated with independent random cuts
until the desired result is attained and therefore, its iterated version is a Las
Vegas algorithm. The random number of iterations until success is geometric and
therefore has a mean equal to 1

p
≤ 1 + m

2
.

5.2.2 Monte Carlo Algorithms

The next example is that of a Monte Carlo algorithm that cannot be transformed
into a Las Vegas algorithm, although iterations of it eventually give arbitrarily
small probability as their number increases.

Example 5.2.3: Checking a polynomial identity, 1 variable. Let P1 and
P2 be two polynomials of degree d. We wish to check if P1 ≡ P2. Of course the query
is meaningful only if the two polynomials are not in canonical form, in which case
a simple inspection of the coefficients is enough, and this requires O(d) operations
in the worst case. If one of the polynomials is presented in the form of a product
of d monomials, the reduction to canonical form requires O(d2) multiplications (at
each step i, 2 ≤ i ≤ n, of the procedure, one has to multiply the i-th monomial
with the product of the i− 1 first monomials).

There is a random algorithm requiring O(d) operations which gives an answer, but
this answer may be the wrong one. We present this algorithm and estimate the
probability of a wrong decision. Then we discuss what can be done to make the
probability of error small.
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The algorithm consists in choosing a number r at random in the set {1, 2, . . . , 100d}
and then comparing the values of these polynomials for the value r of the argument
(which can be done in O(d) time).

If P1(r) �= P2(r) say that P1 �≡ P2. If P1(r) = P2(r) say that P1 ≡ P2.

The answer of the algorithm is wrong if and only if P1 �≡ P2 and P1(r) = P2(r).
But given that P1 �≡ P2, the event P1(r) = P2(r) is implied by the event that the
polynomial P := P1 − P2 (whose degree is at most d) has r for a root. But among
the 100d possible values of r, at most d are the roots of D, therefore, since r is
chosen at random among 100d values, the probability of error is d

100d
= 1

100
.

Accurateness can be improved by repeating the algorithm k times independently.
If p is the probability of error of a single run of the algorithm, the probability that
the k runs give the wrong answer is pk. Already 3 runs give a probability of error
of one millionth.

Remark 5.2.4 An argument against the above method is that there exist good
deterministic algorithms for the same purpose. Indeed, if we take d + 1 samples
r1, . . . , rd+1 without replacements (that is, distinct), then if P1 �≡ P2, one of these
values will give different evaluations of the polynomial (a polynomial of degree
d has at most d roots), and therefore, a correct answer. Note however that the
number of operations required is O(d2). The choice is between complexity and
accurateness (measured by the probability of a correct answer).

Example 5.2.5: Checking a polynomial identity, n variables. (Schwartz,
1980, and Zippel, 1979.) This example is an extension of Example 5.2.3 to polyno-
mials of n real variables. One wishes to know if the polynomial Q(x1, x2, . . . , xn) of
degree d is identically null or not. The algorithm that is proposed is the following.
Let S be a set of real numbers. Choose n values r1, r2, . . . , rn independently and
uniformly in S.

(1) If Q(r1, r2, . . . , rn) = 0 claim that Q ≡ 0.

(2) If Q(r1, r2, . . . , rn) �= 0 claim that Q �≡ 0.

An error may occur only in case (1): Q �≡ 0 and Q(r1, r2, . . . , rn) = 0. We show
that if Q �≡ 0, then

P (Q(r1, r2, . . . , rn) = 0) ≤ d

|S| .
This is proved by induction on the number of variables. Example 5.2.3 has shown
that the claim is true for n = 1. Suppose now that the result has been proved for
n− 1 ≥ 1 variables. Let k be the largest degree of x1 in Q. The polynomial Q can
then be written as

Q(x1, x2, . . . , xn) = R(x2, x3, . . . , xn)x
k
1 + T (x1, x2, . . . , xn)

where the maximum degree of R is ≤ d − k and the maximum degree of x1 in T
is < k.
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Now choose r2, r3, . . . , rn uniformly and independently in S. Let

A := {R(r2, r3, . . . , rn) = 0} .
The induction hypothesis tells us that P (A) ≤ d−k

|S| .

Define Q′(x1) := Q(x1, r2, . . . , rn). Outside A, this is a non-null polynomial in one
variable of degree k. It has at most k roots and therefore

P (Q′(r1) = Q(r1, r2, . . . , rn) = 0 |A) ≤ k

|S| .

Now

P (Q(r1, r2, . . . , rn) = 0)

= P (Q(r1, r2, . . . , rn) = 0 |A)P (A) + P (Q(r1, r2, . . . , rn) = 0 |A)P (A)

≤ d− k

|S| +
k

|S| =
d

|S| .

Example 5.2.6: A primality test. (Rabin, 1980) Let x ≤ n be a positive
integer. Define x0 := xp (mod n), xj = x2

j−1 (mod n) (1 ≤ j ≤ p). A test for
checking the primality of n is based on the following number-theoretic lemma.:
Let n > 4 be an odd number (necessarily of the form n = 1 + 2pm where m is
odd).

(i) If n is composite, there are at least 3
4
(n− 1) integers x ∈ {1, 2, . . . , n} such

that either: (a) xp �= 1, or: (b) for some j (1 ≤ j ≤ p), xj = 1 and xj−1 �= n− 1.

(ii) If n is prime, neither (a) nor (b) holds for any x ∈ {1, 2, . . . , n}.
This leads to the following algorithm. Select uniformly at random an integer x ∈
{1, 2, . . . , n}. If neither (a) nor (b) is satisfied, say that n is prime, otherwise say
that it is composite. According to the lemma, an error occurs only if n is composite
and neither (a) nor (b) is satisfied, which occurs with probability less than 1

4
. Here

again, by repeating k times this test, we can attain a probability of error smaller
than 1

4k
.

Properties (a) and (b) can be checked in log n time. This must be taken into
account when comparing the randomized algorithm to a deterministic algorithm.

The last examples are of the same kind. One wishes to check if a given property P
relative to the elements of a collection C of objects is satisfied by a given particular
object x ∈ C. One can subject this object to random experiments resulting in a
random variable Z taking two values, say yes or no, with the following property
(a) if no, property P is not satisfied for this x, and (b) if yes, property P is
satisfied with a certain probability p < 1

2
. The experiments have the following

features. If no, property P is not satisfied, and one has obtained the correct answer
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in a single iteration of the random experiment. Whereas in the other case, the
successive independent repetitions of the experiment will never end up with a clear
unambiguous answer, but they decrease to any small fixed value the probability
of making an error. Such random algorithms are, by essence, pure Monte Carlo
algorithms.

Example 5.2.7: An algorithm for the min-cut size of a multigraph.

In a multigraph G = (V, E) (a graph with possibly multiple edges) — assumed
connected and loop free — a cut is, by definition, a set of edges whose suppression
disconnects the graph. The present goal is to find the min-cut size of the graph,
that is, the minimal size of a cut. The random algorithm proposed below may or
may not yield the correct answer, but nevertheless one can compute a lower bound
for the probability of success that can be exploited, as we shall see later.

The algorithm consists in a succession of edge contractions: at each step, as long
as there remains two vertices in the graph, one applies to the current graph the
following operation. An edge e is selected at random amongst its edges, and the
two corresponding vertices are merged while suppressing all the edges between
these two vertices. In particular, there never appear loops in the process. Note
that an edge contraction does not reduce the min-cut size because every cut in
the graph at an intermediate size is a cut of the original graph. When there are
only two vertices left, the answer (right or wrong) proposed by the algorithm is
just the number of edges linking them. The following pictures describe the actual
procedure in a particular case. The second and third level of pictures describe two
possible paths, with different outcomes, showing that the algorithm might err.

1

2

3

4

5

6

2

1, 3

4

5

6

2

1, 3, 4 5

6

1, 3, 4, 2 5

6

5, 1, 3, 4, 2

6

1, 3, 4, 2 5

6

1, 3, 4, 2 5, 6
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Let n be the number of vertices of the original graph and k be its min-cut size.
Let C be a particular cut of minimal size. Then G has at least kn

2
edges, otherwise

there would be a vertex of degree strictly less than k and its incident edges would
then form a cut of size strictly less than k.

One circumstance leading to a correct answer is when no edge of C is ever con-
tracted, so that the surviving edges are exactly those of C. The probability of this
event that we proceed to estimate is then a lower bound for the probability of
success.

Denote by Ai the probability that no edge of C is picked for contraction at stage
i (1 ≤ i ≤ n − 2). The probability that the first edge chosen is in C is at most

k
nk/2

so that P (A1) ≥ 1 − 2
n
. If A1 occurs, there are at least k(n−1)

2
edges in the

contracted graph, so that, as above P (A2 |A1) ≥ 1− 2
n−1

. More generally,

P (Ai | ∩i−1
�=1 A�) ≥ 1− 2

n− i+ 1

and therefore, by the Bayes sequential rule,

P
(∩n−1

i=1 Ai

) ≥ n−1∏
i=1

(
1− 2

n− i+ 1

)
=

2

n(n− 1)
.

Therefore, the probability of a correct answer is ≥ 2
n2

This is a low probability for large graphs. However if we repeat the algorithm
n2

2
times, and keep the minimal min-cut size proposals of the 2

n2 iterations, the
probability of not having found the right answer is at most(

1− 2

n2

)n2

2

<
1

e
.

Example 5.2.8: Fingerprinting. (Rabin, 1981) Two numbers, repectively a
and b, with binary representations

a = a1a2 · · · an and b = b1b2 · · · bn
have been recorded by two individuals, respectively A and B, in different locations.
They both wish to know if these two sequences are identical. For this purpose, one
of them (say, A) transmits his number to the other (in this case, B) so that the
latter can compare the sequences. But, in view of saving communication costs A
sends a shorter sequence, a fingerprint of his sequence, namely Fp(a) := a( mod p)
where p is a prime number chosen uniformly at random among the prime numbers
smaller than or equal to some number N . He also sends p, so that receiver B can
compute the fingerprint Fp(b) of his own number and check if Fp(a) = Fp(b). If
this is not the case, he concludes that the sequences are different, making the right
decision since the communications channel is assumed error-free. If the fingerprints
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coincide, he concludes that the original sequences are the same, thus potentially
making an error, the probability of which we now estimate.

If Fp(a) = Fp(b) and a �= b, then p divides |a− b|, and therefore

P (Err.) ≤ P (p divides |a− b|) .

Let α(n) be an upper bound of the number of primes that divides a given n-bit
number, and let π(N) be the number of primes smaller than or equal to N . Since
p is chosen uniformly at random among the prime numbers smaller than or equal
to N ,

P (p divides |a− b|) ≤ α(n)

π(N)
.

Recall (or else, believe) the following fact from prime number theory. For any
number x ≥ 17,

x

log x
≤ π(x) ≤ 1.26

x

log x
.

Therefore

P (Err.) ≤ 1.26
n logN

N log n
.

Choosing N = cn, we therefore obtain the bound

P (Err.) ≤ 1.26

c

(
1 +

log c

log n

)
.

This is a small number even for small c. For instance with n = 223 and N = 232,

P (Err.) ≤ 1.26
n logN

N log n
= 1.26

223 × 32

232 × 23
< 0.0035 .

The prime number p is an O(n). Therefore the number of bits required to transmit
p and a is an O(log2 n), to be compared with the crude method (transmitting a
instead of its fingerprint). The algorithm requires to find a prime number ≤ N .
For this, we may pick at random a number ≤ N , which is a prime number with
probability π(N). It will therefore take on the average logN primality tests before
we find a prime number. Efficient randomized primality tests can be used, such
that the one in Example 5.2.6.

Books for Further Information

For this chapter, see [Alon and Spencer, 1991, 2010], [Mitzenmacher and Upfal,
2005] and [Motwani and Raghavan, 1995]. The first reference is the main one
on the subject and contains a wealth of examples. It is mathematicaly oriented,
whereas the second one contains applications, mostly in the information and com-
munications sciences. The third item is devoted to random algorithms. [Sinclair,
2011] treats most subjects and emphasizes the important algorithmic complexity
aspects.
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5.3 Exercises

Exercise 5.3.1. Another simple inequality

Let X be a non-negative random variable with mean μ. Prove that P (X ≤ μ) > 0.

Exercise 5.3.2. Graph colouring

Refer to Example 5.1.1. Show that if n ≤ 2k/2 and k ≥ 3, there exists a 2-coloring
of the complete graph Kn with no monochromatic complete subgraph of size k.

Exercise 5.3.3. A variant of the expectation argument

(a) Let X be an integer-valued random variable and r be an integer. Show that

E[X] ≤ r =⇒ P (X ≤ r) > 0 .

(b) Prove that a k-uniform hypergraph with m hyperedges can be coloured in such
a way that at most m

2k−1 hyperedges are monochromatic.

Exercise 5.3.4. Satisfiability
Consider the satisfiability problem of Example 5.1.13 with k literals and m clauses.
Suppose that clause i features ki distinct literals (1 ≤ i ≤ m). In the example just
mentioned, ki ≡ k, whereas here, we define k = min ki. Show that there exists
at least one assignment of the literals such that at least m

(
1− 2−k

)
clauses are

satisfied.

Exercise 5.3.5. The dependency graph

Show that if B is mutually independent of the events B1, . . . , B� (see Definition
5.1.10), it is also mutually independent of the events B̃1, . . . , B̃�, where either
B̃i = Bi or Bi, the choice varying arbitrarily from an index to the other.

Exercise 5.3.6. 2-colourable k-uniform hypergraph, take 1

A 2-colouring of a hypergraph H is the attribution to each vertex a colour, blue
or red. A hyperedge of this hypergraph is called monochromatic if all its vertices
have the same colour. A 2-colouring is called is proper if none of its hyperedges is
monochromatic. A hypergraph is 2-colourable if it admits a proper 2-colouring.

Prove the following: A k-uniform hypergraph with less than 2k−1 hyperedges is
2-colourable.

Exercise 5.3.7. 2-colourable k-uniform hypergraph, take 2

Prove that a k-uniform hypergraph with m hyperedges can be 2-coloured in such
a way that at most m

2k−1 hyperedges are monochromatic.

Exercise 5.3.8. Light switches

There is an n × n array of lights that are either “on” or “off”. There is for each
row i a {0, 1}-valued switch variable Yi, with the following effect: if Yi = 0 all the
lamps in row i change states, otherwise they stay as they are. Similarly for each
column j there is a {0, 1}-valued switch variable Zj, with the following effect: if
Zj = 0 all the lamps in column j change states, otherwise they stay as they are.
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The aim of this exercise is to show that for any initial “on/off” configuration of
lights, the states of the switches can be chosen such that the number of on lights

is asymptotically n2

2
+
√

1
2π
× n

3
2 . For this, starting with an arbitrary “on/off”

configuration of lights, set randomly and uniformly the column switches. In other
words the Zj’s form an iid family of variables, each of them uniformly distributed
(P (Zj = 1) = 1

2
). If light (i, j) is “on”, we set X(i, j) = 1, and 0 otherwise. Show

that

E

[
|
∑
j

X(i, j)|
]
∼
√

2

π
n

1
2 .

Now set the switch of row i so as to obtain a majority of lights “on” in this row and
compute the resulting expectation of the excess number of “on” lights with respect
to “off” lights. Conclude. (You may admit the following fact concerning the sum
X of iid {−1,+1}-valued variables B1, . . . , Bn uniformly distributed: E [|X|] ∼√

2
π
n

1
2 .)

Exercise 5.3.9. Tournament 1

Players of a given game (say, tennis) are ranked, and this ranking is supposed
to be strict (no ex-aequo). A tournament between n players is represented by a
complete oriented graph with vertex set V = {1, 2, . . . , n}, that is, a complete
graph Kn where each edge is oriented. Here, an edge 〈u, v〉 represents a game
between players u and v, and the arrow on this edge points to the looser. Show
that for every tournament, there exists a ranking that disagrees with less than half
the edges.

Exercise 5.3.10. Tournament 2

Recall that a random tournament on the complete graph Kn is the tournament for
which the directions of the edges are chosen independently with probability 1

2
for

each direction. Show that for all n ≥ 1, there is a tournament on n vertices with
at least n!2−(n−1) Hamiltonian cycles.

Exercise 5.3.11. Colouring

Let G = (V, E) be a graph and let L(v) be for each vertex v a list of colours. This
defines a list assignment L. This list assignment is said to be of size k if L(v) ≤ k
for all v ∈ V . A L-colouring of G is a colouring that assigns to each vertex v a
colour c(v) in the list L(v). The graph G is called L-colourable if there exists a L-
colouring that is proper, that is such that there exists no adjacent peir of vertices
with the same colour.

Prove the following: Let L be a list assignment of size k. If for every vertex v, every
colour q ∈ L(v) appears in at most 1

e
neighbours of v, then G is L-colourable.

Exercise 5.3.12. Pattern matching

The following situation occurs in dna analysis. There is a long chain of symbols
x = x1x2 · · · xn in which we try to detect the presence of a shorter sequence
y = y1y2 · · · ym. In the dna context, the symbols are G, A, T, C, representing
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the four nucleobases. By an obvious binary encoding of these four symbols, one
can reduce the problem to the case where the symbols forming the chains x and y
are binary digits.

The problem is therefore the following. Is there some j (1 ≤ j ≤ n−m+ 1) such
that x(j) := xjxj+1 · · · xj+m−1 = y1y2 · · · ym? The following algorithm is proposed.
Select a prime number p uniformly at random among the prime numbers smaller
than or equal to some number N . Then check if there is some j (1 ≤ j ≤ m−n+1)
such that Fp(x(j)) = Fp(y) or, equivalently, such that p divides |Fp(x(j))− Fp(y)|
(the definition of the function Fp is given in Example 5.2.8). If not, the return
of the algorithm is that there is no match, and the answer is correct. If yes, the
return is that there is a match, and this may not be true. Prove that with the
choice N = cnm, the probability of error is bounded as follows:

P (E) ≤ 1.26
mn logN

log(mn)N
.



Chapter 6

Markov Chain Models

6.1 The Transition Matrix

6.1.1 Distribution of a Markov Chain

A particle on a denumerable set E. If at time n, the particle is in position Xn = i,
it will be at time n + 1 in a position Xn+1 = j chosen independently of the past
trajectory Xn−1, Xn−2 with probability pij. This can be represented by a labeled
directed graph, called the transition graph, whose set of vertices is E, and for
which there is a directed edge from i ∈ E to j ∈ E with label pij if and only the
latter quantity is positive. Note that there may be “self-loops”, corresponding to
positions i such that pii > 0.

1

2

3

4

p12

p23

p34

p32

p41

p11

This graphical interpretation of as Markov chain in terms of a “random walk” on
a set E is adapted to the study of random walks on graphs (see Chapter 8). Since
the interpretation of a Markov chain in such terms is not always the natural one,
we proceed to give a more formal definition.

Recall that a sequence {Xn}n≥0 of random variables with values in a set E is called
a discrete-time stochastic process with state space E. In this chapter, the state
space is countable, and its elements will be denoted by i, j, k,. . . If Xn = i, the
process is said to be in state i at time n, or to visit state i at time n.

Definition 6.1.1 If for all integers n ≥ 0 and all states i0, i1, . . . , in−1, i, j,

P (Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j |Xn = i) ,
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this stochastic process is called a Markov chain, and a homogeneous Markov chain
(hmc) if, in addition, the right-hand side is independent of n.

The matrix P = {pij}i,j∈E, where

pij = P (Xn+1 = j |Xn = i),

is called the transition matrix of the hmc. Since the entries are probabilities, and
since a transition from any state i must be to some state, it follows that

pij ≥ 0, and
∑
k∈E

pik = 1

for all states i, j. A matrix P indexed by E and satisfying the above properties is
called a stochastic matrix. The state space may be infinite, and therefore such a
matrix is in general not of the kind studied in linear algebra. However, the basic
operations of addition and multiplication will be defined by the same formal rules.
The notation x = {x(i)}i∈E formally represents a column vector, and xT is the
corresponding row vector.

The Markov property easily extends (Exercise 6.4.2) to

P (A |Xn = i, B) = P (A |Xn = i) ,

where

A = {Xn+1 = j1, . . . , Xn+k = jk}, B = {X0 = i0, . . . , Xn−1 = in−1}.

This is in turn equivalent to

P (A ∩ B |Xn = i) = P (A |Xn = i)P (B |Xn = i).

That is, A and B are conditionaly independent given Xn = i. In other words, the
future at time n and the past at time n are conditionally independent given the
present state Xn = i. In particular, the Markov property is independent of the
direction of time.

Notation. We shall from now on abbreviate P (A |X0 = i) as Pi(A). Also, if μ is
a probability distribution on E, then Pμ(A) is the probability of A given that the
initial state X0 is distributed according to μ.

The distribution at time n of the chain is the vector νn := {νn(i)}i∈E, where

νn(i) := P (Xn = i).

From the Bayes rule of exclusive and exhaustive causes, νn+1(j) =
∑

i∈E νn(i)pij,
that is, in matrix form, νT

n+1 = νT
nP. Iteration of this equality yields

νT
n = νT

0 P
n. (6.1)

The matrix Pm is called the m-step transition matrix because its general term is
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pij(m) = P (Xn+m = j |Xn = i).

In fact, by the Bayes sequential rule and the Markov property, the right-hand side
equals

∑
i1,...,im−1∈E pii1pi1i2 · · · pim−1j, which is the general term of the m-th power

of P.

The probability distribution ν0 of the initial state X0 is called the initial distri-
bution. From the Bayes sequential rule and in view of the homogeneous Markov
property and the definition of the transition matrix,

P (X0 = i0, X1 = i1, . . . , Xk = ik) = ν0(i0)pi0i1 · · · pik−1ik .

Therefore,

Theorem 6.1.2 The distribution of a discrete-time hmc is uniquely determined
by its initial distribution and its transition matrix.

First-step Analysis

Some functionals of homogeneous Markov chains such as probabilities of absorption
by a closed set (A is called closed if

∑
j∈A pij = 1 for all i ∈ A) and average times

before absorption can be evaluated by a technique called first-step analysis.

Example 6.1.3: The gambler’s ruin, take 1. Two players A and B play
“heads or tails”, where heads occur with probability p ∈ (0, 1), and the successive
outcomes form an iid sequence. Calling Xn the fortune in dollars of player A at
time n, then Xn+1 = Xn + Zn+1, where Zn+1 = +1 (resp., −1) with probability
p (resp., q := 1 − p), and {Zn}n≥1 is iid. In other words, A bets $1 on heads at
each toss, and B bets $1 on tails. The respective initial fortunes of A and B are
a and b (positive integers). The game ends when a player is ruined, and therefore
the process {Xn}n≥1 is a random walk as described in Example 6.1.5, except that
it is restricted to E = {0, . . . , a, a+ 1, . . . , a+ b = c}. The duration of the game is
T , the first time n at which Xn = 0 or c, and the probability of winning for A is
u(a) = P (XT = c |X0 = a).

1 2 3 4 5 6 7 8 9 10 T = 11

c = a+ b

0

a

A wins

The gambler’s ruin
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Instead of computing u(a) alone, first-step analysis computes

u(i) = P (XT = c |X0 = i)

for all states i (0 ≤ i ≤ c) and for this, it first generates a recurrence equation
for u(i) by breaking down event “A wins” according to what can happen after the
first step (the first toss) and using the rule of exclusive and exhaustive causes. If
X0 = i, 1 ≤ i ≤ c−1, then X1 = i+1 (resp., X1 = i−1) with probability p (resp.,
q), and the probability of winning for A with updated initial fortune i+ 1 (resp.,
i− 1) is u(i+ 1) (resp., u(i− 1)). Therefore, for i (1 ≤ i ≤ c− 1)

u(i) = pu(i+ 1) + qu(i− 1),

with the boundary conditions u(0) = 0, u(c) = 1.

The characteristic equation associated with this linear recurrence equation is pr2−
r+ q = 0. It has two distinct roots, r1 = 1 and r2 =

q
p
, if p �= 1

2
, and a double root,

r1 = 1, if p = 1
2
. Therefore, the general solution is u(i) = λri1 + μri2 = λ + μ

(
q
p

)i

when p �= q, and u(i) = λri1 + μiri1 = λ+ μi when p = q = 1
2
. Taking into account

the boundary conditions, one can determine the values of λ and μ. The result is,
for p �= q,

u(i) =
1− ( q

p
)i

1− ( q
p
)c
,

and for p = q = 1
2
,

u(i) =
i

c
.

In the case p = q = 1
2
, the probability v(i) that B wins when the initial fortune of

B is c−i is obtained by replacing i by c−i in expression for u(i): v(i) = c−i
c

= 1− i
c
.

One checks that u(i) + v(i) = 1, which means in particular that the probability
that the game lasts forever is null. The reader is invited to check that the same is
true in the case p �= q.

First-step analysis can also be used to compute average times before absorption
(Exercise 6.4.7).

6.1.2 Sample Path Realization

Many hmc’s receive a natural description in terms of a recurrence equation.

Theorem 6.1.4 Let {Zn}n≥1 be an iid sequence of random variables with values
in an arbitrary space F . Let E be a countable space, and f : E × F → E be some
function. Let X0 be a random variable with values in E, independent of {Zn}n≥1.
The recurrence equation

Xn+1 = f(Xn, Zn+1) (6.2)

then defines a hmc.
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Proof. Iteration of recurrence (6.2) shows that for all n ≥ 1, there is a function
gn such that Xn = gn(X0, Z1, . . . , Zn), and therefore P (Xn+1 = j |Xn = i, Xn−1 =
in−1, . . . , X0 = i0) = P (f(i, Zn+1) = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) =
P (f(i, Zn+1) = j), since the event {X0 = i0, . . . , Xn−1 = in−1, Xn = i} is express-
ible in terms of X0, Z1, . . . , Zn and is therefore independent of Zn+1. Similarly,
P (Xn+1 = j |Xn = i) = P (f(i, Zn+1) = j). We therefore have a Markov chain,
and it is homogeneous since the right-hand side of the last equality does not depend
on n. Explicitly:

pij = P (f(i, Z1) = j) . (6.3)

�

Example 6.1.5: 1-D random walk, take 1. Let X0 be a random variable
with values in Z. Let {Zn}n≥1 be a sequence of iid random variables, independent
of X0, taking the values +1 or −1, and with the probability distribution

P (Zn = +1) = p,

where p ∈ (0, 1). The process {Xn}n≥1 defined by

Xn+1 = Xn + Zn+1

is, in view of Theorem 6.1.4, an hmc, called a random walk on Z. It is called a
“symmetric” random walk if p = 1

2
.

Example 6.1.6: The repair shop, take 1. During day n, Zn+1 machines break
down, and they enter the repair shop on day n+1. Every day one machine among
those waiting for service is repaired. Therefore, denoting by Xn the number of
machines in the shop on day n,

Xn+1 = (Xn − 1)+ + Zn+1, (6.4)

where a+ = max(a, 0). The sequence {Zn}n≥1 is assumed to be an iid sequence,
independent of the initial state X0, with common probability distribution

P (Z1 = k) = ak, k ≥ 0

of generating function gZ .

This may also be interpreted in terms of communications. The model then de-
scribes a communications link in which time is divided into successive intervals
(the “slots”) of equal length, conventionally taken to be equal to 1. In slot n (ex-
tending from time n included to time n+ 1 excluded), there arrive Zn+1 messages
requiring transmission. Since the link can transmit at most one message in a given
slot, the messages may have to be buffered, and Xn represents the number of mes-
sages in the buffer (supposed of infinite capacity) at time n. The dynamics of the
buffer content are therefore those of Eqn. (6.5).

The stochastic process {Xn}n≥0 is a hmc of transition matrix
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P =

⎛⎜⎜⎜⎜⎜⎝
a0 a1 a2 a3 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎟⎠ .

Indeed, by formula (6.3), pij = P ((i− 1)+ + Z1 = j) = P (Z1 = j − (i− 1)+).

Stochastic Automata

Many random sequences intervening in digital communications systems are de-
scribed in terms of stochastic automata (see Exercise 6.4.14 for instance). Stochas-
tic automata may also be useful in problems of pattern recognition (see Example
6.1.7 below).

A finite automaton (E,A, f) can read sequences of letters from a finite alphabet
A written on some infinite tape. It can be in any state of a finite set E, and
its evolution is governed by a function f : E × A → E, as follows. When the
automaton is in state i ∈ E and reads letter a ∈ A, it switches from state i to
state j = f(i, a) and then reads on the tape the next letter to the right.

An automaton can be represented by its transition graph G having for nodes the
states of E. There is an oriented edge from the node (state) i to the node j if and
only if there exists a ∈ A such that j = f(i, a), and this edge then receives label
a. If j = f(i, a1) = f(i, a2) for a1 �= a2, then there are two edges from i to j with
labels a1 and a2, or, more economically, one such edge with label (a1, a2). More
generally, a given oriented edge can have multiple labels of any order.

Example 6.1.7: Pattern detection. Consider the automaton with alphabet
A = {0, 1} corresponding to the transition graph of Figure (a). As the automaton,
initialized in state 0, reads the sequence of Figure (b) from left to right, it passes
successively through the states (including the initial state 0)

0 1 0 0 1 2 3 1 0 0 1 2 3 1 2 3 0 1 0 .

Rewriting the sequence of states below the sequence of letters, it appears that the
automaton is in state 3 after it has seen three consecutive 1’s. This automaton is
therefore able to recognize and count such blocks of 1’s. However, it does not take
into account overlapping blocks (Figure (b)).

If the sequence of letters read by the automaton is {Zn}n≥1, the sequence of states
{Xn}n≥0 is then given by the recurrence equation Xn+1 = f(Xn, Zn+1) and there-
fore, if {Zn}n≥1 is i.i.d and independent of the initial state X0, then {Xn}n≥1 is,
according to Theorem 6.1.4 an hmc.

Not all homogeneous Markov chains receive a “natural” description of the type
featured in Theorem 6.1.4. However, it is always possible to find a “theoretical”
description of the kind. More exactly,
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The automaton: the recognition process and the Markov chain
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Theorem 6.1.8 For any transition matrix P on E, there exists a homogeneous
Markov chain with this transition matrix and with a representation such as in
Theorem 6.1.4.

Proof. Define

Xn+1 := j if

j−1∑
k=0

pXnk ≤ Zn+1 <

j∑
k=0

pXnk ,

where {Zn}n≥1 is iid, uniform on [0, 1]. By application of Theorem 6.1.4 and of
formula (6.3), we check that this hmc has the announced transition matrix. �

As we already mentioned, not all homogeneous Markov chains are naturally de-
scribed by the model of Theorem 6.1.4. A slight modification of this result consid-
erably enlarges its scope.

Theorem 6.1.9 Let things be as in Theorem 6.1.4 except for the joint distri-
bution of X0, Z1, Z2, . . .. Suppose instead that for all n ≥ 0, Zn+1 is condition-
ally independent of Zn, . . . , Z1, Xn−1, . . . , X0 given Xn, and that for all i, j ∈ E,
P (Zn+1 = k |Xn = i) is independent of n. Then {Xn}n≥0 is a hmc, with transition
probabilities

pij = P (f(i, Z1) = j |X0 = i).

Proof. The proof is similar, mutandis mutatis to that of Theorem 6.1.4 and is left
to the reader. �

Example 6.1.10: The Ehrenfest urn, take 1. This idealized model of diffu-
sion through a porous membrane, proposed in 1907 by the Austrian physicists Ta-
tiana and Paul Ehrenfest to describe in terms of statistical mechanics the exchange
of heat between two systems at different temperatures, considerably helped under-
standing the phenomenon of thermodynamic irreversibility (see Example 15.1.3).
It features N particles that can be either in compartment A or in compartment
B.

A B

Xn = i N − i

Suppose that at time n ≥ 0, Xn = i particles are in A. One then chooses a particle
at random, and this particle is moved at time n+ 1 from where it is to the other
compartment. Thus, the next state Xn+1 is either i− 1 (the displaced particle was
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found in compartment A) with probability i
N
, or i + 1 (it was found in B) with

probability N−i
N

. This model pertains to Theorem 6.1.9. For all n ≥ 0,

Xn+1 = Xn + Zn+1,

where Zn ∈ {−1,+1} and P (Zn+1 = −1 |Xn = i) = i
N
. The nonzero entries of the

transition matrix are therefore

pi,i+1 =
N − i

N
, pi,i−1 =

i

N
.

1 1− i−1
N

1− i
N

1
N

1
N

i
N

i+1
N

1

0 1 i−1 i i+1 N−1 N

Example 6.1.11: aloha, take 1. A typical situation in a multiple-access satel-
lite communications system is the following. Users—each one identified with a
message—contend for access to a single-channel communications link. Two or more
messages in the air at the same time jam each other, and are not successfully trans-
mitted. The users are somehow able to detect a collision of this sort and will try to
retransmit later the message involved in a collision. The difficulty in such commu-
nications systems resides mainly in the absence of cooperation among users, who
are all unaware of the intention to transmit of competing users.

The slotted aloha protocol imposes on the users the following rules (see the figure
below):

(i) Transmissions and retransmissions of messages can start only at equally
spaced times; the interval between two consecutive (re-)transmission times is called
a slot; the duration of a slot is always larger than that of any message.

(ii) All backlogged messages, that is, those messages having already tried
unsuccessfully (maybe more than once) to get through the link, require retrans-
mission independently of one another with probability ν ∈ (0, 1) at each slot. This
is the so-called Bernoulli retransmission policy.

(iii) The fresh messages—those presenting themselves for the first time—
immediately attempt to get through.
Let Xn be the number of backlogged messages at the beginning of slot n. The
backlogged messages behave independently, and each one has probability ν of
attempting retransmission in slot n. In particular, if there are Xn = k backlogged
messages, the probability that i among them attempt to retransmit in slot n is

bi(k) =

(
k

i

)
νi(1− ν)k−i.
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successful transmission (or retransmission)

fresh message

backlogged message, not authorized to attempt retransmission

backlogged message, authorized to attempt retransmission

The aloha protocol

Let An be the number of fresh requests for transmission in slot n. The sequence
{An}n≥0 is assumed iid with the distribution P (An = j) = aj. The quantity λ :=
E[An] =

∑∞
i=1 iai is called the traffic intensity. We suppose that a0 + a1 ∈ (0, 1),

so that {Xn}n≥0 is an irreducible hmc. Its transition matrix is

pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b1(i)a0 if j = i− 1,

[1− b1(i)]a0 + b0(i)a1 if j = i,

[1− b0(i)]a1 if j = i+ 1,

aj−i if j ≥ i+ 2.

The proof is by accounting. For instance, the first line corresponds to one among
the i backlogged messages having succeeded to retransmit, and for this there should
be no fresh arrival (probability a0) and only one of the i backlogged messages
allowed to retransmit (probability b1(i)). The second line corresponds to one of
the two events “no fresh arrival and zero or strictly more than two retransmission
requests from the backlog” and “zero retransmission request from the backlog and
one fresh arrival.”

Aggregation of States

Let {Xn}n≥0 be a hmc with state space E and transition matrixP, and let (Ak, k ≥
1) be a countable partition of E. Define the process {X̂n}n≥0 with state space

Ê = {1̂, 2̂, . . .} by X̂n = k̂ if and only if Xn ∈ Ak.

Theorem 6.1.12 If
∑

j∈A�
pij is independent of i ∈ Ak for all k, �, then {X̂n}n≥0

is a hmc with transition probabilities p̂k̂�̂ =
∑

j∈A�
pij (any i ∈ Ak).

Proof. a) Sufficiency. We have
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P
(
X̂n+1 = ĵ|X̂n = î, X̂n−1 = în−1, . . . , X̂0 = î0

)
=

P
(
X̂n+1 = ĵ, X̂n = î, X̂n−1 = în−1, . . . , X̂0 = î0

)
P
(
X̂n = î, X̂n−1 = în−1, . . . , X̂0 = î0

) =
A

B

A =P
(
Xn+1 ∈ Aj, Xn ∈ Ai, Xn−1 ∈ Ain−1 , . . . , X0 ∈ Ai0

)
=
∑
k∈Ai

P
(
Xn+1 ∈ Aj, Xn = k,Xn−1 ∈ Ain−1 , . . . , X0 ∈ Ai0

)
=
∑
k∈Ai

P (Xn+1 ∈ Aj|Xn = k)P
(
Xn = k,Xn−1 ∈ Ain−1 , . . . , X0 ∈ Ai0

)
If we suppose that

∑
l∈Aj

pkl is independent of k ∈ Ai, and if we denote this

quantity by p̂̂iĵ, we have

A = p̂îĵ
∑
k∈Ai

P
(
Xn = k,Xn−1 ∈ Ain−1 , . . . , X0 ∈ Ai0

)
= p̂îĵB

and therefore

P
(
X̂n+1 = ĵ|X̂n = î, X̂n−1 = în−1, . . . , X̂0 = î0

)
= p̂îĵ

By the result of Exercise 2.4.21, this suffices to show that the process
{
X̂n

}
n≥0

is

a hmc with transition probabilities p̂̂iĵ.

b) Necessity. By hypothesis, {X̂n}n≥0 is a hmc, for all initial distribution μ of
{Xn}n≥0. In particular, with an initial distribution putting all its mass on a fixed
� ∈ Ai,

p̂̂iĵ = P
(
X̂1 = ĵ|X̂0 = î

)
= P (X1 ∈ Aj|X0 = l) =

∑
k∈Aj

plk

Therefore for all j, the quantity
∑

k∈Aj
plk is independent of l ∈ Ai. �

Example 6.1.13:The Ehrenfest urn, take 2. Let {X̃n}n≥0 be the Markov

chain with state space Ẽ := {0, 1}N and denote by x = (x1, . . . , xN) the generic

state. The general term p̃x,y of the transition matrix P̃ is non null only if x and y
differ in exactly one position, and in this case

p̃x,y =
1

N
.

One immediately verifies that the uniform distribution is a stationary distribu-
tion and satisfies the detailed balance equation. Aggregating with respect to the
partition

Ai := {x ∈ {0, 1}N ; h(x) = i} (1 ≤ i ≤ N)

gives the Ehrenfest model.
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6.1.3 Communication and Period

Communication and period are topological properties in the sense that they con-
cern only the naked transition graph (with only the arrows, without the labels).

Communication Classes and Irreducibility

Definition 6.1.14 State j is said to be accessible from state i if there exists M ≥ 0
such that pij(M) > 0. States i and j are said to communicate if i is accessible from
j and j is accessible from i, and this is denoted by i↔ j.

In particular, a state i is always accessible from itself, since pii(0) = 1 (P0 = I,
the identity).

For M ≥ 1, pij(M) =
∑

i1,...,iM−1
pii1 · · · piM−1j, and therefore pij(M) > 0 if and

only if there exists at least one path i, i1, . . . , iM−1, j from i to j such that

pii1pi1i2 · · · piM−1j > 0,

or, equivalently, if there is a directed path from i to j in the transition graph G.
Clearly,

i↔ i (reflexivity),

i↔ j ⇒ j ↔ i (symmetry),

i↔ j, j ↔ k ⇒ i↔ k (transivity).

Therefore, the communication relation (↔) is an equivalence relation, and it gen-
erates a partition of the state space E into disjoint equivalence classes called com-
munication classes.

Definition 6.1.15 A state i such that pii = 1 is called closed. More generally, a
set C of states such that for all i ∈ C,

∑
j∈C pij = 1 is called closed.

Definition 6.1.16 If there exists only one communication class, then the chain,
its transition matrix, and its transition graph are said to be irreducible.

Example 6.1.17: The repair shop, take 3. Recall that this Markov chain
satisfies the recurrence equation

Xn+1 = (Xn − 1)+ + Zn+1, (6.5)

where a+ = max(a, 0). The sequence {Zn}n≥1 is assumed to be iid, independent
of the initial state X0, and with common probability distribution

P (Z1 = k) = ak, k ≥ 0

of generating function gZ .

This chain is irreducible if and only if P (Z1 = 0) > 0 and P (Z1 ≥ 2) > 0 as
we now prove formally. Looking at (6.5), we make the following observations. If
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P (Zn+1 = 0) = 0, then Xn+1 ≥ Xn a.s. and there is no way of going from i to i−1.
If P (Zn+1 ≤ 1) = 1, then Xn+1 ≤ Xn, and there is no way of going from i to i+1.
Therefore, the two conditions P (Z1 = 0) > 0 and P (Z2 ≥ 2) > 0 are necessary
for irreducibility. They are also sufficient. Indeed if there exists an integer k ≥ 2
such that P (Zn+1 = k) > 0, then one can jump with positive probability from any
i > 0 to i + k − 1 > i or from i = 0 to k > 0. Also if P (Zn+1 = 0) > 0, one can
step down from i > 0 to i− 1 with positive probability. In particular, one can go
from i to j < i with positive probability. Therefore, one way to travel from i to
j ≥ i, is by taking several successive steps of height at least k−1 in order to reach
a state l ≥ i, and then (in the case of l > i) stepping down one stair at a time
from l to i. All this with positive probability.

Example 6.1.18: Harmonic functions of an irreducible hmc. Consider
an irreducible hmc with finite state space E and let h : E → be a harmonic
function. We show that h is necessarily a constant. (This result will be generalized
in Theorem 17.3.8.)

Proof. Let G := {i ∈ E ; h(i) = maxj∈E h(j)}. Since E is finite, G is non-empty.
For i ∈ G, let Ni := {j ; pij > 0}. We show that if j0 ∈ Ni, then h(j0) = h(i).
Otherwise, h(j0) < h(i) and

h(i) = pi,j0h(j0) +
∑

j∈Ni\j0
pijh(j) < h(i) ,

a contradiction. Therefore h(j) = h(i) for all j such that pij > 0.

Since the chain is irreducible, from any j �= i there is a path i0 = i, j1 . . . ,
jk := j such that pi�−1i� > 0 (1 ≤ � ≤ k). In particular, since h(i) is a maximum,
h(i1) = h(i) is also a maximum, and so is h(i2) = h(i1), and so on, so that
h(j) = h(i). Therefore h is a constant. �

Period and Aperiodicity

Consider the random walk on Z (Example 6.1.5). Since 0 < p < 1, it is irreducible.
Observe that E = C0 + C1, where C0 and C1, the set of even and odd relative
integers respectively, have the following property. If you start from i ∈ C0 (resp.,
C1), then in one step you can go only to a state j ∈ C1 (resp., C0). The chain {Xn}
passes alternately from one cyclic class to the other. In this sense, the chain has
a periodic behavior, with a period equal to 2. More generally, for any irreducible
Markov chain, one can find a unique partition of E into d classes C0, C1, . . ., Cd−1

such that for all k, i ∈ Ck, ∑
j∈Ck+1

pij = 1,

where by convention Cd = C0, and where d is maximal (that is, there is no other
such partition C ′

0, C
′
1, . . . , C

′
d′−1 with d′ > d). The proof follows directly from

Theorem 6.1.21 below.
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The number d ≥ 1 is called the period of the chain (resp., of the transition matrix,
of the transition graph). The classes C0, C1, . . . , Cd−1 are called the cyclic classes.
The chain moves cyclically from one class to the next.

We now give the formal definition of period. It is based on the notion of greatest
common divisor of a set of positive integers.

Definition 6.1.19 The period di of state i ∈ E is, by definition,

di = gcd{n ≥ 1 ; pii(n) > 0},
with the convention di = +∞ if there is no n ≥ 1 with pii(n) > 0. If di = 1, the
state i is called aperiodic .

Theorem 6.1.20 If states i and j communicate they have the same period.

Proof. As i and j communicate, there exist integers N and M such that pij(M) >
0 and pji(N) > 0. For any k ≥ 1,

pii(M + nk +N) ≥ pij(M)(pjj(k))
npji(N)

(indeed, the path X0 = i, XM = j,XM+k = j, . . . , XM+nk = j,XM+nk+N = i is
just one way of going from i to i in M + nk +N steps). Therefore, for any k ≥ 1
such that pjj(k) > 0, we have pii(M + nk + N) > 0 for all n ≥ 1. Therefore, di
divides M+nk+N for all n ≥ 1, and in particular, di divides k. We have therefore
shown that di divides all k such that pjj(k) > 0, and in particular, di divides dj.
By symmetry, dj divides di, so that finally, di = dj. �

We can therefore speak of the period of a communication class or of an irreducible
chain.

The important result concerning periodicity is the following.

Theorem 6.1.21 Let P be an irreducible stochastic matrix with period d. Then
for all states i, j there exist m ≥ 0 and n0 ≥ 0 (m and n0 possibly depending on
i, j) such that

pij(m+ nd) > 0, for all n ≥ n0.

Proof. It suffices to prove the theorem for i = j. Indeed, there exists m such
that pij(m) > 0, because j is accessible from i, the chain being irreducible, and
therefore, if for some n0 ≥ 0 we have pjj(nd) > 0 for all n ≥ n0, then pij(m+nd) ≥
pij(m)pjj(nd) > 0 for all n ≥ n0.

The rest of the proof is an immediate consequence of a classical result of number
theory. Indeed, the gcd of the set A = {k ≥ 1; pjj(k) > 0} is d, and A is closed
under addition. The set A therefore contains all but a finite number of the positive
multiples of d. In other words, there exists an integer n0 such that n > n0 implies
pjj(nd) > 0. �
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6.2 Stationary Distribution and Reversibility

6.2.1 The Global Balance Equation

The central notion of the stability theory of discrete-time hmc’s is that of a sta-
tionary distribution.

Definition 6.2.1 A probability distribution π satisfying

πT = πTP (6.6)

is called a stationary distribution of the transition matrix P, or of the corresponding
hmc.

The global balance equation (6.6) says that for all states i,

π(i) =
∑
j∈E

π(j)pji.

Iteration of (6.6) gives πT = πTPn for all n ≥ 0, and therefore, in view of (6.1), if
the initial distribution ν = π, then νn = π for all n ≥ 0. Thus, if a chain is started
with a stationary distribution, it keeps the same distribution forever. But there is
more, because then,

P (Xn = i0, Xn+1 = i1, . . . , Xn+k = ik) = P (Xn = i0)pi0i1 . . . pik−1ik

= π(i0)pi0i1 . . . pik−1ik

does not depend on n. In this sense the chain is stationary. One also says that the
chain is in a stationary regime, or in equilibrium, or in steady state. In summary:

Theorem 6.2.2 An hmc whose initial distribution is a stationary distribution is
stationary.

The balance equation πTP = πT , together with the requirement that π be a
probability vector, that is, πT1 = 1 (where 1 is a column vector with all its entries
equal to 1), constitute |E| + 1 equations for |E| unknown variables. One of the
|E| equations in πTP = πT is superfluous given the constraint πT1 = 1. Indeed,
summing up all equalities of πTP = πT yields the equality πTP1 = πT1, that is,
πT1 = 1.

Example 6.2.3: Two-state Markov chain. Take E = {1, 2} and define the
transition matrix

P =

(
1− α α
β 1− β

)
,

where α, β ∈ (0, 1). The global balance equations are

π(1) = π(1)(1− α) + π(2)β , π(2) = π(1)α + π(2)(1− β) .
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These two equations are dependent and reduce to the single equation π(1)α =
π(2)β, to which must be added the constraint π(1) + π(2) = 1 expressing that π
is a probability vector. We obtain

π(1) =
β

α + β
, π(2) =

α

α + β
.

Example 6.2.4: The Ehrenfest urn, take 3. The global balance equations
are, for i ∈ [1, N − 1],

π(i) = π(i− 1)

(
1− i− 1

N

)
+ π(i+ 1)

i+ 1

N

and, for the boundary states, π(0) = π(1) 1
N
, π(N) = π(N − 1) 1

N
. Leaving π(0)

undetermined, one can solve the balance equations for i = 0, 1, . . . , N successively,
to obtain π(i) = π(0)

(
N
i

)
. The value of π(0) is then determined by writing down

that π is a probability vector: 1 =
∑N

i=0 π(i) = π(0)
∑N

i=0

(
N
i

)
= π(0)2N . This

gives for π the binomial distribution of size N and parameter 1
2
:

π(i) =
1

2N

(
N

i

)
.

This is the distribution one would obtain by assigning independently to each par-
ticle a compartment, with probability 1

2
for each compartment.

There may exist several stationary distributions. Take the identity as transition
matrix. Then any probability distribution on the state space is a stationary dis-
tribution. Also, it may occur that the chain has no stationary distribution. See
Exercise 6.4.12.

Example 6.2.5: The lazy Markov chain, take 1. Let P be the transition
matrix of a hmc with state space E. The matrix

Q :=
I +P

2

is clearly a transition matrix, that of an hmc called the lazy version of the original
one. In the lazy version, a move is decided after tossing a fair coin. If heads, the
lazy traveler stays still, otherwise, he moves according to P. Clearly, a stationary
distribution of P is also a stationary distribution of Q.

Both chains are simultaneously irreducible or not irreducible. However, in the
irreducible case, the lazy chain is always aperiodic (since qii > 0) whereas the
original chain may be periodic.
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Example 6.2.6: Lazy walk on the hypercube, take 1. The N -hypercube
is a graph whose set of vertices is V = {0, 1}N and its set of edges E consists of
the pairs of vertices 〈x, y〉 that are adjacent in the sense that there exists an index
i (1 ≤ i ≤ N) such that y = x(i) := (x1, . . . , xi−1, 1− xi, xi+1, . . . , xN). The (pure)
random walk on the hypercube is the hmc describing the motion of a particle
along the edges at random. That is to say, if the position at a given time is x, the
next position is x(i) where i is chosen uniformly at random among {1, 2, . . . , N}
independently of all that happened before.

To avoid periodicity, we consider the lazy random walk, for which the decision to
move depends on the result of a fair coin toss. More precisely, px,x = 1

2
and if

y is adjacent to x, pxy = 1
2N

. This modification does not change the stationary
distribution, which is the uniform distribution.

We may always describe, distributionwise, the hmc {Xn}n≥0 in the manner of
Theorem 6.1.4, that is Xn+1 = f(Xn, Zn+1) where {Zn}n≥1 is an iid sequence of
random variables uniformly distributed on {1, . . . , N} independent of the initial
state X0: take Zn = (Un, Bn) where the sequence {(Un, Bn)}n≥1 is iid and uni-
formly distributed on {1, 2, . . . , N} × {0, 1}. The position at time n+ 1 is that of
Xn except that the bit in position Un+1 is replaced by Bn+1.

6.2.2 Reversibility and Detailed Balance

The notions of time-reversal and time-reversibility are very productive, as we shall
see in several occasions in the sequel.

Let {Xn}n≥0 be an hmc with transition matrix P and admitting a stationary
distribution π > 0 (meaning π(i) > 0 for all states i). Define the matrix Q,
indexed by E, by

π(i)qij = π(j)pji. (6.7)

This is a stochastic matrix since∑
j∈E

qij =
∑
j∈E

π(j)

π(i)
pji =

1

π(i)

∑
j∈E

π(j)pji =
π(i)

π(i)
= 1 ,

where the third equality uses the global balance equations. Its interpretation is
the following: Suppose that the initial distribution of the chain is π, in which case
for all n ≥ 0 and all i ∈ E, P (Xn = i) = π(i). Then, from the Bayes retrodiction
formula,

P (Xn = j |Xn+1 = i) =
P (Xn+1 = i |Xn = j)P (Xn = j)

P (Xn+1 = i)
,

that is, in view of (6.7),

P (Xn = j |Xn+1 = i) = qji .

We see that Q is the transition matrix of the initial chain when time is reversed.
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The following is a very simple observation that will be promoted to the rank of a
theorem in view of its usefulness and also for the sake of easy reference.

Theorem 6.2.7 Let P be a stochastic matrix indexed by a countable set E, and
let π be a probability distribution on E. Define the matrix Q indexed by E by (6.7).
If Q is a stochastic matrix, then π is a stationary distribution of P.

Proof. For fixed i ∈ E, sum equalities (6.7) with respect to j ∈ E to obtain∑
j∈E

π(i)qij =
∑
j∈E

π(j)pji.

This is the global balance equation since the left-hand side is equal to π(i)
∑

j∈E qij =
π(i). �

Definition 6.2.8 One calls reversible a stationary Markov chain such that the ini-
tial distribution π (a stationary distribution) satisfies the so-called detailed balance
equations

π(i)pij = π(j)pji (i, j ∈ E) . (6.8)

One also says: the pair (P, π) is reversible.

In this case, qij = pij , and therefore the chain and the time-reversed chain are
statistically the same, since the distribution of a homogeneous Markov chain is
entirely determined by its initial distribution and its transition matrix.

The following is an immediate corollary of Theorem 6.2.7.

Theorem 6.2.9 Let P be a transition matrix on the countable state space E, and
let π be some probability distribution on E. If for all i, j ∈ E, the detailed balance
equations (6.8) are satisfied, then π is a stationary distribution of P.

Example 6.2.10: The Ehrenfest urn, take 4. The verification of the detailed
balance equations π(i)pi,i+1 = π(i+ 1)pi+1,i is immediate.

Random Walk on a Group

Let G be a finite associative group with respect to the operation ∗ and let the
inverse of a ∈ G be denoted by a−1 and the identity by id. Let μ be a probability
distribution on G. Let X0 be an arbitrary random element of G, and let {Zn}n≥1

be a sequence of iid random elements of G, independent of X0, with common
distribution μ. The recurrence equation

Xn+1 = Zn+1 ∗Xn (6.9)

defines according to Theorem 6.1.4 an hmc whose transition probabilities are
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Pg,h∗g = μ(h)

for all g, h ∈ G.

For H ⊂ G, denote by 〈H〉 the smallest subgroup of G containing H. Recall that
〈H〉 consists of all elements of the type br ∗br−1 ∗· · ·∗b1 where the bi’s are elements
of H or inverses of elements of H. Let S = {g ∈ G; μ(g) > 0}.

Theorem 6.2.11 (a) The random walk is irreducible if and only if S generates
G, that is, 〈S〉 = G.

(b) The uniform distribution U on G is a stationary distribution of the chain.

Proof. (a) Assume irreducibility. Let a ∈ G. There exists r > 0 such that pe,a(r) >
0, that is, there exists a sequence s1, . . . , sr of S such that a = sr∗· · ·∗s1. Therefore
a ∈ 〈S〉. Conversely, suppose that S generates G. Let a, b ∈ G. The element b∗a−1

is therefore of the type ur ∗ ur−1 ∗ · · · ∗ u1 where the ui’s are elements of S or
inverses of elements of S. Now, every element of G is of finite order, that is, can
be written as a power of some element of G. Therefore b ∗ a−1 can be written as
b ∗ a−1 = sr ∗ · · · ∗ s1 where the si’s are in S. In particular, pa,b(r) > 0.

(b) In fact ∑
g∈G

U(g)pg,f =
1

|G|
∑
h∈G

ph−1∗f,f =
1

|G|
∑
h∈G

μ(h) =
1

|G| .

�

The probability distribution μ on G is called symmetric iff μ(g) = μ(g−1) for all
g ∈ G. If this is the case, then the chain is reversible. We just have to check the
detailed balance equations

U(g)pg,h = U(h)ph,g

that is
1

|G|μ(h ∗ g
−1) =

1

|G|μ(g ∗ h
−1) ,

which is true because of the assumed symmetry of μ.

6.3 Finite State Space

6.3.1 Perron–Fröbenius

Consider an hmc that is irreducible and positive recurrent. If its initial distribution
is the stationary distribution, it keeps the same distribution at all times. The chain
is then said to be in the stationary regime, or in equilibrium, or in steady state.
A question arises naturally: What is the long-run behavior of the chain when the
initial distribution μ is arbitrary? The classical form of the main result in this
direction is that for arbitrary states i and j,



136 CHAPTER 6. MARKOV CHAIN MODELS

lim
n↑∞

pij(n) = π(j) , (6.10)

if the chain is ergodic, according to the following definition:

Definition 6.3.1 An irreducible positive recurrent and aperiodic hmc is called
ergodic.

When the state space is finite, the asymptotic behavior of the n-step transition ma-
trix depends on the eigenstructure of the transition matrix. The Perron–Fröbenius
theorem detailing the eigenstructure of non-negative matrices is therefore all that
is needed, at least in theory.

The basic results of the theory of matrices relative to eigenvalues and eigenvectors
are reviewed in the appendix, from which we quote the following one, relative to a
square matrix A of dimension r with distinct eigenvalues denoted λ1, . . . , λr. Let
u1, . . . , ur and v1, . . . , vr be the associated sequences of left and right-eigenvectors,
respectively. Then, u1, . . . , ur form an independent collection of vectors, and so
do v1, . . . , vr. Also, u

T
i vj = 0 if i �= j. Since eigenvectors are determined up to

multiplication by an arbitrary non-null scalar, one can choose them in such a way
that uT

i vi = 1 (1 ≤ i ≤ r). We then have the spectral decomposition

An =
r∑

i=1

λn
i viu

T
i . (6.11)

Example 6.3.2: Two-state chain. Consider the transition matrix on E =
{1, 2}

P =

(
1− α α
β 1− β

)
,

where α, β ∈ (0, 1). Its characteristic polynomial (1−α−λ)(1−β−λ)−αβ admits
the roots λ1 = 1 and λ2 = 1 − α − β. Observe at this point that λ = 1 is always
an eigenvalue of a stochastic r× r matrix P, associated with the right-eigenvector
v = 1 with all entries equal to 1, since P1 = 1. Also, the stationary distribution
πT = 1

α+β
(β, α) is the left-eigenvector corresponding to the eigenvalue 1. In this

example, the representation (6.11) takes the form

Pn =
1

α + β

(
β α
β α

)
+

(1− α− β)n

α + β

(
α −α
−β +β

)
,

and therefore, since |1− α− β| < 1,

lim
n↑∞

Pn =
1

α + β

(
β α
β α

)
.

In particular, the result of convergence to steady state,

lim
n↑∞

Pn = 1πT ,
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is obtained for this special case in a purely algebraic way. In addition, this algebraic
method gives the convergence speed, which is exponential and determined by the
second-largest eigenvalue absolute value. This is a general fact, which follows from
the Perron–Frobenius theory of non-negative matrices below.

A matrix A = {aij}1≤i,j≤r with real coefficients is called non-negative (resp., pos-
itive) if all its entries are non-negative (resp., positive). A non-negative matrix A
is called stochastic if

∑r
j=1 aij = 1 for all i, and substochastic if

∑r
j=1 aij ≤ 1

(1 ≤ i ≤ r), with strict inequality for at least one i.

Non-negativity (resp., positivity) of A will be denoted by A ≥ 0 (resp., A > 0).
If A and B are two matrices of the same dimensions with real coefficients, the
notation A ≥ B (resp., A > B) means that A− B ≥ 0 (resp., A− B > 0).

The communication graph of a square non-negative matrix A is the directed graph
with the state space E = {1, . . . , r} as its set of vertices and a directed edge from
vertex i to vertex j if and only if aij > 0.

A non-negative square matrix A is called irreducible (resp., irreducible aperiodic) if
it has the same communication graph as an irreducible (resp., irreducible aperiodic)
stochastic matrix. It is called primitive if there exists an integer k such that Ak > 0.

Example 6.3.3: A non-negative matrix is primitive if and only if it is irreducible
and aperiodic (Exercise 15.3.1).

(Perron, 1907; Frobenius, 1908, 1909, 1912) Let A be a non-negative primitive r×r
matrix. Then, there exists a real eigenvalue λ1 with algebraic as well as geometric
multiplicity one such that λ1 > 0, and λ1 > |λj| for any other eigenvalue λj.
Moreover, the left-eigenvector u1 and the right-eigenvector v1 associated with λ1

can be chosen positive and such that uT
1 v1 = 1.

Let λ2, λ3, . . . , λr be the eigenvalues of A other than λ1 ordered in such a way that

λ1 > |λ2| ≥ · · · ≥ |λr| . (6.12)

The quantity |λ2| is the second largest eigenvalue modulus, abbreviated as “slem”.

We may always order the eigenvalues in such a way that if |λ2| = |λj| for some
j ≥ 3, then m2 ≥ mj, where mj is the algebraic multiplicity of λj. Then

An = λn
1v1u

T
1 +O(nm2−1|λ2|n). (6.13)

If in addition A is stochastic (resp., substochastic), λ1 = 1 (resp., λ1 < 1).

If A is stochastic and irreducible with period d > 1, then there are exactly d
distinct eigenvalues of modulus 1, namely the d-th roots of unity, and all other
eigenvalues have modulus strictly less than 1.



138 CHAPTER 6. MARKOV CHAIN MODELS

6.3.2 The Limit Distribution

The next result generalizes the observation in Example 6.3.2 and is a direct con-
sequence of the Perron–Fröbenius theorem.

Theorem 6.3.4 If P is a transition matrix on E = {1, . . . , r} that is irreducible
and aperiodic, and therefore primitive, then

v1 = 1, u1 = π,

where π is the unique stationary distribution. Therefore

Pn = 1πT +O(nm2−1|λ2|n) . (6.14)

Quasi-stationary Distributions

Let {Xn}n≥0 be an hmc with finite state space E. Suppose that the set of recur-
rent states R and the set of transient states T are both non-empty. In the block
decomposition of P with respect to the partition R ∪ T = E,

P =

(
D 0
B Q

)
the matrix Q is sub-stochastic, since B is not identically null (otherwise, the
transient set would be closed, and therefore recurrent, being finite). We assume,
in addition, that Q is irreducible and aperiodic. Let ν = inf{n ≥ 0;Xn ∈ R} be
the entrance time into R. Recall that ν is almost surely finite, since T is a finite
set. What is the distribution of Xn for large n, conditioned by the fact that Xn is
still in T?

Theorem 6.3.5 (Bartlett, 1957)

lim
n↑∞

Pi(Xn = j | ν > n) =
u1(j)∑
k∈T u1(k)

.

Proof. First recall that

Qn = λn
1v1u

T
1 +O(nm2−1|λ2|n), (6.15)

where λ1, v1, u1,m2, and λ2 are as in the above statement of Perron–Fröbenius
theorem, with A = Q. In particular, λ1 ∈ (0, 1) and |λ2| < λ1. For i, j ∈ T ,

Pi(Xn = j | ν > n) =
Pi(Xn = j, ν > n)

Pi(ν > n)
=

Pi(Xn = j)

Pi(Xn ∈ T )
.

Therefore,

Pi(Xn = j | ν > n) =
pij(n)∑
k∈T pik(n)

.

In view of (6.15),
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pik(n) = λn
1v1(i)u1(k) +O(nm2−1|λ2|n).

Therefore,

Pi(Xn = j | ν > n) =
u1(j)∑
k∈T u1(k)

+O

(
nm2−1

∣∣∣∣λ2

λ1

∣∣∣∣n) , (6.16)

and in particular,

lim
n↑∞

Pi(Xn = j | ν > n) =
u1(j)∑
k∈T u1(k)

. (6.17)

�

The probability distribution {u1(i)/
∑

k∈T u1(k)}i∈T is called the quasi-stationary
distribution of the chain relative to T .

6.3.3 Spectral Densities

Let {Yn}n∈Z be a sequence of square-integrable real random variables such that
the quantities E [Yn] and E [YnYn+k] (k ∈ ) are independent of n. Such sequences
are called wide-sense stationary. Let then

mY := E [Yn] and RY (k) := E [YnYn+k] .

The function RY is called the covariance function of the above stochastic sequence.
This function plays a fundamental role in signal processing. We shall compute it
for sequences that are functions of stationary hmc’s.

More precisely, let {Xn}n∈Z be an irreducible stationary discrete-time hmc with
finite state space E = {1, 2, . . . , r}, transition matrix P and (unique) stationary
distribution π. Then, for any given function f : E → , the stochastic process

Yn := f(Xn) (6.18)

is wide-sense stationary (in fact, stationary). Its mean is

mY = πTf

where fT = (f(1), f(2), . . . , f(r)). Also, as simple calculations reveal,

E [Yk+nYn] = fTDπP
kf ,

where Dπ is the diagonal matrix whose diagonal is π. Note that one may express
the mean as mY = fTπ = fTDπ1 where 1 is a column vector with all entries equal
to 1. In particular

m2
Y = fTDπ11

TDπ f = fTDπ Πf

where Π := π1T is a square matrix with all lines identical to the stationary distri-
bution vector π. Therefore, the covariance function of {Yn}n∈Z is

RY (k) = fTDπ (P
k − Π)f.
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Let {Yn}n∈Z be a wide-sense stationary sequence with covariance function R sat-
isfying the absolute summability condition∑

n∈Z
|RY (n)| <∞.

In particular, the Fourier sum

fY (ω) =
1

2π

∑
n∈Z

RY (n)e
−iωn

is a 2π-periodic bounded and continuous function. Integrating the right-hand side
of the last display term by term (this is allowed because the covariance function
is absolutely summable), we obtain the inversion formula,

RY (n) =

∫ +π

−π

fY (ω)e
+iωndω.

The function f : [−π,+π] → is the power spectral density (psd) of the time
series. Note that ∫ +π

−π

fY (ω)dω = RY (0) <∞ .

In the example of interest, where the wss sequence is defined by (6.18),

RY (k) = fTDπ(P
k − Π)f.

In order to simplify the notation, we shall suppose that P is diagonalizable. We
then have

(Pk − Π) =
r∑

j=2

vju
T
j λ

k
j

where uj is the (up to a multiplicative constant) left-eigenvector and vj is the (up
to a multiplicative constant) right-eigenvector corresponding to the eigenvalue λj,
and where the multiplicative constants are chosen in such a way that uT

j vj = 1.
Therefore

RY (k) = fTDπ

(
r∑

j=2

vju
T
j λ

k
j

)
f. (�)

We know that all the eigenvalues are of modulus smaller than or equal to 1. If we
suppose, as we now do, that the chain is aperiodic, then, besides the eigenvalue
λ1 = 1, all eigenvalues have a modulus strictly less than 1. In particular, the co-
variance function is absolutely summable and there exists a power spectral density
which is easily computed using the fact that, for |λ| < 1,∑

k∈Z
λke−ikω =

1

|e−iω − λ|2 ,

from which it follows, by (6.11), that
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fY (ω) =
1

2π

r∑
j=2

(fTDπ vju
T
j f)

1

|e−iω − λj|2 .

The case occurs when the covariance function of a wide-sense stationary sequence
{Yn}n∈Z is not summable, and when the power spectral density is a pseudo-density,
of the symbolic form (using the Dirac pseudo-function δ)

fY (ω) =
∑
�∈Z

α�δ(ω − ω�) ,

where for all � ∈ Z: ω� ∈ (−π,+π], α� ∈ +, and∑
�∈Z

α� <∞ .

Continuing the example where the wide-sense stationary sequence is defined by
(6.18), suppose that the chain has a period equal to d > 1. In this case, there are
d−1 eigenvalues besides λ1 = 1 with a modulus equal to 1, and these are precisely
the d-th roots of unity besides λ1 = 1:

λ� = e+iω� , (2 ≤ � ≤ d)

where ω� = (�− 1)2π
d
. Observing that

e+ikω� =

∫
(−π,+π]

e+ikωδ(ω − ω�),

we find for the complete spectral density, in the case where the eigenvalues are
distinct, or more generally, the transition matrix is diagonalizable,

fY (ω) =
d∑

�=2

(fTDπ v�u
T
� f) δ(ω − ω�)

+
1

2π

r∑
j=d+1

(fTDπ vju
T
j f)

1

|e−iω − λj|2 .

Books for Further information

[Kemeny and Snell, 1960] (finite Markov chains) and [Kemeny and Snell, 1960]
(denumerable Markov chains) are elementary introductions to Markov chains.
[Karlin and Taylor, 1975] has many examples, most notably in biology. For the
Perron–Fröbenius theorem and other algebraic aspects of Markov chains, [Seneta,
1981] is the fundamental reference. Continuous-time Markov chains are treated in
[Brémaud, 1999].
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6.4 Exercises

Exercise 6.4.1. A counterexample

The Markov property does not imply that the past and the future are independent
given any information concerning the present. Find a simple example of an hmc

{Xn}n≥0 with state space E = {1, 2, 3, 4, 5, 6} such that

P (X2 = 6 |X1 ∈ {3, 4}, X0 = 2) �= P (X2 = 6 |X1 ∈ {3, 4}).

Exercise 6.4.2. Past, present, future
For an hmc {Xn}n≥0 with state space E, prove that for all n ∈ N, and all states
i0, i1, . . . , in−1, i, j1, j2, . . . , jk ∈ E,

P (Xn+1 = j1, . . . , Xn+k = jk | Xn = i, Xn−1 = in−1, . . . , X0 = i0)

= P (Xn+1 = j1, . . . , Xn+k = jk | Xn = i).

Exercise 6.4.3. Another conditional independence property of hmc’s

Let {Xn}n≥0 be an hmc with state space E and transition matrix P. Show that for
all n ≥ 1, all k ≥ 2,Xn is conditionally independent ofX0, . . . , Xn−2, Xn+2, . . . , Xn+k

givenXn−1, Xn+1 and compute the conditional distribution ofXn givenXn−1, Xn+1.

Exercise 6.4.4. On the cube

Consider the hmc {Xn}n≥0 with state space E := {0, 1}N where N is some positive
integer with a representation as in Theorem 6.1.4, with the following specifics:

Xn+1 = Xn ⊕ eZn+1

where ⊕ is addition modulo 2 on {0, 1}N , e� is the vector of {0, 1}N with all
coordinates null except the �th one, equal to 1, and {Zn}n≥1 is an iid sequence
of random variables uniformly distributed on {1, 2, . . . , N}. Let now Yn = h(Xn)
where for any a = (a1, . . . , aN), h(a) :=

∑N
k=1 ai.

Prove that {Yn}n≥0 is an hmc and identify it.

Exercise 6.4.5. Records

Let {Zn}n≥1 be an iid sequence of geometric random variables: For k ≥ 0, P (Zn =
k) = (1 − p)kp, where p ∈ (0, 1). Let Xn = max(Z1, . . . , Zn) be the record value
at time n, and suppose X0 is an N-valued random variable independent of the
sequence {Zn}n≥1. Show that {Xn}n≥0 is an hmc and give its transition matrix.

Exercise 6.4.6. Streetgangs
Three characters, A,B, and C, armed with guns, suddenly meet at the corner of a
Washington D.C. street, whereupon they naturally start shooting at one another.
Each street-gang kid shoots every tenth second, as long as he is still alive. The
probability of a successful hit for A, B, and C are α, β, and γ respectively. A is
the most hated, and therefore, as long as he is alive, B and C ignore each other
and shoot at A. For historical reasons not developed here, A cannot stand B,
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and therefore shoots only at B while the latter is still alive. Lucky C is shot at
if and only if he is in the presence of A alone or B alone. What are the survival
probabilities of A,B, and C, respectively?

Exercise 6.4.7. The gambler’s ruin

(This exercise continues Example 6.1.3.) Compute the average duration of the
game when p = 1

2
.

Exercise 6.4.8. Alternative proof of the strong Markov property

Give an alternative proof of the strong Markov property (Theorem 7.1.3) along
the following lines. Start with a representation Xn+1 = f(Xn, Zn+1) as in Theorem
6.1.4 and consider the sequence {Zτ+n}n≥1 defined when τ <∞.

Exercise 6.4.9. Truncated hmc

Let P be a transition matrix on the countable state space E, with the positive
stationary distribution π. Let A be a subset of the state space, and define the
truncation of P on A to be the transition matrix Q indexed by A and given by

qij = pij if i, j ∈ A, i �= j,

qii = pii +
∑
k∈Ā

pik.

Show that if (P, π) is reversible, then so is (Q, π
π(A)

).

Exercise 6.4.10. Extension to negative times

Let {Xn}n≥0 be an hmc with state space E, transition matrix P, and suppose
that there exists a stationary distribution π > 0. Suppose moreover that the initial
distribution is π. Define the matrix Q = {qij}i,j∈E by (6.7). Construct {X−n}n≥1,
independent of {Xn}n≥1 given X0, as follows:

P (X−1 = i1, X−2 = i2, . . . , X−k = ik |X0 = i, X1 = j1, . . . , Xn = jn)

= P (X−1 = i1, X−2 = i2, . . . , X−k = ik |X0 = i) = qii1qi1i2 · · · qik−1ik

for all k ≥ 1, n ≥ 1, i, i1, . . . , ik, j1, . . . , jn ∈ E. Prove that {Xn}n∈Z is an hmc with
transition matrix P and P (Xn = i) = π(i), for all i ∈ E, all n ∈ Z.

Exercise 6.4.11. Moving stones

Stones S1, . . . , SM are placed in line. At each time n a stone is selected at random,
and this stone and the one ahead of it in the line exchange positions. If the selected
stone is at the head of the line, nothing is changed. For instance, with M = 5:
Let the current configuration be S2S3S1S5S4 (S2 is at the head of the line). If
S5 is selected, the new situation is S2S3S5S1S4, whereas if S2 is selected, the
configuration is not altered. At each step, stone Si is selected with probability
αi > 0. Call Xn the situation at time n, for instance Xn = Si1 · · ·SiM , meaning
that stone Sij is in the jth position. Show that {Xn}n≥0 is an irreducible hmc and
that it has a stationary distribution given by the formula

π(Si1 · · ·SiM ) = CαM
i1
αM−1
i2

· · ·αiM ,
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for some normalizing constant C.

Exercise 6.4.12. No stationary distribution

Show that the symmetric random walk on Z cannot have a stationary distribution.

Exercise 6.4.13. Aperiodicity

a. Show that an irreducible transition matrix P with at least one state i ∈ E such
that pii > 0 is aperiodic.

b. Let P be an irreducible transition matrix on the finite state space E. Show that
a necessary and sufficient condition for P to be aperiodic is the existence of an
integer m such that Pm has all its entries positive.

c. Consider an hmc that is irreducible with period d ≥ 2. Show that the restriction
of the transition matrix to any cyclic class is irreducible. Show that the restriction
of Pd to any cyclic class is aperiodic.

Exercise 6.4.14. A coding scheme

In certain digital communication systems, a sequence of 0s and 1s (bits) is encoded
into a sequence of 0s, +1s, and −1s as follows. If the input sequence contains a 0,
the output sequence contains a 0 at the same place. If the input sequence contains
a 1, then the output sequence will have a −1 or a +1. The choice between −1 and
+1 is made in such a way that −1s and +1s must alternate in the output sequence.
The first 1 is encoded as +1. For instance, 011101 becomes 0,+1,−1,+1, 0,−1.
Find an automaton with four states +1, −1, 0+, and 0− for which the sequence
of visited states, not counting the initial state 0+, is exactly the encoded sequence
(where 0+ and 0− are rewritten as 0) when it is fed by the input sequence.

Suppose that the input sequence is iid, with 0 and 1 equiprobable. The sequence of
states visited by the automaton is then an hmc. Compute its transition matrix P,
its stationary distribution π, and its iterates Pn. Call {Yn}n≥0 the output sequence
(taking its values in {0,−1,+1}). Compute limn→∞{E[YnYn+k] − E[Yn]E[Yn+k]}
for all k ≥ 0.



Chapter 7

Recurrence of Markov Chains

7.1 Recurrent and Transient States

7.1.1 The Strong Markov Property

In a homogeneous Markov chain, some states are visited infinitely often while
others are never visited after a finite random time. These states are naturally
called recurrent and transient respectively. Among the recurrent states some have
the property that the mean time between successive visits to this state is finite.
These are the positive recurrent states, whereas the others are called null recur-
rent. It turns out that for an irreducible Markov chain all states are of the same
nature, transient, positive recurrent or null. We first give methods to determine if
an irreducible chain is recurrent. For this we need further results concerning the
distribution of a Markov chain, in particular, the strong Markov property.

The Markov property, that is, the independence of past and future given the
present state, extends to the situation where the present time is a stopping time,
a notion which we now introduce.

Let {Xn}n≥0 be a stochastic process with values in the denumerable set E. For an
event A, the notation A ∈ X n

0 means that there exists a function ϕ : En+1 �→ {0, 1}
such that

1A(ω) = ϕ(X0(ω), . . . , Xn(ω)) .

In other terms, this event is expressible in terms of X0(ω), . . . , Xn(ω). Let now τ
be a random variable with values in . It is called a Xn

0 -stopping time if for all
m ∈ , {τ = m} ∈ Xm

0 . In other words, it is a non-anticipative random time
with respect to {Xn}n≥0, since in order to check if τ = m, it suffices to observe
the process up to time m and not beyond. It is immediate to verify that if τ is a
Xn

0 -stopping time, then so is τ + n for all n ≥ 1.

Example 7.1.1: Return time. Let {Xn}n≥0 be an hmc with state space E.
Define for i ∈ E the return time to i by

Ti := inf{n ≥ 1 ; Xn = i}
using the convention inf ∅ = ∞ for the empty set of . This is a Xn

0 -stopping
time since for all m ∈ ,
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{Ti = m} = {X1 �= i, X2 �= i, . . . , Xm−1 �= i, Xm = i} .

Note that Ti ≥ 1. It is a “return” time, not to be confused with the closely related
“hitting” time of i, defined as Si := inf{n ≥ 0 ; Xn = i}, which is also a Xn

0 -
stopping time, equal to Ti if and only if X0 �= i.

Example 7.1.2: Successive return times. This continues the previous ex-
ample. Let us fix a state, conventionally labeled 0, and let T0 be the return time to
0. We define the successive return times to 0, τk (k ≥ 1) by τ1 = T0 and for k ≥ 1,

τk+1 := inf{n ≥ τk + 1 ; Xn = 0}

with the above convention that inf ∅ = ∞. In particular, if τk = ∞ for some k,
then τk+� =∞ for all � ≥ 1. The identity

{τk = m} ≡
{

m−1∑
n=1

1{Xn=0} = k − 1 , Xm = 0

}

for m ≥ 1 shows that τk is a Xn
0 -stopping time.

Let {Xn}n≥0 be a stochastic process with values in the countable set E and let τ
be a random time taking its values in := ∪{+∞}. In order to define Xτ when
τ =∞, one must decide how to define X∞. This is done by taking some arbitrary
element Δ not in E, and setting

X∞ = Δ.

By definition, the “process after τ” is the stochastic process

{SτXn}n≥0 := {Xn+τ}n≥0.

The “process before τ ,” or the “process stopped at τ ,” is the process

{Xτ
n}n≥0 := {Xn∧τ}n≥0,

which freezes at time τ at the value Xτ .

Theorem 7.1.3 Let {Xn}n≥0 be an hmc with state space E and transition matrix
P. Let τ be a Xn

0 -stopping time. Then for any state i ∈ E,

(α) Given that Xτ = i, the process after τ and the process before τ are independent.

(β) Given that Xτ = i, the process after τ is an hmc with transition matrix P.

Proof. (α) We have to show that for all times k ≥ 1, n ≥ 0, and all states
i0, . . . , in, i, j1, . . . , jk,
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P (Xτ+1 = j1, . . . , Xτ+k = jk |Xτ = i, Xτ∧0 = i0, . . . , Xτ∧n = in)

= P (Xτ+1 = j1, . . . , Xτ+k = jk |Xτ = i).

We shall prove a simplified version of the above equality, namely

P (Xτ+k = j |Xτ = i, Xτ∧n = in) = P (Xτ+k = j |Xτ = i) . (�)

The general case is obtained by the same arguments. The left-hand side of (�)
equals

P (Xτ+k = j,Xτ = i, Xτ∧n = in)

P (Xτ = i, Xτ∧n = in)
.

The numerator of the above expression can be developed as∑
r∈

P (τ = r,Xr+k = j,Xr = i, Xr∧n = in) . (��)

(The sum is over because Xτ = i �= Δ implies that τ < ∞.) But P (τ =
r,Xr+k = j,Xr = i, Xr∧n = in) = P (Xr+k = j |Xr = i, Xr∧n = in, τ = r)
P (τ = r,Xr∧n = in, Xr = i), and since r ∧ n ≤ r and {τ = r} ∈ Xr

0 , the
event B := {Xr∧n = in, τ = r} is in Xr

0 . Therefore, by the Markov property,
P (Xr+k = j |Xr = i, Xr∧n = in, τ = r} = P (Xr+k = j |Xr = i) = pij(k). Finally,
expression (��) reduces to∑

r∈
pij(k)P (τ = r,Xr∧n = in, Xr = i) = pij(k)P (Xτ=i, Xτ∧n = in).

Therefore, the left-hand side of (�) is just pij(k). Similar computations show that
the right-hand side of (�) is also pij(k), so that (α) is proved.

(β) We must show that for all states i, j, k, in−1, . . . , i1,

P (Xτ+n+1 = k |Xτ+n = j,Xτ+n−1 = in−1, . . . , Xτ = i)

= P (Xτ+n+1 = k |Xτ+n = j) = pjk.

But the first equality follows from the fact proved in (α) that for the stopping time
τ ′ = τ + n, the processes before and after τ ′ are independent given Xτ ′ = j. The
second equality is obtained by the same calculations as in the proof of (α). �

For an alternative and perhaps more illuminating proof, see Exercise 6.4.8.

Cycle Independence

Consider a Markov chain with a state conventionally denoted by 0 such that
P0(T0 < ∞) = 1. In view of the strong Markov property, the chain starting from
state 0 will return infinitely often to this state. Let τ1 = T0, τ2, . . . be the successive
return times to 0, and set τ0 ≡ 0.

By the strong Markov property, for any k ≥ 1, the process after τk is independent
of the process before τk (observe that condition Xτk = 0 is always satisfied), and
the process after τk is a Markov chain with the same transition matrix as the
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original chain, and with initial state 0, by construction. Therefore, the successive
times of visit to 0, the pieces of trajectory

{Xτk , Xτk+1, . . . , Xτk+1−1}, k ≥ 0,

are independent and identically distributed. Such pieces are called the regenerative
cycles of the chain between visits to state 0. Each random time τk is a regeneration
time, in the sense that {Xτk+n}n≥0 is independent of the past X0, . . . , Xτk−1 and
has the same distribution as {Xn}n≥0. In particular, the sequence {τk − τk−1}k≥1

is iid.

7.1.2 The Potential Matrix Criterion of Recurrence

Consider an hmc {Xn}n≥0 with state space E and transition matrix P. A state
i ∈ E is called recurrent if it is visited infinitely often.

The distribution given X0 = j of Ni =
∑

n≥1 1{Xn=i}, the number of visits to state
i strictly after time 0, is

Pj(Ni = r) = fjif
r−1
ii (1− fii) (r ≥ 1)

Pj(Ni = 0) = 1− fji,

where fji = Pj(Ti <∞) and Ti is the return time to i.

Proof. An informal proof goes like this: We first go from j to i (probability fji)
and then, r−1 times in succession, from i to i (each time with probability fii), and
the last time, that is the r+1-st time, we leave i never to return to it (probability
1 − fii). By the cycle independence property, all these “cycles” are independent,
so that the successive probabilities multiplicate. Here is a formal proof if someone
needs it.

For r = 0, this is just the definition of fji. Now let r ≥ 1, and suppose that
Pj(Ni = k) = fjif

k−1
ii (1− fii) is true for all k, 1 ≤ k ≤ r. In particular,

Pj(Ni > r) = fjif
r
ii.

Denoting by τr the rth return time to state i,

Pj(Ni = r + 1) = Pj(Ni = r + 1, Xτr+1 = i)

= Pj(τr+2 − τr+1 =∞, Xτr+1 = i)

= Pj(τr+2 − τr+1 =∞|Xτr+1 = i)Pj(Xτr+1 = i).

By the strong Markov property, observing that τr+2 − τr+1 is the return time to i
of the process after τr+1,

Pj(τr+2 − τr+1 =∞|Xτr+1 = i) = 1− fii .

Also, Pj(Xτr+1 = i) = Pj(Ni > r), and therefore,

Pj(Ni = r + 1) = Pi(Ti =∞)Pj(Ni > r) = (1− fii)fjif
r
ii.
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The result then follows by induction. �

The distribution of Ni given X0 = j and given Ni ≥ 1 is geometric. This has two
main consequences. Firstly, Pi(Ti < ∞) = 1 ⇐⇒ Pi(Ni = ∞) = 1. In words: if
starting from i the chain almost surely returns to i, and will then visit i infinitely
often. Secondly,

Ei[Ni] =
∞∑
r=1

rPi(Ni = r) =
∞∑
r−1

rf r
ii(1− fii) =

fii
1− fii

.

In particular, Pi(Ti <∞) < 1⇐⇒ Ei[Ni] <∞.

We collect these results for future reference. For any state i ∈ E,

Pi(Ti <∞) = 1⇐⇒ Pi(Ni =∞) = 1

and
Pi(Ti <∞) < 1⇐⇒ Pi(Ni =∞) = 0⇐⇒ Ei[Ni] <∞. (7.1)

In particular, the event {Ni =∞} has Pi-probability 0 or 1.

Define the potential matrix of the transition matrix P to be

G :=
∑
n≥0

Pn.

Its general term

gij =
∞∑
n=0

pij(n) =
∞∑
n=0

Pi(Xn = j) =
∞∑
n=0

Ei[1{Xn=j}] = Ei

[ ∞∑
n=0

1{Xn=j}

]
is the average number of visits to state j, given that the chain starts from state i.

Recall that Ti denotes the return time to state i.

Definition 7.1.4 The state i ∈ E is called recurrent if

Pi(Ti <∞) = 1,

and otherwise it is called transient. A recurrent state i ∈ E such that

Ei[Ti] <∞
is called positive recurrent, and otherwise it is called null recurrent.

Although the criterion of recurrence below is of theoretical rather than practical
interest, it can be helpful in a few situations, for instance in the study of recurrence
of random walks, as examples will show.

Theorem 7.1.5 The state i ∈ E is recurrent if and only if

∞∑
n=0

pii(n) =∞.
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Proof. This merely rephrases (7.1). �

Example 7.1.6: 1-D random walk, take 2. The state space of this Markov
chain is E := and the non-null terms of its transition matrix are pi,i+1 =
p , pi,i−1 = 1 − p, where p ∈ (0, 1). Since this chain is irreducible, it suffices to
elucidate the nature (recurrent or transient) of any one of its states, say, 0. We
have p00(2n+ 1) = 0 and

p00(2n) =
(2n)!

n!n!
pn(1− p)n.

By Stirling’s equivalence formula n! ∼ (n/e)n
√
2πn, the above quantity is equiva-

lent to
[4p(1− p)]n√

πn
(�)

and the nature of the series
∑∞

n=0 p00(n) (convergent or divergent) is that of the
series with general term (�). If p �= 1

2
, in which case 4p(1− p) < 1, the latter series

converges, and if p = 1
2
, in which case 4p(1− p) = 1, it diverges. In summary, the

states of the 1-D random walk are transient if p �= 1
2
, recurrent if p = 1

2
.

A theoretical application of the potential matrix criterion is to the proof that
recurrence is a (communication) class property.

Theorem 7.1.7 If i and j communicate, they are either both recurrent or both
transient.

Proof. By definition, i and j communicate if and only if there exist integersM and
N such that pij(M) > 0 and pji(N) > 0. Going from i to j in M steps, then from
j to j in n steps, then from j to i in N steps, is just one way of going from i back
to i in M + n +N steps. Therefore, pii(M + n +N) ≥ pij(M)× pjj(n)× pji(N).
Similarly, pjj(N + n + M) ≥ pji(N) × pii(n) × pij(M). Therefore, with α :=
pij(M) pji(N) (a strictly positive quantity), we have pii(M + N + n) ≥ α pjj(n)
and pjj(M + N + n) ≥ α pii(n). This implies that the series

∑∞
n=0 pii(n) and∑∞

n=0 pjj(n) either both converge or both diverge. The potential matrix criterion
concludes the proof. �

7.2 Positive Recurrence

7.2.1 The Stationary Distribution Criterion

We first give a necessary (yet not sufficient) condition of recurrence based on the
notion of invariant measure, which extends that of a stationary distribution. It is
the first step towards the stationary distribution criterion (necessary and sufficient
condition) of positive recurrence.
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Definition 7.2.1 A non-trivial (that is, non-null) vector x (indexed by E) of non-
negative real numbers (notation: 0 ≤ x <∞) is called an invariant measure of the
stochastic matrix P (indexed by E) if

xT = xTP . (7.2)

Theorem 7.2.2 Let P be the transition matrix of an irreducible recurrent hmc
{Xn}n≥0. Let 0 be an arbitrary state and let T0 be the return time to 0. Define for
all i ∈ E

xi = E0

[
T0∑
n=1

1{Xn=i}

]
. (7.3)

(For i �= 0, xi is the expected number of visits to state i before returning to 0.)
Then, 0 < x <∞ and x is an invariant measure of P.

Proof. We make three preliminary observations. First, it will be convenient to
rewrite (7.3) as

xi = E0

[∑
n≥1

1{Xn=i}1{n≤T0}

]
.

Next, when 1 ≤ n ≤ T0, Xn = 0 if and only if n = T0. Therefore,

x0 = 1.

Also,
∑

i∈E
∑

n≥1 1{Xn=i}1{n≤T0} =
∑

n≥1

(∑
i∈E 1{Xn=i}

)
1{n≤T0} =

∑
n≥1 1{n≤T0} =

T0, and therefore ∑
i∈E

xi = E0[T0]. (7.4)

We introduce the quantity

0p0i(n) := E0[1{Xn=i}1{n≤T0}] = P0(X1 �= 0, · · · , Xn−1 �= 0, Xn = i).

This is the probability, starting from state 0, of visiting i at time n before returning
to 0. From the definition of x,

xi =
∑
n≥1

0p0i(n) . (†)

We first prove (7.2). Observe that 0p0i(1) = p0i, and, by first-step analysis, for all
n ≥ 2, 0p0i(n) =

∑
j �=0 0p0j(n − 1)pji. Summing up all the above equalities, and

taking (†) into account, we obtain

xi = p0i +
∑
j �=0

xjpji,

that is, (7.2), since x0 = 1.
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Next we show that xi > 0 for all i ∈ E. Indeed, iterating (7.2), we find xT = xTPn,
that is, since x0 = 1,

xi =
∑
j∈E

xjpji(n) = p0i(n) +
∑
j �=0

xjpji(n).

If xi were null for some i ∈ E, i �= 0, the latter equality would imply that p0i(n) =
0 for all n ≥ 0, which means that 0 and i do not communicate, in contradiction to
the irreducibility assumption.

It remains to show that xi <∞ for all i ∈ E. As before, we find that

1 = x0 =
∑
j∈E

xjpj0(n)

for all n ≥ 1, and therefore if xi = ∞ for some i, necessarily pi0(n) = 0 for all
n ≥ 1, and this also contradicts irreducibility. �

Theorem 7.2.3 The invariant measure of an irreducible recurrent hmc is unique
up to a multiplicative factor.

Proof. In the proof of Theorem 7.2.2, we showed that for an invariant measure y
of an irreducible chain, yi > 0 for all i ∈ E, and therefore, one can define, for all
i, j ∈ E, the matrix Q by

qji =
yi
yj
pij . (�)

It is a transition matrix, since
∑

i∈E qji = 1
yj

∑
i∈E yipij =

yj
yj

= 1. The general

term of Qn is

qji(n) =
yi
yj
pij(n) . (��)

Indeed, supposing (��) true for n,

qji(n+ 1) =
∑
k∈E

qjkqki(n) =
∑
k∈E

yk
yj
pkj

yi
yk

pik(n)

=
yi
yj

∑
k∈E

pik(n)pkj =
yi
yj
pij(n+ 1),

and (��) follows by induction.

Clearly, Q is irreducible, since P is irreducible (just observe that qji(n) > 0 if and
only if pij(n) > 0 in view of (��)). Also, pii(n) = qii(n), and therefore

∑
n≥0 qii(n) =∑

n≥0 pii(n), and therefore Q is recurrent by the potential matrix criterion. Call
gji(n) the probability, relative to the chain governed by the transition matrix Q,
of returning to state i for the first time at step n when starting from j. First-step
analysis gives

gi0(n+ 1) =
∑
j �=0

qijgj0(n) ,

that is, using (�),
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yigi0(n+ 1) =
∑
j �=0

(yjgj0(n))pji.

Recall that 0p0i(n+ 1) =
∑

j �=0 0p0j(n)pji, or, equivalently,

y0 0p0i(n+ 1) =
∑
j �=0

(y0 0p0j(n))pji.

We therefore see that the sequences {y0 0p0i(n)} and {yigi0(n)} satisfy the same
recurrence equation. Their first terms (n = 1), respectively y0 0p0i(1) = y0p0i and
yigi0(1) = yiqi0, are equal in view of (�). Therefore, for all n ≥ 1,

0p0i(n) =
yi
y0
gi0(n).

Summing with respect to n ≥ 1 and using
∑

n≥1 gi0(n) = 1 (Q is recurrent), we
obtain that xi =

yi
y0
. �

Equality (7.4) and the definition of positive recurrence give the following.

Theorem 7.2.4 An irreducible recurrent hmc is positive recurrent if and only if
its invariant measures x satisfy ∑

i∈E
xi <∞ .

An hmc may well be irreducible and possess an invariant measure, and yet not be
recurrent. The simplest example is the 1-D non-symmetric random walk, which was
shown to be transient and yet admits xi ≡ 1 for invariant measure. It turns out,
however, that the existence of a stationary probability distribution is necessary and
sufficient for an irreducible chain (not a priori assumed recurrent) to be recurrent
positive.

Theorem 7.2.5 An irreducible hmc is positive recurrent if and only if there exists
a stationary distribution. Moreover, the stationary distribution π is, when it exists,
unique, and π > 0.

Proof. The direct part follows from Theorems 7.2.2 and 7.2.4. For the converse
part, assume the existence of a stationary distribution π. Iterating πT = πTP, we
obtain πT = πTPn, that is, for all i ∈ E, π(i) =

∑
j∈E π(j)pji(n). If the chain were

transient, then, for all states i, j,

lim
n↑∞

pji(n) = 0 .

To prove this, let T be the last time state i is visited. Since i is transient, T is a
finite random variable and in particular, limn Pj(T > n) = 0. But Xn = i⇒ T > n
and therefore Pj(Xn = i) ≤ Pj(T > n).
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Now, since pji(n) is bounded uniformly in j and n by 1, by dominated convergence
(Theorem A.1.5):

π(i) = lim
n↑∞

∑
j∈E

π(j)pji(n) =
∑
j∈E

π(j)

(
lim
n↑∞

pji(n)

)
= 0.

This contradicts the assumption that π is a stationary distribution (
∑

i∈E π(i) =
1). The chain must therefore be recurrent, and by Theorem 7.2.4, it is positive
recurrent.

The stationary distribution π of an irreducible positive recurrent chain is unique
(use Theorem 7.2.3 and the fact that there is no choice for a multiplicative factor
but 1). Also recall that π(i) > 0 for all i ∈ E (see Theorem 7.2.2). �

Theorem 7.2.6 Let π be the unique stationary distribution of an irreducible pos-
itive recurrent hmc, and let Ti be the return time to state i. Then

π(i)Ei[Ti] = 1. (7.5)

Proof. This equality is a direct consequence of expression (7.3) for the invariant
measure. Indeed, π is obtained by normalization of x: for all i ∈ E,

π(i) =
xi∑
j∈E xj

,

and in particular, for i = 0, recalling that x0 = 1 and using (7.4),

π(0) =
1

E0[T0]
.

Since state 0 does not play a special role in the analysis, (7.5) is true for all i ∈ E.
�

The situation is extremely simple when the state space is finite.

Theorem 7.2.7 An irreducible hmc with finite state space is positive recurrent.

Proof. We first show recurrence. We have∑
j∈E

pij(n) = 1,

and in particular, the limit of the left-hand side is 1. If the chain were transient,
then, as we saw in the proof of Theorem 7.2.5, for all i, j ∈ E,

lim
n↑∞

pij(n) = 0,

and therefore, since the state space is finite

lim
n↑∞

∑
j∈E

pij(n) = 0 ,

a contradiction. Therefore, the chain is recurrent. By Theorem 7.2.2 it has an
invariant measure x. Since E is finite,

∑
i∈E xi < ∞, and therefore the chain is

positive recurrent, by Theorem 7.2.4. �
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Birth-and-death Markov Chain

Birth-and-death process models are omnipresent in operations research and, of
course, in biology. We first define the birth-and-death process with a bounded
population. The state space of such a chain is E = {0, 1, . . . , N} and its transition
matrix is

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r0 p0
q1 r1 p1

q2 r2 p2
. . .

qi ri pi
. . . . . . . . .

qN−1 rN−1 pN−1

pN rN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where pi > 0 for all i ∈ E\{N}, qi > 0 for all i ∈ E\{0}, ri ≥ 0 for all i ∈ E, and
pi + qi + ri = 1 for all i ∈ E. The positivity conditions placed on the pi’s and qi’s
guarantee that the chain is irreducible. Since the state space is finite, it is positive
recurrent (Theorem 7.2.7), and it has a unique stationary distribution. Motivated
by the Ehrenfest hmc which is reversible in the stationary state, we make the
educated guess that the birth-and-death process considered has the same property.
This will be the case if and only if there exists a probability distribution π on E
satisfying the detailed balance equations, that is, such that for all 1 ≤ i ≤ N ,
π(i− 1)pi−1 = π(i)qi. Letting w0 = 1 and for all 1 ≤ i ≤ N ,

wi =
i∏

k=1

pk−1

qk

we find that
π(i) =

wi∑N
j=0wj

(7.6)

indeed satisfies the detailed balance equations and is therefore the (unique) sta-
tionary distribution of the chain.

We now consider the unbounded birth-and-death process, with state space E = N

and transition matrix as in the previous example (only, it is “unbounded on the
right”). We assume that the pi’s and qi’s are positive in order to guarantee irre-
ducibility. The same reversibility argument as above applies with a little difference.
In fact we can show that the wi’s defined above satisfy the detailed balance equa-
tions and therefore the global balance equations. Therefore the vector {wi}i∈E is
the unique, up to a multiplicative factor, invariant measure of the chain. It can be
normalized to a probability distribution if and only if

∞∑
j=0

wj <∞ .

Therefore, in this case and only in this case there exists a (unique) stationary
distribution, also given by (7.6).
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Note that the stationary distribution, when it exists, does not depend on the ri’s.
The recurrence properties of the above unbounded birth-and-death process are
therefore the same as those of the chain below, which is however not aperiodic.
For aperiodicity of the original chain, it suffices to suppose at least one of the ri’s
to be positive.

0 1 2 i−1 i i+1

p0 = 1 p1

q3

pi−1 pi

q1 q2 qi qi+1

p2

We now compute for the (bounded or unbounded) irreducible birth-and-death
process the average time it takes to reach a state b from a state a < b. In fact, we
shall prove that

Ea [Tb] =
b∑

k=a+1

1

qkwk

k−1∑
j=0

wj . (7.7)

Since obviously Ea [Tb] =
∑b

k=a+1Ek−1 [Tk], it suffices to prove that

Ek−1 [Tk] =
1

qkwk

k−1∑
j=0

wj . (�)

For this, consider for any given k ∈ {0, 1, . . . , N} the truncated chain which moves
on the state space {0, 1, . . . , k} as the original chain, except in state k where it
moves one step down with probability qk and stays still with probability pk + rk.
Use Ẽ to symbolize expectations with respect to the modified chain. The unique
stationary distribution of this chain is

π̃� =
w�∑k
j=0w�

(0 ≤ � ≤ k) .

First-step analysis yields Ẽk [Tk] = (rk + pk)× 1 + qk

(
1 + Ẽk−1 [Tk]

)
, that is

Ẽk [Tk] = 1 + qkẼk−1 [Tk] .

Also

Ẽk [Tk] =
1

π̃k

=
1

wk

k∑
j=0

wj ,

and therefore, since Ẽk−1 [Tk] = Ek−1 [Tk], we have (�).

Example 7.2.8: Special cases. In the special case where (pj, qj , rj) = (p, q, r)
for all j �= 0, N , (p0, q0, r0) = (p, q + r, 0) and (pN , qN , rN) = (0, p + r, q), we have

wi =
(

p
q

)i

, and for 1 ≤ k ≤ N ,



7.2. POSITIVE RECURRENCE 157

Ek−1 [Tk] =
1

q
(

p
q

)k

k−1∑
j=0

(
p

q

)j

=
1

p− q

(
1−

(
q

p

)k
)

.

7.2.2 The Ergodic Theorem

An important application of the strong law of large numbers is to the ergodic
theorem for Markov chains giving conditions guaranteeing that empirical averages
of the type

1

N

N∑
k=1

g(Xk, . . . , Xk+L)

converge to the corresponding probabilistic average computed for a stationary
version of the chain. More precisely, if the chain is irreducible positive recurrent
with stationary distribtion π and if Eπ[|g(X0, . . . , XL)|] <∞, the above empirical
average converges Pμ-almost surely to Eπ[g(X0, . . . , XL)] for any initial distribution
μ (Corollary 7.2.11).

We shall obtain this result as a corollary of the following proposition concerning
irreducible recurrent (not necessarily positive recurrent) hmc’s.

Theorem 7.2.9 Let {Xn}n≥0 be an irreducible recurrent hmc, and let x denote
the canonical invariant measure associated with state 0 ∈ E,

xi = E0

[∑
n≥1

1{Xn=i}1{n≤T0}

]
, (7.8)

where T0 is the return time to 0. Define for n ≥ 1, ν(n) :=
∑n

k=1 1{Xk=0}. Let
f : E → R be such that ∑

i∈E
|f(i)|xi <∞. (7.9)

Then, for any initial distribution μ, Pμ-a.s.,

lim
N↑∞

1

ν(N)

N∑
k=1

f(Xk) =
∑
i∈E

f(i)xi . (7.10)

Proof. Let T0 = τ1, τ2, τ3, . . . be the successive return times to state 0, and define

Up =

τp+1∑
n=τp+1

f(Xn) .

By the independence property of the regenerative cycles, {Up}p≥1 is an iid se-
quence. Moreover, assuming f ≥ 0 and using the strong Markov property,
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E[U1] = E0

[
T0∑
n=1

f(Xn)

]

= E0

[
T0∑
n=1

∑
i∈E

f(i)1{Xn=i}

]
=
∑
i∈E

f(i)E0

[
T0∑
n=1

1{Xn=i}

]
=

∑
i∈E

f(i)xi .

By hypothesis, this quantity is finite, and threfore the strong law of large numbers
applies, to give

lim
n↑∞

1

n

n∑
p=1

Up =
∑
i∈E

f(i)xi ,

that is,

lim
n↑∞

1

n

τn+1∑
k=T0+1

f(Xk) =
∑
i∈E

f(i)xi . (7.11)

Observing that

τν(n) ≤ n < τν(n)+1 ,

we have ∑τν(n)

k=1 f(Xk)

ν(n)
≤
∑n

k=1 f(Xk)

ν(n)
≤
∑τν(n)+1

k=1 f(Xi)

ν(n)
.

Since the chain is recurrent, limn↑∞ ν(n) = ∞, and therefore, from (7.11), the
extreme terms of the above chain of inequality tend to

∑
i∈E f(i)xi as n goes to

∞, and this implies (7.10). The case of a function f of arbitrary sign is obtained by
considering (7.10) written separately for f+ = max(0, f) and f− = max(0,−f),
and then taking the difference of the two equalities obtained in this way. The
difference is not an undetermined form ∞−∞ due to hypothesis (7.9). �

The main result of ergodicity of Markov chains concerns the positive recurrent
case.

Corollary 7.2.10 Let {Xn}n≥0 be an irreducible positive recurrent Markov chain
with the stationary distribution π, and let f : E → R be such that∑

i∈E
|f(i)|π(i) <∞. (7.12)

Then for any initial distribution μ, Pμ-a.s.,

lim
n↑∞

1

N

N∑
k=1

f(Xk) =
∑
i∈E

f(i)π(i) . (7.13)

Proof. Apply Theorem 7.2.9 to f ≡ 1. Condition (7.9) is satisfied, since in the
positive recurrent case,

∑
i∈E xi = E0[T0] <∞. Therefore, Pμ-a.s.,
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lim
N↑∞

N

ν(N)
=
∑
j∈E

xj .

Now, f satisfying (7.12) also satisfies (7.9), since x and π are proportional, and
therefore, Pμ-a.s.,

lim
N↑∞

1

ν(N)

N∑
k=1

f(Xk) =
∑
i∈E

f(i)xi .

The combination of the above equalities gives, Pμ-a.s.,

lim
N→∞

1

N

N∑
k=1

f(Xk) = lim
N→∞

ν(N)

N

1

ν(N)

N∑
k=1

f(Xk) =

∑
i∈E f(i)xi∑

j∈E xj

,

from which (7.13) follows, since π is obtained by normalization of x. �

Corollary 7.2.11 Let {Xn}n≥1 be an irreducible positive recurrent Markov chain
with the stationary distribution π, and let g : EL+1 → R be such that∑

i0,...,iL

|g(i0, . . . , iL)|π(i0)pi0i1 · · · piL−1iL <∞ .

Then for all initial distributions μ, Pμ-a.s.

lim
1

N

N∑
k=1

g(Xk, Xk+1, . . . , Xk+L) =
∑

i0,i1,...,iL

g(i0, i1, . . . , iL)π(i0)pi0i1 · · · piL−1iL .

Proof. Apply Corollary 7.2.10 to the “snake chain” {(Xn, Xn+1, . . . , Xn+L)}n≥0,
which is irreducible recurrent and admits the stationary distribution (see Exercise
7.5.7)

π(i0)pi0i1 · · · piL−1iL .

�

Note that ∑
i0,i1,...,iL

g(i0, i1, . . . , iL)π(i0)pi0i1 · · · piL−1iL = Eπ[g(X0, . . . , XL)] .

Example 7.2.12: Ergodic estimate of the transition matrix. Let {Xn}n≥1

be an irreducible positive recurrent Markov chain with the stationary distribu-
tion π. Applying Corollary 7.2.11 successively with g(i) = 1i0(i) and g(i, j) =
1(i0,i1)(i, j) yields

lim
N↑∞

1

N

N∑
k=1

1i0(Xn) = π(i0)

and
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lim
N↑∞

1

N

1

N

N∑
k=1

1i0,i1(Xn, Xn+1) = π(i0)pi0,i1 ,

and therefore, in particular,

lim
N↑∞

1

N

1

N

∑N
k=1 1{Xn=i0,Xn+1=i1}∑N

k=1 1{Xn=i0}
= pi0,i1 .

7.3 The Lyapunov Function Method

7.3.1 Foster’s Condition of Positive Recurrence

The stationary distribution criterion of positive recurrence of an irreducible chain
requires solving the balance equations, and this is not always feasible. Therefore
one needs less general but efficient conditions guaranteeing positive recurrence.

Theorem 7.3.1 (Foster, 1953) Let the transition matrix P on the countable state
space E be irreducible and suppose that there exists a function h : E → such
that infi h(i) > −∞ and ∑

k∈E
pikh(k) <∞ for all i ∈ F, (7.14)

∑
k∈E

pikh(k) ≤ h(i)− ε for all i �∈ F, (7.15)

for some finite set F and some ε > 0. Then the corresponding hmc is positive
recurrent.

Proof. Since infi h(i) > −∞, one may assume without loss of generality that
h ≥ 0, by adding a constant if necessary. Call τ the return time to F , and define
Yn = h(Xn)1{n<τ}. Equality (7.15) is just E[h(Xn+1) |Xn = i] ≤ h(i) − ε for all
i �∈ F . For i �∈ F ,

Ei[Yn+1 |Xn
0 ] = Ei[Yn+11{n<τ} |Xn

0 ] + Ei(Yn+11{n≥τ} |Xn
0 ]

= Ei[Yn+11{n<τ} |Xn
0 ] ≤ Ei[h(Xn+1)1{n<τ} |Xn

0 ]

= 1{n<τ}Ei[h(Xn+1) |Xn
0 ] = 1{n<τ}Ei[h(Xn+1) |Xn]

≤ 1{n<τ}h(Xn)− ε1{n<τ},

where the third equality comes from the fact that 1{n<τ} is a function of Xn
0 , the

fourth equality is the Markov property, and the last inequality is true because Pi-
a.s., Xn �∈ F on n < τ . Therefore, Pi-a.s., Ei[Yn+1 |Xn

0 ] ≤ Yn− ε1{n<τ}, and taking
expectations,

Ei[Yn+1] ≤ Ei[Yn]− εPi(τ > n).
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Iterating the above equality, and observing that Yn is non-negative, we obtain

0 ≤ Ei[Yn+1] ≤ Ei[Y0]− ε

n∑
k=0

Pi(τ > k).

But Y0 = h(i), Pi-a.s., and
∑∞

k=0 Pi(τ > k) = Ei[τ ]. Therefore, for all i �∈ F ,

Ei[τ ] ≤ ε−1h(i).

For j ∈ F , first-step analysis yields

Ej[τ ] = 1 +
∑
i�∈F

pjiEi[τ ].

Thus Ej[τ ] ≤ 1+ε−1
∑

i�∈F pjih(i), and this quantity is finite in view of assumption
(7.14). Therefore, the return time to F starting anywhere in F has finite expecta-
tion. Since F is a finite set, this implies positive recurrence in view of the following
lemma. �

Lemma 7.3.2 Let {Xn}n≥0 be an irreducible hmc, let F be a finite subset of the
state space E, and let τ(F ) be the return time to F . If Ej[τ(F )] <∞ for all j ∈ F ,
the chain is positive recurrent.

Proof. Select i ∈ F , and let Ti be the return time of {Xn} to i. Let τ1 =
τ(F ), τ2, τ3, . . . be the successive return times to F . It follows from the strong
Markov property that {Yn}n≥0 defined by Y0 = X0 = i and Yn = Xτn for n ≥ 1 is
an hmc with state space F . Since {Xn} is irreducible, so is {Yn}. Since F is finite,
{Yn} is positive recurrent, and in particular, Ei[T̃i] < ∞, where T̃i is the return
time to i of {Yn}. Defining S0 = τ1 and Sk = τk+1 − τk for k ≥ 1, we have

Ti =
∞∑
k=0

Sk1{k<T̃i} ,

and therefore

Ei[Ti] =
∞∑
k=0

Ei[Sk1{k<T̃i}].

Now,

Ei[Sk1{k<T̃i}] =
∑
�∈F

Ei[Sk1{k<T̃i}1{Xτk
=�}] ,

and by the strong Markov property applied to {Xn}n≥0 and the stopping time τk,
and the fact that the event {k < T̃i} belongs to the past of {Xn}n≥0 at time τk,

Ei[Sk1{k<T̃i}1{Xτk
=�}] = Ei[Sk | k < T̃i, Xτk = �]Pi(k < T̃i, Xτk = �)

= Ei[Sk |Xτk = �]Pi(k < T̃i, Xτk = �) .

Observing that Ei[Sk |Xτk = �] = E�[τ(F )], we see that the latter expression is
bounded by (max�∈F E�[τ(F )])Pi(k < T̃i, Xτk = �), and therefore
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Ei[Ti] ≤
(
max
�∈F

E�(τ(F ))

) ∞∑
k=0

Pi(T̃i > k) =

(
max
�∈F

E�(τ(F ))

)
Ei[T̃i] <∞.

�

Remark 7.3.3 The function h in Foster’s theorem is called a Lyapunov function
because it plays a role similar to the Lyapunov functions in the stability theory of
ordinary differential equations.

The corollary below is refered to as Pakes’s lemma.

Corollary 7.3.4 (Pakes, 1969) Let {Xn}n≥0 be an irreducible hmc on E =
such that for all n ≥ 0 and all i ∈ E,

E[Xn+1 −Xn |Xn = i] <∞

and
lim sup

i↑∞
E[Xn+1 −Xn |Xn = i] < 0. (7.16)

Such an hmc is positive recurrent.

Proof. Let −2ε be the left-hand side of (7.16). In particular, ε > 0. By (7.16), for
i sufficiently large, say i > i0, E[Xn+1 − Xn |Xn = i] < −ε. We are therefore in
the conditions of Foster’s theorem with h(i) = i and F = {i; i ≤ i0}. �

Example 7.3.5: A random walk on N. Let {Zn}n≥1 be an iid sequence of
integrable random variables with values in Z such that

E[Z1] < 0,

and define {Xn}n≥0, an hmc with state space E = N, by

Xn+1 = (Xn + Zn+1)
+,

where X0 is independent of {Zn}n≥1. Assume irreducibility (the industrious reader
will find the necessary and sufficient condition for this). Here

E[Xn+1 − i | Xn = i] = E[(i+ Zn+1)
+ − i]

= E[−i1{Zn+1≤−i} + Zn+11{Zn+1>−i}] ≤ E[Z11{Z1>−i}].

By dominated convergence, the limit of E[Z11{Z1>−i}] as i tends to∞ is E[Z1] < 0
and therefore, by Pakes’s lemma, the hmc is positive recurrent.

The following is a Foster-type theorem, only with a negative conclusion.
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Theorem 7.3.6 Let the transition matrix P on the countable state space E be
irreducible and suppose that there exists a finite set F and a function h : E → +

such that
there exists a state j /∈ F such that h(j) > max

i∈F
h(i) (7.17)

sup
i∈E

∑
k∈E

pik|h(k)− h(i)| <∞, (7.18)

∑
k∈E

pik(h(k)− h(i)) ≤ 0 for all i �∈ F. (7.19)

Then the corresponding hmc cannot be positive recurrent.

Proof. Let τ be the return time to F . Observe that

h(Xτ )1{τ<∞} = h(X0) +
∞∑
n=0

(h(Xn+1)− h(Xn)) 1{τ>n}.

Now, with j �∈ F ,

∞∑
n=0

Ej

[|h(Xn+1)− h(Xn)| 1{τ>n}
]

=
∞∑
n=0

Ej

[
Ej [|h(Xn+1)− h(Xn)| |Xn

0 ] 1{τ>n}
]

=
∞∑
n=0

Ej

[
Ej [|h(Xn+1)− h(Xn)| |Xn] 1{τ>n}

]
≤ K

∞∑
n=0

Pj(τ > n)

for some finite positive constant K by (7.18). Therefore, if the chain is positive
recurrent, the latter bound is KEj [τ ] <∞. Therefore

Ej [h(Xτ )] = Ej

[
h(Xτ )1{τ<∞}

]
= h(j) +

∞∑
n=0

Ej

[
(h(Xn+1)− h(Xn)) 1{τ>n}

]
> h(j),

by (7.19). In view of assumption (7.17), we have h(j) > maxi∈F h(i) ≥ Ej [h(Xτ )],
hence a contradiction. The chain therefore cannot be positive recurrent. �

7.3.2 Queueing Applications

Example 7.3.7: The repair shop, take 4. Assuming irreducibility (see Exam-
ple 6.1.17), we now seek a necessary and sufficient condition for positive recurrence.
For any complex number z with modulus not larger than 1, it follows from the
recurrence equation (6.5) that
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zXn+1+1 =
(
z(Xn−1)++1

)
zZn+1 =

(
zXn − 1{Xn=0} + z1{Xn=0}

)
zZn+1 ,

and therefore zzXn+1 − zXnzZn+1 = (z − 1)1{Xn=0}zZn+1 . From the independence
of Xn and Zn+1, E[zXnzZn+1 ] = E[zXn ]gZ(z), and E[1{Xn=0}zZn+1 ] = π(0)gZ(z),
where π(0) = P (Xn = 0). Therefore, zE[zXn+1 ]− gZ(z)E[zXn ] = (z− 1)π(0)gZ(z).
But in steady state, E[zXn+1 ] = E[zXn ] = gX(z), and therefore

gX(z) (z − gZ(z)) = π(0)(z − 1)gZ(z). (7.20)

This gives the generating function gX(z) =
∑∞

i=0 π(i)z
i, as long as π(0) is available.

To obtain π(0), differentiate (7.20):

g′X(z) (z − gZ(z)) + gX(z) (1− g′Z(z)) = π(0) (gZ(z) + (z − 1)g′Z(z)) ,

and let z = 1, to obtain, taking into account the equalities gX(1) = gZ(1) = 1 and
g′Z(1) = E[Z],

π(0) = 1− E[Z]. (7.21)

But the stationary distribution of an irreducible hmc is positive, hence the neces-
sary condition of positive recurrence:

E[Z1] < 1.

We now show this condition is also sufficient for positive recurrence. This follows
immediately from Pakes’s lemma, since for i ≥ 1, E[Xn+1−Xn |Xn = i] = E[Z]−
1 < 0.

From (7.20) and (7.21), we have the generating function of the stationary distri-
bution: ∞∑

i=0

π(i)zi = (1− E[Z])
(z − 1)gZ(z)

z − gZ(z)
. (7.22)

If E[Z1] > 1, the chain is transient, as a simple argument based on the strong law
of large numbers shows. In fact, Xn = X0 +

∑n
k=1 Zk − n +

∑n
k=1 1{Xk=0}, and

therefore

Xn ≥
n∑

k=1

Zk − n,

which tends to ∞ because, by the strong law of large numbers,∑n
k=1 Zk − n

n
→ E[Z]− 1 > 0.

This is of course incompatible with recurrence.

We finally examine the case E[Z1] = 1, for which there are only two possibilities
left: transient or null recurrent. It turns out that the chain is null recurrent in this
case. The proof relies on Theorem 17.3.9. In fact, the conditions of this theorem
are easily verified with h(i) = i and F = {0}. Therefore, the chain is recurrent.
Since it is not positive recurrent, it is null-recurrent.
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Example 7.3.8: aloha, take 2. It turns out, as will be shown next, that the
Bernoulli retransmission policy makes the aloha protocol unstable, in the sense
that the chain {Xn}n≥0 is not positive recurrent.

An elementary computation yields, for the aloha model,

E[Xn+1 −Xn |Xn = i] = λ− b1(i)a0 − b0(i)a1. (7.23)

Note that b1(i)a0 + b0(i)a1 is the probability of one successful (re-)transmission in
a slot given that the backlog at the beginning of the slot is i. Equivalently, since
there is at most one successful (re-)transmission in any slot, this is the average
number of successful (re-)transmissions in a slot given the backlog i at the start
of the slot. An elementary computation shows that limi↑∞(b1(i)a0 + b0(i)a1) = 0.
Therefore, outside a finite set F , the conditions of Theorem 7.3.6 are satisfied when
we take h to be the identity, and remember the hypothesis that E [A1] <∞.

Example 7.3.9: aloha, take 3. The aloha protocol with a fixed retransmis-
sion probability ν is unstable, it seems natural to try a retransmission probability
ν = ν(k) depending on the number k of backlogged messages. We show that there
is a choice of the function ν(k) that achieves stability of the protocol. The proba-
bility that i among the k backlogged messages at the beginning of slot n retransmit
in slot n is now ν(k). The same is true for the transition probabilities. According
to Pakes’s lemma and using (7.23), it suffices to find a function ν(k) guaranteeing
that

λ ≤ lim
i↑∞

(b1(i)a0 + b0(i)a1)− ε, (7.24)

for some ε > 0. We shall therefore study the function

gk(ν) = (1− ν)ka1 + kν(1− ν)k−1a0,

since conditition (7.24) is just λ ≤ gi(ν(i))−ε. The derivative of gk(ν) is, for k ≥ 2,

g′k(ν) = k(1− ν)k−2[(a0 − a1)− ν(ka0 − a1)].

We first assume that a0 > a1. In this case, for k ≥ 2, the derivative is zero for

ν = ν(k) =
a0 − a1
ka0 − a1

,

and the corresponding value of gk(ν) is a maximum equal to

gk(ν(k)) = a0

(
k − 1

k − a1/a0

)k−1

.

Therefore, limk↑∞ gk(ν(k)) = a0 exp
{

a1
a0
− 1

}
, and we see that

λ < a0 exp

{
a1
a0
− 1

}
(7.25)
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is a sufficient condition for stability of the protocol. For instance, with a Poisson
distribution of arrivals

ai = e−λλ
i

i!
,

condition (7.25) reads

λ < e−1

(in particular, the condition a0 > a1 is satisfied a posteriori). If a0 ≤ a1, the
protocol can be shown to be unstable, whatever retransmission policy ν(k) is
adopted (the reader is invited to check this).

Example 7.3.10: The stack algorithm. (Capetanakis, 1979; Tsybakhov and
Mikhailov, 1980) The slotted aloha protocol with constant retransmission proba-
bility was proved unstable, and it was shown that a backlog-dependent retransmis-
sion probability could restore stability . The problem then resides in the necessity
for each user to know the size of the backlog in order to implement the retransmis-
sion policy. This is not practically feasible, and one must devise policies based on
the actual information available by just listening to the link: collision, no trans-
mission, or successful transmission. Such policies, which in a sense estimate the
backlog, have been found that yield stability. We shall not discuss them here. In-
stead we shall consider a new type of collision-resolution protocol, called the binary
tree protocol, or the stack algorithm.

In this protocol, when a collision occurs for the first time, all new requests are
buffered until all the messages involved in the collision have found their way
through the link. When these messages have resolved their collision problem, the
buffered messages then try to retransmit. They may enter a collision, and then will
try resolve their collision. Time is therefore divided into successive periods, called
collision-resolution intervals (cri). Let us examine the fate of the messages arriv-
ing in the first slot just after a cri, which are the messages that arrived during the
previous cri. They all try to retransmit in the first slot of the cri, and therefore,
if there are two or more messages, a collision occurs (in the other case, the cri

has lasted just one slot, and a new cri begins in the next slot). An unbiased coin
is tossed independently for each colliding message. If it shows heads, the message
joins layer 0 of a stack, whereas if it shows tails, it is placed in layer 1. In the next
slot, all messages of layer 0, and only them, try the link. If there is no collision
(because layer 0 was empty or contained just one message), layer 0 is eliminated,
and layer 1 below pops up to become layer 0. If on the contrary there is a collision
because layer 0 formed after the first slot contained two or more messages, the
colliding messages again flip a coin; those with heads form the new layer 0, those
with tails form the new layer 1, and the former layer 1 is pushed bottomwards to
form layer 2.

In general, at each step, only layer 0 tries to retransmit. If there is no collision, layer
0 disappears, and the layers 1, 2, 3, . . . become layers 0, 1, 2, . . . If there is a collision,
layer 0 splits into layer 0 and layer 1, and layers 1, 2, 3, . . . become layer 2, 3, 4, . . .
It should be noted that in this protocol, each message knows at every instant
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in which layer it is, just by listening to the channel that gives the information:
collision or no collision. In that sense, the protocol is distributed, because there
is no central operator broadcasting non-locally available information, such as the
size of the backlog, to all users.

Once a collision is resolved, that is, when all layers have disappeared, a new cri

begins. The number of customers that are starting this cri are those that have
arrived in the cri that just ended. The figure below gives an example of what
happens in a cri.

JAM SUCCESS SUCCESS SILENCESILENCEJAMSUCCESSSUCCESSJAMJAM

END
CRI

BEGIN
CRI

LAYER 0

LAYER 1

LAYER 2

In the figure above, the four messages at the begining are those buffered in the
previous cri. A black dot correponds to a message with “heads”, that is authorized
to attempt transmission.

Since the fresh requests sequence {An}n≥1 is iid, the sequence, {Xn}n≥0, where Xn

is the length of the n-th cri, forms an irreducible hmc. Stability of the protocol
is naturally identified with positive recurrence of this chain, which will now be
proved with the help of Pakes’s lemma. It suffices to show that

lim sup
i↑∞

E[Xn+1 −Xn |Xn = i] < 0 (7.26)

and for all i,
E[Xn+1 |Xn = i] <∞. (7.27)

For this, let Zn be the number of fresh arrivals in the n-th cri. We have

E[Xn+1 |Xn = i] =
∞∑
k=0

E[Xn+1 |Xn = i, Zn = k]P (Zn = k |Xn = i)

=
∞∑
k=0

E[Xn+1 |Zn = k]P (Zn = k |Xn = i).

It will be shown that for all n ≥ 0,

E[Xn+1 |Zn = k] ≤ αk + 1, (7.28)

where α = 2.886, and therefore

E[Xn+1 |Xn = i] ≤
∞∑
k=0

(αk + 1)P (Zn = k |Xn = i) = αE[Zn |Xn = i] + 1.
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Using Wald’s lemma (Theorem 3.2 of Chapter 1), we have

E[Zn |Xn = i] = λi,

where λ is the traffic intensity, and therefore

E[Xn+1 −Xn |Xn = i] ≤ 1 + i(λα− 1).

We see that condition (7.27) is always satisfied and that (7.26) is satisfied, provided
that

λ <
1

α
= 0.346. (7.29)

It remains to prove (7.28). Let E[Xn+1 |Zn = k] = Lk (it is indeed a quantity
independent of n). Clearly,

L0 = L1 = 1,

since with zero or one packet at the beginning of a cri, there is no collision. When
k ≥ 2, there is a collision, and the k users toss a coin, and depending on the result
they split into two sets, layer 0 and layer 1. Among these k users, i obtain heads
with probability

qi(k) =

(
k

i

)(
1

2

)k

.

The average length of the cri given that there are k ≥ 2 customers at the start,
and given that the first layer 0 contains i messages, is

Lk,i = 1 + Li + Lk−i.

Indeed, the first slot saw a collision; the i customers in the first layer 0 will take
on average Li slots to resolve their collision, and Lk−i more slots will be needed
for the k − i customers in the first-formed layer 1 (these customers are always at
the bottom of the stack, in a layer traveling up and down until it becomes layer 0,
at which time they start resolving their collision). Since

Lk =
k∑

i=0

qi(k)Lk,i ,

we have

Lk = 1 +
k∑

i=0

qi(k)(Li + Lk−i).

Solving for Lk, we obtain

Lk =
1 +

∑k−1
i=0 [qi(k) + qk−i(k)]Li

1− q0(k)− qk(k)
. (7.30)

Suppose that for some m ≥ 2, and αm satisfying

αm ≥ sup
j>m

∑m−1
i=0 (Li + 1)(qi(j) + qj−i(j))∑m−1

i=0 i(qi(j) + qj−i(j))
, (7.31)
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it holds that Lm ≤ αmm− 1. We shall then prove that for all n ≥ m,

Ln ≤ αmn− 1 . (7.32)

We do this by induction, supposing that (7.32) holds true for n = m,m+1, . . . , j−
1, and proving that it holds true for n = j. Equality (7.30) gives

Lj(1− q0(j)− qj(j)) = 1 +

j−1∑
i=0

(qi(j) + qj−i(j))Li

= 1 +
m−1∑
i=0

+

j−1∑
i=m

≤ 1 +
m−1∑
i=0

+

j−1∑
i=m

(qi(j) + qj−i(j))(αmi− 1) ,

where we used the induction hypothesis. The latter term equals

1 +
m−1∑
i=0

(qi(j) + qj−i(j))(Li − αmi+ 1) +

j∑
i=0

(qi(j)

+ qj−i(j))(αmi− 1)− (q0(j) + qj(j))(αmj − 1)

= 1 +
m−1∑
i=0

(qi(j) + qj−i(j))(Li − αmi+ 1) + αmj − 2− (q0(j) + qj(j))(αmj − 1) ,

where we used the identities

j∑
i=0

qi(j) = 1,

j∑
i=0

iqi(j) = jp,

j∑
i=0

iqj−i(j) = j(1− p).

Therefore,

Lj ≤ (αmj − 1) +

∑m−1
i=0 (qi(j) + qj−i(j))(Li − αmi+ 1)

1− q0(j)− qj(j)
.

Therefore, for Lj ≤ αmj − 1 to hold, it suffices to have

m−1∑
i=0

(qi(j) + qj−i(j))(Li − αmi+ 1) ≤ 0.

We require this to be true for all j > m, and (7.31) guarantees this. It can be
checked numerically that for m = 6 and α6 = 0.286, (7.31) is satisfied and that
equality (7.32) is true for n = 1, 2, 3, 4, 5, 6, and this completes the proof.

7.4 Fundamental Matrix

7.4.1 Definition

The fundamental matrix of an ergodic hmc with finite state space E = {1, . . . , r}
and stationary distribution π is the matrix
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Z := (I − (P− Π))−1 , (7.33)

where

Π := 1πT =

⎛⎜⎜⎜⎝
π(1) · · · π(r)
π(1) · · · π(r)
...

...
π(1) · · · π(r)

⎞⎟⎟⎟⎠ .

It gives access to a number of quantities such as, for instance, the mean time Ei[Tj]
to return to j from state i, or the variance of the ergodic estimate 1

n

∑n
k=1 f(Xk).

Theorem 7.4.1 For any ergodic transition matrix P on a finite state space, the
right-hand side of (7.33) is well defined and

Z = I +
∑
n≥1

(Pn − Π) . (7.34)

In particular,
∑

j Zij = 1.

Proof. First observe that

ΠP = Π ( since πTP = πT and Π = 1πT ),

PΠ = Π ( since P1 = 1 and Π = 1πT ),

Π2 = Π ( since Π = 1πT and πT1 = 1).

In particular, for all k ≥ 1, PΠk = Π = ΠkP, and therefore,

(P− Π)n =
n∑

k=0

(
n

k

)
(−1)n−kPkΠn−k

= Pn +

(
n−1∑
k=0

(
n

k

)
(−1)n−k

)
Π = Pn − Π.

Therefore, with A = P− Π,

(I − A)(I + A+ · · ·+ An−1) = I − An = I −Pn +Π.

Letting n→∞,

(I − A)(I +
∑
n≥1

An) = I,

which shows that I − (P− Π) is invertible, with inverse

I +
∑
n≥1

(P− Π)n = I +
∑
n≥1

(Pn − Π).

�
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Remark 7.4.2 Some authors use another definition of the fundamental matrix:

Z̃ =
∑
n≥0

(Pn − Π) , (7.35)

that is Z̃ = Z − Π.

Remark 7.4.3 Expression (7.34) is meaningful only if the chain is ergodic. In
particular, if the chain is only recurrent positive, but periodic, the series on the
right-hand side of (7.34) oscillates. This does not mean, however, that in the pe-
riodic case the inverse in (7.34) does not exist. As a matter of fact, it does exist,
but it is not given by formula (7.34).

An Extension of the Fundamental Matrix

The following is an alternative description of the fundamental matrix that does
not require, in principle, knowledge of the stationary distribution.

Let b be any vector such that
bT1 �= 0, (7.36)

and define
Z =

(
I −P+ 1bT

)−1
, (7.37)

where P is an ergodic matrix on the finite space E, with the stationary distribution
π. The matrix differs from the usual fundamental matrix in that π is replaced by
b.

Theorem 7.4.4 (Kemeny, 1991 ; Grinstead and Snell, 1997)
The inverse matrix in (7.37) exists and

πT = bTZ. (7.38)

Proof. Since πT1 = 1 and πT (I −P) = 0,

πT
(
I −P+ 1bT

)
= πT1bT = bT , (7.39)

and therefore, for any vector x such that(
I −P+ 1bT

)
x = 0, (7.40)

we have
bTx = 0

and
(I −P) x = 0.

Therefore, x must be a right eigenvector associated with the eigenvalue λ1 = 1, and
consequently, x is a multiple of 1. But this is compatible with bTx = 0 and bT1 �= 0
only if x = 0. Therefore (7.40) implies x = 0, which implies that

(
I −P+ 1bT

)
is

invertible; and (7.39) proves (7.38). �
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7.4.2 Travel Times

For any square matrix B, let d(B) is the diagonal matrix which has the same
diagonal as B. In particular d(Π)−1 is the diagonal matrix for which the (i, i)-th
entry is π(i)−1. Note also that 11T is the matrix with all entries equal to 1.

The quantity mij := Ei[Tj] is the travel time from i to j, and M := {mij}1≤i,j≤r

is the travel time matrix

Theorem 7.4.5 The travel time matrix M of an ergodic hmc is given by the
formula

M = (I − Z+ 11Td(Z))d(Π)−1 . (7.41)

Proof. We first observe that M has finite entries. Indeed, we already know that
mii = Ei[Ti] = 1/π(i) and that π(i) > 0. Also, when i �= j, mij is the mean time
to absorption in the modified chain where j is made absorbing, and this average
time is finite.

By first-step analysis,

mij = 1 +
∑
k;k �=j

pikmkj ,

that is,
M = P(M − d(M)) + 11T . (7.42)

We now prove that there is but one finite solution of the above equation in the
unknown M . To do this, we first show that for any solution M , d(M) is necessarily
equal to d(Π)−1. (We know this to be true when M is the mutual distance matrix,
but not yet for a general solution of (†).) Indeed, premultiplying (7.42) by πT yields

πTM = πTP(M − d(M)) + (πT1)1T = πT (M − d(M)) + 1T ,

and therefore πTd(M) = 1T , which implies the announced result.

Now suppose that there exist two finite solutions M1 and M2. Since d(M1) =
d(M2), it follows that

M1 −M2 = P(M1 −M2).

Therefore, any column v of M1 −M2 is a right-eigenvector of P corresponding to
the eigenvalue 1. We know that the right-eigenspace Rλ and the left-eigenspace
Lλ corresponding to any given eigenvalue λ have the same dimension. For λ = 1,
we know that the dimension of Lλ is one. Therefore, Rλ has dimension 1 for
λ = 1. Thus any right-eigenvector is a scalar multiple of 1. Therefore, M1 −M2

has columns of the type α1 for some α (α may a priori depend on the column).
Since d(M1) = d(M2), each column contains a zero, and therefore α = 0 for all
columns, that is, M1 −M2 ≡ 0.

At this point we have proved that M is the unique finite solution. It remains to
show that M defined by (7.41) is a solution. In fact, from (7.41) and d(M) =
d(Π)−1,

M − d(Π)−1 = (−Z+ 11Td(Z))d(Π)−1.
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Therefore,

P(M − d(Π)−1) = (−PZ+P11Td(Z))d(Π)−1

= (−PZ+ 11Td(Z))d(Π)−1

= M + (−PZ− I + Z)d(Π)−1,

where we have used the identity P1 = 1 for the second equality and (7.41) again
for the third. Using now (7.33), that is, I − Z = Π−PZ, we see that

P(M − d(Π)−1) = M − Πd(Π)−1 = M − 11T ,

and (7.42) follows, since d(M) = d(Π)−1. �

Theorem 7.4.6 Let Z be the fundamental matrix as defined in (7.37). Then for
all i �= j,

Ei [Tj] =
zjj − zij
π(j)

. (7.43)

Proof. We shall need two preliminary formulas. First,

Z1 = θ1, (7.44)

where θ−1 = bT1. Indeed, from the definiton of Z,

Z
(
I −P+ 1bT

)
1 = 1. (7.45)

But (I −P)1 = 0, and therefore (7.44) follows. We shall also use the formula

Z (I −P) = I − θ1bT , (7.46)

which follows from (7.37) and (7.44).

We now proceed to the main part of the proof. Call N the mutual distance matrix
M in which the diagonal elements have been replaced by 0’s. From (7.42), we
obtain

(I −P)N = 11T −D−1,

where D = diag {π(1), . . . , π(n)}. Multiplying both sides by Z, and using (7.44),
we obtain

Z (I −P)N = θ11T − ZD−1.

Using (7.46),
Z (I −P)N = N − θ1bTN.

Therefore,
N = θ11T − ZD−1 + θ1bTN.

Thus, for all i, j ∈ E,

nij = θ − zij
π(j)

+ θ
(
bTN

)
j
.

For i = j, nij = θ − zjj
π(j)

+ θ
(
bTN

)
j
= 0, which gives

(
bTN

)
j
. Finally, for i �= j,
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nij =
zjj − zij
π(j)

.

�

Example 7.4.7: The target time formula. The quantity

Ei [Sπ] :=
∑
j

π(j)Ei [Sj] ,

where Sj is the hitting time of j, is the expected time to a state j previously
selected at random with the stationary probability π. From formula (7.43), we
have

Ei [Sπ] =
∑
j

Zjj − 1 .

Variance of Ergodic Estimates

Let {Xn}n≥0 be an ergodic Markov chain with finite state space E = {1, 2, . . . , r}.
A function f : E → R is represented by a column vector f = (f(1), . . . , f(r))T .
The ergodic theorem tells us that the estimate 1

n

∑n
k=1 f(Xn) of 〈f〉π := Eπ[f(X0)]

is asymptotically unbiased, in the sense that it converges to 〈f〉π as n→∞.

Theorem 7.4.8 For {Xn}n≥0 and f : E → R as above, and for any initial distri-
bution μ,

lim
n→∞

1

n
Vμ

(
n∑

k=1

f(Xk)

)
= 2 〈f,Zf〉π − 〈f, (I +Π)f〉π , (7.47)

where the notation Vμ indicates that the variance is computed with respect to Pμ.

The quantity on the right-hand side will be denoted by v(f,P, π).

Proof. We first suppose that μ = π, the stationary distribution. Then

1

n
Vπ

(
n∑

k=1

f(Xk)

)
=

1

n

⎧⎪⎨⎪⎩
n∑

k=1

Vπ(f(Xk)) + 2
n∑

k,j=1
k<j

cov π(f(Xk), f(Xj))

⎫⎪⎬⎪⎭
= Vπ(f(X0)) +

n−1∑
�=1

n− �

n
cov π(f(X0), f(X�))

where we have used the fact that when the initial distribution is π, the chain is
stationary, and in particular, cov π(f(Xk), f(Xj)) = cov π(f(X0), f(Xj−k)) for
k < j. Now,
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Vπ(f(X0)) = Eπ[f(X0)
2]− Eπ[f(X0)]

2

=
∑
i∈E

π(i)f(i)2 −
(∑

i∈E
π(i)f(i)

)2

= 〈f, f〉π − 〈f,Πf〉π .

Also,

cov π(f(X0), f(X�)) = Eπ[f(X0)f(Xk)]− Eπ[f(X0)]
2

=
∑
i∈E

∑
j∈E

π(i)pij(�)f(i)f(j)− Eπ[f(X0)]
2

=
〈
f,P�f

〉
π
− 〈f,Πf〉π = 〈f, (P� − Π)f〉π.

Since limn→∞
∑n

�=1(P
� − Π) = Z− I,

lim
n→∞

n−1∑
�=1

n− �

n
(P� − Π) = Z− I.

Indeed, by Cesaro’s lemma: If An =
∑n

�=1 α� tends to A as n → ∞, then
limn→∞ 1

n

∑n−1
�=1 A� = A. But 1

n

∑n−1
�=1 A� = 1

n
(α1 + (α1 + α2) + · · · + (α1 + · · · +

αn−1)) =
∑n−1

�=1
n−�
n
α�. Therefore,

lim
n→∞

1

n
Vπ

(
n∑

k=1

f(Xk)

)
= 〈f, f〉π − 〈f,Πf〉π + 2 〈f, (Z− I)f〉π ,

which is the announced result (for μ = π).

To prove the result in the general case where the initial distribution is arbitrary,
it suffices to show that for two chains {X(1)

n }n≥0 and {X(2)
n }n≥0 with transition

matrix P, and arbitrary initial distributions μ and ν, respectively, that couple at
a time τ such that E[τ 2] <∞ (this is the case here, see Exercise 16.4.6),

lim
n→∞

1

n
V

( ∞∑
k=1

f(X
(1)
k )

)
= lim

n→∞
1

n
V

( ∞∑
k=1

f(X(2)
n )

)
.

But with Xn = X
(1)
n or X

(2)
n ,

V

(
n∑

k=1

f(Xk)

)
= E

⎡⎣( n∑
k=1

f(Xk)

)2
⎤⎦− E

[
n∑

k=1

f(Xk)

]2

= E

⎡⎣(τ∧n∑
k=1

+
n∑

k=τ+1

)2
⎤⎦−(E

[
τ∧n∑
k=1

]
+ E

[
n∑

k=τ+1

])2

= E

⎡⎣(τ∧n∑
k=1

)2
⎤⎦+ E

⎡⎣( n∑
k=τ+1

)2

+ 2E

[(
τ∧n∑
k=1

)(
n∑

k=τ+1

)]⎤⎦
−E

[
τ∧n∑
k=1

]2
− E

[
n∑

k=τ+1

]2

− 2E

[
τ∧n∑
k=1

]
E

[
n∑

k=τ+1

]
.
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Since
∑n

k=τ+1 f(X
(1)
k ) =

∑n
k=τ+1 f(X

(2)
k ), it follows (with obvious shorthand nota-

tions) that

1

n

{
V

(
n∑

k=1

f(X
(1)
k )

)
− 1

n
V

(
n∑

k=1

f(X
(2)
k

)}
=

1

n
An +

2

n
Bn − 2

n
Cn,

where

An =

⎧⎨⎩E

⎡⎣(τ∧n∑
k=1

(1)

)2
⎤⎦− E

⎡⎣(τ∧n∑
k=1

(2)

)2
⎤⎦− E

[
τ∧n∑
k=1

(1)

]2

+ E

[
τ∧n∑
k=1

(2)

]2
⎫⎬⎭ ,

Bn =

{
E

[(
n∑

k=τ+1

(1, 2)

)(
τ∧n∑
k=1

(1)−
τ∧n∑
k=1

(2)

)]}
,

Cn =

{
E

[
n∑

k=τ+1

(1, 2)

]
E

[
τ∧n∑
k=1

(1)−
τ∧n∑
k=1

(2)

]}
.

Write
2

n
Bn = 2E

[∑n
k=τ+1(1, 2)

n

(
τ∧n∑
k=1

(1)−
τ∧n∑
k=1

(2)

)]
and observe that the quantity under the expectation converges, as n → ∞, to-
wards Eπ[f(X0)] (

∑τ
k=1 (f(X

(1)
k ) −f(X(2)

k ))) and is for fixed n bounded in abso-
lute value by 2(sup |f |)τ , an integrable random variable. Therefore, by dominated
convergence,

lim
n→∞

2

n
Bn = 2Eπ[f(X0)]E

[
τ∑

k=1

(f(X
(1)
k )− f(X

(2)
k ))

]
.

A similar argument shows that 2
n
Cn has the same limit. Therefore, limn→∞ 2

n
(Bn−

Cn) = 0. As for An, it is bounded by 4(sup |f |)2E[τ 2] < ∞, and therefore
limn→∞ 1

n
An = 0. �

We shall now give an expression of the asymptotic variance in terms of the eigen-
values, when P has r distinct eigenvalues. We have, in view of (6.11),

(Pn − Π) =
r∑

i=2

λn
i viu

T
i ,

and therefore

Z = I +
∑
n≥1

(Pn − Π) = I +
r∑

i=2

λi

1− λi

viu
T
i . (7.48)

Also, from (15.5),

v(f,P, π) = Vπ(f(X0)) + 2
r∑

i=2

λi

1− λi

〈f, vi〉π (fTui). (7.49)
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For a reversible pair (P, π), we have ui = Dvi, and therefore fTui = 〈f, vi〉π. Using
this observation and (20.5), we obtain from (15.7),

v(f,P, π) =
r∑

i=2

1 + λi

1− λi

| 〈f, vi〉π |2. (7.50)

If one is interested in the speed of convergence to equilibrium, it is the second-
largest eigenvalue modulus that is important. If one is interested in simulation,
that is, the computation of Eπ[f(X0)] as the ergodic mean limn→∞ 1

n

∑n
k=1 f(Xk),

all eigenvalues play a role if we measure the quality of the ergodic estimator by
the asymptotic variance, as the above formulas show.

7.4.3 Hitting Times Formula

The next result extends formula (7.3).

Theorem 7.4.9 Let {Xn}n≥0 be a positive recurrent hmc with state space E and
stationary distribution π. Let μ be a probability distribution on E and let S ∈
be a stopping time of this chain such that Eμ[S] <∞ and Pμ(XS ∈ ·) = μ. Then
for all j ∈ E,

Eμ

[
S−1∑
k=0

1{Xn=j}

]
= Eμ [S] π(j). (7.51)

Proof. Let xj denote the left-hand side of (7.51). If the vector x is an invariant
measure of the chain, it must be of the form xi = cπ(i) with c =

∑
i xi, that is

c = Eμ[S], which gives (7.51). For the proof that x is an invariant measure, write
(using the fact that Pμ(XS = k) = Pμ(X0 = k) for the second equality):

xk =
∞∑
n=0

Pμ(Xn = k, n < S)

=
∞∑
n=0

Pμ(Xn+1 = k, n < S)

=
∞∑
n=0

∑
j

Pμ(Xn = j,Xn+1 = k, n < S)

=
∞∑
n=0

∑
j

Pμ(Xn = j, n < S)pjk

=
∑
j

( ∞∑
n=0

Pμ(Xn = j, n < S)

)
pjk =

∑
j

xjpjk .

�

In fact, (7.51) remains true when Eμ[S] = ∞ (consider the stopping time S(n) =
S ∧ τn, where τn is the n-return time to i, write (7.51) for S(n), and let n→∞, to

obtain Eμ

[∑S−1
k=0 1{Xk=j}

]
=∞).
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The particular case that is used in the sequel is for μ = δi. Let S be a stopping
time and let i be any state such that Pi(XS = i) = 1. Then, for all j ∈ E,

Ei

[
S−1∑
k=0

1{Xn=j}

]
= Ei [S] π(j). (7.52)

In the special case where S = Ti, the return time to i gives formula (7.3). In the
next example, additional information is extracted from (7.51).

Example 7.4.10: Commute time formulas. Let i and j be two distinct states
and let S be the first time of return to i after the first visit to j. Then Ei [S] =
Ei [Tj] + Ej [Ti] (strong Markov property at Tj). Also,

Ei

[
S−1∑
n=0

1{Xn=j}

]
= Ei

⎡⎣ S−1∑
n=Tj

1{Xn=j}

⎤⎦ = Ej

[
Ti−1∑
n=0

1{Xn=j}

]
,

where the last equality is justified by the strong Markov property. Therefore, by
(7.52),

Ej

[
Ti−1∑
n=0

1{Xn=j}

]
= π(j) (Ei [Tj] + Ej [Ti]) . (�)

Using words, the left-hand side of this equality is

Ej[number of visits to j before i]. (7.53)

The quantity Ei [Tj] + Ej [Ti] is called the commute time between i and j. It is
the average time needed to go from i to j and then return to j, or, in other
words the average return time to i with the constraint of visiting j at least once.
The quantities Ei [Tj] can be computed, when the state space is finite, via the
fundamental matrix, by means of formula (7.43).

Now, the probability that j is not visited between two successive visits of i is
Pi (Tj > Ti). Therefore, the number of visits to i (including time 0) before Tj has
a geometric distribution with parameter p = Pi (Tj > Ti), and the average number
of such visits is 1

Pi(Tj<Ti)
. Therefore, by (�), after exchanging the roles of i and j,

Pi (Tj < Ti) =
1

π(i) (Ei [Tj] + Ej [Ti])
. (7.54)

Example 7.4.11: Diagonal of the fundamental matrix. For fixed m ≥ 1,
let

S = m+ inf {k ≥ 0 ; Xm+k = i} .
Then, by (7.53),

Ei

[
S−1∑
n=0

1Xn=j

]
= π(i)Ei [S] ,
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that is,

Ei

[
m−1∑
n=0

1Xn=j

]
= π(i) (m+ Eνm [Si]) ,

where Si is the hitting time of i, and νm is the distribution of the chain at time
m. Therefore,

m−1∑
n=0

(pii(n)− π(i)) = π(i)Eνm [Si] .

But limm↑∞ νm = π, and therefore
∑∞

n=0 (pii(n)− π(i)) = π(i)Eπ [Si], that is,

zii = π(i)Eπ [Ti] . (7.55)

Example 7.4.12: Patterns in coin tossing. (Aldous and Fill, 2002) Let
{Yn}n≥0 be an iid sequence of Bernoulli variables with P (Y1 = 1) = P (Y1 = 0) =
1
2
, and let {Xn}n≥0 be the “snake chain” defined by

Xn = (Yn, Yn+1, . . . , Yn+L−1)

for some L ≥ 1. Note that both {Yn}n≥0 and {Xn}n≥0 are irreducible ergodic
chains, with the stationary distribution as initial distribution. Define

z̃ij =
∞∑
n=0

(pij(n)− π(j)) (7.56)

(= zij − π(j)), where P is the transition matrix of {Xn}n≥0 and π(j) = 1
2L

is its
stationary distribution.

For n ≥ L, X0 and Xn are independent, and therefore pij(n) − π(j) = 0, so that
only the first L terms of (7.56) are nonzero. For n < L, pij(n) > 0 if and only if the
pattern j = (j0, . . . , jL−1) shifted n to the right and the pattern i = (i0, . . . , iL−1)
agree where they overlap (see the figure).

in

j0 j1

in+1

||
. . .

. . .

jL−2−n

iL−2

||||
jL−1−n jL−1

||
iL−1. . .i2i1i0

jL−n . . .

In this case pij(n) equals
1
2n
. Therefore, defining

c(i, j) =
L−1∑
n=0

1

2n
χ(i, j, n) ,
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where χ(i, j, n) = 1 if and only if the situation depicted in the figure above is
realized,

z̃ij = c(i, j)− L2−L.

In view of the result of the previous example,

Eπ [Si] = 2Lc(i, i)− L.

But remember that X0 is always distributed as π, and that to generate the first
pattern, L coin tosses are necessary. Therefore, 2Lc(i, i) is the average number of
coin tosses needed to see pattern i for the first time.

To illustrate this, consider the pattern i = HTTTHT. We have c(i, i) = 68 (see
the figure).

H

H

H

H

H

T T T T

TTT

TH T

2−4

T

TT

T

H

H

0

0

0

0

c(HTTTHT) = 26
(
1 + 1

24

)2−0

Books for Further Information

For applications of Foster’s theorem to multivariate Markov chains of interest (for
instance, to queueing theory) see [Fayolle, Malishev and Menshikov, 1995].

7.5 Exercises

Exercise 7.5.1. An interpretation of invariant measure

A countable number of particles move independently of one another in the count-
able space E, each according to a Markov chain with the transition matrix P. Let
An(i) be the number of particles in state i ∈ E at time n ≥ 0 and suppose that the
random variables A0(i) (i ∈ E) are independent Poisson random variables with
respective means μ(i) (i ∈ E), where μ = {μ(i)}i∈E is an invariant measure of
P. Show that for all n ≥ 1, the random variables An(i) (i ∈ E) are independent
Poisson random variables with respective means μ(i) (i ∈ E).

Exercise 7.5.2. Doubly stochastic transition matrix

A stochastic matrix P on the state space E is called doubly stochastic if for all
states i,

∑
j∈E pji = 1. Suppose in addition that P is irreducible, and that E is

infinite.

Find the invariant measure of P.
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Show that P cannot be positive recurrent.

Exercise 7.5.3. Return time to the initial state

Let τ be the first return time to the inital state of an irreducible positive recurrent
hmc {Xn}n≥0, that is, τ = inf{n ≥ 1;Xn = X0}, with τ = +∞ if Xn �= X0

for all n ≥ 1. Compute the expectation of τ when the initial distribution is the
stationary distribution π. Conclude that it is finite if and only if E is finite. When
E is infinite, is this in contradiction with positive recurrence?

Exercise 7.5.4. The lazy Markov chain, take 2

Consider the lazy version of an irreducible positive recurrent hmc as described
in Example 6.2.5. Suppose that the original hmc, with transition matrix P, has
no self-loops in its transition graph (that is, pii = 0 for all i ∈ E). Compare the
expected return times in both chains. Since the lazy chain “takes more time to
travel”, explain quantitavely the apparent paradox.

Exercise 7.5.5. Exponential tails of hitting times

Let TA be the hitting time of the set A ⊂ E of a finite state space irreducible hmc
and let TA := maxi∈E Ei [TA]. Prove that for all n ≥ 1 and initial distribution μ,

Pμ(TA > n) ≤
(
TA

k

)�n
k
	
.

Exercise 7.5.6. Target times

Consider an irreducible positive recurrenc hmc {Xn}n≥0 with stationary distribu-
tion π. Let j be a fixed state and consider the quantity

h(j) =
∑
i∈E

Ej[Si]π(i) ,

where Si := inf{n ≥ 0 ; Xn = i} is the hitting (entrance) time of i. Prove that this
quantity does not depend on j ∈ E.

An interpretation of h(j) is as follows. A target state j is chosen. The initial
distribution of the chain being the stationary one, h(j) is the average time required
to hit the target. The constant value Ttarget of h is called the target time. The fact
that Ttarget =

∑
i,j∈E π(i)π(j)Ei[Sj] justifies the following expression of the target

time
Eπ[Sπ] := Ttarget .

Exercise 7.5.7. The snake chain

Let {Xn}n≥0 be an hmc with state space E and transition matrix P. Let for L ≥ 1
Yn := (Xn, Xn+1, . . . , Xn+L).

(a) The process {Yn}n≥0 takes its values in F = EL+1. Prove that {Yn}n≥0 is an
hmc and give the general entry of its transition matrix. (The chain {Yn}n≥0 is
called the snake chain of length L+ 1 associated with {Xn}n≥0.)
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(b) Show that if {Xn}n≥0 is irreducible, then so is {Yn}n≥0 if we restrict the state
space of the latter to be F = {(i0, . . . , iL) ∈ EL+1; pi0i1pi1i2 · · · piL−1iL > 0}. Show
that if the original chain is irreducible aperiodic, so is the snake chain.

(c) Show that if {Xn}n≥0 has a stationary distribution π, then {Yn}n≥0 also has a
stationary distribution. Which one?

Exercise 7.5.8. abbabaa!
A sequence of A’s and B’s is formed as follows. The first letter is chosen at random,
P (A) = P (B) = 1

2
, as is the second letter, independently of the first one. When

the first n ≥ 2 letters have been selected, the (n+1)st is chosen, independently of
the letters in positions k ≤ n − 2 conditionally on the pair at position n − 1 and
n, as follows:

P (A | AA) = 1

2
, P (A | AB) =

1

2
, P (A | BA) =

1

4
, P (A | BB) =

1

4
.

What is the proportion of A’s and B’s in a long chain?

Exercise 7.5.9. Mean time between successive visits of a set

Let {Xn}n≥0 be an irreducible positive recurrent hmc with stationary distribution
π. Let A be a subset of the state space E and let {τ(k)}k≥1 be the sequence of
return times to A. Show that

lim
k↑∞

τ(k)

k
=

1∑
i∈A π(i)

.

(This extends Formula (7.5)).

Exercise 7.5.10. Fixed-age retirement policy

Let {Un}n≥1 be a sequence of iid random variables taking their values in + =
{1, 2, . . . , }. The random variable Un is interpreted as the lifetime of some equip-
ment, or “machine”, the n-th one, which is replaced by the (n + 1)st one upon
failure. Thus at time 0, machine 1 is put in service until it breaks down at time U1,
whereupon it is immediately replaced by machine 2, which breaks down at time
U1 + U2, and so on. The time to next failure of the current machine at time n is
denoted by Xn. More precisely, the process {Xn}n≥0 takes its values in E = N,

equals 0 at time Rk =
∑k

i=1 Ui, equals Uk+1−1 at time Rk+1, and then decreases
of by unit per unit of time until it reaches the value 0 at time Rk+1. It is assumed
that for all k ∈ +, P (U1 > k) > 0, so that the state space E is . Then {Xn}n≥0

is an irreducible hmc called the forward recurrence chain. We assume positive
recurrence, that is E[U ] <∞, where U = U1.

A. Show that the chain is irreducible. Give a necessary and sufficient condition for
positive recurrence. Assuming positive recurrence, what is the stationary distri-
bution? A visit of the chain to state 0 corresponds to a breakdown of a machine.
What is the empirical frequency of breakdowns?

B. Suppose that the cost of a breakdown is so important that it is better to replace
a working machine during its lifetime (breakdown implies costly repairs, whereas



7.5. EXERCISES 183

replacement only implies moderate maintenance costs). The fixed-age retirement
policy fixes an integer T ≥ 1 and requires that a machine having reached age
T be immediately replaced. What is the empirical frequency of breakdowns (not
replacements)?



Chapter 8

Random Walks on Graphs

8.1 Pure Random Walks

8.1.1 The Symmetric Random Walks on and 3

A pure random walk is the motion on a graph of a particle that is not allowed to
rest and that chooses equiprobably the next move among all possible ones available.
This chapter opens with the classical random walks on and 3, and the general
pure random walk on a graph.

The one-dimensional symmetric random walk on is the simplest example of a
pure random walk on a graph. Here, the nodes are the relative integers and the
edges are all unordered pairs (i, i+ 1), (i ∈ ). Let {Xn}n≥0 be such a symmetric
random walk on . Example 7.1.6 showed that it is recurrent. It is in fact null
recurrent.

Proof. Let τ1 = T0, τ2, . . . be the successive return times to state 0. Observe that
for n ≥ 1,

P0(X2n = 0) =
∑
k≥1

P0(τk = 2n),

and therefore, for all z ∈ C such that |z| < 1,∑
n≥1

P0(X2n = 0)z2n =
∑
k≥1

∑
n≥1

P0(τk = 2n)z2n =
∑
k≥1

E0[z
τk ].

But τk = τ1 + (τ2− τ1) + · · ·+ (τk − τk−1) and therefore, in view of Theorem 7.1.3,
and since τ1 = T0,

E0[z
τk ] = (E0[z

T0 ])k.

In particular, ∑
n≥0

P0(X2n = 0)z2n =
1

1− E0[zT0 ]

(note that the latter sum includes the term for n = 0, that is, 1). Direct evaluation
of the left-hand side yields∑

n≥0

1

22n
(2n)!

n!n!
z2n =

1√
1− z2

.
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Therefore, the generating function of the return time to 0 given X0 = 0 is

E0[z
T0 ] = 1−

√
1− z2 .

Its first derivative z√
1−z2

tends to∞ as z → 1 from below via real values. Therefore,

by Abel’s theorem (Theorem A.1.3), E0[T0] =∞. �

Null recurrence of the symmetric random walk on implies that the time required
to reach state 0 from a given state k has infinite mean. This suggests that the
probability given the initial state k that T0 takes large values is large. The following
result gives a bound on how large it is. More precisely:

Theorem 8.1.1 For a symmetric random walk on ,

Pk(T0 > r) ≤ 12|k|√
r

. (8.1)

The following result of independent interest, called the reflection principle, will be
used in the proof of Theorem 8.1.1.

Theorem 8.1.2 For all positive integers j, k and n,

Pk(T0 < n, Xn = j) = Pk(Xn = −j) ,

and therefore, summing over j > 0,

Pk(T0 < n, Xn > 0) = Pk(Xn < 0) .

Proof. By the strong Markov property, for m < n,

Pk(T0 = m, Xn = j) = Pk(T0 = m)P0(Xn−m = j) .

Since the distribution of Xn is symmetric when the initial position is 0, the right-
hand side is

Pk(T0 = m)P0(Xn−m = −j) = Pk(T0 = m, Xn = −j) ,

and therefore

Pk(T0 = m, Xn = +j) = Pk(T0 = m, Xn = −j) .

Summation over m < n yields

Pk(T0 < n, Xn = j) = Pk(T0 < n, Xn = −j) = Pk(Xn = −j),

where, for the last equality, it was observed that starting from a positive position
and reaching a negative position at time n implies that position 0 has been reached
for the first time strictly before time n. �
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Remark 8.1.3 A combinatorial interpretation of the proof is the following. There
is a one-to-one correspondence between the paths that hit 0 before time n and reach
position j > 0 at time n, and the paths that reach position −j at time n. In fact,
given a path that hits 0 before time n and reaches position j > 0, associate to it
the path that is reflected with respect to position 0 after time T0 (see the figure).
This is the reflection principle.

Example 8.1.4: The gambler’s ruin, take 2. A gambler with initial fortune
1 plays a heads and tails fair coin game with a one dollar stake at each toss.
What is the distribution of the duration of the game until he is broke? In other
terms, what is the distribution of the return time to 0 of a symmetric random walk
starting from position 1? Note that in this case T0 is necessarily odd. We have by
the strong Markov property and the reflection principle (Theorem 15.1.6)

P1(T0 = 2m+ 1) = P1(T0 > 2m,X2m = 1, X2m+1 = 0)

= P1(T0 > 2m,X2m = 1)P1(X2m+1 = 0 |X2m = 1)

= P1(T0 > 2m,X2m = 1)
1

2

=
1

2
{P1(X2m = 1)− P1(T0 ≤ 2m,X2m = 1)}

=
1

2
{P1(X2m = 1)− P1(X2m = −1)}

=
1

2

{(
2m

m

)
2−2m −

(
2m

m− 1

)
2−2m

}
=

(
2m
m

)
m+ 1

2−2m−1 .

The way is now clear for the proof of Theorem 8.1.1.

Proof. It suffices to consider the case k > 0, by symmetry. The bound is an
immediate consequence of the two following results:

Pk(T0 > r) = P0(−k < Xr ≤ +k) (�)

and

P0(Xr = k) <
3√
r
. (†)
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We start with (�):

Pk(T0 > r)Pk(Xr > 0, T0 ≤ r) + Pk(Xr > 0, T0 > r)

= Pk(Xr > 0, T0 ≤ r) + Pk(T0 > r) = Pk(Xr < 0) + Pk(T0 > r) ,

where the last equality is the reflection principle. But by symmetry of the random
walk, Pk(Xr < 0) = Pk(Xr > 2k). Therefore

Pk(T0 > r) = Pk(Xr > 0)− Pk(Xr > 2k)

= Pk(0 < Xr ≤ 2k) = P0(−k < Xr ≤ +k) .

We now turn to the proof of (†). Let k = 0, 1, . . . , r. Starting from state 0, the
event X2r = 2k occurs if and only if there are r + k upward moves and r − k
downward moves of the random walks. Therefore

P (X2r = 2k) =

(
2r

r + k

)
2−2r .

The right-hand side is maximized for k = 0, and therefore

P (X2r = 2k) ≤
(
2r

r

)
2−2r ≤

√
8

π

1√
2r

,

by Stirling’s approximation. To obtain a bound for P (X2r+1 = 2k+1), condition on
the first move of the random walk and use the previous bound to obtain (Exercise
8.4.4)

P (X2r+1 = 2k + 1) ≤ 4√
π

1√
2r + 1

.

�

The Symmetric Random Walk on 3

(Polya, 1921) The state space of this hmc is E = Z3. Denoting by e1, e2, and e3
the canonical basis vectors of R3 (respectively (1, 0, 0), (0, 1, 0), and (0, 0, 1)), the
non-null terms of the transition matrix of the 3-D symmetric random walk are
given by

px,x±ei =
1

6
.

The state 0 := (0, 0, 0) (and therefore all states, since the chain is irreducible) is
transient.

Proof. Clearly, p00(2n+ 1) = 0 for all n ≥ 0, and (exercise)

p00(2n) =
∑

0≤i+j≤n

(2n)!

(i!j!(n− i− j)!)2

(
1

6

)2n

.

This can be rewritten as

p00(2n) =
∑

0≤i+j≤n

1

22n

(
2n

n

)(
n!

i!j!(n− i− j)!

)2(
1

3

)2n

.
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Using the trinomial formula∑
0≤i+j≤n

n!

i!j!(n− i− j)!

(
1

3

)n

= 1 ,

we obtain the bound

p00(2n) ≤ Kn
1

22n

(
2n

n

)(
1

3

)n

,

where

Kn = max
0≤i+j≤n

n!

i!j!(n− i− j)!
.

For large values of n,Kn is bounded as follows. Let i0 and j0 be the values of i, j
that maximize n!/(i!j!(n+−i− j)!) in the domain of interest 0 ≤ i+ j ≤ n. From
the definition of i0 and j0, the quantities

n!

(i0 − 1)!j0!(n− i0 − j0 + 1)!
,

n!

(i0 + 1)!j0!(n− i0 − j0 − 1)!
,

n!

i0!(j0 − 1)!(n− i0 − j0 + 1)!
,

n!

i0!(j0 + 1)!(n− i0 − j0 − 1)!

are bounded by
n!

i0!j0!(n− i0 − j0)!
.

The corresponding inequalities reduce to

n− i0 − 1 ≤ 2j0 ≤ n− i0 + 1 and n− j0 − 1 ≤ 2i0 ≤ n− j0 + 1,

and this shows that for large n, i0 ∼ n/3 and j0 ∼ n/3. Therefore, for large n,

p00(2n) ∼ n!

(n/3)!(n/3)!22nen

(
2n

n

)
.

By Stirling’s equivalence formula, the right-hand side of the latter equivalence is
in turn equivalent to

3
√
3

2(πn)3/2
,

the general term of a convergent series. State 0 is therefore transient. �

One might wonder at this point about the symmetric random walk on 2, which
moves at each step northward, southward, eastward and westward equiprobably.
It is in fact recurrent (Exercise 8.4.5). Exercise 8.4.6 asks you to prove that the
symmetric random walk on p, p ≥ 4 is transient.
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8.1.2 Pure Random Walk on a Graph

Consider a finite non-directed connected graph G = (V, E) where V is the set
of vertices, or nodes, and E is the set of edges. Let di be the index of vertex i
(the number of edges “adjacent” to vertex i). Since there are no isolated nodes (a
consequence of the connectedness assumption), di > 0 for all i ∈ V . Transform
this graph into a directed graph by splitting each edge into two directed edges of
opposite directions, and make it a transition graph by associating to the directed
edge from i to j the transition probability 1

di
(see the figure below). Note that∑

i∈V di = 2|E|.

1
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1
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1
2

1
2

1
3

A random walk on a graph

The corresponding hmc with state space E ≡ V is irreducible (G is connected).
It therefore admits a unique stationary distribution π, that we attempt to find a
stationary distribution via Theorem 6.2.9. Let i and j be connected by an edge,
and therefore pij =

1
di

and pji =
1
dj
, so that the detailed balance equation between

these two states is

π(i)
1

di
= π(j)

1

dj
.

This gives π(i) = Kdi, whereK is obtained by normalization:K =
(∑

j∈E dj

)−1

=

(2|E|)−1. Therefore

π(i) =
di
2|E| .

Example 8.1.5: Random walk on the hypercube, take 2. The random
walk on the (n-dimensional) hypercube is the random walk on the graph with
set of vertices E = {0, 1}n and edges between vertices x and y that differ in just
one coordivate. For instance, in three dimensions, the only possible motions of
a particle performing the random walk on the cube is along its edges in both
directions. Clearly, whatever the dimension n ≥ 2, di = 1

n
, and the stationary

distribution is the uniform distribution.

The lazy random walk on the graph is, by definition, the Markov chain on V with
the transition probabilities pii =

1
2
and for i, j ∈ V such that i and j are connected

by an edge of the graph, pi,i =
1
2di

. This modified chain admits the same stationary
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distribution as the original random walk. The difference is that the lazy version is
always aperiodic, whereas the original version may be periodic.

8.1.3 Spanning Trees and Cover Times

Let {Xn}n∈ be an irreducible stationary hmc with finite state space E, transition
matrix P and stationary distribution π. Let G = (E,A) be the associated directed
graph, where A is the set of directed edges (arcs), that is, of ordered pairs of states
(i, j) such that pij > 0. The weight of an arc (i, j) is pij. A rooted spanning tree
of G is a directed subgraph of G with the following properties:

(i) As an undirected graph it is a connected graph with E as set of vertices.

(ii) As an undirected graph it is without cycles.

(iii) As a directed graph, each of its vertex has out degree 1, except one vertex,
the root, that has out degree 0.

Denote by S the set of spanning trees of G, and by Si the subset of S consisting
of rooted spanning trees with vertex i ∈ E. The weight w(S) of a rooted spanning
tree of S ∈ S is the product of the weights of all the directed edges in S.

i

A directed graph and one of its directed spanning tree

Theorem 8.1.6 The stationary distribution π of P is given by

π(i) =

∑
S∈Si

w(S)∑
S∈S w(S)

. (8.2)

Proof. (Anantharam and Tsoucas, 1989) Define a stochastic process {Yn}n∈ tak-
ing its values in S as follows. The root of Yn is Xn, say Xn = i. Now, by screening
the past values Xn−1, Xn−2, . . . in this order, let Xn−�1 be the first value different
from Xn, let Xn−�2 , �2 > �1, be the first value different from Xn and Xn−�1 , let
Xn−�3 , �3 > �2, be the first value different from Xn, Xn−�1 and Xn−�2 . Continue
this procedure until you have exhausted the (finite) state space E. The spanning
tree Yn is the one with directed edges (Xn−�1 , Xn−�1+1 = Xn), (Xn−�2 , Xn−�2+1),
(Xn−�3 , Xn−�3+1) . . .
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Since the chain {Xn}n∈ is stationary, so is the stochastic process {Yn}n∈ . It is
moreover an hmc. We denote by QST the transition probability from S to T .

The transition from Yn = S ∈ S with root i to Yn+1 = T ∈ S with root j in one
step is the following:

(a) Add to S the directed (i, j), thus creating a directed spanning graph with
a unique directed loop that contains i and j (this may be a self-loop at i).

(b) Delete the unique directed edge of S out of j, say (j, k), thus breaking the
loop and producing a rooted spanning tree T ∈ S with root j.

(c) Such transition occurs with probability pij.

We now describe the rooted spanning trees S that can lead to the rooted spanning
tree T with root j according to the transition matrix Q. T with root j can be
obtained from the spanning tree S if and only if S can be constructed from T by
the following reverse procedure based on a suitable vertex k:

(α) Add to T the directed edge (j, k), thus creating a directed spanning graph
with unique directed loop containing j and k (possibly a self-loop at j).

(β) Delete the unique directed edge (i, j) that lies in the loop, thus breaking
the loop and producing a rooted spanning tree T ∈ S with root i.

erase

add
i

j

k

add

erase
i

j

k

Let k be the unique vertex used in the reverse procedure. Observing that to pass
from T to S, we first added the edge (i, j) and then deleted the unique directed
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edge (j, k), and that to pass from S to T , we added the directed edge (j, k) and
then deleted the edge (j, i). Therefore

w(S)QST = w(T )RTS

where RTS := pjk. It follows that∑
S

w(S)QST =
∑
S

w(T )RTS = w(T ) .

Therefore, the stationary distribution {ρ(S)}S∈S of the chain is

ρ(S) =
w(S)∑
S′ w(S ′)

,

and therefore,

π(i) =
∑
T∈Si

ρ(T ) =

∑
T∈Si

w(T )∑
T∈S w(T )

.

�

Corollary 8.1.7 Let {Xn}n∈ be the stationary random walk on the complete
graph built on the finite state space E. (In particular pij = 1

|E|−1
for all j �= i

and the stationary distribution is the uniform distribution on E.) Let for all i
(i ∈ E) τi := inf{n ≥ 0 ; Xn = i}. The directed graph with directed edges

(Xτi , Xτi−1), i �= X0

is uniformly distributed over S.

Proof. Use the proof of Theorem 8.1.6 and the time-reversibility of the random
walk. �

The cover time of an hmc is the number of steps it takes to visit all the states.
We derive a bound on the maximum (with respect to the initial state) average
cover time of the random walk on a graph. For this we shall first observe that the
average return time to a given state i ∈ E is Ei [Ti] =

1
π(i)

= 2|E|
di

. By first-step

analysis, denoting by Ni the set of states (vertices) adjacent to i,

2|E|
di

= Ei [Ti] =
1

di

∑
j∈Ni

(1 + Ej [Ti])

and therefore
2|E| =

∑
j∈Ni

(1 + Ej [Ti]) ≥ 1 + Ej [Ti] ,

from which we obtain the rough bound

Ej [Ti] ≤ 2|E| − 1

for any pair (i, j) of states. Let now i0 be an arbitrary state and consider the
spanning circuit obtained by a depth-first census of the vertices of the graph (see
the figure below), say i0, i1, i2|V |−2 = i0.
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i1

i2

i5
i7

i8

i11

i0 = i12 = i2|E|−2

|E| = 7

From any vertex i0 it is possible to traverse the entire spanning tree exactly twice
and end up in i0. Clearly, the average cover time from i0 is smaller than or equal
to the time needed to visit all the vertices of the tree in the order i0, i1, i2|V |−2 = i0.
The (average) time required to go from i0 to i1, plus the time needed to go from
i1 to i0, is less that the return time to i0, which is in turn bounded by 2|E| − 1.
The time required to go from i1 to i2, plus the time needed to go from i2 to i1, is
less that the return time to i1, which is less than 2|E| − 1, and so on. Therefore
the cover time is bounded by (|V | − 1)× (2|E| − 1) ≤ 2|V | × |E|.

Example 8.1.8: Cover time of the cyclic random walk. The vertices are
n points uniformly distributed on the unit circle, and the n edges are those linking
the neighbouring vertices. Let cn denote the cover time for a pure random walk
on this n-cycle graph. This average time does not depend on the starting vertex,
say 0. Let τ be the first time at which n − 1 vertices have been visited. Clearly
E[τ ] = cn−1. Also at time τ , the position of the random walker is of the form
i − 1 or i + 1, where i is the vertex that has not been visited yet, say i − 1. The
random walker will visit i either by walking through the vertices i − 2, i − 3, . . .
or by going directly from i − 1 to i. He is in the same sitution as the symmetric
gambler whose initial fortune is 1 and plays against a gambler whose initial fortune
is n− 1. The average time before a gambler is broke is 1(n− 1) = n− 1. Therefore
cn = cn−1 + n − 1. Since c1 = 0, cn = 1

2
n(n − 1). The rough bound above would

have given 2n2.

Example 8.1.9: Cover time of the random walk on the complete

graph. The complete graph Kn has n vertices and all possible edges. Therefore
the probability of moving in one step from a given edge to another edge is 1

n−1
.

Consider now the modified walk with loops. From a given edge the probability of
moving to another edge or of staying still is the same: 1

n
. Clearly the cover time in

this modified model is greater than in the original model. For the modified model,
the cover time is the same as the time to complete the collection of the coupon
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collector of n objects. Therefore the cover time of the complete graph random walk
is smaller than (1 + o(1))n log n. The rough bound would have given 2n2(n− 1).

8.2 Symmetric Walks on a Graph

8.2.1 Reversible Chains as Symmetric Walks

The role of the graph structure is also important in the so-called symmetric walks
on a graph which are in fact reversible Markov chains.

Let G = (V, E) be a finite graph, that is, V is a finite collection of vertices, or
nodes, and E is a subset of (unordered) pairs of vertices, denoted by e = 〈i, j〉.
One then notes i ∼ j the fact that i and j are the end vertices of edge 〈i, j〉. This
graph is assumed connected. The edge/branch e = 〈i, j〉 has a positive number
ce = cij (= cji) attached to it. In preparation for the electrical network analogy,
call ce the conductance of edge e, and call its reciprocal Re =

1
ce

the resistance of
e. Denote by C the family {ce}e∈E and call it the conductance (parameter set) of
the network. If 〈i, j〉 /∈ E , let cij = 0 by convention.

Define an hmc on E := V with transition matrix P

pij =
cij
Ci

,

where Ci =
∑

j∈V cij. The homogeneous Markov chain introduced in this way is
called the random walk on the graph G with conductance C, or the (G,C)-random
walk. The state Xn at time n is interpreted as the position on the set of vertices of
a particle at time n. When on vertex i the particle chooses to move to an adjacent
vertex j with a probability proportional to the conductance of the corresponding
edge, that is with probability pij =

cij
Ci
. Note that this hmc is irreducible since

the graph G is assumed connected and the conductances are positive. Moreover,
if
∑

j∈V Cj < ∞ (for instance if the graph is finite, that is to say, with a finite
number of vertices), its stationary probability is

π(i) =
Ci∑
j∈V Cj

(8.3)

and moreover, it is reversible. To prove this, it suffices to check the reversibility
equations

π(i)
cij
Ci

= π(j)
cji
Cj

,

using the hypothesis that cij = cji = ce.

Example 8.2.1: Illustration, take 1. (Doyle and Snell, 2000) The figure on
the left-hand side describes the network in terms of resistances, whereas the one
on the right is in terms of conductances.
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The figure below shows the transition graph of the associated reversible hmc
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By (8.3), the stationary distribution is πT = 1
14
(2, 3, 4, 5).

A symmetric random walk on the graph G is a particular (G,C)-random walk
for which ce ≡ 1 (or any constant). In this case, at any given time, the particle
being in a given site chooses at random the adjacent site where it will move. The
corresponding stationary probability then takes the form

π(i) =
di
2|E|

where di is the degree of node i (the number of nodes to which it is connected)
and |E| is the number of edges.

The connection between random walks and reversible hmc’s is in fact both ways.
Given a reversible irreducible positive recurrent transition matrix P = {pij}i,j∈V on
V with stationary probability π, we may define the conductance of edge e = 〈i, j〉
by cij = π(i)pij (= cji by reversibility) and define in this way a random walk with
the same transition matrix. In particular Ci = π(i) and pij =

cij
Ci
.

The following result, called the essential edge lemma, is a useful trick for obtaining
average passage times (it was already used in Subsection 7.2.1 for birth-and-death
processes). Consider a (G,C)-random walk on a connected graph with the following
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property. There exist an edge e = 〈v, x〉 (the essential edge) such that removal of
this edge results in two disjoint components. The first one (containing v) has for
set of vertices A(v, x) and for set of edges E(v, x), the second one (containing x)
has for set of vertices A(x, v) and for set of edges E(x, v).

Lemma 8.2.2 Under the above condition,

Ev [Tx] =
2
∑

e∈E(v,x) ce
cvx

+ 1 , (8.4)

and

Ev [Tx] + Ex [Tv] =
2
∑

e ce
cvx

. (8.5)

Proof. Consider the symmetric random walk with vertices A(v, x)∪{x} and edges
E(v, x) ∪ {〈v, x〉}. For each edge of the modified random walk, the conductance
is that of the original random walk. The average time to reach x from v in this
restricted graph is obviously equal to that of the original graph. Now, in the
restricted random walk, by first-step analysis,

Ex [Tx] = 1 + Ev [Tx]

and Ex [Tx] is the inverse of the stationary probability of x, that is

Ex [Tx] =
2cvx + 2

∑
e∈E(v,x) ce

cvx
,

which gives (8.4). Exchanging the roles of x and v, and combining the two results
gives (8.5). �

8.2.2 The Electrical Network Analogy

For finite reversible hmc’s, a quantity such as Pi(Ta < Tb) can sometimes be
obtained rather simply using an analogy with electrical networks (Kakutani, 1945;
Kemeny, Snell and Knapp, 1960). Once the chain is identified, in a way that will
be explained, to a network of resistances whose nodes are its states, the above
quantity is seen to be the effective resistance between nodes a and b. This effective
resistance is then computed by successive reductions of the network to a single
branch between these nodes. The theory is then applied to study recurrence in
reversible chains with a countable state space.

The setting and notation are those of Subsection 8.2.1. The pair (G,C) will now be
interpreted as an electrical network where electricity flows along the edges of the
graph (the “branches” of the electrical network). By convention, if i 
∼ j, cij = 0.
To each directed pair (i, j) there is associated a potential difference Φij and a
current Iij which are real numbers and satisfy the antisymmetry conditions

Iji = −Iij and Φji = −Φij
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for all edges 〈i, j〉. Two distinct nodes will play a particular role: the source a and
the sink b. The currents and the potential differences are linked by the following
fundamental laws of electricity:

Kirchoff’s potential law: For any sequence of vertices i1, i2, . . . , in+1 such that
in+1 = i1 and ik ∼ ik+1 for all 1 ≤ k ≤ n,

n∑
�=1

Φi�,i�+1
= 0 .

Kirchoff’s current law: For all nodes i ∈ V , i 
= a, b,∑
j∈V

Iij = 0 .

Ohm’s law: For all edges e = 〈i, j〉

Iij = ceΦij .

It readily follows from Kirchoff’s potential law that there exists a function Φ :
V → determined up to an additive constant such that

Φij = Φ(j)− Φ(i) .

Note that, by Ohm’s law, the current Iij and the potential difference Φ(j)− Φ(i)
have the same sign (“currents flow in the direction of increasing potential”). Define
I = {Iij}i,j∈V to be the current matrix. When the three fundamental laws are
satisfied, we say that (Φ, I) is a realization of the electrical network (G,C).

From Kirchoff’s current law and Ohm’s law, we have that for all i 
= a, b,∑
i∈V

cij(Φ(j)− Φ(i)) = 0 ,

or equivalently

Φ(i) =
∑
j∈V

cij
Ci

Φ(j) .

Therefore,

Theorem 8.2.3 The potential function Φ is harmonic on V \{a, b} with respect
to the (G,C)-random walk.

In particular, by Theorem 17.3.15, it is uniquely determined by its boundary values
Φ(a) and Φ(b) = 0.
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Probabilistic Interpretation of Voltage

We shall now interpret a given realization (Φ, I) of the electrical network (G,C)
in terms of the associated (G,C)-random walk. We start with the voltage.

Theorem 8.2.4 Call Φ1 the solution corresponding to a unit voltage at source a
and a null voltage at sink b:

Φ1(a) = 1 , Φ1(b) = 0 .

Then, for all i ∈ V ,

Φ1(i) = Pi (Ta < Tb) .

Proof. Using the one-step forward method, one shows that the function h given
by h(i) = Pi (Ta < Tb) (the probability that starting from i, a is reached before
b) is harmonic on D = V \{a, b} and that h(a) = 1 and h(b) = 0. Recall that a
function harmonic on D = V \{a, b} is uniquely determined by its values on {a, b}.
Therefore, Φ1 ≡ h. �

Example 8.2.5: Illustration, take 2. Modify the hmc of the running exam-
ple so as to make states (nodes) a and b absorbing. For i ∈ {a, b, c, d}, h(i) defined
above is the probability that, starting from i, this hmc is absorbed in a. (Compare
with the gambler’s ruin problem.)
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The recurrence equations for h are

h(a) = 1

h(b) = 0

h(c) =
1

4
+

1

2
h(d)

h(d) =
1

5
+

2

5
h(c) .

The solution is represented in the figure below, where Φ1 = h is the voltage map
corresponding to a 1 Volt battery.
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Probabilistic Interpretation of Current

We now interpret the current. A particle performs the (G,C)-random walk starting
from a, except that now it is supposed to leave the network once it has reached b.
We show that the current Iij from i to j is proportional to the expected number
of passages of this particle from i to j minus the expected number of passages in
the opposite direction, from j to i.

Proof. Let u(i) be the expected number of visits to node i before it reaches b and
leaves the network. Clearly u(b) = 0. Also for i 
= a, b, u(i) =

∑
j∈V u(j)pji. But

Cipij = Cjpji so that u(i) =
∑

j∈V u(j)pij
Ci

Cj
and finally

u(i)

Ci

=
∑
j∈V

pij
u(j)

Cj

.

Therefore the function Φ given by

Φ(i) =
u(i)

Ci

is harmonic on D = V \{a, b}. It is the unique such function whose values at a and
at b are specified by

Φ(a) =
u(a)

Ca

, Φ(b) = 0 . (�)

With such a voltage function,

Iij = (Φ(i)− Φ(j))cij

=

(
u(i)

Ci

− u(j)

Cj

)
cij

= u(i)
cij
Ci

− u(j)
cji
Cj

= u(i)pij − u(j)pji .

But u(i)pij is the expected number of crossings from i to j and u(j)pji is the
expected number of crossings in the opposite direction. �
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Under voltage Φ determined by (�),

Ia :=
∑
j∈V

Iaj = 1

because, in view of the probabilistic interpretation of current in this case, the sum
is equal to the expected value of the difference between the number of times the
particle leaves a and the number of times it enters a, that is 1 (each time the
particle enters a it leaves it immediately, except for the one time when it leaves a
forever to be eventually absorbed in b).

Similarly, let I1,a be the current out of a when the unit voltage is applied to a
(Φ1(a) = 1). Since multiplication of the voltage by a factor implies multiplication
of the current by the same factor, we have that

Φ(a)

Ia
=

Φ1(a)

I1,a
,

that is,

Φ(a) =
1

I1,a
. (8.6)

Example 8.2.6: Illustration, take 3. The figure below gives the currents, as
given from the voltages by Ohm’s law. The current out of a is I1,a = I1,ac+ I1,ad =
9
16

+ 10
16

= 19
16
, by Kirchoff’s law.

9
16

c

7
16

b

10
16

d

12
16

2
16

a

1V

8.3 Effective Resistance and Escape Probability

8.3.1 Computation of the Effective Resistance

The effective resistance between a and b is defined by

Reff (a ↔ b) =
Φ(a)

Ia
. (8.7)
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As we saw before, this quantity does not depend on the value Φ(a). When Φ(a) =
Φ1(a) = 1, the effective conductance equals the current I1,a flowing out of a. But
in this case

I1,a =
∑
j∈V

(Φ1(a)− Φ1(j))caj =
∑
j∈V

(1− Φ1(j))caj

= Ca

(
1−

∑
j∈V

Φ1(j)
caj
Ca

)
= Ca

(
1−

∑
j∈V

pajΦ1(j)

)
.

But the quantity
(
1−∑

j∈V pajΦ1(j)
)
is the “escape probability”

Pesc := Pa(Tb < Ta) ,

that is, the probability that the particle starting from a reaches b before returning
to a. Therefore

Pesc =
1

CaReff (a ↔ b)
.

Example 8.3.1: Illustration, take 4. The effective resistance is

Reff (a ↔ b) =
1

I1,a
=

1
19
16

=
16

19
.

In particular, the probability — starting from a— of returning to a before hitting
b is Pesc =

1
CaReff (a↔b)

= 1
2× 16

19

= 19
32
.

Example 8.3.2: Commute time and effective resistance. Recalling for-
mula (7.54):

Pa (Tb < Ta) =
1

π(a) (Ea [Tb] + Eb [Ta])

and the expression

π(a) =
Ca

C
,

we obtain the following formula:

Ea[Tb] + Eb[Ta] = CReff (a ↔ b) . (8.8)

(The left-hand side is the commute time between a and b.)

In order to compute the effective resistance, we have at our disposition the pro-
cedure used in the simplification of resistance networks, such as the following two
basic rules.

R1 R2

R1 +R2

Series configuration
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R1

R2

(
1
R1

+
1
R2

)−1

Parallel configuration

We can also merge nodes with the same voltage.

Example 8.3.3: The cubic network. All the resistances in the network below
are unit resistance.

b

e

a

c g

f

d

h

By symmetry, the nodes c and d have the same voltage, and can therefore be
merged. Similarly for the nodes e and f .

b

a

h

g

e,f

c,d

One can then use the rule for resistances in parallel to further simplify the network:

1
1
2 1

1
2

1
2

1
2

1
2

b

a

Alternating the series and parallel simplifications, we have:
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1
2
5 =

1
2+ 1

2

1
2

1
2

b

a

7
51

b

a

b

7
12 =

1
1+ 5

7

a

Therefore the effective resistance between a and b is Reff (a ↔ b) = 7
12
.

Example 8.3.4: The binary tree. Consider the pure random walk on the full
binary tree of depth k. Select two nodes a and b. Let P(a ↔ b) be the shortest
path linking a and b. In view of computing Pa(Tb < Ta), we make the preliminary
observation that this quantity does not change if one cuts all edges that are not in
P(a ↔ b) and have an endpoint in P(a ↔ b)\{a}. We are therefore left with the
graph P(a ↔ b) plus, when a is not a leaf of the tree, the edges leading to a that
do not belong to P(a ↔ b). Therefore Reff (a ↔ b) = d(a, b), the graph distance
between a and b, and therefore Pa(Tb < Ta) =

1
3d(a,b)

if a is not a leaf, = 1
d(a,b)

if a
is a leaf.

Another basic rule of reduction of electrical networks is the star-triangle trans-
formation (Exercise 8.4.11). It states that the two following electrical network
configurations are equivalent if and only if for i = 1, 2, 3,

RiR̃i = δ

where

δ = R1R2R3

(
R−1

1 +R−1
2 +R−1

3

)
=

R̃1R̃2R̃3

R̃1 + R̃2 + R̃3

.

(“Equivalence” means that if one network supports the currents i1, i2 and i3 en-
tering the triangle at nodes 1, 2 and 3 respectively, so does the other network.)
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See Exercise 8.4.17 for an example of application.

8.3.2 Thompson’s and Rayleigh’s Principles

By definition, a flow on the graph G with source a and sink b is a collection of real
numbers J = {Jij}i,j∈V , such that

(a) Jij = −Jji,

(b) Jij = 0 if i 
∼ j,

(c)
∑

j∈V Jij = 0 for all i 
= a, b .

Denote by Ji =
∑

j∈V Jij the flow out of i. A unit flow J is one for which Ja = 1.
In general,

Ja = −Jb .

Indeed, since Ji = 0 for all i 
= a, b,

Ja + Jb =
∑
i∈V

Ji

=
∑
i,j∈V

Jij =
1

2

∑
i,j∈V

(Jij + Jji) = 0 .

Also, for any function w : V → ,

(w(a)− w(b))Ja =
1

2

∑
i,j∈V

(w(j)− w(i))Jij . (8.9)

Indeed, from the properties of flows,∑
i,j∈V

(w(i)− w(j))Jij =
∑
i,j∈V

w(i)Jij −
∑
i,j∈V

w(j)Jij

=
∑
i,j∈V

w(i)Jij +
∑
i,j∈V

w(j)Jji

=
∑
i∈V

w(i)Ji +
∑
j∈V

w(j)Jj

= w(a)Ja + w(b)J(b) + w(a)Ja + w(b)J(b)

= w(a)Ja − w(b)J(a) + w(a)Ja − w(b)J(a) = 2(w(a)− w(b))Ja .

The energy dissipated in the network by the flow J is by definition the quantity
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E(J) :=
1

2

∑
i,j∈V

J2
ijRij.

This is a meaningful electrical quantity for the special case where the flow is a
current I corresponding to a potential Φ, in which case, by Ohm’s law:

E(I) =
1

2

∑
i,j∈V

I2ijRij =
1

2

∑
i,j∈V

Iij(Φ(j)− Φ(i)).

Theorem 8.3.5 The effective resistance between the source a and the sink b is
equal to the energy dissipated in the network when the current Ia out of a is the
unit current.

Proof. By (8.9),
E(I) = (Φ(a)− Φ(b))Ia = Φ(a)Ia ,

and by definition (8.7) of the effective resistance Reff (a ↔ b) between a and b,

E(I) = I2aReff (a ↔ b) .

�

The following result is known as Thomson’s principle.

Theorem 8.3.6 The energy dissipation E(J) is minimized among all unit flows
J by the unit current flow I.

Proof. Let J be a unit flow from a to b and let I be a unit current flow from a to
b. Define D = J − I. This is a flow from a to b with Da = 0. We have that∑

i,j∈V
J2
ijRij =

∑
i,j∈V

(Iij +Dij)
2 Rij

=
∑
i,j∈V

I2ijRij + 2
∑
i,j∈V

IijDijRij +
∑
i,j∈V

D2
ijRij

=
∑
i,j∈V

I2ijRij + 2
∑
i,j∈V

(Φ(j)− Φ(i))Dij +
∑
i,j∈V

D2
ijRij.

From (8.9) with w = Φ and J = D, the middle term equals 4(Φ(a)−Φ(b))Da = 0,
so that ∑

i,j∈V
J2
ijRij =

∑
i,j∈V

I2ijRij +
∑
i,j∈V

D2
ijRij ≥

∑
i,j∈V

I2ijRij .

�

We now state and prove Rayleigh’s principle.
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Theorem 8.3.7 The effective resistance between two points can only increase as
any resistance in the circuit increases.

Proof. Change the resistances Rij to Rij ≥ Rij and let I and I be the correspond-
ing unit current flows. Then

Reff =
1

2

∑
i,j∈V

I
2

ijRij ≥ 1

2

∑
i,j∈V

I
2

ijRij .

But by Thomson’s principle,

1

2

∑
i,j∈V

I
2

ijRij ≥ 1

2

∑
i,j∈V

I2ijRij = Reff (a ↔ b) .

�

Example 8.3.8: Shorting and cutting. Shorting consists in making some
resistances null and therefore decreases the effective resistance. On the contrary,
cutting (an edge), which consists in making the corresponding resistance infinite,
increases the effective resistance.

8.3.3 Infinite Networks

Consider a (G,C)-random walk where now G = (V, E) is an infinite connected
graph with finite-degree vertices. Since the graph is infinite, this hmc may be
transient. This subsection gives a method that is sometimes useful in assessing the
recurrence or transience of this random walk. Note that once recurrence is proved,
we have an invariant measure x, namely xi = Ci (a finite quantity since each vertex
has finite degree). Positive recurrence is then granted if and only if

∑
i∈V Ci < ∞.

(The latter condition alone guarantees the existence of an invariant measure, but
remember that existence of an invariant measure does not imply recurrence.)

Some arbitrary vertex will be distinguished, henceforth called 0. Recall that the
graph distance d(i, j) between two vertices is the smallest number of edges to be
crossed when going from i to j. For N ≥ 0, let

KN = {i ∈ V ; d(0, i) ≤ N}

and

∂KN = KN −KN−1 = {i ∈ V ; d(0, i) = N} .
Let GN be the restriction of G toKN . A graph GN is obtained from GN by merging
the vertices of ∂KN into a single vertex named bN . Let Reff (N) := Reff (0 ↔ bN)
be the effective resistance between 0 and bN of the network GN . Since GN is
obtained fromGN+1 by merging the vertices of ∂KN∪{bN+1}, Reff (N) ≤ Reff (N+
1). In particular the limit
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Reff (0 ↔ ∞) := lim
N↑∞

Reff (N)

exists. It may be finite or infinite.

Theorem 8.3.9 The probability of return to 0 of the (G,C)-random walk is

P0(Xn = 0 for some n ≥ 1) = 1− 1

C0Reff (0 ↔ ∞)
.

In particular this chain is recurrent if and only if Reff (0 ↔ ∞) = ∞.

Proof. The function hN defined by

hN(i) := P (Xn hits KN before 0)

is harmonic on VN\{{0}∪KN} with boundary conditions hN(0) = 0 and hN(i) = 1
for all i ∈ KN . Therefore, the function gN defined by

gN(i) = hN(i) on KN−1 ∪ {bN}

and gN(bN) = 1 is a potential function for the network GN with source 0 and sink
bN . Therefore

P0 (Xn returns to 0 before reaching ∂KN) = 1−
∑
j∼0

p0jgN(j)

= 1−
∑
j∼0

c0j
C0

(gN(j)− gN(0)).

By Ohm’s law,
∑

j∼0 c0j(gN(j) − gN(0)) is the total current IN(0) out of 0, and

therefefore since the potential difference between bN and 0 is 1, IN(0) =
1

Reff (N)
.

Therefore

P0 (Xn returns to 0 before reaching ∂KN) = 1− 1

C0Reff (N)

and the result follows since, by the sequential continuity property of probability,

P (Xn = 0 for some n ≥ 1) = lim
N↑∞

P0 (Xn returns to 0 before reaching ∂KN) .

�

Theorem 8.3.10 Consider two sets of conductances C and C on the same con-
nected graph G = (V, E) such that for each edge e,

uce ≤ ce ≤ vce

for some constants u and v, 0 < u ≤ v < ∞. Then the random walks (G,C) and
(G,C) are of the same type (either both recurrent, or both transient).
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Proof. Let Cu be the set of conductances on G defined by cue = uce, and define
similarly the set of conductances Cv. Observe that the random walks (G,Cu),
(G,Cv) and (G,C) are the same. The rest of the proof follows from Rayleigh’s
monotonicity law, because (G,C) and (G,C) then have effective resistances that
are both finite or both infinite. �

Example 8.3.11: The symmetric random walk on
2
. The symmetric ran-

dom walk on 2 corresponds in the electrical network analogy to the infinite grid
where all resistances are unit resistances. The grid is actually infinite and in the
figure below only “levels” up to the third one are shown. (Level 0 is the center
node, level 1 consists of the 4 nodes at distance 1 of level 0, and more generally,
level i+ 1 consists of the 8i+ 4 nodes at distance 1 from level i.)

By Rayleigh’s monotonicity law, if one shorts a set of nodes (that is, if the resis-
tances directly linking pairs of nodes in this set are set to 0, in which case the
nodes thereof have the same potential), the effective resistance between two nodes
is decreased.

By shorting successively the nodes of each i ≥ 1, we obtain for the effective re-
sistance between node 0 and level i + 1 in the shorted network (see the figure
below),

Reff (i+ 1) =
i∑

n=0

1

8i+ 4
.

0

0

1

1

2

2

i i+ 1

i i+ 11
4

1
12

1
8i+4

4 branches 12 branches 8i+ 4 branches
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Reff (i+1) is, by Rayleigh’s monotonicity principle, smaller than the actual effective
resistance in the full grid between node 0 and any node at level i + 1. Therefore,
since limN↑∞ Reff (N) = ∞, the two-dimensional symmetric random walk on 2 is
recurrent.

Books for Further Information

[Doyle and Snell, 2000], [Kemeny, Snell and Knapp, 1960] and [Lyons and Peres,
2016]. The first reference is a pedagogical introduction, whereas the third one is
more theoretical (and has more advanced material). [Klenke, 2008, 2014] has a full
chapter on the electrical analogy.

8.4 Exercises

Exercise 8.4.1. Passage times for birth-and-death processes

Consider the symmetric random walk on the graph G = (V, E), where V =
{0, . . . , N − 1} and E = {〈i − 1, i〉 ; 1 ≤ i ≤ N − 1}. Call wi the conductance
of edge 〈i − 1, i〉. Define w :=

∑N−1
i=1 wi. Let a, b, c ∈ V be such that a < b < c.

Then:

(α) Pb(Tc < Ta) =
∑b

i=a+1 w
−1
i∑c

i=a+1 w
−1
i

,

(β) Eb [Tc] = c− b
∑c

j=b+1

∑j−1
i−1 wiw

−1
j ,

(γ) Eb [Tc] + Ec [Tb] = w
∑c

i=b+1w
−1
i .

Exercise 8.4.2. On the circle

Consider the random walk on the circle. More precisely, there are n points labeled
0, 1, 2, . . . , n−1 orderly and equidistantly placed on a circle. A particle moves from
one point to an adjacent point in the manner of a random walk on . This gives
rise to an hmc with the transition probabilities pi,i+1 = p ∈ (0, 1), pi,i−1 = 1 − p,
where, by the “modulo convention”, p0,−1 := p0,n−1 and pn−1,n := pn−1,0. Compute
the average time it takes to go back to 0 when initially at 0.

Exercise 8.4.3. Streaks of 1’s in a window of fair coin tosses

Let {Un}n∈ be an iid sequence of equiprobable 0’s and 1. DefineXn ∈ {0, 1, . . . , N}
by Xn = 0 if Un = 0 and

Xn = k if Un = 1, Un−1 = 1, . . . , Un−k+1 = 1, Un−k = 0 .

In words, we look at the window of length N just observed at the n-th toss of a
sequence of fair coin tosses, and set Xn = k if the length of the last streak of 1’s
is k. For instance, with N = 5 and

(U−4, U−3, . . . , U5) = (0110110111)

we have X0 = 1 (the first window of size 5 is 01101 and the rightmost streak of
1’s has length 1), X1 = 2 (the next window of size 5 is 11011 and the rightmost
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streak of 1’s has length 2), X2 = 0 (the next window of size 5 is 1010110 and the
rightmost streak of 1’s has length 0), X3 = 1 (the next window of size 5 is 0101101
and the rightmost streak of 1’s has length 1). The next sliding windows are 11011
and 10111 give respectively X3 = 2 and X4 = 3.

(a) Give the transition matrix of this hmc and its stationary distribution π.

(b) Assuming the chain stationary, give the transition matrix P̃ of the time reversed
hmc.

(c) Show that, whatever the initial state, the distribution of the reversed chain is
already the stationary distribution at the N -th step.

Exercise 8.4.4.
Refer to Theorem 8.1.1. Prove that

P (X2r+1 = 2k + 1) ≤ 4√
π

1√
2r + 1

.

Exercise 8.4.5. Null recurrence of the 2-dimensional symmetric ran-

dom walk

Show that the 2-D symmetric random walk on 2 is null recurrent.

Exercise 8.4.6. Transience of the 4-D symmetric random walk

Show that the projection of the 4-D symmetric random walk on 3 is a lazy
symmetric random walk on 3. Deduce from this that the 4-D symmetric random
walk is transient. More generally, show that the symmetric random walk on p,
p ≥ 5, is transient.

Exercise 8.4.7. The linear walk

Consider the pure random walk on the linear graph with vertices 0, 1, 2, . . . , n and
edges 〈i, i + 1〉 (0 ≤ i ≤ n − 1). Compute the cover time. Compare to the rough
bound.

Exercise 8.4.8. The knight returns home

A knight moves randomly on a chessboard, making each admissible move with
equal probability, and starting from a corner. What is the average time he takes
to return to the corner he started from?

Exercise 8.4.9. Ehrenfest
Apply formula (8.2) to the Ehrenfest hmc.

Exercise 8.4.10. Rooted trees of a given size

What would you do to generate a random rooted tree with the uniform distribution
on the set of rooted trees with k given vertices?

Exercise 8.4.11. The star-triangle equivalence

Show that the electrical network configurations in the figure just before Example
8.4.17 are equivalent if and only if for i = 1, 2, 3, RiR̃i = δ, where
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δ = R1R2R3

(
R−1

1 +R−1
2 +R−1

3

)
=

R̃1R̃2R̃3

R̃1 + R̃2 + R̃3

.

(Equivalence: if one network supports the currents i1, i2 and i3 entering the triangle
at nodes 1, 2 and 3 respectively, so does the other network.)

Exercise 8.4.12. The urn of Ehrenfest as an electrical network

Describe the Ehrenfest hmc with N = 2M particles in stationary state in terms
of electrical networks. Let state M be the source and state N the sink. Compute
the voltage Φ1(i) at any state i ∈ {0, 1, · · · , N} constrained by Φ1(M) = 1 and
Φ1(N) = 0. Compute P (TM < TN).

Exercise 8.4.13. The spherical symmetric tree

Consider the full spherical tree of degree three (see the figure) and define ΓN to
be the set of nodes at distance N from the root, called 0. Consider the symmetric
random walk on the symmetric full spherical tree, where all the edges from Γi−1

to Γi have the same resistance Ri > 0.

Show that a necessary and sufficient condition of recurrence of the corresponding
symmetric random walk is

∞∑
i=1

Ri

|Γi| = ∞ .

Exercise 8.4.14. The ladder

Find the effective resistance between a and b of the following infinite network of
unit resistances.

Exercise 8.4.15.
Find the effective resistance between a and b of the following infinite network of
unit resistances.
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Exercise 8.4.16. Gb(a) = CaReff (a ↔ b)
Consider a (G,C)-random walk, and let a and b be two distinct vertices of G. let
Tb be the first return time to b. Define

Gb(a) := Ea

[ ∞∑
n=0

1{Xn=a}1{n<Tb}

]

(the average number of visits to a before b is hit, given that the initial state is a).
Show that

Gb(a) = CaReff (a ↔ b) .

Exercise 8.4.17. Reducing the four-square network

(from [Klenke, 2014]) The goal is to find the effective resistance of the following
electrical network between nodes a and b. (A resistance not appearing on a branch
is conventionally taken equal to 1.)

The successive reduction operations are recorded in the sequence of figures below.

Finally the effective resistance between a and b is 27
32

+ 27
26

= 629
416

.

(1) Give the details.
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(2) What would be the result if we append to the right-most node a “square”
formed by 4 unit resistances?

Exercise 8.4.18. Symmetric walk on the binary tree

Consider the full binary tree whose root is denoted by 0. Show that

Reff (0 ↔ ∞) =
1

2
(Reff (0 ↔ ∞) + 1)

and

Reff (N + 1) =
1

2
(Reff (N) + 1) .

Deduce from this that the symmetric random walk on the full binary tree is tran-
sient.



Chapter 9

Markov Fields on Graphs

9.1 Gibbs–Markov Equivalence

9.1.1 Local Characteristics

Markov fields are also called Gibbs fields in honour of the founder of Statistical
Mechanics (Gibbs, 1902). Although they were historically of special interest to
physicists, they have recently found applications in other areas, in particular in
image processing.

Let G = (V, E) be a finite graph, and let v1 ∼ v2 denote the fact that 〈v1, v2〉 is an
edge of the graph. Such vertices are also called neighbours (one of the other). We
shall also refer to vertices of V as sites. The boundary with respect to ∼ of a set
A ⊂ V is the set

∂A := {v ∈ V \A ; v ∼ w for some w ∈ A} .
Let Λ be a finite set, the phase space. A random field on V with phases in Λ is a
collection X = {X(v)}v∈V of random variables with values in Λ. A random field
can be regarded as a random variable taking its values in the configuration space
E := ΛV . A configuration x ∈ ΛV is of the form x = (x(v), v ∈ V ), where x(v) ∈ Λ
for all v ∈ V . For a given configuration x and a given subset A ⊆ V , let

x(A) := (x(v), v ∈ A),

the restriction of x to A. If V \A denotes the complement of A in V , one writes
x = (x(A), x(V \A)). In particular, for fixed v ∈ V , x = (x(v), x(V \v)), where V \v
is a shorter way of writing V \{v}.
Of special interest are the random fields characterized by local interactions. This
leads to the notion of a Markov random field. The “locality” is in terms of the
neighbourhood structure inherited from the graph structure. More precisely, for
any v ∈ V , Nv := {w ∈ V ;w ∼ v} is the neighborhood of v. In the following, Ñv

denotes the set Nv ∪ {v}.

Definition 9.1.1 The random field X is called a Markov random field (mrf) with

respect to ∼ if for all sites v ∈ V , the random elements X(v) and X(V \Ñv) are
independent given X(Nv).

© Springer International Publishing Switzerland 2017
P. Brémaud, Discrete Probability Models and Methods,
Probability Theory and Stochastic Modelling 78,
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In mathematical symbols:

P (X(v) = x(v) | X(V \v) = x(V \v)) = P (X(v) = x(v) | X(Nv) = x(Nv)) (9.1)

for all x ∈ ΛV and all v ∈ V . Property (9.1) is clearly of the Markov type: the
distribution of the phase at a given site is directly influenced only by the phases
of the neighboring sites.

Remark 9.1.2 Note that any random field is Markovian with respect to the trivial
topology, where the neighborhood of any site is V \v. However, the interesting
Markov fields (from the point of view of modeling, simulation, and optimization)
are those with relatively small neighborhoods.

Definition 9.1.3 The local characteristic of the mrf at site v is the function
πv : ΛV → [0, 1] defined by

πv(x) := P (X(v) = x(v) | X(Nv) = x(Nv)).

The family {πv}v∈V is called the local specification of the mrf.

One sometimes writes
πv(x) := π(x(v) | x(Nv))

in order to stress the role of the neighborhoods.

Theorem 9.1.4 Two positive distributions of a random field with a finite config-
uration space ΛV that have the same local specification are identical.

Proof. Enumerate V as {1, 2, . . . , K}. Therefore a configuration x ∈ ΛV is repre-
sented as x = (x1, . . . , xK−1, xK) where xi ∈ Λ, 1 ≤ i ≤ K. The following identity

π(z1, z2, . . . , zk) =
K∏
i=1

π(zi | z1, . . . , zi−1, yi+1, . . . , yK)

π(yi | z1, . . . , zi−1, yi+1, . . . , yK)
π(y1, y2, . . . , yk) (�)

holds for any z, y ∈ ΛK . For the proof, write

π(z) =
K∏
i=1

π(z1, . . . , zi−1, zi, yi+1, . . . , yK)

π(z1, . . . , zi−1, yi, yi+1, . . . , yK)
π(y)

and use the Bayes rule to obtain for each i, 1 ≤ i ≤ K:

π(z1, . . . , zi−1, zi, yi+1, . . . , yK)

π(z1, . . . , zi−1, yi, yi+1, . . . , yK)
=

π(zi | z1, . . . , zi−1, yi+1, . . . , yK)

π(yi | z1, . . . , zi−1, yi+1, . . . , yK)
.

Let now π and π′ be two positive probability distributions on V with the same
local specification. Choose any y ∈ ΛV . Identity (�) shows that for all z ∈ ΛV ,

π′(z)
π(z)

=
π′(y)
π(y)

.

Therefore π′(z)
π(z)

is a constant, necessarily equal to 1 since π and π′ are probability
distributions. �
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9.1.2 Gibbs Distributions

Consider the probability distribution

πT (x) =
1

ZT

e−
1
T
U(x) (9.2)

on the configuration space ΛV , where T > 0 is the temperature, U(x) is the
energy of configuration x, and ZT is the normalizing constant, called the partition
function. Since πT (x) takes its values in [0, 1], necessarily −∞ < U(x) ≤ +∞.
Note that U(x) < +∞ if and only if πT (x) > 0. One of the challenges associated
with Gibbs models is obtaining explicit formulas for averages, considering that it
is generally hard to compute the partition function. This is feasible in exceptional
cases (see Exercise 9.4.4).

Such distributions are of interest to physicists when the energy is expressed in
terms of a potential function describing the local interactions. The notion of a
clique then plays a central role.

Definition 9.1.5 Any singleton {v} ⊂ V is a clique. A subset C ⊆ V with more
than one element is called a clique (with respect to ∼) if and only if any two distinct
sites of C are mutual neighbors. A clique C is called maximal if for any site v /∈ C,
C ∪ {v} is not a clique.

The collection of cliques will be denoted by C.

Definition 9.1.6 A Gibbs potential on ΛV relative to ∼ is a collection {VC}C⊆V

of functions VC : ΛV → R ∪ {+∞} such that

(i) VC ≡ 0 if C is not a clique, and

(ii) for all x, x′ ∈ ΛV and all C ⊆ V ,

x(C) = x′(C) ⇒ VC(x) = VC(x
′) .

The energy function U is said to derive from the potential {VC}C⊆V if

U(x) =
∑
C

VC(x) .

The function VC depends only on the phases at the sites inside subset C. One
could write more explicitly VC(x(C)) instead of VC(x), but this notation will not
be used.

In this context, the distribution in (9.2) is called a Gibbs distribution (with respect
to ∼).

Example 9.1.7: Ising Model, take 1. (Ising, 1925) In statistical physics, the
following model is regarded as a qualitatively correct idealization of a piece of
ferromagnetic material. Here V = Z2

m = {(i, j) ∈ Z2, i, j ∈ [1,m]} and Λ =
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{+1,−1}, where ±1 is the orientation of the magnetic spin at a given site. The
figure below depicts two particular neighborhood systems, their respective cliques,
and the boundary of a 2 × 2 square for both cases. The neighborhood system in
the original Ising model is as in column (α) of the figure below, and the Gibbs
potential is

V{v}(x) = −H

k
x(v),

V〈v,w〉(x) = −J

k
x(v)x(w),

where 〈v, w〉 is the 2-element clique (v ∼ w). For physicists, k is the Boltzmann
constant, H is the external magnetic field, and J is the internal energy of an
elementary magnetic dipole. The energy function corresponding to this potential
is therefore

U(x) = −J

k

∑
〈v,w〉

x(v)x(w)− H

k

∑
v∈V

x(v) .

in black: boundary

(α) (β)

neighborhoods

(1)

(2)

(3)

(4)

cliques

(up to a rotation)

(of the white square)

Two examples of neighborhoods, cliques, and boundaries
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The Hammersley–Clifford Theorem

Gibbs distributions with an energy deriving from a Gibbs potential relative to
a neighborhood system are distributions of Markov fields relative to the same
neighborhood system.

Theorem 9.1.8 If X is a random field with a distribution π of the form π(x) =
1
Z
e−U(x), where the energy function U derives from a Gibbs potential {VC}C⊆V

relative to ∼, then X is a Markov random field with respect to ∼. Moreover, its
local specification is given by the formula

πv(x) =
e−

∑
C�v VC(x)∑

λ∈Λ e
−∑

C�v VC(λ,x(V \v)) , (9.3)

where the notation
∑

C�v means that the sum extends over the sets C that contain
the site v.

Proof. First observe that the right-hand side of (9.3) depends on x only through
x(v) and x(Nv). Indeed, VC(x) depends only on (x(w), w ∈ C), and for a clique C,
if w ∈ C and v ∈ C, then either w = v or w ∼ v. Therefore, if it can be shown that
P (X(v) = x(v)|X(V \v) = x(V \v)) equals the right-hand side of (9.3), then (see
Exercise 2.4.21) the Markov property will be proved. By definition of conditional
probability,

P (X(v) = x(v) | X(V \v) = x(V \v)) = π(x)∑
λ∈Λ π(λ, x(V \v)) . (†)

But

π(x) =
1

Z
e−

∑
C�v VC(x)−∑

C ��v VC(x),

and similarly,

π(λ, x(V \v)) = 1

Z
e−

∑
C�v VC(λ,x(V \v))−∑

C ��v VC(λ,x(V \v)).

If C is a clique and v is not in C, then VC(λ, x(V \v)) = VC(x) and is therefore

independent of λ ∈ Λ. Therefore, after factoring out exp
{
−∑

C ��v VC(x)
}
, the

righ-thand side of (†) is found to be equal to the right-hand side of (9.3). �

The local energy at site v of configuration x is

Uv(x) =
∑
C�v

VC(x).

With this notation, (9.3) becomes

πv(x) =
e−Uv(x)∑

λ∈Λ e
−Uv(λ,x(V \v)) .
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Example 9.1.9: Ising Model, take 2. The local characteristics in the Ising
model are

πv
T (x) =

e
1
kT {J ∑

w;w∼v x(w)+H}x(v)
e+

1
kT {J ∑

w;w∼v x(w)+H} + e−
1
kT {J ∑

w;w∼v x(w)+H} .

Theorem 9.1.8 above is the direct part of the Gibbs–Markov equivalence theorem:
A Gibbs distribution relative to a neighborhood system is the distribution of a
Markov field with respect to the same neighborhood system. The converse part
(Hammersley–Clifford theorem) is important from a theoretical point of view, since
together with the direct part it concludes that Gibbs distributions and mrf’s are
essentially the same objects.

Theorem 9.1.10 (Hammersley and Clifford, 1968) Let π > 0 be the distribution
of a Markov random field with respect to ∼. Then

π(x) =
1

Z
e−U(x)

for some energy function U deriving from a Gibbs potential {VC}C⊆V with respect
to ∼.

Proof. The proof is based on the Möbius formula.

Lemma 9.1.11 Let Φ and Ψ be two set functions defined on P(V ), the collection
of subsets of the finite set V . The two statements below are equivalent:

Φ(A) =
∑
B⊆A

(−1)|A−B|Ψ(B), for all A ⊆ V, (9.4)

Ψ(A) =
∑
B⊆A

Φ(B), for all A ⊆ V, (9.5)

where |C| is the number of elements of the set C.

Proof. We first show that (9.4) implies (9.5). Write the right-hand side of (9.5)
using (9.4):

∑
B⊆A

Φ(B) =
∑
B⊆A

∑
D⊆B

(−1)|B−D|Ψ(D) =
∑
D⊆A

( ∑
C⊆A−D

(−1)|C|
)
Ψ(D) .

But if A−D = ∅, ∑
C⊆A−D

(−1)|C| = (−1)|∅| = (−1)0 = 1,
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whereas if A−D 
= ∅,

∑
C⊆A−D

(−1)|C| =

|A−D|∑
k=0

(−1)k card {C; |C| = k, C ⊆ A−D}

=

|A−D|∑
k=0

(−1)k
(|A−D|

k

)
= (1− 1)|A−D| = 0,

and therefore ∑
D⊆A

Ψ(D)
∑

C⊆A−D

(−1)|C| = Ψ(A).

We now show that (9.5) implies (9.4). Write the right-hand side of (9.4) using
(9.5):

∑
B⊆A

(−1)|A−B|Ψ(B) =
∑
B⊆A

(−1)|A−B|
(∑

D⊆B

Φ(D)

)
=

∑
D⊆B⊆A

(−1)|A−B|Φ(D) =
∑
D⊆A

Φ(D)
∑

C⊆A−D

(−1)|C| .

By the same argument as above, the last quantity equals Φ(A). �

We now prove Theorem 9.1.10. Let 0 be a fixed element of the phase space Λ.
Also, let 0 denote the configuration with all phases equal to 0. (The context will
prevent confusion between 0 ∈ Λ and 0 ∈ ΛV .) Let x be a configuration, and let
A be a subset of V . Let the symbol xA represent a configuration of ΛV coinciding
with x on A, and with phase 0 outside A.

Define for A ⊆ V, x ∈ ΛV ,

VA(x) :=
∑
B⊆A

(−1)|A−B| log
π(0)

π(xB)
. (9.6)

From the Möbius formula,

log
π(0)

π(xA)
=
∑
B⊆A

VB(x) ,

and therefore, with A = V :

π(x) = π(0)e−
∑

A⊆V VA(x) .

It remains to show (a) that VA depends only on the phases on A, and (b) that
VA ≡ 0 if A is not a clique with respect to ∼.

If x, y ∈ ΛV are such that x(A) = y(A), then for any B ⊆ A, xB = yB, and
therefore, by (9.6), VA(x) = VA(y). This proves (a).

With t an arbitrary site in A, write (9.6) as follows:
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VA(x) =

{ ∑
B⊆A,B ��t

+
∑

B⊆A,B�t

}
(−1)|A−B| log

π(0)

π(xB)

=
∑

B⊆A\t
(−1)|A−B|

{
log

π(0)

π(xB)
− log

π(0)

π(xB∪t)

}
.

That is,

VA(x) =
∑

B⊆A\t
(−1)|A−B| log

π(xB∪t)
π(xB)

. (9.7)

Now, if t is not in B ⊆ A,

π(xB∪t)
π(xB)

=
πt(xB∪t)
πt(xB)

,

and therefore

VA(x) =
∑

B⊆A\t
(−1)|A−B| log

πt(xB∪t)
πt(xB)

,

and, by the same calculations that led to (9.7),

VA(x) = −
∑
B⊆A

(−1)|A−B| log πt(xB) . (9.8)

Recall that t ∈ A, and therefore, if A is not a clique, one can find s ∈ A such that
s is not a neighbor of t. Fix such an s, and split the sum in (9.8) as follows:

VA(x) = −
∑

B⊆A\{s,t}
(−1)|A−B| log πt(xB)−

∑
B⊆A\{s,t}

(−1)|A−(B∪t)| log πt(xB∪t)

−
∑

B⊆A\{s,t}
(−1)|A−(B∪s)| log πt(xB∪s)−

∑
B⊆A\{s,t}

(−1)|A−(B∪{s,t})| log πt(xB∪{s,t})

= −
∑

B⊆A\{s,t}
(−1)|A−B| log

πt(xB)πt(xB∪{s,t})
πt(xB∪s)πt(xB∪t)

.

But since s 
= t and s � t, we have πt(xB) = πt(xB∪s) and πt(xB∪t) = πt(xB∪{s,t}),
and therefore VA(x) = 0. �

The energy function U and the partition function are not unique, since adding a
constant to the energy function is equivalent to multiplying the normalizing factor
by an appropriate constant. Likewise, and more importantly, the Gibbs potential
associated with π is not unique. However, uniqueness can be forced into the result if
a certain property is imposed on the potential, namely normalization with respect
to a fixed phase value.

Definition 9.1.12 A Gibbs potential {VC}C⊆S is said to be normalized with re-
spect to a given phase in Λ, conventionally denoted by 0, if VC(x) = 0 whenever
there exists t ∈ C such that x(t) = 0.
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Theorem 9.1.13 There exists one and only one potential normalized with respect
to a given phase 0 ∈ Λ corresponding to a Gibbs distribution.

Proof. Expression (9.6) gives a normalized potential. In fact, the right-hand side
of

VC(x) =
∑

B⊆C\t
(−1)|C−B| log

π(xB∪t)
π(xB)

is independent of t in the clique C, and in particular, choosing any t ∈ C such
that x(t) = 0, xB∪t = xB for all B ⊆ C\t, and therefore VC(x) = 0.

For the proof of uniqueness, suppose that

π(x) =
1

Z1

e−U1(x) =
1

Z2

e−U2(x)

for two energy functions U1 and U2 deriving from potentials V1 and V2, respectively,
both normalized with respect to 0 ∈ Λ. Since U1(0) =

∑
C∈C V1,C(0) = 0, and

similarly U2(0) = 0, it follows that Z1 = Z2 = π(0)−1, and therefore U1 ≡ U2.
Suppose that V1,A = V2,A for all A ∈ C such that |A| ≤ k (property Pk). It remains
to show, in view of a proof by induction, that Pk ⇒ Pk+1 and that P1 is true.

To prove Pk ⇒ Pk+1, fix A ⊆ V with |A| = k + 1. To prove that V1,A ≡ V2,A it
suffices to show that V1,A(x) = V2,A(x) for all x ∈ ΛV such that x = xA. Fix such
an x. Then

U1(x) =
∑
C

V1,C(x) =
∑
C⊆A

V1,C(x) ,

since x has phase 0 outside A and V1 is normalized with respect to 0. Also,

U1(x) =
∑
C⊆A

V1,C(x) = V1,A(x) +
∑

C⊆A,|C|≤k

V1,C(x) , (9.9)

with a similar equality for U2(x). Therefore, since U1(x) = U2(x), we obtain
V1,A(x) = V2,A(x) in view of the induction hypothesis. The root P1 of the in-
duction hypothesis is true, since when |A| = 1, (9.9) becomes U1(x) = V1,A(x),
and similarly, U2(x) = V2,A(x), so that V1,A(x) = V2,A(x) is a consequence of
U1(x) = U2(x). �

In practice, the potential as well as the topology of V can be obtained directly
from the expression of the energy, as the following example shows.

Example 9.1.14: Markov chains as Markov fields. Let V = {0, 1, . . . N}
and Λ = E, a finite space. A random field X on V with phase space Λ is therefore a
vector X with values in EN+1. Suppose that X0, . . . , XN is a homogeneous Markov
chain with transition matrix P = {pij}i,j∈E and initial distribution ν = {νi}i∈E.
In particular, with x = (x0, . . . , xN),

π(x) = νx0px0x1 · · · pxN−1xN
,

that is,
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π(x) = e−U(x),

where

U(x) = − log νx0 −
N−1∑
n=0

(log pxnxn+1).

Clearly, this energy derives from a Gibbs potential associated with the nearest-
neighbor topology for which the cliques are, besides the singletons, the pairs of
adjacent sites. The potential functions are:

V{0}(x) = − log νx0 , V{n,n+1}(x) = − log pxnxn+1 .

The local characteristic at site n, 2 ≤ n ≤ N − 1, can be computed from formula
(9.3), which gives

πn(x) =
exp(log pxn−1xn

+ log pxnxn+1)∑
y∈E exp(log pxn−1y + log pyxn+1)

,

that is,

πn(x) =
pxn−1xn

pxnxn+1

p
(2)
xn−1xn+1

,

where p
(2)
ij is the general term of the two-step transition matrix P2. Similar compu-

tations give π0(x) and πN(x). We note that, in view of the neighborhood structure,
for 2 ≤ n ≤ N −1, Xn is independent of X0, . . . , Xn−2, Xn+2, . . . , XN given Xn−1

and Xn+1.

9.1.3 Specific Models

Random Points

Let Z := {Z(v)}v∈V be a random field on V with phase space Λ := {0, 1}. Here
Z(v) = 1 will be interpreted as the presence of a “point” at site v.

Recall that P(V ) is the collection of subsets of V , and denote by x such a subset.
A random field Z ∈ {0, 1}V with distribution π being given, we associate to it the
random element X ∈ P(V ), called a point process on V , by

X := {v ∈ V ; Z(v) = 1} .

Its distribution is denoted by �. For any x ⊆ V , �(x) is the probability that
Z(v) = 1 for all v ∈ x and Z(v) = 0 for all v /∈ x.

Let X be a point process on the finite set V with positive probability distribution
{�(x)}x∈P(V ). Such point process on V can be viewed as a random field on V with
phase space Λ ≡ {0, 1} with probability distribution {π(z)}z∈ΛV . We assume that
this random field is Markov with respect to the symmetric relation ∼, and then
say that X is Markov with respect to ∼. We have the following alternative form
of the Hammersley–Clifford theorem:
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Theorem 9.1.15 (Ripley and Kelly, 1977) 1 The point process X on the finite set
V with positive probability distribution {�(x)}x∈P(V ) is Markov with respect to ∼
if and only if there exists a function ϕ : M f

p (V ) → (0, 1] such that

(i) ϕ(y) < 1 if and only if y is a clique for ∼, and

(ii) for all x ∈ P(V ),

�(x) =
∏
y⊆x

ϕ(y) .

Proof. Necessity: The distribution π may be expressed in terms of a potential
{VC}C⊆V as

π(z) = αe
∑

C⊆V VC(z) . (9.10)

Take for a potential the (unique) one normalized with respect to phase 0. Identify-
ing a configuration z ∈ {0, 1}V with a subset x of V , and more generally identifying
a subset C of V with a configuration y ∈ P(V ), the potential can be represented
as a collection of functions {Vy}y∈P(V ). Note that Vy(x) > 0 if and only if y is a
clique and y ⊆ x (normalized potential), in which case Vy(x) = Vy(y). The result
then follows by letting

ϕ(y) := e−Vy(y) (y 
= ∅)

and
ϕ(∅) := �(∅) = α .

The proof of sufficiency is left for the reader as it follows the same lines as the
proof of Theorem 9.1.8. �

In the case of a positive distribution � of the point process X, let

λ(u,x) :=
�(x ∪ u)

�(x)

if u /∈ x, = 0 otherwise. For u /∈ x,

λ(u,x) =
P (Z(u) = 1,X\u = x)

P (X = x)
=

P (Z(u) = 1,X\u = x)

P (X\u = x)
,

and therefore
λ(u,x) = P (Z(u) = 1 |X\u = x) ,

the probability that there is a point at u knowing the point process outside u. This
defines the exvisible distribution (on {0, 1}) at point u ∈ V .

Theorem 9.1.16 Let g : V × P(V ) → be a non-negative function. Then

E

[∑
u∈V

g(u,X\u)
]
= E

[∑
u∈V

g(u,X)λ(u,X)

]
.

1
This is the discrete version of their more general theorem concerning finite point processes

on
m
.
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Proof.

E

[∑
u∈V

g(u,X)λ(u,X)

]
=

∑
x∈P(V )

∑
u∈V

g(u,x)λ(u,x)�(x)

=
∑

x∈P(V )

∑
u∈V

g(u,x)1{u/∈x}�(x ∪ u) .

With the change of variables x ∪ u → y, the last quantity is seen to be equal to

∑
y∈P(V )

∑
u∈V

g(u,y\u)�(y) = E

[∑
u∈V

g(u,X\u)
]
.

�

The Autobinomial Texture Model

(Besag, 1974) For the purpose of image synthesis, one seeks Gibbs distributions
describing pictures featuring various textures, lines separating patches with dif-
ferent textures (boundaries), lines per se (roads, rail tracks), randomly located
objects (moon craters), etc. The corresponding model is then checked by simula-
tion (see Chapter 19): images are drawn from the proposed Gibbs distribution, and
some tuning of the parameters is done, until the images subjectively correspond to
(“look like”) the type of image one expects. Image synthesis is an art based on trial
and error, and fortunately guided by some general principles. But these principles
are difficult to formalize, and we shall mainly resort to simple examples with a
pedagogical value. Note, however, that there is a domain of application where the
model need not be very accurate, namely Bayesian estimation. As a matter of fact,
the models proposed in this section have been devised in view of applications to
Bayesian restoration of degraded pictures.

We shall begin with an all-purpose texture model that may be used to describe
the texture of various materials. The set of sites is V = Z2

m, and the phase space is
Λ = {0, 1, . . . , L}. In the context of image processing, a site v is a pixel (PICTure
ELement), and a phase λ ∈ Λ is a shade of grey, or a colour. The neighborhood
system is

Nv = {w ∈ V ;w 
= v ; ‖w − v‖2 ≤ d}, (9.11)

where d is a fixed positive integer and where ‖w − v‖ is the euclidean distance
between v and w. In this model the only cliques participating in the energy function
are singletons and pairs of mutual neighbors. The set of cliques appearing in the
energy function is a disjoint sum of collections of cliques

C =

m(d)∑
j=1

Cj ,

where C1 is the collection of singletons, and all pairs {v, w} in Cj, 2 ≤ j ≤ m(d),
have the same distance ‖w − v‖ and the same direction, as shown in the figure
below. The potential is given by
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VC(x) =

{ − log
(

L
x(v)

)
+ α1x(v) if C = {v} ∈ C1,

αjx(v)x(w) if C = {v, w} ∈ Cj ,
where αj ∈ R. For any clique C not of type Cj , VC ≡ 0.

C6

C5

C2
C3

C4

C7

C1

(β)(α) (γ)

m(d)

d 1 42

3 5 7

Neighborhoods and cliques of three autobinomial models

The terminology (“autobinomial”) is motivated by the fact that the local system
has the form

πv(x) =

(
L

x(v)

)
τx(v)(1− τ)L−x(v), (9.12)

where τ is a parameter depending on x(Nv) as follows:

τ = τ(Nv) =
e−〈α,b〉

1 + e−〈α,b〉 . (9.13)

Here 〈α, b〉 is the scalar product of
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α = (α1, . . . , αm(d)) and b = (b1, . . . , bm(d)),

where b1 = 1, and for all j, 2 ≤ j ≤ m(d),

bj = bj(x(Nv)) = x(u) + x(w),

where {v, u} and {v, w} are the two pairs in Cj containing v.

Proof. From the explicit formula (9.3) giving the local characteristic at site v,

πv(x) =
exp

{
log

(
L

x(v)

)− α1x(v)−
[∑m(d)

j=2 αj

∑
v;{v,w}∈Cj x(w)

]
x(v)

}
∑

λ∈Λ exp
{
log

(
L
λ

)− α1λ−
[∑m(d)

j=2 αj

∑
t;{v,w}∈Cj x(w)

]
λ
} .

The numerator equals (
L

x(v)

)
e−〈α,b〉x(v),

and the denumerator is

∑
λ∈Λ

(
L

λ

)
e(−α,b)λ =

L∑
�=0

(
L

�

)(
e−〈α,b〉)� = (

1 + e−〈α,b〉)L .

Equality (9.12) then follows. �

Expression (9.12) shows that τ is the average level of grey at site v, given x(Nv),
and expression (9.13) shows that τ is a function of 〈α, b〉. The parameter αj controls
the bond in the direction and at the distance that characterize Cj .

Pixel-and-edge Model

(Geman and Geman, 1984) Let X = {X(v)}v∈V be a random field on V with
phase space Λ, with the following structure:

V = V1 + V2 , Λ = Λ1 ∪ Λ2,

and

X(v) = Y (v1) ∈ Λ1 if v = v1 ∈ V1

= Z(v2) ∈ Λ2 if v = v2 ∈ V2.

Here V1 and V2 are two disjoint collections of sites that can be of a different
nature, or have different functions, and Λ1 and Λ2 are phase spaces that need not
be disjoint. Define

Y = {Y (v1)}v1∈V1 , Z = {Z(v2)}v2∈V2 .

The random field X may be viewed as the juxtaposition of Y and Z.

In some situations, Y is the observed field, and Z is the hidden field. Introduction
of a hidden field is in principle motivated by physical considerations. From the
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computational point of view, it is justified by the fact that the field Y alone
usually has a Gibbsian description with large neighborhoods, whereas X = (Y, Z)
hopefully has small neighborhoods.

The philosophy supporting the pixel-and-edge model is the following. A digitized
image can be viewed as a realization of a random field on V P = Z2

m. A site could
be, for instance, a pixel on a digital television screen, and therefore V P will be
called the set of pixel sites. For an observer, there is, in general, more in an image
than just the colours at each pixel. For instance, an image can be perceived as
a juxtaposition of zones with various textures separated by lines. However, these
lines, or contours, are not seen directly on the pixels, they are inferred from them
by some processing in the brain. On the other hand, if one is to sketch the picture
observed on the screen, one would most likely start by drawing the lines. In any
case, textures and contours are very much linked, and one should seek a description
featuring the interaction between them. But as was mentioned, contours do not
exist on the digital screen, they are hidden, or more accurately, they are virtual.

In this example, there is a set V E of edge sites, one between each pair of adjacent
pixel sites, as indicated in the figure below (a). The possible values of the phase on
an edge site are blank or bar: horizontal (resp., vertical) for an edge site between
two pixel sites forming a vertical (resp., horizontal) segment, as shown in the figure
below (b). In this figure, not all edge sites between two pixels with a different colour
have a bar, because a good model should not systematically react to what may be
accidents in the global structure.

Let (i, j) denote a pixel site and (α, β) an edge site (these are the coordinates of the
sites in two distinct orthogonal frames). The random field on the pixels is denoted
by XP = {XP

ij}(i,j)∈V P , and that on the edge sites is XE = {XE
αβ}(α,β)∈V E ; XP is

the observed image, and XE is the hidden, or virtual, line field. The distribution
of the field X = (XP , XE) is described by an energy function U(xP , xE):

π(xP , xE) =
1

Z
e−U(xP ,xE), (9.14)

where xP = {xP
ij}(i,j)∈V P , xE = {xE

αβ}(α,β)∈V E . The energy function derives from
a potential relative to some neighborhood system, a particular choice of which is
pictured in (c) of the figure. The energy function separates into two parts

U(xP , xE) = U1(x
P , xE) + U2(x

E), (9.15)

where U1 features only cliques formed by a pair of neighboring pixels and the edge
pixel in between, whereas U2 features only the diamond cliques shown in the figure
below. The energy U1(x

P , xE) governs the relation between an edge and its two
adjacent pixels. For instance, for some real constant α > 0 and some function ϕ,

U1(x
P , xE) = −α

∑
〈1,2〉

ϕ(xP
1 − xP

2 ) x
E
〈1,2〉,

where 〈1, 2〉 represents a pair of adjacent pixel sites and xE
〈1,2〉 is the value of the

phase on the edge site between the pixel sites 1 and 2, say 0 for a blank and 1 for
a bar. A possible choice of ϕ is
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pixel site

edge site

a b

neighbors of edge siteneighbors of pixel site

c

Example of a neighborhood structure for the pixel-edge model

ϕ(x) = 1{x�=0} − 1{x=0} .

Since the most probable configurations are those with low energy, this model favors
bars between two adjacent pixel sites with different colours, as is natural. More
sophisticated choices of ϕ with a similar effect are possible. The organization of
the contours is controlled by the energy

U2(x
E) = β

∑
D

wD(x
E),

where β > 0 and the sum extends to all diamond cliques, and wD is a function
depending only on the phases of the four edge sites of the diamond clique D. Up
to rotations of π

2
, there are six possible values for the four-vector of phases on a

given diamond clique D, as shown in the figure. If the modeler believes that for
the type of images he is interested in the likelihood of the configurations shown in
the figure below decreases from left to right, then the values of wD(x

E) attributed
to these configurations will increase from left to right. This is generally the case
because four-country border points are rare, broken lines also, and the same is true
to a lesser extent for three-country border points. Also, when the picture is not a
clutter of lines, the no-line configuration is the most likely.

This example admits many variations. However, too many sophisticated features
could ruin the model. The purpose of the model is not so much to do image
synthesis as to have a reasonable a priori model for the image F in view of Bayesian
restoration of this image from a noisy version of it, as will now be explained.
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diamond clique
of edge site

4-countriesending turn continuation 3-countriesno-line

Six configurations of the diamond clique

Conditional Markov Fields in Image Processing*

(∗: this subsubbsection makes use of Gaussian vectors, a notion outside the pre-
requisites) A number of estimation problems arising in various areas of statistics
and engineering, and particularly in image processing, are solved by a method of
statistical analysis known as the maximum a posteriori (map) likelihood method.
The theory will not be presented, but the examples below will show its substance.
These examples compute the a posteriori probability, or conditional probability,
of a given mrf X with respect to another mrf Y , the observed field, say,

π(x | y) = P (X = x | Y = y),

and the map method estimates the nonobservable field X given the observed value
y of Y , by x̂ = x̂(y), the value of x that maximizes π(x | y):

x̂(y) = argmax
x

π(x | y).

Usually, this maximization problem is doomed by combinatorial explosion and by
the complexity of standard methods of optimization. However, if

π(x | y) ∝ e−U(x | y) (9.16)

(the proportionality factor depends only on y and is therefore irrelevant to max-
imization with respect to x) with an energy U(x | y) that as a function of x
corresponds to a topology N with small neighborhoods, then one can use a simu-
lated annealing algorithm or a related algorithm (see Section 15.2).

Example 9.1.17: Random flips or multiplicative noise. Let X,Z be ran-
dom fields on V = Z2

m with phase space Λ = {−1,+1}, and define the field
Y = XZ by y(v) = x(v)z(v), v ∈ V . The field Z will be interpreted as multiplica-
tive noise, and one can call it a random flip field, because what it does to X is to
flip the phase at site v if z(v) = −1.

The computation below uses the fact that if a, b, c ∈ ΛV , where Λ = {−1,+1},
then ab = c ⇔ b = ac:

P (Y = y)P (X = x | Y = y) = P (X = x, Y = y) = P (X = x, ZX = y)

= P (X = x, Zx = y) = P (X = x, Z = yx).
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In particular, if the noise field Z is independent of the original field X, then

π(x | y) ∝ P (X = x)P (Z = yx).

The random field X has the distribution P (X = x) ∝ e−U(x). Suppose that
(Z(v), v ∈ V ) is a family of iid random variables, with P (Z(v) = −1) = p,
P (Z(v) = +1) = q = 1− p. Therefore (Exercise 9.4.1),

P (Z = z) =
∏
v∈V

P (Z(v) = z(v)) ∝ eγ
∑

v∈V z(v) ,

where γ = 1
2
log

(
1−p
p

)
. Finally, π(x | y) ∝ e−U(x)+γ

∑
v∈V y(v)x(v).

Example 9.1.18: Image restoration. This example refers to the model of
Subsection 9.1.3. Recall that we have a random field X = (XP , XE) corresponding
to some energy function U(xP , xE), which need not be made precise here (see,
however, Subsection 9.1.3). The image XP is degraded into a noisy image Y , and
it is this corrupted image that is observed. Degradation combines two effects:
blurring, and a possibly nonlinear interaction of the blurred image and the noise.
Specifically,

Yij = ϕ(H(XP )ij, Nij), (9.17)

where (i, j) is a pixel site and ϕ, H, and N are defined as follows. First N =
{Nij}(i,j)∈Pm

is, for instance, a family of independent centered Gaussian ran-
dom variables with common variance σ2, and is independent of (XP , XE). As
for H(XP ), it is the random field obtained by blurring XP , that is,

H(XP )ij =
∑
k,�

Hk�X
P
i−k,j−�, (9.18)

where H = {Hk�}−N≤k,�≤N is the blurring matrix. In (9.18), XP
i−k,j−� = 0 if (i −

k, j − �) 
∈ SP . A typical blurring matrix is

H =

⎛⎝1/80 1/80 1/80
1/80 9/10 1/80
1/80 1/80 1/80

⎞⎠ ,

for which N = 1. In this case

H(XP )ij =
9

10
XP

ij +
1

80

(∑
�

XP
k,�

)
,

where the sum extends to the pixel sites adjacent to (i, j). As for ϕ, it is a function
such that for fixed a, the function b → ϕ(a, b) is invertible. The inverse of this
function, for fixed a, is then denoted by b → ψ(a, b). A typical example for ϕ is
the additive noise model

Yij = H(XP )ij +Nij. (9.19)
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To estimate X given Y , one is led to compute the a posteriori probability of image
x given that the noisy image is y:

π(xP , xE | y) = P (XP = xP , XE = xE | Y = y).

Writing π(y) = P (Y = y), we have

π(xP , xE | y) = π(y)P (XP = xP , XE = xE, Y = y)

= π(y)P (XP = xP , XE = xE, ϕ(H(XP ), N) = y)

= π(y)P (XP = xP , XE = xE, N = ψ(H(xP ), y))

= π(y)P (XP = xP , XE = xE)P (N = ψ(H(xP ), y)).

The reader will have noticed the abuse of notation by which the continuous charac-
ter of N was ignored: The second to fourth terms are actually probability densities,
and similarly for

P (N = ψ(H(xP ), y)) ∝ e−
1

2σ2 ‖ψ(H(xP ),y)‖2 .

Using the expression of the distribution of the pixel+line image in terms of the
energy function, one finds

π(xP , xE | y) ∝ e−U(xP ,xE)− 1
2σ2 ‖ψ(H(xP ),y)‖2 . (9.20)

Therefore the a posteriori distribution of (XP , XE) given Y = g is a Gibbs distri-
bution corresponding to the energy function

U(xP , xE) = U(xP , xE) +
1

2σ2
‖ψ(H(xP ), y)‖2. (9.21)

For instance, if the noise is additive, as in (9.19), then

U(xP , xE) = U(xP , xE) +
1

2σ2
‖y −H(xP )‖2. (9.22)

Example 9.1.19: Bernoulli–Gaussian model. Let {Yn}1≤n≤N be a real-
valued stochastic process of the form

Yn =
N∑
k=1

Xkhn−k + Zn,

where {Zn}1≤n≤N is a sequence of independent centered Gaussian random variables
of variance σ2, {Xn}1≤n≤N is an iid sequence of {0, 1}-valued random variables
with P (Xn = 1) = p, and {hk}k∈Z is a deterministic function.

This is a particular case of the one-dimensional version of the model in Example
9.1.18. Here V = {1, . . . , N}, a configuration x ∈ {0, 1}N is of the form x =
(x1, x2, . . . , xN), X is the original image, Y is the degraded image, Z is the additive
noise, and h corresponds to the blurring matrix. For this particular model, the
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energy of the iid random field X is of the form γ
∑N

i=1 xi (Exercise 9.4.1), and the
energy of the conditional field x|y is

γ
N∑
i=1

xi +
1

2σ2

N∑
i=1

∣∣∣∣∣yi − ∑
j;1≤i−j≤N

hjxi−j

∣∣∣∣∣
2

.

This model is often used in problems of detection of reflectors. One says that there
is a reflector at position i if Xi = 1. The function h is a probe signal (radar, sonar),
and {hk−i}k∈Z is the signal reflected by the reflector at position i, if any, so that
Yn =

∑N
k=1 Xkhn−k is the reflected signal from which the map of reflectors X is to

be recovered. The process Z is the usual additive noise of signal processing.

Of course, this model can be considerably enriched by introducing random
reflection coefficients or by using a more elaborate a priori model for X, say, a
Markov chain model.

Penalty Methods

Consider the simple model where the image X is additively corrupted by white
Gaussian noise N of variance σ2, and let Y be the resulting image. Calling U(x)
the energy function of the a priori model, the MAP estimate is

x̂ = argmin
x

{U(x) +
1

σ2
‖y − x‖2}.

If we take an a priori model where all images are equiprobable, that is, the cor-
responding energy is null, then the above minimization is trivial, leading one to
accept the noisy image as if it were the original image. A nontrivial a priori model
introduces a penalty term U(x) and forces a balance between our belief in the
observed image, corresponding to a small value of ‖y − x‖2, and our a priori ex-
pectation as to what we should obtain, corresponding to a small value of U(x).
The compromise between the credibility of the observed image and the credibility
of the estimate with respect to the prior distribution is embodied in the criterion
U(x) + 1

σ2‖y − x‖2. A non-Bayesian mind will, somehow rightly, argue that one
cannot even dream of thinking that a correct a priori model is available, and that
Gaussian additive white noise is at best an intellectual construction. All that he
will retain from the above is the criterion

λU(x) + ‖y − x‖2,

with the interpretation that the penalty term λU(x) corrects undesirable features
of the observed image y. One of these is the usually chaotic aspect, at the fine
scale. However, he does not attempt to interpret this as due to white noise. In
order to correct this effect he introduces a smoothing penalty term U(x), which is
small when x is smooth, for instance

U(x) =
∑
〈s,t〉

(x(s)− x(t))2 ,
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where the summation extends over pairs of adjacent pixels. One disadvantage of
this smoothing method is that it will tend to blur the boundary between two
highly contrasted regions. One must choose an edge-preserving smoothing penalty
function, for instance

U(x) =
∑
〈s,t〉

Ψ(x(s)− x(t)) ,

where, for instance,

Ψ(u) = −
(
1 +

(u
δ

)2
)−1

,

with δ > 0. This energy function favors large contrasts and therefore prevents to
some extent blurring of the edges. A more sophisticated penalty function would
introduce edges, as in Subsection 9.1.3, with a penalty function of the form

U(xP , xE) = U1(x
P , xE) + U2(x

E),

where the term U1(x
P , xE) creates the edges from the pixels, and U2(x

E) organizes
the edges.

Note that the estimated image now consists of two parts: x̂P solves the smoothing
problem, whereas x̂E extracts the boundaries. If one is really interested in boundary
extraction, a sophisticated line-pixel model is desirable. If one is only interested in
cleaning the picture, rough models may suffice.

The import of the Gibbs–Bayes approach with respect to the purely deterministic
penalty function approach to image restoration lies in the theoretical possibility of
the former to tune the penalty function by means of simulation. Indeed, if one is
able to produce a typical image corresponding to the energy-penalty function, one
will be able to check with the naked eye whether this penalty function respects
the constraints one has in mind, and if necessary to adjust the parameters in it.
The simulation issue is treated in Chapter 19. Another theoretical advantage of
the Gibbs–Bayes approach is the availability of the simulated annealing algorithm
(Section 15.2) to solve the minimization problem arising in map likelihood method
or in the traditional penalty method.

9.2 Phase Transition in the Ising Model

9.2.1 Experimental Results

The first significant success of the Gibbs–Ising model was a qualitative explanation
of the phase transition phenomenon in ferromagnetism (Peierls, 1936).

Consider the slightly generalized Ising model of a piece of ferromagnetic material,
with spins distributed according to

πT (x) =
1

ZT

e
−U(x)

T . (9.23)

The finite site space is enumerated as V = {1, 2, . . . , N}, and therefore a configu-
ration x is denoted by (x(1), x(2), . . . , x(N)). The energy function is



236 CHAPTER 9. MARKOV FIELDS ON GRAPHS

U(x) = U0(x)− H

k

N∑
i=1

x(i),

where the term U0(x) is assumed symmetric, that is, for any configuration x,

U0(x) = U0(−x).

The constant H is the external magnetic field. The magnetic moment of configu-
ration x is

m(x) =
N∑
i=1

x(i),

and the magnetization is the average magnetic moment per site

M(H,T ) =
1

N

∑
x∈E

πT (x)m(x).

We have that ∂M(H,T )
∂H

≥ 0 (Exercise 9.4.13), M(−H, T ) = −M(H, T ) and −1 ≤
M(H,T ) ≤ +1. Therefore, at fixed temperature T , the magnetization M(H, T ) is
a non-decreasing odd function of H with values in [−1,+1]. Also,

M(0, T ) = 0 , (�)
since for any configuration x, m(−x) = −m(x), and therefore πT (−x) = πT (x)
when H = 0. Moreover, the magnetization is an analytic function of H.

However, experimental results seem to contradict the last two assertions. Indeed,
if an iron bar is placed in a strong magnetic field H parallel to the axis, it is
completely magnetized with magnetization M(H, T ) = +1, and if the magnetic
field is slowly decreased to 0, the magnetization decreases, but tends to a limit
M(0, T ) = M0 > 0, in disagreement with (�). By symmetry, we therefore have a
discontinuity of the magnetization at H = 0 (see the figure below (a)), in contra-
diction to the theoretical analyticity of the magnetization as a function of H.

This discontinuity is called a phase transition by physicists, by analogy with the
discontinuity in density at a liquid-gas phase transition. It occurs at room temper-
ature, and if the temperature is increased, the residual, or spontaneous, magneti-
zation M0 decreases until it reaches the value 0 at a certain temperature Tc, called
the critical temperature. Then, for T > Tc, the discontinuity at 0 disappears, and
the magnetization curve is smooth (Figure (c) below). At T = Tc, the slope at
H = 0 is infinite, that is, the magnetic susceptibility is infinite (Figure (b) below).

The discrepancy between experience and theory below the critical temperature is
due to the fact that the experimental results describe a situation at the thermody-
namical limit N = ∞. For fixed but large N the theoretical magnetization curve
is analytic, but it presents for all practical purposes the same aspect as in Figure
(a) below.

To summarize the experimental results, it seems that below the critical tempera-
ture, the spontaneous magnetization has, when no external magnetic field is ap-
plied, two “choices.” This phenomenon can be explained within the classical Ising
model.
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The dlr Problem

(Dobrushin, 1965, Lanford and Ruelle, 1969) Consider the Ising model in the
absence of an external field (H = 0). The energy of a configuration x is of the
form

U(x) = −J
∑
〈v,w〉

x(v)x(w),

where 〈v, w〉 represents an unordered pair of neighbors. When the cardinal of the
site space V is infinite, the sum in the expression of the energy is not defined for
all configurations, and therefore one cannot define the Gibbs distribution πT on
ΛV by formula (9.23). However, the local specification

πv
T (x) =

eβ
∑

〈v,w〉 x(v)x(w)

eβ
∑

〈v,w〉 x(w) + e−β
∑

〈v,w〉 x(w)
, (9.24)

where β is, up to a factor, the inverse temperature, is well-defined for all configu-
rations and all sites.

In the sequel, we shall repeatedly use an abbreviated notation. For instance, if π
is the distribution of a random field X under probability P , then π(x(A)) denotes
P (X(A) = x(A)), π(x(0) = +1) denotes P (X(0) = +1), etc.

A probability distribution πT on ΛV is called a solution of the dlr problem if it
admits the local specification (9.24).

When V = KN = Z2 ∩ [−N,+N ]2, we know that there exists a unique solution,
given by (9.23). When V = Z2, one can prove (this is not done here) existence of
at least one solution of the dlr problem. One way of constructing a solution is to
select an arbitrary configuration z, to construct for each integer N ≥ 2 the unique
probability distribution π

(N)
T on ΛV such that

π
(N)
T (z(V \KN−1)) = 1

(the field is frozen at the configuration z outside KN−1) and such that the restric-

tion of π
(N)
T to KN−1 has the required local characteristics (9.24), and then let N
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tend to infinity. For all configurations x and all finite subsets A ⊂ V , the following
limit exists:

πT (x(A)) = lim
N↑∞

π
(N)
T (x(A)), (9.25)

and moreover, there exists a unique random field X with the local specification
(9.24) and such that, for all configurations x and all finite subsets A ⊂ V ,

P (X(A) = x(A)) = πT (x(A)).

Note that π
(N)
T depends on the configuration z only through the restriction of z to

the boundary KN\KN−1.

9.2.2 Peierls’ Argument

If the dlr problem has more than one solution, one says that a phase transition
occurs. The method given by Dobrushin to construct a solution suggests a way of
proving phase transition when it occurs. It suffices to select two configurations z1
and z2, and to show that for a given finite subset A ⊂ S, the right-hand side of
(9.25) is different for z = z1 and z = z2. In fact, for sufficiently small values of the
temperature, phase transition occurs. To show this, we apply the above program
with z1 being the configuration with all spins positive and z2 the all negative
configuration, and with A = {0}, where 0 denotes the central site of Z2.

Denote then by π
(N)
+ (resp., π

(N)
− ) the restriction to KN of π

(N)
T when z = z1 (resp.,

z = z2). We shall prove that if T is large enough, then π
(N)
+ (x(0) = −1) < 1

3
for

all N . By symmetry, π
(N)
− (x(0) = +1) < 1

3
, and therefore π

(N)
− (x(0) = −1) > 2

3
.

Passing to the limit as N ↑ ∞, we see that π+(x(0) = −1) < 1
3
and π−(x(0) =

−1) > 2
3
, and therefore, the limiting distributions are not identical.

The above program for proving the existence of a phase transition is now carried
out. For all x ∈ ΛKN ,

π
(N)
+ (x) =

e−2βno(x)

Z
(N)
+

, (9.26)

where no(x) is the number of odd bounds in configuration x, that is, the number of

cliques 〈v, w〉 such that x(v) 
= x(w), and where Z
(N)
+ is the normalization factor.

Proof. It suffices to observe that

−
∑
〈v,w〉

x(v)x(w) = no(x)− ne(x),

where ne(x) is the number of even bounds, and that ne(x) = M −no(x), where M
is the total number of pair cliques. Therefore,

U(x) = 2βno(x)−M,

from which (9.26) follows. �
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Before proceeding to the proof of the announced upper bound for π
(N)
+ (x(0) =

−1), a few definitions are needed. Actually, no formal definition will be proposed;
instead, the reader is referred to pictures. The figure below features circuits C of
various lengths.

circuit C of length 10

site zero

border frozen at +1

circuit C(x; 0) around 0

of length 18

For a given configuration x, C(x; 0) denotes the circuit which is the boundary of
the largest connected batch of sites with negative phases, containing site 0. It is
a circuit around 0. If the phase at the central site is positive, then C(x; 0) is the
empty set.

For a given configuration x, denote by x̃ the configuration obtained by reversing
all the phases inside circuit C(x; 0). For a given circuit C around 0,

π
(N)
+ (C(x; 0) = C) =

∑
x ;C(x;0)=C e−2βno(x)∑

y e
−2βno(y)

.

But ∑
z

e−2βno(z) ≥
∑

y ; C(y;0)=C

e−2βno(ỹ)

(one can always associate to a configuration y such that C(y; 0) = C the config-
uration z = ỹ, and therefore the sum on the right-hand side is a subsum of the
left-hand side). Therefore,

π
(N)
+ (C(x; 0) = C) ≤

∑
x;C(x;0)=C e−2βno(x)∑
x;C(x;0)=C e−2βno(x̃)

.

If x is such that C(x; 0) = C, then n0(x̃) = n0(x)−L, where L is the length of C,
and therefore

π
(N)
+ (C(x; 0) = C) ≤ e−2βL.

In particular,

π
(N)
+ (x(0) = −1) ≤

∑
r(L)e−2βL,
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where the latter summation is over all lengths L of circuits around 0, and r(L)
is the number of non-empty circuits around 0 of length L. The possible lengths
are 4, 6, . . . , 2f(N), where f(N) ↑ ∞ as N ↑ ∞. In order to bound r(L) from
above, observe that a circuit around 0 of length L must have at least one point
at a distance smaller than or equal to L

2
of the central site 0. There are L2 ways

of selecting such a point, and then at most 4 ways of selecting the segment of C
starting from this point, and then at most 3 ways of selecting the next connected
segment, and so on, so that

r(L) ≤ 4L23L.

Therefore,

π
(N)
+ (x(0) = −1) ≤

∑
L=4,6,...

4L2(3e−2β)L.

Now, the series
∑

L=4,6,... L
2xL has a radius of convergence not less than 1, and

therefore, if 3e−β is small enough, or equivalently if T is large enough, π
(N)
+ (x(0) =

−1) < 1
3
for all N .

9.3 Correlation in Random Fields

9.3.1 Increasing Events

The simplest correlation problem arising in a random field context is to determine
if the spins of a given Ising model are positively correlated: is it more likely to
have a positive spin at a given site when the spin at another given site is positive?
More generally, given two events A and B, when can we assert that P (A |B) ≥
P (A)? This section features a very powerful tool for this type of problem: Holley’s
inequality, which has for consequences two other important inequalities, Harris’
inequality and the fkg inequality.

Let E := {0, 1}L where L is a positive integer. An element x = (x� , 1 ≤ � ≤ L) ∈ E
is called a configuration. Denote by 0 the configuration with all x� = 0 and by 1

that with all x� = 1. Say x ≥ y if for all 1 ≤ � ≤ L, x� ≥ y�, with a similar definition
for x > y and x = y. The (Hamming) distance between x ∈ E and y ∈ E is the
integer d(x, y) :=

∑L
�=1 1{x� �=y�}. For 1 ≤ � ≤ L, let E0

� := {x ∈ E ; x� = 0} and for
any configuration x ∈ E0

� , let x+ � denote the configuration y identical to x except
for the �-th coordinate, equal to 1. For any x, y ∈ E, call x ∧ y the configuration
defined by (x ∧ y)� = x� ∧ y� for all 1 ≤ � ≤ L, with a similar definition for x ∨ y.

The set A ⊆ E is called increasing (resp., decreasing) if x ∈ A implies that y ∈ A
for all y ≥ x (resp., y ≤ x). Clearly, any non-empty increasing (resp., decreasing)
set of configurations contains the configuration 1 (resp., 0).

Example 9.3.1: Bond percolation, take 1. Let L be the number of edges of
some finite graph with N nodes. Edge � in the configuration x ∈ E is called open
if x� = 1. Nodes v and w are said to be connected in configuration x if there exists
a path of open edges connecting them. This is denoted by v ↔ w. For fixed nodes
v and w the set A := {x ∈ E ; v ↔ w} is an increasing set, and similarly for the
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set B consisting of the configurations for which the number of nodes connected to
v is larger than or equal to a fixed integer n.

Definition 9.3.2 The function f : E → is called supermodular if

f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y) for all x, y ∈ E . (�)

A function f : E → is called submodular if −f is supermodular.

Definition (�) is equivalent to

x ≥ y =⇒ f(x+ �)− f(x) ≥ f(y+ �)− f(y) for all x, y ∈ E0
� , all 1 ≤ � ≤ L . (†)

Proof. (�) ⇒ (†): For all 1 ≤ � ≤ L, x ≥ y implies x + � = x ∨ (y + �) and
y = x ∧ (y + �).

(†) ⇒ (�): If x ≥ y the inequality is obvious. Otherwise, let �1, . . . , �n be an
enumeration of the integers � such that x� = 0 and y� = 1. Noting that x ∨ y =
x + �1 + · · · + �n and x = (x ∧ y) + �1 + · · · + �n, (�) follows by n successive
applications of (†). �

Example 9.3.3: Bond percolation, take 2. Denote by C(x) the number of
components in configuration x. Then C is supermodular. This is checked via (†).
For this we note that for all 1 ≤ � ≤ L and all x ∈ E0

� , C(x + �) − C(x) = −1 if
the nodes of edge � are disconnected in configuration x, and C(x+ �)− C(x) = 0
otherwise. Now, for any y ∈ E0

� such that x ≥ y, C(x+�)−C(x) ≥ C(y+�)−C(y),
since whenever the nodes adjacent to � are disconnected in configuration x, they
are also disconnected in configuration y.

Example 9.3.4: Ising model, take 4. Consider the Ising model with con-
figuration space E := {+1,−1}N (site space V := {1, . . . , N}, phase space
Λ := {+1,−1}). The “spin” (phase) at site i is denoted by xi. The energy function
is U(x) = −∑

i∼j xixj and the corresponding Gibbs distribution is

π(x) =
1

Z(β)
e−βU(x) ,

where β is the inverse temperature and Z(β) :=
∑

x∈E e−βU(x) is the partition
function. The energy function is submodular, that is, for all x, y ∈ E,

U(x ∨ y) + U(x ∧ y) ≤ U(x) + U(y) .

Proof. Since the energy is the sum of the energies of the edges, it suffices to
consider the situation where N = 2. The equality is obvious if the configurations
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are ordered. By symmetry, the only case that remains to be checked is x = (+1,−1)
and y = (−1,+1). Then U(x) + U(y) = 2. Also x ∧ y = (−1,−1) and x ∨ y =
(+1,+1), and therefore U(x ∧ y) + U(x ∨ y) = 0. �

The magnetization function is defined by

M(x) :=
1

N

N∑
i=1

xi .

The absolute magnetization |M(x)| is supermodular (Exercise 9.4.16).

9.3.2 Holley’s Inequality

P being a probability on E, write P (x) for P ({x}).

Theorem 9.3.5 (Holley, 1974) Let P and P ′ be probabilities on E, P strictly
positive, such that

P ′(x ∨ y)P (x ∧ y) ≥ P ′(x)P (y) for all x, y ∈ E . (��)

Then for any increasing set A ⊆ E,

P ′(A) ≥ P (A) .

Condition (��) is equivalent to the following

x ≥ y =⇒ P ′(x+ �)P (y) ≥ P ′(x)P (y + �) for all x, y ∈ E0
� , all � . (††)

(The proof is analogous to the proof of equivalence of (�) and (†) above.) It follows
that the support of P ′ is an increasing set.

A proof of Holley’s inequality is given in section 19.1.4.

Two important inequalities will be obtained as corollaries of Holley’s inequality,
namely the fkg inequality and the Harris inequality.

Definition 9.3.6 The probability P on E is said to satisfy the lattice condition if
for all x, y ∈ E,

P (x ∨ y)P (x ∧ y) ≥ P (x)P (y) .

Corollary 9.3.7 (Fortuin, Kasteleyn and Ginibre, 1971) Let P be a positive prob-
ability on E satisfying the lattice condition. Then for any increasing sets A,B ⊆ E,

P (A ∩ B) ≥ P (A)P (B) . (9.27)
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Equivalently P (A |B) ≥ P (A). In words, the occurence of event B increases the
occurence of event A.

Proof. Define P ′ by
P ′(·) := P (· |B) .

If condition (��) of Theorem 9.3.5 is satisfied, then Holley’s inequality reads

P ′(A) = P (A |B) ≥ P (A) ,

which is (9.27). It remains to prove (��).

If x /∈ B, then P ′(x) = 0 and the inequality is trivial. If x ∈ B, P ′(x) = P (x)
P (B)

.

Moreover, x∨ y ∈ B since B is an increasing set, and P ′(x∨ y) = P (x∨y)
P (B)

. The fkg
inequality is then an immediate consequence of the lattice condition. �

Example 9.3.8: Ising model, take 5. By the submodularity of the energy
function, the distribution π satisfies the lattice condition. Therefore, by the fkg

inequality, for any increasing sets A and B, P (A |B) ≥ P (A). In particular (with
A := {xi = 1} and B := {xj = 1}) the spins are positively correlated. In words,
it is more likely to have a positive spin at site i given that the spin at site j is
positive.

Definition 9.3.9 The probability P on E is said to be of product form if for all
x ∈ E

P (x) =
L∏

�=1

p(x�) ,

where p is a probability distribution on {0, 1}.

Corollary 9.3.10 (Harris, 1960) Let P be a positive probability of product form
on E. Then (9.27) holds true for any increasing sets A,B ⊆ E.

Proof. Harris’ inequality is a consequence of the fkg inequality, as follows from
the following remark: a probability P on E of product form satisfies the lattice
condition. Indeed:

P (x ∨ y)P (x ∧ y) =

⎛⎝ ∏
{� ;x�=y�}

p(x�)
2

⎞⎠×
⎛⎝ ∏

{� ;x� �=y�}
p(x�)p(y�)

⎞⎠ = P (x)P (y) .

�
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9.3.3 The Potts and Fortuin–Kasteleyn Models

The Potts model (Potts, 1952) is a natural extension of the Ising model. The set
of vertices is V = {1, 2, . . . , N} and the phase space is Λ = {1, 2, . . . , q}, each
phase representing a “color”. Denote by z the typical configuration. Potts’s model
corresponds to the probability P on ΛV given by

P (z) :=
1

Z(β)
e−βU(z) ,

where β > 0 and

U(z) :=
∑
i∼j

1{zi �=zj}

(an edge being counted only once) and Z(β) is the normalizing factor. When q = 2,
this corresponds to the Ising model. In fact, identifying the spins +1 and −1 with
the colours 1 and 2, the energy in the Ising model is

−
∑
i∼j

zizj =
∑
i∼j

1{zi �=zj} −
∑
i∼j

1{zi=zj} = 2U(z)− L .

Let Ns(z) :=
∑N

i=1 1{zi=s} be the number of sites of colour s. Let

Q(z) :=
q
N2

∑
s∈Λ Ns(z)

2 − 1

q − 1
.

This index (called the Simpson index) quantifies the concentration of colour dis-
tribution in state z. We have that 0 ≤ Q(z) ≤ 1, the value 0 corresponding to the
uniform distribution (Ns(z) =

N
q
for all colours s) and the value 1 corresponding

to the monochromatic state (Ns(z) = N for some colour s). Since there is no nat-
ural order among colours, the tools of comparison used previously are not directly
useful. The Fortuin–Kasteleyn bound percolation model will allow us to bypass
this limitation.

We now describe the Fortuin–Kasteleyn bound percolation model (Fortuin, 1972;
Fortuin and Kasteleyn, 1972). Consider a graph with N nodes and L edges. The
configuration space is now E := {0, 1}L. A configuration x = (x1, . . . , xL) has the
following interpretation: if x� = 1, edge � is called “open”. Denote by

O(x) :=
L∑

�=1

x�

the number of open edges in configuration x, and by C(x) the number of connected
components in the graph restricted to open edges. Define for q ∈ + and p ∈ (0, 1)
the probability

Pp,q(x) :=
1

Zp,q

pO(x)(1− p)L−O(x)qC(x) , (x ∈ {0, 1}L)

where Zp,q is the normalizing factor. The case q = 1 corresponds to independent
percolation, where an edge is accepted with probability p independently of the
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others. Otherwise the model is one of correlated percolation. Since O(x ∧ y) +
O(x ∨ y) = O(x) + O(y) and since the function C is supermodular (Example
9.3.3), it follows that Pp,q satisfies the lattice condition. Therefore, by the fkg

inequality, the open edges are positively correlated (see Example 9.3.3).

Let P = Pp,q and P ′ = Pp′,q′ . Condition (††) after the statement of Theorem 9.3.5
reads

p′

1− p′
(q′)C(x+�)−C(x) ≥ p

1− p
qC(y+�)−C(y) . (�)

For x, y ∈ E0
� and x ≥ y, the couple (C(x+ �)− C(x), C(y + �)− C(y)) takes the

values (0, 0), (0,−1) and (−1,+1) (if the neighbours of edge � are disconnected in
configuration x, they are also disconnected in configuration y). Therefore condition
(�) is satisfied, and consequently the inequality

Pp′,q′ ≥ Pp,q

holds, in the following cases:

(a) p′ ≥ p and q′ = q,

(b) p′ = p and q′ ≤ q and

(c) p′

q′(1−p′)
≥ p

q(1−p)
and q′ ≥ q.

(Note that the two simultaneous conditions in (c) imply p′ ≥ p.)

Coupling f–k and Potts Models

By this, we mean the construction of a random field Z on the N vertices of the
graph with phase space Λ = {1, . . . , q} and of a random field X on the L edges
of the graph with phase space {0, 1} in such a way that Z is a Potts random
field and X is a f–k random field. This of course could be done by constructing
these random fields to be independent, but we shall not do this and make the
construction in such a way that these fields are dependent.

For this, we start with a f–k model which we enrich by assigning independently
to each connected component a colour in {1, . . . , q}. This will have the effect of
colouring each vertex of the subgraph corresponding to a given component. Let zi
be the colour received by vertex i by this procedure, and let z = (z1, . . . , zN) be the
corresponding vertex configuration. We now have an extended configuration (x, z)
in E × ΛN = {0, 1}L × {1, . . . , q}N . The probability of an extended configuration
is, since there are qC(x) different and equiprobable ways of colouring the connected
components,

P (x, z) =
1

Zp,q

pO(x)(1− p)L−O(x)qC(x) 1

qC(x)
=

1

Zp,q

pO(x)(1− p)L−O(x) (9.28)

where Zp,q is the normalizing factor. Note that the configuration space is only a part
of E×ΛN , namely the set A of “admissible configurations”, that is configurations
(x, z) such that zi = zj for all edges � = 〈i, j〉 such that z� = 1. Consequently the
model (9.28) is not an independent correlation model.
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Now start with a Potts random field, and define the random field on {0, 1}L ×
{1, . . . , q}N as follows. Accept an edge � = 〈i, j〉 whose extremities are of the same
colour with probability p, independently of everything else. A configuration (x, z)
therefore has the probability

P (x, z) =
1

Z
e−βU(z)pO(x)(1− p)L−U(z)−O(x) .

In the case 1− p = e−β,

P (x, z) =
1

Z
pO(x)(1− p)L−O(x) .

This coincides with the probability distribution (9.28). In particular

P (x) =
∑

z;(x,z)∈A
P (x, z) =

1

Z
pO(x)(1− p)L−O(x)

∑
z;(x,z)∈A

1

=
1

Z
pO(x)(1− p)L−O(x)qC(x)

is the distribution of a f–k random field on the vertices, and

P (z) =
∑

x;(x,z)∈A
P (x, z) =

1

Z
e−βU(z)

∑
x;(x,z)∈A

pO(x)(1− p)L−U(z)−O(x) =
1

Z
e−βU(z) ,

is the distribution of a Potts random field on the edges.

Let P (zi = zj) be the probability that vertices i and j have the same colour in
the Potts model, and therefore in the coupled Potts–Fortuin–Kasteleyn (p–f–k)
model. Denote by i ↔ j the fact that vertices i and j are in the same component.
Note that i and j have the same colour if and only if one of the two disjoint events
occur:

(a) i ↔ j (probability Pp,q(i ↔ j)) .

(b) i � j and nevertheless i and j have the same colour (probability Pp,q(i �
j)× 1

q
) .

Therefore P (xi = xj) = Pp,q(i ↔ j) + 1
q
Pp,q(i � j), which gives

P (xi = xj) =
1

q
+

(
1− 1

q

)
Pp,q(i ↔ j) .

It was shown before that if p′ ≥ p, then Pp′,q ≥ Pp,q. Now, i ↔ j is an increasing
event of the f–k model, therefore the probability that two vertices have the same
colour increases in the Potts model with p, that is with β, since the coupling was
established with p = 1− e−β.

Example 9.3.11: Decreasing and increasing events in the Potts model.

Observing that in the Potts model, the energy and the Simpson index can be writ-
ten respectively as
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U(z) =
∑
i∼j

1{zi �=zj} = L−
∑
i∼j

1{zi=zj}

and

Q(z) =
q
N2

∑
i,j 1{zi=zj} − 1

q − 1
,

we conclude that in the Potts model the energy decreases with β whereas the
Simpson index increases with β.

Books for Further Information

[Kinderman and Snell, 1980] is a pedagogical introduction to the subject. For exam-
ples of Gibbs models for which expressions of the partition function are available,
see [Baxter, 1982]. [Winkler, 1995] is entirely devoted to applications in image pro-
cessing. The Potts and Fortuin–Kasteleyn percolation models of Subsection 9.3.3
are treated, in the finite and infinite cases, in [Werner, 2009]. [Grimmett, 2010] is
another important reference at the research level.

9.4 Exercises

Exercise 9.4.1. iid random fields

A. Let (Z(v) (v ∈ V ) be a family of iid random variables with values in {−1,+1}
indexed by a finite set V , with P (Z(v) = −1) = p ∈ (0, 1). Show that

P (Z = z) = Keγ
∑

v∈V z(s),

for some constants γ and K to be identified.

B. Do the same when the Z(v)s take their values in {0, 1}, with P (Z(v) = 0) =
p ∈ (0, 1).

Exercise 9.4.2. Two-state hmc as Gibbs field

Consider an hmc {Xn}n≥0 with state space E = {−1, 1} and transition matrix

P =

(
1− α α
β 1− β

)
(α, β ∈ (0, 1))

and with the stationary initial distribution

(ν0, ν1) =
1

α + β
(β, α).

Give a representation of (X0, . . . , XN) as a mrf. What is the normalized potential
with respect to phase 1?

Exercise 9.4.3. Poissonian version of Besag’s model

Consider the model of Example 9.1.3 with the following modifications. Firstly, the
phase space is Λ = N, and secondly, the potential is now
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VC(x) =

{ − log(g(x(v)) + α1x(v) if C = {v} ∈ C1,
αjx(v)x(w) if C = {v, w} ∈ Cj ,

where αj ∈ R and g : N → R is strictly positive. As in the autobinomial model,
for any clique C not of the type Cj , VC ≡ 0. For what function g do we have

πs(x) = e−ρ ρ
x(v)

x(v)!
,

where ρ = e−〈α,b〉, and where 〈α, b〉 is as in Subsection 9.1.3? (This model is the
auto-Poisson model.)

Exercise 9.4.4. Ising on the tore

(Baxter, 1965) Consider the classical Ising model of Example 9.1.7, except that
the site space V = {1, 2, . . . , N} consists of N points arranged in this order on a
circle. The neighbors of site i are i+1 and i−1, with the convention that site N+1
is site 1. The phase space is Λ = {+1,−1}. Compute the partition function. Hint:
express the normalizing constant ZN in terms of the N -th power of the matrix

R =

(
R(+1,+1) R(+1,−1)
R(−1,+1) R(−1,−1)

)
=

(
eK+h e−K

e−K eK−h

)
,

where K := J
kT

and h := H
kT
.

Exercise 9.4.5. Cliques and boundaries

Define on V = Z2 the two neighborhood systems of the figure below. Describe the
corresponding cliques and give the boundary of a 3× 3 square for each case.

Exercise 9.4.6. Just an exercise

Consider the nonoriented graph on V = {1, 2, 3, 4, 5, 6, 7} in the figure below. Let
the phase space be Λ = {−1,+1}. For a configuration x ∈ ΛV , denote by n(x)
the number of positive bonds, that is, the number of edges of the graph for which
the phases of the adjacent sites coincide. Define a probability distribution π on
ΛV by π(x) = e−n(x)

Z
. Give the value of the partition function Z and the local

characteristics of this random field.

Exercise 9.4.7. The Markov property

Let V be a finite set of sites and Λ a finite set of phases. Let {X(v)}v∈V be a
Markov field with values in ΛV and admitting a Gibbsian description in terms
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6

1 2

3 4

5 7

of the symmetric relation ∼, with Gibbs potential {VC}C⊂V . Prove that for all
subsets A, B, of S such that

A ∩ B = ∅

it holds that for all x ∈ ΛV ,

P (X(A) = x(A) | X(B) = x(B)) = P (X(A) = x(A) | X(∂B̄) = x(∂B̄)) .

Exercise 9.4.8. Frozen sites

Let V be a finite set of sites and Λ a finite set of phases. Let {X(v)}v∈V be a
Markov field with values in ΛV and admitting a Gibbsian description in terms
of the neighborhood structure ∼, with potential {VC}C⊂V . Let A + B = V be a
partition of the site. Fix x(A) = x(A) and define the distribution πA on ΛB by

πA(x(B)) =
e−U(x(A),x(B))∑

y(B)∈ΛB e−U(x(A),y(B))
,

where U is the energy function associated with the potential {VC}C⊂V . Show that

πA(x(B)) = P (X(B) = x(B) | X(A) = x(A))

and that πA(x(B)) is a Gibbs distribution for which you will give the neighbor-
hood system and the corresponding cliques, as well as the local characteristics. (A
Markov field with values in ΛB and with the distribution πA is called a version of
{Xv}v∈V , frozen on A at value x(A), or clamped at x(A).)

Exercise 9.4.9. Hard-core model

Consider a random field with finite site space V and phase space Λ := {0, 1} (with
the interpretation that if x(v) = 1, the site v is “occupied” and “vacant” otherwise)
evolving in time. The resulting sequence {Xn}n≥0 is a hmc with state space F , the
subset of E = {0, 1}V consisting of the configurations x such that for all v ∈ V ,
x(v) = 1 implies that x(w) = 0 for all w ∼ v. The updating procedure is the
following. If the current configuration is x, choose a site v uniformly at random,
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and if no neighbour of v is occupied, make v occupied or vacant equiprobably.
Show that the hmc so described is irreducible and that its stationary distribution
is the uniform distribution on F .

Exercise 9.4.10. Monotonicity property of the Gibbs sampler

Let μ be an arbitrary probability measure on ΛV and let ν be the probability
measure obtained by applying the Gibbs sampler at an arbitrary site v ∈ V . Show
that dV (ν, π) ≤ dV (μ, π).

Exercise 9.4.11. Neural network

The graph structure is as in the Ising model, but now the phase space is Λ = {0, 1}.
A site v is interpreted as being a neuron that is excited if x(v) = 1 and inhibited
if x(v) = 0. If w ∼ v, one says that there is a synapse from v to w, and such a
synapse has a strength σvw. If σvw > 0, one says that the synapse is excitatory;
otherwise it is called inhibitory. The energy function is

U(x) =
∑
v∈V

∑
w ;w∼v

σwvx(w)x(v)−
∑
v∈V

hvx(v),

where hv is called the threshold of neuron v (we shall understand why later).

(a) Describe the corresponding Gibbs potential.

(b) Give the local characteristics.

(c) Describe the Gibbs sampling algorithm.

(d) Show that this procedure can also be described in terms of a random threshold
jitter Σ with the cumulative distribution function

P (Σ ≤ a) =
e−a/T

1 + e−a/T
, (9.29)

the Gibbs sampler selecting phase 0 if∑
w∈Nv

(σwv + σvw)x(w) < hv + Σ ,

and 1 otherwise. One may interpret hv as the nominal threshold at site v and hv+Σ
as the actual (random) threshold. Also the quantity

∑
w∈Nv

(σwv +σvw)x(w) is the
input into neuron v. Thus the excitation of neuron v is obtained by comparing its
input to a random threshold (see the figure).

Exercise 9.4.12. Thermodynamics, I

Let

πT (x) =
1

Z
e

−E(x)
kT

be a Gibbs distribution on the finite space E = ΛV . Here Z is short for ZT , and
E(x) is the energy of physics, differing from U(x) by the Boltzmann constant k.

For any function f : E → R, define
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x(t3)

x(t2)

x(t1)

Σ

THRESHOLD

hv

x(v)

Nv = {t1, t2, t3}

Jitter sampling of a neural network

〈f〉 =
∑
x∈E

π(x)f(x).

In particular, the internal energy is

U = 〈E〉 =
∑
x∈E

π(x)E(x).

The free energy F is defined by

F = −kT log(Z).

Show that

U = −T 2 ∂

∂T

(
F

T

)
.

(This is in agreement with standard thermodynamics.)

Exercise 9.4.13. Thermodynamics, II

(Continuation of Exercise 9.4.12.) For the Ising model, take

E(x) = E0(x) + E1(x),

where E0(x) is the interaction energy, assumed symmetric, i.e., E0(−x) = E0(x),
and

E1(x) = −Hm(x),

where

m(x) =
N∑
i=1

x(i)

is the magnetic moment of the configuration x = (x(1), . . . , x(N)) (recall that
S = {1, 2, . . . , N}), and H is the external magnetic field. The partition function,
still denoted by Z, is now a function of T and H. The free energy per site is

f(H,T ) = −kT
1

N
log(Z),

whereas the magnetization



252 CHAPTER 9. MARKOV FIELDS ON GRAPHS

M(H,T ) =
1

N
〈m〉

is the average magnetic moment per site.

Show that

M(H,T ) = − ∂

∂H
f(H, T )

and
∂M

∂H
=

1

NkT

(〈
m2
〉− 〈m〉2) .

In particular,
∂M

∂H
≥ 0.

Exercise 9.4.14. Thermodynamics, III

(Continuation of Exercise 9.4.13.) Compute limN↑∞ M(H, T ) for the Ising model
on the torus (Exercise 9.4.4). Observe that this limit, as a function ofH, is analytic,
and null at H = 0. In particular, in this model, there is no phase transition.

Exercise 9.4.15. The spins are positively correlated

Consider the Ising model with state space E = {−1,+1}N and energy function

U(x) :=
∑

〈v,w〉 x(v)x(w) and probability distribution πT (x) =
1

Z(T )
e−

1
T
U(x). Define

the magnetization function m(x) := 1
N

∑
v∈E x(v).

(a) Prove that the energy function U is a submodular function and that the abso-
lute magnetization function |m| is a supermodular function.

(b) Show that the Gibbs distribution π satisfies the lattice condition (Definition
9.3.6). Using a famous inequality, show that “the spins are positively correlated”
in the sense that for any sites v and w, given that x(v) = +1, x(w) = +1 is more
likely than x(w) = −1.

Exercise 9.4.16. Super-modularity of the absolute magnetization

In Example 9.3.4, prove that the absolute magnetization is supermodular, that is

|M(x ∨ y)|+ |M(x ∧ y)| ≥ |M(x)|+ |M(y)| .

Exercise 9.4.17.
Show that the Fortuin–Kasteleyn percolation model Pp,q is bounded above and be-
low by independent percolation models, that is for some α and β to be determined
in function of p and q,

Pα,1 ≤ Pp,q ≤ Pβ,1 .

Exercise 9.4.18. The Lorenz inequality

Let h : {1, . . . , q}N → be a supermodular function, and let X1, . . . , XN be iid

random variables with values in {1, . . . , q}. Prove the following inequality (Lorenz’s
inequality):

E [h(X1, X2, . . . , XN )] ≤ E [h(X1, X1, . . . , X1)]



9.4. EXERCISES 253

Hint: Do the case N = 2 first, and then proceed by induction.

Exercise 9.4.19. Lorenz and fkg

Recall the following elementary form of the fkg inequality. Let E ⊆ and let
f, g : En → be two bounded functions that are non-decreasing in each of their
arguments. Let Xn

1 := (X1, . . . , Xn) be a vector of independent variables with
values in E. Then (Formula (2.22))

E [f(Xn
0 )g(X

n
0 )] ≥ E [f(Xn

0 )]E [g(Xn
0 )] .

Show that this is a particular case of Lorenz’s inequality of Exercise 9.4.18.



Chapter 10

Random Graphs

10.1 Branching Trees

10.1.1 Extinction and Survival

This section features what is perhaps the earliest non-trivial result concerning the
evolution of a stochastic process, namely the Galton–Watson branching process. It
involves a graph, here a “genealogical” tree. Francis Galton posed in 1873, in the
Educational Times, the question of evaluating the survival probability of a given
line of English peerage, and thereby initiated research in an important domain of
applied probability. Branching processes have applications in numerous fields, for
instance in nuclear science (because of the analogy between the growth of families
and nuclear chain reactions), in chemistry (chain reactions again) and in biology
(survival of a mutant gene)1. The results of the current section will be used in
section 10.2.3 on the emergence of a giant component in Erdös–Rényi random
graphs.

The recurrence equation

Xn+1 =
Xn∑
k=1

Z
(k)
n+1 (10.1)

(Xn+1 = 0 if Xn = 0), where {Z(j)
n }n≥1,j≥1 is an iid collection of integer-valued

random variables with common generating function

g(z) := E
[
zZ
]
=
∑
n≥0

anz
n

and independent of the integer-valued random variable X0, defines a stochastic
process {Xn}n≥0 called a branching process. It may be interpreted as follows: Xn

is the number of individuals in the n-th generation of a given population (humans,

particles, etc.). Individual number k of the n-th generation gives birth to Z
(k)
n+1

descendents, and this accounts for (10.1). The random variable X0 is the number of
ancestors. The appelation “branching process” refers to the original preoccupation
of Francis Galton in terms of a genealogical tree (see the figure). This process, also

1
See the historical remarks concerning the applications and evolution of the field in [Harris,

1963].
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called the Galton–Watson process, is in view of the recurrence equation (10.1) and
the independence assumptions a homogeneous Markov chain (Theorem 6.1.4).

Example 10.1.1: The repair shop, take 2. The repair shop model has an
interesting connection with branching processes. The first busy cycle length is the
first time n at which there is no machine left in the facility. We may suppose that
Z1 > 0, by which it is meant that observation starts at time 1. It takes X1 = Z1

units of time before one can start the service of the X2 machines arriving during
the time these X1 machines are repaired. Then it takes X3 units of time before one
can start the service of the machines arriving during the time these X2 machines
are repaired, and so on. This defines a sequence {Xn}n≥1 satisfying the relation

(10.1) as long as Xn > 0. Here X0 := 1 and {Z(j)
n }n≥1,j≥1 is an iid collection of

random variables with the same distribution as Z1. Letting τ be the first (positive)
time at which Xn = 0, the repair service facility is empty for the first time at time∑τ−1

i=1 Xi. Therefore, the probability of eventually having at least one “day off”
for the mechanics is the probability of extinction of a branching process {Xn}n≥1

whose typical offspring has the same distribution as Z1.

The primary quantity of interest is the extinction probability P (E), that is, the
probability of absorption of the branching process into state 0.

X6 = 2

X1 = 2

X2 = 5

X3 = 8

X4 = 7

X5 = 6

X0 = 1

Sample tree of a branching process

Theorem 10.1.2 When there is just one ancestor (X0 = 1),

(a) P (Xn+1 = 0) = g(P (Xn = 0)),

(b) P (E) = g(P (E)), and
(c) if m := E[Z] < 1, the probability of extinction is 1, whereas if m > 1, the

probability of extinction is < 1 and > 0.

Proof.

The trivial cases P (Z = 0) = 0, P (Z = 0) = 1 and P (Z ≥ 2) = 0 are excluded
from the analysis.
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(a) Let ψn be the generating function of Xn. Since Xn is independent of the

Z
(k)
n+1’s, by Theorem 2.2.10,

ψn+1(z) = ψn(g(z)).

Iterating this equality, we obtain ψn+1(z) = ψ0(g
(n+1)(z)), where g(n) is the n-th

iterate of g. Since there is only one ancestor, ψ0(z) = z, and therefore ψn+1(z) =
g(n+1)(z) = g(g(n)(z)), that is,

ψn+1(z) = g(ψn(z)).

In particular, since ψn(0) = P (Xn = 0), (a) is proved.

(b) An extinction occurs if and only if at some time n (and then for all subse-
quent times) Xn = 0. Therefore

E = ∪∞
n=1{Xn = 0} .

Since Xn = 0 implies Xn+1 = 0, the sequence of events {Xn = 0}n≥1 is non-
decreasing, and therefore, by monotone sequential continuity,

P (E) = lim
n↑∞

P (Xn = 0).

The generating function g is continuous, and therefore from (a) and the last equa-
tion, the probability of extinction satisfies (b).

(c) By Theorem 2.2.8, recalling that the trivial cases where P (Z = 0) = 1 or
P (Z ≥ 2) = 0 have been eliminated, we have that

(α) if E[Z] ≤ 1, the only solution of x = g(x) in [0, 1] is 1, and therefore
P (E) = 1. The branching process eventually becomes extinct, and

(β) if E[Z] > 1, there are two solutions of x = g(x) in [0, 1], 1 and x0 such that
0 < x0 < 1. From the strict convexity and monotonicity of g : [0, 1] → [0, 1], it
follows that the sequence yn = P (Xn = 0) that satisfies y0 = 0 and yn+1 = g(yn)
converges increasingly to x0. In particular, when the mean number of descendants
E[Z] is strictly larger than 1, P (E) ∈ (0, 1). �

Example 10.1.3: Extinction probability for a Poisson offspring. Take
for the offspring distribution the Poisson distribution with mean λ > 0 whose
generating function is g(x) = eλ(x−1). Suppose that λ > 1 (the supercritical case).
The probability of extinction P (E) is the unique solution in (0, 1) of

x = eλ(x−1) .

Example 10.1.4: Extinction probability for a binomial offspring.

Take for the offspring distribution the binomial distribution B(N, p), with 0 <
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p < 1. Its mean is m = Np and its generating function is g(x) = (px+ (1− p))N .
Suppose that Np > 1 (the supercritical case). The probability of extinction P (E)
is the unique solution in (0, 1) of

x = (px+ (1− p))N .

Example 10.1.5: Poisson branching as the limit of binomial branch-

ing. Suppose now that p = λ
N

with λ > 1 (therefore we are in the supercritical
case) and the probability of extinction is given by the unique solution in (0, 1) of

x =

(
λ

N
x+ (1− λ

N
)

)N

=

(
1− λ

N
(1− x)

)N

.

Letting N ↑ ∞, we see that the right-hand side tends from below (1−x ≤ e−x) to
the generating function of a Poisson variable with mean λ. Using this fact and the
concavity of the generating functions, it follows that the probability of extinction
also tends to the probability of extinction relative to the Poisson distribution.

One-by-one Exploration

The random tree corresponding to a branching process can be explored in several
ways. One way is generation by generation and corresponds to the classical con-
struction of the Galton–Watson process given above. There is an alternative way
that will be useful in a few lines. At step n of the exploration, we have a set of
active vertices An and a set of explored vertices Bn. At time 0 there is one active
vertex, the root of the branching tree, so that A0 = {root}, and no vertex has
been explored yet: B0 = ∅. At step n ≥ 1, one chooses a vertex vn−1 among the
vertices active at time n (those in An−1), and this vertex is added to the set of
explored vertices, that is, Bn = Bn−1 ∪ {vn−1}, and it is deactivated, whereas its
children become active. Therefore, denoting by ξn the number of children of vn−1

and by An the cardinality of An,

A0 = 1 and An = An−1 − 1 + ξn

as long as An−1 > 0. The exploration stops when there are no active vertices left,
at time Y = inf{n > 0; An = 0}, which is the size of the branching tree. By
induction, as long as An−1 > 0,

An = 1− n+
n∑

i=1

ξi .

The one-by-one exploration procedure is summarized by the history of the branch-
ing process, that is, the random string

H = (ξ1, . . . , ξY )
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taking its values in the subset F of N∗ :=
(∪k≥1N

k
) ∪ N∞, determined by the

following constraints. (a) If x = (x1, x2, . . . , xk) ∈ Nk, 1 −∑n
i=1 xi − n > 0 for all

n ≤ k and 1−∑k
i=1 xi−k = 0, and (b) if x = (x1, x2, . . .) ∈ N∞, 1−∑n

i=1 xi−n > 0
for all n ≥ 1. Finite k’s correspond to histories with extinction, whereas x ∈ ∞

represents a history without extinction.

For any sequence (x1, . . . , xk) ∈ F ∩ Nk,

P (H = (x1, . . . , xk)) =
k∏

i=1

axi
.

Conditioning by Extinction

The following question is of interest: what is the probability distribution of the
history of a supercritical branching conditioned by the event that extinction oc-
curs?

Theorem 10.1.6 Let {ak}k≥0 be a supercritical offspring distribution, that is such
that

∑
k≥0 kak > 1. Let ga be its generating function and P (E) the corresponding

probability of extinction, that is, the unique solution in (0, 1) of P (E) = ga(P (E)).
The distribution of the branching process conditioned on extinction is the same as
the distribution of a subcritical branching process with offspring distribution

bk := akP (E)k−1 (k ≥ 0). (10.2)

Proof. We first check that (10.2) defines a probability distribution. In fact,

P (E) =
∑
k≥0

akP (E)k = P (E)
∑
k≥0

bk ,

and therefore
∑

k≥0 bk = 1. We now check that this distribution is subcritical. Let
gb denote the generating function of {bk}k≥0. A simple computation reveals that
gb(x) = P (E)−1ga(P (E)x) and therefore g′b(x) = g′a(P (E)x), so that∑

k≥0

kbk = g′b(1) = g′a(P (E)) < 1

(g′a is a strictly increasing function).

It remains to compute P (H = (x1, . . . , xk) | extinction) when the underlying off-
spring distribution is {ak}k≥0. For all k ∈ and all (x1, . . . , xk) ∈ F

P (H = (x1, . . . , xk) | extinction) =
P (H = (x1, . . . , xk) , extinction)

P (extinction)

=
P (H = (x1, . . . , xk)

P (extinction)
,

(since the condition (x1, . . . , xk) ∈ F implies extinction at exactly time k for the
history (x1, . . . , xk)). Therefore
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P (H = (x1, . . . , xk) | extinction) =
1

P (E)P (H = (x1, . . . , xk))

=
1

P (E)
k∏

i=1

axi
=

1

P (E)
k∏

i=1

bxi
P (E)−(xi−1)

= P (E)k−1−∑k
i=1 xi

k∏
i=1

bxi
=

k∏
i=1

bxi
.

(The last equality makes use of the relation
∑k

i=1 xi = k−1 when (x1, . . . , xk) ∈ F .)
�

Example 10.1.7: The Poisson case. For a Poisson offspring supercritical dis-
tribution with mean λ > 1,

bk = e−λλ
k

k!
P (E)k−1 =

1

P (E)e
−λ (λP (E))k

k!
.

But in this case P (E) = ga(P (E)) = eλ(P (E)−1), or equivalently

1

P (E)e
−λ = e−λP (E) .

Therefore

bk = e−λP(E) (λP (E))k
k!

,

which corresponds to a Poisson distribution with mean μ = λP (E).

10.1.2 Tail Distributions

Tail of the Extinction Time

Let T be the extinction time of the Galton–Watson branching process. The distri-
bution of T is fully described by

P (T ≤ n) = P (Xn = 0) = ψn(0) (n ≥ 0)

and P (T = ∞) = 1− P (E). In particular

lim
n↑∞

P (T ≤ n) = P (E) . (�)

Theorem 10.1.8 In the supercritical case (m > 1 and therefore 0 < P (E) < 1),

P (E)− P (T ≤ n) ≤ (g′(P (E)))n . (10.3)
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Proof. The probability of extinction P (E) is the limit of the sequence xn =
P (Xn = 0) satisfying the recurrence equation xn+1 = g(xn) with initial value
x0 = 0. We have that

0 ≤ P (E)− xn+1 = P (E)− g(xn) = g(P (E))− g(xn) ,

that is,
P (E)− xn+1

P (E)− xn

=
g(P (E))− g(xn)

P (E)− xn

≤ g′(P (E)) ,

where we have taken into account the convexity of g and the inequality xn < P (E).
�

Example 10.1.9: Convergence rate for the Poisson offspring distri-

bution. For a Poisson offspring with meanm = λ > 1, g′(x) = λg(x) and therefore
g′(P (E)) = λP (E). Therefore

P (E)− P (T ≤ n) ≤ (λP (E))n .

Example 10.1.10: Convergence rate for the binomial offspring dis-

tribution. For a B(N, p) offspring with mean m = Np > 1, g′(x) = Np g(x)
1−p(1−x)

and therefore

g′(P (E)) = Np
P (E)

1− p(1− P (E)) .

Taking p = λ
N
,

g′(PN(E)) = λ
PN(E)

1− λ
N
(1− PN(E))

,

where the notation stresses the dependence of the extinction probability on N .

Tail of the Total Population

Theorem 10.1.11 For a single ancestor branching process in the subcritical case
(in particular, the total population size Y is finite),

P (Y > n) ≤ e−nh(1) ,

where h(a) = supt≥0{at− logE
[
etZ
]}.

Proof. Consider the random walk {Wn}n≥0 defined by W0 = 1 and

Wn = Wn−1 − 1 + ξn ,
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where the ξi’s are iid random variables with the same distribution as Z. Then, the
distributions of the sequences {Wn}n≥0 and {An}n≥0 are the same as long as they
are positive. Therefore

P (Y > n) = P (W1 > 0, . . . ,Wn > 0) ≤ P (Wn > 0)

= P

(
1 +

n∑
i=1

ξi > n

)
= P

(
n∑

i=1

ξi ≥ n

)
.

The announced result then follows from the Chernoff bound of Theorem 3.2.3 (here
we take a = 1 and therefore, from the discussion following the statement of the
theorem and the assumption E[Z] < 1 for the subcritical case, h(1) > 0). �

10.2 The Erdös–Rényi Graph

10.2.1 Asymptotically Almost Sure Properties

Random graph theory is a vast subject to which this section is a short introduction.
The random graphs considered here were introduced with the purpose of verifying
if some basic property (such as the existence of cycles of a certain length, the ab-
sence of trees or connectivity) was likely to occur in large typical graphs. There is
of course room for discussion concerning the qualification of Erdös–Rényi graphs
as typical and other models have been proposed that more aptly fit such and such
a specific application. What remains is the panoply of tools used to study these
random graphs, such as the first- and second-moment methods, the probabilistic
method or the Stein–Chen method. The third section features another type of ran-
dom graph, the 2-dimensional grid 2, where only edges between adjacent vertices
are allowed. It is studied under the heading of percolation theory.

For both types of random graphs, a fundamental issue is the existence of “large”
components. In the case of Erdös–Rényi graphs, a large component is said to occur
if for a large set of vertices, the largest component contains a positive fraction
(independent of the size) of the vertices. In the case of percolation graphs (which
have an infinite number of vertices), a large component is just a component with
an infinite number of vertices. The methods used to assert the existence of large
components are rather different in both types of random graphs.

Suppose that the probability for a given edge to belong to a G(n, p) random graph
depends on the number of vertices: p = pn. Any function f such that pn

n
∼ f(n)

as n ↑ ∞ will be called a degree growth function. Let P be some property that
a graph may or may not have, for instance, the existence of isolated vertices. It
is often of interest to evaluate the probability that G(n, pn) has this property. In
general, the necessary computations for a fixed size are not feasible, and one then
resorts to an “asymptotic answer” by evaluating

lim
n↑∞

P (G(n, pn) satisfies property P) .

If this limit is 1, property P is then said to be asymptotically almost sure (a.a.s.),
or to hold with high probability (w.h.p.), for G(n, pn).
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Threshold Properties

The Landau notational system being often used in this chapter, the reader is
directed to Section A.5 for its description.

Definition 10.2.1 A function p̂(n) is called a threshold (function) for a monotone
increasing property P if

lim
n↑∞

P (G(n, pn) ∈ P) = 0 or 1

according to whether

lim
n↑∞

pn
p̂(n)

= 0 or ∞ .

Theorem 10.2.2 (Bollobás and Thomason, 1997) There exists a threshold for
any non-trivial monotone property.

Proof. Let P be a monotone property, say, increasing, without loss of generality.
Consider the following function of p ∈ [0, 1]:

g(p) = P (G(n, p) ∈ P) .

If p′ > p, one may construct two random graphs G(n, p′) and G(n, p) such that
G(n, p′) ⊇ G(n, p) (see section 16.1.1), and therefore since the property P is mono-
tone increasing, P (G(n, p′) ∈ P) ≥ P (G(n, p) ∈ P). Function g is therefore mono-
tone non-decreasing. From the expression

P (G(n, p) ∈ P) =
∑
G∈P

p|E(G)|p(
n
2)−|E(G)| ,

it is a polynomial in p increasing from 0 to 1.

Therefore, for each n ≥ 1, there exists some p̂(n) such that

P (G(n, p̂(n)) ∈ P) =
1

2
, (10.4)

which we now show to be a threshold for P .

Let G1, G2, . . . , Gk be k independent copies of G(n, p). The union of these copies
is a G(n, 1− (1− p)k) (Exercise 10.4.8). By coupling, since 1− (1− p)k ≤ kp,

G(n, 1− (1− p)k) ⊆ G(n, kp) .

Therefore, G(n, kp) 
∈ P implies that G1, G2, . . . , Gk 
∈ P , and in particular

P (G(n, kp) 
∈ P) ≤ P (G(n, p) 
∈ P)k .

Let ω(n) be a function that increases to ∞ arbitrarily slowly as n ↑ ∞. Letting
p = p̂(n) and k = ω(n) in the last inequality, and taking (10.4) into account,
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P (G(n, ω(n)p̂(n)) 
∈ P) ≤ 2−ω(n) → 0 .

On the other hand, with p = p̂(n)
ω(n)

and k = ω(n),

1

2
= P (G(n, p̂(n)) 
∈ P) ≤ P (G(n, p̂(n)ω(n)−1) 
∈ P)ω(n) ,

and therefore
P (G(n, p̂(n)ω(n)−1) 
∈ P) ≥ 2−

1
ω(n) → 1 .

�

Definition 10.2.3 A function p̂(n) is called a sharp threshold (function) for a
monotone increasing property P if for all ε > 0

lim
n↑∞

P (G(n, pn) ∈ P) = 0 or 1

according to whether
pn
p̂(n)

≤ 1− ε or ≥ 1 + ε .

Theorem 10.2.4 (Luczak, 1990) Let P be a non-decreasing graph property. Let
p = pn and m = mn be such that pn = mn

(n2)
, and suppose that

mn =

(
n

2

)
pn → ∞,

(
n
2

)−mn

m
1
2
n

=

(
n
2

)
(1− pn)

(
(
n
2

)
pn)

1
2

→ ∞.

Then, for large n
P (Gn,mn

∈ P) ≤ 3P (G(n, pn) ∈ P) .

Proof. To simplify the notation, the subscript n is omitted and we write N for(
n
2

)
. We have that

P (G(n, p) ∈ P) =
N∑
k=0

P (Gn,k ∈ P)P (|En,p| = k)

≥
N∑

k=m

P (Gn,k ∈ P)P (|En,p| = k) .

By coupling,
k ≥ m ⇒ P (Gn,k ∈ P) ≥ P (Gn,m ∈ P) .

Therefore

P (G(n, p) ∈ P) ≥ P (Gn,m ∈ P)
N∑

k=m

P (|En,p| = k) ,

that is,

P (G(n, p) ∈ P) ≥ P (Gn,m ∈ P)
N∑

k=m

ak , (�)
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where

ak =

(
N

k

)
pk(1− p)N−k .

By Stirling’s equivalence formula

ak = (1 + o(1))
NNpk(1− p)N−k

kk(N − k)N−k(2πk)
1
2

= (1 + o(1))(2πk)−
1
2 .

Let k = m+ t and 0 ≤ t ≤ m
1
2 . Then

ak+1

ak
=

(N − k)p

(k + 1)(1− p)
=

1− t
N−m

1 + t+1
m

.

Since t
N−m

≤ m
1
2

N−m
→ 0 and therefore is strictly lesser than 1 for large n, we have

(using inequalities 1 + x ≤ ex (x ∈ ) and 1 − x ≥ e−
x

1−x (0 ≤ x < 1), and the
hypotheses)

ak+1

ak
≥ exp

{
− t

N −m− t
− t+ 1

m

}
= 1 + o(1) .

In particular
N∑

k=m

ak ≥
m+m

1
2∑

k=m

ak ≥ 1− o(1)

(2π)
1
2

,

and therefore, by (�), P (G(n, p) ∈ P) ≥ P (Gn,m ∈ P)(2π)−
1
2 . �

Remark 10.2.5 There exists a version of Theorem 10.2.4 without the assumption
of monotonicity of property P (Exercise 10.4.9).

The First- and Second-moment Method

The first- and second-moment bounds of Theorems 3.2.9 and 3.2.10 are basic tools
for the asymptotic analysis of random graphs. The following examples illustrate
the method.

Example 10.2.6: Diameter larger than 2. The diameter D(G) of a graph
G is, by definition, the maximal length of the shortest path between two distinct
vertices. It turns out that the (monotone increasing) property

P : D(G) > 2

admits the threshold

p̂(n) =

(
2 log n

n

) 1
2

.

Proof. The property D(G) > 2 is equivalent to the existence of a non-adjacent
pair {v, w} of distinct vertices such that no other vertex u /∈ {v, w} is adjacent to
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both v and w. Such a pair {v, w} will be called “bad”. Let for any pair {v, w} of
distinct vertices Xvw be the indicator function of the event “{v, w} is bad”. Let

X :=
∑
{v,w}

Xvw .

The random graph has a diameter ≤ 2 if and only if it has no bad pair, that is, if
X = 0.

In G(n, p), the probability that a given vertex u /∈ {v, w} is adjacent to both v and
w is p2, or, equivalently, the probability that it is not adjacent to both v and w is
1−p2. The probability that no vertex is adjacent to {v, w} is therefore (1−p2)n−2.
The probability that v and w are not adjacent is 1−p. Since there are

(
n
2

)
distinct

pairs {v, w}, the expected number of bad pairs is

E[X] =

(
n

2

)
(1− p2)n−2(1− p) .

With pn = c
(
logn
n

) 1
2 ,

E[Xn] ∼ 1

2
n2−c2 .

Therefore, if c >
√
2, E[Xn] → 0. In particular, G(n, pn) has w.h.p. a diameter

≤ 2.

If c <
√
2, E[Xn] → ∞. But this is not enough to guarantee that G(n, pn) has

w.h.p. a diameter > 2. We try the second-moment method, and compute

E[X2] =
∑

E [XvwXv′w′ ] +
∑

E [XvwXvw′ ] +
∑

E [XvwXvw]

where the 4 vertices in the first summation are different, the 3 vertices in the
second summation are different, and the 2 vertices in the third summation are
different. First observe that XvwXvw = Xvw, and therefore the third summation is
E[X] ∼ 1

2
n2−c2 . By independence, the first sum equals∑
E [Xvw]E [Xv′w′ ] = E

[∑
Xvw

]
E
[∑

Xv′w′

]
= E[X]2 ∼ n4−2c2 .

For the second summation, observe that if XvwXvw′ = 1, both pairs {v, w} and
{v′w} are bad, which in turn implies that for every vertex u /∈ {v, w, v′}, either
there is no edge between u and v, or there is an edge between u and v and no edge
between w and w′. For fixed u this occurs with probability

1− p+ p(1− p)2 .

Therefore the event XvwXvw′ = 1 implies an event of probability(
1− pn + pn(1− pn)

2
)n

.

With pn = c
(
logn
n

) 1
2 , this probability is ∼ n−2c2 . Therefore E [X2] ≤ n4−2c2 +

n3−2c2 + n2−2c2 and E [X] ∼ n2−2c2 ,
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E
[
X2
] ≤ E [X] (1 + o(1) .

By the second-moment argument, limn↑∞ P (Xn > 0) = 1. �

Example 10.2.7: Isolated vertices in large random graphs. Let Xn be
the number of isolated vertices in the Erdös–Rényi graph G(n, pn) with pn = c logn

n
.

Then

(i) If c > 1, P (Xn 
= 0) → 0 as n ↑ +∞.

(ii) If c < 1, P (Xn 
= 0) → 1 as n ↑ +∞.

Therefore p̂(n) = log n
n

is a sharp threshold for the existence of isolated vertices.

Proof. The proof of (i) is based on Lemma 3.2.9. For each vertex u, let Zu be the
indicator function of the event “u is isolated”. In particular, Xn =

∑
u∈V Zu. Also,

E[Zu] = (1− pn)
n−1 and therefore

E[Xn] =
∑
u∈V

E[Zu] = n(1− pn)
n−1 = n

(
1− c

log n

n

)n−1

.

It suffices therefore, according to Lemma 3.2.9, to prove that the latter quantity
tends to 0 or, equivalently, that its logarithm tends to −∞. This follows from:

log n+ (n− 1) log

(
1− c

log n

n

)
≤ log n

(
1− c

(
1− 1

n

))
→ −∞ ,

where we have used the inequality 1− x ≤ e−x and the hypothesis c > 1.

For the proof of (ii), first observe that when c < 1,

E[Xn] = n

(
1− c

log n

n

)n−1

→ +∞ .

In fact, taking logarithms, the last quantity is

log n+ (n− 1) log

(
1− c

log n

n

)
= log n+ (n− 1)

(
−c

log n

n
+ o

(
log n

n

))
= log n

(
1− c

(
1− 1

n

)
+

(
1− 1

n

)
o
(
logn
n

)
logn
n

)
= (1− c) log n+ α(n) ,

where α(n) → 0.

However, for a sequence of integer-valued random variables {Xn}n≥1, the fact that
E[Xn] → +∞ is not sufficient to guarantee that P (Xn 
= 0) → 1 (see Exercise
3.3.1). One has to go beyond the first moment and use Lemma 3.2.10. According

to this lemma, P (Xn = 0) ≤ Var(Xn)
E[Xn]2

and therefore, it suffices to prove that
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Var(Xn) = o(E[Xn]
2)

to obtain that P (Xn = 0) → 0. We proceed to do this.

First, we compute the variance of Xn:

Var(Xn) = Var

(∑
u∈V

Zu

)
=
∑
u∈V

(Var(Zu)) +
∑

u,v∈V,u �=v

cov (Zu, Zv).

Since the variables Zu take the values 0 or 1, Z2
u = Zu and therefore

Var(Zu) = E[Z2
u]− E[Zu]

2 = E[Zu]− E[Zu]
2 ≤ E[Zu] = (1− pn)

n−1 .

Also, for u 
= v,

E[ZuZv] = P (u isolated, v isolated) = (1− pn)(1− pn)
n−2(1− pn)

n−2

(1−pn is the probability that 〈u, v〉 is not an edge of G(n, pn), and (1−pn)
n−2 is the

probability that u is not connected to a vertex in V \{v}, and also the probability
that v is not connected to a vertex in V \{u}). Therefore

cov (Zu, Zv) ≤ (1− pn)
2n−3 − (1− pn)

2n−2 = pn(1− pn)
2n−3 ,

so that
Var(Xn) ≤ n(1− pn)

n−1 + n(n− 1)pn(1− pn)
2n−3 .

The first term of the right-hand side of the above inequality, which is equal to
E[Xn], tends to infinity. It is therefore a o(E[Xn]

2). The second term also, since

n(n− 1)pn(1− pn)
2n−3

E[Xn]2
=

n(n− 1)pn(1− pn)
2n−3

n2(1− pn)2n−2
=

n− 1

n

pn
1− pn

and pn = c logn
n

→ 0. �

Example 10.2.8: Cliques in large Erdös–Rényi random graphs. Let
G(n, pn) be an E-R graph with n vertices and probability pn of existence of a given
vertex. Define a clique to be any set of vertices C such that any pair of vertices in
C are linked by an edge of the graph. Let Xn be the number of cliques of size 4 in
G(n, pn).

(i) If limn↑∞ pnn
2
3 = 0, P (Xn 
= 0) → 0 (the probability of having a 4-clique

tends to 0).

(ii) If limn↑∞ pnn
2
3 = +∞, P (Xn 
= 0) → 1.

Proof. Let A1, A2, . . . , A(n4)
be an enumeration of the sets of four vertices. Let

Zi be the indicator function of the event that Ai is a clique of G(n, pn). Then
Xn =

∑(n4)
i=1 Zi. The proof now follows the lines of Example 10.2.7. First observe

that E[Zi] = p6n (there are 6 edges in a 4-clique) and therefore E[Xn] =
(
n
4

)
p6n.
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(i) It suffices to show that E[Xn] → 0. This is the case since E[Xn] =

n4o

((
n− 2

3

)6
)

= n4o(n−4).

(ii) It suffices to show that E[Xn] → +∞ and Var(Xn)
E[Xn]2

→ 0. First

E[Xn] =

(
n

4

)
p6n = n4ω

((
n− 2

3

)6
)

= n4ω(n−4) → +∞.

For the variance of Xn, we have, as in Example 10.2.7,

Var(Xn) ≤ E[Xn] +
∑

1≤i�=j≤(n4)

cov (Zi, Zj) .

If |Ai ∩Aj| = 0 or 1, Zi and Zj are independent, depending only on the existence
of 2 disjoint sets of edges.

A 4-clique, and three pairs of 4-cliques sharing 1, 2 and 3 vertices

If |Ai ∩ Aj| = 2, cov (Zi, Zj) ≤ E[ZiZj] = p11n since the total number of different
edges of the two 4-cliques based on Ai and Aj is 11. We now count the number
of pairs (Ai, Aj) sharing exactly 2 vertices. There are

(
n
6

)
sextuples of vertices,

and for each sextuple, there are
(

6
2;2;2

)
ways to split it into two 4-tuples sharing 2

vertices (2 for Ai ∩ Aj, 2 for Ai alone, 2 for Aj alone).

If |Ai ∩ Aj| = 3, cov (Zi, Zj) ≤ E[ZiZj] = p9n since the total number of different
edges of the two 4-cliques based on Ai and Aj is now 9. We now count the number
of pairs (Ai, Aj) sharing exactly 3 vertices. There are

(
n
5

)
quintuples of vertices,

and for each quintuple, there are
(

5
3;1;1

)
ways to split it into two 4-tuples sharing 3

vertices.

Therefore

Var(Xn) ≤ E[Xn] +

(
n

6

)(
6

2; 2; 2

)
p11n +

(
n

5

)(
5

3; 1; 1

)
p9n = E[Xn] + bn + cn.

The first term of the right-hand side, E[Xn], tends to infinity, and is therefore a
o(E[Xn]

2). The second term also, because bn = O(n6p11n ) and cn = O(n5p9n) and
therefore

bn + cn
E[Xn]2

= O

(
1

n2pn

)
+O

(
1

n3p3n

)
tends to 0 as n ↑ +∞ when pnn

2
3 → ∞ �
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10.2.2 The Evolution of Connectivity

Let V = {1, . . . , n} be fixed and consider the sequence of random graphs

G0 := (V,∅), G1, . . . , Gm, . . . , G(n2)
= Kn

each graph in the sequence being obtained by adding an edge randomly chosen
among the free edges as explained just after Definition 2.1.55. In fact, Gm ≡ Gn,m.
As m grows from 0 to

(
n
2

)
, the connectivity increases. One expects that for very

small values of m, isolated vertices prevail, then, as m increases, the graph will
contain mostly isolated vertices and isolated edges, then mostly trees, etc. The
components will become larger and larger, until one observes a giant component,
that is one with a number of edges that is a fraction α (independent of n) of the
number of vertices, all the other components being “much smaller”. This analysis
is true for “large” graphs, and can be formalized in asymptotic terms as will be
done in the sequel.

The results will be stated in terms of Erdös–Rényi’s graphs (Gn,m) but the proofs
will provide analogous results in terms of Gilbert’s graphs (G(n, p)), where connec-
tivity increases as p grows from 0 to 1. The corresponding statements are given as
corollaries.

Theorem 10.2.9 (a) If m(n) � n
1
2 , Gm(n) contains w.h.p a path of length 2.

(b) If m(n) � n
1
2 , Gm(n) contains w.h.p. only isolated vertices and edges.

Proof. (a) By definition of the symbol �, m(n) = ω(n)n
1
2 where ω(n) tends

arbitrarily slowly to ∞ with n. Since

pn =
ω(n)n

1
2

N(n)
= ω(n)n− 3

2 ,

we also have pn � n− 3
2 .

For the proof, it suffices to show that there is a.a.s. an isolated path of length 2.
Let P2 be the collection of paths of length 2 of the complete graph Kn and let Yn

denote the number of isolated paths of length 2 in G(n, pn), that is,

Yn :=
∑
π∈P2

1{π isolated in G(n,pn)}

We have that (Exercise 10.4.7)

E [Yn] = 3

(
n

3

)
p2n(1− pn)

3(n−3)+1 .

It holds that this quantity tends to ∞ if m(n) = o(n) (and therefore npn = o(1)),

and a fortiori for m(n) = ω(n)n
1
2 , using coupling and the fact that the property of

having a path of length 2 is a monotone increasing property. This does not suffice
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to prove that P (Yn > 0) → 1. We will apply the second moment method and
compute the expectation of

Y 2
n =

∑
π∈P2

∑
ρ∈P2

1{π isolated in G(n,pn)}1{ρ isolated in G(n,pn)} .

Note that the sum can be restricted to pairs π and ρ that are either identical or
share no vertex. (In fact, two different paths of P2 sharing at least one vertex could
not be both isolated in G(n, pn).) Now

E
[
Y 2
n

]
=
∑
π∈P2

{∑
ρ∈P2

P (ρ is isolated in G(n, pn)) | π isolated in G(n, pn))
}

× · · ·

· · ·P (π isolated in G(n, pn)) .
The expression inside brackets is independent of π and therefore, with the partic-
ular choice π = abc,

E
[
Y 2
n

]
= E [Yn]× · · ·

· · ·
(
1 +

∑
ρ∈P2 ; ρ∩abc=∅

P (ρ isolated in G(n, pn)) | abc isolated in G(n, pn))
)

.

If path abc is isolated in G(n, pn), then ρ such that ρ ∩ abc = ∅ is isolated in
G(n, pn) if and only if the following edges are missing:

(a) the 3(n−3) edges from each one of the vertices of ρ from the n−3 potential
edges not leading to a vertex of ρ, and

(b) the 9 edges from a vertex of ρ to a vertex of abc.

Hence

E
[
Y 2
n

] ≤ E [Yn]

(
1 + 3

(
n

3

)
p2n(1− pn)

3(n−3)+1(1− pn)
9

)
= E [Yn]

(
1 + E [Yn] (1− pn)

9
)
.

Therefore, by Lemma 3.2.11,

P (Yn > 0) ≥ E [Yn]
2

E [Y 2
n ]

≥ E [Yn]
2

E [Yn] (1 + E [Yn] (1− pn)9)

=
1

E [Yn]
−1 + (1− pn)9

,

a quantity that tends to 1 since pn → 0 and E [Yn] → ∞. Therefore the probability
that there is an isolated path of length 2 in G(n, pn) tends to 1.

Since the property P that there exists at least a path of length 2 is a monotone
increasing property, we also have by Theorem 10.2.4 that

P (Gn,m(n) has a path of length 2 ) → 1 .

(b) Exercise 10.4.11. �
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Corollary 10.2.10 (a) If pn � n− 3
2 , G(n, pn) contains w.h.p. a path of length 2.

(b) If pn � n− 3
2 , G(n, pn) contains w.h.p. only isolated vertices and edges.

Theorem 10.2.11 If m(n) � n, Gm(n) is a forest w.h.p.

Proof. m(n) � n means that m(n) = n
ω(n)

, where ω(n) tends arbitrarily slowly to
∞ with n. In particular

pn =
m(n)

N(n)
=

2n

n(n− 1)ω(n)
=

2

nω(n)

n

n− 1
≤ 3

nω(n)
.

If Xn denotes the number of cycles in G(n, pn),

E [Xn] =
n∑

k=3

(
n

k

)
(k − 1)!

2
pkn =

n∑
k=3

1

2
n(n− 1) · · · (n− k + 1)pkn ≤

n∑
k=3

nk

2k
pkn

≤
n∑

k=3

nk

2k

1

ω(n)knk
=

n∑
k=3

1

ω(n)k
=

1

ω(n)3
.

Therefore

P (G(n, pn) is not a forest) = P (Xn ≥ 1) ≤ E [Xn] → 0 .

Since the property P that there is not a forest is a monotone increasing property,
by Theorem 10.2.4 we also have that

P (Gn,m(n) is not a forest) → 0 .

Therefore both Gn,m(n) and G(n, pn) are forests w.h.p. �

Corollary 10.2.12 If pn � n−1, G(n, pn) is w.h.p. a forest.

10.2.3 The Giant Component

This subsection features the emblematic result of random graph theory, the emer-
gence of a giant component.

A connected component of a graph (V, E) is a connected subset C ⊆ V (any two
distinct vertices of C are linked by a chain of edges). The components C1, C2, . . .
of the graph will be ordered by decreasing size: |C1| ≥ |C2| ≥ · · · .
Consider the Erdös–Rényi random graph G(n, p) where n ≥ 2 and p ∈ (0, 1). We
shall study the size of the largest component of G(n, λ

n
) as n ↑ ∞. Note that the

average degree of this graph is roughly λ.

It turns out, as we shall see, that the value λ = 1 is critical, in the sense that
the behaviour of the Erdös–Rényi graph G(n, λ

n
) as n ↑ ∞ is different according to

whether λ < 1 (the subcritical case) or λ > 1 (the supercritical case).
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Subcritical Case

In the subcritical case the components are a.a.s. of size at most of the order of
log n. More precisely:

Theorem 10.2.13 (Erdös and Rényi, 1959) If λ < 1, there exists a finite number
a = a(λ) such that

lim
n↑∞

P (|C1| ≤ a log(n)) = 1 . (10.5)

We now prepare the proof with the following description of the exploration of the
component C(v0) containing the arbitrarily chosen vertex v0.

For each k ≥ 0 we keep track of the set of active vertices Ak and of a set of
explored vertices Bk whose respective sizes are denoted by Ak and Bk. These sets
are defined by their construction, as follows. The exploration is initiated with

A0 = {v0}, B0 = ∅ .

At step k ≥ 1, pick arbitrarily an active vertex vk−1 ∈ Ak−1, deactivate vk−1 and
activate all the neighbours of vk−1 that are not in Ak−1 ∪ Bk−1. Denote by Dk the
set of newly activated vertices and by Dk its size.

These sets can be interpreted in terms of epidemics, featuring three types of in-
dividuals: the infectious, the susceptibles and the removed. The active sites form,
in this interpretation, the infectious population. At time k, an indivividual that is
infectious (vk−1 ∈ Ak−1) transmits the disease to his neighbors that have not yet
been infected (those in Dk) and he is then immediately “removed” (either cured
and immune, or dead). The removed population at time k is Bk, of size Bk = k.
The set Uk = V \(Ak ∪ Bk) (whose cardinality will be denoted by Uk) represents
the population that has not yet been infected (the “susceptibles”). In particular
U0 = V \{v0}.
The above construction is summarized as follows

vk−1 ∈ Ak−1

Dk = {v ∼ vk−1; v /∈ Ak−1 ∪ Bk−1}
Ak = (Ak−1 ∪ Dk)\{vk−1}
Bk = Bk−1 ∪ {vk−1} .

In particular, A0 = 1, and as long as Ak−1 > 0,

Ak = Ak−1 − 1 +Dk > 0

and therefore
Ak = D1 + · · ·+Dk − k + 1 .

The exploration procedure just described generates a random tree, called “the
branching process” (of the exploration process). It is not a Galton–Watson process,
as the offspring distribution at each step varies. The offspring distribution at step
k, that is, the distribution of Dk is given by the following two lemmas.
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Lemma 10.2.14 Conditioned on D1, . . . , Dk−1, the random variable Dk is a bi-
nomial random variable of size n− 1− (D1 + · · ·+Dk−1) = n− k + 1−Ak−1 and
parameter p.

Proof.

n = Uk−1 + Ak−1 + Bk−1

= Uk−1 + Ak−1 + k − 1

= Uk−1 + (D1 + · · ·+Dk−1)− (k − 1) + 1 + k − 1

= Uk−1 + (D1 + · · ·+Dk−1) + 1 ,

and therefore

Uk−1 = n− 1− (D1 + · · ·+Dk−1)

= n− k + 1− Ak−1.

The conclusion follows since Dk is selected from Uk−1 by independent trials with
probability p of success. �

The exploration stops at time

Y = inf{k > 0; Ak = 0} ,

when all the vertices of the component C(v0) have been found and deactivated,
and

|C(v0)| = |BY | = Y .

Lemma 10.2.15 For k ≥ 0, Ak + k − 1 is a binomial random variable of size
n− 1 and parameter 1− (1− p)k.

Proof. The construction of the set Dk can be described in the following recursive
manner. Let us draw a collection {Zk,v}k>0,v∈V of iid Bernoulli variables with
parameter p. A given vertex v 
= v0 is included in Dk if and only if Zk,v = 1 and
v /∈ ∪k−1

�=1D�. A vertex v 
= v0 is not incorporated at step k iff Z1,v = · · · = Zk,v = 0,
and this happens with probability (1 − p)k, independently of all such vertices v.
Therefore Uk is the sum of n− 1 independent binomial random variables of mean
(1− p)k so that

Uk ∼ B(n− 1, (1− p)k) .

But Ak + k − 1 = (n− 1)− Uk hence the result (see Exercise 2.4.5). �

Lemma 10.2.16 For all θ > 0,

P (|C(v0)| > k) ≤ exp{−k
(
θ − λ(1− eθ)

)} .
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Proof. By the previous lemma,

P (|C(v0)| > k) ≤ P (Ak > 0)

= P (Ak + k − 1 ≥ k)

= P
(B(n− 1, 1− (1− p)k) ≥ k

)
.

But, as n− 1 < n, and since for sufficiently large n, 1− (1− p)k ≤ kp,

P
(B(n− 1, 1− (1− p)k) ≥ k

) ≤ P (B(n, kp) ≥ k) .

Markov’s inequality gives for θ > 0

P (B(n, kp) ≥ k) = P
(
eθB(n,kp) ≥ eθk

)
≤ E

[
eθB(n,kp)

]
e−θk

= (1− kp+ kpeθ)ne−θk

≤ exp{−npk(1− eθ)}e−θk

= exp{−k
(
θ + λ(1− eθ)

)} .
�

We are now ready to conclude the proof of Theorem 10.2.13. Optimizing with
respect to θ > 0 or, equivalently, taking θ = log λ, we obtain

P (|C(v0)| > k) ≤ e−βk

where β = − log λ− 1 + λ. Therefore, for all δ > 0,

P (|C1| > β−1(1 + δ) log n) = P

(
max
v∈V

|C(v)| > β−1(1 + δ) log n

)
≤
∑
v∈V

P
(|C(v)| > β−1(1 + δ) log n

)
= nP

(|C(v0)| > β−1(1 + δ) log n
) ≤ n−δ.

The announced result then follows with a = β−1(1 + δ).

Supercritical Case

In the supercritical case there exists a.a.s. one and only one large component, that
is a component of size of the order of n. All other components are “small”, that
is, of size of the order of log n. More precisely, denoting by Pe(λ) the probability
of extinction of a branching process whose offspring is distributed according to a
Poisson distribution with mean λ (if λ > 1, this is the unique root in (0, 1) of the
equation x = e−λ(1−x)), we have:

Theorem 10.2.17 (Erdös and Rényi, 1959) If λ > 1, there exists a finite positive
number a = a(λ) such that for all δ > 0,
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lim
n↑∞

P

(∣∣∣∣ |C1|
n

− (1− Pe(λ))

∣∣∣∣ ≤ δ

)
= 1 (10.6)

and

lim
n↑∞

P (|C2| ≤ a log(n)) = 1 . (10.7)

Roughly speaking: in the supercritical case, “the largest component of a big graph
almost surely contains a proportion 1 − Pe(λ) of all vertices and almost all the
other components are at most of logarithmic size”.

Let k− = a′ log n where a′ = log 16λ
(λ−1)2

, and let k+ = n
2
3 . Call v0 a bad vertex if

none of the following properties is satisfied:

(i) The branching process ends before k− steps, that is if |C(v0)| ≤ k−.

(ii) For all k, k− ≤ k ≤ k+, there are at least (λ−1)k
2

active vertices, that is

Ak ≥ (λ−1)k
2

.

Lemma 10.2.18 Any vertex v0 is a.a.s. a good vertex.

Proof. Either the branching process terminates in less than k− steps or not. Vertex
v0 is a bad vertex only in the second case, that is if there exists an integer k,
k− ≤ k ≤ k+, such that Ak < (λ−1)k

2
. This means that the number of vertices

visited at step k is < k + (λ−1)k
2

= (λ+1)k
2

. Let B(v0, k) be the event that there

are < (λ+1)k
2

vertices visited at step k. Then, observing that the branching process
generated by the exploration procedure is before step k+ stochastically bounded
from below by a Galton–Watson branching process with offspring distribution

B
(
n− (λ+1)k+

2
, λ
n

)
,

P (B(v0, k)) ≤ P

(
k∑

i=1

B
(
n− (λ+ 1)k+

2
,
λ

n

)
≤ (λ+ 1)k

2
− 1

)

≤ P

(
B
(
k

(
n− (λ+ 1)k+

2

)
,
λ

n

)
≤ (λ+ 1)k

2
− 1

)
.

Let X := B
(
k
(
n− (λ+1)k+

2

)
, λ
n

)
. We have that E [X] = λk

(
1− (λ+1)k+

2n

)
. We

now apply the bound D of Example 3.2.6 with δ such that (1−δ)λk
(
1− (λ+1)k+

2n

)
=

(λ+1)k
2

, that is

δ = 1− λ+ 1

λ(2− (λ+ 1)k+/n)

(a quantity which tends to λ−1
2λ

as n ↑ ∞). In particular, after some elementary
computations,

P (B(v0, k)) ≤ exp

{
−
(
(λ− 1)2

8λ
+O(n− 1

3 )

)
k

}
.
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The probability P (∪k+
k=k−

B(v0, k)) that v0 is a bad vertex is, by the union bound,
bounded by

k+∑
k=k−

P (B(v0, k)) ≤
k+∑

k=k−

e
−
(

(λ−1)2

8λ
+O(n− 1

3 )

)
k

≤ k+e
−
(

(λ−1)2

8λ
+O(n− 1

3 )

)
k−

≤ n
2
3 e

−
(

(λ−1)2

8λ
+O(n− 1

3 )

)
a′ logn

= n
2
3n− (λ−1)2

8λ
a′+O(n− 1

3 ) .

Taking a′ = 16λ
(λ−1)2

, we have that the probability that v0 is a bad vertex is less than

n− 4
3 . Therefore, by the union bound, the probability of having a bad vertex is less

than n− 1
3 . �

Therefore the branching process starting from any vertex v0 either terminates
within k− = O(log n) steps, or goes on for at least k+ steps. Call vertices of the
first type “small”, and vertices of the second type “large”.

Lemma 10.2.19 There is a.a.s. at most one component containing all the large
vertices.

Proof. In view of Lemma 10.2.18, we may suppose that all vertices are good
vertices. Let v0 and v1 be distinct vertices. Denote their set of active vertices
at stage k+ by A(v0) and A(v1) respectively (in the notation introduced at the
begining of the section A(v0) = Ak+ , with a similar interpretation for v1). Suppose
that C(v0) and C(v1) are both large components, that is, |A(v0)| ≥ λ−1

2
k+ and a

similar inequality for v1. If the branching process for k+ steps for v0 and v1 have
some vertices in common, then we are done since this means that C(v0) and C(v1)
are the same. Now,

P (C(v0) 
= C(v1)) ≤ P (no edge between A(v0) and A(v1))

≤ (1− pn)
−
(

(λ−1)k+
2

)2

≤ e

(
−pn

(λ−1)k+
2

)2

≤ e−
(λ−1)2λ

4
n

1
3 = o(n−2)

(where we have used the inequality 1 − x ≤ e−x). The union bound over distinct
pairs of vertices (v0, v1) then gives that the probability that for any pair of large
vertices v0 and v1 there exists no edge between A(v0) and A(v1) is o(1). �

Therefore, there is a.a.s. only one large component, and all other components have
a size at most O(log n). It remains to determine the size of the large component.

Lemma 10.2.20 The number of small vertices is a.a.s. (1 + o(1))(1− β)n.
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Proof. Let T− and T+ be the sizes of the Galton–Watson branching processes with
respective offsping distributions B(n−k−, λ/n) and B(n, λ/n), and let T = C(v0).
Note that P (T ≤ k−) is the probability that v0 is small. We have

P (T+ ≤ k−) ≤ P (T ≤ k−) ≤ P (T− ≤ k−) .

Let TPoi(λ) be the size of a branching process with Poi(λ) as offspring distribution.
Using estimates based on the results of Examples 10.1.3 and 10.1.10, it can be
shown that

lim
n↑∞

P (T± ≤ k−) = Pe(λ) .

Therefore P (v0 is small) = (Pe(λ) + o(1)). In other notation, P (Z(v0) = 1) =
(Pe(λ) + o(1)), where Z(v) is the indicator of the event that v is a small vertex.

Therefore, letting N =
∑

v Z(v) be the number of small vertices, E [N ] = (Pe(λ)+
o(1))n. By Chebyshev’s inequality,

P (|N − E[N ]| ≥ γE[N ]) ≤ Var (N)

γ2E[N ]2
=

1

γ2

(
E[N2]

E[N ]2
− 1

)
and therefore, if

E[N2]

E[N ]2
= 1 + o(1) , (�)

we have that

P (|N − E[N ]| ≥ γE[N ]) ≤ 1

γ2
× o(1) = o(1)

for any sufficiently slowly growing function γ = γ(n), and this is enough to prove
that N = (1 + o(1))E[N ].

It remains to prove (�). We have, using the fact that Z(v)2 = Z(v) and letting Z
be any random variable with the common distribution of the Z(v)’s,

E
[
N2
]
= E

⎡⎣(∑
v

Z(v)

)2
⎤⎦ =

∑
v

E
[
Z(v)2

]
+
∑
u�=v

E [Z(u)Z(v)]

=
∑
v

E [Z(v)] +
∑
u�=v

E [Z(u)Z(v)]

= E [N ] +
∑
u�=v

P (both u and v are small)

= E [N ] +
∑
v

P (v is small)
∑
u�=v

P (u is small | v is small) .

Now ∑
u�=v

P (u is small | v is small)

=
∑

u�=v ;u in the same component as v

+
∑

u�=v;u not in the same component as v

≤ k− + nPe(B(n, λ/n))
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where Pe(B(n, λ/n)) is the extinction probability of a Galton–Watson branching
process with offspring distribution B(n, λ/n). Here, we have used the fact that
there are at most k− vertices in the component containing v, and that if u is not
in C(v),

P (u is small | v is small) = P (u is small in the graph G\{w ; w is in C(v)}) ,
a quantity which is less than Pe(B(n− k−, λ/n)). Therefore

E
[
N2
] ≤ E[N ] + n2Pe(B(n− k−, λ/n))2(1 + o(1)) = E[N ] + n2(Pe(λ) + o(1))2 .

(Here again the last approximation will use the results of Examples 10.1.3 and
10.1.10 and is left for the reader.) Finally

Var N ≤ E[N ] + n2(Pe(λ) + o(1))2 − E [N ]2 ≤ E[N ] + o(E [N ]2) .

�

10.3 Percolation

10.3.1 The Basic Model

The phenomenon of physics called percolation concerns the situation of a porous
material covering the whole plane and on which a drop of water falls. It refers to
the possibility of a large surface to be wetted. A mathematical model will be given
below. Some preliminary definitions are needed.

Consider the set V = 2 (the (infinite) grid or (infinite) lattice) whose elements are
called nodes or vertices. Let ENN be the collection of nearest-neighbour potential
edges, that is the collection of all unordered pairs 〈u, v〉 of mutually adjacent
vertices2. A percolation graph on 2 is, by definition, a graph G = (V, E) where
V = 2 and E is a subset of ENN . The graph (V, ENN ) is called the fully connected
percolation graph. The dual grid (or lattice) in two dimensions V ′ is the original
grid V = 2 shifted by (1

2
, 1
2
) (its vertices are of the form (i′, j′) = (i+ 1

2
, j + 1

2
)).

The grid
2
and its dual

2
Vertex u = (i, j) has 4 adjacent vertices v = (i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1).
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In a given percolation graph G, a path from vertex u to vertex v is, by definition,
a sequence of vertices v0, v1, . . . , vm such that u = v0 and v = vm 
= u, and for all i
(0 ≤ i ≤ m−1) 〈vi, vi+1〉 is an edge of G. Note that in this definition the extremities
u and v must be different. Such a path is called loop-free if the vertices thereof are
distinct. A loop-free path is also called a self-avoiding walk. If in addition there is
an edge linking u and v, the sequence v0 = u, v1, . . . , vm = v, u is called a circuit
(we insist that it has to be loop-free to be so called).

The random percolation graph Gp on 2, where p ∈ [0, 1], is a random element
taking its values in the set of percolation graphs on 2, and whose collection Ep
of edges is randomly selected according to the following procedure. Let be given a
collection {U〈u,v〉}〈u,v〉∈ENN

of iid random variables uniformly distributed on [0, 1],
called the random generators. Then the potential edge 〈u, v〉 is included in Ep

(becomes an edge of Gp) if and only if U〈u,v〉 ≤ p. Thus, a potential edge becomes
an edge of Gp with probability p independently of all other potential edges. The
specific procedure used to implement this selection allows us to construct all the
random percolation graphs simultaneously, using the same collection of random
generators. In particular, if 0 ≤ p1 < p2 ≤ 1, Gp1 ⊆ Gp2 , by which it is meant that
Ep1 ⊆ Ep2 (see Example 16.1.1).

Two vertices u and v of a given percolation graph are said to be in the same
component, or to be connected, if there exists a path of this graph connecting
them. A component of the percolation graph is a set C of mutually connected
vertices such that no vertex outside C is connected to a vertex in C. Its cardinality
is denoted by |C|. Denote by C(G, u) the component of the percolation graph
containing vertex u.

We now introduce the notion of a dual percolation graph. The dual percolation
graph of a given percolation graph G on V = 2 is a percolation graph on the
dual grid V ′ which has an edge linking two adjacent vertices u′ and v′ if and only
if this edge does not cross an edge of G. Denote by G′ such a graph. In particular
G′

p is the dual random percolation graph of the random percolation graph Gp.

Percolation is said to occur in a given percolation graph if there exists an infinite
component.

10.3.2 The Percolation Threshold

The fundamental result of this section is:

Theorem 10.3.1 There exists a critical value pc ∈ [1
3
, 2
3
] such that the probability

that Gp percolates is null if p < pc (the subcritical case), and equal to 1 if p > pc
(the supercritical case).

The proof will be given after some preliminaries. We start with a trivial observation
concerning C(Gp, 0) (0 stands for (0, 0), the origin of 2). Defining

θ(p) = P (|C(Gp, 0)| = ∞),
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the probability that the origin belongs to an unbounded component of the random
percolation graph Gp, we have that θ(0) = 0 and θ(1) = 1. Next, θ : [0, 1] →
[0, 1] is non-decreasing. Indeed if 0 ≤ p1 < p2 ≤ 1, Gp1 ⊆ Gp2 , and therefore
|C(Gp1 , 0|) = ∞ implies |C(Gp2 , 0|) = ∞. This remark provides an opportunity to
recall the notions of increasing set and increasing function defined on the set of
percolation graphs.

Definition 10.3.2 A set A of percolation graphs is called non-decreasing if for all
percolation graphs G(1), G(2) such that G(1) ⊆ G(2), G(1) ∈ A implies that G(2) ∈ A.
A function f taking its values in the set of percolation graphs on 2 is called
non-decreasing if G(1) ⊆ G(2) implies that f(G(1)) ≤ f(G(2)).

In particular 1A is a non-decreasing function whenever A is a non-decreasing set.

Example 10.3.3: The event {|C(G, 0)| = +∞} is a non-decreasing event. So is
the event “there is a path in G from a given vertex u to a given vertex v”.

In very much the same way as we proved the non-decreasingness of the function
θ, one can prove the following result.

Lemma 10.3.4 If A is a non-decreasing event, then the function p → P (Gp ∈
A) is non-decreasing. If f is a non-decreasing function, then the function p →
E[f(Gp)] is non-decreasing.

Theorem 10.3.1 will be obtained as a consequence of the following lemma.

Lemma 10.3.5 There exists a critical value pc ∈ [1
3
, 2
3
] such that θ(p) = 0 if

p < pc, and θ(p) > 0 if p > pc.

Proof. Part 1. We show that for p < 1
3
, θ(p) = 0. Call σ(n) the number of

loop-free paths starting from 0 and of length n. Such a path can be constructed
progressively edge by edge starting from the origin. For the first edge (from 0)
there are 4 choices, and for each of the n− 1 remaining edges there are at most 3
choices. Hence the bound

σ(n) ≤ 4× 3n−1 .

We order these σ(n) paths arbitrarily.

Let N(n,G) be the number of paths of length n starting from 0 in a percolation
graph G. If there exists in Gp an infinite path starting from 0 (or equivalently, if
there exists an infinite component of Gp containing the origin) then, for each n
there exists at least one path of length n starting from 0, that is,

{|C(Gp, 0)| = ∞} = ∩∞
n=1{N(n,Gp) ≥ 1}

and therefore, for all n ≥ 1,
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θ(p) ≤ P (N(n,Gp) ≥ 1) = P
(
∪σ(n)

i=1 {Yi(Gp) = 1}
)
,

where Yi(Gp) is the indicator function for the presence in Gp of the i-th loop-
free path of length n starting from 0 in the fully connected percolation graph.
Therefore, by the union bound,

θ(p) ≤
σ(n)∑
i=1

P (Yi(Gp) = 1) ≤ σ(n)pn = 4p(3p)n−1 .

If p < 1
3
, this quantity tends to 0 as n ↑ +∞.

Part 2. We show that for p > 2
3
, θ(p) > 0.

The statement that |C(Gp, 0)| < ∞ is equivalent to saying that 0 is surrounded
by a circuit of G′

p.

Call ρ(n) the number of circuits of length n of the fully connected dual graph that
surround the origin of the original grid. We have that

ρ(n) ≤ nσ(n− 1) ,

which accounts for the fact that such circuits contain at most a path of length
n− 1 that passes through a dual vertex of the form (1

2
, 1
2
+ i) for some 0 ≤ i < n.

The set C of circuits of the fully connected dual percolation graph that surround
the origin 0 of the original grid is countable. Denote by Ck ⊂ C the subset of such
circuits that surround the box Bk ⊂ S = 2 of side length k centered at the origin
0. Call Δ(Bk) the boundary of Bk. The two following statements are equivalent:

(i) There is no circuit of Ck that is a circuit of G′
p,

(ii) There is at least one vertex u ∈ Δ(Bk) with |C(Gp, u)| = ∞.

Therefore
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P
(∪u∈Δ(Bk){|C(Gp, u)| = ∞}) = P

(∩c∈Ck{c is not a circuit of G′
p}
)

= 1− P
(∪c∈Ck{c is a circuit of G′

p}
)

≥ 1−
∑
c∈Ck

P
({c is a circuit of G′

p}
)
. (10.8)

A given circuit of length n occurs in the dual random percolation graph G′
p with

probability (1− p)n and therefore

∑
c∈Ck

P
({c is a circuit of G′

p}
) ≤

∞∑
n=4k

nσ(n− 1)(1− p)n ≤ 4

9

∞∑
n=4k

(3(1− p))nn .

(10.9)
If p > 2

3
, the series

∑∞
n=1(3(1− p))nn converges, and therefore, for k large enough,

4
9

∑∞
n=4k(3(1− p))nn < 1. From this and (10.8), we obtain that for large enough k,

P
(∪u∈Δ(Bk){|C(Gp, u)| = ∞}) > 0

which implies that P (|C(Gp, 0)| = ∞) > 0 since there is a positive probability
that there exists in Gp a path from the origin to any point of the boundary of Bk.
�

It remains to conclude the proof of Theorem 10.3.1.

Proof. Let A be the non-decreasing event “there exists an infinite component”.
The random variable 1A(Gp) does not depend on any finite subset of the collection
of independent variables {U〈u,v〉}〈u,v〉∈ENN

. Therefore, by Kolmogorov’s 0–1-law,
P (Gp ∈ A) can take only one of the values 0 or 1. Since on the other hand
P (Gp ∈ A) ≥ θ(p), θ(p) > 0 implies P (Gp ∈ A) = 1. Also, by the union bound,

P (Gp ∈ A) ≤
∑
u∈ 2

P (|C(Gp, u)| = +∞)

=
∑
u∈ 2

P (|C(Gp, 0)| = +∞) =
∑
u∈ 2

θ(p) ,

and therefore, θ(p) = 0 implies that P (Gp ∈ A) = 0. �

Books for Further Information

[Harris, 1989 (Dover ed.)] is the historical book reference on branching processes.
See also [Karlin and Taylor, 1975]. [Athreya and Ney, 1972] is a point of entry to
the modern theory.

The three following monographs concern mainly the Erdös–Rényi random graphs:
[Bollobás, 2nd ed. 2010], [Janson, Luczak and Rućinski, 2000], [Frieze and Karon-
ski, 2015].

[Draief and Massoulié, 2010] is a concise treatment of basically all aspects of the
theory, structured around the important theme of epidemics.
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[Kesten, 1982] is the historical reference on percolation. More recent references are
[Bollobás and Riordan, 2006], [Grimmett, 1999] and [Grimmett, 2010]. In french,
[Werner, 2009].

Applications to communications are developed in [Franceschetti and Meester,
2007].

10.4 Exercises

Exercise 10.4.1. Extinction
Compute the probability of extinction of a branching process with one ancestor
when the probabilities of having 0, 1, or 2 sons are respectively 1

4
, 1

4
, and 1

2
.

Exercise 10.4.2. Branching process transitions

Show that pij := P (Xn+1 = j | Xn = i) of the transition matrix of this chain is
the coefficient of zj in (g(z))i, where g(z) is the generating function of the number
of descendants of a given individual.

Exercise 10.4.3. Several ancestors

Give the survival probability in the model of Section 10.1 with k ancestors, k > 1,
in terms of the offspring generating function gZ .

Exercise 10.4.4. Mean and variance of the branching process

Give the mean and variance of Xn in the model of Section 10.1 with one ancestor
in terms of the mean mZ and the variance σ2

Z of the offspring distribution.

Exercise 10.4.5. Size of the branching tree

When the probability of extinction is 1 (m < 1), show that the generating function
gY of the size of the branching tree, Y :=

∑
n≥0Xn, satisfies the equation

gY (z) = z gZ (gY (z)) ,

where gZ is the offspring generating function.

Exercise 10.4.6. Conjugate offspring distribution

Fix a probability distribution {bk}k∈N that is critical (
∑

k∈N k bk = 1) and such
that b0 > 0. For any λ > 0, define the exponentially tilted distribution {ak(λ)}k∈N
by

ak(λ) = bk
λk

gb(λ)
= bk

λk∑
k≥0 bkλ

k
.

(a) Verify that this is indeed a probability distribution on N that is supercritical
if λ > 1 and subcritical if λ < 1.

(b) Take for {bk}k∈N the Poisson distribution with mean 1. What is the conjugate
distribution?

(c) A parameter μ is said to be a conjugate parameter of λ > 0 if
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λ

gb(λ)
=

μ

gb(μ)
.

Let λ > 1. Prove that there exists a unique conjugate parameter μ of λ such that
μ 
= λ which satisfies μ < 1 and is given by

μ = λP (E)(λ) ,
where P (E)(λ) is the probability of extinction relative to the offspring distribution
{ak(λ)}k∈N.
(d) Let λ > 1. Show that the distribution of the supercritical branching process
history with offspring distribution {ak(λ)}k∈N conditioned on extinction is identical
to that of the subcritical branching process history with offspring distribution
{ak(μ)}k∈N where μ = λP (E)(λ) is the conjugate parameter of λ.

Exercise 10.4.7. Average characteristics

In the random graph G(n, p), compute

a. the average number of isolated vertices,

b. the average number of cycles,

c. the average number of paths of length 2, and

d. the average number of vertices of degree d.

Exercise 10.4.8. Union of random graphs

Let G1, G2, . . . , Gk be k independent copies of G(n, p). Prove that the union of
these copies is a G(n, 1− (1− p)k).

Exercise 10.4.9. Comparison of asymptotics

Let P be a graph property. Let p = pn and m = mn be such that pn = mn

(n2)
and

(
n

2

)
pn → ∞,

(
n

2

)
(1− pn) → ∞.

Show that for large n, P (Gn,mn
∈ P) ≤ 10m

1
2P (G(n, pn) ∈ P).

Exercise 10.4.10. Forest graph

Let ω be a function growing (arbitrarily slowly) to ∞ as n ↑ ∞, say ω(n) =
log log n. Prove that if npn ≤ ω(n)−1, G(n, pn) is a forest (contains no cycles)
w.h.p.

Exercise 10.4.11. Only edges and isolated vertices

If m(n) � n
1
2 , Gm(n) contains only isolated vertices and edges w.h.p.

Exercise 10.4.12. The limit of the exploration branching process

In the notation of section 10.2.3, for fixed k, what is the limit distribution as n ↑ ∞
of the vector (D1, . . . , Dk)?
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Exercise 10.4.13. Percolation in the d-dimensional grid

Adapt the arguments for d = 2 to prove the existence of a percolation threshold p
(0 < p < 1) in the d-dimensional percolation graph.

Exercise 10.4.14. The site percolation model

The grid V = 2 is now viewed as a paving of the plane by squares S(v) of area 1
centered at vertices v ∈ V . The random site percolation graph is generated by an
iid collection of {0, 1}-valued random variables {Y (v)}v∈V , with P (Y (v) = 1) =
p ∈ (0, 1). If Y (v) = 1, the square S(v) is coloured in grey, and otherwise it is left
blank. Two vertices v and w are said to be connected if and only if there exists at
least one sequence of vertices u0 = v, u1, . . . , uk = w such that for all i, 1 ≤ i ≤ k,
the squares S(vi−1) and S(vi) share a side and are both grey. A component of the
site percolation random graph is any set of vertices such that any pair of sites
therein is connected. Inspired by the proof of Theorem 10.3.1, show the existence
of a critical site percolation value p̃c. (Since there is no concept of dual lattice in
the random site percolation graph, one must find another definition for a circuit
around a component. The figure below will replace a formal definition.)

Exercise 10.4.15. Percolation on the k-ary tree

Consider the k-ary tree (a connected graph without cycle where each vertex has
exactly k outgoing edges). A random bond percolation graph is generated by delet-
ing edges independently with probability 1− p. Give the bond percolation critical
probability in this case.

Exercise 10.4.16. Connecting the opposite sides

Consider a square of the grid 2 with n vertices on each side. Consider the bond
percolation random graph generated by deleting edges independently with proba-
bility 1

2
. What is the probability that two given opposite sides are connected?

Exercise 10.4.17. Trivial bound percolation

Give a simple example of graph for which the critical value of bound percolation
is 0 (resp., 1).



Chapter 11

Coding Trees

11.1 Entropy

11.1.1 The Gibbs Inequality

Entropy is an example of a physical concept that has found a new life in the engi-
neering and computing sciences. This chapter concentrates on the aspects involv-
ing tree structures, namely source coding and the generation of discrete random
variables from random numbers.

Let X be a random variable with values in a finite set X , with probability distri-
bution:

p(x) := P (X = x) (x ∈ X ) .

The entropy of X is, by definition, the quantity

H(X) := −E [log(p(X))] = −
∑
x∈X

p(x) log p(x) . (11.1)

(Recall the usual “log convention”: 0 log 0 = 0 and a log 0 = −∞ when a > 0.)

Remark 11.1.1 The notation H(X) is ambiguous in that it seems to indicate a
function of X, and therefore a random variable. In fact, H(X) is a determinis-
tic number, a function of the probability distribution of X. The less ambiguous
notation H(p), where p := {p(x), x ∈ X}, is also used.

The basis of the logarithm must be chosen once and for all. In base D, we shall
write H(X) = HD(X). In base 2, the entropy will be expressed in bits, and in nats
in base e.

One sometimes callsH(X) the quantity of information contained inX, for a reason
that will be clear later on with the questionaire interpretation.

Example 11.1.2: X = {0, 1}, P (X = 1) = p, P (X = 0) = 1− p. Then H2(X) =
h2(p), where

h2(p) := −p log2 p− (1− p) log2(1− p) .

The function h2 is concave and its maximum (= 1) is attained for p = 1
2
. It has

an infinite slope at x = 0 and x = 1.

© Springer International Publishing Switzerland 2017
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The definition of entropy applies to variables taking their values in a discrete
possibly infinite set X , but it may then be an infinite quantity.

Example 11.1.3: Entropy of the geometric distribution. The corre-
sponding entropy is

−
∑
i≥1

p(1− p)i−1 log p(1− p)i−1

= −
∑
i≥1

p(1− p)i−1 (log p− log(1− p) + i log(1− p))

= − log p+ log(1− p)− 1

p
log(1− p) = log

1− p

p
− 1

p
log(1− p).

Theorem 11.1.4 Let (p(x), x ∈ X ) and (q(x), x ∈ X ) be two probability distribu-
tions on X . Then (Gibbs inequality):

−
∑
x∈X

p(x) log p(x) ≤ −
∑
x∈X

p(x) log q(x) , (11.2)

with equality if and only if p(x) = q(x) for all x ∈ X .

Proof. This inequality is a direct consequence of Jensen’s inequality. In fact

E

[
log

(
q(X)

p(X)
1{p(X)>0}

)]
≤ log

(
E

[
q(X)

p(X)
1{p(X)>0}

])
= log

(∑
x∈X

q(x)

p(x)
1{p(x)>0}p(x)

)

= log

(∑
x∈X

q(x)1{p(x)>0}

)

≤ log

(∑
x∈X

q(x)

)
= log 1 = 0
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and

E

[
log

(
q(X)

p(X)
1{p(X)>0}

)]
= E

[
log q(X)1{p(X)>0}

]− E
[
log p(X)1{p(X)>0}

]
=
∑
x∈X

p(x) log q(x)1{p(x)>0} −
∑
x∈X

p(x) log p(x)1{p(x)>0}

=
∑
x∈X

p(x) log q(x)−
∑
x∈X

p(x) log p(x) .

Therefore −∑
x∈X p(x) log p(x) ≤ −∑

x∈X p(x) log q(x). �

Theorem 11.1.5 Let X be a random variable with values in a finite set X . Then,
denoting by |X | the cardinality (number of elements) of X ,

0 ≤ H(X) ≤ log |X | . (11.3)

Moreover, H(X) = 0 if and only if X is deterministic, and H(X) = log |X | if and
only if X is uniformly distributed on X .

Proof. The inequality on the left is obvious. The one on the right follows from the
Gibbs inequality with q(x) = 1

|X | . The value 0 is possible only when for all x ∈ X ,

p(x) log p(x) = 0, that is to say when p(x) = 0 or p(x) = 1. As the p(x)’s sum to
1, there exists in this case one and only one x0 ∈ X such that p(x0)) = 1, that is
P (X = x0) = 1 .
Equality H(X) = log |X | is equivalent to

−
∑
x∈X

p(x) log p(x) = −
∑
x∈X

p(x) log

(
1

|X |
)

,

which is possible (according to Theorem 11.1.4 with q(x) = 1
|X |) only if p(x) = 1

|X |
for all x ∈ X . �

We have just showed that the uniform distribution maximizes entropy over all
distributions on a given finite set. The next example treats a similar issue for
positive integer-valued random variables.

Example 11.1.6: Geometric distribution maximizes entropy. Prove that
the geometric distribution maximizes entropy among all positive integer-valued
random variables with given finite mean μ.

Proof. The corresponding maximization problem is solved by the Lagrangian
method. We find a solution to the equations

∂

∂pi

(
−
∑
i

pi log pi

)
− λ

∂

∂pi
(
∑
i

ipi) = 0 (i ≥ 1)
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that is

− log pi − 1− λi = 0 (i ≥ 1) ,

which gives pi = e−1−λi (i ≥ 1). The constraint
∑

i pi = 1 finally yields

pi = p(1− p)i−1

for some p ∈ (0, 1). In fact, p = μ−1, where μ is the mean of the geometric
distribution. �

The following result will be needed later on.

Lemma 11.1.7 The entropy of a positive integer-valued random variable X with
given finite mean μ satisfies the inequality

H(X) ≤ (μ+ 1) log(μ+ 1)− μ log μ .

Proof. The announced inequality follows from Exercise 11.1.6 according to which
the entropy of any positive integer-valued random variable X with given finite
mean μ is maximized by the entropy of the geometric random variable with mean
μ, namely μ log μ− (μ− 1) log(μ− 1). We are left to prove that

μ log μ− (μ− 1) log(μ− 1) ≤ (μ+ 1) log(μ+ 1)− μ log μ

or equivalently

2μ log μ ≤ (μ− 1) log(μ− 1) + (μ+ 1) log(μ+ 1) ,

which follows from the convexity of the function x → x log x. �

Theorem 11.1.8 Let X1, . . . , Xn be independent random variables, respectively
with values in the finite spaces X1, . . . ,Xn, and with entropies H(X1), ..., H(Xn).
Then

H(X1, ..., Xn) =
n∑

i=1

H(Xi) . (11.4)

In particular, if X1, ..., Xn are iid, H(X1, ..., Xn) = nH(X1).

Proof. Let pi(xi) = P (Xi = xi) be the distribution of the variable Xi ∈ Xi. By
independence:

P (X1 = x1, ..., Xn = xn) =
n∏

i=1

pi(xi) ,

and therefore
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H(X1, ..., Xn) = −E

[
log

(
n∏

i=1

pi(Xi)

)]
= −E

[
n∑

i=1

log pi(Xi)

]

= −
n∑

i=1

E [log pi(Xi)] =
n∑

i=1

H(Xi) .

�

Theorem 11.1.9 Let X1, . . . , Xn be random variables with values in the finite
spaces X1, . . . ,Xn respectively. Let H(X1), ..., H(Xn) be their respective entropies.
Then,

H(X1, ..., Xn) ≤
n∑

i=1

H(Xi) , (11.5)

with equality if and only if X1, ..., Xn are independent.

Proof. By recurrence. It suffices to give the proof for two variables, X and Y , since
any vector of discrete random element is a discrete random variable. We have that

H(X, Y )−H(X)−H(Y ) = −E [log pX,Y (X, Y )] + E [log (pX(X)pY (Y ))] .

The Gibbs inequality applied to the probability distributions p(X,Y )(x, y) and
pX(x)pY (y) on X × Y give the result. (Equality occurs if and only if the two
distributions coincide, that is, if the two variables are independent.) �

Boltzmann’s Interpretation of Entropy

The physicist Boltzmann made the hypothesis that the entropy (in the thermo-
dynamical sense) of a system of n particles, each particle being in one among k
microstates, is proportional to the number of undistinguishable “configurations”
that the system could take. Consider for instance a system of n particles, each
in one of the microstates E1, . . . , Ek. For example, the particles are the elec-
trons of n hydrogen atoms (recall that a hydrogen atom has a single electron)
and E1, . . . , Ek are the energy levels of a given hydrogen electron. The collec-
tion of n particles is called the system. A macrostate of the system is a k-tuple
(n1, . . . , nk) where ni is the number of particles in micro-state Ei. There are
c(n, n1, . . . , nk) = n!/n1! . . . nk! configurations corresponding to the macrostate
(n1, . . . , nk). In order to compare the number of configurations corresponding to
two different macrostates (n1, . . . , nk) and (ñ1, . . . , ñk), we form the ratio

n!

n1! . . . nk!
/

n!

ñ1! . . . ñk!
=

k∏
i=1

ñi!

ni!
,

and let n tend to infinity in such a way that

lim
n↑∞

ni

n
= pi , lim

n↑∞
ñi

n
= p̃i .
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Stirling’s equivalence formula gives

k∏
i=1

ñi!

ni!
� e

n(−
k∑

i=1
pi log pi+

k∑
i=1

p̃i log p̃i)
.

Therefore the macrostates (n1, . . . , nk) with largest entropy are the most likely. If
the physics of the system do not favor any configuration satisfying the macroscopic
constraints, the system will be in the macrostate that maximizes its entropy under
these constraints (Boltzmann’s principle).

Example 11.1.10: The Gibbs distribution. In the hydrogen example, sup-
pose that the only constraint is that the average energy of an electron be fixed at
the value E:

k∑
i=1

piEi = E .

The state of the system will be the one that maximizes −∑k
i=1 pi log pi under the

constraint of energy and the constraint of normalization. The Lagrange method of
multipliers requires one to solve equations

∂

∂pi

(
−
∑
i

pi log pi + λ(
∑
i

(pi − Ei)) + (
∑
i

pi − 1)

)
= 0

for 1 ≤ i ≤ k. This gives − log pi − 1 + λEi + μ, that is pi = Ke−λEi . By normal-
ization,

pi =
e−λEi

Z(λ)
,

where

Z(λ) :=
k∑

i=1

e−λEi

(the partition function). The parameter λ is determined by the energy constraint:

k∑
i=1

Ei
e−λEi

Z(λ)
= E .

11.1.2 Typical Sequences

Let X be a finite set of cardinality D, and let X1, ..., Xn be iid random variables
with values in X and common probability distribution (p(x), x ∈ X ). In particular,
the random vector Xn

1 = (X1, ..., Xn) has the probability distribution

p(xn
1 ) := p(x1, ..., xn) =

n∏
i=1

p(xi) .
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Let
HD := E [− logD p(X1)]

be the common entropy of the above variables.

For ε > 0, let

A(n)
ε :=

{
xn
1 := (x1, · · · , xn) ;

∣∣∣∣∣− 1

n

n∑
i=1

logD p(xi)−HD

∣∣∣∣∣ ≤ ε

}
be the set of ε-typical sequences of order n.

Theorem 11.1.11 We then have

lim
n→∞

P (Xn
1 ∈ A(n)

ε ) = 1

and ∣∣A(n)
ε

∣∣ ≤ Dn(HD+ε) .

Proof.

P (Xn
1 ∈ A(n)

ε ) = P

(∣∣∣∣∣− 1

n

n∑
i=1

logD p(Xi)−HD

∣∣∣∣∣ ≤ ε

)
.

By the weak law of large numbers (Example 3.1.3)

− 1

n

n∑
i=1

logD p(xi)
Pr→ −E [logD p(X1)] = HD ,

that is, for all ε > 0,

lim
n→∞

P

(∣∣∣∣∣− 1

n

n∑
i=1

logD p(xi)−HD

∣∣∣∣∣ > ε

)
= 0 ,

and this is the first announced result. By definition of A
(n)
ε , if xn

1 belongs to this
set,

D−n(HD+ε) ≤ p(xn
1 ) ,

and therefore,

P (Xn
1 ∈ A(n)

ε ) =
∑

xn
1∈A(n)

ε

p(xn
1 ) ≥ D−n(HD+ε)

∣∣A(n)
ε

∣∣ .
The left-hand side is ≤ 1 and therefore

1 ≥ ∣∣A(n)
ε

∣∣D−n(HD+ε) .

�

The result of Theorem 11.1.11 can be used (in theory) for data compression. Con-
struct a mapping c : X n → X n(HD+ε)�+1 as follows. We first construct a mapping
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c̃(n) : A
(n)
ε → X n(HD+ε)�. In view of the inequality in Theorem 11.1.11, such a

mapping can be chosen to be injective. Define a mapping (called the compression
code) c(n) : X n → X ∗ by:

c(n)(xn
1 ) =

{
c̃(n)(xn

1 )1 if xn
1 ∈ A

(n)
ε

0 if xn
1 /∈ A

(n)
ε .

The restriction of c(n) to A
(n)
ε is injective. Therefore one can always recover xn

1 from

its code-word c(n)(xn
1 ) if X

n
1 ∈ A

(n)
ε . An error may occur only if Xn

1 /∈ A
(n)
ε , and the

probability of such an event tends to 0 as n → ∞. Decoding is therefore possible
with an error as small as desired by choosing n large enough. For a sequence of
symbols of X of length n, this coding scheme does not require n symbols, but
(asymptotically) (�n(HD + ε) + 1), which corresponds to a compression rate of

(�n(HD + ε) + 1)

n
.

Choosing n large enough and ε small enough, this ratio can be made arbitrarily
close to HD (a quantity that is of course not greater than 1 since HD ≤ logD |X | =
logD D = 1).

The following result shows that one cannot achieve a better compression rate.

Theorem 11.1.12 Suppose that there exists a set B(n) ⊆ X n and a number R > 0
such that:

lim
n→∞

P (Xn
1 ∈ B(n)) = 1

and ∣∣B(n)
∣∣ ≤ DnR .

Then, necessarily, R ≥ HD.

Proof. If xn
1 ∈ A

(n)
ε , then p(xn

1 ) ≤ D−n(HD−ε), and therefore:

P (Xn
1 ∈ A(n)

ε ∩ B(n)) ≤ D−n(HD−ε)
∣∣A(n)

ε ∩ B(n)
∣∣

≤ D−n(HD−ε)
∣∣B(n)

∣∣ ≤ D−n(HD−ε−R) .

But, by hypothesis, limn→∞ P (Xn
1 ∈ B(n)) = 1 and (Theorem 11.1.11) limn→∞ P (Xn

1 ∈
A

(n)
ε ) = 1, so that

lim
n→∞

P (Xn
1 ∈ A(n)

ε ∩ B(n)) = 1 .

Therefore:

lim
n→∞

D−n(HD−ε−R) ≥ 1

which implies that HD − ε − R ≤ 0, that is, R ≥ HD − ε. As ε is arbitrary, we
obtain the announced result. �
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11.1.3 Uniquely Decipherable Codes

For a given alphabet A, we denote by A∗ the collection of all finite chains of
elements of A including the empty chain ∅. For instance, if A = {0, 1}, the chains
y1 = 0110, y2 = 111 and y3 = 0101010 are in {0, 1}∗. Concatenating chains in A∗

means that they are put together so as to form a chain in A∗. In the example,
01101110101010 is obtained by concatenation of y1, y2 and y3 (the resulting chain
is denoted y1 ∗y2 ∗y3 or, more simply y1y2y3), or by concatenating y1, ∅, y2 and y3.
The length of a chain in A∗ is the number of symbols that it contains (including
repetitions). The length of the chain 01101110101010 is 14.

Let X be a finite set. A code of X is a function c : X → A∗, where A is a finite set
of cardinality D. The chain c(x) is the code word associated with message x ∈ X .
One denotes by l(c(x)) the length of c(x).

Definition 11.1.13 Code c is said to be uniquely decypherable (ud) if for all
integers k ≥ 1, l ≥ 1, and all x1, ..., xk, y1, ..., yl ∈ X :

c(x1)...c(xk) = c(y1)...c(yl) ⇒ k = l, x1 = y1, ..., xk = yk .

It is said to have the prefix property if there exists no pair x, y ∈ X (x 
= y) such
that c(x) is a prefix of c(y). Such a code is then called a prefix code.

The following result is an immediate consequence of the definition of a prefix code.

Theorem 11.1.14 A prefix code is uniquely decipherable.

Example 11.1.15: Consider the following codes for X = {1, 2, 3, 4} using the
binary alphabet A = {0, 1},

1. c(1) = 00, c(2) = 01, c(3) = 10, c(4) = 11.

2. c(1) = 0, c(2) = 1, c(3) = 10, c(4) = 11.

3. c(1) = 0, c(2) = 10, c(3) = 110, c(4) = 111.

Codes 1 and 3 are ud (both have the prefix property), but not that of Example 2
(for instance, c(1) ∗ c(2) = c(3)).

There exist codes that are ud but do not have the prefix property (See Exercise
11.4.2).

Kraft’s Inequality

Theorem 11.1.16 (Kraft, 1949) Consider a code c : X → A∗. Let D := |A|.
1. If the code is ud,

∑
x∈X D−l(c(x)) ≤ 1 (Kraft’s inequality).
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2. If (l(x), x ∈ X ) is a collection of integers such that
∑

x∈X D−l(x) ≤ 1, there
exists a ud code c such that l(c(x)) = l(x) for all x ∈ X .

Proof. (McMillan, 1956) If c is ud, define the product code of order n, c(n) : X n →
A∗, by:

c(n)(xn
1 ) = c(x1) ∗ ... ∗ c(xn) ,

where xn
1 := (x1, ..., xn). Clearly, this code is also ud. One has:(∑

x∈X
D−l(x)

)n

=
∑
x1∈X

...
∑
xn∈X

D(l(x1)+...+l(xn)) =
∑

xn
1∈Xn

D−l(xn
1 ) ,

where l(xn
1 ) = l(x1)+ ...+ l(xn) is the length of the code-word c(n)(xn

1 ). Decompose
the last sum according to each possible length k (k ≥ 1 because in a ud code,
there is no code-word of length 0). Denoting by α(k) the number of code-words of
c(n) of length k and by lmax the maximal length of a code-word of c,(∑

x∈X
D−l(x)

)n

=
∑
k≥1

∑
xn
1∈Xn

l(xn
1 )=k

D−k =
∑
k≥1

α(k)D−k =
nlmax∑
k=1

α(k)D−k .

As c(n) is ud, there are at most Dk code-words of length k. Therefore(∑
x∈X

D−l(x)

)n

≤
nlmax∑
k=1

DkD−k = nlmax

which gives ∑
x∈X

D−l(x) ≤ (nlmax)
1
n .

Assertion 1 follows because the right-hand side of this inequality tends to 1 as
n → ∞.

In order to prove assertion 2, one uses the complete D-ary tree of depth m ≥
maxx∈X l(x). (A complete D-ary tree is a connected graph without loops such that
every node (vertex) has exactly D + 1 edges stemming from it, except the root,
which has exactly D outgoing edges, and selected vertices, the leaves, which have
exactly one adjacent edge.) Construct a partition of the set consisting of the Dm

terminal nodes (leaves) as follows. Rename the elements of X as 1, .., K in such
a way that l(1) ≤ l(2) ≤ ... ≤ l(K). Assign the Dm−l(1) first (starting from the
bottom) to group 1, and then the next Dm−l(2) to group 2, etc.

level li

h(i)

level m

2
m−li nodes
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Condition
∑K

i=1 D
m−l(i) ≤ Dm guarantees that this procedure does not exhaust

the terminal nodes. Then, define c(i) to be the label of the root of the i-th group.
This code is certainly a prefix code as the figure below shows. �

01001

K4

K3

K2

K1

level m = 5

000

0010

0011

T1

T2

T3

T4

Achievable Compression Ratio

The central problem of source coding is that of finding for a given finite set X a
code c : X → A∗ minimizing the average code-length

L(c) =
∑
x∈X

p(x)l(c(x)) .

Enumerating the elements of X as 1, ..., K, and denoting by l1, ..., lK the respective
lengths of the code-words c(1), . . . , c(K), one has to solve the following minimiza-
tion problem:

min
K∑
i=1

pili

under the constraint:
K∑
i=1

D−li ≤ 1 .

Note that the li must be integers. One starts by relaxing this condition, looking
for li’s that are real non-negative. In this case the constraint is:

K∑
i=1

D−li = 1

because if
∑K

i=1 D
−li < 1, one can diminish the li’s, and therefore the sum

∑K
i=1 pili,

while keeping the constraint.
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Lemma 11.1.17 The solution of the problem so modified is

l∗i = − logD pi .

Proof. Apply the Gibbs inequality with qi = D−li (a probability since the modified
constraint is

∑K
i=1 D

−li = 1):

−
K∑
i=1

pi logD pi ≤ −
K∑
i=1

pi logD D−li =
K∑
i=1

pili .

�

Let us now return to the original optimization problem with lengths that are
integers. Define

li = �(− log pi) .
In particular − logD pi ≤ li < − logD pi + 1, hence the following two remarks.
Firstly, the integers just defined satisfy Kraft’s constraint. Theorem 11.1.16 then
guarantees the existence of a ud (in fact, prefix) code c with code-word lengths
l1, · · · , lK . Secondly,

HD ≤
K∑
i=1

pili < HD + 1 .

Let us now encode an iid sequence X1, ..., Xn. The entropy of (X1, ..., Xn) is nHD

where HD is the entropy of any of the elements of the sequence to be encoded,
say, X1. From the previous result, we have the existence of a code c(n) : X n → A∗

whose average length L(c(n)) satisfies:

nHD ≤ L(c(n)) ≤ nHD + 1 .

Therefore the average number of letters from the alphabet A that are needed per

symbol (L(c
(n))
n

) satisfies:

HD ≤ L(c(n))

n
< HD +

1

n
.

As n → ∞, the quantity L(c(n))
n

tends to HD. (This is called the concatenation
argument.) One cannot do better. Indeed, for any ud code with code-word lengths
li (1 ≤ i ≤ K), the numbers D−li (1 ≤ i ≤ K) define a subprobability, and
therefore, by the Gibbs inequality,

HD = −
K∑
i=1

pi logD pi ≤ −
K∑
i=1

pi logD D−li =
K∑
i=1

pili .
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Questionaire Interpretation of Entropy

Suppose that one among K objects, labeled 1, 2, . . . , K, is chosen at random,
object i with probability pi. This object is concealed to you, and you are required
to identify it. For this you are allowed to ask any number of questions whose answer
is yes or no. The goal is to find a questioning strategy that minimizes the average
number of questions until unambiguous identification of the object.

Each question may depend on the previous questions, and one can therefore asso-
ciate with a questioning strategy a binary tree as follows. Each node of the tree is
encoded in the usual way: for instance, node 001 corresponds to the path ”down,
down, up” when starting from the root of the tree. The root is associated with
the empty string and to the first question. String (or node) 0110, for instance cor-
responds to the fifth question given that the answers to the first four are, in this
order, no, yes, yes, no. Note that this way of coding the questions is universal and
does not say anything about the nature of the questions, besides the constraint
that they should have binary answers.

Now choose K nodes in the binary tree, denoted N1, . . . , NK , with the following
interpretation. If the sequence of questions (represented by a path in the tree,
starting from the root) reaches node Ni, then the anwer is “i is the object chosen”.
One may view the binary word corresponding to nodeNi as the code-word of object
i. Since the questioning strategy must be admissible in the sense that it eventually
leads to the correct and unambiguous decision, the binary code so defined has
the prefix property. Indeed if for i 
= j the code-word Nj were a prefix of Ni, the
questioning strategy would produce the answer j when the object to be identified
is in fact i.

The average number of questions in a strategy (identified with a set of K nodes)
is the average code-word length of the prefix code so constructed, that is H2 =
−∑K

i=1 pi log2 pi. This minimum is asymtotically realizable provided we accept
grouping (n objects are chosen independently with the above probability in an urn
with replacement, and we are to identify them simultaneously). More generally,
for a discrete random variable X, the entropy HD(X) is “the minimum average
number of questions with D-ary answers” needed to identify a sample of X.

11.2 Three Statistics Dependent Codes

11.2.1 The Huffman Code

Example 11.2.1: Huffman’s algorithm at work on an example.

(Huffman, 1952) The probability distribution is

p = (0.01, 0.02, 0.02, 0.03, 0.1, 0.12, 0.2, 0.2, 0.3)

and the alphabet is {0, 1}.
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First iteration. Start by associating to each probability a point. Then merge
a pair of points correspondaing to the smallest probabilities. It may occur that
there are several such pairs (in the example, 2 choices). Choose one (in the example,
we choose the leftmost pair).

0.03

0.01 0.02 0.02 0.03 0.1 0.12 0.2 0.2 0.3

Second iteration. The two points are out of the game, they are replaced by
a single point with the sum of their probabilities. Iterate. For instance, with the
choice made in the first iteration:

0.01 0.02 0.02 0.03 0.1 0.12 0.2 0.2 0.3

0.03 0.05

Third iteration. For instance, with the choice made in the second iteration:

0.08

0.050.03

0.01 0.02 0.02 0.03 0.1 0.12 0.2 0.2 0.3

And so forth until the last iteration:
Last iteration.

0.120.01 0.02 0.02 0.03 0.1 0.2 0.2 0.3

0.08

0.03 0.05

1.0

0.18

0.3

0.6

0.4

Final result. Associate to each probability the corresponding string of 0’s
and 1’s with final result

111111, 111110, 111101, 111100, 1110, 110, 01, 00, 10 .
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(Here the left branch at a node corresponds to 1, the right to 0.) The average
length of the code constructed in this way (Huffman’s code) is:

L0 = 6× (0.01 + 0.02 + 0.02 + 0.03) + 4× 0.1 + 3× 0.12 + 2× (0.3 + 0.2 + 0.2)

= 0.48 + 0.4 = 0.36 + 1.4 = 2.64

The proof of the optimality of Huffman’s coding algorithm rests on the following
lemma.

Lemma 11.2.2 If n ≥ 3 and if π = (π1, π2, . . . , πn) is a probability distribution
such that

π1 ≥ π2 ≥ . . . ≥ πn > 0 .

There exists an optimal code c for π such that

c(n) = w ∗ 0 , c(n− 1) = w ∗ 1 ,

for at least one binary string w, and such that code c′ defined by

c′(i) = c(i) (1 ≤ i ≤ n− 2) , c′(n− 1) = w

is optimal for the distribution π′ = (π1, π2, . . . , πn−2, πn−1 + πn).

Proof. Let c be an optimal code for π with code-word lengths �1, . . . , �n. The
probabilities being ordered as indicated above, we may suppose that

�1 ≤ �2 . . . ≤ �n .

(In fact, if for a pair i, j such that i < j we have �i > �j, the code obtained from c
by exchanging the code-words c(i) and c(j) would have a smaller or equal average
length, while keeping the prefix property.)

Moreover, �n−1 = �n because otherwise we could obtain a better prefix code by
suppressing the last �n − �n−1 digits of the code-word c(n).

The code-word c(n − 1) is therefore of the form w ∗ 0 or w ∗ 1, say, w ∗ 0. One
can then take c(n) = w ∗ 1. In fact, there are only two reasons that could prevent
us from doing so: either the code-word w ∗ 1 is the code-word for some c(i) with
i < n − 1 and one would then exchange the code-words c(i) and c(n), or w ∗ 1
is not a code-word c. In this case one would then exchange c(n) in w ∗ 1 without
affecting the average code length while keeping the prefix property (indeed no
code-word c(i) for i 
= n can be a prefix of w ∗ 1 because then it would be a prefix
of w ∗ 0 = c(n− 1), which is not possible since c is a prefix code).

Consider now the code c̃ induced by c on π′ = (π1, . . . , πn−2, πn−1 + πn) :{
c̃(1) = c(i) (1 ≤ i ≤ n− 2)

c̃(n− 1) = w .
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Its average length L̃ is related to the average length of c by

L = L̃+ πn−1 + πn .

Let now L′ be the average length of the optimal code c′ for π′. Starting with c′ one
can define a code ĉ for π by⎧⎪⎨⎪⎩

ĉ(1) = c′(i) (1 ≤ i ≤ n− 2)

ĉ(n− 1) = c′(n− 1) ∗ 0
ĉ(n) = c′(n− 1) ∗ 0 .

The average length L̂ of ĉ satisfies

L̂ = L′ + πn−1 + πn .

But L is the minimal length for codes of π and L′ is the minimal length for codes
of π′. Therefore L′ = L̃ and c̃ is an optimal code for π′. �

The above lemma justifies the iterations in Huffman’s coding. In fact, each iteration
leads to the problem of finding the optimal code for a number of objects that has
decreased by one unit, until it remains to find the optimal code for two objects
which has only two code-words: 0 and 1.

11.2.2 The Shannon–Fano–Elias Code

(Elias, 1954) An advantage of this code is that it does not require the probabilities
to be ordered as in the Huffman coding algorithm. Although it is not optimal, its
asymptotic performance is the same as Huffman’s code, as we shall see.

Since X has cardinality D, we may suppose that X = {1, 2, . . . , D}. Assume
without loss of generality that for all x ∈ X , p(x) := P (X = x) > 0 and let

F (x) :=
∑
y≤x

p(y)

be the cumulative distribution function of X. This is a right-continuous function
with left-hand limits, with a positive jump F (x) − F (x−) = p(x) at all x ∈ X .
Define the function

F (x) :=
∑
y<x

p(y) +
1

2
p(x) .

By the positivity assumption for p(x), x is uniquely determined by the knowledge
of F (x). We may therefore code x by F (x), more precisely by the binary expression
of it:

F (x) = 0.z1(x)z2(x) · · · zn(x) · · ·
Since this representation may involve an infinite number of bits, we use a rounded-
off value

!F (x)"�(x) := 0.z1(x)z2(x) · · · z�(x) .
Therefore
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F (x)− !F (x)"�(x) < 2−�(x) .

The choice
�(x) = �− log p(x) + 1

ensures that
1

2�(x)
<

p(x)

2
= F (x)− F (x)

and therefore that !F (x)"�(x) lies in the interval (F (x−), F (x)). In particular,
x is uniquely determined by its code !F (x)"�(x). It remains to show that this
code is uniquely decipherable, in fact a prefix code. Suppose, in view of contra-
diction, that the codewords for a and b, a 
= b, are respectively z1z2 · · · z� and
z1z2 · · · z�z�+1 · · · z�+m (and therefore the prefix condition is violated). Since

0.z1z2 · · · z�z�+1 · · · z�+m − 0.z1z2 · · · z� < 1

2�
<

p(a)

2

and since 0.z1z2 · · · z� is in the lower half of of the interval (F (a−), F (a)) of length
p(a)
2
, the code word for b would also lie in this interval, which is not the case. The

non-prefix hypothesis is therefore contradicted.

The average length of the Shannon–Fano–Elias code is

L =
∑
x∈X

p(x)

(
�log 1

p(x)
 + 1

)
≤ H(X) + 2 .

The same concatenation argument as for the optimal code shows that it has the
optimal asymptotic performance, with an average length per alphabet symbol
H(X).

11.2.3 The Tunstall Code

(Tunstall, 1967) Huffman’s code transforms fixed-length messages into codewords
of variable lengths. In contrast, Tunstall’s code associates codewords of fixed length
to variable-length messages.

A notion central to this type of code is that of “parsing”. A parsing of a sequence
xn
1 := (x1, x2, . . . , xn) of symbols (letters) from an alphabet A is any sequence of

strings (the “phrases”) formed by successive symbols from xn
1 . For instance, for

the sequence aaabbc, we have the parsing a, aa, b, bc, but also the trivial parsings
consisting of just one phrase aaabbc, the sequence itself, or the parsing with all
phrases of length 1, that is a, a, a, b, b, c.

Tunstall’s code consists of a parsing code and of a translation code and operates as
follows. A sequence of source symbols X1, X2, ... from an alphabet A of size D ≥ 2
is parsed into a sequence W1,W2, ... of phrases from the parsing code

C := {y(1), ..., y(M)} ,

where for all i (1 ≤ i ≤ M), y(i) is a finite sequence of symbols from A of lengths
�i = �(y(i)):
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y(j) = y1(j)...y�j(j) .

The translation code then transforms the codeword sequenceW1,W2, ... into binary
sequences of length b. This last operation must be injective, and therefore M ≤ 2b.

Example 11.2.3: Tunstall coding of abbabbbaaababba. In this example,
the alphabet A = {a, b} (D = 2), the parsing code has M = 4 codewords

y(1) = a

y(2) = ba

y(3) = bba

y(4) = bbb

and the translation code is

a −→ 00

ba −→ 01

bba −→ 10

bbb −→ 11

The following sequence generated by the source

abbabbbaaababba

is parsed on-line (as soon as a codeword in the parsing code is recognized, it
becomes a phrase of the parsing):

a|bba|bbb|a|a|a|ba|bba

This sequence is then translated according to the translation code:

00 10 11 00 00 00 01 10 .

The code of Example 11.2.3 is a valid parsing code in the following sense:
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Definition 11.2.4 A valid parsing code C is one with the following properties:

C1. Every infinite sequence of letters from A must have a prefix in C.
C2. It has the prefix property.

Requirement C1 is obviously necessary for encoding. If requirement C2 was not
met, this would imply that some codewords of the parsing code would never be
used.

A valid parsing code is represented by a complete D-ary tree, that is, a connected
graph without loops such that every node (vertex) has exactly D + 1 edges stem-
ming from it, except the root (which has exactly D outgoing edges) and selected
vertices, the leaves (which have exactly one adjacent edge). The D edges from any
given node are labeled by a letter of the alphabet A, in a homogeneous way. For
instance if the tree is represented horizontally, we label the branches from bottom
to top by a1, a2, . . . , aD. Therefore every node of the tree is associated with a
sequence of letters from the alphabet A, this sequence being the sequence of labels
read as one progresses on the tree from the root to this node.

Definition 11.2.4 implies that a valid parsing code can be represented by a complete
D-ary tree for which there is a one-to-one correspondence between the leaves and
the codewords, whereas no codeword of C corresponds to an intermediary node.

Example 11.2.5: Three parsing codes.

This parsing code is valid.

Invalid parsing code: C1 violated.

Invalid parsing code: C2 violated.

From now on, the input sequence X1, X2, ... is assumed iid with distribution

P (Xi = x) = p(x) (x ∈ A, i ≥ 1) .

In particular, the sequence {(Wi, Li)}i≥1, where Li := �(Wi), is iid. Let (W,L) be
any random element with the common distribution of the (Wi, Li)’s. The average
length of the parsing code is E [L] and
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b

E [L]

is the average number of bits per alphabet symbol. This quantity will now be
minimized by an appropriate choice of b and of the M codewords of C.
Let C be a valid parsing code. Consider the associatedD-ary tree. Call intermediary
a node that is not a leaf (this includes the root).

Lemma 11.2.6

E [L] =
∑

intermediary nodes

Pr(nodes)

where Pr(node) is the probability of the sequence of letters corresponding to the
node considered (the sequence of letters read as one progresses from the root to this
node).

Proof. The generic parsing codeword W is of the type W = X1, ..., XL. Saying
that W = y(r) means that

X1 = y1(r), X2 = y2(r), ..., X�(r) = y�(r)(r), L = �(r) .

Therefore

P (W = y(r)) =

�(r)∏
j=1

p(yj(r)) .

In particular, the sum of the probabilities of the leaves stemming from an inter-
mediary node is equal to the probability of this node. The sum of the probabilities
of the intermediary nodes at depth i is P (L > i) (see the figure below).

Here Pr(∗) = p1 + p2, Pr(γ) = p4 + p5, Pr(Δ) = p6 + p7 + p8,

and P (L > 2) = Pr(∗) + Pr(γ) + Pr(Δ) = p1 + p2 + p4 + p5 + p6 + p7 + p8.
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Therefore ∑
intermediary nodes

Pr(nodes) =
∞∑
i=0

P (L > i) = E [L] .

�

Lemma 11.2.7 The number α of intermediary nodes corresponding to a valid
parsing code of M elements satisfies the equality

M = 1 + α(D − 1) .

Proof. Consider a bunch of D leaves stemming directly from the same node. Such
a bunch exists necessarily by condition C2 of Definition 11.2.4. By cutting the
branches corresponding to these leaves and transforming the intermediary node
from which they stem into a single leaf, the number of intermediary nodes is
reduced by 1 and the number of leaves by D − 1. Repeating this operation until
only the root remains, we see that 1 = M − α(D − 1).

�

We now construct the optimal code. Given b, take M ≤ 2b. In fact, we choose α
such that

M ≤ 2b < M + (D − 1) ,

that is,

1 + α(D − 1) ≤ 2b < 1 + (α + 1)(D − 1) .

Having α, one must choose the intermediary nodes in order to maximize E [L] or,
equivalently, the sum of the probabilities of the intermediary nodes. The following
algorithm does it.

Start from the root, and progress into the tree. Supose j < α intermediary nodes
have already been selected (the black dots in the figure on the left below). Consider
all the leaves stemming directly from the j already selected intermediary nodes
(the white squares in the figure on the left below). Identify the leaf with highest
probability. Replace this leaf by an intermediary node. Repeat the operation until
α intermediary nodes have been selected.
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Here j = 3.

Lemma 11.2.8

H(W ) = H(X)E [L] .

Proof. Let W := (X1, ..., XL) be the first phrase in the parsing of X1, X2, . . .. We
have

E

[
L∑
i=1

log p(Xi)

]
= E

[
M∑
r=1

L∑
i=1

log p(Xi)1{W=y(r)}

]

=
M∑
r=1

E

[
L∑
i=1

log p(Xi)1{W=y(r)}

]

=
M∑
r=1

E

⎡⎣ �(r)∑
i=1

log p(yi(r))1{W=y(r)}

⎤⎦
=

M∑
r=1

log

⎛⎝�(r)∏
i=1

p(yi(r))

⎞⎠P (W = y(r))

=
M∑
r=1

(logP (W = y(r)))P (W = y(r)) = −H(W ) .

Compute the same quantity in a different way:

E

[
L∑
i=1

log p(Xi)

]
= E

[ ∞∑
i=1

1{i≤L} log p(Xi)

]

=

∞∑
i=1

E
[
1{i≤L} log p(Xi)

]
.

Observe that {L ≥ i} =
⋃i−1

k=1 {L = k}, and that the event {L = k} depends only

on X1, ..., Xk. In particular {L ≥ i}, and therefore {L ≥ i}, does not depend on
X1, ..., Xi−1. By independence,
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∞∑
i=1

E
[
1{i≤L} log p(Xi)

]
=

∞∑
i=1

E
[
1{i≤L}

]
E [log p(Xi)]

= −
∞∑
i=1

P (L ≥ i)H(X) = −E [L]H(X) .

The announced equality then follows. �

Having constructed for fixed b the optimal parsing code (maximizing E[L]), we
analyze its performance. In fact, it will be shown that, asymptotically, it optimaly
compresses data, with a compression ratio equal to the entropy of the source.

Theorem 11.2.9

lim
b→∞

b

E [L]
= H(X) .

Proof. Let Q be the probability of the last intermediary node selected in the above
construction of the D-ary parsing tree. Then

1. each intermediary node has a probability ≥ Q, and

2. the M leaves each have a probability ≤ Q, and

3. The M leaves each have a probability ≥ QPmin,

where Pmin = infx∈A P (X = x). From conditions C1 and C2,

QPmin ≤ Pr(leaf) ≤ Q . (�)

Summing the first inequality on all the leaves gives MQPmin ≤ 1, that is

Q ≤ 1

MPmin

.

Therefore, by the second inequality of (�),

− log Pr(leaf) ≥ log(MPmin) .

Summing this inequality on all the leaves:

H(W ) ≥ log(MPmin) .

Remembering that 2b < M +D − 1:

b < log(M +D − 1) = logMPmax + log

(
1

Pmin

)
+ log

(
1 +

D − 1

M

)
= logMPmin + c ≤ H(W ) + c = H(X)E [L] + c ,

that is
b < H(X)E [L] + c , (†)
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where

c := log

(
1

Pmin

)
+ log

(
1 +

D − 1

M

)
.

Also, since M ≤ 2b,

b ≥ logM ≥ H(W ) = E [L]H(X) (††)

(W takes M values, and therefore H(W ) ≤ logM). From (†) and (††),

H(X) ≤ b

E [L]
≤ H(X) +

c

E [L]
.

Let b → ∞. Since 2b < M +D − 1, M also tends to infinity and therefore:

c → − logPmin .

But, as logMPmin + c ≤ H(X)E [L] + c, we also have E [L] → ∞, which shows
that

lim
b→∞

c

E [L]
= 0 .

�

11.3 Discrete Distributions and Fair Coins

11.3.1 Representation of Discrete Distributions by Trees

The problem considered in this section is that of generating a discrete probabil-
ity distribution using a fair coin. More precisely, given an iid sequence {Un}n≥1

of equiprobable {0, 1}-valued random variable (the fair bits), can we generate a
discrete random variable X with a prescribed distribution?

Example 11.3.1: Let X = {a, b, c} and let the distribution of X be (1
2
, 1
4
, 1
4
). The

following generation algorithm is proposed. If U1 = 1, set X = a. If U1 = 0, U2 = 1,
set X = b. If U1 = 0, U2 = 0, set X = c. One readily checks that this gives
the required probability distribution for X. This algorithm is best represented by
the binary tree of the left in the figure below, which is explored from the root
downwards according to the outcomes of the fair bits sequence. At the k-th stage
of exploration, the explorator finds itself in some node at the k-th level and upon
unveiling the value of the (k + 1)-th fair bit Uk+1 proceeds to the (k + 1)-th level
according to whether Uk+1 = 1 or 0 (left if 1, right if 0). The values of X are the
labels of the leaves of the binary tree. In this specific example, there is one leaf
per value.

Example 11.3.2: Let X = {a, b, c} and let the distribution of X be (6
8
, 1
8
, 1
8
).

Consider the tree of the figure below on the right, noting that it has two leaves
for a. It is explored as in the previous example. The outcome of the algorithm is
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a if U1 = 1 or U1 = 0 and U2 = 1, and this occurs with probability 1
2
+ 1

4
= 6

8
.

Similarly, if U1 = 0, U2 = 0 and U3 = 1, the outcome is b with probability 1
8
. If

U1 = 0, U2 = 0 and U3 = 0, the outcome is c with probability 1
8
.

Generation trees for the distributions (
1
2 ,

1
4 ,

1
4) and (

6
8 ,

1
8 ,

1
8)

11.3.2 The Knuth–Yao Tree Algorithm

(Knuth and Yao, 1976) A finite binary tree with a number of leaves equal to the
number of values of X and with exactly one value of X for each leaf (as in Example
11.3.1) is called a simple generation tree. If in a possibly infinite binary tree the
number of leaves is strictly larger than the number of values (and of course with
exactly one value per leaf) as in Example 11.3.2, it is called a composite generation
tree.

Any simple generation tree corresponds to a random variable Y , a value y being
identified with a leaf at level k = k(y) and having probability 2−k(y). The average
length of exploration of this tree is

E[T ] =
∑
y

k(y)2−k(y) = −P (Y = y) logP (Y = y) = H(Y ) .

The random variable Y will be called the intrinsic variable of the tree. In the case
where the generation tree ofX is simple, X = Y , and therefore the average number
of fair bits needed to generate the distribution of X is E[N ] = H(Y ) = H(X).
In the case where the tree is composite, X is a function of the intrinsic variable
Y . Therefore H(X) ≤ H(Y ) and the number of fair bits needed to generate the
distribution of X is

E[N ] = H(Y ) ≥ H(X) . (�)

Let henceforth X := {1, 2, . . . ,m} and pi := P (X = i) (1 ≤ i ≤ m) be the prob-
ability distribution of X. A probability distribution corresponding to a composite
binary generation tree is called a dyadic distribution. What if the distribution of
X is not dyadic? The Knuth–Yao algorithm proceeds as follows. First write each
pi (1 ≤ i ≤ m) in binary form

pi =
∞∑
j=1

p
(j)
i

where p
(j)
i = 1

2j
or 0. An atom of the expansion is a pair (i, j) (1 ≤ i ≤ m, 1 ≤ j <

∞) such that p
(j)
i = 1

2j
. To such an atom associate a node at level j. An assignment

such that the resulting tree has no atom at a node and exactly one atom on each
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leaf is possible because the Kraft inequality is satisfied, that is, using an obvious
notation, ∑

(i,j)

2−�(i,j) =
∑
(i,j)

2−j =
∑
i

pi = 1 .

Note however that the tree may be infinite (see Exercise 11.4.9). A leaf associated
with an atom (i, j) will be assigned the value i of the variable X. Letting Y be the
intrinsic variable of the tree, we have as usual that the number of fair bits needed
to generate the distribution of X is E[N ] = H(Y ).

Theorem 11.3.3

H(X) ≤ E[N ] < H(X) + 2 .

Proof. (Cover and Thomas, 1991) The lower bound was given above in (�). We
now proceed to the upper bound. Since E[N ] = H(Y ), it suffices to show that

H(Y ) < H(X) + 2 . (��)

Now

H(Y ) = −
∑
(i,j)

p
(j)
i log p

(j)
i =

m∑
i=1

∑
j ; p

(j)
i >0

j2−j :=
m∑
i=1

Ti .

To prove (��), it is enough to show that

Ti < −pi log pi + 2pi (†)

since then

H(Y ) =
m∑
i=1

Ti < −
m∑
i=1

pi log pi + 2
m∑
i=1

pi = H(X) + 2 .

Let i be fixed. There exists an integer n = n(i) such that 2−(n+1) > pi ≥ 2−n, that
is,

n− 1 < − log pi ≤ n . (††)

In particular, p
(j)
i > 0 only if j ≥ n, so that we can write

Ti =
∑

j≥n , p
(j)
i >0

j2−j and pi =
∑

j≥n , p
(j)
i >0

2−j . († † †)

In order to prove (†), write, using (††) and († † †),
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Ti + pi log pi − 2pi ≤ Ti − pi(n− 1)− 2pi = Ti − (n+ 1)pi

=
∑

j≥n , p
(j)
i >0

j2−j − (n+ 1)
∑

j≥n , p
(j)
i >0

2−j

=
∑

j≥n , p
(j)
i >0

(j − n+ 1)2−j

= −2−n +
∑

j≥n+2 , p
(j)
i >0

(j − n+ 1)2−j

= −2−n +
∑

k≥1 , p
(k+n+1)
i >0

k2−(k+n+1)

= −2−n +
∑
k≥1

k2−(k+n+1) = −2−n + 2−(n+1)2 = 0 .

�

11.3.3 Extraction Functions

We are now concerned with the inverse problem, that of generating sequences of
iid variables taking the values 0 and 1 with the same probability 1

2
starting from

a given random variable X with known distribution. In other terms, we aim at
“extracting” “random fair bits” from X. This will now be made precise.

Let {0, 1}∗ denote the collection of all finite sequences of binary digits, including
the void sequence. Denote by �(x) the length of a sequence x ∈ {0, 1}∗.

Definition 11.3.4 Let X be a random variable with values in E. The function
ϕ : E #→ {0, 1}∗ is called an extraction function for X if whenever P (�(ϕ(X)) =
k) > 0,

P (ϕ(X) = x | �(ϕ(X)) = k) =

(
1

2

)k

.

The variable Y = ϕ(X), taking its values in {0, 1}∗, is called an extraction of X.
By definition of an extraction function, conditionally on �(Y ) = k, the variables
Y1, Y2, . . . , Yk are iid, uniformly distributed on {0, 1}. The extraction function
therefore produces “independent fair bits”.

Example 11.3.5: Write (in a unique manner) the integer m as

m = 2α1 + 2α2 + · · ·+ 2αk ,

where the α’s are integers such that α1 > α2 > · · · > αk. Therefore the list
{0, 1, . . . ,m − 1} can be partitioned in k lists S1, S2, . . . , Sk. The elements of Si

contain 2αi elements and therefore can be put in bijection with the set of binary
strings of length αi, that is {0, 1}αi . Denote bαi

this bijection. The extraction
function is as follows. If X ∈ Si, define ϕ(X) = bαi

(X).
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This is an extraction function since, conditionally on �(ϕ(X)) = αi, ϕ(X) is uni-
formly distributed on {0, 1}αi .

Now, if X ∈ Si, which occurs with probability |Si|
m

= 2αi

m
, �(ϕ(X)) = αi. Therefore,

E [�(ϕ(X))] =
2α1

m
α1 +

2α2

m
α2 + · · ·+ 2αk

m
αk .

Lemma 11.3.6 If X is uniformly distributed on {0, 1, . . . ,m− 1}, there exists an
extraction function ϕ for Xsuch that E [�(ϕ(X))] ≥ !log2 m" − 1 = !H2(X)" − 1.

Proof. Proceed by induction. The result is obviously true for m = 1. Let now m >
1 be given. Suppose that the result is true for all m′ < m. Let α1 be as in Example
11.3.5. If X ≤ 2α1 − 1 output the α1-bit binary representation of X. Otherwise,
apply to X − 2α1 , which takes its values uniformly on {0, 1, . . . ,m− 2α1 − 1}, an
extraction function with an average number of bits ≥ !log2(m − 2α1)" − 1. The
resulting extraction function for X therefore has an average length larger than or
equal to

2α1

m
α1 +

2m−α1

m
(!log2(m− 2α1)" − 1)

α1 +
2m−α1

m
(!log2(m− 2α1)" − α1 − 1) .

Now, observe that !log2(m− 2α1)" = α2 ≤ α1 − 1. Therefore the average length of
the extraction is larger than or equal to

α1 +
2m−α1

m
(α2 − α1 − 1) . (�)

But
2m−α1

m
= 1− 2α1

m
≥ 1− 2α1

2α1 + 2α2

and therefore the quantity (�) is larger than or equal to

α1 −
(
1− 2α1

2α1 + 2α2

)
(α1 − α2 + 1) ≥ α1 − 1 = !log2m" − 1 .

�

Let X = (X1, X2, . . . , Xn) ∈ {0, 1}n be a vector of iid {0, 1}-valued variables with
P (Xi = 1) = p ∈ (1

2
, 1) for all i, 0 ≤ i ≤ n.

Theorem 11.3.7 (Mitzenmacher and Upfal, 2005) Let X be as above.

(a) For any δ ∈ (0, 1), for sufficiently large n, there exists an extraction function
ψ : {0, 1}n → {0, 1}∗ such that E [�(ψ(X)] ≥ (1− δ)nH2(p).

(b) There exists an extraction function ψ : {0, 1}n → {0, 1}∗ such that
E [�(ψ(X)] ≤ nH2(p).
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Proof. (a) Let h(X) :=
∑n

k=1Xk be the Hamming weight of X. There are
(
n
j

)
vectors x ∈ {0, 1}n with Hamming weight j and they are equiprobable realizations
of X. The realizations of Hamming weight j are encoded using an extraction
function ϕj with the property indicated in Lemma 11.3.6, that is

E [�(φj(X)) |h(X) = j] ≥ !log2
(
n

j

)
" − 1 .

The extraction function

ψ(X) :=
n∑

j=0

φj(X)1{h(X)=j}

has the average length

E [�(ψ(X))] =
n∑

j=0

P (h(X) = j)E [�(φj(X) |h(X) = j]

≥
n∑

j=0

P (h(X) = j)(!log2
(
n

j

)
" − 1) .

Let ε < p− 1
2
be a constant to be chosen later. Then, for n(p− ε) ≤ j ≤ n(p+ ε),

by Theorem 2.1.36, (
n

j

)
≥
(

n

!n(p+ ε)"
)

≥ 2nH2(p+ε)

n+ 1
,

and therefore the average length of ψ(X) is larger than

n(p+ε)�∑
j=�n(p−ε)	

P (h(X) = j)(!log2
(
n

j

)
" − 1)

≥
(
log2

2nH2(p+ε)

n+ 1
− 2

) n(p+ε)�∑
j=�n(p−ε)	

P (h(X) = j)

≥ (nH2(p+ ε)− log2(n+ 1)− 1)P (|h(X)− np| ≤ nε) .

By Chernoff,

P (|h(X)− np| ≤ nε) := P (|
n∑

k=1

Xk − np| ≤ nε) ≤ 2e−nε2/3p .

Therefore,

E [�(ψ(X))] ≥ (nH2(p+ ε)− log2(n+ 1)− 1)(1− 2e−nε2/3p) .

Choose ε sufficiently small so that

nH2(p+ ε) ≥ (1− δ

3
)nH2(p).
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For n > 3p
ε2
log 6

δ
, 1− 2e−nε2/3p ≥ 1− δ

3
, and therefore

E [�(ψ(X))] ≥ ((1− δ

3
)nH2(p)− log2(n+ 1)− 1)(1− δ

3
) .

With n sufficiently large that δ
3
nH2(p) ≥ log2(n + 1) + 1, E [�(ψ(X))] ≥ ((1 −

2 δ
3
)nH2(p))(1− δ

3
) ≥ (1− δ)nH2(p).

(b) Since ϕ(X) is a function of X, H2(X) ≥ H2(ϕ(X)). But

H2(ϕ(X)) = −
∑
x∈X

P (ϕ(X) = x) log2 P (ϕ(X) = x)

= −
∑
x∈X

P (ϕ(X) = x) log2 2
−�(ϕ(x))

=
∑
x∈X

P (ϕ(X) = x)�(ϕ(x)) = E [�(ϕ(X)] .

Therefore
E [�(ψ(X))] ≤ H2(X) = nH2(p) .

�

Books for Further Information

A popular textbook in information theory is [Cover and Thomas, 2006]. See also
[Ash, 1965], [Gallagher, 1968], [McEliece, 2002] and [MacKay, 2003]. For the gen-
eration of random variables: [Knuth, 1973].

11.4 Exercises

Exercise 11.4.1. Deterministic transformations

1. Let X be a random variable with values in the finite set X and let Y = ϕ(X)
where ϕ is a bijective deterministic function. Show that

H(Y ) = H(X) .

2. Let Z be a random variable with values in the finite set Z, and let ψ be a
deterministic function (not necessarily bijective). Show that:

H(Z, ψ(Z)) = H(Z) .

Exercise 11.4.2. Uniquely decipherable but not prefix

Give an example of a code that is uniquely decipherable and yet not a prefix code.

Exercise 11.4.3. Extension of McMillan’s theorem

The proof of Assertion 1 of Theorem 11.1.16 depends crucially on the finiteness of
the code. Show that it remains true for an infinite yet denumerable code.
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Exercise 11.4.4. Huffman code

Find an optimal binary code for the following probability distribution:

p = (0.01, 0.04, 0.05, 0.07, 0.09, 0.1, 0.14, 0.2, 0.3) .

What is its average length?

Exercise 11.4.5. Approaching entropy

Let Xi (i ≥ 1) be {0, 1}-valued iid random variables with distribution given by
P (Xi = 1) = 3

4
. Let H be the entropy of this variable. Find n such that the optimal

code for the random element (X1, . . . , Xn) has a length per symbol ≤ H + 10−2.

Exercise 11.4.6. Tunstall code

Find a Tunstall code for the probability distribution of Example 11.4.4 with b = 4,
D = 2.

Exercise 11.4.7. The false coin

You have 15 coins, undistiguishable, except for one of them, which has a different
weight. This strange coin is not known to you, but you are informed that the
difference of weight is very small, say one percent lighter or heavier, but you do
not know if it is lighter or heavier. All you have at disposition is a scale. Find a
strategy that allows you to find the strange coin and that involves the minimal
average utilization of the scale.

Exercise 11.4.8. Competitive optimality of the Shannon code

(Cover, 1991) Let �(X) and �′(X) be the codeword lengths of a discrete random
variable X for the Shannon code and of any other uniquely decipherable code
respectively. Show that for all c ≥ 1

P (�(X) ≥ �′(X) + c) ≤ 21−c .

Exercise 11.4.9. The Knuth–Yao algorithm

Detail the Knuth–Yao algorithm for generating a random variable X taking the
two values a and b with respective probabilities 2

3
and 2

3
.



Chapter 12

Shannon’s Capacity Theorem

12.1 More Information-theoretic Quantities

12.1.1 Conditional Entropy

Shannon’s channel coding theorem concerns the possibility of communicating via a
noisy channel with an arbitrarily small probability of error. Its proof is based on the
random coding argument, perhaps the first occurence of the probabilistic method
(Chapter 5). In view of defining the capacity of a channel, the central notion
of Shannon’s result, we need to augment our panoply of information-theoretic
quantities, starting with the notion of conditional entropy.

Let X and Y be two discrete random variables with values in the finite sets X and
Y respectively. Let pX , pY and pXY denote the distributions of X, Y and (X, Y )
respectively. Observe that the random variables pX(X), pY (Y ) and pXY (X, Y ) are
almost surely non-null. For instance

P (pX(X) = 0) = E
[
1{pX(X)=0}

]
=
∑
y∈Y

1{pX(x)=0}pX(x) = 0 .

(This observation will allow us to accept the presence of these random variables
in the denominator of fractions.)

Definition 12.1.1 The conditional entropy of X given Y is the quantity

H(X|Y ) := H(X, Y )−H(Y ) .

Alternatively,

H(X|Y ) = E [log pX,Y (X, Y )]− E [log pY (Y )] = E
[
log pX|Y (X|Y )

]
,

where

pX|Y (x|y) := P (X = x|Y = y) =
pX,Y (x, y)

pY (y)

is the conditional probability of X = x given Y = y.
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Remark 12.1.2 According to the questionnaire interpretation of entropy, the en-
tropy HD(X) is “the minimum average number of questions with D-ary answers”
needed to identify a sample of X. This is a rough way of saying things that is
convenient to interpret the various information-theoretic relations. An example of
the kind of argument that leads to the correct result is the following. In order to
identify a pair of random variables (X, Y ), one can for instance start by identify-
ing X, which requires H(X) questions, and then, knowing X, to identify Y , which
requires H(Y |X) questions. Therefore the total number of questions necessary to
identify both variables is H(X) + H(Y |X) and this is H(X, Y ), hence the rela-
tion H(X, Y ) = H(X) +H(Y |X). Of course, the identities that are found in this
heuristic manner must be proved by regular means, but they generally lead to the
correct result.

Theorem 12.1.3 We have the identities

H(X, Y ) = H(Y ) +H(X|Y ) = H(X) +H(Y |X) (12.1)

and the inequality
H(X|Y ) ≤ H(X) (12.2)

(“conditioning decreases entropy”).

Proof. The identities in (12.1) are direct consequences of Definition 12.1.1. From
the first one, it follows that H(X|Y ) − H(X) = H(X, Y ) − H(Y ) − H(X), a
negative quantity by Theorem 11.1.9. �

Let X and Y be as above, and let Z be a discrete variable with values in the finite
space Z. The following identities are recorded for future reference, but add nothing
to (12.1) since a vector of discrete random variables is also a discrete variable:

H(X, Y |Z) = H(Y |Z) +H(X|Y, Z)
= H(X|Z) +H(Y |X,Z) . (12.3)

Using the heuristics of Remark 12.1.2, we expect that

H(X|Y, Z) ≤ H(X|Y ) . (12.4)

(The formal proof is required in Exercise 12.3.1.)

Corollary 12.1.4 Let X1, . . . , Xn be random variables with values in the respec-
tive finite sets X1, . . . ,Xn. Then

H(X1, ..., Xn+1) = H(X1, ..., Xn) +H(Xn+1|X1, ..., Xn).

In particular (sequential entropy formula, or entropy’s chain rule),

H(X1, ..., Xn) = H(X1) +
n∑

i=2

H(Xi|X1, ..., Xi−1) .
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Entropy of a Stationary Source

Theorem 12.1.5 Let {Xn}n≥1 be a sequence of random variables taking their
values in the finite set X . Assume that it is stationary, in the sense that for all n,
the distribution of the vector (X1+k, . . . , Xn+k) is independant of k. Then

(i) H := limn→∞H(Xn|X1, . . . , Xn−1) exists, and

(ii) limn→∞ 1
n
H(X1, . . . , Xn) exists and equals H.

Proof. (i) By inequality (12.4),

H(Xn+1|X1, . . . , Xn) ≤ H(Xn+1|X2, . . . , Xn) ,

and by stationarity,

H(Xn+1|X2, . . . , Xn) = H(Xn|X1, . . . , Xn−1) .

Therefore
H(Xn+1|X1, . . . , Xn) ≤ H(Xn|X1, . . . , Xn−1) .

The sequence H(Xn|X1, . . . , Xn−1) (n ≥ 1) being non-increasing and bounded
below by 0, converges to some H ≥ 0.

(ii) By the chain rule,

1

n
H(X1, . . . , Xn) =

1

n

n∑
i=1

H(Xi|X1, . . . , Xi−1) ,

and therefore, by Cesaro’s theorem, limn→∞ 1
n
H(X1, . . . , Xn) = H. �

Fano’s Inequality

Theorem 12.1.6 (Fano, 1961) Let X and Y be two random variables taking their

values in the finite sets X and Y respectively. Let X̂ be an estimate of X based on
the observation of Y , of the form X̂ = g(Y ) ∈ X . With Pe := P (X̂ 
= X),

h(Pe) + Pe log |X | ≥ H(X|Y ) . (12.5)

Proof. Heuristics: Suppose that you are given Y . How many questions do we need
to obtain X? If we adopt a not necessarily optimal identification strategy, then
the number of questions will be greater than H(X|Y ). Use the following strategy.
First, ask if X = Y or not, which requires h(Pe) questions. If X = Y , you are
done. Otherwise, with probability Pe, try to identify X, which requires at most
log |X | questions. Hence h(Pe) + Pe log |X | ≥ H(X|Y ).

We now devise a regular proof, starting with the following preliminaries. Let
X, Y, Z be random variables taking their values in the finite sets X ,Y ,Z respec-
tively. For a fixed z ∈ Z, H(X|Y, Z = z) or HZ=z(X|Y ) is, by definition, the
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conditional entropy of X given Y , computed not for the original probability, but
for the conditional probability PZ=z(·) = P (·|Z = z). One can check (Exercise
12.3.2) that

H(X|Y, Z) =
∑
z∈Z

P (Z = z)HZ=z(X|Y ) . (12.6)

Define the error random variable

E :=

{
1 if X̂ 
= X

0 if X̂ = X .

By the chain rule (12.3), we have two ways of writing H(E,X|Y )

H(E,X|Y ) = H(X|Y ) +H(E|X, Y )

= H(E|Y ) +H(X|E, Y ) .

Since E is a function of (X, Y ), we have (see Exercise 12.3.6)

H(E|X, Y ) = 0 .

On the other hand H(E|Y ) ≤ H(E) (conditioning decreases entropy, (12.2)) and
therefore H(E|Y ) ≤ h(Pe). Also, by (12.6),

H(X|E, Y ) = PeH(X|E = 1, Y ) + (1− Pe)H(X|E = 0, Y )

= PeH(X|E = 1, Y )

since when E = 0, X is a function of Y (X = X̂ = g(Y )). On the other hand
H(X|E = 1, Y ) ≤ H(X) ≤ log |X |. Combining the above observations leads
to (12.5). �

If the logarithms are in base 2, h(Pe) ≤ 1, and Fano’s inequality can be weakened
to 1 + Pe log2 |X | ≥ H2(X|Y ) or

Pe ≥ H2(X|Y )− 1

log2 |X | .

12.1.2 Mutual Information

Let X and Y be two random variables taking their values in the finite sets X and
Y respectively.

Definition 12.1.7 The mutual information between X and Y is the quantity

I(X;Y ) := E

[
log

pX,Y (X, Y )

pX(X)pY (Y )

]
. (12.7)

Clearly the mutual information is symmetric in X and Y : I(X;Y ) = I(Y ;X).
Also, I(Y ;Y ) = H(Y ) (Exercise 12.3.5).

In expanded form,
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I(X;Y ) =
∑
x,y

pX,Y (x, y) log pX,Y (x, y)−
∑
x,y

pX,Y (x, y) log qX,Y (x, y) ,

where qX,Y (x, y) = pX(x)pY (y) defines a distribution on X ×Y . Therefore, by the
Gibbs inequality,

I(X;Y ) ≥ 0 (12.8)

with equality iff X and Y are independent. Also, it follows immediately from
definition (12.7) that

I(X;Y ) = H(X) +H(Y )−H(X, Y ) .

Therefore, by Theorem 12.1.3,

I(X;Y ) = H(X)−H(X|Y ) . (12.9)

Also, H(X|Y ) = H(X) if and only if I(X;Y ) = 0, or equivalently, if and only if X
and Y are independent. (Theorem 12.1.3 stated that in general,H(X|Y ) ≤ H(X).)

Theorem 12.1.8 Let X and Y be random variables taking their values in finite
sets. Then

I(X;Y ) ≤ I(Y ;Y ) = H(Y ) ,

with equality iff Y = ϕ(X) for some deterministic function ϕ.

Proof. From (12.9)

I(X;Y ) = H(Y )−H(Y |X) ≤ H(Y ) = I(Y ;Y ) ,

with equality iff H(Y |X) = 0. But

H(Y |X) = E
[− log pY |X(Y |X)

]
= −

∑
x,y

pX,Y (x, y)
(
log pY |X(y|x)

)
is null if and only if for all x, y, pY |X(y|x) is either 0 or 1. This happens if and only
if Y = ϕ(X) for some deterministic function ϕ. �

Let X, Y, Z be random variables taking their values in the finite sets X ,Y ,Z
respectively. We define the conditional mutual information by

I(X;Y |Z) := E

[
log

pX,Y |Z(x, y|z)
pX|Z(x|z)pY |Z(y|z)

]
.

Note that
I(X;Y |Z) =

∑
z∈Z

I(X;Y |Z = z)pZ (z)

where I(X;Y |Z = z) is the mutual information of X and Y considered in the
probability space induced with the probability P (·|Z = z). In particular,
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I(X;Y |Z) ≥ 0 , (12.10)

with equality iff X and Y are independent given Z. Also,

I(X;Y, Z) = I(X;Z) + I(X;Y |Z) . (12.11)

Proof. Observe that

I(X;Y |Z) = E

[
log

pX|Y,Z(x|y, z)
pX|Z(x|z)

]
= H(X|Z)−H(X|Y, Z)

= H(X,Z)−H(Z)−H(X, Y, Z) +H(Y, Z) ,

and that

I(X;Y, Z)−I(X;Z) = H(X)+H(Y, Z)−H(X, Y, Z)−H(X)−H(Z)+H(X,Z) .

�

The Data Processing Inequality

Theorem 12.1.9 Let X, Y, Z be random variables taking their values in the finite
sets X ,Y ,Z respectively. We have that

I(X, Y ;Z) ≥ I(Y ;Z)

with equality if and only if X → Y → Z forms a Markov chain, that is if Z is
independent of X given Y .

Proof. By (12.11) I(X, Y ;Z) − I(Y ;Z) = I(Z;X|Y ), and by (12.10), this is a
non-negative quantity, null if and only if X and Z are independent given Y . �

Jointly Typical Sequences

Let X and Y be two finite valued random variables and let {Xn}n≥1 and {Yn}n≥1

be two sequences of iid random variables such that Xn
D∼ X and Yn

D∼ Y . We use
the following simplified notations

p(xn
1 ) = P (Xn

1 = xn
1 ), p(yn1 ) = P (Y n

1 = yn1 )

and
p(xn

1 , y
n
1 ) = P (Xn

1 = xn
1 , Y

n
1 = yn1 )

(the argument xn
1 , y

n
1 or (xn

1 , y
n
1 ) determines which function p is considered).

The following result extends Theorem 11.1.11 and gives intuitive support to the
notion of mutual information. It will also be useful in the proof of Shannon’s
capacity theorem.

In the definition and theorem below, the logarithms used in the definition of the
information-theoretic quantities are in base 2, for instance H(X) = H2(X), etc.
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Definition 12.1.10 For any ε > 0, let A
(n)
ε ⊆ X n × Yn be the set of ε-jointly

typical sequences, that is, the collection of sequences (xn
1 , y

n
1 ) such that

(i)
∣∣− 1

n
log2 pXn

1
(xn

1 )−H(X)
∣∣ < ε,

(ii)
∣∣− 1

n
log2 pY n

1
(yn1 )−H(Y )

∣∣ < ε, and

(iii)
∣∣− 1

n
log2 pXn

1 ,Y
n
1
(xn

1 , y
n
1 )−H(X, Y )

∣∣ < ε.

Theorem 12.1.11

(a) P ((Xn
1 , Y

n
1 ) ∈ A

(n)
ε ) →

n→∞
1

(b)
∣∣∣A(n)

ε

∣∣∣ ≤ 2n(H(X,Y )+ε)

(c) If X̃n
1

D∼ Xn
1 , Ỹ

n
1

D∼ Y n
1 and X̃n

1 and Ỹ n
1 are independent, then

P ((X̃n
1 , Ỹ

n
1 ) ∈ A(n)

ε ) ≤ 2−n(I(X;Y )−3ε) .

Also, for sufficiently large n,

P ((X̃n
1 , Ỹ

n
1 ) ∈ A(n)

ε ) ≥ (1− ε) 2−n(I(X;Y )+3ε) .

Proof. Define

T1 :=

{
(xn

1 , y
n
1 ) ∈ X n × Yn;

∣∣∣∣− 1

n
log2 p(x

n
1 )−H(X)

∣∣∣∣ < ε

}
,

T2 :=

{
(xn

1 , y
n
1 ) ∈ X n × Yn;

∣∣∣∣− 1

n
log2 p(y

n
1 )−H(Y )

∣∣∣∣ < ε

}
,

T3 :=

{
(xn

1 , y
n
1 ) ∈ X n × Yn;

∣∣∣∣− 1

n
log2 p(x

n
1 , y

n
1 )−H(X, Y )

∣∣∣∣ < ε

}
.

In particular, A
(n)
ε = T1 ∩ T2 ∩ T3.

(a) By the weak law of large numbers, for all ε > 0,

lim
n→∞

P

(∣∣∣∣− 1

n
log2 p (X

n
1 )−H(X)

∣∣∣∣ > ε

)
= 0 .

Therefore, with each δ, one can associate an integer n1 such that

n ≥ n1 ⇒ P

(∣∣∣∣− 1

n
log2 p (X

n
1 )−H(X)

∣∣∣∣ ≥ ε

)
≤ δ

3
.

Similarly, there exist integers n2 and n3 such that

n ≥ n2 ⇒ P

(∣∣∣∣− 1

n
log2 p (Y

n
1 )−H(Y )

∣∣∣∣ ≥ ε

)
≤ δ

3
,

n ≥ n3 ⇒ P

(∣∣∣∣− 1

n
log2 p (X

n
1 , Y

n
1 )−H(X, Y )

∣∣∣∣ ≥ ε

)
≤ δ

3
.
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Therefore, for all n ≥ max (n1, n2, n3),

P (T c
1 ∪ T c

2 ∪ T c
3 ) ≤ P (T c

1 ) + P (T c
2 ) + P (T c

3 ) ≤ δ ,

and in particular,

P (A(n)
ε ) = P (T1 ∩ T2 ∩ T3) ≥ 1− δ .

(b)

(xn
1 , y

n
1 ) ∈ A(n)

ε ⇒
∣∣∣∣− 1

n
log2 p (X

n
1 , Y

n
1 )−H(X, Y )

∣∣∣∣ < ε

⇒ − 1

n
log2 p (X

n
1 , Y

n
1 ) < H(X, Y ) + ε

⇔ p(xn
1 , y

n
1 ) > 2−n(H(X,Y )+ε) .

Therefore

1 ≥ P
(
A(n)

ε

) ≥ ∣∣A(n)
ε

∣∣ 2−n(H(X,Y )+ε) .

(c) For sufficiently large n, P
(
A

(n)
ε

)
≥ 1− ε. Since

(xn
1 , y

n
1 ) ∈ A(n)

ε ⇒ pXn
1 ,Y

n
1
(xn

1 , y
n
1 ) < 2−n(H(X,Y )−ε) ,

we obtain

1− ε ≤ P
(
A(n)

ε

) ≤ ∣∣A(n)
ε

∣∣ 2−n(H(X,Y )−ε) .

On the other hand, note that

(xn
1 , y

n
1 ) ∈ A(n)

ε ⇒
{

2−n(H(X)+ε) < p(xn
1 ) < 2−n(H(X)−ε)

2−n(H(X)+ε) < p(yn1 ) < 2−n(H(Y )−ε) .

Then

P
((

X̃n
1 , Ỹ

n
1

)
∈ A(n)

ε

)
≤ ∣∣A(n)

ε

∣∣ 2−n(H(X)−ε)2−n(H(Y )−ε)

≤ 2n(H(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε)

≤ 2(H(X)+H(Y )−H(X,Y )−3ε) = 2−n(I(X;Y )−3ε) ,

and for sufficiently large n,

P
((

X̃n
1 , Ỹ

n
1

)
∈ A(n)

ε

)
≥ ∣∣A(n)

ε

∣∣ 2−n(H(X)+ε)2−n(H(Y )+ε)

≥ (1− ε) 2n(H(X,Y )−ε)2−n(H(X)+ε)2−n(H(Y )+ε)

= (1− ε) 2−n(I(X;Y )+3ε) .

�
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12.1.3 Capacity of Noisy Channels

We introduce the notion of a communications channel, starting with one of the
simplest and indeed most popular model.

Example 12.1.12: The binary symmetric channel, take 1. In this type
of channel, called for short the bsc channel, the inputs as well as the inputs are
sequences of binary digits, and the effect of the channel is to randomly change a
0 into a 1 and vice-versa. Therefore if a sequence xn

1 = (x1, . . . , xn) (the input), is
transmitted, the received sequence (the output) is yn1 = (y1, . . . , yn), where

yn = xn ⊕ Bn ,

where ⊕ denotes addition modulo 2, and where Bn
1 = (B1, . . . , Bn) is the random

noise sequence. Each noise bit Bn takes its value in {0, 1}. Therefore the value
Bn = 1 corresponds to an error on the n-th bit transmitted. If B1, . . . , Bn are
independent random variables, identically distributed, with probability p ∈ (0, 1)
of taking the value 1, the channel considered is called a binary symmetric channel
(bsc).

A channel is fed with a sequence X1, X2, . . ., where the Xk’s are random variables
taking their values in a finite set X , called the input alphabet. At the receiving
end of the channel, one recovers a sequence Y1, Y2, . . . where the Yk’s are random
variables taking their values in a finite set Y , called the output alphabet.

X1, X2, · · ·
CHANNEL

Y1, Y2, · · ·

Definition 12.1.13 The channel is called memoryless if, for all n ≥ 2,

Yn and
(
Xn−1

1 , Y n−1
1

)
are independent given Xn .

In other terms, for all x ∈ X , y ∈ Y , xn−1
1 ∈ X n−1, yn−1

1 ∈ Yn−1,

P (Yn = y|Xn = x,Xn−1
1 = xn−1

1 , Y n−1
1 = yn−1

1 ) = P (Yn = y|Xn = x) .

Definition 12.1.14 The channel is said to be without feedback if for all n ≥ 2,
Xn and Y n−1

1 are independent givenXn−1
1 .

Theorem 12.1.15 Suppose that the channel is memoryless and without feedback.
Then

P (Y n
1 = yn1 , |Xn

1 = xn
1 ) =

n∏
�=1

P (Y� = y�|X� = x�) .
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Proof. Exercise 12.3.4. �

Definition 12.1.16 The channel is called time-invariant if for all x ∈ X , y ∈ Y,
the quantity P (Yn = y|Xn = x) does not depend on n ≥ 1. Denoting it by p(y|x),
the matrix {p(y|x)}x∈X ,y∈Y is called the transition matrix of the channel.

Example 12.1.17: Binary symmetric channel, take 2. The input and out-
put alphabets are X = Y = {0, 1}. The input X and output Y are related by
Y = X ⊕ B, where B ∈ {0, 1} and P (B = 1) = p. The channel transition matrix
is (

1− p p
p 1− p

)
.

1− p

1− p

p

p

1

0

1

0

Example 12.1.18: Binary erasure channel, take 1. The input alphabet is
X = {0, 1}, the output alphabet is Y = {0, 1, e}. The channel transition function
is (

1− α 0 α
0 1− α α

)

Let X and Y be finite sets, and consider a time-invariant memoryless discrete-time
channel without feedback and with given transition matrix {p(y|x)}x∈X , y∈Y .

Definition 12.1.19 The capacity of the above channel is, by definition, the num-
ber

C := sup
X

I(X;Y ) (12.12)

where X and Y are random variables with values in X and Y respectively, such that
P (Y = y|X = x) = p(y|x) and where the supremum is taken over all probability
distributions pX on X .
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More explicitly, recall that

I(X;Y ) =
∑
x∈X

∑
y∈Y

pX(x)p(y|x) log2
p(y|x)∑

z∈X pX(z)p(y|z) .

Since the supremum in the definition of capacity is over all probability distributions
pX on X , the information capacity is a function of the channel only, through its
transition matrix. Note that this supremum is achieved because the function to
be optimized is concave (Exercise 12.3.3) and the set of constraints is non-empty,
closed, convex and bounded.

Example 12.1.20: Binary symmetric channel, take 3. The capacity of this
channel is C = 1− h2(p).

Proof. Note that, conditionnaly on X = 1, Y takes the values {0, 1} with re-
spective probabilities {p, 1 − p}. Similarily, conditionnaly on X = 0, Y takes the
values {0, 1} with respective probabilities {1− p, p}. Therefore, for any x ∈ {0, 1},
H(Y |X = x) = H(p), and

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−
∑

x∈{0,1}
pX(x)H(Y |X = x)

= H(Y )−
∑

x∈{0,1}
pX(x)h2(p)

= H(Y )− h2(p) ≤ 1− h2(p) ,

where the last inequality is due to the fact that Y is equidistributed on two values.
Equality holds when P (X = 0) = 1

2
. In fact, in this case,

P (Y = 0) =
∑

x∈{0,1}
pX(x)P (Y = 0|X = x)

= pX(0)(1− p) + pX(1)p =
1

2
.

Therefore H(Y ) = 1, and C := supX I(X;Y ) = 1− h2(p). �

Example 12.1.21: Binary erasure channel, take 2. The capacity of this
channel is C = 1− α.

Proof. Let X be a random variable and let Y be the output of the channel
corresponding to the input X. Conditionnaly on X = 1, Y takes the values {1, e}
with respective probabilities {1 − α, α}. Similarily, conditionnaly on X = 0, it
takes the values {0, e} with respective probabilities {1− α, α}. Therefore, for any
x ∈ {0, 1},

H(Y |X = x) = H2(α) .
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Therefore

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−
∑

x∈{0,1}
pX(x)H(Y |X = x)

= H(Y )−
∑

x∈{0,1}
pX(x)H(α) = H(Y )−H2(α) .

Let E = 1{Y=e}. Taking into account the fact that E is a function of Y :

H(Y ) = H(Y,E) = H(E) +H(Y |E) .

Note that

P (E = 1) = P (Y = e)

= P (X = 0)P (Y = e|X = 0) + P (Y = e)P (Y = e|X = 1) = α .

Therefore H(E) = H2(α). Moreover,

H(Y |E) = P (E = 0)H(Y |E = 0) + P (E = 1)H(Y |E = 1)

= (1− α)H(X |E = 0) + α× 0 = (1− α)H(X) .

Therefore

H(Y ) = H(α) + (1− α)H(X)

and

I(X;Y ) = (1− α)H(X) .

Since X takes two values, supX H(X) = 1. Therefore C := supX I(X;Y ) = 1− α.
�

Example 12.1.22: The symmetric channel. The symmetric channel is de-
fined by the following property of its transition matrix {p(y | x)}x∈X ,y∈Y . Every
column is a permutation of the first column, and every line is a permutation of the
first line. (In particular, the binary symmetric channel is a symmetric channel in
this sense.) Denote by L the number of elements of the output alphabet Y and by
(q1, q2, . . . , qL) the first line of the channel transition matrix. The capacity of this
channel is (Exercise 12.3.12)

C = logL+
L∑

j=1

qj log qj .
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12.2 Shannon’s Capacity Theorem

12.2.1 Rate versus Accuracy

In the previous chapters, the objective in terms of communications theory was to
encode data for compression. Now the objective is to correct the errors introduced
by the channel. For this, one has to expand rather than compress the data, thereby
introducing redundancy.

Example 12.2.1: Repetition coding. In the previous example, the sequence
that is fed into the channel represents encoded data. The data before encoding is
called the informative data. For instance, it consists of M messages, say, M = 2k,
so that each message may be represented as a sequence of k binary digits. This
message — a binary sequence of length k — is encoded into the sequence xn

1 =
(x1, . . . , xn) which in turn is transmitted through the binary symmetric channel.
The mapping c(n) : {1, 2, . . . ,M} → {0, 1}n is called the (error-correcting) code.
Its rate of transmission is the quantity R = k

n
= log2 M

n
. For instance, with M = 2,

one could use a repetition code, which consists in repeating n times the binary
digit to be transmitted. The rate of transmission is then R = 1

n
. At the receiving

end of the channel, one has to decode the sequence yn1 = (y1, . . . , yn). We can use
for this purpose a majority decoder, deciding that the binary digit of informative
data is the most frequent binary digit in the received sequence yn1 . Assuming that
n is odd, an error occurs if and only if more than n/2 among the noise bits Bj,
1 ≤ j ≤ n are equal to 1. Therefore the probability of error per informative bit in
this coding procedure is exactly the probability that a binomial random variable
B(n, p) exceeds the value n

2
. If p < 1

2
(a reasonable channel), this probability tends

to 0 as n tends to infinity. The problem here is that as n tends to infinity, the
rate of transmission tends to zero. A fundamental result of information theory, the
celebrated Shannon capacity theorem, shows that it is always possible in theory
to find error codes with asymptotically evanescent error probability as long as the
rate of transmission imposed is smaller than a positive quantity depending on the
channel, namely the capacity of this channel (see section 12.1.3 ).

We now proceed to the statement of Shannon’s result. Let X and Y be finite
sets, the alphabets used at the input and output respectively of the channel. An
(error-correcting) code consists of the following items:

• A finite set of indices {1, ...,M} (the messages)

• A coding function c = c(n) : {1, ...,M} → X n

• A decoding function g = g(n) : Yn → {1, ...,M}

We denote by c(w) = (c1(w), ..., cn(w)) the code-word for message w, and therefore
the code can be represented by an M × n-matrix with elements in the input
alphabet X
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c1(1) c2(1) · · · cn(1)
c1(2) c2(2) · · · cn(2)
...

...
...

c1(M) c2(M) · · · cn(M)

⎞⎟⎟⎟⎠
The first important performance index of a code is its rate R = log2 M

n
. Since

M =
⌈
2nR

⌉
, such a code is called a

(⌈
2nR

⌉
, n
)
-code.

The channel operates as follows. A random message W enters the coder and is
encoded by the sequence c(W ) = Xn

1 . The channel “corrupts”X
n
1 into the sequence

Y n
1 , and the latter is decoded as Ŵ := g(Y n

1 ).

W ∈ {1, · · · ,M}
CODER

(X1, · · · , Xn) = X(n)

CHANNEL

(Y1, · · · , Yn) = Y (n)

DECODER

Ŵ ∈ {1, · · · ,M}

Encoding and decoding

Ideally, Ŵ should be equal to W , which it is not always. The other principal
performance index is the error probability associated with the encoding-decoding
procedure. Let

Pe|w(c) := Pr(g(Y n
1 ) 
= w|Xn

1 = c(w))

be the error probability on the message w, let

λ(c) = max
w∈{1,...,M}

Pe|w(c)

be the maximum error probability, and let

Pe(c) =
1

M

M∑
w=1

Pe|w(c)

be the average error probability. In fact the maximum error probability is the
interesting performance index in what concerns channel reliability. The average
error probability will merely play an intermediary role in the calculations.

Definition 12.2.2 Rate R is said to be achievable if there exists a sequence of(⌈
2nR, n

⌉)
-codes such that:

λ(c(n)) −→ 0 .

Theorem 12.2.3 (Shannon, 1948) Consider a time-invariant discrete-time mem-
oryless channel without feedback, and let C be its capacity. Any rate R < C is
achievable.

This is the direct part of Shannon’s theorem. In rough terms: one can transmit at
rate below capacity with evanescing error probability.

The converse part of Shannon’s capacity theorem consists in the proof that if one
wishes to transmit information at a rate R > C, whatever error-correcting code
that is used, the probability of error is bounded below by a positive number.
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Theorem 12.2.4 (Shannon, 1948) Consider a time-invariant discrete-time mem-
oryless channel without feedback, and let C be its capacity.

A. If there exists a sequence of channel codes
{
c(n)

}
n≥1

such that limn→∞ Pe(c
(n)) =

0, then necessarily lim supn→∞ R(n) ≤ C.

B. Moreover, above capacity, the error probability is bounded away from 0.

12.2.2 The Random Coding Argument

We now proceed to the proof of Theorem 12.2.3.

Proof. The argument used by Shannon is the random coding argument. First one
generates a random code, that is, a random matrix⎛⎜⎜⎜⎝

C1(1) C2(1) · · · Cn(1)
C1(2) C2(2) · · · Cn(2)

...
...

...
C1(M) C2(M) · · · Cn(M)

⎞⎟⎟⎟⎠
whose elements in X are independent and identically distributed according to some
probability distribution q. A code is then sampled from this code distribution.
Suppose that code c is drawn. We now devise a decoder (in general not optimal)
ĉ = ĉ(n) : Yn → {1, . . . ,M} as follows1.

(α) ĉ(yn1 ) = ŵ if and only if

• (c(ŵ), yn1 ) ∈ A
(n)
ε (defined in Theorem 12.1.11) and

• no other message w ∈ {1, . . . , ⌈2nR⌉} exists such that (c(w), yn1 ) ∈ A
(n)
ε .

(β) If no such message ŵ exists, then an error is declared (and the receiver
outputs any message).

Denote by C the random code chosen above. Taking expectation (with respect to
the code randomness), we have

E [Pe(C)] =
1

�2nR 
�2nR ∑
w=1

E
[
Pe|w(C)

]
.

By symmetry, E
[
Pe|w(C)

]
is independant of w, and therefore

E [Pe(C)] = E
[
Pe|1(C)

]
. (12.13)

We now restrict attention to the event {W = 1}. Denote by P1 the probability P
conditioned by the event W = 1, so that

E
[
Pe|1(C)

]
= P1(Ĉ(Y n

1 ) 
= 1) .

1
The notation ĉ(n) for g(n) is there to recall that the decoder is adapted to the encoder.
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(The capital letter C in Ĉ tells us that the decoder is now random, since it depends
on the random code C.) Let for all messages w ∈ {1, 2, . . . ,M}

Ew :=
{
(C(w), Y n

1 ) ∈ A(n)
ε

}
.

By the union bound,

E
[
Pe|1(C)

]
= P1(E1 ∪ E2 ∪ . . . ∪ E2nR�)

≤ P1(E1) +

�2nR ∑
w=2

P1(Ew) .

By Theorem 12.1.11 (a), P1(E1) → 0. In particular, for sufficiently large n,

P1(E1) ≤ ε .

Since for w 
= 1, C(1) and C(w) are independent, Y n
1 and C(w) are independent

with respect to probability P1. In particular, by Theorem 12.1.11 (c), for sufficiently
large n,

P1(Ew) ≤ 2−n(I(X;Y )−3ε) ,

where (X, Y ) is a random vector with values in X×Y and distribution p(X,Y )(x, y) =
q(x) p(x | y). Therefore

E
[
Pe|1(C)

] ≤ ε+

�2nR ∑
w=2

2−n(I(X;Y )−3ε)

≤ ε+
⌈
2nR

⌉× 2−n(I(X;Y )−3ε)

= ε+ 2−n(I(X;Y )−R−3ε) .

Therefore if R < I(X;Y )− 3ε, for sufficiently large n

E
[
Pe|1(C)

] ≤ 2ε .

Choose q = q∗ so that I(X;Y ) = C (the capacity of the channel) (recall that the
supremum in the definition of capacity is a maximum). Therefore if R < C − 3ε,
then for sufficiently large n,

E [Pe(C)] ≤ 2ε .

In particular (the probabilistic method argument), there exists at least a code
c∗ = c∗(n) with rate R < C and error probability

E [Pe(c
∗)] ≤ 2ε,

that is

1

�2nR 
�2nR ∑
w=1

Pe|w(c∗) ≤ 2ε .

This implies that at least half the messages w satisfy Pe|w(c∗) ≤ 4ε. Keeping
only these messages and their associated code-words c∗(w) gives a new code with
M ′ =

⌈
2nR

⌉
/2 messages, rate

R′ =
log2 M

′

n
=

log2
⌈
2nR

⌉
n

− 1

n
,

and maximal error probability ≤ 4ε. �
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12.2.3 Proof of the Converse

We proceed to the proof of Theorem 12.2.4.

Proof. The following lemmas prepare the way.

Lemma 12.2.5 Let Y n
1 be the output corresponding to the input Xn

1 through a
memoryless channel (not necessarily time-homogeneous, and possibly with feed-
back). Then

I(Xn
1 ;Y

n
1 ) ≤

n∑
k=1

I(Xk;Yk)

whatever the distribution of Xn
1 .

Proof.

I(Xn
1 ;Y

n
1 ) = H(Y n

1 )−H(Y n
1 |Xn

1 )

= H(Y n
1 )−

n∑
k=1

H(Yk|Y k−1
1 , Xn

1 )

= H(Y n
1 )−

n∑
k=1

H(Yk|Xk)

≤
n∑

k=1

H(Yk)−
n∑

k=1

H(Yk|Xk) =
n∑

k=1

I(Xk;Yk) .

�

Lemma 12.2.6 Consider a discrete channel (not necessarility memoryless). Given
positive integers n,M and a code c : {1, . . . ,M} → X n, then

logM ≤ 1

1− Pe(c)
(I(c(W );Y n

1 ) + h(Pe(c))

where P (W = w) = 1/M .

Proof. From Fano’s inequality (12.5) (with W,Y n
1 , Ŵ in the roles of X, Y, X̂ re-

spectively),
H(W |Y n

1 ) ≤ h(Pe(c)) + Pe(c) logM ,

and therefore (Eqn. (12.1.3))

I (W ;Y n
1 ) ≥ H(W )− Pe(c) logM − h(Pe(c)) .

Since W is uniformly distributed, H(W ) = logM , and therefore

I (W ;Y n
1 ) ≥ (1− Pe(c)) logM − h(Pe(c)) .

Moreover (Exercise 12.3.7),
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I(c(W );Y n
1 ) ≥ I(W ;Y n

1 ) .

Combining the above inequalities yields the result. �

We are now ready to complete the proof of Theorem 12.2.4.

A. To simplify the notation, assume that 2nR
(n)

is an integer. For fixed n

(and therefore fixed code), choose W uniformly in
{
1, . . . , 2nR

(n)
}
, and therefore

logM = nR(n). Taking Lemmas 12.2.6 and 12.2.5 into account,

R(n) ≤ 1

1− Pe(c)

[
1

n
I(Xn

1 ;Y
n
1 ) +

1

n
h(Pe(c))

]
≤ 1

1− Pe(c)

[
1

n
I(Xn

1 ;Y
n
1 ) +

1

n

]
≤ 1

1− Pe(c)

[
C +

1

n

]
.

Therefore

R(n)(1− Pe(c)) ≤ C +
1

n
,

from which it follows that lim supn→∞ R(n) ≤ C.

B. From the last displayed inequality, we get

Pe(c) ≥ 1− C

R(n)
− 1

nR(n)
.

This shows that if R > C, then for arbitrary ε and large enough n, Pe(c) ≥ 1−C
R
−ε,

a positive quantity if ε is small enough. That is, in words: over capacity, the error
probability is bounded away from 0. �

12.2.4 Feedback Does not Improve Capacity

In the absence of feedback, the channel code is a function c : {1, . . . ,M} → X n.
If feedback is allowed, the channel code is composed of a collection of functions
c : {1, . . . ,M} × Yn−1 → X , that is

Xn = c(W,Y n−1
1 ) .

To prove that feedback does not improve capacity, we revisit the proof of the
converse Shannon theorem. As in the case without feedback, we have

nR(n) = H(W ) = H(W |Y n
1 ) + I(W ;Y n

1 )

≤ H(W |Y n
1 ) + I(Xn

1 ;Y
n
1 ) .

Now we have to bound I(W ;Y n). To this end, note that

I(W,Y n) = H(Y n
1 )−H(Y n

1 |W ) = H(Y n
1 )−

n∑
k=1

H
(
Yk|Y k−1

1 ,W
)

= H(Y n
1 )−

n∑
k=1

H
(
Yk|Y k−1

1 ,W,Xk

)
(since Xk = f(W,Y k−1

1 ))

= H(Y n)−
n∑

k=1

H(Yk|Xk)
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where the third inequality is due to the fact that Xk is a function of (W,Y k−1
1 )

and the last one is due to the fact that conditionally on the channel input Xk,
the channel output Yk is independent of W and of the past samples Y1, · · · , Yk−1.
Therefore

I(W,Y n
1 ) ≤

n∑
k=1

H(Yk)−
n∑

k=1

H(Yk|Xk) = nI(Xk;Yk) ≤ nC .

The end of the proof is then similar to the case without feedback.

Books for Further Information

The original work of Claude Shannon was published in [Shannon and Weaver,
1949]. Otherwise, see the bibliography of Chapter 11.

12.3 Exercises

Exercise 12.3.1. H(X|Y, Z) ≤ H(X|Y )
Prove formally the inequality (12.4).

Exercise 12.3.2. H(X|Y, Z) =∑
z∈Z P (Z = z)HZ=z(X|Y )

Let X, Y, Z be random variables taking their values in the finite sets X ,Y ,Z
respectively. For a fixed z ∈ Z, the meaning of the quantity H(X|Y, Z = z) is the
following. It is the conditional entropy of X given Y , computed not for the original
probability, but for the conditional probability PZ=z(·) = P (·|Z = z). Prove that

H(X|Y, Z) =
∑
z∈Z

P (Z = z)HZ=z(X|Y ) .

Exercise 12.3.3. A concavity property of mutual information

Prove the following. For a fixed transition function p(·|·), the mutual information
I(X;Y ) is a concave function of pX (the distribution of X).

Exercise 12.3.4. Discrete memoryless channel without feedback

Prove Theorem 12.1.15.

Exercise 12.3.5. I(Y ;Y ) = H(Y )
Prove that I(Y ;Y ) = H(Y ).

Exercise 12.3.6. H(ϕ(X)|X) = 0
Let X be a random variable with values in the finite set X . Let ϕ : X → Y be
some function with values in a finite set Y . Prove that H(ϕ(X)|X) = 0.

Exercise 12.3.7. I(ϕ(X);Y ) ≤ I(X;Y )
Prove the following. For any finite-valued random variables X and Y and any
deterministic function ϕ,
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I(ϕ(X);Y ) ≤ I(X;Y )

with equality if and only if for all x, x′, y, ϕ(x) = ϕ(x′) ⇒ pY |X(y|x) = pY |X(y|x′).

Exercise 12.3.8. Optimal decoding in the bsc channel

(Continuation of Exercise 2.4.25.) Let E = {0, 1}n. The addition ⊕ defined on E
being componentwise addition modulo 2, the observation is X = mΘ ⊕ Z where:

mi ∈ {0, 1}n mi = (mi(1), ...,mi(n)), Z = (Z1, ..., Zn) ,

where Z and Θ are independent and the Zi’s (1 ≤ i ≤ n) are independent and
identically distributed with Pr(Zi = 1) = p. A possible interpretation is in terms of
digital communications. One wishes to transmit the information Θ chosen among
a finite set of “messages” which are binary strings of length n: m1, . . . ,mK . The
vector Z is the “noise” inherent to all digital communications channels: if Zk = 1
the k-th bit of the message Θ is flipped. This error occurs with probability p,
independently for all the bits of the message.

Suppose that the hypotheses are equiprobable and that p < 1
2
. We have :

P (X = x|Θ = i) = P (Z ⊕mi = x) = P (Z = mi ⊕ x) .

Denote by h(y) the Hamming weight of y ∈ {0, 1}n (equal to the number of
components of y that are equal to 1), and let

d(x, y) :=
n∑

i=1

1{xi �=y1} =
n∑

i=1

xi ⊕ yi = h(x⊕ y)

the Hamming distance between x and y in En. Prove that the optimal strategy
consists in choosing the hypothesis corresponding to the message closest to the
observation in terms of the Hamming distance.

Exercise 12.3.9. Cascade of bsc channels

A number n of identical binary symmetric channels with error probability p are
put in series. What is the capacity of the resulting channel?

Exercise 12.3.10. bsc channels in parallel

Let C1 and C2 be the capacities of two discrete memoryless channels, with perhaps
different input (resp., output) alphabets, and with transition probabilities p1(y1|x1)
and p2(y2|x2) respectively. The product channel is the discrete memoryless channel
associating the output (y1, y2) to the input (x1, x2), with transition probability
p1(y1|x1)p2(y2|x2). What is the capacity of such a channel?

Exercise 12.3.11. The modulo channel

Consider the channel whose input and output both take their values in X ≡ Y :=
{0, 1, · · · , L − 1} and are related by the equation Y = X + Z (mod c), where Z
takes its values in X and is independent of X. Compute the channel capacity in
terms of the (arbitrary) distribution of Z.
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Exercise 12.3.12. Capacity of the symmetric channel

The symmetric channel is defined by the following property of its transition matrix
Every column is a permutation of the first column, and every line is a permutation
of the first line. (In particular, the binary symmetric channel is a symmetric channel
in this sense.) Denote by L the number of elements of the output alphabet Y and
by (q1, q2, . . . , qL) the first line of the channel transition matrix. Prove that the
capacity of this channel is

C = logL+
L∑

j=1

qj log qj .

Exercise 12.3.13. The noisy typewriter

The input symbols are the 26 letters of the alphabet. When fed with a letter, the
channel gives to the receiver the said letter with probability 1

2
or the next one with

probability 1
2
(the “next” letter of Z is A). Compute the capacity of this channel.

Hint: Separate the source message in two, by sending first the odd letters A,C,. . . ,
and then the even letters B,D, . . . )

Exercise 12.3.14. The asymmetric erasure channel

Compute the capacity of the channel with transition matrix(
1− α− β α β

α 1− α− β β

)
.



Chapter 13

The Method of Types

13.1 Divergence and Types

13.1.1 Divergence

The method of types allows one to obtain in an elementary way, in the discrete
case, two fundamental results of mathematical information theory, which in the
continuous case require a rather formidable technical equipment: Sanov’s principle
and the maximum entropy principle. The objects considered by this method are
empirical averages, and the basic mathematical notion is that of divergence.

Let P be the collection of probability distributions on the (finite) set X . For
p, q ∈ P , define

D(p ; q) :=
∑
x∈X

p(x) log
p(x)

q(x)
(13.1)

(with the “log convention”: 0 log 0 := 0 and a log 0 := −∞ when a > 0). This
quantity is the Kullback–Leibler divergence between p and q or, more simply, the
divergence between p and q.

Example 13.1.1: An interpretation in terms of source coding. Recall
the Gibbs inequality,

−
∑
x∈X

p(x) log p(x) ≤ −
∑
x∈X

p(x) log q(x) ,

with equality if and only if p(x) = q(x) for all x ∈ X . The heuristic interpretation
of this inequality is that if we encode the elements of X using a code assigning
to x ∈ X a codeword of length log p(x), this code has the smallest average length
among all uniquely decipherable codes, where the average is computed with respect
to the probability distribution p on X . Therefore, if one believes erroneously that
the probability distribution on X is q, and consequently chooses the corresponding
optimal code with length log q(x) for x ∈ X , the resulting average code length
(computed with the actual probability distribution p) is −∑

x∈X p(x) log q(x) and
is necessarily larger than the best code average length −∑

x∈X p(x) log p(x). Of
course the discussion above is meaningful only “at the limit” (see the concatenation
argument after Lemma 11.1.17). The Gibbs inequality may be rewritten as
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D(p ; q) ≥ 0 . (13.2)

Pinsker’s Theorem

The function (p, q) → D(p ; q) is not a distance as the notation perhaps suggests.
In fact, it is not symmetric in p and q and the triangle inequality is not available.
However, D plays the role of a distance in the following sense:

lim
n↑∞

D(pn ; q) = 0 =⇒ lim
n↑∞

dV (pn, q) = 0 ,

where dV (p, q) := 1
2

∑
x∈X |p(x) − q(x)| is the total variation distance between p

and q. This is a consequence of the inequality below.

Theorem 13.1.2 (Pinsker)

D(p ; q) ≥ 2dV (p, q)
2 .

The proof is based on the following partition lemma for divergence.

Lemma 13.1.3 Let A = (A1, . . . , Ak) be a partition of X and let p ∈ P. Define
the probability distribution pA on A by

pA(Ai) :=
∑
x∈Ai

p(x)

and define similarly the distribution qA associated with the probability distribution
q. Then

D(p ; q) ≥ D(pA ; qA) .

Proof. By the Log-Sum inequality (Exercise 13.3.4),

D(p ; q) =
k∑

i=1

∑
x∈Ai

p(x) log
p(x)

q(x)
≥

k∑
i=1

(∑
x∈Ai

p(x)

)
log

∑
x∈Ai

p(x)∑
x∈Ai

q(x)

=
k∑

i=1

pA(Ai) log
pA(Ai)

qA(Ai)
= D(pA ; qA) .

�

Proof. (of Theorem 13.1.2) Observe that if A1 = {x ∈ X ; p(x) ≥ q(x)} and
A2 = {x ∈ X ; p(x) < q(x)},

2dV (p, q) =
∑
x∈A1

(p(x)− q(x))−
∑
x∈A2

(p(x)− q(x))

= (pA(A1)− qA(A1))− (pA(A2)− qA(A2))

= |pA(A1)− qA(A1)|+ |pA(A2)− qA(A2)| = 2dV (pA, qA) .
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Suppose the inequality proved in the case where X consists of just two elements.
In particular

D(pA ; qA) ≥ 2dV (pA, qA)2 = 2dV (p, q)
2 ,

and the result then follows from the partition lemma.

It therefore remains to verify that Pinsker’s inequality holds true in the case X =
{0, 1}. Let p = (a, 1− a) and q = (b, 1− b). Eliminating the trivial cases, we may
suppose that a, b ∈ (0, 1). Consider the function

g(b) := D(p ; q)− 2dV (p, q)
2 .

Since dV (p, q) =
1
2
(|a− b|+ |(1− a)− (1− b)|) = |a− b|,

g(b) = a log
a

b
+ (1− a) log

1− a

1− b
− 2(a− b)2 .

We have g(a) = 0 and

g′(b) = (b− a)

(
1

(1− b)b
− 4

)
.

Since b(1− b) ≤ 1
4
, this shows that g(b) has a minimum at a = b. Therefore,

D(p ; q)− 2dV (p, q)
2 ≥ D(p ; p)− 2dV (p, p)

2 = 0 .

�

Theorem 13.1.4 The function D : (p, q) → D(p ; q) is convex in both its argu-
ments, that is, for all p1, q1, p2, q2 ∈ P and all λ ∈ [0, 1]:

D(λp1 + (1− λ)p2 ; λq1 + (1− λ)q2) ≤ λD(p1 ; q1) + (1− λ)D(p2 ; q2) .

If q is strictly positive, the function D : p → D(p ; q) is continuous.

The proof is left as an exercise (Exercise 13.3.5).

13.1.2 Empirical Averages

Let X1, . . . , Xn be an iid sample (n-sample) of a distribution Q on the (finite) set
X , that is, a collection of n independent random variables with values in X and
common probability distribution Q. In statistics, one is interested in the empirical
distribution on X associated with this sample. The relevant notion is then that of
the type of this sample.

Let xn
1 := (x1, . . . , xn) be a sequence of elements of the discrete set X =

{a1, . . . , aL}. This sequence will also be denoted by x. Let h(a;x) :=
∑n

i=1 1{xi=a}
be the Hamming weight of a ∈ X in x. The type of vector x ∈ X n is the empirical
probability distribution px on X corresponding to x:

px(a) :=
h(a;x)

n
(a ∈ X ) .

(Note that the type of a sequence is independent of the order of its elements.)
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Three sequences with the same type

In particular, for the sample Xn
1 := (X1, . . . , Xn),

pXn
1
(a) =

h(a;Xn
1 )

n
, a ∈ X

is the empirical distribution on X associated with this sample.

For any x = xn
1 ∈ X n and any function g : X → , the empirical average of g on

the sample x is
1

n

n∑
i=1

g(xi) =
∑
a∈X

g(a)px(a) ,

and in particular,
1

n

n∑
i=1

g(Xi) =
∑
a∈X

g(a)pXn
1
(a) .

Let Pn denote the collection {px ; x ∈ X n} of all types. This subset of P consists
of all the probability distributions on X of the form

p(a1) =
k1
n
, . . . , p(aL) =

kL
n

(
L∑
i=1

ki = n) .

Therefore, a probability p ∈ Pn is described by an integer vector (k1, . . . , kL) such
that k1 + · · · + kL = n. Since each one of the |X | components of a vector p ∈ Pn

can take at most n+ 1 values,

|Pn| ≤ (n+ 1)|X | ,

which is a simple bound for the exact value

|Pn| =
(
n+ |X | − 1

|X | − 1

)
.

The type class Tn(p) of p ∈ Pn is the set

Tn(p) := {x ∈ X n ; px = p} .
The number of sequences x ∈ X n whose type is p, with ki occurences of the symbol
ai (1 ≤ i ≤ L), is

|Tn(p)| = n!

k1! · · · kL! .

Example 13.1.5: The sequence bbabcccaba has the same type as the sequence
aaabbbbccc, namely

(
3
10
, 4
10
, 3
10

)
. The sequence abababcbcc belongs to T10

((
3
10
, 4
10
, 3
10

))
.
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Lemma 13.1.6 For any type p ∈ Pn,

(n+ 1)−|X |2−nH(p) ≤ |Tn(p)| ≤ 2−nH(p) .

Proof. Consider the multinomial expansion

nn = (k1 + · · ·+ kL)
n =

∑ n!

j1! · · · jL!k
j1
1 · · · kjL

L (�)

where the summation domain consists of all (j1, . . . , jL) such that j1+ · · ·+jL = n.
The largest term in this sum is the one corresponding to (j1, . . . , jL) = (k1, . . . , kL):

n!

k1! · · · kL!k
k1
1 · · · kkL

L .

(Indeed, if (j1, . . . , jL) 
≡ (k1, . . . , kL), there exists at least two indices r and s such
that jr > kr and js < ks. Decreasing jr by 1 and increasing js by 1 multiplies the
corresponding term by

jr
kr

ks
1 + js

≥ jr
kr

> 1.

This contradicts the existence of a maximum at (j1, . . . , jL) 
≡ (k1, . . . , kL).)

Bounding the right-hand side sum of (�) below by its largest term, and above by
the largest term times the number of terms, we obtain

n!

k1! · · · kL!k
k1
1 · · · kkL

L ≤ nn ≤ (n+ 1)|X | n!

k1! · · · kL!k
k1
1 · · · kkL

L

or, equivalently,

n!

k1! · · · kL! ≤
nn

kk1
1 · · · kkL

L

≤ (n+ 1)|X | n!

k1! · · · kL! ,

from which the result follows by noting that

log
nn

kk1
1 · · · kkL

L

= −
L∑
i=1

log
kki
i

nki
= −n

L∑
i=1

ki
n
log

ki
n

= −nH(p) .

�

Let X1, . . . , Xn be iid random variables with values in X and common distribution
Q. Denote by Qn the product measure Q× · · · ×Q on X n, that is, the probability
distribution of the random vector (X1, . . . , Xn). Let Π be a subset of P (for instance
Π is the set of probabilities on X with mean μ). By definition, with an obvious
but notationally convenient abuse of notation,

Qn(Π) :=
∑

x ; px∈Π∩Pn

Qn(x) .

This is the probability that the sample {X1, . . . , Xn} has an empirical distribution
that belongs to Π. Now since Tn(p) is the set of sequences x = xn

1 with empirical
distribution px = p,
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Qn(Π) =
∑

p∈Π∩Pn

Qn(Tn(p)) .

The next result shows in particular that the Qn-probability of x := xn
1 depends

only on its type px:

Lemma 13.1.7 (a) Let Q be a probability distribution on X . Then

Qn(x) = 2−n(H(px)+D(px;Q)) .

In particular, if x is in the type class of Q, that is, if px ≡ Q, Qn(x) = 2−nH(Q).

(b) Let p ∈ Pn and let Q be any probability distribution on X . Then

(n+ 1)−|X |2−nD(p;Q) ≤ Qn(Tn(p)) ≤ 2−nD(p;Q) .

(c) Let p ∈ Pn and let Q be any probability distribution on X . Then, for all
x ∈ Tn(p),

Qn(x)

pn(x)
= 2−nD(p ;Q) .

Proof. (a) We have:

Qn(x) =
n∏

i=1

Q(xi) =
∏
a∈X

Q(a)h(a;x)

=
∏
a∈X

Q(a)npx(a) = 2npx(a) logQ(a)

= 2n(px(a) logQ(a)−px(a) log px(a)+px(a) log px(a))

= 2n
∑

a∈X (−px(a) log
px(a)
Q(a)

+px(a) log px(a))

= 2−n(H(px)+D(px;Q)) .

(b) By the result of (a),

Qn(Tn(p)) =
∑

x∈Tn(p)

Qn(x) =
∑

x∈Tn(p)

2−n(D(p;Q)+H(p)) = |Tn(p)|2−n(D(p;Q)+H(p)) .

The conclusion then follows from Lemma 13.1.6.

(c) Since x = xn
1 ∈ Tn(p) implies that the number of occurences of the symbol a

in x is equal to np(a),

Qn(x)

pn(x)
=
∏
a∈X

(
Q(a)

p(a)

)np(a)

= 2n
∑

a p(a) log
Q(a)
p(a) = 2−nD(p ;Q) .

�

Recall that pXn
1
denotes the empirical distribution of a random iid sample Xn

1 .
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Theorem 13.1.8 Let Xn
1 be a random iid sample from the probability distribution

Q on X . Then, for all δ > 0,

Qn(D(pXn
1
; Q) ≥ δ) ≤ (n+ 1)|X |2−nδ .

Proof. The probability of the left-hand side is

Qn({x ; D(px ; Q) ≥ δ}) =
∑

p∈Pn;D(p ;Q)≥δ

Qn(Tn(p)) .

But, by Lemma 13.1.7,

Qn(Tn(p)) ≤ 2−nD(p ;Q) .

Therefore ∑
p∈Pn;D(p ;Q)≥δ

Qn(Tn(p)) ≤
∑
p∈Pn

2−nδ = (n+ 1)|X |2−nδ .

�

In particular, it follows from Theorem 4.1.3 that

Pr(lim
n↑∞

D(pXn
1
; Q) = 0) = 1 ,

(where Pr is the probability that makes the sequence {Xn}n≥1 iid with common
probability distribution Q) and therefore, by Pinsker’s inequality,

Pr(lim
n↑∞

dV (pXn
1
, Q) = 0) = 1 .

13.2 Sanov’s Theorem

13.2.1 A Theorem on Large Deviations

The Chernoff bounds can be interpreted in terms of large deviations from the law
of large numbers. Recall Theorem 3.2.3 and (3.4):

Let X1, . . . , Xn be iid discrete real-valued random variables and let a ∈ R. Then

P

(
n∑

i=1

Xi ≥ na

)
≤ e−nh+(a) ,

where h+(a) := supt>0{at− logE
[
etX1

]} and

P

(
n∑

i=1

Xi ≤ na

)
≤ e−nh−(a) ,

where h−(a) := supt<0{at−logE
[
etX1

]}. Moreover, h+(a) (resp., h−(a)) is positive
if a > E[X1] (resp., a < E[X1]).
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The theme of large deviations will now be approached via the method of types.
We shall be interested in certain subsets Π of probabilities on X , for instance

Π = {p ;
∑
a∈X

g(a)p(a) > α} . (�)

Note that, in this example, for any x ∈ X n

1

n

n∑
i=1

g(xi) > α ⇐⇒
∑
a∈X

px(a)g(a) > α ⇐⇒ px ∈ Π ∩ Pn .

Suppose now that X1, . . . , Xn are iid random variables with values in X and
common distribution Q. Then

P

(
1

n

n∑
i=1

g(Xi) > α

)
=

∑
x ; px∈Π∩Pn

Qn(x) .

Let Π be a subset of the set P of all probability distributions on X . For any given
distribution Q ∈ P define

P ∗ := argmin
P∈Π

D(P ; Q) .

Theorem 13.2.1 (Sanov, 1957) Let X1, . . . , Xn be iid random variables with val-
ues in X and common strictly positive probability distribution Q and let Π be a
subset of P. Then

Qn(Π ∩ Pn) ≤ (n+ 1)|X |2−nD(P ∗ ;Q) . (13.3)

Suppose in addition that the closure of Π is the closure of its interior. Then

lim
n↑∞

1

n
logQn(Π ∩ Pn) = −D(P ∗ ; Q) . (13.4)

In the above example for Π, (13.3) and (13.4) read, respectively

Pr

(
1

n

n∑
i=1

g(Xi) > α

)
≤ (n+ 1)|X |2−nD(P ∗ ;Q)

and

lim
n↑∞

1

n
logP

(
1

n

n∑
i=1

g(Xi) > α

)
= D(P ∗ ; Q) .

Proof. The proof of (13.3) consists of the following chain of inequalities:

Qn(Π) =
∑

P∈Π∩Pn

Qn(Tn(P )) ≤
∑

P∈Π∩Pn

2−nD(P ;Q)

≤
∑

P∈Π∩Pn

max
P∈Π∩Pn

2−nD(P ;Q) =
∑

P∈Π∩Pn

2−nminP∈Π∩Pn D(P ;Q)

≤
∑
P∈Π

2−nminP∈Π∩Pn D(P ;Q)

=
∑
P∈Π

2−nD(P ∗ ;Q) ≤ (n+ 1)|X |2−nD(P ∗ ;Q) .
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We now turn to the proof of (13.4). The set ∪nPn is dense in P . Therefore the
set Π ∩ Pn is non-empty when n is sufficiently large. There exists a sequence of
probability distributions Pn (n ≥ 1) such that Pn ∈ Π ∩ Pn and limn D(Pn ; Q) =
D(P ∗ ; Q). Therefore, for sufficiently large n,

Qn(Π) =
∑

P∈Π∩Pn

Qn(Tn(P )) ≥ Qn(Tn(Pn)) ≥ 1

(n+ 1)|X |2
−nD(Pn ;Q) ,

so that

lim inf
n

1

n
logQn(Π∩Pn) ≥ lim inf

n

(
−|X | log(n+ 1)

n
−D(Pn ; Q)

)
= −D(P ∗ ; Q) .

By (13.3),

1

n
logQn(Π ∩ Pn) ≤ |X | log(n+ 1)

n
−D(P ∗ ; Q) ,

and therefore

lim sup
n

1

n
logQn(Π ∩ Pn ≤ −D(P ∗ ; Q) ,

which concludes the proof of (13.4). �

Example 13.2.2: Let for any p, q ∈ Π ⊂ P , D(Π ; q) := minp∈Π D(p ; q). Con-
sider the set (�), with

α < max
a∈X

g(a) .

This is an open set of P , whose closure is

cl.Π = {p ;
∑
a∈X

g(a)p(a) ≥ α} .

It satisfies the conditions of Sanov’s theorem. By continuity of p → D(p ; Q),

D(Π ; Q) = D(cl.Π ; Q) = minD(p ; Q) ,

where the minimum is over the distributions p such that
∑

a g(a)p(a) ≥ α. In par-
ticular, if α >

∑
a∈X g(a)Q(a), and therefore Q /∈ cl.Π, we have that D(Π ; Q) > 0

(use the fact that D(p ; q) > 0 when p 
≡ q). Therefore

1

n
logP

(
1

n

n∑
i=1

g(Xi) > α

)
−→ 0

exponentially fast.
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13.2.2 Computation of the Rate of Convergence

This continues Example 13.2.2. Consider the exponential family of distributions
Qt (t ≥ 0) associated with Q:

Qt(a) := c(t)Q(a)2tg(a) where c(t) :=

(∑
a∈X

2tg(a)

)−1

.

The function t → ∑
a Qt(a)g(a) is continuous and limt↑∞

∑
a Qt(a)g(a) = maxa g(a).

Also Q0 = Q. Therefore, since by assumption,∑
a

Q(a)g(a) < α < max
a

g(a) ,

there exists some t = t∗ > 0 such that Q∗ := Qt∗ satisfies

Q∗(a) = c∗Q(a)2t
∗g(a) , t∗ > 0 ,

∑
a

Q∗(a)g(a) = α , (†)

where c∗ := c(t∗). In particular, Q∗ ∈ cl.Π. We show that

D(Π ; Q) = D(Q∗ ; Q) = log c∗ + t∗α .

For the first equality, it suffices to show that D(P ; Q) > D(Q∗ ; Q) for all P ∈ Π,
that is, all P such that

∑
a P (a)g(a) > α. Now

D(Q∗ ; Q) =
∑
a

Q∗(a) log
Q∗(a)
Q(a)

=
∑
a

Q∗(a) (log c∗ + t∗g(a)) = log c∗ + t∗α (13.5)

(by (†)) and∑
a

P (a) log
Q∗(a)
Q(a)

=
∑
a

P (a) (log c∗ + t∗g(a)) > log c∗ + t∗α .

This shows that D(Q∗ ; Q) < D(P ; Q) and that

D(P ; Q)−D(Q∗ ; Q) > D(P ; Q)−
∑
a

P (a) log
Q∗(a)
Q(a)

= D(P ; Q∗) > 0 .

Replacing P in (13.5) by any Qt, one gets

D(Q∗ ; Qt) = log
c∗

c
+ (t∗ − t)α = log c∗ + t∗α− (log c+ tα) .

This quantity is > 0 if Q∗ 
≡ Qt, which implies that

log c+ tα = −
∑
a

Q(a)2tg(a) + tα
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is maximized by t = t∗. Therefore the large deviations exponent D(Π ; Q) =
D(Q∗ ; Q) is equal to

max
t≥0

(
αt− log

∑
a

Q(a)2tg(a)

)
= max

t≥0
(αt− logM(t)) ,

where M(t) = E
[
2tg(X1)

]
.

The Chernoff bound has therefore been recovered. Exercise 13.3.8 shows that in
fact the Chernoff bound gives the best exponential rate of convergence to 0 of
P
(
1
n

∑n
i=1 g(Xi) > α

)
.

13.2.3 The Maximum Entropy Principle

We begin with a useful inequality called the Pythagorean theorem for divergence.

Lemma 13.2.3 Let Π ⊂ P be a closed convex set of probabilities on X , and let
Q /∈ Π. Define

P ∗ = argmaxP∈ΠD(P ; Q) .

For all P ∈ Π,
D(P ; Q) ≥ D(P ; P ∗) +D(P ∗ ; Q) .

In particular, if {Pn}n≥1 is a sequence of probabilities in Π such that D(Pn ; Q) →
D(P ∗ ; Q), then D(Pn ; P ) → 0.

Proof. For any P ∈ Π and λ ∈ [0, 1], let

Pλ := λP + (1− λ)P ∗ .

Since Π is convex, Pλ ∈ Π for all λ ∈ [0, 1]. Also limλ↔∞ Pλ = P ∗. As the function
λ → D(Pλ ; , Q) is minimized at λ = 0, the derivative of this function at λ = 0
must be non-negative. Now,

D(Pλ ; , Q)

dλ
=
∑
a

(
(P (a)− P ∗(a)) log

Pλ(a)

Q(a)
+ (P (a)− P ∗(a))

)
.

Therefore

0 ≤ D(Pλ ; , Q)

dλ
|λ=0 =

∑
x

(P (a)− P ∗(a)) log
P ∗(a)
Q(a)

=
∑
x

P (a) log
P ∗(a)
Q(a)

−
∑
x

P ∗(a) log
P ∗(a)
Q(a)

=
∑
x

P (a) log

(
P (a)

Q(a)

P ∗(a)
P (a)

)
−
∑
x

P ∗(a) log
P (a)

Q(a)

= D(P ; Q)−D(P ; P ∗)−D(P ∗ ; Q) .

�

The next result is the maximum entropy principle, also called the conditional limit
theorem.
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Theorem 13.2.4 Let Π be a closed convex set of probabilities on X , and let Q /∈
Π, Q > 0. Define

P ∗ = argmaxP∈ΠD(P ; Q) .

Let X1, . . . , Xn be an iid n-sample of Q. Then

lim
n↑∞

Pr(X1 = a | pXn
1
∈ Π) = P ∗(a) ,

where Pr is the probability induced by Q.

Proof. Since q → D(p ; q) is a strictly convex function of p, the probability P ∗

such that
D∗ := D(P ∗ ; Q) = D(Π ; Q) := min

p∈Π
D(p ; Q)

is unique. Also by convexity of q → D(p ; q), the sets

St := {P ∈ P ; D(P ; Q) ≤ t} (t ≥ 0)

are convex. For any δ > 0, define

A := SD∗+δ ∩ Π and B := Π− A = Π− SD∗+δ ∩ Π .

Then

Qn(B) =
∑

P∈Π∩Pn ;D(P ;Q)>D∗+2δ

Qn(Tn(P ))

≤
∑

P∈Π∩Pn ;D(P ;Q)>D∗+2δ

2−nD(P ;Q)

≤
∑

P∈Π∩Pn ;D(P ;Q)>D∗+2δ

2−n(D∗+δ)

≤ (n+ 1)L2−n(D∗+2δ) .

Also,

Qn(A) =
∑

P∈Π∩Pn ;D(P ;Q)≤D∗+δ

Qn(Tn(P ))

≥
∑

P∈Π∩Pn ;D(P ;Q)>D∗+δ

1

(n+ 1)L
2−nD(P ;Q) .

For n sufficiently large, there exists at least one type in A = SD∗+δ ∩Π, and since
the sum in right-hand side of the above chain of inequalities is larger that any of
its terms

Qn(A) ≥ 1

(n+ 1)L
2−n(D∗+δ) .

In particular, for sufficiently large n,

Pr(pXn
1
∈ B | pXn

1
∈ Π) =

Qn(B ∩ Π)

Qn(Π)
≤ Qn(B)

Qn(A)

≤ (n+ 1)L2−n(D∗+δ)

(n+ 1)−L2−n(D∗+2δ)
= (n+ 1)2L 2−nδ .
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Therefore, as n ↑ ∞, the conditional probability of B goes to 0, and consequently,
the conditional probability of A goes to 1.

Since for any P ∈ A, D(P ; Q) ≤ D∗ + 2δ, by the Pythagorean theorem,

D(P ; P ∗) +D(P ∗ ; Q) ≤ D(P ; Q) ≤ D∗ + 2δ = D(P ∗ ; Q) + 2δ ,

which implies D(P ; P ∗) ≤ δ. In particular, px ∈ A implies D(px ; P
∗) ≤ 2δ and

Pr(D(pXn
1
; P ∗) ≤ 2δ | pXn

1
∈ Π) ≥ Pr(pXn

1
∈ A | pXn

1
∈ Π) .

Therefore
Pr(D(pXn

1
; P ∗) ≤ 2δ | pXn

1
∈ Π) → 1 .

By Pinsker’s theorem, this implies that, conditionally on pXn
1
∈ Π), dV (pXn

1
, P ∗) →

0 in probability. In particular, for any a ∈ X , for any ε > 0,

Pr(|pXn
1
(a)− P ∗(a)| ≥ ε | pXn

1
∈ Π) → 1 . (�)

Since the sample X1, . . . , Xn is iid, for any i (1 ≤ i ≤ n),

Pr(Xi = a | pXn
1
∈ Π) = Pr(X1 = a | pXn

1
∈ Π)

and therefore (�) implies that for all a ∈ X ,

Pr(X1 = a | pXn
1
∈ Π) → P ∗(a) .

�

Books for Further Information

The method of types is treated in depth by its promotors in [Csiszár and Körner,
1981]. The compact survey of [Csiszár and Shields, 2004] has applications in statis-
tics. See also the first chapters of [Dembo and Zeitouni, 2010] which, among other
features, has applications to large deviations for Markov chains.

13.3 Exercises

Exercise 13.3.1. D(pX | qX) ≥ D(pY | qY )
Let X and Y be two discrete random variables on the probability space (Ω,F)
taking their values in E, and let P and Q be two probabilities on (Ω,F). Let
(pX(x) , x ∈ E) and (qX(x) , x ∈ E) be the probability distributions of X under
P and Q respectively. Similarly, let (pY (x) , x ∈ E) and (qY (x) , x ∈ E) be the
probability distributions of Y under P and Q respectively. Let for all x, y ∈ E
pY |X(y|x) := P (Y = y |X = x) and qY |X(y|x) := Q(Y = y |X = x). Define in a
similar way pX|Y (x|y) := P (X = x |Y = y) and qY |X(y|x) := Q(X = x |Y = y).
Assume that qY |X(y|x) = pY |X(y|x) := r(x | y). Prove that

D(pX | qX) ≥ D(pY | qY )
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Exercise 13.3.2. hmc and divergence, take 1

Let {Xn}n≥0 be a hmc with state space E and let μn and μ′
n be the distributions

of Xn corresponding to two different initial distributions μ0 and μ′
0 respectively.

(a) Show that

D(μn |μ′
n) ≥ D(μn+1 |μ′

n+1) .

(Use the result of Exercise 13.3.1.)

(b) Suppose that there exists a unique stationary distribution of the chain, denoted
by π. Show that

D(μn | π) ≥ D(μn+1 | π) .
(The divergence between the distribution at time n and the stationary distribution
decreases with n.)

Exercise 13.3.3. hmc and divergence, take 2

Let {Xn}n≥0 be a positive recurrent hmc with finite state space E and suppose
that its stationary distribution π is the uniform distribution on E.

(a) Show that the entropy H(Xn) increases with n.

(b) Give a counterexample if the stationary distribution is not uniform.

(c) Show that whatever the initial distribution, the conditional entropy H(Xn |X0)
increases with n for a stationary hmc.

Exercise 13.3.4. Log-sum inequality

Let a1, . . . , ak and b1, . . . , bk be real non-negative numbers, and let a :=
∑k

i=1 ai
and b :=

∑k
i=1 bi. Then

k∑
i=1

ai log
ai
bi

≥ a log
a

b
,

with equality if and only if ai = cbi for some constant c for all i (1 ≤ i ≤ k).

Exercise 13.3.5. Convexity of divergence

Prove the following:

(a) The function D : (p, q) → D(p ; q) is convex in both its arguments, that is, for
all p1, q1, p2, q2 ∈ P , and all λ ∈ [0, 1]:

D(λp1 + (1− λ)p2 ; λq1 + (1− λ)q2) ≤ λD(p1 ; q1) + (1− λ)D(p2 ; q2) .

(b) If q is strictly positive, the function D : p → D(p ; q) is continuous.

Exercise 13.3.6. Parallelogram identity for I-divergence

Recall the parallelogram identity where ||x− y|| is the euclidean distance between
two vectors x and y in m:

||x− z||2 + ||y − z||2 = 2||1
2
(x+ y)− z||2 + ||x− 1

2
(x+ y)||2 + ||y − 1

2
(x+ y)||2 .
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Prove the “analogous” identity, called the parallelogram identity for I-divergence:

D(p ; r) +D(q ; r) = 2D(
1

2
(p+ q) ; r) +D(p ;

1

2
(p+ q)) +D(q ;

1

2
(p+ q)) .

Exercise 13.3.7. Approximate Huffman codes

You have devised a Huffman code corresponding to a long (say length 1000) iid

sequence of equiprobable 0s and 1s. Find a window [1
2
+ a, 1

2
+ a] such that if this

code is used for an iid sequence of equiprobable 0s and 1s, of the same length but
with bias p ∈ [1

2
+ a, 1

2
+ a], the average length of the encoded sequence is within

less than a given quantity α from the average length of a Huffman code adapted
to the bias p.

Exercise 13.3.8. Chernoff gives the best exponential rate

The setting is as in Example 13.2.2. Show that for any ε > 0, for n sufficiently
large,

Qn(Π ∩ Pn) ≤ 2−n(D(P ∗ ;Q)−ε) . (�) .

Quantify “n sufficiently large” (that is, find n0 = n0(ε) such that (�) holds for all
n ≥ n0). Prove that D(P ∗ ; Q) is the largest constant γ such that

Qn(Π ∩ Pn) ≤ 2−n(γ−ε) .



Chapter 14

Universal Source Coding

14.1 Type Encoding

14.1.1 A First Example

The source compression codes of Huffman and Shannon–Fano–Elias are adapted to
specific statistics of the source. If used in a different statistical environment, they
loose their optimality (see Example 13.1.1). One is therefore led to investigate the
existence of codes that are less, and hopefully not, sensitive to the source statistics.
These codes are called universal. The following example gives an idea of what can
be expected.

Let xn
1 := (x1, . . . , xn) ∈ {0, 1}n be a binary sequence. It will be encoded as (k, β)

where k = k(xn
1 ) :=

∑n
i=1 xi is the number of 1’s in the sequence, and β = β(xn

1 , k)
is the lexicographical rank of the sequence among all sequences of {0, 1}n with k
ones. The number k can be encoded with �log(n+1) bits, and since there are

(
n
k

)
binary sequences of length n with k ones, encoding the sequence requires a total
length

�(xn
1 ) ≤ log(n+ 1) + log

(
n

k

)
+ 2 .

The following bounds for the binomial coefficients will be used (Exercise 14.3.1).
For p ∈ (0, 1) and n ∈ such that np is a positive integer,

1√
8np(1− p)

≤
(
n

np

)
2−nh2(p) ≤ 1√

πnp(1− p)
.

In particular,

log

(
n

np

)
≤ nh2(p)− 1

2
log n− 1

2
log (πp(1− p)) .

Applying this bound with p = k
n
, we obtain

�(xn
1 ) ≤ log n+ nh2

(
k

n

)
− 1

2
log n− 1

2
log

(
π
k

n

n− k

n

)
+ 3

1

2
log n+ nh2

(
k

n

)
− 1

2
log

(
π
k

n

n− k

n

)
+ 3 .
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Let Xn
1 := (X1, . . . , Xn) ∈ {0, 1}n be a random binary sequence such that

limn↑∞ 1
n
(X1 + · · ·+Xn) = p. By the preceding inequality,

lim
n↑∞

1

n
�(Xn

1 ) = h2(p) .

In the case where the asymptotic rate of 1’s in the sequence is p, this type encoding
guarantees a compression rate h2(p). In particular, the compression is optimal for
a Bernoulli sequence.

14.1.2 Source Coding via Typical Sequences

We now prove the existence of a universal code with given guaranteed rate via the
method of types. Let Xn

1 := (X1, . . . , Xn) be an iid sequence of random variables
taking their values in the finite set X and with common probability distribution
Q. A code of rate R consists of a sequence of encoders

En : X n → {1, 2, . . . , �2nR } (n ≥ 1)

and of a sequence of decoders

Dn : {1, 2, . . . , �2nR } → X n (n ≥ 1) .

(In the sequel, for notational convenience, we shall replace �2nR by 2nR, leaving
the fine tuning to the reader.) The sequence Xn

1 is encoded as En(X
n
1 ) and the

compressed sequence is restituted as Dn(En(X
n
1 )). The probability of error

Pe,n := Qn(xn
1 ; Dn(En(x

n
1 ) 
= xn

1 )

depends in general on the input distribution Q. A code is called a universal code
of rate R if for any input distribution Q such that H(Q) ≤ R, limn↑∞ Pe,n = 0.

The following result is an extension of the method of coding based on the notion
of a typical sequence (Theorem 11.1.11).

Theorem 14.1.1 There exists a universal code of rate R for all R ≥ 0.

Proof. (The notation is that of Chapter 13.) Let An := {x ∈ X n ; H(px) ≤ Rn},
where Rn := R−|X | log(n+1)

n
. This set has at most 2nR elements. Indeed, by Lemma

13.1.6,

|An| =
∑

p∈Pn ;H(p)≤Rn

|Tn(p)| ≤
∑

p∈Pn ;H(p)≤Rn

2nH(p)

≤
∑

p∈Pn ;H(p)≤Rn

2nRn ≤ |Pn|2nRn

≤ (n+ 1)|X |2nRn = 2n(Rn+|X | log(n+1)
n

) = 2nR .
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Since |An| ≤ 2nR there exists a bijection fn of An into a subset of {1, 2, . . . , 2nR}.
Define En(x

n
1 ) = fn(x

n
1 ) if x

n
1 ∈ An, arbitrarily otherwise. The decoder will asso-

ciate to En(x
n
1 ) the correct sequence if x

n
1 ∈ An. Therefore, if the input distribution

is Q,

Pe,n = 1−Qn(An) =
∑

p∈Pn ;H(p)>Rn

Qn(Tn(p))

≤ (n+ 1)|X | max
p∈Pn ;H(p)>Rn

Qn(Tn(p))

≤ (n+ 1)|X |2−nminp∈Pn ;H(p)>Rn D(p ;Q) .

In particular, if
Rn > H(Q) , (�)

then, minp∈Pn ;H(p)>Rn
D(p ; Q) ≥ minp∈Pn ;H(p)>H(Q)D(p ; Q) and therefore

Pe,n ≤ (n+ 1)|X |2−nγ ≤ 2−n(γ−|X | log(n+1)
n

)

where γ := minp∈Pn ;H(p)>H(Q)D(p ; Q) is positive. As Rn ↑ R and H(Q) < R, (�)
holds for sufficiently large n. �

This method of encoding is not practical because it requires a list a codewords and
resource consuming operations of encoding and decoding.

14.2 The Lempel–Ziv Algorithm

14.2.1 Description

(Ziv and Lempel, 1978) This kind of coding is of a nature quite different from the
classical ones (Huffman, Shannon–Fano–Elias, Tunstall) in that it does not require
knowledge of the statistics of the source, both for encoding and decoding. It is also
different from the universal code of Subsection 14.1.2 in that it does not depend
on a code, universal or not.

It transforms an infinite (input) sequence

x = x1x2x3 · · ·

of symbols from an alphabet A of size D into an infinite (output) sequence of
binary digits. The following example shows how this algorithm works.

Example 14.2.1: Coding aaabbc. The alphabet has three symbols: A =
{a, b, c}. Suppose that the initial segment of the sequence x is aaabbc. The algo-
rithm features an evolutive dictionary D consisting of finite sequences of symbols
(the dictionary words) from the alphabet A. Each dictionary word of the current
dictionary at a given step of the encoding process is encoded into a fixed-length
binary sequence. Denoting by M the current size of D, the length of the dictionary
words is the minimal one, namely �log2 M . The initial dictionary is
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D1 := {a, b, c} .
The dictionary word-length is therefore 2 and its words are (minimally) encoded
in the lexicographic order:

a → 00, b → 01, c → 10 .

We scan the input sequence for the first word in dictionary D1, a in the example.
We therefore encode a as 00. The encoding process is now at stage

00, aabbc .

We then update D1, replacing the just recognized word (here a single letter) a by
all the possible extensions: aa, ab, ac (in lexicographic order). The new dictionary
is therefore

D2 := {aa, ab, ac, b, c} .
Its dictionary words are (minimally) encoded in lexicographic order:

aa → 000, ab → 001, ac → 010, b → 011, c → 100 .

We then look for the next dictionary word first encountered in the remaining
sequence aabbc (the not yet encoded portion of the initial sequence). We find aa,
which is then encoded as 000. The encoding process is now at stage

00, 000, bbc .

We update D2 by replacing the just recognized word aa by all its possible one-letter
extensions aaa, aab, aac (in lexicographic order):

D3 := {aaa, aab, aac, ab, ac, b, c},
which is (minimally and in lexicographic order) encoded as

000, 001, 010, 011, 100, 101, 110 .

We then look in the remaining (not yet encoded) sequence bbc for the first word
not in the dictionary. We find b which is then encoded into 101. The encoding
process is now at stage

00, 000, 101, bc .

The next dictionary is then

D4 := {aaa, aab, aac, ab, ac, ba, bb, bc, c}
encoded as

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000 .

The remaining sequence bc turns out to be a dictionary word and it is therefore
encoded into 0111. Finally, the original sequence has been encoded as

00, 000, 101, 0111 .
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14.2.2 Parsings

The Lempel–Ziv algorithm involves slicing the initial sequence into distinct strings

a, aa, b, bc . (�)

Note that all the phrases in the parsing (�) are distinct, a property which is
inherent to the Lempel–Ziv algorithm. A distinctive parsing is a parsing consisting
of distinct phrases.

Let P(xn
1 ) be the collection of all distinctive parsings of xn

1 and call c(π(xn
1 )) the

number of phrases in the distinctive parsing π(xn
1 ), including the empty string ∅.

Define
c(xn

1 ) := inf
π(xn

1 )∈P(xn
1 )
c(π(xn

1 )) .

Example 14.2.2: The list of all distinctive parsings of the sequence x4
1 = aabb is

(∅, a, abb), (∅, aab, b), (∅, aa, bb), (∅, a, ab, b) .

Therefore, in this example, c(x4
1) = 3.

Lemma 14.2.3 For any sequence x = x1x2x3 · · · of symbols in A,

n ≥ c(xn
1 ) logD

c(xn
1 )

D3
′ (14.1)

and

c(xn
1 ) = O

(
n

log n

)
. (14.2)

Proof. Let c := c(xn
1 ). This number can be written in a unique way as

c =
m−1∑
j=0

Dj + r, 0 ≤ r < Dm .

The length n of xn
1 is certainly ≥ than the total length of the c shortest distinct

strings. Since there are Dj distinct strings of length j,

n ≥
m−1∑
j=0

jDj +mr . (†)

Now
m−1∑
j=0

Dj =
Dm − 1

D − 1
and

m−1∑
j=0

jDj = m
Dm

D − 1
− D

D − 1

Dm − 1

D − 1
,

and in particular

c− r =
m−1∑
j=0

Dj =
Dm

D − 1
− 1

D − 1
. (††)
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Therefore, from (†) and (††),

n ≥ m
Dm

D − 1
− D

D − 1

Dm − 1

D − 1
+mr

= m

(
c− r +

1

D − 1

)
− D

D − 1
(c− r) +mr

= m

(
c+

1

D − 1

)
− D

D − 1
c+

D

D − 1
r

≥ mc− D

D − 1
c ≥ (m− 2)c ,

that is

n ≥ (m− 2)c . († † †)
On the other hand,

c =
m−1∑
j=0

Dj + r ≤
m∑
j=0

Dj =
Dm+1 − 1

D − 1
,

so that

Dm+1 ≥ c(D − 1) + 1 > c ,

which in turn implies c
D3 < Dm−2 and then m − 2 > logD

c
D3 . Therefore, from

(† † †),
n > c logD

c

D3

that is, (14.1).

For the proof of (14.2), define ν := n
D3 and γ := c

D3 . In particular

ν > γ logD γ . (�)

We must show that

γ = O

(
ν

logD ν

)
.

Since the result to be proved is asymptotic, we may assume that ν is large. Since√
ν = o

(
ν

logD ν

)
, we may suppose that

√
ν ≤ 2ν

logD ν
. Only two cases need to be

checked:

1. γ <
√
ν. Then, by the above assumption, γ ≤ 2ν

logD ν
.

2. γ ≥ √
ν. Then, by (�), γ < ν

logD γ
< ν

logD
√
ν
= 2ν

logD ν
.

�
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14.2.3 Optimality of the Lempel–Ziv Algorithm

The Lempel–Ziv algorithm has, besides the fact that its implementation does not
require knowledge of the statistics of the input sequence, an interesting property:
it behaves at least as well, from the compression point of view, as any information
lossless finite encoder 1, a notion that we proceed to introduce.

A finite encoder consists of

• a finite state space Σ with s elements,

• an input alphabet A with D ≥ 2 elements,

• a binary output alphabet: {0, 1},
• an output function f : Σ× A → {0, 1}∗, and
• a state transition function g : Σ× A → Σ.

A finite encoder is also called in a more general framework a finite automaton. It
“reads” successively the input symbols x1, x2, x3, ... ∈ A, and “writes” the output
binary strings y1, y2, y3, y4, ... ∈ {0, 1}∗. Precisely: when it reads xk while in state
zk, it writes the binary string yk = f(zk, xk) and moves to state zk+1 = g(zk, xk).
The following condensed notations summarize the above sequence of operations:

• xkxk+1...xj = xj
k

• f(zk, x
j
k) = yjk (starting in state zk and reading the input sequence xk

j , the

encoder outputs the sequence yjk)

• g(zk, x
j
k) = zj+1

The encoder is said to be uniquely decodable (ud) if and only if the application
f : Ak → {0, 1}∗ is injective. It is called information lossless (il) if and only if for
all states zk and for any distinct input sequence xj

k 
= x̃j
k,

f(zk, x
j
k) = f(zk, x̃

j
k) ⇒ g(zk, x

j
k) 
= g(zk, x̃

j
k) . (14.3)

This is the minimum requirement that a decoder must satisfy, otherwise one could
not distiguish xj

k from x̃j
k given the information provided by the yjk’s and the zjk’s.

Clearly, ud implies il, but the converse may not be true (Exercise 14.3.7 features
a counter-example).

Let E be an il encoder. One defines the compression ratio for the n first input
symbols by

ρE(x
n
1 ) :=

1

n
L(y1n) ,

where L(yn1 ) is the length of the output binary sequence yn1 . Let

1
The proof below is borrowed from the lecture notes in information theory of Emre Telatar,

IC school, EPFL.
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ρs(x
n
1 ) := inf

E,|Σ|=s
ρE(x

n
1 )

be the lower bound of this compression ratio over the encoders with s states, and
define

ρs(x) := lim sup
n→∞

ρs(x
n
1 ) .

Since there exists an il encoder transforming each symbol xk into a binary sequence
of length at most �log2D , ρs(xn

1 ) ≤ �log2 D , and therefore ρs(x) ≤ �log2D .
Clearly, s → ρs(x) is a non-increasing function of s (one can only improve com-
pression with an encoder with more states). The following limit therefore exists:

lim ρs(x) := ρ(x) .

We now proceed to the proof that the compression ratio of the Lempel–Ziv algo-
rithm is not larger than that of any il finite encoder.

Lemma 14.2.4 For any il encoder with s states encoding binary sequences,

L(yn1 ) ≥ c(xn
1 ) log2

(
c(xn

1 )

8s2

)
.

Proof. Let xn
1 be parsed in c = c(xn

1 ) distinct phrases:

xn
1 = w1, w2, . . . , wc .

Among the wk’s, look at those for which the encoder has started in state i and
finished in state j. Let cij be their number. The encoder being il, the corresponding
output strings must be distinct (by (14.3), and therefore their total length Lij

satisfies (14.1) with D = 2:

Lij ≥ cij log2

(cij
8

)
.

Therefore, denoting the states by 1, 2, . . . , s,

L(yn1 ) =
∑

1≤i,j≤s

Lij ≥
∑

1≤i,j≤s

cij log2

(cij
8

)
.

The minimum of ∑
1≤i,j≤s

cij log2

(cij
8

)
as a function of the cij’s, under the constraint

∑
i,j cij = c := c(xn

1 )), is attained
for cij =

c
s2

for all (i, j). (In fact, under the constraint, the problem is equivalent to
that of maximizing the entropy of the probability distribution {cij/c ; (i, j) ∈ Σ2},
and this is done by the uniform distribution.) Therefore

L(yn1 ) ≥
∑

1≤i,j≤s

c

s2
log2

( c

8s2

)
= c log2

( c

8s2

)
.

�
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Lemma 14.2.5

ρ(x) ≥ lim sup
1

n
c(xn

1 ) log2 c(x
n
1 ) . (14.4)

Proof. According to Lemma 14.2.4, L(yn1 ) ≥ c(xn
1 ) log2

(
c(xn

1 )

8s2

)
, and therefore

ρs(x) ≥ lim sup
1

n
c(xn

1 ) log2

(
c(xn

1 )

8s2

)

≥ lim sup

⎛⎜⎝ 1

n
c(xn

1 ) log2(c(x
n
1 ))−

1

n
c(xn

1 ) log2(8s
2)︸ ︷︷ ︸

→0

⎞⎟⎠
≥ lim sup

1

n
c(xn

1 ) log2(c(x
n
1 )) .

The announced result then follows from the fact that the right-hand side does not
depend on the number of states s. �

Lemma 14.2.6

LLZ(y
n
1 ) ≤ c(xn

1 ) log2 (c(x
n
1 )× 2D) . (14.5)

Proof. Suppose the Lempel–Ziv algorithm has been applied to xn
1 , with the re-

sulting distinctive parsing of the input sequence

xn
1 = ∅w1w2...wcLZ−1wcLZ

.

The first cLZ − 1 words are by construction distinct, but nothing is known of
the last word because we may be at stage n in the process of obtaining a new
phrase. Nevertheless, by concatenating wcLZ−1 and wcLZ

, we obtain a phrase not
in {w1, w2, ...wcLZ−2} and therefore have a parsing of xn

1 in cLZ distinct phrases.
Therefore, taking into account the empty string ∅,

cLZ(x
n
1 ) ≤ c(xn

1 ) .

The size of the dictionary increases by D − 1 at each new phrase. Therefore, at
the end of the Lempel–Ziv parsing of xn

1 , it is

1 + (D − 1) cLZ(x
n
1 ) ≤ 1 + (D − 1) c(xn

1 ) ≤ Dc(xn
1 ) .

Therefore, the words of the last dictionary have been encoded with no more than
�log2(Dc(xn

1 )) binary digits. Since any phrase of the Lempel–Ziv parsing has been
encoded with a smaller dictionary,

LLZ(y
n
1 ) ≤ cLZ(x

n
1 ) �log2 cLZ(xn

1 )D 
≤ cLZ(x

n
1 ) log2 (cLZ(x

n
1 )D) + 1

≤ cLZ(x
n
1 ) log2 (cLZ(x

n
1 )2D)

≤ c(xn
1 ) log2 (c(x

n
1 )2D) .

�



366 CHAPTER 14. UNIVERSAL SOURCE CODING

Theorem 14.2.7

lim sup
1

n
LLZ(y

n
1 ) ≤ ρ(x) .

Proof. From (14.5),

lim sup
n

1

n
LLZ(y

n
1 ) ≤ lim sup

n

1

n
c(xn

1 ) log2 (c(x
n
1 )× 2D)

≤ lim sup
n

1

n
c(xn

1 ) (log2(c(x
n
1 ) + log2(2D))

= lim sup
n

1

n
c(xn

1 ) log2 c(x
n
1 ) .

The result then follows from (14.4). �

Therefore, the Lempel–Ziv algorithm performs at least as well as any il finite
encoder such as Huffman’s algorithm, which is indeed an il finite encoder (Exercise
14.3.6).

14.2.4 Lempel–Ziv Measures Entropy

We now take another look at Lempel–Ziv’s algorithm. Consider binary sequences
without loss of generality for the method. The encoding is slightly different, but this
modification facilitates the analysis while preserving the essential ideas. Suppose
that the binary sequence xn

1 is parsed into c = c(n) distinct phrases y1, . . . , yc. A
phrase yi is necessarily of the form yj0 (resp., yj1) for some j < i. We shall encode
it by uj0 (resp., uj1) where uj is the binary expression of length �log c of j.

Example 14.2.8: The sequence 1100010111010001100000001 is parsed in

1, 10, 0, 01, 011, 101, 00, 0110, 000, 0001 .

Here c = 9 and therefore the binary encoding of the zj’s require �log 9 = 4 bits.
The encoding of the sequence is

(0000, 1)(0001, 0)(0000, 0)(0011, 1)(0010, 1)(0010, 1)(0011, 0)(0101, 0)(0111, 0)(1001, 1)

The length of the coded sequence is therefore

�(xn
1 ) = c(n) (�log c(n) + 1) . (14.6)

Let {Xn}n∈ be a sequence of random variables with values in the set X = {0, 1}.
Suppose that under probability P , the stochastic process {(Xn+1, . . . , Xn+k}n≥0

is a stationary ergodic hmc with state space E := {0, 1}k. Let for xi ∈ {0, 1}
(1 ≤ i ≤ n)

p(x1, . . . , xn) := P (X1 = x1, . . . , Xn = xn) .
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(This is a simplified notation for p1,2,...,n(x1, . . . , xn), the ambiguity of which dis-
appears in view of the context.) In particular,

P (Xn
1 = xn

1 |X0
−(k−1) = x0

−(k−1)) =
n∏

j=1

p(xj | xj−1
j−k) . (14.7)

The left-hand side of (14.7) will be denoted by p(x1, . . . , xn | x0
−(k−1)). By ergodicity

1

n
log p(X1, . . . , Xn |X0

−(k−1)) =
1

n

n∑
j=1

log p(Xj |Xj−1
j−k)

−→ E
[
log p(X1 |X0

−(k−1))
]
= H(X1 |X0

−(k−1)) .

(14.8)

Recall that xn
1 is parsed into c distinct phrases y1, . . . , yc. Let νi be the index

starting yi, that is yi = x
νi+1−1
νi . Let si = xνi−1

νi−k be for i = 1, 2, . . . , c the k-bit chunk
preceding yi. In particular s1 = x0

−(k−1).

Let c�,s be the number of phrases yi with length � and preceding k-bit chunk si = s.
In particular ∑

�,s

c�,s = c (14.9)

and ∑
�,s

�c�,s = n . (14.10)

Lemma 14.2.9 For any distinctive parsing of x1, . . . , xn,

log p(x1, . . . , xn | s1) ≤
∑
�,s

c�,s log c�,s . (14.11)

This is Ziv’s inequality, valid for any parsing, not only for the Lempel–Ziv parsing.
Note also that the right-hand side does not depend on the probability P .

Proof. From pk(x1, . . . , xn | s1) =
∏c

i=1 p(yi | si), the concavity of the logarithm
and Jensen’s inequality,
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log pk(x1, . . . , xn | s1) =
c∑

i=1

log p(yi | si)

=
∑
�,s

∑
i ; |yi|=�,si=s

log p(yi | si)

=
∑
�,s

c�,s
∑

i ; |yi|=�,si=s

1

c�,s
log p(yi | si)

≤
∑
�,s

c�,s log

⎛⎝ ∑
i ; |yi|=�,si=s

1

c�,s
p(yi | si)

⎞⎠
=
∑
�,s

c�,s log

⎛⎝ 1

c�,s

∑
i ; |yi|=�,si=s

p(yi | si)
⎞⎠ .

Finally, since the yi’s are distinct∑
i ; |yi|=�,si=s

p(yi | si) ≤ 1 .

�

Theorem 14.2.10

lim sup
n↑∞

c(n) log c(n)

n
≤ H .

Proof. Let π�,s :=
c�,s
c
. Then∑

�,s

π�,s = 1 and
∑
�,s

�π�,s =
n

c
.

Define the random variables Y and Z by

P (Y = �, Z = s) = π�,s .

Rewrite Ziv’s inequality as

log p(x1, . . . , xn | s1) ≤ −c log c−
∑
�,s

π�,s log π�,s = −c log c+H(Y, Z) .

Therefore

− 1

n
log p(x1, . . . , xn | s1) ≥ c

n
log c− c

n
H(Y, Z) .

Now

H(Y, Z) ≤ H(Y ) +H(Z)

and, since Z takes its values in a set of size 2k, H(Z) ≤ k. Also, by Lemma 11.1.7,
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H(Y ) ≤ (EX + 1) log(EX + 1)− EX logEX

=
(n
c
+ 1

)
log

(n
c
+ 1

)
− n

c
log

n

c

= log
n

c
+
(
1 +

n

c

)
log

(
1 +

c

n

)
.

Therefore,
c

n
H(Y, Z) ≤ c

n
k +

c

n
log

n

c
+ o(1) .

Since c ≤ n
logn

(1 + o(1)) (Lemma 14.2.3) is eventually less that 1
e
, and since the

maximum of c
n
log n

c
is attained for the maximum value of c for c

n
≤ 1

e
,

c

n
log

n

c
≤
(
log log n

log n

)
and therefore H(Y, Z) → 0 as n → ∞. Finally,

c

n
log

n

c
≤ − 1

n
log p(x1, . . . , xn | s1) + εk(n) ,

where limn↑∞ εk(n) = 0. Therefore, almost surely

lim sup
n↑∞

c(n) log c(n)

n
≤ lim

n↑∞
− 1

n
log p(X1, . . . , Xn | s1) = H .

�

Theorem 14.2.11 The length �(X1, . . . , Xn) of the encoded sequence satisfies

lim sup
n↑∞

1

n
�(X1, . . . , Xn) ≤ H .

Proof. Recalling (14.6)

lim sup
n↑∞

1

n
�(X1, . . . , Xn) = lim sup

n↑∞

(
c(n)�log c(n) 

n
+

c(n)

n

)
.

The result follows by Theorem 14.2.10 and lim c(n)
n

= 0. �

The extension to ergodic sources is done in [Cover and Thomas, 2006]. However,
the above result gives an upper bound. Heuristic arguments show that this is also
a lower bound, and therefore, in this sense, the Lempel–Ziv algorithm “measures
entropy”.

Books for Further Information

[Cover and Thomas, 2006], [Csiszár and Shields, 2004].
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14.3 Exercises

Exercise 14.3.1. Improved bounds for the binomial coefficients

For p ∈ (0, 1) and n ∈ such that np is a positive integer,

1√
8np(1− p)

≤
(
n

np

)
2−nh2(p) ≤ 1√

πnp(1− p)
.

Exercise 14.3.2. Run-length coding

Consider a sequence of 0’s and 1’s, for instance

00011000001111111011000 .

It is encoded into a sequence of integers equal to the successive lengths of the
segments of 0’s and 1’s. In the example

3257123 .

(Add a symbol A or B in front to inform the receiving party that the sequence
started with a 0 or a 1.) Applying the best compression algorithm to the encoded
sequence, what is the overall compression ratio in the case where the input is a
Bernoulli sequence of parameter p ∈ (0, 1)?

Exercise 14.3.3. Lempel–Ziv encoding

Perform the Lempel–Ziv encoding of the sequence acabbdddaabb.

Exercise 14.3.4. Lempel–Ziv decoding

Perform the decoding of the sequence 000001100111 obtained by Lempel–Ziv de-
coding of a sequence written with alphabet A = {a, b, c}. (Give the details, in
particular the successive dictionaries used.)

Exercise 14.3.5. Is this a Lempel–Ziv output?

Can any binary string be the output of the Ziv-Lempel encoding of an input
sequence with symbols in alphabet, say, A = {a, b, c}?

Exercise 14.3.6. Huffman is il

Show that the Huffman algorithm can be implemented by an information lossless
finite encoder of which you will explicit the state transition function and the output
function.

Exercise 14.3.7. il but not ud

Consider the following encoder, with state spac Σ = {A,B,C}.
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The labels of the arrows define the input/output function. For instance, when
reading b in state A, the encoder writes 1 and moves to state A (here the same
state). Show that it is not ud but that it is il.



Chapter 15

Asymptotic Behaviour of Markov

Chains

15.1 Limit Distribution

15.1.1 Countable State Space

Consider an hmc that is irreducible and positive recurrent. If its initial distribution
is the stationary distribution, it keeps the same distribution at all times. The chain
is then said to be in the stationary regime, or in equilibrium, or in steady state.
A question arises naturally: What is the long-run behavior of the chain when the
initial distribution μ is arbitrary? For instance, will it converge to equilibrium? in
what sense?

This question was answered in Section 6.3 for the finite state space case. In the
case of infinite state space, linear algebra fails to provide the answer, and recourse
to other methods is necessary. In fact, the following form of the limit theorem for
Markov chains, which improves (6.10), will be proved.

Theorem 15.1.1 Let {Xn}n≥0 be an ergodic hmc on the countable state space E
with transition matrix P and stationary distribution π, and let μ be an arbitrary
initial distribution. Then

lim
n↑∞

∑
i∈E

|Pμ(Xn = i)− π(i)| = 0,

and in particular, for all j ∈ E,

lim
n↑∞

∑
i∈E

|pji(n)− π(i)| = 0.

Remark 15.1.2 A sequence {Xn}n≥1 of discrete random variables with values in
E is said to converge in distribution to the probability distribution π on E if for
all i ∈ E, limn↑∞ P (Xn = i) = π(i). It is said to converge in variation to this
distribution if

© Springer International Publishing Switzerland 2017
P. Brémaud, Discrete Probability Models and Methods,
Probability Theory and Stochastic Modelling 78,
DOI 10.1007/978-3-319-43476-6_15
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lim
n↑∞

∑
i∈E

|P (Xn = i)− π(i)| = 0 .

Thus, Theorem 15.1.1 states that the state Xn converges in stationary distribution
π not only in distribution, but also in variation.

The proof of Theorem 15.1.1 will be given in Section 16.2.

Example 15.1.3: Thermodynamic irreversibility. The fame of the Ehren-
fest diffusion model is due to the insight it provided to the once controversial issue
of thermodynamic irreversibility. Indeed, according to the macroscopic theory of
thermodynamics, systems progress in an orderly and irreversible manner towards
equilibrium. The Ehrenfest urn is a simplified model of diffusion that captures the
essential features of the phenomenon. Whatever the initial distribution of particles
between the two compartments the system will settle to thermodynamical equi-
librium, a macroscopic state in which the contents of A and B are both close to
equality when N is “large”. This means that at a fixed sufficiently large time the
states that are not close to equidistribution in the two compartments are unlikely.
This can be quantified as follows. By Stirling’s equivalence,

N !

(αN)!(N − αN)!
/

N !

(βN)!(N − βN)!
∼ e−N(h(β)−h(α)) , (�)

where h(x) := −x log x − (1 − x) log(1 − x). The function h so defined on [0, 1]
has a strict maximum at x = 1

2
, and therefore we see that all states αN 
= 1

2
N are

very unlikely.

Boltzmann claimed that there was an arrow of time in the direction of increasing
entropy, and indeed, in the diffusion experiment, equality between the thermody-
namic quantities in both compartments corresponds to maximal entropy.

A controversy occured because a famous result of mechanics, Poincaré’s recurrence
theorem, implies that in the situation where at time 0 all molecules are in A,
then whatever the time n, there will be a subsequent time t > n at which all
the molecules will again gather in A. This phenomenon predicted by irrefutable
mathematics is, of course, never observed in daily life, where it would imply that
the chunk of sugar that one patiently dissolves in one’s cup of coffee could escape
ingestion by reforming itself at the bottom of the cup.

Boltzmann’s theory was challenged by this striking and seemingly inescapable
argument. Things had to be clarified. Fortunately, Tatiana and Paul Ehrenfest
came up with their Markov chain model, and in a sense saved Boltzmann’s theory.

At first sight, the Ehrenfest model presents the two features that seemed incom-
patible: an irreversible tendency towards equilibrium, and recurrence. Here the
role of Poincaré’s recurrence theorem is played by the Markov chain recurrence
theorem, stating that an irreducible chain with a stationary distribution visits any
fixed state, say 0, infinitely often. As for the irreversible tendency towards equi-
librium, one has the theorem of convergence to steady state, according to which
the distribution at time n converges to the stationary distribution whatever the
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initial distribution as n tends to infinity1. Thus, according to Markov chain theory,
convergence to statistical equilibrium and recurrence are not antagonistic, and we
are here at the epicenter of the refutation.

The average times between two successive occurences of a given state i being the
reciprocal of the stationary probability of this state, we have from (�) that, taking
into account the fact that h(0) = 0, and with M := N

2
(assuming N even)

EM [TM ]

E0 [T0]
∼ e−Nh( 1

2
) , (†) .

This strongly suggests that the system very quickly returns to a near equilibrium
state, and is very reluctant to return to a state where compartment A is nearly
empty. In fact, recurrence is not observable for states far from N

2
. For instance2,

the average time to reach 0 from state M is

1

2M
22M(1 +O(M)) ,

whereas the average time to reach state M from state 0 is less than

M +M logM +O(1).

With M = 106 and one unit of mathematical time equal to 10−5 seconds, the
return time to equilibrium when compartment A is initially empty is of the order
of a second, whereas it would take of the order of

1

2 · 1011 × 22
106

seconds

to go from M to empty, which is an astronomical time. These numbers teach us
not to spend too much time stirring the coffee, or hurry to swallow it for fear of
recrystallization. From a mathematical point of view, being in the steady state
at a given time does not prevent the chain from being in a rare state, only it
is there rarely. The rarity of the state is equivalent to long recurrence times, so
long that when there are more than a few particles in the boxes, it would take
an astronomical time to witness the effects of Poincaré’s recurrence theorem. Note
that Boltzmann rightly argued that the recurrence times in Poincaré’s theorem
are extremely long, but his heuristic arguments failed to convince.

15.1.2 Absorption

We now consider the absorption problem for hmc’s when the transition matrix is
not necessarily assumed irreducible. The state space E is then decomposable as
E = T +

∑
j Rj, where R1, R2, . . . are the disjoint recurrent classes and T is the

1Stricto sensu, this statement is not true, due to the periodicity of the chain. However, such

periodicity is an artefact created by the discretization of time which is absent in the continuous-

time model, or in a slight modification of the discrete-time model.
2
These estimates can be obtained from formula (7.7) giving the average passage time from

one state to another.
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collection of transient states. (Note that the number of recurrent classes as well as
the number of transient states may be infinite.)

What is the probability of being absorbed by a given recurrent class when starting
from a given transient state? This kind of problem was already addressed when
the first-step analysis method was introduced. It led to systems of linear equations
with boundary conditions, for which the solution was unique, due to the finiteness
of the state space. With an infinite state space, the uniqueness issue cannot be
overlooked, and the absorption problem will be reconsidered with this in mind,
and also with the intention of finding general matrix-algebraic expressions for
the solutions. Another phenomenon not manifesting itself in the finite case is the
possibility, when the set of transient states is infinite, of never being absorbed by
the recurrent set. We shall consider this problem first, and then proceed to derive
the distribution of the time to absorption by the recurrent set, and the probability
of being absorbed by a given recurrent class.

The transition matrix can be block-partitioned as

P =

⎛⎜⎜⎜⎝
P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
B(1) B(2) · · · Q

⎞⎟⎟⎟⎠
or in condensed notation,

P =

(
D 0
B Q

)
. (15.1)

This structure of the transition matrix accounts for the fact that one cannot go
from a state in a given recurrent class to any state not belonging to this recurrent
class. In other words, a recurrent class is closed.

Before Absorption

Let A be a subset of the state space E (typically the set of transient states, but
not necessarily). We aim at computing for any initial state i ∈ A the probability
of remaining forever in A,

v(i) = Pi(Xr ∈ A; r ≥ 0).

Defining vn(i) := Pi(X1 ∈ A, . . . , Xn ∈ A), we have, by monotone sequential
continuity,

lim
n↑∞

↓ vn(i) = v(i).

But for j ∈ A, Pi(X1 ∈ A, . . . , Xn−1 ∈ A,Xn = j) =
∑

i1∈A · · ·∑in−1∈A pii1 · · · pin−1j

is the general term qij(n) of the n-th iterate of the restriction Q of P to the set
A. Therefore vn(i) =

∑
j∈A qij(n), that is, in vector notation,

vn = Qn1A,

where 1A is the column vector indexed by A with all entries equal to 1. From this
equality we obtain
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vn+1 = Qvn,

and by dominated convergence v = Qv. Moreover, 0A ≤ v ≤ 1A, where 0A is the
column vector indexed by A with all entries equal to 0. The above result can be
refined as follows:

Theorem 15.1.4 The vector v is the maximal solution of

v = Qv,0A ≤ v ≤ 1A.

Moreover, either v = 0A or supi∈Av(i) = 1. In the case of a finite transient set T ,
the probability of infinite sojourn in T is null.

Proof. Only maximality and the last statement remain to be proved. To prove
maximality consider a vector u indexed by A such that u = Qu and 0A ≤ u ≤ 1A.
Iteration of u = Qu yields u = Qnu, and u ≤ 1A implies that Qnu ≤ Qn1A = vn.
Therefore, u ≤ vn, which gives u ≤ v by passage to the limit.

To prove the last statement of the theorem, let c = supi∈A v(i). From v ≤ c1A, we
obtain v ≤ cvn as above, and therefore, at the limit, v ≤ cv. This implies either
v = 0A or c = 1.

When the set T is finite, the probability of infinite sojourn in T is null, because
otherwise at least one transient state would be visited infinitely often. �

Equation v = Qv reads

v(i) =
∑
j∈A

pijv(j) (i ∈ A) .

First-step analysis gives this equality as a necessary condition. However, it does
not help to determine which solution to choose, in case there are several.

Example 15.1.5: The repair shop, take 5.We shall prove in a different way a
result already obtained in Example 7.3.7, that is: the repair shop chain is recurrent
if and only if ρ ≤ 1,. Observe that the restriction of P to Ai := {i+ 1, i+ 2, . . .},
namely

Q =

⎛⎜⎜⎝
a1 a2 a3 · · ·
a0 a1 a2 · · ·

a0 a1 · · ·
· · ·

⎞⎟⎟⎠ ,

does not depend on i ≥ 0. In particular, the maximal solution of v = Qv, 0A ≤ v ≤
1A when A ≡ Ai has, in view of Theorem 15.1.4, the following two interpretations.
Firstly, for i ≥ 1, 1− v(i) is the probability of visiting 0 when starting from i ≥ 1.
Secondly, (1 − v(1)) is the probability of visiting {0, 1, . . . , i} when starting from
i + 1. But when starting from i + 1, the chain visits {0, 1, . . . , i} if and only if it
visits i, and therefore (1− v(1)) is also the probability of visiting i when starting
from i+ 1. The probability of visiting 0 when starting from i+ 1 is
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1− v(i+ 1) = (1− v(1))(1− v(i)),

because in order to go from i + 1 to 0 one must first reach i, and then go to 0.
Therefore, for all i ≥ 1,

v(i) = 1− βi ,

where β = 1− v(1). To determine β, write the first equality of v = Qv:

v(1) = a1v(1) + a2v(2) + · · · ,
that is,

(1− β) = a1(1− β) + a2(1− β2) + · · · .
Since

∑
i≥0 ai = 1, this reduces to

β = g(β) , (�)

where g is the generating function of the probability distribution (ak, k ≥ 0). Also,
all other equations of v = Qv reduce to (�).

Under the irreduciblity assumptions a0 > 0, a0 + a1 < 1, (�) has only one solution
in [0, 1], namely β = 1 if ρ ≤ 1, whereas if ρ > 1, it has two solutions in [0, 1],
this probability is β = 1 and β = β0 ∈ (0, 1). We must take the smallest solution.
Therefore, if ρ > 1, the probability of visiting state 0 when starting from state
i ≥ 1 is 1− v(i) = βi

0 < 1, and therefore the chain is transient. If ρ ≤ 1, the latter
probability is 1− v(i) = 1, and therefore the chain is recurrent.

Example 15.1.6: 1-D random walk, take 3. The transition matrix of the
random walk on N with a reflecting barrier at 0,

P =

⎛⎜⎜⎜⎜⎝
0 1
q 0 p

q 0 p
q 0 p

. . .

⎞⎟⎟⎟⎟⎠ ,

where p ∈ (0, 1), is clearly irreducible. Intuitively, if p > q, there is a drift to the
right, and one expects the chain to be transient. This will be proven formally by
showing that the probability v(i) of never visiting state 0 when starting from state
i ≥ 1 is strictly positive. In order to apply Theorem 15.1.4 with A = N− {0}, we
must find the general solution of u = Qu. This equation reads

u(1) = pu(2),

u(2) = qu(1) + pu(3),

u(3) = qu(2) + pu(4),

· · ·

and its general solution is u(i) = u(1)
∑i−1

j=0

(
q
p

)j

. The largest value of u(1) respect-

ing the constraint u(i) ∈ [0, 1] is u(1) = 1−
(

q
p

)
. The solution v(i) is therefore



15.1. LIMIT DISTRIBUTION 379

v(i) = 1−
(
q

p

)i

.

Time to Absorption

We now turn to the determination of the distribution of τ , the time of exit from the
transient set T . Theorem 15.1.4 tells us that v = {v(i)}i∈T , where v(i) = Pi(τ =
∞), is the largest solution of v = Qv subject to the constraints 0T ≤ v ≤ 1T ,
where Q is the restriction of P to the transient set T . The probability distribution
of τ when the initial state is i ∈ T is readily computed starting from the identity

Pi(τ = n) = Pi(τ ≥ n)− Pi(τ ≥ n+ 1)

and the observation that for n ≥ 1 {τ ≥ n} = {Xn−1 ∈ T}, from which we obtain,
for n ≥ 1,

Pi(τ = n) = Pi(Xn−1 ∈ T )− P (Xn ∈ T ) =
∑
j∈T

(pij(n− 1)− pij(n)).

Now, pij(n) is, for i, j ∈ T , the general term of Qn, and therefore:

Theorem 15.1.7

Pi(τ = n) = {(Qn−1 −Qn)1T}i . (15.2)

In particular, if Pi(τ = ∞) = 0,

Pi(τ > n) = {Qn1T}i .

Proof. Only the last statement remains to be proved. From (15.2),

Pi(n < τ ≤ n+m) =
m−1∑
j=0

{(Qn+j −Qn+j−1)1T}i

=
{(

Qn −Qn+m
)
1T

}
i
,

and therefore, if Pi(τ = ∞) = 0, we obtain (15.2) by letting m ↑ ∞. �

Absorbing Destinations

We seek to compute the probability of absorption by a given recurrent class when
starting from a given transient state. As we shall see later, it suffices for the theory
to treat the case where the recurrent classes are singletons. We therefore suppose
that the transition matrix has the form

P =

(
I 0
B Q

)
. (15.3)
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Let fij be the probability of absorption by recurrent class Rj = {j} when starting
from the transient state i. We have

Pn =

(
I 0
Ln Qn

)
,

where Ln = (I +Q+ · · ·+Qn)B. Therefore, limn↑∞ Ln = SB. For i ∈ T , the (i, j)
term of Ln is

Ln(i, j) = P (Xn = j|X0 = i).

Now, if TRj
is the first time of visit to Rj after time 0, then

Ln(i, j) = Pi(TRj
≤ n),

since Rj is a closed state. Letting n go to ∞ gives the following:

Theorem 15.1.8 For an hmc with transition matrix P of the form (15.3), the
probability of absorption by recurrent class Rj = {j} starting from transient state
i is

Pi(TRj
< ∞) = (SB)i,Rj

.

The general case, where the recurrence classes are not necessarily singletons, can
be reduced to the singleton case as follows. Let P∗ be the matrix obtained from
the transition matrix P, by grouping for each j the states of recurrent class Rj

into a single state ĵ:

P∗ =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0

0 0
. . . 0

b1̂ b2̂ · · · Q

⎞⎟⎟⎟⎠ (15.4)

where bĵ = B(j)1T is obtained by summation of the columns of B(j), the matrix
consisting of the columns i ∈ Rj of B. The probability fiRj

of absorption by class

Rj when starting from i ∈ T equals f̂iĵ, the probability of ever visiting ĵ when
starting from i, computed for the chain with transition matrix P∗.

15.1.3 Variance of Ergodic Estimates

Let {Xn}n≥0 be an ergodic Markov chain with finite state space E = {1, 2, . . . , r}.
A function f : E → R is represented by a column vector f = (f(1), . . . , f(r))T .
The ergodic theorem tells that the estimate 1

n

∑n
k=1 f(Xn) of 〈f〉π := Eπ[f(X0)] is

asymptotically unbiased, in the sense that it converges to 〈f〉π as n → ∞. However,
the variance of this estimate increases indefinitely as n ↑ ∞. The next result gives
the asymptotic rate of increase.

Theorem 15.1.9 For {Xn}n≥0 and f : E → R as above, and for any initial
distribution μ,

lim
n→∞

1

n
Vμ

(
n∑

k=1

f(Xk)

)
= 2 〈f,Zf〉π − 〈f, (I +Π)f〉π , (15.5)

where the notation Vμ indicates that the variance is computed with respect to Pμ.
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The quantity on the right-hand side will be denoted by v(f,P, π).

Proof. We first suppose that μ = π, the stationary distribution. Then

1

n
Vπ

(
n∑

k=1

f(Xk)

)
=

1

n

⎧⎪⎨⎪⎩
n∑

k=1

Vπ(f(Xk)) + 2
n∑

k,j=1
k<j

cov π(f(Xk), f(Xj))

⎫⎪⎬⎪⎭
= Vπ(f(X0)) +

n−1∑
�=1

n− �

n
cov π(f(X0), f(X�)) ,

where we have used the fact that when the initial distribution is π, the chain is
stationary, and in particular, cov π(f(Xk), f(Xj)) = cov π(f(X0), f(Xj−k)) for
k < j. Now,

Vπ(f(X0)) = Eπ[f(X0)
2]− Eπ[f(X0)]

2

=
∑
i∈E

π(i)f(i)2 −
(∑

i∈E
π(i)f(i)

)2

= 〈f, f〉π − 〈f,Πf〉π .

Also,

cov π(f(X0), f(X�)) = Eπ[f(X0)f(Xk)]− Eπ[f(X0)]
2

=
∑
i∈E

∑
j∈E

π(i)pij(�)f(i)f(j)− Eπ[f(X0)]
2

=
〈
f,P�f

〉
π
− 〈f,Πf〉π = 〈f, (P� − Π)f〉π.

Since limn→∞
∑n

�=1(P
� − Π) = Z− I,

lim
n→∞

n−1∑
�=1

n− �

n
(P� − Π) = Z− I.

Indeed, by Cesaro’s lemma: If An =
∑n

�=1 α� tends to A as n → ∞, then
limn→∞ 1

n

∑n−1
�=1 A� = A. But 1

n

∑n−1
�=1 A� = 1

n
(α1 + (α1 + α2) + · · · + (α1 + · · · +

αn−1)) =
∑n−1

�=1
n−�
n
α�. Therefore,

lim
n→∞

1

n
Vπ

(
n∑

k=1

f(Xk)

)
= 〈f, f〉π − 〈f,Πf〉π + 2 〈f, (Z− I)f〉π ,

which is the announced result (for μ = π).

To prove the result in the general case where the initial distribution is arbitrary,
it suffices to show that for two chains {X(1)

n }n≥0 and {X(2)
n }n≥0 with transition

matrix P, and arbitrary initial distributions μ and ν, respectively, that couple at
a time τ such that E[τ 2] < ∞ (this is the case here, see Exercise 16.4.6),

lim
n→∞

1

n
V

( ∞∑
k=1

f(X
(1)
k )

)
= lim

n→∞
1

n
V

( ∞∑
k=1

f(X(2)
n )

)
.
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But with Xn = X
(1)
n or X

(2)
n ,

V

(
n∑

k=1

f(Xk)

)
= E

⎡⎣( n∑
k=1

f(Xk)

)2
⎤⎦− E

[
n∑

k=1

f(Xk)

]2

= E

⎡⎣(τ∧n∑
k=1

+
n∑

k=τ+1

)2
⎤⎦−

(
E

[
τ∧n∑
k=1

]
+ E

[
n∑

k=τ+1

])2

= E

⎡⎣(τ∧n∑
k=1

)2
⎤⎦+ E

⎡⎣( n∑
k=τ+1

)2

+ 2E

[(
τ∧n∑
k=1

)(
n∑

k=τ+1

)]⎤⎦
−E

[
τ∧n∑
k=1

]2

− E

[
n∑

k=τ+1

]2

− 2E

[
τ∧n∑
k=1

]
E

[
n∑

k=τ+1

]
.

Since
∑n

k=τ+1 f(X
(1)
k ) =

∑n
k=τ+1 f(X

(2)
k ), it follows that

1

n

{
V

(
n∑

k=1

f(X
(1)
k )

)
− 1

n
V

(
n∑

k=1

f(X
(2)
k

)}
=

1

n
An +

2

n
Bn − 2

n
Cn,

where

An =

⎧⎨⎩E

⎡⎣(τ∧n∑
k=1

(1)

)2
⎤⎦− E

⎡⎣(τ∧n∑
k=1

(2)

)2
⎤⎦− E

[
τ∧n∑
k=1

(1)

]2

+ E

[
τ∧n∑
k=1

(2)

]2
⎫⎬⎭ ,

Bn =

{
E

[(
n∑

k=τ+1

(1, 2)

)(
τ∧n∑
k=1

(1)−
τ∧n∑
k=1

(2)

)]}
,

Cn =

{
E

[
n∑

k=τ+1

(1, 2)

]
E

[
τ∧n∑
k=1

(1)−
τ∧n∑
k=1

(2)

]}
.

Write

2

n
Bn = 2E

[∑n
k=τ+1(1, 2)

n

(
τ∧n∑
k=1

(1)−
τ∧n∑
k=1

(2)

)]
and observe that the quantity under the expectation converges, as n → ∞, to-
wards Eπ[f(X0)] (

∑τ
k=1 (f(X

(1)
k ) −f(X

(2)
k ))) and is for fixed n bounded in abso-

lute value by 2(sup |f |)τ , an integrable random variable. Therefore, by dominated
convergence,

lim
n→∞

2

n
Bn = 2Eπ[f(X0)]E

[
τ∑

k=1

(f(X
(1)
k )− f(X

(2)
k ))

]
.

A similar argument shows that 2
n
Cn has the same limit. Therefore, limn→∞ 2

n
(Bn−

Cn) = 0. As for An, it is bounded by 4(sup |f |)2E[τ 2] < ∞, and therefore
limn→∞ 1

n
An = 0. �
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We shall now give an expression for the asymptotic variance in terms of the eigen-
values, when P has r distinct eigenvalues. We have, in view of (6.11),

(Pn − Π) =
r∑

i=2

λn
i viu

T
i ,

and therefore

Z = I +
∑
n≥1

(Pn − Π) = I +
r∑

i=2

λi

1− λi

viu
T
i . (15.6)

Also, from (15.5),

v(f,P, π) = Vπ(f(X0)) + 2
r∑

i=2

λi

1− λi

〈f, vi〉π (fTui). (15.7)

For a reversible pair (P, π), we have ui = Dvi, and therefore fTui = 〈f, vi〉π. Using
this observation and (20.5), we obtain from (15.7),

v(f,P, π) =
r∑

i=2

1 + λi

1− λi

| 〈f, vi〉π |2. (15.8)

If one is interested in the speed of convergence to equilibrium, it is the second-
largest eigenvalue modulus that is important. However, if one is interested in simu-
lation, that is, the computation of Eπ[f(X0)] as the ergodic mean limn→∞ 1

n

∑n
k=1 f(Xk),

all eigenvalues play a role if we measure the quality of the ergodic estimator by
the asymptotic variance, as the above formulas show.

15.2 Non-homogeneous Markov Chains

15.2.1 Dobrushin’s Ergodic Coefficient

(Dobrushin, 1956) For non-homogeneous Markov chains (nhmc), the Markov prop-
erty is retained but the transition probabilities may depend on time. This section
gives conditions guaranteeing the existence of a limit in variation of such chains,
with their application to simulated annealing in view. When the state space E
is finite and the chain is ergodic, Dobrushin’s ergodic coefficient helps provide a
computable geometric rate of convergence to steady state and will be especially
useful in the next subsection to obtain a necessary and sufficient condition of weak
ergodicity (yet to be defined) of non-homogeneous Markov chains.

Let E,F,G denote countable sets, finite when so indicated. A stochastic matrix in-
dexed by F×E is a matrix whose rows (indexed by F ) are probability distributions
on E.

Definition 15.2.1 Let Q be a stochastic matrix indexed by F × E. Its ergodic
coefficient is
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δ(Q) :=
1

2
sup
i,j∈F

∑
k∈E

|qik − qjk|

= sup
i,j∈F

dV (qi·, qj·) = sup
i,j∈F

sup
A⊆E

(qiA − qjA) .

Observe that 0 ≤ δ(Q) ≤ 1 and that, by the result of Exercise 16.4.10,

δ(Q) = 1− inf
i,j∈F

∑
k∈E

qik ∧ qjk . (15.9)

The ergodic coefficient is in general useless if F is infinite. In particular, if the
stochastic matrix Q has two orthogonal rows (that is, rows i, j such that qikqjk = 0
for all k ∈ E, and this is the most frequent case with an infinite state space), then
δ(Q) = 1. However, for finite state spaces, this notion becomes very powerful.

Example 15.2.2: Two-row matrix. The ergodic coefficient of the stochastic
matrix

Q =

(
μT

νT

)
=

(
μ1 μ2 μ3 · · ·
ν1 ν2 ν3 · · ·

)
is the distance in variation between the two rows: δ(Q) = dV (μ, ν).

Example 15.2.3: Coupling and the ergodic coefficient. We are going
to construct two hmc’s {X(1)

n }n≥0 and {X(2)
n }n≥0 with the same transition matrix

P, assumed irreducible, and with a strictly positive ergodic coefficient, in such a
way that they couple at a time τ stochastically smaller than a geometric random
variable with parameter p = 1− δ(P).

The construction is as follows. Let αi(j) := pij. Suppose that at time n, X
(1)
n =

i1 and X
(2)
n = i2. Then, X

(1)
n+1 and X

(2)
n+1 will be distributed according to the

distributions αi1 and αi2 respectively. According to Theorem 16.1.4, this can be
done in such a way that

P
(
X

(1)
n+1 = X

(2)
n+1 |X(1)

n = i1, X
(2)
n = i2

)
= dV (αi1 , αi2) .

The latter quantity is ≥ 1− δ(P) > 0. Therefore the two chains will meet for the
first time (and from then on be identical) at a time τ that is stochastically smaller
that a geometric random variable with parameter p = 1− δ(P), that is,

The following sub-multiplicativity property of the ergodic coefficient will be useful.

Theorem 15.2.4 Let Q1 and Q2 be two stochastic matrices indexed by F × G
and G× E, respectively. Then

δ(Q1Q2) ≤ δ(Q1)δ(Q2) .
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Proof. From Lemma 16.1.3, for any stochastic matrixQ = {qij} indexed by E×F ,

1

2

∑
k∈E

|qik − qjk| = sup
A⊆E

∑
k∈A

(qik − qjk) ,

and in particular, with Q1 = {aij} and Q2 = {bij},

δ(Q1Q2) =
1

2
sup
i,j∈F

sup
A⊆E

∑
k∈A

(∑
�∈G

(ai� − aj�)b�k

)
.

But ∑
�∈G

(ai� − aj�)
+ =

∑
�∈G

(ai� − aj�)
− =

1

2

∑
�∈G

|ai� − aj�|,

and therefore∑
k∈A

∑
�∈G

(ai� − aj�)b�k =
∑
�∈G

(ai� − aj�)
+
∑
k∈A

b�k −
∑
�∈G

(ai� − aj�)
−∑

k∈A
b�k

≤
(
1

2

∑
�∈G

|ai� − aj�|
)
sup
�∈G

∑
k∈A

b�k

−
(
1

2

∑
�∈G

|ai� − aj�|
)

inf
�∈G

∑
k∈A

b�k

≤
(
1

2

∑
�∈G

|ail − aj�|
)(

sup
�,�′∈G

∑
k∈A

(b�k − b�′k)

)
.

The announced inequality then follows from the identity

sup
�,�′∈G

sup
A⊆E

∑
k∈A

(b�k − b�′k) =
1

2
sup
�,�′∈G

∑
k∈E

|b�k − b�′k| = δ(Q2) .

�

Theorem 15.2.5 Let P be a stochastic matrix indexed by E, and let μ and ν be
two probability distributions on E. Then

dV (μ
TPn, νTPn) ≤ dV (μ, ν)δ(P)n. (15.10)

Proof. The proof is by recurrence. Since(
μTPn+1

νTPn+1

)
=

(
μTPn

νTPn

)
P

and (see Example 15.2.2)

dV (μ
TPn, νTPn) = δ

((
μTPn

νTPn

))
.
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Therefore, by Lemma 15.2.4,

dV (μ
TPn+1, νTPn+1) ≤ dV (μ

TPn, νTPn)δ(P) ,

from which (15.10) follows by iteration. �

Corollary 15.2.6 Let Q1, Q2 and P be stochastic matrices indexed by E × E.
Then

|(Q1 −Q2)P| ≤ |(Q1 −Q2)|δ(P) .

Proof. Let μk and νk be the k-th row of Q1 and Q2 respectively. The inequality
to be verified:

sup
k∈E

|μkP− νkP| ≤ sup
k∈E

|μk − νk|δ(P) ,

is a direct consequence of Theorem 15.2.5. �

15.2.2 Ergodicity of Non-homogeneous Markov Chains

Let {Xn}n≥0 be a non-homogeneous Markov chain with values in the countable
set E, and define for all states i, j ∈ E and all times n ≥ 0

pn,i,j := P (Xn+1 = j|Xn = i).

The matrix
P(n) := {pn,i,j}i,j∈E

is called the transition matrix at time n. Define for all 0 ≤ m ≤ k

P(m, k) := P(m)P(m+ 1) · · ·P(k − 1) .

It follows from the Bayes sequential rule that if the distribution of Xm is μm, the
distribution of Xk is μT

mP(m, k).

The Block Criterion

Definition 15.2.7 The above non-homogeneous Markov chain is called weakly er-
godic if for all m ≥ 0,

lim
k↑∞

sup
μ,ν

dV
(
μTP(m, k), νTP(m, k)

)
= 0 ,

where the supremum is taken over all the probability distributions μ, ν on E.

Definition 15.2.8 The chain is called strongly ergodic if there exists a probablity
distribution π on E such that for all m ≥ 0,

lim
k↑∞

sup
μ

dV
(
μTP(m, k), π

)
= 0, (15.11)

where the supremum is taken over all the probability distributions μ on E.
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(Sometimes one says that the family of transition matrices {P(n)}n≥0 (rather than
the chain) is weakly ergodic (resp., strongly ergodic).)

If the chain is homogeneous and ergodic, then it is strongly ergodic in the sense of
Definition 15.2.8, by the theorem of convergence to steady state for ergodic hmc’s.

Strong ergodicity implies weak ergodicity, since

dV
(
μTP(m, k), νTP(m, k)

) ≤ dV
(
μTP(m, k), π

)
+ dV

(
νTP(m, k), π

)
.

However, there are weakly ergodic chains that are not strongly ergodic, as the
following example shows.

Example 15.2.9: Weakly, yet not strongly ergodic. The state space
E = {1, 2}, P(0) = I, the identity, and for n ≥ 1,

P(2n) =

(
1/2n 1− 1/2n
1/2n 1− 1/2n

)
, P(2n+ 1) =

(
1− 1/(2n+ 1) 1/(2n+ 1)
1− 1/(2n+ 1) 1/(2n+ 1)

)
.

Elementary computations show that for any probability distribution μ on E,

μTP(m, 2k + 1) =

(
1− 1

2k + 1
,

1

2k + 1

)
, μTP(m, 2k) =

(
1

2k
, 1− 1

2k

)
,

and therefore, for all k ≥ m,

μTP(m, k)− νTP(m, k) = 0.

Thus, the chain is weakly ergodic. But it cannot be strongly ergodic, since
μTP(m, k) has, as k → ∞, two limit vectors: (1, 0) and (0, 1).

As one might guess, weak ergodicity is in general not easy to check directly from
the definition. Fortunately, there is a somewhat useable criterion in terms of Do-
brushin’s coefficient of ergodicity. It depends on the following lemma:

Lemma 15.2.10 The chain is weakly ergodic if and only if for all m ≥ 0,

lim
k↑∞

δ(P(m, k)) = 0. (15.12)

Proof. By Theorem 15.2.5 and observing that dV (μ, ν) ≤ 1,

dV (μ
TP(m, k), νTP(m, k) ≤ dV (μ, ν)δ(P(m, k)) ≤ δ(P(m, k)).

Therefore (15.12) implies weak ergodicity. Conversely, it follows from the inequal-
ities

δ(P(m, k)) =
1

2
sup
i,j∈E

∑
�∈E

|pi�(m, k)− pj�(m, k)|

≤ 1

2
sup
μ,ν

|μTP(m, k)− νTP(m, k)|
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that weak ergodicity implies (15.12). �

By Dobrushin’s inequality, δ(P(m, k)) ≤ ∏k−1
r=m δ(P(r)), and therefore nullity of

the infinite product
∏

r≥1 δ(P(r)) is enough to guarantee weak ergodicity. However,
in many applications, weak ergodicity occurs without the above infinite product
diverging to zero. It turns out that the consideration of blocks gives a useful nec-
essary and sufficient condition.

Theorem 15.2.11 (Hajnal, 1958) The chain is weakly ergodic if and only if there
exists a strictly increasing sequence of integers {ns}s≥0 such that

∞∑
s=0

(1− δ(P(ns, ns+1)) = ∞. (15.13)

Proof. First observe that since 0 ≤ δ(P(ns, ns+1)) ≤ 1, (15.13) is equivalent to
nullity of the infinite product

∏
s≥0 δ(P(ns, ns+1)).

Denoting by i the first integer s such that ns ≥ m, and by j the last integer s such
that ns ≤ k − 1, Dobrushin’s inequality gives

δ(P(m, k)) ≤ δP(m,ni))

{
j−1∏
s=i

δ(P(ns, ns+1)

}
δ(P(nj, k))

≤
j−1∏
s=i

δ(P(ns, ns+1)).

Since j → ∞ as k → ∞, we see that (15.13) implies weak ergodicity, by Lemma
15.2.10.

Conversely, if we assume weak ergodicity, then by Lemma 15.2.10, we can induc-
tively construct for any γ ∈ (0, 1) a strictly increasing sequence of integers {ns}s≥0

by
n0 = 1, ns+1 = inf{k > ns; δ(P(ns, k)) ≤ 1− γ}.

For such sequences, the product
∏

s≥0 δ(P(ns, ns+1)) is null, and this is equivalent
to (15.13). �

It remains to decide when a weakly ergodic nhmc is strongly ergodic. No use-
ful criterion of strong ergodicity is available, and we have to resort to sufficient
conditions.

Theorem 15.2.12 Suppose that the chain is weakly ergodic, and that for all n ≥
0, there exists a probability distribution π(n) on E such that

πT (n) = πT (n)P(n)

and ∞∑
n=0

|π(n+ 1)− π(n)| < ∞ . (15.14)

The chain is then strongly ergodic.
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Proof. In this proof we shall make use of the matrix norm

|A| = sup
i∈E

∑
j∈E

|aij|

defined for square matrices with real elements indexed by E ×E. Condition 15.14
implies the existence of a probability distribution π such that

lim
n↑∞

|π(n)− π| = 0 . (�)

Define Πn (resp., Π) to be the matrix with all rows equal to π(n) (resp., π). In
particular, |Πn − Π| = |π(n)− π| and similarly |Πn+1 − Πn| = |π(n+ 1)− π(n)|.
Also, for any probability distribution μ on E, μTΠ = π, and therefore (15.11) is
equivalent to

lim
k↑∞

sup
μ

∣∣μT (P(m, k)− Π)
∣∣ = 0,

which is in turn implied by

lim
k↑∞

|P(m, k)− Π| = 0 (�) .

We therefore proceed to the proof of (�), writing

P(m, k)− Π =P(m, �)P(�, k)− Π�+1P(�, k)

+ Π�+1P(�, k)− Πk +Πk − Π.

By the triangle inequality for matrix norms,

|P(m, k)− Π| ≤ |P(m, �)P(�, k)− Π�P(�, k)|
+ |Π�P(�, k)− Πk−1|+ |Πk−1 − Π| = A+ B + C .

An upper bound for A is given by Corollary 15.2.6:

A ≤ |P(m, �)− Π�|δ(P(�, k)) ≤ 2δ(P(�, k)) ,

where the last inequality follows from the definition of the matrix norm used here.

In view of bounding B, we first observe that Π�P(�) = Π� and therefore

Π�P(�, k) = (Π� − Π�+1)P(�+ 1, k) + Π�+1P(�+ 1, k).

Iterating the process, we obtain

Π�P(�, k) =
k−1∑

j=�+1

(Πj−1 − Πj)P(j, k) + Πk−1,

and therefore

B ≤
k−1∑

j=�+1

|Πj−1 − Πj|δ(P(j, k)) ≤
k−1∑

j=�+1

|π(j − 1)− π(j)| ,
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where we have used the triangle inequality, Corollary 15.2.6, (15.14), and the ob-
servation |Πj−1 −Πj| = |π(j − 1)− π(j)|. As for matrix C, we have, using the last
observation,

C = |π(k − 1)− π|.
The rest of the proof is now clear: For a given ε > 0, fix � such that B ≤ ε

3
for

all k ≥ � (use (15.14)), and take k large enough so that A ≤ ε
3
(use Dobrushin’s

inequality) and C ≤ ε
3
(use (�)). �

It is not required that P(n) be an ergodic stochastic matrix, or that π(n) be a
unique stationary probability of P(n).

15.2.3 Bounded Variation Extensions

The question is: How useful is Theorem 15.2.12? It seems that in order to satisfy
(15.14), one has to obtain a closed-form expression for π(n), or at least sufficient
information about π(n). How much information? It turns out that very little is
needed in practice. More precisely, a qualitative property of {π(n)}n≥0 in terms
of bounded variation extensions (to be defined) is sufficient to guarantee (15.14),
and therefore strong ergodicity, if the chain is weakly ergodic.

We first recall a definition:

A function f : (0, 1] → R is said to be of bounded variation (BV) if

sup

{ ∞∑
i=1

|f(xi)− f(xi−1)|; 0 < xi < · · · < x1 = 1 and lim
i→∞

xi = 0

}
< ∞.

Similarly, a vector function μ : (0, 1] → RE is said to be of bounded variation if

sup

{ ∞∑
i=1

|μ(xi)− μ(xi−1)|; 0 < xi < · · · < xi = 1 and lim
i→∞

xi = 0

}
< ∞.

Definition 15.2.13 The vector function π̄ : (0, 1] → RE is called a bounded vari-
ation extension of {π(n)}n>0 if there exists a sequence {cn}n≥0 in (0, 1] decreasing
to 0 and such that π̄(cn) = π(n) for all n ≥ 0.

Theorem 15.2.14 (Anily and Federgruen, 1987) Suppose that {P(n)}n≥0 is weakly
ergodic and that for all n ≥ 0, there exists a probability vector π(n) such that
π(n)P(n) = π(n). If there exists a bounded variation extension π̄(c) of {π(n)}n≥0,
the chain is strongly ergodic.

Proof. We have∑
n≥0

|π(n+ 1)− π(n)| =
∑
n≥0

|π̄(cn+1)− π̄(cn)| < ∞,
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since π̄(c) is an extension of {π(n)}n≥0 and of bounded variation, and the conclu-
sion follows by Theorem 15.2.12. �

Let P̄(c) be an extension of {P(n)}n≥0, that is, such that there exists a sequence
{cn}n≥0 in (0, 1], decreasing to 0 as n goes to infinity and such that for all n ≥ 0,

P̄(cn) = P(n) .

Suppose that for each c ∈ (0, 1], there exists a probability vector π̄(c) such that

π̄(c)P̄(c) = π̄(c) .

Is it enough for π̄(c) to be of bounded variation that P̄(c) be of bounded variation,
i.e., that

sup

{ ∞∑
i=1

|P̄(xi+1)− P̄(xi)|; 0 < xi < · · · < x1 = 1 and lim
i∈∞

xi = 0

}
< ∞?

A simple counterexample shows that this is not the case.

Example 15.2.15: Counterexample. Let

P (n) =

(
1− e−n e−n

e−n sin2
(
nπ
2

)
1− e−n sin2

(
nπ
2

)) ,

P̄(c) =

(
1− e−1/c e−1/c

e−1/c sin2
(

π
2c

)
1− e−1/c sin2

(
π
2c

)) .

Clearly, P̄(c) is a bounded variation extension of {P(n)}n≥0. If the corresponding
stationary probability π̄(c) were of bounded variation, then as shown in the proof
of Theorem 15.2.14,

∑
n≥0 |π(n+1)−π(n)| would be finite. Computations give for

the second coordinate of π(n)

π(n)2 =
(
1 + sin2

(nπ
2

))−1

,

a quantity that oscillates between 1 and 1
2
. Therefore,

∑
n≥0 |π(n+1)−π(n)| = ∞.

In order to give conditions on P̄(c) ensuring that π̄(c) is of bounded variation, we
shall first give a precise description of π̄(c) in terms of the entries of P̄(c). This
can be done in the case where E is finite, henceforth identified with {1, . . . , N} for
simplicity. Indeed π̄(c) is a solution of the balance equations

π̄(c)i =
N∑
j=1

P̄(c)jiπ̄(c)j

for 1 ≤ i ≤ N − 1, together with the normalizing equation

N∑
i=1

π̄(c)i = 1.
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That is, in matrix form,

π̄(c)

⎛⎜⎜⎜⎜⎜⎝
1− P̄(c) · · · −P̄(c)N−1,1 −P̄(c)N,1

−P̄(c) · · · −P̄(c)N−1,2 −P̄(c)N,2
...

...
...

−P̄(c)1,N−1 · · · 1− P̄(c)N−1,N−1 −P̄(c)1
1 1 1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
...
0
1

⎞⎟⎟⎟⎟⎟⎠
Cramer’s rule gives a solution in the form

π̄(c)i =
Ai(c)

Bi(c)
,

where Ai(c) and Bi(c) are finite sums and differences of finite products of the
entries of P̄(c).

Example 15.2.16: Rational polynomial-exponential matrices. This case
covers most applications. The elements of P̄(c) are ratios of functions of the type

n∑
j=1

Qj

(
1

c

)
eλj/c, (�)

where the Qj are polynomial functions and the λj are real numbers. Then so are
the elements of π̄(c), as well as their derivatives with respect to c. But ratios of
terms of type (�) have for sufficiently small c > 0 a constant sign. Therefore a
given element π̄(c)i = ψ(c) is such that

(α) for some c∗ > 0, ψ : (0, c∗] → R is monotone and bounded;

(β) ψ : (0, 1] → R is continuously differentiable.

Properties (α) and (β) are sufficient to guarantee that ψ : (0, 1] → R is of bounded
variation.

We have spent some time explaining how the sufficient condition of strong ergodic-
ity (15.14) can be checked. One may wonder whether this is really worthwhile, and
whether a weaker and easier to verify condition is available. A natural candidate
for a sufficient condition of strong ergodicity, given weak ergodicity, is

lim
n↑∞

|π(n)− π| = 0, (†)

for some probability π. This is unfortunately not the case in general, as the fol-
lowing counterexample shows.

Example 15.2.17: Counterexample. Define for all n ≥ 1,

P(2n− 1) =

(
0 1
1 0

)
, P(2n) =

(
0 1

1− 1
2n

1
2n

)
.
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The sequence {P(n)}n≥1 is weakly ergodic (Exercise 20.4.7). The corresponding
stationary distributions are

π(2n− 1) =

(
1

2
,
1

2

)
, π(2n+ 1) =

(
2n− 1

4n− 1
,

2n

4n− 1

)
,

and therefore (†) is satisfied with π = (1
2
, 1
2
). On the other hand, if we define for

all k ≥ 1

R(k) = P(2k)P(2k + 1) =

(
1− 1

2k
1
2k

0 1

)
and

S(k) = P(2k − 1)P(2k) =

(
1 0
1
2k

1− 1
2k

)
,

then the sequences {R(k)}k≥1 and {S(k)}k≥1 are weakly ergodic (exercise), and
their stationary distributions are constant, equal to (1, 0) and (0, 1), respectively.
Therefore, by Theorem 15.2.12, they are strongly ergodic, and in particular,

lim
k↑

P(1)P(2) · · ·P(2k − 1)P(2k) =

(
0 1
0 1

)
and

lim
k↑

P(1) (P(2)P(3) · · ·P(2k)P(2k + 1)) =

(
1 0
1 0

)
.

Therefore, the sequence {P(n)}n≥1 is not strongly ergodic.

We shall quote without proof the following natural result3.

Theorem 15.2.18 Let {P(n)}n≥1 be a sequence of transition matrices each having
at least one stationary distribution, and such that

lim
n↑∞

|P(n)−P| = 0 (15.15)

for some ergodic transition matrix P. This sequence is strongly ergodic.

The requirement that P be ergodic will be found too stringent in the study of the
convergence of simulated annealing algorithms, where typically the limit transition
matrix is reducible.

Books for Further Information

For the algebraic aspects of Markov chains, see [Seneta, 1981]. The theory of
discrete non-homogeneous Markov chains is seldom treated in textbooks, with the
following exceptions: [Iosifescu, 1980], [Isaacson and Madsen, 1976], and [Seneta,
1981].

3
Theorem V.4.5 of [Isaacson and Madsen, 1976].
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15.3 Exercises

Exercise 15.3.1. Primitive transition matrices

Prove that a non-negative matrix is primitive if and only if it is irreducible and
aperiodic.

Exercise 15.3.2. Rate of convergence

Give the convergence rate to equilibrium of the hmc with transition matrix

P =
1

12

⎛⎝0 6 6
4 3 5
8 3 1

⎞⎠ .

Exercise 15.3.3. Rate of convergence of a cyclic matrix

For the homogeneous Markov chain with state space E = {1, 2, 3} and transition
matrix

P =

⎛⎝1− α α 0
0 1− β β
γ 0 1− γ

⎞⎠ ,

where α, β, γ ∈ (0, 1), compute limn↑∞ Pn and give the corresponding rate of con-
vergence.

Exercise 15.3.4. Sibmating

Example 1.4.13 features a reproduction model among diploid organisms called
random mating. We now consider sibmating (sister–brother mating), whereby two
individuals are mated and two individuals from their offspring are chosen at ran-
dom to be mated, and this incestuous process goes on through the generations.

We shall denote by Xn the genetic types of the mating pair at the n-th generation.
Clearly, {Xn}n≥0 is an hmc with six states representing the different pairs of
genotypes AA × AA, aa × aa, AA × Aa, Aa × Aa, Aa × aa, AA × aa, denoted
respectively 1, 2, 3, 4, 5, 6.

Find the quasi-stationary distribution in this case.

Exercise 15.3.5. Probability of absorption

Consider the chain with state space E = {1, 2, 3, 4, 5, 6, 7} and transition matrix

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.5
0.8 0.2

0 0.4 0.6
1 0 0
1 0 0

0.1 0 0.2 0.1 0.2 0.3 0.1
0.1 0.1 0.1 0 0.1 0.2 0.4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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It has two recurrent classes R1 = {1, 2}, R2 = {3, 4, 5} and one transient class
T = {6, 7}. Compute the probability of absorption by class {3, 4, 5} from transient
state 6.

Exercise 15.3.6. Sibmating
In the reproduction model called sibmating (sister–brother mating), two individu-
als are mated and two individuals from their offspring are chosen at random to be
mated, and this incestuous process goes on through the subsequent generations.

Denote by Xn the genetic type of the mating pair at the n-th generation. Clearly,
{Xn}n≥0 is an hmc with six states representing the different pairs of genotypes
AA × AA, aa × aa, AA × Aa, Aa × Aa, Aa × aa, AA × aa, denoted respectively
1, 2, 3, 4, 5, 6.

Identify the absorbing states and compute the absorption probability matrix.

Exercise 15.3.7. v(i) = c(i) +
∑

j∈E pijv(j)
Prove (17.16).

Exercise 15.3.8. Target time

Let π be the stationary distribution of an ergodic Markov chain with finite state
space, and denote by Ti the return time to state i. Let SZ be the time necessary
to visit for the first time the random state Z chosen according to the distribution
π, independently of the chain. Show that Ei[SZ ] is independent of i, and give its
expression in terms of the fundamental matrix.

Exercise 15.3.9. Travel time in a birth-and-death process

Consider the birth-and-death process of Example 7.2.8 with p = q = 1
2
. Compute

the travel time from a to b > a.

Exercise 15.3.10. Quasi-stationary distribution

With the notation of subsection 6.3 on quasi-stationary distributions, show that
for any transient state j,

lim
m↑∞,n↑∞

P (Xn = j|ν > m+ n) =
u1(j)v1(j)∑
i∈T u1(i)v1(i)

.

Exercise 15.3.11. Dobrushin’s coefficient and the slem

Show that Dobrushin’s coefficient is an upper bound of the slem.

Exercise 15.3.12. Weakly ergodic

Define for all n ≥ 1,

P(2n− 1) =

(
0 1
1 0

)
, P(2n) =

(
0 1

1− 1
2n

1
2n

)
.

Prove that the sequence {P(n)}n≥1 is weakly ergodic.
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Exercise 15.3.13. Strongly ergodic and not strongly ergodic

A. Prove that the sequence {P(n)}n≥0 defined by

P(n) =

(
1
3
+ 1

n
2
3
− 1

n
1
2

1
2

)
is strongly ergodic.

B. For n ≥ 0, define

P(2n− 1) =

(
1
2

1
2

1 0

)
, P(2n) =

(
0 1
1 0

)
.

Prove that the nhmc with transition matrices {P(n)}n≥0 is not strongly ergodic.
(Hint: take μ = (0, 1) as initial distribution, and compute the distributions of the
chain at even and odd times.) Prove that this nhmc is weakly ergodic.

Exercise 15.3.14. Attraction and binding

Let P and Q be two transition matrices on the same state space E. Define the
attraction coefficient

α (P,Q) = 1− 1

2
sup

i,j∈E i �=j

∑
k∈E

|pik − qjk|

and the binding coefficient

β (P,Q) = 1− 1

2
sup
i∈E

∑
k∈E

|pik − qik|.

Construct a hmc {Zn}n≥0 := {(Xn, Yn)}n≥0 where {Xn}n≥0 and {Yn}n≥0 are hmc’s
with the respective transition matrices P and Q, as follows. If Xn = i, Yn = j,
construct Xn+1 and Yn+1 in such a way that P (Xn+1 = k|Xn = i, Yn = j) = pik
and P (Yn+1 = k|Xn = i, Yn = j) = qjk, with maximal coupling. In particular, for
i 
= j,

P (Xn+1 = Yn+1|Xn = i, Yn = j) = 1− dV (pi·, qj·) ≥ α (P,Q) ,

and for i = j,

P (Xn+1 = Yn+1|Xn = i, Yn = j) = 1− dV (pi·, qj·) ≥ β (P,Q) .

Thus, if the chains do not coincide at time n, they will at time n+ 1 with a prob-
ability at least α (P,Q), whence the appellation attraction coefficient. Similarly, if
the chains coincide at time n, they will still coincide at time n+1 with a probability
at least β (P,Q), whence the appellation binding coefficient.

Prove that

lim
N↑∞

1

N

N∑
k=1

1{Xk=Yk} ≥ α (P,Q)

1 + α (P,Q)− β (P,Q)
.



Chapter 16

The Coupling Method

16.1 Coupling Inequalities

16.1.1 Coupling and the Variation Distance

Coupling is a ubiquitous and versatile idea with many applications. In its simplest
form, it consists in materializing two probability distributions of a single random
element by two random elements with the said distributions, not independent, but
correlated in a way that allows easy comparison of these distributions, in view
for instance of determining if some event of interest is more probable under one
distribution or the other. This technique will be applied to objects more sophis-
ticated than random variables, such as random graphs (see the first example) or
stochastic processes (see the proof of the fundamental theorem of the theory of
Markov chains in section 16.2). The coupling method is often linked to the notion
of variation distance, with applications to, for instance, the speed of convergence
of the distribution of a stochastic process to its limit distribution, when the latter
exists and is unique. Other more elaborate applications of the method will be seen,
starting with Chen’s approximation of a distribution on the integers by a Poisson
distribution (section 16.3).

Coupling

Coupling two discrete probability distributions π′ on E ′ and π′′ on E ′′ consists in
the construction of a probability distribution π on E := E ′ × E ′′ such that the
marginal distributions of π on E ′ and E ′′ are respectively π′ and π′′, that is,∑

j∈E′′

π(i, j) = π′(i) and
∑
i∈E′

π(i, j) = π′′(j) .

Example 16.1.1: Coupled random graphs and monotone properties.

Let En be the collection of all possible edges on the set of vertices V = {1, 2, . . . , n}.
Let be given a family of iid random variables {U〈v,w〉}〈v,w〉∈En

uniformly distributed
on (0, 1). A random graph G(n, p) may be generated as follows: admit 〈v, w〉 ∈ En

as an edge of G(n, p) if and only if U〈v,w〉 ≤ p.

A canonical coupling construction of the random graphs G(n, p1),G(n, p2), . . . ,G(n, pk)
on the set V = {1, 2, . . . , n} of vertices is one for which an edge 〈v, w〉 ∈ En is
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admitted as an edge of G(n, pi) if and only if U〈v,w〉 ≤ pi (1 ≤ i ≤ k). Clearly, if
pi ≤ pj, then G(n, pi) ⊆ G(n, pj).
Let P be some graph property. For instance, to be connected, to be a tree, to have
no cliques of four vertices. If a graph G has this property, we write: G ∈ P . A
property P of graphs with the same set of vertices is called monotone increasing
if whenever a graph G has this property, so does any graph G′ ⊇ G. A monotone
decreasing property is defined similarly, mutatis mutandis.

The canonical coupling of two random graphs Gn,m1 and Gn,m2 where m2 > m1 is
the obvious one: Construct Gn,m1 and choose randomly in En\En,m1 the m2 − m1

edges to be added.

The following result is a direct consequence of the canonical coupling constructions:

Theorem 16.1.2 Let P be a monotone increasing graph property. Then

p′ ≥ p =⇒ P (G(n, p′) ∈ P) ≥ P (G(n, p) ∈ P) ,

and
m2 ≥ m1 =⇒ P (Gn,m2 ∈ P) ≥ P (Gn,m1 ∈ P) .

Distance in Variation

Let E be a countable space. The distance in variation between two probability
distributions α and β on E is the quantity

dV (α, β) :=
1

2

∑
i∈E

|α(i)− β(i)|. (16.1)

That dV is indeed a distance is clear.

Lemma 16.1.3 Let α and β be two probability distributions on the same countable
space E. Then

dV (α, β) = sup
A⊆E

{α(A)− β(A)} = sup
A⊆E

{|α(A)− β(A)|} .

Proof. For the second equality observe that for each subset A there is a subset B
such that |α(A)− β(A)| = α(B)− β(B) (take B = A or Ā). For the first equality,
write

α(A)− β(A) =
∑
i∈E

1A(i){α(i)− β(i)}

and observe that the right-hand side is maximal for A = {i ∈ E; α(i) > β(i)}.
Therefore, with g(i) =:= α(i)− β(i),

sup
A⊆E

{α(A)− β(A)} =
∑
i∈E

g+(i) =
1

2

∑
i∈E

|g(i)| ,
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where the equality
∑

i∈E g(i) = 0 was taken into account. �

The distance in variation between two random variables X and Y with values in
E is the distance in variation between their probability distributions, and it is
denoted (with a slight abuse of notation) by dV (X, Y ). Therefore

dV (X, Y ) :=
1

2

∑
i∈E

|P (X = i)− P (Y = i)| .

The distance in variation between a random variable X with values in E and a
probability distribution α on E denoted (again with a slight abuse of notation) by
dV (X,α) is defined by

dV (X,α) :=
1

2

∑
i∈E

|P (X = i)− α(i)| .

Variation Distance and Hypothesis Testing

Suppose that we have to discriminate between two equiprobable hypotheses H1

and H2 concerning the distribution of a discrete random variable X taking values
in E. Under H1, the distribution is α, under H2, it is β. For deciding which is the
actual distribution of X, we use a partition (A,B) of E, deciding for α (resp., β)
if X falls in A (resp., B). By doing so, we may have made the wrong guess. In
fact, the probability of error is

PE =
1

2
P (X ∈ B |H1) +

1

2
P (X ∈ A |H2)

=
1

2
α(B) +

1

2
β(A) =

1

2
(1− (α(A)− β(A))) .

The probability of error is minimal for a choice of A that maximizes α(A)− β(A).
This occurs for the choice A∗ := {i ∈ E |α(i) ≥ β(i)} which gives for the minimal
probability of error

P ∗
E =

1

2
(1− dV (α, β)) .

16.1.2 The First Coupling Inequality

For two probability distributions α and β on the countable set E, let D(α, β) be
the collection of pairs of random variables (X, Y ) taking their values in E × E,
and with marginal distributions α and β, that is,

P (X = i) = α(i), P (Y = i) = β(i) . (16.2)

Theorem 16.1.4 For any pair (X, Y ) ∈ D(α, β), we have the first coupling in-
equality

dV (α, β) ≤ P (X 
= Y ), (16.3)

and equality is attained by some pair (X, Y ) ∈ D(α, β), which is then said to realize
maximal coincidence.
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Proof. For arbitrary A ⊂ E,

P (X 
= Y ) ≥ P (X ∈ A, Y ∈ Ā) = P (X ∈ A)− P (X ∈ A, Y ∈ A)

≥ P (X ∈ A)− P (Y ∈ A),

and therefore

P (X 
= Y ) ≥ sup
A⊂E

{P (X ∈ A)− P (Y ∈ A)} = dV (α, β).

We now construct (X, Y ) ∈ D(α, β) realizing equality. Let U,Z, V and W be
independent random variables; U takes its values in {0, 1}, and Z, V,W take their
values in E. The distributions of these random variables are given by

P (U = 1) = 1− dV (α, β),

P (Z = i) = (α(i) ∧ β(i))/ (1− dV (α, β)) ,

P (V = i) = (α(i)− β(i))+/dV (α, β) ,

P (W = i) = (β(i)− α(i))+/dV (α, β) .

Observe that P (V = W ) = 0. Defining

(X, Y ) = (Z,Z) if U = 1

= (V,W ) if U = 0 ,

we have

P (X = i) = P (U = 1, Z = i) + P (U = 0, V = i)

= P (U = 1)P (Z = i) + P (U = 0)P (V = i)

= α(i) ∧ β(i) + (α(i)− β(i))+ = α(i),

and similarly, P (Y = i) = β(i). Therefore, (X, Y ) ∈ D(α, β). Also, P (X = Y ) =
P (U = 1) = 1− dV (α, β), that is P (X 
= Y ) = dV (α, β). �

Example 16.1.5: Variation distance of two Poisson variables. Let λ
and μ be two positive real numbers. Then

dV (pλ, pμ) ≤ 1− e−|μ−λ| ,

where pα denotes the Poisson distribution with mean α. We prove this, assuming
without loss of generality that μ > λ. Let X be a Poisson variable with mean λ
and let Z be a Poisson variable with mean μ− λ independent of X. In particular,
Y = X+Z is a Poisson variable with mean μ. Therefore dV (pλ, pμ) = dV (X,X+Z).
Therefore, by Theorem 16.1.4,

dV (pλ, pμ) ≤ P (X 
= X + Z) = P (Z > 0) = 1− e−(μ−λ) = 1− e−|μ−λ| .
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Example 16.1.6: Poisson law of rare events, take 2. (Le Cam, 1960)
Let Y1, . . . , Yn be independent random variables taking their values in {0, 1}, with
P (Yi = 1) = πi (1 ≤ i ≤ n). Let X :=

∑n
i=1 Yi and λ :=

∑n
i=1 πi. Let pλ be the

Poisson distribution with mean λ. In order to bound the variation distance between
the distribution q of X and pλ, construct a coupling of the two distributions as
follows. First, generate independent pairs (Y1, Y

′
1), . . . , (Yn, Y

′
n) such that

P (Yi = j, Y ′
i = k) =

⎧⎪⎨⎪⎩
1− πi if j = 0, k = 0,

e−πi
πk
i

k!
if j = 1, k ≥ 1,

e−πi − (1− πi) if j = 1, k = 0 .

One verifies that for all 1 ≤ i ≤ n, P (Yi = 1) = πi and Y ′
i ∼ Poi(πi). In particular,

X ′ :=
∑n

i=1 Y
′
i is a Poisson variable with mean λ. Now

P (X 
= X ′) = P

(
n∑

i=1

Yi 
=
n∑

i=1

Y ′
i

)

≤ P (Yi 
= Y ′
i for some i) ≤

n∑
i=1

P (Yi 
= Y ′
i ) .

But

P (Yi 
= Y ′
i ) = e−πi − (1− πi) +

∑
k≥2

e−πi
πk
i

k!

= πi

(
1− e−πi

) ≤ π2
i .

Therefore P (X 
= X ′) ≤ ∑n
i=1 π

2
i and by the coupling inequality

dV (q, pλ) ≤
n∑

i=1

π2
i .

Remark 16.1.7 Observe that
∑n

i=1 π
2
i = λ− Var(X) and that if X is a Poisson

variable with mean λ, then Var(X) = λ, and therefore in this case, the bound is
the tightest possible.

Remark 16.1.8 With πi = p := λ
n
, we have

dV (q, pλ) ≤ λ2

n
.

In other terms the binomial distribution of size n and mean λ differs in variation
from a Poisson variable with the same mean of less than λ2

n
. Le Cam’s inequality

is therefore a refinement of the elementary Poisson law of rare events since it gives
an exploitable estimate for finite n.
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16.1.3 The Second Coupling Inequality

Definition 16.1.9 (A) A sequence {αn}n≥0 of probability distributions on E is
said to converge in variation to the probability distribution β on E if

lim
n↑∞

dV (αn, β) = 0 .

(B) An E-valued random sequence {Xn}n≥0 such that for some probability dis-
tribution π on E,

lim
n↑∞

dV (Xn, π) = 0 , (16.4)

is said to converge in variation to π.

Example 16.1.10: Convergence in variation of Poisson variables. Let
pλ denote the Poisson distribution with mean λ. If {λn}n≥1 is a sequence of positive
real numbers converging to λ > 0,

lim
n↑∞

dV (pλ, pλn
) = 0 .

But from Example 16.1.5, dV (pλ, pλn
) ≤ 1− e−|λn−λ|.

Definition 16.1.11 Two stochastic processes {X ′
n}n≥0 and {X ′′

n}n≥0 taking their
values in the same state space E are said to couple if there exists an almost surely
finite random time τ such that

n ≥ τ ⇒ X ′
n = X ′′

n. (16.5)

The random variable τ is called a coupling time of the two processes.

Theorem 16.1.12 For any coupling time τ of {X ′
n}n≥0 and {X ′′

n}n≥0, we have
the second coupling time inequality

dV (X
′
n, X

′′
n) ≤ P (τ > n) . (16.6)

Proof. For all A ⊆ E,

P (X ′
n ∈ A)− P (X ′′

n ∈ A) = P (X ′
n ∈ A, τ ≤ n) + P (X ′

n ∈ A, τ > n)

− P (X ′′
n ∈ A, τ ≤ n)− P (X ′′

n ∈ A, τ > n)

= P (X ′
n ∈ A, τ > n)− P (X ′′

n ∈ A, τ > n)

≤ P (X ′
n ∈ A, τ > n) ≤ P (τ > n).

Inequality (16.6) then follows from Lemma 16.1.3. �

Theorem 16.1.12 will be exploited in the proof of the limit theorem for Markov
chains (Theorem 15.1.1).



16.2. LIMIT DISTRIBUTION VIA COUPLING 403

16.2 Limit Distribution via Coupling

16.2.1 Doeblin’s Idea

The original idea is that of (Doeblin, 1937); see also (Pitman, 1976) and (Griffeath,
1978).

Observe that Definition 16.1.9 concerns only the marginal distributions of the
stochastic process, not the stochastic process itself. Therefore, if there exists an-

other stochastic process {X ′
n}n≥0 such that Xn

D∼ X ′
n for all n ≥ 0, and if there

exists a third one {X ′′
n}n≥0 such that X ′′

n
D∼ π for all n ≥ 0, then (16.4) follows

from

lim
n↑∞

dV (X
′
n, X

′′
n) = 0. (16.7)

This trivial observation is useful because of the resulting freedom in the choice of
{X ′

n} and {X ′′
n}. An interesting situation occurs when there exists a finite random

time τ such that X ′
n = X ′′

n for all n ≥ τ .

Proof. We prove that, for all probability distributions μ and ν on E,

lim
n↑∞

dV (μ
TPn, νTPn) = 0.

The announced results correspond to the particular case where ν is the stationary
distribution π, and particularizing further, μ = δj. From the discussion preceding
Definition 16.1.11, it suffices to construct two coupling chains with initial distri-
butions μ and ν, respectively. This is done in the next theorem. �

Theorem 16.2.1 Let {X(1)
n }n≥0 and {X(2)

n }n≥0 be two independent ergodic hmcs
with the same transition matrix P and initial distributions μ and ν, respectively.
Let τ = inf{n ≥ 0; X

(1)
n = X

(2)
n }, with τ = ∞ if the chains never intersect. Then

τ is, in fact, almost surely finite. Moreover, the process {X ′
n}n≥0 defined by

X ′
n =

{
X

(1)
n if n ≤ τ,

X
(2)
n if n ≥ τ

(16.8)

is an hmc with transition matrix P (see the figure below).
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Proof. STEP 1. Consider the product hmc {Zn}n≥0 defined by Zn = (X
(1)
n , X

(2)
n ).

It takes values in E ×E, and the probability of transition from (i, k) to (j, �) in n
steps is pij(n)pk�(n). We first show that this chain is irreducible. The probability of
transition from (i, k) to (j, �) in n steps is pij(n)pk�(n). Since P is irreducible and
aperiodic, by Theorem 6.1.21, there exists m such that for all pairs (i, j) and (k, �),
n ≥ m implies pij(n)pk�(n) > 0. This implies irreducibility. (Note the essential role
of aperiodicity. A simple counterexample is that of the symmetric random walk
on , which is irreducible but of period 2. The product of two independent such
hmc’s is the symmetric random walk on 2 which has two communication classes.)

STEP 2. Next we show that the two independent chains meet in finite time. Clearly,
the distribution σ̃ defined by σ̃(i, j) := π(i)π(j) is a stationary distribution for the
product chain, where π is the stationary distribution of P. Therefore, by the sta-
tionary distribution criterion, the product chain is positive recurrent. In particular,
it reaches the diagonal of E2 in finite time, and consequently, P (τ < ∞) = 1.

It remains to show that {X ′
n}n≥0 given by (16.8) is an hmc with transition matrix

P. For this we use the following lemma.

Lemma 16.2.2 Let X1
0 , X

2
0 , Z

1
n, Z

2
n (n ≥ 1) be independent random variables, and

suppose moreover that Z1
n, Z

2
n (n ≥ 1) are identically distributed. Let τ be a non-

negative integer-valued random variable such that for all m ∈ , the event {τ = m}
is expressible in terms of X1

0 , X
2
0 , Z

1
n, Z

2
n (n ≤ m). Define the sequence {Zn}n≥1 by

Zn = Z1
n if n ≤ τ ,

= Z2
n if n > τ .

Then, {Zn}n≥1 has the same distribution as {Z1
n}n≥1 and is independent of X1

0 , X
2
0 .

Proof. For any sets C1, C2, A1, . . . , Ak in the appropriate spaces,

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z� ∈ A�, 1 ≤ � ≤ k)

=
k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z� ∈ A�, 1 ≤ � ≤ k, τ = m)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z1 ∈ A1, . . . , Zk ∈ Ak, τ > k)

=
k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ m, τ = m,Z2

r ∈ Ar,m+ 1 ≤ r ≤ k)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ k, τ > k) .

Since the event {τ = m} is independent of Z2
m+1 ∈ Am+1, . . . , Z

2
k ∈ Ak (k ≥ m),

this is equal to
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k∑
m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ m, τ = m)P (Z2

r ∈ Ar,m+ 1 ≤ r ≤ k)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ k, τ > k)

=
k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ m, τ = m,Z1

r ∈ Ar,m+ 1 ≤ r ≤ k)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ k, τ > k)

= P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1, . . . , Z

1
k ∈ Ak) .

�

STEP 3. We now complete the proof. The statement of the theorem concerns
only the distributions of {X1

n}n≥0 and {X2
n}n≥0, and therefore we can assume a

representation

X�
n+1 = f(X�

n, Z
�
n+1) (� = 1, 2) ,

where X1
0 , X

2
0 , Z

1
n, Z

2
n (n ≥ 1) satisfy the conditions stated in Lemma 16.2.2. The

random time τ satisfies the condition of Lemma 16.2.2. Defining {Zn}n≥1 in the
same manner as in this lemma, we therefore have

Xn+1 = f(Xn, Zn+1) ,

which proves the announced result. �

16.2.2 The Null Recurrent Case

Theorem 15.1.1 concerns the positive recurrent case. The proof of the null recurrent
version requires more care:

Theorem 16.2.3 (Orey, 1971) Let P be an irreducible null recurrent transition
matrix on E. Then for all i, j ∈ E,

lim
n↑∞

pij(n) = 0 . (16.9)

Proof. The periodic case follows from the aperiodic case by considering the re-
striction of Pd to C0, an arbitrary cyclic class, and observing that this restriction
is also null recurrent. Therefore, P will be assumed aperiodic.

In this case, we have seen that the product hmc {Zn}n≥0 = {X(1)
n , X

(2)
n )}n≥0 is

irreducible and aperiodic. However, it cannot be argued that it is recurrent, even if
each of its components is recurrent. One must therefore separate the two possible
cases.

First, suppose the product chain transient. Its n-step transition probability from
(i, i) to (j, j) is [pij(n)]

2, and it tends to 0 as n → ∞. The result is therefore proved
in this particular case.
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Suppose now that the product chain is recurrent. The coupling argument used in
the aperiodic case applies and yields

lim
n↑∞

|μTPn − νTPn| = 0 (16.10)

for arbitrary initial distributions μ and ν. Suppose now that for some i, j ∈ E,
(16.9) is not true. One can then find a sequence {nk}k≥0 of integers strictly in-
creasing to ∞ such that

lim
k↑∞

pij(nk) = α > 0 .

For fixed i ∈ E chosen as above, the sequence ({pis(nk), s ∈ E})k≥0 of vectors of
[0, 1]E is compact in the topology of pointwise convergence. Therefore (see Theorem
1.10 of the Appendix for an elementary proof), there exists a subsequence {m�}�≥0

of integers strictly increasing to ∞ and a vector {xs, s ∈ E} ∈ [0, 1]E such that for
all s ∈ E,

lim
�↑∞

pis(m�) = xs .

Now, xj = α > 0, and therefore {xs, s ∈ E} is nontrivial. Since
∑

s∈E pis(m�) = 1,
it follows from Fatou’s lemma that

∑
s∈E xs ≤ 1. Apply Fatou’s lemma to the

right-hand side of

pis(m� + 1) =
∑
k∈E

pik(m�)pks

to obtain
xs ≥

∑
k∈E

xkpks .

Summing with respect to s:∑
s∈E

xs ≥
∑
s∈E

∑
k∈E

xkpks =
∑
k∈E

(
xk

∑
s∈E

xkpks

)
=
∑
k∈E

xk .

Therefore the inequality can only be an equality. In other words, {xs, s ∈ E} is
an invariant measure of P. It has finite mass, which implies that P is positive
recurrent, a contradiction. Therefore, (16.9) cannot be contradicted. �

16.3 Poisson Approximation

16.3.1 Chen’s Variation Distance Bound

Let Yi ∼ Bern(πi) (1 ≤ i ≤ n) be Bernoulli variables, and define X :=
∑n

i=1 Yi,
a random variable with mean λ :=

∑n
i=1 πi. This is the situation considered in

Example 16.1.6, except that the independence assumption for the variables Yi is
now replaced by the following one:

Assumption H: There exist random variables Uk and Vk (1 ≤ k ≤ n) defined on
the same probability space and such that

(i) Uk has the distribution of X =
∑n

i=1 Yi, and

(ii) 1 + Vk has the distribution of X conditioned by Yk = 1.
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Theorem 16.3.1 (Chen, 1975) Under Assumption H,

dV (X, pλ) ≤
(
1− e−λ

λ

) n∑
k=1

πkE [|Uk − Vk|] . (16.11)

Since 1−e−λ

λ
≤ 1 ∧ λ−1, the above bound sometimes appears in the form

dV (X, pλ) ≤
(
1 ∧ λ−1

) n∑
k=1

πkE [|Uk − Vk|] .

The following corollary improves the result of Example 16.1.6 when λ is large.

Example 16.3.2: Recovering Le Cam’s theorem. Under the conditions pre-
vailing in Example 16.1.6 (including the independence of the Yi’s), we have that

dV (X, pλ) ≤
(
1− e−λ

λ

) n∑
i=1

π2
i . (16.12)

Proof. Due to the independence hypothesis, Assumption H is satisfied with Uk =
X and Vk =

∑
i�=k Yi = X − Yk. Inequality (16.16) then follows from (16.11) since

E [|Uk − Vk|] = E [Yk] = πk. �

Corollary 16.3.3 Suppose that there exists for each k (1 ≤ k ≤ n) a collection
of random variables Zkj (1 ≤ j ≤ n, j 
= k) whose distribution is the same as that
of Yj (1 ≤ j ≤ n, j 
= k) conditioned by Yk = 1. Then

dV (X, pλ) ≤
(
1− e−λ

λ

) n∑
k=1

πk

(
πk +

∑
1≤j≤n, j �=k

E [|Yj − Zkj|]
)

. (16.13)

Proof. The requirements of Theorem 16.3.1 are met with Vk =
∑

1≤j≤n, j �=k Zkj.
In this case, we have

E [|Uk − Vk|] = E

[∣∣∣∣∣ ∑
1≤j≤n

Yk −
∑

1≤j≤n, j �=k

Zkj

∣∣∣∣∣
]

≤ E [Yk] +
∑

1≤j≤n, j �=k

E [|Yj − Zkj|] = πk +
∑

1≤j≤n, j �=k

E [|Yj − Zkj|] .

�

Example 16.3.4: Isolated nodes in Erdös–Rényi random graphs. Con-
sider the random graph G(n, pn) with
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npn = log n+ c

for some c > 0. Let X be the number of isolated nodes in this graph. This random
variable converges in variation as n ↑ ∞ to a Poisson variable with mean e−c.

Proof. Let V := {1, 2, . . . , n} be the set of vertices. The random graph G(n, p) can
be constructed from an iid family of {0, 1}-valued random variables {ξij}1≤i,j≤n

with P (ξij = 1) = p := pn, where ξij = 1 indicates that vertices i and j are
connected. The indicator Yj of the event that vertex j is isolated can then be
represented as

Yj =
∏

u;u�=j

(1− ξju).

The number of isolated nodes is X =
∑n

i=1 Yi. Let

Zkj :=
∏

u;u�∈{j,k}
(1− ξju) .

Conditioning on Yk = 1 is equivalent to conditioning on the event that ξku = 0 for
all u 
= k. By independence of the edge variables, conditioning on this event does
not change the distribution of the edge variables other than those involved in the
said event. In particular, the distribution of (Zkj, 1 ≤ j ≤ n, j 
= k) is the same
as that of (Yj, 1 ≤ j ≤ n, j 
= k) conditioned by Yk = 1. We are therefore in the
framework of Theorem 16.3.3, which says

dV (X, pλ) ≤
(
1− e−λ

λ

) n∑
k=1

πk

(
πk +

∑
1≤i≤n, i �=k

E [|Yj − Zkj|]
)

.

We now identify the quantities involved in the previous inequality. First πk = (1−
p)n−1 := π and λ = E[X] = nπ. Observing that |Yj − Zkj| = ξkj

∏
u;u�∈{k,j}(1−ξuj),

we have that E [|Yj − Zkj|] = p(1− p)n−2. Therefore

dV (X, pλ) ≤
(
1− e−λ

λ

)
nπ

[
π + (n− 1)p(1− p)n−2

]
≤
(
1− e−λ

λ

)
λ
[
π + (n− 1)p(1− p)n−2

]
=
(
1− e−λ

) [
π +

(n− 1)pπ

1− p

]
,

and finally

dV (X, pλ) ≤
(
π + λ

p

1− p

)
. (�)

With p = pn,

λ = nπ = n

(
1− log n+ c

n

)n−1

→ e−c ,

so that the upper bound in (�) is of the order of logn
n

, and therefore dV (X, pλ) → 0.
By the triangle inequality
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dV (X, pe−c) ≤ dV (X, pλ) + dV (pe−c , pλ) .

But dV (pe−c , pλ) → 0 (Example 16.1.5) and the result then follows. �

Example 16.3.4 showed how Theorem 16.3.1 allows one to treat cases where the
independence assumption is relaxed. It can also be viewed as an application of the
following general result:

Theorem 16.3.5 Let be given for each i ∈ {1, 2, . . . , n} a set Ni ⊆ {1, 2, . . . , n}\{i}
such that Yi is independent of (Yj ; j /∈ Ni ∪ {i}). The Yi’s are then said to be dis-
sociated relatively to the neighbourhoods Ni ∈ {1, 2, . . . , n}. Then

dV (X, pλ) ≤
(
1− e−λ

λ

) n∑
i=1

(
π2
i +

∑
j∈Ni

(πiπj + E [YiYj])

)
. (16.14)

Proof. Apply Theorem 16.3.1 with Uk = X and

Vk =
∑

j /∈Nk∪{k}
Yj +

∑
j∈Nk

Y
(k)
j ,

where
Y

(k)
j ∼ Xj | Xk = 1 .

The announced result follows from Theorem 16.3.1 and the bound

E [|Uk − Vk|] = E

[
|Yk +

∑
j∈Nk

(Yj − Y
(k)
j )|

]
≤ E [|Yk|] +

∑
j∈Nk

(
E [|Yj|] + E

[
|Y (k)

j |
])

= πk +
∑
j∈Nk

(πj + E [Yj |Yk = 1])

= πk +
∑
j∈Nk

(
πj +

E [YjYk]

πk

)
.

�

Example 16.3.6: Wedges in the Erdös–Rényi random graph. Consider
the random graph G(n, p). A wedge of a graph G = (V, E) is a pair (u, {v, w})
where the vertices u, v, w are distinct, u ∼ v, u ∼ w (u ∼ v means that 〈u, v〉 is an
edge of G). The order of v and w is irrelevant, that is (u, {v, w}) and (u, {w, v})
is the same wedge, henceforth denoted by u.vw. Let X be the number of wedges
in G(n, p). Since there are n

(
n−1
2

)
pairs (u, {v, w}) where the vertices u, v, w are

distinct, and since the probability that they form a wedge is p2, we have that
λ := E[X] = n

(
n−1
2

)
p2.
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Let Yvw (resp., Yu.vw) be the indicator variable that expresses that 〈v, w〉 is an edge
(resp., u.vw is a wedge) of G(n, p). In particular

Yu.vw = YuvYuw ∼ Bern(πu.vw) ,

where πu.vw = p2. We have that

X =
n∑

u=1

∑
v<w ;u/∈{v,w}

Yu.vw .

Define
Nu.vw := {(a.bc) ; |{〈u, v〉, 〈u, w〉} ∩ {〈a, b〉, 〈a, c〉}| = 1} .

The variables Y
u.vw

are dissociated with respect to the neighbourhoods Nu.vw.
Moreover,

|Nu.vw| = 2(n− 3) + 2(n− 2) = 2(n− 5)

(the first term counts the wedges in Nu.vw for which the central vertex is u, whereas
the second term counts the wedges in Nu.vw with the leg u, v or u, w). Application
of Formula (16.14) yields

dV (X, pλ) ≤
(
1− e−λ

λ

)∑
u.vw

(
π2
u.vw +

∑
a.bc∈Nu.vw

(πu.vwπa.bc + E [Yu.vwYa.bc])

)

= min(1, λ−1)n

(
n− 1

2

)
(p4 + 2(2n− 5)(p4 + p3))

≤ min(λ, 1)(p2 + 8np) ≤ min(
1

2
n3p2, 1)(p+ 8np) .

In particular, if pn = α
1
2

1
n
√
n
, E[X] ∼ α, np → 0 while n ↑ +∞, and therefore

dV (X, pα) → 0 .

In other words, as n ↑ +∞, the number of wedges converge in variation to a
Poisson variable of mean α.

16.3.2 Proof of Chen’s Bound

The proof of Theorem 16.3.1 will given after a few preliminaries.

Denote by Eλ [h(Z)] the expectation of h(Z) when Z is a Poisson variable with
mean λ. The equation

h(i)− Eλ [h(Z)] = λf(i+ 1)− if(i) , (16.15)

where the unknown is the function f : → and the data is the function
h : → +, is called Chen’s equation. It has up to an arbitrary value of f(0)
(which we from now on take to be 0) a unique solution obtained by recurrence
from (16.15) itself. In particular, if f1 and f2 are solutions corresponding to h1 and
h2 respectively, then f1 + f2 is the solution corresponding to h1 + h2.
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Proof. (of Theorem 16.3.1.) Denoting by fA the solution of Chen’s equation cor-
responding to the data h = 1A, where A is any subset of ,

1A(i)− Eλ [1A(Z)] = λfA(i+ 1)− ifA(i)

and consequently, for any integer-valued random variable X,

P (X ∈ A)− pλ(A) = E [λfA(X + 1)]− E [XfA(X)] ,

where pλ(A) := Pλ(Z ∈ A). From this it follows that

dV (X, pλ) ≤ sup
A⊆

{E [λfA(X + 1)]− E [XfA(X)]} .

With f = fA,

E [λf(X + 1)]− E [Xf(X)] =
n∑

k=1

(πkE [f(X + 1)]− E [Ykf(X)])

=
n∑

k=1

πk (E [f(X + 1)]− E [f(X) |Yk = 1])

=
n∑

k=1

πkE [f(Uk + 1)− f(Vk + 1)] .

Therefore, if

|fA(m)− fA(�)| ≤ 1− e−λ

λ
|m− �| , (�)

for all integers m, � and all A ⊆ , the bound (16.11) is proved.

For the proof of (�), first obtain the following expression of fA with fA(0) = 0: for
i ∈ ,

fA(i+ 1) =
pλ(A ∩Ni)− pλ(A)pλ(Ni)

λpλ(i)

where Ni := {0, 1, . . . , i}. This equality follows from the following calculations:

fA(i+ 1) = λ−1 (1A(i) + ifA(i)− pλ(A))

= λ−11A(i) + λ−21A(i− 1)− pλ(A)
(
λ−1 + iλ−2

)
+ λ−2i(i− 1)fA(i− 1)

= · · ·
= λ−11A(i) + iλ−21A(i− 1) + · · ·+ i!λ−(i+1)1A(0)

− (
λ−1 + iλ−2 + · · ·+ i!λ−(i+1)

)
pλ(A)

= i!λ−(i+1)eλ (pλ(A ∩Ni)− pλ(A)pλ(Ni)) .

To obtain the bound in (�), we first observe that, by linearity of Chen’s equation,

fA(i+ 1)− fA(i) =
∑
j∈A

(
f{j}(i+ 1)− f{j}(i)

)
. (†)

Now, for j 
= i, f{j}(i+ 1)− f{j}(i) ≤ 0, as we now check. For j > i,
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f{j}(i+ 1) = −pλ(j)pλ(Ni)

λpλ(i)
= −pλ(j)

i∑
k=0

(
i

k

)
k!

λk+1
,

a quantity decreasing in i. For j < i,

f{j}(i+ 1) =
pλ(j) (1− pλ(Ni))

λpλ(i)
= pλ(j)

∞∑
k=0

1(
k+i+1
k+1

) λk

(k + 1)!
,

which is also decreasing in i. Therefore, by (†) and pλ(i) = e−λ λi

i!
,

fA(i+ 1)− fA(i) ≤ f{i}(i+ 1)− f{i}(i)

=
pλ(i) (1− pλ(Ni))

λpλ(i)
+

pλ(i)pλ(Ni−1)

λpλ(i− 1)

=
1

λ

(
1− pλ(Ni) +

λ

i
pλ(Ni−1)

)
≤ 1

λ
(1− pλ(Ni) + pλ(Ni\{0}))

=
1− pλ(0)

λ
=

1− e−λ

λ
.

Therefore

fA(i+ 1)− fA(i) ≤ 1− e−λ

λ
.

Replacing A by its complement and observing that fA = −fĀ, we have that

−(fA(i+ 1)− fA(i)) = fĀ(i+ 1)− fĀ(i) ≤
1− e−λ

λ

and therefore

|fA(i+ 1)− fA(i)| ≤ 1− e−λ

λ
,

from which (�) follows. �

Books for Further Information

The next two references require familiarity with advanced probability theory.
[Lindvall, 1992] is a concise presentation of coupling with an abundance of fine
examples. [Barbour, Holst, Janson and Spencer, 1992] is the fundamental refer-
ence on Poisson approximation, for random variables of course, but also for point
processes.

16.4 Exercises

Exercise 16.4.1. Maximal coincidence of biased coins

Find a pair of {0, 1}-valued random variables with prescribed marginals

P (X = 1) = a , P (Y = 1) = b,
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where a, b ∈ (0, 1), and such that P (X = Y ) is maximal.

Exercise 16.4.2. Properties of the variation distance

1. Variation distance and image distributions. Let α and β be two probability
distributions on the countable space E, and let f : E #→ F where F is another
countable space. Define the probability distribution αf−1 on F by αf−1(B) =
α(f−1(B)), and define likewise βf−1. Prove that

dV (α, β) ≥ dV
(
αf−1, βf−1

)
.

2. Convexity. Let αk and βk be probability distributions on the countable space E
(1 ≤ k ≤ m). Show that if λk ∈ [0, 1] and

∑m
k=1 λk = 1, then

dV

(
m∑
k=1

λkαk,
m∑
k=1

λkβk

)
≤

m∑
i=k

λkdV (αk, βk) .

3. Prove the above properties using the interpretation of variation distance in terms
of hypothesis testing (Subsection 16.1.1).

Exercise 16.4.3.
Let α and β be two probability distributions on the countable space E. Show that

dV (α, β) =
1

2
sup
|f |≤1

(∑
i

f(i)α(i)−
∑
i

f(i)β(i)

)

where |f | := supi∈E |f(i)|.

Exercise 16.4.4. Convergence speed via coupling

Suppose that the coupling time τ in Theorem 15.1.1 satisfies E[ψ(τ)] < ∞ for
some non-decreasing function ψ : N → R+ such that limn↑∞ ψ(n) = ∞. Show that
for any initial distributions μ and ν

|μTPn − νTPn| = o

(
1

ψ(n)

)
.

Exercise 16.4.5.
Let {Zn}n≥1 be an iid sequence of iid {0, 1}-valued random variables, P (Zn =
1) = p ∈ (0, 1). Show that for all k ≥ 1,

lim
n↑∞

P (Z1 + Z2 + · · ·Zn is divisible by k) = 1 .

Exercise 16.4.6.
LetP be an ergodic transition matrix on the finite state space E. Prove that for any
initial distributions μ and ν, one can construct two hmc’s {Xn}n≥0 and {Yn}n≥0

on E with the same transition matrix P, and the respective initial distributions μ
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and ν, in such a way that they couple at a finite time τ such that E[eατ ] < ∞ for
some α > 0.

Exercise 16.4.7. The lazy walk on the circle

Consider N points on the circle forming the state space E := {0, 1, . . . , N − 1}.
Two points i, j are said to be neighbours if j = i ± 1 modulo n. Consider the
Markov chain {(Xn, Yn)}n≥0 with state space E×E and representing two particles
moving on E as follows. At each time n choose Xn or Yn with probability 1

2
and

move the corresponding particle to the left or to the right, equiprobably while
the other particle remains still. The initial positions of the particles are a and b
respectively. Compute the average time it takes until the two particles collide (the
average coupling time of two lazy random walks).

Exercise 16.4.8. Coupling time for the 2-state hmc

Find the distribution of the first meeting time of two independent hmc with state
space E = {1, 2} and transition matrix

P =

(
1− α α
β 1− β

)
,

where α, β ∈ (0, 1), when their initial states are different.

Exercise 16.4.9. Chen’s characterization of the Poisson distribution

Show that Z is a Poisson variable with mean λ if and only if,

E [λf(Z + 1)]− E [Zf(Z)] = 0

whenever the expectation is well defined.

Exercise 16.4.10. Alternative expressions of the variation distance

Let α and β be two probability distributions on the countable space E. Show that

dV (α, β) = 1−
∑
i∈E

α(i) ∧ β(i) =
∑
i∈E

(α(i)− β(i))+ =
∑
i∈E

(β(i)− α(i))+ .

Exercise 16.4.11. Birthdays

Consider an assembly of 73 persons, each one having 10 friends in this assembly.
The birthday dates of these persons are supposed independent and uniformly dis-
tributed over the year (take 365 days). Apply Theorem 16.3.5 to the proof that if
X is the number of persons sharing a birthday, then

dV (X,Poi(1)) ≤ 37

365
.

Exercise 16.4.12.
The framework is that of Theorem 16.3.1 with the additional assumption that
Uk ≥ Vk (1 ≤ k ≤ n). Prove that
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dV (X, pλ) ≤
(
1− e−λ

λ

)
(λ− Var (X)) . (16.16)

Exercise 16.4.13. Positively associated variables

Let Yi ∼ Bern(πi) (1 ≤ i ≤ n) be Bernoulli variables, and define X :=
∑n

i=1 Yi, a
random variable with mean λ :=

∑n
i=1 πi. Suppose there exists for each k a family

of random variables Y
(k)
i (1 ≤ i ≤ n, i 
= k) such that

(Y
(k)
i : i 
= k) ∼ (Yi : i 
= k) | Yk = 1

and
Y

(k)
i ≥ Yi (i 
= k) .

Prove that

dV (X, pλ) ≤ min(1, λ−1)

(
Var(X)− λ+ 2

∑
i

π2
i

)
.

Exercise 16.4.14. Adjacent failures on a circle

(For this exercise, use the result of Exercise 16.4.13.) Consider n points regularly
arranged on a circle. Let Zi be a Bernoulli variable attached to point i, P (Zi =
1) = p, and suppose that the sequence {Zn}1≤i≤n iid. Let Xi be the indicator of
the event Zi = Zi+1 (here, + is the addition modulo n). Let W :=

∑n
i=1 Xi. Show

that
dV (W,Poi(np2)) ≤ min{np2, 1}p(2− p) .

Exercise 16.4.15. Negatively associated variables

Let Yi ∼ Bern(πi) (1 ≤ i ≤ n) be Bernoulli variables, and define X :=
∑n

i=1 Yi, a
random variable with mean λ :=

∑n
i=1 πi. Suppose there exists for each k a family

of random variables Y
(k)
i (1 ≤ i ≤ n, i 
= k) such that

(Y
(k)
i ; i 
= k) ∼ (Yi; i 
= k) | Yk = 1

and
Y

(k)
i ≤ Yi (i 
= k) .

Prove that
dV (X, pλ) ≤ min(1, λ−1) (λ− Var(X)) .



Chapter 17

Martingale Methods

17.1 Martingales

17.1.1 Definition and Examples

In casino parlance, a martingale is a strategy that beats the bank. For a probabilist,
it is a sequence of random variables that has no tendency to increase or decrease
(the precise definition will be given soon). This notion has to do with casino games
but it is also useful outside Las Vegas. In fact, it is one of the foundations of modern
probability theory.

Let {Xn}n≥0 be a sequence of discrete real-valued random variables. Such a se-
quence is also called a (discrete-time) (real-valued) discrete stochastic process.

Definition 17.1.1 A real-valued stochastic process {Yn}n≥0 such that for each
n ≥ 0

(i) Yn is a function of n and Xn
0 := (X0, . . . , Xn), and

(ii) E[|Yn|] < ∞ or Yn ≥ 0,

is called a martingale (resp., submartingale, supermartingale) with respect to
{Xn}n≥0 if, moreover,

E[Yn+1 |Xn
0 ] = Yn (resp., ≥ Yn, ≤ Yn). (17.1)

For short, one may say “Xn
0 -martingale” for “martingale with respect to {Xn}n≥0”,

with similar abbreviations for supermartingales and submartingales.

Observe that a martingale is a submartingale and a supermartingale.

Remark 17.1.2 This book is concerned with discrete random variables, and
therefore the precision “discrete” will be omitted in the definitions and results
that apply verbatim to the general case.

Example 17.1.3: Sums of iid random variables. Let {Xn}n≥0 be a sequence
of iid random variables with mean 0. The stochastic process

© Springer International Publishing Switzerland 2017
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Yn := X0 +X1 + · · ·+Xn (n ≥ 0)

is an Xn
0 -martingale. In fact, for all n ≥ 1,

E[Yn+1 |Xn
0 ] = E[Yn |Xn

0 ] + E[Xn+1 |Xn
0 ] = Yn + E[Xn+1] = Yn ,

where the second equality is due to the facts that Yn is a function of Xn
0 (Theorem

2.3.7) and that Xn
0 and Xn+1 are independent (Theorem 2.3.8).

Example 17.1.4: Products of iid random variables. Let {Xn}n≥0 be a
sequence of integrable iid random variables with mean 1. The stochastic process

Yn :=
n∏

k=0

Xk (n ≥ 0)

is an Xn
0 -martingale. In fact,

E[Yn+1 |Xn
0 ] = E

[
Xn+1

(
n∏

k=0

Xk

)
|Xn

0

]
= E[Xn+1 |Xn

0 ]
n∏

k=0

Xk

= E[Xn+1]
n∏

k=1

Xk = 1× Yn = Yn ,

where the second equality is due to the fact that
∏n

k=0 Xk is a function of Xn
0

(Theorem 2.3.7) and the third to the fact that Xn
0 and Xn+1 are independent

(Theorem 2.3.8).

Example 17.1.5: Empty bins, take 1. There are m balls to be placed in N
bins. Each ball is assigned to a bin randomly and independently of the others. The
mean of the number Z of empty bins is μ := E[Z] = N (1− 1/N)m. From the
coupon collector’s point of view: there are N coupons in the complete collection,
and Z is the number of missing coupons when m chocolate tablets have been
bought. The stochastic process

Mn := Yn

(
1− 1

N

)m−n

(0 ≤ n ≤ m) ,

where Yn is the number of empty bins at time n (that is, immediately after the
n-th ball has been placed) is a Y n

0 -martingale. (Note also that Mm = Z and that
M0 = N (1− 1/N)m = E[Z] = μ.)

Proof. Given Y n−1
0 , with probability 1 − Yn−1

N
the n-th ball falls into a currently

non-empty bin (and then Yn = Yn−1) and with probability Yn−1

N
into a currently

empty bin (and then Yn = Yn−1 − 1). Therefore

E
[
Yn |Y n−1

0

]
=

(
1− Yn−1

N

)
Yn−1 +

Yn−1

N
(Yn−1 − 1) = Yn−1

(
1− 1

N

)
,
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and consequently

E
[
Mn |Y n−1

0

]
= E

[
Yn |Y n−1

0

](
1− 1

N

)m−n

= Yn−1

(
1− 1

N

)m−n+1

= Mn−1 .

�

Example 17.1.6: Gambling, take 1. Consider the stochastic process {Yn}n≥0

with values in defined by Y0 = a ∈ and, for n ≥ 0,

Yn+1 = Yn +Xn+1 bn+1(Y
n
0 ),

where {Xn}n≥1 is an iid sequence of random variables taking the values +1 or −1
equiprobably, and where the family of functions bn : → , n ≥ 1, is a given
betting strategy, that is, bn+1(Y

n
0 ) is the stake at time n + 1 of a gambler given

the observed history Y n
0 := (Y0, . . . , Yn) of his fortune up to time n. The initial

conditions are X0 = Y0 = a. Admissible bets must guarantee that the fortune Yn

remains non-negative at all times n, that is, bn+1(y
n
0 ) ≤ yn, and the game ends as

soon as the gambler is ruined. The process so defined is an Xn
0 -martingale. Indeed,

Yn is a function of Xn
0 (observe that Y n

0 is a function of Xn
0 ) and

E [Yn+1 |Xn
0 ] = E [Yn |Xn

0 ] + E [Xn+1bn+1(Y
n
0 ) |Xn

0 ]

= Yn + E [Xn+1 |Xn
0 ] bn+1(Y

n
0 ) = Yn ,

where the second equality uses Theorem 2.3.7 (again: Y n
0 is a function of Xn

0 ) and
the assumption that Xn+1 is independent of Xn

0 and of mean 0 (Theorem 2.3.8).

17.1.2 Martingale Transforms

Let {Xn}n≥0 be some sequence of random variables with values in the denumerable
set X . The sequence of complex-valued random variables {Hn}n≥1 is called an Xn

0 -
predictable process if for all n ≥ 1,

Hn = gn(X
n−1
0 )

for some function gn : X n → . Let {Yn}n≥0 be another sequence of complex
random variables. The sequence {(H ◦ Y )n}n≥1 defined by

(H ◦ Y )n :=
n∑

k=1

Hk(Yk − Yk−1) (n ≥ 1)

is called the transform of {Yn}n≥0 by {Hn}n≥1.

Theorem 17.1.7 (a) Let {Yn}n≥0 be a Xn
0 -submartingale (resp., martingale) and

let {Hn}n≥1 be a bounded non-negative Xn
0 –predictable process. Then {(H◦Y )n}n≥1

is a Xn
0 -submartingale (resp., martingale).

(b) If {Yn}n≥0 is a Xn
0 -martingale and if {Hn}n≥1 is bounded and X

n
0 –predictable,

then {(H ◦ Y )n}n≥1 is a Xn
0 -martingale.
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The proof is left as an exercise (Exercise 17.1.7).

Theorem 17.1.7 has the stopped martingale theorem for corollary:

Corollary 17.1.8 Let {Yn}n≥0 be a Xn
0 –submartingale (resp., martingale), and

let τ be a Xn
0 -stopping time. Then {Yn∧τ}n≥0 is a Xn

0 –submartingale (resp., mar-
tingale). In particular,

E[Yn∧τ ] ≥ E[Y0] (resp., = E[Y0]) (n ≥ 0) . (17.2)

Proof. Let Hn := 1{n≤τ}. The stochastic process {Hn}n≥1 is X
n
0 –predictable since

{Hn = 0} = {τ ≤ n− 1} is of the form g(Xn−1
0 ). We have

Yn∧τ = Y0 +
n∧τ∑
k=1

(Yk − Yk−1)

= Y0 +
n∑

k=1

1{k≤τ} (Yk − Yk−1)

The result then follows by Theorem 17.1.7. �

17.1.3 Harmonic Functions of Markov Chains

Let {Xn}n≥0 be an hmc on the countable space E with transition matrix P. A
function h : E → R, represented as a column vector of the dimension of E, is
called harmonic (resp., subharmonic, superharmonic) iff

Ph = h (resp., ≥ h,≤ h) , (17.3)

that is, in developed form, for all i ∈ E,∑
j∈E

pijh(j) = h(i) (resp., ≥ h(i),≤ h(i)).

Superharmonic functions are also called excessive functions.

Equation (17.3) is equivalent to

E[h(Xn+1) | Xn = i] = h(i) (resp., ≥ h(i),≤ h(i)) ,

for all i ∈ E. In view of the Markov property, the left-hand side of the above
equality is also equal to

E[h(Xn+1) | Xn = i, Xn−1 = in−1, . . . , X0 = i0],

and therefore (17.3) is equivalent to

E[h(Xn+1 | Xn
0 ] = h(Xn) (resp., ≤ h(Xn),≥ h(Xn)). (17.4)

Therefore, if either E[|h(Xn)|] < ∞ for all n ≥ 0, or h ≥ 0, the process {h(Xn)}n≥0

is a martingale (resp., submartingale, supermartingale) with respect to {Xn}n≥0.
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17.2 Hoeffding’s Inequality

17.2.1 The Basic Inequality

Theorem 17.2.1 (Hoeffding, 1963) Let {Mn}n≥0 be a real Xn
0 -martingale such

that, for some sequence c1, c2, . . . of real numbers,

P (|Mn −Mn−1| ≤ cn) = 1 (n ≥ 1) .

Then, for all x ≥ 0,

P (|Mn −M0| ≥ x) ≤ 2 exp

(
−1

2
x2

/ n∑
i=1

c2i

)
. (17.5)

Proof. For |z| ≤ 1, λ := 1
2
(1− z) ∈ [0, 1], and for any a ∈ ,

az = λ(−a) + (1− λ)a .

Therefore, by convexity of the function z #→ eaz,

eaz ≤ 1

2
(1− z)e−a +

1

2
(1 + z)e+a.

In particular, if Z is a centered random variable such that P (|Z| ≤ 1) = 1,

E[eaZ ] ≤ 1

2
(1− E[Z])e−a +

1

2
(1 + E[Z])e+a =

1

2
e−a +

1

2
e+a ≤ e

1
2
a2

(see Example 3.2.5 for the last inequality). With Z := (Mn − Mn−1)/cn and by
similar arguments, for all a ∈ ,

E

[
ea
(

Mn−Mn−1
cn

)∣∣∣∣Xn−1
0

]
≤ 1

2

(
1− E

[
Mn−Mn−1

cn

∣∣∣∣Xn−1
0

])
e−a + 1

2

(
1 + E

[
Mn−Mn−1

cn

∣∣∣∣Xn−1
0

])
e+a

= 1
2
e−a + 1

2
e+a ≤ e

1
2
a2 ,

because E
[
Mn −Mn−1 |Xn−1

0

]
= 0 by definition of a martingale. Replacing a by

cna in the last chain of inequalities gives

E
[
ea(Mn−Mn−1)

∣∣Xn−1
0

] ≤ e
1
2
a2c2n .

Therefore,

E
[
ea(Mn−M0)

]
= E

[
ea(Mn−1−M0)ea(Mn−Mn−1)

]
= E

[
ea(Mn−1−M0)E

[
ea(Mn−Mn−1)

∣∣Xn−1
0

]]
≤ E

[
ea(Mn−1−M0)

]× e
1
2
a2c2n ,
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and by iteration
E
[
ea(Mn−M0)

] ≤ e
1
2
a2

∑n
i=1 c

2
i .

In particular, by Markov’s inequality, with a > 0,

P (Mn −M0 ≥ x) ≤ e−axE
[
ea(Mn−M0)

] ≤ e−ax+ 1
2
a2

∑n
i=1 c

2
i .

Minimization of the right-hand side with respect to a gives

P (Mn −M0 ≥ x) ≤ e−
1
2
x2
/∑n

i=1 c
2
i . (17.6)

By the same argument with M0 −Mn instead of Mn −M0,

P (−(Mn −M0) ≥ x) ≤ e−
1
2
x2
/∑n

i=1 c
2
i .

The announced bound then follows from these two bounds since for any real ran-
dom variable X, all x ∈ +, P (|X| ≥ x) = P (X ≥ x) + P (X ≤ −x). �

Example 17.2.2: Empty bins, take 2. Refer to Example 17.1.5. We shall derive
the following inequality concerning the number Z of empty bins:

P (|Z − μ| ≥ λ) ≤ 2 exp

{
−λ2(N − 1

2
)

N2 − μ2

}
. (17.7)

For this recall from Example 17.1.5 that

Mn := Yn

(
1− 1

N

)m−n

,

where Yn is the number of empty bins at time n (that is, immediately after the n-th
ball has been placed) is a Y n

0 -martingale. Also, Mm = Z and M0 = N
(
1− 1

N

)m
=

E[Z] = μ. We have that

Mn −Mn−1 =

(
Yn − Yn−1

(
1− 1

N

))(
1− 1

N

)m−n

and since Yn ≤ Yn−1 and Yn−1 ≤ N ,

Yn − Yn−1

(
1− 1

N

)
≤ Yn−1

(
1− 1 +

1

N

)
= Yn−1

(
1

N

)
≤ +1.

Also

Yn − Yn−1

(
1− 1

N

)
≥ Yn − Yn−1 ≥ −1 .

Therefore,

|Mn −Mn−1| ≤ cn :=

(
1− 1

N

)m−n

.

The result follows from Hoeffding’s inequality applied to Mm − M0 = Z − μ and
the identity

m∑
n=1

c2n =
1− β2m

1− β2
,

where β = N−1
N

. But since μ = Nβm, the latter quantity is equal to N2−μ2

2N−1
.
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17.2.2 The Lipschitz Condition

The following is a general framework of application of Hoeffding’s inequality that
will be applied to the Erdös–Rényi random graphs.

Let X be a finite set and let N be a positive integer. Let f : XN → be a
given function. Remember the notation x = (x1, . . . , xN) and xk

1 = (x1, . . . , xk). In
particular, x = xN

1 . For x ∈ XN , z ∈ X and 1 ≤ k ≤ N , define

fk(x, z) := f(x1, . . . , xk−1, z, xk+1, . . . , xN) .

The function f is said to satisfy a Lipschitz condition with bound c if for all
x ∈ XN , z ∈ X and 1 ≤ k ≤ N ,

|fk(x, z)− f(x)| ≤ c .

In other words, changing a single coordinate entails a change not bigger than c in
absolute value. Let X1, X2, . . . , XN be independent random variables with values
in X . Define the martingale {Mn}n≥0 by M0 := E [f(X)], and for n ≥ 1,

Mn := E [f(X) |Xn
1 ] := E [f(X1, . . . , XN) |Xn

1 ] .

By the independence assumption and Theorem 2.3.9, with obvious notations,

E [f(X) |Xn
1 ] =

∑
xN
n+1

f(Xn−1
1 , Xn, x

N
n+1)P (XN

n+1 = xN
n+1)

and

E
[
f(X) |Xn−1

1

]
=
∑
xN
n+1

∑
xn

f(Xn−1
1 , xn, x

N
n+1)P (Xn = xn)P (XN

n+1 = xN
n+1) .

Therefore

|Mn −Mn−1| ≤∑
xN
n+1

∑
xn

|f(Xn−1
1 , xn, x

N
n+1)− f(Xn−1

1 , Xn, x
N
n+1)|P (Xn = xn)P (XN

n+1 = xN
n+1)

≤ c
∑
xN
n+1

∑
xn

P (Xn = xn)P (XN
n+1 = xN

n+1) = c .

Example 17.2.3: Exposure martingales in random graphs. The random
graph G(n, p) may be generated as follows. Enumerate the N =

(
n
2

)
edges of the

complete graph on V = Vn := {1, 2, . . . , n} from i = 1 to i = N . Generate a
random vector X = (X1, . . . , XN) with independent and identically distributed
variables with values in {0, 1} and common distribution P (Xi = 1) = p. Then
include edge i in G(n, p) if and only if Xi = 1. Any functional of G(n, p) can
always be written as f(X). The edge exposure martingale corresponding to this
functional is the Xk

0 -martingale defined by M0 = E [f(X)] and for k ≥ 1,

Mk := E
[
f(X) |Xk

1

]
.
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Since the Xk’s are independent, the general method just presented can be applied
provided the Lipschitz condition is satisfied.

Another type of martingale related to a G(n, p) graph is useful. For 1 ≤ i ≤ n,
define the graph Gi to be the restriction of G(n, p) to Vi. A functional of G(n, p)
can always be written as f(G), where G := (G1, . . . , Gn). The vertex exposure
martingale corresponding to this functional is the Gi

1-martingale defined by M0 =
E [f(G)] and for i ≥ 1,

Mi := E
[
f(G) |Gi

1

]
.

Example 17.2.4: Chromatic number of a random graph. (Shamir and
Spencer, 1987) The chromatic number of a graph G is the minimal number of
colours needed to colour the vertices in such a way that no adjacent vertices receive
the same colour. Call f(G) the chromatic number of G(n, p). Since the difference
between f(Gi−1

0 , Gi, g
n
i+1) and f(Gi−1

0 , gi, g
n
i+1) is at most one for all gi, g

n
i+1, one

may attempt to apply Hoeffding’s bound in the form (17.6) to obtain

P
(
f(G)− E [f(G)] ≥ λ

√
n
) ≤ e−2λ2

.

However, the Gi’s are not independent. Nevertheless, the general method can be
applied modulo a slight change of point of view. Let X1 be an arbitrary constant,
and for 2 ≤ i ≤ n, let Xi = {X〈i,j〉, 1 ≤ j ≤ i − 1} (recall the definition of
X〈u,v〉 in Definition 2.1.54). The passage from subgraph Gi−1 to subgraph Gi is
represented by the “difference” Xi between these two subgraphs. Then f(G) can
be rewritten as h(X) = h(X1, . . . , Xn) and the general method applies since the
Xi’s are independent.

17.3 The Two Pillars of Martingale Theory

17.3.1 The Martingale Convergence Theorem

The martingale convergence theorem is in fact the submartingale convergence the-
orem (but of course a martingale is a special case of submartingale). It is the prob-
abilistic counterpart of the convergence of a bounded non-decreasing sequence of
real numbers to a finite limit. Its proof rests on the upcrossing inequality.

An upcrossing of the interval [a, b] by a real random sequence {Xn}n≥0 is said
to occur if for some k,m (0 ≤ k ≤ m), Xk ≤ a, Xm ≥ b and X� < b for all �
(k < � < m). A downcrossing is defined in a similar way.
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Theorem 17.3.1 Let {Sn}n≥0 be an Xn
0 -submartingale. Let a, b ∈ , a < b, and

let νn be the number of upcrossings of [a, b] before (≤) time n. Then

(b− a)E[νn] ≤ E[(Sn − a)+]. (17.8)

Proof. Since νn is the number of upcrossings of the interval [0, b − a] by the
submartingale {(Sn − a)+}n≥1, we may suppose without loss of generality that
Sn ≥ 0 and take a = 0. We then just need to prove that

bE[νn] ≤ E[Sn − S0] . (17.9)

Define a sequence of Xn
0 -stopping times as follows: τ0 = 0,

τ1 = inf{n > τ0 ; Sn = 0}
τ2 = inf{n > τ1 ; Sn ≥ b}

and more generally,

τ2k+1 = inf{n > τ2k ; Sn = 0}
τ2k+2 = inf{n > τ2k+1 ; Sn ≥ b} ,

with the usual convention inf ∅ = ∞.

For i ≥ 1, let

φi = 1 if τm < i ≤ τm+1 for some odd m

= 0 if τm < i ≤ τm+1 for even odd m.

Observe that {φi = 1} = ∪oddm ({τm < i}\{τm+1 < i}) is a set defined in terms of
X i−1

0 and that
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bνn ≤
n∑

i=1

φi(Si − Si−1).

Therefore

bE[νn] ≤ E

[
n∑

i=1

φi(Si − Si−1)

]
=

n∑
i=1

E[φi(Si − Si−1)]

=
n∑

i=1

E
[
φiE[(Si − Si−1)|X i−1

0 ]
]
=

n∑
i=1

E
[
φi(E[Si|X i−1

0 ]− Si−1)
]

≤
n∑

i=1

E
[
(E[Si|X i−1

0 ]− Si−1)
] ≤ n∑

i=1

(E[Si]− E[Si−1]) = E[Sn − S0] .

�

Theorem 17.3.2 Let {Sn}n≥0 be an Xn
0 -submartingale, L1-bounded, that is such

that
sup
n≥0

E[|Sn|] < ∞. (17.10)

Then Sn converges P -a.s. to an integrable random variable S∞.

Proof. Let νn be the number of upcrossings of an interval [a, b] prior (≤) to time
n, and let ν∞ = limn↑∞ νn. By the upcrossing inequality (17.8),

(b− a)E[νn] ≤ E[(Sn − a)+] ≤ E[S+
n ] + |a|

≤ sup
k≥0

E[S+
k ] + |a| ≤ sup

k≥0
E[|Sk|] + |a| .

Therefore, letting n ↑ ∞,

(b− a)E[ν∞] ≤ sup
k≥0

E[[Sk|] + |a| < ∞.

In particular, ν∞ < ∞, P -a.s. Therefore, for all a, b ∈ , a < b,

P (lim inf
n↑∞

Sn < a < b < lim sup
n↑∞

Sn) = 0.

Since, denoting by Q the set of rationals numbers,

{lim inf
n↑∞

Sn < lim sup
n↑∞

Sn} =
⋃

a,b∈Q; a<b

{lim inf
n↑∞

Sn < a < b < lim sup
n↑∞

Sn},

we have
P (lim inf

n↑∞
Sn < lim sup

n↑∞
Sn) = 0,

which implies that {Sn}n≥0 converges P -a.s. By Fatou’s lemma,

E[lim
n↑∞

Sn] ≤ lim inf
n↑∞

E|Sn| ≤ sup
n≥0

E|Sn| < ∞.

�
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Remark 17.3.3 The statement of Theorem 17.3.2 does not make any restriction
concerning the range of the random variables concerned, which in this book are
discrete. In fact, the result remains true in the general case, with exactly the
same proof. Note that the proof given above in this book only features exclusively
discrete random variables if the martingale {Sn}n≥0 takes discrete values.

Corollary 17.3.4 (a) Any non-positive submartingale converges to an integrable
random variable.
(b) Any non-negative supermartingale converges to an integrable random variable.

Proof. (b) follows from (a) by changing signs. For (a), we have

E[|Sn|] = −E[Sn] ≤ −E[S0] = E[|S0|] < ∞.

Therefore condition (17.10) is satisfied and the conclusion follows from Theorem
17.3.2. �

Example 17.3.5: Gambling, take 2. Consider the situation in Example 17.1.6,
assuming that the initial fortune a is a positive integer, and that the bets are also
positive integers. Therefore the process {Yn}n≥0 is a non-negative FX

n -martingale,
and by the martingale convergence theorem, it almost surely has a finite limit.
Since the bets are assumed positive integers when the fortune of the player is
positive, this limit cannot be other than 0. Since Yn is a non-negative integer for
all n ≥ 0, this can happen only if the fortune of the gambler becomes null in finite
time.

Example 17.3.6: Branching process via martingales. Consider the branch-
ing process {Xn}n≥0 of Section 10.1. The stochastic process

Yn =
Xn

mn
,

where m is the average number of sons of a given individual, is a martingale with
respect to {Xn}n≥0. Indeed, each of theXn members of the n-th generation gives on
average m sons, and they do this independently. Therefore, E[Xn+1|Xn] = mXn,
and

E

[
Xn+1

mn+1
|Xn

0

]
= E

[
Xn+1

mn+1
|Xn

]
=

Xn

mn
.

By the martingale convergence theorem, almost surely

lim
n↑∞

Xn

mn
= Y < ∞.

In particular, if m < 1, then limn↑∞ Xn = 0 almost surely. Since Xn takes integer
values, this implies that the branching process eventually becomes extinct.
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If m = 1, then limn↑∞ Xn = X∞ < ∞, and it is easily argued that this limit must
be 0. Therefore, in this case as well the process eventually becomes extinct.

For the case m > 1, we consider the unique solution in (0, 1) of x = g(x) (The-
orem 2.2.8). Suppose we can show that Zn = xXn is a martingale. Then, by the
martingale convergence theorem, it converges to a finite limit, and therefore Xn

has a limit X∞, which, however, can be infinite. One can easily argue that this
limit cannot be other than 0 (extinction) or ∞ (nonextinction). Since {Zn}n≥0

is a martingale, x = E[Z0] = E[Zn], and therefore, by dominated convergence,
x = E[Z∞] = E[xX∞ ] = P (X∞ = 0). Therefore, x is the probability of extinction.

It remains to show that {Zn}n≥0 is a martingale. We have

E[xXn+1 |Xn = i] = xi.

This is obvious if i = 0, and if i > 0, Xn+1 is the sum of i independent random
variables with the same generating function g. Therefore, E[xXn+1 |Xn = i] =
g(x)i = xi. From this last result and the Markov property,

E[xXn+1 |Xn
0 ] = E[xXn+1 |Xn] = xXn .

Example 17.3.7: A cellular automaton. Consider a chessboard of size N ×
N , on which are placed stones, exactly one on each square. Each stone has one
among k possible colours. The stateXn of the process at time n is theN×N matrix
with elements in {1, . . . , k} describing the chessboard and the colour of the stone
in each square. The transition from Xn to Xn+1 is as follows. Select one case of
the chessboard at random, and change the color of the stone there, the new colour
being the colour of a stone chosen at random among the four neighboring stones.
To avoid boundary effects, we shall suppose that the chessboard is a bi-torus in
the sense of the figure below, where the black dots represent the neighbours of the
crossed case.

We shall see that in finite time the chessboard becomes monochromatic and prove,
using a martingale argument, that the probability of being absorbed in the, say
red, monochromatic state is equal to the initial proportion of red states.

Denote by Yn the proportion of red stones at stage n. The process {Yn}n≥0 is
a martingale with respect to {Xn}n≥0. Indeed, Yn is a function of Xn and is
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integrable, since it is bounded by 1. Also, E[Yn+1|Xn
0 ] = Yn, as the following

exchange argument shows. Let αn+1 be the box selected at time n + 1 and let
βn+1 be the selected neighbor of αn+1. Then, for any pair (α, β) of such boxes,
P (αn+1 = α, βn+1 = β|Xn

0 ) = P (αn+1 = β, βn+1 = α|Xn
0 ) = 1

8N2 . Clearly, if
the result αn+1 = α, βn+1 = β changes Yn to Yn+1 = Yn + ΔYn+1, the result
αn+1 = β, βn+1 = α changes Yn to Yn+1 = Yn −ΔYn+1. Since these two situations
are equiprobable, the martingale property follows.

By the martingale convergence theorem, limn↑∞ Yn = Y exists, and by dominated
convergence E[Y ] = limn↑∞ E[Yn]. Therefore, since E[Yn] = E[Y0], we have E[Y ] =
E[Y0] = y0, where y0 is the initial proportion of red stones. Because |ΔYn| = 0 or
1
N2 for all n, {Yn}n≥0 can converge only if it remains constant after some (random)
time, and this constant is either 0 or 1. Since the limit 1 corresponds to absorption
by the “all-red” state, we see that the probability of being absorbed by the “all-red”
state is equal to the initial proportion of red stones.

A Transience Criterion

The following simple application of the martingale convergence theorem generalizes
Example 6.1.18:

Theorem 17.3.8 An irreducible recurrent hmc has no non-negative superhar-
monic or bounded subharmonic functions besides the constant functions.

Proof. If h is non-negative superharmonic (resp., bounded subharmonic), then the
stochastic sequence {h(Xn)}n≥0 is a non-negative supermartingale (resp., bounded
submartingale) and therefore, by the martingale convergence theorem (Corollary
17.3.4), it converges to a finite limit Y . Since the chain visits any state i ∈ E
infinitely often, one must have Y = h(i) almost surely for all i ∈ E. In particular,
h is a constant. �

Theorem 17.3.9 Let the transition matrix P on the discrete state space E be
irreducible, and suppose that there exists a non-negative function h : E → R such
that ∑

k∈E
pikh(k) ≤ h(i), for all i 
∈ F, (17.11)

for some finite subset F ⊂ E. Then the corresponding hmc is recurrent.

Remark 17.3.10 The conditions of the above result are also necessary (we shall
not prove this here), and this is why it is called a criterion.

Proof. Let τ = τ(F ) be the return time to F , and define Yn = h(Xn)1{n<τ}.
Equality (17.11) is just E[h(Xn+1) | Xn = i] ≤ h(i) for all i 
∈ F . For i 
∈ F , we
have, using the basic rules for conditional expectation (Theorems 2.3.8, 2.3.7 and
2.3.6)
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Ei[Yn+1 | Xn
0 ] = Ei[Yn+11{n<τ} | Xn

0 ] + Ei(Yn+11{n≥τ} | Xn
0 ]

= Ei[Yn+11{n<τ} | Xn
0 ] ≤ Ei[h(Xn+1)1{n<τ} | Xn

0 ]

= 1{n<τ}Ei[h(Xn+1) | Xn
0 ] = 1{n<τ}Ei[h(Xn+1) | Xn]

≤ 1{n<τ}h(Xn),

where the third equality comes from the fact that 1{n<τ} is a function of Xn
0 , the

fourth equality is the Markov property, and the last inequality is true because
Pi-a.s., Xn 
∈ F on n < τ . Therefore, Pi-a.s., for i 
∈ F , Pi-a.s,

Ei[Yn+1|Xn
0 ] ≤ Yn,

that is, {Yn}n≥0 is, under Pi, a non-negative supermartingale with respect to
{Xn}n≥0. By the martingale convergence theorem, limn↑∞ Yn = Y∞ exists and
is finite, Pi-a.s.

Suppose, in view of contradiction, that the chain is transient. It must then visit
any finite subset of the state space only a finite number of times. In particular, for
arbitrary K, we can have h(Xn) < K only for a finite (random) number of indices
n. This implies that limn→∞ h(Xn) = +∞, Pj-a.s. (for any j ∈ E). For this to be
compatible with the fact that {1{n<τ}h(Xn)} has Pi-a.s. a finite limit for i 
∈ F ,
we must have Pi(τ < ∞) = 1.

In summary, Pi(τ < ∞) = 1 for all i 
∈ F . Since F is finite, some state in F must
be recurrent, hence the announced contradiction. �

17.3.2 Optional Sampling

Recall the definition of a stopping time.

Definition 17.3.11 Let {Xn}n≥0 be some sequence of random variables taking
their values in the discrete space X . A random variable T taking integer values
and possibly the value ∞ is called an Xn

0 -stopping time if for all integers m the
event {T = m} is expressible in terms of Xn

0 , that is, more precisely, there exists
a function gm : Xm+1 → {0, 1} such that

1{T=m} = gm(X
m+1
0 ) .

The following result is a weak form of Doob’s optional sampling theorem.

Theorem 17.3.12 Let {Mn}n≥0 be an Xn
0 -martingale, and let T be an Xn

0 -
stopping time. Suppose that at least one of the following conditions holds:

(α) P (T ≤ n0) = 1 for some n0 ≥ 0.

(β) P (T < ∞) = 1 and |Mn| ≤ K < ∞ when n ≤ T .

Then
E[MT ] = E[M0]. (17.12)
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Proof. (α) Write

MT −M0 =

n0−1∑
k=0

(Mk+1 −Mk)1{k<T}.

Since T is a stopping time of {Xn}n≥0,

1{k<T} = ϕ(Xk
0 )

for some function ϕ, and therefore, using the basic rules of conditioning (Theorems
2.3.6 and 2.3.10)

E[(Mk+1 −Mk)1{k<T}] = E[(Mk+1 −Mk)ϕ(X
k
0 )]

= E
[
E[(Mk+1 −Mk)ϕ(X

k
0 )|Xk

0 )]
]

= E
[
E[(Mk+1 −Mk)|Xk

0 )]ϕ(X
k
0 )
]
= 0.

Therefore,

E[MT −M0] =

n0−1∑
k=0

E[(Mk+1 −Mk)1{k<T}] = 0.

(β) Apply the result of (α) to the finite stopping time T ∧ n0 to obtain

E[MT∧n0 ] = E[M0].

Therefore,

|E[MT ]− E[M0]| = |E[MT ]− E[MT∧n0 ]|
≤ E[|MT −MT∧n0 |]

= E[
∞∑

k=n0+1

|Mk −Mk∧n0| 1{k=T}]

≤ E[
∞∑

k=n0+1

2K1{k=T}] = 2KP (T > n0).

Since T is finite, limn0↑∞ P (T > n0) = 0, and therefore E[MT ] = E[M0]. �

Example 17.3.13: The gambler’s ruin, take 3. Consider the symmetric ran-
dom walk {Xn}n≥0 on Z with initial state 0. It is an Xn

0 -martingale. Let T be
the first time n for which Xn = −a or + b, where a, b > 0. This is an Xn

0 -
stopping time, and moreover T < ∞. We can apply Theorem 17.3.12 (optional
sampling), part (β), with K = sup(a, b), to obtain 0 = E[X0] = E[XT ]. With
v := P (−a is hit before b), we have E[XT ] = −av + b(1− v), and therefore

P (−a is hit before b) =
b

a+ b
.
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Example 17.3.14: A counterexample. Consider the symmetric random walk
of the previous example, but now define T to be the hitting time of b > 0. We
know that T < ∞, since the symmetric walk on Z is recurrent. If the optional
sampling theorem applied, we would have

0 = E[X0] = E[XT ] = b,

an obvious contradiction. The optional sampling theorem (Theorem 17.3.12) does
not apply because neither condition (α) nor (β) thereof is satisfied.

The Maximum Principle

The general appoach to the absorption problem given below is in terms of harmonic
functions. However, the actual implementation of this approach requires one to find
explicit forms of harmonic functions satisfying some boundary conditions, which
is not always too easy. In contrast, the purely algebraic method can always be
implemented in the finite state space case (at the cost of matrix computations).

Let {Xn}n≥0 be an hmc with countable state space E and transition matrix P.

Let D be an arbitrary subset of E, called the domain, and let D := E\D. Let
c : D → R and ϕ : D → R be non-negative functions called the unit time gain
function and the final gain function, respectively. Let τ be the hitting time of D.

For each state i ∈ E, define

v(i) = Ei

[ ∑
0≤k<τ

c(Xk) + ϕ(Xτ )1{τ<∞}

]
. (17.13)

The function v : E → R so defined is non-negative and possibly infinite. Note that
τ is not required to be finite, and that D may be empty.

In the context of control theory, v is called the average reward function, since v(i)
is the average cost incurred when starting from state i, from the initial time n = 0
to the final time n = τ , c(Xn) being the running gain at time n and ϕ(Xτ ) the
final reward.

Theorem 17.3.15 The function v : E → R+ defined by (17.13) satisfies the
following properties:

(i) it is non-negative and satisfies

v =

{
Pv + c on D,
ϕ on D ,

(17.14)

(ii) it is majored by any non-negative function u : E → R such that

u ≥
{

Pu+ c on D,
ϕ on D ,

(17.15)



17.3. THE TWO PILLARS OF MARTINGALE THEORY 433

(iii) and moreover, if for all i ∈ E, Pi(τ < ∞) = 1, then (17.14) has at most
one non-negative bounded solution.

Proof. (i) Properties v ≥ 0 and v = ϕ on D are satisfied by definition. For i ∈ D,
first-step analysis gives (Exercise 15.3.7)

v(i) = c(i) +
∑
j∈E

pijv(j) . (17.16)

(ii) Define for n ≥ 0 the non-negative function vn : E → R by

vn(i) = Ei

[
n−1∑
k=0

c(Xk)1{k<τ} + ϕ(Xτ )1{τ<n}

]
. (17.17)

Observe that v0 ≡ 0 and, by monotone convergence, limn↑∞ ↑ vn = v. Also, with
a proof similar to that of (i),

vn+1 =

{
Pvn + c on D,
ϕ on D.

(17.18)

With u as in (17.15), we have u ≥ v0. We show by induction that u ≥ vn. This is
true for n = 0. Suppose it is true for some n. We have u ≥ Pu+c ≥ Pvn+c = vn+1

on D, and u ≥ ϕ = vn+1 on D. Therefore, u ≥ vn+1. Since u ≥ vn for all n ≥ 0,
u ≥ limn→∞ vn = v.

(iii) Suppose that u satisfies

u =

{
Pu+ c on D,
ϕ on D .

Suppose in addition that it is bounded (note that this implies that c and ϕ are
bounded) and non-negative. Then by Exercise 17.4.9,

Mn = u(Xn)− u(X0)−
n−1∑
k=0

(P− I)u(Xk) (17.19)

is an Xn
0 -martingale. By the optional sampling theorem (Theorem 17.3.12), for all

integers K, Ei[Mτ∧K ] = Ei[M0] = 0, and therefore, observing that (I − P)u = c
on D,

u(i) = Ei[u(Xτ∧K)]− Ei

[
τ∧K−1∑
k=0

(P− I)u(Xk)

]
= Ei

[
u(Xτ∧K) +

τ∧K−1∑
k=0

c(Xk)

]
.

Since Pi(τ < ∞) = 1, limK↑∞ Ei[u(Xτ∧K ] = Ei[u(Xτ )] by dominated conver-
gence. But u(Xτ ) = ϕ(Xτ ) because u = ϕ on D. Therefore limK↑∞ Ei[u(Xτ∧K ] =
Ei[ϕ(Xτ )]. Also, limK↑∞ Ei[

∑τ∧K−1
k=0 c(Xk)] = Ei[

∑τ−1
k=0 c(Xk)] by monotone con-

vergence. Finally,
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u(i) = Ei

[
τ−1∑
k=0

c(Xk) + ϕ(Xτ )

]
= v(i).

�

Theorem 17.3.15 can be rephrased as follows. The function v given by (17.13) is
a minorant of all non-negative solutions of (17.15), and for u = v, the inequalities
in (17.15) become equalities. Moreover, if v is bounded and Pi(τ < ∞) = 1 for all
i ∈ E, then v is the unique bounded solution of (17.14).

Definition 17.3.16 If Ph = h on A ⊆ E, we say that h is harnonic on A.

Corollary 17.3.17 Let ϕ : E → be a bounded non-negative function, and let
τB be the hitting time of B ⊂ E. Then, if Pi(τB < ∞) = 1 for all i ∈ E,

v(i) := Ei [ϕ(XτB)]

defines the unique bounded non-negative function v : E → that is harmonic on
B and equal to ϕ on B.

Example 17.3.18: Application to the absorption problem. Suppose that
the transient set T is finite and that the recurrent classes R1, R2, . . . are single-
tons, and therefore absorbing states, denoted by r1, r2, . . . . (As shown before, the
general case can always be reduced to this one as far as absorption probabilities
are concerned.) In Corollary 17.3.17, take for B the set of absorbing states, and
therefore B = T . Let ϕ = 1{r1}. As T is assumed finite, the time to absorption in
one of the absorbing states is finite. The quantity v(i) is just the probability of ab-
sorption in r1. Therefore v is in this case the unique bounded non-negative function
v : E → that is harmonic on T and equal to ϕ = 1{r1} on R := {r1, r2, . . .}.
Suppose that we want to compute the average time to absorption Ei [τR], i ∈ T .
For this, we take in Theorem 17.3.15 D = R, τ = τR, c(i) ≡ 1, ϕ ≡ 0. Then v
defined by v(i) := Ei[τR] is the unique bounded non-negative function such that
v = Pv + 1 on T and = 0 on R.

Example 17.3.19: Application to optimal control. Consider a stochastic
process {Xn}n≥0 with values in E, that is controlled in the following way. Let
{P(a); a ∈ A}, where A is some set, the set of actions, be a family of transition
matrices on E, with the interpretation that, if at time n the controlled process is
in state i, and if the controller takes action a, then at time n+1 the state will be j
with probability pij(a). A control strategy u is a (measurable) function u : E → A
which prescribes to take action u(i) when the process is in state i. Therefore, under
the strategy u, the controlled process is an hmc with transition matrix Pu, where

puij = pij(u(i)).
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There is a cost V u(i) associated with each strategy u and each initial state i, of
the form

V u(i) = Eu
i [
∑

0≤k<T

cu(Xk) + ϕu(XT )1{T<∞}],

where cu, ϕu and T are as in Theorem 17.3.15, with D fixed, and moreover, cu(i) =
c(i, u(i)) and ϕu(i) = ϕ(i, u(i)), for appropriate functions c and ϕ. The problem
of optimal control is that of finding, if it exists, an optimal strategy u∗, such that

V u∗

(i) ≥ V u(i),

for all states i and all strategies u.

We have the following result. Suppose that there exists a function V : E → R such
that

V (i) = sup
a∈A

{∑
j∈E

pij(a)V (j) + c(i, a)

}
for all i ∈ D,

and
V (i) = sup

a∈A
ϕ(i, a) for all i ∈ ∂D,

and that the suprema above are attained for a = u∗(i), for some (measurable)
function u∗ : E → A. Then, u∗ is an optimal control and V = V u∗

.

Proof. Since for all controls u,

V ≥ PuV + cu on D,

and
V ≥ ϕu on ∂D,

it follows from Theorem 17.3.15 that

V ≥ V u

for all controls u. Also, V = V u∗
and therefore u∗ is an optimal control. �

17.4 Exercises

Exercise 17.4.1. Polya’s urn

An urn initially contains b black balls and w white balls. At each step of the
sequential replacement procedure, a ball is drawn at random and replaced by c
balls of the same colour. Let Bn and Wn be the number of black and white balls
respectively in the urn at the n-th step, so that

Yn =
Bn

Bn +Wn

is the fraction of black balls at the n-th step. Let Xn := (Bn,Wn). Prove that
the stochastic process {Yn}n≥0 is a martingale with respect to {Xn}n≥0. Is there a
limit as n → ∞ for Xn?
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Exercise 17.4.2. Martingale transforms

Let {Xn}n≥0 be some sequence of random variables with values in the denumerable
set X . The sequence of complex-valued random variables H := {Hn}n≥1 is called
an Xn

0 -predictable process if for all n ≥ 1,

Hn = gn(X
n−1
0 )

for some function gn : X n → . Let Y := {Yn}n≥0 be another sequence of complex
random variables. The sequence H ◦Y := {(H ◦ Y )n}n≥1 defined by

(H ◦ Y )n :=
n∑

k=1

Hk(Yk − Yk−1), n ≥ 1

is called the transform of Y by H. Prove the following:

(a) Let Y be an Xn
0 -submartingale (resp., martingale) and let H be a bounded

non-negative Xn
0 -predictable process. Then H ◦Y is an Xn

0 -submartingale (resp.,
martingale).

(b) If Y is an Xn
0 -martingale and if H is bounded and Xn

0 -predictable, then H ◦Y
is an Xn

0 -martingale.

Exercise 17.4.3. Likelihood ratio martingale

Let {Xn}n≥0 be a sequence of discrete random variables with values in E. Let for
n ≥ 0, x0, x1, . . . , xn ∈ E

pn(x0, x1, . . . , xn) := P (X0 = x0, X1 = x1, . . . , Xn = xn) .

Show that pn(X0, X1, . . . , Xn) > 0 almost surely. For each n ≥ 0, let qn be a
function from En+1 to [0, 1] such that∑

x0,x1,...,xn∈E
qn(x0, x1, . . . , xn) = 1 .

Show that the sequence {Mn}n≥0 defined by

Mn :=
qn(X0, X1, . . . , Xn)

pn(X0, X1, . . . , Xn)

is a martingale.

Exercise 17.4.4.
Let {Xn}n≥1 be an iid sequence of random variables with values in {−1,+1}, and
such that P (Xn = −1) = P (Xn = −1) = 1

2
. Let Sn := X0+X1+ · · ·+Xn (n ≥ 0).

Show that {S2
n − n}n≥0 is an Xn

0 -martingale.

Exercise 17.4.5. Martingale with respect to a point process

Let {Xn}n≥0 be a sequence of {0, 1}-valued random variables such that for all
n ≥ 0,
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P (Xn+1 = 1 |Xn
0 ) = αn(X

n
0 ) ,

where αn is a function from {0, 1}n+1 into [0, 1]. Let {Mn}n≥0 be a real-valued inte-
grable Xn

0 -martingale, necessarily (by definition) of the form Mn = fn(X
n
0 ) where

fn is a function from {0, 1}n+1 into [0, 1]. Show that it can always be represented
as

Mn = M0 +
n∑

i=1

ϕi−1(X
i−1
0 )(Xi − αi−1(X

i−1
0 ) ,

where for some functions ϕi−1 : {0, 1}i → (i ≥ 1) such that for all n ≥ 1,

n∑
i=1

|ϕi−1(X
i−1
0 )|αi−1(X

i−1
0 ) < ∞ .

Exercise 17.4.6. Convex functions of martingales

Let I be an interval of of arbitrary nature with non-empty interior and let
φ : I → be a convex function.

A. Let Y = {Yn}n≥0 be an Xn
0 -martingale such that P (Yn ∈ I) = 1 for all n ≥ 0.

Assume that E [|φ(Yn)|] < ∞ for all n ≥ 0. Show that the process {φ(Yn)}n≥0 is
an Xn

0 -submartingale.

B. Assume in addition that φ is non-decreasing and suppose this time that Y is
an Xn

0 -submartingale. Show that the process {φ(Yn)}n≥0 is an Xn
0 -submartingale.

C. Let Y = {Yn}n≥0 be an Xn
0 -martingale and let p ≥ 1. Prove that {|Yn|p}n≥0

and {Y +
n }n≥0 are Xn

0 -submartingales.

Exercise 17.4.7. Hit probability

Let X be an hmc with state space E, and let B be a closed subset of states, that
is,

i ∈ B ⇒
∑
j∈B

pij = 1.

Let T be the hitting time of B, and define for i ∈ E,

h(i) = Pi(T < ∞).

Show that {h(Xn)}n≥0 is a martingale with respect to {Xn}n≥0.

Exercise 17.4.8. The Doob transform

Let P be the transition matrix of an hmc {Xn}n≥0 with state space E, and let
B ⊂ E, that is either empty or with all states absorbing (pii = 1 for all i ∈ B).
Let h be a positive harmonic function on E\B. Define for all i, j ∈ E

p̃ij :=
pijh(j)

h(i)
.

(i) Show that P̃ := {p̃ij}i,j∈E is a transition matrix. (It is called the Doob h-
transform of P.)
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(ii) Take B := {a, b}. Let τa and τb be the hitting times of a and b respectively.
Show that

h(i) := Pi(Xτa∧τb = b) (�)

defines a harmonic function on E\B.

(iii) Suppose that h as defined in (�) is positive. Let P̃ be the transition matrix
defined in (i). Show that

p̃ij = Pi(X1 = j | τb < τa) .

Exercise 17.4.9. The Lévy martingale

(i) Let {Xn}n≥0 be an hmc with transition matrix P and state space E, and let
f : E → R be a bounded function. Show that the process

M f
n = f(Xn)− f(X0)−

n−1∑
k=0

(P− I)f(Xk)

is a martingale with respect to {Xn}n≥0.

(ii) Let {Xn}n≥0 be a stochastic process with values in E. Let P be some transition

matrix on E. Prove that if for all bounded f : E → R,
{
M f

n

}
n≥0

is a martingale

with respect to {Xn}n≥0, then {Xn}n≥0 is a hmc with transition matrix P.

Exercise 17.4.10. The unlimited gambler

Consider the gambling situation of Example 17.1.6 when the stakes are bounded,
say by M , and when the initial fortune of the gambler is a. But we suppose that
the gambler can borrow whatever amount he needs, so that his “fortune” Yn at
any time n can take arbitrary values. Prove that

P (|Yn − a| ≥ λ ≤ 2 exp

(
− λ2

2nM2

)
.

Exercise 17.4.11. Fair coin tosses

Consider a Bernoulli sequence of parameter 1
2
representing a fair game of heads

and tails. LetX be the number of heads after n tosses. Use Hoeffding’s inequality
to prove that

P (|X − E[X]| ≥ λ) ≤ 2 exp

(
−λ2

n

)
.

Exercise 17.4.12. Empty bins

Consider the usual “balls and bins” setting with n bins and m balls (the multino-
mial distribution). Let X be the number of empty bins. Prove that

P (|X − E[X]| ≥ λ) ≤ 2 exp

(
−λ2

m

)
.
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Exercise 17.4.13. Pattern matching

Let f(x) to be the number of occurences of the fixed pattern b = (b1, . . . , bk)
(k ≤ N) in a sequence x = (x1, . . . , xN) of elements of a finite set X , that is

f(x) =
N−k+1∑
i=1

1{xi=b1,...,xi+k−1=bk} .

The mean number of matches in an iid sequence X := (X1, . . . , XN ) with uniform
distribution on X is therefore

E [f(X)] =
N−k+1∑
i=1

E
[
1{Xi=b1,...,Xi+k−1=bk}

]
=

N−k+1∑
i=1

(
1

|X |
)k

that is

E [f(X)] = (N − k + 1)

(
1

|X |
)k

.

Prove that

P (|f(X)− E [f(X)] | ≥ λ) ≤ 2e−
1
2

λ2

Nk2 .

Exercise 17.4.14. An extension of Hoeffding’s inequality

Let M be a real Xn
0 -martingale such that, for some sequence d1, d2, . . . of real

numbers,
P (Bn ≤ Mn −Mn−1 ≤ Bn + dn) = 1, n ≥ 1 ,

where for each n ≥ 1, Bn is a function of Xn−1
0 . Prove that, for all x ≥ 0,

P (|Mn −M0| ≥ x) ≤ 2 exp

(
−2x2

/ n∑
i=1

d2i

)
.

Exercise 17.4.15. Ruined again!

Show that the function h(i) =
(

q
p

)i

is harmonic for the nonsymmetric random

walk on Z (with pi,i+1 = p, pi,i−1 = q = 1 − p, p 
= 1
2
), where p ∈ (0, 1), p 
= 1

2
.

Apply the optional sampling theorem to obtain the ruin probability in the ruin
problem of Example 6.1.3.

Exercise 17.4.16. Mean hitting time via martingales

Let X be a symmetric random walk on Z. Show that X and {X2
n − n}n≥0 are

martingales with respect to {Xn}n≥0. Deduce from this the mean of T of the
hitting time of −a, b, where a and b are positive integers.

Exercise 17.4.17. Absorption probability

Consider the homogeneous Markov chain {Xn}n≥1 with state spaceE = {0, 1, . . . ,m}
and transition probabilities

pij =

(
m

j

)(
i

m

)j (
1− i

m

)m−j

.
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In particular, 0 and m are absorbing states.

(a) Show that {Xn}n≥1 is a martingale.

(b) Compute the probability of absorption by state 0.

Exercise 17.4.18. The ballot problem

In the ballot problem, let Xk be the number of votes in advance (can be negative)
for candidate I after disclosure of the k-th bulletin, and define for 0 ≤ k ≤ n− 1,
where n := a+ b,

Mk :=
Xn−k

n− k
.

(i) Prove that the sequence M0,M1, . . . ,Mn−1 forms an Mk
0 -martingale.

(ii) Let A be the event that candidate I leads all the way to victory. Prove that

P (A) =
a− b

a+ b
.

(Hint: consider the time τ at which Xk = 0 if such k exists, or n− 1 otherwise.)



Chapter 18

Discrete Renewal Theory

18.1 Renewal processes

18.1.1 The Renewal Equation

In the analytic approach to Markov chains, the proof of convergence to steady
state of an ergodic hmc is a consequence of a result on power series called the
renewal theorem by the probabilists. This result forms the matter of this section.
However, the renewal theorem will not be used as the essential step towards the
convergence theorem, but on the contrary, it will be obtained as a corollary of the
latter.

We start with the basic definitions. Let {Sn}n≥1 be an iid sequence of random
variables with values in {1, 2, . . . ,+∞} and with the probability distribution

P (S1 = k) = fk . (18.1)

Define for n ≥ 0,
Rn+1 = Rn + Sn+1, (18.2)

where R0 is an arbitrary random variable with values in N (in particular, R0 <
∞). The sequence {Rn}n≥0 is called a delayed (by R0) renewal sequence with
the renewal distribution {fk}k≥1. If R0 ≡ 0, one speaks of an undelayed renewal
sequence, or, more simply, of a renewal sequence. If P (S1 = ∞) = 0, the renewal
sequence (delayed or not) is called a proper renewal sequence, and {fk}k≥1 is
called a proper renewal distribution. Otherwise, one speaks of a defective renewal
sequence and of a defective renewal distribution.

The quantity
α := P (S1 = ∞)

is the defect of the renewal distribution. The random time Rk is the kth renewal
time, and the sequence {Sn}n≥1 is the inter-renewal sequence.
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With the renewal distribution {fk}k≥1 is associated the renewal equation

un = vn +
n∑

k=1

fkun−k (18.3)

(for n = 0, this reduces to u0 = v0). The sequence {un}n≥0 is the unknown sequence,
and {vn}n≥0 is the data, a sequence of real numbers such that

∞∑
k=0

|vk| < ∞ . (18.4)

Since un can be computed recursively as a function of u0, . . . , un−1, v0, . . . , vn, a
solution of the renewal equation always exists and is unique.

Example 18.1.1: Lifetime of a defective renewal sequence. Define the
lifetime L of a defective renewal sequence by

L := inf{Rk; k ≥ 0, Sk+1 = ∞} .
It is the last renewal time at finite distance. We shall see that un = P (L > n)
satisfies a renewal equation. For this, write

1{L>n} = 1{L>n}1{S1>n} + 1{L>n}1{S1≤n} .

Observe that {L > n, S1 > n} = {n < S1 < ∞}. Also, denoting by L̂ the lifetime
associated with the renewal sequence {Rn+1 − R1}n≥0, we have the set identity

{L > n, S1 ≤ n} = {L̂ > n− S1, S1 ≤ n}. Therefore,
P (L > n) = P (n < S1 < ∞) + P (L̂ > n− S1, S1 ≤ n) .

Now, L and L̂ have the same distribution, and L̂ is independent of S1. Therefore,

P (L̂ > n−S1, S1 ≤ n) =
n∑

k=1

P (L̂ > n−k)P (S1 = k) =
n∑

k=1

P (L > n−k)P (S1 = k) .

This shows that un satisfies the renewal equation with data vn = P (n < S1 < ∞).

Definition 18.1.2 Define the Dirac sequence {δn}n≥0 by δ0 = 1, δn = 0 for n ≥
1. When the data is the Dirac sequence, the renewal equation is called the basic
renewal equation, and its solution the fundamental solution.

The fundamental solution will be denoted by {hn}n≥0, and therefore h0 = 1, and
for n ≥ 1,

hn =
n∑

k=1

fkhn−k . (18.5)

The fundamental solution has a very simple interpretation. Indeed, hn is the prob-
ability that n is a renewal time (we then say, for short, “n is renewal”). It suffices
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to show that un = P (n is renewal) is the unique solution of the basic renewal
equation. Clearly, u0 = 1. Also,

P (n is renewal) =
n−1∑
k=0

P (n is renewal, last renewal strictly before n is k)

=
∞∑
i=0

n−1∑
k=0

P (Si+1 = n− k, k = Ri)

=
∞∑
i=0

n−1∑
k=0

P (Si+1 = n− k)P (k = Ri)

=
n−1∑
k=0

P (S1 = n− k)

( ∞∑
i=0

P (k = Ri)

)

=
n−1∑
k=0

P (S1 = n− k)P (k is renewal )

=
n−1∑
k=0

ukfn−k =
n∑

k=1

fkun−k .

Therefore,
hk = P (k is a renewal time). (18.6)

In particular, if νn is the number of renewal times Rk in the interval [0, n], then

νn =
n∑

k=0

hk . (18.7)

We now introduce a definition and a convenient notation. The convolution of two
real sequences {xn}n≥0 and {yn}n≥0 is the real sequence {zn}n≥0 defined by

zn =
n∑

k=0

xkyn−k .

This is written for short as z = x ∗ y.

Theorem 18.1.3 The renewal equation (18.3) has a unique solution

u = h ∗ v . (18.8)

Proof. Existence and uniqueness have already been observed. To check that the
announced solution is correct, write the renewal equation as u = v + f ∗ u (with
f0 = 0) and the fundamental equation as h = δ + f ∗ h. Inserting (18.8) into
the renewal equation gives h ∗ v = v + f ∗ (h ∗ v) which is indeed true, since the
right-hand side is v+ (f ∗ h) ∗ v = v+ (h− δ) ∗ v = v+ h ∗ v− δ ∗ v, that is, h ∗ v,
because δ ∗ v = v. �
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Example 18.1.4: Geometric inter-renewal times. When the distribution
of the typical inter-renewal time is geometric, i.e., for k ≥ 1,

P (S1 = k) = p(1− p)k−1,

the fundamental solution is given by h0 = 1, and

hn = p,

for n ≥ 1, as can be readily checked. The solution of the general renewal equation
is then

un = vn + p(v0 + · · ·+ vn−1).

One observes in this particular case that since limn↑∞ vn = 0 in view of assumption
(18.4),

lim
n↑∞

un = p

∞∑
k=0

vk =

∑
k≥0 vk∑
k≥1 kfk

.

This result will be generalized by the renewal theorem.

18.1.2 Renewal Theorem

The renewal distribution {fk}k≥1 is called lattice (resp., non-lattice) if d :=
g.c.d.{k ; k ≥ 1, fk > 0} > 1 (resp., = 1); the integer d is called the span of
the renewal distribution.

Theorem 18.1.5 Let {fk}k≥1 be a non-lattice and proper renewal distribution.
For the unique solution of the renewal equation with data satisfying assumption
(18.4),

lim
n↑∞

un =

∑
k≥0 vk∑
k≥1 kfk

, (18.9)

where the ratio on the right-hand side is 0 if
∑

k≥1 kfk = ∞.

Proof. A. Assume the result true for the fundamental solution, that is,

lim
n↑∞

hn =
1∑

k≥1 kfk
:= h∞. (18.10)

From expression (18.8) of the solution in terms of the fundamental solution, we
obtain

n∑
k=0

(hn−k − h∞)vk = un − h∞
n∑

k=0

vk.

The result follows if we can prove that the left-hand side of the above equality
converges to 0 as n → ∞. Indeed, with g(n, k) = (hn−k −h∞)vk1{k≤n}, we have for
fixed k, limn↑∞ g(n, k) = 0, and |g(n, k)| ≤ |vk|, where

∑
k≥0 |vk| < ∞. Therefore,

by dominated convergence for series, limn↑∞
∑

k≥0 g(n, k) =
∑

k≥0 limn↑∞ g(n, k) =
0.
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B. It remains to prove (18.10). For this, introduce a Markov chain with
state space E = N if the support of {fk}k≥1 is unbounded, and state space
E = {0, . . . ,M − 1} if M < ∞ is the largest value of S1. We suppose for def-
initeness that E = N. The nonzero entries of the transition matrix are

pi,i−1 = 1, i ≥ 1 ,

p0i = fi+1, i ≥ 0 .

The corresponding transition graph is shown in the figure below. Note that this is
the transition graph of the forward recurrence time hmc {Xn}n≥0 defined by

Xn = inf{Rk ; Rk ≥ n} − n .

fi+1

0 1 i−1 i2 . . .f1
f2

f3

fi

Transition graph of the forward recurrence chain

This chain is clearly irreducible. The distribution of the return time to state 0 is

P0(T0 = n) = fn .

Event {T0 = n} implies event {Xn = 0}, and therefore P0(Xn = 0) ≥ P0(T0 = n).
Consequently, the set A = {n ≥ 1; p00(n) > 0} contains the set B = {n ≥
1; fn > 0}, and therefore the g.c.d. of A is smaller than or equal to the g.c.d. of
B. Therefore, the g.c.d. of A equals 1, that is, the chain is aperiodic.

Since the renewal distribution is assumed proper, we have P0(T0 < ∞) =∑
n≥1 fn = 1, and therefore the chain is recurrent. If E0[T0] < ∞, it is ergodic,

and then

lim
n↑∞

p00(n) = π0 =
1

E0[T0]
.

If the chain is not ergodic but only null recurrent, then limn↑∞ p00(n) = 0 by Orey’s
theorem. In both cases, since E0[T0] =

∑
k≥1 kfk,

lim
n↑∞

p00(n) =
1∑

k≥1 kfk
.

The proof of (18.9) is complete because p00(n) = P (n is renewal) = hn. �
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Corollary 18.1.6 Under the same conditions as in Theorem 18.1.5, except that
the span d of the renewal distribution is now strictly greater than 1, the solution of
the renewal equation (18.3) with data satisfying (18.4) satisfies, for all r ∈ [0, d−1],

lim
N↑∞

ur+Nd = d

∑
k≥0 vr+kd∑
k≥1 kfk

. (18.11)

Proof. Observe that when {fk}k≥1 is proper and lattice with span d, the distribu-
tion {fNd}N≥1 is proper and non-lattice. On the other hand, the renewal equation
(18.3) splits into d renewal equations. The rth one (r ∈ [0, d− 1]) is

ur+Nd = vr+Nd +
N∑
�=1

f�dur+Nd−�d ,

where N is the time variable. The renewal theorem can be applied to each one,
and we obtain (18.11) after observing that

∞∑
N=1

NfNd =
1

d

∞∑
N=1

NdfNd =
1

d

∞∑
k=1

kfk .

�

18.1.3 Defective Renewal Theorem

Theorem 18.1.7 Suppose that the renewal distribution is defective, and that the
data sequence of the renewal equation is nonnegative and satisfies (instead of
(18.4))

lim
n↑∞

vn = v∞ < ∞. (18.12)

The solution of the renewal equation then satisfies

lim
n↑∞

un =
v∞
α

, (18.13)

where α = P (S1 = ∞) is the defect of the renewal distribution.

Proof. The forward recurrence hmc in the proof of Theorem 18.1.5 now has
E = N∪{+∞} for state space. All states besides +∞ are transient. In particular,
the average number of visits to 0 is finite:

ν∞ =
∞∑
k=0

hk < ∞.

From the expression of the solution

un =
n∑

k=0

hkvn−k ,
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we therefore obtain by the dominated convergence for series (see Theorem 1.6 of
the Appendix),

lim
n↑∞

un = (
∞∑
k=0

hk)v∞ = ν∞v∞.

Now, the probability of n visits to 0 is (1 − α)n−1α, and therefore the average
number of visits to 0 is ν∞ = 1

α
. �

Theorem 18.1.8 Suppose that the renewal distribution is non-lattice and defec-
tive, that there exists γ > 1 such that

∞∑
k=0

γnfn = 1, (18.14)

and that the data sequence satisfies

∞∑
k=0

γn|vn| < ∞. (18.15)

The solution of the renewal equation then satisfies

lim
n↑∞

γnun =

∑∞
k=0 γ

kvk∑∞
k=0 kγ

kfk
. (18.16)

Proof. Observe that if we define f̃n = γnfn, ṽn = γnvn, ũn = γnun, then

ũn = ṽn +
n∑

k=1

f̃kũn−k.

This renewal equation is non-lattice and proper, and therefore the announced result
follows from the renewal theorem. �

A consequence of (18.14) is the exponential decay of the renewal distribution. This
shows in particular that (18.14) is an assumption that is not always satisfied.

Example 18.1.9: Convergence rate in the defective case. The situation
is that of Theorem 18.1.10, where in addition the renewal distribution is assumed
non-lattice, and moreover, (18.14) is true for some γ > 1. We seek to understand
how un tends to u∞. For this we define ûn = un − u∞. Rewriting the renewal
equation for un as

un − u∞ = vn − u∞ +
n∑

k=1

fk(un−k − u∞) + u∞
n∑

k=1

fk,

we see that ûn satisfies the renewal equation with data

v̂n = vn − u∞P (S1 > n).
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We can therefore apply Theorem 3.5 to obtain, after rearrangement,

lim
n↑∞

γn(un − v∞
α

) =
1

γ

{ ∑∞
k=0 γ

kvk∑∞
k=0 γ

kP (S1 > k)
− v∞

P (S1 = ∞)

}
.

An excessive renewal equation is one for which
∑∞

k=1 fn > 1. Theorem 18.1.10 then
has an obvious counterpart. Note that in the excessive case (18.14) always has a
solution γ, and of course it is in (0, 1).

Example 18.1.10: The Lotka–Volterra model. At each time n ∈ Z, an
average number un of daughters is born. Each of them gives birth independently
of the other women. The average number of daughters of any given woman in the
kth year of her life, k ≥ 1, is fk. At time 0 the population has α(i) women of age
i. Expressing that un is the sum of vn, the average number of daughters born at
time n from mothers born at or before time 0, and of rn, the average number of
daughters born at time n from mothers born strictly after time 0 and up to time
n, we obtain the renewal equation with data sequence

vn =
∞∑
i=0

α(i)fn+i.

In this context, the renewal equation is known as the Lotka–Volterra equation.
Denote by

ρ =
∞∑
k=1

fn

the average number of daughters of any given woman, and assume that this number
is positive and finite. Assume also that it is different from 1. Assume that γ defined
by (18.14) exists and that the renewal distribution is non-lattice. Denoting by C
the right-hand side of (18.16),

lim
n↑∞

γnun = C.

Note that γ < 1 if ρ > 1, and γ > 1 if ρ < 1. The first case corresponds to
exponential explosion, whereas the second case is that of exponential extinction.

18.1.4 Renewal Reward Theorem

Theorem 18.1.11 Let {Sn}n≥1 be an iid sequence of positive random variables
such that E[S1] < ∞, and let R0 be a finite non-negative random variable inde-
pendent of this sequence. Define for all n ≥ 0, Rn+1 = Rn + Sn+1 and for n ≥ 0,
N(n) =

∑∞
k=1 1{Rk≤n}. Now let {Yn}n≥1 be an iid sequence of random variables

such that E[|Y1|] < ∞. Then

lim
n↑∞

N(n)

n
=

1

E[S1]
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and

lim
n↑∞

∑N(n)
k=1 Yk

n
=

E[Y1]

E[S1]
.

Proof. Since RN(n) ≤ n < RN(n)+1, we have

N(n)

RN(n)+1

<
N(n)

n
≤ N(n)

RN(n)

.

But the right-most term is the inverse of

RN(n)

N(n)
=

R0 +
∑N(n)

k=1 Sk

N(n)
.

By the strong law of large numbers and the fact that limn↑∞ N(n) = ∞ (the Sn’s

are finite), this quantity tends to E[S1], and similarly,
RN(n)+1

N(n)
=

RN(n)+1

N(n)+1
N(n)+1
N(n)

tends to E[S1] as n → ∞. The proof of the second formula follows from the strong
law of large numbers and the first formula, since∑N(n)

k=1 Yk

n
=

∑N(n)
k=1 Yk

N(n)
· N(n)

n
.

�

18.2 Regenerative Processes

18.2.1 Basic Definitions and Examples

In the introductory lines of the previous section, we mentioned that the renewal
theorem can be proven independently of the basic results of convergence to steady
state, and that it could even be used to prove such convergence results. Therefore,
it seems that the probabilistic approach to convergence gives a negligible status
to the renewal theorem, which enjoys a central position in the analytic approach.
However, the renewal theorem remains indispensable in the proof of convergence
to equilibrium of stochastic processes of a more general nature than homogeneous
Markov chains, namely regenerative processes. The common feature that such
processes share with the homogeneous recurrent Markov chains is the existence of
regenerative cycles.

Definition 18.2.1 Let {Zn}n≥0 be a stochastic process with values in an arbitrary
state space E and let {Rn}n≥0 be a delayed renewal sequence. The process {Zn}n≥0

is said to be regenerative with respect to the renewal sequence {Rn}n≥0 if for all
k ≥ 0, {Zn+Rk

}n≥0 is independent of R0, S1, . . . , Sk and has the same distribution
as {Zn+R0}n≥0.
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Note that the definition does not require that {Zn+Rk
}n≥0 be independent of

{Zn, n ∈ [0, Rk − 1]}, although in many examples this is satisfied. The freedom
resulting from the relaxed conditions can be very useful.

Example 18.2.2: Recurrent Markov chains. Let {Xn}n≥0 be an irreducible
recurrent hmc, with arbitrary initial distribution. Let {Rn}n≥0 be the successive
hitting times of state 0. The regenerative cycle theorem (Theorem 7.4 of Chapter
2) tells us that {Xn}n≥0 is regenerative with respect to {Rn}n≥0.

Example 18.2.3: Reliability. Let {Un}n≥1 and {Vn}n≥1 be two independent
iid sequences of positive integer-valued random variables. Define the sequence
{Sn}n≥1 by Sn = Un + Vn, and let {Rn}n≥0 be the associated nondelayed renewal
sequence (R0 ≡ 0). Define a {0, 1}-valued process {Zn}n≥0 as in the figure below.
Clearly, {Zn}n≥0 is a regenerative process with respect to {Rn}n≥0.

R0 = 0 R1 R2
n

R3 R4

U1 U2 U3 U4

V1 V2 V4V3

A sample path of the reliability process

Regenerative processes generate renewal equations and are the main motivation for
the study of such equations. For instance, if f : E → R is a nonnegative function,
and if {Zn}n≥0 is an E-valued process regenerative with respect to the nondelayed
renewal sequence {Rn}n≥0, then the sequence {un}n≥0, where un = E[f(Zn)],
satisfies a renewal equation. Indeed,

E[f(Zn)] = E[f(Zn)1{n<S1}] + E[f(Zn)1{n≥S1}],

and, setting Z̃n = Zn+S1 , we have

E[f(Zn)1{n≥S1}] = E[f(Z̃n−S1)1{n≥S1}]

=
∞∑
k=1

E[f(Z̃n−S1)1{n≥S1}1{S1=k}]

=
n∑

k=1

E[f(Z̃n−k)1{S1=k}]

=
n∑

k=1

E[f(Z̃n−k)]P (S1 = k)

=
n∑

k=1

E[f(Zn−k)]P (S1 = k),
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where the independence of S1 and {Z̃n}n≥0, as well as the assumption of equidis-

tribution of {Z̃n}n≥0 and {Zn}n≥0, have been taken into account. Therefore,

E[f(Zn)] = E[f(Zn)1{n<S1}] +
n∑

k=1

E[f(Zn−k)]P (S1 = k),

which is precisely the renewal equation with data

vn = E[f(Zn)1{n<S1}].

18.2.2 The Regenerative Theorem

Observe that

∞∑
n=0

|vn| =
∞∑
n=0

|E[f(Zn)1{n<S1}]| ≤ E[
∞∑
n=0

|f(Zn)|1{n<S1}] = E[

S1−1∑
n=0

|f(Zn)|].

Therefore, by the renewal theorem, we have the following:

Theorem 18.2.4 Let {Zn}n≥0 be a nondelayed (R0 = 0) regenerative process and
let f : E → R be such that

E

[
S1−1∑
n=0

|f(Zn)|
]
< ∞. (18.17)

If the distribution of S1 is proper and non-lattice, then

lim
n↑∞

E[f(Zn)] =
E
[∑S1−1

n=0 f(Zn)
]

E[S1]
. (18.18)

Example 18.2.5: Reliability formula. This is a continuation of Example
18.2.3. We assume that S1 = U1 + V1 is proper and non-lattice. Applying the
regenerative theorem with f(z) = 1{0}(z), and assuming E[U1] < ∞, we find that

lim
n↑∞

P (Zn = 0) =
E[U1]

E[U1] + E[V1]
,

since E[f(Zn)] = E[1{0}(Zn)] = P (Zn = 0), and
∑S1−1

n=0 1{0}(Zn) = U1.

Example 18.2.6: The bus paradox. Consider the renewal sequence with
R0 = 0. Define for each n ≥ 0 the backward recurrence time Bn and the for-
ward recurrence time Fn by

Bn = n− Ln, Fn = Nn − n,

where
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Ln = sup{Rk; k ≥ 0, Rk ≤ n}
and

Nn = inf{Rk; k > 0, Rk > n}.
In particular, if n = Rm for some m, then Bn = 0 and Fn = Rm+1 − Rm = Sm+1.
Observe that Fn ≥ 1 for all n ≥ 0. Also, if n ∈ [Rm, Rm+1), then Bn +Fn = Sm+1.
The regenerative theorem with Zn = (Bn, Fn) and f(Zn) = 1{Bn=i}1{Fn=j} gives,
provided that the distribution of S1 is proper and non-lattice,

lim
n↑∞

P (Bn = i, Fn = j) =
P (S1 = i+ j)

E[S1]
, (�)

Indeed the sum
∑S1−1

n=0 1{Bn=i,Fn=j} has at most one non-zero term, in which case
it is equal to 1. For this term, say corresponding to the index n = n0, Bn0 +Fn0 =
S1 = i+ j. Therefore the sum is equal to 1{S1=i+j}.

Summing (�) from j = 1 to ∞, and recalling that Fn ≥ 1, one obtains

lim
n↑∞

P (Bn = i) =
P (S1 > i)

E[S1]
. (18.19)

Similarly, for the forward recurrence time,

lim
n↑∞

P (Fn = j) =
P (S1 ≥ j)

E[S1]
.

The roles of Bn and Fn are not symmetric. To restore symmetry, one must consider
Bn and F ′

n = Fn − 1 (recall that Fn ≥ 1). Then

lim
n↑∞

P (F ′
n = j) =

P (S1 > j)

E[S1]
.

Since Bn + Fn = Sm for some (random) m determined by the condition n ∈
[Rm, Rm+1), one might expect that P (Bn + Fn = k) = P (S1 = k). But this is in
general false, and constitutes the apparent paradox of recurrence times, also called
the bus paradox (Exercise 18.3.7). It is true that P (Bn + Fn = k) = P (Sm = k),
but m is random, and therefore there is no reason why Sm should have the same
distribution as S1. As a matter of fact,

lim
n↑∞

P (Bn + Fn = k) = lim
n↑∞

∑
i,j

i+j=k

P (Bn = i, Fn = j)

=
∑
i,j

i+j=k

P (S1 = i+ j)

E[S1]
=

kP (S1 = k)

E[S1]
.

Theorem 18.2.7 Let {Zn}n≥0 be a possibly delayed regenerative process (recall,
however, that R0 < ∞). Let f : E → R be such that
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lim
n↑∞

E[f(Zn)1{n<R0}] = 0

and

E

[
R1−1∑
k=R0

|f(Zk)|
]
< ∞ .

Then, if the renewal distribution is proper and non-lattice,

lim
n↑∞

E[f(Zn)] =
E
[∑R1−1

k=R0
f(Zk)

]
E[S1]

. (18.20)

Proof. It suffices to show that the limit of E[f(Zn)1n≥R0 ] equals the right-hand

side of (18.20). Introduce {Z̃n}n≥0 = {Zn+R0}n≥0, and observe that this process
is an undelayed regenerative process with respect to {Rn − R0}n≥1 that is proper
and non-lattice. We have

E[f(Zn)1{n≥R0}] = E[f(Z̃n−R0)1{n≥R0}] =
n∑

k=0

E[f(Z̃n−k)P (R0 = k).

By the non-delayed version of the regenerative theorem, we have that

lim
n↑∞

E[f(Z̃n)] =
E
[∑R1−1

k=R0
f(Zk)

]
E[R1 −R0]

,

and therefore, by dominated convergence for series (see Theorem 1.6 of the Ap-
pendix),

lim
n↑∞

n∑
k=0

E[f(Z̃n−k)]P (R0 = k) =
E
[∑R1−1

k=R0
f(Zk)

]
E[R1 −R0]

.

�

A useful case where the conditions are satisfied is when f is bounded (use domi-
nated convergence).

Books for Further Information

Discrete regenerative theory is treated in a few classic texts on probability, and is
the theme of the more specialized and mathematical monograph [Kingman, 1972].

18.3 Exercises

Exercise 18.3.1. A pedestrian

At a crosswalk, cars pass on a single lane at times R0 = 0, R1, R2, . . ., where
{Rn}n≥0 is a proper renewal sequence. A pedestrian arriving at time 0 crosses the
lane as soon as he sees a time interval x > 0 between two consecutive cars. How
long must he wait, on average?
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Exercise 18.3.2. Lifetime
Let L be the lifetime of a defective renewal sequence. Show that limn↑∞ P (L >
n) = 0, and give the rate of convergence. Treat in detail the case where the inter-
renewal sequence is geometric.

Exercise 18.3.3. The basic renewal theorem

Let ν((a, b]) be the average number of renewal epochs in the integer interval (a, b]
of a proper non-lattice renewal sequence. What is the limit as n ↑ ∞ of ν((n +
a, n+ b])?

Exercise 18.3.4. Renewal theorem with multiple events

Suppose that the typical inter-renewal time S1 of a renewal sequence is proper but
that P (S1 = 0) = f0 > 0. Otherwise, suppose that gcd{n ≥ 1; fn > 0} = 1. Show
that the solution of the extended renewal equation

u0 = v0, un = vn +
n∑

k=0

fkun−k, n ≥ 1

(notice the additional term in the sum, corresponding to k = 0) satisfies, under
the summability condition (18.4),

lim
n↑∞

un =

∑
k≥0 vk∑
k=1 kfk

.

Exercise 18.3.5. Asymptotics of the Lotka–Volterra model

In the population model of Example 18.1.10 what is, in the critical case ρ = 1,
the average number of daughters born at a given large time, when α(i) = 0 for

all i > 0, and α(0) = 1? Suppose now that fk = e−β θk−1

(k−1)!
for k ≥ 1. Discuss the

asymptotic behavior of un, the average number of daughters born at time n, in
terms of the positive parameters β and θ (use the same initial conditions as in
Example 18.1.10).

Exercise 18.3.6. Maintenance

A given machine can be in either one of three states: G (good), M (in mainte-
nance), or R (in repair). Its successive periods where it is in state G (resp., M, R)
form an independent and identically distributed sequence {Sn}n≥0 (resp., {Un}n≥0,
{Vn}n≥0) with finite mean. All these sequences are assumed mutually independent.
The maintenance policy uses a number T > 0. If the machine has age T and has
not failed, it goes to state M. If it fails before it has reached age T , it enters state
R. From states M and R, the next state is G. Find the steady state probability
that the machine is operational. (Note that “good” does not mean “operational.”
The machine can be“good” but, due to the operations policy, in maintenance, and
therefore not operational. However, after a period of maintenance or of repair, we
consider that the machine starts anew, and enters a G period.)
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Exercise 18.3.7. The bus paradox

In Example 18.2.6, when the typical inter-renewal time is geometric, compute
limn↑∞ P (Fn+Bn = k), limn↑∞ P (Fn = k), and limn↑∞ P (Fn+Bn = k). In Example
18.2.6, under what circumstances do we have limn↑∞ P (Fn+Bn = k) = P (S1 = k)
for all k ≥ 1?



Chapter 19

Monte Carlo

19.1 Approximate Sampling

19.1.1 Basic Principle and Algorithms

Recall the method of the inverse in order to generate a discrete random variable
Z with distribution P (Z = ai) = pi (0 ≤ i ≤ K). A crude algorithm based on
this method would perform successively the tests U ≤ p0?, U ≤ p0+ p1?, . . ., until
the answer is positive. Although very simple in principle, the inverse method has
the following drawbacks when the size r of the state space E is large.

(a) Problems arise that are due to the small size of the intervals partitioning
[0, 1] and to the cost of precision in computing.

(b) In random field simulation, another, maybe more important, reason is the
necessity to enumerate the configurations, which implies coding and decoding of a
mapping from the integers to the usually very large configuration space.

(c) Another situation is that in which the probability density π is known only up
to a normalizing factor, that is, π(i) = Kπ̃(i), and when the sum

∑
i∈E π(i) = K−1

that gives the normalizing factor is prohibitively difficult to compute. In physics,
this is a frequent case.

The quest for a random generator without these ailments is at the origin of the
Monte Carlo Markov chain (mcmc) sampling methodology.

The basic principle is the following. One constructs an irreducible aperiodic hmc

{Xn}n≥0 with state space E and stationary distribution π. Since the state space
is finite, the chain is ergodic, and therefore, by Theorem 15.1.1, for any initial
distribution μ and all i ∈ E,

lim
n→∞

Pμ(Xn = i) = π(i) . (19.1)

Therefore, for large n, Xn has a distribution close to π.

The first task is that of designing the mcmc algorithm. One must find an ergodic
transition matrix P on E, with stationary distribution π. In the Monte Carlo
context, the transition mechanism of the chain is called a sampling algorithm,
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and the asymptotic distribution π is called the target distribution, or sampled
distribution.

There are infinitely many transition matrices with a given target distribution, and
among them there are infinitely many that correspond to a reversible chain, that
is, such that

π(i)pij = π(j)pji.

We seek solutions of the form

pij = qijαij (19.2)

for j 
= i, where Q = {qij}i,j∈E is an arbitrary irreducible transition matrix on
E, called the candidate-generator matrix. When the present state is i, the next
tentative state j is chosen with probability qij. When j 
= i, this new state is
accepted with probability αij. Otherwise, the next state is the same state i. Hence,
the resulting probability of moving from i to j when i 
= j is given by (19.2). It
remains to select the acceptance probabilities αij.

Example 19.1.1: Metropolis, take 1. In this algorithm (Metropolis et al.,
1953) , αij = min (1, (π(j)qji)/π(i)qij)). In Physics, one often finds distributions of
the form

π(i) =
e−U(i)

Z
, (19.3)

where U : E → is the “energy function” and Z is the “partition function”, the
normalizing constant ensuring that π is indeed a probability vector. The acceptance
probability of the transition from i to j is then, assuming the candidate-generating
matrix to be symmetric,

αij = min
(
1, e−(U(j)−U(i))

)
.

Example 19.1.2: Barker’s algorithm. (Barker, 1965) This algorithm, corre-
sponds to the choice αij = (π(j)qji)/(π(j)qji+π(i)qij). When the distribution π is
of the form (19.3), the acceptance probability of the transition from i to j is, with
a symmetric candidate-generating matrix,

αij =
e−U(i)

e−U(i) + e−U(j)
.

This corresponds to the basic principle of statistical thermodynamics: when there
are two states 1 and 2 with energies E1 and E2, Nature chooses 1 with probability

e−E1

e−E1+e−E2
.

The interest of the above algorithms resides in the fact that their implementa-
tion requires the knowledge of the target distribution π only up to a normalizing
constant, since it depends only on the ratios π(j)/π(i) (this in particular avoids
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the need to compute the normalizing constant Z in (19.3), which is often inac-
cessible to exact computation). The latter statement is true only as long as the
candidate-generating matrix Q is known.

Example 19.1.3: The Gibbs algorithm. Consider a multivariate probability
distribution

π(x(1), . . . , x(N))

on a set E = ΛN , where Λ is countable. The basic step of the Gibbs sampler for
π consists in selecting a coordinate index i (1 ≤ i ≤ N) at random, and choos-
ing the new value y(i) of the corresponding coordinate, given the present values
x(1), . . . , x(i− 1), x(i+ 1), . . . , x(N) of the other coordinates, with probability

π(y(i) | x(1), . . . , x(i− 1), x(i+ 1), . . . , x(N)).

One checks as above that π is the stationary distribution of the corresponding
chain.

19.1.2 Sampling Random Fields

Let X ∈ ΛV be a random field on the finite set of vertices V , finite phase space
Λ and probability distribution π. In the following examples, we apply the above
general method for sampling π by constructiong an ergodic Markov chain {Xn}n≥0

with state space E = ΛV with stationary distribution π.

Example 19.1.4: Gibbs sampler. The Gibbs sampler uses a strictly positive
probability distribution (qv, v ∈ V ) on V , and the transition from Xn = x to
Xn+1 = y is made according to the following rule. The new state y is obtained from
the old state x by changing (or not) the value of the phase at one site only. The site
v whose phase is to be modified (or not) at time n is chosen independently of the
past with probability qv. When site v has been selected, the current configuration
x is changed into y as follows: y(V \v) = x(V \v), and the new phase y(v) at site
v is selected with probability π(y(v) | x(V \v)). Thus, configuration x is changed
into y = (y(v), x(V \v)) with probability qvπ(y(v) | x(V \v), according to the local
specification at site v. This gives for the nonzero entries of the transition matrix

P (Xn+1 = y | Xn = x) = qvπ(y(v) | x(V \v))1{y(V \v)=x(V \v)} . (19.4)

Suppose that the corresponding chain is irreducible and aperiodic. To prove that
π is the stationary distribution, we check for the detailed balance equations. We
must have for all states x, y ∈ ΛV that differ only by the phase at site v,

π(x)P (Xn+1 = y | Xn = x) = π(y)P (Xn+1 = x | Xn = y),

that is, in view of (19.4), for all v ∈ V ,

π(x) qv π(y(v) | x(V \v)) = π(y) qv π(x(v) | x(V \v)).
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This is indeed so, since the last equality reduces to the identity

π(x) qv
π(y(v), x(V \v)

P (X(V \v) = x(V \v)) = π(y(v), x(V \v)) qv π(x)

P (X(V \v) = x(V \v)) .

Example 19.1.5: Ising model, take 3: what magnets do. In the Ising
model, the local characteristic at site v depends only on x(Nv). The Gibbs sampler
is a “natural” sampler, in that it is an idealization of what happens in nature as
physicists understand it. In a piece of ferromagnetic material, for instance, the spins
are randomly changed according to the local specification. When nature decides
to update the orientation of a dipole, it does so according to the law of statistical
mechanics. It computes the local energy

U(x(v), x(Nv)) = x(v)

(
J

k

∑
w∼v

x(w) +
H

k

)
for each of the two possible spins, that is U+ = U(+1, x(Nv)) and U− =
U(−1, x(Nv)), and takes the corresponding orientation with a probability pro-
portional to e−U+ and e−U− , respectively, according to the fundamental law of
statistical mechanics (the so-called Gibbs principle).

Example 19.1.6: Periodic Gibbs sampler. In practice, the updated sites are
not chosen at random, but instead in a well-determined order v(1), v(2), . . . , v(N),
where {v(i)}1≤i≤N is an enumeration of all the sites of V , called a scanning policy.
The sites are visited in this order periodically. The state of the random field after
the n-th sweep is Zn = XnN , where Xk denotes the image before the kth update
time. At time k, site v(k mod N) is updated to produce the new image Xk+1.
If Xk = x and v(k mod N) = v, then Xk+1 = (y(v), x(V \v)) with probability
π(y(v) | x(V \v)). The Gibbs distribution π is stationary for {Xk}k≥0, in the sense
that if P (Xk = ·) = π, then P (Xk+1 = ·) = π. In particular, π is a stationary
distribution of the irreducible aperiodic Markov chain {Zn}n≥0, and limn↑∞ P (Zn =
·) = π.

The transition matrix P of {Zn}n≥0 is

P =
N∏
k=1

Pv(k) , (19.5)

where Pv =
{
pvxy
}
x,y∈ΛV , and the entry pvxy of Pv is nonzero if and only if y(V \v) =

x(V \v), and then

pvxy =
e−E(y(v),x(V \v))∑
λ∈Λ e

−E(λ,x(V \v) . (19.6)

This expression will be used to produce a geometric rate of convergence of the
periodic Gibbs sampler, namely,
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|μTPn − π| ≤ 1

2
|μ− π|(1− e−NΔ)n , (19.7)

where Δ = supv∈V δv and

δv = sup{|E(x)− E(y)| ; x(V \v) = y(V \v)} .
By (15.10),

|μTPn − π| ≤ 1

2
|μ− π|δ(P)n .

It follows that for any transition matrix P on a finite state space E,

δ(P) = 1− inf
i,j∈E

∑
k∈E

pik ∧ pjk ≤ 1− |E|
(

inf
i,j∈E

pij

)
. (19.8)

If we define mv(x) = inf{E(y); y(V \v) = x(V \v)}, it follows from (19.6) that

pvxy =
exp{−(E(y(v), x(V \v))−mv(x))}∑

z(v)∈Λ exp{−(E(z(v), x(V \v))−mv(x))} ≥ e−δv

|Λ| ,

and therefore, from (19.5),

min
x,y∈ΛV

pxy ≥
N∏
k=1

e−δv(k)

|Λ| ≥ e−NΔ

|Λ|N .

Using (19.8),

δ(P) ≤ 1− |Λ|N e−NΔ

|Λ|N = 1− e−NΔ ,

and (19.7) follows.

Example 19.1.7: Birth-and-death point process. Consider the point pro-
cess model of Subsection 9.1.3. The Gibbs sampling procedure is the following.
Choose v uniformly in V , and replace the phase x(v) at site v by y(v) chosen at
random in {0, 1} according to the probability π(· | x(V \v)). Therefore, if x(v) = 0
and y(v) = 1, there is a “birth” at site v, whereas the situation x(v) = 1 and
y(v) = 0 corresponds to a “death” at site v.

Example 19.1.8: Properly coloured graphs. The phase space Λ consists
of a finite number of “colours” labeled from 1 to q. We describe a Markov chain
{Xn}n≥0 taking its values in the subset F of E := ΛV consisting of the “properly
coloured” configurations, that is configurations x such that x(v) 
= x(w) whenever
v ∼ w. We start from a properly coloured configuration X0. Suppose at time n the
state is x. We then choose uniformly at random a site v, and then choose uniformly
at random a colour in the set of colours allowable at v in configuration x, that is

Av(x) := {j ∈ {1, 2, . . . , q} ; j 
= x(w) for all w such that w ∼ v} .
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The new state at time n+1 is then y which is equal to x except for the new colour
j at site v. This chain is irreducible if there are at least three colours, which we
henceforth assume. The non-null elements of the transition matrix are

pxy =
1

|V | ×
1

|Av(x)| ,

where x and y differ only in the colour at site v. Note that for such “adjacent”
configurations, Av(x) = Av(y), and therefore pxy = pyx. This implies in particular
that the uniform distribution (on F ) is the stationary distribution of this chain.

19.1.3 Variance of Monte Carlo Estimators

We now consider the problem of evaluating expectations with respect to the target
distribution by ergodic estimates. In Theorem 15.1.9, we obtained the formula

v(f,P, π) := 2 〈f,Zf〉π − 〈f, (I +Π)f〉π (19.9)

giving the asymptotic variance

v(f,P, π) = lim
n→∞

1

n
Var μ

(
n∑

k=1

f(Xk)

)
.

Here {Xn} is an ergodic hmc with finite state space E, transition matrix P, and
stationary distribution π, and

Z = (I −P+Π)−1 , (19.10)

where Π = 1 · πT , is the fundamental matrix.

Consider reversible transition matrices, such as those corresponding to the mcmc

simulation algorithms. One may be interested in designing the best simulation
algorithm in the sense that v(f,P, π) is to be minimized with respect to P, uni-
formly in f , and of course for a fixed π. The following result answers the question
in general terms.

Theorem 19.1.9 (Peskun, 1973) Let P1 and P2 be reversible ergodic transition
matrices on the finite state space E, with the same stationary distribution π. If P1

has all its off-diagonal terms greater than or equal to the corresponding off-diagonal
terms of P2, then

v(f,P1, π) ≤ v(f,P2, π)

for all f : E → R.

Proof. Let k, � ∈ E with k 
= �. From (19.9) we have

∂

∂pk�
v(f,P, π) = 2

〈
f,

∂Z

∂pk�
f

〉
π

.
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From ZZ−1 = I, it follows that
(

∂
∂pk�

Z
)
Z−1 + Z

(
∂

∂pk�
Z−1

)
= 0, and therefore

∂Z

∂pk�
= −Z

∂Z−1

∂pk�
Z,

so that
∂

∂pk�
v(f,P, π) = −2

〈
f,

(
Z
∂Z−1

∂pk�
Z

)
f

〉
π

.

Since P is autoadjoint in �2(π), so is Z, and therefore

∂

∂pk�
v(f,P, π) = −2

〈
Zf,

(
∂Z−1

∂pk�

)
Zf

〉
π

= −2(Zf)Td(Π)
∂Z−1

∂pk�
Zf.

Now, from (19.10),
∂Z−1

∂pk�
= − ∂P

∂pk�
,

and therefore
∂

∂pk�
v(f,P, π) = 2(Zf)Td(Π)

∂P

∂pk�
Zf.

Observe that since P is a stochastic matrix and (P, π) is reversible, the free pa-
rameters are (pk�; k < �). In view of the reversibility condition, the only non-null
elements of d(Π) ∂P

∂pk�
are the (�, �), (�, k), (k, �), and (k, k) elements, respectively

equal to −π(k),+π(k),+π(k), and −π(k). Therefore, d(Π) ∂P
∂pk�

is a negative defi-
nite symmetric matrix, and

∂

∂pk�
v(f,P, π) ≤ 0 ,

from which the conclusion follows. �

Example 19.1.10: Optimality of Metropolis. In the so-called Hastings al-
gorithms

pij = qij
sij

1 + tij
,

where tij depends on the candidate-generating matrix Q and π only. We would
like to find the best mcmc algorithm in the Hastings class where Q is fixed. We
have observed that from the constraints ≤ αij ∈ (0, 1) and the required symmetry
of {sij}i,j∈E,

sij ≤ 1 + min(tij, tji) ,

with equality for the Metropolis algorithm. It follows from Theorem 19.1.9 that
the Metropolis algorithm is optimal with respect to asymptotic variance in the
class of Hastings algorithms with fixed candidate-generating matrix Q.

It is interesting to compare a given mcmc algorithm corresponding to a reversible
pair (P, π) to independent sampling for which P = π. From the variance point of
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view, it follows from (19.9) that an mcmc algorithm based on P performs better
than independent sampling uniformly in f if and only if

〈f,Zf〉π ≤ 〈f, f〉π (19.11)

for all f : E → R.

From (19.9), 〈f,Zf〉π ≥ 0 for all f , and we have already observed that Z is self-
adjoint in �2(π). Therefore its eigenvalues are real and nonnegative. Condition
(19.11) is equivalent to the fact that these eigenvalues are smaller than or equal
to 1. Therefore, in view of (19.10), (19.11) is equivalent to P − Π having all its
characteristic roots negative or null.

Example 19.1.11: Barker sampling and independent sampling. The
trace of a matrix is by definition the sum of its diagonal elements. For a stochastic
matrix it is therefore the sum of its elements minus the sum of its off-diagonal
elements. In particular, tr (P) = r −∑

i>j(pij + pji). Since tr (Π) = 1, we have

tr (P− Π) = r − 1−
∑
i>j

(pij + pji).

One can verify that for Barker’s algorithm

min(qij, qji) ≤ pij + pji ≤ max(qij, qji)

with equality if Q is symmetric. Therefore, in the case where Q is symmetric,

tr (P− Π) = r − 1 +
∑
i>j

qij ≥ 1

2
(r − 2).

Thus, if r ≥ 2, the sum of the characteristic roots of P − Π is positive, which
implies that at least one characteristic root is positive.

Therefore Barker’s algorithm is not uniformly better than independent sampling.
This does not mean that Barker’s algorithm cannot perform better than inde-
pendent sampling for a specific f . Moreover, and more importantly, the fact that
an mcmc algorithm does not perform as well as independent sampling is not too
alarming, since mcmc algorithms are used when independent sampling cannot be
implemented.

We now give a lower bound for the asymptotic variance of any mcmc estimator.
Let (P, π) be a reversible pair, where P is irreducible. Its r (real) eigenvalues are
ordered as follows:

λ1 = 1 > λ2 ≥ λ3 ≥ . . . ≥ λr ≥ −1.

For a given f , the formula

v(f,P, π) =
r∑

j=1

1 + λj

1− λj

| 〈f, vj〉π |2
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obtained in Theorem 15.1.9 fully accounts for the interaction between f and P, in
terms of the asymptotic variance of the ergodic estimate of 〈f〉π. Since the function
x → 1+x

1−x
is increasing in (0, 1], and λ2 is the second largest eigenvalue of P, the

worst (maximal) value of the performance index

γ(f,P, π) =
v(f,P, π)

Var π(f)
=

∑r
j=2

1+λj

1−λj
| 〈f, vj〉π |2∑r

j=2 | 〈f, vj〉π |2 (19.12)

is attained for f = v2, and is then equal to

γ(P, π) =
1 + λ2

1− λ2

. (19.13)

Let M(π) be the collection of irreducible transition matrices P such that the
pair (P, π) is reversible, and denote by λ2(P) the second largest eigenvalue of P.
Assume that

π(1) ≤ π(2) ≤ · · · ≤ π(r).

In particular, 0 < π(1) ≤ 1
2
.

19.1.4 Monte Carlo Proof of Holley’s Inequality

Recall the statement of Theorem 9.3.5. Let P and P ′ be probabilities on E, P
strictly positive, such that

P ′(x ∨ y)P (x ∧ y) ≥ P ′(x)P (y) for all x, y ∈ E . (��)

Then for any increasing set A ⊆ E, we have Holley’s inequality:

P ′(A) ≥ P (A) .

Proof. We first give a Metropolis algorithm generating a probability measure P
on E. The corresponding hmc {Xn}n≥0 evolves as follows. If Xn = x, select an
index Ln = � uniformly at random in {1, 2, . . . , L} and select Yn = y� uniformly
at random in {0, 1}. Let y be identical to x except perhaps for the �-th bit, equal
to the just selected y�. This defines the candidate-generating matrix. Then, with

(acceptance) probability min
(

P (y)
P (x)

, 1
)
, let Xn+1 = y, otherwise let Xn+1 = x. The

acceptance is implemented by a random variable Un uniformly distributed on [0, 1]:

acceptance of the candidate y is decided if and only if Un ≤ min
(

P (y)
P (x)

, 1
)
. The

sequences {Ln}n≥0, {Yn}n≥0 and {Un}n≥0 are iid and mutually independent.

Note that if the support S(P ) of P is an increasing set (necessarily containing 1),
the hmc so defined is irreducible on S(P ). Its stationary distribution is P .

Remember that condition (��) is equivalent to the following:

x ≥ y =⇒ P ′(x+ �)P (y) ≥ P ′(x)P (y + �) for all x, y ∈ E0
� , all � , (††)

which implies in particular that the support of P ′ is increasing.
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We define two hmc {Xn}n≥0 and {X ′
n}n≥0 evolving in parallel according to

the above Metropolis algorithm and using the same random sequences {Ln}n≥0,
{Yn}n≥0 and {Un}n≥0. Therefore, both hmc’s are defined on the same probabil-

ity space, say (Ω̃, F̃ , P̃ ). The initial states are X0 = 0 and X ′
0 = 1. We will

show that X ′
n ≥ Xn for all n ≥ 0. In particular, for any increasing set A,

P̃ (X ′
n ∈ A) ≥ P̃ (Xn ∈ A). Therefore, passing to the limit as n ↑ ∞, P ′(A) ≥ P (A).

It remains to prove that if at a given step n, Xn = x ≥ X ′
n = x′, then at the next

step, Xn+1 = y ≥ X ′
n+1 = y′. We can assume that x� = x′

� = 1−Yn since otherwise
the inequality is obvious. Two possibilities remain to be examined:

(i) If Yn = 1, then x, x′ ∈ E0
� and the inequality is satisfied if and only if

P ′(x′ + �)

P ′(x′)
≥ P (x+ �)

P (x)
,

which is guaranteed by (††) because x′ ≥ x.

(ii) If Yn = 0, let y, y′ ∈ E0
� be such that x = y + � and x′ = y′ + �. The inequality

is satisfied if and only if
P ′(y′ + �)

P ′(y′)
≥ P (y + �)

P (y)
,

which is guaranteed by (††) because y′ ≥ y. �

19.2 Simulated Annealing

19.2.1 The Search for a Global Minimum

Let E be a finite set. A function U defined on this set and with real values,
called the cost function, is to be minimized. More precisely, one is looking for any
element i0 ∈ E minimizing the cost function. With a slight abuse of terminomogy,
this element (and not the corresponding value of the cost function) is called a global
minimum. When the set E is large, the combinatorial algorithms have a tendency
to be trapped at a local minimum, as we shall see. The stochastic algorithm called
simulated annealing (it is supposed to imitate the metallurgical process of the same
name used to augment the strength of steel) claims to find a cure to this. Actual
simulated annealing optimization methods will not be discussed in this section,
which concentrates on the basic theory, and gives the opportunity to present an
application of the ergodicity theory of non-homogeneous Markov chains.

Deterministic Descent Algorithms

The so-called descent algorithms define for each i ∈ E a subset N(i) ⊂ E\{i},
called the neighborhood of i, and proceed iteratively as follows. If at a given stage
of the algorithm i is examined and not retained as a solution, at the next stage a
candidate j ∈ N(i) chosen according to a rule specific to each algorithm, and the
values of the cost function are compared. If U(i) ≤ U(j), the procedure stops and
i is the retained solution. Otherwise a new candidate k ∈ N(j) is examined and
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compared to j, and so on. The algorithm eventually comes to a stop and produces
a solution, since E is finite. However, this solution is usually not optimal, due to
the possible existence of local minima. In many situations, local optima exist and
the algorithms become trapped at one of these local minima.

Example 19.2.1: The traveling salesman. A salesman must find the shortest
route visiting exactly once each of the K cities of his business tour of the day.
Here E is the set of the K! admissible routes and U(i) is the length of route i.
One popular choice for the neighborhood N(i) of route i is the collection of all the
routes j obtained from i by a two-change, as in the figure.

α

α + 1 β − 1

β

1 K

β

1 K

α

The sizes of the neighborhoods are therefore reasonable in comparison to the size
of the total search space. Note also that the computation of the new value of the
cost function involves only four intercity distances.

The collection {N(i), i ∈ E} is called a neighborhood structure. If for all pairs
of state i, j ∈ E there exists a path from i to j, that is, a sequence of states
i1, . . . , im ∈ E such that i1 ∈ N(i), i2 ∈ N(i1), . . . , j ∈ N(im), the neighborhood
structure is called communicating. This is the case for the 2-change neighborhood
structure of the traveling salesman problem.

Stochastic Descent Algorithms

The basic idea of stochastic combinatorial optimization is to leave a possibility
to escape from a local minimum trap. A canonical form of the stochastic descent
algorithm is as follows. Let Q = {qij} be an irreducible transition matrix on E.
Also, for each parameter value T , and all states i, j ∈ E, let αij(T ) be a probability.
Calling Xn the current solution at stage n, the process {Xn}n≥0 is a homogeneous
Markov chain with state space E and transition matrix P(T ) with general off-
diagonal term

pij(T ) = qijαij(T ). (19.14)

We assume the chain irreducible. (For the Metropolis sampler, if Q is irreducible
and U is not a constant, then P(T ) is irreducible and aperiodic for all T > 0; see
Exercise 19.3.3.) It is positive recurrent, since the state space is finite. Therefore,
it has a unique stationary distribution π(T ).
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One possible choice of the candidate-generating matrix Q consists in first choosing
a communicating neighborhood structure and taking qij > 0 only if i = j or
j ∈ N(i). The matrix Q is then irreducible. Conversely, one can associate with an
irreducible transition matrix Q a communicating neighborhood structure defined
by N(i) = {j; j 
= i, qij > 0}.

Example 19.2.2: Metropolis, take 2. Suppose that the current not retained
candidate is i. At the next stage, a new candidate j is selected with probability
qij and is retained with probability

αij(T ) = e−
(U(j)−U(i))+

T , (19.15)

where T is a positive constant; otherwise, j is rejected. The rule (19.15) gives a
chance to the solution j when it is worse than i. This tolerance decreases as the
deviation from i, measured by U(j)− U(i), increases.

Suppose that the matrixQ is symmetric. With this special structure, the stationary
distribution π(T ) does not depend on Q and is given by

πi(T ) =
e−U(i)/T∑

k∈E e−U(k)/T
.

Denote by H the set of global minima of the cost function. Then clearly, πi(T )
is maximal on i ∈ H. But there is more: as T ↓ 0, πi(T ) tends to the uniform
distribution on H. To see this, let m be the minimum value of the cost function,
and write the right-hand side, after division of its numerator and denominator by
e−

m
T , as

e−
(U(i)−m)

T

|H|+∑
k �∈H e−

(U(k)−m)
T

.

This observation suggests the following heuristic procedure. Start the algorithm
with the value T = a0 of the parameter, and wait a sufficiently long time for
the chain to get close to its stationary regime. Then set T = a1 < a0 and again
wait for the steady state. Then set T = a2 < a1, etc. At the kth change of the
parameter T , the chain will be close to the stationary regime π(ak), and therefore
if limk↑∞ ak = 0, one expects that for large n, Xn will be with very high probability
in H, the set of global minima.

However, for this to happen, the times in between the parameter changes must be
sufficiently long for the chain to come close to the stationary distribution corre-
sponding to the current value of the parameter. What is “sufficiently long”?

Simulated annealing algorithms all have a cooling schedule, that is, a sequence
{Tn}n≥0 of positive temperatures decreasing to 0 and controlling the transition
rates of {Xn}n≥0. At time n, P (Xn+1 = j | Xn = i) = pij(Tn). The question be-
comes: How slowly must the temperature converge to zero so that the distribution
of Xn converges to the uniform distribution on H? Theoretical answers will be
given in section 19.2.2.
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19.2.2 Cooling Schedules

Slow Cooling

We begin with an example, and then proceed to the general theory.

Example 19.2.3: Annealed Gibbs sampler. (Geman and Geman, 1984) We
use periodic scanning as in Example 19.1.6, except that at the n-th sweep, we
introduce a temperature Tn. Therefore {Zn}n≥0 is a non-homogeneous mc, the
transition matrix at time n being

P(n) =
N∏
k=1

PTn

v(k) ,

where the (x, y)-entry of PT
v is

exp
{− 1

T
U(y(v), x(V \v))}∑

λ∈Λ exp
{− 1

T
U(λ, x(V \v))}

if y = (y(v), x(V \v)). The bound of Example 19.1.6 gives

δ(P(n)) ≤ 1− e−
NΔ
Tn .

In particular, by the block criterion of weak ergodicity,

∞∑
n=1

e−
NΔ
Tn = ∞ (19.16)

is a sufficient condition of weak ergodicity. Now, P(n) has the stationary distribu-
tion

πTn
(x) =

e−
1
Tn

U(x)

ZTn

.

Also, for all x ∈ ΛV , limT↓0 πT (x) = 1
|H| if x ∈ H and is 0 otherwise, where

H = {x ∈ ΛV ;U(x) = min}. Moreover, it can be shown that for x ∈ H, the
quantity πT (x) increases as T ↓ 0, whereas for x 
∈ H, it eventually decreases, and
this guarantees that

∞∑
n=1

|πT (n+1) − πTn
| < ∞.

Therefore, by Theorem 15.2.12, if Tn ↓ 0 in such a way that (19.16) is respected,
then the non-homogeneous mc {Zn}n≥0 is strongly ergodic, with a limit distribu-
tion that is uniform on H.

The general results on non-homogeneous Markov chain of Section 15.2.2 will be ap-
plied to the simulated annealing algorithm corresponding to the transition matrix
P(T ) given by (19.14).
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The transition matrix P(T ) is assumed uniformly irreducible for sufficiently small
T ∈ (0, 1]. This means that for all ordered pair of states (i, j), there is a P(T )-
path from i to j which is independent of T ∈ (0, c] for some c > 0. This is always
satisfied in practice. For instance, for the Metropolis or Barker samplers, it suffices
that Q be irreducible and that U be not a constant (see Exercise 19.3.3).

Define

d = inf{qij; j 
= i, pij(T ) > 0} ,
a positive quantity, since the state space is finite.

The crucial assumption is the following: There exists T ∗ ∈ (0, 1] such that on
(0, T ∗],

αij(T ) ↓ 0 as T ↓ 0 if U(j) > U(i), (19.17)

αij(T ) ↑ 1 as T ↓ 0 if U(j) < U(i), (19.18)

and

lim
T↓0

αij(T ) > 0 exists if U(i) = U(j). (19.19)

Assumptions (19.17) and (19.18) imply, in particular, that in the vicinity of 0, the
functions αij(T ) are monotonic if U(i) 
= U(j). Define for each T ∈ (0, 1]

α(T ) = inf
i∈E,j∈N(i)

αij(T ). (19.20)

Assumptions (19.17)–(19.19) imply that in the vicinity of 0,

inf
i∈E,j �=i

αij(T ) = inf
i∈E,j∈N(i)
U(j)>U(i)

αij(T ),

and therefore, in the vicinity of 0, α(T ) is decreasing to zero.

Theorem 19.2.4 Let {P(T )}T∈(0,1] satisfy the above assumptions. Let {Tn}n≥0 be
a sequence of numbers in (0, 1] decreasing to zero as n → ∞. Then if

∞∑
k=0

(α(TkN))
N = ∞, (19.21)

{P(Tn)}n≥0 is weakly ergodic.

Proof. Slightly change the notation, letting P(n) := P(Tn). The uniform irre-
ducibility assumption guarantees the existence, for all ordered pair of states (i, j),
of a path i0 = i, i1, ..., iN = j such that

pij ,ij+1
(kN + j, kN + j + 1) = pij ,ij+1

(TkN+j) > 0.

But pkl(T ) > 0 implies pkl(T ) ≥ dα(T ), and therefore

pij ,ij+1
(kN + j, kN + j + 1) ≥ dα(TkN+j).
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Since α(T ) is, in the vicinity of 0, monotone decreasing, then for sufficiently large
k

pij ,ij+1
(kN + j, kN + j + 1) ≥ dα(T(k+1)N),

and therefore
pij(kN, (k + 1)N) ≥ dN

(
α(T(k+1)N)

)N
.

Therefore, in view of (7.3) of Chapter 6,

1− δ(P(kN, (k + 1)N)) ≥ dN
(
α(T(k+1)N)

)N
.

Therefore, (19.21) implies

∞∑
k=1

(1− δ(P(kN, (k + 1)N))) = ∞,

and the conclusion follows from the block criterion. �

Example 19.2.5: Metropolis, take 3. The acceptance probabilities of the
Metropolis sampler are

αij(T ) = e(U(j)−U(i))+/T .

We see that conditions (19.17)–(19.19) are satisifed. We have

α(T ) = inf
j∈N(i)

U(i)<U(j)

e−{U(j)−U(i)}/T ,

and therefore, with Δ := sup{U(j)− U(i); j ∈ N(i)},

α(T ) ≥ e−
Δ
T .

It follows that ∞∑
k=0

{α(TkN)}N ≥
∞∑
k=0

e
− NΔ

TkN .

For a cooling schedule {Tk}k≥0 satisfying

Tk ≥ NΔ

log(k)
, (19.22)

we see that ∞∑
k=1

{α(TkN)}N ≥
∞∑
k=1

1

kN
= ∞,

and therefore {P(Tn)}n≥1 is weakly ergodic.

Therefore, in view of Theorem 15.2.11, {P(Tn)} is strongly ergodic. As shown in
Example 19.2.2, the limiting probability vector puts all its mass uniformly on the
set H of global minima. Therefore a cooling schedule satisfying (19.22) guarantees
convergence in distribution to the set of global minima.
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Fast Cooling

We shall now see the effects of fast cooling. Denote by P(lim) the transition matrix
corresponding to the limit case T ↓ 0. In particular, pij(lim) = 0 if U(i) < U(j).
Call R1 the recurrent communication class of some global minimum, and R2 the
recurrent communication class of some strictly local minimum. Note that R1 only
contains global minima, and in particular, R1 and R2 are disjoint. Define

ᾱ(2, T ) = sup
i∈R2,j∈N(i)

αij(T ). (19.23)

Since for j ∈ R2,∑
�∈R2

pj,�(Tk) = 1−
∑
��∈R2
j∈N(i)

qj�αj�(Tk) ≥ 1− ᾱ(2, Tk),

the probability of staying in R2 forever is bounded from below by
∏∞

k=1(1 −
ᾱ(2, Tk)). This infinite product is strictly positive if

∑∞
k=1 ᾱ(2, Tk) < ∞. Therefore,

if the chain has at least one strictly local minimum, then under the condition

∞∑
k=1

ᾱ(2, Tk) < ∞, (19.24)

the probability that it stays eternally in R2 is strictly positive. In particular, since
no globally optimal solution is in R2, with positive probablity the algorithm will
never visit a globally optimal state.

Example 19.2.6: Metropolis, take 4. Suppose that

δ2 := inf{U(j)− U(i); i ∈ R2, j 
∈ R2, j ∈ N(i)} > 0 .

Since ᾱ(2, T ) ≤ e−
δ2
T , we have

∞∑
k=0

ᾱ(2, Tk) ≤
∞∑
k=1

e−δ2/Tk .

Therefore, if the cooling schedule satisfies

Tk ≤ δ2 − α

log k

for some α > 0 such that δ2 − α > 0, we have

∞∑
k=1

ᾱ(2, Tk) ≤
∞∑
k=1

e−(log k)(1+ε),

where 1 + ε = 1
1− α

δ2

(and therefore ε > 0). Thus

∞∑
k=1

ᾱ(2, Tk) ≤
∞∑
k=1

1

k1+ε
< ∞,
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which implies that the cooling schedule does not yield convergence in distribution
to the uniform distribution on the set of global minima.

For the simulated annealing algorithm based on the Metropolis sampler, there
exists a constant γ such that a necessary and sufficient of convergence, whatever
the initial state, is

∞∑
k=1

e
− γ

Tk = ∞.

In particular, a logarithmic cooling schedule Tk =
a

log(k+1)
yields convergence if and

only if a ≥ γ (Hajek, 1998).

The results of convergence given in the present section are of theoretical and qual-
itative interest only. Practical algorithms use faster than logarithmic schedules on
a finite horizon. The theory and the performance evaluation of these algorithms is
outside the scope of this book.

Books for Further Information

[van Laarhoven and Aarts, 1987]. [Liu, 2001]. See also the review article [Diaconis,
2009].

19.3 Exercises

Exercise 19.3.1. Eigenstructure of Metropolis

(Liu, 1995) Let π and p be two strictly positive probability distributions on E =

{1, 2, . . . , r}, and let w(i) := π(i)
p(i)

. The Metropolis algorithm corresponding to the
candidate-generating matrix Q given by qij = pj for all i, j ∈ E has the transition
matrix P given by

pij = p(j)min

(
1,

w(j)

w(i)

)
,

for i 
= j. Assume that the states of E are ordered in such a way that

w(1) ≥ w(2) ≥ · · · ≥ w(r).

Verify that the eigenvalues λk and the corresponding right-eigenvectors vk, 1 ≤
k ≤ r, of P are λ1 = 1, v1 = 1, and for k ≥ 1,

λk+1 =
∑
j≥k

π(j)

(
1

w(j)
− 1

w(k)

)
,

vk+1 =

(
0, . . . , 0,

r∑
�=k+1

π(�),−π(k), . . . ,−π(k)

)T

,

where the first k − 1 entries of vk+1 are null. What is the potential value of this
knowledge in a sampling context?
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Exercise 19.3.2. Rate of convergence of a Metropolis algorithm

Define the probability distribution π on E = {1, . . . , r} by

π(j) =
θj−1(1− θ)

1− θr

where θ ∈ (0, 1). Apply the Metropolis algorithm with candidates randomly gen-
erated, that is, p(j) = 1

r
. Give a bound for dV (δrP

n, π)2. (Of course, this is a pure
classroom exercise.)

Exercise 19.3.3. Irreducibility of the Barker sampling chain

Show that for both the Metropolis and Barker samplers, if Q is irreducible and U
is not a constant, then P(T ) is irreducible and aperiodic for all T > 0.

Exercise 19.3.4. The modified random walk

Consider the usual random walk on a graph. Its stationary distribution is in general
non-uniform. We wish to modify it so as to obtain an hmc with uniform stationary
distribution. Now accept a transition from vertex i to vertex j of the original
random walk with probability αij. Find one such acceptance probability depending
only on d(i) and d(j) that guarantees that the corresponding Monte Carlo Markov
chain admits the uniform distribution as stationary distribution.



Chapter 20

Convergence Rates

20.1 Reversible Transition Matrices

20.1.1 A Characterization of Reversibility

For an ergodic Markov chain, one may take the value at a “large” time n, as a
sample of the stationary distribution. The accuracy of the sample is measured in
terms of the distance in variation between the sample and the target distribution.
The following sections are devoted to the obtention of convergence speeds of an
ergodic hmc to its stationary distribution, and in particular, of bounds of the
second largest eigenvalue modulus of its transition matrix. This is done primarily
for reversible hmc’s, since most Monte Carlo Markov chains (see Chapter 19) are
of this type.

The main result of Perron and Frobenius is that convergence to steady state of an
ergodic finite state space hmc is geometric, with relative speed equal to the second-
largest eigenvalue modulus (slem). Even if there are a few interesting models,
especially in biology, where the eigenstructure of the transition matrix can be
extracted, this situation remains nevertheless exceptional. The added structure
of reversible transition matrices allows to push the analysis further and avoids
recourse to the Perron–Fröbenius theorem. For convenience, we recall the definition
of reversibility, and introduce a slight change in the terminology.

Definition 20.1.1 Let P be a transition matrix and π a strictly positive probability
vector on E. The pair (P, π) is called reversible if the detailed balance equations
(6.8) are satisfied.

It will also be assumed that the state space is finite, say E := {1, 2, . . . , r}, and
that P is irreducible. This implies in particular that π is the unique stationary
distribution, that π > 0, and that P is positive recurrent. For short, we shall
sometimes say: “P is reversible”.

Let �2(π) be the real vector space Rr endowed with the scalar product

〈x, y〉π :=
∑
i∈E

x(i)y(i)π(i)

© Springer International Publishing Switzerland 2017
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and the corresponding norm ‖x‖π :=
(∑

i∈E x(i)2π(i)
) 1

2 . We shall write

〈x〉π :=
∑
i

π(i)x(i) = 〈x, 1〉π

for the mean of x with respect to π. The variance of x with respect to π is

Varπ(x) :=
∑
i

π(i)x(i)2 −
(∑

i

π(i)x(i)

)2

= ‖x‖2π − 〈x〉2π .

Similarly to �2(π), �2( 1
π
) is defined as the real vector space Rr endowed with the

scalar product

〈x, y〉 1
π
:=
∑
i∈E

x(i)y(i)
1

π(i)
.

Theorem 20.1.2 The pair (P, π) is reversible if and only if P is self-adjoint in
�2(π), that is,

〈Px, y〉π = 〈x,Py〉π (20.1)

for all x, y ∈ �2(π).

Proof. Suppose (P, π) is reversible. Then

〈Px, y〉π =
∑
i∈E

{(∑
j∈E

pijx(j)

)
y(i)π(i)

}
=
∑
i,j∈E

π(i)pij x(j)y(i) =
∑
i,j∈E

π(j)pji y(i)x(j)

=
∑
j∈E

{
x(j)

(∑
i∈E

pjiy(i)

)
π(j)

}
= 〈x,Py〉π .

Conversely, suppose P self-adjoint in �2(π). Let δk be the k-th vector of the canon-
ical basis of r (the only non-null entry, 1, is in the k-th position). Then the
detailed balance equation (6.8) follows from (20.1) with the choice x = δi, y = δj.
�

Reversibility of (P, π) is equivalent to the fact that

P∗ := D
1
2PD− 1

2

is a symmetric matrix, where

D = D(π) := diag{π(1), . . . , π(r)} . (20.2)

More explicitly,

p∗ij = pij

√
π(i)√
π(j)

.
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Note that
xTDy = 〈x, y〉π . (20.3)

Since P∗ is symmetric, its eigenvalues are real, it is diagonalizable, and the sets of
right- and left-eigenvectors are the same.

Choose an orthonormal basis of Rr formed of right-eigenvectors w1, . . . , wr associ-
ated, respectively, with the eigenvalues λ1, . . . , λr. Define u and v by

w = D− 1
2u, w = D

1
2v,

where w is a right- (and therefore left-) eigenvector of P∗, corresponding to the
eigenvalue λ. In particular,

u = Dv . (20.4)

The matrices P and P∗ have the same eigenvalues, and moreover, v (resp., u) is a
right-eigenvector (resp., left-eigenvector) of P corresponding to the eigenvalue λ.

Orthonormality (with respect to the usual Euclidean norm) of the collection
{w1, . . . , wr} is equivalent to orthonormality in �2(π) of {v1, . . . , vr}, that is,

〈vi, vj〉π = δij.

Similarly, {u1, . . . , ur} is an orthonormal collection in �2( 1
π
):

〈ui, uj〉 1
π

= δij .

The eigenvectors u1 and v1 may always be chosen as follows

u1 = π , v1 = 1 .

Since {v1, . . . , vr} is also a basis of Rr, any vector x ∈ Rr can be expressed as
x =

∑
i∈E αivi. In particular, 〈x, vj〉π = αj, and therefore

x =
r∑

j=1

〈x, vj〉π vj. (20.5)

Similarly,

xT =
r∑

j=1

〈x, uj〉 1
π

uT
j . (20.6)

The variance of x with respect to π is

Varπ(x) =
r∑

j=2

| 〈x, vj〉π |2 . (20.7)

For all n, Pnvj = λn
j vj, and therefore

Pnx =
r∑

j=1

λn
j 〈x, vj〉π vj. (20.8)
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Similarly,

xTPn =
r∑

j=1

λn
j 〈x, uj〉 1

π

uT
j . (20.9)

From (20.8), (20.3), and (20.4), we obtain Pnx =
∑r

j=1 λ
n
j vju

T
j x, and we therefore

retrieve the representation (6.11) for A = P. From (20.8),

Pnx− 〈x〉π 1 =
r∑

j=2

λn
j 〈x, vj〉π vj. (20.10)

20.1.2 Convergence Rates in Terms of the slem

Theorem 20.1.3 Defining πmin := mink∈E π(k),

max
i∈E

dV (pi·(n), π) ≤ ρn

2πmin

.

Proof. From (20.10), for all i ∈ E,

pik(n)− π(k) =
r∑

j=2

λn
j vj(i)vj(k)π(k) . (20.11)

Therefore,

dV (pi·(n), π) ≤ 1

2

r∑
k=1

∣∣∣∣∣
r∑

j=2

λn
j vj(i)vj(k)π(k)

∣∣∣∣∣
≤ 1

2

r∑
k=1

max
�∈E

(
r∑

j=2

λn
j |vj(i)||vj(�)|

)
π(k)

=
1

2
max
�∈E

(
r∑

j=2

λn
j |vj(i)||vj(�)|

)
.

Therefore, denoting by ρ the slem of P

dV (pi·(n), π) ≤ 1

2
max
�∈E

(
r∑

j=2

|vj(i)||vj(�)|
)

ρn.

By Schwarz’s inequality,

r∑
j=2

|vj(i)||vj(�)| ≤
(

r∑
j=2

vj(i)
2

) 1
2
(

r∑
j=2

vj(�)
2

) 1
2

≤
(

r∑
j=1

vj(i)
2

) 1
2
(

r∑
j=1

vj(�)
2

) 1
2

.
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Now, from (20.5) with x = δi, we have that δi =
∑r

j=1 vj(i)π(i)vj. Writing this

equality for the i-th coordinate gives 1 =
∑r

j=1 vj(i)
2π(i), and therefore(

r∑
j=1

vj(i)
2

) 1
2
(

r∑
j=1

vj(�)
2

) 1
2

≤ (π(i)π(�))−
1
2 .

�

The constant before ρn is often too large. Maybe if we start from a specific state
i with high probability, the bound can be improved. This is done in the next
theorem.

Theorem 20.1.4 Let P be a reversible irreducible transition matrix on the finite
state space E = {1, . . . , r}, with the stationary distribution π. Then for all n ≥ 1
and all i ∈ E,

dV (δ
T
i P

n, π)2 ≤ pii(2)

2π(i)
ρ2n−2, (20.12)

where ρ is the slem of P.

Proof. From (20.10) and (20.7), we have that

‖Pnx− 〈x〉π 1‖2π =
r∑

j=2

|λj|2n| 〈x, vj〉π |2 ≤ ρ2nVarπ(x). (20.13)

Now, by reversibility and Schwarz’s inequality in �2(π),∣∣∣∣∣∑
j∈E

pijx(j)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
j∈E

pji
π(j)

π(i)
x(j)

∣∣∣∣∣
2

≤
(∑

j∈E

pji
π(i)

|x(j)|π(j)
)2

≤
(∑

j∈E
x(j)2π(j)

)(∑
j∈E

(
pji
π(i)

)2

π(j)

)

=

(∑
j∈E

x(j)2π(j)

)(∑
j∈E

(pjipij)
1

π(i)

)
=

(∑
j∈E

x(j)2π(j)

)
pii(2)

π(i)
,

that is, ∣∣∣∣∣∑
j∈E

pijx(j)

∣∣∣∣∣
2

≤ pii(2)

π(i)
‖x‖2π.

With x = Pn−1y − 〈y〉π 1, this gives, in view of (20.13),∣∣∣∣∣
r∑

j=1

pij(n)y(j)−
r∑

i=1

π(j)y(j)

∣∣∣∣∣
2

≤ pii(2)

π(i)
‖Pn−1y − 〈y〉π 1‖2π

≤ pii(2)

π(i)
Varπ(y)ρ

2n−2.
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The result then follows from the following alternative expression of the distance
in variation (Exercise 16.4.3):

dV (α, β) =
1

2
sup

(
r∑

i=1

α(i)y(i)−
r∑

i=1

β(i)y(i); sup |y(i)| = 1

)
,

and the observation that if y is such that sup |y(i)| ≤ 1, then Varπ(y) ≤ 1. �

For the next estimate, we shall need to define the χ2-contrast of α with respect to
β,

χ2(α; β) :=
∑
i∈E

(α(i)− β(i))2

β(i)
.

Note that

χ2(α; π) = ‖α− π‖21
π

. (20.14)

Also

4dV (α, β)
2 ≤ χ2(α; β) , (20.15)

as follows from Schwarz’s inequality:(∑
i∈E

|α(i)− β(i)|
)2

=

(∑
i∈E

∣∣∣∣α(i)β(i)
− 1

∣∣∣∣ β(i) 1
2β(i)

1
2

)2

≤
∑
i∈E

(
α(i)

β(i)
− 1

)2

β(i) =
∑
i∈E

1

β(i)
(α(i)− β(i))2.

Theorem 20.1.5 Let P be a reversible irreducible transition matrix on the fi-
nite state space E = {1, . . . , r}, with the stationary distribution π. Then for any
probability distribution μ on E, and for all n ≥ 1,

‖μTPn − πT‖ 1
π
≤ ρn‖μ− π‖ 1

π
. (20.16)

Also, for n ≥ 1, all i ∈ E, and all A ⊂ E,

|δTi Pn(A)− πT (A)| ≤
(
1− π(i)

π(i)

) 1
2

min

(
π(A)

1
2 ,
1

2

)
ρn, (20.17)

where ρ is the slem of P. In particular,

4dV (δ
T
i P

n, π)2 ≤ 1− π(i)

π(i)
ρ2n. (20.18)

Proof. Recall that u1 = π, and therefore 〈μ− π, u1〉 1
π
=
∑

i∈E (μ(i)− π(i)) = 0.

Therefore, by (20.9), and denoting by αj the quantity 〈μ− π, uj〉 1
π

, we obtain



20.1. REVERSIBLE TRANSITION MATRICES 481

‖(μ− π)TPn‖21
π

=
r∑

j=2

α2
jλ

2n
j ‖uj‖21

π

=
r∑

j=2

α2
jλ

2n
j

≤ ρ2n
r∑

j=2

α2
j = ρ2n‖μ− π‖21

π

,

and (20.16) follows, since πTPn = πT .

Define μT
n := δTi P

n. By Schwarz’s inequality,

|μn(A)− π(A)|2 =
∣∣∣∣∣∑
�∈A

(
μn(�)

π(�)
− 1

)
π(�)

∣∣∣∣∣
2

≤
(∑

�∈A

(
μn(�)

π(�)
− 1

)2

π(�)

)
π(A) ≤

(∑
�∈E

(
μn(�)

π(�)
− 1

)2

π(�)

)
π(A)

= ‖δTi Pn − πT‖21
π

π(A) ≤ ρ2n‖δi − π‖21
π

π(A),

where the last inequality uses (20.16). But, as simple calculations reveal,

‖δi − π‖21
π

=
1− π(i)

π(i)
, (20.19)

and therefore

|δTi Pn(A)− πT (A)| ≤
(
1− π(i)

π(i)

) 1
2

π(A)
1
2ρn. (20.20)

Now,

|μn(A)− π(A)|2 ≤ dV (μn, π)
2 ≤ 1

4
χ2(μn; π).

But, by (20.16), (20.14), and (20.19)

χ2(μn; π) = ‖δTi Pn − πT‖21
π

≤ ρ2n‖δi − π‖21
π

= ρ2n
1− π(i)

π(i)
.

Therefore,

|δTi Pn(A)− πT (A)| ≤
(
1− π(i)

π(i)

) 1
2 1

2
ρn. (20.21)

Combining (20.20) and (20.21) gives (20.17). Inequality (20.18) then follows since
dV (α, β) = supA⊂E |α(A)− β(A)|. �

20.1.3 Rayleigh’s Spectral Theorem

The results of the previous section are useful once a bound for the slem is available.
Coming back to the eigenvalues of P, we know that λ1 = 1 is one of them, with
multiplicity 1. This eigenvalue corresponds to the unique right-eigenvector v1 such
that ‖v1‖π = 1, namely v1 = 1. Moreover, the eigenvalues of P are all in the closed
unit disk of C, and in the reversible case of interest in this section, they are real.
Therefore, with proper ordering,
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1 = λ1 > λ2 ≥ · · · ≥ λr ≥ −1. (20.22)

Note that this order is different from the one adopted in (6.12) for the statement
of the Perron–Frobenius theorem. In (20.22), λ2 is the second-largest eigenvalue
(sle), whereas in (6.12) it was the eigenvalue with the second-largest modulus. The
strict inequality λ1 > λ2 expresses the fact that λ1 is the unique eigenvalue equal
to 1. We also know from the Perron–Fröbenius theorem that the only eigenvalue
of modulus 1 and not equal to 1, in this case −1, occurs if and only if the chain
is periodic of period d = 2. In particular, in the reversible case, the period cannot
exceed 2.

It will be convenient to consider the matrix I − P, called the Laplacian of the
hmc. Its eigenvalues are βi = 1− λi (1 ≤ i ≤ r) and therefore

0 = β1 < β2 ≤ · · · ≤ βr ≤ 2 .

Clearly, a right-eigenvector of I − P corresponding to βi = 1 − λi is vi, a right-
eigenvector of P corresponding to λi.

The Dirichlet form Eπ(x, x) associated with a reversible pair (P, π) is defined by

Eπ(x, x) := 〈(I −P)x, x〉π .

We shall keep in mind that Eπ(x, x) also depends on P.

We have

Eπ(x, x) = 1

2

∑
i,j∈E

π(i)pij(x(j)− x(i))2 (20.23)

=
∑
i<j

π(i)pij(x(j)− x(i))2 . (20.24)

Proof.

〈(I −P)x, x〉π =
∑
i,j∈E

π(i)pijx(i)(x(i)− x(j))

=
∑
i,j∈E

π(j)pjix(j)(x(j)− x(i))

=
∑
i,j∈E

π(i)pijx(j)(x(j)− x(i)) ,

where the second equality is obtained by a change of indexation, and the third
uses the reversibility of (P, π). Expressing Eπ(x, x) as the half-sum of the second
and last terms in the above chain of equalities yields (20.23). Equality (20.25) then
follows from the detailed balance equations π(i)pij = π(j)pji. �

An analogous (and simpler) computation gives

Varπ(x) =
1

2

∑
i,j∈E

π(i)π(j)(x(j)− x(i))2 . (20.25)



20.1. REVERSIBLE TRANSITION MATRICES 483

The next result gives a characterization of the second-largest eigenvalue (sle) λ2,
or equivalently of β2 = 1− λ2.

Theorem 20.1.6 Let P be an irreducible transition matrix on the finite state
space E = {1, 2, . . . , r}, and let π be its stationary distribution. If (P, π) is re-
versible,

β2 = inf

{Eπ(x, x)
Varπ(x)

; Varπ(x) 
= 0

}
.

Remark 20.1.7 Condition Varπ(x) 
= 0 just says that x is not, as a function, a
constant. Said otherwise, it is not of the form x = c1 for some c ∈ .

Proof. First observe from (20.23) that the ratio Eπ(x,x)
Varπ(x)

is invariant by translation

since

Eπ(x, x) = Eπ(x− c1, x− c1) and Varπ(x− c1) = Varπ(x) (20.26)

for any real number c, and invariant by scaling (when replacing x by cx where c
is a non-null real number). Therefore, we may restrict attention to the case where
the variance is 1 and the mean is null. From (20.8), (I−P)x =

∑r
j=1 βj 〈x, vj〉π vj,

and therefore

Eπ(x, x) =
r∑

j=1

βj| 〈x, vj〉π |2 .

Also from (20.7),

〈x, x〉π =
r∑

j=1

| 〈x, vj〉π |2 = 1

and
〈x, v1〉π = 〈x,1〉π = 〈x〉π = 0 .

Therefore

Eπ(x, x) =
r∑

i=2

r∑
j=2

βj| 〈x, vj〉π |2

≤ β2

r∑
j=2

| 〈x, vj〉π |2 = β2 .

The inequality becomes an equality when x = v2 since Eπ(v2, v2) = β2. �

Remark 20.1.8 The second largest eigenvalue (sle) is not in general the second
largest eigenvalue modulus (slem). Both an upper bound of λ2 (the sle and a
lower bound of the smallest eigenvalue λr are needed in order to obtain a bound
for the slem. Note that the lazy Markov chain (see Example 6.2.5) associated
with a reversible Markov chain has all its eigenvalues, equal to 1 + λi (1 ≤ i ≤ r)
non-negative (see (20.22)), and the slem is then equal to the sle.
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20.2 Bounds for the slem

20.2.1 Bounds via Rayleigh’s Characterization

Next theorem gives a method based on Rayleigh’s theorem to obtain an upper
bound of λ2 and a lower bound of λr.

Theorem 20.2.1 (a) If A > 0 is such that for all x ∈ Rr,

Varπ(x) ≤ AEπ(x, x) , (20.27)

then, denoting by λ2 the sle of P, λ2 ≤ 1− 1
A
.

(b) If there exists B > 0 such that for all x ∈ Rr,

〈Px, x〉π + ‖x‖2π ≥ B‖x‖2π, (20.28)

then λj ≥ −1 + B (1 ≤ j ≤ r).

Proof. (a) It follows from Theorem 20.1.6 that β2 ≥ 1/A.

(b) Taking x = vj in (20.28) and using the fact that Pvj = λjvj gives λj + 1 ≥ B.
�

The following is a useful consequence of Rayleigh’s characterization of the second
largest eigenvalue.

Theorem 20.2.2 Consider two reversible hmc’s on the same finite state space
E = {1, 2, . . . , r} and let (P, π), and (P̃, π̃), be their respective transition matrices
and stationary distributions. Suppose that there exists two positive constants A and
B such that for all i ∈ E, all x ∈ Er,

π(i) ≤ Aπ̃(i) and E
P̃
(x, x) ≤ BEP(x, x) .

Then, β̃2 ≤ ABβ2.

Proof. The quantity ‖x − c1‖2 is minimized for c = 〈x〉π and is then equal to
Varπ(x). In particular, for c = 〈x〉π̃,

Varπ(x) ≤ ‖x− 〈x〉π̃‖2
=
∑
i

π(i)(x(i)− 〈x〉π̃)2

≤ A
∑
i

π̃(i)(x(i)− 〈x〉π̃)2

= AVarπ̃(x) .

Therefore
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1

Varπ̃(x)
≤ A

1

Varπ(x)
and Eπ̃(x, x) ≤ BEπ(x, x) ,

so that Eπ̃(x, x)

Varπ̃(x)
≤ AB

Eπ(x, x)

Varπ(x)
.

Minimizing over the non-null x’s yields the announced inequality. �

Example 20.2.3: Barker and Metropolis algorithms. Theorem 20.2.2
will be applied to the comparison of the Barker and Metropolis reversible Markov
chains with the same stationary distribution

π(i) = π̃(i) =
e−U(i)

Z
,

where U : E → . For Barker’s algorithm, with z := e−U(j)

e−U(i) ,

pij =
1

1 + z
,

whereas for the Metropolis algorithm,

p̃ij = 1 ∧ z .

It follows that
1

2
≤ EP(x, x)

E
P̃
(x, x)

≤ 1

and therefore β2 ≤ β̃2 ≤ 2β2.

Weighted Paths

The next two results give an upper bound and a lower bound in terms of the
geometry of the transition graph.

In the transition graph associated with P, we shall denote a directed edge i → j
by e, and call e− = i and e+ = j its initial vertex and end vertex respectively.
Define for any such directed edge e,

Q(e) = π(i)pij . (20.29)

For each ordered pair of distinct states (i, j), select arbitrarily one and only one
path from i to j (that is, a sequence i, i1, . . . , im, j such that pii1pi1i2 · · · pimj > 0)
which does not use the same edge twice. Let Γ be the collection of paths so selected.
For a path γij ∈ Γ, let

|γij|Q :=
∑
e∈γij

1

Q(e)
=

1

π(i)pii1
+

1

π(i1)pi1i2
+ · · ·+ 1

π(im)pimj

.

Define the Poincaré coefficient

κ = κ(Γ) := max
e

∑
γij�e

|γij|Qπ(i)π(j) .
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Theorem 20.2.4 (Diaconis and Strook, 1991) Let P be an irreducible transition
matrix on the finite state space E, with stationary distribution π, and assume
(P, π) to be reversible. Denoting by λ2 its sle,

λ2 ≤ 1− 1

κ
.

Proof. If suffices to show that (20.27) holds for A = κ. For this, write

Varπ(x) =
1

2

∑
i,j∈E

(x(i)− x(j))2π(i)π(j)

=
1

2

∑
i,j∈E

⎧⎨⎩∑
e∈γij

1

Q(e)
1
2

Q(e)
1
2 (x(e−)− x(e+))

⎫⎬⎭
2

π(i)π(j).

By Schwarz’s inequality, this quantity is bounded above by

1

2

∑
i,j∈E

⎧⎨⎩|γij|Q
∑
e∈γij

Q(e)(x(e−)− x(e+))2

⎫⎬⎭ π(i)π(j)

=
1

2

∑
e

⎧⎨⎩Q(e)(x(e−)− x(e+))2

⎡⎣∑
γij�e

|γij|Qπ(i)π(j)
⎤⎦⎫⎬⎭ ≤ Eπ(x, x)κ(Γ).

�

We now proceed to obtain a lower bound. For each state i, select exactly one closed
path σi from i to i that does not pass twice through the same edge, and with an
odd number of edges (for this to be possible, we assume that P is aperiodic), and
let Σ be the collection of paths so selected. For a path σi ∈ Σ, let

|σi|Q =
∑
e∈σi

1

Q(e)
.

Define
α = α(Σ) = max

e

∑
σi�e

|σi|Qπ(i) .

Theorem 20.2.5 (Diaconis and Strook, 1991) Let P be an irreducible and aperi-
odic transition matrix on the finite state space E, with stationary distribution π,
and assume (P, π) to be reversible. Then

λr ≥ −1 +
2

α
.

Proof. It suffices to prove (20.28) with B = 2
α
. For this, we use the easily estab-

lished identity
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1

2

∑
i,j∈E

(x(i) + x(j))2π(i)pij = 〈Px, x〉π + ‖x‖2π . (�)

If σi is a path from i to i with an odd number of edges, of the form σi = (i0 =
i, i1, i2, . . . , i2m, i), then

x(i) =
1

2
{(x(i0) + x(i1))− (x(i1) + x(i2)) + · · ·+ (x(i2m) + x(i))}

=
1

2

∑
e∈σi

(−1)n(e)(x(e+) + x(e−)),

where n(e) = k if e = (ik, ik+1) ∈ σi. Therefore,

‖x‖2π =
∑
i∈E

π(i)

4

{∑
e∈σi

1

Q(e)
1
2

Q(e)
1
2 (−1)n(e)(x(e+) + x(e−))

}2

,

and by Schwarz’s inequality, this quantity is smaller than or equal to

∑
i∈E

{
π(i)

4
|σi|Q

∑
e∈σi

(x(e+) + x(e−))2Q(e)

}

=
1

4

∑
e

{
(x(e+) + x(e−))2Q(e)

∑
σi�e

|σi|Qπ(i)
}

≤ α

4

∑
e

(x(e−) + x(e+))2Q(e).

Therefore, in view of (�),

‖x‖2π ≤ α

2

{‖x‖2π + 〈Px, x〉π
}
,

and this is the announced inequality. �

Example 20.2.6: Random walk on a graph. For the random walk on a graph
G = (V, E), recall that the stationary distribution is π(i) = di

2|E| , where di is the

degree of vertex i and |E| is the number of edges. We first apply the bound of
Theorem 20.2.4. For any edge e, Q(e) = 1

2|E| . Denoting by |γ| the length of a path
γ,

|γij|Q = |γij| × 2|E| .
Therefore

κ = max
e

∑
γij�e

|γij| × 2|E| didj
4|E|2

≤ max
e

∑
γij�e

|γij| × d2max

2|E|

where dmax is the maximum degree of a vertex. Therefore
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κ(Γ) ≤ 1

2|E|d
2
maxK ,

where
K := max

e
|{γ ∈ Γ; e ∈ γ}| ×max{|γ|; γ ∈ Γ} .

Finally

λ2 ≤ 1− 2|E|
d2|K . (20.30)

Similar calculations give for the bound in Theorem 20.2.5

λr ≥ −1 +
2

dmax|σ|b , (20.31)

where |σ| = max |σi|, and b := maxe |{σ ∈ Σ; e ∈ σ}|.

Bottleneck Bound

This bound concerns finite state space irreducible reversible transition matrices P.
It is in terms of flows on the transition graph.

For a non-empty set B ⊂ E, define the capacity of B,

π (B) :=
∑
i∈B

π (i) ,

and the edge flow out of B,

Q
(
B,B

)
:=

∑
i∈B,j∈B

π (i) pij .

Note that Q
(
B,B

)
= Q

(
B,B

)
and that 0 ≤ Q

(
B,B

) ≤ π (B) ≤ 1. For non-
empty B, define the bottleneck ratio of B:

Φ(B) :=
Q
(
B,B

)
π (B)

.

The bottleneck ratio of the pair (P, π) is

Φ∗ := inf

(
Φ(B); 0 < |B| < |E|, π (B) ≤ 1

2

)
. (20.32)

Example 20.2.7: For the pure random walk on G = (V, E),

π(i)pij =
di
2|E| di =

1

2|E|
if 〈i, j〉 is an edge, = 0 otherwise. In this case, defining the internal boundary ∂B
to be the set of states i ∈ B that are connected to an element of B by an edge,

Φ(B) =
|∂B|∑
i∈B di

.
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Theorem 20.2.8 Cheeger’s inequality:

1− 2Φ∗ ≤ λ2 ≤ 1− 1

2
(Φ∗)2 .

Proof. (Jerrum and Sinclair, 1989)

(a) Apply Rayleigh’s spectral theorem,

1− λ2 ≤ Eπ (x, x)

‖x‖2π
for any nontrivial vector x such that 〈x〉π = 0. Select B ⊂ E such that π (B) ≤ 1

2
,

and define

x (i) =

{
1− π (B) if i ∈ B,
−π (B) if i /∈ B.

Then 〈x〉π = 0 and ‖x‖2π = π (B) (1− π (B)). Also,

Eπ (x, x) =
1

2

∑
ij

(x (i)− x (j))2 π (i) pij

=
1

2

∑
i∈B

(· · · )
∑
j /∈B

(· · · ) + 1

2

∑
i/∈B

(· · · )
∑
j∈B

(· · · )

=
1

2
Q(B,B) +

1

2
Q(B,B) = Q(B,B).

Therefore,

1− λ2 ≤ Q(B,B)

π (B) (1− π (B))
≤ 2

Q(B,B)

π (B)
.

This being true for all B such that π(B) ≤ 1
2
, we have, by definition of Φ∗,

1− λ2 ≤ 2 Φ∗.

(b) Let u be a left-eigenvector of P associated with an eigenvalue λ 
= 1. In
particular, u is orthogonal to π, the left-eigenvector associated with the eigenvalue
λ1 = 1, and therefore u has positive as well as negative entries. The same is true
for x defined by

x (i) =
u (i)

π (i)
.

Assume without loss of generality that for some k (1 ≤ k ≤ r)

x (1) ≥ · · · ≥ x (k) > 0 ≥ x (k + 1) ≥ · · · ≥ x (r) ,

and that π (B) ≤ 1
2
for B := {1, . . . , k} (if necessary, change the order of the states,

and for the last assumption, change u into −u). Let

y (i) :=
u (i)

π (i)
1{u(i)>0} .
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We have uT (I −P) = uT (1− λ), and therefore

uT (I −P) y = (1− λ) uTy = (1− λ)
∑
i∈B

π (i) y (i)2 . (20.33)

Also,

uT (I −P) y =
∑
i∈B

r∑
j=1

(δji − pji)u (j) y (i)

≥
∑
i∈B

∑
j∈B

(δji − pji)u (j) y (i) ,

since the missing terms −pjiu (j) y (i) corresponding to i ∈ B and j /∈ B are
positive or null. Therefore,

uT (I −P)y ≥ 〈y, (I −P)y〉π ,

and by (20.33), (20.23) and reversibility (Theorem 20.1.2),

1− λ ≥

∑
i<j

π (i) pij (y (i)− y (j))2∑
i∈B

π (i) y (i)2
.

From (a+ b)2 ≤ 2 (a2 + b2), we obtain∑
i<j

π (i) pij (y (i) + y (j))2 ≤ 2
∑
i<j

π (i) pij
(
y (i)2 + y (j)2

)
,

and, by reversibility,∑
i<j

π (i) pij
(
y (i)2 + y (j)2

)
=

∑
i<j

π (i) pijy (i)
2 +

∑
i<j

π (j) pjiy (j)
2

=
∑
i�=j

π (i) pijy (i)
2 ≤

∑
i∈B

π (i) y (i)2 .

Therefore

1− λ ≥

∑
i<j

π (i) pij (y (i)− y (j))2∑
i∈B

π (i) y (i)2

∑
i<j

π (i) pij (y (i) + y (j))2

2
∑
i∈B

π (i) y (i)2
.

By Schwarz’s inequality and identity a2 − b2 = (a− b)(a+ b),(∑
i<j

π (i) pij
(
y (i)2 − y (j)2

))2

≤
(∑

i<j

π (i) pij (y (i)− y (j))2
)(∑

i<j

π (i) pij (y (i) + y (j))2
)
,
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and therefore

1− λ ≥ 1

2

⎛⎜⎜⎝
∑
i<j

π (i) pij
(
y (i)2 − y (j)2

)
∑
i∈B

π (i) y (i)2

⎞⎟⎟⎠
2

. (†)

Define B� = {1, . . . , �}. We have

∑
i<j

π (i) pij
(
y (i)2 − y (j)2

)
=

∑
i<j

π (i) pij

(∑
i≤l<j

(
y (�)2 − y (�+ 1)2

))

=
k∑

�=1

(
y (�)2 − y (�+ 1)2

) ∑
i∈B�,j /∈B�

π (i) pij

=
k∑

�=1

(
y (�)2 − y (�+ 1)2

)
F (B�) .

Since for 1 ≤ � ≤ k, π (B�) ≤ π (B) ≤ 1

2
, we have F (B�) ≥ Φ∗ π (B�). Therefore,

∑
i<j

π (i) pij
(
y (i)2 − y (j)2

) ≥ Φ∗
k∑

�=1

(
y (�)2 − y (�+ 1)2

)
π (B�)

= Φ∗
k∑

�=1

{(
y (�)2 − y (�+ 1)2

) �∑
i=1

π (i)

}

= Φ∗
k∑

i=1

{
π (i)

(
k∑

�=i

(
y (�)2 − y (�+ 1)2

))}
= Φ∗ ∑

i∈B
π (i) y (i)2 .

Therefore, from (†)
1− λ ≥ (Φ∗)2

2
.

�

Example 20.2.9: The cyclic graph. The vertices are n points uniformly dis-
tributed on the unit circle, and the n edges are those linking the neighbouring
vertices. Take n odd. For any B, Q(B,B) = 1

n
and one may easily check that Φ∗

is achieved by any set B of n−1
2

consecutive vertices, and then

Φ∗ =
2

n− 1
.

Therefore

λ2 ≤ 1− 2

(n− 1)2
.

It can be verified that the bound in Example 20.2.6 gives in this special case

λ2 ≤ 1− 8n

(n− 1)2(n+ 1)
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and is therefore of the same order but with a better constant. It turns out that
in this case the exact eigenvalues are available (Diaconis, 1988): cos(2π j

n
) (0 ≤

j ≤ n − 1), and therefore λ2 = 1 − 2π2

n2 + O( 1
n4 ). The Poincaré bound is therefore

comparable, up to a factor π2, to the actual spectral gap.

20.2.2 Strong Stationary Times

Strong stationary times, by which exact sampling for the stationary distribution
of a positive recurrent hmc can be achieved, will be defined right after the two
following examples.

Example 20.2.10: Top to random card shuffling, take 1. (Aldous and
Diaconis, 1987) The title refers to a method of shuffling a deck of N cards whereby
the top card of the deck is removed and placed at random in the deck, and the
procedure is repeated ad infinitum.

∗

∗

This defines an irreducible hmc {Xn}n≥0, where a state is a permutation of the
deck. In other words, it is a random walk on the group SN of permutations on
the set of N cards. Its stationary distribution is the uniform ditribution (Example
6.2.11). (Alternatively, use symmetry, and to make symmetry more apparent, ar-
range the cards in a circle rather than in a deck.) Denote by � the card originally
at the bottom. If there are j cards below � at time n, the j! possible arrangements
of these cards are equally likely, as the following inductive argument shows. The
statement is true for n = 0. Suppose it is true for some n ≥ 0, then it is true for
n+1. In fact two events can take place at time n+1. Either the top card is placed
above � in which case the claim is trivially true, or it is placed under � and it is
also true since inserting at a random position an element in a random permutation
of j elements results in a random permutation of j + 1 elements.

Let τj be the jth time a card is inserted below �. If there are N cards, then, at
time τN−1, card � has reached the top. Let τ = τN−1 + 1. Since for j ≤ N − 1,
at time τj all the j! arrangements of the j cards below � are equally likely, the
distribution of Xτ is uniform.

Note that τ is a Xn
0 -stopping time.
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Example 20.2.11: Lazy walk on the hypercube, take 2. In Example 6.2.6,
the lazy random walk on the N -dimensional hypercube E = {0, 1}N was described
distributionwise by the recurrence equation Xn+1 = f(Xn, Zn+1) where {Zn}n≥1

is an iid sequence of random variables uniformly distributed on {1, . . . , N} inde-
pendent of the initial state X0. More precisely, Zn = (Un, Bn) where the sequence
{(Un, Bn)}n≥1 is iid and uniformly distributed on {1, 2, . . . , N} × {0, 1}. The po-
sition at time n + 1 is that of Xn except that the bit in position Un+1 is replaced
by Bn+1.

Define a random time τ to be the first time for which the set {U1, U2, . . . , Un}
contains all the elements of {1, 2, . . . , N}. Because at this time all the coordinates
have been replaced by independent fair bits, the distribution at time τ is the
uniform distribution, that is, the stationary distribution.

This time, however, τ is not a Xn
0 -stopping time. It is a randomized Xn

0 -stopping
time in the sense of the next definition.

Definition 20.2.12 Let {Xn}n≥0 be a hmc with the representation as in Theorem

6.1.4. A random time τ with values in ¯ is called a randomized Xn
0 -stopping time

if, for all k ∈ N, the event {τ = k} is expressible in terms of X0, Z1, . . . , Zk.

The times τ of Examples 20.2.10 and 20.2.11 are randomized stopping times (Ex-
ercise 20.4.13).

If τ is a randomized Xn
0 -stopping, for all m,n ≥ 0 and for all i, j ∈ E,

P (Xm+n = j |Xn = i, τ ≤ n) = pij (m) .

Indeed, {τ ≤ n} is expressible in terms of X0, Z1, . . . , Zn, and is therefore indepen-
dent of Xm+n given Xn = j. Similar formulas, formally identical to the case where
τ is a usual, non-randomized, Xn

0 -stopping time, hold true and will be used in the
calculations below.

Definition 20.2.13 (Fill, 1991; Aldous and Diaconis, 1987; Diaconis and Fill,
1991) A randomized Xn

0 -stopping time τ with respect to the hmc {Xn}n≥0 admit-
ting a unique stationary distribution π is called a strong stationary time of this
hmc iff it is almost surely finite and

(α) Xτ is distributed according to π and is independent of τ .

If the requirement of independence of Xτ and τ is dropped, τ is simply called a
stationary time. The times τ of Examples 20.2.10 and 20.2.11 are strong stationary
times (Exercise 20.4.13).

In the above definition, condition (α) is equivalent to either one of the following
two conditions:

(β) For all i ∈ E and all n ≥ 0,
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P (Xn = i |τ = n) = π (i) .

(γ) For all i ∈ E and all n ≥ 0,

P (Xn = i |τ ≤ n) = π (i) .

The reader is invited to provide the proof (Exercise 20.4.14).

Also, if either (α), or (β), or (γ), holds, then {Xτ+n}n≥0 is a stationary hmc with
the transition matrix P and is independent of τ . To check this, just write

P (τ = k,Xτ = i0, Xτ+1 = i1, . . . , Xτ+n = in)

= P (τ = k,Xk = i0, Xk+1 = i1, . . . , Xk+n = in)

= P (τ = k,Xk = i0)P (Xk+1 = i1, . . . , Xk+n = in|τ = k,Xk = i0)

= P (τ = k)π(i0)P (Xk+1 = i1, . . . , Xk+n = in|Xk = i0)

= P (τ = k)Pπ(Xk = i0, Xk+1 = i1, . . . , Xk+n = in)

= P (τ = k)Pπ(X0 = i0, X1 = i1, . . . , Xn = in).

The announced result then follows.

Convergence Rates via Strong Stationary Times

Example 20.2.14: Lazy walk on the circle, take 2. (Diaconis and Fill,
1991) Let {Xn}n≥0 be a symmetric random walk on E = Zd, the integers modulo
d, identified with d points on the circle (see the figure below). It moves one step
in either direction or remains still, each motion with probability 1

3
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This chain is clearly ergodic with the uniform probability on E. A strong stationary
time can be constructed as follows in the case d = 2a. We treat the case d = 24 = 16
for definiteness.

Starting from 0, let T1 be the first time either state 4 or 12 is visited. Clearly, XT1

is uniformly distributed on {4, 12} and is independent of T1. Next, let T2 be the
first time after T1 when the chain visits the states at distance 2 from XT1 . Then
XT2 is uniformly distributed on {2, 6, 10, 14} and is independent of T2. Time T3

is now the first time after T2 when the chain hits a state at distance 1 from XT2 .
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Then XT3 is uniformly distributed on the odd numbers {1, 3, 5, 7, 9, 11, 13, 15} and
is independent of T3. Finally, let T be the first time after T3 where the chain makes
a clockwise move or stays still. We can take T as the desired strong stationary time,
since it is independent of XT , and XT is uniform on E.

For d = 2a, the distances successively traveled are ±2a−2,±2a−3, . . . ,±1 = ±2a−a.
The mean time to travel at distance b of this symmetric walk is 3

2
b2. The last step

from Ta−1 to Ta = T takes 3
2
time units on average. Therefore

E0[Ta] =
3

2
(22a−4 + . . .+ 4 + 1) =

3

2
22a(2−4 + 2−6 + . . .+ 2−2(a−1) + 2−2a).

Therefore, for a ≥ 2,

E0[Ta] ≤ 3

16
22a =

3

16
d2.

By Markov’s inequality,

P0(Ta > n) ≤ E0[Ta]

n
≤ 3

16

d2

n
,

and therefore, since the result would be the same for any state,

dV (μ
TPn, πT ) ≤ 3

16

d2

n
.

In this case, tmix(ε) ≤ 3
16

d2

ε
.

The tail of the distribution of a strong stationary time gives a bound for the rate
of convergence in variation of an ergodic hmc. This is the content of Theorem
20.2.16 below. For this, it is convenient to use the notion of separation distance
below.

Let α and β be two probability distributions on the denumerable space E. The
separation of α from β, denoted by s (α; β), is defined by

s (α; β) = max
i∈E

(
1− α (i)

β (i)

)
.

Note that 0 ≤ s (α; β) ≤ 1. (For the lower bound, observe that one cannot have
α (i) > β (i) for all i.)

Theorem 20.2.15 Let α and β be two probability distributions on the denumer-
able space E. Then

dV (α; β) ≤ s (α; β) .

Proof. Recall that dV (α; β) =
∑

i ;β(i)>α(i) (β (i)− α (i)). But the latter sum
equals

∑
i ;β(i)>α(i)

β (i)

(
1− α (i)

β (i)

)
≤
⎛⎝ ∑

i ;β(i)>α(i)

β (i)

⎞⎠ s (α; β) ≤ s (α; β) .

�
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Theorem 20.2.16 Let P be transition matrix of an irreducible positive recurrent
hmc {Xn}n≥0 with the stationary distribution π. If τ is a strong stationary time
of the chain with initial distribution μ, then

s
(
μTPn; πT

) ≤ P (τ > n) .

Proof. By (γ) after Definition 20.2.13,

P (Xn = i) ≥ P (Xn = i, τ ≤ n) = (1− P (τ > n)) π (i) .

Therefore, for all i,

P (τ > n) ≥ 1− P (Xn = i)

π (i)
.

�

Theorem 20.2.17 Let τ be a strong stationary time of the hmc {Xn}n≥0. Then
τ is also a stationary coupling time of the same chain.

Proof. For each m ≥ 0, define on {τ = m} the process
{
Y

(m)
n

}
n≥m

by

Y (m)
n = Xn if n ≥ m.

Since for n ≥ m, by definition of a strong stationary time, P (Xn = i, τ = m) =

π (i)P (τ = m), we see that, conditionally on {τ = m},
{
Y

(m)
n

}
n≥m

is a station-

ary hmc. It can be extended to a stationary hmc

{
Y

(m)
n

}
n≥0

. Letting Yn :=

Y
(m)
n on {τ = m}, we obtain an hmc {Yn}n≥0 that is stationary and such that

Xn = Yn for n ≥ τ . �

20.2.3 Reversibilization

SupposeP is an ergodic transition matrix on the finite state space E = {1, 2, . . . , r},
with stationary distribution π. This time, (P, π) is not assumed reversible. What
can be done to catch up with the results obtained above for the reversible case?

Consider the transition matrix P̃ of the time-reversed chain, defined by

p̃ij :=
π(j)pji
π(i)

,

or, in compact form, with D = D(π) as in (20.2),

P̃ := D−1PTD. (20.34)

The matrix M = M(P) := PP̃, that is
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M = PD−1PTD (20.35)

is reversible with respect to its stationary distribution π. To prove this assertion,
we have to verify that M∗ := D

1
2MD− 1

2 is symmetric, that is

D
1
2MD− 1

2 =
(
D

1
2MD− 1

2

)T

.

(The right-hand side is

D− 1
2MTD

1
2 = D− 1

2DPD−1PTD
1
2 = D

1
2PD−1PTD

1
2

whereas the left-hand side is D
1
2PD−1PTDD− 1

2 = D
1
2PD−1PTD

1
2 .)

The eigenvalues of M are real, and all belong to [−1,+1]. In fact, they all belong
to the interval [0, 1]. To see this, observe that M has the same eigenvalues as

D
1
2MD− 1

2 , and that the latter matrix is (D
1
2PD− 1

2 )(D
1
2PD− 1

2 )T , a symmetric
definite non-negative matrix. In particular, the sle is the slem.

The matrix M given by (20.35) is the multiplicative reversibilization of P. See
Exercise 20.4.12 for another type of reversibilization.

Theorem 20.2.18 (Fill, 1991) Let γ1 = γ1(M) be the second-largest eigenvalue
of M = PP̃, where P is an ergodic transition matrix on the finite state space E.
Then for any probability distribution ν on E,

|νTPn − πT |2 ≤ γ1(M)nχ2(ν; π) . (20.36)

Inequality (20.36) is called the χ2-contrast bound.

Proof. The following identity (Mihäıl, 1989) will be needed:

Var π(x) = Var π(P̃x) + 〈(1−M)x, x〉π . (20.37)

It is proven as follows. First, from (20.26), if we let x̂ = x− 〈x〉π1, then
〈(I −M)x, x〉π = 〈(I −M)x̂, x̂〉π = ‖x̂‖2π − 〈Mx̂, x̂〉π

= ‖x̂‖2π − 〈PP̃x̂, x̂〉π = ‖x̂‖2π − ‖P̃x̂‖2π,
where the fact that P̃ is the adjoint of P in �2(π) was taken into account. The
identity (20.37) follows since ‖x̂‖2π = Var π(x) and ‖P̃x̂‖2π = Var π(P̃x).

Now let χ2
n := χ2(νTPn; π) and ρn(i) :=

(νTPn)(i)
π(i)

. One verifies by inspection that

Var π(ρn) = χ2
n and P̃ρn = ρn+1. Therefore, from (20.37),

χ2
n = χ2

n+1 + 〈(1−M)ρn, ρn〉π .

By Rayleigh’s spectral theorem,

〈(1−M)ρn, ρn〉π ≥ (1− γ1(M)) Var π(ρn) = (1− γ1(M))χ2
n ,

and therefore χ2
n+1 ≤ γ1χ

2
n, from which it follows that χ2

n ≤ γn
1χ

2
0. But by (20.15),

dV (ν, π)
2 ≤ χ2(ν; π), and this finishes the proof. �
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20.3 Mixing Times

20.3.1 Basic Definitions

For a positive recurrent hmc with transition matrix P and stationary distribution
π, define for all n ≥ 0

d(n) := max
i∈E

dV (δiP
n, π) , d(n) := max

i,j∈E
dV (δiP

n, δjP
n) . (20.38)

These quantities are equivalent in the sense that

d(n) ≤ d(n) ≤ 2d(n) .

Proof.

The right-most inequality follows from the triangle inequality

dV
(
δTi P

n, δTj P
n
) ≤ dV

(
δTi P

n, π
)
+ dV

(
δTj P

n, π
)
.

Now, for all k ≥ 0, π(k) =
∑

j π(j)pjk(n), and therefore

π(A) =
∑
k∈A

∑
j

π(j)pjk(n) =
∑
j

π(j)

(∑
k∈A

pjk(n)

)
=
∑
j

π(j)Pj(Xn ∈ A) =
∑
j

π(j)δTj P
n(A) .

Therefore

dV
(
δTi P

n, π
)
= sup

A⊆E

(
δTi P

n(A)− π(A)
)

= sup
A⊆E

∣∣∣∣∣∑
j

π(j)
(
δTi P

n(A)− δTj P
n(A)

)∣∣∣∣∣
≤ sup

A⊆E

∑
j

π(j)
∣∣δTi Pn(A)− δTj P

n(A)
∣∣

=
∑
j

π(j) sup
A⊆E

∣∣δTi Pn(A)− δTj P
n(A)

∣∣
=
∑
j

π(j)dV
(
δTi P

n, δTj P
n
) ≤ dV

(
δTk P

n, δTj P
n
)
,

for any k ∈ E. Hence the left-most inequality. �

Define the following mixing times. For ε > 0,

tmix(ε) := inf{n ≥ 0 ; d(n) ≤ ε} , (20.39)

and
tmix := tmix(1/4). (20.40)
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Lemma 20.3.1 The function d is sub-multiplicative, that is, for all integers m,n:

d(n+m) ≤ d(n)× d(m) .

Proof. Let Y and Z be two random variables with respective distributions δTi P
n

and δTj P
n, and realizing maximal coupling for these distributions, that is

dV (δ
T
i P

n, δTj P
n) = P (Y 
= Z) .

Observe that

pi,k(n+m) =
∑
�

pi,�(n)p�,k(m) =
∑
�

P (Y = �)p�,k(m) = E [pY,k(m)]

and similarly, pj,k(n+m) = E [pZ,k(m)]. Therefore,

pi,k(n+m)− pj,k(n+m) = E [pY,k(m)− pZ,k(m)]

and

dV (δ
T
i P

n+m, δTj P
n+m)

=
1

2

∑
k

|pi,k(n+m)− pj,k(n+m)| = 1

2

∑
k

|E [pY,k(m)− pZ,k(m)]|

≤ E

[
1

2

∑
k

|pY,k(m)− pZ,k(m)|
]
= E [dV (pY,·(m), pZ,·(m))] .

The quantity under expectation is null if Y = Z and is in any case bounded by
d(n). Therefore

dV (δ
T
i P

n+m, δTj P
n+m) ≤ E

[
d(n)1Y �=Z

]
= d(n)P (Y 
= Z) = d(n)dV (δ

T
i P

n, δTj P
n) .

Maximizing over i, j yields the announced result. �

When N is an integer, by Lemma 20.3.1,

d(Ntmix(ε)) ≤ d(Ntmix(ε)) ≤ d(tmix(ε))
N ≤ (2ε)N .

In particular, with ε = 1
4
,

d(Ntmix) ≤ 2−N .

With N = N(ε) := �log2 ε−1 , 2−N ≤ ε, and therefore, d(Ntmix) ≤ ε, which
implies that

tmix(ε) ≤ �log2 ε−1 tmix. (20.41)
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20.3.2 Upper Bounds via Coupling

We now show how to compute mixing times via coupling. Recall that two random
sequences {Xn}n≥0 and {Yn}n≥0 with values in the same set E are said to couple
at time τ if n ≥ τ implies that Xn = Yn. By Theorem 16.1.12, dV (Xn, Yn) ≤
P (τ ≥ n). Applying this inequality to the coupling time of two hmc’s with the
same transition matrix P with initial states i and j respectively, we have that

dV (δiP
n, δjP

n) ≤ Pi,j(τ ≥ n) .

By Markov’s inequality,

Pi,j(τ ≥ n) ≤ Ei,j [τ ]

n
.

Therefore

Theorem 20.3.2

d(n) ≤ max
i,j∈E

Pi,j(τ ≥ n) ≤ max
i,j∈E

Ei,j[τ ]

n
.

Example 20.3.3: Lazy walk on the circle, take 1. This is by definition a
lazy random walk on the graph consisting of N points regularly placed on a circle
with an edge between each pair of adjacent vertices. The stationary distribution is
the uniform distribution. We construct a Markovian coupling {Xn, Yn}n≥0 in the
following way. At time n, supposing Xn 
= Yn, a fair coin is tossed. If heads, the
first particle moves one step in the direction chosen at random by means of another
fair coin tossed independently and the other particle stays still. If tails, the second
particle moves one step in the direction chosen at random by means of another fair
coin tossed independently and the other particle stays still. The two particles make
identical moves as soon as they collide for the first time. Calling Dn the distance
between the two particles, {Dn}n≥0 is a symmetric random walk on {0, 1, . . . , N}
with absorbing states 0 and N . The coupling time is the first time τ where the
symmetric random walk is absorbed at 0 or N . Therefore Ei,j[τ ] = k(N−k) where

k is the distance between i and j, and d(n) ≤ maxi,j∈E
Ei,j [τ ]

n
≤ N2

4n
. The right-hand

side equals 1
4
for n = N2, therefore tmix ≤ N2.

Example 20.3.4: Top to random card shuffling, take 2. (Aldous and
Diaconis, 1987) In the notation of take 1 of this example,

τ = τ1 + (τ2 − τ1) + · · ·+ (τ − τN−1) ,

where τ − τN−1 = 1. At time τi, card � has i cards below it, and the probability
that the current top card is inserted below � is therefore i+1

N
. Therefore, τi+1 − τi

is geometric:

P (τi+1 − τi = k) =
i+ 1

N

(
1− i+ 1

N

)k−1

.
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Consider now the following problem: Sample uniformly with replacement an urn
containing N balls, and denote by V the number of draws until each ball has been
sampled at least once. Let Vi be the number of draws until i distinct balls have
been sampled at least once. We have the identity

V = (V − VN−1) + · · ·+ (V2 − V1) + V1 .

Once i distinct balls have been drawn at least once, there is a probability N−i
N

of
sampling a ball not previously sampled. Therefore, Vi − Vi−1 is geometric:

P (Vi − Vi−1 = k) =
N − i

N

(
1− N − i

N

)k−1

.

In particular, τ and V have the same distribution. For each ball b, let Ab be the
event that ball b was not drawn in the first m = N log (N) + cN draws, c ≥ 0.
We have

P (V > m) = P (∪bAb) = N(1− 1

N
)m ≤ Ne−

m
N = Ne− log(N)−c = e−c .

Therefore

d(N log (N) + cN) ≤ (P (τ > N log (N) + cN) ≤ e−c ,

where d(k) = dV (μ
TPk, πT ). In particular, tmix(ε) ≤ N logN − log(ε)N .

20.3.3 Lower Bounds

Consider an irreducible ergodic hmc on the finite state space E, with transition
matrix P, and with a uniform stationary distribution π. Let d+(i) be the out-
degree of state i, that is the number of directed edges in the transition graph out
of vertex i: d+(i) := |{j ∈ E ; pij > 0}|, and let d+,max := maxi∈E d+(i). Therefore,
starting from any state, the maximum number of states accessible in n steps is
at most dn+,max. The distribution of Xn is therefore concentrated on a subset of E
with at most dn+,max elements. In particular, for any state i

dV (δ
T
i P

n, π) ≥ 1

|E|(|E| − dn+,max) .

In particular, if dn+,max ≤ (1− ε)|E|, that is, if n ≤ log((1−ε)|E|)
log d+,max

, then d(n) ≥ ε. This

implies that

tmix(ε) ≥ log ((1− ε)|E|)
log d+,max

.

Example 20.3.5: Random walk on a graph. Let dmax be the maximal degree
of the graph G = (V, E). For the random walk on this graph, d+,max = dmax and

therefore tmix(ε) ≥ log((1−ε)|E|)
log dmax

.
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From the directed transition graph of an irreducible ergodic hmc on the finite
state space E, with transition matrix P, construct a graph whose vertex set is
E and with an edge linking i and j if and only if pij + pji > 0. The diameter
D of the chain is by definition the diameter of this graph, that is the maximal
graph distance between two vertices. If i0 and j0 are two states at the maximal
graph distance D, then δi0P

�(D−1)/2	 and δi0P
�(D−1)/2	 have disjoint support, and

therefore d(!(D − 1)/2") = 1. In particular, for any ε < 1
2
,

tmix(ε) ≥
⌊
D − 1

2

⌋
.

For the next result, recall definition (20.32) of the bottleneck ratio.

Theorem 20.3.6 For an ergodic hmc with transition matrix P and bottleneck
ratio Φ∗,

tmix ≥ 1

4Φ∗ .

Proof. Denote by πB the restriction of π to the set B ⊂ E, and by ρB the
probability π conditioned by B:

πB(A) = π(A ∩ B), A ⊆ B, and ρB(A) =
π(A ∩ B)

π(B)
, A ⊆ E .

We have

π(B)dV (ρBP, ρB) = π(B)
∑

i;ρBP(i)≥ρB(i)

(ρBP(i)− ρB(i))

=
∑

i;πBP(i)≥πB(i)

(πBP(i)− πB(i)).

Since πB(i) = 0 on B, and πB(i) = π(i) on B,

πBP(i) =
∑
j∈B

πB(j)pji ≤
∑
j∈E

π(j)pji = π(i)

and therefore, if i ∈ B,
πBP(i) ≤ πB(i) ,

and for i 
∈ B, since πB(i) is then null,

πBP(i) ≥ 0 = πB(i) .

Therefore, from

π(B)dV (ρBP, ρB) =
∑
i∈B

(πBP(i)− πB(i)) .

Because πB(i) = 0 outside B, the right-hand side reduces to
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i∈B

∑
j∈B

π(j)pji = Q(B,B),

and, dividing by π(B)
dV (ρBP, ρB) = Φ(B) .

Now, since for all n ≥ 0, dV (ρBP
n+1, ρBP

n) ≤ dV (ρBP, ρB),

dV
(
ρBP

n+1, ρBP
n
) ≤ Φ(B) .

By the triangle inequality applied to the sum ρBP
n − ρB =

∑n−1
k=0 ρBP

k+1 − ρBP
k,

dV (ρBP
n, ρB) ≤ nΦ(B) . (�)

If π(B) ≤ 1
2
,

dV (ρB, π) ≥ π(B)− ρB(B) = π(B) = 1− π(B) ≥ 1

2
.

By the triangle inequality

1

2
≤ dV (ρB, π) ≤ dV (ρB, ρBP

n) + dV (ρBP
n, π) .

Letting n = tmix, and using (�),

1

2
≤ tmixΦ(B) +

1

4

from which the result follows. �

Example 20.3.7: Top to random card shuffling, take 3. (Aldous and
Diaconis, 1987) We prove that for any ε > 0, there exists a constant c0 such that
for all c ≥ c0, for sufficiently large N ,

d(N logN − cN) ≥ 1− ε .

In particular, there exists a constant c such that for sufficiently large N ,

tmix ≥ N logN − cN .

Proof. Let Aj denote the event that the original bottom j cards are in their
relative original order. Denote by σ0 the original configuration of the deck.

Let τj be the time it takes for the j-th card from the bottom to reach the top
of the deck, and let τj,i the time it takes for this card to pass from position i to
position i+ 1 (positions are counted from the bottom up). Then

τj =
N−1∑
i=j

τj,i .
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The τj,i’s (j ≤ i ≤ N − 1) are independent geometric random variables with

parameter p := i
N
. In particular, E [τj,i] =

N
i
and Var(τj,i) ≤ N2

i2
, and therefore

E [τj] =
N−1∑
i=j

N

i
≥ N(logN − log j − 1) ,

and

Var(τj) ≤ N2

∞∑
i=j

1

i(i+ 1)
≤ N2

j − 1
.

From these bounds and Chebyshev’s inequality,

P (τj < N logN − cN) ≤ P (τj − E [τj] < −N(c− log j − 1))

≤ P (|τj − E [τj] | > N(c− log j − 1))

≤ Var(τj)

N2(c− log j − 1)2

≤
N2

j−1

N2(c− log j − 1)2

≤ 1

j − 1
× 1

N2(c− log j − 1)2
≤ 1

j − 1

(provided that c ≥ log j + 2 for the last inequality).

If τj ≥ N logN − cN , the original j bottom cards are still in their original relative
order, and therefore, for c ≥ log j + 2,

δσ0P
N logN−cN(Aj) ≥ P (τj ≥ N logN − cN) ≥ 1− 1

j − 1
.

Now for the stationary distribution π, here the uniform distribution on the set of
permutations SN , π(Aj) =

1
j!

≤ 1
j−1

. Therefore, for c ≥ log j + 2,

d(N logN−cN) ≥ dV
(
δσ0P

N logN−cN , π
) ≥ δσ0P

N logN−cN(Aj)−π(Aj) ≥ 1− 2

j − 1
.

With j = ec−2, if N ≥ ec−2,

d(N logN − cN) ≥ 1− 2

ec−2 − 1
.

Denoting by g(c) the right-hand side of the above inequality, we have that

lim inf
N↑∞

d(N logN − cN) ≥ g(c) ,

where limc↑∞ g(c) = 1. �

Summarizing in rough terms the results of Examples 20.3.4 and 20.3.7: in order to
shuffle a deck of N cards by the top-to-random method, “N logN shuffles suffice,
but no less”.
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Books for Further Information

The problem of finding convergence rates for Markov chains is of central impor-
tance in applications, for instance in Monte Carlo sampling. It has therefore re-
ceived considerable attention and generated a vast literature. This chapter is an
introduction to this area and the reader is directed for more theory and examples
to [Aldous and Fill, 2002, 2014] and [Levin, Peres, and Wilmer, 2009]. Examples
where eigenvalues are known exactly are given in [Diaconis, 1988], a useful refer-
ence for the comparison of bounds. [Karlin, 1968] and [Karlin and Taylor, 1975]
have a number of examples in biology.

20.4 Exercises

Exercise 20.4.1. The χ2
distance in terms of the eigenstructure

Show that

χ2(pi·(n); π(·)) =
r∑

j=2

λ2n
j vj(i)

2,

where vj is the jth right-eigenvector associated with the reversible ergodic pair
(P, π), and λj is the corresponding eigenvalue.

Exercise 20.4.2. A characterization of the sle

Let {Xn}n≥0 be a stationary hmc corresponding to (P, π). Show that the sle λ2

of P is equal to the maximum of the correlation coefficient between f(X0) and
f(X1) among all real-valued functions f such that E[f(X0)] = 0.

Exercise 20.4.3. Another Poincaré type coefficient

(Sinclair, 1990) Prove the version of Theorem 20.2.4 where Poincaré’s coefficient
κ is replaced by

κ̃ = max
e

Q(e)−1
∑

γij ,e∈γij
|γij|π(i)π(j),

where |γ| is the length of path γ. In the pure random walk case of Example20.2.6
compare with the Poincaré type bound of Theorem 20.2.4.

Exercise 20.4.4. The star

Consider the random walk on the connected graph, the “star”, with one central
vertex connected to n outside vertices. Check that the corresponding transition
matrix has eigenvalues +1, 0 and −1, where 0 has multiplicity n − 1. What is
the period? To eliminate periodicity, make it a lazy walk with holding probability
pii = β. Show that eigenvalues the eigenvalues are now +1, β and 2β − 1, where
β has multiplicity n− 1. For small α, compare the exact slem with the bound of
Theorem 20.2.4.

Exercise 20.4.5. Random walk on a binary tree

Consider a random walk on a graph, where the graph is now a full binary tree of
depth L.
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(i) Show that the second largest eigenvalue λ2 satisfies

λ2 ≤ 1− 1

9L2L−1
.

(ii) Explain why formula (20.31) does not apply directly. Show that

λ2 ≥ 1−
(
2(2L − 1)

(
1− 1

2L+1 − 2

))−1

,

which is equivalent for large L to 1− 2−L−1. Hint: Use Rayleigh’s characterization
with x as follows: x(i) = 0, 1, or −1 according to whether i is the root, a vertex
on the right of the tree, or one on the left.

Exercise 20.4.6. Poincaré type bound for the random walk on a cube

Consider the random walk on the N -dimensional cube. Apply the Poincaré type
bound of Theorem 20.2.5 with paths γx leading from x to y by changing the
coordinates of x when they differ from that of y, inspecting the coordinates from
left to right. Show that

λ2 ≤ 1− 2

N2
.

(In this example, the exact eigenvalues are available: 1− 2j
N

with multiplicity
(
N
j

)
(0 ≤ j ≤ N), and therefore

λ2 = 1− 2

N
.

Therefore, the bound is off by a factor N .)

Exercise 20.4.7. d(n) and d(n)
Refer to Definition 20.38 and denote by P(E) the collection of all probability
distributions on E. Prove that

d(n) = sup
μ∈P(E)

dV (μ
TPn, π)

and
d(n) = sup

μ,ν∈P(E)

dV (μ
TPn, νTPn) .

Exercise 20.4.8. Random walk on the hypercube, take 1

In Example 20.2.11 prove that tmix(ε) ≤ N logN − log(ε)N . Compare with the
top to random card shuffle of Example 20.3.4. (Hint: the coupon collector.)

Exercise 20.4.9. Random walk on a group

Consider the random walk {Xn}n≥0 on a group G (defined by (6.2.11) and the lines

following it) with increment measure μ and transition matrix P. Let {X̂n}n≥0 be
another random walk on G, this time corresponding to the increment measure
μ̂, the symmetric of μ (that is, for all g ∈ G, μ̂(g) = μ(g−1)). Let P̂ be the
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corresponding transition matrix. Then, for all n ≥ 1, denoting by π the common
stationary distribution of the above two chains (equal the uniform distribution on
G), we have that

dV (δ
T
e P

n, π) = dV (δ
T
e P̂

n, π)

Exercise 20.4.10. Move-to-front policy

A professor has his N books on a bookshelf. His books are equally interesting for
his research, so that when he decides to take one from his library, it is in fact
chosen at random. The thing is that, being lazy or perhaps too busy, he does not
put the book back to where it was, but instead at the beginning of the collection,
in front of the other books. The arrangement on the shelf can be represented by a
permutation σ of {1, 2, . . . , N}, and the evolution of the arrangement is therefore
an hmc on the group of permutations SN .

(i) Show that this chain is irreducible and ergodic, and admits the uniform distri-
bution as stationary distribution.

(ii) Inspired by the top-to-random card shuffle Example 20.3.4 and Exercise 20.4.9,
show that tmix(ε) ≤ N logN − log(ε)N .

Exercise 20.4.11. Mixing time of random walk on the binary tree

Consider the random walk on the rooted binary tree of depth k whose number
of edges is therefore N = 2k+1 − 1. Show that its mixing time satisfies the lower
bound

tmix ≥ N − 2

2
.

(Hint: consider the set B ⊂ E consisting of the direct descendent of the root to
the right, vR, and of all the descendents of vR.)

Exercise 20.4.12. Additive reversibilization

The additive reversibilization of P is, by definition, the matrix A = A(P) :=
1
2
(P+ P̃), that is

A :=
1

2
(P+D−1PTD) . (20.42)

Show that this matrix is indeed reversible with respect to π.

Exercise 20.4.13. Strong stationary times

Prove that the times τ in Examples 20.2.10 and 20.2.11 are strong stationary times.

Exercise 20.4.14. Characterizations of strong stationary times

Show that condition (α) of Definition 20.2.13 is equivalent to either one of the
following two conditions:

(β) For all i ∈ E and all n ≥ 0,

P (Xn = i |T = n) = π (i) .

(γ) For all i ∈ E and all n ≥ 0,
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P (Xn = i |T ≤ n) = π (i) .

Exercise 20.4.15. Separation distance

Let P (E) be the collection of probability distributions on the countable set E.
Show that for all α, β ∈ Mp (E),

s (α; β) = inf {s ≥ 0 ; α = (1− s) β + sγ, γ ∈ P (E)} ,

where s denotes the separation pseudo-distance.

Exercise 20.4.16. Mixing time of the reversed random walk on a

group

The situation is that prevailing in Theorem 6.2.11. Let now μ be a not necessarily
symmetric probability distribution on G, and define its inverse μ̂ by

μ̂(g) = μ(g−1) .

Define the hmc {X̂n}n≥0 by

X̂n+1 = Ẑn+1 ∗ X̂n

where {Ẑn}n≥1 is an iid sequence with values in G and distribution μ̂, indepen-

dent of the initial state X̂0. It turns out that the forward hmc {Xn}n≥0 and the

backward hmc {Ẑn}n≥1 have the same mixing times: tmix = t̂mix.



Chapter 21

Exact Sampling

21.1 Backward Coupling

21.1.1 The Propp–Wilson Algorithm

The classical Monte Carlo Markov chain method of Chapter 19 provides an ap-
proximate sample of a probability distribution π on a finite state space E. Chapter
20 gives ways of measuring the accuracy of such an approximate sample in terms
of its variation distance from the target distribution. The goal is now to construct
an exact sample of π, that is, a random variable Z such that P (Z = i) = π(i) for
all i ∈ E. The following algorithm (Propp and Wilson, 1993) is based on a cou-
pling idea. One starts as usual from an ergodic transition matrix P with stationary
distribution π, just as in the classical mcmc method.

The algorithm is based on a representation of P in terms of a recurrence equation,
that is, for a given function f and an iid sequence {Zn}n≥1 independent of the
initial state, the chain satisfies the recurrence

Xn+1 = f(Xn, Zn+1) . (21.1)

The algorithm constructs a family of hmc’s with transition matrix P with the help
of a unique iid sequence of random vectors {Yn}n∈ , called the updating sequence,
where Yn = (Zn+1(1), · · · , Zn+1(r)) is a r-dimensional random vector, and where
the coordinates Zn+1(i) have a common distribution, that of Z1. For each N ∈
and each k ∈ E, a process {XN

n (k)}n≥N is defined recursively by:

XN
N (k) = k,

and, for n ≥ N ,

XN
n+1(k) = f(XN

n (k), Zn+1(X
N
n (k)).

(Thus, if the chain is in state i at time n, it will be at time n + 1 in state j =
f(i, Zn+1(i).) Each of these processes is therefore an hmc with the transition matrix
P. Note that for all k, � ∈ E, and all M,N ∈ , the hmc’s {XN

n (k)}n≥N and
{XM

n (�)}n≥M use at any time n ≥ max(M,N) the same updating random vector
Yn+1.

© Springer International Publishing Switzerland 2017
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If, in addition to the independence of {Yn}n∈ , the components Zn+1(1), Zn+1(2),
. . ., Zn+1(r) are, for each n ∈ , independent, we say that the updating is compo-
nentwise independent.

Definition 21.1.1 The random time

τ+ = inf{n ≥ 0;X0
n(1) = X0

n(2) = · · · = X0
n(r)}

is called the forward coupling time. The random time

τ− = inf{n ≥ 1;X−n
0 (1) = X−n

0 (2) = · · · = X−n
0 (r)}

is called the backward coupling time.

00

1
2
3
4
5

E

−1−2−3−4−5−6−7
−n

+1 +2 +3 +4
+n

τ− = 7 τ+ = 4

Figure 1. Backward and forward coupling

Thus, τ+ is the first time at which the chains {X0
n(i)}n≥0, 1 ≤ i ≤ r, coalesce.

Lemma 21.1.2 When the updating is componentwise independent, the forward
coupling time τ+ is almost surely finite.

Proof. Consider the (immediate) extension of Theorem 16.2.1 to the case of r
independent hmc’s with the same transition matrix. It cannot be applied directly
to our situation, because the chains are not independent. However, the probability
of coalescence in our situation is bounded below by the probability of coalescence in
the completely independent case. To see this, first construct the independent chains
model, using r independent iid componentwise independent updating sequences.
The difference with our model is that we use too many updatings. In order to
construct from this a set of r chains as in our model, it suffices to use for two chains
the same updatings as soon as they meet. Clearly, the forward coupling time of
the so modified model is smaller than or equal to that of the initial completely
independent model. �

Let τ := τ−. Let
Z = X−τ

0 (i).

(This random variable is independent of i. In Figure 1, Z = 2.) Then,
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Theorem 21.1.3 With a componentwise independent updating sequence, the back-
wardward coupling time τ is almost surely finite. Also, the random variable Z has
the distribution π.

Proof. We shall show at the end of the current proof that for all k ∈ , P (τ ≤
k) = P (τ+ ≤ k), and therefore the finiteness of τ follows from that of τ+ proven
in the last lemma. Now, since for n ≥ τ , X−n

0 (i) = Z,

P (Z = j) = P (Z = j, τ > n) + P (Z = j, τ ≤ n)

= P (Z = j, τ > n) + P (X−n
0 (i) = j, τ ≤ n)

= P (Z = j, τ > n)− P (X−n
0 (i) = j, τ > n) + P (X−n

0 (i) = j)

= P (Z = j, τ > n)− P (X−n
0 (i) = j, τ > n) + pij(n)

= An − Bn + pij(n) .

But An and Bn are bounded above by P (τ > n), a quantity that tends to 0 as
n ↑ ∞ since τ is almost surely finite. Therefore

P (Z = j) = lim
n↑∞

pij(n) = π(j).

It remains to prove the equality of the distributions of the forwards and backwards
coupling time. For this, select an arbitrary integer k ∈ . Consider an updating
sequence constructed from a bona fide updating sequence {Yn}n∈ , by replacing
Y−k+1, Y−k+2, . . . , Y0 by Y1, Y2, . . . , Yk. Call τ

′ the backwards coupling time in the
modified model. Clearly τ and τ ′ have the same distribution.

00

1
2
3
4
5

E

−1−2−3−4−5−6−7 +1 +2 +3 +4 +5 +6 +7

Y0 Y0Y1 Y1Y2 Y2Y3 Y3Y4 Y4Y5 Y5Y6 Y6 Y7Y7

Figure 2. τ+ ≤ k implies τ ′ ≤ k

Suppose that τ+ ≤ k. Consider in the modified model the chains starting at
time −k from states 1, . . . , r. They coalesce at time −k + τ+ ≤ 0 (see Figure 2),
and consequently τ ′ ≤ k. Therefore τ+ ≤ k implies τ ′ ≤ k, so that

P (τ+ ≤ k) ≤ P (τ ′ ≤ k) = P (τ ≤ k).

Now, suppose that τ ′ ≤ k. Then, in the modified model, the chains starting at
time k − τ ′ from states 1, . . . , r must at time −k + τ+ ≤ 0 coalesce at time k.
Therefore (see Figure 3), τ+ ≤ k. Therefore τ ′ ≤ k implies τ+ ≤ k, so that

P (τ ≤ k) = P (τ ′ ≤ k) ≤ P (τ+ ≤ k).
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00
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Figure 3. τ ′ ≤ k implies τ+ ≤ k

�

Note that the coalesced value at the forward coupling time is not a sample of π
(see Exercise 21.4.1).

21.1.2 Sandwiching

The above exact sampling algorithm is often prohibitively time-consuming when
the state space is large. However, if the algorithm required the coalescence of
two, instead of r processes, then it would take less time. The Propp and Wilson
algorithm does this in a special, yet not rare, case.

It is now assumed that there exists a partial order relation on E, denoted by (,
with a minimal and a maximal element (say, respectively, 1 and r), and that we
can perform the updating in such a way that for all i, j ∈ E, all N ∈ , all n ≥ N ,

i ( j ⇒ XN
n (i) ( XN

n (j).

However we do not require componentwise independent updating (but the updat-
ing vectors sequence remains iid). The corresponding sampling procedure is called
the monotone Propp–Wilson algorithm.

Define the backwards monotone coupling time

τm = inf{n ≥ 1;X−n
0 (1) = X−n

0 (r)} .

Theorem 21.1.4 The monotone backwards coupling time τm is almost surely fi-
nite. Also, the random variable X−τm

0 (1) (= X−τm
0 (r)) has the distribution π.

Proof. We can use most of the proof of Theorem 21.1.3. We need only to prove
independently that τ+ is finite. This is the case because τ+ is dominated by the first
time n ≥ 0 such that X0

n(r) = 1, and the latter is finite in view of the recurrence
assumption. �

Monotone coupling will occur with representations of the form (21.1) such that for
all z,
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Figure 4. Monotone Propp–Wilson algorithm

i ( j ⇒ f(i, z) ( f(j, z),

and if for all n ∈ , all i ∈ {1, . . . , r},
Zn+1(i) = Zn+1.

Example 21.1.5: A dam model. We consider the following model of a dam
reservoir. The corresponding hmc, with values in E = {0, 2, . . . , r}, satisfies the
recurrence equation

Xn+1 = min{r,max(0, Xn + Zn+1)},
where, as usual, {Zn}n≥1 is iid. In this specific model, Xn is the content at time
n of a dam reservoir with maximum capacity r, and Zn+1 = An+1 − c, where An+1

is the input into the reservoir during the time period from n to n+1, and c is the
maximum release during the same period. The updating rule is then monotone.

The Impatient Simulator

The average number of trials E [τ−] needed for a naive use of the Propp–Wilson
algorithm may be forbidding, and an impatient simulator could be tempted to fix
a large value for the number of steps he is ready to perform before giving up, and
start new attempts until he obtains coalescence within the precribed limit of time.
This will introduce a bias (see Exercise 21.4.3). What else can we do to accelerate
the procedure?

It is recommended that instead of trying the times −1, −2, etc., one uses successive
restarting times of the form αrT0. Let k be the first k for which αkT0 ≥ τ−. The
number of simulation steps used is 2

(
T0 + αT0 + · · ·+ αkT0

)
(the factor 2 accounts

for the fact that we are running two chains), that is

2T0

(
αk+1 − 1

α− 1

)
< 2T0

(
α2

α− 1

)
αk−1 ≤ 2τ−

α2

α− 1
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steps, where we have assumed that T0 ≤ τ−. In the best case, supposing we are
informed of the exact value of τ− by some oracle, the number of steps is 2τ−. The
ratio of the worst to best cases is α2

α−1
, which is minimized for α = 2. This is why

one usually suggests to start the successive attempts of backward coalescence at
times of the form −2kT0 (k ≥ 0).

We shall now relate the average backward recurrence time to the mixing time of
the chain.

Let (E,() be a partially ordered set. A subset A of E is called a chain if (A,() is
totally ordered. Denote by � := �(E) the length of the longest chain. For instance,
if E = {0, 1}N , and if ( is defined by

(x1, . . . , xN) ( (y1, . . . , yN ) ⇐⇒ xi ≤ yi (1 ≤ i ≤ N) ,

� = N (start with the maximal element (1, . . . , 1) and successively change the 1’s
into 0’s until you reach the minimal state (0, . . . , 0)).

Theorem 21.1.6
P (τ+ > k)

�
≤ d(k) ≤ P (τ+ > k) .

Proof. Let h(x) denote the length of the longest chain whose maximal element is
x. In the example, it is the Hamming weight of x, that is, the number of 1’s in
it. If Xk

0 (1) 
= Xk
0 (r), then h(Xk

0 (1)) + 1 ≤ h(Xk
0 (r)), and if Xk

0 (1) = Xk
0 (r), then

h(Xk
0 (1)) ≤ h(Xk

0 (r)). Therefore

1{Xk
0 (1)�=Xk

0 (r)} ≤ h(Xk
0 (r))− h(Xk

0 (1)) .

In particular,

P (τ+ > k) = P (Xk
0 (1) 
= Xk

0 (r)) ≤ E
[
h(Xk

0 (r))− h(Xk
0 (1))

]
.

Denoting by ρki the distribution δTi P
k of the chain with initial state i at time k

E
[
h(Xk

0 (r))− h(Xk
0 (1))

]
= Eρkr

[h(X0)]− Eρk1
[h(X0)]

≤ dV (ρ
k
r , ρ

k
1) (maxh(x)−minh(x)) ≤ �d(k) .

This proves the first inequality. For the second, observe that the event that two
chains starting in arbitrary initial distributions μ and ν will disagree at time k
implies that τ+ > k. Therefore dV (μP

k, νPk) ≤ P (τ+ > k) and the last inequality
follows since d(k) := supμ,ν dV (μP

k, νPk). �

The next theorem states that the function k → P (τ+ > k) is submultiplicative.

Theorem 21.1.7 Let k1 and k2 be integer-valued random variables. Then

P (τ+ > k1 + k2) ≤ P (τ+ > k1)P (τ+ > k2) .
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Proof. Exercise 21.4.4. �

Lemma 21.1.8

kP (τ+ > k) ≤ E [τ+] ≤ k

P (τ+ ≤ k)
.

Proof. The first inequality is just Markov’s inequality. By the telescope formula,

E [τ+]P (τ+ ≥ 0) + P (τ+ ≥ 1) + · · · =
∞∑
i=0

(P (τ+ > ik + 1) + · · ·+ P (τ+ > (i+ 1)k))

≤ 1 +
∞∑
i=0

kP (τ+ > ik) .

By submultiplicativity of k → P (τ+ > k), P (τ+ > ik) ≤ P (τ+ > k)i. Therefore,

E [τ+] ≤ k
∞∑
i=0

P (τ+ > k)i = k
1

1− P (τ+ > k)
= k

1

P (τ+ ≤ k)
.

�

Define the mixing time of the chain Tmix to be the first time k such that d(k) ≤ 1
e
.

Recall that k → d(k) is submultiplicative, and therefore, after k = Tmix(1 + log �)
steps,

d(k) ≤ d(Tmix)
1+log � =

(
1

e

)1+log �
1

e× elog �
=

1

e�
.

By Theorem 21.1.6,

P (τ+ > k) ≤ d(k)× � ≤ 1

e
.

Therefore, in view of Lemma 21.1.8

E [τ+] ≤ k

P (τ+ ≤ k)
≤ k

1− 1/e
≤ 2k = 2Tmix(1 + log �) .

Suppose we make m independent experiments, called the reference experiments,
resulting in the iid forward coalescence time sequence T1, . . . , Tm. We now would
like to have an idea of the time of forward coalescence τ+ of the experiment (in-
dependent of the reference experiments) we are about to perform. By the submul-
tiplicativity property of Theorem 21.1.7,

P (τ+ > T1 + . . .+ Tm) ≤ P (τ+ > T1)× · · · × P (τ+ > Tm) ≤ P (τ+ > T1)
m .

By symmetry, since τ+ and T1 are independent and identically distributed, P (τ+ >
T1) =

1
2
, and therefore

P (τ+ > T1 + . . .+ Tm) ≤ 1

2m
.

Recalling that the forward and backward coalescence times have the same distri-
bution, we also have that

P (τ− > T1 + . . .+ Tm) ≤ 1

2m
.
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21.2 Boltzmann Sampling

21.2.1 The Boltzmann Distribution

The goal in this section is similar to that of Section 21.1: to sample a given prob-
ability distribution. But now the distribution is simpler, since it is a uniform dis-
tribution over a certain class of elements of a given “size”, for instance binary
trees with a given number of vertices. In the previous section, one of the difficul-
ties resided in the evaluation of the partition function. Here things are different
because there exist efficient combinatorial methods for counting the elements of
complex collection of objects. But there remains the resource consuming task of
generating a uniform sample in a large set. As for Monte Carlo methods, the brute
force method of the inverse is not applicable because of the precision required (the
probabilities concerned are minuscule) and of the difficulty of encoding the objects
in question. The Boltzmann sampling method exploits the classical combinatorial
analysis methods that take advantage of the recursive description, when available,
of the collection of objects in question.

Unlabeled Models

Consider a denumerable class C of “objects”, the objects γ therein having a “size”
denoted by |γ|. Let Cn ⊆ C denote the collection of objects of size n and let
Cn := |Cn| denote its cardinality, henceforth assumed finite for all n. A primary
concern is uniform sampling of an object of Cn for predetermined n. That is,
we seek a random device that generates a random element Y ∈ Cn such that
P (Y = γ) = 1

Cn
for all γ ∈ Cn. For a start, we shall not be so ambitious. Instead,

we shall provide a sampler that generates a random object Y ∈ C in such a way
that for all n

P (Y = γ | |Y | = n) =
1

Cn

. (21.2)

In other words, if the sampler produces an object of size n, it is selected uniformly
among all the objects of size n. If we need a uniform sample of Cn for predetermined
n, it suffices to do rejection sampling: produce samples until you find one of the
required size n. Of course, the (random) number N of trials needed for this sample
may be forbiddingly large. This important issue will be discussed later.

The family, indexed by x ∈ +\{0}, of probability distributions on C

πx(γ) =
1

C(x)
x|γ| (γ ∈ C) , (21.3)

where
C(x) =

∑
γ∈C

x|γ|

is the normalizing constant, is called an ordinary Boltzmann model for C. Since∑
γ∈C ≡ ∑

n

∑
γ∈Cn , an alternative expression of the normalizing factor is

C(x) =
∑
n

Cnx
n . (21.4)
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The function C is the ordinary generating function (ogf) of C. The admissible
values of the parameter x are those in (0, RC) where RC is the radius of convergence
of the series (21.4).

Two particular collections need to be distinguished right away since they intervene
in most recursive descriptions of collections of objects. The “empty collection” E
(with 0 element) and the collection Z with only one element, of respective ogf’s
E(x) ≡ 1 and Z(x) = x.

The distribution (21.3) is such that any random element with this distribution
satisfies the requirement (21.2).

Proof. We have that

Px(Y = γ, |Y | = n) =
1

C(x)
xn

and

Px(|Y | = n) =
1

C(x)

∑
γ∈C,|γ|=n

xn =
1

C(x)

∑
γ∈Cn

xn =
1

C(x)
Cnx

n ,

and therefore

Px(Y = γ | |Y | = n) =
Px(Y = γ, |Y | = n)

Px(|Y | = n)
=

1

Cn

.

�

Labeled Models

Consider a class C of objects such that any object of size n can be considered
as an assembly of n atoms labeled by positive integers, with the restriction that
there is no repetition of the labels. If the labels of an object of size n all belong to
{1, 2, . . . , n}, one says that the object is tightly (or well) labeled. Otherwise it is
called a loosely (or weakly) labeled object. In the sequel, the following convention
is adopted: the atoms are assumed distinguishable from one another, and a given
labeling sequence refers to a fixed order of presentation of the atoms. For instance
if the atoms of an object of size 4 are presented in the order A, B, C, D, the
labeling (3, 2, 4, 1) says that A has the label 3, B the label 2, C the label 4 and D
the label 1.

Example 21.2.1: Cyclic permutations. Here C = K, the collection of all
cyclic permutations, where the objects in K of size n are the cyclic permutations
of {1, 2, . . . , n}. A cyclic permutation of size n is represented by a collection of
n points (the atoms) regularly spaced on the unit circle. These points are num-
bered from 1 to n. Reading the labels clockwise starting from any point gives a
cyclic permutation. For instance, with n = 4, the atoms being called A,B,C,D and
placed in the clockwise order on the circle, the labeling 3, 1, 2, 4 gives the cyclic
permutation (3, 1, 2, 4). Note that the cyclic permutations are well labeled.
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One may conventionally describe a cyclic permutation by choosing to start sys-
tematically from the atom labeled 1, here B, which gives (1, 2, 4, 3), the same
cyclic permutation as (3, 1, 2, 4). With this convention, it is immediate to count
the number of cyclic permutations of size n: Kn = (n − 1)!. Unfortunately, the
series

∑
n(n− 1)!xn is divergent for all x > 0.

The just mentioned ogf divergence problem is the principal motivation for the
following new definition, that of an exponential Boltzmann sampler, for which the
probability of drawing the object γ ∈ C is now

π̂x(γ) =
1

Ĉ(x)

x|γ|

|γ|! (γ ∈ C) , (21.5)

where

Ĉ(x) =
∑
γ∈C

x|γ|

|γ|!
is the normalizing constant. Alternatively, since

∑
γ∈C ≡ ∑

n

∑
γ∈Cn ,

Ĉ(x) =
∑
n

Cn

n!
xn . (21.6)

The function Ĉ is called the exponential generating function (egf) of C. The
admissible values of the parameter x are those in (0, R̂C) where R̂C is the radius
of convergence of the series (21.6). In the example of cyclic permutations,

K̂(x) =
∑
n

(n− 1)!
xn

n!
=
∑
n

xn

n
= log

(
1

1− x

)
when 0 < x < R̂K = 1.

As in the labeled case, one verifies that the distribution (21.5) satisfies requirement
(21.2). Indeed,

Px(Y = γ, |Y | = n) =
1

Ĉ(x)

xn

n!

and

Px(|Y | = n) =
1

Ĉ(x)

∑
γ∈C,|γ|=n

xn

n!
=

1

Ĉ(x)

∑
γ∈Cn

xn

n!
=

1

Ĉ(x)
Cn

xn

n!
,

and therefore

Px(Y = γ | |Y | = n) =
P̂x(Y = γ, |Y | = n)

P̂x(|Y | = n)
=

1

Cn

.

21.2.2 Recursive Implementation of Boltzmann Samplers

We are now going to describe, for a variety of classes C of objects, a specific
operation that delivers a random variable Y ∈ C distributed according to the
distribution πx. This operation, called the Boltzman sampler of C will be denoted
by BSx(C).
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Unlabeled Samplers

Some interesting collections of objects are built either by means of elementary op-
erations (disjoint union, cartesian product, . . . ) on simpler collections A, B, . . . , or
via a recursive process. The object of this section is to construct the corresponding
Boltzmann samplers from the Boltzmann samplers of the collections intervening
in their construction.

Let A and B be two denumerable collections of objects such that An and Bn are
finite for all n.

Disjoint union Let C := A + B where A and B are considered disjoint (that is,
if the “same” object belongs to both collections, it appears twice in C). We have
that Cn = An + Bn, and therefore

C(x) = A(x) + B(x) .

An element γ in C is either an element α ∈ A or an element β ∈ B. The probability
that a random element Y selected according to the probability distribution (21.3)
is α ∈ A is

πC,x(α) =
x|α|

A(x) + B(x)
=

x|α|

A(x)

(
A(x)

A(x) + B(x)

)
with a similar expression for πC,x(γ). In particular, the probability that a random
element Y is in A (resp., B) is

πC,x(A) =
A(x)

A(x) + B(x)
(resp., πC,x(B) = B(x)

A(x) + B(x)
) .

Therefore the Boltzmann model for C is the mixture of the Boltzmann models
for A and B with respective mixing probabilities A(x)

A(x)+B(x)
and B(x)

A(x)+B(x)
. Denote

by BSx(C) the Boltzmann sampler for C, that is, the operation that delivers a
random Y ∈ C according to the Boltzmann distribution (21.3). In this case, it can
be decomposed as follows: Draw a Bernoulli variable, equal to 1 with probability

A(x)
A(x)+B(x)

, and to 0 with probability B(x)
A(x)+B(x)

. If 1, call BSx(A), else, call BSx(B).
This is symbolized by

BSx(C) =
(
Bern

(
A(x)

A(x) + B(x)

)
−→ BSx(A) | BSx(B)

)
. (21.7)

In general, the notation

BSx(C) = (Bern (p1, p2, · · · , pk) −→ BSx(A1) | · · · | BSx(Ak))

tells us that the Boltzmann generator of C consists of two steps: (1) choose an index
i ∈ {1, 2, . . . , k} with probabiliy pi, and (2) call the Boltzmann generator of Ai.
To make this notation consistent with that used in (21.7), we add the notational
convention Bern (p, 1− p) ≡ Bern (p).

Cartesian product Consider now the collection C := A×B of ordered pairs from
A and B. Take for a size function
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|γ| = |(α, β)| := |α|+ |β| .
We have

C(x) =
∑
α,β

x|α|+|β| =
∑
α,β

x|α| x|β| =
(∑

α

x|α|
)(∑

β

x|β|
)

.

Therefore
C(x) = A(x)B(x)

and

πC,x((α, β)) =
x|α|

A(x)

x|β|

B(x)
= πA,x((α))πB,x((β)) .

The Boltzmann sampler for C therefore calls independently the Boltzmann sam-
plers for A and B, which give respectively the values α and β, and produces the
value γ = (α, β). This is symbolized by

BSx(C) = (BSx(A) ; BSx(B)) .

The next collection of objects can be defined as a sum, or recursively.

Sequences Let now C := A∗ be the collection of finite sequences of elements from
A (including the empty sequence). It is represented by the symbolic recursive
equation

C = E +A × C . (21.8)

According to the rule for disjoint union and cartesian product, the recursive de-
scription (21.8) gives for the generating function the equation C = 1 + AC, so
that

C(x) =
1

1− A(x)
.

Applying the rules for the sum A1+B1 where A1 = E and A2 = A×C of respective
generating functions A1(x) = E(x) = 1 and A2(x) = A(x)C(x) = A(x)

1−A(x)
, we have

BSx(C) =
(
Bern

(
A1(x)

A1(x) + A2(x)

)
−→ BSx(A1) | BSx(A2)

)
,

or, since A1(x)
A1(x)+A2(x)

= 1− A(x),

BSx(C) = (Bern (1− A(x)) −→ BSx(E) | BSx(A × C)) .
This means that with probability 1 − A(x), the Boltzmann sampler outputs the
empty sequence and stops, and that with probability A(x), it calls BSx(A×C). The
Boltzmann sampler BSx(A× C) issues a random element of A selected according
to the corresponding Boltzmann distribution concatenated with a random element
of C. This is clearly a recursive process. It will eventually stop, namely when a call
of BSx(C) results in the empty sequence.

Note that the recursive process terminates in a geometric time of mean 1
1−A(x)

, and
therefore the Boltzmann generator for a finite sequence of elements of A can be
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described as follows: Draw a geometric random variable of parameter A(x), and
given the value k of this variable, produce k successive independent elements of A
sampled from the Boltzmann distribution associated with A. This is symbolized
by

BSx(A∗) = (Geom (A(x)) −→ BSx(A)) .

This notation is a particular case of the following one

(Y −→ BSx(A))

which means that if the value of the integer-valued random variable Y is k, then
k independent calls of the Boltzmann sampler for A are done.

We have just seen how a recursive definition of a collection of objects gives a cor-
responding recursive sampling procedure. The Boltzmann samplers of collections
of objects that are defined via elementary operations and recursive procedures
can be constructed using the corresponding elementary operations and recursive
procedures.

Example 21.2.2: Binary trees. A recursive representation of the collection B
of finite binary trees is as follows

B = Z + (Z × B × B) ,
where Z is the collection consisting of a single object, here the tree with just one
vertex. The interpretation is as follows. A binary tree consists, either of a single
vertex, or of a vertex with two branches stemming from it and at the extremities
of which are two finite binary trees. The size of a binary tree is the number of its
vertices. Therefore Z(x) = x and B(x) = x+ xB(x)2, that is,

B(x) =
1− √

1− 4x2

2x
.

(The other choice of the root leads to C(0) = C0 = ∞.) The Boltzmann sampler
therefore has the symbolic form

BSx(B) =
(
Bern

(
x

B(x)

)
−→ Z | (Z ; BSx(B) ; BSx(B))

)
.

The following figures show in a special case the succession of operations. The first
call of the sampler resulted (probability 1− x

B(x)
) in an element of (Z ; BSx(B) ; BSx(B)),

that is, a point (the element of Z) plus two indeterminate trees each represented
in the figure by a question mark (?).

Each question mark will be replaced by a finite binary tree, each time obtained by
calling BSx(B). The next figure shows that the ? on the left has been replaced by
a vertex, and the ? on the right by a vertex and two indeterminate trees.
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The process continues until there are no indeterminate trees left.

Remark 21.2.3 It is clear at this point that a by-product of the Boltzmann
sampling method is the obtention of the generating function of the sequence Cn

(n ≥ 1) from which the sequence itself can, at least theoretically, be extracted.
However, historically, the method of combinatorial analysis exploiting the recursive
description of a collection of objects in order to compute its cardinality came first.

Labeled Samplers

Disjoint sum For the disjoint union C = A+ B the same computations as those
of the unlabeled case lead to

Ĉ(x) = Â(x) + B̂(x).

and therefore

BSx(C) =
(
Bern

(
Â(x)

Â(x) + B̂(x)

)
−→ BSx(A) | BSx(B)

)
. (21.9)

Labeled product We shall now define the labeled product A � B of two labeled
collections A and B. It is the union ⋃

α∈A,β∈B
α � β ,

where, by definition, α�β is the set of order-consistent relabelings of the cartesian
product (α, β). An example will perhaps best explain the notion of order-consistent
relabeling.

Suppose that α and β are of sizes k and m respectively. The size of (α, β) is
therefore n = k + m. Take for instance k = 3 and m = 2. The object α consists
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of 3 atoms, call them blue, white and red, which receive labels from 1 to 3,
say blue= 3, white= 1 and red= 2, so that the corresponding object is well
labeled by the sequence (3, 2, 1). Similarly, the object β contains 2 atoms, say
mouse and duck, which receive labels (numbers) from 1 to 2, say mouse= 1
and duck= 2, so that the corresponding object is well labeled by the sequence
(1, 2). Now the object (α, β) consists of 5 objects, blue, white, red, mouse and
duck that must be well labeled from 1 to 5. This implies a relabeling of the basic
atoms. This relabeling is said to be order-consistent (with the original labeling) if
it respects inside of each element α and β the relative order of the initial labeling.
For instance, the objects appearing in the same order as previously, that is blue,
white, red, mouse and duck, the label (5, 4, 1)(2, 3) is order-consistent with the
original labeling (3, 2, 1)(1, 2), whereas (1, 3, 4)(5, 2) is not.

It is important to note that the elements of A �B are of the same nature as those
of A × B. They are not of the form α � β as the notation unfortunately wrongly
suggests.

There are exactly
(
k+m
k

)
=
(
n
k

)
consistent relabelings, and therefore the number of

objects of size n in C = A � B is

Cn =
n∑

k=0

(
n

k

)
AkBn−k .

In particular, an elementary computation shows that

Ĉ(x) = Â(x)B̂(x) .

The probability of drawing an element from A � B of size |γ| = |α|+ |β| is
x|γ|

|γ|!Ĉ(x)
=

x|α|

|α|!Â(x) × x|β|

|β|!B̂(x)
× |α|!|β|!

(|α|+ |β|)!

=
x|α|

|α|!Â(x) × x|β|

|β|!B̂(x)
× 1

(|α|+|β|)!
|α|!|β|!

.

This reads as follows: randomly select an element (α, β) ∈ A × B, by selecting

independently α ∈ A and β ∈ B according to the respective distributions x|α|

|α|!Â(x)

and x|β|

|β|!B̂(x)
, an operation that is symbolized by

BSx(A × B) = (BSx(A) ; BSx(B)) ,
and then select randomly and uniformly an element (α′, β′) in α � β (whose cardi-

nality is, remember, (|α|+|β|)!
|α|!|β|! ).

Let A, B and C be labeled collections. The associativity property

A � (B � C) = (A � B) � C
is easily checked, and both sides define the labeled collection A � B � C. This
definition is extended to an arbitrary number of collections: A1, A2, . . . , Ak.
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Calculations similar to those of the case k = 2 give for the Boltzmann sampler
of A1 �A2 � · · · �Ak the following two-step procedure. First obtain the individual
samples of A1, A2, . . . , Ak:

BSx(A1 × A2 × · · · × Ak) = (BSx(A1) ; BSx(A2) ; . . . ; BSx(Ak)) ,

which gives an element (α1, α2, . . . αk) of A1×A2×· · ·×Ak, and obtain a random
element of (α1 � α2 � · · · � αk) by a random order-consistent relabeling chosen

uniformly among all the |α1|+···+|αk|
|α1|!···|αk|! order-consistent relabelings.

This random order-consistent relabeling is the final phase of Boltzmann sampling
and its mention is generally omitted.

Labeled sequences The k-th labeled power of A is, by definition, the labeled
product A �A � · · · �A (k times). It is also denoted by A�k. An element thereof is
called a labeled k-sequence of elements of A. The collection of labeled k-sequences
of elements of A will be denoted by Setk(A).

Denote by Set(A) the collection of sequences of elements from the labeled collection
A:

Set(A) = E +A+A �A+A �A �A+ · · · ,
where E is the empty collection. Therefore, Set(A) is the solution of the recursive
equation C = E + A � C. Application of the union rule and the labeled product
rules yields for the egf of the collection of labeled sequences the expression

Ĉ(x) =
∞∑
k=0

Â(x)k =
1

1− Â(x)
.

In particular, the same samplers as in the unlabeled case apply, in recursive form:

BSx(C) =
(
Bern

(
1− Â(x)

)
−→ BSx(E) | BSx(A × C)

)
,

or in non-recursive form:

BSx(A∗) =
(
Geom (Â(x)) −→ BSx(A)

)
.

If the value of the geometric random variable is k, this gives an element (α1, . . . , αk) ∈
Ak, and a random element from α1 � · · · , �αk has to be drawn uniformly among
the order-consistent relabelings of (α1, . . . , αk)).

Labeled sets Informally, a labeled k-set of elements of the labeled collection A
is a labeled k-sequence of elements of A, but two k-sequences that differ only by a
permutation of their components represent the same labeled k-set. Formally, the
collection Setk(A) of labeled k-sets of elements of the labeled collection A is the
quotient of Seqk(A) by the equivalence relation that identifies two k-sequences
that differ only by a permutation of their components. The egf of C = Seqk(A) is

Ĉk(x) =
∑
n

Ck,n
xn

n!
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where Ck,n is the number of k-sets of size n. Since a labeled k-set is associated with

exactly k! k-sequences, Ck,n = 1
k!
C̃k,n where C̃k,n is the number of k-sequences of

size n. Therefore

Ĉk(x) =
∑
n

1

k!
C̃k,n

xn

n!
,

that is:

Ĉk(x) =
1

k!
Â(x)k .

The collection of all labeled k-sets of elements of the labeled collection A is

Set(A) := E +A+ Set2(A) + · · · =
⋃
k≥0

Setk(A) .

The egf of C = Set(A) is therefore

Ĉ(x) =
∑
k≥0

1

k!
Â(x)k = eÂ(x) ,

and the probability that a set in the collection C := Set(A) has k components is
therefore

1

Ĉ(x)

∑
n

Ck,n
xn

n!
=

1

Ĉ(x)

1

k!
Â(x)k = e−Â(x) Â(x)

k

k!
.

The Boltzmann sampler of C := Set(A) is therefore

BSx(C) =
(
Poi(Â(x)) −→ BSx(A)

)
.

It will be convenient to introduce the collection

Set≥m(A) :=
⋃
k≥m

Setk(A)

where m is a positive integer. The egf of C = Set≥m(A) is

Ĉ(x) =
∑
k≥m

1

k!
Â(x) ,

and the probability that a set in the collection C := Set≥m(A) has k components
is therefore

1
k!
Â(x)∑

k≥m
1
k!
Â(x)

.

This is the distribution of a Poisson random variable Y of parameter λ = Â(x)
conditioned by Y ≥ m, denoted Poi≥m(λ). The corresponding Boltzmann sampler
is

BSx(C) =
(
Poi≥m(Â(x)) −→ BSx(A)

)
,

where Poi≥m(λ) represents the distribution of a Poisson random variable Y of
parameter λ conditioned by Y ≥ m.
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Labeled cycles Informally, a labeled k-cycle of elements of the labeled collection
A is a labeled k-sequence of elements of A, but two k-sequences that differ only
by a cyclic shift of their elements represent the same k-cycle. This definition is
analogous to that of labeled k-sets. The collection of labeled k-cycles is denoted
by Cyck(A), and the collection of labeled cycles by

Cyc(A) := E +A+ Cyc2(A) + . . . .

Exercise 21.4.10 asks you to find the corresponding Boltzmann generator.

From the elementary operations above, one can construct more complex objects.
The relevant notion is that of specifiability.

Definition 21.2.4 A specifiable labeled collection of objects is one that can be
finitely specified, possibly in a recursive way, from finite sets by means of disjoint
unions, Cartesian products as well as the sequence, set and cycle constructions.

Example 21.2.5: Surjections. A surjection from a finite non-empty set A to a
finite non-empty set B is a mapping φ : A → B such that φ(A) = B, that is each
element of B is the image by φ of at least one element of A. Identifying A and
B with {1, 2, . . . , n} and {1, 2, . . . , r} respectively, where n ≥ r ≥ 1, a surjection
φ from A to B (called a r-surjection since the range A has cardinality r) can be
represented by the ordered r-tuple of subsets of {1, 2, . . . , n}

(φ−1(1), φ−1(2), . . . , φ−1(r)) .

For instance, the 4-surjection φ defined by

φ(1) = 3, φ(2) = 1, φ(3) = 2, φ(4) = 1, φ(5) = 3, φ(6) = 4, φ(7) = 4, φ(8) = 1, φ(9) = 2 ,

is represented by the following 4-tuple of subsets of {1, 2, . . . , 9}

({2, 4, 8}, {3, 9}, {1, 5}, {6, 7}) .

The collection of all r-surjections is therefore

R(r) = Seqr(Set≥1(Z)) .

In particular its egf is
R(r)(x) = (ex − 1)r

whose coefficients are given by

R(r)
n =

∑
j=1

r

(
r

j

)
(−1)j(r − j)n .

An r-partition of the non-empty set A = {1, 2, . . . , n} is a partition of A in r
non-empty subsets, called blocks. The collection Sr of r-partitions is
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Sr = Setr(Set≥1(Z)), .

The relation between an r-partition and an r-surjection is the following: an r-
partition corresponds to a group of r! r-surjections deriving from one another by
a permutation of the r possible values. The egf of Sr is therefore obtained by
dividing by r! the egf of Rr:

S(r)(x) =
1

r!
(ex − 1)r .

Example 21.2.6: Partitions. The collection S of all set partitions is defined
formally by

S := E + S1 + S2 + · · · Sn + . . .

or, equivalently,
S = Set (Set≥1(Z)) ,

where Z is the collection consisting of a unique object, of size 1, and E is the
“empty partition”, the unique partition of ∅. The generating function of S is

Ŝ(x) =
∞∑
r=1

1

r!
(ex − 1)r = ee

x−1 .

The corresponding generator consists (the detailed proof is asked in Exercise
21.4.9) of the following procedure in three steps. First choose the number K of
blocks according to a Poisson distribution of parameter ex − 1. Then, if K = k,
draw k independent variables Y1, . . . , Yk from a Poisson distribution conditioned
by ≥ 1 which represent the sizes of the blocks. This gives the shape of the partition,
that is, the number and respective sizes of the block. The size of the set obtained
being n, a random permutation of the n atoms completes the construction (this is
the usual final random order-consistent relabeling).

We quote the following result, which is one of the key advantages of Boltzmann
sampling.

Theorem 21.2.7 (Duchon, Flajolet, Louchard and Schaeffer, 2004) Let C be a
specifiable labeled collection with an egf of convergence radius R̂C. Assume as
given an oracle that provides the finite collection of exact values at any x ∈ (0, R̂C)
of the egf’s intervening in the specification of C. Then the Boltzmann generator
of C has a complexity (measured in terms of the number of usual real-arithmetic
operations: add, substract, multiply and divide) that is linear in the size of the
output object.

The general proof is omitted as the conclusion can in many examples be verified
directly. Of course a similar result is true for unlabeled collections.
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21.2.3 Rejection Sampling

We now turn to the initial problem, that of sampling uniformly an object of a given
size. Some preliminary computations concerning the random variable N := |Y |
representing the size of the object selected from the Boltzmann distribution. The
generating function of this random variable is∑

n

Px(N = n)zn =
∑
n

1

C(x)
Cnx

nzn =
C(zx)

C(x)
.

Straighforward computations based on the identities

Ex[N ] =

(
∂

∂z

C(zx)

C(x)

)
z=1

, Ex[N(N − 1)] =

(
∂2

∂z2
C(zx)

C(x)

)
z=1

give

Ex[N ] = x
C ′(x)
C(x)

, Ex[N
2] =

xC ′(x) + x2C ′′(x)
C(x)

.

Also, it can be readily checked that

Vx(N) := Var(N) = x
d

dx
Ex[N ] .

In particular, x → Ex[N ] is a strictly increasing function of the parameter x if C
does not reduce to some Cn0 .

Approximate Size Sampling Performance

If the objective is to sample uniformly Cn ⊂ C, the collection of objects of size n,
for a given size n or sizes near n, it seems natural to tune the Boltzmann sampler
to a value xn such that

Exn
[N ] = n ,

or equivalently, xn is a root in (0, RC) of

n = x
C ′(x)
C(x)

. (21.10)

The function x ∈ (0, RC) → Ex[N ] is a strictly increasing function and we shall
assume that

lim
x↑RC−

Ex[N ] = ∞ , (21.11)

which guarantees the existence of xn for all n. This choice of the parameter will
lead to samples that have an average size n, but the variance may be large and
rejection sampling may require a forbidding number of trials until one finds a
sample of size exactly n.

Suppose now that we accept a relative tolerance ε, in other words that we are
happy with values of N that lie in the interval [n(1 − ε), n(1 + ε)]. By Markov’s
inequality,
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Px(|N − n| ≥ nε) ≤ E [(N − n)2]

n2ε2
.

Plugging in the value x = xn for which n = Ex[N ], this inequality reads

Px(n(1− ε) ≤ N ≤ n(1 + ε)) ≤ Vx(N)

Ex[N ]

1

ε2
.

Therefore:

Theorem 21.2.8 (Duchon, Flajolet, Louchard and Schaeffer, 2004) Under con-
dition (21.11) and

lim
x↑RC−

Vx(N)

Ex[N ]
= 0 , (21.12)

we have that for any ε > 0, with xn a solution of (21.10), the probability of ob-
taining a sample of size in [n(1− ε), n(1 + ε)] tends to 1 as n ↑ ∞.

Example 21.2.9: Partitions. For the class S of partitions, S(x) = ee
x−1 is an

entire function (RC = ∞) and

Ex[N ] = xex and Vx(N) = x(x+ 1)ex ,

and therefore conditions (21.11) and (21.12) are satisfied. Since xn is determined by
the implicit equation n = xne

xn , xn ∼ log n− log log n and the variance Vxn
(N) ∼√

n log n. Therefore, the probability that a sample falls outside of the tolerance

interval [n(1− ε), n(1 + ε)] is smaller than a quantity equivalent to 1
ε2

√
log n
n

.

Exact Size Sampling Performance

The following result of analysis is stated without proof.

Suppose that the generating function C satisfies conditions (21.11) and (21.11),
and has in addition the following properties.

(i) There exists a function δ : (0, RC) → (0, π) such that for |θ| < δ(x) as
x ↑ RC−,

C(xeiθ) ∼ C(x)eiθEx[N ]+ 1
2
θ2Vx(N) .

(ii) Uniformly as x ↑ RC−, for δ(x) ≤ |θ| ≤ π,

C(xeiθ) = o

(
C(x)

Vx(N)

)
.

Then,
Cnxn

C(xn)
∼ 1√

2πxnVxn
(N)

.

Therefore (Duchon, Flajolet, Louchard and Schaeffer, 2004 1):

1
This article also gives the references concerning the asymptotics of the coefficients of the

power series development of C(x).
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Theorem 21.2.10 Under the above conditions, the Boltzmann sampler BSxn
(C)

succeeds to deliver a sample of size exactly n in a mean number of trials asymptotic
to

√
2πVxn

(N). In particular, if C is specifiable, the overall cost of sampling is
O(n

√
2πVxn

(N)) on average.

21.3 Exact Sampling of a Cluster Process

21.3.1 The Brix–Kendall Exact Sampling Method

(Brix–Kendall, 2002) In order to simplify the notation, denote the grid 2 by V ,
a point in V being therefore of the form v = (i, j). Let X := {X(v)}v∈V be a
simple point process on V , that is, a random sequence with values in {0, 1}, called
the “germ point process”2, a “point” being a vertex v such that X(v) = 1. Let
Z := {Z(v)}v∈V be a collection of integer-valued random variables. Consider now
a family {Zu}u∈V of independent copies of Z, this family being also independent
of the basic simple point process X.

Define the cluster process with germ point process X and typical cluster Z to be
the sequence Y := {Yv}v∈V given by

Yv =
∑
u∈V

XuZu(v − u) .

The random variable just displayed can a priori take infinite values. To avoid this,
we impose the condition∑

u∈V
E [Xu]E [Z(v − u)] < ∞ (v ∈ V ) . (21.13)

We wish to obtain a sample of the cluster process Y on a finite “window” C ⊂ V .
Note that it suffices to produce the positive values Yv where v ∈ C. In principle,
we have to generate for each point of the germ point process located at u a sample
of Zu. It is assumed that the clusters Zu are easy to obtain, and therefore the
problem that remains is the possibly infinite number of points of the germ point
process X. However, we observe that the probability that a point of the germ point
process located at u contributes to the cluster process inside the window C is

αu := P

(∑
v∈C

Z(v − u) > 0

)
.

In particular, in view of assumption (21.13) and of the finiteness of the window
C, the average number of germ points contributing to the cluster process Y in the
window C,

∑
u∈V E [Xu] pu, is finite, and in particular the number of contributing

points is almost surely finite. This suggests the following procedure to sample the
cluster point process on the finite window in two steps3:

2
The problem considered in this section is the discrete version of the original one featuring

point processes.
3
[Brix and Kendall, 2002]
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Step 1. Generate a thinned version X̃ of the germ point process X, that is a point
process with the same distribution as X after independent thinning with thinning
probability αu.

Step 2. From each point of X̃ located at u, generate a sample of {Zu(v − u)}v∈C
conditioned by

∑
v∈C Zu(v − u) > 0.

The implementation of Step 2 consists in generating independent copies of Zu until
one of them satisfies condition

∑
v∈C Zu(v − u) > 0.

Step 1 can be implemented in the case where the germ point process is a Bernoulli
process, that is an independent sequence {X(v)}v∈V with P (Xu = 1) = βu. The

thinned germ point process X̃ is then an independent sequence {X̃(v)}v∈V with

P (X̃u = 1) = βuαu = pu. There remains the task of generating such a sequence.

21.3.2 Thinning the Grid

We first deal with the one-dimensional case. A “point process” on the one-
dimensional “grid” is, by definition, a sequence {Xn}n∈ of iid {0, 1}-valued
random variables, with the common distribution given by P (Xn = 1) = pn (n ≥ 0).
(We are therefore “thinning the grid” , considered as a deterministic point pro-
cess, with the thinning probability function pn.) Suppose that

∑
n≥0 pn < ∞, which

guarantees that the thinned grid has almost surely a finite number of points. In
order to obtain a sample of this point process, one cannot just draw a random
variable Xn for all points in succession, because there is a priori no stopping rule
indicating that we have reached the last point, denoted by T , of the point process.
We have to proceed otherwise. For this, note that

P (T = n) = P (Xn = 1, Xn+1 = 0, Xn+2 = 0, . . .) = pn
∏

k≥n+1

(1− pk) (�)

and that, for 0 ≤ k ≤ n− 1,

P (Xk = 1 | T = n) =
P (Xk = 1, T = n)

P (T = n)

=
P (Xk = 1, Xn = 1, Xn+1 = 0, Xn+2 = 0, . . .)

P (Xn = 1, Xn+1 = 0, Xn+2 = 0, . . .)

=
P (Xk = 1)P (Xn = 1, Xn+1 = 0, Xn+2 = 0, . . .)

P (Xn = 1, Xn+1 = 0, Xn+2 = 0, . . .)
= P (Xk = 1) .

Therefore, in order to simulate the thinned grid, one may start by sampling a
variable T with the distribution (�), and if T = n, set Xn = 1, Xn+1 = 0, Xn+2 =
0, . . . and for 0 ≤ k ≤ n− 1, sample Xk with the distribution P (Xk = 1) = pk.

There is still an issue left aside in the presentation of the thinning procedure of the
grid . Can we really sample T? In fact one needs a closed expression of the distri-
bution of this variable, in particular of the infinite product

∏
k≥n+1(1− pk). If this

is not possible, we may be lucky enough to find a dominating distribution func-
tion qn ≥ pn such

∑
n qn < ∞ and such that the infinite product

∏
k≥n+1(1 − qk)
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is computable. One would then sample the thinned grid with thinning probabil-
ity function qn. A point of this dominating grid located at k will be kept with
probability pk/qk as a point of the desired sample.

For instance, try qn = 1− e−αn with
∑

n≥0 αn < ∞ so that∑
n≥0

qn =
∑
n≥0

1− e−αn ≤
∑
n≥0

αn < ∞ .

The infinite products
∏

k≥n+1(1 − qk) should be computable, or equivalently, the
sum

∑
n≥0 αn should be computable (and finite). This is the case if, for instance,

αn = C 1
n2 .

Thinning the two-dimensional grid 2 is conceptually the same. Here the proba-
bility of keeping the point v ∈ 2 is pv, where it is assumed that

∑
v∈V pv < ∞

whereby guaranteeing that the number of points of the thinned grid is finite. It
suffices to apply bijectively 2 on by enumerating the points of 2 as {vn}n≥0

(the function n → vn is called a scanning of the grid). The rest is then obvious.
The ordering of the points of V has an influence on the computation load (see
Exercises 21.4.13 and 21.4.14).

Books for Further Information

[Levin, Peres, and Wilmer, 2009] for the Propp–Wilson algorithm, [Flajolet and
Sedgewick, 2009] for Boltzmann sampling.

21.4 Exercises

Exercise 21.4.1. Forward coupling does not yield exact sampling

Refer to the Propp–Wilson algorithm. Show that the coalesced value at the for-
wards coupling time is not a sample of π. For a counterexample use the two-state
hmc with E = {1, 2}, p1,2 = 1, p2,2 = p2,1 = 1/2.

Exercise 21.4.2. Monotone Propp–Wilson for the Ising model

Consider the classical Ising model of Example 9.1.7 with energy function U(x) =∑
〈v,w〉 x(v)x(w). Define on the state space E = {−1,+1}S the partial order rela-

tion ( defined as follows: x = (x(v), v ∈ V ) ( y = (y(v), v ∈ V ) if and only if for
all v ∈ V , x(v) = +1 implies y(v) = +1. Show that the monotone Propp–Wilson
algorithm of Section 21.1 can be applied.

Exercise 21.4.3. The impatient simulator

Find a very simple example showing that use of the Propp–Wilson algorithm by
an impatient customer introduces a bias.

Exercise 21.4.4.

Prove Theorem 21.1.7.
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Exercise 21.4.5. The binary tree

Let Cn be the number of binary trees of size n. Give a recursion equation linking
C1, . . . , Cn.

Exercise 21.4.6. General graphs

Explain why the unlabeled collection G of general plane trees can be represented by
the grammar G = Z×G∗. What is its egf? Describe the corresponding Boltzmann
sampler.

Exercise 21.4.7. Unary-binary trees

A collection of plane trees V is defined by the grammar V = Z × (E + V + V2).
Describe the general form of the corresponding trees and give the corresponding
Boltzmann sampler.

Exercise 21.4.8. Filaments
Consider the labeled class of objects F defined by F = Set(Seq≥1(Z)). (A sample
will look like a finite set whose elements are non empty sequences of points. A
given sequence of points is represented by a segment (a “filament”) whose length
is the number of points in the sequence. The filaments are placed at random in
space, and then represent an assembly of filaments floating freely in a liquid.)

What is the egf of this model? Describe the corresponding Boltzmann sampler?
Is Theorem 21.2.8 applicable?

Exercise 21.4.9. Partitions
Prove in detail the conclusions of Example 21.2.6.

Exercise 21.4.10. Labeled cycles

Show that the egf of the collection C := Cyc(A) is

Ĉ(x) = log
1

1− Â(x)
.

Deduce from this that

BSx(C) =
(
Log(Â(x)) −→ BSx(A)

)
where Log(λ) represents the log-law of parameter λ < 1 of distribution

P (Y = k) =
1

log(1− λ)−1)

λk

k
.

Exercise 21.4.11. Approximate Boltzmann sampling

Suppose that the conditions of Theorem 21.2.8 are satisfied. Defining σ(x) :=
Vx(N), show that the average number of trials necessary to obtain a Boltzmann
sample of size in the interval [n(1− ε), n(1 + ε)] is smaller than 1

1−σ(xn)

n2ε2

.
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Exercise 21.4.12. Exact Boltzmann sampling

Show that the egf’s of Example 21.2.6 (partitions) and Exercise 21.4.8 (filaments),
respectively, satisfy the conditions of Theorem 21.2.10, and that the asymptotic

average cost of exact sampling is, respectively, O
(
n

3
2

√
log n

)
and O

(
n

3
2

)
.

Exercise 21.4.13. Comparison of evanescence rates

Consider a sequence {Xn}n∈ of iid {0, 1}-valued random variables, with the com-
mon distribution given by P (Xn = 1) = pn (n ≥ 0), and such that

∑
n pn < ∞.

Let {X̂n}n∈ be another sequence of iid {0, 1}-valued random variables, with the
common distribution given by P (X̂n = 1) = p̂n (n ≥ 0). Let T and T̂ be their
respective vanishing time (for instance T = inf{n ≥ 0 ;

∑
k≥nXk = 0}). Show

that if the sequence {p̂n}n∈ is obtained by reordering the sequence {pn}n∈ in
decreasing order, then T̂ is stochastically smaller than T . (Hint: coupling.)

Exercise 21.4.14. Optimal thinning order

Apply the result of Exercise 21.4.13 to the problem of Subsection 21.3.2 where
v → pv is decreasing with the distance (say, euclidean) |v| from the origin to v
(|v1| ≤ |v2| implies pv1 ≥ pv2). Give an optimal scanning, that is a scanning that
minimizes the average number of sites to be inspected.
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Appendix

A.1 Some Results in Analysis

Infinite Products

Let {an}n≥1 be a sequence of numbers of the interval [0, 1).

(a) If
∑∞

n=1 an < ∞, then

lim
n↑∞

n∏
k=1

(1− ak) > 0.

(b) If
∑∞

n=1 an = ∞, then

lim
n↑∞

n∏
k=1

(1− ak) = 0.

Proof. (a): For any numbers c1, . . . , cn in [0, 1), it holds that (1− c1) (1− c2) · · · (1− cn) ≥
1− c1 − c2 − · · · − cn (proof by induction). Since

∑∞
n=1 an converges, there exists

an integer N such that for all n ≥ N ,

aN + · · ·+ an <
1

2
.

Therefore, defining π (n) =
∏n

k=1 (1− ak), we have that for all n ≥ N ,

π (n)

π (N − 1)
= (1− aN) · · · (1− an) ≥ 1− (aN + · · ·+ an) ≥ 1

2
.

Therefore, the sequence {π (n)}n≥N is a nonincreasing sequence bounded from

below by 1
2
π (N − 1) > 0, so that limn↑∞ π (n) > 0.

(b): Using the inequality 1 − a ≤ e−a when a ∈ [0, 1), we have that π (n) ≤
e−a1−a2−···−an , and therefore, if

∑∞
n=1 an = ∞, limn↑∞ π (n) = 0. �
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Abel’s Theorem

Lemma A.1.1 Let {bn}n≥1 and {an}n≥1 be two sequences of real numbers such
that

b1 ≥ b2 ≥ · · · ≥ bn ≥ 0,

and such that for some real numbers m and M , and all n ≥ 1,

m ≤ a1 + · · ·+ an ≤ M.

Then, for all n ≥ 1,

b1m ≤ a1b1 + · · ·+ anbn ≤ b1M. (A.1)

Proof. Let sn = a1 + · · ·+ an, and use Abel’s summation technique to obtain

a1b1 + · · ·+ anbn = b1s1 + b2 (s2 − s1) + · · ·+ bn (sn − sn−1)

= s1[b1 − b2] + · · ·+ sn−1[bn−1 − bn] + sn[bn].

The bracketed terms are all nonnegative, and therefore replacing each si by its
lower bound or upper bound yields the result. �

We recall without proof a standard result of calculus.

Lemma A.1.2 The sum of a uniformly convergent series of continuous functions
is a continuous function.

Theorem A.1.3 Let {an}n≥1 be a sequence of real numbers such that the radius
of convergence of the power series

∑∞
n=0 anz

n is 1. Suppose that the sum
∑∞

n=0 an
is convergent. Then the power series

∑∞
n=0 anx

n is uniformly convergent in [0, 1]
and

lim
x↑1

∞∑
n=0

anx
n =

∞∑
n=0

an, (A.2)

where x ↑ 1 means that x tends to 1 from below.

Proof. It suffices to prove that
∑∞

n=0 anx
n is uniformly convergent in [0, 1],

since (A.2) then follows by Lemma A.1.2. Write Ap
n = an + · · · + ap. By con-

vergence of
∑∞

n=0 an, for all ε > 0, there exists an integer n0 ≥ 1 such that
p ≥ n ≥ n0 implies |Ap

n| ≤ ε, and therefore, since for x ∈ [0, 1], the sequence
{xn}n≥0 is nonincreasing, Abel’s lemma gives, for all x ∈ [0, 1],

|anxn + . . .+ apx
p| ≤ εxn ≤ ε,

from which uniform convergence follows. �
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Theorem A.1.4 Let {an}n≥0 be a sequence of nonnegative real numbers such that
the power series

∑∞
n=0 anz

n has a radius of convergence equal to 1. If

lim
x↑1

∞∑
n=0

anx
n = a ≤ ∞, (A.3)

then ∞∑
n=0

an = a. (A.4)

Proof. For x ∈ [0, 1) ,
∑∞

n=0 anx
n ≤ ∑∞

n=0 an (the an are nonnegative), and
therefore by (A.3), a ≤ ∑∞

n=0 an. This proves the result when a = ∞.
We now suppose that a < ∞. From

∑p
n=0 an = limx↑1

∑p
n=0 anx

n, we have that∑p
n=0 an ≤ a < ∞. Thus,

∑p
n=1 an is a nondecreasing sequence, converging to

some α, α ≤ a < ∞. By Abel’s theorem, limx↑1
∑∞

n=0 anx
n = α, and therefore

α = a and
∑∞

n=0 an = a. �

Dominated Convergence for Series

Theorem A.1.5 Let {ank}n≥1,k≥1 be an array of real numbers such that for some
sequence {bk}k≥1 of nonnegative numbers satisfying

∑∞
k=1 bk < ∞, it holds that for

all n ≥ 1, k ≥ 1, |ank| ≤ bk. If for all k ≥ 1, limn↑∞ ank = ak, then

lim
n↑∞

∞∑
k=1

ank =
∞∑
k=1

ak .

Proof. Let ε > 0 be fixed. Since
∑∞

k=1 bk is a convergent series, one can find
M = M (ε) such that

∑∞
k=M+1 bk <

ε
3
. In particular, since |ank| ≤ bk and therefore

|ak| ≤ bk, we have
∞∑

k=M+1

|ank|+
∞∑

k=M+1

|ak| ≤ 2ε

3
.

Now, for sufficiently large n,

M∑
k=1

|ank − ak| ≤ ε

3
.

Therefore, for sufficiently large n,∣∣∣∣∣
∞∑
k=1

ank −
∞∑
k=1

ak

∣∣∣∣∣ ≤
M∑
k=1

|ank − ak|+
∞∑

k=M+1

|ank|+
∞∑

k=M+1

|ak| ≤ ε

3
+

2ε

3
= ε.

�
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Theorem A.1.6 Let {ank}n≥1,k≥1 be an array of nonnegative real numbers such
that for all k ≥ 1, the sequence {ank}n≥1 is non-decreasing with limit ak ≤ ∞.
Then

lim
n↑∞

∞∑
k=1

ank =
∞∑
k=1

ak .

Proof. If
∑∞

k=1 ak < ∞, the result is a direct application of the dominated con-
vergence theorem.
For the case

∑∞
k=1 ak = ∞, let A > 0 be fixed, and choose M = M (A) such

that
∑M

k=1 ak ≥ 2A. For sufficiently large n,
∑M

k=1 (ak − ank) ≤ A. Therefore, for
sufficiently large n,

∞∑
k=1

ank ≥
M∑
k=1

ak +
M∑
k=1

(ank − ak) ≥ 2A− A = A.

�

Theorem A.1.7 Let {ank}n≥1,k≥1 be an array of nonnegative real numbers. Then

∞∑
k=1

lim inf
n↑∞

ank ≤ lim inf
n↑∞

∞∑
k=1

ank.

Proof. By definition of lim inf, for fixed k,

znk := inf(ank, an+1,k, . . .)

increases, as n ↑ ∞, to lim infn↑∞ ank. Therefore, by monotone convergence,

∞∑
k=1

lim inf
n↑∞

ank = lim
n↑∞

↑
∞∑
k=1

znk.

But since znk ≤ ank,
∞∑
k=1

znk ≤
∞∑
k=1

ank,

and therefore

lim
n↑∞

∞∑
k=1

znk ≤ lim inf
n↑∞

∞∑
k=1

ank.

�
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Tykhonov’s Theorem

Theorem A.1.8 Let {xn}n≥0 be a sequence of elements of [0, 1]N, that is

xn = (xn(0), xn(1), . . .),

where xn(k) ∈ [0, 1] for all k, n ∈ N. There exists a strictly increasing sequence
of integers {nl}l≥0 and an element x ∈ {0, 1}N such that

lim
l↑∞

xnl
(k) = x(k) (A.5)

for all k ∈ N.

Proof. Since the sequence {xn(0)}n≥0 is contained in the closed interval [0, 1], by

the Boltzano–Weierstrass theorem, one can extract a subsequence
{
xn0(l)(0)

}
l≥0

such that
lim
l↑∞

xn0(l)(0) = x(0)

for some x(0) ∈ [0, 1]. In turn, one can extract from
{
xn0(l)(1)

}
l≥0

a subsequence{
xn1(l)(1)

}
l≥0

such that

lim
l↑∞

xn1(l)(1) = x(1)

for some x(1) ∈ [0, 1]. Note that

lim
l↑∞

xn1(l)(0) = x(0).

Iterating this process, we obtain for all j ∈ N a sequence
{
xnj(l)

}
l≥0

that is a

subsequence of each sequence
{
xn0(l)(1)

}
l≥0

, . . . ,
{
xnj−1(l)(1)

}
l≥0

and such that

lim
l↑∞

xnj(l)(k) = x(k)

for all k ≤ j, where x(1), . . . , x(j) ∈ [0, 1]. The diagonal sequence nl = nl(l) then
establishes (A.5). �

A.2 Greatest Common Divisor

Let a1, . . . , ak ∈ N be such that max (a1, . . . , ak) > 0. Their greatest common
divisor (gcd) is the largest positive integer dividing all of them. It is denoted by
g.c.d (a1, . . . , ak). Clearly, removing all zero elements does not change the g.c.d, so
that we may assume without loss of generality that all the ak’s are positive.

Let {an}n≥1 be a sequence of positive integers. The sequence {dk}k≥1 defined by
dk = gcd (a1, . . . , ak) is bounded below by 1 and is nonincreasing, and it therefore
has a limit d ≥ 1, a positive integer called the g.c.d of the sequence {an}n≥1.
Since the dk’s are integers, the limit is attained after a finite number of steps, and
therefore there exists a positive integer k0 such that d = gcd (a1, . . . , ak) for all
k ≥ k0.
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Lemma A.2.1 Let S ⊂ Z contain at least one nonzero element and be closed
under addition and subtraction. Then S contains a least positive element a, and
S = {ka ; k ∈ Z}.

Proof. Let c ∈ S, c 
= 0. Then c− c = 0 ∈ S. Also 0− c = −c ∈ S. Therefore, S
contains at least one positive element. Denote by a the smallest positive element
of S. Since S is closed under addition and subtraction, S contains a, a+a = 2a, . . .
and 0− a = −a, 0− 2a = −2a, . . . , that is, {ka ; k ∈ Z} ⊂ S.
Let c ∈ S. Then c = ka+ r, where k ∈ Z and 0 ≤ r < a. Since r = c−ka ∈ S, we
cannot have r > 0, because this would contradict the definition of a as the smallest
positive integer in S. Therefore, r = 0, i.e., c = ka. Therefore, S ⊂ {ka ; k ∈ Z}.
�

Lemma A.2.2 Let a1, . . . , ak be positive integers with greatest common divisor d.
There exist n1, . . . , nk ∈ Z such that d =

∑k
i=1 niai.

Proof. The set S =
{∑k

i=1 niai ; n1, . . . , nk ∈ Z

}
is closed under addition and

subtraction, and therefore, by Lemma A.2.1, S = {ka ; k ∈ Z}, where a =∑k
i=1 niai is the smallest positive integer in S.

Since d divides all the ai’s, d divides a, and therefore 0 < d ≤ a. Also, each ai is
in S and is therefore a multiple of a, which implies that a ≤ g.c.d (a1, . . . , ak) = d.
Therefore, d = a. �

Theorem A.2.3 Let d be the g.c.d of A = {an ;n ≥ 1}, a set of positive integers
that is closed under addition. Then A contains all but a finite number of the positive
multiples of d.

Proof. We may assume without loss of generality that d = 1 (otherwise, di-
vide all the an’s by d). For some k, d = 1 = g.c.d (a1, . . . , ak), and therefore by
Lemma A.2.2,

1 =
k∑

i=1

niai

for some n1, . . . , nk ∈ Z. Separating the positive from the negative terms in the
latter equality, we have 1 = M − P , where M and P are in A.

Let n ∈ N, n ≥ P (P − 1). We have n = aP + r, where r ∈ [0, P − 1]. Necessarily,
a ≥ P −1, otherwise, if a ≤ P −2, then n = aP +r < P (P −1). Using 1 = M−P ,
we have that n = aP + r (M − P ) = (a− r)P + rM . But a− r ≥ 0. Therefore, n
is in A. We have thus shown that any n ∈ N sufficiently large (say, n ≥ P (P − 1))
is in A. �
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A.3 Eigenvalues

The basic results of the theory of matrices relative to eigenvalues and eigenvectors
will now be reviewed, and the reader is referred to the classical texts for the proofs.

Let A be a square matrix of dimension r × r, with complex coefficients. If there
exists a scalar λ ∈ C and a column vector v ∈ Cr, v 
= 0, such that

Av = λv (resp., vTA = λvT ), (A.6)

then v is called a right-eigenvector (resp., a left-eigenvector) associated with the
eigenvalue λ. There is no need to distinguish between right and left-eigenvalues
because if there exists a left-eigenvector associated with the eigenvalue λ, then
there exists a right-eigenvector associated with the same eigenvalue λ. This follows
from the facts that the set of eigenvalues of A is exactly the set of roots of the
characteristic equation

det(λI − A) = 0 (A.7)

where I is the r × r identity matrix, and that

det(λI − A) = det(λI − AT ).

The algebraic multiplicity of λ is its multiplicity as a root of the characteristic
polynomial det(λI − A).

If λ1, · · · , λk are distinct eigenvalues corresponding to the right-eigenvectors v1, · · · , vk
and the left-eigenvectors u1, · · · , uk, then v1, · · · , vk are independent, and so are
u1, · · · , uk.

Call Rλ (resp., Lλ) the set of right-eigenvectors (resp., left-eigenvectors) associated
with the eigenvalue λ, plus the null vector. Both Lλ and Rλ are vector subspaces
of Cr, and they have the same dimension, called the geometric multiplicity of λ.
In particular, the largest number of independent right-eigenvectors (resp., left-
eigenvectors) cannot exceed the sum of the geometric multiplicities of the distinct
eigenvalues.

The matrix A is called diagonalizable if there exists a nonsingular matrix Γ of the
same dimensions such that

ΓAΓ−1 = Λ, (A.8)

where

Λ = diag (λ1, · · · , λr)

for some λ1, · · · , λr ∈ C, not necessarily distinct. It follows from (A.8) that with
U = ΓT , UTA = UTΛ, and with V = Γ−1, AV = V Λ = ΛV , and therefore
λ1, · · · , λr are eigenvalues of A, and the ith row of UT = Γ (resp., the ith column
of V = Γ−1) is a left-eigenvector (resp., right-eigenvector) of A associated with the
eigenvalue λi. Also, A = V ΛUT and therefore

An = V ΛnUT . (A.9)
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Clearly, if A is diagonalizable, the sum of the geometric multiplicities of A is exactly
equal to r. It turns out that the latter is a sufficient condition of diagonalizabil-
ity of A. Therefore, A is diagonalizable if and only if the sum of the geometric
multiplicities of the distinct eigenvalues of A is equal to r.

Example A.3.1: Distinct eigenvalues. By the last result, if the eigenvalues
of A are distinct, A is diagonalizable. In this case, the diagonalization process
can be described as follows. Let λ1, · · · , λr be the r distinct eigenvalues and let
u1, · · · , ur and v1, · · · , vr be the associated sequences of left and right-eigenvectors,
respectively. As mentioned above, u1, · · · , ur form an independent collection of
vectors, and so do v1, · · · , vr. Define

U = [u1 · · · ur], V = [v1 · · · vr]. (A.10)

Observe that if i 
= j, uT
i vj = 0. Indeed, λiu

T
i vj = uT

i Avj = λju
T
i vj, which implies

(λi − λj)u
T
i vj = 0, and in turn uT

i vj = 0, since λi 
= λj by hypothesis. Since
eigenvectors are determined up to multiplication by an arbitrary non-null scalar,
one can choose them in such a way that uT

i vi = 1 for all i ∈ [1, r]. Therefore,

UTV = I, (A.11)

where I is the r × r identity matrix. Also, by definition of U and V ,

UTA = ΛUT , AV = ΛV. (A.12)

In particular, by (A.11), A = V ΛUT . From the last identity and (A.11) again, we
obtain for all n ≥ 0,

An = V ΛnUT , (A.13)

that is,

An =
r∑

i=1

λn
i viu

T
i . (A.14)

A.4 Kolmogorov’s 0–1 Law

The discussion of this section is partly heuristic, but the proof of the 0-1 law
follows closely the rigorous proof that the reader will find in a standard text on
probability theory.

Let {Xn}n≥1 be a sequence of discrete random variables taking their values in the
denumerable space E. Define, for each 1 ≤ m ≤ n, the sigma-field σ(Xm, . . . , Xn)
to be the smallest sigma-field that contains all the events {X� = i�} for all m ≤
� ≤ n, all i� ∈ E. Equivalently, it is the smallest sigma-field that contains all
the events of the form {Xm = im, . . . , Xn = in} for all im, . . . , im ∈ E. Still
equivalently, it is the smallest sigma-field that contains all the events of the form
{(Xm, . . . , Xn) ∈ C} for all C ∈ Em−n+1. In other words, this sigma-field contains
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all the events that are expressible1 in terms of (Xm, . . . , Xn). We shall simplify the
notation and denote it by σ(Xn

m).

For fixed m ≥ 1, the union ∪∞
n=mσ(X

n
m) is an algebra (not a sigma-field in general)

denoted A(Xn
m). The smallest sigma-field containing A(Xn

m) is, by definition, the
sigma-field σ(X∞

m ). The sigma-field σ(X∞
1 ) contains the events that are expressible

in terms of X1, X2, . . .

The intersection of sigma-fields is a sigma-field. Therefore ∩m≥1σ(X
∞
m ) is a sigma-

field, called the tail sigma-field of the sequence {Xn}n≥1. Any event therein is
called a tail event and does not depend on any finite number of terms of the
stochastic sequence, say X1, . . . , Xr, because it belongs to σ(X∞

r+1) and therefore is
expressible in terms ofXr+1, Xr+2, . . .. Typical tail events for a real-valued sequence

are {∃ limn↑∞ Xn}, or {∃ limn↑∞
∑n

k=1 Xk

n
}. However, {limn↑∞

∑n
k=1 Xk = 0} is not

a tail event, since it depends crucially on X1, for example.

The following result is the Kolmogorov zero-one law.

Theorem A.4.1 The tail sigma-field of a sequence {Xn}n≥1 of independent ran-
dom variables is trivial, that is, if A is a tail event, then P (A) = 0 or 1.

Proof. The proof depends on the following lemma.

Lemma A.4.2 Let A be an algebra generating the sigma-field F and let P be a
probability on F . To any event B ∈ F and any ε > 0, one can associate an event
A ∈ A such that P (A*B) ≤ ε.

Proof. The collection of sets

G := {B ∈ F ; ∀ε > 0, ∃A ∈ A with P (A* B) ≤ ε}

obviously contains A. It is a sigma-field. Indeed, Ω ∈ A ⊆ G and stability of G
by complementation is clear. Finally, let the Bn’s (n ≥ 1) be in G and ε > 0
be given. By the sequential continuity of probability, there exists K such that
P (∪n≥1Bn −∪K

n=1Bn) ≤ 2−1ε. Also there exist An’s in A such that P (An *Bn) ≤
2−n−1ε. Therefore

P ((∪K
n=1An)* (∪K

n=1Bn)) ≤
K∑

n=1

2−n−1ε ≤
∑
n≥1

2−n−1ε = 2−1ε .

Finally:

1
We rely on the intuition of the reader for the definition of “expressible” since the correct

definition would require more care, as would be the case in a more advanced course in abstract

probability. Let us for the time being say the following. A real random variable Z is “expressible”

in terms of {Xn}n≥1 if there exists a (measurable) function f : E∞ → such that Z =

f(X1, X2, . . .). An event A is “expressible” in terms of {Xn}n≥1 if the random variable Z := 1A

is expressible in terms of of {Xn}n≥1. This definition of course assumes that you know the

meaning of “measurable function”.
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P ((∪K
n=1An)* (∪n≥1Bn)) ≤ ε .

The proof of stability of G by countable unions is completed since A is an algebra
and therefore ∪K

n=1An ∈ A.

Therefore G is a sigma-field that contains A and in particular the sigma-field F
generated by A. �

We now return to the proof of Theorem A.4.1. Fix an arbitrary ε > 0. Let A be
an event of the tail sigma-field. It is a fortiori an event of σ(X∞

m ), and since the
latter is the smallest sigma-field containing the algebra ∪∞

n=1σ(X
n
1 ), there exists

(by Lemma A.4.2) Aε ∈ ∪∞
n=1σ(X

n
1 ) such that P (A*Aε) ≤ ε. This Aε is in some

σ(Xp
1 ), by definition of ∪∞

n=1σ(X
n
1 ). The event A being in the tail sigma-field is

in particular in σ(X∞
p+1). Since the latter is the smallest sigma-field containing

the algebra ∪∞
�=p+1σ(X

�
p+1), there exists (by Lemma A.4.2) some r > p and some

Ãε ∈ σ(Xr
p+1) such that P (A * Ãε) ≤ ε. Now, Ãε and Aε are independent, and

therefore,
P (Ãε ∩ Aε) = P (Ãε)P (∩Aε) .

But the left-hand side and the right-hand side are by a proper choice of ε arbitrarily
close from P (A ∩ A) = P (A) and P (A)P (A) = P (A)2. Therefore P (A) = P (A)2

and this is possible only if P (A) = 0 or P (A) = 1. �

A.5 The Landau Notation

In the so-called Landau notational system, f(n) = O(g(n)) means that there exists
a positive real number M and an integer n0 such that for |f(n)| ≤ M |g(n)| for all
n ≥ n0; f(n) = o(g(n)) and f(n) = ω(g(n)) mean repectively that limn↑∞

|f(n)|
|g(n)| = 0

and limn↑∞
|f(n)|
|g(n)| = ∞ .

The notation f(n) � g(n) will be used to mean that f(n) = o(g(n)). Of course,
f(n) � g(n) means that g(n) � f(n). Also, the symbol ω(n) will represent a
function increasing arbitrarily slowly to ∞. In particular, any power of an “omega
function” is an omega function. This is why the reader will encounter equalities of
the type ω(n)2 = ω(n), which of course must be interpreted symbolically.
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Erdös, P. and A. Rényi, “On the evolution of random graphs”, Magyar Tud. Akad.
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utilisateurs”, Thèse de Docteur–Ingénieur, Université Paris 6, 1975.
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