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PREFACE xi

ONE OF THE VERY FIRST TIMES DR. GOOD served as a statistical 
consultant, he was asked to analyze the occurrence rate of leukemia cases 
in Hiroshima, Japan following World War II. On August 7, 1945 this city 
was the target site of the fi rst atomic bomb dropped by the United States. 
Was the high incidence of leukemia cases among survivors the result of 
exposure to radiation from the atomic bomb? Was there a relationship 
between the number of leukemia cases and the number of survivors at 
certain distances from the atomic bomb ’ s epicenter? 

 To assist in the analysis, Dr. Good had an electric (not an electronic) 
calculator, reams of paper on which to write down intermediate results, 
and a prepublication copy of Scheffe ’ s  Analysis of Variance . The work 
took several months and the results were somewhat inconclusive, 
mainly because he could never seem to get the same answer twice — a 
consequence of errors in transcription rather than the absence of any 
actual relationship between radiation and leukemia. 

 Today, of course, we have high - speed computers and prepackaged 
statistical routines to perform the necessary calculations. Yet, statistical 
software will no more make one a statistician than a scalpel will turn one 
into a neurosurgeon. Allowing these tools to do our thinking is a sure 
recipe for disaster. 

 Pressed by management or the need for funding, too many research 
workers have no choice but to go forward with data analysis despite 
having insuffi cient statistical training. Alas, though a semester or two of 
undergraduate statistics may develop familiarity with the names of some 
statistical methods, it is not enough to be aware of all the circumstances 
under which these methods may be applicable. 

Preface
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 The purpose of the present text is to provide a mathematically rigorous 
but readily understandable foundation for statistical procedures. Here are 
such basic concepts in statistics as null and alternative hypotheses, p - value, 
signifi cance level, and power. Assisted by reprints from the statistical 
literature, we reexamine sample selection, linear regression, the analysis of 
variance, maximum likelihood, Bayes ’  Theorem, meta - analysis and the 
bootstrap. New to this edition are sections on fraud and on the potential 
sources of error to be found in epidemiological and case - control studies. 

 Examples of good and bad statistical methodology are drawn from 
agronomy, astronomy, bacteriology, chemistry, criminology, data mining, 
epidemiology, hydrology, immunology, law, medical devices, medicine, 
neurology, observational studies, oncology, pricing, quality control, 
seismology, sociology, time series, and toxicology.  

 More good news: Dr. Good ’ s articles on women sports have appeared 
in the  San Francisco Examiner ,  Sports Now , and  Volleyball Monthly ; 22 
short stories of his are in print; and you can fi nd his 21 novels on Amazon 
and zanybooks.com. So, if you can read the sports page, you ’ ll fi nd this 
text easy to read and to follow. Lest the statisticians among you believe 
this book is too introductory, we point out the existence of hundreds of 
citations in statistical literature calling for the comprehensive treatment we 
have provided. Regardless of past training or current specialization, this 
book will serve as a useful reference; you will fi nd applications for the 
information contained herein whether you are a practicing statistician or a 
well - trained scientist who just happens to apply statistics in the pursuit of 
other science. 

 The primary objective of the opening chapter is to describe the main 
sources of error and provide a preliminary prescription for avoiding them. 
The hypothesis formulation — data gathering — hypothesis testing and 
estimation — cycle is introduced, and the rationale for gathering additional 
data before attempting to test after - the - fact hypotheses detailed. 

 A rewritten Chapter  2  places our work in the context of decision theory. 
We emphasize the importance of providing an interpretation of each and 
every potential outcome in advance data collection. 

 A much expanded Chapter  3  focuses on study design and data 
collection, as failure at the planning stage can render all further efforts 
valueless. The work of Berger and his colleagues on selection bias is given 
particular emphasis. 

 Chapter  4  on data quality assessment reminds us that just as 95% 
of research efforts are devoted to data collection, 95% of the time 
remaining should be spent on ensuring that the data collected warrant 
analysis. 
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 Desirable features of point and interval estimates are detailed in Chapter 
 5  along with procedures for deriving estimates in a variety of practical 
situations. This chapter also serves to debunk several myths surrounding 
estimation procedures. 

 Chapter  6  reexamines the assumptions underlying testing hypotheses 
and presents the correct techniques for analyzing binomial trials, counts, 
categorical data, continuous measurements, and time - to - event data. We 
review the impacts of violations of assumptions, and detail the procedures 
to follow when making two -  and k - sample comparisons. 

 Chapter  7  is devoted to the analysis of nonrandom data (cohort 
and case - control studies), plus discussions of the value and limitations 
of Bayes ’  theorem, meta - analysis, and the bootstrap and permutation 
tests, and contains essential tips on getting the most from these 
methods. 

 A much expanded Chapter  8  lists the essentials of any report that will 
utilize statistics, debunks the myth of the  “ standard ”  error, and describes 
the value and limitations of p - values and confi dence intervals for reporting 
results. Practical signifi cance is distinguished from statistical signifi cance 
and induction is distinguished from deduction. Chapter  9  covers much the 
same material but from the viewpoint of the reader rather than the writer. 
Of particular importance are sections on interpreting computer output and 
detecting fraud. 

 Twelve rules for more effective graphic presentations are given in 
Chapter  10  along with numerous examples of the right and wrong ways to 
maintain reader interest while communicating essential statistical 
information. 

 Chapters  11  through  15  are devoted to model building and to 
the assumptions and limitations of a multitude of regression methods 
and data mining techniques. A distinction is drawn between goodness 
of fi t and prediction, and the importance of model validation is 
emphasized. 

 Finally, for the further convenience of readers, we provide a glossary 
grouped by related but contrasting terms, an annotated bibliography, and 
subject and author indexes. 

 Our thanks go to William Anderson, Leonardo Auslender, Vance 
Berger, Peter Bruce, Bernard Choi, Tony DuSoir, Cliff Lunneborg, Mona 
Hardin, Gunter Hartel, Fortunato Pesarin, Henrik Schmiediche, Marjorie 
Stinespring, and Peter A. Wright for their critical reviews of portions of 
this text. Doug Altman, Mark Hearnden, Elaine Hand, and David 
Parkhurst gave us a running start with their bibliographies. Brian Cade, 
David Rhodes, and the late Cliff Lunneborg helped us complete the 
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second edition. Terry Therneau and Roswitha Blasche helped us complete 
the third edition. 

 We hope you soon put this text to practical use. 

    Phillip Good  
 drgood@statcourse.com  
 Huntington Beach, CA 

  James Hardin  
 jhardin@sc.edu  
 Columbia, SC 

 May 2012        



  Part I 
FOUNDATIONS



CHAPTER 1 SOURCES OF ERROR 3

             Don ’ t think — use the computer. Dyke (tongue in cheek) [1997]. 

 We cannot help remarking that it is very surprising that research 
in an area that depends so heavily on statistical methods has 
not been carried out in close collaboration with professional 
statisticians, the panel remarked in its conclusions. From the 
report of an independent panel looking into  “ Climategate. ”  1    

 STATISTICAL PROCEDURES FOR HYPOTHESIS TESTING,
ESTIMATION, AND MODEL building are only a  part  of the decision -
 making process. They should never be quoted as the sole basis for making 
a decision (yes, even those procedures that are based on a solid deductive 
mathematical foundation). As philosophers have known for centuries, 
extrapolation from a sample or samples to a larger, incompletely examined 
population must entail a leap of faith. 

 The sources of error in applying statistical procedures are legion and 
include all of the following:

   1.         a)     Replying on erroneous reports to help formulate hypotheses 
(see Chapter  9 )  

  b)     Failing to express qualitative hypotheses in quantitative form 
(see Chapter  2 )  

  c)     Using the same set of data both to formulate hypotheses and 
to test them (see Chapter  2 )    

  Chapter 1 

Sources of Error     

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

  1      This is from an inquiry at the University of East Anglia headed by Lord Oxburgh. The 
inquiry was the result of emails from climate scientists being released to the public. 
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  2.         a)     Taking samples from the wrong population or failing to specify 
in advance the population(s) about which inferences are to be 
made (see Chapter  3 )  

  b)     Failing to draw samples that are random and representative 
(see Chapter  3 )    

  3.     Measuring the wrong variables or failing to measure what you 
intended to measure (see Chapter  4 )  

  4.     Using inappropriate or ineffi cient statistical methods. Examples 
include using a two - tailed test when a one - tailed test is 
appropriate and using an omnibus test against a specifi c alternative 
(see Chapters  5  and  6 ).  

  5.         a)     Failing to understand that p - values are functions of the 
observations and will vary in magnitude from sample to sample 
(see Chapter  6 )  

  b)     Using statistical software without verifying that its current 
defaults are appropriate for your application (see Chapter  6 )    

  6.     Failing to adequately communicate your fi ndings (see Chapters  8  
and  10 )  

  7.         a)     Extrapolating models outside the range of the observations (see 
Chapter  11 )  

  b)     Failure to correct for confounding variables (see Chapter  13 )  

  c)     Use the same data to select variables for inclusion in a model 
and to assess their signifi cance (see Chapter  13 )  

  d)     Failing to validate models (see Chapter  15 )      

 But perhaps the most serious source of error lies in letting statistical 
procedures make decisions for you. 

 In this chapter, as throughout this text, we offer fi rst a preventive 
prescription, followed by a list of common errors. If these prescriptions are 
followed carefully, you will be guided to the correct, proper, and effective 
use of statistics and avoid the pitfalls.  

PRESCRIPTION
 Statistical methods used for experimental design and analysis should be 
viewed in their rightful role as merely a part, albeit an essential part, of the 
decision - making procedure. 

 Here is a partial prescription for the error - free application of statistics.

   1.     Set forth your objectives and your research intentions  before  you 
conduct a laboratory experiment, a clinical trial, or survey, or 
analyze an existing set of data.  

  2.     Defi ne the population about which you will make inferences from 
the data you gather.  
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  3.         a)     Recognize that the phenomena you are investigating may have 
stochastic or chaotic components.  

  b)     List all possible sources of variation. Control them or measure 
them to avoid their being confounded with relationships 
among those items that are of primary interest.    

  4.     Formulate your hypotheses and all of the associated alternatives. 
(See Chapter  2 .) List possible experimental fi ndings along with the 
conclusions you would draw and the actions you would take if this 
or another result should prove to be the case. Do all of these 
things  before  you complete a single data collection form, and  before  
you turn on your computer.  

  5.     Describe in detail how you intend to draw a representative sample 
from the population. (See Chapter  3 .)  

  6.     Use estimators that are impartial, consistent, effi cient, robust, and 
minimum loss. (See Chapter  5 .) To improve results, focus on 
suffi cient statistics, pivotal statistics, and admissible statistics, and 
use interval estimates. (See Chapters  5  and  6 .)  

  7.     Know the assumptions that underlie the tests you use. Use those 
tests that require the minimum of assumptions and are most 
powerful against the alternatives of interest. (See Chapter  6 .)  

  8.     Incorporate in your reports the complete details of how the sample 
was drawn and describe the population from which it was drawn. 
If data are missing or the sampling plan was not followed, explain 
why and list all differences between data that were present in the 
sample and data that were missing or excluded. (See Chapter  8 .)     

FUNDAMENTAL CONCEPTS 
 Three concepts are fundamental to the design of experiments and surveys: 
variation, population, and sample. A thorough understanding of these 
concepts will prevent many errors in the collection and interpretation of data.  

If there were no variation, if every observation were predictable, a mere 
repetition of what had gone before, there would be no need for statistics. 

Variation
 Variation is inherent in virtually all our observations. We would not 
expect outcomes of two consecutive spins of a roulette wheel to be 
identical. One result might be red, the other black. The outcome varies 
from spin to spin. 

 There are gamblers who watch and record the spins of a single roulette 
wheel hour after hour hoping to discern a pattern. A roulette wheel is, 
after all, a mechanical device and perhaps a pattern will emerge. But even 
those observers do not anticipate fi nding a pattern that is 100% 
predetermined. The outcomes are just too variable. 
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 Anyone who spends time in a schoolroom, as a parent or as a child, can 
see the vast differences among individuals. This one is tall, that one short, 
though all are the same age. Half an aspirin and Dr. Good ’ s headache is 
gone, but his wife requires four times that dosage. 

 There is variability even among observations on deterministic formula -
 satisfying phenomena such as the position of a planet in space or the 
volume of gas at a given temperature and pressure. Position and volume 
satisfy Kepler ’ s Laws and Boyle ’ s Law, respectively (the latter over a 
limited range), but the observations we collect will depend upon the 
measuring instrument (which may be affected by the surrounding 
environment) and the observer. Cut a length of string and measure it 
three times. Do you record the same length each time? 

 In designing an experiment or survey we must always consider the 
possibility of errors arising from the measuring instrument and from the 
observer. It is one of the wonders of science that Kepler was able to 
formulate his laws at all given the relatively crude instruments at his 
disposal.  

Deterministic, Stochastic, and Chaotic Phenomena 
 A phenomenon is said to be deterministic if given suffi cient information 
regarding its origins, we can successfully make predictions regarding its 
future behavior. But we do not always have all the necessary information. 
Planetary motion falls into the deterministic category once one makes 
adjustments for  all  gravitational infl uences, the other planets as well as 
the sun. 

 Nineteenth century physicists held steadfast to the belief that all atomic 
phenomena could be explained in deterministic fashion. Slowly, it became 
evident that at the subatomic level many phenomena were inherently 
stochastic in nature, that is, one could only specify a probability 
distribution of possible outcomes, rather than fi x on any particular 
outcome as certain. 

 Strangely, twenty - fi rst century astrophysicists continue to reason in 
terms of deterministic models. They add parameter after parameter to the 
lambda cold - dark - matter model hoping to improve the goodness of fi t of 
this model to astronomical observations. Yet, if the universe we observe is 
only one of many possible realizations of a stochastic process, goodness of 
fi t offers absolutely no guarantee of the model ’ s applicability. (See, for 
example, Good,  2012 .) 

 Chaotic phenomena differ from the strictly deterministic in that they are 
strongly dependent upon initial conditions. A random perturbation from 
an unexpected source (the proverbial butterfl y ’ s wing) can result in an 
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unexpected outcome. The growth of cell populations has been described 
in both deterministic (differential equations) and stochastic terms (birth 
and death process), but a chaotic model (difference - lag equations) is more 
accurate.  

Population

The population(s) of interest must be clearly defi ned before we begin to 
gather data. 

 From time to time, someone will ask us how to generate confi dence 
intervals (see Chapter  8 ) for the statistics arising from a total census of a 
population. Our answer is no, we cannot help. Population statistics (mean, 
median, and thirtieth percentile) are not estimates. They are fi xed values 
and will be known with 100% accuracy if two criteria are fulfi lled:

   1.     Every member of the population is observed.  

  2.     All the observations are recorded correctly.    

 Confi dence intervals would be appropriate if the fi rst criterion is 
violated, for then we are looking at a sample, not a population. And if the 
second criterion is violated, then we might want to talk about the 
confi dence we have in our measurements. 

 Debates about the accuracy of the 2000 United States Census arose 
from doubts about the fulfi llment of these criteria. 2   “ You didn ’ t count the 
homeless, ”  was one challenge.  “ You didn ’ t verify the answers, ”  was 
another. Whether we collect data for a sample or an entire population, 
both these challenges or their equivalents can and should be made. 

 Kepler ’ s  “ laws ”  of planetary movement are not testable by statistical 
means when applied to the original planets (Jupiter, Mars, Mercury, and 
Venus) for which they were formulated. But when we make statements 
such as  “ Planets that revolve around Alpha Centauri will also follow 
Kepler ’ s Laws, ”  then we begin to view our original population, the planets 
of our sun, as a sample of all possible planets in all possible solar systems. 

 A major problem with many studies is that the population of interest is 
not adequately defi ned before the sample is drawn. Do not make this 
mistake. A second major problem is that the sample proves to have been 
drawn from a different population than was originally envisioned. We 
consider these issues in the next section and again in Chapters  2 ,  6 , and  7 .  

  2      City of New York v. Department of Commerce, 822 F. Supp. 906 (E.D.N.Y, 1993). The 
arguments of four statistical experts who testifi ed in the case may be found in Volume 34 of 
 Jurimetrics , 1993, 64 – 115. 
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Sample
 A sample is any (proper) subset of a population. Small samples may give a 
distorted view of the population. For example, if a minority group 
comprises 10% or less of a population, a jury of 12 persons selected at 
random from that population fails to contain any members of that 
minority at least 28% of the time. 

 As a sample grows larger, or as we combine more clusters within a 
single sample, the sample will grow to more closely resemble the 
population from which it is drawn. 

 How large a sample must be to obtain a suffi cient degree of closeness 
will depend upon the manner in which the sample is chosen from the 
population. 

 Are the elements of the sample drawn at random, so that each unit in 
the population has an equal probability of being selected? Are the 
elements of the sample drawn independently of one another? If either of 
these criteria is not satisfi ed, then even a very large sample may bear little 
or no relation to the population from which it was drawn. 

 An obvious example is the use of recruits from a Marine boot camp as 
representatives of the population as a whole or even as representatives of 
all Marines. In fact, any group or cluster of individuals who live, work, 
study, or pray together may fail to be representative for any or all of the 
following reasons (Cummings and Koepsell,  2002 ):

   1.     Shared exposure to the same physical or social environment;  

  2.     Self selection in belonging to the group;  

  3.     Sharing of behaviors, ideas, or diseases among members of the 
group.    

 A sample consisting of the fi rst few animals to be removed from a cage 
will not satisfy these criteria either, because, depending on how we grab, 
we are more likely to select more active or more passive animals. Activity 
tends to be associated with higher levels of corticosteroids, and 
corticosteroids are associated with virtually every body function. 

 Sample bias is a danger in every research fi eld. For example, Bothun 
[ 1998 ] documents the many factors that can bias sample selection in 
astronomical research. 

 To prevent sample bias in your studies, before you begin determine all 
the factors that can affect the study outcome (gender and lifestyle, for 
example). Subdivide the population into strata (males, females, city 
dwellers, farmers) and then draw separate samples from each stratum. 
Ideally, you would assign a random number to each member of the 
stratum and let a computer ’ s random number generator determine which 
members are to be included in the sample.   
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SURVEYS AND LONG -TERM STUDIES 
 Being selected at random does not mean that an individual will be willing 
to participate in a public opinion poll or some other survey. But if survey 
results are to be representative of the population at large, then pollsters 
must fi nd some way to interview nonresponders as well. This diffi culty is 
exacerbated in long - term studies, as subjects fail to return for follow - up 
appointments and move without leaving a forwarding address. Again, if 
the sample results are to be representative, some way must be found to 
report on subsamples of the nonresponders and the dropouts.  

AD-HOC, POST -HOC HYPOTHESES 

Formulate and write down your hypotheses before you examine the data. 

 Patterns in data can suggest, but cannot confi rm, hypotheses unless these 
hypotheses were formulated  before  the data were collected. 

 Everywhere we look, there are patterns. In fact, the harder we look the 
more patterns we see. Three rock stars die in a given year. Fold the 
United States twenty - dollar bill in just the right way and not only the 
Pentagon but the Twin Towers in fl ames are revealed. 3  It is natural for us 
to want to attribute some underlying cause to these patterns, but those 
who have studied the laws of probability tell us that more often than not 
patterns are simply the result of random events. 

 Put another way, fi nding at least one cluster of events in time or in 
space has a greater probability than fi nding no clusters at all (equally 
spaced events). 

 How can we determine whether an observed association represents an 
underlying cause - and - effect relationship or is merely the result of chance? 
The answer lies in our research protocol. When we set out to test a 
specifi c hypothesis, the probability of a specifi c event is predetermined. But 
when we uncover an apparent association, one that may well have arisen 
purely by chance, we cannot be sure of the association ’ s validity until we 
conduct a second set of controlled trials. 

 In the International Study of Infarct Survival  [1988] , patients born 
under the Gemini or Libra astrological birth signs did not survive as long 
when their treatment included aspirin. By contrast, aspirin offered apparent 
benefi cial effects (longer survival time) to study participants from all other 
astrological birth signs. Szydloa et al. [ 2010 ] report similar spurious 
correlations when hypothesis are formulated with the data in hand. 

  3      A website with pictures is located at  http://www.foldmoney.com/ . 
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 Except for those who guide their lives by the stars, there is no hidden 
meaning or conspiracy in this result. When we describe a test as signifi cant 
at the 5% or one - in - 20 level, we mean that one in 20 times we will get a 
signifi cant result even though the hypothesis is true. That is, when we test 
to see if there are any differences in the baseline values of the control and 
treatment groups, if we have made 20 different measurements, we can 
expect to see at least one statistically signifi cant difference; in fact, we will 
see this result almost two - thirds of the time. This difference will not 
represent a fl aw in our design but simply chance at work. To avoid this 
undesirable result — that is, to avoid attributing statistical signifi cance to an 
insignifi cant random event, a so - called Type I error — we must distinguish 
between the hypotheses with which we began the study and those which 
came to mind afterward. We must accept or reject our initial hypotheses at 
the original signifi cance level while demanding additional corroborating 
evidence for those exceptional results (such as a dependence of an 
outcome on astrological sign) that are uncovered for the fi rst time during 
the trials. 

 No reputable scientist would ever report results before successfully 
reproducing the experimental fi ndings twice, once in the original 
laboratory and once in that of a colleague. 4  The latter experiment can be 
particularly telling, as all too often some overlooked factor not controlled 
in the experiment — such as the quality of the laboratory water — proves 
responsible for the results observed initially. It is better to be found wrong 
in private, than in public. The only remedy is to attempt to replicate the 
fi ndings with different sets of subjects, replicate, then replicate again. 

 Persi Diaconis [ 1978 ] spent some years investigating paranormal 
phenomena. His scientifi c inquiries included investigating the powers 
linked to Uri Geller, the man who claimed he could bend spoons with his 
mind. Diaconis was not surprised to fi nd that the hidden  “ powers ”  of 
Geller were more or less those of the average nightclub magician, down to 
and including forcing a card and taking advantage of ad - hoc, post - hoc 
hypotheses (Figure  1.1 ).   

 When three buses show up at your stop simultaneously, or three rock 
stars die in the same year, or a stand of cherry trees is found amid a forest 
of oaks, a good statistician remembers the Poisson distribution. This 
distribution applies to relatively rare events that occur independently of 
one another (see Figure  1.2 ). The calculations performed by Sim é on -

  4      Remember  “ cold fusion ” ? In 1989, two University of Utah professors told the newspapers 
they could fuse deuterium molecules in the laboratory, solving the world ’ s energy problems 
for years to come. Alas, neither those professors nor anyone else could replicate their 
fi ndings, though true believers abound (see  http://www.ncas.org/erab/intro.htm ). 
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     FIGURE 1.1.     Photo of Geller.  (Reprinted from German Language Wikipedia.)   

     FIGURE 1.2.     Frequency plot of the number of deaths in the Prussian army as a 
result of being kicked by a horse (there are 200 total observations).  
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 Denis Poisson reveal that if there is an average of one event per interval 
(in time or in space), whereas more than a third of the intervals will be 
empty, at least a quarter of the intervals are likely to include multiple 
events.   

 Anyone who has played poker will concede that one out of every two 
hands contains  “ something ”  interesting. Do not allow naturally occurring 
results to fool you nor lead you to fool others by shouting,  “ Isn ’ t this 
incredible? ”    

 The purpose of a recent set of clinical trials was to see if blood fl ow and 
distribution in the lower leg could be improved by carrying out a simple 
surgical procedure prior to the administration of standard prescription 
medicine. 

 The results were disappointing on the whole, but one of the marketing 
representatives noted that the long - term prognosis was excellent when a 
marked increase in blood fl ow was observed just after surgery. She 
suggested we calculate a p - value 5  for a comparison of patients with an 
improved blood fl ow after surgery versus patients who had taken the 
prescription medicine alone. 

 Such a p - value is meaningless. Only one of the two samples of patients 
in question had been taken at random from the population (those patients 
who received the prescription medicine alone). The other sample (those 
patients who had increased blood fl ow following surgery) was determined 
after the fact. To extrapolate results from the samples in hand to a larger 

TABLE 1.1. Probability of fi nding 
something interesting in a fi ve -card hand 

Hand Probability

Straight fl ush 0.0000

4-of-a-kind 0.0002

Full house 0.0014

Flush 0.0020

Straight 0.0039

Three of a kind 0.0211

Two pairs 0.0475

Pair 0.4226

Total 0.4988

  5      A p - value is the probability under the primary hypothesis of observing the set of 
observations we have in hand. We can calculate a p - value once we make a series of 
assumptions about how the data were gathered. These days, statistical software does the 
calculations, but it ’ s still up to us to validate the assumptions. 
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population, the samples must be taken at random from, and be 
representative of, that population. 

 The preliminary fi ndings clearly called for an examination of surgical 
procedures and of patient characteristics that might help forecast successful 
surgery. But the generation of a p - value and the drawing of any fi nal 
conclusions had to wait for clinical trials specifi cally designed for that 
purpose. 

 This does not mean that one should not report anomalies and other 
unexpected fi ndings. Rather, one should not attempt to provide p - values 
or confi dence intervals in support of them. Successful researchers engage 
in a cycle of theorizing and experimentation so that the results of one 
experiment become the basis for the hypotheses tested in the next. 

 A related, extremely common error whose correction we discuss at 
length in Chapters  13  and  15  is to use the same data to select variables for 
inclusion in a model and to assess their signifi cance. Successful model 
builders develop their frameworks in a series of stages, validating each 
model against a second independent dataset before drawing conclusions.

  One reason why many statistical models are incomplete is that they 
do not specify the sources of randomness generating variability 
among agents, i.e., they do not specify why otherwise 
observationally identical people make different choices and have 
different outcomes given the same choice.  — James J. Heckman     

TO LEARN MORE 
 On the necessity for improvements in the use of statistics in research 
publications, see Altman  [1982, 1991, 1994, 2000, 2002] ; Cooper and 
Rosenthal [ 1980 ]; Dar, Serlin, and Omer [ 1994 ]; Gardner and Bond 
[ 1990 ]; George [ 1985 ]; Glantz [ 1980 ]; Goodman, Altman, and George 
[ 1998 ]; MacArthur and Jackson [ 1984 ]; Morris [ 1988 ]; Strasak et al. 
[ 2007 ]; Thorn et al. [ 1985 ]; and Tyson et al. [ 1983 ]. 

 Brockman and Chowdhury [ 1997 ] discuss the costly errors that can 
result from treating chaotic phenomena as stochastic.             
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            All who drink of this treatment recover in a short time, 
 Except those whom it does not help, who all die, 
 It is obvious therefore, that it only fails in incurable cases.
 — Galen (129 – 199)   

 IN THIS CHAPTER, AIMED AT BOTH RESEARCHERS WHO will 
analyze their own data as well as those researchers who will rely on others 
to assist them in the analysis, we review how to formulate a hypothesis 
that is testable by statistical means, the appropriate use of the null 
hypothesis, Neyman – Pearson theory, the two types of error, and the more 
general theory of decisions and losses.  

PRESCRIPTION
 Statistical methods used for experimental design and analysis should be 
viewed in their rightful role as merely a part, albeit an essential part, of the 
decision - making procedure:

   1.     Set forth your objectives and the use you plan to make of your 
research  before  you conduct a laboratory experiment, a clinical 
trial, a survey, or analyze an existing set of data.  

  2.     Formulate your hypothesis and  all  of the associated alternatives. 
List possible experimental fi ndings along with the conclusions you 
would draw and the actions you would take if this or another 
result should prove to be the case. Do all of these things  before  
you complete a single data collection form, and  before  you turn on 
your computer.     

Chapter 2 

Hypotheses: The Why of 
Your Research 

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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WHAT IS A HYPOTHESIS? 
 A well - formulated hypothesis will be both quantifi able and testable, that is, 
involve measurable quantities or refer to items that may be assigned to 
 mutually exclusive  categories. It will specify the population to which the 
hypothesis will apply. 

 A well - formulated statistical hypothesis takes one of two forms:

   1.     Some measurable characteristic of a defi ned population takes one 
of a specifi c set of values.  

  2.     Some measurable characteristic takes different values in different 
defi ned populations, the difference(s) taking a specifi c pattern or a 
specifi c set of values.    

 Examples of well - formed statistical hypotheses include the following:

    •      For males over 40 suffering from chronic hypertension, a 100   mg 
daily dose of this new drug will lower diastolic blood pressure an 
average of 10   mm   Hg.  

   •      For males over 40 suffering from chronic hypertension, a daily 
dose of 100   mg of this new drug will lower diastolic blood 
pressure an average of 10   mm   Hg more than an equivalent dose 
of metoprolol.  

   •      Given less than 2 hours per day of sunlight, applying from 1 to 
10   lbs of 23 - 2 - 4 fertilizer per 1000 square feet will have no effect 
on the growth of fescues and Bermuda grasses.    

  “ All redheads are passionate ”  is not a well - formed statistical hypothesis, 
not merely because  “ passionate ”  is ill defi ned, but because the word  “ all ”  
suggests there is no variability. The latter problem can be solved by 
quantifying the term  “ all ”  to, let ’ s say, 80%. If we specify  “ passionate ”  in 
quantitative terms to mean  “ has an orgasm more than 95% of the time 
consensual sex is performed, ”  then the hypothesis  “ 80% of redheads have 
an orgasm more than 95% of the time consensual sex is performed ”  
becomes testable. 

 Note that defi ning  “ passionate ”  to mean  “ has an orgasm  every time  
consensual sex is performed ”  would not be provable as it too is a 
statement of the  “ all - or - none ”  variety. The same is true for a hypothesis 
such as  “ has an orgasm  none  of the times consensual sex is performed. ”  
Similarly, qualitative assertions of the form  “ not all, ”  or  “ some ”  are not 
statistical in nature because these terms leave much room for subjective 
interpretation. How many do we mean by  “ some ” ? Five out of 100? Ten 
out of 100? 

 The statements,  “ Doris J. is passionate, ”  or  “ Both Good brothers are 
5 ′ 10 ″  tall ″  is equally not statistical in nature as they concern specifi c 
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individuals rather than populations [Hagood,  1941 ]. Finally, note that 
until someone other than Thurber succeeds in locating unicorns, the 
hypothesis,  “ 80% of unicorns are white ”  is  not  testable.  

Formulate your hypotheses so they are quantifi able, testable, and statistical in 
nature.

HOW PRECISE MUST A HYPOTHESIS BE? 
 The chief executive of a drug company may well express a desire to test 
whether  “ our antihypertensive drug can beat the competition. ”  The 
researcher, having done done preliminary reading of the literature, might 
want to test a preliminary hypothesis on the order of  “ For males over 40 
suffering from chronic hypertension, there is a daily dose of our new 
drug that will lower diastolic blood pressure an average of 20   mm   Hg. ”  
But this hypothesis is imprecise. What if the necessary dose of the new 
drug required taking a tablet every hour? Or caused liver malfunction? 
Or even death? First, the researcher would need to conduct a set of 
clinical trials to determine the maximum tolerable dose (MTD). 
Subsequently, she could test the precise hypothesis,  “ a daily dose of 
one - third to one - fourth the MTD of our new drug will lower diastolic 
blood pressure an average of 20   mm   Hg in males over 40 suffering from 
chronic hypertension. ”  

 In a series of articles by Horwitz et al. [ 1998 ], a physician and his 
colleagues strongly criticize the statistical community for denying them (or 
so they perceive) the right to provide a statistical analysis for subgroups 
not contemplated in the original study protocol. For example, suppose 
that in a study of the health of Marine recruits, we notice that not one of 
the dozen or so women who received a vaccine contracted pneumonia. 
Are we free to provide a p - value for this result? 

 Statisticians Smith and Egger [ 1998 ] argue against hypothesis tests of 
subgroups chosen after the fact, suggesting that the results are often likely 
to be explained by the  “ play of chance. ”  Altman [ 1998 ; pp. 301 – 303], 
another statistician, concurs noting that,  “  . . .    the observed treatment 
effect is expected to vary across subgroups of the data    . . .    simply through 
chance variation, ”  and that  “ doctors seem able to fi nd a biologically 
plausible explanation for any fi nding. ”  This leads Horwitz et al. to the 
incorrect conclusion that Altman proposes that we  “ dispense with 
clinical biology (biologic evidence and pathophysiologic reasoning) 
as a basis for forming subgroups. ”  Neither Altman nor any other 
statistician would quarrel with Horwitz et al. ’ s assertion that physicians 
must investigate  “ how do we [physicians] do our best for a particular 
patient. ”  
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 Scientists can and should be encouraged to make subgroup analyses. 
Physicians and engineers should be encouraged to make decisions based 
upon them. Few would deny that in an emergency, coming up with 
workable, fast - acting solutions without complete information is better than 
fi nding the best possible solution. 1  But, by the same token, statisticians 
should not be pressured to give their imprimatur to what, in statistical 
terms, is clearly an improper procedure, nor should statisticians mislabel 
suboptimal procedures as the best that can be done. 2  

 We concur with Anscombe [ 1963 ] who writes,  “  . . .    the concept of 
error probabilities of the fi rst and second kinds    . . .    has no direct relevance 
to experimentation.    . . .    The formation of opinions, decisions concerning 
further experimentation, and other required actions, are not 
dictated    . . .    by the formal analysis of the experiment, but call for 
judgment and imagination.    . . .    It is unwise for the experimenter to view 
himself seriously as a decision - maker.    . . .    The experimenter pays the piper 
and calls the tune he likes best; but the music is broadcast so that others 
might listen.    . . .     ”   

A Bill of Rights for Subgroup Analysis 

• Scientists can and should be encouraged to make subgroup 
analyses.

• Physicians and engineers should be encouraged to make 
decisions utilizing the fi ndings of such analyses. 

• Statisticians and other data analysts can and should 
rightly refuse to give their imprimatur to related tests of 
signifi cance.  

FOUND DATA 
 p - values should not be computed for hypotheses based on  “ found data ”  as 
of necessity all hypotheses related to found data are after the fact. This 
rule does not apply if the observer fi rst divides the data into sections. 
One part is studied and conclusions drawn; then the resultant hypotheses 
are tested on the remaining sections. Even then, the tests are valid only 
if the found data can be shown to be representative of the population 
at large.  

  1      Chiles [ 2001 ; p. 61]. 
  2      One is reminded of the Dean, several of them in fact, who asked me to alter my grades. 
  “ But that is something you can do as easily as I. ”   “ Why Dr. Good, I would never dream of 
overruling one of my instructors. ”  See also  Murder at Oklahoma  by J. M. Bickham. 
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NULL OR NIL HYPOTHESIS 

   A major research failing seems to be the exploration of 
uninteresting or even trivial questions.    . . .    In the 347 sampled 
articles in  Ecology  containing null hypotheses tests, we found few 
examples of null hypotheses that seemed biologically plausible. —
 Anderson, Burnham, and Thompson [ 2000 ]. 

 We do not perform an experiment to fi nd out if two varieties of 
wheat or two drugs are equal. We know in advance, without 
spending a dollar on an experiment, that they are not equal. —
 Deming  [1975] .    

Test only relevant null hypotheses. 

 The null hypothesis has taken on an almost mythic role in contemporary 
statistics. Obsession with the null (more accurately spelled and pronounced 
nil), has been allowed to shape the direction of our research. We have let 
the tool use us instead of us using the tool. 3  

 Virtually any quantifi able hypothesis can be converted into null form. 
There is no excuse and no need to be content with a meaningless nil. 

 For example, suppose we want to test that a given treatment will 
decrease the need for bed rest by at least three days. Previous trials have 
convinced us that the treatment will reduce the need for bed rest to some 
degree, so merely testing that the treatment has a positive effect would 
yield no new information. Instead, we would subtract three from each 
observation and then test the nil hypothesis that the mean value is zero. 

 We often will want to test that an effect is inconsequential, not zero but 
close to it, smaller than  d , say, where  d  is the smallest biological, medical, 
physical, or socially relevant effect in our area of research. Again, we would 
subtract  d  from each observation before proceeding to test a null 
hypothesis. 

 The quote from Deming above is not quite correct as often we will wish 
to demonstrate that two drugs or two methods yield equivalent results. As 
shown in Chapter  5 , we may test for equivalence using confi dence 
intervals; a null hypothesis is not involved 

 To test that  “ 80% of redheads are passionate, ”  we have two choices 
depending on how  “ passion ”  is measured. If  “ passion ”  is an all - or - none 
phenomena, then we can forget about trying to formulate a null 
hypothesis and instead test the binomial hypothesis that the probability  p  

  3      See, for example, Hertwig and Todd [ 2000 ]. 
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that a redhead is passionate is 80%. If  “ passion ”  can be measured on a 
seven - point scale and we defi ne  “ passionate ”  as  “ passion ”  greater than or 
equal to 5, then our hypothesis becomes  “ the 20th percentile of redhead 
passion exceeds 5. ”  As in the fi rst example above, we could convert this to 
a null hypothesis by subtracting fi ve from each observation. But the effort 
is unnecessary as this problem, too, reduces to a test of a binomial 
parameter.  

NEYMAN–PEARSON THEORY 

Formulate your alternative hypotheses at the same time you set forth the 
hypothesis that is of chief concern to you. 

 When the objective of our investigations is to arrive at some sort of 
conclusion, then we need not only have a single primary hypothesis in 
mind but one or more potential alternative hypotheses. 

 The cornerstone of modern hypothesis testing is the Neyman – Pearson 
lemma. To get a feeling for the working of this mathematical principle, 
suppose we are testing a new vaccine by administering it to half of our test 
subjects and giving a supposedly harmless placebo to each of the 
remainder. We proceed to follow these subjects over some fi xed period 
and note which subjects, if any, contract the disease that the new vaccine 
is said to offer protection against. 

 We know in advance that the vaccine is unlikely to offer complete 
protection; indeed, some individuals may actually come down with the 
disease as a result of taking the vaccine. Many factors over which we have 
no control, such as the weather, may result in none of the subjects, even 
those who received only placebo, contracting the disease during the study 
period. All sorts of outcomes are possible. 

 The tests are being conducted in accordance with regulatory agency 
guidelines. Our primary hypothesis H is that the new vaccine can cut the 
number of infected individuals in half. From the regulatory agency ’ s 
perspective, the alternative hypothesis A1 is that the new vaccine offers no 
protection or, A2, no more protection than is provided by the best 
existing vaccine. Our task before the start of the experiment is to decide 
which outcomes will rule in favor of the alternative hypothesis A1 (or A2) 
and which in favor of the primary hypothesis H. 

 Note that neither a null nor a nil hypothesis is yet under consideration. 
 Because of the variation inherent in the disease process, each and every 

one of the possible outcomes could occur regardless of which of the 
hypotheses is true. Of course, some outcomes are more likely if A1 is true, 
for example, 50 cases of pneumonia in the placebo group and 48 in the 
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vaccine group, and others are more likely if the primary hypothesis is true, 
for example, 38 cases of pneumonia in the placebo group and 20 in the 
vaccine group. 

 Following Neyman and Pearson, we order each of the possible 
outcomes in accordance with the ratio of its probability or likelihood when 
the primary hypothesis is true to its probability when the alternative 
hypothesis is true. 4  When this likelihood ratio is large, we shall say the 
outcome rules in favor of the alternative hypothesis. Working downward 
from the outcomes with the highest values, we continue to add outcomes 
to the  rejection  region of the test — so - called because these are the 
outcomes for which we would reject the primary hypothesis — until the 
total probability of the rejection region under the primary hypothesis is 
equal to some predesignated  signifi cance level . 5  

 In the following example, we would reject the primary hypothesis at the 
10% level only if the test subject really liked a product. 

        Really Hate     Dislike     Indifferent     Like     Really Like  

  Primary 
Hypothesis  

  10%    20%    40%    20%    10%  

  Alternate 
Hypothesis  

  5%    10%    30%    30%    25%  

  Likelihood Ratio    1/2    1/2    3/4    3/2    5/2  

 To see that we have done the best we can do, suppose we replace one 
of the outcomes we assigned to the rejection region with one we did not. 
The probability that this new outcome would occur if the primary 
hypothesis is true must be less than or equal to the probability that the 
outcome it replaced would occur if the primary hypothesis is true. 
Otherwise, we would exceed the signifi cance level. 

 Because of how we assigned outcome to the rejection region, the 
likelihood ratio of the new outcome is smaller than the likelihood ratio of 
the old outcome. Thus, the probability the new outcome would occur if 
the alternative hypothesis is true must be less than or equal to the 
probability that the outcome it replaced would occur if the alternative 

  4      When there are more than two hypotheses, the rejection region of the best statistical test 
(and the associated power and signifi cance level) will be based upon the primary and 
alternative hypotheses that are the most diffi cult to distinguish from one another. 
  5      For convenience in calculating a rejection region, the primary and alternate hypotheses may 
be interchanged. Thus, the statistician who subsequently performs an analysis of the vaccine 
data may refer to testing the nil hypothesis A1 against the alternative H. 
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hypothesis is true. That is, by swapping outcomes we have reduced the 
 power  of our test. By following the method of Neyman and Pearson and 
maximizing the likelihood ratio, we obtain the most powerful test at a 
given signifi cance level. 

 To take advantage of Neyman and Pearson ’ s fi nding, we need to have 
an alternative hypothesis or alternatives fi rmly in mind when we set up a 
test. Too often in published research, such alternative hypotheses remain 
unspecifi ed or, worse, are specifi ed only  after  the data are in hand.  We 
must specify our alternatives before we commence an analysis , preferably at 
the same time we design our study. 

 Are our alternatives one - sided or two - sided? If we are comparing several 
populations at the same time, are their means ordered or unordered? The 
form of the alternative will determine the statistical procedures we use and 
the signifi cance levels we obtain.  

Decide beforehand whether you wish to test against a one -sided or a two -
sided alternative. 

One-sided or Two -sided
 Suppose on examining the cancer registry in a hospital, we uncover the 
following data that we put in the form of a 2    ×    2 contingency table:

        Survived     Died     Total  

  Men    9    1    10  

  Women    4    10    14  

  Total    13    11    24  

 The 9 denotes the number of males who survived, the 1 denotes the 
number of males who died, and so forth. The four marginal totals or 
marginals are 10, 14, 13, and 11. The total number of men in the study is 
10, whereas 14 denotes the total number of women, and so forth. 

 The marginals in this table are fi xed because, indisputably, there are 11 
dead bodies among the 24 persons in the study and 14 women. Suppose 
that before completing the table, we lost the subject IDs so that we could 
no longer identify which subject belonged in which category. Imagine you 
are given two sets of 24 labels. The fi rst set has 14 labels with the word 
 “ woman ”  and 10 labels with the word  “ man. ”  The second set of labels 
has 11 labels with the word  “ dead ”  and 12 labels with the word  “ alive. ”  
Under the null hypothesis, you are allowed to distribute the labels to 
subjects independently of one another. One label from each of the two 
sets per subject, please. 
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survive). This is a very small fraction of the total, (10,010    +    364)/
(1,961,256)    =    0.529%, so we conclude that a difference in survival rates of 
the two sexes as extreme as the difference we observed in our original 
table is very unlikely to have occurred by chance alone. We reject the 
hypothesis that the survival rates for the two sexes are the same and accept 
the alternative hypothesis that, in this instance at least, males are more 
likely to profi t from treatment.   

 In the preceding example, we tested the hypothesis that survival rates do 
not depend on sex against the alternative that men diagnosed with cancer 
are likely to live longer than women similarly diagnosed. We rejected the 
null hypothesis because only a small fraction of the possible tables were as 
extreme as the one we observed initially. This is an example of a one - tailed 
test. But is it the correct test? Is this really the alternative hypothesis we 
would have proposed if we had not already seen the data? Wouldn ’ t we have 
been just as likely to reject the null hypothesis that men and women profi t 
the same from treatment if we had observed a table of the following form? 

        Survived     Died     Total  

  Men    0    10    10  

  Women    13    1    14  

  Total    13    11    24  

  TABLE 2.1.    In terms of the relative survival rates 
of the two sexes, the fi rst of these tables is more 
extreme than our original table. The second is less 
extreme. 

        Survived     Died     Total  

  Men    10    0    10  

  Women    3    11    14  

  Total    13    11    24  

        Survived     Died     Total  

  Men    8    2    10  

  Women    5    9    14  

  Total    13    11    24  
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 Of course, we would! In determining the signifi cance level in the 
present example, we must add together the total number of tables that lie 
in either of the two extremes or tails of the permutation distribution. 

 The critical values and signifi cance levels are quite different for one -
 tailed and two - tailed tests and, all too often, the wrong test has been 
employed in published work. McKinney et al. [ 1989 ] reviewed some 
70 - plus articles that appeared in six medical journals. In over half of these 
articles, Fisher ’ s exact test was applied improperly. Either a one - tailed test 
had been used when a two - tailed test was called for or the authors of the 
paper simply had not bothered to state which test they had used. 

 Of course, unless you are submitting the results of your analysis to a 
regulatory agency, no one will know whether you originally intended a 
one - tailed test or a two - tailed test and subsequently changed your mind. 
No one will know whether your hypothesis was conceived before you 
started or only after you had examined the data. All you have to do is lie. 
Just recognize that if you test an after - the - fact hypothesis without 
identifying it as such, you are guilty of scientifi c fraud. 

 When you design an experiment, decide at the same time whether you 
wish to test your hypothesis against a two - sided or a one - sided alternative. 
A two - sided alternative dictates a two - tailed test; a one - sided alternative 
dictates a one - tailed test. 

 As an example, suppose we decide to do a follow - on study of the cancer 
registry to confi rm our original fi nding that men diagnosed as having 
tumors live signifi cantly longer than women similarly diagnosed. In this 
follow - on study, we have a one - sided alternative. Thus, we would analyze 
the results using a one - tailed test rather than the two - tailed test we applied 
in the original study.  

Determine beforehand whether your alternative hypotheses are ordered or 
unordered.

Ordered or Unordered Alternative Hypotheses? 
 When testing qualities (number of germinating plants, crop weight, etc.) 
from  k  samples of plants taken from soils of different composition, it is 
often routine to use the F - ratio of the analysis of variance. For 
contingency tables, many routinely use the chi - square test to determine if 
the differences among samples are signifi cant. But the F - ratio and the 
chi - square are what are termed omnibus tests, designed to be sensitive to 
all possible alternatives. As such, they are not particularly sensitive to 
ordered alternatives such  “ as more fertilizer equals more growth ”  or 
 “ more aspirin equals faster relief of headache. ”  Tests for such ordered 
responses at  k  distinct treatment levels should properly use the Pitman 
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correlation described by Frank, Trzos, and Good  [1978]  when the data 
are measured on a metric scale (e.g., weight of the crop). Tests for 
ordered responses in 2    ×    C contingency tables (e.g., number of 
germinating plants) should use the trend test described by Berger, 
Permutt, and Ivanova [ 1998 ]. We revisit this topic in more detail in the 
next chapter.   

DEDUCTION AND INDUCTION 
 When we determine a p - value as we did in the example above, we apply a 
set of algebraic methods and deductive logic to  deduce  the correct value. 
The deductive process is used to determine the appropriate size of resistor 
to use in an electric circuit, to determine the date of the next eclipse of 
the moon, and to establish the identity of the criminal (perhaps from the 
fact the dog did not bark on the night of the crime). Find the formula, 
plug in the values, turn the crank and out pops the result (or it does for 
Sherlock Holmes, 6  at least). 

 When we assert that for a given population a percentage of samples will 
have a specifi c composition, this also is a deduction. But when we make an 
 inductive  generalization about a population based upon our analysis of a 
sample, we are on shakier ground. It is one thing to assert that if an 
observation comes from a normal distribution with mean zero, the 
probability is one - half that it is positive. It is quite another if, on observing 
that half the observations in the sample are positive, we assert that half of 
all the possible observations that might be drawn from that population will 
be positive also. 

 Newton ’ s Law of Gravitation provided an almost exact fi t (apart from 
measurement error) to observed astronomical data for several centuries; 
consequently, there was general agreement that Newton ’ s generalization 
from observation was an accurate description of the real world. Later, as 
improvements in astronomical measuring instruments extended the range 
of the observable universe, scientists realized that Newton ’ s Law was only 
a generalization and not a property of the universe at all. Einstein ’ s 
Theory of Relativity gives a much closer fi t to the data, a fi t that has not 
been contradicted by any observations in the century since its formulation. 
But this still does not mean that relativity provides us with a complete, 
correct, and comprehensive view of the universe. 

 In our research efforts, the only statements we can make with God - like 
certainty are of the form  “ our conclusions fi t the data. ”  The true nature of 
the real world is unknowable. We can speculate, but never conclude.  

  6      See  “ Silver Blaze ”  by A. Conan - Doyle,  Strand Magazine , December 1892. 
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LOSSES
 In our fi rst advanced course in statistics, we read in the fi rst chapter of 
Lehmann [ 1986 ] that the  “ optimal ”  statistical procedure would depend 
on the losses associated with the various possible decisions. But on day 
one of our venture into the real world of practical applications, we were 
taught to ignore this principle. 

 At that time, the only computationally feasible statistical procedures 
were based on losses that were proportional to the square of the difference 
between estimated and actual values. No matter that the losses really 
might be proportional to the absolute value of those differences, or the 
cube, or the maximum over a certain range. Our options were limited by 
our ability to compute. 

 Computer technology has made a series of major advances in the past 
half century. What forty years ago required days or weeks to calculate 
takes only milliseconds today. We can now pay serious attention to this 
long - neglected facet of decision theory: the losses associated with the 
varying types of decision. 

 Suppose we are investigating a new drug: We gather data, perform a 
statistical analysis, and draw a conclusion. If chance alone is at work 
yielding exceptional values and we opt in favor of the new drug, we have 
made an error. We also make an error if we decide there is no difference 
and the new drug really is better. These decisions and the effects of 
making them are summarized in Table  2.2 .   

 We distinguish the two types of error because they have quite different 
implications, as described in Table  2.2 . As a second example, Fears, 
Tarone, and Chu [ 1977 ] use permutation methods to assess several 
standard screens for carcinogenicity. As shown in Table  2.3  their Type I 
error, a false positive, consists of labeling a relatively innocuous compound 
as carcinogenic. Such an action means economic loss for the manufacturer 
and the denial to the public of the compound ’ s benefi ts. Neither 
consequence is desirable. But a false negative, a Type II error, is much 

TABLE 2.2. Decision making under uncertainty 

The Facts Our Decision 

No Difference No Difference Drug is Better 
Type I error: 

Correct Manufacturer wastes money 
developing ineffective drug. 

Drug is Better Type II error: 
Manufacturer misses 

opportunity for profi t. 
Correct

Public denied access to 
effective treatment. 
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worse as it would mean exposing a large number of people to a potentially 
lethal compound.    

What losses are associated with the decisions you will have to make? Specify 
them now before you begin. 

DECISIONS
 The primary hypothesis/alternative hypothesis duality is inadequate in 
most real - life situations. Consider the pressing problems of global warming 
and depletion of the ozone layer. We could collect and analyze yet another 
set of data and then, just as is done today, make one of three possible 
decisions: reduce emissions, leave emission standards alone, or sit on our 
hands and wait for more data to come in. Each decision has consequences, 
as shown in Table  2.4 .   

 As noted at the beginning of this chapter, it is essential that we specify 
in advance the actions to be taken for each potential result. Always suspect 
are after - the - fact rationales that enable us to persist in a pattern of conduct 
despite evidence to the contrary. If no possible outcome of a study will be 
suffi cient to change our mind, then we ought not undertake such a study 
in the fi rst place. 

 Every research study involves multiple issues. Not only might we want 
to know whether a measurable, biologically (or medically, physically, or 

TABLE 2.3. Decision making under uncertainty 

The Facts Fears et al. ’s Decision 

Not a Carcinogen Compound a Carcinogen 

Not a Carcinogen Type I error: 
Manufacturer misses 

opportunity for profi t. 
Public denied access to 

effective treatment. 

Carcinogen Type II error: 
Patients die; families suffer; 
Manufacturer sued. 

TABLE 2.4. Results of a presidential decision under different underlying facts about 
the cause of hypothesized global warming 

President’s Decision on Emissions 

The Facts Reduce
Emissions

Gather More Data Change
Unnecessary

Emissions
responsible

Global warming 
slows

Decline in quality of 
life (irreversible?) 

Decline in 
quality of life 

Emissions have 
no effect

Economy
disrupted

Sampling costs 
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sociologically) signifi cant effect takes place, but what the size of the effect 
is and the extent to which the effect varies from instance to instance. We 
would also want to know what factors, if any, will modify the size of the 
effect or its duration. 

 We may not be able to address all these issues with a single dataset. A 
preliminary experiment might tell us something about the possible 
existence of an effect, along with rough estimates of its size and variability. 
Hopefully, we glean enough information to come up with doses, 
environmental conditions, and sample sizes to apply in collecting and 
evaluating the next dataset. A list of possible decisions after the initial 
experiment includes  “ abandon this line of research, ”   “ modify the 
environment and gather more data, ”  and  “ perform a large, tightly 
controlled, expensive set of trials. ”  Associated with each decision is a set of 
potential gains and losses. Common sense dictates we construct a table 
similar to Table  2.2  or  2.3  before we launch a study. 

 For example, in clinical trials of a drug we might begin with some 
animal experiments, then progress to Phase I clinical trials in which, with 
the emphasis on safety, we look for the maximum tolerable dose. Phase I 
trials generally involve only a small number of subjects and a one - time or 
short - term intervention. An extended period of several months may be 
used for follow - up purposes. If no adverse effects are observed, we might 
decide to pursue a Phase II set of trials in the clinic, in which our 
objective is to determine the minimum effective dose. Obviously, if the 
minimum effective dose is greater than the maximum tolerable dose, or if 
some dangerous side effects are observed that we did not observe in the 
fi rst set of trials, we will abandon the drug and go on to some other 
research project. But if the signs are favorable, then and only then will we 
go to a set of Phase III trials involving a large number of subjects 
observed over an extended time period. Then, and only then, will we hope 
to get the answers to all our research questions.  

Before you begin, list all the consequences of a study and all the actions you 
might take. Persist only if you can add to existing knowledge. 

TO LEARN MORE 
 For more thorough accounts of decision theory, the interested reader is 
directed to Berger [ 1986 ], Blyth [ 1970 ], Cox [ 1958 ], DeGroot [ 1970 ], 
and Lehmann [ 1986 ]. For an applied perspective, see Clemen [ 1991 ], 
Berry [ 1995 ], and Sox, Blatt, Higgins, and Marton [ 1988 ]. 

 Over 300 references warning of the misuse of null hypothesis testing 
can be accessed online at  http://www.cnr.colostate.edu/ ∼ anderson/
thompson1.html . Alas, the majority of these warnings are ill informed, 
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stressing errors that will not arise if you proceed as we recommend and 
place the emphasis on the why, not the what, of statistical procedures. Use 
statistics as a guide to decision making rather than a mandate. 

 Neyman and Pearson  [1933]  fi rst formulated the problem of hypothesis 
testing in terms of two types of error. Extensions and analyses of their 
approach are given by Lehmann [ 1986 ] and Mayo [ 1996 ]. Their approach 
has not gone unchallenged, as seen in Berger  [2003] , Berger and Berry 
[ 1988 ], Berger and Selke  [1987] , Berkson [ 1942 ], Morrison and Henkel 
[ 1970 ], Savage [ 1972 ], Schmidt [ 1996 ], Seidenfeld [ 1979 ], and Sterne, 
Smith, and Cox [ 2001 ]. Hunter and Schmidt [ 1997 ] list and dismiss 
many of their objections. 

 Guthery, Lusk, and Peterson [ 2001 ] and Rozeboom [ 1960 ] are among 
those who have written about the inadequacy of the null hypothesis. 

 For more guidelines on formulating meaningful primary hypotheses, see 
Selike, Bayarri, and Berger [ 2001 ]. Clarity in hypothesis formulation is 
essential; ambiguity can only yield controversy; see, for example, Kaplan 
[ 2001 ]. 

 Venn [1888] and Reichenbach [ 1949 ] are among those who have 
attempted to construct a mathematical bridge between what we observe 
and the reality that underlies our observations. Such efforts to the 
contrary, extrapolation from the sample to the population is not merely a 
matter of applying Sherlock Holmes - like deductive logic but entails a leap 
of faith. A careful reading of Locke [ 1700 ], Berkeley [ 1710 ], Hume 
 [1748] , and Lonergan [ 1992 ] is an essential prerequisite to the application 
of statistics. 

 See also Buchanan - Wollaston [ 1935 ], Cohen [ 1990 ], Copas  [1997] , 
and Lindley [ 2000 ].  
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            GIGO: Garbage in; Garbage out. 

  “ Fancy statistical methods will not rescue garbage data. ”  
Course notes of Raymond J. Carroll  [2001] .   

 THE VAST MAJORITY OF ERRORS IN STATISTICS (and, not 
incidentally, in most human endeavors) arise from a reluctance (or even an 
inability) to plan. Some demon (or demonic manager) seems to be urging 
us to cross the street before we have had the opportunity to look both 
ways. Even on those rare occasions when we do design an experiment, we 
seem more obsessed with the mechanics than with the underlying 
concepts. 

 In this chapter, we review the fundamental concepts of experimental 
design, the choice of primary and secondary variables, the selection of 
measurement devices, the determination of sample size, the assumptions 
that underlie most statistical procedures along with the precautions 
necessary to ensure they are satisfi ed and that the data you collect will be 
representative of the population as a whole. We do not intend to replace a 
text on experiment or survey design, but to supplement one, providing 
examples and solutions that are often neglected in courses on the subject.  

PREPARATION
 The fi rst step in data collection is to have a clear, preferably written 
statement of your objectives. In accordance with Chapter  1 , you will have 
defi ned the population or populations from which you intend to sample 
and have identifi ed the characteristics of these populations you wish to 
investigate. 

Chapter 3 

Collecting Data 

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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 You developed one or more well - formulated hypotheses (the topic of 
Chapter  2 ) and have some idea of the risks you will incur should your 
analysis of the collected data prove to be erroneous. You will need to 
decide what you wish to observe and measure, and how you will go about 
observing it. We refer here not only to the primary variables or endpoints, 
but to the secondary variables or cofactors that may infl uence the former ’ s 
values. Indeed, it is essential that you be aware of all potential sources of 
variation. 

 Good practice is to draft the analysis section of your fi nal report based 
on the conclusions you would like to make. What information do you 
need to justify these conclusions? All such information must be collected. 

 The next section is devoted to the choice of response variables and 
measuring devices, followed by sections on determining sample size and 
preventive steps to ensure your samples will be analyzable by statistical 
methods.  

RESPONSE VARIABLES 

Know What You Want to Measure 
 If you do not collect the values of cofactors, you will be unable to account 
for them later. 

 As whiplash injuries are a common consequence of rear - end collisions, 
there is an extensive literature on the subject. Any physician will tell you 
that the extent and duration of such injuries will depend upon the sex, 
age, and physical condition of the injured individual as well as any prior 
injuries the individual may have suffered. Yet we found article after article 
that failed to account for these factors; for example, Krafft, Kullgren, 
Ydenius, and Tingvall [ 2002 ], Kumar, Ferrari, and Narayan [ 2005 ], and 
Tencer, Sohail, and Kevin  [2001]  did not report the sex, age, or prior 
injuries of their test subjects. 

 Will you measure an endpoint such as death or a surrogate such as the 
presence of HIV antibodies? A good response variable takes values over a 
suffi ciently large range so that they discriminate well [Bishop and Talbot, 
 2001 ]. 

 The regression slope describing the change in systolic blood pressure (in 
mm Hg) per 100   mg of calcium intake is strongly infl uenced by the 
approach used for assessing the amount of calcium consumed (Cappuccio 
et al.,  1995 ). The association is small and only marginally signifi cant with 
diet histories (slope  − 0.01 ( − 0.003 to  − 0.016)) but large and highly 
signifi cant when food frequency questionnaires are used (slope  − 0.15 
( − 0.11 to  − 0.19). With studies using 24 hour recall, an intermediate result 
emerges (slope  − 0.06 ( − 0.09 to  − 0.03). Diet histories assess patterns of 
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usual intake over long periods of time and require an extensive interview 
with a nutritionist, whereas 24 - hour recall and food frequency 
questionnaires are simpler methods that refl ect current consumption 
(Block,  1982 ). 

 Before we initiate data collection, we must have a fi rm idea of what we 
will measure and how we will measure it. A good response variable 

   •      Is easy to record — imagine weighing a live pig.  

   •      Can be measured objectively on a generally accepted scale.  

   •      Is measured in appropriate units.  

   •      Takes values over a suffi ciently large range that discriminates well.  

   •      Is well defi ned. A patient is not  “ cured ”  but may be  “ discharged 
from hospital ”  or  “ symptom - free for a predefi ned period. ”   

   •      Has constant variance over the range used in the experiment 
(Bishop and Talbot,  2001 ).     

Collect exact values whenever possible. 

 A second fundamental principle is also applicable to both experiments and 
surveys: Collect exact values whenever possible. Worry about grouping 
them in intervals or discrete categories later. 

 A long - term study of buying patterns in New South Wales illustrates 
some of the problems caused by grouping prematurely. At the beginning 
of the study, the decision was made to group the incomes of survey 
subjects into categories — under $20,000, $20,000 to $30,000, and so 
forth. Six years of steady infl ation later and the organizers of the study 
realized that all the categories had to be adjusted. An income of $21,000 
at the start of the study would only purchase $18,000 worth of goods and 
housing at the end (see Figure  3.1 ). The problem was that those surveyed 
toward the end had fi lled out forms with exactly the same income 
categories. Had income been tabulated to the nearest dollar, it would have 
been easy to correct for increases in the cost of living and convert all 
responses to the same scale. But the study designers had not considered these 
issues. A precise and costly survey had been reduced to mere guesswork.   

 You can always group your results (and modify your groupings) after a 
study is completed. If after - the - fact grouping is a possibility, your design 
should state how the grouping will be determined; otherwise there will be 
the suspicion that you chose the grouping to obtain desired results.  

Experiments
 Measuring devices differ widely both in what they measure and the 
precision with which they measure it. As noted in the next section of this 
chapter, the greater the precision with which measurements are made, the 
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smaller the sample size required to reduce both Type I and Type II errors 
below specifi c levels. 

 All measuring devices have both linear and nonlinear ranges; the 
sensitivity, accuracy, and precision of the device are all suspect for both 
very small and very large values. Your measuring device ought be linear 
over the entire range of interest. 

 Before you rush out and purchase the most expensive and precise 
measuring instruments on the market, consider that the total cost C of an 
experimental procedure is  S     +     nc , where  n  is the sample size and  c  is the 
cost per unit sampled. 

 The startup cost  S  includes the cost of the measuring device.  c  is made 
up of the cost of supplies and personnel costs. The latter includes not only 
the time spent on individual measurements but in preparing and 
calibrating the instrument for use. 

 Less obvious factors in the selection of a measuring instrument include 
impact on the subject, reliability (personnel costs continue even when an 
instrument is down), and reusability in future trials. For example, one of 
the advantages of the latest technology for blood analysis is that less blood 
needs to be drawn from patients. Less blood means happier subjects mean 
fewer withdrawals and a smaller initial sample size.  

     FIGURE 3.1.     Equivalent purchasing powers over time using Consumer Price 
Index calculations. Each year shows the cost of the equivalent goods/services.  
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Surveys
 While no scientist would dream of performing an experiment without fi rst 
mastering all the techniques involved, an amazing number will blunder 
into the execution of large - scale and costly surveys without a preliminary 
study of all the collateral issues a survey entails. 

 We know of one institute that mailed out some 20,000 questionnaires 
(didn ’ t the post offi ce just raise its rates again?) before discovering that 
half the addresses were in error, and that the vast majority of the 
remainder were being discarded unopened before prospective participants 
had even read the sales pitch. 

 Fortunately, there are texts such as Bly [ 1990, 1996 ] that will tell you 
how to word a sales pitch and the optimal colors and graphics to use 
along with the wording. They will tell you what hooks to use on the 
envelope to ensure attention to the contents and what premiums to offer 
to increase participation. 

 There are other textbooks such as Converse and Presser [ 1986 ], Fowler 
and Fowler [ 1995 ], and Schroeder [ 1987 ] to assist you in wording 
questionnaires and in pretesting questions for ambiguity before you begin. 
We have only four paragraphs of caution to offer:

   1.     Be sure your questions do not reveal the purpose of your study, 
else respondents shape their answers to what they perceive to be 
your needs. Contrast  “ how do you feel about compulsory 
pregnancy? ”  with  “ how do you feel about abortions? ”   

  2.     With populations ever more heterogeneous, questions that work 
with some ethnic groups may repulse others (see, for example, 
Choi,  2000 ).  

  3.     Be sure to include a verifi cation question or three. For example, 
in March 2000, the U.S. Census Current Population Survey 
added an experimental health insurance  “ verifi cation ”  question. 
Anyone who did not report any type of health insurance 
coverage was asked an additional question about whether 
or not they were, in fact, uninsured. Those who reported 
that they were insured were then asked what type of 
insurance covered them.       

 Recommended are Web - based surveys with initial solicitation by mail 
(letter or postcard) and e - mail. Not only are both costs and time to 
completion cut dramatically, but also the proportion of missing data and 
incomplete forms is substantially reduced. Moreover, Web - based surveys 
are easier to monitor and forms may be modifi ed on the fl y. Web - based 
entry also offers the possibility of displaying the individual ’ s prior 
responses during follow - up surveys. 
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 Three other precautions can help ensure the success of your survey:

   1.     Award premiums only for fully completed forms.  

  2.     Continuously tabulate and monitor submissions; do not wait to be 
surprised.  

  3.     A quarterly newsletter sent to participants will substantially 
increase retention (and help you keep track of address changes).         

BEWARE OF HOLES IN THE INSTRUCTIONS 

The instructions for Bumbling Pharmaceutical ’s latest set of trials seemed 
almost letter perfect. At least they were lengthy and complicated enough 
that they intimidated anyone who took the time to read them. Consider 
the following, for example: 

“All patients will have follow -up angiography at eight ±0.5 months after 
their index procedure. Any symptomatic patient will have follow -up
angiograms any time it is clinically indicated. In the event that repeat 
angiography demonstrates restenosis in association with objective 
evidence of recurrent ischemia between zero and six months, that 
angiogram will be analyzed as the follow -up angiogram. An angiogram 
performed for any reason that does not show restenosis will qualify as a 
follow-up angiogram only if it is performed at least four months after the 
index intervention. 

Ambiguities are inevitable. Have independent reviewers go over your 
questions with the object of eliminating as many as possible. 

Given the sequence 1, 2, 3, . . . , what is the next number likely to be? 
(You are given the answer in the fi lm,  The Oxford Murders.)

Klein [2012] posed the following multiple -choice question: 

Restrictions on housing development make housing less affordable. 

1. Strongly agree 

2. Somewhat agree 

3. Somewhat disagree 

4. Strongly disagree 

5. Not sure 

6. Other

7. (Refuse to answer) 

Did all potential respondents assign the same meanings to “restriction”
and “affordable”? What kind of restriction? Affordable to whom? Klein 
does not report how many individuals were posed the question or how 
many responded. 
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DETERMINING SAMPLE SIZE 
 Determining optimal sample size is simplicity itself once we specify all of 
the following:

    •      Smallest effect of clinical or experimental signifi cance  

   •      Desired power and signifi cance level  

   •      Distributions of the observables  

   •      Statistical test(s) that will be employed  

   •      Whether we will be using a one - tailed or a two - tailed test  

   •      Anticipated losses due to nonresponders, noncompliant 
participants, and dropouts    

 What could be easier? 

Power and Signifi cance Level 
 Sample size must be determined for each experiment; there is no 
universally correct value. We need to understand and make use of the 
relationships among effect size, sample size, signifi cance level, power, and 
the precision of our measuring instruments. 

 Increase the precision (and hold all other parameters fi xed) and we can 
decrease the required number of observations. Decreases in any or all of 
the intrinsic and extrinsic sources of variation will also result in a decrease 
in the required number.   

 The smallest effect size of practical interest may be determined through 
consultation with one or more domain experts. The smaller this value, the 
greater the number of observations that will be required. 

In some cases, recurrent ischemia may develop within 14 days after the 
procedure. If angiography demonstrates a signifi cant residual stenosis 
(>50%) and if further intervention is performed, the patient will still be 
included in the follow -up analyses that measure restenosis. ”

Now, that is comprehensive, isn ’t it? Just a couple of questions: If a 
patient does not show up for their eight -month follow -up exam, but does 
appear at six months and one year, which angiogram should be used for 
the offi cial reading? If a patient develops recurrent ischemia 14 days after 
the procedure and a further intervention is performed, do we reset the 
clock to zero days? 

Alas, these holes in the protocol were discovered by Bumbling ’s staff 
only after the data were in hand and they were midway through the fi nal 
statistical analysis. Have someone who thinks like a programmer (or, 
better still, have a computer) review the protocol before it is fi nalized. 

(From P. Good, A Manager’s Guide to the Design and Conduct of Clinical Trials, 
Second Edition, Copyright 2006, with the permission of John Wiley & Sons, Inc. )
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 Permit a greater number of Type I or Type II errors (and hold all other 
parameters fi xed) and we can decrease the required number of 
observations. 

 Explicit formula for power and sample size are available when the 
underlying observations are binomial, the results of a counting or Poisson 
process, time - to - event data, normally distributed, or ordinal with a limited 
number of discrete values ( < 7) and/or the expected proportion of cases at 
the boundaries is high (scoring 0 or 100). For the fi rst four, several 
off - the - shelf computer programs including nQuery Advisor ™ , Pass 2005 ™ , 
Power and Precision ™ , and StatX - act ™  are available to do the calculations 
for us. For the ordinal data, use the method of Whitehead [ 1993 ]. 

 During a year off from Berkeley ’ s graduate program to work as a 
statistical consultant, with a course from Erich Lehmann in testing 
hypotheses fresh under his belt, Phillip Good would begin by asking all 
clients for their values of   α   and   β  . When he received only blank looks in 
reply, he would ask them about the relative losses they assigned to Type I 
and Type II errors, but this only seemed to add to their confusion. Here 
are some guidelines for those left similarly to their own devices. Just 
remember this is all they are: guidelines, not universal truths. Strictly 
speaking, the signifi cance level and power should be chosen so as to 
minimize the overall cost of any project, balancing the cost of sampling 
with the costs expected from Type I and Type II errors. 

 The environment in which you work should determine your signifi cance 
level and power. 

 A manufacturer preparing to launch a new product line or a 
pharmaceutical company conducting a research for promising compounds 
typically adopt a three - way decision procedure: If the observed p - value is 

TABLE 3.1. Ingredients in a sample -size calculation 

Smallest Effect Size of Practical Interest 

Type I error ( α) Probability of falsely rejecting the hypothesis when it 
is true. 

Type II error (1 − β[A]) Probability of falsely accepting the hypothesis when 
an alternative hypothesis A is true. Depends on the 
alternative A. 

Power = β[A] Probability of correctly rejecting the hypothesis when 
an alternative hypothesis A is true. Depends on the 
alternative A. 

Distribution functions F[(x − μ)σ]; e.g., normal distribution 

Location parameters For both hypothesis and alternative hypothesis, μ1, μ2

Scale parameters For both hypothesis and alternative hypothesis, σ1, σ2

Sample sizes May be different for different groups in an 
experiment with more than one group. 
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less than 1%, they go forward with the project. If the p - value is greater 
than 20%, they abandon it. And if the p - value lies in the gray area in 
between, they arrange for additional surveys or experiments. 

 A regulatory commission like the FDA that is charged with oversight 
responsibility must work at a fi xed signifi cance level, typically 5%. In the 
case of unwanted side effects, the FDA may also require a certain 
minimum power, usually 80% or better. The choice of a fi xed signifi cance 
level ensures consistency in both result and interpretation as the agency 
reviews the fi ndings from literally thousands of tests. 

 If forced to pull numbers out of a hat, we would choose   α      =    20% for an 
initial trial and a sample size of 6 to 10. If we had some prior information 
in hand, we would choose   α      =    5% to 10% and   β      =    80% to 90%. If tests are 
to be performed on many different outcomes, lower signifi cance levels of 
2.5% or 1% may be desirable. (Remember that by chance alone, 1 in 20 
results will be statistically signifi cant at the 5% level.) 

 When using one of the commercially available programs to determine 
sample size, we also need to have some idea of the population proportion 
(for discrete counts) or the location (mean) and scale parameter (variance) 
(for continuous measurements), both when the primary hypothesis is true 
and when an alternative hypothesis is true. Since there may well be an 
infi nity of alternatives in which we are interested, power calculations 
should be based on the worst case or boundary value. For example, if we 
are testing a binomial hypothesis  p     =    1/2 against the alternatives  p     ≥    2/3, 
we would assume that  p     =    2/3. 

 A recommended rule of thumb is to specify as the alternative the 
smallest effect that is of practical signifi cance. 

 When determining sample size for data drawn from the binomial or any 
other discrete distribution, one should always display the power curve. The 
explanation lies in the saw - toothed nature of the curve [Chernick and Liu, 
 2002 ]; see Figure  3.2 . As a result of inspecting the power curve by eye, 
you may come up with a less - expensive solution than your software.   

 If the data do not come from a well - tabulated distribution, then one 
might use a bootstrap to estimate the power and signifi cance level. 

 In preliminary trials of a new device, test results of 7.0 were observed in 
11 out of 12 cases and 3.3 in 1 out of 12 cases. Industry guidelines 
specifi ed that any population with a mean test result greater than 5 would 
be acceptable. A worst - case or boundary - value scenario would include one 
in which the test result was 7.0, 3/7th of the time; 3.3, 3/7th of the 
time; and 4.1, 1/7th of the time. 

 The statistical procedure required us to reject if the sample mean of the 
test results were less than 6. To determine the probability of this event for 
various sample sizes, we took repeated samples with replacement from the 
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two sets of test results. Some bootstrap samples consisted of all 7 ’ s, some, 
taken from the worst - case distribution, only of 3 ’ s. Most were a mixture. 
Table  3.2  illustrates the results; for example, in our trials, 23% of the 
bootstrap samples of size 3 from our starting sample of test results had 
medians less than 6.0. If we drew our bootstrap samples from the hypothetical 
worst - case population instead, then 84% had medians less than 6.   

 If you want to try your hand at duplicating these results, simply take the 
test values in the proportions observed, stick them in a hat, draw out 
bootstrap samples with replacement several hundred times, compute the 
sample means, and record the results. Or you could use the R or Stata 
bootstrap procedure, as we did. 1      

  TABLE 3.2.    Bootstrap estimates of Type I and 
Type II error 

   Sample size  

   Test Mean    <    6.0  

     α       Power  

  3    0.23    0.84  

  4    0.04    0.80  

  5    0.06    0.89  

  1      Chapters  5  –  8  provide more information on the bootstrap and its limitations. 

     FIGURE 3.2.      Power as a Function of Sample Size.  Test of the hypothesis 
that the prevalence in a population of a characteristic is 0.46 rather than 0.40.  
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DO NOT LET THE SOFTWARE DO YOUR THINKING FOR YOU 

Many researchers today rely on menu -driven software to do their power 
and sample -size calculations. Most such software comes with default 
settings—for example, alpha = 0.05, tails = 2—settings that are readily 
altered, if, that is, investigators bother to take the time. 

Among the errors made by participants in a recent workshop on sample -
size determination was letting the software select a two -sample, two -
tailed test for the hypothesis that 50% or less of subjects would behave 
in a certain way versus the alternative that 60% or more of them would. 

Sequential Sampling 
 Determining sample size as we go (sequential sampling), rather than 
making use of a predetermined sample size, can have two major 
advantages:

   1.     Fewer samples  

  2.     Earlier decisions    

 When our experiments are destructive in nature (as in testing condoms) 
or may have an adverse effect upon the experimental subject (as in clinical 
trials), we prefer not to delay our decisions until some fi xed sample size 
has been reached. 

 Figure  3.3  depicts a sequential trial of a new vaccine after eight patients 
who had received either the vaccine or an innocuous saline solution 
developed the disease. Each time a control patient came down with the 
disease, the jagged line was extended to the right. Each time a patient 
who had received the experimental vaccine came down with the disease, 
the jagged line was extended upward one notch. This experiment will 
continue until either of the following occurs:

   1.     The jagged line crosses the lower boundary, in which case we will 
stop the experiment, reject the null hypothesis, and immediately 
put the vaccine into production.  

  2.     The jagged line crosses the upper boundary, in which case we will 
stop the experiment, accept the null hypothesis, and abandon 
further work with this vaccine.      

 What Abraham Wald [ 1950 ] showed in his pioneering research was 
that, on average, the resulting sequential experiment  would require many 
fewer observations  whether or not the vaccine was effective than would a 
comparable experiment of fi xed sample size. 

 If the treatment is detrimental to the patient, we are likely to hit one of 
the lower boundaries early. If the treatment is far more effi cacious than 
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the control, we are likely to hit an upper boundary early. Even if the true 
difference is right in the middle between our two hypotheses — for 
example, because the treatment is only 2.5% better when the alternative 
hypothesis is that it is 5% better — we may stop early on occasion. Figure 
 3.4  shows the average sample size as a function of the difference in the 
probabilities of success for each treatment. When this difference is less 
than 0% or greater than 5%, we will need about 4000 observations on 
average before stopping. Even when the true difference is right in the 
middle, we will stop after about 5000 observations on average. In 
contrast, a fi xed - sample design requires nearly 6000 observations for the 
same Type I error and power.   

  Warning : Simply performing a standard statistical test after each new 
observation as if the sample size were fi xed will lead to infl ated values of 
Type I error. The boundaries depicted in Figure  3.3  were obtained using 
formulas specifi c to sequential design. Not surprisingly, these formulas 
require us to know every one of the same factors we needed to determine 
the number of samples when the experiment is of fi xed size.  

  One - Tailed or Two - Tailed? 
 A one - sided alternative ( “ Regular brushing with a fl uoride toothpaste will 
reduce cavities ” ) requires a one - tailed or one - sided test. A two - sided 

     FIGURE 3.3.     Sequential Trial in Progress.  Reprinted from Good,  Introduction 
to Statistics via Resampling Methods and R/SPlus , Copyright 2005, with the 
permission of John Wiley & Sons, Inc.   
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alternative ( “ Which brand ought one buy? ” ) requires a two - tailed test. But 
it often can be diffi cult in practical situations to decide whether the real 
alternatives are one - sided or two - sided. Moy é   [2000]  provides a 
particularly horrifying illustration in his textbook  Statistical Reasoning in 
Medicine  (pp. 145 – 148) which, in turn, was extracted from Thomas 
Moore ’ s  “ Deadly Medicine ”  (pp. 203 – 204). It concerns a study of cardiac 
arrhythmia suppression, in which a widely used but untested therapy was 
at last tested in a series of controlled (randomized, double - blind) clinical 
trials [Greene et al.,  1992 ]. 

 The study had been set up as a sequential trial. At various checkpoints, 
the trial would be stopped if effi cacy was demonstrated or if it became 
evident that the treatment was valueless. Though no preliminary studies 
had been made, the investigators did not plan for the possibility that the 
already widely used but untested treatment might be harmful. It was. 

 Fortunately, clinical trials have multiple endpoints, an invaluable 
resource, if the investigators choose to look at the data. In this case, a 
Data and Safety Monitoring Board (consisting of scientists not directly 
affi liated with the trial or the trial ’ s sponsors) noted that of 730 patients 
randomized to the active therapy, 56 died, whereas of the 725 patients 
randomized to placebo there were 22 deaths. They felt free to perform a 
two - sided test despite the fact that the original formulation of the problem 
was one - sided.  

     FIGURE 3.4.     Average Sample Size as a Function of the Difference in 
Probability.  Reprinted from Good,  Introduction to Statistics via Resampling Methods 
and R/SPlus , Copyright 2005, with the permission of John Wiley & Sons, Inc.   
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  Prepare For Missing Data 
 The relative ease with which a program like Stata or Power and Precision 
can produce a sample size may blind us to the fact that the number of 
subjects with which we begin a study may bear little or no relation to the 
number with which we conclude it. 

 A midsummer hailstorm, an early frost, or an insect infestation can lay 
waste to all or part of an agricultural experiment. In the National Institute 
of Aging ’ s fi rst years of existence, a virus entirely wiped out a primate 
colony, destroying a multitude of experiments in progress. 

 Large - scale clinical trials and surveys have a further burden: the subjects 
themselves. Potential subjects can and do refuse to participate. (Do not 
forget to budget for a follow - up study, which is bound to be expensive, of 
responders versus nonresponders.) Worse, they may agree to participate 
initially, then drop out at the last minute (see Figure  3.5 ). They may move 
without a forwarding address before a scheduled follow - up, or may simply 

     FIGURE 3.5.      A   Typical Clinical Trial.  Dropouts and non - compliant patients 
occur at every stage.  Reprinted from Good,  The Manager ’ s Guide to Design and 
Conduct of Clinical Trials, Second Edition, Copyright 2006,  with the permission of 
John Wiley & Sons, Inc.   
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do not bother to show up for an appointment. Thirty percent of the 
patients who had received a life - saving cardiac procedure failed to follow 
up with their physician. (We cannot imagine not going in to see our 
surgeon after such a procedure, but then we guess we are not typical.)   

 The key to a successful research program is to plan for such drop - outs 
in advance and to start the trials with some multiple of the number 
required to achieve a given power and signifi cance level. 

 In a recent attempt to reduce epidemics at its training centers, the U.S. 
Navy vaccinated 50,000 recruits with an experimental vaccine and 50,000 
others with a harmless saline solution. But at the halfway mark, with 
50,000 inoculated and 50,000 to go, fewer than 500 had contracted the 
disease. The bottom line is, it is the sample you end with, not the sample 
you begin with, that determines the power of your tests.  

Nonresponders
 An analysis of those who did not respond to a survey or a treatment can 
sometimes be as or more informative than the survey itself. See, for 
example, Mangel and Samaniego [ 1984 ] as well as the sections on the 
Behrens – Fisher problem and on the premature drawing of conclusions in 
Chapter  5 . Be sure to incorporate in your sample design and in your 
budget provisions for sampling nonresponders.  

Sample From the Right Population 
 Be sure you are sampling from the population as a whole rather than from 
an unrepresentative subset of the population. The most famous blunder 
along these lines was basing the forecast of Dewey over Truman in the 
1948 U.S. presidential election on a telephone survey; those who owned a 
telephone and responded to the survey favored Dewey; those who voted 
did not. 

 An economic study may be fl awed because we have overlooked the 
homeless. This was among the principal arguments the cities of New York 
and Los Angeles advanced against the use by the federal government of 
the 1990 and 2000 census to determine the basis for awarding monies to 
cities. 2  

 An astrophysical study was fl awed because of overlooking galaxies whose 
central surface brightness was very low. 3  The FDA ’ s former policy of 
excluding women (those tender creatures) from clinical trials was just plain 
foolish. 

  2       City of New York v. Dept of Commerce,  822 F. Supp. 906 (E.D.N.Y., 1993). 
  3      Bothun [ 1998 ; p. 249] 
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 Baggerly and Coombes [ 2009 ] examined several clinical trials in which 
patients were allocated to treatment arms on the basis of microarray - based 
signatures of drug sensitivity. Because the microarray studies often were 
poorly described or analyzed in error, the clinical trials results were 
rendered ambiguous. 

 In contributing to a plaintiff ’ s lawsuit following a rear - end collision, 
Good [ 2009 ] noted that while the plaintiff was in her fi fties and had been 
injured previously; the studies relied on by the defendant ’ s biomechanical 
expert involved only much younger individuals with no prior history of 
injury. 

 Plaguing many surveys are the uncooperative and the nonresponder. 
Invariably, follow - up surveys of these groups show substantial differences 
from those who responded readily the fi rst time around. These follow - up 
surveys are not inexpensive; compare the cost of mailing out a survey to 
telephoning or making face - to - face contact with a nonresponder. But if 
one does not make these calls, one may get a completely unrealistic 
picture of how the population as a whole would respond.   

FUNDAMENTAL ASSUMPTIONS 
 Most statistical procedures rely on two fundamental assumptions: that the 
observations are independent of one another and that they are identically 
distributed. If your methods of collection fail to honor these assumptions, 
then your analysis must fail also. 

Independent Observations 
 To ensure the independence of responses in a return - by - mail or return - by -
 Web survey, no more than one form per household should be accepted. If 
a comparison of the responses within a household is desired, then the 
members of the household should be interviewed separately, outside of 
each other ’ s hearing and with no opportunity to discuss the survey in 
between. People care what other people think and when asked about an 
emotionally charged topic may or may not tell the truth. In fact, they are 
unlikely to tell the truth if they feel that others may overhear or somehow 
learn of their responses. 

 To ensure independence of the observations in an experiment, 
determine in advance what constitutes the  experimental unit . 

 In the majority of cases, the unit is obvious: one planet means one 
position in space, one container of gas means one volume and pressure 
to be recorded, one runner on one fi xed racecourse means one elapsed 
time. 
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 In a clinical trial, each individual patient corresponds to a single set of 
observations, or does she? Suppose we are testing the effects of a topical 
ointment on pink eye. Is each eye a separate experimental unit or each 
patient? 

 It is common in toxicology to examine a large number of slides, but 
regardless of how many are examined in the search for mutagenic and 
toxic effects, if all slides come from a single treated animal, then the total 
size of the sample is one. 

 We may be concerned with the possible effects a new drug might have 
on a pregnant woman and, as critically, on her children. In our preliminary 
tests, we will be working with mice. Is each fetus in the litter a separate 
experimental unit? or each mother? 

 If the mother is the one treated with the drug, then the mother is the 
experimental unit, not the fetus. A litter of six or seven corresponds only 
to a sample of size one. 

 As for the topical ointment, while more precise results might be 
obtained by treating only one eye with the new ointment and recording 
the subsequent difference in appearance between the treated and untreated 
eyes, each patient still yields only one observation, not two.  

Identically Distributed Observations 
 If you change measuring instruments during a study or change observers, 
then you will have introduced an additional source of variation and the 
resulting observations will not be identically distributed. 

 The same problems will arise if you discover during the course of a 
study (as is often the case) that a precise measuring instrument is no 
longer calibrated and readings have drifted. To forestall this, any 
measuring instrument should have been exposed to an extensive 
burn - in before the start of a set of experiments and should be 
recalibrated as frequently as the results of the burn - in or prestudy 
period dictate. 

 Similarly, one does not just mail out several thousands copies of a survey 
before performing an initial pilot study to weed out or correct ambiguous 
and misleading questions. 

 The following groups are unlikely to yield identically distributed 
observations: the fi rst to respond to a survey, those who only respond after 
been offered an inducement, and nonresponders.   

EXPERIMENTAL DESIGN 
 Statisticians have found three ways for coping with individual - to - individual 
and observer - to - observer variation:
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   1.     Controlling. The fewer the extrinsic sources of variation, the 
smaller the sample size required. Make the environment for the 
study — the subjects, the manner in which the treatment is 
administered, the manner in which the observations are obtained, 
the apparatus used to make the measurements, and the criteria for 
interpretation — as uniform and homogeneous as possible.  

  2.     Blocking. A clinician might stratify the population into subgroups 
based on such factors as age, sex, race, and the severity of the 
condition, and restrict comparisons to individuals who belong to 
the same subgroup. An agronomist would want to stratify on the 
basis of soil composition and environment. 

 Blocking can also be performed  after  the experiment for the 
purpose of analysis but  only  if you have taken the time to record 
the blocking variable.  

  3.     Randomizing. Randomly assign patients to treatment within each 
subgroup so that the innumerable factors that can neither be 
controlled nor observed directly are as likely to infl uence the 
outcome of one treatment as another.    

 Steps one and two are trickier than they appear at fi rst glance. Do the 
phenomena under investigation depend upon the time of day, as with 
body temperature and the incidence of mitosis? Upon the day of the week, 
as with retail sales and the daily mail? Will the observations be affected by 
the sex of the observer? Primates (including you) and hunters (tigers, 
mountain lions, domestic cats, dogs, wolves, and so on) can readily detect 
the observer ’ s sex. 4  

 Blocking may be mandatory as even a randomly selected sample may 
not be representative of the population as a whole. For example, if a 
minority comprises less than 10% of a population, then a jury of 12 
persons selected at random from that population will fail to contain a 
single member of that minority at least 28% of the time. 

 Groups to be compared may differ in other important ways even before 
any intervention is applied. These baseline imbalances cannot be attributed 
to the interventions, but they can interfere with and overwhelm the 
comparison of the interventions. 

 One good after - the - fact solution is to break the sample itself into strata 
(men, women, Hispanics) and to extrapolate separately from each stratum 
to the corresponding subpopulation from which the stratum is drawn. 

 The size of the sample we take from each block or stratum need not 
and, in some instances should not, refl ect the block ’ s proportion in the 
population. The latter exception arises when we wish to obtain separate 

  4      The hair follicles of redheads — genuine, not dyed — are known to secrete a prostaglandin 
similar to an insect pheromone. 
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estimates for each subpopulation. For example, suppose we are studying 
the health of Marine recruits and we wish to obtain separate estimates for 
male and female Marines as well as for Marines as a group. If we want to 
establish the incidence of a relatively rare disease, we will need to 
oversample female recruits to ensure that we obtain a suffi ciently large 
number. To obtain a rate  R  for  all  Marines, we would then take the 
weighted average  p F R F      +     p M R M   of the separate rates for each gender, where 
the proportions  p M   and  p F   are those of males and females in the  entire  
population of Marine recruits. 

Are the Study Groups Comparable? 
 Fujita et al. [ 2000 ] compared the short - term effect of AAACa and CaCO 3  
on bone density in humans. But at the start of the experiment, the bone 
densities of the CaCO 3  group were signifi cantly greater than the bone 
densities of the AAACa group and the subjects were signifi cantly younger. 
Thus, the reported changes in bone density could as easily be attributed to 
differences in age and initial bone density as to differences in the source of 
supplemental calcium. Clearly, the subjects ought to have been blocked by 
age and initial bone density before they were randomized to treatment.   

FOUR GUIDELINES 
 In the next few sections on experimental design, we may well be preaching 
to the choir, for which we apologize. But there is no principle of 
experimental design, however obvious, however intuitive, that someone 
will not argue can be ignored in his or her special situation:

    •      Physicians feel they should be allowed to select the treatment that 
will best affect their patient ’ s condition (but who is to know in 
advance what this treatment is?).  

   •      Scientists eject us from their laboratories when we suggest that 
only the animal caretakers should be permitted to know which 
cage houses the control animals.  

   •      Engineers at a fi rm that specializes in refurbishing medical devices 
objected when Dr. Good suggested they purchase and test some 
new equipment for use as controls.  “ But that would cost a 
fortune. ”     

 The statistician ’ s lot is not a happy one. The opposite sex ignores us 
because we are boring 5  and managers hate us because all our suggestions 

  5      Dr. Good told his wife he was an author; it was the only way he could lure someone that 
attractive to his side. Dr. Hardin is still searching for an explanation for his own good fortune. 
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seem to require an increase in the budget. But controls will save money in 
the end. Blinding is essential if our results are to have credence, and care 
in treatment allocation is mandatory if we are to avoid bias. 

Randomize
 Permitting treatment allocation by either experimenter or subject will 
introduce bias. On the other hand, if a comparison of baseline values 
indicates too wide a difference between the various groups in terms of 
concomitant variables, then you will either need to rerandomize or to 
stratify the resulting analysis. Be proactive: stratify before you randomize, 
randomizing separately within each strata. 

 The efforts of Fujita et al.  [2000]  were doomed before they started as 
the placebo - treated group was signifi cantly younger (6 subjects of 50    ±    5 
years of age) than the group that had received the treatment of greatest 
interest (10 subjects of 60    ±    4 years of age). 

 On the other hand, the study employing case controls conducted by 
Roberts et al. [ 2007 ] could have been rescued had they simply included 
infant sex as one of the matching variables. For whereas 85% of the cases 
of interest were male, only 51% of the so - called matched case controls 
were of that sex.  

Controls
 To guard against the unexpected, as many or more patients should be 
assigned to the control regimen as are assigned to the experimental one. 
This sounds expensive and it is. But things happen. You get the fl u. You 
get a headache or diarrhea. You have a series of colds that blend one into 
the other until you can not remember the last time you were well. So you 
blame your silicone implants. Or, if you are part of a clinical trial, you stop 
taking the drug. It is in these and similar instances that experimenters are 
grateful they have included controls. Because when the data are examined, 
experimenters learn that as many of the control patients came down with 
the fl u as those who were on the active drug, and that women without 
implants had exactly the same incidence of colds and headaches as those 
who had implants. 

 Refl ect on the consequences of not using controls. The fi rst modern 
silicone implants (Dow Corning ’ s Silastic mammary prosthesis) were 
placed in 1962. In 1984, a jury awarded $2 million to a recipient who 
complained of problems resulting from the implants. Award after award 
followed, the largest being more than $7 million. A set of controlled 
randomized trials was fi nally initiated in 1994. The verdict: Silicon 
implants have no adverse effects on recipients. Tell this to the stockholders 
of bankrupt Dow Corning. 
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Use positive controls. 

 There is no point in conducting an experiment if you already know the 
answer. 6  The use of a positive control is always to be preferred. A new 
antiinfl ammatory should be tested against aspirin or ibuprofen. And there 
can be no justifi cation whatever for the use of placebo in the treatment of 
a life - threatening disease [Barbui et al.,  2000 ; Djulbegovic et al.,  2000 ].  

Blind Observers 

Observers should be blinded to the treatment allocation. 

 Patients often feel better solely because they think they ought to feel 
better. A drug may not be effective if the patient is aware it is the old or 
less - favored remedy, nor is the patient likely to keep taking a drug on 
schedule if he or she feels the pill contains nothing of value. She is also 
less likely to report any improvement in her condition if she feels the 
doctor has done nothing for her. Vice versa, if a patient is informed she 
has the new treatment she may think it necessary to please the doctor by 
reporting some diminishment in symptoms. These sorts of behavioral 
phenomena are precisely the reason why clinical trials must include a 
control. 

 A double - blind study in which neither the physician nor the patient 
knows which treatment is received is preferable to a single - blind study in 
which only the patient is kept in the dark [Ederer,  1975 ; Chalmers, et al., 
 1983 ; Vickers, et al.,  1997 ]. 

 Even if a physician has no strong feelings one way or the other 
concerning a treatment, she may tend to be less conscientious about 
examining patients she knows belong to the control group. She may have 
other unconscious feelings that infl uence her work with the patients. 
Exactly the same caveats apply in work with animals and plants; units 
subjected to the existing, less - important treatment may be handled more 
carelessly and be less thoroughly examined. 

 We recommend that you employ two or even three individuals: one to 
administer the intervention, one to examine the experimental subject, and 
a third to observe and inspect collateral readings such as angiograms, 
laboratory fi ndings, and x - rays that might reveal the treatment.  

Conceal Treatment Allocation 
 Without allocation concealment, selection bias can invalidate study results 
[Schultz, 1995; Schulz et al.,  1995 ; Berger and Exner,  1999 ]. If an 

  6      The exception being to satisfy a regulatory requirement. 
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experimenter could predict the next treatment to be assigned, he might 
exercise an unconscious bias in the treatment of that patient; he might 
even defer enrollment of a patient he considers less desirable. In short, 
randomization alone, without allocation concealment, is insuffi cient to 
eliminate selection bias and ensure the internal validity of randomized 
clinical trials. 

 Lovell et al. [ 2000 ] describe a study in which four patients were 
randomized to the wrong stratum; in two cases, the treatment received 
was reversed. For an excruciatingly (and embarrassingly) detailed analysis 
of this experiment by an FDA regulator, see  http://www.fda.gov/cder/
biologics/review/etanimm052799r2.pdf . 

 Vance Berger and Costas Christophi offer the following guidelines for 
treatment allocation:

    •      Generate the allocation sequence in advance of screening any 
patients.  

   •      Conceal the sequence from the experimenters.  

   •      Require the experimenter to enroll all eligible subjects in the order 
in which they are screened.  

   •      Verify that the subject actually received the assigned treatment.  

   •      Conceal the proportions that have already been allocated [Schultz, 
1996].  

   •      Do not permit enrollment discretion when randomization may be 
triggered by some earlier response pattern.  

   •      Conceal treatment codes until all patients have been randomized 
and the database is locked.    

 Berger  [2005]  notes that in unmasked trials (which are common when 
complementary and alternative medicines are studied),  “ the primary threat 
to allocation concealment is not the direct observation, but rather the 
prediction of future allocations based on the patterns in the allocation 
sequence that are created by the restrictions used on the randomization 
process. ”      

DON’T DO THIS AT WORK 

It does not pay to be too complicated. The randomization plan for a 
crossover design was generated in permuted blocks of 18. The 18 
sequences were assigned with equal probabilities in the sense that a
priori none of the sequences had a higher likelihood of getting assigned 
to a particular patient than any other. Thus, some blocks might have 
three instances of the fi rst treatment sequence, none of the second, one 
of the third, and so forth. 
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Blocked Randomization, Restricted Randomization, 
and Adaptive Designs 
 All the above caveats apply to these procedures as well. The use of an 
advanced statistical technique does not absolve its users from the need to 
exercise common sense. Observers must be kept blinded to the treatment 
received. 

 Do not be too clever. Factorial experiments make perfect sense when 
employed by chemical engineers, as do the Greco - Latin squares used by 
agronomists. But social scientists should stay well clear of employing them 
in areas that are less well understood than chemistry and agriculture. 

 Fukada  [1993]  reported,  “ Fifteen female rats were divided into three 
groups at the age of 12 months. Ten rats were ovariectimized and fi ve of 
them were fed a diet containing 1% Ca as AAACa and the other fi ve rats 
were fed a low - Ca diet containing 0.03% calcium. The remaining fi ve rats 
were fed a control diet containing 1% Ca as CaCO 3  as the control group. ”  
Putting this description into an experimental design matrix yields the 
following nonsensical result: 

         Diet  

  Surgery    A    B    C  

  Yes    X    X      

  No            X  

ARE EXPERIMENTS REALLY NECESSARY? 
 In the case of rare diseases and other rare events, it is tempting to begin 
with the data in hand, that is, the records of individuals known to have 
the disease rather than to draw a random and expensive sample from the 
population at large. There is a right way and a wrong way to conduct such 
studies. 

The drugs were provided in sealed packets so that with the complex 
treatment allocation scheme described above, investigators were unlikely 
to guess what treatment sequence a patient would be receiving. But the 
resultant design was so grossly unbalanced that period and treatment 
effects were confounded. 

An appropriate treatment allocation scheme would provide for the 18 
treatment sequences to be allocated in random order, the order varying 
from block to block. 
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 The wrong way is to reason backward from effect to cause. Suppose that 
the majority of victims of pancreatic cancer are coffee drinkers. Does this 
mean that coffee causes pancreatic cancer? Not if the majority of 
individuals in the population in which the cases occurred are coffee 
drinkers also. 

 To be sure, suppose we create a set of  case controls , matching each 
individual in the pancreatic data base with an individual in the population 
at large of identical race, sex, and age and with as many other near 
matching characteristics as the existing data can provide. We could then 
compare the incidence of coffee drinkers in the cancer database with the 
incidence in the matching group of case controls.  

TO LEARN MORE 
 Good  [2006]  provides a series of anecdotes concerning the mythical 
Bumbling Pharmaceutical and Device Company that amply illustrate 
the results of inadequate planning. See also Andersen [ 1990 ] and 
Elwood [ 1998 ]. The opening chapters of Good [ 2001 ] contain 
numerous examples of courtroom challenges based on misleading or 
inappropriate samples. See also Copas and Li [ 1997 ] and the subsequent 
discussion. 

 Defi nitions and a further discussion of the interrelation among power 
and signifi cance level may be found in Lehmann [ 1986 ], Casella and 
Berger [ 1990 ], and Good [ 2001 ]. You will also fi nd discussions of 
optimal statistical procedures and their assumptions. 

 Lachin [ 1998 ], Lindley [ 1997 ], and Linnet [ 1999 ] offer guidance on 
sample size determination. Shuster [ 1993 ] provides sample size guidelines 
for clinical trials. A detailed analysis of bootstrap methodology is provided 
in Chapters  5  and  7  of this book. 

 Rosenberger and Lachin [ 2002 ] and Schulz and Grimes [ 2002 ] discuss 
randomization and blinding in clinical trials. 

 Recent developments in sequential design include  group sequential 
designs , which involve testing not after every observation, as in a fully 
sequential design, but rather after groups of observations, for example, 
after every 6 months in a clinical trial. The design and analysis of such 
experiments is best done using specialized software such as S + SeqTrial 
from  http://spotfi re.tibco.com/products/s - plus/statistical - analysis -
 software.aspx . For further insight into the principles of experimental 
design, light on math and complex formulas but rich in insight, are the 
lessons of the masters: Fisher [ 1935 , 1973] and Neyman [ 1952 ]. If 
formulas are what you desire, see Hurlbert [ 1984 ], Jennison and Turnbull 
[ 1999 ], Lachin [ 1998 ], Lindley [ 1997 ], Linnet [ 1999 ], Montgomery and 
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Myers [ 1995 ], Rosenbaum [ 2002 ], Thompson and Seber [ 1996 ], and 
Toutenburg [ 2002 ]. 

 Among the many excellent texts on survey design are Fink and Kosecoff 
 [1988] , Rea, Parker, and Shrader [ 1997 ], and Cochran [ 1977 ]. For tips 
on formulating survey questions, see Converse and Presser [ 1986 ], Fowler 
and Fowler [ 1995 ], and Schroeder [ 1987 ]. For tips on improving the 
response rate, see Bly [ 1990, 1996 ].  
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                    Space Shuttle Challenger exploded on January 28, 1986, as 
the world watched in horror. Could this explosion have been 
avoided? Only if management had heeded the statisticians.  

 Prior to launch, the risk of a catastrophic failure in the shuttle 
was estimated by NASA management at 1:100,000. Engineers 
put that risk at between one in 100 and one in 300. 

 When statisticians analyzed the same fi gures afterwards they 
calculated the actual risk of disaster to be 12 – 14 percent or 
about one chance in eight. — Statistical Society of Australia 
Inc. (SSAI)   

 JUST AS 95% OF RESEARCH EFFORTS ARE DEVOTED to data 
collection, 95% of the time remaining should be spent on ensuring that 
the data collected warrant analysis. 

 A decade ago, Dr. Good found himself engaged by a man he had met 
at a fl ea market to consult for a start - up fi rm. The pay was generous but it 
was conditional on the fi rm receiving start - up capital. 

 Laboring on a part - time basis for six months, Dr. Good was concerned 
throughout both by the conditional nature of the pay and by the tentative 
manner in which the data were doled out to him.  “ May I see the raw 
data? ”  he kept asking, but each time was told by his sponsor that such a 
review was unnecessary. 

 One day, the President of the fi rm, heretofore glimpsed only from a 
distance, called Good into his offi ce and asked for a summary of the 
results. Good responded with a renewed request for the raw data. 

Chapter 4 
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 With marked reluctance, and only after nearly a week of stalling, the raw 
data were put into Good ’ s hands. His fi rst act was to run SAS Proc 
Means, which displays the mean, minimum, and maximum of each variable 
among other descriptive statistics. 

  “ Is zero a reasonable outcome? ”  he asked one of the domain experts 
the next day.  “ Can ’ t happen, ”  he was told. 

 Good began to scan the data searching for the entries with zero values. 
To his astonishment, more than half of the entries consisted of nothing 
beyond a name, an address (presumably fake), and a string of zeros. The 
emperor was naked and the claims of a substantial patient database were 
contrived. The executive in charge was faking the data whenever he was 
not feeding his addiction to methamphetamine or visiting fl ea markets. Dr. 
Good ’ s last step was to try and collect his pay.  “ I can pay you now, ”  the 
president offered,  “ but if I do, you ’ ll never work for me again. ”  Needless 
to say, Dr. Good took the money and ran to the bank. 

 Your fi rst step after the data are in hand must always be to run a data 
quality assessment (DQA). The focus of this chapter is on the tools you 
will need.  

OBJECTIVES
 A DQA has many objectives. The fi rst is immediate. You need to 
determine whether a decision or estimate can be made with the desired 
level of certainty, given the quality of the data. The remaining objectives 
look toward future efforts:

    •      Were the response variables appropriate? Should additional data 
(potentially confounding factors) have been recorded?  

   •      Were the measuring devices adequate?  

   •      Are the recorded values all within predefi ned limits?  

   •      How well did the sampling design perform?  

   •      If the same sampling design strategy were used again in a similar 
study, would the data support the same intended use with the 
desired level of certainty?  

   •      Were suffi cient samples taken (after correcting for missing data) to 
detect an effect of practical signifi cance if one were present?     

REVIEW THE SAMPLING DESIGN 
 Were the baseline values of the various treatment groups comparable? The 
baseline values (age and bone density) of the various groups studied by Fujita 
et al. [ 2000 ] were quite different, casting doubt on the reported fi ndings. 

 Were the controls appropriate? The data quality assessment performed 
by Kelly et al. [ 1998 ] focused on the measured concentrations of various 
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radioactive constituents in soil and creek sediments. At issue was whether 
radiation from the sediments exceeded background levels. Figure  4.1 , 
taken from Figure  7  of their report,  “ shows that a comparison of 
background and site data for plutonium raises questions about the 
appropriateness of the plutonium background data, since the site data had 
lower levels than the background data. ”    

 Was the blinding effective? A subsample of those completing printed 
and on - line surveys should be contacted for personal interviews to verify 
their responses. (See, for example, Nunes, Pretzlik, and Ilicak,  2005 ). 

 Similarly, a subsample of nonresponders should also be contacted. 
 Berger [ 2005 ] is skeptical about contacting investigators:  “ If there is 

selection bias, and we ask those investigators who caused it which 
treatments they think each patient received, then we are essentially asking 
them to confess. ”  He offers two alternatives:

   1.      “ Use the randomized response technique. ”   

  2.      “ Study the responses of an investigator (especially if randomized 
response is used) to see if these responses follow the pattern 
mandated by the restrictions on the randomization, and to see, for 
example, if there are more correct guesses at the end of blocks 
than at the beginning of blocks. ”  The latter would suggest that 
the investigator might have formed an opinion about a treatment 
received before it is even administered, based on prior allocations 
and knowledge of the restrictions on the randomization.     

     FIGURE 4.1.     In these box and whisker plots taken from Kelly et al.  (1998) , 
U.S. Dept Energy, the site data had lower levels of plutonium than the 
background data.  
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DATA REVIEW 
 During the course of the data review, inspect the database in its entirety, 
and generate a series of statistics and graphs.

   1.     Review quality assurance reports. Follow up on any discrepancies.  

  2.     Calculate the minimum and maximum of all variables and compare 
against predetermined ranges. (Ideally, this would have been done 
at the time the data were collected.) Generate box and whisker 
plots with the same goal in mind.  

  3.     Eliminate duplicates from the database.  

  4.     Verify that data are recorded in correct physical units, and that 
calibration and dilution factors have been applied.  

  5.     Characterize missing data. Problems arise in either of the 
following cases:  

   •      When the frequency of missing data is associated with the 
specifi c treatment or process that was employed.  

   •      When specifi c demographic(s) fail to complete or return survey 
forms, so that the remaining sample is no longer representative 
of the population as a whole.    

  6.     For each variable, (a) compute a serial correlation to confi rm that 
the observations are independent of one another, (b) create a 
four - plot as described in the next section.       

OUTLIERS

Outliers—extreme values, either small or large, that are well separated 
from the main set of observations —are frequently detected during a 
DQA as they are easily spotted on a dot chart or a box -whiskers plot. 
But as they are not signs of poor data, they should not be eliminated 
from the database. Rather, they should be dealt with during the 
subsequent analyses. 

The Four -Plot
 Four assumptions underlie almost all measurement processes: the data 
should be (1) random, (2) from a single fi xed distribution, with (3) a fi xed 
location, and (4) a fi xed variance. To verify these assumptions, use a 
four - plot consisting of a time plot, a lag plot, a histogram, and a normal 
probability plot.

    •      The data are random if the lag plot lacks structure.  

   •      If the time plot is fl at and nondrifting, then the data have a fi xed 
location.  

   •      If the time plot has a constant spread, the data have a fi xed 
variance.  
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   •      If the histogram has multiple modes, the data may have come 
from multiple distributions and further stratifi cation should be 
considered.    

 In Figure  4.2 , note that the data are not quite normal (deviations from 
the straight line on the plot), do not have a fi xed location (a downward 
trend in the time plot), and possibly have serial correlation present (the 
tendency of the lag plot to be increasing from left to right).     

  TO LEARN MORE 
 Consult the excellent documents available from the United States 
Environmental Protection Agency at  http://www.epa.gov/quality/
dqa.html . See also Husted et al. [ 2000 ].    
  
  

   

     FIGURE 4.2.     Example of a Four - Plot.  
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            Can a man drown while crossing a stream with an average 
depth of six inches? — W.I.E. Gates   

 ACCURATE, RELIABLE ESTIMATES ARE ESSENTIAL TO EFFECTIVE
DECISION making. In this chapter, we review preventive measures and list 
the properties to look for in an estimation method. Several robust 
semiparametric estimators are considered along with one method of 
interval estimation, the bootstrap.  

PREVENTION
 The vast majority of errors in estimation stem from a failure to measure 
what was wanted or what was intended. Misleading defi nitions, inaccurate 
measurements, errors in recording and transcription, and confounding 
variables plague results. 

 To prevent such errors, review your data collection protocols and 
procedure manuals before you begin, run several preliminary trials, record 
potential confounding variables, monitor data collection, and review the 
data as they are collected. 

 Before beginning to analyze data you have collected, establish the 
provenance of the data: Is it derived from a random sample? From a 
representative one? 

Display the Data 
 Your fi rst step should be to construct a summary of the data in both 
tabular and graphic form. Both should display the minimum, 25th 
percentile, median, mean, 75th percentile, and maximum of the data. This 
summary will usually suggest the estimators you will need. 

Chapter 5 
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 Use a box plot rather than a stem - and - leaf diagram. The latter is an 
artifact of a time when people would analyze data by hand. Though 
stem - and leaf diagrams are relatively easy to manually construct for a small 
or moderate size dataset, a computer can generate a box plot like that 
shown in Figure  5.1  in a fraction of the time.    

  Aggregate Statistics 
 Do not be misled by aggregate statistics. David C. Howell reported the 
results of a study of depression as measured on the HADS (Hospital 
Anxiety and Depression Scale). The group statistics suggest major 
differences between the sexes: 

    Group Statistics 

        Gender of subject     N     Mean     Std. Deviation     Std. Error Mean  

  HADS    Male    152    2.4729    3.3121    .2686  

  Female    161    4.7324    4.2419    .3343  

 But a more thorough analysis of the data, taking both sex and ethnicity 
into consideration, yields quite a different picture: 

    Tests of Between - Subjects Effects 

   Dependent Variable: HADS  

   Source  
   Type III Sum 

of Squares     df     Mean Square     F     Sig.  

  Corrected Model    3577.528  a      5    715.506    161.854    .000  

  Intercept    5465.033    1    5465.033    1236.240    .000  

  SEX    .214    1    .214    .048    .826  

  ETHNICIT    2790.110    2    1395.055    315.574    .000  

  SEX * ETHNICIT    32.663    2    16.331    3.694    .026  

  Error    1357.151    307    4.421          

  Total    9070.746    313              

  Corrected Total    4934.680    312              

    a   R Squared    =    .725 (Adjusted R Squared    =    .720).      

     FIGURE 5.1.     Boxplot of Heights of Sixth - Graders.  
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 The apparent difference between the sexes in the incidence of 
depression is merely an artifact of the difference in ethnic composition of 
the two samples: 

    Report 

   HADS  

   Gender of subject     Ethnicity     Mean     N     Std. Deviation  

  Male    White    1.4800    133    1.6300  

  Black    6.6000    10    1.7800  

  Other    12.5600    9    2.7400  

  Total    2.4729    152    3.3121  

  Female    White    2.7100    114    1.9600  

  Black    6.2600    19    1.2400  

  Other    11.9300    28    4.1100  

  Total    4.7324    161    4.2419  

  Total    White    2.0477    247    1.8889  

  Black    6.3772    29    1.4262  

  Other    12.0832    37    3.7964  

  Total    3.6351    313    3.9770  

Distribution of the Data 
 Any method of estimation must be appropriate to the distribution of the 
data that is to be estimated. A frequent error in the astrophysical literature 
is to apply methods appropriate for data from a continuous distribution —
 such as the normal or multivariate normal distribution — to discrete data. 
Often, such data are comprised of counts of events (over space and/or time) 
that may well be more appropriately characterized by a Poisson distribution. 

 The data may have been drawn from several different distributions (as in 
data that is derived from both men and women). In such a case, it must 
be estimated by a fi nite mixture model that would estimate parameters 
from component distributions, or the data should be divided into two or 
more strata prior to being analyzed. Of course, the strata should also be 
appropriate for the data in hand. 

 We are often given access to data arising from audits of submissions by 
Medicare practitioners. The distribution of one such sample is depicted in 
Figure  5.2 . It can be seen that the sample divides into two populations: 
those without errors and those with. An appropriate method of analysis 
would consist of two stages. In the fi rst, an attempt would be made to 
obtain a lower confi dence bound for the proportion of errors. At the 
second stage, a lower confi dence bound for the expected value of an error 
must be obtained.     
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  DESIRABLE AND NOT - SO - DESIRABLE ESTIMATORS 

   The method of maximum likelihood is by far the most popular 
technique for deriving estimators. — Casella and Berger [ 1990 , 
p. 289].   

 The proper starting point for the selection of the best method of 
estimation is with the objectives of our study: What is the purpose of our 
estimate? If our estimate is   θ   *  and the actual value of the unknown 
parameter is   θ  , what losses will we be subject to? It is diffi cult to 
understand the popularity of the method of maximum likelihood and 
other estimation procedures that do not take these losses into 
consideration. 

 The majority of losses will be monotonically nondecreasing in nature, 
that is, the further apart the estimate   θ   *  and the true value   θ  , the larger 
our losses are likely to be. Typical forms of the loss function are the 
absolute deviation |  θ   *     –      θ  |, the square deviation (  θ   *     −      θ  ) 2 , and the jump, 
that is, no loss if |  θ   *     −      θ  |    <     i , and a big loss otherwise. Or the loss 
function may resemble the square deviation but take the form of a step 
function increasing in discrete increments. 

 Desirable estimators share the following properties: impartial, consistent, 
effi cient, robust, and minimum loss. 

     FIGURE 5.2.     Medicare Overpayments.  
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Impartiality
 Estimation methods should be impartial. Decisions should not depend on 
the accidental and quite irrelevant labeling of the samples. Nor should 
decisions depend on the units in which the measurements are made. 

 Suppose we have collected data from two samples with the object of 
estimating the difference in location of the two populations involved. 
Suppose further that the fi rst sample includes the values  a ,  b ,  c ,  d , and  e , 
the second sample the values  f ,  g ,  h ,  i ,  j , and  k , and our estimate of the 
difference is   θ   * . If the observations are completely reversed, that is, if the 
fi rst sample includes the values  f ,  g ,  h ,  i ,  j , and  k  and the second sample 
the values  a ,  b ,  c ,  d , and  e , our estimation procedure should declare the 
difference to be  −   θ   * . 

 The units we use in our observations should not affect the resulting 
estimates. We should be able to take a set of measurements in feet, 
convert to inches, make our estimate, convert back to feet, and get 
absolutely the same result as if we had worked in feet throughout. 
Similarly, where we locate the zero point of our scale should not affect the 
conclusions. 

 Finally, if our observations are independent of the time of day, the 
season, and the day on which they were recorded (facts that ought to be 
verifi ed before proceeding further), then our estimators should be 
independent of the order in which the observations were collected.  

Consistency
 Estimators should be  consistent , that is, the larger the sample, the greater 
the probability the resultant estimate will be close to the true population 
value.  

Effi cient 
 One consistent estimator certainly is to be preferred to another if the fi rst 
consistent estimator can provide the same degree of accuracy with fewer 
observations. To simplify comparisons, most statisticians focus on the 
 asymptotic relative effi ciency  (ARE), defi ned as the limit with increasing 
sample size of the ratio of the number of observations required for each of 
two consistent statistical procedures to achieve the same degree of 
accuracy.  

Robust
 Estimators that are perfectly satisfactory for use with symmetric, normally 
distributed populations may not be as desirable when the data come from 
nonsymmetric or heavy - tailed populations, or when there is a substantial 
risk of contamination with extreme values. 
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 When estimating measures of central location, one way to create a more 
robust estimator is to trim the sample of its minimum and maximum 
values (the procedure used when judging ice skating or gymnastics). As 
information is thrown away, trimmed estimators are less effi cient. 

 In many instances, LAD (least absolute deviation) estimators are more 
robust than their LS counterparts. 1  This fi nding is in line with our 
discussion of the F - statistic in the preceding chapter. 

 Many  semiparametric estimators  are not only robust but provide for 
high ARE with respect to their parametric counterparts. 

 As an example of a semiparametric estimator, suppose the { X i  } are 
independent identically distributed (i.i.d.) observations with distribution 
 Pr { X i      ≤     x }    =     F  [ y     −     Δ ] and we want to estimate the location parameter  Δ  
without having to specify the form of the distribution  F . If  F  is normal 
and the loss function is proportional to the square of the estimation error, 
then the arithmetic mean is optimal for estimating  Δ . Suppose, on the 
other hand, that  F  is symmetric but more likely to include very large or 
very small values than a normal distribution. Whether the loss function is 
proportional to the absolute value or the square of the estimation error, 
the median, a semiparametric estimator, is to be preferred. The median has 
an ARE relative to the mean that ranges from 0.64 (if the observations 
really do come from a normal distribution) to values well in excess of 1 for 
distributions with higher proportions of very large and very small values 
(Lehmann,  1998 , p. 242). Still, if the unknown distribution were  “ almost ”  
normal, the mean would be far more preferable. 

 If we are uncertain whether F is symmetric, then our best choice is the 
Hodges – Lehmann estimator, defi ned as the median of the pairwise 
averages:

    ˆ ( ) /Δ = +≤mediani j j iX X 2   

 Its ARE relative to the mean is 0.97 when  F  is a normal distribution 
(Lehmann,  1998 , p. 246). With little to lose with respect to the sample 
mean if  F  is near normal, and much to gain if  F  is not, the Hodges –
 Lehmann estimator is recommended. 

 Suppose  m  observations { X i  } and  n  observations { Y j  } are i.i.d. with 
distributions  Pr { X i      ≤     x }    =     F  [ x ] and  Pr { Y j      ≤     y }    =     F  [ y     −     Δ ], and we want to 
estimate the shift parameter  Δ  without having to specify the form of the 
distribution  F . For a normal distribution  F , the optimal estimator with 
least square losses is

  1      See, for example, Yoo [ 2001 ]. 
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    Δ = − = −∑∑1
mn

Y X Y Xj i
ji
( )   

 the arithmetic average of the  mn  differences  Y j      −     X i  . Means are highly 
dependent on extreme values; a more robust estimator is given by

    ˆ ( )Δ = −medianij j iY X    

  Minimum Loss 
 The accuracy of an estimate, that is, the degree to which it comes close to 
the true value of the estimated parameter, and the associated losses will 
vary from sample to sample.  A minimum loss estimator  is one that 
minimizes the losses when the losses are averaged over the set of all 
possible samples. Thus, its form depends upon all of the following: the 
loss function, the population from which the sample is drawn, and the 
population characteristic that is being estimated. An estimate that is 
optimal in one situation may only exacerbate losses in another. 

 Minimum loss estimators in the case of least - square losses are widely 
and well documented for a wide variety of cases. Linear regression with an 
LAD loss function is discussed in Chapter  12 .  

  Mini – Max Estimators 
 It is easy to envision situations in which we are less concerned with the 
average loss than with the maximum possible loss we may incur by using a 
particular estimation procedure. An estimate that minimizes the maximum 
possible loss is termed a mini – max estimator. Alas, few off - the - shelf 
mini – max solutions are available for practical cases, but see Pilz [ 1991 ] 
and Pinelis [ 1988 ].  

  Other Estimation Criteria 
 The expected value of an  unbiased  estimator is the population 
characteristic being estimated. Thus, unbiased estimators are also 
consistent estimators. 

  Minimum variance  estimators provide relatively consistent results from 
sample to sample. Although minimum variance is desirable, it may be of 
practical value only if the estimator is also  unbiased . For example, 6 is a 
minimum variance estimator but offers few other advantages. 

 A  plug - in estimator  substitutes the sample statistic for the population 
statistic for example, the sample mean for the population mean, or the 
sample ’ s 20th percentile for the population ’ s 20th percentile. Plug - in 
estimators are consistent, but they are not always unbiased nor minimum loss.  

  Always choose an estimator that will minimize losses.    
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Myth of Maximum Likelihood 
 The popularity of the maximum likelihood estimator is hard to 
comprehend other than as a vehicle whereby an instructor can 
demonstrate knowledge of the calculus. This estimator may be completely 
unrelated to the loss function and has as its sole justifi cation that it 
corresponds to that value of the parameter that makes the observations 
most probable — providing, that is, they are drawn from a specifi c 
predetermined (and  unknown ) distribution. The observations might have 
resulted from a thousand other a prior - possibilities. 

 A common and lamentable fallacy is that the maximum likelihood 
estimator has many desirable properties — that it is unbiased and minimizes 
the mean - squared error. But this is true only for the maximum likelihood 
estimator of the mean of a normal distribution. 2  

 Statistics instructors would be well advised to avoid introducing 
maximum likelihood estimation and to focus instead on methods for 
obtaining minimum loss estimators for a wide variety of loss functions.   

INTERVAL ESTIMATES 

   Brother Adel — who, I will hazard a guess, is a statistician — sent 
me a message criticizing my emails for being of varying lengths 
and not symmetrical like the hems of dresses in vogue this year. 
Adel says that in order for the lengths of my emails to be  even,  
they must show evidence of natural distribution. According to 
him, natural distribution means that 95 percent of the data 
contained therein will center around the mean (taking into 
consideration of course the standard deviation), while the 
percentage of data outside the area of normal distribution on 
both sides of the mean does not exceed 2.5 percent in either 
direction, such that the sum total of standard deviation is 
5 percent. — Rajaa Alsanea in  The Girls of Ryadh    

 Point estimates are seldom satisfactory in and of themselves. First, if the 
observations are continuous, the probability is zero that a point estimate 
will be correct and equal the estimated parameter. Second, we still require 
some estimate of the precision of the point estimate. 

  2      It is also true in some cases for very large samples. How large the sample must be in each 
case will depend both upon the parameter being estimated and the distribution from which 
the observations are drawn. 
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 In this section, we consider one form of  interval estimate  derived from 
bootstrap measures of precision. A second form, derived from tests of 
hypotheses, will be considered in the next chapter. 

 A common error is to create a confi dence interval of the form 
(estimate    −     k     *    standard error, estimate    +     k     *    standard error). This form is 
applicable  only  when an interval estimate is desired for the mean of a 
normally distributed random variable. Even then,  k  should be determined 
from tables of the Student ’ s t - distribution and not from tables of the 
normal distribution. 

Nonparametric Bootstrap 
 The bootstrap can help us obtain an interval estimate for any aspect of a 
distribution — a median, a variance, a percentile, or a correlation 
coeffi cient —  if  the observations are independent and all come from 
distributions with the same value of the parameter to be estimated. This 
interval provides us with an estimate of the precision of the corresponding 
point estimate. 

 From the original sample, we draw a random sample (with 
replacement); this random sample is called a bootstrap sample. The 
random sample is the same size as the original sample and is used to 
compute the sample statistic. We repeat this process a number of times, 
1000 or so, always drawing samples with replacement from the original 
sample. The collection of computed statistics for the bootstrap samples 
serves as an empirical distribution of the sample statistic of interest, to 
which we compare the value of the sample statistic computed from the 
original sample. 

 For example, here are the heights of a group of 22 adolescents, 
measured in centimeters and ordered from shortest to tallest:  

  137.0 138.5 140.0 141.0 142.0 143.5 145.0 147.0 148.5 
 150.0 153.0 154.0 155.0 156.5 157.0 158.0 158.5 159.0 
 160.5 161.0 162.0 167.5   

 The median height lies somewhere between 153 and 154 centimeters. If 
we want to extend this result to the population, we need an estimate of 
the precision of this average. 

 Our fi rst bootstrap sample, arranged in increasing order of magnitude 
for ease in reading, might look like this:  

  138.5 138.5 140.0 141.0 141.0 143.5 145.0 147.0 148.5 150.0 153.0 
 154.0 155.0 156.5 157.0 158.5 159.0 159.0 159.0 160.5 161.0 162.   
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 Several of the values have been repeated, which is not surprising as we are 
sampling with replacement, treating the original sample as a stand - in for 
the much larger population from which the original sample was drawn. 
The minimum of this bootstrap sample is 138.5, higher than that of the 
original sample; the maximum at 162.0 is less than the original, whereas 
the median remains unchanged at 153.5.  

  137.0 138.5 138.5 141.0 141.0 142.0 143.5 145.0 145.0 147.0 148.5 
 148.5 150.0 150.0 153.0 155.0 158.0 158.5 160.5 160.5 161.0 167.5   

 In this second bootstrap sample, again we fi nd repeated values; this time 
the minimum, maximum, and median are 137.0, 167.5, and 148.5, 
respectively. 

 The medians of fi fty bootstrapped samples drawn from our sample 
ranged between 142.25 and 158.25 with a median of 152.75 (see Figure 
 5.3 ). These numbers provide an insight into what might have been had we 
sampled repeatedly from the original population.   

 We can improve on the interval estimate {142.25, 158.25} if we are 
willing to accept a small probability that the interval will fail to include the 
true value of the population median. We will take several hundred 
bootstrap samples instead of a mere 50, and use the 5th and 95th 
percentiles of the resulting bootstrap (empirical) distribution to establish 
the boundaries of a 90% confi dence interval. 

 This method might be used equally well to obtain an interval estimate 
for any other population attribute: the mean and variance, the fi fth 
percentile or the twenty - fi fth, and the interquartile range. When several 
observations are made simultaneously on each subject, the bootstrap can 
be used to estimate covariances and correlations among the variables. The 
bootstrap is particularly valuable when trying to obtain an interval estimate 
for a ratio or for the mean and variance of a nonsymmetric distribution. 

 Unfortunately, such intervals have two defi ciencies:

   1.     They are biased, that is, they are more likely to contain certain 
false values of the parameter being estimated than the true value 
[Efron,  1987 ].  

  2.     They are wider and less effi cient than they could be [Efron, 
 1987 ], that is, they  frequently  fail to establish signifi cance when 
such signifi cance exists.    

     FIGURE 5.3.     Scatterplot of 50 Bootstrap Medians  Derived from a Sample of 
Heights .  

142.25 Medians of Bootstrap Samples 158.25
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 Two methods have been proposed to correct these defi ciencies; let us 
consider each in turn. 

 The fi rst is the Hall – Wilson  [1991]  corrections, in which the bootstrap 
estimate is Studentized. For the one - sample case, we want an interval 
estimate based on the distribution of   ˆ ˆ /θ θb bs−( ) , where   ̂θ and   ̂θb are the 
estimates of the unknown parameter based on the original and bootstrap 
sample, respectively, and  s b   denotes the standard deviation of the bootstrap 
sample. An estimate   ̂σ  of the population variance is required to transform 
the resultant interval into one about   θ   (see Carpenter and Bithell,  2000 ). 

 For the two - sample case, we want a confi dence interval based on the 
distribution of

    

ˆ ˆ

/ /

θ θnb mb

nb mbn s m s
n m

n m
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−( ) + −( )

+ −
+( )1 1

2
1 1

2 2  

  where  n ,  m , and  s nb  ,  s mb   denote the sample sizes and standard deviations, 
respectively, of the bootstrap samples. Applying the Hall – Wilson 
corrections, we obtain narrower interval estimates. Even though this 
interval estimate is narrower, it is still  more  likely to contain the true value 
of the unknown parameter. 

 The bias - corrected and accelerated BC a  interval due to Efron and 
Tibshirani [ 1986 ] also represents a substantial improvement, though for 
samples under size 30 the properties of the interval are still suspect. The 
idea behind these intervals comes from the observation that percentile 
bootstrap intervals are most accurate when the estimate is symmetrically 
distributed about the true value of the parameter and the tails of the 
estimate ’ s distribution drop off rapidly to zero. The symmetric, bell - shaped 
normal distribution depicted in Figure  5.4  represents this ideal.   

 Suppose   θ   is the parameter we are trying to estimate,   ̂θ  is the estimate, 
and we establish a monotonically increasing transformation  m  such that 
 m (  θ  ) is normally distributed about   m θ̂( ). We could use this normal 
distribution to obtain an unbiased confi dence interval, and then apply a 
back - transformation to obtain an almost - unbiased confi dence interval. 3  
That we discovered and implemented a monotone transformation is what 
allows us to invert that function to transform the interval based on 
normality back to the original (possibly asymmetric and platykurtotic) 

  3      Stata ™  provides for bias - corrected intervals via its bstrap command. R and S - Plus both 
include BC a  functions. A SAS macro is available at  http://cuke.hort.ncsu.edu/cucurbit/
wehner/software/pathsas/jackboot.txt . 
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distribution. Even with these modifi cations, we do not recommend the use 
of the nonparametric bootstrap with samples of fewer than 100 
observations. Simulation studies suggest that with small sample sizes, the 
coverage is far from exact and the endpoints of the intervals vary widely 
from one set of bootstrap samples to the next. For example, Tu and 
Zhang [ 1992 ] report that with samples of size 50 taken from a normal 
distribution, the actual coverage of an interval estimate rated at 90% using 
the BC  α   bootstrap is 88%. When the samples are taken from a mixture of 
two normal distributions (a not uncommon situation with real - life 
datasets), the actual coverage is 86%. With samples of only 20 in number, 
the actual coverage is only 80%. 

 More serious than the disappointing coverage probabilities discussed is 
that the endpoints of the resulting interval estimates from the bootstrap 
may vary widely from one set of bootstrap samples to the next. For 
example, when Tu and Zhang drew samples of size 50 from a mixture of 
normal distributions, the average of the left limit of 1000 bootstrap 
samples taken from each of 1000 simulated datasets was 0.72 with a 
standard deviation of 0.16; the average and standard deviation of the right 
limit were 1.37 and 0.30, respectively.  

  Parametric Bootstrap 
 Even when we know the form of the population distribution, the use of 
the  parametric bootstrap  to obtain interval estimates may prove advantageous 
either because the parametric bootstrap provides more accurate answers 
than textbook formulas or because no textbook formulas exist. 

     FIGURE 5.4.     Bell - shaped symmetric curve of a normal distribution.  
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 Suppose we know the observations that come from a normal 
distribution and want an interval estimate for the standard deviation. We 
would draw repeated bootstrap samples from a normal distribution the 
mean of which is the sample mean and the variance of which is the sample 
variance. As a practical matter, we would draw an element from a  N (0,1) 
population, multiply by the sample standard deviation, then add the 
sample mean to obtain an element of our bootstrap sample. By computing 
the standard deviation of each bootstrap sample, an interval estimate for 
the standard deviation of the population may be constructed from the 
collection of statistics. 

 Of course, if the observations do not have a normal distribution, as 
would be the case with counts in a contingency table, treating the data as 
if they were from a normal distribution (see Tollenaar and Mooijaart, 
 2003 ) can only lead to disaster.   

IMPROVED RESULTS 
 In many instances, we can obtain narrower interval estimates that have a 
greater probability of including the true value of the parameter by focusing 
on suffi cient statistics, pivotal statistics, and admissible statistics. 

 A statistic  T  is  suffi cient  for a parameter if the conditional distribution of 
the observations given this statistic  T  is independent of the parameter. If 
the observations in a sample are exchangeable, then the order statistics of 
the sample are suffi cient; that is, if we know the order statistics 
 x  (1)     ≤    x (2)     ≤     . . .     ≤     x  (   n   ) , then we know as much about the unknown 
population distribution as we would if we had the original sample in hand. 
If the observations are on successive independent binomial trials that result 
in either success or failure, then the number of successes is suffi cient to 
estimate the probability of success. The minimal suffi cient statistic that 
reduces the observations to the fewest number of discrete values is always 
preferred. 

 A  pivotal  quantity is any function of the observations and the unknown 
parameter that has a probability distribution that does not depend on the 
parameter. The classic example is the Student ’ s t, whose distribution does 
not depend on the population mean or variance when the observations 
come from a normal distribution. 

 A decision procedure  d  based on a statistic  T  is  admissible  with respect 
to a given loss function  L , providing there does not exist a second 
procedure  d  *  whose use would result in smaller losses whatever the 
unknown population distribution. 

 The importance of admissible procedures is illustrated in an expected 
way by Stein ’ s paradox. The sample mean, which plays an invaluable role 
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as an estimator of the population mean of a normal distribution for a 
single set of observations, proves to be inadmissible as an estimator when 
we have three or more independent sets of observations to work with. 
Specifi cally, if { X ij  } are independent observations taken from four or more 
distinct normal distributions with means   θ  i   and variance 1, and losses are 
proportional to the square of the estimation error, then the estimators

    ˆ ( [ ] / )( ), ( ).. . .. . ..θi i i
i

k
X k S X X S X X= + − − − = −

=∑1 3 2 2 2

1
where  

  have smaller expected losses than the individual sample means, regardless 
of the actual values of the population means (see Efron and Morris, 
 1977 ).  

  SUMMARY 
 Desirable estimators are impartial, consistent, effi cient, robust, and 
minimum loss. Interval estimates are to be preferred to point estimates; 
they are less open to challenge for they convey information about the 
estimate ’ s precision.  

  TO LEARN MORE 
 Selecting more informative endpoints is the focus of Berger [ 2002 ] and 
Bland and Altman [ 1995 ]. 

 Lehmann and Casella [ 1998 ] provide a detailed theory of point 
estimation. 

 Robust estimators are considered in Huber [ 1981 ], Maritz [ 1996 ], and 
Bickel et al. [ 1993 ]. Additional examples of both parametric and 
nonparametric bootstrap estimation procedures may be found in Efron 
and Tibshirani [ 1993 ]. Shao and Tu [ 1995 ; Section 4.4] provide a more 
extensive review of bootstrap estimation methods along with a summary of 
empirical comparisons. 

 Carroll and Ruppert [ 2000 ] show how to account for differences in 
variances between populations; this is a necessary step if one wants to take 
advantage of Stein – James – Efron – Morris estimators. 

 Bayes estimators are considered in Chapter  7 .  
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            Forget  “ large - sample ”  methods. In the real world of 
experiments, samples are so nearly always  “ small ”  that it is not 
worth making any distinction, and small - sample methods are 
no harder to apply. — George Dyke  [ 1997 ] . 

 Statistical tests should be chosen before the data are analyzed, 
and the choice should be based on the study design and 
distribution of the data, not the results. — Cara H. Olsen   

 LIFE CONSTANTLY FORCES US TO MAKE DECISIONS. IF life were 
not so uncertain, the  “ correct ”  choice always would be obvious. But life is 
not certain and the choice is not obvious. As always, proper application of 
statistical methods can help us to cope with uncertainty, but cannot 
eliminate it. 

 In the preceding chapter on estimation, our decision consisted of 
picking one value or one interval out of an unlimited number of 
possibilities. Each decision had associated with it a potential loss, an 
amount that increased as the difference between the correct decision and 
our decision increased. 

 In this chapter on hypothesis testing, our choices reduce to three 
possibilities:

   1.     To embrace or accept a primary hypothesis.  

  2.     To reject the primary hypothesis and embrace or accept one or 
more alternative hypotheses.  

  3.     To forgo making a decision until we have gathered more data.    

 Among the most common errors in (prematurely) published work is the 
failure to recognize that the last decision listed above is the correct one.  

  Chapter 6 

Testing Hypotheses: 
Choosing a Test Statistic     

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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  FIRST STEPS 
 Before we can apply statistical methods properly, we need to establish all 
of the following:

   1.     The primary hypothesis and the alternative hypotheses of interest. 
Will this choice result in a one - tailed or a two - tailed test?  

  2.     The nature and relative magnitude of the losses associated with 
erroneous decisions.  

  3.     The type of data that is to be analyzed.  

  4.     The statistical test that will be employed.  

  5.     The signifi cance level of each test that is to be performed.    

 Moreover, all these steps must be completed  before  the data are 
examined. 

 The fi rst step allows us to select a testing procedure that maximizes the 
probability of detecting such alternatives. For example, if our primary 
hypothesis in a  k  - sample comparison is that the means of the  k  populations 
from which the samples are taken are the same, and the alternative is that 
we anticipate an ordered dose response, then the optimal test will be based 
on the correlation between the doses and the responses, and  not  the 
F - ratio of the between - sample and within - sample variances. 

 If we fail to complete step 2, we also risk selecting a less - powerful 
statistic. Suppose, once again, we are making a  k  - sample comparison of 
means. If our anticipated losses are proportional to the squares of the 
differences among the population means, then our test should be based 
on the F - ratio of the between - sample and within - sample variances. But if 
our anticipated losses are proportional to the absolute values of the 
differences among the population means, then our test should be based 
on the ratio of the between - sample and within - sample absolute 
deviations. 

 Several commercially available statistical packages automatically compute 
the  p  - values associated with several tests of the same hypothesis, for 
example, that of the Wilcoxon and the t - test. Rules 3 and 4 state the 
obvious. Rule 3 reminds us that the type of test to be employed will 
depend upon the type of data to be analyzed — binomial trials, categorical 
data, ordinal data, measurements, and time to events. Rule 4 reminds us 
that we are not free to pick and choose the  p  - value that best fi ts our 
preconceptions but must specify the test we employ  before  we look at the 
results. 

 Collectively, rules 1 through 5 dictate that we need always specify 
whether a test will be one - sided or two - sided  before  a test is performed 
and before the data are examined. Two notable contradictions of this 
collection of rules arose in interesting court cases. 
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 In the fi rst of these, the Commissioner of Food and Drugs had 
terminated provisional approval of a food coloring, Red No. 2. and the 
Certifi ed Color Manufacturers sued. 1  

 Included in the data submitted to the court was Table  6.1a ; an analysis 
of this table by Fisher ’ s Exact Test reveals a statistically signifi cant dose 
response to the dye. The response is signifi cant, that is, if the court tests 
the null hypothesis that Red No. 2 does not affect cancer incidence against 
the one - sided alternative that high doses of Red No. 2 do induce cancer, 
at least in rats. The null hypothesis is rejected because only a small fraction 
of the tables with the marginals shown in Table 6.1a reveal a toxic effect 
as extreme as the one actually observed.   

 The preceding is an example of a one - tailed test. Should it have been? 
What would your reaction have been if the results had taken the form 
shown in Table  6.1b , that is, that Red No. 2 prevented tumors, at least 
in rats?   

 Should the court have guarded against this eventuality, that is, should 
they have performed a two - tailed test that would have rejected the null 
hypothesis if either extreme were observed? Probably not, but a 
Pennsylvania federal district court was misled into making just such a 
decision in Commonwealth of Pennsylvania et al v. Rizzo et al. 2  

 In the second illuminating example, African - American fi remen sued the 
city of Philadelphia. The city ’ s procedures for determining which fi remen 
would be promoted included a test that was alleged to be discriminatory 
against African - Americans. The results of the city promotion test are 
summarized in Table  6.2 .   

 Given that the cutoff point always seems to be just above the African -
 American candidates ’  highest score, these results look suspicious. Fisher ’ s 
Exact Test applied to the pass/fail results was only marginally signifi cant at 

  TABLE 6.1A.    Rats fed Red No. 2  
        Low dose     High Dose  

  No cancer    14    14  

  Cancer    0    7  

  TABLE 6.1B.    Rats fed Red No. 2 

        Low dose     High Dose  

  No cancer    7    21  

  Cancer    7    0  

  2      466 F.Supp 1219 (E.D. PA 1979). 
  1      Certifi ed Color Manufacturers Association v. Mathews 543 F.2d 284 (1976 DC), Note 31. 
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.0513; still the court ruled  “ we will not reject the result of plaintiffs ’  study 
simply by mechanically lining it up with the 5% level. ”  3  Do you agree with 
this reasoning? We do. 

 Plaintiffs argued for the application of a one - tailed test,  “ Does a smaller 
proportion of African - American ’ s score at or above the cutoff? ”  but the 
defendants insisted that a two - tailed test is the correct comparison:  “ Are 
there differences in the proportions of African - American and Caucasian 
candidates scoring at or above the cutoff point? ”  The court agreed, in 
error, we feel, given the history of discrimination against African -
 Americans, to consider the two - tailed test as well as the one - tailed one 
(see Section 9.1 of Good,  2001 ). 

 Through a systematic literature search of articles published before March 
2005, Morgan et al.  [2007]  identifi ed genetic variants previously reported 
as signifi cant susceptibility factors for atherosclerosis. They then designed 
and carried out a new separate set of trials. Given their knowledge gleaned 
from the literature review, one - tailed tests were appropriate. Instead 
two - tailed tests were performed leading to erroneous conclusions.  

  TEST ASSUMPTIONS 
 As noted in previous chapters, before any statistical test can be performed 
and a  p  - value or confi dence interval be derived, we must fi rst establish all 
of the following:

   1.     That the sample was selected at random from the population or 
from specifi c subsets (strata) of the population of interest.  

  2.     That subjects were assigned to treatments at random.  

  3.     That observations and observers are free of bias.    

 To these guidelines, we now add the following:

   4.     That all assumptions are satisfi ed.    

  TABLE 6.2.    Scores on department examinations 

     

   Caucasians     African - Americans  

   Cutoff     #     Range     #     Range  

  Assistant Fire Chief    25    73 – 107    2    71 – 99    100  

  Fire Deputy Chief    45    76 – 106    1    97    100  

  Fire Battalion Chief    99    58 – 107    6    83 – 93    94  

    *   Ibid. Data abstracted from Appendix  A .   

  3      Id. at 1228 – 9. 
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 Every statistical procedure relies on certain assumptions for correctness. 
Errors in testing hypotheses come about either because the assumptions 
underlying the chosen test are not satisfi ed, or because the chosen test is 
less powerful than other competing procedures. We shall study each of 
these lapses in turn. 

 Virtually all statistical procedures rely on the assumption that the 
observations are independent. 

 Virtually all statistical procedures require that at least one of the following 
successively weaker assumptions be satisfi ed under the null hypothesis:

   1.     The observations are identically distributed and their distribution 
is known.  

  2.     The observations are exchangeable, that is, their joint distribution 
remains unchanged when the labels on the observations are 
exchanged.  

  3.     The observations are drawn from populations in which a specifi c 
parameter is the same across the populations.    

 The fi rst assumption is the strongest assumption. If it is true, the 
following two assumptions are also true. The fi rst assumption must be true 
for a parametric test to provide an exact signifi cance level. If the second 
assumption is true, the third assumption is also true. The second assumption 
must be true for a permutation test to provide an exact signifi cance level. 

 The third assumption is the weakest. It must be true for a bootstrap test 
to provide an exact signifi cance level asymptotically. 

 An immediate consequence of the fi rst two assumptions is that if 
observations come from a multiparameter distribution, then all parameters, 
not just the one under test, must be the same for all observations under 
the null hypothesis. For example, a t - test comparing the means of two 
populations requires the variation of the two populations to be the same.   

 For parametric tests and parametric bootstrap tests, under the null hypoth-
esis, the observations must all come from a distribution of a specifi c form. 

 Let us now explore the implications of these assumptions in a variety of 
practical testing situations including comparing the means of two 
populations, comparing the variances of two populations, comparing the 
means of three or more populations, and testing for signifi cance in two -
 factor and higher order experimental designs. 

 In each instance, before we choose 4  a statistic, we check which assumptions 
are satisfi ed, which procedures are most robust to violation of these 

  4      Whether Republican or Democrat, Liberal or Conservative, male or female, we have the 
right to choose, and need not be limited by what our textbook, half - remembered teacher 
pronouncements, or software dictate. 



84 PART II STATISTICAL ANALYSIS

assumptions, and which are most powerful for a given signifi cance level 
and sample size. To fi nd the most powerful test, we determine which 
procedure requires the smallest sample size for given levels of Type I and 
Type II error.  

  BINOMIAL TRIALS 
 With today ’ s high - speed desktop computers, a (computationally 
convenient) normal approximation is no longer an excusable shortcut 
when testing that the probability of success has a specifi c value; use 
binomial tables for exact, rather than approximate, inference. To avoid 
error, if suffi cient data is available, test to see that the probability of 
success has not changed over time or from clinical site to clinical site. 

 When comparing proportions, two cases arise. If 0.1    <     p     <    0.9, use 
Fisher ’ s Exact Test. To avoid mistakes, test for a common odds ratio if 
several laboratories or clinical sites are involved. This procedure is 
described in the StatXact manual. 

 If  p  is close to zero, as it would be with a relatively rare event, a 
different approach is called for (see Lehmann,  1986 , p. 151 – 154). 
Recently, Dr. Good had the opportunity to participate in the conduct of a 
very large - scale clinical study of a new vaccine. He had not been part of 
the design team, and when he read over the protocol, he was stunned to 

  TABLE 6.3.    Types of statistical tests of hypotheses 

   Test Type     Defi nition     Example  

  Exact    Stated signifi cance level is 
exact, not approximate  

  t - test when observations 
are i.i.d. normal; 
permutation test when 
observations are 
exchangeable.  

  Parametric    Obtains cutoff points from 
specifi c parametric 
distribution  

  t - test  

  Semiparametric 
Bootstrap  

  Obtains cutoff points from 
percentiles of bootstrap 
distribution of parameter  

    

  Parametric 
Bootstrap  

  Obtains cutoff points from 
percentiles of 
parameterized bootstrap 
distribution of parameter  

    

  Permutation    Obtains cutoff points from 
distribution of test 
statistic obtained by 
rearranging labels  

  Tests may be based upon 
the original 
observations, on ranks, 
on normal or Savage 
scores, or on U - statistics.  
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learn that the design called for inoculating and examining 100,000 
patients! 50,000 with the experimental vaccine, and 50,000 controls with 
a harmless saline solution. 

 Why so many? The disease at which the vaccine was aimed was relatively 
rare. Suppose we could expect 0.8% or 400 of the controls to contract the 
disease, and 0.7% or 350 of those vaccinated to contract it. Put another 
way, if the vaccine were effective, we would expect 400 out of every 750 
patients who contracted the disease to be controls, whereas if the vaccine 
were ineffective (and innocuous) we would expect 50% of the patients who 
contracted the disease to be controls. 

 In short, of the 100,000 subjects we had exposed to a potentially 
harmful vaccine, only 750 would provide information to use for testing 
the vaccine ’ s effectiveness. 

 The problem of comparing samples from two Poisson distributions boils 
down to testing the proportion of a single binomial. And the power of 
this test that started with 100,000 subjects is based on the outcomes of 
only 750. 

 But 750 was merely the expected value; it could not be guaranteed. In 
fact, less than a hundred of those inoculated — treated and control —
 contracted the disease. The result was a test with extremely low power. As 
always, the power of a test depends not on the number of subjects with 
which one starts a trial but the number with which one ends it.  

  CATEGORICAL DATA 
 The chi - square statistic that is so often employed in the analysis of 
contingency tables,
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  does  not  have the chi - square distribution. That distribution represents an 
asymptotic approximation of the statistic that is valid only with very large 
samples. To obtain exact tests of independence in a 2    ×    2 table, use 
Fisher ’ s Exact Test. 

 Consider Table  6.4 , in which we have recorded the results of a 
comparison of two drugs. It seems obvious that Drug B offers signifi cant 
advantages over Drug A. Or does it? A chi - square analysis by parametric 
means in which the value of the chi - squared statistic is compared with a 
table of the chi - square distribution yields an erroneous  p  - value of 3%. But 
Fisher ’ s Exact Test yields a one - sided  p  - value of only 7%. The evidence of 
advantage is inconclusive and further experimentation is warranted.   
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 As in Fisher [ 1935 ], we determine the proportion of tables with the 
same marginals that are as or more extreme than our original table. 

 The problem lies in defi ning what is meant by  “ extreme. ”  The errors lie 
in failing to report how we arrived at our defi nition. 

 For example, in obtaining a two - tailed test for independence in a 2    ×    2 
contingency table, we can treat each table strictly in accordance with its 
probability under the multinomial distribution (Fisher ’ s method) or weight 
each table by the value of the Pearson chi - square statistic for that table. 

  Stratifi ed 2    ×    2 Tables 
 To obtain exact tests of independence in a set of stratifi ed 2    ×    2 tables, 
fi rst test for the equivalence of the odds ratios using the method of Mehta, 
Patel, and Gray [ 1985 ]. If the test for equivalence is satisfi ed, only then 
combine the data and use Fisher ’ s Exact Test.  

  Unordered R    ×    C Tables 
 In testing for differences in an R    ×    C contingency table with unordered 
categories, possible test statistics include Freeman – Halton, chi - square, and 
the log - likelihood ratio  Σ  Σ  f ij     log[ f ij  f  .. / f i.  f . j  ]. Regardless of which statistic is 
employed, one should calculate the exact signifi cance levels of the test 
statistic by deriving its permutation distributions using the method of 
Mehta and Patel [ 1986 ]. 

 The chief errors in practice lie in failing to report all of the following:

    •      Whether we used a one - tailed or two - tailed test and why.  

   •      Whether the categories are ordered or unordered.  

   •      Which statistic was employed and why.    

 Chapter  13  contains a discussion of a fi nal, not inconsiderable source of 
error: the neglect of confounding variables that may be responsible for 
creating an illusory association or concealing an association that actually 
exists.   

  TIME - TO - EVENT DATA (SURVIVAL ANALYSIS) 
 In survival studies and reliability analyses, we follow each subject and/or 
experiment unit until either some event occurs or the experiment is 

  TABLE 6.4.    Comparison of two drugs 

        Drug A     Drug B  

  Response    5    9  

  No Response    5    1  
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terminated; the latter observation is referred to as  censored . The principal 
sources of error are the following:

    •      Lack of independence within a sample  

   •      Lack of independence of censoring  

   •      Too many censored values  

   •      Wrong test employed    

  Lack of Independence within a Sample 
 Lack of independence within a sample is often caused by the existence of 
an implicit factor in the data. For example, if we are measuring survival 
times for cancer patients, diet may be correlated with survival times. If we 
do not collect data on the implicit factor(s) (diet in this case), and the 
implicit factor has an effect on survival times, then we no longer have a 
sample from a single population. Rather, we have a sample that is a 
mixture drawn from several populations, one for each level of the implicit 
factor, each with a different survival distribution. 

 Implicit factors can also affect censoring times, by affecting the 
probability that a subject will be withdrawn from the study or lost to 
follow - up. For example, younger subjects may tend to move away (and be 
lost to follow - up) more frequently than older subjects, so that age (an 
implicit factor) is correlated with censoring. If the sample under study 
contains many younger people, the results of the study may be 
substantially biased because of the different patterns of censoring. This 
violates the assumption that the censored values and the noncensored 
values all come from the same survival distribution. 

 Stratifi cation can be used to control for an implicit factor. For example, 
age groups (such as under 50, 51 – 60, 61 – 70, and 71 or older) can be 
used as strata to control for age. This is similar to using blocking in 
analysis of variance.  

  Lack of Independence of Censoring 
 If the pattern of censoring is not independent of the survival times, then 
survival estimates may be too high (if subjects who are more ill tend to be 
withdrawn from the study), or too low (if subjects who will survive longer 
tend to drop out of the study and are lost to follow - up). 

 If a loss or withdrawal of one subject could increase the probability of 
loss or withdrawal of other subjects, this would also lead to lack of 
independence between censoring and the subjects. 

 Survival tests rely on independence between censoring times and survival 
times. If independence does not hold, the results may be inaccurate. 
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 An implicit factor not accounted for by stratifi cation may lead to a lack 
of independence between censoring times and observed survival times.  

  Many Censored Values 
 A study may end up with many censored values as a result of having large 
numbers of subjects withdrawn or lost to follow - up, or from having the 
study end while many subjects are still alive. Large numbers of censored 
values decrease the equivalent number of subjects exposed (at risk) at later 
times, reducing the effective sample sizes. 

 A high censoring rate may also indicate problems with the study: ending 
too soon (many subjects still alive at the end of the study), or a pattern in 
the censoring (many subjects withdrawn at the same time, younger 
patients being lost to follow - up sooner than older ones, etc.). 

 Survival tests perform better when the censoring is not too heavy, and, 
in particular, when the pattern of censoring is similar across the different 
groups.  

  Which Test? 

  Type I Censoring.     A most powerful test for use when data are censored 
at one end only was developed by Good  [1989, 1991, 1992] . It should 
be employed in the following situations:

    •      Radioimmune assay and other assays in which some observations 
may fall into the nonlinear portion of the scale.  

   •      Mean time - to - failure trials with equipment that are terminated 
after a fi xed period.  

   •      Time - to - event trials with animals that are terminated after a fi xed 
period.     

  Type II Censoring.     Kaplan – Meier survival analysis (KMSA) is the 
appropriate starting point as Good ’ s test is not appropriate for use in 
clinical trials for which the times are commonly censored at both ends. 
KMSA can estimate survival functions even in the presence of censored 
cases and requires minimal assumptions. 

 If covariates other than time are thought to be important in 
determining duration to outcome, results reported by KMSA will represent 
misleading averages, obscuring important differences in groups formed by 
the covariates (e.g., men vs. women). Since this is often the case, methods 
that incorporate covariates, such as event - history models and Cox 
regression, may be preferred. 

 For small samples, the permutation distributions of the Gehan – Breslow, 
Mantel – Cox, and Tarone – Ware survival test statistics and not the chi -
 square distribution should be used to compute  p  - values. If the hazard or 



CHAPTER 6 TESTING HYPOTHESES: CHOOSING A TEST STATISTIC 89

survival functions are not parallel, then none of the three tests (Gehan –
 Breslow, Mantel – Cox, or Tarone – Ware) will be particularly good at 
detecting differences between the survival functions. Before performing 
any of these tests, examine a Kaplan – Meier plot, plots of the life - table 
survival functions, and plots of the life - table hazard functions for each 
sample to see whether their graphs cross as in Figure  6.1 .     

  Comparing Treatments 
 Buyse and Piedbois [ 1996 ] describe four further errors that can result in 
misleading treatment comparisons:

   1.      Comparing summary statistics from non - randomized studies . 
  Regression analyses performed on summary statistics ignore the 
variability in the independent variable(s), and provide biased 
estimates of the regression slope at the individual level.  

  2.      Failing to match patients in the different treatment groups.    A 
correlation between summary statistics on response and survival 
may indicate merely a different patient mix in the different studies. 
One would expect to observe low response rates and short survival 
times in studies that had accrued mostly patients with far 
advanced disease and in poor general condition. Conversely, one 
would expect to observe high response rates and long survival 
times in studies using patients with limited disease and in good 
general condition. A signifi cant correlation between summary 
statistics on response and survival would in that case imply no 
causality of the relationship, and provide no evidence whatsoever 
that if some treatment improved response, then that same 
treatment would also prolong survival.  

  3.      Ignoring the variability in the independent variable(s).    The random 
effects model due to Torri et al.  [1992]  is recommended if only 
summary data is available. Still, even with randomized studies, 
individual patient data should always be used in preference to 
summary statistics.  

     FIGURE 6.1.     Kaplan - Meier Plot Showing Crossing Survival Functions.  
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  4.      Time - biased sampling.    In some cases, time bias can be eliminated 
by defi ning a  “ landmark period ”  during which patients are 
observed for response. Further analysis should distinguish those 
who survive this landmark period and those who do not. The 
landmark method is adequate only when responses occur soon 
after starting treatment, not when responses may appear later in 
the course of the disease. For responses that can occur over 
extended periods of time, response must be considered as a 
time - dependent covariate.      

  COMPARING THE MEANS OF TWO SETS 
OF MEASUREMENTS 
 The most common test for comparing the means of two populations is 
based upon Student ’ s t. For Student ’ s t - test to provide signifi cance levels 
that are exact rather than approximate, all the observations must be 
independent and, under the null hypothesis, all the observations must 
come from identical normal distributions. 

 Even if the distribution is not normal, the signifi cance level of the t - test 
is almost exact for sample sizes greater than 12; for most of the 
distributions one encounters in practice, 5  the signifi cance level of the t - test 
is usually within a percent or so of the correct value for sample sizes 
between 6 and 12. 

 For testing against nonnormal alternatives, more powerful tests than the 
t - test exist. For example, a permutation test replacing the original 
observations with their normal scores is more powerful than the t - test 
[Lehmann,  1986 , p. 321]. 

 Permutation tests are derived by looking at the distribution of values the 
test statistic would take for each of the possible assignments of treatments 
to subjects. For example, if in an experiment two treatments were assigned 
at random to six subjects so that three subjects got one treatment and 
three the other, there would have been a total of 20 possible assignments 
of treatments to subjects. 6  To determine a  p  - value, we compute for the 
data in hand each of the 20 possible values the test statistic might have 
taken. We then compare the actual value of the test statistic with these 20 
values. If our test statistic corresponds to the most extreme value, we say 
that  p     =    1/20    =    0.05 (or 1/10    =    0.10 if this is a two - tailed permutation 
test). 

  5      Here and throughout this text, we deliberately ignore the many exceptional cases, the 
delight of the true mathematician, that one is unlikely to encounter in the real world. 
  6      Interested readers may want to verify this for themselves by writing out all the possible 
assignments of six items into two groups of three: 1 2 3/4 5 6, 1 2 4/3 5 6, and so forth. 
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 Against specifi c normal alternatives, this two - sample permutation test 
provides a most powerful unbiased test of the distribution - free hypothesis 
that the centers of the two distributions are the same [Lehmann,  1986 , p. 
239]. For large samples, its power against normal alternatives is almost the 
same as Student ’ s t - test [Albers, Bickel, and van Zwet,  1976 ]. Against 
other distributions, by appropriate choice of the test statistic, its power 
can be superior [Lambert,  1985 ; Maritz,  1996 ]. Still, in almost every 
instance, Student ’ s - t remains the test of choice for the two - sample 
comparison of data derived from continuous measurements. 

  Incorporating Baseline Data 
 Results must be adjusted for baseline differences between the control and 
treatment groups for covariates that are strongly correlated with the 
outcomes,  ρ     >    .5 [Pocock et al.,  2002 ]. 

 In many treatment comparisons, we are not so much interested in the 
fi nal values as in how the fi nal values differ from baseline. The correct 
comparison is thus between the two sets of differences. The two  p  - values 
that result from comparison of the within treatment before and after 
values are not of diagnostic value.  

  Multivariate Comparisons 
 A test based on several variables simultaneously, a  multivariate test , can be 
more powerful than a test based on a single variable alone,  providing the 
additional variables are relevant . Adding variables that are unlikely to have 
value in discriminating among the alternative hypotheses simply because 
they are included in the dataset can only result in a loss of power. 

 Unfortunately, what works when making a comparison between two 
populations based on a single variable fails when we attempt a  multivariate 
comparison . Unless the data are multivariate normal, H ö telling ’ s T 2 , the 
multivariate analog of Student ’ s t, will not provide tests with the desired 
signifi cance level. Only samples far larger than those we are likely to 
afford in practice are likely to yield multi - variate results that are close to 
multivariate normal. Still, an exact signifi cance level can be obtained in the 
multivariate case regardless of the underlying distribution by making use 
of the permutation distribution of H ö telling ’ s T 2 . 

 Let us suppose we had a series of multivariate observations on  m  control 
subjects and  n  subjects who had received a new treatment. Here is how 
we would construct a multivariate test for a possible treatment effect:

   1.     First, we would compute H ö telling ’ s T 2  for the data at hand.  

  2.     Next, we would take the  m  control labels and the  n  treatment 
labels and apply them at random to the  n     +     m  vectors of 
observations. Listings in the R, C, and other computing languages 
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for carrying out this step will be found in Good  [2006 and 2012] . 
Note that this relabeling can be done in  m     +     n  choose  n  or 
( m     +     n ) ! /( m!n! ) ways.  

  3.     Then we would compute H ö telling ’ s T 2  for the data as they are 
now relabeled.  

  4.     We now repeat steps 2 and 3 a large number of times to obtain a 
permutation (empirical) distribution of possible values of 
H ö telling ’ s T 2  for the data we have collected.  

  5.     Finally, we would compare the value of H ö telling ’ s T 2  we obtained 
at step 1 with this empirical distribution. If the original value is 
an extreme one, lying in the tail of the permutation distribution, 
then we would reject the null hypothesis.    

 If only two or three variables are involved, a graph can sometimes be a 
more effective way of communicating results than a misleading  p  - value 
based on the parametric distribution of H ö telling ’ s T 2 . As an example, 
compare the graph in Weeks and Collins [ 1987 ] (Figure  6.2 ), with the 
analysis of the same data in Collins, Weeks, Cooper, Good, and Russell 
[ 1984 ].    

  Options 
 Alas, more and more individuals seem content to let their software do 
their thinking for them. It won ’ t. 

 Your fi rst fundamental decision is to decide whether you are doing a 
one - tailed or a two - tailed test. If you are testing against a one - sided 
alternative, for example, no difference versus improvement, then you 
require a one - tailed or one - sided test. If you are doing a head - to - head 
comparison — which alternative is best? — then a two - tailed test is required. 

 Note that in a two - tailed test, the tails need not be equal in size but 
should be portioned out in accordance with the relative losses associated 
with the possible decisions [Moy é , 2000, pp. 152 – 157]. 

 Second, you must decide whether your observations are paired (as 
would be the case when each individual serves as its own control) or 
unpaired, and use the paired or unpaired t - test.  

  Difference of Differences 
 A comparison of two experimental effects requires a statistical test on their 
difference, as described previously. But in practice, this comparison is often 
based on an incorrect procedure involving two separate tests in which 
researchers conclude that effects differ when one effect is signifi cant 
( p     <    0.05) but the other is not ( p     >    0.05). Nieuwenhuis, Forstmann, and 
Wagenmakers  [2011]  reviewed 513 behavioral, systems, and cognitive 
neuroscience articles in fi ve top - ranking journals and found that 78 used 
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     FIGURE 6.2.     Injection rates and scores for rats self - administering saline and 
morphine using the pneumatic syringe and new protocol. The ellipse is the 90% 
confi dence limits for saline control rats based upon the assumption of a normal 
bivariate distribution of injection rates corresponding to the initial and reduced 
dose periods. The dashed lines represent the 90% confi dence limits for saline 
self - administration for the initial and reduced doses individually. The scores for 
points falling in each quadrant formed by these lines are shown with the saline 
data. Open circles, score 0; solid triangles, score 1; solid squares, score 2; and solid 
circles, score 3. Note that injection rates are plotted to a logarithmic scale. 
[Reproduced with kind permission of Springer Science    +    Business Media from J.R. 
Weeks and R.J. Collins,  1987 .]  
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the correct procedure and 79 used the incorrect procedure. Do not make 
the same mistake.  

  Testing Equivalence 
 When the logic of a situation calls for demonstration of similarity rather 
than differences among responses to various treatments, then equivalence 
tests are often more relevant than tests with traditional no - effect null 
hypotheses [Anderson and Hauck,  1986 ; Dixon,  1998 ; pp. 257 – 301]. 
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 Two distributions  F  and  G , such that  G  [ x ]    =     F  [ x     −      δ  ], are said to be 
equivalent providing |  δ  |    <     Δ , where  Δ  is the smallest difference of clinical 
signifi cance. To test for equivalence, we obtain a confi dence interval for   δ  , 
rejecting equivalence  only if  this interval contains values in excess of | Δ |. 
The width of a confi dence interval decreases as the sample size increases; 
thus, a very large sample may be required to demonstrate equivalence just 
as a very large sample may be required to demonstrate a clinically 
signifi cant effect. 

 Operationally, establishing equivalence can be accomplished with a pair 
of one - sided hypothesis tests:

   Test 1: H0:  δ     �     −  Δ  versus H1:  δ     >     −  Δ   

  Test 2: H0:  δ     �     Δ  versus H1:  δ     <     Δ     

 If we reject both of these hypotheses, then we establish that  −  Δ     <      δ      <     Δ , 
or, equivalently, that |  δ  |    <     Δ .  

  Unequal Variances 
 If the variances of the two populations are not the same, neither the t - test 
nor the permutation test will yield exact signifi cance levels despite 
pronouncements to the contrary of numerous experts regarding the 
permutation tests.  

  Rule 1: If the underlying distribution is known, make use of it.   

 Some older textbooks recommend the use of an arcsine transformation 
when the data are drawn from a binomial distribution, and a square - root 
transformation when the data are drawn from a Poisson distribution. The 
resultant  p  - values are still only approximations and, in any event, lead to 
suboptimal tests. 

 The optimal test for comparing two binomial distributions is Fisher ’ s 
Exact Test and the optimal test for comparing two Poisson distributions is 
based on the binomial distribution (see, for example, Lehmann,  1986 , 
Chapter  5 , Section 5).  

  Rule 2: More important than comparing mean values can be determining  why  
the variances of the populations are different.   

 There are numerous possible solutions for the Behrens – Fisher problem of 
unequal variances in the treatment groups. These include the following:

    •      Wilcoxon test. The use of the ranks in the combined sample 
reduces the impact (though not the entire effect) of the difference 
in variability between the two samples.  

   •      Generalized Wilcoxon test. See O ’ Brien [ 1988 ].  
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   •      Procedure described in Manly and Francis [ 1999 ].  

   •      Procedure described in Chapter  7  of Weerahandi [ 1995 ].  

   •      Procedure described in Chapter  10  of Pesarin [ 2001 ].  

   •      Bootstrap. See the section on dependent observations in what 
follows.  

   •      Permutation test. Phillip Good conducted simulations for sample 
sizes between 6 and 12 drawn from normally distributed 
populations. The populations in these simulations had variances 
that differed by up to a factor of fi ve, and nominal  p  - values of 5% 
were accurate to within 1.5%.    

 Hilton [ 1996 ] compared the power of the Wilcoxon test, O ’ Brien ’ s test, 
and the Smirnov test in the presence of both location shift and scale 
(variance) alternatives. As the relative infl uence of the difference in 
variances grows, the O ’ Brien test is most powerful. The Wilcoxon test 
loses power in the face of different variances. If the variance ratio is 4:1, 
the Wilcoxon test is not trustworthy. 

 One point is unequivocal. William Anderson writes,

  The fi rst issue is to understand  why  the variances are so different, 
and what does this mean to the patient. It may well be the case 
that a new treatment is not appropriate because of higher 
variance, even if the difference in means is favorable. This issue is 
important whether the difference was anticipated. Even if the 
regulatory agency does not raise the issue, I want to do so 
internally.   

 David Salsburg agrees:

  If patients have been assigned at random to the various treatment 
groups, the existence of a signifi cant difference in any parameter 
of the distribution suggests that there is a difference in treatment 
effect. The problem is not how to compare the means but how to 
determine what aspect of this difference is relevant to the purpose 
of the study.   

 Since the variances are signifi cantly different, I can think of two 
situations where this might occur:

     1.     In many measurements there are minimum and maximum 
values that are possible, e.g. the Hamilton Depression Scale, or 
the number of painful joints in arthritis. If one of the 
treatments is very effective, it will tend to push values into one 
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of the extremes. This will produce a change in distribution 
from a relatively symmetric one to a skewed one, with a 
corresponding change in variance.  

  2.     The experimental subjects may represent a mixture of 
populations. The difference in variance may occur because the 
effective treatment is effective for only a subset of the 
population. A locally most powerful test is given in Conover 
and Salsburg  [1988] .       

  Dependent Observations 
 The preceding statistical methods are not applicable if the observations are 
interdependent. There are fi ve cases in which, with some effort, analysis 
may still be possible: repeated measures, clusters, known or equal pairwise 
dependence, a moving average or autoregressive process, 7  and group -
 randomized trials. 

  Repeated Measures.     Repeated measures on a single subject can be dealt 
with in a variety of ways, including treating them as a single multivariate 
observation. Good [ 2001 ; Section 5.6] and Pesarin [ 2001 ; Chapter  11 ] 
review a variety of permutation tests for use when there are repeated 
measures. 

 Another alternative is to use one of the standard modeling approaches 
such as random -  or mixed - effects models or generalized estimating 
equations (GEEs). See Chapter  13  for a full discussion.  

  Clusters.     Occasionally, data will have been gathered in clusters from 
families and other groups who share common values and work or 
leisure habits. If stratifi cation is not appropriate, treat each cluster as 
if it were a single observation, replacing individual values with a 
summary statistic such as an arithmetic average [Mosteller  &  Tukey, 
 1977 ]. 

 Cluster - by - cluster means are unlikely to be identically distributed, 
having variances, for example, that will depend on the number of 
individuals that make up the cluster. A permutation test based on these 
means would not be exact. 

 If there are a suffi ciently large number of such clusters in each treatment 
group, the  bootstrap,  defi ned in Chapters  3  and  7 , is the appropriate 
method of analysis. In this application, bootstrap samples are drawn on the 
clusters rather than the individual observations. 

  7      For a discussion of these, see Brockwell and Davis [ 1987 ]. 
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 With the bootstrap, the sample acts as a surrogate for the population. 
Each time we draw a pair of bootstrap samples from the original sample, 
we compute the difference in means. After drawing a succession of such 
samples, we will have some idea of what the distribution of the difference 
in means would be were we to take repeated pairs of samples from the 
population itself. 

 As a general rule, resampling should refl ect the null hypothesis, according 
to Young [ 1986 ] and Hall and Wilson [ 1991 ]. Thus, in contrast to the 
bootstrap procedure used in estimation (see Chapters  3  and  7 ), each 
pair of bootstrap samples should be drawn from the  combined sample  
taken from the two treatment groups. Under the null hypothesis, this 
will not affect the results; under an alternative hypothesis, the two 
bootstrap sample means will be closer together than they would if drawn 
separately from the two populations. The difference in means between 
the two samples that were drawn originally should stand out as an extreme 
value. 

 Hall and Wilson [ 1991 ] also recommend that the bootstrap be applied 
only to statistics that, for very large samples, will have distributions that do 
not depend on any unknowns. 8  In the present example, Hall and Wilson 
[ 1991 ] recommend the use of the t - statistic, rather than the simple 
difference of means, as leading to a test that is both closer to exact and 
more powerful. 

 Suppose we draw several hundred such bootstrap samples with 
replacement from the combined sample and compute the t - statistic each 
time. We would then compare the original value of the test statistic, 
Student ’ s t in this example, with the resulting bootstrap distribution to 
determine what decision to make.  

  Pairwise Dependence.     If the covariances are the same for each pair of 
observations, then the permutation test described previously is an exact 
test if the observations are normally distributed [Lehmann,  1986 ], and is 
almost exact otherwise. 

 Even if the covariances are not equal, if the covariance matrix is 
nonsingular, we may use the inverse of this covariance matrix to transform 
the original (dependent) variables to independent (and, hence, 
exchangeable) variables. After this transformation, the assumptions are 
satisfi ed so that a permutation test can be applied. This result holds even if 
the variables are collinear. Let  R  denote the rank of the covariance matrix 
in the singular case. Then there exists a projection onto an  R  - dimensional 

  8      Such statistics are termed asymptotically pivotal. 
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subspace where  R  normal random variables are independent. So if we have 
an  N  dimensional ( N     >     R ) correlated and singular multivariate normal 
distribution, there exists a set of  R  linear combinations of the original  N  
variables so that the  R  linear combinations are each univariate normal and 
independent. 

 The preceding is only of theoretical interest unless we have some 
independent source from which to obtain an estimate of the covariance 
matrix. If we use the data at hand to estimate the covariances, 
the estimates will be interdependent and so will the transformed 
observations.  

  Moving Average or Autoregressive Process.     These cases are best 
treated by the same methods and are subject to the caveats as described in 
Part 3 of this text.  

  Group Randomized Trials.     Group randomized trials (GRTs) in public 
health research typically use a small number of randomized groups with a 
relatively large number of participants per group. Typically, some naturally 
occurring groups are targeted: work sites, schools, clinics, neighborhoods, 
even entire towns or states. A group can be assigned to either the 
intervention or control arm but not both; thus, the group is nested within 
the treatment. This contrasts with the approach used in multicenter 
clinical trials, in which individuals within groups (treatment centers) may 
be assigned to any treatment. 

 GRTs are characterized by a positive correlation of outcomes within a 
group and by the small number of groups. Feng et al. [2001] report a 
positive intraclass correlation (ICC) between the individuals ’  target -
 behavior outcomes within the same group. This can be due in part 
to the differences in characteristics between groups, to the interaction 
between individuals within the same group, or (in the presence of 
interventions) to commonalities of the intervention experienced by 
an entire group. 

 The variance infl ation factor (VIF) as a result of such commonalities is 
1    +    (n    −    1) σ . 

 The sampling variance for the average responses in a group is 
VIF  *   σ 2/n. 

 The sampling variance for the treatment average with k groups and n 
individuals per group is VIF  *   σ 2/(nk). 

 Problems arise. Although  σ  in GRTs is usually quite small, the VIFs 
could still be quite large because VIF is a function of the product of the 
correlation and group size n. Feng et al. [2001] report that in the Working 
Well Trial, while  σ     =    0.03 for daily number of fruit and vegetable servings and 
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an average of 250 workers per work site, VIF    =    8.5. In the presence of 
this deceivingly small ICC, an 8.5 - fold increase in the number of 
participants is required to maintain the same statistical power as if there 
were no positive correlation. Ignoring the VIF in the analysis would lead 
to incorrect results. 

 To be appropriate, an analysis method of GRTs need acknowledge both 
the ICC and the relatively small number of groups. Three primary 
approaches are used:

   1.     Generalized linear mixed models (GLMMs). This approach, 
implemented in SAS Macro GLIMMIX and SAS PROC MIXED, 
relies on an assumption of normality.  

  2.     Generalized estimating equations (GEEs). See Chapter  14 . Again, 
this approach assumes asymptotic normality for conducting 
inference, a good approximation only when the number of groups 
is large.  

  3.     Randomization - based inference. Unequal sized groups will result 
in unequal variances of treatment means resulting in misleading 
 p  - values. To be fair,   

  Gail et al. [ 1996 ] demonstrate that in GRTs, the permutation 
test remains valid (exact or near exact in nominal levels) under 
almost all practical situations, including unbalanced group 
sizes, as long as the number of groups are equal between 
treatment arms or equal within each block if blocking is used.     

 The drawbacks of all three methods, including randomization - based 
inference if corrections are made for covariates, are the same as those for 
other methods of regression as detailed in Chapters  8  and  9 .  

  Nonsystematic Dependence.     If the observations are interdependent and 
fall into none of the preceding categories, then the experiment is fatally 
fl awed. Your efforts would be best expended on the design of a cleaner 
experiment. Or, as J. W. Tukey remarked on more than one occasion,  “ If 
a thing is not worth doing, it is not worth doing well. ”     

  DO NOT LET YOUR SOFTWARE DO YOUR THINKING 
FOR YOU 
 Most statistical software comes with built - in defaults, for example, a 
two - sided test at the 5% signifi cance level. Even if altered, subsequent uses 
may default back to the previously used specifi cations. But what if these 
settings are not appropriate for your particular application? We know of 
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  TABLE 6.5.    Comparison of different analysis methods for inference on treatment 
effect in the Working Well Trial (26 work sites with between 47 to 105 workers 
per site) 

   Method     Treatment Effect      p -value       

  Fruit/vegetable              
     GEE (exchangeable)     − 6.8    0.005      
     GLMM (random intercept)     − 6.7    0.023      
     Permutation     − 6.1    0.095      

  Smoking              
     GEE (exchangeable)     − 6.2    0.76    
     GLMM (random intercept)     − 13    0.55      
     Permutation     − 12    0.66      

one statistician who advised his company to take twice as many samples as 
necessary (at twice the investment in money and time) simply because he 
had allowed the software to make the settings. Always verify that the 
current default settings of your statistical software are appropriate before 
undertaking an analysis or a sample - size determination. 

 It is up to you and not your software to verify that all the necessary 
assumptions are satisfi ed. Just because your software yields a  p  - value does 
not mean that you performed the appropriate analysis.  

  COMPARING VARIANCES 
 Testing for the equality of the variances of two populations is a classic 
problem with many not - quite - exact, not - quite - robust, not - quite - powerful -
 enough solutions. Sukhatme [ 1958 ] lists four alternative approaches and 
adds a fi fth of his own; Miller [ 1968 ] lists ten alternatives and compares 
four of these with a new test of his own; Conover, Johnson, and Johnson 
[ 1981 ] list and compare 56 tests; and Balakrishnan and Ma [ 1990 ] list 
and compare nine tests with one of their own. 

 None of these tests proves satisfactory in all circumstances, for each 
requires that two or more of the following four conditions be satisfi ed:

   1.     The observations are normally distributed.  

  2.     The location parameters of the two distributions are the same or 
differ by a known quantity.  

  3.     The two samples are equal in size.  

  4.     The samples are large enough that asymptotic approximations to 
the distribution of the test statistic are valid.    

 As an example, the fi rst published solution to this classic testing 
problem is the z - test proposed by Welch [ 1937 ] based on the ratio of the 
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two sample variances. If the observations are normally distributed, this 
ratio has the F - distribution, and the test whose critical values are 
determined by the F - distribution is uniformly most powerful among all 
unbiased tests [Lehmann,  1986 , Section 5.3]. But with even small 
deviations from normality, signifi cance levels based on the F - distribution 
are grossly in error [Lehmann,  1986 , Section 5.4]. 

 Box and Anderson [ 1955 ] propose a correction to the F - distribution for 
 “ almost ”  normal data, based on an asymptotic approximation to the 
permutation distribution of the F - ratio. Not surprisingly, their 
approximation is close to correct only for normally distributed data or for 
very large samples. The Box – Anderson statistic results in an error rate of 
21%, twice the desired value of 10%, when two samples of size 15 are 
drawn from a gamma distribution with four degrees of freedom. 

 A more recent permutation test (Bailor,  1989 ) based on complete 
enumeration of the permutation distribution of the sample F - ratio is exact 
only when the location parameters of the two distributions are known or 
are known to be equal. 

 The test proposed by Miller [ 1968 ] yields conservative Type I errors, 
less than or equal to the declared error, unless the sample sizes are 
unequal. A 10% test with samples of size 12 and 8 taken from normal 
populations yielded Type I errors 14% of the time. 

 Fligner and Killeen [ 1976 ] propose a permutation test based on the 
sum of the absolute deviations from the combined sample mean. Their 
test may be appropriate when the medians of the two populations are 
equal, but can be virtually worthless otherwise, accepting the null 
hypothesis up to 100% of the time. In the fi rst edition of this book, Good 
[ 2001 ] proposed a test based on permutations of the absolute deviations 
from the individual sample medians; this test yields discrete signifi cance 
levels that oscillate about the desired signifi cance level. 

 To compute the primitive bootstrap introduced by Efron [ 1979 ], we 
would take successive pairs of samples — one of n observations from 
the sampling distribution  F n   which assigns mass 1/ n  to the values { X i  : 
 i     =    1,    . . .    ,  n }, and one of  m  observations from the sampling distribution 
 G m  , which assigns mass 1/ m  to the values { X j  :  j     =     n     +    1,    . . .    ,  n     +     m }, 
and compute the ratio of the sample variances:

    R
s n
s m
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 We would use the resultant bootstrap distribution to test the hypothesis 
that the variance of  F  equals the variance of  G  against the alternative that 
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the variance of  G  is larger. Under this test, we reject the null hypothesis if 
the 100(1    −      α  ) percentile is less than 1. 

 This primitive bootstrap and the associated confi dence intervals are 
close to exact only for very large samples with hundreds of observations. 
More often the true coverage probability is larger than the desired 
value. 

 Two corrections yield vastly improved results. First, for unequal - sized 
samples, Efron [ 1982 ] suggests that more accurate confi dence intervals 
can be obtained using the test statistic

    ′ =R
s n
s m

n

m

2

2

/
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 Second, applying the bias and acceleration corrections described in 
Chapter  3  to the bootstrap distribution of R ′  yields almost exact 
intervals. 

 Lest we keep you in suspense, a distribution - free exact and more 
powerful test for comparing variances can be derived based on the 
permutation distribution of Aly ’ s statistic. 

 This statistic proposed by Aly[ 1990 ] is

    δ
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  where  X  (1)     ≤     X  (2)     ≤     . . .     ≤     X  (   m   )  are the order statistics of the fi rst sample. 
 Suppose, we have two sets of measurements, 121, 123, 126, 128.5, 

129, and, in a second sample, 153, 154, 155, 156, 158. We replace these 
with the deviations  z  1   i      =     X  (   i    + 1)     −     X  (   i   )  or 2, 3, 2.5, 0.5 for the fi rst sample 
and  z  2   i      =    1, 1, 1, 2 for the second. 

 The original value of the test statistic is 8    +    18    +    15    +    2    =    43. Under 
the hypothesis of equal dispersions in the two populations, we can 
exchange labels between  z  1   i   and  z  2   i   for any or all of the values of  i . One 
possible rearrangement of the labels on the deviations puts {2, 1, 1, 2} in 
the fi rst sample, which yields a value of 8    +    6    +    6    +    8    =    28. 

 There are 2 4     =    16 rearrangements of the labels in all, of which only one 
{2, 3, 2.5, 2} yields a larger value of Aly ’ s statistic than the original 
observations. A one - sided test would have two out of 16 rearrangements 
as or more extreme than the original; a two - sided test would have four. 
In either case, we would accept the null hypothesis, though the wiser 
course would be to defer judgment until we have taken more 
observations. 
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 If our second sample is larger than the fi rst, we have to resample in 
two stages. First, we select a subset of m values at random without 
replacement from the  n  observations in the second, larger sample, and 
compute the order statistics and their differences. Last, we examine all 
possible values of Aly ’ s measure of dispersion for permutations of the 
combined sample as we did when the two samples were equal in size 
and compare Aly ’ s measure for the original observations with this 
distribution. We repeat this procedure several times to check for 
consistency. 

 Good  [1994, p. 31]  proposed a permutation test based on the sum 
of the absolute values of the deviations about the median. First, we 
compute the median for each sample; next, we replace each of the 
remaining observations by the square of its deviation about its sample 
median; last, in contrast to the test proposed by Brown and Forsythe 
 [1974] , we discard the redundant linearly dependent value from each 
sample. 

 Suppose the fi rst sample contains the observations   x x n11 1 1, ,  whose 
median is  M  1 ; we begin by forming the deviates {  ′ =x x Mj j1 1 1– } for 
 j     =    1,    . . .     n  1 . Similarly, we form the set of deviates {  ′x j2 } using the 
observations in the second sample and their median. 

 If there are an odd number of observations in the sample, then one 
of these deviates must be zero. We can not get any information out of a 
zero, so we throw it away. In the event of ties, should there be more 
than one zero, we still throw only one away. If there is an even number 
of observations in the sample, then two of these deviates (the two 
smallest ones) must be equal. We can not get any information out of 
the second one that we did not already get from the fi rst, so we throw 
it away. 

 Our new test statistic  S G   is the sum of the remaining  n  1     −    1 deviations 
in the fi rst sample, that is,   S xG j

n
j= ∑ ′=

−
1
1

1
1 . 

 We obtain the permutation distribution for  S G   and the cutoff point for 
the test by considering all possible rearrangements of the remaining 
deviations between the fi rst and second samples. 

 To illustrate the application of this method, suppose the fi rst sample 
consists of the measurements 121, 123, 126, 128.5, 129.1 and the second 
sample of the measurements 153, 154, 155, 156, 158. Thus, after 
eliminating the zero value,   ′ =x11 5,   ′ =x12 3,   ′ =x13 2 5. ,   ′ =x14 3 1. , and 
S  G      =    13.6. For the second sample   ′ =x21 2,   ′ =x22 1,   ′ =x23 1,   ′ =x24 3. 

 In all, there are   
8
4

70⎛
⎝⎜

⎞
⎠⎟

=  arrangements of which only three yield values 

of the test statistic as or more extreme than our original value. Thus, our 
 p  - value is 3/70    =    0.043 and we conclude that the difference between the 
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dispersions of the two manufacturing processes is statistically signifi cant at 
the 5% level. 

 As there is still a weak dependency among the remaining deviates 
within each sample, they are only asymptotically exchangeable. Tests based 
on  S G   are alternately conservative and liberal according to Baker [ 1995 ] 
in part because of the discrete nature of the permutation distribution 
unless 

  1.     The ratio of the sample sizes  n ,  m  is close to 1.  

  2.     The only other difference between the two populations from 
which the samples are drawn is that they might have different 
means, that is,  F  2 [ x ]    =     F  1 [( x     −      δ  )/  σ  ].    

 The preceding test is easily generalized to the case of  K  samples from  K  
populations. Such a test would be of value as a test for homoscedasticity as 
a preliminary to a  K  - sample analysis for a difference in means among test 
groups. 

 First, we create  K  sets of deviations about the sample medians and make 
use of the test statistic

    S x j
j

n

k

K
= ′( )=

−

= ∑∑ 1
1

1 2

1

1
  

 The choice of the square of the inner sum ensures that this statistic takes 
its largest value when the largest deviations are all together in one sample 
after relabeling. 

 To generate the permutation distribution of  S , we again have two 
choices. We may consider all possible rearrangements of the sample labels 
over the  K  sets of deviations. Or, if the samples are equal in size, we may 
fi rst order the deviations within each sample, group them according to 
rank, and then rearrange the labels within each ranking. 

 Again, this latter method is directly applicable only if the  K  samples are 
equal in size, and, again, this is unlikely to occur in practice. We will have 
to determine a confi dence interval for the  p  - value for the second method 
via a bootstrap in which we fi rst select samples from samples (without 
replacement) so that all samples are equal in size. While we would not 
recommend doing this test by hand, once programmed, it still takes less 
than a second on last year ’ s desktop.   

  Normality is a myth; there never has, and never will be a normal 
distribution. — Geary  [ 1947 , p. 241]     
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  COMPARING THE MEANS OF  K  SAMPLES 
 Although the traditional one - way analysis of variance based on the F - ratio
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  is highly robust, it has four major limitations: 

    1.     Its signifi cance level is dependent on the assumption of normality. 
Problems occur when data are drawn from distributions that are 
highly skewed or heavy in the tails. Still, the  F  - ratio test is 
remarkably robust to minor deviations from normality.  

 MATCH SIGNIFICANCE LEVELS BEFORE PERFORMING 
POWER COMPARISONS 

 When we studied the small - sample properties of parametric tests based 
on asymptotic approximations that had performed well in previously 
published power comparisons, we uncovered another major error in 
statistics: the failure to match signifi cance levels before performing 
power comparisons. Asymptotic approximations to cutoff value were 
used rather than exact values or near estimates. 

 When a statistical test takes the form of an interval, that is, if we reject 
when  S     <     c  and accept otherwise, then power is a nondecreasing function 
of signifi cance level; a test based on an interval may have greater power 
at the 10% signifi cance level than a second different test evaluated at the 
5% signifi cance level, even though the second test is uniformly more 
powerful than the fi rst. To see this, let  H  denote the primary hypothesis 
and  K  an alternative hypothesis: 

 If Pr{ S     <     c | H }    =      α      <      α   ′     =    Pr{ S     <     c  ′ | H ), then  c     <     c  ′ , and   β      =    Pr{ S     <     c | K }    ≤    
Pr{ S     <     c  ′ | K }    =      β   ′ . 

 Consider a second statistical test depending on  S  via the monotonically 
increasing function  h , where we reject if  h [ S ]    <     d . If the cutoff values 
 d     <     d  ′  correspond to the same signifi cance levels   α      <      α   ′ , then 
  β      <    Pr{ h [ S ]    <     d | K }    <      β   ′ . Even though the second test is more powerful 
than the fi rst at level   α  , this will not be apparent if we substitute an 
approximate cutoff point  c  ′  for an exact one  c  when comparing the two 
tests. 

 To ensure matched signifi cance levels in your own power comparisons, 
proceed in two stages: First, use simulations to derive exact cutoff 
values. Then, use these derived cutoff values in determining power. Using 
this approach, we were able to show that an exact permutation test 
based on Aly ’ s statistic was more powerful for comparing variances than 
any of the numerous published inexact parametric tests. 
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  2.     Not surprisingly, lack of normality also affects the power of the 
test, rendering it suboptimal.  

  3.     The  F  - ratio is optimal for losses that are proportional to the 
square of the error and is suboptimal otherwise.  

  4.     The  F  - ratio is an omnibus statistic offering all - round power 
against many alternatives but no particular advantage against any 
specifi c one of them. For example, it is suboptimal for testing 
against an ordered dose response when a test based on the 
correlation would be preferable.    

 A permutation test is preferred for the  k  - sample analysis [Good and 
Lunneborg,  2005 ]. These tests are distribution free (though the variances 
must be the same for all treatments). They are at least as powerful as the 
analysis of variance. And you can choose the test statistic that is optimal 
for a given alternative and loss function and not be limited by the 
availability of tables. 

 We take as our model  X ij      =      α  i      +     ε   jj  , where  i     =    1,    . . .    I denotes the 
treatment, and  j     =    1,    . . .    ,  n i   . We assume that the error terms { ε   jj  } are 
independent and identically distributed. 

 We consider two loss functions: one in which the losses associated with 
overlooking a real treatment effect, a Type II error, are proportional to the 
sum of the squares of the treatment effects   αi

2 (LS), and another in which 
the losses are proportional to the sum of the absolute values of the 
treatment effects, |  α  i  | (LAD). 

 Our hypothesis, a null hypothesis, is that the differential treatment effects, 
the {  α  i  }, are all zero. We will also consider two alternative hypotheses:  K U   
that at least one of the differential treatment effects   α  i   is not zero, and  K O   
that exactly one of the differential treatment effects   α  i   is not zero. 

 For testing against  K U   with the squared deviation loss function, Good 
[ 2002 , p. 126] recommends the use of the statistic   F Xi j ij2

2= ∑ ∑( )  which 
is equivalent to the  F  - ratio once terms that are invariant under permutations 
are eliminated. 

 We compared the parametric and permutation versions of this test when 
the data were drawn from a mixture of normal distributions. The difference 
between the two in power is exacerbated when the design is unbalanced. 
For example, the following experiment was simulated 4000 times:

    •      A sample of size 3 was taken from a mixture of 70%  N  (0,1) and 
30%  N  (1,1).  

   •      A sample of size 4 was taken from a mixture of 70%  N  (0.5,1) and 
30%  N  (1.5,1.5).  

   •      A sample of size 5 was taken from a mixture of 70%  N  (1,1) and 
30%  N  (2,2).    
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 Note that such mixtures are extremely common in experimental work. The 
parametric test in which the  F  - ratio is compared with an  F  - distribution 
had a power of 18%. The permutation test in which the  F  - ratio is 
compared with a permutation - distribution had a power of 31%. 

 For testing against  K U   with the absolute deviation loss function, Good 
[ 2002 , p. 126] recommends the use of the statistic   F Xi j ij1 = ∑ ∑ . 

 For testing against  K  0 , fi rst denote by   Xi  the mean of the  i th sample, 
and by   X i the mean of all observations excluding those in the ith sample. 
A possible test statistic would be the maximum of the differences   X Xi

i− . 
 A permutation test based on the original observations is appropriate 

only if one can assume that under the null hypothesis the observations are 
identically distributed in each of the populations from which the samples 
are drawn. If we cannot make this assumption, we will need to transform 
the observations, throwing away some of the information about them so 
that the distributions of the transformed observations are identical. 

 For example, for testing against  K  0 , Lehmann [ 1999 , p. 372] 
recommends the use of the Jonckheere – Terpstra statistic, the number 
of pairs in which an observation from one group is less than an 
observation from a higher - dose group. The penalty we pay for using this 
statistic and ignoring the actual values of the observations is a marked 
reduction in power for small samples, and a less pronounced loss for larger 
ones. 

 If there are just two samples, the test based on the Jonckheere – Terpstra 
statistic is identical with the Mann – Whitney test. For very large samples, 
with identically distributed observations in both samples, 100 observations 
would be needed with this test to obtain the same power as a permutation 
test based on the original values of 95 observations. This is not a price one 
would want to pay in human or animal experiments. 

  Subjective Data 
 Student ’ s t and the analysis of variance are based on mathematics that 
requires the dependent variable to be measured on an interval or ratio 
scale so that its values can be meaningfully added and subtracted. But 
what does it mean if one subtracts the subjective data value  “ Indifferent ”  
from the subjective data value  “ Highly preferable. ”  The mere fact that we 
have entered the data into the computer on a Likert scale, such as a  “ 1 ”  
for  “ Highly preferable ”  and a  “ 3 ”  for  “ Indifferent ”  does not actually 
endow our preferences with those relative numeric values. 

 Unfortunately, the computer thinks it does and if asked to compute a 
mean preference will add the numbers it has stored and divide by the 
sample size. It will even compute a t statistic and a  p  - value if such is 
requested. But this does not mean that either is meaningful. 
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 Of course, you are welcome to ascribe numeric values to subjective data, 
providing that you spell out exactly what you have done, and to realize 
that the values you ascribe may be quite different from the ones that some 
other investigator might attribute to precisely the same data.  

  Independence versus Correlation 
 Recent simulations reveal that the classic test based on Pearson correlation 
is almost distribution free [Good,  2009 ]. Still, too often we treat a test of 
the correlation between two variables  X  and  Y  as if it were a test of their 
independence.  X  and  Y  can have a zero correlation coeffi cient, yet be 
totally dependent (for example,  Y     =     X  2 ). 

 Even when the expected value of  Y  is independent of the expected value 
of  X , the variance of  Y  might be directly proportional to the variance of  X . 
Of course, if we had plotted the data, we would have spotted this right away. 

 Many variables exhibit circadian rhythms. Yet the correlation of such a 
variable with time when measured over the course of twenty - four hours 
would be zero. This is because correlation really means  “ linear correlation ”  
and the behavior of diurnal rhythm is far from linear. Of course, this too 
would have been obvious had we drawn a graph rather than let the 
computer do the thinking for us. 

 Yet another, not uncommon, example would be when  X  is responsible 
for the size of a change in  Y , but a third variable, not part of the study, 
determines the direction of the change.   

  HIGHER - ORDER EXPERIMENTAL DESIGNS 
 The two principal weaknesses of the analysis of variance are as follows:

   1.     The various tests of signifi cance are  not  independent of one another 
as they are based on statistics that share a common denominator;  

  2.     Undefi ned confounding variables may create the illusion of a 
relationship or may mask an existing one.    

 When we randomly assign subjects (or plots) to treatment, we may 
inadvertently assign all males, say, to one of the treatments. The result 
might be the illusion of a treatment effect that really arises from a sex 
effect. For example, the following table 

   Source of Variation     Sum of Squares      df      Mean Square      F       p  - value  

  Between Groups    29234.2    3    9744.73    3.43    0.038  

  Within Groups    53953.6    19    2839.66          

  Corrected Total    83187.6    22              
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  suggests there exists a statistically signifi cant difference between 
treatments. 

 But suppose, we were to analyze the same data correcting for sex and 
obtain the following: 

   Source of Variation     Sum of Squares      df      Mean Square      F       p  - value  

  Treatment    24102.2    3    8034.07    2.84    0.067  

  Sex    8200.5    1    8200.5    2.90    0.106  

  Within Groups    50884.9    18    2826.94          

  Corrected Total    83187.6    22              

 We longer observe a statistically signifi cant difference between treatment 
groups. 

  Errors in Interpretation 
 As noted previously, one of the most common statistical errors is to 
assume that because an effect is not statistically signifi cant it does not 
exist. One of the most common errors in using the analysis of variance is 
to assume that because a factor such as sex does not yield a signifi cant 
 p  - value that we may eliminate it from the model. Had we done so in the 
above example, we would have observed a statistically signifi cant difference 
among treatments that was actually due to the unequal distribution of the 
sexes amongst the various treatments. 

 The process of eliminating nonsignifi cant factors one by one from an 
analysis of variance means that we are performing a series of tests rather 
than a single test; thus, the actual signifi cance level is larger than the 
declared signifi cance level.  

  Multifactor Designs 
 Further problems arise when one comes to interpret the output of three -
 way, four - way, and higher - order designs. Suppose a second -  or higher -
 order interaction is statistically signifi cant, how is this to be given a 
practical interpretation? Some authors suggest one write,  “ Factor  C  
moderates the effect of Factor  A  on Factor  B  ”  as if this phrase actually 
had discernible meaning. Among the obvious alternative interpretations of 
a statistically signifi cant higher order interaction are the following:

    •      An example of a Type I error  

   •      A defect in the formulation of the additive model; perhaps one 
ought to have employed  f  ( X ) in place of  X  or  g ( X ,  Y ) in place of 
 X     *     Y .    
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 Still, it is clear there are situations in which higher - order interactions 
have real meaning. For example, plants require nitrogen, phosphorous, 
and potassium in suffi cient concentrations to grow. Remove any one 
component and the others will prove inadequate to sustain growth — a 
clear - cut example of a higher - order interaction. 

 To avoid ambiguities, one need either treat multifactor experiments 
purely as pilot efforts and guides to further experimentation or to 
undertake such experiments only after one has gained a thorough 
understanding of interactions via one -  and two - factor experiments. See the 
discussion in Chapter  13  on building a successful model. 

 On the plus side, the parametric analysis of variance is remarkably robust 
with respect to data from nonnormal distributions (Jagers,  1980 ). As with 
the  k  - sample comparison, it should be remembered that the tests for main 
effects in the analysis of variance are omnibus statistics offering all - round 
power against many alternatives but no particular advantage against any 
specifi c one of them. 

 Judicious use of contrasts can provide more powerful tests. For example, 
one can obtain a one - sided test of the row effect in a 2 xCx     . . .    design by 
testing the contrast   X X1 2... ...−  or a test of an ordered row effect in an 
 RxCx     . . .    design by testing the contrast  Σ   j a j X j       ...  , where  Σ  a j      =    0 and the 
 a j   are increasing in  j . Note: These contrasts must be specifi ed in advance 
of examining the data, Otherwise there will be a loss of power due to the 
need to correct for multiple tests. 

 Two additional caveats apply to the parametric ANOVA approach to the 
analysis of two - factor experimental design:

   1.     The sample sizes must be the same in each cell; that is, the design 
must be balanced.  

  2.     A test for interaction must precede any test for main effects.    

 Alas, these same caveats apply to the permutation tests. Let us see why. 
 Imbalance in the design will result in the confounding of main effects 

with interactions. Consider the following two - factor model for crop yield:

    Xijk i j ij jjk= + + + +μ α β γ ε   

 Now suppose that the observations in a two - factor experimental design are 
normally distributed as in the following diagram taken from Cornfi eld and 
Tukey [ 1956 ]:

    
N N
N N

( , ) | ( , )
( , ) | ( , )
0 1 2 1
2 1 0 1
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 There are no main effects in this example — both row means and both 
column means have the same expectations, but there is a clear interaction 
represented by the two nonzero, off - diagonal elements. 

 If the design is balanced, with equal numbers per cell, the lack of 
signifi cant main effects, and the presence of a signifi cant interaction should 
and will be confi rmed by our analysis. But suppose that the design is not 
in balance, that for every ten observations in the fi rst column, we have 
only one observation in the second. Because of this imbalance, when we 
use the  F  - ratio or equivalent statistic to test for the main effect, we will 
uncover a false  “ row ”  effect that is actually due to the interaction between 
rows and columns. The main effect is  confounded  with the interaction. 

 If a design is unbalanced as in the preceding example, we cannot test 
for a  “ pure ”  main effect or a  “ pure ”  interaction. But we may be able to 
test for the combination of a main effect with an interaction by using the 
statistic that we would use to test for the main effect alone. This 
combined effect will not be confounded with the main effects of other 
unrelated factors. 

 Whether or not the design is balanced, the presence of an interaction 
may zero out a cofactor - specifi c main effect or make such an effect 
impossible to detect. More important, the presence of a signifi cant 
interaction may render the concept of a single  “ main effect ”  meaningless. 
For example, suppose we decide to test the effect of fertilizer and sunlight 
on plant growth. With too little sunlight, a fertilizer would be completely 
ineffective. Its effects only appear when suffi cient sunlight is present. 
Aspirin and Warfarin can both reduce the likelihood of repeated heart 
attacks when used alone; you do not want to mix them! 

 Gunter Hartel offers the following example: Using fi ve observations per 
cell and random normals as indicated in Cornfi eld and Tukey ’ s diagram, a 
two - way ANOVA without interaction yields the following results: 

   Source      df      Sum of Squares      F  Ratio     Prob    >     F   

  Row    1    0.15590273    0.0594    0.8104  

  Col    1    0.10862944    0.0414    0.8412  

  Error    17    44.639303          

 Adding the interaction term yields: 

   Source      df      Sum of Squares      F  Ratio     Prob    >     F   

  Row    1    0.155903    0.1012    0.7545  

  Col    1    0.108629    0.0705    0.7940  

  Row * col    1    19.986020    12.9709    0.0024  

  Error    16    24.653283          
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 Expanding the fi rst row of the experiment to have 80 observations 
rather than 10, the main - effects - only table becomes: 

   Source      df      Sum of Squares      F  Ratio     Prob    >     F   

  Row    1    0.080246    0.0510    0.8218  

  Col    1    57.028458    36.2522     < .0001  

  Error    88    138.43327          

 But with the interaction term it is 

   Source      df      Sum of Squares      F  Ratio     Prob    >     F   

  Row    1    0.075881    0.0627    0.8029  

  Col    1    0.053909    0.0445    0.8333  

  Row * col    1    33.145790    27.3887     < .0001  

  Error    87    105.28747          

 The standard permutation tests for main effects and interactions in a 
multifactor experimental design are also correlated as the residuals (after 
subtracting main effects) and are not exchangeable even if the design is 
balanced [Lehmann  &  D ’ Abrera  1988 ]. To see this, suppose our model is 
 X ijk      =      μ      +      α  i      +      β  j      +      γ  ij      +      ε    ijk  , where   ∑ = ∑ = ∑ = ∑ =α β γ γi j i ij j ij 0. 

 Eliminating the main effects in the traditional manner, that is, setting 
  ′ = − − +X X X X Xijk ijk i j.. . . ,..., one obtains the test statistic

    I Xi j k ijk= ′( )∑∑∑ 2
 

  fi rst derived by Still and White [ 1981 ]. A permutation test based on the 
statistic  I  will not be exact. For even if the error terms { ε   ijk  } are 
exchangeable, the residuals   ′ = − − +Xijk ijk i jε ε ε ε.. . . ... are weakly correlated, 
the correlation depending on the subscripts. 

 The negative correlation between permutation test statistics works to 
their advantage only when just a single effect is present. Nonetheless, the 
literature is fi lled with references to permutation tests for the two - way and 
higher - order designs that produce misleading values. Included in this 
category are those permutation tests based on the ranks of the 
observations, for example, the Kruskall – Wallace test that may be found in 
many statistics software packages.  

  Factorial Designs 
 Salmaso  [2002]  developed exact distribution - free tests for analyzing 
factorial designs.  
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  Crossover Designs 
 Good and Xie [ 2008 ] developed an exact distribution - free test for 
analyzing crossover designs.  

  Unbalanced Designs 
 Unbalanced designs with unequal numbers per cell may result from 
unanticipated losses during the conduct of an experiment or survey (or 
from an extremely poor initial design). There are two approaches to their 
analysis. 

 First, if we have a large number of observations and only a small 
number are missing, we might consider imputing values to the missing 
observations, recognizing that the results may be somewhat tainted. 

 Second, we might bootstrap along one of the following lines:

    •      If only one or two observations are missing, create a balanced 
design by discarding observations at random; repeat to obtain a 
distribution of  p  - values [Baker,  1995 ].  

   •      If there are actual holes in the design, so that there are missing 
combinations, create a test statistic that does not require the 
missing data. Obtain its distribution by bootstrap means. See 
Good [ 2012, p. 89 – 91 ] for an example.      

  INFERIOR TESTS 
 Violation of assumptions can affect not only the signifi cance level of a 
test but the power of the test as well; see Tukey and MacLaughlin  [1963]  
and Box and Tiao [ 1964 ]. For example, although the signifi cance level 
of the t - test is robust to departures from normality, the power of the 
t - test is not. Thus, the two - sample permutation test may always be 
preferable. 

 If blocking including matched pairs was used in the original design then 
the same division into blocks should be employed in the analysis. 
Confounding factors such as sex, race, and diabetic condition can easily 
mask the effect we hoped to measure through the comparison of two 
samples. Similarly, an overall risk factor can be totally misleading [Gigerenzer, 
 2002 ]. Blocking reduces the differences between subjects so that 
differences between treatment groups stand out, if, that is, the appropriate 
analysis is used. Thus, paired data should always be analyzed with the 
paired t - test or its permutation equivalent, not with the group t - test. 

 To analyze a block design (for example, where we have sampled 
separately from whites, blacks, and Hispanics), the permutation test 
statistic is   S xb

B
j bj= ∑ ∑=1 ,where  x bj   is the  j th observation in the control 

sample in the  b th block, and the rearranging of labels between control and 
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treated samples takes place separately and independently within each of the 
 B  blocks [Good,  2001 , p. 124]. 

 Blocking can also be used after the fact if you suspect the existence of 
confounding variables and if you measured the values of these variables as 
you were gathering data. 9  

 Always be sure your choice of statistic is optimal against the alternative 
hypotheses of interest for the appropriate loss function. 

 To avoid using an inferior, less sensitive, and possibly inaccurate 
statistical procedure, pay heed to another admonition from George Dyke 
[ 1997 ]:  “ The availability of  ‘ user - friendly ’  statistical software has caused 
authors to become increasingly careless about the logic of interpreting 
their results, and to rely uncritically on computer output, often using the 
 ‘ default option ’  when something a little different (usually, but not always, 
a little more complicated) is correct, or at least more appropriate. ”   

  MULTIPLE TESTS 
 When we perform multiple tests in a study, there may not be journal room 
(nor interest) to report all the results, but we do need to report the total 
number of statistical tests performed so that readers can draw their own 
conclusions as to the signifi cance of the results that are reported. 

 We may also wish to correct the reported signifi cance levels by using 
one of the standard correction methods for independent tests (e.g., 
Bonferroni as described in Hsu,  1996  and Aickin and Gensler,  1996 ; for 
resampling methods, see Westfall and Young,  1993 ). 

 Several statistical packages — SAS is a particular offender — print out 
the results of several dependent tests performed on the same set of data, 
for example, the t - test and the Wilcoxon. We are not free to pick and 
choose. We must decide before we view the printout which test we will 
employ. 

 Let  W  α    denote the event that the Wilcoxon test rejects a hypothesis at 
the   α   signifi cance level. Let  P  α    denote the event that a permutation test 
based on the original observations and applied to the same set of data 
rejects a hypothesis at the   α   signifi cance level. Let  T  α    denote the event 
that a t - test applied to the same set of data rejects a hypothesis at the   α   
signifi cance level. 

 It is possible that  W  α    may be true when  P  α    and  T  α    are not, and so forth. 
As Pr{ W  α    or  P  α    or  T  α   | H }    ≤    Pr{ W  α   | H }    =      α  , we will have infl ated the Type I 

  9      This recommendation applies only to a test of effi cacy for all groups (blocks) combined. 
 p  - values for subgroup analyses performed after the fact are still suspect; see Chapter  1 . 
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error by picking and choosing after the fact which test to report. Vice 
versa, if our intent was to conceal a side effect by reporting the results 
were not signifi cant, we will infl ate the Type II error and defl ate the 
power   β   of our test, by an after - the - fact choice as   β      =    Pr{not ( W  α    and  P  α    
and  T  α   )|K}    ≤    Pr{ W  α   |K}. 

 To repeat, we are not free to pick and choose among tests; any such 
conduct is unethical.  Both the comparison and the test statistic must 
be specifi ed in advance of examining the data.  

  Misuse of Baseline Data 
 Clinical trials include substantial amounts of baseline data collected from 
each patient. Inevitably, subgroups exist for which a new treatment is 
more (or less) effective (or harmful) than for the trial as a whole. One has 
an ethical obligation to identify such subgroups. 

 But at the same time, one must guard against data dredging and placing 
post - hoc emphasis on the  “ most interesting ”  set of analyses across the 
many (many) potential subgroup analyses;  p  - values should not be given as 
they will depend on the total number of potential analyses, not merely on 
the actual number that were performed or reported. Results for subgroups 
may be factored in as part of a more - extensive Bayesian analysis; see Dixon 
and Simon [ 1991 ] and Simon [ 2002 ].   

  BEFORE YOU DRAW CONCLUSIONS 

  Insignifi cance 
 If the  p  - value you observe is greater than your predetermined signifi cance 
level, this may mean any or all of the following:

   1.     You have measured the wrong thing, gone about measuring it the 
wrong way, or used an inappropriate test statistic.  

  2.     Your sample size was too small to detect an effect.  

  3.     The effect you are trying to detect is not statistically signifi cant.     

  Practical Versus Statistical Signifi cance 
 If the  p  - value you observe is less than your predetermined signifi cance 
level, this does not necessarily mean the effect you have detected is of 
practical signifi cance; see, for example, the section on measuring 
equivalence. For this reason, as we discuss in Chapter  8 , it is essential that 
you follow up any signifi cant result by computing a confi dence interval, so 
readers can judge for themselves whether the effect you have detected is of 
practical signifi cance. 
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 And do not forget that at the   α   percent signifi cance level,   α   - percent of 
your tests will be statistically signifi cant by chance alone.  

  Missing Data 
 Before you draw conclusions, be sure you have accounted for all missing 
data, interviewed nonresponders, and determined whether the data were 
missing at random or were specifi c to one or more subgroups. 

 During the Second World War, a group was studying planes returning 
from bombing Germany. They drew a rough diagram showing where the 
bullet holes were and recommended that those areas be reinforced. A 
statistician, Abraham Wald  [1950] , 10  pointed out that essential data were 
missing from the sample they were studying. What about the planes that 
did not return from Germany? 

 When we think along these lines, we see that the two areas of the plane 
that had almost no bullet holes (where the wings and where the tail joined 
the fuselage) are crucial. Bullet holes in a plane are likely to be at random, 
occurring over the entire plane. Their absence in those two areas in 
returning bombers was diagnostic. Do the data missing from your 
experiments and surveys also have a story to tell?   

  INDUCTION 

   Behold! human beings living in an underground den, which has a 
mouth open towards the light and reaching all along the den; here 
they have been from their childhood, and have their legs and necks 
chained so that they cannot move, and can only see before them, 
being prevented by the chains from turning round their heads. Above 
and behind them a fi re is blazing at a distance, and between the fi re 
and the prisoners there is a raised way; and you will see, if you 
look, a low wall built along the way, like the screen which marionette 
players have in front of them, over which they show the puppets. 

 And they see only their own shadows, or the shadows of one 
another, which the fi re throws on the opposite wall of the cave. 

 To them, I said, the truth would be literally nothing but the 
shadows of the images. — The Allegory of the Cave (Plato,  The 
Republic , Book VII)    

  Never assign probabilities to the true state of nature, but only to the validity 
of your own predictions.   

  10      This reference may be hard to obtain. Alternatively, see Mangel and Samaniego [ 1984 ]. 
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 A  p  - value does not tell us the probability that a hypothesis is true, nor 
does a signifi cance level apply to any specifi c sample; the latter is a 
characteristic of our testing in the long run. Likewise, if all assumptions 
are satisfi ed, a confi dence interval will in the long run contain the true 
value of the parameter a certain percentage of the time. But we cannot say 
with certainty in any specifi c case that the parameter does or does not 
belong to that interval, Neyman [ 1961, 1977 ]. 

 In our research efforts, the only statements we can make with God - like 
certainty are of the form  “ our conclusions fi t the data. ”  The true nature of 
the real world is unknowable. We can speculate, but never conclude. 

 The gap between the sample and the population will always require a 
leap of faith, for we understand only insofar as we are capable of 
understanding [Lonergan,  1992 ]. See also the section on Deduction 
versus Induction in Chapter  2 .  

  SUMMARY 
 Know your objectives in testing. Know your data ’ s origins. Know the 
assumptions you feel comfortable with. Never assign probabilities to the 
true state of nature, but only to the validity of your own predictions. 
Collecting more and better data may be your best alternative.  

  TO LEARN MORE 
 For commentary on the use of wrong or inappropriate statistical methods, 
see Avram et al. [ 1985 ], Badrick and Flatman [ 1999 ], Berger et al. 
[ 2002 ], Bland and Altman [ 1995 ], Cherry [ 1998 ], Cox [ 1999 ], Dar, 
Serlin, and Omer  [1994] , Delucchi [ 1983 ], Elwood [ 1998 ], Felson, 
Cupples, and Meenan [ 1984 ], Fienberg [ 1990 ], Gore, Jones, and Rytter 
 [1977] , Lieberson [ 1985 ], MacArthur and Jackson  [1984] , McGuigan 
[ 1995 ], McKinney et al. [ 1989 ], Miller [ 1986 ], Padaki [ 1989 ], Welch and 
Gabbe [ 1996 ], Westgard and Hunt [ 1973 ], White [ 1979 ], and Yoccoz 
 [1991] . 

 Hunter and Schmidt [ 1997 ] emphasize why signifi cance testing remains 
essential. 

 Guidelines for reviewers are provided by Altman  [1998a] , Bacchetti 
[ 2002 ], Finney [ 1997 ], Gardner, Machin and Campbell [ 1986 ], George 
[ 1985 ], Goodman, Altman and George [ 1998 ], International Committee 
of Medical Journal Editors [ 1997 ], Light and Pillemer [ 1984 ], Mulrow 
[ 1987 ], Murray [ 1988 ], Schor and Karten [ 1966 ], and Vaisrub [ 1985 ]. 

 For additional comments on the effects of the violation of assumptions, 
see Box and Anderson [ 1955 ], Friedman [ 1937 ], Gastwirth and Rubin 
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[ 1971 ], Glass, Peckham, and Sanders [ 1972 ], and Pettitt and Siskind 
[ 1981 ]. 

 For the details of testing for equivalence, see Dixon [ 1998 ]. For a 
review of the appropriate corrections for multiple tests, see Tukey [ 1991 ]. 

 For true tests of independence, see Romano [ 1990 ]. There are many 
tests for the various forms of dependence, such as quadrant dependence 
(Fisher ’ s Exact Test), trend (correlation), and serial correlation; see, for 
example, Maritz,  1996  and Manly [ 1997 ]. 

 For procedures with which to analyze factorial and other multi - factor 
experimental designs, see Salmaso  [2002]  and Chapter  8  of Pesarin 
[ 2001 ]. 

 Most of the problems with parametric tests reported here extend to and 
are compounded by multivariate analysis. For some solutions, see Chapter 
 9  of Good [ 2005 ], Chapter  6  of Pesarin [ 2001 ], and Pesarin [ 1990 ]. 

 For a contrary view on adjustments of p - values in multiple comparisons, 
see Rothman  [1990] . For a method for allocating Type I error among 
multiple hypotheses, see Moy é   [2000] . 

 Venn [ 1888 ] and Reichenbach [ 1949 ] are among those who have 
attempted to construct a mathematical bridge between what we observe 
and the reality that underlies our observations. To the contrary, 
extrapolation from the sample to the population is not a matter of 
applying Holmes - like deductive logic but entails a leap of faith. A careful 
reading of Locke [ 1700 ], Berkeley [ 1710 ], Hume  [1748] , and Lonergan 
[ 1992 ] is an essential prerequisite to the application of statistics. 

 For more on the contemporary view of induction, see Berger [ 2002 ] 
and Sterne, Smith, and Cox [ 2001 ]. The former notes yhat  “ Dramatic 
illustration of the non - frequentist nature of  p  - values can be seen from the 
applet available at  www.stat.duke.edu/ ∼ berger . The applet assumes one 
faces a series of situations involving normal data with unknown mean   θ   
and known variance, and tests of the form  H :   θ      =    0 versus  K :   θ      ≠    0. The 
applet simulates a long series of such tests, and records how often  H  is 
true for  p  - values in given ranges. ”   
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                NONRANDOM SAMPLES 
 Quite often, particularly when exploring the implications of proposed 
government policies, we are forced to make do with found (or observed) 
data; that is, we access data that do not result from planned or controlled 
experiments. We consider the potential sources of error to be found in 
epidemiological studies and in case - control studies. 

  Epidemiology 
 It is common in epidemiological investigations to compare the events that 
take place in a specifi c location before and after a specifi c policy is 
implemented and/or to compare the events that take place in a specifi c 
time period in two distinct locations, one where the policy is implemented 
and one where it is not. 

 Marshall et al. [ 2011 ] examined the population - based overdose 
mortality rates for the period before (Jan 1, 2001, to Sept 20, 2003) and 
after (Sept 21, 2003, to Dec 31, 2005) the opening of the Vancouver 
Safe - Injection Facility. They reported a practical as well as statistically 
signifi cant decrease in the immediate (500 meter) area in contrast to a 
minor decrease in the fatal overdose rate in the rest of the city. 

 A rebuttal by Pike et al.  [2011]  1  noted the following sources of error in 
the Marshall report:

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

  Chapter 7 

Strengths and Limitations of 
Some Miscellaneous 
Statistical Procedures     

  1      As we note in Chapter  9 , the motives of the authors of this report are unclear; in this 
instance, those motives do not affect the validity of the authors ’  claims. 



120 PART II STATISTICAL ANALYSIS

    •      The choice of control period was suspect; 2001 was a year of 
markedly higher heroin availability and overdose fatalities than all 
subsequent years.  

   •      Confounding variables were neglected; other changes in 
government policy may have affected the results. For example, 
50 – 66 extra police were specifi cally assigned to the 12 city blocks 
surrounding the safe - injection facility following April 2003.  

   •      Combining unrelated results; 41% of British Columbia ’ s overdose 
fatalities are not even injection - related.     

  Case - Control Studies 
 In a case - control study, individuals with the disease of interest are matched 
with a random sample of healthy individuals (controls). Comparison 
between the two groups should be made using matched pairs. If 
signifi cant differences are found, the natural inference is that the associated 
risk factors are associated with the disease. 

 Problems arise if an outcome variable or a surrogate for an outcome 
variable is used for the matching. 

 Smith and Douglas [ 1986 ] analyzed the incidence of leukemia of the 
cohort of workers at a British Nuclear Fuels plant to examine the effects of 
occupational exposure to radiation. The authors found a signifi cant 
association between risk of leukemia and cumulative external radiation dose. 

 The matching factors were site, sex, work status (offi ce workers vs. 
workers handling radioactive material), date of birth within two years, and 
the case ’ s date of death (at which time the control was alive). 

 When Marsh et al.  (2002)  reanalyzed the data extending the criteria for 
matching to include each individual ’ s date of entry, the correlation with 
occupational status and morbidity disappeared. This was to be expected, 
these authors report, as the result of overmatching, for radiation dose also 
changes with calendar time.   

  MODERN STATISTICAL METHODS 
 The greatest error associated with the use of statistical procedures is to 
make the assumption that one single statistical methodology can suffi ce for 
all applications. 

 From time to time, a new statistical procedure will be introduced or an 
old one revived along with the assertion that at last the defi nitive solution 
has been found. Parallel with the establishment of new religions, at fi rst 
the new methodology is reviled, even persecuted, until, growing in the 
number of its adherents, it can begin to attack and persecute the adherents 
of other more established dogmas in its turn. 
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 During the preparation of this text, an editor of a statistics journal 
rejected an article of one of the authors on the sole grounds that it made 
use of permutation methods. 

  “ I ’ m amazed that anybody is still doing permutation tests    . . .     ”  wrote 
the anonymous reviewer,  “ There is probably nothing wrong technically 
with the paper, but I personally would reject it on grounds of irrelevance 
to current best statistical practice. ”  To which the editor sought fi t to add, 
 “ The reviewer is interested in estimation of interaction or main effects in 
the more general semi - parametric models currently studied in the 
literature. It is well known that permutation tests preserve the signifi cance 
level but that is all they do is answer yes or no. ”  2  

 But one methodology can never be better than another, nor can 
estimation replace hypothesis testing or visa versa. Every methodology has 
a proper domain of application and another set of applications for which it 
fails. Every methodology has its drawbacks and its advantages, its 
assumptions and its sources of error. Let us seek the best from each 
statistical procedure. 

 The balance of this chapter is devoted to exposing the frailties of four of 
the  “ new ”  (and revived) techniques: Bayesian methods, bootstrap, meta -
 analysis, and permutation tests.  

  BOOTSTRAP 
 Many of the procedures discussed in this chapter fall victim to the 
erroneous perception that one can get more out of a sample or series of 
samples than one actually puts in. One bootstrap expert learned he was 
being considered for a position because management felt,  “ your 
knowledge of the bootstrap will help us to reduce the cost of sampling. ”  

 Michael Chernick, author of  Bootstrap Methods: A Practitioner ’ s Guide  
 [2007] , has documented six myths concerning the bootstrap:

   1.     Allows you to reduce your sample size requirements by replacing 
real data with simulated data — Not. Kwon and Moon  [2006]  
made precisely this error in applying the bootstrap to assess the 
probability of dam overfl ow.  

  2.     Allows you to stop thinking about your problem, the statistical 
design and probability model — Not.  

  3.     No assumptions necessary — Not. One particular but remediable 
assumption is that the observations be independent. In the case of 

  2      A double untruth. First, permutation tests also yield interval estimates; see, for example, 
Garthwaite [ 1996 ]. Second, semiparametric methods are not appropriate for use with 
small - sample experimental designs, the topic of the submission. 



122 PART II STATISTICAL ANALYSIS

time series, where adjacent observations may be dependent, the use 
of moving - block [K ü nsch,  1989 ] or circular block [Politis and 
Romano,  1992 ] bootstraps is recommended.  

  4.     Can be applied to any problem — Not.  

  5.     Only works asymptotically — Necessary sample size depends on the 
context.  

  6.     Yields exact signifi cance levels — Never.    

 To which we would add never use the bootstrap (or any other method) 
to test a hypothesis if a more powerful method is available. For example, 
Derado et al.  [2004]  performed a series of complex time - consuming 
measurements on 12 diffi cult to obtain and to house monkeys, when six 
animals would have yielded the same result had they used a permutation 
test to analyze the results instead of bootstrap methods. 

 Proving that one can not make a silk purse out of a sow ’ s ear, Kwon 
and Moon  [2006]  make a series of rash assumptions about the parametric 
form of the extreme tail of a distribution, then use the parametric 
bootstrap to assess the risk of a dam overfl owing. 

 Of course, the bootstrap does have many practical applications, as 
witness its appearance in six of the chapters in this book. 3    

 •      Confi dence intervals for population functionals that rely primarily 
on the center of the distribution such as the mean, median, and 
40th through 60th percentiles.  

   •      Model validation (see Appendix  B )  

   •      Estimating bias  

   •      When all else fails  

   —     Behrans – Fisher problem [Good,  2005 , Section 3.6.4]  

   —     Missing cells from an experimental design [Good,  2006 , Section 
5.6]  

   —     Sample - size determination      

  Limitations 
 As always, to use the bootstrap or any other statistical methodology 
effectively, one has to be aware of its limitations. The bootstrap is of value 
in any situation in which the sample can serve as a surrogate for the 
population. 

 If the sample is not representative of the population because the sample 
is small or biased, not selected at random, or its constituents are not 
independent of one another, then the bootstrap will fail. 

  3      If you are counting, we meet the bootstrap again in Chapters  11 ,  13 , and  15 . 
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 Canty et al. [ 2006 ] also list data outliers, inconsistency of the bootstrap 
method, incorrect resampling model, wrong or inappropriate choice of 
statistic, nonpivotal test statistics, nonlinearity of the test statistic, and 
discreteness of the resample statistic as potential sources of error. 

 One of the fi rst proposed uses of the bootstrap, illustrated in Chapter  3 , 
was in providing an interval estimate for the sample median. Because the 
median or 50th percentile is in the center of the sample, virtually every 
element of the sample contributes to its determination. As we move out 
into the tails of a distribution, to determine the 20th percentile or the 
90th, fewer and fewer elements of the sample are of assistance in making 
the estimate. 

 For a given size sample, bootstrap estimates of percentiles in the tails 
will always be less accurate than estimates of more centrally located 
percentiles. Similarly, bootstrap interval estimates for the variance of a 
distribution will always be less accurate than estimates of central location 
such as the mean or median, as the variance depends strongly upon 
extreme values in the population. 

 One proposed remedy is the tilted bootstrap 4  in which, instead of 
sampling each element of the original sample with equal probability, we 
weight the probabilities of selection so as to favor or discourage the 
selection of extreme values. 

 If we know something about the population distribution in advance, for 
example, if we know that the distribution is symmetric, or that it is 
chi - square with six degrees of freedom, then we may be able to take 
advantage of a parametric or semiparametric bootstrap as described in 
Chapter  5 . Recognize that in doing so, you run the risk of introducing 
error through an inappropriate choice of parametric framework. 

 Problems due to the discreteness of the bootstrap statistic are usually 
evident from plots of bootstrap output. They can be addressed using a 
smooth bootstrap as described in Davison and Hinkley [ 1997 , Section 3.4].   

  BAYESIAN METHODOLOGY 
 Since being communicated to the Royal Society in 1763 by Reverend 
Thomas Bayes, 5  the eponymous Theorem has exerted a near - fatal 
attraction on those exposed to it. 6  Much as a bell placed on the cat would 
magically resolve so many of the problems of the average house mouse, 

  4      See, for example, Hinkley and Shi [ 1989 ] and Phipps [ 1997 ]. 

  6      The interested reader is directed to Keynes [ 1921 ] and Redmayne [ 1998 ] for some 
accounts. 

  5       Phil. Tran.  1763; 53:376 – 398. Reproduced in  Biometrika  1958; 45: 293 – 315. 
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Bayes ’  straightforward, easily grasped mathematical formula would appear 
to provide the long - awaited basis for a robotic judge that is free of human 
prejudice. 

 On the plus side, Bayes ’  Theorem offers three main advantages:

   1.     Simplifi es the combination of a variety of different kinds of 
evidence, lab tests, animal experiments, and clinical trials, and 
serves as an effective aid to decision making.  

  2.     Permits evaluating evidence in favor of a null hypothesis. And 
with very large samples, a null hypothesis is not automatically 
rejected.  

  3.     Provides dynamic fl exibility  during  the conduct of an experiment; 
sample sizes can be modifi ed, measuring devices altered, subject 
populations changed, and end points redefi ned.    

 Suppose we have in hand a set of evidence  E     =    { E  1 ,  E  2 ,    . . .    ,  E n  }, and 
thus have determined the conditional probability Pr{ A    |    E } that some 
event  A  is true.  A  might be the event that O. J. Simpson killed his 
ex - wife, that the Captain of the Exxon Valdez behaved recklessly, or some 
other incident whose truth or falsehood we wish to establish. An additional 
piece of evidence  E n    + 1  now comes to light. Bayes ’  Theorem tell us that
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  where  ∼  A , read not  A , is the event that  A  did not occur. Recall that 
Pr{ A }    +    Pr{ ∼  A }    =    1. Pr{ A    |    E  1 , … , E n  } is the  prior  probability of  A , and 
Pr{ A    |    E  1 , … , E n  , E n    + 1 } the  posterior  probability of  A  once the item of 
evidence  E n    + 1  is in hand. Gather suffi cient evidence and we shall have an 
automatic verdict. 

 The problem with the application of Bayes ’  Theorem in practice comes 
at the beginning when we have no evidence in hand, and n    =    0. What is 
the prior probability of  A  then? 

  When Prior Information Is Available 
 Suppose we have conducted a pilot experiment of m observations in which 
we estimated the mean of a population to be   μ   and its variance   τ   2 . Our 
new sample of size  n , taken from the same population, has mean   x  and 
variance  s  2 . An improved estimate of the mean is then given by
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  Applications in the Courtroom 7  
 Bayes ’  Theorem has seen little use in criminal trials as, ultimately, the 
theorem relies on unproven estimates rather than known facts. 8  Tribe 
[ 1971 ] states several objections including the argument that a jury might 
actually use the evidence twice: once in its initial assessment of guilt, that 
is, to determine a prior probability, and a second time when the jury 
applies Bayes ’  Theorem. A further objection to the theorem ’ s application 
is that if a man is innocent till proven guilty, the prior probability of his 
guilt must be zero; by Bayes ’  Theorem, the posterior probability of his 
guilt would be zero also, rendering a trial unnecessary. The courts of 
several states have remained unmoved by this argument. 9  

 In State v. Spann, 10  showing the defendant had fathered the victim ’ s 
child was key to establishing a charge of sexual assault. The State ’ s expert 
testifi ed that only 1% of the presumed relevant population of possible 
fathers had the type of blood and tissue that the father had and, further, 
that the defendant was included within that 1%. In other words, 99% of 
the male population at large was excluded. Next, she used Bayes ’  Theorem 
to show that the defendant had a posterior probability of fathering the 
victim ’ s child of 96.5%.

  The expert testifying that the probability of defendant ’ s paternity 
was 96.5% knew absolutely nothing about the facts of the case other 
than those revealed by blood and tissues tests of defendant, the 
victim, and the child.    . . .     11  

 In calculating a fi nal probability of paternity percentage, the 
expert relied in part on this 99% probability of exclusion. She also 
relied on an assumption of a 50% prior probability that defendant 
was the father. This assumption, [was] not based on her knowledge 
of any evidence whatsoever in this case    . . .    [she stated] everything 
is equal    . . .    he may or may not be the father of the child. 12  

 Was the expert ’ s opinion valid even if the jury disagreed with the 
assumption of .5 [50%]? If the jury concluded that the prior 

  10      130 N.J. 484 (1993). 

  9      See, for example, Davis v. State, 476 N.E.2d 127 (Ind.App.1985) and Griffi th v. State of 
Texas, 976 S.W.2d 241 (1998). 

  8      See, for example, People v Collins, 68 Cal .2d 319, 36 ALR3d 1176 (1968). 

  7      The majority of this section is from  Applying Statistics in the Courtroom,  by Phillip Good, 
[2001] and is reprinted with permission from CRC Press, Inc. 

  12      Id. 492. 
  11      Id. 489. 



126 PART II STATISTICAL ANALYSIS

probability is .4 or .6, for example, the testimony gave them no 
idea of the consequences, no knowledge of what the impact (of such 
a change in the prior probability) would be on the formula that 
led to the ultimate opinion of the probability of paternity. 13  

  . . .    [T]he expert ’ s testimony should be required to include an 
explanation to the jury of what the probability of paternity would 
be for a varying range of such prior probabilities, running for 
example, from .1 to .9. 14    

 In other words, Bayes ’  Theorem might prove applicable if, regardless of 
the form of the a priori distribution, one came to more or less the same 
conclusion. 

 Courts in California, 15  Illinois, Massachusetts, 16  Utah, 17  and Virginia 18  
also have challenged the use of the fi fty – fi fty assumption. In State v. 
Jackson, 19  the expert did include a range of prior probabilities in her 
testimony, but the court ruled the trial judge had erred in allowing the 
expert to testify as to the conclusions of Bayes ’  Theorem in stating a 
conclusion, that the defendant was  “ probably ”  the father of the victim ’ s 
child. 

 In Cole v. Cole, 20  a civil action, the Court rejected the admission of an 
expert ’ s testimony of a high probability of paternity derived via Bayes ’  
formula because there was strong evidence the defendant was sterile as a 
result of a vasectomy.

  The source of much controversy is the statistical formula generally 
used to calculate the provability of paternity: Bayes ’  Theorem. 
Briefl y, Bayes ’  Theorem shows how new statistical information 
alters a previously established probability.    . . .    When a laboratory 
uses Bayes ’  Theorem to calculate a probability of paternity it must 
fi rst calculate a  “ prior probability of paternity ” .    . . .    This prior 
probability usually has no connection to the case at hand. 
Sometimes it refl ects the previous success of the laboratory at 
excluding false fathers. Traditionally, laboratories use the fi gure 
50% which may or may not be appropriate in a given case. 

  20      74 N.C.App. 247,  aff ’ d . 314 N.C. 660 (1985). 
  19      320 N.C. 452 (1987). 
  18      Bridgeman v. Commonwealth, 3 Va. App 523 (1986). 
  17      Kofford v. Flora 744 P.2d 1343, 1351 – 2 (1987). 
  16      Commonwealth v. Beausoleil, 397 Mass. 206 (1986). 
  15      State v. Jackson, 320 NC 452, 358 S.E.2d 679 (1987). 
  14      Id. 499. 

  13      Id. 498. 
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 Critics suggest that this prior probability should take into account 
the circumstances of the particular case. For example if the 
woman has accused three men of fathering her child or if there 
are reasons to doubt her credibility, or if there is evidence that the 
husband is infertile, as in the present case, then the prior 
probability should be reduced to less than 50%. 21    

 The question remains as to what value to assign the prior probability, 
and whether absent suffi cient knowledge to pin down the prior probability 
with any accuracy we can make use of Bayes ’  Theorem at all. At trial, an 
expert called by the prosecution in Plemel v. Walter 22  used Bayes ’  
Theorem to derive the probability of paternity.

  If the paternity index or its equivalents are presented as the 
probability of paternity, this amounts to an unstated assumption 
of a prior probability of 50 percent    . . .    the paternity index will 
equal the probability of paternity only when the other evidence in 
this case establishes prior odds of paternity of exactly one. 23  

  . . .    [T]he expert is unqualifi ed to state that any single fi gure is 
the accused ’ s  “ probability of paternity. ”  As noted above, such a 
statement requires an estimation of the strength of other evidence 
presented in the case (i.e., an estimation of the  “ prior the 
probability of paternity ” ), an estimation that the expert is no 
better position to make than the trier of fact. 24  

 Studies in Poland and New York City have suggested that this 
assumption [a 50 percent prior probability] favors the putative 
father because in an estimated 60 to 70 percent of paternity cases 
the mother ’ s accusation of paternity is correct. Of course, the 
purpose of paternity litigation is to determine whether the mother ’ s 
accusation is correct and for that reason it would be both unfair 
and improper to apply the assumption in any particular case. 25    

 A remedy proposed by the Court is of interest to us:

  If the expert testifi es to the defendant ’ s paternity index or a 
substantially equivalent statistic, the expert must, if requested, 

  24      Id. 275. 
  23      Id. 272. 
  22      303 Or. 262 (1987). 
  21      Id. 328. 

  25      Id. 276, fn 9. 
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calculate the probability that the defendant is the father by using 
more than a single assumption about the strength of the other 
evidence in the case    . . .    If the expert uses various assumptions and 
makes these assumptions known, the fact fi nder ’ s attention will be 
directed to the other evidence in the case, and it will not be misled 
into adopting the expert ’ s assumption as to the correct weight t be 
assigned the other evidence. The expert should present calculations 
based on assumed prior probabilities of 0, 10, 20,    . . .    , 90 and 
100 percent. 26    

 The courts of many other states have followed  Plemmel :

  The better practice may be for the expert to testify to a range of 
prior probabilities, such as 10, 50 and 90 percent, and allow the 
trier of fact to determine which to use. 27     

  Applications to Experiments and Clinical Trials 
 Outside the courtroom, where the rules of evidence are less rigorous, we 
have much greater latitude in the adoption of  a priori  distributions for the 
unknown parameter(s). Two approaches are common:

   1.     Adopting some synthetic distribution — a normal or a beta.  

  2.     Using subjective probabilities.    

 The synthetic approach, though common among the more 
computational, is diffi cult to justify. The theoretical basis for an 
observation having a normal distribution is well known — the observation 
will be the sum of a large number of factors each of which makes only a 
minute contribution to the total. But could such a description be 
applicable to a population parameter? 

 Here is an example of this approach taken from a report by D. A. 
Berry 28 :

  A study reported by Freireich et al. 29  was designed to evaluate the 
effectiveness of a chemotherapeutic agent 6 - mercaptopurine 

  27      County of El Dorado v. Misura, 33 Cal. App.4th 73 (1995) citing Plemel, supra, at p. 
1219; Peterson (1982 at p. 691, fn. 74), Paternity of M.J.B., 144 Wis.2d 638, 643; State v. 
Jackson, 320 N.C.452, 455 (1987), and Kammer v. Young, 73 Md. App. 565, 571 (1988). 
See, also, State v. Spann, 130 N.J. 484 at p. 499 (1993). 

  26      Id. 279. See, also, Kaye [1988]. 

  29       Blood  1963;  21 :699 – 716. 

  28      The full report titled  “ Using a Bayesian Approach in Medical Device Development  “  may 
be obtained from Donald A. Berry at the Institute of Statistics and Decision Sciences and 
Comprehensive Cancer Center, Duke University, Durham NC 27708 – 025. 
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(6 - MP) for the treatment of acute leukemia. Patients were 
randomized to therapy in pairs. Let  p  be the population 
proportion of pairs in which the 6 - MP patient stays in remission 
longer than the placebo patient. (To distinguish probability  p  
from a probability distribution concerning  p , I will call it a 
population proportion or a propensity.) The null hypothesis  H  0  is 
 p     =    1/2: no effect of 6 - MP. Let  H  1  stand for the alternative 
hypothesis that  p     >    1/2. There were 21 pairs of patients in the 
study, and 18 of them favored 6 - MP.   

 Suppose that the prior probability of the null hypothesis is 70 percent 
and that the remaining probability of 30 percent is on the interval (0,1) 
uniformly.    . . .    So under the alternative hypothesis H 1 , p has a uniform 
(0,1) distribution. This is a mixture prior in the sense that it is 70 percent 
discrete and 30 percent continuous. 

 The uniform (0,1) distribution is also the beta(1,1) distribution. 
Updating the beta( a , b ) distribution after  s  successes and  f  failures is easy, 
namely, the new distribution is beta( a     +     s ,  b     +     f ). So for  s     =    18 and  f     =    3, 
the posterior distribution under  H  1  is beta(19,4). 

 The subjective approach places an added burden on the experimenter. 
As always, she needs to specify each of the following:

    •      Maximum acceptable frequency of Type I errors (that is, the 
signifi cance level)  

   •      Alternative hypotheses of interest  

   •      Power desired against each alternative  

   •      Losses associated with Type I and Type II errors    

 With the Bayesian approach, she must also provide prior probabilities. 
 Arguing in favor of the use of subjective probabilities is that they permit 

incorporation of expert judgment in a formal way into inferences and 
decision making. Arguing against them, the late Edward Barankin said, 
 “ How are you planning to get these values — beat them out of the 
researcher? ”  More appealing, if perhaps no more successful, approaches are 
described by Good [ 1950 ] and Kadane et al. [ 1980 ].  

  Bayes ’  Factor 
 An approach that allows us to take advantage of the opportunities 
Bayes ’  Theorem provides while avoiding its limitations and the 
objections raised in the courts is through the use of the minimum 
Bayes ’  factor. 
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 In the words of Steven Goodman [ 2001 ],

  The odds we put on the null hypothesis (relative to others) using 
data external to a study is called the  “ prior odds, ”  and the odds 
after seeing the data are the  “ posterior odds. ”  The Bayes ’  factor tells 
us how far apart those odds are, i.e., the degree to which the data 
from a study move us from our initial position. It is quite literally 
an epistemic odds ratio, the ratio of posterior to prior odds, 
although it is calculable from the data, without those odds. It is the 
ratio of the data ’ s probability under two competing hypotheses. 30    

 If we have a Bayes ’  factor equal to 1/10 for the null hypothesis relative 
to the alternative hypothesis, it means that these study results have 
decreased the relative odds of the null hypothesis by 10 - fold. For example, 
if the initial odds of the null were 1 (i.e., a probability of 50%), then the 
odds after the study would be 1/10 (a probability of 9%). Suppose that 
the probability of the null hypothesis is high to begin with (as they 
typically are in data dredging settings), say an odds of 9 (90%). Then a 
10 - fold decrease would change the odds of the null hypothesis to 9/10 (a 
probability of 47%), still quite probable. 

 The appeal of the minimum Bayes ’  factor 31  is that it is calculated from 
the same information that goes into the  P  - value, and can easily be derived 
from standard analytic results, as described below. Quantitatively, it is only 
a small step from the  P  - value (and shares the liability of confounding the 
effect size with its precision). 

 The calculation [of the minimum Bayes ’  factor] goes like this. If a 
statistical test is based on a Gaussian approximation, the strongest Bayes ’  
factor against the null hypothesis is exp( −  Z  2 /2), where  Z  is the number of 
standard errors from the null value. If the log - likelihood of a model is 
reported, the minimum Bayes ’  factor is simply the exponential of the 
difference between the log - likelihoods of two competing models (ie, the 
ratio of their maximum likelihoods). 

 The minimum Bayes ’  factor described above does not involve a prior 
probability distribution over non - null hypotheses; it is a global minimum 
for all prior distributions. However, there is also a simple formula for the 
minimum Bayes ’  factor in the situation where the prior probability 
distribution is symmetric and descending around the null value. This is 
 −  ep    ln(p), 32  where  p  is the fi xed - sample size P - value. Table B.1 shows the 
correspondence between  p  - values,  Z  -  (or  t  - ) scores, and the two forms of 

  30      See Goodman [ 1999 ] and Greenland [ 1998 ]. 

  32      See Bayarri and Berger  [1998]  and Berger and Sellke  [1987] . 
  31      As introduced by Edwards et al. [ 1963 ]. 
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minimum Bayes ’  factors described above. Note that even the strongest 
evidence against the null hypothesis does not lower its odds as much as 
the  p  - value magnitude might lead people to believe. More importantly, 
the minimum Bayes ’  factor makes it clear that we cannot estimate the 
credibility of the null hypothesis without considering evidence outside the 
study. 

 Reading from Table B.1, a  p  - value of 0.01 represents a  “ weight of 
evidence ”  for the null hypothesis of somewhere between 1/25 (0.04) and 
1/8 (0.13). In other words, the relative odds of the null hypothesis versus 
any alternative are at most 8 – 25 times lower than they were before the 
study. If I am going to make a claim that a null effect is highly unlikely 
(e.g., less than 5%), it follows that I should have evidence outside the 
study that the prior probability of the null was no greater than 60%. If the 
relationship being studied is far - fetched (eg, the probability of the null was 
greater than 60%), the evidence may still be too weak to make a strong 
knowledge claim. Conversely, even weak evidence in support of a highly 
plausible relationship may be enough for an author to make a convincing 
case. 33  

 Two caveats:

   1.     Bayesian methods cannot be used in support of after - the - fact -
 hypotheses for, by defi nition, an after - the - fact - hypothesis has zero 
 a priori  probability and, thus, by Bayes ’  rule, zero  a posteriori  
probability.  

  2.     One hypothesis proving of greater predictive value than another in 
a given instance may be suggestive but is far from defi nitive in the 
absence of collateral evidence and proof of causal mechanisms. See, 
for example, Hodges [ 1987 ].         

 WHEN USING BAYESIAN METHODS 

    Do not use an arbitrary prior.  

  Never report a  p  - value.  

  Incorporate potential losses in the decision.  

  Report the Bayes ’  factor.    

  META - ANALYSIS 
 Meta - analysis is a set of techniques that allow us to combine the results of 
a series of small trials and observational studies. With the appropriate 
meta - analysis, we can, in theory, obtain more precise estimates of main 

  33      Reprinted from Goodman [2001] with permission from Lippincott Williams  &  Wilkins. 
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effects, test  a priori  hypotheses about subgroups, and determine the 
number of observations needed for large - scale randomized trials. 

 By putting together all available data, meta - analyses are also better 
placed than individual trials to answer questions about whether an overall 
study result varies among subgroups — for example, among men and 
women, older and younger patients, or subjects with different degrees of 
severity of disease.

  Meta - analysis should be viewed as an observational study of the 
evidence. The steps involved are similar to any other research 
undertaking: formulation of the problem to be addressed, 
collection and analysis of the data, and reporting of the results. 
Researchers should write in advance a detailed research protocol 
that clearly states the objectives, the hypotheses to be tested, the 
subgroups of interest, and the proposed methods and criteria for 
identifying and selecting relevant studies and extracting and 
analysing information. — Egger, Smith, and Phillips [ 1997 ] 34    

 Too many studies end with inconclusive results because of the relatively 
small number of observations that were made. The researcher can not 
quite reject the null hypothesis, but is not quite ready to embrace the null 
hypothesis, either. As we saw in Chapter  1 , a post - hoc subgroup analysis 
can suggest an additional relationship, but the relationship cannot be 
subject to statistical test in the absence of additional data. 

 In performing a meta - analysis, we need to distinguish between 
observational studies and randomized trials. 

 Confounding and selection bias can easily distort the fi ndings from 
observational studies. Egger et al. [ 1998 ] note,

  An important criterion supporting causality of associations is a 
dose - response relation. In occupational epidemiology the quest to 
show such an association can lead to very different groups of 
employees being compared. In a meta - analysis that examined the 
link between exposure to formaldehyde and cancer, funeral 
directors and embalmers (high exposure) were compared with 
anatomists and pathologists (intermediate to high exposure) and 
with industrial workers (low to high exposure, depending on job 
assignment). There is a striking defi cit of deaths from lung cancer 
among anatomists and pathologists (standardized mortality ratio 

  34      Reprinted with permission from the BMJ Publishing Group. 
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33 (95% confi dence interval 22 to 47), which is most likely to be 
due to a lower prevalence of smoking among this group. In this 
situation few would argue that formaldehyde protects against 
lung cancer. In other instances, however, such selection bias may 
be less obvious. 35    

 On the other hand, much may be gained by a careful examination of 
possible sources of heterogeneity between the results from observational 
studies. 

 Publication and selection bias also plague the meta - analysis of 
completely randomized trials. Inconclusive or negative results seldom 
appear in print [Sterling,  1959 ; G ö tzsche,  1987 ; Begg and Berlin,  1988 ; 
Chalmers et al.,  1990 ; Easterbrook et al.,  1991 ) and are unlikely even to 
be submitted for publication. One can not incorporate in a meta - analysis 
what one is not aware of.

  Authors who try to evaluate the quality of randomized trials, 
possibly for the purpose of weighting them in meta - analyses, need 
to    . . .    concern themselves also with the restrictions on the 
randomization and the extent to which compromised allocation 
concealment led to selection bias. [Berger,  2006 ].   

 Similarly, the decision as to which studies to incorporate can 
dramatically affect the results. Meta - analyses of the same issue may reach 
opposite conclusions, as shown by assessments of low - molecular - weight 
heparin in the prevention of perioperative thrombosis [Nurmohamed 
et al.,  1992 ; Leizorovicz et al.,  1992 ] and of second - line antirheumatic 
drugs in the treatment of rheumatoid arthritis [Felson et al.,  1990 ; 
G ö tzsche et al.,  1992 ]. Meta - analyses showing benefi t of statistical 
signifi cance and clinical importance have been contradicted later by large 
randomized trials [Egger et al.,  1997 ]. 

 Where there are substantial differences between the different studies 
incorporated in a meta - analysis (their subjects or their environments), or 
substantial quantitative differences in the results from the different trials, a 
single overall summary estimate of treatment benefi t has little practical 
applicability [Horowitz, 1995]. Any analysis that ignores this heterogeneity 
is clinically misleading and scientifi cally naive [Thompson,  1994 ]. 
Heterogeneity should be scrutinized, with an attempt to explain it [Bailey, 
 1987 ; Berkey et al.,  1995 ; Chalmers,  1991 ; Victor,  1995 ]. 

  35      Reprinted with permission from the BMJ Publishing Group. 
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 Discrepancies between large trials and corresponding meta - analyses and 
heterogeneity in meta - analyses may also be determined by how they are 
evaluated [Tang and Liu,  2000 ]. 

 Light and Pillemer [ 1984 ] propose that  “ If all studies come from a 
single underlying population, [a scatter plot of the component studies] 
should look like a funnel, with the effect sizes homing in on the true 
underlying value as  n  increases. [If there is publication bias] there should 
be a bite out of the funnel. ”  

 Unfortunately, the appearance of the plot with the treatment effect on 
the horizontal axis and some measure of weight, such as the inverse 
variance, the standard error, or the sample size, on the vertical axis may be 
affected by the choice of the scale of the measured outcome (binary versus 
continuous), the choice of the metric (risk ratio, odds ratio, or logarithms 
thereof), and the choice of the weight on the vertical axis (inverse 
variance, inverse standard error, sample size, etc.). Subjective assessments 
have similar drawbacks; the ability of researchers to identify publication 
bias using a funnel plot is practically identical to chance [Lau et al.,  2006 ]. 

  Bayesian Methods 
 Bayesian methods can be effective in meta - analyses; see, for example, 
Mosteller and Chalmers [ 1992 ]. In such situations, the parameters of 
various trials are considered to be random samples from a distribution of 
trial parameters. The parameters of this higher - level distribution are called 
hyperparameters, and they also have distributions. The model is called 
 hierarchical . The extent to which the various trials reinforce each other is 
determined by the data. If the trials are very similar, the variation of the 
hyperparameters will be small, and the analysis will be very close to a 
classical meta - analysis. If the trials do not reinforce each other, the 
conclusions of the hierarchical Bayesian analysis will show a very high 
variance in the results. 

 A hierarchical Bayesian analysis avoids the necessity of a prior decision as 
to whether the trials can be combined; the extent of the combination is 
determined purely by the data. This does not come for free; in contrast to 
the meta - analyses discussed above, all the original data (or at least the 
suffi cient statistics) must be available for inclusion in the hierarchical 
model. The Bayesian method is also vulnerable to all the selection bias 
issues discussed above.  

  Guidelines for a Meta - Analysis 
 A detailed research protocol for the meta - analysis should be prepared in 
advance. Criteria for inclusion and statistical method employed should be 
documented in the materials and methods section of the subsequent report. 
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 Meta - analysis should be restricted to randomized controlled trials. 
 Heterogeneity in the trial results should be documented and explained; 

for example, if the trials are not of comparable duration. 
 Do not attempt to compare treatments investigated in unrelated trials. 

Suppose, by way of a counterexample, that the standard treatment was 
given only to low - risk patients in one set of trials, whereas a newer 
treatment often was given to high - risk patients in another. 

 Individual patient data, rather than published summary statistics, often 
are required for meaningful subgroup analyses. This is a major reason why 
we favor the modern trend of journals to insist that all data reported on 
within their pages be made available by website to all investigators. 

 Johann Kepler was able to formulate his laws only because (1) Tycho 
Brahe had made over 30 years of precise (for the time) astronomical 
observations and (2) Kepler married Brahe ’ s daughter and, thus, gained 
access to his data.   

  PERMUTATION TESTS 
 First introduced by Pitman [ 1937, 1938 ], permutation tests are often 
lauded erroneously in the literature as assumption - free panaceas. Nothing 
could be further from the truth. 

 Permutation tests only yield exact signifi cance levels if the labels on the 
observations are weakly exchangeable under the null hypothesis. 36  After 
eliminating the main effects in a multiway analysis of variance, the residuals 
are correlated, the correlation depending on the subscripts; they are not 
exchangeable. Thus the permutation test for interaction proposed by Still 
and White  (1981)  is not exact. Nor is the far more popular Kruskall –
 Wallace test. For the same reason, permutation tests cannot be successfully 
applied to the coeffi cients in a multivariate regression, though many have 
made the attempt and failed (see, for example, Oja,  1981 ; Kennedy,  1995 ). 

 On the other hand, permutation tests are the method of choice for the 
following:

    •      Two - sample multivariate comparisons  

   •      Comparison of variances  

   •      Crossover designs  

   •       k  - sample comparisons  

   •      Type I censoring  

   •      Contingency tables, whenever there are 12 or fewer observations 
in each subsample    

  36      The concept is made precise in Good [ 2002 ]. 
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 Moreover, permutation methods can be used both to test hypotheses 
and to obtain interval estimates of parameters. 

 In other practical situations, such as the two - sample comparison of 
means (crossover designs being the exception) and bivariate correlation, 
permutation tests offer no advantage over parametric methods such as 
Student ’ s t and Pearson correlation. 

 By making use of the permutation distribution of a test statistic, one is 
no longer limited by the availability of tables, but is always free to employ 
the most powerful statistic against the alternative(s) of interest or the 
statistic that will be most effective at minimizing the losses of interest. 

 For example, for comparing the means of several populations, one may 
use any of the following statistics:

    Xij
ji ∑∑ ( )2

 

    Xij
ji ∑∑  

    maxi k i kX X< −   

 Permutation methods using the original observations are more powerful 
and require smaller sample sizes than those using only the ranks of the 
observations. Rank tests should be employed only when outliers are 
identifi ed or it is desired to transform many diverse observations to a 
common scale. 

 While it is possible to reduce the number of rearrangements required —
 for example, by stopping testing and accepting the null hypothesis if 50 of 
the fi rst hundred rearrangements are more extreme than the original — one 
hundred rearrangements is still perhaps the minimum acceptable when 
performing a Monte Carlo. Shapleske et al. [ 2002 ] performed no more 
than ten permutations; this is inadequate. 

 Permutation tests are often described as  “ analyzing an experiment in the 
way it was designed ” ; see, for example, Bradley [ 1968 ]. But if the design 
is fl awed, then so will the analysis be. In a sidebar in Chapter  3 , we 
described a fl awed crossover experiment in which subjects were assigned at 
random with regard to replacement to treatment sequence, so that the 
fi nal design was severely unbalanced. Nonetheless, the design might have 
been analyzed correctly by permutation means, had the designer not 
chosen to  “ analyze the experiment in the way it was designed. ”  
Specifi cally, the patients ’  data used in the primary analysis was reassigned 
to the 18 treatment sequences randomly, using 1/18 as the probability 
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within each randomization block. The resultant test was an inexact 
bootstrap rather than an exact permutation.  

  TO LEARN MORE 
 Potential fl aws in the bootstrap approach are considered by Schenker 
[ 1985 ], Wu [ 1986 ], Diciccio and Romano [ 1988 ], Efron [ 1988, 1992 ], 
Knight [ 1989 ], and Gine and Zinn [ 1989 ]. Some improvements are 
suggested by Fisher and Hall [ 1990, 1991 ]. Canty et al. [ 2006 ] provide a 
set of diagnostics for detecting and dealing with potential error sources. 

 Berry and Stangl [ 1996 ] include a collection of case studies in Bayesian 
biostatistics. Clemen, Jones, and Winkler [ 1996 ] subject Bayesian methods 
to an empirical evaluation. Kass and Raferty  [1995]  discuss the problem of 
establishing priors along with a set of practical examples. The Bayes ’  factor 
can be used as a test statistic; see Good  [1992] . 

 For more on the strengths and limitations of meta - analysis, see 
Teagarden [ 1989 ], Gurevitch and Hedges [ 1993 ], Horwitz [ 1995 , Egger, 
Smith, and Phillips [ 1997 ], Smith, Egger, and Phillips [ 1997 ], Smith and 
Egger [ 1998 ], Smeeth, Haines, and Ebrahim [ 1999 ], and Gillett [ 2001 ]. 
To learn about the appropriate statistical procedures, see Adams, 
Gurevitch, and Rosenberg [ 1997 ], Berlin et al. [ 1989 ], and Hedges and 
Olkin [ 1985 ]. On the topics of power, number of studies, and sample size 
per study, see Sterne, Gavaghan and Egger [ 2000 ]. Sharp and Thompson 
 [1996, 2000]  analyze the relationship between treatment benefi t and 
underlying risk. Smith, Spiegelhalter, and Parmar [ 1996 ] describe a 
Bayesian meta - analysis. 

 For practical, worked - through examples of hierarchical Bayesian analysis, 
see Palmer, Graham, White and Hansen [ 1998 ], Harley and Myers 
[ 2001 ], and Su, Adkison, and Van Alen [ 2001 ]. Theoretical development 
may be found in Mosteller and Chalmers [ 1992 ] and Carlin and Louis 
[ 1996 ]. 

 The lack of access to the raw data underlying published studies is a 
matter of ongoing concern as the conclusions of meta - analyses based on 
published results may differ substantially from those based on all available 
evidence; see Simes [ 1986 ], Stewart and Parmar [ 1993 ], Moher et al. 
[ 1999 ], Eysenbach and Sa [ 2001 ], and Hutchon [ 2001 ]. 

 Permutation methods and their applications are described in Good 
[ 2005 ], Manly  [1997] , Mielke and Berry [ 2001 ], and Pesarin [ 1990, 
2001 ]. For a description of some robust permutation tests, see Lambert 
[ 1985 ] and Maritz [ 1996 ]. Berger [ 2000 ] reviews the pros and cons of 
permutation tests.  
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            Cut out the appropriate part of the computer output and paste 
it onto the draft of the paper.  — George Dyke (tongue in cheek) 
 [1997] .    

 THE FOCUS OF THIS CHAPTER IS ON WHAT to report and how to 
report it. Reportable elements include the experimental design and its 
objectives, its analysis, and the sources and amounts of missing data. 
Guidelines for table construction are provided. The bootstrap is proposed 
as the preferred method for constructing a measure of precision. The value 
and limitations of  p  - values and confi dence intervals are summarized. 
Practical signifi cance is distinguished from statistical signifi cance, and 
induction is distinguished from deduction.  

FUNDAMENTALS
 Few experimenters fail to list number of subjects, doses administered, and 
dose intervals in their reports. But many fail to provide the details of the 
associated power for their sample sizes. Feng et al. [ 2001 ] found that such 
careless investigators report a higher proportion of nonsignifi cant 
intervention effects, indicating underpowered studies. Your report should 
include all the estimates used in prescribing your sample sizes, along with 
the smallest effect of practical interest that you hoped to detect along with 
the corresponding power to detect that effect. 

 Too often, inadequate attention is given to describing treatment 
allocation and the ones who got away. We consider both topics in what 
follows. 

Chapter 8 

Reporting Your Results 

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Treatment Allocation 1

 Allocation details should be fully described in your reports, including 
dictated allocation versus allocation discretion, randomization, advance 
preparation of the allocation sequence, allocation concealment, fi xed versus 
varying allocation proportions, restricted randomization, masking, 
simultaneous versus sequential randomization, enrollment discretion, and 
the use of intent to treat (ITT) analyses. 

 Allocation discretion may be available to the investigator, the patient, 
both, or neither (dictated allocation). Were investigators permitted to 
assign treatment based on patient characteristics? Could patients select 
their own treatment from among a given set of choices? 

 Was actual (not virtual, quasi - , or pseudo - ) randomization employed? 
Was the allocation sequence predictable? (For example, patients with even 
accession numbers or patients with odd accession numbers receive the 
active treatment; the others receive the control.) 

 Was randomization  conventional , that is, was the allocation sequence 
generated in advance of screening any patients? 

 Was allocation concealed prior to its being executed? As Vance W. 
Berger and Costas A. Christophi relate in a personal communication,

  This is not itself a reportable design feature, so a claim of 
allocation concealment should be accompanied by specifi c design 
features. For example, one may conceal the allocation sequence; 
and instead of using envelopes, patient enrollment may involve 
calling the baseline information of the patient to be enrolled in to 
a central number to receive the allocation.   

 Was randomization restricted or unrestricted? Randomization is 
 unrestricted  if a patient ’ s likelihood of receiving either treatment is 
independent of all previous allocations and is  restricted  otherwise. If both 
treatment groups must be assigned equally often, then prior allocations 
determine the fi nal ones. Were the proportions also hidden? 

 Were treatment codes concealed until all patients had been randomized 
and the database locked? Were there instances of codes being revealed 
accidentally? Senn [ 1995 ] warns,  “ investigators should delude neither 
themselves, nor those who read their results, into believing that simply 
because some aspects of their trial were double - blind that therefore all the 

  1      This material in this section relies heavily on a personal communication from Vance W. 
Berger and Costas A. Christophi. 
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virtues of such trials apply to all their conclusions. ”  Masking can rarely, if 
ever, be assured; see also Day [ 1998 ]. 

 Was randomization simultaneous, block simultaneous, or  sequential ? A 
blocked randomization is  block simultaneous  if all patients within any given 
block are identifi ed and assigned accession numbers prior to any patient in 
that block being treated. 

 And, not least, was intent to treat permitted?  

Baseline Differences 
 Tabulate baseline values for the treatment groups in a layout so that group 
values are viewed side by side. Do not test for differences between groups 
nor report  p  - values, as any differences  must  be due to chance alone. On 
the other hand, if major differences in baseline values do exist, say a far 
greater proportion of one group is male than in the other groups, consider 
stratifying subsequent results on the basis of sex.  

Adequacy of Blinding 

   The current lack of reporting on the success of blinding provides 
little evidence that success of blinding is maintained in placebo 
controlled trials. Trialists and editors should make a concerted 
effort to incorporate, report, and publish such information and its 
potential effect on study results.  — Fergusson et al. [ 2004 ]    

 We, too, believe authors should add a section describing their assessment 
of blinding to all their reports. Here is an example taken from Turner 
et al. [ 2005 ]:

  The adequacy of the study ’ s blinding procedures was assessed 
according to the subjects ’  responses when asked which study 
medication they believed they were taking ( “ active, ”   “ placebo, ”  or 
 “ don ’ t know ” ). This question was asked at the end of the 
prophylaxis phase just before virus challenge and again after 
administration of the third dose of study medication in the 
treatment phase of the trial.   

 A pilot study may be done without blinding as a prelude to more 
extensive controlled trials, but this lack should be made explicit in your 
report, as in Rozen et al. [ 2008 ]. Controls should always be employed, 
lest unforseen and unrelated events such as an epidemic yield a misleading 
result.     
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Missing Data 2

 Every experiment or survey has its exceptions. You must report the raw 
numbers of such exceptions and, in some instances, provide additional 
analyses that analyze or compensate for them. Typical exceptions include 
the following. 

  Did Not Participate.   Includes subjects who were eligible and available 
but did not participate in the study. This group should be broken down 
into those who were approached but chose not to participate and those 
who were not approached. With a mail - in survey, for example, we would 
distinguish between those whose envelopes were returned  “ address 
unknown ”  and those who simply did not reply.  

  Ineligibles.   In some instances, circumstances may not permit deferring 
treatment until the subject ’ s eligibility can be determined. For example, an 

WRITE IN ORDINARY LANGUAGE 

Use common terminology in preference to statistics -speak. For example, 
write, “we will graph ” in preference to  “we will graphically depict. ”

Roberts et al. [ 2007] often challenge the reader rather than inform. Here 
are some examples:

We evaluated a series of hypotheses regarding an association 
between in utero residential  “exposure” to specifi c 
agricultural pesticides (that is, maternal residence in close 
proximity to sites of application) and the development of ASD 
by linking existing databases using a retrospective case -
control design. 

We operationalized the hypotheses of association between exposure and 
outcome based on known embryological phenomena. 

Temporal parameters were chosen to refl ect the hypotheses that the 
periods immediately prior to and during Central Nervous System (CNS) 
embryogenesis, neural tube closure, and entire gestation could represent 
critical windows for exposure. 

This last paragraph translates as “We divided the gestational period into 
three strata based upon the stage of CNS development in the fetus. ” (At 
least, we think that is what they meant.) 

Finally, these authors make repeated mention of “the 4th nonzero 
quartile coeffi cient. ” We freely confess that we do not know what this is. 

  2      Material in this section is from  The Manager ’ s Guide to Design and Conduct of Clinical 
Trials , by Good [2002], with permission from John Wiley & Sons, Inc. 
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individual arrives at a study center in critical condition; the study protocol 
calls for a series of tests, the results of which may not be back for several 
days, but in the opinion of the examining physician treatment must begin 
immediately. The patient is randomized to treatment and only later is it 
determined that the patient is ineligible. 

 The solution is to present two forms of the fi nal analysis, one 
incorporating all patients, the other limited to those who were actually 
eligible.  

  Withdrawals.   These are subjects who enrolled in the study but did not 
complete it, including both dropouts and noncompliant patients. These 
patients might be subdivided further based on the point in the study at 
which they dropped out. 

 At issue is whether such withdrawals were treatment related or not. For 
example, the gastrointestinal side effects associated with erythromycin are 
such that many patients (including both authors) may refuse to continue 
with the drug. Traditional statistical methods are not applicable when 
withdrawals are treatment related.  

  Crossovers.   If the design provided for intent to treat, a noncompliant 
patient may still continue in the study after being reassigned to an 
alternate treatment. Two sets of results should be reported: the fi rst for all 
patients who completed the trials (retaining their original treatment 
assignments for the purpose of analysis), the second restricted to the 
smaller number patients who persisted in the treatment groups to which 
they were originally assigned.  

  Missing Data.   Missing data are common, expensive, and preventable in 
many instances. 

 The primary endpoint of a recent clinical study of various cardiovascular 
techniques was based on the analysis of follow - up angiograms. Although 
more than 750 patients were enrolled in the study, only 523 had the 
necessary angiograms. Almost a third of the monies spent on the trials had 
been wasted. This result is not atypical. Capaldi and Patterson [ 1987 ] 
uncovered an average attrition rate of 47% in studies lasting 4 to 10 years. 

 You need to analyze the data to ensure that the proportions of missing 
observations are the same in all treatment groups. Again, traditional 
statistical methods are applicable only if missing data are not treatment 
related. 

 Deaths and disabling accidents and diseases, whether or not directly 
related to the condition being treated, are common in long - term trials in 
the elderly and high - risk populations. Or individuals are simply lost to 
sight ( “ no forwarding address ” ) in highly mobile populations. 
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 Lang and Secic, [ 1997 , p. 22] suggest a chart such as that depicted in 
Figure  3.5  as the most effective way to communicate all the information 
regarding missing data. Censored and off - scale measurements should be 
described separately and their numbers indicated in the corresponding 
tables.       

WILL THE REAL N PLEASE STAND UP 

Fujita et al. (1995) describes an experiment in which 58 elderly 
hospitalized patients were divided into three groups at random. The 
number in each group was not reported. More important, this article 
omitted to say that at the end of the 30 -month study, only 16 patients 
remained! Indeed, only 29 patients reported for the 12 -month follow -up.

Fortunately, a follow -up report, Fujita et al. [ 1996], in a different journal, 
supplied the missing values. Alas, the investigators persisted in 
comparing the mean baseline values of all patients entered in the study 
with the mean fi nal values of the very few patients who completed it. 

The study entailed the administration of various calcium supplements to a 
group of elderly individuals. The sickest, frailest individuals, and, thus, the 
ones with the lowest starting -baseline values, were almost certainly the 
ones who were lost to follow -up. But every time such a sick individual 
with a low baseline value dropped from the study, the average for the 
group that remained rose of mathematical necessity. 

The appropriate comparison is the within -individual changes of those who 
were in the study at the beginning and at the end. Alas, Fujita et al. did 
not include the original data in their articles so the correct comparison is 
not possible. 

A decade later, the same group of investigators, Fujita et al. [ 2004],
published a third analysis of the same fl awed study, this time omitting all 
mention of declining sample size and adding a series of misleading 
graphs using truncated vertical scales. Although the phrase “double
blind” appears in the title of this article, readers were left to puzzle out 
how the double -blind aspect of the study was accomplished. Nor was 
there mention of blinding in the two previous articles reporting on this 
same study. 

DESCRIPTIVE STATISTICS 
 In this section, we consider how to most effectively summarize your data 
whether they comprise a sample or the entire population. 

Binomial Trials 
 The most effective way of summarizing the results of a series of binomial 
trials is by recording the number of trials and the number of successes. For 
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example, the number of coin fl ips and the number of heads, the number 
of patients treated and the number who got better, and so forth. 

 When trials can have three to fi ve possible outcomes, the results are best 
presented in tabular form (as in Table  8.1 ) or in the form of a bar chart, 
whether the outcomes are ordered (no effect, small effect, large effect) or 
unordered (win, lose, tie). Both forms also provide for side - by - side 
comparisons of several sets of trials.   

 For the reasons discussed in the next chapter, we do  not  recommend 
the use of pie charts.  

Categorical Data 
 When data fall into categories such as male versus female, black versus 
Hispanic versus oriental versus white, or in favor versus against versus 
undecided, we may display the results for a single categorical variable in 
the form of a bar chart. If there are multiple variables to be considered, 
the best way to display the results is in the form of a contingency table, as 
shown in Tables  8.2  and  8.3 . Note that Table  8.2  is a highly effective way 

TABLE 8.1. RBI’s per game 

0 1 2 >2 Didn’t Play 

Good 2 3 2 1 3

Hardin 1 2 1 4 0

TABLE 8.2. Sandoz drug data 

Test Site 

New Drug Control Drug 

Response # Response #

1 0 15 0 15

2 0 39 6 32

3 1 20 3 18

4 1 14 2 15

5 1 20 2 19

6 0 12 2 10

7 3 49 10 42

8 0 19 2 17

9 1 14 0 15

TABLE 8.3. Sandoz data, Site 3 

Response No Response 

New Drug 1 19

Control 3 15
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of summarizing the data from nine different contingency tables, similar to 
Table  8.3 .   

 We can also summarize a single 2    ×    2 table like Table  8.3 , simply by 
reporting the  odds ratio , which takes the value 1    ×    12/(3    ×    18). In the 
more general case where a 2    ×    2 table takes the form 

  pn    (1    −    p)n  

   the odds ratio is   
p s

p s
( )

( )
1

1
−

−
.  

  Rare Events 
 Reporting on events that are rare and random in time and/or space, such 
as, accidental drownings, radioactive decay, the seeding of trees and 
thistles by the winds, and the sales of Dr. Good ’ s novels 3  can be done in 
any of three different ways:

   1.     A statement as to the average interval between events —
 twelve hours in the case of Dr. Good ’ s novels.  

  2.     A statement as to the average number of events per interval —
 two per day in the case of Dr. Good ’ s novels.  

  3.     A listing in contingency table form of the frequency distribution 
of the events (see Table  8.1 ).    

 The clustering of random events is to be expected and  not  to be 
remarked upon. As a concrete example, although the physical laws that 
govern the universe are thought to be everywhere the same, the 
distribution of stars and galaxies is far from uniform; stars and galaxies are 
to be found everywhere in clusters and clusters of clusters (see, Neyman 
and Scott,  1952 ).  

  Measurements 
 Measurements such as weight, blood pressure, and lap time are normally 
made on a continuous or, more accurately, a  metric  scale. One can usefully 
talk about differences in measurements, such as the difference in mg Hg 
between one ’ s blood pressure taken before and after smoking a cigarette. 
When a group of measurements are taken and a quick summary is desired, 
we can provide the arithmetic mean, the geometric mean, the median, the 
number of modes, or the percentiles of the observations ’  frequency 
distribution. 

  3      Search for  “ Sad and Angry Man ”  or Kindle Books  “ Luke Jackson ”  at  http://amazon.com  



CHAPTER 8 REPORTING YOUR RESULTS 147

     FIGURE 8.1.     a. BoxPlot of Class Heights by Sex. b. One - way Strip Chart or 
DotPlot. c. Combination BoxPlot (top section) and One - way Strip Chart.  
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 For one ’ s own edifi cation as opposed to a fi nal report, one should begin 
by displaying some kind of frequency distribution. A box - and - whiskers 
plot (Figure  8.1 a) is superior to a dot plot (Figure  8.1 b), because it also 
tells us what the mean, median, and interquartile range of the data are. 
For small samples, the combined plot (Figure  8.1 c) may be the most 
informative.    

  Which Mean? 
 For small samples of three to fi ve observations, summary statistics are 
virtually meaningless. Reproduce the actual observations; this is easier to 
do and more informative. 

 Though the arithmetic mean or average is in common use for 
summarizing measurements, it can be very misleading. For example, the 
mean income in most countries is far in excess of the  median  income or 
50th percentile, to which most of us can relate. George W. Bush 
announced in 2003 that under his policy,  “ 92 million Americans receive 
an average tax cut of $1,083. ”  Those numbers were not, strictly speaking, 
incorrect. However, they camoufl aged the fact that some 45 million 
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people would each receive less than $100 in tax relief, whereas the top 1% 
of income earners were each gifted a whopping $30,127. 

 When the arithmetic mean is meaningful, it is usually equal to or close 
to the median. Consider reporting the median in the fi rst place. 

 The  geometric mean  is more appropriate than the arithmetic in three sets 
of circumstances:

   1.     When losses or gains can best be expressed as a percentage rather 
than a fi xed value.  

  2.     When rapid growth is involved, as is the case with bacterial and 
viral populations.  

  3.     When the data span several orders of magnitude, as with the 
concentration of pollutants.    

 The purpose of your inquiry must be kept in mind. The distribution of 
orders in dollars from a machinery plant is likely to be skewed by a few 
large orders. The median dollar value will be of interest in describing sales 
and appraising salespeople; the mean dollar value will be of interest in 
estimating revenues and profi ts. 

 Whether you report a mean or a median, be sure to report only a 
sensible number of decimal places. Most statistical packages can give you 
nine or 10. Do not use them. If your observations were to the nearest 
integer, your report on the mean should include only a single decimal 
place. For guides to the appropriate number of digits, see Ehrenberg 
[ 1977 ] and, for percentages, van Belle [ 2002 , Table 7.4]. 

 Most populations are actually mixtures of populations. If multiple 
modes are observed in samples greater than 25 in size, the number of 
modes should be reported.  

Correlation Coeffi cients 
 Be sure to avoid the following common errors when reporting correlation 
coeffi cients [Porter,  1999 ]:

    •      Failing to state the number of cases on which the coeffi cient 
depends  

   •      Failing to provide confi dence limits for the coeffi cient  

   •      Reporting too many digits  

   •      Neglecting possible confounding factors. What if a third 
unreported factor is responsible for all the observed correlation?  

   •      Concluding that a signifi cant correlation implies a causal relation  

   •      Concluding that a signifi cant correlation implies a linear relation  

   •      Failing to justify/explain the inclusion/exclusion of outlying 
values      
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ORDINAL DATA 
 Ordinal data include measurements but also include observations that, 
while ordered, cannot be usefully added and subtracted as measurements 
can. Observations recorded on the familiar Likert scale of 1 - Disliked 
Intensely to 9 - Liked Very Much, with 5 representing Indifference, are an 
example of ordinal but nonmetric data. One cannot assume that the 
difference between Disliked Intensely (1) and Disliked (3) is the same as 
between Disliked (3) and Indifferent (5). Thus, an arithmetic average or a 
variance would not be at all meaningful. 

 One can report such results in tabular form, in bar charts, or by 
providing key percentiles such as the minimum, median, and maximum. 
Contrary to other published recommendations (e.g., Porter,  1999 ), the 
Pearson correlation coeffi cient can be used with ordinal data (Good, 
 2009 ).  

TABLES
 Is text, a table, or a graph the best means of presenting results? Dyke 
[ 1997 ] would argue that  “ Tables with appropriate marginal means are 
often the best method of presenting results, occasionally replaced (or 
supplemented) by diagrams, usually graphs or histograms. ”  van Belle 
[ 2002 ] warns that aberrant values often can be more apparent in graphical 
form. Arguing in favor of the use of ActivStats  ®   for exploratory analysis is 
that one can so easily go back and forth from viewing the table to viewing 
the graph. In any event, a picture is worth a 1000 words only if it doesn ’ t 
take more than 1000 words to explain. 

 A sentence structure should be used for displaying two to fi ve numbers, 
as in  “ The blood type of the population of the United States is 
approximately 45% O, 40% A, 11% B, and 4% AB. ”  4  Note that the blood 
types are ordered by frequency. 

 Marginal means may be omitted only if they have already appeared in 
other tables. 5  Sample sizes should always be specifi ed. 

 Among our own worst offenses is the failure to follow van Belle ’ s advice 
to  “ Use the table heading to convey critical information. Do not stint. 
The more informative the heading, the better the table. ”  6  

 Consider adding a row (or column, or both) of contrasts.  “ For example, 
if the table has only two rows we could add a row of differences, row 1 

  6      vanBelle [2002; p. 154]. 
  5      Dyke [ 1997 ]. Reprinted with permission from Elsevier Science. 
  4      vanBelle [2002; p. 154]. 
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minus row 2; if there are more than two rows, some other contrast might 
be useful, perhaps  ‘ mean haploid minus mean diploid ’ , or  ‘ linear 
component of effect of N - fertilizer ’ . ”  7  Indicate the variability of these 
contrasts. 

 Tables dealing with two - factor arrays are straightforward, provided 
confi dence limits, mean absolute deviations, and standard errors are clearly 
associated with the correct set of fi gures. Tables involving three or more 
factors are not always immediately clear to the reader and are best avoided. 

 Are the results expressed in appropriate units? For example, are parts per 
thousand more natural in a specifi c case than percentages? Have we 
rounded off to the correct degree of precision, taking account of what we 
know about the variability of the results, and considering whether they will 
be used by the reader, perhaps by multiplying by a constant factor, or by 
another variate, for example, percent dry matter? 

 Dyke [ 1997 ] also advises us that  “ Residuals should be tabulated and 
presented as part of routine analysis; any [statistical] package that does not 
offer this option was probably produced by someone out of touch with 
research workers, certainly with those working with fi eld crops. ”  Best of all 
is a display of residuals aligned in rows and columns as the plots were 
aligned in the fi eld. 

 A table of residuals (or tables, if there are several strata) can alert us to 
the presence of outliers and may also reveal patterns in the data not 
considered previously. 

Simulations
 The exception to the rules above lies with the results of simulations. 
Results should be reported in summary form only, with the program code 
used to generate the simulations being made available either in the body 
of the manuscript or downloadable from a website.     

THE WRONG WAY 

In a two -factor experiment (ligated versus non -ligated animals, AACa 
versus CaCO 3 dietary supplements), Tokita et al.  [1993] studied rats in 
groups of sizes 5,5,3, and 3 respectively. The authors did not report their 
observations in tabular form. They reported a few of the standard 
deviations in a summary, but only a few. Graphs were provided despite 
the paucity of observations; vertical bars accompanied the data points on 
the graphs but the basis for their calculation was not provided. Although 
statistical signifi cance was claimed, the statistical procedures used were 
not described. 

  7      Dyke [ 1997 ]. Reprinted with permission from Elsevier Science. 
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  Dispersion, Precision, and Accuracy 
 The terms dispersion, precision, and accuracy are often confused. 
Dispersion refers to the variation within a sample or a population. 
Standard measures of dispersion include the variance, the mean absolute 
deviation, the interquartile range, and the range. 

 Precision refers to how close several estimates based upon successive 
samples will come to one another, whereas accuracy refers to how close an 
estimate based on a sample will come to the population parameter it is 
estimating. 

 A satire of the Robin Hood legend depicts Robin splitting his fi rst 
arrow with his second and then his second arrow with his third in a highly 
precise display of shooting. Then the camera pulls back and we see that all 
three arrows hit a nearby cow rather than the target. Precise, but highly 
inaccurate, shooting. 

 An individual confi des on a statistics bulletin board that he is unsure 
how to get a confi dence interval (a measure of the precision of an 
estimate) for census fi gures. If the census included or attempted to include 
all members of the population, the answer is,  “ you can ’ t. ”  One can 
complain of the inaccuracy of census fi gures (for the census surely excludes 
many homeless citizens) but not of the imprecision of fi gures based on a 
complete enumeration.   

  STANDARD ERROR 
 One of the most egregious errors in statistics, one encouraged, if not 
insisted upon by the editors of journals in the biological and social 
sciences, is the use of the notation  “ Mean    ±    Standard Error ”  to report the 
results of a set of observations. 

 The standard error is a useful measure of population dispersion  if  the 
observations are continuous measurements that come from a normal or 
Gaussian distribution. If the observations are normally distributed as in the 
bell - shaped curve depicted in Figure  8.2 , then in 95% of the samples we 
would expect the sample mean to lie within two standard errors of the 
mean of our original sample.   

 But if the observations come from a nonsymmetric distribution such as 
an exponential or a Poisson, or a truncated distribution such as the 
uniform, or a mixture of populations, we cannot draw any such inference. 

 Recall that the standard error equals the standard deviation divided by 
the square root of the sample size,   SD/ n  or   ∑ − −( ) / ( )x x n ni

2 1 . 
 As the standard error depends on the squares of individual observations, 

it is particularly sensitive to outliers. A few extreme or outlying 
observations will have a dramatic impact on its value. 
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 If you can not be sure your observations come from a normal 
distribution, then consider reporting your results either in the form of a 
histogram as in Figure  8.3 a or a Box and Whiskers plot as in Figure  8.3 b. 
See, also Lang and Secic [ 1997 , p. 50.]   

 If your objective is to report the precision of your estimate of the mean 
or median, then the standard error may be meaningful providing the mean 
of your observations is normally distributed. 

 The good news is that the sample mean often will have a normal 
distribution even when the observations do not come from a normal 
distribution. This is because the sum of a large number of random 
variables each of which makes only a small contribution to the total is a 
normally distributed random variable. 8  And in a sample mean based on  n  
observations, each contributes only 1/ n  of its value to the total. How 
close the fi t is to a normal distribution will depend upon the size of the 
sample and the distribution from which the observations are drawn. 

 The distribution of a uniform random number U[0,1] is a far cry from 
the bell - shaped curve of Figure  8.2 . Only values between 0 and 1 have a 
positive probability, and in stark contrast to the normal distribution, no 
range of values between zero and one is more likely than any other of the 
same length. The only element the uniform and the normal distributions 
have in common is that they are each symmetric about the population 
mean. Yet, to obtain normally distributed random numbers for use in 

  8      This result is generally referred to as the Central Limit Theorem. Formal proof can be 
found in a number of texts, including Feller [ 1966 , p. 253]. 

     FIGURE 8.2.     Bell - shaped symmetric curve of a normal distribution.  

pr
ob

ab
ili

ty
 d

en
si

ty

normally-distributed variable
–3 3

.4

0



CHAPTER 8 REPORTING YOUR RESULTS 153

     FIGURE 8.3.     a. Histogram of heights in a sixth - grade class. But why 7 boxes? Why 
not 10? Or 5? b. Box and Whiskers Plot. The box encompasses the middle 50% of 
each sample while the  “ whiskers ”  lead to the smallest and largest values. The line 
through the box is the median of the sample, that is, 50% of the sample is larger than 
this value, while 50% is smaller. The plus sign indicates the sample mean. Note that 
the mean is shifted in the direction of a small number of very large values.  
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simulations, we were once taught to generate 12 uniformly distributed 
random numbers and then take their average. 

 Apparently, 12 is a large enough number for a sample mean to be 
normally distributed when the variables come from a uniform distribution. 
But take a smaller sample of observations from a U[0,1] population and 
the distribution of its mean would look less like a bell - shaped curve. 
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 A loose rule of thumb is that the mean of a sample of 8 to 25 
observations will have a distribution that is close enough to the normal for 
the standard error to be meaningful. The more nonsymmetric the original 
distribution, the larger the sample size required. At least 25 observations 
are needed for a binomial distribution with  p     =    0.1. 

 Even the mean of observations taken from a mixture of distributions 
(males and females, tall Zulu and short Bantu) — visualize a distribution 
curve resembling a camel with multiple humps — will have a normal 
distribution if the sample size is large enough. Of course, this mean (or 
even the median) conceals the fact that the sample was taken from a 
mixture of distributions. 

 If the underlying distribution is not symmetric, the use of the  ±  SE 
notation can be deceptive as it suggests a nonexistent symmetry. For 
samples from nonsymmetric distributions of size 6 or less, tabulate the 
minimum, the median, and the maximum. For samples of size 7 and up, 
consider using a box - and - whiskers plot. For samples of size 16 and up, the 
bootstrap, described in Chapters  5  and  6 , may provide the answer you 
need. 

 As in those chapters, we would treat the original sample as a stand - in 
for the population and resample from it repeatedly, 1000 times or so, with 
replacement, computing the sample statistic each time to obtain a 
distribution similar to that depicted in Figure  8.4 . To provide an 
interpretation compatible with that given the standard error when used 
with a sample from a normally distributed population, we would want to 
report the values of the 16th and 84th percentiles of the bootstrap 
distribution along with the sample statistic.   

 When the estimator is other than the mean, we cannot count on the 
Central Limit Theorem to ensure a symmetric sampling distribution. We 
recommend that you use the bootstrap whenever you report an estimate 
of a ratio or dispersion. 

 If you possess some prior knowledge of the shape of the population 
distribution, you should take advantage of that knowledge by using a 
parametric bootstrap (see Chapter  5 ). The parametric bootstrap is 
particularly recommended for use in determining the precision of 
percentiles in the tails (P 20 , P 10 , P 90 , and so forth).  

     FIGURE 8.4.     Rugplot of 50 Bootstrap Medians  Derived from a Sample of 
Sixth Grader ’ s Heights.   

142.25 Medians of Bootstrap Samples 158.25
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P-VALUES

   The  p  - value is  not  the probability that the null hypothesis is 
true.  — Yoccoz  [1991]     

 Before interpreting and commenting on  p  - values, it is well to remember 
that in contrast to the signifi cance level, the  p  - value is a random variable 
that varies from sample to sample. There may be highly signifi cant 
differences between two populations and yet the samples taken from those 
populations and the resulting  p  - value may not reveal that difference. 
Consequently, it is not appropriate for us to compare the  p  - values from 
two distinct experiments, or from tests on two variables measured in the 
same experiment, and declare that one is more signifi cant than the other. 

 If we agree in advance of examining the data that we will reject the 
hypothesis if the  p  - value is less than 5%, then our signifi cance level is 5%. 
Whether our  p  - value proves to be 4.9% or 1% or 0.001%, we will come to 
the same conclusion. One set of results is not more signifi cant than 
another; it is only that the difference we uncovered was measurably more 
extreme in one set of samples than in another. 

 Note that, after examining the data, it is unethical to alter the 
signifi cance level or to reinterpret a two - tailed test as if one had intended 
it to be one - tailed. 

  p  - values need not refl ect the strength of a relationship. Duggan and 
Dean [ 1968 ] reviewed 45 articles that had appeared in sociology journals 
between 1955 and 1965 in which the chi - square statistic and distribution 
had been employed in the analysis of 3    ×    3 contingency tables and 
compared the resulting  p  - values with association as measured by Goodman 
and Kruskal ’ s gamma. Table  8.4  summarizes their fi ndings.   

  p  - values derived from tables are often crude approximations, particularly 
for small samples and tests based on a specifi c distribution. They and the 
stated signifi cance level of our test may well be in error. 

 The vast majority of  p  - values produced by parametric tests based on the 
normal distribution are approximations. If the data are  “ almost ”  normal, 
the associated  p  - values will be almost correct. As noted in Chapter  6 , the 

TABLE 8.4. p-value and association 

p-value

Gamma

<.30 .30 to .70 >.70

<0.1 8 11 5

.05 7 0 0

>.10 8 0 0
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stated signifi cance values for Student ’ s t are very close to exact. Of course, 
a stated  p  - value of 4.9% might really prove to be 5.1% in practice. The 
signifi cance values associated with the  F  - statistic can be completely 
inaccurate for nonnormal data (1% rather than 10%). And the  p  - values 
derived from the chi - square distribution for use with contingency tables 
also can be off by an order of magnitude. 

 The good news is that there exists a class of tests, the permutation tests 
described in Chapter  6 , for which the signifi cance levels are exact if the 
observations are independent and identically distributed under the null 
hypothesis or their labels are otherwise exchangeable. 

 Regardless of which test one uses, it is the height of foolishness to 
report  p  - values with excessive precision. 0.06 and 0.052 are both 
acceptable, but 0.05312 suggests you have let your software do your 
thinking for you.

  This paper started life as an attempt to defend  p  - values, primarily 
by pointing out to theoreticians that there are more things in the 
clinical trials industry than are dreamed of in their lecture courses 
and examination papers. I have, however, been led inexorably to 
the opposite conclusion, that the current use of  p  - values as the 
 “ main means ”  of assessing and reporting the results of clinical 
trials is indefensible.  — P. R. Freeman [ 1993 , 6, p. 1443]   

  The overall conclusion is that  P  values can be highly misleading 
measures of the evidence provided by the data against the null 
hypothesis.  — J. O. Berger and T. Sellke [ 1987 , 7, p. 112]     

CONFIDENCE INTERVALS 
 If  p  - values are misleading, what are we to use in their place? Jones [ 1955 , 
p. 407] was among the fi rst to suggest that

  an investigator would be misled less frequently and would be more 
likely to obtain the information he seeks were he to formulate his 
experimental problems in terms of the estimation of population 
parameters, with the establishment of confi dence intervals about 
the estimated values, rather than in terms of a null hypothesis 
against all possible alternatives.   

 See, also, Gardner and Altman [ 1996 ] and Poole [ 2001 ]. 
 Confi dence intervals can be derived from the rejection regions of our 

hypothesis tests, whether the latter are based on parametric or 
nonparametric methods. Suppose  A (  θ   ′ ) is a 1    −      α   level acceptance region 
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for testing the hypothesis   θ      =      θ   ′ , that is, we accept the hypothesis if our 
test statistic  T  belongs to the acceptance region  A (  θ   ′ ) and reject it otherwise. 
Let  S ( X ) consist of all the parameter values   θ   *  for which  T  [ X ] belongs to 
the acceptance region  A (  θ   * ). Then  S(X ) is an 1    −      α   level confi dence 
interval for   θ   based on the set of observations  X     =    { x  1 ,  x  2 ,    . . .    ,  x n  }. 

 The probability that  S ( X ) includes   θ   0  when   θ      =      θ   0  is equal to 
Pr{ T  [ X ]    ∈     A (  θ   0 ) when   θ      =      θ   0 }    ≥    1    −      α  . 

 As our confi dence 1    −      α   increases, from 90% to 95%, for example, the 
width of the resulting confi dence interval increases. Thus, a 95% 
confi dence interval is wider than a 90% confi dence interval. 

 By the same process, the rejection regions of our hypothesis tests can be 
derived from confi dence intervals. Suppose our hypothesis is that the odds 
ratio for a 2    ×    2 contingency table is 1. Then we would accept this null 
hypothesis if and only if our confi dence interval for the odds ratio includes 
the value 1. 

 A common error is to misinterpret the confi dence interval as a statement 
about the unknown parameter. It is not true that the probability that a 
parameter is included in a 95% confi dence interval is 95%. What is true is 
that if we derive a large number of 95% confi dence intervals, we can 
expect the true value of the parameter to be included in the computed 
intervals 95% of the time. (That is, the true values will be included  if  the 
assumptions on which the tests and confi dence intervals are based are 
satisfi ed 100% of the time.) Like the  p  - value, the upper and lower 
confi dence limits of a particular confi dence interval are random variables, 
for they depend upon the sample that is drawn.    

IMPORTANT TERMS 

Acceptance Region, A(θ0). Set of values of the statistic T [X ] for which we 
would accept the hypothesis H: θ = θ0. Its complement is called the 
rejection region. 

Confi dence Region,  S(X ). Also referred to as a confi dence interval (for a 
single parameter) or a confi dence ellipse (for multiple parameters). Set of 
values of the parameter θ for which given the set of observations  X = {x1,
x2, . . . , xn} and the statistic T [X ] we would accept the corresponding 
hypothesis.

 Confi dence intervals can be used both to evaluate and report on the 
precision of estimates (see Chapter  5 ) and the signifi cance of hypothesis 
tests (see Chapter  6 ). The probability the interval covers the true value of 
the parameter of interest and the method used to derive the interval must 
also be reported. 
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 In interpreting a confi dence interval based on a test of signifi cance, it is 
essential to realize that the center of the interval is no more likely than any 
other value, and the confi dence to be placed in the interval is no greater 
than the confi dence we have in the experimental design and statistical test 
it is based upon. (As always, GIGO.) 

Multiple Tests 
 Whether we report  p  - values or confi dence intervals, we need to correct for 
multiple tests as described in Chapter  6 . The correction should be based 
on the number of tests we  perform , which in most cases will be larger than 
the number on which we report. See Westfall and Young  [1993]  and Hsu 
[ 1996 ] for a discussion of some of the methods that can be employed to 
obtain more accurate  p  - values.  

Analysis of Variance 
  “ An ANOVA table that contains only  F  - values is almost useless, ”  says 
Yoccoz [ 1991 ], who recommends that ANOVA tables include estimates of 
standard errors, means, and differences of means, along with confi dence 
intervals. 

 Do not ignore signifi cant interactions. The guidelines on reporting the 
results of a multifactor analysis are clear - cut and too often ignored. If the 
interaction between A and B is signifi cant, then the main effects of A 
should be calculated and reported separately for several levels of the 
factor B. 

 Or, to expand on the quote from George Dyke with which we opened 
this chapter,  “ Don ’ t just cut out the appropriate part of the computer 
output and paste it onto the draft of the paper, but read it through and 
conduct what additional calculations are suggested by the original 
analysis. ”    

RECOGNIZING AND REPORTING BIASES 
 Very few studies can avoid bias at some point in sample selection, study 
conduct, and results interpretation. We focus on the wrong end points, 
participants and co - investigators see through our blinding schemes, or the 
effects of neglected and unobserved confounding factors overwhelm and 
outweigh the effects of our variables of interest. With careful and 
prolonged planning, we may reduce or eliminate many potential sources of 
bias, but seldom will we be able to eliminate all of them. Accept bias as 
inevitable and then endeavor to recognize and report all exceptions that 
do slip through the cracks. 

 Most biases occur during data collection, often as a result of taking 
observations from an unrepresentative subset of the population rather than 
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from the population as a whole. The example of the erroneous forecast of 
Dewey over Truman was cited in Chapter  3 . In Chapter  6 , we considered 
a study that was fl awed because of a failure to include planes that did  not  
return from combat. 

 When analyzing extended time series in seismological and neurological 
investigations, investigators typically select specifi c cuts (a set of 
consecutive observations in time) for detailed analysis, rather than trying 
to examine all the data (a near impossibility). Not surprisingly, such  “ cuts ”  
usually possess one or more intriguing features not to be found in run - of -
 the - mill samples. Too often, theories evolve from these very biased 
selections. We expand on this point in Chapter  10  in our discussion of the 
limitations on the range over which a model may be applied. 

 Limitations in the measuring instrument, such as censoring at either end 
of the scale, can result in biased estimates. Current methods of estimating 
cloud optical depth from satellite measurements produce biased results 
that depend strongly on satellite viewing geometry. In this and in similar 
cases in the physical sciences, absent the appropriate nomograms and 
conversion tables, interpretation is impossible. 

 Over -  and underreporting plague meta - analysis (discussed in Chapter  7 ). 
Positive results are reported for publication; negative fi ndings are 
suppressed or ignored. Medical records are known to underemphasize 
conditions such as arthritis, for which there is no immediately available 
treatment, while overemphasizing the disease of the day. (See, for 
example, Callaham et al.,  1998 .) 

 Collaboration between the statistician and the domain expert is essential 
if all sources of bias are to be detected and corrected for, as many biases 
are specifi c to a given application area. In the measurement of price 
indices, for example, the three principle sources are substitution bias, 
quality change bias, and new product bias. 9  

 Two distinct kinds of statistical bias effects arise with astronomical 
distance indicators (DIs), depending on the method used. These next 
paragraphs are taken with minor changes from Willick [ 1999 , Section 9]. 

 In one approach, the redshifts of objects whose DI - inferred distances 
are within a narrow range of some value  d  are averaged. Subtracting  d  
from the resulting mean redshift yields a peculiar velocity estimate; 
dividing the mean redshift by  d  gives an estimate of the parameter of 
interest. These estimates will be biased because the distance estimate  d  
itself is biased and is not the mean true distance of the objects in question. 

  9      Otmar Issing in a speech at the CEPR/ECB Workshop on issues in the measurement of 
price indices, Frankfurt am Main, 16 November 2001. 
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 This effect is called homogeneous Malmquist bias. It tells us that, 
typically, objects lie further away than their DI - inferred distances. 
The physical cause is that more objects  “ scatter in ”  from larger true 
distances (where there is more volume) than  “ scatter out ”  from smaller 
ones. 

 A second sort of bias comes into play because some galaxies are too 
faint or small to be in the sample; in effect, the large - distance tail of  P ( d | r ) 
is cut off. It follows that the typical inferred distances are smaller than 
those expected at a given true distance  r . As a result, the peculiar velocity 
model that allows true distance to be estimated as a function of redshift is 
tricked into returning shorter distances. This bias goes in the same sense 
as Malmquist bias, but is fundamentally different. It results not from 
volume/density effects, but from the same sort of sample selection effects 
that were discussed earlier in this section. 

 Selection bias can be minimized by working in the  “ inverse direction. ”  
Rather than trying to predict absolute magnitude ( Y ) given a value of the 
velocity width parameter ( X ), one instead fi ts a line by regressing the 
widths  X  on the magnitudes  Y . 

 Finally, bias can result from grouping or averaging data. Bias results if 
group randomized trials are analyzed without correcting for cluster effects, 
as reported by Feng et al.  [1996] ; see Chapter  6 . The use of averaged 
rather than end - of - period data in fi nancial research results in biased 
estimates of the variance, covariance, and autocorrelation of the fi rst as 
well as higher order changes. Such biases can be both time varying and 
persistent [Wilson, Jones, and Lundstrum,  2001 ].  

REPORTING POWER 
 Statisticians are routinely forced to guess at the values of population 
parameters to make the power calculations needed to determine sample 
size. It is tempting, once the data are in hand, to redo these same power 
calculations. Do and do not. 

 Do repeat the calculations using the same effect size and variance 
estimate used originally while correcting for a reduced sample size due to 
missing data. On the other hand, post - hoc calculations making use of 
parameter estimates provided by the data invariably infl ate the actual 
power of the test [Zumbo and Hubley,  1998 ].  

DRAWING CONCLUSIONS 
 Found data (nonrandom samples) can be very useful in suggesting models 
and hypotheses for further exploration, but without a randomized study, 
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formal inferential statistical analyses are not supported [Greenland,  1990 ; 
Rothman,  1990 ]. The concepts of signifi cance level, power,  p  - value, and 
confi dence interval apply only to data that has arisen from carefully 
designed and executed experiments and surveys. 

 A vast literature has grown up around the unease researchers feel in 
placing too much reliance on  p  - values. Examples include Selvin [ 1957 ], 
Yoccoz  [1991] , Badrick and Flatman[ 1999 ], Feinstein  [1998] , Johnson 
[ 1999 ], Jones and Tukey [ 2000 ], McBride, Loftis, and Adkins [ 1993 ], 
Nester [ 1996 ], Parkhurst [ 2001 ], and Suter [ 1996 ]. 

 The vast majority of such cautions are unnecessary providing we treat 
 p  - values as merely one part of the evidence to be used in decision making. 
They need to be viewed and interpreted in the light of all the surrounding 
evidence, past and present. No computer should be allowed to make 
decisions for you. 

 A failure to reject may result from any of the following:

   1.     A Type II error  

  2.     Insensitive or inappropriate measurements  

  3.     Additional variables being confounded with the variable of 
interest  

  4.     Too small a sample size    

 This is another reason why the power of your tests should always be 
reported after correcting for missing data. 

 A difference that is statistically signifi cant may be of no practical interest. 
Take a large enough sample and we will always reject the null hypothesis; 
take too small a sample and we will never reject it, to say nothing of 
 “ signifi cant ”  results which arise solely because their authors chose to 
test a  “ null ”  hypothesis rather than one of practical interest. (See 
Chapter  5 .) 

 Many researchers would argue there are always three regions to which a 
statistic may be assigned: acceptance, rejection, and indifference. When a 
statistic falls in the last intermediate region it may suggest a need for 
additional experiments. The  p  - value is only one brick in the wall; all our 
other knowledge must and should be taken into consideration [Horwitz 
et al.,  1998 ]. 

 Finally, few journals publish negative fi ndings, so avoid concluding that 
 “ most studies show. ” 

   . . .    [P]eer review is stacked in favor of the consensus view, locking 
skeptics out of publishing in major scientifi c journals.  — Judith 
Curry     
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PUBLISHING STATISTICAL THEORY 
 If the purpose of your article is to propose a new statistical methodology, 
be sure to provide either 

   •      Copies of the data to which your new method was applied along 
with a listing of the program(s) used to implement your new 
method  

   •      Links to websites where the reader may download listings of the 
data to which the new method was applied and the program(s) 
used to implement the new method        

REQUESTED MANUSCRIPT FORMATS 

(For submission to Academic Emergency Medicine, as posted at http://
www.aemj.org/misc/reqmanfor.shtml.)

Study Protocol. Describe the method of patient enrollment (i.e., 
consecutive, convenience, random, population sampling). Discuss any 
consent process. Note any interventions used. Describe any blinding or 
randomization regarding treatments, purpose of the study, or data 
collection. Discuss if and how standard treatment was administered 
(describe such standard treatment separate from interventions used 
specifi cally for study purposes), placebo specifi cs (how prepared, 
delivered), and the reasoning for such (especially if the study is an 
analgesia trial). 

Measurements. Discuss the data collection. Clarify who collected the 
data. Describe any special data collection techniques or instruments. 
Provide manufacturer ’s name and address along with brand name and 
model number for equipment used in the study. Denote what instructions 
or training the data collectors were given. 

Data Analysis. Summarize how the major outcome variables were 
analyzed (clearly defi ne outcome measures). If multiple defi nitions must 
be provided, include a separate subheading for defi nitions. Note which 
outcomes were analyzed with which statistical tests. Clearly defi ne any 
criterion standards (do not use the phrase “gold standard ”). Note any 
important subgroup analyses and whether they were planned before data 
collection or arose after initial data evaluation. Denote any descriptive 
statistics used. Provide 95% confi dence intervals for estimates of test 
performance where possible; they should be described as 95% CI = X to 
X. Discuss sample size estimates. Note signifi cance levels used. 

A SLIPPERY SLOPE 
 John, Loewenstein, and Prelec  [2012]  surveyed over 2000 psychologists, a 
sizeable percentage of whom admitted to at least some of the following 
fraudulent practices:
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   1.     Failing to report all of a study ’ s dependent measures  

  2.     Deciding whether or not to collect more data after fi rst looking to 
see whether the interim results were signifi cant  

  3.     Failing to report all of a study ’ s conditions  

  4.     Stopping data collection earlier than planned because the desired 
result appeared to be confi rmed with interim data  

  5.     Misrepresenting a  p  - value (e.g., reporting that a  p  value of .054 as 
less than .05)  

  6.     Selectively reporting studies that  “ worked ”  while failing to report 
studies that did not.  

  7.     Deciding whether to exclude data after looking at the impact of 
doing so on the results.  

  8.     Reporting an unexpected fi nding as having been predicted from 
the start.  

  9.     Claiming that results are unaffected by demographic variables 
(e.g., gender), without proof (or with knowledge to the 
contrary)    

 Are you guilty of any of these transgressions?  

SUMMARY

     •      Provide details of power and sample size calculations.  

   •      Describe treatment allocation.  

   •      Detail exceptions including withdrawals and other sources of 
missing data.  

   •      Use meaningful measures of dispersion.  

   •      Use confi dence intervals in preference to  p  - values.  

   •      Report sources of bias.  

   •      Formal statistical inference is appropriate only for randomized 
studies and predetermined hypotheses.    

 Counsel on reporting the results of model building is deferred to 
Chapter  13 .  

TO LEARN MORE 
 The text by Lang and Secic [ 1997 ] is must reading; reporting criteria for 
meta - analyses are given on pages 177ff. See Tufte [ 1983 ] on the issue of 
table versus graph. For more on the geometric versus arithmetic mean, see 
Parkhurst [ 1998 ]. For more on reporting requirements, see Begg et al. 
[ 1996 ], Bailar and Mosteller [ 1988 ], Grant [ 1989 ], Altman et al. [ 2001 ; 
the revised CONSORT statement], and International Committee of 
Medical Journal Editors [ 1997 ]. 
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 Mosteller [ 1979 ] and Anderson and Hauck [ 1986 ] warn against the 
failure to submit reports of negative or inconclusive studies and the 
failure of journal editors to accept them. To address this issue the  Journal 
of Negative Results in Biomedicine  has been launched at  http://
www.jnrbm.com/start.asp . For a review of the many instances in which a 
one - time scientifi c consensus was subsequently reversed, see  http://
reason.com/archives/2010/06/29/agreeing - to - agree . 

 On the proper role of  p  - values, see Neyman [ 1977 ], Cox [ 1977 ], and 
Poole [ 1987, 2001 ]. For adjusting for multiple testing, see Aickin and 
Gensler [ 1996 ], Proschan and Waclawiw [ 2000 ], and Saville [ 2003 ]. See 
also McCloskey and Ziliac [2008]. 

 To learn more about decision theory and regions of indifference, see 
Duggan and Dean [ 1968 ] and Hunter and Schmidt [ 1997 ].  
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            Smoking is one of the leading causes of statistics.  — Fletcher 
Knebel   

  All of who drink of this treatment recover in a short time, 
except those whom it does not help, who all die. It is obvious, 
therefore, that it only fails in incurable cases.  — Galen 129 – 199    

 THE PREVIOUS CHAPTER WAS AIMED AT PRACTITIONERS WHO
must prepare reports. This chapter is aimed at those who must read 
them, including editors of journals and those who review articles for 
publication.  

WITH A GRAIN OF SALT 
 Critics may complain we advocate interpreting reports not merely with a 
grain of salt but with an entire shaker; so be it. Internal as well as 
published reports are the basis of our thought processes, not just our own 
publications. Neither society nor we can afford to be led down false 
pathways. 

 We are often asked to testify in court or to submit a pretrial declaration 
in which we comment on published reports. Sad to say, too often the 
reports our clients hand us lack even the most basic information such as 
sample sizes, measures of variability, and descriptions of statistical 
methods, and this despite their having appeared in refereed publications! 
Most misleading is when we are provided with the results of a statistical 
analysis but are denied access to the underlying raw data. Monsanto 
conducted toxicity trials of the company ’ s broad - spectrum herbicide 

Chapter 9 

Interpreting Reports 

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Roundup. The three animal - feeding studies were conducted in two 
different laboratories and at two different dates: at Monsanto (Missouri, 
USA) for NK 603 and MON 810 (June 7, 2000), and at Covance 
Laboratories Inc. (Virginia, USA) for MON 863 (March 14, 2001) on 
behalf of Monsanto. Published reports did not include the supporting data 
or the details of their experimental design. 

 The raw biochemical data, necessary to allow a statistical reevaluation, 
were only obtained through court actions (lost by Monsanto) to obtain 
the MON 863 feeding study material (June 2005), or by courtesy of 
governments or Greenpeace lawyers (see Vend ô mois et al.,  2009 ). 

 Once the raw data are in hand, problems in their interpretation 
immediately emerged. The reference or control samples had been fed a 
wide variety of nongenetically modifi ed feeds. These feeds differed in the 
available amounts of sugars, ions, salts, and pesticide residues. The diets 
fed to the control and reference groups were not shown to be free of 
genetically modifi ed feed. Published results were limited to tests of a single 
variable. Their tests were limited to two samples of ten animals each; thus, 
the underpowered study had only a 44% chance of detecting a difference 
as large as one standard deviation.  

THE AUTHORS 
 Begin your appraisal with the authors ’  affi liations: Who conducted this 
study? What is their personal history conducting other studies? What 
personal interest might they have in the outcome? 

 Who funded the study? What is the funding agency ’ s history regarding 
other studies, and what is their interest in the outcome? 

 Henschke et al. [2006] reported that screening via computerized 
tomography increased the chances of early detection of lung cancer. The 
authors reported, correctly, that their research had been funded by 32 
different entities, one of which was the Foundation for Lung Cancer: 
Early Detection, Prevention, and Treatment. They did not divulge that 
this foundation was headed by the principal investigator of the 2006 
study, that it was housed at her academic institution, and that the only 
contributor during most of its existence was the Vector Group, the parent 
company of Liggett, a major tobacco company, that could have an interest 
in the study results. 

 Another excellent example is the report of Marshall et al. [ 2011 ] on 
medically supervised injecting facilities and the subsequent rebuttal by Pike 
et al.  [2011] . The authors of the former reference are employed by 
government health agencies and academic institutions. The authors of the 
latter, a report that was not peer reviewed, are employees of institutes 
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dedicated to promoting  “ traditional values, ”  opposing the legalization of 
drugs.  

COST–BENEFIT ANALYSIS 
 Should the study have been performed in the fi rst place? That is, did its 
potential benefi ts outweigh the costs to its human or animal subjects? 

 In a later review of Henske et al.  [2006] , Leon Gordis raised the 
following objections:

    •      The study did not include a control or comparison group.  

   •      The study lacked an unbiased outcome measure.  

   •      The study did not consider prior knowledge.  

   •      The study did not address the harms of screening.    

 Several years ago, Dr. Good was asked to analyze the results of a very 
large - scale clinical study of a new vaccine conducted by the U.S. 
Department of Defense. He had not been part of the design team, and 
when he read over the protocol, he was stunned to learn that the design 
called for inoculating and examining 100,000 servicemen and women, 
50,000 with the experimental vaccine, and 50,000 controls with a 
harmless saline solution. 

 Why so many? The disease at which the vaccine was aimed was relatively 
rare. In essence, the study would be comparing two Poisson distributions. 
Suppose we could expect 0.8% or 400 of the controls to contract the 
disease, and 0.7% or 350 of those vaccinated to contract it. 100,000 
innoculations with their accompanying side effects would yield an expected 
number of cases of 750. 

 Could such a study really be justifi ed?  

THE SAMPLES 
 What population(s) was/were sampled from? Were these the same 
populations to which the report(s) conclusions were applied? 

 For example, studies of the possibilities of whiplash resulting from 
low - speed rear - end collisions would only be relevant to specifi c court cases 
if the subjects of the studies were of the same age, physical condition, and 
history of prior injuries as the subjects in the court cases, and if the speeds 
of impact and the masses and protective ability of the vehicles involved 
were the same in both the studies and the court cases. 

 How large was the sample? This most basic piece of information is lacking 
from the report by Okano et al. [ 1993 ]. Was the sample random, stratifi ed, 
or clustered? What was the survey unit? Was the sample representative? 
Can you verify this from the information provided in the report? 
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 For example, when several groups are to be compared, baseline 
information for each group should be provided. A careful reading of Fujita 
et al. [ 2000 ] reveals that the baseline values (age and bone density) of the 
various groups were quite different, casting doubt on the reported 
fi ndings. 

 How was the sample size determined? Was the anticipated power stated 
explicitly? Without knowledge of the sample size and the anticipated 
power of the test, we will be unable to determine what interpretation, if 
any, ought be given a failure to detect a statistically signifi cant effect. 

 What method of allocation to subgroup was used? What type of 
blinding was employed, if any? How was blinding verifi ed? 

 With regard to surveys, what measures were taken to ensure that the 
responses of different individuals were independent of one another or to 
detect lies and careless responses? Were nonresponders contacted and 
interviewed? 

 Are the authors attempting to compare or combine samples that have 
been collected subject to different restrictions and by different methods?  

AGGREGATING DATA 
 Just as the devil often quotes scripture for his (or her) own purposes, 
politicians and government agencies are fond of using statistics to mislead. 
One of the most common techniques is to combine data from disparate 
sources. Four of the six errors reported by Wise [ 2005 ] in the presentation 
of farm statistics arise in this fashion. (The other two come from 
employing arithmetic means rather than medians in characterizing highly 
skewed income distributions.) These errors are:

   1.     Including  “ Rural Residence Farms, ”  which represent two - thirds of 
all U.S. farms but are  not  farmed for a living, in the totals for the 
farm sector. As Wise notes,  “ This leads to the misleading 
statement that a minority of farms get farm payments. A minority 
of  part - time  farmers get payments, but a signifi cant majority of 
full - time commercial and family farmers receive farm payments. ”   

  2.     Including income from nonfarming activities in farm income.  

  3.     Attributing income to farmers that actually goes to land owners.  

  4.     Mixing data from corporate farms with that of multimember 
collective entities such as Indian tribes and cooperatives.     

EXPERIMENTAL DESIGN 
 If a study is allegedly double - blind, how was the blinding accomplished? 
Are all potential confounding factors listed and accounted for?     
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DESCRIPTIVE STATISTICS 
 Is all the necessary information present? Were measures of dispersion 
(variation) included as well as measures of central tendency? Was the 
correct and appropriate measure used in each instance: mean (arithmetic 
or geometric) or median, standard deviation or standard error or bootstrap 
CI? 

 Are missing data accounted for? Does the frequency of missing data vary 
among treatment groups? 

 Beware of graphs using arbitrary units or with misleading scales. Jean 
Henrick Sch ö n, whose fraudulent reports wasted many investigators ’  time 
and research monies, used such meaningless graphs with remarkable 
regularity [Reich,  2009 ].  

THE ANALYSIS 

Tests
 Authors must describe which test they used, report the effect size (the 
appropriate measure of the magnitude of the difference, usually the 
difference or ratio between groups; a confi dence interval would be best), 
and give a measure of signifi cance, usually a  p  value, or a confi dence 
interval for the difference. 

 As Robert Boyle declared in 1661, investigations should be reported in 
suffi cient detail that they can be readily reproduced by others. If the 

WHAT IS THE SOUND OF ONE HAND CLAPPING? 

Gonzales et al. [ 2001] reported that Maca improved semen parameters in 
men. A dozen men were treated with Maca. But no matched untreated 
(control) subjects were studied during the same period. Readers and 
authors will never know whether the observed effects were due to a 
change in temperature, a rise in the Peruvian economy, or several dozen 
other physiological and psychological factors that might have been 
responsible for the change. (Our explanation for the reported results is 
that 12 men who normally would have their minds occupied by a score of 
day-to-day concerns spent far more time than usual thinking about sex 
and the tests to come. Thus, the reported increase in semen production.) 

The big question is not why this article was published with this absence 
of a control group, but why the human -uses committee at the 
Universadad Peruna Cayento Heredia in Lima permitted the experiments 
to go forth in the fi rst place. The tests were invasive —“semen samples 
were collected by masturbation. ” A dozen men were placed at risk and 
subjected to tests, yet the fi nal results were (predictably) without value. 
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proposed test is new to the literature, a listing of the program code used 
to implement the procedure should be readily available; either the listing 
itself or a link to the listing should be included in the report. Throughout 
the past decade, Salmaso [ 2002 ] and his colleagues made repeated claims 
as to the value of applying permutation methods to factorial designs. Yet 
not once have these authors published the relevant computer code so that 
their claims could be verifi ed and acted upon. Berger and Ivanova [ 2002 ] 
claim to have developed a more powerful way to analyze ordered 
categorical data, yet again, absent their program code, we have no way to 
verify or implement their procedure. 

 Can you tell which tests were used? Were they one - sided or two - sided? 
Was this latter choice appropriate? Consider the examples we listed in 
Tables  6.1a , b  and  6.2 . You may even fi nd it necessary to verify the 
 p  - values that are provided. Thomas Morgan (in a personal communication) 
notes that many journal editors now insist that authors use two - tailed 
tests. This bizarre request stems from the CAST investigation in which 
investigators ignored the possibility (later found to be an actuality) that 
the drugs they were investigating were actually harmful. (See Moore, 
 1995 , pp. 203 – 204; and Moy é ,  2000 , pp. 145 – 148 for further details.) 
Ignoring this possibility had dangerous consequences. 

 The CAST study is an exception. The majority of comparative 
studies have as their consequence either that a new drug or process 
will be adopted or that it will be abandoned, and a one - sided test is 
justifi ed. 

 A second reason to be cautious is that the stated  p  - values may actually 
be fraudulent. Such would be the case if the choice between a one - tailed 
and a two - tailed test were made  after  the data were in hand (UGDP 
Investigation,  1971 ) or the authors had computed several statistics (e.g., 
both the t - test and the Mann – Whitney). 

 How many tests? In a study by Olsen [ 2003 ] of articles in  Infection and 
Immunity , the most common error was a failure to adjust or account for 
multiple comparisons. Remember, the probability is 64% that at least one 
test in 20 is likely to be signifi cant at the 5% level by chance alone. Thus, 
it is always a good idea to check the methods section of an article to see 
how many variables were measured. See O ’ Brien [ 1983 ], Saville [ 1990 ], 
Tukey [ 1991 ], Aickin and Gensler [ 1996 ], and Hsu [ 1996 ], as well as the 
minority views of Rothman  [1990]  and Saville [ 2003 ]. 

 Was the test appropriate for the experimental design? For example, was 
a matched - pairs t - test used when the subjects were not matched? 

  Note to journal editors : The raw data that formed the basis for a 
publication should eventually be available on a website for those readers 
who may want to run their own analyses.  
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Contingency Tables 
 Was an exact method used for their analysis or a chi - square approximation? 
Were log - linear models used when the hypothesis of independence among 
diverse dimensions in the table did not apply?  

Factor Analysis 
 Was factor analysis applied to datasets with too few cases in relation to the 
number of variables analyzed? Was oblique rotation used to get a number 
of factors bigger or smaller than the number of factors obtained in the 
initial extraction by principal components, as a way to show the validity of 
a questionnaire? An example provided by Godino, Batanero, and 
Guti é rrez - Jaimez  [2001]  is obtaining only one factor by principal 
components and using the oblique rotation to justify that there were two 
differentiated factors, even when the two factors were correlated and the 
variance explained by the second factor was very small.  

Multivariate Analysis 
 One should always be suspicious of a multivariate analysis, both of the 
methodology and of the response variables employed. While Student ’ s - t is 
very robust, even small deviations from normality make the  p  - values 
obtained from Hotelling ’ s T 2  suspect. The inclusion of many irrelevant 
response variables may result in values that are not statistically signifi cant.   

CORRELATION AND REGRESSION 
 Always look for confi dence intervals about the line. If they are not there, 
distrust the results unless you can get hold of the raw data and run the 
regressions and a bootstrap validation yourself (see Chapters  13  and  14 ).  

GRAPHICS
 Beware of missing baselines, as in Figure  9.1 . Be wary of extra dimensions 
that infl ate relative proportions (see Chapter  10 ). Distrust curves that 
extend beyond the plotted data. Check to see that charts include all 
datapoints, not just some of them.   

 The data for Figure  9.2 , supplied by the California Department of 
Education, are accurate. The title added by an Orange County newspaper 
is not. Although enrollment in the Orange County public schools may 
have been steadily increasing in the last quarter of the 20th Century, 
clearly it has begun to level off and even to decline in the 21st.   
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 Finally, as noted in the next chapter, starting the Y - axis at 250,000 
rather than 0 leaves the misleading impression that the increase is much 
larger than it actually is.  

  CONCLUSIONS 
 Our greatest fault (apart from those to which our wives have been kind 
enough to draw our attention) is to save time by relying on the abstract 
and/or the summary of a paper for our information, rather than wade 

     FIGURE 9.2.     Enrollment in Orange County Public Schools from 1977 to 
2007.    Source: California Department of Education. The misleading title was added 
by an Orange County newspaper.  Data are downloadable from  http://www.cde.ca.
gov/ds/sd/sd.   
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     FIGURE 9.1.     Misleading baseline data makes true comparisons impossible.  
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through the entire article. After all, some reviewer has already gone 
through it with a fi ne - tooth comb. Or have they? Most reviewers, though 
experts in their own disciplines, are seldom as knowledgeable in statistics. 
It is up to us to do the job, to raise the questions that ought to have been 
asked before the article was published. 

 Is an attempt made to extend results beyond the populations that were 
studied? Are potential biases described? 

 Were any of the tests and subgroup analyses performed after the data 
were examined, thereby rendering the associated  p  - values meaningless? 
And, again, one must ask, were all potential confounding factors 
accounted for either by blocking or by treatment as covariates? (See, for 
example, the discussion of Simpson ’ s paradox in Chapter  11 .) 

 Be wary of extrapolations, particularly in multifactor analyses. As the 
small print reads on a stock prospectus, past performance is no guarantee 
of future success. 

 Are nonsignifi cant results taken as proof of lack of effect? Are practical 
and statistical signifi cance distinguished? 

 Finally, few journals publish negative fi ndings, so avoid concluding that 
 “ most studies show. ”      

  2      185 F.2d 258 (4th Cir. 1950). 
  1       Eagle Iron Works,  424 F. Supp, 240 (S.D. Ia. 1946). 

THE COURTS EXAMINE THE SAMPLING UNIVERSE 

The U.S. Equal Employment Opportunities Commission (EEOC) alleged 
that Eagle Iron Works assigned African -Americans to unpleasant work 
tasks because of their race and discharged African -Americans in greater 
numbers than Caucasians, again because of their race. 1 The EEOC was 
able to identify only 1200 out of 2000 past and present employees by 
race, though all 250 current employees could be identifi ed. The Court 
rejected the contention that the 250 current employees were a 
representative sample of all 2000; it also rejected the EEOC ’s
unsubstantiated contention that all unidentifi ed former workers were 
Caucasian. “The lack of a satisfactory basis for such an opinion and the 
obvious willingness of the witness to attribute more authenticity to the 
statistics than they possessed, cast doubts upon the value of opinions. ”

The plaintiff ’s survey was rejected in Bristol Meyers v. FTC 2 as there was 
no follow -up of the 80% of those who did not respond. 

Amstar Corporation claimed that “Domino’s Pizza ” was too easily 
confused with its own use of the trademark “Domino” for sugar. The 
Appeals Court found that the surveys both parties used to support their 
claims were substantially defective. 

(Continued)
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RATES AND PERCENTAGES 
 Consider the statement  “ Sixty percent of the children in New York City 
read below grade level. ”  Some would say we can not tell whether this 
percentage is of practical signifi cance without some means of comparison. 
How does New York City compare with other cities its size? What about 
racial makeup? What about other environmental factors compared with 
other similar cities? 

 In the United States in 1985, there were 2.1 million deaths from all 
causes, compared to 1.7 million in 1960. Does this mean it was safer to 
live in the United States in the 1960s than in the 1980s? We do not know 
the answer because we do not know the relative sizes of the population of 
the United States in 1960 and 1985. 

 If a product had a 10% market share in 1990 and 15% today, is this a 
50% increase or a 5% increase? Not incidentally, note that market share 
may increase even when total sales decline. 

 How are we to compare rates? If a population consists of 12% African -
 Americans, and a series of jury panels contain only 4%, the absolute 
disparity is 8%, but the comparative disparity is 66%. 

 In Davis v. City of Dallas 4 , the court observed that a  “ 7% difference 
between 97% and 90% ought not to be treated the same as a 7% difference 
between, e.g. 14% and 7%, since the latter fi gure indicates a much greater 
degree of disparity. ”  Not so, for pass rates of 97% and 90% immediately 
imply failure rates of 3% and 10%. 

“In undertaking to demonstrate likelihood of confusion in a trademark 
infringement case by use of survey evidence, the appropriate universe 
should include a fair sampling of those purchasers most likely to partake 
of the alleged infringer ’s goods or service. ”3

Amstar conducted and offered in evidence a survey of heads of 
households in ten cities. But Domino ’s Pizza had no stores or restaurants 
in eight of these cities, and in the remaining two, their outlets had been 
open less than three months. Only women were interviewed by Amstar, 
and only those women who were at home during daylight hours, that is, 
grocery shoppers rather than the young and the single who compose the 
majority of pizza eaters. Similarly, the court rejected Domino ’s Pizza ’s
own survey conducted in its pizza parlors. Neither plaintiff nor defendant 
had sampled from a suffi ciently complete universe. 

  4      487 F.Supp 389 (N.D. Tex 1980). 

  3      Amstar Corp. v. Domino ’ s Pizza, Inc., 205 U.S.P.Q 128 (N.D. Ga. 1979),  rev ’ d,  615 F. 
2d 252 (5th Cir. 1980). 
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 The consensus among statisticians is that one ought use the odds ratio 
for such comparisons, defi ned as the percentage of successes divided by 
the percentage of failures. In the present example, one would compare 
97%/3%    =    32.3 versus 90%/10%    =    9. Katz [ 2006 ] dissents.  

INTERPRETING COMPUTER PRINTOUTS 
 Many of our reports come to us directly from computer printouts. Even 
when we are the ones who have collected the data, these reports are often 
a mystery. One such report, generated by SAS PROC TTEST is 
reproduced and annotated below. We hope our annotations will inspire 
you to do the same with the reports your software provides you. (Hint: 
Read the manual.) 

 First, a confession: We have lopped off many of the decimal places that 
were present in the original report. They were redundant as the original 
observations only had two decimal places. In fact, the fourth decimal place 
is still redundant. 

 Second, we turn to the foot of the report, where we learn that a highly 
signifi cant difference was detected between the dispersions (variances) of 
the two treatment groups. We will need to conduct a further investigation 
to uncover why this is true. 

 Confi ning ourselves to the report in hand, unequal variances mean that 
we need to use the Satterthwaite ’ s degrees of freedom adjustment for the 
t - test for which Pr    >    | t |    =    0.96, that is, the values of RIG for the New and 
Standard treatment groups are not signifi cantly different from a statistical 
point of view. 

 Lastly, the seventh line of the report tells us that the different in the 
means of the two groups is somewhere in the interval ( − 0.05,  + 0.05). 
(The report does not specify what the confi dence level of this confi dence 
interval is and we need to refer to the SAS manual to determine that it is 
95%.)    

The TTEST Procedure 

Statistics

Lower CL Upper CL Lower CL Upper CL 

Var’le treat N Mean Mean Mean Std Dev Std Dev Std Dev 
Std Err 

RIG New 121 0.5527 0.5993 0.6459 0.2299 0.2589 0.2964 
0.0235

(Continued)
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Outright Fraud 

   I just wanted to make something more beautiful than it is. —
 Translation of a remark by G. Stapel   

 If the numerous surveys cited by Judson [ 2004 ] are accurate, 10 – 15% of 
scholarly publications include either made - up or  “ modifi ed ”  data. 
Sometimes, the fraud leaps out at the reader (though not, apparently, at 
the reviewers for the journals in which the articles appeared). Between 
1943 and 1966, Sir Cyril Burt (he was knighted for his work in 
psychology) published a series of papers on the differences between pairs 
of twins who had been reared together and pairs of twins who had been 
reared apart. The numbers of pairs of twins for whom data were collected 
increased over time, though the raw data were never reported (nor, in 
those pre - Internet days, were data made available online to other 
investigators). The following table summarizes Burt ’ s and his coauthor ’ s 
reported fi ndings: 

   Date of Article     1943     1955     1958     1966  

  Pairs of identical twins 
reared apart  

  15    21     > 30    53  

     Correlation of IQ    0.77    0.771    0.771    0.771  

  Pairs of identical twins 
reared together  

  47    83    Not given    95  

     Correlation of IQ    0.86    0.944    0.944    0.944  

RIG Stand 127 0.5721 0.598 0.6238 0.1312 0.1474 0.1681 
0.0131

RIG Diff (1 –2)–0.051 0.0013 0.0537 0.1924 0.2093 0.2296 
0.0266

T-Tests

Variable Method Variances DF t Value Pr > |t|

RIG Pooled Equal 246 0.05 0.9608 

RIG Satterthwaite Unequal 188 0.05 0.9613 

Equality of Variances 

Variable Method Num DF Den DF F Value Pr > F

RIG Folded F 120 126 3.09 <.0001
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 What a coincidence! Correlations that remain constant to three decimal 
places. 

 A less obvious anomaly of Burt ’ s statistical analyses was that his 
recorded  p  - values for the chi - square statistic were all highly insignifi cant, 
that is, they exceeded the 99th percentile of the distribution.  

Be Wary of Statistically Adjusted Rates 
 Between December 2011 and January 2012, the U.S. Department of 
Labor reported a statistically adjusted gain of 243,000 jobs in January 
2012, whereas the raw actual jobs numbers showed an actual loss of 2.7 
million jobs. 

 Jack Rasmus suggests that the Labor Department may be using methods 
and assumptions based on conditions that pre-dated the current recession’s 
unique, qualitatively different, and more - severe conditions. 

Be Wary of Too Smooth Results 
 Jan Henrick Schon ’ s fraud was exposed, in part, because Lydia Sohn and 
Paul McEuen noticed that the graphs in several of Schon ’ s articles were 
so similar that even the little wiggles due to random fl uctuations were the 
same! 

 The respected Nathan Mantel wrote in 1979 to editors of  Biometrics  to 
question certain simulation results on the grounds that the values seemed 
to bounce around rather than fall on a smooth curve. Now that we are 
more familiar with the use of simulations in statistics, a more obvious 
question would be why so many reported results were so smooth, when 
surely one or two outliers are always to be expected. The only way one can 
verify simulation results or extend them to distributions of particular 
interest is if one has access to the code that generated results; journal editors 
should require the code ’ s publication.  

Check the Frequency of the Digits 
 While one ’ s intuition might suggest that each of the numbers 1 through 9 
is equally likely to be one of the leading digits in a table entry, if the data 
are distributed across several orders of magnitude, the probability that a 
leading digit is  k  is given by the formula  P  [ k ]    =    log[1    +    1/ k ]. 

 The formula, known as Benford ’ s Law had been known in one form or 
another for more than a century. Varian [ 1972 ] was among the fi rst to 
suggest that it might be applied to the analysis of scientifi c data. 

 Using quarterly accounting data for all fi rms in Compustat, Jialan Wang 
found that accounting statements are getting less and less representative of 
what is really going on inside of companies (see Figure  9.3 ). The major 
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     FIGURE 9.3.     Deviations from Benford ’ s Law for accounting data for 20,000 
fi rms as a function of time.  Source: Jialan Wang as reported at  http://economistsview.
typepad.com/economistsview/2011/10/benfords - law - and - the - decreasing - reliability - of - 
accounting - data.html.    
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reform that was passed after Enron and other major accounting scandals 
barely made a dent.     

  SUMMARY 
 Reports of scientifi c endeavors should be comprehensive enough to permit 
the reader to replicate the procedures described therein and to confi rm or 
challenge the reported results.  

  TO LEARN MORE 
 Godino, Batanero, and Guti é rrez - Jaimez  [2001]  report on errors found in 
the use of statistics in a sample of mathematics education doctoral theses 
in Spain. Fanelli [ 2009 ] and Martinson, Anderson, and Devries  [2005]  
report on the prevalence of fraud. Durtschi et al. [ 2004 ] report on the use 
of Benford ’ s Law to detect fraud.                      
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CRITICIZING REPORTS 

Commenting on an article by Rice and Griffi n [ 2004], David Hershey 
(http://www.fortunecity.com/greenfi eld/clearstreets/84/hornworm.htm )
cites the following fl aws:

1. Using the arithmetic average (linear interpolation) of two values that 
do not fall on a straight line. 

2. Plotting curves without plotting the corresponding confi dence 
intervals.

3. Failure to match treatment groups based on baseline data. As a result, 
such factors as the weight of the subject were confounded with 
treatment.

4. No explanation provided for the missing data (occasioned by the 
deaths of the experimental organisms). 

5. No breakdown of missing data by treatment. 

6. Too many signifi cant fi gures in tables and equations. 

7. Extrapolation leading to a physiologically impossible end point. 

8. Concluding that detecting a signifi cant difference provided 
confi rmation of the validity of the experimental method. 
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            KISS — Keep It Simple, but Scientifi c.  — Emanuel Parzen [1990]   

  Getting information from a table is like extracting sunbeams 
from a cucumber.  — Farquhar and Farquhar [ 1891 ]    

 IS A GRAPH REALLY NECESSARY? Is it a better vehicle than a table for 
communicating information to the reader? How many dimensions do you 
really need to illustrate? Do you need to illustrate repeated information for 
several groups? How do you select from a list of competing choices? How 
do you know whether the graph is effectively communicating the desired 
information? Does your graph answer a particular question, and are the 
elements of the graph chosen for your audience? 

 Graphics should emphasize and highlight salient features of the 
underlying data, and should coherently summarize large quantities of 
information. Although graphics provide a break from dense prose, authors 
must not forget that these illustrations should be scientifi cally informative 
rather than decorative. In this chapter, we outline mistakes in selection, 
creation, and execution of graphics and then discuss improvements. 

 Graphical illustrations should be simple and pleasing to the eye, 
but motivation for their inclusion must remain scientifi c. In other 
words, we avoid having too many graphical features that are purely 
decorative while keeping a critical eye open for opportunities to 
enhance the scientifi c implications for the reader. Good graphical 
designs utilize a large proportion of the ink to communicate scientifi c 
information in the overall display. Another source of guidance can be 
found in Yau [ 2011 ].  

  Chapter 10 

Graphics     

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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  IS A GRAPH REALLY NECESSARY? 
 A picture is easily worth a 1000 words, but not if it will take more than 
1000 words to explain its purpose.  

   KISS  
 Keep your graphs simple but complete. A particularly horrifi c example is 
located at  http://www.aptech.com/3dcontour2.html  with a copy at 
 http://statcourse.com/research/sillygraph.jpeg . 

 Its fl aws include all of the following:

   1.     The unnecessary shading and a false third dimension provide a 
distracting optical illusion as the cube appears to fl ick toward and 
then away from the viewer.  

  2.     The unnecessary third dimension is meaningless as a single 
continuous variable (burn time) is plotted against a single 
categorical variable (fabric type).  

  3.     The unnecessary color coding in the bars is distracting; it 
duplicates the information one can read directly from the Y axis.  

  4.     Do the disks near the top of each bar point to the true burn time? 
Or does the burn time correspond to the top of the thin bar or 
the fat bar?  

  5.     I am guessing that the categories on the left correspond to 
synthetic fabrics and those on the right to natural fabrics; still, a 
further label would have been helpful.  

  6.     As the graph is separated from its descriptive context, a label 
providing the details of how burn time was determined is called 
for.  

  7.     The one bit of seemingly relevant labelling,  “ average of three 
samples, ”  is accompanied by a distracting orange blob.    

 Rules for avoiding similar catastrophes in your own work are provided in 
the sections that follow.  

  THE SOCCER DATA 
 When his children were young, Dr. Hardin coached youth soccer (players 
of age 5) and recorded the total number of goals scored for the top fi ve 
teams during the eight - game spring 2001 season in College Station, 
Texas. The total numbers of goals scored per team were 16 (team 1), 22 
(team 2), 14 (team 3), 11 (team 4), and 18 (team 5). There are many 
ways we can describe these outcomes to the reader. In text above, we 
simply communicated the results in words. 

 A more effective presentation would be to write  “ the total numbers of 
goals scored by Teams 1 through 5 were 16, 22, 14, 11, and 18 
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respectively. ”  The College Station Soccer Club assigned the offi cial team 
names as Team 1, Team 2, etc. 1  Improving on this textual presentation, 
we could also write,  “ with the team number as the subscript the total 
numbers of goals were 22 2 , 18 5 , 16 1 , 14 3 , and 11 4 . ”  This presentation 
improves communication by ordering the outcomes. With these particular 
data, the reader will naturally want to know the order.  

  FIVE RULES FOR AVOIDING BAD GRAPHICS 
 There are a number of choices in presenting the soccer outcomes in 
graphical form. Many are poor choices; they hide information, make it 
diffi cult to discern actual values, or ineffi ciently use the space within the 
graphic. Open almost any newspaper and you will see a bar chart similar 
to Figure  10.1 a, which illustrates the soccer data. In this section, we 
provide fi ve important rules for generating effective graphics. Subsequent 
sections will augment this list with specifi c examples.   

 Figure  10.1 a includes a third dimension, a depth dimension that does 
not correspond to any information in the data. The resulting fi gure 
obfuscates the outcomes. Does Figure  10.1 a indicate that Team 3 scored 
14 goals, or does it appear that team scored 13 goals? The reader must 
focus on the top back corner of the three - dimensional rectangle since that 
part of the bar is (almost) at the same level as the grid lines on the plot; 
actually, the reader must fi rst focus on the fl oor of the plot to initially 
discern the vertical distance of the back right corner of the rectangular bar 
from the corresponding grid line at the back (these are at the same 
height). The viewer must then mentally transfer this difference to the top 
of the rectangular bars to accurately infer the correct value. 

 To highlight the confusing effect caused by the false third dimension, 
look at Figure  10.1 b wherein we provided additional grid lines. This plot 
illustrates the previously described technique for how to infer values from 
this type of graphic. The reality is that most readers focus on the front 
face of the rectangle and will subsequently misinterpret values in this data 
representation. 

 Figure  10.2  also includes a false third dimension. As in the previous 
example, the resulting illustration makes it diffi cult to discern the actual values 
presented. This illusion is further complicated by the fact that the depth 
dimension has been eliminated at the top of the three - dimensional pyramids 
so that it is nearly impossible to correctly ascertain the plotted values. Focus 

  1      These labels show the remarkable lack of imagination that we encounter in many data 
collection efforts. To be fair, the children had their own informal names such as Fireballs but 
not all of these names were available at data collection time. 
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     FIGURE 10.2.     Total number of goals scored by Teams 1 through 5. The 
x - axis indicates the Team number and the y - axis indicates the number of goals 
scored by the respective team. 
 Problem: The false third dimension makes it diffi cult to discern the values in the 
plot. Since the back face is the most important for interpreting the values, the fact 
that the decorative object comes to a point makes it impossible to correctly read 
values from the plot.  
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     FIGURE 10.1.     a. Total number of goals scored by Teams 1 through 5. The 
x - axis indicates the Team number and the y - axis indicates the number of goals 
scored by the respective team. 
 Problem: The false third dimension makes it diffi cult to discern values. The 
number of goals for Team 3 appears to be 13 rather than the correct value of 14. 
b. Total number of goals scored by Teams 1 through 5. The x - axis indicates the 
Team number and the y - axis indicates the number of goals scored by the 
respective team. 
 Problem: The false third dimension makes it diffi cult to discern values. 
 Solution: Compute the vertical distance from the back - right bottom corner of a 
bar to the fi rst vertical value. Transfer this value to the top of the back face of a 
bar. This height may then be compared to the added gridlines so that the correct 
value (14) may be inferred from the graphic.  
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on the result of Team 4, compare it to the illustration in Figure  10.1 a, and 
judge whether you think the plots are using the same data (they are).   

 Other types of plots that confuse the reader (and writer) with false third 
dimensions include point plots with shadows and line plots in which the 
data are connected with a three - dimensional line or ribbon. The only sure 
way to fi x the problems in Figure  10.2  is to include the values atop each 
pyramid as a textual element or to include a tabular legend with the values. 2  

 The point of these graphics is to avoid illustrations that utilize more 
dimensions than exist in the data. Clearly, a better presentation would 
indicate only two dimensions, one dimension that identifi es the teams and 
the other dimension that identifi es the number of goals scored.  

  Rule 1: Do not produce graphics illustrating more dimensions 
than exist in the information to be illustrated.   

 Figure  10.3  is an improvement over three - dimensional displays. It is 
easier to discern the outcomes for the teams, but the axis label obscures 

     FIGURE 10.3.     Total number of goals scored by Teams 1 through 5. The 
x - axis indicates the Team number and the y - axis indicates the number of goals 
scored by the respective team. 
 Problem: Placing the axes inside of the plotting area effectively occludes data 
information. This violates the simplicity goal of graphics; the reader should be able 
to easily see all of the numeric labels in the axes and plot region.  
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  2      If we include all of the values as text (as labels or in a tabular legend), the graph should 
illustrate more than just the labeled values. 
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the outcome of Team 4. Axes should be moved outside of the plotting 
area, with enough labels so that the reader can quickly scan the illustration 
and identify values.    

  Rule 2: Do not superimpose labeling information on the graphical 
elements of interest. Labels add information to the plot, but should 
be placed in (otherwise) unused portions of the plotting region.   

 Figure  10.4  is a much better display of the information of interest. 
However, this graphic suffers from too much empty space. Choosing to 
begin the vertical axis at zero means that about 40% of the plotting region 
is empty. Unless there is a scientifi cally compelling reason to include a 
specifi c baseline in the graph, the presentation should be limited to the 
range of the information at hand. You can ignore this rule if you want to 
include zero as the baseline to admit a relative comparison of the values as 
well as an absolute comparison. Note how the symbol for Team 2 is twice 
as high as the symbol for Team 4 in Figure  10.4 , but in Figure  10.5  this 

     FIGURE 10.4.     Total number of goals scored by Teams 1 through 5. The 
x - axis indicates the Team number and the y - axis indicates the number of goals 
scored by the respective team. 
 Problem: By allowing the y - axis to range from zero, the presentation reduces the 
proportion of the plotting area in which we are interested. Less than half of the 
vertical area of the plotting region is used to communicate data.  
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     FIGURE 10.5.     Total number of goals scored by Teams 1 through 5. The 
x - axis indicates the Team number and the y - axis indicates the number of goals 
scored by the respective team. 
 Problem: This graph correctly scales the y - axis, but still uses a categorical variable 
denoting the team on the x - axis. Labels 0 and 6 do not correspond to a team 
number and the presentation appears as if the x - axis is a continuous range of values 
when in fact it is merely a collection of labels. While a reasonable approach to 
communicating the desired information, we can still improve on this presentation 
by changing the numeric labels on the x - axis to string labels corresponding to the 
actual team names.  
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is no longer true since we eliminate the zero range of the data. There are 
several instances in which axis range can exceed the information at hand.   

  Rule 3: Do not allow the range of the axes labels to signifi cantly 
decrease the area devoted to data presentation. Choose limits 
wisely and do not accept default values for the axes that are far 
outside of the range of data unless relative as well as absolute 
comparisons should be made by the reader.   

 Figure  10.5  eliminates the extra space included in Figure  10.4 , where 
the vertical axis is allowed to more closely match the range of the 
outcomes. The presentation is good, but could be made better. The data 
of interest in this case involve a continuous and a categorical variable. This 
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presentation treats the categorical variable as numeric for the purposes of 
organizing the display, but this is not necessary.  

  Rule 4: Carefully consider the nature of the information 
underlying the axes. Numeric axis labels imply a continuous 
range of values that can be confusing when the labels actually 
represent discrete values of an underlying categorical variable.   

 Figures  10.5  and  10.6  are further improvements of the presentation. 
The graph region, area of the illustration devoted to the data, is illustrated 
with axes that more closely match the range of the data. Figure  10.6  
connects the point information with a line that may help visualize the 
difference between the values, but also indicates a nonexistent relationship: 
the horizontal axis is discrete rather than continuous. Even though these 
presentations vastly improve the illustration of the desired information, we 

     FIGURE 10.6.     Total number of goals scored by Teams 1 through 5. The 
x - axis indicates the Team number and the y - axis indicates the number of goals 
scored by the respective team. 
 Problem: The inclusion of a polyline connecting the 5 outcomes helps the reader 
to visualize changes in scores. However, the categorical values are not ordinal, and 
the polyline indicates an interpolation of values that does not exist across the 
categorical variable denoting the team number. In other words, there is no reason 
that Team 5 is to the right of Team 3 other than we ordered them that way, and 
there is no Team 3.5 as the presentation seems to suggest.  
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are still using a two - dimensional presentation. In fact, our data are not 
really two - dimensional and the fi nal illustration more accurately refl ects the 
true nature of the information.    

  Rule 5: Do not connect discrete points unless there is either a 
scientifi c meaning to the implied interpolation, or a collection of 
profi les for group level outcomes.   

 Rules 4 and 5 are aimed at the practice of substituting numbers for 
labels and then treating those numeric labels as if they were in fact 
numeric. Had we included the word  “ Team ”  in front of the labels, there 
would be no confusion as to the nature of the labels. Even when 
nominative labels are used on an axis, we must consider the meaning of 
values between the labels. If the labels are truly discrete, data outcomes 
should not be connected or they may be misinterpreted as implying a 
continuous rather than discrete collection of values. 

 Figure  10.7  is an excellent and spatially economical illustration of the 
soccer data. There are no false dimensions, the range of the graphic is 
close to the range of the data, there is no diffi culty interpreting the values 
indicated by the plotting symbols, and the legend fully explains the 
material.   

 Table  10.1  succinctly presents the relevant information in tabular form. 
Tables and fi gures have the advantage over in - text descriptions in that the 

  TABLE 10.1.    Total numbers of goals scored by Teams 1 through 5 ordered by 
lowest total to highest total   a    

   Team 4     Team 3     Team 1     Team 5     Team 2  

  11    14    16    18    22  

    a   These totals are for the Spring 2001 season. The organization of the table correctly 
sorts on the numeric variable. That the team labels are not sorted is far less important 
since these labels are merely nominal; were it not for the fact that we labeled with 
integers, the team names would have no natural ordering.   

     FIGURE 10.7.     Total number of goals scored by Teams 1 through 5. The 
x - axis indicates with a square the number of goals scored by the respective team. 
The associated team name is indicated above the square. Labeling the outcomes 
addresses the science of the KISS specifi cation given at the beginning of the 
chapter.  

Team 2Team 4 Team 3 Team 1 Team 5

10 12 14 16 18 20 22 24
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information is more easily found while scanning through the containing 
document. If the information is summary in nature, we should make that 
information easy to fi nd for the reader and place it in a fi gure or table. If 
the information is ancillary to the discussion, it can be left in text.   

 Figure  10.8 , from a report by the Offi ce of the Actuary of the 
Department of Health and Human Services, violates almost all the 
previous rules. Figure  10.9 , a dot chart prepared by Michael Friendly in 
the R program, with country names on the vertical axis and percent of 
GDP spent on health on the horizontal is far more effective because it 
moves the country names outside the plot frame, makes the country 
dimension explicit, and sorts on the numeric values rather than the labels.   

  Rules for Error Bars 
 Error bars are commonly superimposed on bar charts (as in Figure  10.10 ). 
to provide some measure of the confi dence we can give to the indicated 
values. Cumming, Fidler, and Vaux [ 2007 ] provide a number of rules for 
their use:

   1.     Error bars should be shown only for:  

  a.     Sample sizes greater than four  

  b.     Independently repeated experiments, and never for replicates  

  These caveats apply equally to boxplots (see fi gure 10).  

     FIGURE 10.8.     This chart prepared by the U.S. Offi ce of the Actuary of the 
Department of Health and Human Services violates virtually all the rules.  

Source: OECD Health Data 2007.
Note: For the United States the 2004 data reported here do not match the 2004 data point for the
United States in Chart 1 since the OECD uses a slightly different definition of “total expenditures
on health” than that used in the National Health Expenditure Accounts.
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  2.     The bar chart legend should include all of the following: 

    •      A description of what the error bars represent  

   •      The sample size  

   •      The basis for the error bar (range, standard deviation, standard 
error, or confi dence interval)  

   •      If the latter, the degree of confi dence (e.g., 90%)         

  Choosing between Tabular and Graphical Presentations 
 In choosing between tabular and graphical presentations, there are two 
issues to consider: the size (density) of the resulting graphic and the scale 
of the information. If the required number of rows for a tabular 
presentation would require more than one page, the graphical 
representation is usually preferred. Conversely, if the amount of 
information is small, the table is preferred. If the scale of the information 
makes it diffi cult to discern otherwise signifi cant differences, a graphical 
presentation is better.   

     FIGURE 10.9.     This chart generated from an R program by Michael Friendly is far 
more effective. See  http://www.datavis.ca/gallery/say-something.php for more positive 
examples.   
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  KISS  

 A picture may be worth a 1000 words but it should not take 1000 words 
to explain your picture. 

 Figure  10.10  summarizes the results of 19 clinical studies on the effects 
of radiotherapy on the survival of postmastectomy patients. The fi gure is 
a hybrid presentation in which tabular information is combined with a 
graphic. But Figure  10.10  is just too ambitious and raises more issues 
than it resolves. The axis for the odds ratio are asymmetric without 
explanation; that is, they are symmetric about one in absolute values, but 
not symmetric about one for ratio values. The sizes (spacing) of the 
graphic also change without explanation. Because the information does 
not quite fi t into the framework in which it is forced, three different 
footnotes are required:   one for a row, one for a column, and one for the 
overall title. Every possible way the reader might view the graphic proves 
to be a special case. 

 Richard Peto, the fi gure ’ s author, also notes in a personal communication 
a major error in methodology in the study on which the graphic is based, 
 “ emphasising analyses of total mortality in all patients ever randomised, 
when in fact the treatment has both importantly favourable and 
importantly unfavourable effects on cause - specifi c mortality. ”  

 Curb your enthusiasm:  Keep it Simple . 

  Knowin ’  all the words in the dictionary ain ’ t gonna help if you 
got nuttin ’  to say.  — Blind Lemon Jefferson      

  ONE RULE FOR CORRECT USAGE OF 
THREE - DIMENSIONAL GRAPHICS 
 As illustrated in the previous section, the introduction of superfl uous 
dimensions in graphics should be avoided. The prevalence of turnkey 
solutions in software that implement these decorative presentations is 
alarming. At one time, these graphics were limited to business - oriented 
software and presentations, but this is no longer true. Misleading illustrations 
are starting to appear in scientifi c talks. Partly, this is due to the introduction 
of business - oriented software in university service courses (usually demanded 
by the served departments). Errors abound when increased license costs for 
scientifi c -  and business - oriented software lead departments to eliminate the 
more scientifi cally oriented software packages. 

 The reader should not necessarily interpret these statements as a 
mandate to avoid business - oriented software. Many of these maligned 
packages are perfectly capable of producing scientifi c plots. Our warning is 
that we must educate ourselves in the correct software specifi cations. 

 Three - dimensional perspective plots are very effective but require 
specifi cation of a viewpoint. Experiment with various viewpoints to 
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highlight the properties of interest. Mathematical functions lend 
themselves to three - dimensional surface - type plots, whereas raw data are 
typically better illustrated with contour plots. This is especially true for 
map data such as surface temperatures or surface wind (where arrows can 
denote direction and the length of the arrow can denote the strength, 
which effectively adds a fourth dimension of information to the plot). 

 In Figures  10.11  and  10.12 , we illustrate population density of children 
for Harris County, Texas. Illustrations of similar geographic data may be 
seen at  http://www.spacetimeresearch.com/data - visualization -
 gallery.html . Illustration of the data on a map is a natural approach, and a 
contour plot reveals the pockets of dense and sparse populations. Further 
contour plots of vegetation, topography, roads, and other information may 
then be sandwiched to reveal spatial dependencies among various sources 
of information.   

 Whereas the contour plot in Figure  10.11  lends itself to comparison of 
maps, the perspective plot in Figure  10.12  is more diffi cult to interpret. 
The surface is more clearly illustrated, but the surface itself prevents 
viewing all of the data.  

     FIGURE 10.11.     Distribution of child population in Harris County Texas, 
USA. X - axis is the longitude ( − 96.04 to  − 94.78 degrees), and Y - axis is the latitude 
(29.46 to 30.26 degrees).  
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  Rule 6: Use a contour plot rather than a perspective plot if a good 
viewpoint is not available. Always use a contour plot over the 
perspective plot when the axes denote map coordinates.   

 Though the contour plot is generally a better representation of mapped 
data, a desire to improve Figure  10.11  would lead us to suggest that the 
grid lines should be drawn in a lighter weight so that they have less 
emphasis than lines for the data surface. Another improvement to data 
illustrated according to real - world maps is to overlay the contour plot 
where certain known places or geopolitical distinctions may be marked. 
The graphic designer must weigh the addition of such decorative items 
with the improvement in inference that they bring.  

  THE MISUNDERSTOOD AND MALIGNED PIE CHART 
 The pie chart is undoubtedly the graphical illustration with the worst 
reputation. Wilkinson  (1999)  points out that the pie chart is simply a bar 
chart that has been converted to polar coordinates. Therein lies the 
problem: most humans naturally think in Cartesian coordinates. 

 Focusing on Wilkinson ’ s point makes it easier to understand that the 
conversion of the bar height to an angle on the pie chart is most effective 

     FIGURE 10.12.     Population density of the number of children in Harris 
County Texas, USA. X - axis is the longitude ( − 96.04 to  − 94.78 degrees), and 
Y - axis is the latitude (29.46 to 30.26 degrees). X - Y axis is rotated 35 degrees from 
Figure 8.10.  
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when the bar height represents a proportion. If the bars do not have 
values where the sum of all bars is meaningful, the pie chart is a poor 
choice for presenting the information (c.f. Figure  10.13 ).    

  Rule 7: Do not use pie charts unless the sum of the entries is 
scientifi cally meaningful and of interest to the reader.   

 On the other hand, the pie chart is an effective display for illustrating 
proportions. This is especially true when we want to focus on a particular 
slice of the graphic that is near 25% or 50% of the data, since we humans 
are adept at judging these size portions. Including the actual value as a 
text element decorating the associated pie slice effectively allows us to 
communicate both the raw number along with the visual clue of the 
proportion of the total that the category represents. A pie chart intended 
to display information on all sections when some sections are very small is 
very diffi cult to interpret. In these cases, a table or bar chart is to be 
preferred. 

 Additional research has addressed whether the information should be 
ordered before placement in the pie chart display. There are no general 
rules to follow other than to repeat that humans are fairly good at 
identifying pie shapes that are approximately one - half or one - quarter of 
the total display. As such, a good ordering of outcomes that included such 

     FIGURE 10.13.     Total number of goals scored by Teams 1 through 5. The 
legend indicates the Team number and associated slice color for the number of 
goals scored by the respective team. The actual number of goals is also included. 
 Problem: The sum of the individual values is not of interest so that the treatment 
of the individuals as proportions of a total is not correct.  
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approximate values would strive to place the leading edge of 25% and 50% 
pie slices along one of the major north – south or east –  – west axes. 
Reordering the set of values may lead to confusion if all other illustrations 
used a different ordering, so the graphic designer may ultimately feel 
compelled to reproduce those illustrations as well.  

  TWO RULES FOR EFFECTIVE DISPLAY 
OF SUBGROUP INFORMATION 
 Graphical displays are very effective for communication of subgroup 
information, for example when we wish to compare changes in median 
family income over time of African - Americans and Hispanics. With a 
moderate number of subgroups, a graphical presentation can be much 
more effective than a similar tabular display. Labels, stacked bar displays, 
or a tabular arrangement of graphics can effectively display subgroup 
information. Each of these approaches has its limits, as we will see in the 
following sections. 

 In Figure  10.14 , separate connected polylines easily separate the 
subgroup information. Each line is further distinguished with a different 
plotting symbol. Note how easy it is to confuse the information due to 
the inverted legend. To avoid this type of confusion, ensure that the order 
of entries (top to bottom) matches that of the graphic.    

  Rule 8: Put the legend items in the same order they appear in the 
graphic whenever possible. You may not know this order until 
after the graphic has been produced, so check the consistency of this 
information.   

 Clearly, there are other illustrations that would work even better for 
these particular data. When one subgroup is always greater than the other 
subgroup, we can use vertical bars between each measurement instead of 
two separate polylines. Using data from Table  10.2 , a bar chart using 
subgroups is illustrated in Figure  10.15 . Such a display not only points out 
the discrepancies in the data, but allows easier inference as to whether the 
discrepancy is static or changes over time. An improvement in the 
graphical display appears in Figure  10.16  where more emphasis on the 
values is achieved by altering the scale of the vertical axis.     

 The construction of a table such as Table  10.2  effectively reduces the 
number of dimensions from two to one. This presentation makes it more 
diffi cult for the reader to discern the subgroup information that the 
analysis emphasizes. Although this organization matches the input to most 
statistical packages for correct analysis, it is not the best presentation for 
humans to discern the groups. 
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     FIGURE 10.14.     Median family income of African American and Hispanics 
divided by the median family income for Anglo - American families for years 
1976 – 1988. 
 Problem: The legend identifi es the two ethnic groups in the reverse order that 
they appear in the plot. It is easy to confuse the polylines due to the discrepancy in 
organizing the identifi ers. The rule is that if the data follow a natural ordering in 
the plotting region, the legend should honor that order.  
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  TABLE 10.2.    Volume of a mixture based on the 
included fat and surfactant types   a    

   Fat     Surfactant     Volume  

  1    1    5.57  

  1    2    6.20  

  1    3    5.90  

  2    1    6.80  

  2    2    6.20  

  2    3    6.00  

  3    1    6.50  

  3    2    7.20  

  3    3    8.30  

    a   Problem: The two categorical variables are equally 
of interest, but the table uses only one direction for 
displaying the values of the categories. This 
demonstrates that table generation is similar to 
graphics generation, and we should apply the same 
graphical rules honoring dimensions to tables.   
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     FIGURE 10.16.     Volume of a mixture based on the included fat and surfactant 
types. Drawing the bar plot with a more reasonable scale clearly distinguishes the 
values for the reader.  
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     FIGURE 10.15.     Volume of a mixture based on the included fat and surfactant 
types. 
 Problem: As with a scatterplot, the arbitrary decision to include zero on the y - axis 
in a bar plot detracts from the focus on the values plotted.  
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 Keep in mind that tables are simply text - based graphics. All of the rules 
presented for graphical displays apply equally to textual displays.   

 The proper organization of the table in two dimensions clarifi es the 
subgroup analysis. Tables may be augmented with decorative elements just 
as we augment graphics. Effective additions to the table are judged on 
their ability to focus attention on the science; otherwise these additions 
serve as distracters. Specifi c additions to tables include horizontal and 
vertical lines to differentiate subgroups, and font/color changes to 
distinguish headings from data entries. 

 Specifying a Y axis that starts at zero obscures the differences of the 
results and violates Rule 3. If we focus on the actual values of the 
subgroups, we can more readily see the differences.  

  Rule 9. Use plain language in your legends and text, not 
 “ computerese. ”    

 An example violating this rule can be seen in the working paper 
posted at  http://www.yuricareport.com/ElectionAftermath04/
BerkeleyElection04_WP.pdf , where the authors use the phrase  “ % 
Democrat Vote Estimated if Electronic Voting    =    0 ”  in place of  “ Estimated 
% Vote for Democrats when Printed Ballots are Used. ”   

  TWO RULES FOR TEXT ELEMENTS IN GRAPHICS 
 If a picture were really worth a thousand words, then graphics would 
considerably shorten our written reports. Although attributing  “ a 
thousand words ”  to each graphic is an exaggeration, it remains true that 
the graphic is often much more effi cient at communicating numeric 

  TABLE 10.3.    Volume of a mixture based on the 
included fat and surfactant types   a    

          

   Surfactant  

    1       2       3   

   Fat      1     5.57    6.20    5.90  

   2     6.80    6.20    6.00  

   3     6.50    7.20    8.30  

    a   The two categorical variables are equally of interest. 
With two categorical variables, the correct approach 
is to allow one to vary over rows and the other to 
vary over columns. This presentation is much better 
than the presentation of Table  10.2  and probably 
easier to interpret than any graphical representation.   
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information than equivalent prose. This effi ciency is in terms of the 
amount of information successfully communicated and not necessarily any 
space savings. 

 If the graphic is a summary of numeric information, then the caption is 
a summary of the graphic. This textual element should be considered part 
of the graphic design and should be carefully constructed rather than 
scribbled as an afterthought. Readers, for their own use, often copy 
graphics and tables that appear in articles and reports. Failure on the part 
of the graphic designer to completely document the graphic in the caption 
can result in gross misrepresentation when the graphic or table is copied 
and used as a summary in another presentation or report. It is not the 
presenter who copied the graph who suffers, but the original author who 
generated the graphic. Tufte [ 1983 ] advises that graphics  “ should be 
closely integrated with the statistical and verbal descriptions of the dataset ”  
and the caption of the graphic clearly provides the best avenue for 
ensuring this integration. The caption should convey enough information 
to allow a reader who is in possession of the data (and suitable software) 
to recreate ”  the graphic [Gower et al.,  2010 ].  

  Rule 10: Captions for your graphical presentations must be 
complete. Do not skimp on your descriptions.   

 Although it is common to add a bar representing  ± 1.96 standard 
deviations to some graphs, this addition should be spelled out in the 
graph ’ s legend or caption because other graphic designers might use the 
bar to represent 1 standard deviation. See, Tokita et al.  [1993]  for a 
particularly fl agrant example. 

 The most effective method for writing a caption is to show the graphic 
to a third party. Allow them to question the meaning and information 
presented. Finally, take your explanations and write them all down as a 
series of simple sentences for the caption. Readers rarely, if ever, complain 
that the caption is too long. If they do complain that the caption is too 
long, it is a clear indication that the graphic design is poor. Were the graphic 
more effective, the associated caption would be of a reasonable length. 

 Depending on the purpose of your report, editors may challenge the 
duplication of information within the caption and within the text. 
Although we may not win every skirmish with those that want to 
abbreviate our reports, we are reminded that it is common for others to 
reproduce only tables and graphics from our reports for other purposes. 
Detailed captions help alleviate misrepresentations and other out - of -
 context references we certainly want to avoid. Thus, we endeavor to win 
as many of these battles with editors as possible. 
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 Other text elements that are important in graphical design are the axes 
labels, title, and symbols that can be replaced by textual identifi ers. 
Recognizing that the plot region of the graph presents numerical data, the 
axis must declare associated units of measure. If the axis is transformed 
(log or otherwise), the associated label must present this information as 
well. The title should be short and serves as the quick reference for the 
graphic and associated caption. By itself, the title usually does not contain 
enough information to fully interpret the graphic in isolation. 

 When symbols are used to denote points from the data that can be 
identifi ed by meaningful labels, there are a few choices to consider for 
improving the information content of the graphic. First, we can replace all 
symbols with associated labels if such replacement results in a readable 
(nonoverlapping) presentation. If our focus highlights a few key points, we 
can substitute labels for only those values. 

 When replacing (or decorating) symbols with labels results in an 
overlapping indecipherable display, a legend is an effective tool, providing 
there are not too many legend entries. Producing a graphical legend with 
100 entries is not an effective design. It is an easy task to design these 
elements when we stop to consider the purpose of the graphic. It is wise 
to consider two separate graphics when the amount of information 
overwhelms our ability to document elements in legends and the caption. 

 Too many line styles or plotting points can be visually confusing and 
prevent inference on the part of the reader. You are better off splitting the 
single graphic into multiple presentations when there are too many 
subgroups. An ad hoc rule of thumb is to limit the number of colors or 
symbols to less than eight.  

  Rule 11: Keep the number of line styles, colors, and symbols to a 
minimum.    

  MULTIDIMENSIONAL DISPLAYS 
 Representing several distinct measures for a collection of points is 
problematic in both text and graphics. The construction of tables for this 
display is diffi cult due to the necessity of effectively communicating the 
array of subtabular information. The same is true in graphical displays, but 
the distinction of the various quantities is somewhat easier. 

  Biplots 
 In principal component analysis, biplots are used to display the contributions 
of multiple variables in a two - dimensional display. Fewer than 10 variables 
should be used if the plot is to be readable [Falissard,  2012 ]. 
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 Common errors include all of the following [Gower et al.,  2010 ]:

    •      Incomplete captions  

   •      Incomplete legends  

   •      Origin not indicated  

   •      Shape/aspect misleading    

 Biplot scales should always employ the true aspect ratio. The scales of 
the biplot shown in Figure  10.17  do not. As a result, distances and angles 
are distorted, making the results impossible to interpret without extensive 
discussion. Moreover, the four scales (top, bottom, right, and left) 
measure two different things:

   1.     The scales at the top and the right give values of variables.  

  2.     The scales at the bottom and the left are unnecessary as they give 
coordinates of samples in terms of principal components.      

 Putting the scales in scientifi c notation makes them hard to read (even if 
they were labeled so that we knew without this separate commentary what 
the numbers represented). 

     FIGURE 10.17.     A biplot with multiple faults.  Reproduced with permission 
from Gower [2003].   
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 On the plus side, including correctly scaled scales in a biplot allows the 
viewer to quickly discard from consideration variables that occupy only an 
insignifi cant range of its biplot axis.  

  Choosing Effective Display Elements 
 As Cleveland and McGill  [1988]  emphasize, graphics involve both 
encoding of information by the graphic designer and decoding of the 
information by the reader. Various psychological properties affect the 
decoding of the information in terms of the reader ’ s graphical perception. 
For example, when two or more elements are presented, the reader will 
also envision by - products such as implied texture and shading. These 
by - products can be distracting and even misleading. 

 An example of mismanaging elements can be seen in the developer 
agreement available at  https://www.ibm.com/developerworks/
mydeveloperworks/fi les/app/person/060001TJG2/fi le/110ccd08 - 25d9 -
 4932 - 9bcc - c583868c9f31?lang = en . The graphic of interest is on page 
7/11 of that site and illustrates the focus areas of mobile computing 
adoption. The intent of the graphic is to convey the adoption rates of 
mobile computing in a variety of focus areas. The problem with the 
graphic is that the length/size of the graphics (the graphic is a bar chart) 
do not convey the same information as the text elements that specify the 
adoption rate. That is, when the reader focuses on the graphic for 10% 
and the graphic for 31%, the length is nowhere near three times as long. 
This inability to judge the relative values based on the sizes of the graphics 
could be a function of the fact that there is no horizontal axis, and so there is 
no way to know whether the left side of the graphic originates at zero. 

 Graphical displays represent a choice on the part of the designer in 
terms of the quantitative information that is highlighted. These decisions 
are based on the desire to assist the analyst and reader in discerning 
performance and properties of the data and associated models fi tted to the 
data. Although many of the decisions in graphical construction simply 
follow convention, the designer is still free to choose geometric shapes to 
represent points, color or style for lines, and shading or textures to 
represent areas. The referenced authors included a helpful study in which 
various graphical styles were presented to readers (Cleveland and McGill 
 [1988] ). The ability to discern the underlying information was measured 
for each style and an ordered list of effective elementary design choices 
was inferred. The ordered list for illustrating numeric information is 
presented in Table  10.4 . The goal of the list is to allow the reader to 
effectively differentiate among several values.   

 When faced with the challenge of depicting a large number of points, 
there are several steps one should consider when looking for patterns. An 
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interesting challenge was issued by Yi Hui (see  http://www.yihui.name/
en/category_2.htm ). Yi describes generating 20,000 rows ( x ) and 20,000 
columns ( y ) from a  N (0, 1) distribution. He also generated 10,000 data 
points that were on the unit circle ( x  2     +     y  2     =    1). The description of the 
data should be enough to allow the interested reader to generate a dataset 
with two variables ( x  and  y ) with 30,000 observations. 

 The challenge is to draw a scatterplot that reveals the circle pattern (the 
10,000 points that are on the unit circle). An initial plot for which small 
circles denote each pair is simply too dark (due to overlapping circles) in 
the middle of the illustration to allow one to see that there are a number 
of observations on the unit circle; see Figure  10.18 .   

 There are various approaches to consider when trying to illustrate a 
pattern in a large amount of data. In the fi rst approach, we zoom in on 
the large amount of information by limiting the axes. This approach is 
seen in Figure  10.19 . A second approach is to draw all of the data, but 
reduce the symbol form to a single dot. This approach works better on a 
computer screen (especially one that allows us to make the overall picture 
larger) than it does on a piece of paper; see Figure  10.20 . Finally, not 
knowing where among the data points a feature may be hidden, we 
draw a small random sample of the data to see if any pattern appears; 
see Figure  10.21 .   

 If the purpose of the java - enabled graph at  http://www.fl ashbit.com/
weave.html?defaults = qolILBlackDB.xml  is to show what might be done, 

  TABLE 10.4.    Rank - ordered list of elementary design choices 
for conveying numeric information 

   Rank     Graphical Element  a    

  1    Positions along a common scale  

  2    Positions along identical, nonaligned scales  

  3    Lengths  

  4    Angles  

  4 – 10    Slopes  b    

  6    Areas  

  7    Volumes  

  8    Densities  

  9    Color saturations  

  10    Color hues  

    a   Graphical elements ordered from most (1) to least (10) effective.  
   b   Slopes are given a wide range of ranks since they can be very 
poor choices when the aspect ratio of the plot does not allow 
distinction of slopes. Areas and volumes introduce false 
dimensions to the display that prevent readers from effectively 
interpreting of the underlying information.   
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     FIGURE 10.18.     Scatterplot of 30,000 pairs of data points. The number of 
points depicted leads to overlapping hollow circles that don ’ t allow us to see a key 
feature in the middle of the plot.  
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     FIGURE 10.19.     Scatterplot of 30,000 pairs of data points. Zooming (limiting 
the range of the axes) emphasizes the existence of points on the unit circle.  
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     FIGURE 10.20.     Scatterplot of 30,000 pairs of data points. Using a dot rather 
than a hollow circle for the marker in the plot, emphasizes the points on the unit 
circle (this can be seen better on a computer screen than in this text).  
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     FIGURE 10.21.     Scatterplot of 30,000 pairs of data points. Making only a 
random sample of the 30,000 pairs of points visible, emphasizes the points on the 
unit circle.  

–4
–2

0
2

4
y

–4 –2 0 2 4
x



CHAPTER 10 GRAPHICS 209

it succeeds. If its purpose is to show specifi c information, it violates all the 
rules and makes a mockery of an aggregate quality - of - life index.   

  CHOOSING EFFECTIVE DISPLAY ELEMENTS 
 When relying completely on the ability of software to produce scientifi c 
displays, many authors are limited by their mastery of the software. Most 
software packages will allow users to either specify in advance the desired 
properties of the graph, or to edit the graph to change individual items in 
the graph. Our ability to follow the guidelines outlined in this chapter is 
directly related to the time we spend learning to use the more advanced 
graphics features of software. 

  Color 
 Use color sparingly if at all. Its use should be reserved for oral 
presentations and electronic publications. Be aware that it has emotional 
connotations that vary from culture to culture and individual to individual. 
Be particularly sensitive to color choices when creating maps. On viewing 
 http://interactive.spacetimeresearch.com/travel/#view = viewWorldMap & s
electedWafers = 0 , United States residents may ask why their country is the 
same color as Africa, Indians may object to being treated as if India were 
part of China, and Canadians may object strenuously to being lumped in 
with the United States.   

  ORAL PRESENTATIONS 

  Graphs 
 The rules for graphics in print are equally applicable to lectures and may 
be summed up as,  “ Never use a chart that will take longer to explain than 
the information it was intended to provide. ”  

 Use color sparingly; color can induce emotions that depend both upon 
the culture and the individual. Still, it can awaken an audience two - thirds 
of the way through a lengthy lecture. (Think of the use of color in the 
Rorschach plates.)  

  Tables 
 The numeric values in a table should occupy no more than three 
columns and include no more than three digits each, for example, 
318, 3.18, 3.1    ×    10 8 .  
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  Text 
 A slide should contain no more than three bullet points, as in Figure 
 10.22 a, and should  never  be merely a rehash of the lecture itself, as in 
Figure  10.22 b.     

  SUMMARY 

     •      Examine the data and results to determine the number of 
dimensions in the information to be illustrated. Limit your 
graphic to that many dimensions.  

   •      Limit the axes to exactly (or closely) match the range of data in 
the presentation unless a zero axis limit admits desired relative 
comparisons of the depicted values.  

     FIGURE 10.22.     a. Keep Your Slides Simple. b. Too Much Verbiage.  

5/5/2008
7

The Resampling MethodsThe Resampling Methods

Bootstrap (this afternoon)

CART (this afternoon)

Permutation Tests (tomorrow)

Confidence Intervals.  3. Cpk (continued)

• A Cpk of 2.68 would imply for Gaussian data that 
it would take about 346 million years to see a case 
outside the specification limits, that is, one defect, 
assuming 12,000 parts are produced each day over 
6-day work weeks.

• Obviously, the larger the value of  Cpk the better.
• However, the statements of probability depend 

heavily on the assumption of normality.
• People tend to think of numbers like 1.0 and 1.43 

as good and numbers less than 1 as bad without 
regard to what distribution the data belongs to.

(a)

(b)
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   •      Do not connect points in a scatterplot unless there is an 
underlying interpolation that makes scientifi c sense.  

   •      Recognize that readers of your reports will copy tables and fi gures 
for their own use. Ensure that you are not misquoted by 
completely describing your graphics and tables in the associated 
legends. Do not skimp on these descriptions or you will force 
readers to scan the entire document for needed explanations.  

   •      If readers are to accurately compare two different graphics for 
values (instead of shapes or predominant placement of outcomes), 
use the same axis ranges on the two plots.  

   •      Use pie charts only when there are a small number of categories 
and the sum of the categorical values has scientifi c meaning.  

   •      Tables are text - based graphics. Therefore, the rules governing 
organization and scientifi c presentation of graphics should be 
honored for the tables that we present. Headings should be 
differentiated from data entries by font weight or color change. 
Refrain from introducing multiple fonts in the tables and instead 
use one font and denote differences by varying weight (boldness), 
style (italics), and size.  

   •      Numeric entries in tables should be in the same number of 
signifi cant digits. Further, they should be right justifi ed so that 
they line up and allow easy interpretation while scanning columns 
of numbers.  

   •      Many of the charts could benefi t from the addition of grid lines. 
Bar charts especially can benefi t from horizontal grid lines from 
the Y axis labels. This is especially true of wider displays, but grid 
lines should be drawn in a lighter weight than the lines used to 
draw the major features of the graphic.  

   •      Criticize your graphics and tables after production by isolating 
them with their associated caption. Determine if the salient 
information is obvious by asking a colleague to interpret the 
display. If we are serious about producing effi cient communicative 
graphics, we must take the time ensure that our graphics are 
interpretable.     

  TO LEARN MORE 
 For many more examples of bad and/or misleading graphics, see  http://
www.math.yorku.ca/SCS/Gallery/ . Wilkinson [ 1999 ] presents a formal 
grammar for describing graphics, but more importantly (for our purposes), 
the author lists graphical element hierarchies from best to worst. Cleveland 
 [1994]  focuses on the elements of common illustrations and he explores 
the effectiveness of each element in communicating numeric information. 
A classic text is Tukey [ 1977 ], in which the author lists both graphical and 
text - based graphical summaries of data. Tufte [ 1983 ] and Tufte [ 1990 ] 
organized much of the previous work and combined that work with 
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modern developments; see also Burn [ 1993 ] and Wainer [ 1997, 2004 ]. 
For specifi c illustrations, subject - specifi c texts can be consulted for 
particular displays in context; for example, Hardin and Hilbe [ 2003 , pages 
143 – 167] illustrate the use of graphics for assessing model accuracy. 

 For a lighthearted, but enlightening, presentation of charts and graphs, 
see  http://ilovecharts.tumblr.com . In particular,  http://
ilovecharts.tumblr.com/BenGreenman  has an unoffi cial collection of charts 
in the so - called  Museum of Silly Charts . Though tongue - in - cheek, the 
charts found at these sites humorously illustrate some of the diffi culties of 
inferring information from graphics. As mentioned in the chapter ’ s 
opening, see Yau [ 2011 ] for another take on effective use of graphics.  
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Are the data adequate? Does your data set cover the entire range of 
interest? Will your model depend on one or two isolated datapoints? 

 THE SIMPLEST EXAMPLE OF A MODEL, THE RELATIONSHIP 
between exactly two variables, illustrates at least fi ve of the many 
complications that can interfere with the task of model building:

   1.     Limited scope. The model we develop may be applicable for only a 
portion of the range of each variable.  

  2.     Ambiguous form of the relationship. A variable may give rise to a 
statistically signifi cant linear regression without the underlying 
relationship being a straight line.  

  3.     Confounding. Undefi ned confounding variables may create the 
illusion of a relationship or may mask an existing one.  

  4.     Assumptions. The assumptions underlying the statistical 
procedures we use may not be satisfi ed.  

  5.     Inadequacy. Goodness of fi t is not the same as prediction.    

 We consider each of these error sources in turn along with a series of 
preventive measures. Our discussion is divided into problems connected 
with model selection and diffi culties that arise during the estimation of 
model coeffi cients.  

MODEL SELECTION 

Limited Scope 
 Almost every relationship has both a linear and a nonlinear component 
with the nonlinearities becoming more evident as we approach the 

Chapter 11 

Univariate Regression 

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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extremes of the independent (causal) variable ’ s range. One can think of 
many examples from physics, such as Boyles Law, which fails at high 
pressure, and particle symmetries that are broken as the temperature falls. 

 Almost every measuring device — electrical, electronic, mechanical, or 
biological — is reliable only in the central portion of its scale. In medicine, 
a radioimmune assay fails to deliver reliable readings at very low dilutions; 
this has practical implications as an increasing proportion of patients will 
fail to respond as the dosage drops. 

 We need to recognize that although a regression equation may be used 
for interpolation within the range of measured values, we are on shaky 
ground if we try to extrapolate, to make predictions for conditions not 
previously investigated. The solution is to know the range of application 
and to recognize, even if we do not exactly know the range, that our 
equations will be applicable to some but not all possibilities.  

Ambiguous Relationships 

Think why rather than what. 

 The exact nature of the formula connecting two variables cannot be 
determined by statistical methods alone. If a linear relationship exists 
between two variables  X  and  Y , then a linear relationship also exists 
between  Y  and any monotonic (nondecreasing or nonincreasing) function 
of  X . Assume  X  can only take positive values. If we can fi t Model 
I —  Y     =      α      +      β X     +     ε  — to the data, we also can fi t Model 
II —  Y     =      α   ′     +      β   ′ log[ X ]    +     ε  — and Model III —  Y     =      α   ″     +      β   ″  X     +      γ X  2     +     ε . It 
can be very diffi cult to determine which model if any is the  “ correct ”  one 
in either a predictive or mechanistic sense. 

 A graph of Model I is a straight line (see Figure  11.1 ). Because  Y  
includes a stochastic or random component  ε , the pairs of observations 
( x  1 ,  y  1 ), ( x  2 ,  y  2 ),    . . .    will not fall exactly on this line but above and below 
it. The function log[ X ] does not increase as rapidly as  X  does. When we 
fi t Model II to these same pairs of observations, its graph rises above that 
of Model I for small values of  X  and falls below that of Model I for large 
values. Depending on the set of observations, Model II may give just as 
good a fi t to the data as Model I.   

 How Model III behaves will depend upon whether   β   ″  and   α   ″  are both 
positive or whether one is positive and the other negative. If   β   ″  and   α   ″  are 
both positive, then the graph of Model III will lie below the graph of 
Model I for small positive values of  X  and above it for large values. If   β   ″  is 
positive and   α   ″  is negative, then Model III will behave more like Model 
II. Thus Model III is more fl exible than either Models I or II and can 
usually be made to give a better fi t to the data, that is, to minimize some 
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function of the differences between what is observed,  y i  , and what is 
predicted by the model,  Y [ x i  ]. 

 The coeffi cients   α  ,   β  , and   γ   for all three models can be estimated by a 
technique known (to statisticians) as linear regression. Our knowledge of 
this technique should not blind us to the possibility that the true 
underlying model may require nonlinear estimation as in

    Model IV: Y
X X

X
=

+ +
−

+
α β γ

δ φ
ε

2

  

 This latter model may have the advantage over the fi rst three in that it 
fi ts the data over a wider range of values. 

 Which model should we choose? At least two contradictory rules apply:

   1.     The more parameters the better the fi t; thus, Model III and Model 
IV are to be preferred.  

  2.     The simpler, more straightforward model is more likely to be 
correct when we come to apply it to data other than the 
observations in hand; thus, Models I and II are to be preferred.    

 Again, the best rule of all is not to let statistics do your thinking for 
you, but to inquire into the mechanisms that give rise to the data and that 
might account for the relationship between the variables  X  and  Y . An 
example taken from physics is the relationship between volume  V  and 

     FIGURE 11.1.     A straight line appears to fi t the data.  
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temperature  T  of a gas. All of the preceding four models could be used to 
fi t the relationship. But only one, the model  V     =     a     +     KT , is consistent 
with kinetic molecular theory.  

  Inappropriate Models 
 An example in which the simpler, more straightforward model is not 
correct arises when we try to fi t a straight line to what is actually a higher -
 order polynomial. For example, suppose we try to fi t a straight line to the 
relationship  Y     =    (X    −    1) 2  over the range  X     =    (0,  + 2). We would get a line 
with slope 0, similar to that depicted in Figure  11.2 . With a correlation of 
0, we might even conclude in error that  X  and  Y  were not related. Figure 
 11.2  suggests a way we can avoid falling into a similar trap.    

  Always plot the data before deciding on a model.   

 The data in Figure  11.3  are taken from Mena et al. [ 1995 ]. These 
authors reported in their abstract that  “ The correlation    . . .    between IL - 6 
and TNF - alpha was .77,    . . .    statistically signifi cant at a  p  - value less than 
.01. ”  Would you have reached the same conclusion?   

 With more complicated models, particularly those like Model IV that 
are nonlinear, it is advisable to calculate several values that fall outside the 
observed range. If the results appear to defy common sense (or the laws of 
physics, market forces, etc.) the nonlinear approach should be abandoned 
and a simpler model utilized. 

     FIGURE 11.2.     Fitting an inappropriate model.  
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 Often, it can be diffi cult to distinguish which variable is the cause and 
which the effect. But if the values of one of the variables are fi xed in 
advance, then this variable should always be treated as the so - called 
independent variable or cause, the  X  in the equation  Y     =     a     +     bX     +     ε . Here 
is why. 

 When we write  Y     =     a     +     bx     +     ε , we actually mean  Y     =     E ( Y | x )    +     ε , where 
 E ( Y | X )    =     a     +     bx  is the expected value of an indefi nite number of 
independent observations of Y when  X     =     x . If  X  is fi xed, the inverse 
equation  x     =    ( E ( x | Y )    −     a )/ b     +     ε  ′     =    makes little sense.  

  Nonuniqueness 
 Though a model may provide a good fi t to a set of data, one ought refrain 
from inferring any causal connection. The reason is that a single model is 
capable of fi tting many disparate data sets. Consider that one line, 
 Y     =    3    +    0.5 X , fi ts the four sets of paired observations depicted in Figures 
 11.4 a, b, c, and d with  R  2     =    0.67 in each case.   

 The data for these four fi gures are as follows:

    X 1    =     c (10,8,13,9,11,14,6,4,12,7,5)  

   X 2    =     c (8,8,8,8,8,8,8,19,8,8,8)  

   Y  1    =     c (8.04,6.95,7.58,8.81,8.33,9.96,7.24,4.26,10.84,4.82,5.68)  

     FIGURE 11.3.     Relation between two infl ammatory reaction mediators in 
response to silicone exposure.  Data taken from Mena et al [ 1995 ].   
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   Y  2    =     c (9.14,8.14,8.74,8.77,9.26,8.10,6.13,3.10,9.13,7.26,4.74)  

   Y  3    =     c (7.46,6.77,12.74,7.11,7.81,8.84,6.08,5.39,8.15,6.42,5.73)  

   Y  4    =     c (6.58,5.76,7.71,8.84,8.47,7.04,5.25,12.50,5.56,7.91,6.89)     

  Confounding Variables  

  If the effects of additional variables other than  X  on  Y  are suspected, these 
additional effects should be accounted for either by stratifying or by 
performing a multivariate regression.      

     FIGURE 11.4.     The best fi tting (regression) line for each of these four datasets 
is y    =    3    +    .5x where each regression is characterized by R 2     =    0.67. The upper - left 
plot is a reasonable dataset for which the linear model is applied. The upper - right 
plot illustrates a possible quadratic relationship not accounted for by our linear 
model; the lower left demonstrates the effect of a possibly miscoded outcome value 
yielding a slope that is somewhat higher than it otherwise would be, while the 
lower right demonstrates an outlier that markedly alters the slope of the line.  
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 SOLVE THE RIGHT PROBLEM 

 Do not be too quick to turn on the computer. Bypassing the brain to 
compute by refl ex is a sure recipe for disaster. 

 Be sure of your objectives for the model. Are you trying to uncover cause 
and effect mechanisms? Or derive a formula for use in predictions? If the 
former is your objective, standard regression methods may not be 
appropriate. 
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 Correlations can be deceptive. Variable  X  can have a statistically 
signifi cant correlation with variable  Y  solely because  X  and  Y  are both 
dependent on a third variable  Z . A fall in the price of corn is inversely 
proportional to the number of hay - fever cases only because the weather 
that produces a bumper crop of corn generally yields a bumper crop of 
ragweed as well. 

 Even if the causal force  X  under consideration has no infl uence on the 
dependent variable  Y , the effects of unmeasured selective processes can 
produce an apparent test effect. Children were once taught that storks 
brought babies. This juxtaposition of bird and baby makes sense (at least 
to a child) for where there are houses there are both families and chimneys 
where storks can nest. The bad air or miasma model ( “ common sense ”  
two centuries ago) works rather well at explaining respiratory illnesses and 
not at all at explaining intestinal ones. An understanding of the role that 
bacteria and viruses play unites the two types of illness and enriches our 
understanding of both. 

 We often try to turn such pseudocorrelations to advantage in our 
research, using readily measured  proxy variables  in place of their less easily 
measured  “ causes. ”  Examples are our use of population change in place of 

A researcher studying how neighborhood poverty levels affect violent 
crime rates hit an apparent statistical roadblock. Some important 
criminological theories suggest that this positive relationship is curvilinear 
with an accelerating slope, whereas other theories suggest a decelerating 
slope. As the crime data are highly variable, previous analyses had used 
the logarithm of the primary endpoint —violent crime rate —and reported 
a signifi cant negative quadratic term (poverty *poverty) in their least -
squares models. The researcher felt such results were suspect, that the 
log transformation alone might have biased the results toward fi nding a 
signifi cant negative quadratic term for poverty. 

But quadratic terms and log transforms are irrelevancies, artifacts 
resulting from an attempt to squeeze the data into the confi nes of a 
linear regression model. The issue appears to be whether the rate of 
change of crime rates with poverty levels is a constant, increasing, or 
decreasing function of poverty levels. Resolution of this issue requires a 
totally different approach. 

Suppose Y denotes the variable you are trying to predict and  X the 
predictor. Replace each of the y[i] by the slope y*[i] = (y[i + 1] − y[i])/
(x[i + 1] − x[i]). Replace each of the x[i] by the midpoint of the interval 
over which the slope is measured, x*[i] = (x[i + 1] − x[i])/2. Use the 
permutation methods described in Chapter 5 to test for the correlation if 
any between y* and  x*. A positive correlation means an accelerating 
slope; a negative correlation means a decelerating slope. 
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economic growth, M2 for the desire to invest, arm cuff blood pressure 
measurement in place of the width of the arterial lumen, and tumor size 
for mortality. At best, such  surrogate responses  are inadequate (as in 
attempting to predict changes in stock prices); in other instances they may 
actually point in the wrong direction. 

 At one time, the level of CD - 4 lymphocytes in the blood appeared to 
be associated with the severity of AIDS; the result was that a number of 
clinical trials used changes in this level as an indicator of disease status. 
Reviewing the results of 16 sets of such trials, Fleming [ 1995 ] found that 
the concentration of CD - 4 rose to favorable levels in 13 instances even 
though clinical outcomes were only favorable in eight.   

  STRATIFICATION 
 Gender discrimination lawsuits based on the discrepancy in pay between 
men and women could be defeated once it was realized that pay was 
related to years in service and that women who had only recently arrived 
on the job market in great numbers simply didn ’ t have as many years on 
the job as men. 

 These same discrimination lawsuits could be won once the gender 
comparison was made on a years - in - service basis, that is when the salaries 
of new female employees were compared with those of newly employed 
men, the salaries of women with three years of service with those of men 
with the same time in grade, and so forth. Within each stratum, men 
always had the higher salaries. 

 If the effects of additional variables other than  X  on  Y  are suspected, 
they should be accounted for either by stratifying or by performing a 
multivariate regression as described in the next chapter. 

 The two approaches are  not  equivalent unless  all  terms are included in 
the multivariate model. Suppose we want to account for the possible 
effects of gender. Let  I [] be an indicator function that takes the value 1 if 
its argument is true and 0 otherwise. Then, to duplicate the effects of 
stratifi cation, we would have to write the multivariate model in the 
following form:

    Y a I a I b I X b I em f m f= + − + + − +[ ] ( [ ]) [ ] ( [ ])male male male male1 1   

 In a study by Kanarek et al. [ 1980 ] whose primary focus is the relation 
between asbestos in drinking water and cancer, results are stratifi ed by sex, 
race, and census tract. Regression is used to adjust for income, education, 
marital status, and occupational exposure. 
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 Lieberson [ 1985 ] warns that if the strata differ in the levels of some 
third unmeasured factor that infl uences the outcome variable, the results 
may be bogus. 

Simpson’s Paradox 
 A third omitted variable may also result in two variables appearing to be 
independent when the opposite is true. Consider the following table, an 
example of what is termed Simpson ’ s paradox: 

        Treatment Group  

   Control     Treated  

  Alive    6    20  

  Dead    6    20  

 We do not need a computer program to tell us the treatment has no effect 
on the death rate. Or does it? Consider the following two tables that 
result when we examine the males and females separately: 

        Males  

   Control     Treated  

  Alive    4    8  

  Dead    3    5  

        Females  

   Control     Treated  

  Alive    2    12  

  Dead    3    15  

 In the fi rst of these tables, treatment reduces the male death rate from 3 
out of 7, or 0.43, to 5 out of 13, or 0.38. In the second table the 
redaction is from 3 out of 5, or 0.6, to 15 out of 27, or 0.55. Both sexes 
show a reduction, yet the combined population does not. Resolution of 
this paradox is accomplished by avoiding a knee - jerk response to statistical 
signifi cance when association is involved. One needs to think deeply about 
underlying cause - and - effect relationships before analyzing data. Thinking 
about cause and effect in the preceding example might have led us to 
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thinking about possible sexual differences, and to stratifying the data by 
sex before analyzing it.  

  Estimating Coeffi cients  

  Write down and confi rm your assumptions before you begin.   

 In this section, we consider problems and solutions associated with three 
related challenges:

   1.     Estimating the coeffi cients of a model  

  2.     Testing hypotheses concerning the coeffi cients  

  3.     Estimating the precision of our estimates    

 The techniques we employ will depend upon the following:

   1.     The nature of the regression function (linear, nonlinear, or 
logistic)  

  2.     The nature of the losses associated with applying the model  

  3.     The distribution of the error terms in the model, that is, 
the  ε  ′ s  

  4.     Whether these error terms are independent or dependent    

 The estimates we obtain will depend upon our choice of fi tting 
function. Our choice should not be dictated by the software but by the 
nature of the losses associated with applying the model. Our software may 
specify a least - squares fi t — most commercially available statistical packages 
do — but our real concern may be with minimizing the sum of the absolute 
values of the prediction errors or the maximum loss to which one will be 
exposed. A solution is provided in the next chapter. 

 In the  univariate  linear regression model, we assume that

    y E Y x= +( | ) ε  

  where  E  denotes the mathematical expectation of  Y  given  x  and could be 
any deterministic function of  x  in which the parameters appear in linear 
form.  ε , the error term, stands for all the other unaccounted - for factors 
that make up the observed value  y . 

 How accurate our estimates are and how consistent they will be from 
sample to sample will depend upon the nature of the error terms. If none 
of the many factors that contribute to the value of  ε  make more than a 
small contribution to the total, then  ε  will have a Gaussian distribution. If 
the { ε   i  } are independent and normally distributed (Gaussian), then the 
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ordinary least - squares estimates of the coeffi cients produced by most 
statistical software will be unbiased and have minimum variance. 

 These desirable properties, indeed the ability to obtain coeffi cient values 
that are of use in practical applications, will not be present if the wrong 
model has been adopted. They will not be present if successive 
observations are dependent. The values of the coeffi cients produced by the 
software will not be of use if the associated losses depend on some 
function of the observations other than the sum of the squares of the 
differences between what is observed and what is predicted. In many 
practical problems, one is more concerned with minimizing the sum of the 
absolute values of the differences or with minimizing the maximum 
prediction error. Finally, if the error terms come from a distribution that is 
far from Gaussian, a distribution that is truncated, fl attened or asymmetric, 
the  p  - values and precision estimates produced by the software may be far 
from correct. 

 Alternatively, we may use permutation methods to test for the 
signifi cance of the resulting coeffi cients. Providing that the { ε   i  } are 
independent and identically distributed (Gaussian or not), the resulting 
 p  - values will be exact. They will be exact regardless of which goodness - of -
 fi t criterion is employed. 

 Suppose that our hypothesis is that  y i      =     a     +     bx i      +     ε   i   for all  i  and  b     =     b  0 . 
First, we substitute   ′ = −y y b xI i i0  in place of the original observations  y i  . 
Our translated hypothesis is   ′ = + ′ +y a b xi i iε  for all  i  and  b  ′     =    0 or, 
equivalently,   ρ      =    0, where   ρ   is the correlation between the variables  Y  ′  and 
 X . Our test for correlation is based on the permutation distribution of the 
sum of the cross - products   ′y xi i [Pitman,  1938 ]. Alternative tests based on 
permutations include those of Cade and Richards [ 1996 ] and MRPP LAD 
regression [Mielke and Berry,  1997 ]. 

 For large samples, these tests are every bit as sensitive as the least -
 squares test described in the previous paragraph even when all the 
conditions for applying that test are satisfi ed [Mielke and Berry,  2001 ; 
Section 5.4]. 

 If the errors are dependent, normally distributed, and the covariances 
are the same for every pair of errors, then we may also apply any of the 
permutation methods described above. If the errors are dependent and 
normally distributed, but we are reluctant to make such a strong 
assumption about the covariances, then our analysis may call for dynamic 
regression models [Pankratz,  1991 ]. 1    

  1      In the SAS manual, these are called ARIMAX techniques and are incorporated in Proc 
ARIMA. 
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  FURTHER CONSIDERATIONS 

  Bad Data 
 The presence of bad data can completely distort regression calculations. 
When least - squares methods are employed, a single outlier can infl uence 
the entire line to pass closely to the outlier. 

 Consider the effect on the regression line in Figure  11.5  if we were to 
eliminate the systolic blood pressure reading of 220 for a 47 - year old. The 
slope increases and the intercept decreases.   

 Although a number of methods exist for detecting the most infl uential 
observations (see, for example, Mosteller and Tukey,  1977 ), infl uential 
does not automatically mean that the data point is in error. Measures of 
infl uence encourage review of data for exclusion. Statistics do not exclude 
data; analysts do. And they only exclude data when presented with fi rm 
evidence that the data are in error. 

 The problem of bad data is particularly acute in two instances:

   1.     When most of the data are at one end of the line, so that a few 
observations at the far end can have undue infl uence on the 
estimated model  

  2.     When there is no causal relationship between  X  and  Y     

 The Washington State Department of Social and Health Services 
extrapolates its audit results on the basis of a regression of over -  and 

     FIGURE 11.5.     Effect on the Model of Eliminating an Outlying Observation.  
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undercharges against the dollar amount of the claim. As the frequency of 
errors depends on the amount of paperwork involved and not on the 
dollar amount of the claim, no causal relationship exists between 
overcharges and the amount of the claim. The slope of the regression line 
can vary widely from sample to sample; the removal or addition of a very 
few samples to the original audit can dramatically affect the amount 
claimed by the State in overcharges. 

 Recommended is the  delete - one  approach in which the regression 
coeffi cients are recomputed repeatedly, deleting a single pair of 
observations from the original dataset each time. These calculations 
provide confi dence intervals for the estimates along with an estimate of the 
sensitivity of the regression to outliers. When the number of data pairs 
exceeds a hundred, a bootstrap might be used instead.  

To get an estimate of the precision of the estimates and the sensitivity of the 
regression equation to bad data, recompute the coeffi cients, leaving out a 
different data pair each time. 

Convenience
 More often than we would like to admit, the variables and data that go 
into our models are chosen for us. We cannot directly measure the 
variables we are interested in so we make do with surrogates. But such 
surrogates may or may not be directly related to the variables of interest. 
Lack of funds and or/the necessary instrumentation limit the range over 
which observations can be made. Our census overlooks the homeless, the 
uncooperative, and the less luminous. (See, for example,  City of New York 
v. Dept of Commerce  2 ; Disney,  1976 ; and Bothun,  1998 , Chapter 6.) 

 The presence of such bias does not mean we should abandon our 
attempts at modeling, but that we should be aware of and report our 
limitations.     

  2      822 F. Supp. 906 (E.D.N.Y., 1993). 

WILL WOMEN RUNNERS EVER OVERTAKE MEN AT THE OLYMPICS? 

In an article deliberately designed to provoke controversy, A. J. Tatem 
and colleagues [ 2004], suggested that women sprinters may one day 
overtake men. They began their demonstration by fi tting linear 
regression lines to the best times recorded in the Olympics from 1900 to 
2004. Then, they extrapolated these lines well into the 22nd Century. 
Critics raised numerous objections (see Nature, 2004, 132, p. 137). 

(Continued)
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  Stationarity 
 An underlying assumption of regression methods is that relationships 
among variables remain constant during the data collection period. If not, 
if the variables we are measuring undergo seasonal or other detectable 
changes in their means or variances, then we need to account for them. 

  Time Series Analysis.     Most methods of time - series analysis require 
stationarity. Examples, which also conform to OLS linear regression, 
include the autoregressive model   V a a Vt k t k= + ∑ −0  and the periodic 
Serfl ing method,

    
V a b ct dt e doy t

f doy t

t k dow t k= + + + + ⋅

+ ⋅
∑ δ π

π
[ ], sin( [ ] / )

cos( [

2 2 365

2 ]] / )365
 

  where dow stands for day of the week and doy for day of the year. 
 Stationarity for a time - series analysis can be achieved in two ways:

   1.     By estimation and removal of trend and seasonal components  

  2.     By differencing the data, as fi rst described by Box and Jenkins 
[ 1970 ]    

 To assess the predictive value of a model, the observations in the test set 
must occur after the observations in the training set. A weakness of the 
Box – Jenkins approach is that multiple models may provide equally good 
fi ts to the training set and equally good predictions for the test set. This 
may suggest that other, unexamined predictors are actually responsible for 
the changes over time of the variable of interest. 

 For example, studies suggest that the weather is the best predictor for 
the volume of warranty repairs on automobiles. Alas, it is no easier to 
predict the weather than the volume of warranties. 

 The sensitivity, specifi city, and timeliness of detection of a time - series 
model can be improved upon by adopting one of the methodologies 
described in Chapter  14 ; see, for example, Wieland et al. [ 2007 ].   

 The most obvious concern being that if their results are extended in a 
purely linear fashion to the 27th Century, times of less than zero seconds 
were sure to be recorded. 

 Using the best ten times each year, rather than the best time each 
Olympiad, yields 40 times as much data and reveals several break points 
in the  “ linear ”  curves. One resulted from an increase in the number of 
women competing, another from increases in the number of training 
sessions. The latter has already reached a plateau. (See,  www.antenna.nl/
weia/Progressie.html .) 
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Practical Versus Statistical Signifi cance 
 An association can be of statistical signifi cance without being of the least 
practical value. In the study by Kanarek et al. [ 1980 ] referenced above, a 
100 - fold increase in asbestos fi ber concentration is associated with perhaps 
a 5% increase in lung cancer rates. Do we care? Perhaps, for no life can be 
considered unimportant. But courts traditionally have looked for at least a 
two - fold increase in incidence before awarding damages. (See, for example, 
the citations in Chapter 6 of Good,  2001 .) And in this particular study, 
there is reason to believe there might be other hidden cofactors that are at 
least as important as the presence of asbestos fi ber.  

Goodness-of-fi t Versus Prediction 
 As noted above, we have a choice of fi tting methods: We can minimize 
the sum of the squares of the deviations between the observed and model 
values, or we can minimize the sum of the absolute values of these 
deviations, or we can minimize some entirely different function. Suppose 
that we have followed the advice given above and have chosen our 
goodness - of - fi t criterion to be identical with our loss function. 

 For example, suppose the losses are proportional to the square of the 
prediction errors, and we have chosen our model ’ s parameters so as to 
minimize the sum of squares of the differences  y i      –     M [ x i  ] for the historical 
data. Unfortunately, minimizing this sum of squares is no guarantee that 
when we continue to make observations, we will continue to minimize the 
sum of squares between what we observe and what our model predicts. If 
you are a businessperson whose objective is to predict market response, 
this distinction can be critical. 

 There are at least three reasons for the possible disparity:

   1.     The original correlation was spurious.  

  2.     The original correlation was genuine but the sample was not 
representative.  

  3.     The original correlation was genuine but the nature of the 
relationship has changed with time. (As a result of changes in the 
underlying political culture, economy, or environment, for 
example.) We take up this problem again in Chapter  14 .    

 And lest we forget: association does not  “ prove ”  causation, it can only 
contribute to the evidence.  

Indicator Variables 
 The use of an indicator (yes/no) or a nonmetric ordinal variable 
(improved, much improved, or no change) as the sole independent ( X ) 
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variable is inappropriate. The two - sample and  k  - sample procedures 
described in Chapter  5  should be employed.  

Transformations
 It is often the case that the magnitude of the residual error is proportional 
to the size of the observations, that is,  y     =     E ( Y|x ) ε . A preliminary log 
transformation will restore the problem to linear form 
log( y )    =    log    E ( Y  | x )    +     ε  ′ . Unfortunately, even if  ε  is normal,  ε  ′  is not, 
and the resulting confi dence intervals need be adjusted [Zhou and 
Gao,  1997 ].  

Linear Regression Versus Linear Behavior 
 I have attended far too many biology conferences at which speakers have 
used a signifi cant linear regression of one variable on another as  “ proof ”  
of a  “ linear ”  relationship or fi rst - order behavior. 

 Linear or fi rst - order growth occurs when we pour water into a bathtub. 
At least initially,  V     =     ft , where  V  is the volume of water in the tub,  f  is the 
fl ow rate, and  t  is the amount of time that has elapsed since we fi rst 
turned on the tap. 

 Second - order growth is characteristic of epidemics, at least initially. 
As each new case increases the probability of infection,  N     =     at     +     bt  2 , 
where  N  is the number of infected individuals and  t  represents time, 
as before. 

 Third - order growth is characteristic of political movements and enzyme -
 coupled reactions, when recruitment of new individuals is active, not 
merely passive. As with second - order and fi rst - order reactions, should we 
attempt to fi t the equation  N     =     at , the result will be a value of the 
coeffi cient  a  that is signifi cantly different from zero. 

 The unfortunate fact, which should not be forgotten, is that if  EY     =     a 
f  [ X ], where  f  is a monotonically, increasing function of  X , then any 
attempt to fi t the equation  Y   =   bg [ X ], where  g  is also a monotonically 
increasing function of  X , will result in a value of  b  that is signifi cantly 
different from zero. The  “ trick, ”  as noted in our fi rst lesson, is in selecting 
an appropriate (cause - and - effect - based) functional form  g  to begin with. 
Regression methods and expensive software will not fi nd the correct form 
for you.  

When a Straight Line Will Not Do 
 Few processes are purely linear. Almost all have an S - shape, though the 
lengths of the left and right horizontals of the S may differ. Sometimes, 
the S - shape results from the measuring instruments, which typically fail for 
very large or very small values. But equally often, it is because there is a 
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     FIGURE 11.6.     a. The linear relationship between the dependent variable Y and 
the time t appears obvious. b. But the actual relationship between Y and t is that 
of logistic growth.  
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lower threshold that needs be overcome and an upper limit that results 
from saturation. 

 For example, in Figure  11.6 a, the linear relationship between the 
dependent variable  Y  and the time  t  appears obvious. But as seen in 
Figure  11.6 b, the actual relationship between  Y  and  t  is that of logistic 
growth.   
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 We have already distinguished processes where the growth is additive 
with time,  y     =     a     +     bt , from those where it is multiplicative,  y     =     ae bt  , and we 
work instead with the relationship log[ y ]    =     a     +     bt . But the growth of 
welfare in the 1960s was found to occur in four phases:

   1.     First, the growth was additive as recipients drifted into the 
program at random. Written as a differential equation, this would 
be  dy / dt     =    b.  

  2.     Then, a multiplicative component was added as the knowledge of 
welfare spread from current recipients to potential ones: 
 dy / dt     =     b     +     cy  or log[ y ]    =     b     +     ct .  

  3.     When recipients began to organize and actively recruit other 
recipients, the relationship took the form  dy / dt     =     b     +     cy     +     fy  2 .  

  4.     Finally, almost everyone who was eligible for welfare was receiving 
it, and the growth of the program more closely resembled a 
logistic curve with  dy/dt     =    (1    −     y / K ) ( b     +     cy     +     fy  2 ).    

 In this example, the variable to be predicted is not a measurement but a 
count, and logistic regression, considered in Chapter  14 , would be more 
appropriate. In this example, we had a plausible explanation.  

Curve-Fitting and Magic Beans 
 Until recently, what distinguished statistics from the other branches of 
mathematics was that at least one aspect of each analysis was fi rmly 
grounded in reality. Samples were drawn from real populations and, in 
theory, one could assess and validate fi ndings by examining larger and 
larger samples taken from that same population. 

 In this reality - based context, modeling has one or possibly both of the 
following objectives:

   1.     To better understand the mechanisms leading to particular 
responses  

  2.     To predict future outcomes    

 Failure to achieve these objectives has measurable losses. While these 
losses cannot be eliminated because of the variation inherent in the 
underlying processes, hopefully, by use of the appropriate statistical 
procedure, they can be minimized. 

 By contrast, the goals of curve fi tting (nonparametric, spline fi tting, 
or local regression) 3  are aesthetic in nature; the resultant graphs, though 
pleasing to the eye, may bear little relation to the processes under 
investigation. To quote Green and Silverman [ 1994 ; p. 50],  “ there 

  3      See, for example Green and Silverman [ 1994 ] and Loader [ 1999 ]. 
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are two aims in curve estimation, which to some extent confl ict 
with one another, to maximize goodness - of - fi t and to minimize 
roughness. ”  

 The fi rst of these aims is appropriate  if by goodness - of - fi t is meant 
minimizing  the loss function. 4  In our example of modeling the welfare 
case load, we could justify each additional parameter on a casual basis. 
Absent such a basis, merely minimizing roughness creates a strong risk of 
overfi tting. 

 Validation is essential, yet most of the methods discussed in Chapter  15  
do not apply. Validation via a completely independent dataset cannot 
provide confi rmation, as the new data would entail the production of a 
completely different, unrelated curve. The only effective method of 
validation is to divide the data set in half at random, fi t a curve to one of 
the halves, and then assess its fi t against the entire data set.   

SUMMARY
 Regression methods work well with physical models. The relevant 
variables are known and so are the functional forms of the equations 
connecting them. Measurement can be done to high precision, and much 
is known about the nature of the errors — in the measurements and in the 
equations. Furthermore, there is ample opportunity for comparing predictions 
to reality. 

 Regression methods can be less successful for biological and social 
science applications. Before undertaking a univariate regression, you 
should have a fairly clear idea of the mechanistic nature of the relationship 
(and thus the form the regression function will take). Look for deviations 
from the model, particularly at the extremes of the variable range. A plot 
of the residuals can be helpful in this regard; see, for example, Davison 
and Snell [ 1991 ] and Hardin and Hilbe [ 2002 ; pp. 143 – 159]. 

 A preliminary multivariate analysis (the topic of the next two chapters) 
will give you a fairly clear notion of which variables are likely to be 
confounded so that you can correct for them by stratifi cation. Stratifi cation 
will also allow you to take advantage of permutation methods that are to 
be preferred in instances where  “ errors ”  or model residuals are unlikely to 
follow a normal distribution. 

 It is also essential that you have fi rmly in mind the objectives of your 
analysis, and the losses associated with potential decisions, so that you 

  4      Most published methods also require that the loss function be least - squares and the 
residuals be normally distributed. 
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can adopt the appropriate method of goodness of fi t. The results of a 
regression analysis should be treated with care; as Freedman [ 1999 ] notes,

  Even if signifi cance can be determined and the null hypothesis 
rejected or accepted, there is a much deeper problem. To make 
causal inferences, it must in essence be assumed that equations are 
invariant under proposed interventions.    . . .    [I]f the coeffi cients 
and error terms change when the variables on the right - hand side 
of the equation are manipulated rather than being passively 
observed, then the equation has only a limited utility for 
predicting the results of interventions.    

Statistically signifi cant fi ndings should serve as a motivation for 
further corroborative and collateral research rather than as a basis for 
conclusions.

Checklist: Write Down and Confi rm Your Assumptions 
Before You Begin 

     •      The variable you wish to predict is a measurement, not a count or 
a time to an event.  

   •      Data cover an adequate range. Slope of line not dependent on a 
few isolated values.  

   •      Model is plausible and has or suggests a causal basis.  

   •      Relationships among variables remained unchanged during the 
data collection period and will remain unchanged in the near 
future.  

   •      Uncontrolled variables are accounted for.  

   •      Loss function is known and will be used to determine the 
goodness - of - fi t criteria.  

   •      Observations are independent or the form of the dependence is 
known or is a focus of the investigation.  

   •      Regression method is appropriate for the types of data involved 
and the nature of the relationship.  

   •      Is the distribution of residual errors known?      

TO LEARN MORE 
 David Freedman ’ s [ 1999 ] article on association and causation is must 
reading. Lieberson [ 1985 ] has many examples of spurious association. 
Friedman, Furberg, and DeMets [ 1996 ] cite a number of examples of 
clinical trials using misleading surrogate variables. 
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 Mosteller and Tukey [ 1977 ] expand on many of the points raised here 
concerning the limitations of linear regression. Distribution - free methods 
for comparing regression lines among strata are described by Good [ 2001 ; 
pp. 168 – 169]. 

 For a real - world example of Simpson ’ s paradox, see 
 http://www.stats.govt.nz/searchresults.aspx?q=Simpson ’ s paradox.   
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          Imagine how statisticians might feel about the powerful 
statistics programs that are now in our hands. It is so easy to 
key - in a set of data and calculate a wide variety of statistics —
 regardless what those statistics are or what they mean. There 
also is a need to check that things are done correctly in the 
statistical analyses we perform in our laboratories. —  James O. 
Westgard [ 1998 ]    

 IN THE PREVIOUS CHAPTER, WE FOCUSED EXCLUSIVELY ON 
 ordinary least - squares  linear regression (OLS) both because it is the most 
common modeling technique and because the limitations and caveats we 
outlined there apply to virtually all modeling techniques. But OLS is not 
the only modeling technique. To diminish the effect of outliers, and treat 
prediction errors as proportional to their absolute magnitude rather than 
their squares, one should use  least absolute deviation  (LAD) regression. 
This would be the case if the conditional distribution of the dependent 
variable were characterized by a distribution with heavy tails (compared to 
the normal distribution, increased probability of values far from the mean). 

 One should also employ LAD regression when the conditional 
distribution of the dependent variable given the predictors is not 
symmetric and we wish to estimate its median rather than its mean value. 

 If it is not clear which variable should be viewed as the predictor and 
which the dependent variable, as is the case when evaluating two methods 
of measurement, then one should employ Deming or  error in variable  
(EIV) regression. 

 If one ’ s primary interest is not in the expected value of the dependent 
variable but in its extremes (the number of bacteria that will survive 
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treatment or the number of individuals who will fall below the poverty 
line), then one ought consider the use of  quantile regression . 

 If distinct strata exist, one should consider developing separate 
regression models for each stratum, a technique known as  ecological 
regression , discussed in the next - to - last section of the present chapter. 

 If one ’ s interest is in classifi cation or if the majority of one ’ s predictors 
are dichotomous, then one should consider the use of  classifi cation and 
regression trees  (CART) discussed in the next chapter. 

 If the outcomes are limited to success or failure, one ought employ 
 logistic regression . If the outcomes are counts rather than continuous 
measurements, one should employ a  generalized linear model  (GLM). See 
Chapter  14 .  

  LINEAR VERSUS NONLINEAR REGRESSION 
 Linear regression is a much misunderstood and mistaught concept. If a 
linear model provides a good fi t to data, this does not imply that a plot of 
the dependent variable with respect to the predictor would be a straight 
line, only that a plot of the dependent variable with respect to some 
not - necessarily monotonic function of the predictor would be a line. 

 For example,  y     =     A     +     B    log[ x ] and  y     =     A    cos( x )    +     B    sin( x ) are both linear 
models whose coeffi cients  A  and  B  might be derived by OLS or LAD 
methods.  Y     =     Ax  5  is a  linear  model.  Y     =     x A   is  nonlinear.   

  LEAST - ABSOLUTE - DEVIATION REGRESSION 
 The two most popular linear regression methods for estimating model 
coeffi cients are referred to as ordinary - least - squares (OLS) and least -
 absolute - deviation (LAD) goodness of fi t, respectively. Because they are 
popular, a wide selection of computer software is available to help us do 
the calculations. 

 With  least - squares  goodness of fi t, we seek to minimize the sum

    ( )Y a bXi

i

ι − −∑ 2
 

  where  Y i   denotes the variable we wish to predict and  X i   the corresponding 
value of the predictor on the  i th occasion. With the LAD method, we seek 
to minimize the sum of the absolute deviations between the observed and 
the predicted value:

    Y a bXi

i

ι − −∑   
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 Those who have taken calculus know the OLS minimum is obtained 
when

    ( ) ( )Y a bX b Y a bXi
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 Least - absolute - deviation regression (LAD) attempts to correct one of 
the major fl aws of OLS, that of sometimes giving excessive weight to 
extreme values. The LAD method solves for those values of the 
coeffi cients in the regression equation for which the sum of the absolute 
deviations  Σ  |  y i      −     R [ x i  ] |  is a minimum. 

 Finding the LAD minimum is more complicated and requires linear 
programming, but as there is plenty of commercially available software to 
do the calculations for us, we need not worry about their complexity. 

 Algorithms for LAD regression are given in Barrodale and Roberts 
[ 1973 ]. The qreg function of Stata provides for LAD (least - absolute -
 deviation) regression as does R ’ s quantreg package. 

 LAD regression should be used in preference to OLS in four circumstances:

   1.     To reduce the infl uence of outliers.  

  2.     If the losses associated with errors in prediction are additive, 
rather than large errors being substantially more important than 
small ones.  

  3.     If the conditional distribution of  Y  |  X     =     x   *   is not symmetric and we 
wish to estimate the median of  Y  |  X     =     x  rather than its mean value.  

  4.     If the conditional distribution of  Y  |  X     =     x  is heavy in the tails.    

 Figure  12.1  depicts systolic blood pressure as a function of age. Each 
circle corresponds to a pair of observations on a single individual. The 
solid line is the LAD regression line. The dotted line is the OLS 
regression line. A single individual, a 47 year - old with a systolic blood 
pressure of 220, is responsible for the difference between the two lines. 
Which line do you feel it would be better to use for prediction purposes?   

  *       Y  |  X  is read as  Y  given  X  .
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     FIGURE 12.1.     Systolic blood pressure as a function of age LAD fi t (solid line) 
and OLS fi t (dotted line).  
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  Drawbacks of  LAD  Regression 
 Opinions differ as to whether LAD is unstable in the sense that a small 
change in the data can cause a relatively large change in the fi tted plane. 
Ellis [ 1998 ] reports that a change in the value of one observation by as 
little as 1/20,000th of the interquartile range of the predictor can result 
in a marked change in the slope of the LAD line. 

 Portnoy and Mizera [1998] strongly disagree and our own investigations 
support their thesis. The entire discussion may be viewed at  http://
projecteuclid.org/DPubS/Repository/1.0/Disseminate?view = body & id = 
pdf_1 & handle = euclid.ss/1028905829 .  

  Errors - in - Variables Regression 
 The need for errors - in - variables (EIV) or Deming regression is best 
illustrated by the struggles of a small medical device fi rm to bring its 
product to market. First, they must convince regulators that their long -
 lasting device provides results equivalent to those of a less - effi cient device 
already on the market. In other words, they need to show that the values 
 V  recorded by their device bears a linear relation to the values  W  recorded 
by their competitor, that is, that  E ( V )    =     a     +     bW . 

 But the errors inherent in measuring  W  (the so - called predictor) are as 
large if not larger than the variation inherent in the output  V  of the new 
device. The EIV regression method used to demonstrate equivalence 
differs in two respects from that of OLS:
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   1.     With OLS, we are trying to minimize the sum of squares 
 Σ ( y oi      −     y pi  ) 2  where  y oi   is the ith observed value of  Y  and  y pi   is the 
 i th predicted value. With EIV, we are trying to minimize the sums 
of squares of errors, going both ways:  Σ ( y oi      −     y pi  ) 2 /
Var    Y     +     Σ ( x oi      −     x pi  ) 2 /Var    X .  

  2.     The coeffi cients of the EIV regression line depend on the ratio 
  λ      =    Var    X /Var    Y .    

 Unfortunately, in cases involving only single measurements by each 
method, the ratio   λ   may be unknown and is often assigned a default value 
of one. In a simulated comparison of two electrolyte methods, Linnet 
[ 1998 ] found that misspecifi cation of   λ   produced a bias that amounted to 
two - thirds of the maximum bias of the ordinary least - squares regression 
method. Standard errors and the results of hypothesis testing also became 
misleading. In a simulated comparison of two glucose methods, Linnet 
found that a misspecifi ed error ratio resulted only in a negligible bias. 
Given a short range of values in relation to the measurement errors, it is 
important that   λ   is correctly estimated either from duplicate sets of 
measurements or, in the case of single measurement sets, specifi ed from 
quality - control data. Even with a misspecifi ed error ratio, Linnet found 
that Deming regression analysis is likely to perform better than least -
 squares regression analysis.    

 WHEN DOES THIS DIFFERENCE MATTER? 

 When the relative errors for the two methods are similar and the 
correlation coeffi cient is greater than 0.8, the OLS regression slope can 
be approximated as:

    ρ = ( ) / ( )OLS slope Deming slope  

  where   ρ   is the correlation coeffi cient. This means that the regular slope 
routinely underestimates the actual slope of the data. For   ρ   less than 0.8, 
the relationship no longer is as accurate. However differences of 20% 
and more continue to exist between the slopes calculated by the two 
methods. 

 For many clinical chemistry procedures,   ρ   is greater than 0.995 and there 
is very little difference between OLS and Deming regression. For 
predictors such as electrolytes and many hematology parameters 
(especially the white cells),   ρ   can easily be less than 0.95, and sometimes 
in the range of 0.2 to 0.8. In these cases, the use of Deming statistics 
makes a large difference in the results. 

 One such example, depicted in Figure  12.2 , arises when activated partial 
thromboplastin time (APTT) is used to determine the correct dose of 
heparin (a blood thinner). Either too much or too little heparin could 
seriously impair a patient ’ s health. But which line are we to use?   
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 In practice, St ö ckl, Dewitte, and Thienpont [ 1998 ] fi nd that it is not 
the statistical model but the quality of the analytical input data that is 
crucial for interpretation of method comparison studies.  

  Correlation versus Slope of Regression Line 
 Perfect correlation (  ρ   2     =    1) does not imply that two variables are identical 
but rather that one of them,  Y , say, can be written as a linear function of 
the other,  Y     =     a     +     bX , where  b  is the slope of the regression line and a is 
the intercept.  

  How Big Should The Sample Be? 
 In method comparison studies, we need to be sure that differences 
of medical importance are detected. As discussed in Chapter  2 , for 
a given difference, the necessary number of samples depends on the 
range of values and the analytical standard deviations of the methods 
involved. 

 Linnet [ 1999 ] fi nds that the sample sizes of 40 – 100 conventionally used 
in method comparison studies often are inadequate. A main factor is the 
range of values, which should be as wide as possible for the given analyte. 
For a range ratio (maximum value divided by minimum value) of 2, 544 
samples are required to detect one standardized slope deviation; the 
number of required samples decreases to 64 at a range ratio of 10 

     FIGURE 12.2.     Solid line is OLS, Dashed line is EIV.   λ      =    1600.  
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(proportional analytical error). For electrolytes having very narrow ranges 
of values, very large sample sizes usually are necessary. In case of 
proportional analytical error, application of a weighted approach is 
important to assure an effi cient analysis; for example, for a range ratio of 
10, the weighted approach reduces the requirement of samples by more 
than 50%.      

 NINE GUIDELINES  *   

    1.     Use statistics to provide estimates of errors, not as indicators of 
acceptability.  

  2.     Recognize that the main purpose of the method comparison 
experiment is to obtain an estimate of systematic error or bias.  

  3.     Obtain estimates of systematic error at important medical decision 
concentrations.  

  4.     When there is a single medical decision concentration, make the 
estimate of systematic error near the mean of the data.  

  5.     When there are two or more medical decision concentrations, use the 
correlation coeffi cient,  r , to assess whether the range of data is 
adequate for using ordinary regression analysis.  

  6.     When the correlation coeffi cient exceeds 0.975, use the comparison 
plot along with ordinary linear regression statistics.  

  7.     When the correlation coeffi cient is close to zero, improve the data or 
change the statistical technique.  

  8.     When in doubt about the validity of the statistical technique, see 
whether the choice of statistics changes the outcome or decision on 
acceptability.  

  9.     Plan the experiment carefully and collect the data appropriate for the 
statistical technique to be used.    

  *   Abstracted from Westgard [ 1998 ]. 

  QUANTILE REGRESSION 
 Linear regression techniques (OLS, LAD, or EIV) are designed to help us 
predict expected values, as in  E ( Y )    =      μ      +      β X . But what if our real interest 
is in predicting extreme values, if, for example, we would like to 
characterize the observations of  Y  that are likely to lie in the upper and 
lower tails of  Y  ’ s distribution. This would certainly be the case for 
economists and welfare workers who want to predict the number of 
individuals whose incomes will place them below the poverty line, 
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physicians, bacteriologists, and public health offi cers who want to estimate 
the proportion of bacteria that will remain untouched by various doses of 
an antibiotic; ecologists and nature lovers who want to estimate the 
number of species that might perish in a toxic waste spill, and industrialists 
and retailers who want to know what proportion of the population might 
be interested in and can afford their new product. 

 In estimating the  τ th quantile, 1  we try to fi nd that value of   β   for which 
 Σ   k  ρ   τ   ( y k      −     f [ x k  ,  β  ]) is a minimum, where

    
ρ τ

τ
τ [ ]

( )
x x x

x x
= >
= − ≤

if
if

0
1 0

  

 Even when expected values or medians lie along a straight line, other 
quantiles may follow a curved path. Koenker and Hallock applied the 
method of quantile regression to data taken from Ernst Engel ’ s study in 
1857 of the dependence of households ’  food expenditure on household 
income. As Figure  12.3  reveals, not only was an increase in food 
expenditures observed as expected when household income was increased, 
but the dispersion of the expenditures increased also.   

 Some precautions are necessary. As Brian Cade notes, the most common 
errors associated with quantile regression include:

     FIGURE 12.3.     Engel data with quantile regression lines superimposed.  
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  1       τ  is pronounced tau. 



CHAPTER 12 ALTERNATE METHODS OF REGRESSION 245

   1.     Failing to evaluate whether the model form is appropriate, for 
example, forcing linear fi t through an obvious nonlinear response. 
(Of course, this is also a concern with mean regression, OLS, 
LAD, or EIV.)  

  2.     Trying to over interpret a single quantile estimate (say 0.85) with 
a statistically signifi cant nonzero slope ( p     <    0.05) when the 
majority of adjacent quantiles (say 0.5    −    0.84 and 0.86    −    0.95) are 
clearly zero ( p     >    0.20).  

  3.     Failing to use all the information a quantile regression provides. 
Even if you think you are only interested in relations near 
maximum (say 0.90    −    0.99), your understanding will be enhanced 
by having estimates (and sampling variation via confi dence 
intervals) across a wide range of quantiles (say 0.01    −    0.99).     

  SURVIVAL ANALYSIS 
 Survival analysis is used to assess time - to - event data including time to 
recovery and time to revision. 

 Most contemporary survival analysis is built around the Cox model 
for which the hazard function takes the form   λ λ β[ ] [ ]exp[ ]t t X= 0 , 
where for each observation   X  is a 1    ×     p  row vector of covariate values 
and   β is a  p     ×    1 column vector of to - be - estimated coeffi cients. Possible 
sources of error in the application of this model include all of the 
following:

    •      Neglecting the possible dependence of the baseline function   λ   0  on 
the predictors.  

   •      Overmatching, that is, using highly correlated predictors that may 
well mask each other ’ s effects.  

   •      Using the parametric Breslow or Kaplan – Meier estimators of the 
survival function rather than the nonparametric Nelson – Aalen 
estimator.  

   •      Excluding patients based on post - hoc criteria. Pathology workups 
on patients who died during the study may reveal that some of 
them were wrongly diagnosed. Regardless, patients cannot be 
eliminated from the study as we lack the information needed to 
exclude those who might have been similarly diagnosed but who 
are still alive at the conclusion of the study.  

   •      Failure to account for differential susceptibility (frailty) of the 
patients    

 Therneau and Grambsch [ 2000 ] cite the example of a heterogeneous 
population, 40% of whom acquire an infection at a rate of once per year 
and respond to a drug approximately half the time, 40% of whom acquire 
an infection at a rate of twice per year and respond to a drug 
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approximately half the time, and 20% of whom acquire the infection as 
often as ten times per year and respond to the drug only 20% of the time. 
Let us launch a study with 1000 individuals in each treatment arm. 
Assuming that the infections follow a simple Poisson process, the expected 
number of individuals who will fi nish the year with  k     =    1, 2,    . . .    infections 
is given in the following table: 

        Number of Infections  

   0     1     2     3     4     5 +   

  Placebo    201    256    182    98    46    217  

  Treatment    390    269    106    35    18    182  

 Clearly, in this example the treatment helps reduce the number of infected 
individuals. But does it reduce the number of infections? You will need to 
construct a table for your own data similar to the one above before you 
can be sure whether the heterogeneity of individuals ’  susceptibility plays 
a role.  

  THE ECOLOGICAL FALLACY 
 The Court wrote in  NAACP v. City Of Niagara Falls ,  “ Simple regression 
does not allow for the effects of racial differences in voter turnout; it 
assumes that turnout rates between racial groups are the same. ”  2  
Whenever distinct strata exist, one ought develop separate regression 
models for each stratum. Failure to do so constitutes the ecological fallacy. 

 In the 2004 election for Governor of the State of Washington, out of 
the over 2.8 million votes counted, just 261 votes separated the two 
leading candidates, Christine Gregoire and Dino Rossi, with Mr. Rossi in 
the lead. Two recounts later, Ms. Gregoire was found to be ahead by 129 
votes. There were many problems with the balloting, including the 
discovery that some 647 felons voted despite having lost the right to vote. 
 Borders et al. v. King County et al.  represents an attempt to overturn the 
results, arguing that if the illegal votes were deducted from each precinct 
proportional to the relative number of votes cast for each candidate, Mr. 
Rossi would have won the election.

  The Court fi nds that the method of proportionate deduction and 
the assumption relied upon by Professors Gill and Katz are a 

  2      65 F.3d 1002, n2 (2nd Cir. 1994). 
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scientifi cally unaccepted use of the method of ecological inference. 
In particular, Professors Gill and Katz committed what is 
referred to as the ecological fallacy in making inferences about a 
particular individual ’ s voting behavior using only information 
about the average behavior of groups; in this case, voters assigned 
to a particular precinct. The ecological fallacy leads to erroneous 
and misleading results. Election results vary signifi cantly from one 
similar precinct to another, from one election to another in the 
same precinct, and among different candidates of the same party 
in the same precinct. Felons and others who vote illegally are not 
necessarily the same as others in the precinct. 

  . . .    [T]he Court fi nds that the statistical methods used in the 
reports of Professors Gill and Katz ignore other signifi cant factors 
in determining how a person is likely to vote. In this case, in light 
of the candidates, gender may be as signifi cant or a more 
signifi cant factor than others. The illegal voters were 
disproportionately male and less likely to have voted for the female 
candidate.  3     

 To see how stratifi ed regression would be applied in practice, consider a 
suit 4  to compel redistricting to create a majority Hispanic district in Los 
Angeles County. The plaintiffs offered in evidence two regression 
equations to demonstrate differences in the voting behavior of Hispanics 
and non - Hispanics:

    
Y C b X
Y C b X

hi h h hi hi

ti t t hi ti

= + +
= + +

ε
ε

 

  where  Y hi   and  Y ti   are the predicted proportions of voters in the  i th 
precinct for the Hispanic candidate and for all candidates, respectively;  C h   
and  C t   are the percentages of non - Hispanic voters who voted for the 
Hispanic candidate or any candidate;  b h   and  b t   are the added percentages 
of Hispanic voters who voted for the Hispanic candidate or any candidate; 
 X hi   is the percentage of registered voters in the  i th precinct who are 
Hispanic; and  ε   hi   and  ε   ti   are random or otherwise unexplained fl uctuations. 

 If there were no differences in the voting behavior of Hispanics and 
non - Hispanics, then we would expect our estimates of  b h   and  b t   to be 

  4      Garza et al v. County of Los Angeles, 918 F.2d 763 (9th Cir), cert. denied. 

  3      Quotations are from a transcript of the decision by Chelan County Superior Court Judge 
John Bridges, June 6, 2005. 



248 PART III BUILDING A MODEL

close to zero. Instead, the plaintiffs showed that the best fi t to the data 
was provided by the equations

    Y Xh h= +7 4 110. % .  

    Y Xt h= −42 5 048. % .   

 Of course, other estimates of the  C s and  b s are possible, as only the  X s 
and  Y s are known with certainty. It is conceivable, though unlikely, that 
few if any of the Hispanics actually voted for the Hispanic candidate.  

  NONSENSE REGRESSION 
 Nonlinear regression methods are appropriate when the form of the 
nonlinear model is known in advance. For example, a typical 
pharmacological model will have the form  A  exp[ bX ]    +     C  exp[ dW ]. The 
presence of numerous locally optimal but globally suboptimal solutions 
creates challenges, and validation is essential. See, for example, Gallant 
[ 1987 ] and Carroll et al. [ 1995 ]. 

 To be avoided are a recent spate of proprietary algorithms available 
solely in software form that guarantee to fi nd a best - fi tting solution. In the 
words of John von Neumann,  “ With four parameters I can fi t an elephant 
and with fi ve I can make him wiggle his trunk. ”  Goodness of fi t is no 
guarantee of predictive success, a topic we take up repeatedly in 
subsequent chapters.  

  REPORTING THE RESULTS 
 Use a graph to report the results of a univariate regression only if one of 
the following is true:

   1.     The relationship is not a straight line  

  2.     You also wish to depict the confi dence limits    

 Confi dence limits should not be parallel; rather, they will appear 
hyperbolic around a regression line, refl ecting the greater uncertainty at 
the extremes of the distribution.  

  SUMMARY 
 In this chapter, we distinguished linear from nonlinear regression and 
described a number of alternatives to ordinary least squares regression, 
including least absolute deviation regression, and quantile regression. We 
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also noted the importance of using separate regression equations for each 
identifi able stratum.  

  TO LEARN MORE 
 Consider using LAD regression when analyzing software data sets 
[Miyazaki et al.,  1994 ] or meteorological data [Mielke et al.,  1996 ], but 
heed the caveats noted by Ellis [ 1998 ]. 

 Only iteratively reweighed general Deming regression produces 
statistically unbiased estimates of systematic bias and reliable confi dence 
intervals of bias. For details of the recommended technique, see Martin 
[ 2000 ]. 

 Mielke and Berry [ 2001 , Section 5.4] provide a comparison of MRPP, 
Cade – Richards, and OLS regression methods. St ö ckl, Dewitte, and 
Thierpont  [1998]  compare ordinary linear regression, Deming regression, 
standardized principal component analysis, and Passing – Bablok regression. 

 For more on quantile regression, download Blossom and its 
accompanying manual from  http://www.fort.usgs.gov/products/
software/blossom/ . 

 For  R  code to implement any of the preceding techniques, see Good 
[ 2005 ,  2012 ].  
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CAVEATS
 Multivariable regression is plagued by the same problems univariate 
regression is heir to, plus many more of its own. Is the model correct? Are 
the associations spurious? 

 In the univariate case, if the errors were not normally distributed, we 
could take advantage of permutation methods to obtain exact signifi cance 
levels in tests of the coeffi cients. Exact permutation methods do not exist 
in the multivariable case. 

 When selecting variables to incorporate in a multivariable model, we are 
forced to perform repeated tests of hypotheses, so that the resultant 
 p  - values are no longer meaningful. One solution, if suffi cient data are 
available, is to divide the dataset into two parts, using the fi rst part to 
select variables, and the second part to test these same variables for 
signifi cance. 

 If choosing the correct functional form of a model in a univariate case 
presents diffi culties, consider that in the case of  k  variables, there are  k  
linear terms (should we use logarithms? should we add polynomial terms?) 
and  k ( k     −    1) fi rst - order cross products of the form  x i x k  . Should we include 
any of the  k ( k     −    1)( k     −    2) second - order cross products? 

 A common error is to attribute the strength of a relationship to the 
magnitude of the predictor ’ s regression coeffi cient (see, for example, 
Moy é ,  2000 , p. 213). Just scale the units in which the predictor is 
reported to see how erroneous such an assumption is. 

Chapter 13 

Multivariable Regression 

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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 The regression coeffi cient is the correlation coeffi cient multiplied by the 
ratio of the standard deviations of the dependent variable and the 
predictor. Even so, as noted earlier, the correlation is at best a measure of 
association not of causation. The association may be the result of changes 
in other variables that cause changes in both the dependent variable and 
the predictor. 

 One of the main problems in multiple regression is multicollinearity, 
which is the correlation among predictors. Even relatively weak levels of 
multicollinearity are enough to generate instability in multiple regression 
models (see Graham,  2003 ). A simple solution is to evaluate the 
correlation matrix  M  among predictors, and use this matrix to choose the 
predictors that are less correlated. Also, you can transform your predictors 
into a series of principal components. Test  M  for each predictor, using the 
variance infl ation factor (VIF) given by (1    −     R  2 )    −    1, where  R  2  is the 
multiple coeffi cient of determination of the predictor against all other 
predictors. If VIF is large for a given predictor ( > 8, say) delete this 
predictor and reestimate the model. 

 Should we use forward stepwise regression? or backward? or some other 
method for selecting variables for inclusion? The order of selection can 
result in major differences in the fi nal form of the model (see, for example, 
Roy,  1958 , and Goldberger,  1961 ). David Freedman [ 1983 ] searched for 
and found a large and highly signifi cant  R  2  among  totally independent , 
normally distributed random variables. What led him to such an 
experiment in the fi rst place? How could he possibly have guessed at the 
results he would obtain? 

 The Freedman article demonstrates how testing multiple hypotheses, a 
process that typifi es the method of stepwise regression, can only exacerbate 
the effects of spurious correlation. As he notes in the introduction to the 
article,

  If the number of variables is comparable to the number of data 
points, and if the variables are only imperfectly correlated among 
themselves, then a very modest search procedure will produce an 
equation with a relatively small number of explanatory variables, 
most of which come in with signifi cant coeffi cients, and a highly 
signifi cant  R  2 . Such an equation is produced even if  Y  is  totally 
unrelated  to the  X  ’ s.   

 Freedman used computer simulation to generate 5100 independent, 
normally distributed random  “ observations. ”  He put these observations 
into a data matrix in the format required by the SAS regression procedure. 
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His organization of the values defi ned 100  “ observations ”  on each of 51 
random variables. Arbitrarily, the fi rst 50 variables were designated as 
 “ explanatory ”  and the 51st as the dependent variable  Y . 

 In the fi rst of two passes through the  “ data, ”  all 50 of the explanatory 
variables were used. 15 coeffi cients out of the 50 were signifi cant at the 
25% level, and one out of the 50 was signifi cant at the 5% level. 

 Focusing attention on the  “ explanatory ”  variables that proved signifi cant 
on the fi rst pass, a second model was constructed using only those 
variables. The resulting model had an  R  2  of 0.36 and the model 
coeffi cients of six of the  “ explanatory ”  (but completely unrelated) variables 
were signifi cant at the 5% level. Given these fi ndings, how can we be sure 
if the statistically signifi cant variables we uncover in our own research 
regression models are truly explanatory or are merely the result of chance? 

 A partial answer may be found in an article by Gail Gong [ 1986 ] who 
constructed a logistic regression model based on observations Peter 
Gregory made on 155 chronic hepatitis patients, 33 of whom died. The 
object of the model was to identify patients at high risk. In contrast to 
the computer simulations David Freedman performed, the 19 explanatory 
variables were real, not simulated, derived from medical histories, physical 
examinations, X - rays, liver function tests, and biopsies. 

 If one or more extreme values can infl uence the slope and intercept of a 
univariate regression line, think how much more impact, and how subtle 
the effect, these values might have on a curve drawn through 
20 - dimensional space. 1  

 Gong ’ s logistic regression models were constructed in two stages. At the 
fi rst stage, each of the explanatory variables was evaluated on a univariate 
basis. Thirteen of these variables proved signifi cant at the 5% level when 
applied to the original data. A forward multiple regression was applied to 
these 13 variables and four were selected for use in the predictor equation. 

 When she took bootstrap samples of the 155 patients, the  R  2  values of 
the fi nal models associated with each bootstrap sample varied widely. Not 
reported in this article, but far more important, is that whereas two of the 
original four predictor variables always appeared in the fi nal model derived 
from a bootstrap sample of the patients, fi ve other variables were 
incorporated in only  some  of the models. 

 We strongly urge you to adopt Dr. Gong ’ s bootstrap approach to 
validating multivariable models. Retain only those variables that appear 

  1      That is one dimension for risk of death, the dependent variable, and 19 for the explanatory 
variables. 
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consistently in the bootstrap regression models. Additional methods for 
model validation are described in Chapter  15 . 

Correcting for Confounding Variables 
 When your objective is to verify the association between predetermined 
explanatory variables and the response variable, multiple linear regression 
analysis permits you to provide for one or more confounding variables that 
could not be controlled otherwise.  

Keep It Simple 
 It is always best to keep things simple; fools rush in where angels fear to 
tread. Multivariate regression should be attempted only for exploratory 
purposes (hoping to learn more from fewer observations) or as the fi nal 
stage in a series of modeling attempts of increasing complexity. 

 Following the 2004 Presidential elections in the United States, critics 
noted that (a) the fi nal tabulated results differed sharply from earlier exit 
polls, and (b) many of the more fl agrant discrepancies occurred when 
ballots were recorded electronically rather than via a paper ballot [Loo, 
 2005 ]. 

 The straightforward way to prove or disprove that the electronically 
recorded ballots were tampered with would be to compare the 
discrepancies between the exit polls and the fi nal tabulations of precincts 
that recorded ballots solely by electronic means with the discrepancies 
observed in a matched set of case controls selected from precincts where 
paper ballots were used. Surprisingly, Hout et al. [ 2005 ] chose instead to 
build a multivariate regression model in which the dependent variable was 
the 2004 fi nal count for Bush, and the independent variables included the 
2000 fi nal count for Bush, the square of this count, the 1996 fi nal count 
for Dole, the change in voter turnout, the median income, the proportion 
of the population that was Hispanic, and whether or not electronic voting 
machines were used.  

Sources of Error 
 Errors may result either from omitting relevant predictors, from employing 
endogenous ones, or from multicollinearity of confounded explanatory 
variables. 

  Omitting Relevant Predictors.   One can fi nd no end of examples in 
which a relationship was found between unrelated variables simply because 
the relevant confounding predictor responsible for changes in both the 
explanatory variable(s) and the response variable was omitted.  



CHAPTER 13 MULTIVARIABLE REGRESSION 255

  Endogenous Variables.   It can be diffi cult to predict the equilibrium 
point for a supply - and - demand model, because producers change their 
price in response to demand and consumers change their demand in 
response to price. Failing to account for endogeneous variables can lead to 
biased estimates of the regression coeffi cients. 

 Endogeneity can arise not only as a result of omitted variables, but of 
measurement error, autocorrelated errors, simultaneity, and sample 
selection errors. 

 One solution is to make use of instrument variables that should satisfy 
two conditions:

   1.     They should be correlated with the endogenous explanatory 
variables, conditional on the other covariates.  

  2.     They should not be correlated with the error term in the 
explanatory equation, that is, they should not suffer from the 
same problem as the original predictor.    

 Instrumental variables are commonly used to estimate causal effects in 
contexts in which controlled experiments are not possible, for example in 
estimating the effects of past and projected government policies.   

Multicollinearity
 Multicollinearity can result in all of the following [Graham,  2003 ]:

    •      Inaccurate parameter estimates  

   •      Decreased power  

   •      Exclusion of signifi cant predictors.    

 Multiple partial solutions exist; each has its own potential for error:

    •      Dropping collinear variables from the analysis can result in a 
substantial loss of power  

   •      Principal - components analysis identifi es linear combinations of 
variables to be constructed as new predictors; but how are domain 
experts to interpret such combinations? As always, the number of 
observations ought to greatly exceed the number of explanatory 
variables [Tabachnick and Fidell,  1996 ].     

Structural Equation Modeling 
 Structural equation modeling provides for multiple outcomes and is one 
method of handling endogenous variables. But as John Fox notes,  “ it 
appears to solve, but does not really, no more than any other form of 
regression modeling, the problem of causal inference in non - experimental 
data. ”  Also see Rogosa [ 1987 ]. 
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 Structural equation models are not unique and the greater number of 
coeffi cients increases the likelihood of overfi tting data at the expense of 
future generality. 

 Software should not guide the model - specifi cation process; structural -
 equation models are only tenable when backed up by strong a - priori 
substance arguments (see, for example, Freedman,  1987 ).   

DYNAMIC MODELS 
 Dynamic models are the basis of weather forecasts, long - range models of 
climate change, and galactic movement. According to Nielsen - Gammon 
[ 2003 ], the following are the chief sources of error in dynamic models:

   1.     Measurement errors. These tend to be larger at the extremes of 
each variable.  

  2.     Nonrepresentative measurements (may result when measurements 
are taken too far apart in time or in space).  

  3.     Attempting to interpolate between grid points. Here is one 
example: Suppose that after a particularly strong cold front there 
is a strong wind from the north across Texas, with cloudy skies 
and very cold temperatures, say 30 ° F. As the cold air gets blown 
across the Gulf, it gets heated by the warm Gulf waters. So a grid 
point 25   km onshore would have a temperature of 30 ° F and a 
grid point 25   km offshore might have a temperature of 46 ° F. 
Interpolating the model output to the coastline, halfway between 
the two grid points, gives a temperature of 38 ° F. But until the air 
passes over the warm water, it will not start heating up. So the air 
will stay 30 ° F all the way to the coastline. Simply using 
interpolated model output (38 ° F) would have given an 8 ° F error.    

 To improve a model:

    •      Do not merely copy computer output but temper it with your 
other knowledge of the phenomena you are modeling.  

   •      Refi ne the model on the basis of the errors observed when it is 
applied to a test dataset. Note that errors may be either of 
position (in space or in time) or of magnitude.     

FACTOR ANALYSIS 

    T he procedures that are involved in factor analysis (FA) as used 
by psychologists today have several features in common with the 
procedures for administering Rorschach inkblots. In both 
procedures, data are fi rst gathered objectively and in quantity; 
subsequently, the data are analysed according to rational criteria 
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that are time - honoured while not fully understood.    . . .     — Chris 
Brand   

 Alas, the ad - hoc nature of factor analysis is such that one cannot perform 
the analysis without displeasing somebody. For example, while one group 
of researchers might argue that a majority of variables should end up 
identifi ed principally with just one factor, an equally vociferous opposition 
considers it folly to break up clear  g  factors by an obsessional search for 
simple structure. 

 A factor analysis ought be given the same scrutiny as any other 
modeling procedure and validated as described in Chapter  15 . Godino, 
Batanero, and Jaimez [ 2001 ] note that the following errors are  frequently 
associated with  factor analysis:

    •      Applying it to datasets with too few cases in relation to the 
number of variables analyzed (less than two cases per variable in a 
thesis), without noticing that correlation coeffi cients have very 
wide confi dence intervals in small samples.  

   •      Using oblique rotation to get a number of factors bigger or 
smaller than the number of factors obtained in the initial 
extraction by principal components, as a way to show the validity 
of a questionnaire. For example, obtaining only one factor by 
principal components and using the oblique rotation to justify 
that there were two differentiated factors, even when the two 
factors were correlated and the variance explained by the second 
factor was very small.  

   •      Confusion among the total variance explained by a factor and the 
variance explained in the reduced factorial space. In this way a 
researcher interpreted that a given group of factors explaining 70% 
of the variance before rotation could explain 100% of the variance 
after rotation.    

 Godino, Batanero, and Jaimez [ 2001 ] write,

  It is symptomatic that these errors appear in [the work of] 
doctoral students with a high mathematical preparation, who 
previously studied analytical geometry. The relevance of the 
context in the understanding of concepts is shown in these 
examples. None of these researchers would doubt that a rotation of 
a solid in the space preserves the solid form (number of factors) 
and relative dimension of each axis (contribution to the explained 
variance).    
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REPORTING YOUR RESULTS 
 In reporting the results of your modeling efforts, you need to be explicit 
about the methods used, the assumptions made, the limitations on your 
model ’ s range of application, potential sources of bias, and the method of 
validation (see the following chapter). The section on  “ Limitations of the 
Logistic Regression ”  2  from Bent and Archfi eld [ 2002 ], a publication of 
the USGC, is ideal in this regard:

  The logistic regression equation developed is applicable for stream 
sites with drainage areas between 0.02 and 7.00   mi 2  in the South 
Coastal Basin and between 0.14 and 8.94   mi 2  in the remainder 
of Massachusetts, because these were the smallest and largest 
drainage areas used in equation development for their respective 
areas. [The authors go on to subdivide the area.] 

 The equation may not be reliable for losing reaches of streams, 
such as for streams that fl ow off area underlain by till or bedrock 
onto an area underlain by stratifi ed - drift deposits (these areas are 
likely more prevalent where hillsides meet river valleys in central 
and western Massachusetts). At this juncture of the different 
underlying surfi cial deposit types, the stream can lose stream fl ow 
through its streambed. Generally, a losing stream reach occurs 
where the water table does not intersect the streambed in the 
channel (water table is below the streambed) during low - fl ow 
periods. In these reaches, the equation would tend to overestimate 
the probability of a stream fl owing perennially at a site. 

 The logistic regression equation may not be reliable in areas of 
Massachusetts where ground - water and surface - water drainage 
areas for a stream site differ. [The authors go on to provide 
examples of such areas.] 

 In these areas, ground water can fl ow from one basin into 
another; therefore, in basins that have a larger ground - water 
contributing area than the surface - water drainage area the 
equation may underestimate the probability that stream is 
perennial. Conversely, in areas where the ground - water 
contributing area is less than the surfacewater - drainage area, the 
equation may overestimate the probability that a stream is 
perennial.   

  2      Described in the next chapter. 
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 This report by Bent and Archfi eld also illustrates how data quality, 
selection and measurement bias can restrict a model ’ s applicability:

  The accuracy of the logistic regression equation is a function of the 
quality of the data used in its development. This data includes the 
measured perennial or intermittent status of a stream site, the 
occurrence of unknown regulation above a site, and the measured 
basin characteristics. 

 The measured perennial or intermittent status of stream sites in 
Massachusetts is based on information in the USGS NWIS 
database. Stream - fl ow measured as less than 0.005   ft 3 /s is 
rounded down to zero, so it is possible that several streamfl ow 
measurements reported as zero may have had fl ows less than 
0.005   ft 3 /s in the stream. This measurement would cause stream 
sites to be classifi ed as intermittent when they actually are 
perennial. 

 Additionally, of the stream sites selected from the NWIS database, 
61 of 62 intermittent - stream sites and 89 of 89 perennial - stream 
sites were represented as perennial streams on USGS topographic 
maps; therefore, the Statewide database (sample) used in 
development of the equation may not be random, because stream 
sites often selected for streamfl ow measurements are represented as 
perennial streams on USGS topographic maps. Also, the drainage 
area of stream sites selected for streamfl ow measurements generally 
is greater than about 1.0   mi 2 , which may result in the sample not 
being random. 

 The observed perennial or intermittent status of stream sites in the 
South Coastal Basin database may also be biased, because the sites 
were measured during the summer of 1999. The summer of 1999 
did not meet the defi nition of an extended drought; but monthly 
precipitation near the South Coastal Basin was less than 50 
percent of average in April, less than 25 percent of average in 
June, about 75 percent of average in July (excluding one station), 
and about 50 percent of average in August (excluding one 
station). Additionally, Socolow and others [ 2000 ] reported 
streamfl ows and ground - water levels well below normal 
throughout most of Massachusetts during the summer of 1999. 
Consequently, stream sites classifi ed as intermittent would have 
been omitted from the database had this period been classifi ed as 
an extended drought. This climatic condition during the summer 
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of 1999 could bias the logistic regression equation toward a lower 
probability of a stream site being considered perennial in the 
South Coastal Basin. 

 Basin characteristics of the stream sites used in the logistic 
equation development are limited by the accuracy of the digital 
data layers used. In the future, digital data layers (such as 
hydrography, surfi cial geology, soils, DEMs, and land use) will be 
at lower scales, such as 1:5,000 or 1:25,000. This would improve 
the accuracy of the measured basin characteristics used as 
explanatory variables to predict the probability of a stream 
fl owing perennially. 

 For this study, the area of stratifi ed - drift deposits and consequently 
the areal percentage of stratifi ed - drift deposits included areas with 
sand and gravel, large sand, fi ne - grained, and fl oodplain 
alluvium deposits. Future studies would allow more specifi city in 
testing the areal percentage of surfi cial deposits as explanatory 
variables. For example, the areal percentage of sand and gravel 
deposits may be an important explanatory variable for estimating 
the probability that a stream site is perennial. The accuracy of the 
logistic regression equation also may be improved with the testing 
of additional basin characteristics as explanatory variables. These 
explanatory variables could include areal percentage of wetlands 
(forested and non - forested), areal percentage of water bodies, 
areal percentage of forested land, areal percentage of urban land, 
or mean, minimum, and maximum basin elevation.    

A CONJECTURE 
 A great deal of publicity has heralded the arrival of new and more 
powerful data mining methods, among them neural networks along with 
dozens of unspecifi ed proprietary algorithms. In our limited experience, 
none of these have lived up to expectations; see a report of our 
tribulations in Good [ 2001 , Section  7.6 ]. Most of the experts we have 
consulted have attributed this failure to the small size of our test dataset: 
400 observations each with 30 variables. In fact, many publishers of data 
mining software assert that their wares are designed solely for use with 
terrabytes of information. 

 This observation has led to our putting our experience in the form of 
the following conjecture. 

 If  m  points are required to determine a univariate regression line with 
suffi cient precision, then, it will take at least  m n   observations and perhaps 



CHAPTER 13 MULTIVARIABLE REGRESSION 261

 n ! m n   observations to appropriately characterize and evaluate a regression 
model with  n  variables.  

DECISION TREES 
 As the number of potential predictors increases, the method of linear 
regression becomes less and less practical. With three potential predictors, 
we can have as many as seven coeffi cients to be estimated: one for the 
intercept, three for fi rst - order terms in the predictors  P i  , two for second -
 order terms of the form  P i P j  , and one third - order term  P  1  P  2  P  3 . With  k  
variables, we have  k  fi rst - order terms,  k ( k     −    1) second - order terms, and so 
forth. Should all these terms be included in our model? Which ones 
should be neglected? With so many possible combinations, will a single 
equation be suffi cient? 

 We need to consider alternate approaches. If you are a mycologist, a 
botanist, a herpetologist, or simply a nature lover you may have made use 
of some sort of a key. For example:

   1.     Leaves simple?  

  a.     Leaves needle - shaped?  

  i.     Leaves in clusters of two to many?  

  (a)     Leaves in clusters of two to fi ve, sheathed, persistent for 
several years?          

 Which is to say that one classifi es objects according to whether or not they 
possess a particular characteristic. One could accomplish the same result by 
means of logistic regression, but the latter seems somewhat contrived. 

 The Classifi cation And Regression Tree (CART) proposed by Breiman, 
Friedman, Olshen, and Stone [ 1984 ] is simply a method of automating 
the process of classifi cation, so that the initial bifurcation,  “ Leaves simple ”  
in the preceding example, provides the most effective division of the 
original sample, and so on. 

 We have found CART useful both as a preliminary to multiple regression 
as its primary splitters ought be used as blocking variables, and for the 
presentation of results in a readily understandable format. CART can also be 
used for the purpose of regression, as well as classifi cation, as depicted in 
Table  13.1 .   

 CART offers three other advantages over multiple regression:

   1.     Unlike regression coeffi cients, the branches of a decision tree lend 
themselves readily to interpretation by the nonstatistician.  

  2.     We can infl uence the shape of the tree if we can specify the 
proportions of the various categories in the population at large. 
Ladanyi et al. [ 2004 ] are in error when they state that  “ it is necessary 
to obtain a balanced distribution of rare (true - positive cells) and 
common events (false - positive objects) in the training dataset. ”     
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 We can assign losses or penalties on a one - by - one basis to each specifi c 
type of misclassifi cation, rather than use some potentially misleading 
aggregate measure such as least - square error. 

 Unfortunately, many users fail to take advantage of these features. 
Decision trees should be used whenever predictors are interdependent and 
their interaction may lead to reinforcing synergistic effects and/or a 
mixture of continuous and categorical variables, highly skewed data, and 
large numbers of missing observations adds to the complexity of the 
analysis. 

 As always with statistical software, one ought to check the defaults to 
see if they are appropriate for the application at hand. 

 Regression trees are also known for their instability [Breiman,  1996 ]. A 
small change in the training set (see Chapter  15 ) may lead to a different 
choice when building a node, which, in turn, may represent a dramatic 
change in the tree, particularly if the change occurs in top - level nodes. 
Branching is also affected by data density and sparseness, with more 
branching and smaller bins in data regions where data points are dense. 
Moreover, in contrast to the smoothness of an OLS regression curve, the 
jagged approximation provided by CART has marked discontinuities.    

TABLE 13.1. Comparing classifi cation (C) and prediction (R) methods 

Method OLS LAD CART

Estimates EX = AX MdnX = Ax R: either 

Loss Function OLS LAD R: OLS, LAD 
C: Arbitrary 

Residuals Symmetric
∼Normal

Symmetric
∼Normal

Arbitrary

Prior Knowledge N/A N/A Use

REPEATED OBSERVATIONS 

Be wary when developing models based on repeated observations on 
individuals. If your software is permitted to do its own random 
partitioning, you can get wildly optimistic performance results. 

To avoid this, assign the individual, not the record, to a partition, so that 
all records belonging to that individual are either all “train” or  “test.”

 For quantitative prediction, both regression methods and decision trees 
have problems. Unthinking use of either approach results in overfi tting. 
With decision trees, this translates into branching rules that seem arbitrary 
and unrelated to any theory of causation among the variables. Again, this 
may be the result of a failure to verify the default values. 
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 For example, with the sample data used to predict low birth weight that 
Salford Systems includes with their product, a decision is based on 
whether or not the number of fi rst trimester physician visits (FTV) is equal 
to 2,3, or 6. This bizarre fi nding results from treating FTV as a categorical 
variable, whereas it is a continuous one. 

 The complexity of decision trees can be compensated for in part by 
developing the tree for one set of data, then cross - validating it on another, 
as described in the next chapter.  

BUILDING A SUCCESSFUL MODEL 
  “ Rome was not built in one day, ”  3  nor was any reliable model. The only 
successful approach to modeling lies in a continuous cycle of hypothesis 
formulation (data gathering), hypothesis testing, and estimation. How you 
navigate through this cycle will depend on whether you are new to the 
fi eld, have a small dataset in hand and are willing and prepared to gather 
more until the job is done, or you have access to databases containing 
hundreds of thousands of observations. The following prescription, while 
directly applicable to the latter case, can be readily modifi ed to fi t any 
situation.

   1.     A thorough literature search and an understanding of casual 
mechanisms is an essential prerequisite to any study. Do not let 
the software do your thinking for you.  

  2.     Using a subset of the data selected at random, see which variables 
 appear  to be correlated with the dependent variable(s) of interest. 
(As noted in this and the preceding chapter, two unrelated 
variables may appear to be correlated by chance alone or as a 
result of confounding factors. For the same reasons, two closely 
related factors may fail to exhibit a statistically signifi cant 
correlation.)  

  3.     Use CART as a preliminary to regression when several categorical 
variables are involved. Early splits based on the values of 
categorical variables may suggest that multiple models need be 
developed, one for each block. For example, in deciding whether 
to purchase an item or how many items to purchase, women may 
make use of different information as well as giving commonly 
employed information different weights.  

  4.     Using a second, distinct subset of the data selected at random, see 
which of the variables selected at the fi rst stage still  appear  to be 

  3      John Heywood, Proverbes. Part i. Chap. xi., 16th Century. 
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correlated with the dependent variable(s) of interest. Alternately, 
use the bootstrap method describe by Gong [ 1986 ] to see which 
variables are consistently selected for inclusion in the model.  

  5.     Limit attention to one or two of the most signifi cant predictor 
variables. Select a subset of the existing data in which the 
remainder of the signifi cant variables are (almost) constant. 
(Alternately, gather additional data for in which the remainder of 
the signifi cant variables are almost constant.) Decide on a 
generalized linear model form that best fi ts your knowledge of the 
causal relations among the few variables on which you are now 
focusing. (A standard multivariate linear regression may be viewed 
as just another form, albeit a particularly straightforward one, of 
generalized linear model.) Fit this model to the data.  

  6.     Select a second subset of the existing data (or gather an additional 
dataset) for which the remainder of the signifi cant variables are 
(almost) equal to a second constant. For example, if only men 
were considered at stage four, then you should focus on women at 
this stage. Attempt to fi t the model you derived at the preceding 
stage to this data.  

  7.     By comparing the results obtained at stages four and fi ve, you can 
determine whether to continue to ignore or to include variables 
previously excluded from the model. Only one or two additional 
variables should be added to the model at each iteration of steps 4 
through 6.  

  8.     Always validate your results as described in the next chapter.    

 If all this sounds like a lot of work, it is. It will take several years to 
develop sound models even with or despite the availability of lightning - fast 
multifunction statistical software. The most common error in statistics is to 
assume that statistical procedures can take the place of sustained effort.  

TO LEARN MORE 
 Praetz [ 1981 ] reviews the effect of autocorrelation on multivariable 
regression. For more on the use of instrumental variables, see Leigh and 
Schembri [ 2004 ]. Babyak [ 2004 ] provides a nontechnical introduction to 
the dangers of overfi tting. 

 Infl ation of  R  2  as a consequence of multiple tests also is considered by 
Rencher [ 1980 ]. 

 Osborne and Waters [ 2002 ] review tests of the assumptions of 
multivariable regression. Harrell, Lee, and Mark [ 1996 ] review the effect 
of violation of assumptions on generalized linear models and suggest the 
use of the bootstrap for model validation. Hosmer and Lemeshow [ 2001 ] 
recommend the use of the bootstrap or some other validation procedure 
before accepting the results of a logistic regression. 
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 Diagnostic procedures for use in determining an appropriate functional 
form are described by Tukey and Mosteller [ 1977 ], Therneau and 
Grambsch [ 2000 ], Hosmer and Lemeshow [ 2001 ], and Hardin and Hilbe 
[ 2003 ]. 

 Survival analysis may also be viewed as a general linear model, or GLM 
[McCullagh and Nelder,  1989 , Chapter  13 ]. GLMs are considered in the 
next chapter. 

 Automated construction of a decision tree dates back to Morgan and 
Sonquist [ 1963 ]. Comparisons of the regression and tree approaches were 
made by Nurminen [ 2003 ] and Perlich, Provost, and Simonoff [ 2003 ]. 
Good [ 2011 ] expands on the appropriate use of decision trees.                  
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            While inexact models may mislead, attempting to allow for 
every contingency a priori is impractical. Thus models must be 
built by an iterative feedback process in which an initial 
parsimonious model may be modifi ed when diagnostic checks 
applied to residuals indicate the need. —  G. E. P. Box    

 TODAY, STATISTICAL SOFTWARE INCORPORATES ADVANCED 
ALGORITHMS FOR THE analysis of generalized linear models (GLMs) 1  
and extensions to panel data settings, including fi xed - , random - , and 
mixed - effects models, logistic, Poisson, and negative - binomial regression, 
generalized estimating equation models (GEEs), and hierarichical linear 
models (HLMs). These models take the form

    Y g X= +−1[ ]β ε  

  where the nature of the relationship between the outcome variable and the 
coeffi cients depend on the specifi ed  link function g () of the GLM,   β   is a 
vector of to - be - determined coeffi cients,  X  is a matrix of explanatory 
variables, and   ε   is a vector of identically distributed random variables. 
These variables may follow the normal, gamma, Poisson, or some other 
distribution depending on the specifi ed  variance function  of the GLM. 

 In this chapter, we consider fi rst the use of GLMs to model counts, 
then survival data, fi nish by reviewing popular approaches for modeling 
correlated data, and discuss model properties, assumptions, and relative 
strengths. We discuss the effi ciency gained through correct specifi cation of 

Common Errors in Statistics (and How to Avoid Them), Fourth Edition. 
Phillip I. Good and James W. Hardin.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

  1      As fi rst defi ned by Nelder and Wedderburn [ 1972 ]. 

  Chapter 14 

Modeling Counts and 
Correlated Data     
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correlation and the use of alternative standard errors for regression 
parameters for more robust inference.  

  COUNTS 
 Poisson regression is appropriate when the dependent variable is a count, 
as is the case with the arrival of individuals in an emergency room. It is 
also applicable to the spatial distributions of tornadoes and of clusters of 
galaxies. 2  To be applicable, the events underlying the outcomes must be 
independent in the sense that the occurrence of one event will not make 
the occurrence of a second event in a nonoverlapping interval of time or 
space any more or less likely. This model takes the loglinear form 
  log[ ]EY AX b z= + + . 

 The outcome follows the Poisson distribution, not the normal, and the 
link function relating the outcome to the linear combination of coeffi cients 
and predictors is the logarithm. 

 Small errors in measurement can result in a substantial bias of the 
coeffi cients in the matrix   A, H ä ggstr ö m [ 2006 ]. 

 A strong assumption of the Poisson regression model is that the mean 
and variance are equal (equidispersion). When the variance of a sample 
exceeds the mean, the data are said to be overdispersed. Fitting the 
Poisson model to overdispersed data can lead to misinterpretation of 
coeffi cients due to poor estimates of standard errors. 

 Naturally occurring count data are often overdispersed due to correlated 
errors in time or space, or other forms of nonindependence of the 
observations. One solution is to fi t a Poisson model as if the data satisfy 
the assumptions, but adjust the model - based standard errors usually 
employed. Another solution is to estimate a negative binomial model, 
which allows for scalar overdispersion.  

  BINOMIAL OUTCOMES 
 Suppose your fi rm plans to bid on a contract. You hope your fi rm ’ s bid 
will be lower than that submitted by other fi rms, yet high enough to 
provide your fi rm a substantial profi t if you win, a simple model of the 
Bernoulli outcome of success is logit[ p ]    =    log[ p /(1    −     p )]    =      μ      +      α  $    +     z , 
where  p  is the probability of success and $ represents the dollar value of 
the bid. 

 More commonly   A, the logistic model (which employs the logit 
function) is used for prediction purposes when the outcome is a binomial 

  2      They do not have a log - normal distribution as reported by Saslaw [ 2008 ]. 
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variable. Will the patient improve or get worse? In evaluating predictors 
for inclusion in the model, one begins with a univariate analysis on a 
variable - by - variable basis. (Of course, only variables that might have a 
potential cause -  and effect - relationship with the outcome should be 
considered.) For categorical, and ordinal variables, Hosmer and Lemeshow 
[ 2001 ] recommend this be done via a 2    ×     k  contingency table employing 
a likelihood ratio chi - square test. If there are cells with zero values, do one 
of the following:

   1.     Collapse that category with adjacent categories.  

  2.     Stratify the model based on the results of that cell (note that this 
is done automatically via decision trees, which were considered in 
Chapter  13 ).    

 When making use of all the remaining predictors in the model, avoid 
overmatching as in the example of the leukemia study described under the 
heading  “ Case Control Studies ”  in Chapter  6 .  

  COMMON SOURCES OF ERROR 
 The caveats of previous chapters also apply to the specifi cation of the link 
and variance functions of GLMs. The pair of functions that defi ne a 
specifi c model should be determined on the basis of cause - and - effect 
relationships and not by inspecting the data. 

 For example, when deciding among a Poisson, negative binomial, or 
binomial model for counts, the wrong approach to model specifi cation is 
to make function choices based on the ratio of the mean to the variance of 
the sample. As Bruce Tabor notes in a personal communication,

  In a contagious process, such as an infectious disease outbreak,   the 
probability of a subsequent event will increase after the occurrence 
of a preceding event. A person carrying an infection is likely to 
infect additional persons. This results in positive correlation 
between events and overdispersion. A negative binomial model has 
this property and may provide a suitable model (or may not, as 
the case may be). 

 In   a count process with negative contagion (underdispersion), the 
occurrence of an event makes subsequent events less likely — events 
are negatively correlated. One example might be house burglaries 
in a neighborhood. After an initial burglary, residents and police 
are alerted to subsequent burglaries and thieves respond 
appropriately, targeting other neighbourhoods for a while.   
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 The other common sources of error in applying generalized linear 
models are the use of an inappropriate or erroneous link function, the 
wrong choice of scale for an explanatory variable (for example, using  x  
rather than log[ x ] ), neglecting important variables, and the use of an 
inappropriate error distribution when computing confi dence intervals and 
 p  - values. Firth [ 1991 ; pp. 74 – 77] should be consulted for a more detailed 
analysis of potential problems.  

  PANEL DATA 
 When multiple observations are collected for each principal sampling unit, 
we refer to the collected information as  panel data , correlated data, or 
repeated measures. For example, we may collect information on the 
likelihood that banks offer certain types of loans. If we collect that 
information from the same set of banks in multiple instances over time, we 
should expect that observations from the same bank might be correlated. 

 The dependency of observations violates one of the tenets of regression 
analysis: that observations are supposed to be independent and identically 
distributed or IID. Several concerns arise when observations are not 
independent. First, the effective number of observations (that is, the 
effective amount of information) is less than the physical number of 
observations since, by defi nition, groups of observations represent the 
same information. Second, any model that fails to specifi cally address 
correlation is incorrect, which means that statistics and tests based on 
likelihood are based on a faulty specifi cation. Third, although the correct 
specifi cation of the correlation will yield the most  effi cient  estimator, that 
specifi cation is not the only one to yield a  consistent  estimator.  

  FIXED -  AND RANDOM - EFFECTS MODELS 
 Most textbooks introduce fi xed -  and random - effects ANOVA models 
through a series of examples. Cases are presented wherein multiple 
observations are collected for each farm animal, or multiple observations 
are collected for each farm. The basic issue in deciding whether to utilize a 
fi xed -  or random - effects model is whether the sampling units (for which 
multiple observations are collected) represent the collection of most or all 
of the entities for which inference will be drawn. If so, the fi xed - effects 
estimator is to be preferred. On the other hand, if those same sampling 
units represent a random sample from a larger population for which we 
wish to make inferences, then the random - effects estimator is more 
appropriate. 

 Fixed -  and random - effects models address unobserved heterogeneity. 
The  random - effects model  assumes that the panel - level effects are randomly 
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distributed. The  fi xed - effects model  assumes a constant disturbance that is a 
special case of the random - effects model. If the random - effects assumption 
is correct, then the random - effects estimator is more effi cient than the 
fi xed - effects estimator. If the random - effects assumption does not hold 
(that is, if we specify the wrong distribution for the random - effects), then 
the random effects model is not consistent. To help decide whether the 
fi xed -  or random - effects models is more appropriate, use the Durbin – Wu –
 Hausman 3  test comparing coeffi cients from each model. 

 The fi xed - effects approach is sometimes referred to as the  “ assumption -
 free ”  method since there are no assumptions about the distribution of 
heterogeneity between the panels. In a meta - analysis combining results 
from different trials, we might analyze results assuming either fi xed or 
random effects. However, the random - effects assumption may have no 
medical relevance. In particular, it may not be realistic to assume that the 
trials combined in our analysis represent some random sample from an 
underlying population of possible trials. Moreover, there could be selective 
factors that differ between trials as well as different therapeutic outcomes. 
Thus, whereas fi xed - effects methods may actually be assumption - free, 
random - effects methods may assume representativeness that is 
unreasonable. It is often easier to justify application of fi xed - effects 
methods; especially when we focus on the less stringent set of assumptions 
on which the methods depend.  

  POPULATION - AVERAGED GENERALIZED ESTIMATING 
EQUATION MODELS ( GEES ) 
 Zeger and Liang [ 1986 ] describe a class of estimators that address 
correlated panel data. The user must specify both a generalized linear 
model specifi cation valid for independent data and the correlation 
structure of the panel data. 

 Although fi xed - effects estimators and random - effects estimators are 
referred to as subject - specifi c estimators, the GEEs available through 
PROC GENMOD in SAS or xtgee in Stata, are called  population - averaged  
estimators. This label refers to the interpretation of the fi tted regression 
coeffi cients . Subject - specifi c  estimators are interpreted in terms of an effect 
for a given panel, whereas population - averaged estimators are interpreted 
in terms of an affect averaged over panels. When and whether to draw 
inference for average sampling units is considered in the next section.

  The average human has one breast and one testicle. — Des McHale    

  3      Durbin [ 1954 ], Wu [ 1973 ], and Hausman [ 1978 ] independently discuss this test. 
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  SUBJECT - SPECIFIC OR POPULATION - AVERAGED? 
 A favorite example in comparing subject - specifi c and population - averaged 
estimators is to consider the difference in interpretation of regression 
coeffi cients for a binary outcome model on whether a child will exhibit 
symptoms of respiratory illness. The predictor of interest is whether or not 
the child ’ s mother smokes. Thus, we have repeated observations on 
children and their mothers. If we were to fi t a subject - specifi c model, we 
would interpret the coeffi cient on smoking as the change in likelihood of 
respiratory illness as a result of the mother switching from not smoking to 
smoking. 

 On the other hand, the interpretation of the coeffi cient in a population -
 averaged model is the likelihood of respiratory illness for the average child 
with a nonsmoking mother compared to the likelihood for the average 
child with a smoking mother. Both models offer equally valid 
interpretations. The interpretation of interest should drive model selection; 
some studies ultimately will lead to fi tting both types of models.

  An approximate answer to the right question is worth a good deal 
more than the exact answer to an approximate problem. — John 
W. Tukey    

  VARIANCE ESTIMATION 
 In addition to model - based variance estimators, fi xed - effects models and 
GEEs also admit  modifi ed sandwich variance estimators . SAS calls this the 
empirical variance estimator. Stata refers to it as the Robust Cluster 
estimator. Whatever the name, the most desirable property of the variance 
estimator is that it yields inference for the regression coeffi cients that is 
robust to misspecifi cation of the correlation structure. 

 GEEs require specifi cation of the correlation structure, but the modifi ed 
sandwich variance estimator (from which confi dence intervals and test 
statistics are constructed) admits inference about the coeffi cients that is 
robust to misspecifi cation of that correlation structure. Why then bother 
with a specifi cation at all? The independence model is an attractive 
alternative to interpretation of regression coeffi cients within the more 
complicated dependence model. Why not then just assume that the 
observations are independent, but utilize this variance estimator in case the 
independence assumption is incorrect? This is not a recommended 
approach because the correct specifi cation yields an estimator that is much 
more effi cient than the estimator for an incorrect specifi cation. This 
effi ciency is an asymptotic property of the estimator dependent on the 
number of independent panels. Zeger and Liang [ 1986 ] demonstrate the 
advantages of correct specifi cation of the correlation structures for GEEs. 
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 Specifi cation of GEEs should include careful consideration of reasonable 
correlation structure so that the resulting estimator is as effi cient as 
possible. To protect against misspecifi cation of the correlation structure, 
one should base inference on the modifi ed sandwich variance estimator. 
This is the default estimator in SAS, but the user must specify it in Stata. 
Check your software documentation to ensure best practices. 

 This same variance estimator is available for the fi xed - effects estimator, 
but not for the random - effects estimator.  

  QUICK REFERENCE FOR POPULAR PANEL ESTIMATORS 

  Fixed Effects 
 An indicator variable for each panel/subject is added and used to fi t the 
model. Though often applied to the analysis of repeated measures, this 
approach has bias that increases with the number of subjects. If data 
include a very large number of subjects, the associated bias of the results 
can make this a very poor model choice.  

  Conditional Fixed Effects 
 Conditional fi xed effects are commonly applied in logistic regression, 
Poisson regression, and negative binomial regression. A suffi cient statistic 
for the subject effect is used to derive a conditional likelihood such that 
the subject - level effect is removed from the estimation. 

 While conditioning out the subject - level effect in this manner is 
algebraically attractive, interpretation of model results must continue to be 
in terms of the conditional likelihood. This may be diffi cult and the analyst 
must be willing to alter the original scientifi c questions of interest to 
questions in terms of the conditional likelihood. 

 Questions always arise as to whether some function of the independent 
variable might be more appropriate to use than the independent variable 
itself. For example, suppose  X     =     Z   2 , where  E ( Y  | Z  ) satisfi es the logistic 
equation; then  E ( Y  | X ) does not.  

  Random Effects 
 The choice of a distribution for the random effect is driven too often by 
the need to fi nd an analytic solution to the problem rather than by any 
scientifi c foundation. If we assume a normally distributed random effect 
when the random effect is really Laplacian, we will obtain the same point 
estimates (since both distributions are symmetric with mean zero), but we 
will compute different standard errors. We will not have any way of 
comparing the assumed distributions short of fi tting both models. 
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 If the true random - effects distribution has a nonzero mean, then the 
misspecifi cation is more troublesome as the point estimates of the fi tted 
model are different from those that would be obtained from fi tting the 
true model. Knowledge of the true random - effects distribution does not 
alter the interpretation of fi tted model results. Instead, we are limited to 
discussing the relationship of the fi tted parameters to those parameters we 
would obtain if we had access to the entire population of subjects and we 
fi t that population to the same fi tted model. In other words, even given 
the knowledge of the true random - effects distribution, we cannot easily 
compare fi tted results to true parameters. 

 As discussed in Chapter  6  with respect to group - randomized trials, if 
the subjects are not independent (say, they all come from the same 
classroom) then the true random effect is actually larger. The attenuation 
of our fi tted coeffi cient increases as a function of the number of 
supergroups containing our subjects as members; if classrooms are within -
 schools and there is within - school correlation, the attenuation is even 
greater. 

 Compared to fi xed - effects models, random - effects models have the 
advantage of using up fewer degrees of freedom, but they have the 
disadvantage of requiring that the regressors be uncorrelated with the 
disturbances; this last requirement should be checked with the Durbin –
 Wu – Hausman test.  

   GEE  (Generalized Estimating Equation) 
 Instead of trying to derive the estimating equation for GLM with 
correlated observations from a likelihood argument, the within - subject 
correlation is introduced directly into the estimating equation of an 
independence model. The correlation parameters are then nuisance 
parameters and can be estimated separately. (See also Hardin and Hilbe, 
 2003 .) 

 Underlying the population - averaged GEE is the assumption that one is 
able to specify the correct correlation structure. If one hypothesizes an 
exchangeable correlation and the true correlation is time dependent, the 
resulting regression coeffi cient estimator is ineffi cient. The na ï ve variance 
estimates of the regression coeffi cients will then produce incorrect 
confi dence intervals. Analysts specify a correlation structure to gain 
effi ciency in the estimation of the regression coeffi cients, but typically 
calculate the sandwich estimate of variance to protect against 
misspecifi cation of the correlation. This variance estimator is more variable 
than the na ï ve variance estimator and many analysts do not pay adequate 
attention to the fact that the asymptotic properties depend on the number 
of subjects (not the total number of observations).  
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   HLM  
 The HLM category includes hierarchical linear models, linear latent 
models, and others. While previous models are limited for the most part to 
a single effect, HLM allows more than one. Unfortunately, most 
commercially available software requires one to assume that each random 
effect is Gaussian with mean zero. The variance of each random effect 
must be estimated. As we cautioned in the section on random effects, the 
choice of distribution should be carefully investigated. Liti è re, Alonso, and 
Mohlenberghs [ 2008 ] discuss the impact of misspecifying the random -
 effect distributions on inferential procedures.  

  Mixed Models 
 Mixed models allow both linear and nonlinear mixed - effects regression 
(with various links). They allow you to specify each level of repeated 
measures. Imagine these levels: districts, schools, teachers, classes, and 
students. In this description, each of the sublevels is within the previous 
level and we can hypothesize a fi xed or random effect for each level. We 
also imagine that observations within the same levels (any of these specifi c 
levels) are correlated.   

  TO LEARN MORE 
 For more on the contrast between fi xed - effect  “ assumption - free ”  methods, 
and random - effect  “ assumed - representativeness ”  methods, see Section 
 5.17  of  http://www.ctsu.ox.ac.uk/reports/ebctcg - 1990/section5 . 

 See Hardin and Hilbe [ 2003 , p. 28] for a more detailed explanation of 
specifying the correlation structure in population - averaged GEEs. See 
Zeger and Liang [ 1986 ] for detailed investigations of effi ciency and 
consistency for misspecifi ed correlation structures in population - averaged 
GEEs. 

 See McCullagh and Nelder [ 1989 ] and Hardin and Hilbe [ 2007 ] for 
the theory and application of GLMs. See Skrondal and Rabe - Hesketh 
[ 2004 ] for extensions of GLMs to include latent variables, and to 
structural equation models. For more information on longitudinal data 
analysis utilizing specifi c software, Stata users should see Rabe - Hesketh 
and Skrondal [ 2008 ] and SAS users should see Cody [ 2001 ].  
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            [T]he simple idea of splitting a sample in two and then developing 
the hypothesis on the basis of one part and testing it on the 
remainder may perhaps be said to be one of the most seriously 
neglected ideas in statistics, if we measure the degree of neglect by 
the ratio of the number of cases where a method could give help to 
the number of cases where it is actually used. —  G. A. Barnard in 
discussion following Stone [ 1974 , p. 133]    

Validate your models before drawing conclusions. 

 ABSENT A DETAILED KNOWLEDGE OF CAUSAL MECHANISMS,
THE results of a regression analysis are highly suspect. Freedman [ 1983 ] 
found highly signifi cant correlations between totally independent variables. 
Gong [ 1986 ] resampled repeatedly from the data in hand and obtained a 
different set of signifi cant variables each time.  

OBJECTIVES
 A host of advertisements for new proprietary software claim an ability to 
uncover relationships previously hidden and to overcome the defi ciencies 
of linear regression. But how can we determine whether or not such 
claims are true? 

 Good [ 2001 ; Chapter  10 ] reports on one such claim from the maker of 
PolyAnalyst ™ . He took the 400 records, each of 31 variables, PolyAnalyst 
provided in an example dataset, split the data in half at random, and obtained 
completely discordant results with the two halves, whether they were analyzed 
with PolyAnalyst, CART, or stepwise linear regression. This was yet another 
example of a spurious relationship that did not survive the validation process. 
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 In this chapter, we review the various methods of validation and provide 
guidelines for their application.  

METHODS OF VALIDATION 
 Your choice of an appropriate methodology will depend upon your 
objectives and the stage of your investigation. Is the purpose of your 
model to predict whether there be an epidemic, to extrapolate — what 
might the climate have been like on the primitive Earth, or to elicit causal 
mechanisms — is development accelerating or decelerating? Which factors 
are responsible? 

 Are you still developing the model and selecting variables for inclusion, 
or are you in the process of estimating model coeffi cients? 

 There are three main approaches to validation:

   1.     Independent verifi cation (obtained by waiting until the future 
arrives or through the use of surrogate variables).  

  2.     Splitting the sample (using one part for calibration, the other for 
verifi cation).  

  3.     Resampling (taking repeated samples from the original sample and 
refi tting the model each time).    

 Goodness of fi t is no guarantee of predictive success. This is particularly 
true when an attempt is made to fi t a deterministic model to a single 
realization of a stochastic process. Neyman and Scott [ 1952 ] showed that 
the distribution of galaxies in the observable universe could be accounted 
for by a two - stage Poisson process. At the initial stage, cluster centers 
come into existence so that their creation in nonoverlapping regions of 
time – space takes place independently of one another. At the second stage, 
the spatial distribution of galaxies about the cluster centers also follows a 
Poisson distribution. 

 Alas, our observations of the universe are based on a single realization 
of this two - stage process. Regardless, cosmologists, both astronomers and 
physicists, persist in validating their models on the basis of goodness of fi t. 
See, for example, Bothun [ 1998 ], Springel et al. [ 2005 ] and Riess et al. 
[ 2007 ]. 

Independent Verifi cation 
 Independent verifi cation is appropriate and preferable whatever the 
objectives of your model and whether selecting variables for inclusion or 
estimating model coeffi cients. 

 In soil, geologic, and economic studies, researchers often return to the 
original setting and take samples from points that have been by - passed on 
the original round; see, for example, Tsai et al. [ 2001 ]. 
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 In other studies, verifi cation of the model ’ s form and the choice of 
variables are obtained by attempting to fi t the same model in a similar but 
distinct context. 

 For example, having successfully predicted an epidemic at one army 
base, one would then wish to see if a similar model might be applied at a 
second and third almost but not quite identical base. 

 Stockton and Meko [ 1983 ] reconstructed regional - average precipitation 
to A.D. 1700 in the Great Plains of the United States with multiple linear 
regression models calibrated on the period 1933 – 1977. They validated the 
reconstruction by comparing the reconstructed regional percentage - of -
 normal precipitation with single - station precipitation for stations with 
records extending back as far as the 1870s. Lack of appreciable drop in 
correlation between these single - station records and the reconstruction 
from the calibration period to the earlier segment was taken as evidence 
for validation of the reconstructions. 

 Graumlich [ 1993 ] used a response - surface reconstruction method to 
reconstruct 1000 years of temperature and precipitation in the Sierra 
Nevada. The calibration climatic data were 62 years of observed 
precipitation and temperature (1928 – 1989) at Giant Forest/Grant Grove. 
The model was validated by comparing the predictions with the 1873 –
 1927 segments of three climate stations 90 km to the west in the San 
Joaquin Valley. The climatic records of these stations were highly 
correlated with those at Giant Forest/Grant Grove. Signifi cant correlation 
of these long - term station records with the 1873 – 1927 part of the 
reconstruction was accepted as evidence of validation. 

 Independent verifi cation can help discriminate among several models 
that appear to provide equally good fi ts to the data. Independent 
verifi cation can be used in conjunction with either of the two other 
validation methods. For example, an automobile manufacturer was trying 
to forecast parts sales. After correcting for seasonal effects and long - term 
growth within each region, ARIMA techniques were used. 1  A series of 
best - fi tting ARIMA models was derived, one model for each of the nine 
sales regions into which the sales territory had been divided. The nine 
models were quite different in nature. As the regional seasonal effects and 
long - term growth trends had been removed, a single ARIMA model 
applicable to all regions, albeit with differing coeffi cients, was more 
plausible. Accordingly, the ARIMA model that gave the best overall fi t to 
all regions was utilized for prediction purposes. 

  1      For examples and discussion of autoregressive integrated moving average processes, see 
Brockwell and Davis [ 1987 ]. 
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 Independent verifi cation also can be obtained through the use of 
surrogate or proxy variables. For example, we may want to investigate past 
climates and test a model of the evolution of a regional or worldwide 
climate over time. We cannot go back directly to a period before direct 
measurements on temperature and rainfall were made, but we can observe 
the width of growth rings in long - lived trees or measure the amount of 
carbon dioxide in ice cores.  

Example: Hubble ’s Constant 
 In 1929, Edwin Hubble conjectured that our universe was expanding at a 
constant rate  h . The value of this constant can be determined in two ways:

   1.     By dividing the speed at which the expansion is carrying a distant 
star away from Earth by the star ’ s distance.  

  2.     By comparing the age of our universe as determined from an 
equation involving Hubble ’ s constant, the mass density of the 
universe,  W m  , and the cosmological constant,  W L   against its age as 
determined by other means.    

 The recession speed is easy to measure from the degree to which a 
distant object ’ s light is displaced toward the red end of the spectrum. 
Initially, the distance was measured from celestial objects within the Vegan 
supercluster of galaxies, the super - cluster to which our own Milky Way 
belongs. Various methods of measurement (Cepheid variables and Type II 
supernovae) yield an esimate for  H  close to 0.73    ±    0.07. Supernovae of 
Type Ia in galaxies far beyond the Vegan supercluster yield an average 
value for the Hubble constant of 0.58    ±    0.07. 

 The age of the universe is approximately the age of the Milky Way if 
one assumes that  h     =    0.85, and the standard model ( W m      =    1,  W L      =    0) is 
satisfi ed only if  h     <    0.55. 

 Two explanations for the many discrepancies are available, both of 
which explain the postorbital - telescope discovery that though the Vegan 
supercluster is slowly collapsing on itself under the infl uence of gravity, the 
different superclusters of galaxies are fl ying apart at high speed:

   1.     The rate of expansion is a variable.  

  2.     Two (or more) types of expansion are involved.     

Sample Splitting 
 Splitting the sample into two parts, one for estimating the model 
parameters, the other for verifi cation, is particularly appropriate for 
validating time series models in which the emphasis is on prediction or 
reconstruction. If the observations form a time series, the more recent 
observations should be reserved for validation purposes. Otherwise, the 
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data used for validation should be drawn at random from the entire 
sample. 

 Unfortunately, when we split the sample and use only a portion of it, 
the resulting estimates will be less precise. 

 Browne [ 1975 ] suggests that we pool rather than split the sample if 

  1.     The predictor variables to be employed are specifi ed beforehand 
(that is, we do not use the information in the sample to select 
them).  

  2.     The coeffi cient estimates obtained from a calibration sample drawn 
from a certain population are to be applied to other members of 
the same population.    

 The proportion to be set aside for validation purposes will depend upon 
the loss function. If both the goodness - of - fi t error in the calibration 
sample and the prediction error in the validation sample are based on 
mean - squared error, Picard and Berk [ 1990 ] report that we can minimize 
their sum by using between a quarter and a third of the sample for 
validation purposes. 

 A compromise proposed by Moiser [ 1951 ] is worth revisiting: the 
original sample is split in half and regression variables and coeffi cients are 
selected independently for each of the sub - samples. If they are more or 
less in agreement, then the two samples should be combined and the 
coeffi cients recalculated with greater precision. 

 A further proposal by Subrahmanyam [ 1972 ] to use weighted averages 
where there are differences strikes us as equivalent to painting over cracks 
left by the last earthquake. Such differences are a signal to probe deeper, 
to look into causal mechanisms, and to isolate infl uential observations 
which may, for reasons that need to be explored, be marching to a 
different drummer.  

Resampling
 We saw in the report of Gail Gong [ 1986 ], reproduced in Chapter  13 , 
that resampling methods such as the bootstrap may be used to validate 
our choice of variables to include in the model. As seen in Chapter  5 , they 
may also be used to estimate the precision of our estimates. 

 But if we are to extrapolate successfully from our original sample to the 
population at large, then our original sample must bear a strong 
resemblance to that population. When only a single predictor variable is 
involved, a sample of 25 to 100 observations may suffi ce. But when we 
work with  n  variables simultaneously, sample sizes on the order of 25  n   to 
100  n   may be required to adequately represent the full  n  - dimensional 
region. 
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 Because of dependencies among the predictors, we can probably get by 
with several orders of magnitude fewer data points. But the fact remains 
that the sample size required for confi dence in our validated predictions 
grows exponentially with the number of variables. 

 Five resampling techniques are in general use:

   1.      K  - fold, in which we subdivide the data into  K  roughly equal - sized 
parts, then repeat the modeling process  K  times, leaving one 
section out each time for validation purposes.  

  2.     Leave - one - out, an extreme example of  K  - fold, in which we 
subdivide into as many parts as there are observations. We leave 
one observation out of our classifi cation procedure, and use the 
remaining  n     −    1 observations as a training set. Repeating this 
procedure  n  times, omitting a different observation each time, we 
arrive at a fi gure for the number and percentage of observations 
classifi ed correctly. A method that requires this much computation 
would have been unthinkable before the advent of inexpensive, 
readily available, high - speed computers. Today, at worst, we need 
step out for a cup of coffee while our desktop completes its 
efforts.  

  3.     Jackknife, an obvious generalization of the leave - one - out approach, 
in which the number left out can range from one observation to 
half the sample.  

  4.     Delete -  d , where we set aside a random percentage  d  of the 
observations for validation purposes, use the remaining 100    −     d  % 
as a training set, then average over 100 to 200 such independent 
random samples.  

  5.     The bootstrap, which we have already considered at length in 
earlier chapters.    

 The correct choice among these methods in any given instance is still a 
matter of controversy (though any individual statistician will assure you 
that the matter is quite settled). See, for example, Wu [ 1986 ] and the 
discussion following, and Shao and Tu [ 1995 ]. 

 Leave - one - out has the advantage of allowing us to study the infl uence 
of specifi c observations on the overall outcome. 

 Our own opinion is that if any of the above methods suggest that the 
model is unstable, the fi rst step is to redefi ne the model over a more 
restricted range of the various variables. For example, with the data of 
Figure  11.3 , we would advocate confi ning attention to observations for 
which the predictor (TNFAlpha) was less than 200. 

 If a more general model is desired, then many additional observations 
should be taken in underrepresented ranges. In the cited example, this 
would be values of TNFAlpha greater than 300.   
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  MEASURES OF PREDICTIVE SUCCESS 
 Whatever method of validation is used, we need to have some measure of 
the success of the prediction procedure. One possibility is to use the sum 
of the losses in the calibration and the validation sample. Even this 
procedure contains an ambiguity that we need resolve. Are we more 
concerned with minimizing the expected loss, the average loss, or the 
maximum loss? 

 One measure of goodness of fi t of the model is   SSE = ∑ −( )*y yi i
2, 

where  y   i   and   yi
*  denote the  i th observed value and the corresponding 

value obtained from the model. The smaller this sum of squares, the better 
the fi t. 

 If the observations are independent, then

    ( ) ( ) ( )* *y y y y y yi i i i− = − − −∑ ∑ ∑2 2 2   

 The fi rst sum on the right hand side of the equation is the total sum of 
squares (SST). Most statistics software use as a measure of fi t 
 R  2     =    1    −     SSE/SST.  The closer the value of  R  2  is to 1, the better. 

 The automated entry of predictors into the regression equation 
using  R  2  runs the risk of overfi tting, as  R  2  is guaranteed to increase with 
each predictor entering the model. To compensate, one may use the 
adjusted  R  2 :

    1 1 2– [(( – )( – )) ( – )]n i R n p i/ −  

  where  n  is the number of observations used in fi tting the model,  p  is the 
number of estimated regression coeffi cients, and  i  is an indicator variable 
that is 1 if the model includes an intercept, and 0 otherwise. 

 The adjusted  R  2  has two major drawbacks according to Rencher and 
Pun [ 1980 ]:

   1.     The adjustment algorithm assumes the predictors are independent; 
more often, the predictors are correlated.  

  2.     If the pool of potential predictors is large, multiple tests are 
performed and  R  2  is infl ated in consequence; the standard 
algorithm for adjusted  R  2  does not correct for this infl ation.    

 A preferable method of guarding against overfi tting the regression 
model, proposed by Wilks [ 1995 ], is to use validation as a guide for 
stopping the entry of additional predictors. Overfi tting is judged to begin 
when entry of an additional predictor fails to reduce the prediction error 
in the validation sample. 
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 Mielke et al. [ 1997 ] propose the following measure of predictive 
accuracy for use with either a mean - square - deviation or a mean - absolute -
 deviation loss function:
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  Uncertainty in Predictions 
 Whatever measure is used, the degree of uncertainty in your predictions 
should be reported. Error bars are commonly used for this purpose. 

 The prediction error is larger when the predictor data are far from their 
calibration - period means, and vice versa. For simple linear regression, the 
standard error of the estimate  s e   and standard error of prediction  s y *    are 
related as follows:

    s s
n

n
x x

x x
y e

p

i
i

n*
( ) ( )

( )
=

+
+ −

−
=∑

1 2

2

1

 

  where  n  is the number of observations,  x i   is the  i th value of the predictor 
in the calibration sample, and  x p   is the value of the predictor used for the 
prediction. 

 The relation between  s y *    and  s e   is easily generalized to the multivariate 
case. In matrix terms, if  Y     =     AX     +     E  and  y  *     =     AX p  , then 
  s s X X X Xy e p

T T
p* { ( ) }2 2 11= + − . 

 This equation is only applicable if the vector of predictors lies inside the 
multivariate cluster of observations on which the model was based. An 
important question is how  “ different ”  can the predictor data be from the 
values observed in the calibration period before the predictions are 
considered invalid.  

  Long Term Stability 
 Time is a hidden dimension in most economic models. Many an airline 
has discovered to its detriment that today ’ s optimal price leads to half -
 fi lled planes and markedly reduced profi ts tomorrow. A careful reading of 
the Internet lets them know a competitor has slashed prices, but more 
advanced algorithms are needed to detect a slow shifting in tastes of 
prospective passengers. The public, tired of being treated no better than 
hogs 2  turns to trains, personal automobiles, and teleconferencing. 

  2      Or somewhat worse, because hogs generally have a higher percentage of fresh air to 
breathe. 



CHAPTER 15 VALIDATION 285

 An army base, used to a slow seasonal turnover in recruits, suddenly 
fi nds that all infi rmary beds are occupied and the morning lineup for sick 
call stretches the length of a barracks. 

 To avoid a pound of cure 

   •      Treat every model as tentative, best described, as any lawyer will 
advise you, as subject to change without notice.  

   •      Monitor continuously.    

 Most monitoring algorithms take the following form:

   If the actual value exceeds some boundary value (the series mean, for 
example, or the series mean plus one standard deviation),  

  And if the actual value exceeds the predicted value for three 
observation periods in a row,  

  Sound the alarm (if the change, like an epidemic, is expected to be 
temporary in nature) or recalibrate the model.      

TO LEARN MORE 
 Almost always, a model developed on one set of data will fail to fi t a 
second independent sample nearly as well. Mielke et al. [ 1996 ] 
investigated the effects of sample size, type of regression model, and 
noise - to - signal ratio on the decrease or shrinkage in fi t from the 
calibration to the validation dataset. 

 For more on leave - one - out validation, see Michaelsen [ 1987 ], Weisberg 
[ 1985 ], and Barnston and van den Dool [ 1993 ]. Camstra and Boomsma 
[ 1992 ] and Shao and Tu [ 1995 ] review the application of resampling in 
regression. 

 Miller, Hui, and Tierney [ 1991 ] propose validation techniques for 
logistic regression models. Taylor [ 2000 ] recommends the bootstrap for 
validating fi nancial models. 

 Watterson [ 1966 ] reviews the various measures of predictive accuracy.  
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            Accuracy and Precision.        An  accurate  estimate is close to the estimated 
quantity. A  precise  interval estimate is a narrow one. Precise measurements 
made with a dozen or more decimal places may still not be accurate.  

 Deterministic and Stochastic.        A phenomenon is  deterministic  when its 
outcome is inevitable and all observations will take a specifi c value. (These 
observations may be subject to measurement error.) A phenomenon is 
 stochastic  when its outcome may take different values in accordance with 
some probability distribution.  

 Dichotomous, Categorical, Ordinal, and Metric Data.         Dichotomous  
data have two values and take the form  “ yes or no, ”   “ got better or got 
worse. ”     

  Categorical  data have two or more categories such as yes, no, and 
undecided. Categorical data may be ordered (opposed, indifferent, in 
favor) or unordered (dichotomous, categorical, ordinal, metric). 

 Preferences can be placed on an ordered or  ordinal  scale such as 
strongly opposed, opposed, indifferent, in favor, or strongly in favor. 

  Metric  data can be placed on a scale that permits meaningful 
subtraction; for example, while  “ in favor ”  minus  “ indifferent ”  may not be 
meaningful, 35.6 pounds minus 30.2 pounds is. 

 Metric data can be grouped so as to evaluate it by statistical methods 
applicable to categorical or ordinal data, but to do so would be to throw 
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away information and reduce the power of any tests and the precision of 
any estimates. 

  Distribution, Cumulative Distribution, Empirical Distribution, and 
Limiting Distribution.    Suppose we were able to examine all the items in 
a population and record a value for each one to obtain a  distribution  of 
values. The  cumulative distribution function  of the population  F  [ x ] 
denotes the probability that an item selected at random from this 
population will have a value less than or equal to  x : 0    ≤     F  [ x ]    ≤    1. Also, if 
 x     <     y , then  F  [ x ]    ≤     F  [ y ]. 

 The  empirical distribution , usually represented in the form of a 
cumulative frequency polygon or a bar plot, is the distribution of values 
observed in a sample taken from a population. If  F n  [ x ] denotes the 
cumulative distribution of observations in a sample of size n, then as the 
size of the sample increases  F n  [ x ]    →     F  [ x ]. 

 The  limiting distribution  for very large samples of a sample statistic, 
such as the mean or the number of events in a large number of very small 
intervals, often tends to a distribution of known form such as the Gaussian 
for the mean or the Poisson for the number of events. 

 Be wary of choosing a statistical procedures, which is optimal only for a 
limiting distribution and not when applied to a small sample. For a small 
sample, the empirical (observed) distribution may be a better guide. 

  Hypothesis, Null Hypothesis, and Alternative.    The dictionary 
defi nition of a  hypothesis  is a proposition, or set of propositions, put forth 
as an explanation for certain phenomena. For statisticians, a  simple 
hypothesis  would be that the distribution from which an observation is 
drawn takes a specifi c form. For example,  F  [ x ]    =     N (0,1). In the majority 
of cases, a statistical hypothesis will be  compoun d rather than simple; for 
example, that the distribution from which an observation is drawn has a 
mean of zero. 

 Often, it is more convenient to test a  null hypothesis , for example, that 
there is no or null difference between the parameters of two populations. 

 There is no point in performing an experiment or conducting a survey 
unless one also has one or more  alternate hypotheses  in mind. If the 
alternative is one - sided, for example, if the difference is positive rather 
than zero, then the corresponding test will be one - sided. If the alternative 
is two - sided, for example, if the difference is not zero, then the 
corresponding test will be two - sided. 

  Parametric, Non - Parametric, and Semi - Parametric Models.    Models 
can be subdivided into two components: one systematic and one random. 
The systematic component can be a function of certain predetermined 
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parameters (a parametric model), be parameter free (nonparametric), or be 
a mixture of the two types (semiparametric). The defi nitions that follow 
apply to the random component. 

  Parametric, NonParametric, and Semi - Parametric Statistical 
Procedures.     Parametric  statistical procedures concern the parameters of 
distributions of a known form. One may want to estimate the variance of a 
normal distribution or the number of degrees of freedom of a chi - square 
distribution. Student ’ s t, the F - ratio, and maximum likelihood are typical 
parametric procedures. 

  Nonparametric  procedures concern distributions whose form is unspecifi ed. 
One might use a nonparametric procedure such as the bootstrap to obtain 
an interval estimate for a mean or a median or to test that the distributions 
of observations drawn from two different populations are the same. 
Nonparametric procedures are often referred to as distribution - free, though 
not all distribution - free procedures are nonparametric in nature. 

  Semiparametric  statistical procedures concern the parameters of 
distributions whose form is not specifi ed. Permutation methods and 
U - statistics are typically employed in a semiparametric context. 

  Residuals and Errors.    A residual is the difference between a fi tted value 
and what was actually observed. An error is the difference between what is 
predicted based on a model and what is actually observed. 

 Signifi cance Level and p - Value.   The  signifi cance level  is a pre - specifi ed 
probability of making a Type I error. It is a characteristic of a statistical 
procedure. 

 The  p - value  is a random variable that depends both upon the sample 
and the statistical procedure that is used to analyze the sample. 

 If one repeatedly applies a statistical procedure at a specifi c signifi cance 
level to distinct samples taken from the same population when the 
hypothesis is true and all assumptions are satisfi ed, then the  p  - value will be 
less than or equal to the signifi cance level with the frequency given by the 
signifi cance level. 

  Type  I  and Type  II  Error.    A Type I error is the probability of rejecting 
the hypothesis when it is true. A Type II error is the probability of 
accepting the hypothesis when an alternative hypothesis is true. Thus, a 
Type II error depends on the alternative. 

  Type  II  Error and Power.    The power of a test for a given alternative 
hypothesis is the probability of rejecting the original hypothesis when the 
alternative is true. A Type II error is made when the original hypothesis is 
accepted even though the alternative is true. Thus, power is one minus the 
probability of making a Type II error.  
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scales, 188, 204
scatterplot, 207
silly, 211
strip chart, 147
subgroups, 198
vs. table, 190, 192, 199
text in, 201–203
three-dimensions, 183–186, 194

Ground water, 258
Grouping, 33
Group randomized trials, 98–99, 

160
Group sequential designs, 54
Growth, 7, 16, 110–111, 148, 222, 

230–232, 280
Guidelines, 20, 29, 38–39, 49, 52, 54, 

82, 117, 134, 158, 209, 243, 
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Hall-Wilson corrections, 75
Hazard function, 245
Heterogeneity, 35, 133–135, 245–246, 

270–271
Hierarchical models, 134, 137, 275
Histogram, see Graphs
HLM, 267
Hodges-Lehmann estimator, 70
Hotelling’s T2, 91
Hypertension, 16–17

Hypothesis, 16–17
alternative, 20, 24, 80, 105, 129, 

288
null, 19, 28, 288
ordered, 24
post hoc, 9–10, 12
primary, 20, 29, 80

Hypothesis testing, 79, 82, 84

Immunology, 88, 170, 216
Income, 33, 147–148, 168, 198, 

243–244
Independent observations, 46
Inducement, 47
Induction, 25, 29, 115, 118
Instrumental variables, 265
Interaction, 109–110
Interpolation, 179, 189–190, 211, 216
Interquartile range, 74, 147, 151, 240
Interval estimate, 86
Intraclass correlation, 98

Jackknife, 282
Jonckheere–Terpstra statistic, 107

Kepler’s Law, 6
k-fold resampling, 282
Kinetic molecular theory, 218
Kruskal’s gamma, 155
k-sample problem, 80, 104–106

Lag plot, 62–63
Large sample methods, 79
Latin squares, 53,
Least absolute deviation, 70, 287, 

238–239
Least squares, see Regression
Legal applications, 32, 46, 54, 81, 

125–127, 167, 173–174, 222, 
246

Legend, see Graph
Log-likelihood, 130
Likert scale, 107, 149
Linear regression vs. behavior, 230
Link function, 267
Litter, 47
Location parameter, 38–39, 100–101, 

123
Long-term studies, 9
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Losses, 26, 129, 224
absolute deviation, 107
jump, 68
monotone, 68
square deviation, 68
step function, 68

Mail, 35, 46–48, 142
Main effect, 110–112, 121, 135, 158
Malmquist bias, 160
Mann-Whitney, see Tests
Manuscript format, 162
Marginals, 22, 81, 86
Marketing, 159
Matched pairs, 113, 120, 170,
Maximum likelihood, 72
Maximum tolerable dose, 17, 28
Mean absolute deviation, 284
Means

arithmetic vs. geometric, 147, 169
comparing, 90
vs. medians, 168

Measurements
baseline, 49
reporting, 146

Measuring instrument, 34, 60
Median, 70, 103
Medical applications, 133, 253, 264
Medical device, 49, 240
Meta-analysis, 131–132
Meteorology, 159, 249
Microarrays, 46
Minimum, 60, 62, 65, 70, 95, 149, 

154
effective dose, 58
loss, 5, 68, 71
power, 39
rearrangements, 136
variance, 71

Missing data, 44, 60, 62, 115, 139, 
142–143

Mitosis, 48
Model

additive, 109
construction, 264–265
curve fi tting, 232
dynamic, 256
general linear, see GLM
mixed, 275

nonlinear, 217
non-unique, 216, 219
parametric vs. nonparametric, 288
physical, 233
reporting, 258–260
structural equation, 256
welfare, 232

Monitor, 35–36, 65, 285
Monotone function, 75
MRPP, 225, 249
Multiple

end points, 43
tests, 110, 114, 118, 158, 170

Multivariate analysis, 171, 233
Mutually exclusive, 16

Narcotics, 119
Negative fi ndings, 161
Neural network, 260
Newton’s Law, 25
Neyman-Pearson theory, 20, 29
Nonresponders, 45
Nonsignifi cant results, 173
Normal

alternatives, 91
assumption, 104
distribution, 70, 73, 76
scores, 90

Nuisance parameters, 274
Nutrition, 32

Objectives, 4, 15, 31, 60, 68, 117, 
132, 139, 220, 232–233, 278

O’Brien’s test, 95
Observational studies, 132
Observations

dependent, 87, 96
exchangeable, 77, 83–84, 97, 104, 

112, 156, 274
identically distributed, 47, 83
independent, 46, 83
non-randomized, 89, 119
subjective, 107
transformed, see Transformations

Odds ratio, 84, 86, 146, 175
One-sided vs. two-sided, 22–23
Ordinal, see Data
Ordinary Least Squares, see Regression
Outliers, 62, 151, 226
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Over-dispersion, 268
Over fi tting, 283

Paired observations, 92
Panel data, 270
Parameters

location, 38, 69–70, 123
nuisance, 274
scale, 38–39
shift, 70, 95

Paranormal, 10
Paternity, 125–127
Patterns, 9, 32–33, 52, 87, 150, 205
Pearson correlation, 108
Percentages, 148, 150, 174–175
Percentiles, 7, 20, 65, 71–74, 146–149, 

154, 177
Permutation

distribution, 88
test, 90, 95, 103, 113, 135–136, 224

Phase III trials, 28,
Physics, 25, 217
Pilot study, 141
Pivotal quantity, 77
Placebo, 20, 141
Poker, 12
Polar coordinates, 196
Political science, 246, 254, 260
Polynomial, 218, 251
Population, 7, 31, 45
Population statistics, 7
Post hoc criteria, 259
Poverty, 221, 238, 243
Power, 22

comparisons, 105
post-hoc, 160
reporting, 139, 160
related to signifi cance level, 54
related to test, 91

Precision vs. accuracy, 151, 287
Prediction, 283,
Prevention, 65, 133
Principal components, 255
Proc ARIMA, 225
Proc GENMOD, 271
Proc MEANS, 60
Proc MIXED, 99
PROC TTEST, 175
Program code, 177

Proportions, 84
Protocol, 9, 17, 37, 65, 98, 132, 134, 

143, 167, 175
Psychology, 92
Publishing, 161–162
p-value, 117, 131, 155

vs. association, 155
vs. confi dence interval, 156
limitations, 161

Quality control, 241
Questionnaires, 32

Radiation, 61, 120
Radioimmune assay, 88, 216
Random-effects, 267, 270, 273
Randomized response, 61
Randomizing, 48–50, 140
Random number, 8, 152
Ranks, see Transformations
Rare events, 146
Rates, 174
Ratio, 132

aspect, 204
interval estimate, 74, 154
likelihood, 21–22, 86
range, 242–243

Raw data, 59, 137, 165–166, 170–171, 
176, 195

Recruitment, 232
Redshift, 159–160
Regression

coeffi cients, 224, 252
collinearity, 252, 255
confi dence intervals, 171
vs. correlation, 242
Deming (EIV), 240–241
dynamic, 225
ecological,
LAD, 238–240
linear, 217
linear vs. nonlinear, 238
logistic, 253, 258–259
multivariable, 251
nonlinear, 248
OLS, 224
Poisson, 268
quantile, 243–245
reporting, 248
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scope, 215–216
sources of error, 215
stepwise, 253, 277
stratifi ed, 235
spurious, 234, 252

Regulatory agency, 20, 24, 39, 51, 
95

Rejection region, 157
Relationship

dose-response, 132
Relativity, 25
Repeated measures, 96
Resampling, 97, 114, 123, 278, 

281–282, 285
Residuals, 289
Robust, 68–70, 78, 83, 105, 110, 113, 

137, 171, 272
Rugplot, see Graphs

Sales, 35, 48, 146, 148, 174, 179, 
279

Sample, 7–8
non-random, 53–54, 119, 160
reporting, 167
representative, 242
sequential, 41–42
size, 37, 54, 60, 154, 242
universe, 173,

Sandwich variance, 272
Scale parameter, 38–39
Scatterplot, see Graphs
Scope, 215
Serial correlation, 62,
Shift alternative, 70
Signifi cance

practical vs. statistical, 115, 229
Signifi cance level, 21, 37–39, 80
Signifi cance level vs. p-value, 289
Silicone implants, 50, 219
Simpson’s paradox, 223
Simulations, 150
Sociology, 220
Software, 75
Soil, 61
Standard error, 151
Stationarity, 228
Statistic

aggregate, 66
suffi cient, 77

Stein’s paradox, 77
Stepwise, see Regression
Stochastic, 13, 287
Strata, 8, 48, 87, 222,
Subgroups, 17, 48, 115–116, 132, 

198, 201
Suffi cient statistic, 77
Surgery, 12–13
Surrogate variables, 32, 227
Surveys, 9, 35–36, 46, 173
Survival analysis, 86–88, 245–246

Tables, 149
Tests

analysis of variance, 105–106
bootstrap, 83–84
chi-square, 85
correlation, 80
Fisher’s exact, 81, 84–85, 94
for equality of variances, 100–104
for equivalence, 93–94, 118
for independence, 118
F-test, 80, 101
inferior, 113
Jonckheere–Terpstra, 107
k-sample, 80
locally most powerful, 96
Mann-Whitney, 107
most powerful, 101
multiple, 110, 114, 118, 158, 170
multivariate, 92, 118
new, 170
omnibus,24, 38
one- vs. two-tailed, 42, 81, 92
optimal, 80, 94, 106, 114
permutation, 90
reporting, 170
Smirnov, 95
t-test, 90
two-tailed, 85
unbiased, 101
Wilcoxon, 94

Time series, 228
Time-to-event data, 28, 86
Toxicology, 47
Transformations, 75, 230

ranks, 84, 94, 112, 136, 206
Treatment allocation, 51–52, 

139–141
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t-test, 80, 83–84, 90–91, 94, 113–114, 
170, 175

Type I and II errors, 109, 289
Type II error vs. power, 289

Unbalanced vs. balanced design, 106
Unequal variances, 94–95
U-statistic, 289

Vaccine, 84
Validation, 233, 265

delete-one, 227
split sample, 277, 281

Variable
categorical, 145, 182, 188, 199, 201, 

211, 263–264, 269
confounding, 108 , 220, 254
continuous, see Measurements
endogenous, 254–255
explanatory, 270, 252–255
indicator, 222, 229
instrumental, 265

predictor vs. dependent, 252
proxy, 221
selection of, 32
surrogate, 222

Variance,
between vs. within, 80
comparing, 100–102, 105
dispersion, 39
estimator, 73–75
function, 267
infl ation factor, 98, 252
unequal, 78, 94–95

Variation, 5, 20, 48
Verifi cation, 278
Viewpoint, 194, 196
Virus, 44, 141, 221
Voting, 247, 254

Weak exchangeability, 135
Weather, 221, 228, 256
Welfare, 243
Wilcoxon, see Test
Withdrawals, 143 


