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FOREWORD TO THE ENGLISH
EDITION

When preparing the English edition of the book, the author aimed to
give the reader a concise but advanced introduction to large-scale
extratropical atmospheric dynamics from the viewpoint of a
representative of the Russian scientific school on dynamic meteorology
and fluid dynamics. An increasingly broadening stream of publications
on the subject made it impossible to give in this edition a survey of all
interesting and relevant papers published in the 1990s. The author
referred only to a few of them, as the most important and representative
from his point of view. In the recent years, the most drastic
development seems to have happened in the field of atmospheric
climate variability modeling and investigations of stratospheric
dynamics and chemistry. In the context of the latter problem, isentropic
Ertel’s potential vorticity maps, plotted every day and distributed by the
European Centre for Medium Range Weather Forecasts (ECMWF)
based in Reading, UK, have become nowadays a common tool even for
those researchers who are far from being experts in the field of
atmospheric dynamics. Recently, relatively less attention has been paid
to the use of potential vorticity in the diagnosis of large-scale
tropospheric processes and especially in the climate theory. This gives
the author an excuse to leave Chapter 4 nearly unchanged, and only to
give in Section 4.8 some recent data on the statistics of potential
vorticity in the atmosphere, obtained by the author and his colleagues.
To provide a ‘trampoline’ for the reader and not begin with formulae, a
short, seven-page, Introduction has been also written for the English
edition. All other minor pieces of additional material and certain
comments are given in the footnotes.

The time to dot the i’s and cross the t’s in the book fell on the
author’s stay at the University of Concepción, Department of
Atmospheric and Oceanic Physics, and he cordially thanks his Chilean
colleagues for collaboration. Certainly, the same words should be



addressed to the author’s colleagues and old friends at the
A.M.Obukhov Institute of Atmospheric Physics in Moscow.

August 2001

vii



PREFACE

The aim of the book is to give an introduction to the dynamics of large-
scale atmospheric circulation systems with spatial dimensions from one
to several thousand kilometres. Eddies of this horizontal extent are
permanently observed in the atmosphere and determine the weather and
climate on the Earth. Currently, a satisfactory enough theory on
extratropical large-scale atmospheric motions exists. It became possible
because of the clear physical principles laid into its foundation. They
combine the account of closeness between actual and geostrophic wind
(and the corresponding idea of the quasi-geostrophic essence of large-
scale atmospheric motions) with the use of fundamental fluid dynamic
constants of motion—of potential vorticity and energy, first and
foremost. Account of these principles, including the summary on the
fundamentals of the theory of atmospheric motion constants and their
application in meteorology, is the task which the author had addressed
himself. An extremely difficult problem, in the author’s opinion, of
large-scale equatorial atmosphere dynamics has been left ‘overboard’.
Here, besides other things, it appears necessary to take into account
water vapor phase transitions. Moreover, Ertel’s theorem on the
conservation of potential vorticity is, generally speaking, not valid for
moist air, and the quasi-geostrophic theory cannot be applied in this
case. However, this problem is a constituent of the problem of general
atmospheric circulation. To create a consistent theory in this field
remains a task for the future.

The theme of the monograph is broader than it follows from its title.
It might be considered as an introduction to the dynamics of quasi-two-
dimensional fluid flows. This term implies, first of all, nearly horizontal
displacements of fluid parcels in a vertically stratified compressible
fluid. From the standpoint of fluid dynamics the atmosphere is just such
a system. We do not touch upon the subject of essential three-
dimensionality, which is specific for meso- and small-scale atmospheric



motions. This issue is extraordinarily complex, because in the
framework of a three-dimensional problem one has actually unlimited
vortex tube stretching; besides, the vorticity field could have a very
complex topological structure. It is the topic of numerous current
investigations in the field of fluid dynamics and turbulence theory.

An essential restriction made in the book and consistent with the
quasi-two-dimensionality concept (when strong air updrafts and
downdrafts are suppressed) is to treat atmospheric air as effectively dry.
By all means, quasi-horizontal layered structure of the atmosphere can
be locally violated and this is what is regularly observed in nature.
Here, we mean tropopause folding, fronts, intense cyclones, etc., where
account for air humidity is necessary. Among problems considered in
the book, the concept of helicity stands somewhat aside. It should appear
most fruitful when essentially three-dimensional motions are considered,
but this is beyond the subject of the book. Nevertheless, even for quasi-
two-dimensional motions the helicity concept has a nontrivial meaning
being a measure of flow ‘non-self-similarity’ in different fluid layers.
To appreciate fully the benefit of the helicity concept for the
atmospheric dynamics is the matter of the future but even today it is
clear that to create a consistent theory of intense atmospheric vortices,
such as hurricanes, tornadoes, twisters, etc. is impossible without using
it.

In its present form, the book has largely originated from the lectures
on atmospheric dynamics given by the author during a number of years
to graduate students of the Chair of Atmospheric Physics in the
Physical Department at Moscow University. It so happened that two
distinguished experts in the field of dynamic meteorology, first
A.F.Dubuc and then A.M.Obukhov, held this Chair in the past years.
Together with L.A.Diky who had also been associated with the Chair,
they established both research and academic traditions, which the
author of these lines is trying to follow. However, in the process of
writing the book, this circumstance led to certain difficulties. The
author’s ebullience with his personal research problems permanently
conflicted with the sense of measure usual for a reader. The author’s
‘research egoism’ evidently dominated when writing Chapters 1, 3 and,
particularly, 4 (see Table of Contents). Chapters 2 and 5 are nearer to a
textbook. To the highest degree, it could be attributed to Chapter 5
which gives the fundamentals of the planetary boundary layer theory.
This chapter has been written in order to make the book more complete
and it presents the well-known, classical results in a rather compressed
form. This has determined a more free style of citing references there,

ix



permissible when writing textbooks. An exclusion is the final section of
Chapter 5 which presents some recent results of the author’s colleagues
at the Institute of Atmospheric Physics, Russian Academy of Sciences,
on the theory of turbulent Ekman layer.

The author is grateful to his many colleagues at the Institute of
Atmospheric Physics for their moral support, patience and
condescension expressed when the manuscript was in work, which took
much more time than initially expected. First of all, kind words should
be addressed personally to F.V.Dolzhanskii who read the first draft of
the manuscript and gave a lot of valuable comments. The author is very
much obliged to his teacher, A.M.Obukhov, and this book is dedicated
to his memory. Recollections of scientific discussions with him and the
very image of this remarkable scientist and outstanding individual threw
light on many pages of the manuscript.

September 1992
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INTRODUCTION

Atmospheric phenomena range from tiny, highly transient turbulent
eddies up to planetary-scale quasi-permanent atmospheric structures
with a horizontal size comparable to the Earth’s radius. Fluid-
dynamically, the finestsize atmospheric vortical motions are
characterized by Kolmogorov’s microscale of turbulence, of the order
of one millimeter, named after A.N.Kolmogorov (1907–1987).1 This is
the minimum dimension of vortices, which can survive against air
molecular viscosity, provided the mechanical power supply, due to the
non-linear cascade of energy from grosser vortices, is a prescribed
quantity specified by the requirements of the overall energy balance in
the atmosphere. The minimum lifetime of vortices is of the order of
seconds. The gravest atmospheric features are jet streams, on a spatial
scale of thousands of kilometers and a timescale of months. These are
great ‘rivers of air’, which flow from west to east and circumnavigate
the entire Earth. Nowadays, a classification of atmospheric phenomena
with regard to scale limits, suggested in ‘A rational subdivision of
scales for atmospheric processes’ (Orlanski, 1975), is widely accepted.
Here, the characteristic horizontal distance is divided into the large, or
macro scale, including the phenomena with horizontal extension greater
than 2,000 kilometers; the small, local or microscale, including the
features smaller than 2 kilometers; and the middle, or mesoscale, which
includes all atmospheric phenomena with scales between the
macroscale and the microscale. Classification according to the
timescales is more ambiguous and less frequently used. In this context,
the macroscale usually refers to atmospheric features with periods of
several days and longer, and the microscale corresponds to phenomena
with a duration from seconds to minutes and the mesoscale corresponds
to lifetime from half an hour to one week. In Orlanski (1975), this
threefold division of space-scale is further continued by subdividing the
 large-scale into the macroα-scale, with lengths greater than 10,000



kilometers, and the macroβ-scale, with space scale ranging between 2,
000 and 10,000 kilometers. In this book, we shall call macroβ-scale the
synoptic or large-scale, properly speaking, and call macroα-scale the
planetary scale. The meso- and microscales are further divided into α, β
and γ subscales, where the alphabetic order corresponds to a gradual
decrease in size. An interested reader requiring more details is referred
to the original paper by Orlanski (1975), special monographs by Pielke
(1984) and Atkinson (1989) and the thematic article ‘Scales’ by
R.Avissar in Encyclopedia of Climate and Weather (1996).

The supply of energy from the Sun to the terrestrial atmosphere
occurs at the gravest space-scale of 10,000 kilometers—the distance
between the equator and poles—with a net excess of heat in the tropics
and a net deficit poleward of 40° latitude. This uneven distribution of
heat source and sink is a primary cause of the general atmospheric
circulation, see also a classical monograph ‘The Nature and the Theory
of the General Circulation of the Atmosphere’ by Edward Lorenz
(1967).

As the atmospheric scale height, of the order of 10 kilometers, is
small compared to the Earth’s radius (≈6400 kilometers), only a vertical
component of the doubled Earth’s rotation angular velocity vector,
called the Coriolis parameter, plays a dynamically significant role in
the general atmospheric circulation. As a consequence, one observes
two distinct circulation regimes in the terrestrial atmosphere. The first
of these, namely the Hadley regime, is characterized by direct
meridional thermal circulation with updrafts over the equator and
descending branches over the subtropics. A large amount of energy fed
into the tropical atmosphere comes from latent heat release,
accompanying micro- and mesoscale deep (penetrative) moist
convection, associated with cloud clusters. In the tropics, the Coriolis
parameter is small and, moreover, it strictly vanishes at the equator.
Consequently, the background Earth’s rotation is not very important
dynamically. In this region, large-scale patterns are smooth, rather
immobile and persistent, and the greatest variability comes from the
mesoα-scale phenomena, such as hurricanes and typhoons.

1 See also Frisch (1998), where a modern account of turbulence is given and
Kolmogorov’s 1941 theory of ‘fully developed turbulence’ is clearly explained,
along with the discussion of interesting historical aspects concerning its creation
and further development.
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The large-scale dynamics of the tropical atmosphere has its long-
standing unresolved problems, though many powerful researchers
worked in this field and very good theories have been proposed. For
example, a full satisfactory theoretical explanation of a somewhat
mysterious phenomenon known as Quasi-Biennial Oscillation, which is
a nearly rhythmic alternation of zonal wind direction in the lower
equatorial stratosphere of about 28 months periodicity, still remains a
challenge to experts in atmospheric dynamics.

A quite different circulation regime, the so called Rossby regime, is
observed in the extratropics and is associated with well-pronounced
large-scale features, namely cyclones and anticyclones, which are
permanently observed in the atmosphere over mid and high latitudes.

In this book we focus on the dynamics of large-scale atmospheric
flows in the extratropical atmosphere. The reason why these motions
can be treated in isolation from mesoscale phenomena, at least
approximately, deserves explanation. In brief, the macroscale range has
its own main feed of energy and also its principal energy sink, with no
mesoscale motions being involved. This is due to the instability of the
time-mean zonal circulation of the atmosphere and conversion of the
stored potential energy into kinetic energy of the large-scale eddies.
Another somewhat intrinsically related reason is as follows. Due to
rapid diurnal rotation of the Earth, apparent in the atmospheric
dynamics in mid and high latitudes, meteorological fields depend on
altitude in a quite different manner as compared to latitude and
longitude. Namely, the changes in meteorological parameters at
different altitudes are strongly coupled via the thermal wind relation,
and a great deal of similarity between atmospheric patterns at different
horizontal levels is observed. As a result, the large-scale motions are
not truly three-dimensional but nearly two-dimensional or, as it is
sometimes said, 2½ dimensional. According to Kelvin’s circulation
theorem, the kinematic constraint of the approximate conservation of
area of a material fluid element at each horizontal level restricts the
vertical stretching (compressing) of vortex tubes with the horizontal
cross-section of a large diameter. Thus, a non-linear cascade of energy
toward smaller scales is effectively suppressed, energy is trapped in the
macroscale and, moreover, it is likely to cascade toward the gravest
space scales, inversely. This can also be interpreted in terms of a
‘spectral gap’ in the power spectra of meteorological variables, which
separates between macro- and mesoscales (see Atkinson, 1989). The
principal sink of kinetic energy of large-scale flows is maintained by
viscous friction between the atmosphere and the underlying solid Earth
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and occurs within the planetary boundary layer, at the expense of a
direct transfer of energy from large-scale circulation systems to small-
scale turbulence.

A great success of dynamic meteorology in the 20th century was a
rational explanation as to why the synoptic-scale atmospheric motions
observed, notably cyclones and anticyclones, have a dominant space-
scale of a few thousand kilometers, that is, one order of magnitude
smaller than the scale at which the energy from the Sun is fed. This was
a principal result of the baroclinic instability theory pioneered by
J.G.Charney (1917–1981) in 1947 and independently E.T.Eady (1915–
1966) in 1949. The major prediction was that the space-scale of most
rapidly growing baroclinic disturbances is bounded from below by the
characteristic length

which is known as the Rossby internal, or baroclinic, radius of
deformation. Typically, the atmospheric scale height is about 8
kilometers. For a geographic latitude of 45°, the magnitude of the
Coriolis parameter is very close to 10−4 sec−1. The Brunt-Vaisala
frequency characterizes the vertical oscillations of a blob of air affected
by the gravitational restoring force due to stable stratification of the
atmosphere, and the usual magnitude of this frequency is 10−2 sec−1. So,
roughly speaking, the Rossby radius is slightly less than 1,000
kilometers.

In the extratropics, large-scale atmospheric flows are nearly
geostrophic, i.e. are permanently observed in the vicinity of an exact
geostrophic balanced state when the deflective Coriolis force
equilibrates the pressure gradient force. Typically, deviations from
geostrophicity are about 10%. This implies the smallness of the ratio
between the relative vorticity and the Coriolis parameter, which is
essentially the planetary vorticity. The latter clearly reflects evidence
that in large-scale atmospheric vortices, namely cyclones and
anticyclones, air parcels revolve relative to the earth 10 times slower
than the solid Earth itself rotates in the space. Thus, from the viewpoint
of large-scale atmospheric dynamics, the Earth is quite a rapidly
rotating planet.

To a very good approximation, macroscale flows in the free
atmosphere behave as if air were an ideal fluid, without dissipation.
However, regardless of how small molecular viscosity is, it must be
accounted for in the close vicinity of the Earth’s surface, where the

4 M.V.KURGANSKY



vector of wind velocity vanishes due to non-slip boundary conditions. In
the bulk of a planetary boundary layer, with a typical height of 1
kilometer, the surface friction reduces wind speed and, hence, the
magnitude of the Coriolis force acting on fluid parcels. The relative
shallowness of the planetary boundary layer guarantees that the
horizontal pressure gradient force remains unchanged and keeps the
value characteristic of the free atmosphere. The resulting imbalance
between the pressure gradient and the Coriolis force induces a cross-
isobar flow component from high toward low pressure. The continuity
of mass requires a vertical mass flow at the top of the planetary
boundary layer: downward in regions of high pressure and upward in
regions of low pressure. Through the work done by these cross-isobar
motions against the frictional forces, the free atmosphere is constantly
transferring kinetic energy to the planetary boundary layer, where it is
ultimately converted into heat.

Summarizing, we conclude that in the extratropics the large-scale air
motions are thermally driven, nearly geostrophic flows of stable
stratified and mildly viscous atmosphere, when the presence of a thin
planetary boundary layer does not destroy the quasi-geostrophicity in
the free atmosphere but maintains a principal energy sink.

Note how all of these conditions are violated in the equatorial
atmosphere: (i) quasi-geostrophicity fails due to low values of the
Coriolis parameter; (ii) stable stratification is regularly violated in the
regions of moist penetrative convection; (iii) moist convective cells
transport momentum in a vertical direction so efficiently that the entire
equatorial troposphere may be well-considered as the planetary
boundary layer.

When studying the large-scale atmospheric motions, as well as when
investigating any real physical process, a necessity arises to select the
most influential factors from the variety which exist in order to describe
the process to a reasonable first approximation. In the extratropical
atmosphere, for large-scale processes, such a first approximation does
exist and this is the adiabatic approximation, as the following naive
arguments suggest. It is clearly visible on weather maps and the Earth’s
cloudy cover images from satellites, that the large-scale atmospheric
phenomena and features may transform very quickly, with the
characteristic time-scale of 1–2 days, and it is well understood that such
rapid metamorphoses cannot be explained directly by external forces,
notably radiative heating and friction. Note that the ‘fastest’ factor of
this sort, namely the friction between the atmosphere and the underlying
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Earth’s surface, has a noticeably greater characteristic time-scale of
about 6–7 days.

The adiabatic approximation has a property of primary theoretical
and practical significance, namely it allows a set of conservation laws:
energy, entropy, angular momentum, potential vorticity, and so on.
These quantities are named the constants of adiabatic motion, or simply
adiabatic invariants. This book aims to give a comprehensive and self-
consistent account of up-to-date efforts to apply adiabatic invariants in
the field of large-scale atmospheric dynamics constructively.

Conservation laws of energy and, particularly, of atmospheric angular
momentum bear the most classical character and have the longest history
of use in dynamic meteorology. The thermodynamic principle of
specific entropy material conservation has been successfully used in
meteorology since the beginning of the 20th century and then put into
the basis of the method of isentropic analysls (see Chapter 4). Having
no analogs in classical mechanics, the principle of substantial
conservation of potential vorticity was discovered by C.-G.Rossby
(1898–1957) in the late 1930s for a particular case of layered fluid
currents, the most general and rigorous formulation being given by
H.Ertel (1904–1971) in 1942. Nowadays, the potential vorticity
conservation law is a cornerstone of atmospheric dynamics. Traditional
quasi-geostrophic governing equations (see also Phillips, 1963), which
are substantially due to J.G.Charney and A.M.Obukhov (1918–1989)
and govern nearly geostrophic large-scale atmospheric flows, have the
same complete set of adiabatic invariants, including quasi-geostrophic
potential vorticity (sometimes referred to as pseudo-potential vorticity)
conservation law, as the primitive, non-reduced, governing equations
possess. Definite ‘intermediate’ approximations to primitive governing
equations exist, which are to a certain extent more accurate than quasi-
geostrophic equations (see, e.g., Salmon, 1998) but they are less
universal (not so robust) and more difficult to solve. This is the reason
why only traditional quasi-geostrophic equations are systematically
exploited in Chapters 2, 3 and 5.

According to Noether’s theorem, basic space-time symmetries are
directly related to the conservation laws of the governing equations. The
unique standing fluid particle-relabeling symmetry property
corresponds to Ertel’s (1942) potential vorticity theorem, as is nicely
explained in Salmon (1998). Despite this issue being extremely
interesting and fundamental, the closely related Lagrangian viewpoint
on fluid dynamics will never be used in this book and more ‘pragmatic’
Eulerian approach is chosen.

6 M.V.KURGANSKY



One terminology remark seems to be necessary. In classical
Hamiltonian mechanics, adiabatic invariants are said be the quantities
which remain constant when the parameters entering the Hamiltonian
function very slowly, or adiabatically, change in time, as is explained in
ter Haar (1964) and Landau and Lifshitz (1973). Classical statistical
mechanics postulates that the total entropy of the system is well-
specified by the distribution of the system’s components between
allowed energy states. During the slow, or adiabatic, time changes in
parameters, any transition from one such state to another is restricted,
and the total entropy must be kept constant. The latter corresponds well
to the adiabatic approximation in thermodynamics, with conservation of
thermodynamical entropy.

The analogy between adiabatic invariants in atmospheric large-scale
dynamics and those in the frame of classical Hamiltonian mechanics is
appealing. Consider, for a while, slowly evolving in time, diabatically
and frictionally forced large-scale atmospheric motions which are
organized in such a way that the external factors in question nearly
annihilate the action of each other, namely the net force is much less
than each component taken separately. For such very slow, quasi-
equilibrium, atmospheric climate processes, adiabatic invariants could
continue to exist and might serve as informative constraints.

The majority of planets in the solar system, and some of their largest
satellites, have gaseous envelopes, or atmospheres. When studying the
atmospheric general circulation on a variety of nebular objects,
especially on the Earth-like Venus and Mars, one might expect to gain a
better understanding of atmospheric processes on our home planet,
particularly because this offers the unique possibility to verify the basic
fluid-dynamic and thermodynamic principles in a broader range of
control parameter changes than is ever achievable in the terrestrial
atmosphere, at least, in its current climate state. An illuminating
example of opening prospects of this sort was an attempt to extrapolate
the physical conditions accompanying ‘global dust storms’ in the
Martian atmosphere onto a prediction of global cooling in the Earth’s
atmosphere, namely the ‘nuclear winter’, as the result of a major
anthropogenic impact on it (see Boubnov and Golitsyn, 1995).

Similar words may be attributed to oceanography and the dynamics
of the Sun’s atmosphere. Despite striking differences in physical
properties between marine water, solar plasma and atmospheric air, it is
surprising that there is a lot in common between large-scale dynamics in
the Ocean, terrestrial and solar atmospheres. It is interesting that such
eminent experts in dynamic meteorology, as V.Bjerknes (1862–1951),
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C.-G.Rossby and V.Starr (1909–1976), were deeply interested in the
Sun’s atmosphere dynamics and made an important contribution to the
subject. A lot can be said for how detailed knowledge of a neighbouring
geophysical science and, moreover, personal experience of working in
it could enrich the intuition of a meteorologist and an oceanographer
and help them in their own specific research field. Numerous examples
from the history of our science, the life and scientific career of C.-
G.Rossby maybe one of the brightest (see Bolin, 1999 and references
therein), well confirm the last assertion.

A number of reasons and motivations, including some of those
mentioned above, facilitated the origination of a joint science,
Geophysical Fluid Dynamics (GFD), and dynamic meteorology, or
more specifically large-scale atmospheric dynamics, enters GFD now as
an essential constitutive part. Certainly, the forthcoming chapters are
addressed to meteorological fluid dynamicists, in the first place.
Nonetheless, the author would be glad if his colleagues from a broader
GFD community will find them interesting, too.

8 M.V.KURGANSKY



CHAPTER 1
Equations of Motion and Conservation

Laws

1.1
Equations of compressible fluid dynamics

Atmospheric motion is the flow of a compressible medium, i.e., the air,
the physical properties of which are close to those of a perfect gas.
Following A.A.Friedmann (1934), the dynamic equations for a
compressible fluid (gas) can be divided into two groups. The first
group, which we shall call the dynamic group, includes both Euler
equations to account for forces which act on fluid parcels and the
continuity equation. The second, thermodynamic, group consists of the
energy equation, the equation of state and those additional relations
between dependent variables which appear when writing the heating
terms.

In a chosen frame of reference the dynamic group of equations can be
written as follows

(1)

(1′)

Here v is the velocity vector, p is pressure, ρ is the fluid density; 
  is the symbol of a material time-derivative; F are the mass
forces, having the property that the magnitude of such a force acting on
a fluid parcel is proportional to its mass; F′ are the bulk forces with the
strength proportional to the volume of a parcel to which they are
applied.

The mass forces can be of three types: (i) potential forces F1
satisfying the equation  (ii) inertial forces F2 which appear



when a non-Galilean frame of reference is considered, and (iii) some
other non-potential forces F3.

In practical applications of compressible fluid dynamics one
customarily deals with the potential gravity force. In the field of
atmospheric dynamics the Coriolis force becomes the most important
inertial force. The reason is that the centrifugal force, having a
potential, can be incorporated into the gravity force as its component.
When  is the constant vector of the Earth’s rotation angular velocity,
the Coriolis force is determined by the relation  The proof of
this statement is given in numerous textbooks on basic mechanics, fluid
mechanics and dynamic meteorology, e.g., in Haltiner and Martin, 1957;
Goldstein, 1980; Pedlosky, 1987; Salmon, 1998. Non-potential mass
forces relatively rarely occur in practice and are not considered
hereafter. Nevertheless, many results presented in the monograph are
valid for a fluid motion subjected to mass forces of a general type.

The set of bulk forces F′, which act on moving fluid parcels, should
include the internal friction force, or that of fluid viscosity. This force is
mainly due to velocity shears and is called the Newtonian viscosity
force. Using the notation R, we write this force as

where η is the dynamic shear viscosity coefficient and ζ is the bulk
viscosity coefficient (Landau and Lifshitz, 1988). Using a well-known
formula of vector analysis, it is easy to obtain

Neglecting the fluid compressibility, which is appropriate in slow vortex
motion studies, we obtain a simple approximate formula 

A characteristic feature of Newtonian viscosity force is that it
vanishes for a fluid solid-body-like rotation, having the velocity field

 where  is an arbitrary constant vector and x is the position
vector of a fluid parcel. This follows directly from  and

 Moreover, Moreover, the field u is non-divergent, 
That is why the given expression for R is equally valid both in inertial
(Galilean) and uniformly rotating frames of reference if only in the
latter case v stands for relative velocit y. In certain situations, e.g., in the
case of shallow water currents, it is also helpful to introduce an external
friction force. This force R′ is assumed to have a magnitude
proportional to that of velocity but act in opposite direction:

R′=−η′

10 M.V.KURGANSKY



Here, η′ is the external friction coefficient, sometimes referred to as the
Rayleigh friction coefficient. In a more correct way, one has to re-write
this formula as

R′=−η′(v−u0),
where u0 is the translation velocity of an underlying rigid surface,
measured in the same frame of reference. External friction is essential
when studying the stability of large-scale atmospheric motions (see
Dolzhanskii et al., 1990, 1992). Related topics will be briefly touched in
Chapter 5.

Recent papers on numerical modeling of geophysical fluid flows
(e.g., Juckes and McIntyre, 1987; Larichev and Fedotov, 1988) often
apply an artificial viscosity of the type

(N=2, 3, …). In the course of the application of such a procedure, fine-
scale motions are effectively damped but large-scale spatial modes
remain virtually untouched.1

The continuity equation (1′) can be re-written in the form

(2)

A fluid is called fully incompressible if Dρ/Dt=0, i.e., the density of the
fluid is a material constant. From Equation (2) it follows that 
 v becomes a solenoidal vector.

Let us turn to equations of the thermodynamical group. We use the
first law of thermodynamics which states that energy and heat are
equivalent and can convert into each other. When a fluid parcel of unit
mass is in local thermodynamic equilibrium and is supplied very slowly
by small heat portions δq, this amount of heat is consumed, first, for the
increase of internal energy De and, second, for the work of fluid
thermal expansion  against the pressure forces, δa: δq=De+δa.
Assuming the thermal expansion process to be isotropic, from the

1This procedure is also referred to as ‘modified dissipativity’ or
‘hyperviscosity’ (see Frisch, 1998). In practical terms, it allows one to
overcome partially the deficiencies caused by the neglect of smallest spatial
scales, not properly resolved in any numerical atmospheric model; sometimes,
it also makes it easier to obtain theoretical results for dissipative atmospheric
flows, i.e., attractor dimension estimation, otherwise not easily achievable
(Dymnikov and Filatov, 1997).
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Pascal’s law it follows that δa= pDα, where α=ρ−1 is the specific
volume. If we introduce the specific, per unit mass, entropy s, such that
δq=TDs, where T is the kinetic (absolute) temperature, we can write

In what follows, it is more convenient to pass from a to pressure p as a
new variable and to introduce the specific enthalpy h=e+pα. With the
help of the latter, we use the second law of thermodynamics in the form2

Further on, we re-write this equation as follows

Here, cp=(∂h/∂T)p is the specific heat at constant pressure and (∂h/∂p)T
−α =T(∂s/∂p)T. We use the specific Gibbs’ potential (the free enthalpy)
g=h– Ts, such that Dg=−sDT+αDp. Equalizing the mixed second
derivatives ∂2g/∂T∂p and ∂2g/∂p∂T with each other, we obtain (∂s/∂p)T=–
(∂α/∂T)p. Based on this, we finally write down

(3)

where β=−ρ−1(∂ρ/∂T)p is the coefficient of fluid thermal expansion.
Fluid diabatic heating at a rate Q per unit volume results in the

change of entropy s according to the equation 

(4)

with the right-hand-side term, which is helpful to represent as

Here, λ is the fluid thermoconductivity coefficient and the term Q′
includes both the external diabatic heating (in the atmosphere, this is
primarily due to the absorption of solar radiation) and the warming due
to the viscous dissipation of the kinetic energy of fluid motion. By
combining Equations (3, 4), we shall have

(5)

2 Just after the entropy s has been introduced, we pass immediately from the first
to the second law of thermodynamics, the latter taken in its simplest (trivial)
form valid for thermodynamically reversible processes only.
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Let us consider the case of the atmospheric air. To close the system of
governing equations it is necessary to invoke an equation of state. This
is a functional dependence between thermodynamical variables which
does not include time explicitly and, thus, characterizes a fluid during
the entire period of its motion. For a baroclinic fluid with two
independent variables of state the equation we are looking for can be
written in a general form either as f(p, ρ, T)=0 or f′(p, ρ, s)=0, where f
and f′ are known functions. Many results to be obtained later are valid
for a general form of the equation of state. Nevertheless, keeping in
mind the desirable simplicity of the formulae, we assume that the
equation of state is given by the Clapeyron—Mendeleyev equation

p=ρRT. (6)
Here, R is the gas constant of the air, which is assumed to be dry, with a
constant mixing ratio of the gaseous components. Now, Equation (5)
takes the form

(7)

Equations (1, 2, 6, 7) form a closed system of governing equations for
atmospheric dynamics provided the heating rate Q is specified.

In liquids, because of their poor compressibility, the second left-hand-
side term in Equation (5) is very small compared to the first term. So,
with good accuracy

For most liquids (one exception is ordinary water at temperatures close
to 4°C), ρ−ρ0≈−βρ0(T−T0), where ρ0 is the density of a liquid at
standard temperature T0 and β>0. For this reason, we write, instead of
Equation (7),

In the absence of heating  The condition  of velocity
solenoidality replaces the continuity equation (2) for liquids.3

In the meteorology, the potential temperature θ=T(p00/p)k concept is
preferred instead of entropy s. Here, k=R/cp and p00=103 hPa. The
potential temperature is in one-to-one correspondence to the specific
entropy s=cplnθ+s0, where the exact value of an additive constant s0 is
not essential because s0 drops out after taking derivatives. In terms of θ,
Equation (7) could be re-written in a more concise form as
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By definition, θ is equal to that temperature T, which an air parcel
would attain if it were replaced adiabatically, i.e., without the heat
exchange with the ambient air, from its initial baric level p to the
reference pressure level of 103 hPa. For a perfect gas, the dynamic
equations governing the fluid motion could be written in a form more
beneficial for applications, with the help of θ and the Exner function
∏=cp(p/p00)k as a pair of dependent thermodynamic variables (Eliassen
and Kleinschmidt, 1957). Equations (1, 2, 7) become

Here,  is the specific, per unit mass, diabatic heating rate, Φ is
the gravity potential, F stands for non-potential forces including
viscosity, к= cp/cv is the ratio of specific heats at constant pressure and
constant volume, respectively.

With the account for the second law of thermodynamics, we write
Equation (1) in the following form

It is convenient to re-write this equation in the so-called Gromeka—
Lamb form (see Landau and Lifshitz, 1988)

(8)

where  is the absolute vorticity, i.e., the vorticity
measured in an absolute, or inertial, frame of reference. If we introduce
the Bernoulli function B=(v2/2)+h+Φ Equation (8) could be written in a
shorter form

We take the curl of this equation

3This is a nearly incompressible fluid approximation (see, e.g., Müller, 1995).
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and, using the well-known vector analysis formulae, arrive at the general
equation of three-dimensional vorticity vector transformation, which is
called the Friedmann equation in the Russian language literature4

(9)

A linear (by velocity v) operator acting on the  standing in this
equation on left-hand side was named by Friedmann (1934) the
Helmholtzian (helm) in honour of H. von Helmholtz. For an arbitrary
vector field A(x, t) one has, by definition,

In Friedmann (1934) the so-called shortened Helmholtzian

has been introduced and a remarkable vector identity has been proved

where f(x, t) stands for an arbitrary scalar function. In order to give a
proof, it is sufficient to write down a chain of equalities

4 This and further results have been established by a Russian mathematician and
physicist A.A.Friedmann in his PhD paper in 1922 and published as a
monograph in 1934. Friedmann is a world-known person for his seminal
contribution to cosmology. He was the first to derive a non-stationary solution
for an expanding Universe in the frame of Einstein’s general relativity theory.
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It is easier to perform a transition to the fourth equality sign if tensorial
notations are used. When the continuity equation (2) is applied, it is
easy to arrive at a formula helpful for subsequent calculations (Monin,
1990)

(10)

Friedmann (1934) proved a general theorem that helm A=0 is the
necessary and sufficient condition for the conservation of both vector
lines and vector tubes of an arbitrary field A(x, t).

When taken in their general form, the governing equations of
atmospheric dynamics are extremely complicated for handling. So, one
needs to incorporate certain approximations into them. Let us outline
three such approximations, as the most physically justified and widely
used: (i) adiabatic approximation, (ii) approximation of atmospheric air
weak dynamic compressibility (also used in the form of Boussinesq and
anelastic approximations (see, e.g., Zeytounian, 1991)), and (iii) quasi-
static approximation.

Modern theoretical studies of large-scale atmospheric dynamics
widely use a quasi-geostrophic approximation which, however, is
essentially more restrictive as compared with the above approximations.

16 M.V.KURGANSKY



At the very end of this section, it is necessary to say a few words
about the possible corrections in the atmospheric governing equations
that might appear due to the account for air humidity. An analogy
between moist air and sea salt water dynamics is rather often stressed in
the literature. Due to a high extent of solubility of different salts in
marine water, changes in their concentration along with the temperature
fluctuations directly control the dynamic oceanic processes via induced
perturbations of water density. This is the essence of the thermohalinity
effect. In a moist air the situation is quite different. The partial pressure
of water vapor is only 0.1–1% of the net air pressure, and the direct
impact of the air moisture on atmospheric dynamics (via corresponding
density perturbations, the moist air being a little lighter than the dry air)
is not very significant, except in the equatorial area. To be more
accurate, this impact is usually smaller than the contribution of
temperature fluctuations. So, the motion of a non-saturated moist air can
be treated as that of an effectively dry air, without a noticeable loss of
accuracy. The situation drastically changes when the moist air reaches
its saturation state and the effect of phase transition arises. This leads to
the release or, the other way round, absorption of the latent heat of
evaporation. This essentially transforms the atmospheric
thermodynamic parameters and influences the dynamics through their
changes. Here, Equations (1, 2) could be left unchanged with the
accuracy sufficient for most applications, but instead of Equation (7)
one could write

where m is the specific humidity of a saturated water vapor and Г is
equal to the ratio of the latent heat of evaporation L(T) and temperature
T. In the case of a non-saturated moist air, Dm/Dt=0, and Equation (7)
is valid again.

1.2
Adiabatic approximation. Potential vorticity

theorem

As it is appropriate in physics, a quantity c is referred to as conservative
(e.g., c is energy) if the following equation holds

(1)
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where j=vc+Nc and Nc is the non-advective part of the total flux of the
quantity c. The divergent form of Equation (1) excludes the existence of
internal sources and sinks of c. Using Equation (2) from Section 1.1,
Equation (1) can be re-written in equivalent terms as

(2)

When Nc≡0,

(3)

and in this particular case ĉ is referred to as a material constant. If
Equation (1) is integrated over a volume V fixed in space and bounded
by an impermeable surface, ∂V, then according to Gauss—
Ostrogradsky’s theorem it is easy to obtain

(4)

where n is a unit vector at the surface ∂V directed outward from the
volume V. If the right-hand side of Equation (4) vanishes, we arrive at
an integral conservation law

(5)

It is also possible to consider a material volume V as an integration
domain. In this case, it is more convenient to start directly from
Equation (2). By integrating the latter, we arrive at Equation (4) again,
and, consequently, at the conservation law (5), if the right-hand side of
Equation (4) vanishes. In the general case, when integration is extended
over a volume V(t) which may change due to its boundary surface
motion with velocity u(x, t), then for any function c(x, t) (x is the
position vector) we have the Leibnitz’s theorem5

Assuming c to be a conservative quantity, we start from Equation (1),
apply the Gauss-Ostrogradsky’s theorem in intermediate calculations,
and finally obtain
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The first right-hand side term vanishes in two cases mentioned above:
(i) an impermeable boundary surface, ∂V, fixed in space, when v=u=0,
and (ii) a material surface ∂V, with v=u.

Further on, an adiabatic approximation is considered when Q=0 in
Equation (4) of Section 1.1. As one diabatic heating component is due
to viscous dissipation, a fluid has to be ideal in order for the adiabatic
approximation to hold.

The existence of conservation laws is the fundamental property of
adiabatic approximation. Constants of adiabatic motion are named the 
adiabatic invariants. They can be either integral (5) or local (3). The
latter constants are often referred to as the Lagrangian invariants. In
meteorology, one thermodynamical local invariant is well-known for a
long time already and is widely used nowadays. It is specific entropy s
or, which is equivalent but more convenient, potential temperature θ.
Specific humidity m for a motion of non-saturated moist air is also a
Lagrangian invariant. Under definite circumstances, the concentration
of minor gaseous species is the material constant (3), too. For instance,
it could be the ozone concentration, the study of which currently attracts
particular attention in connection with the well-known problem of
‘ozone depletions’ over Antarctic and Arctic regions.

The importance of local invariants of the dynamic origin had been
realized in meteorology much later but just they play the central role in
it nowadays. A corner-stone is the strict hydrodynamic assertion by
Ertel (1942): in an inviscid compressible fluid subjected to potential
external forces, when an arbitrary function ψ of pressure p and density ρ
obeys Equation (3), the scalar product of the absolute vorticity  on the
gradient of ψ divided by the fluid density is the local invariant, i.e., the
following conservation law takes place

An important particular case of the application of this theorem is the
adiabatic motion of a perfect gas. Here, the Ertel’s invariant, following
his own pioneering paper, is traditionally expressed in terms of
potential temperature θ:

(6)

5Here, generally speaking, c can be any rank tensor, not only a scalar, as it is in
our case.
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The invariant I is named Ertel’s potential vorticity. In this Chapter,
when general compressible fluid dynamics theorems are formulated, we
shall set ψ=s because the entropy s has a more general physical content
as compared with the potential temperature. In Chapter 4, we shall
return to the potential temperature when discussing meteorological
implications. In oceanological problems the fluid compressibility can be
usually neglected. In this case, the water density ρ replaces the entropy
in Ertel’s theorem. The proof of Ertel’s potential vorticity theorem is
given in numerous textbooks on fluid dynamics and geophysical fluid
dynamics (e.g., in Kochin et al. 1964; Pedlosky, 1987; Landau and
Lifshitz, 1988; see also Schröder, 1988).

In the first immediate comment on Ertel’s (1942) paper by
Moran (1942) the potential vorticity conservation law was proved
illustratively (just in the way which becomes customary nowadays) by
using the Lord Kelvin’s (W. Tomson) circulation theorem along with
the mass conservation principle. Both of them are applied to a material
fluid element, ‘rolled’ within a layer bounded by two closely spaced
isentropic surfaces. This illustrative proof has been independently given
by Charney (1948). Hereafter, it is reproduced in a slightly modified
form proposed by Obukhov (1984). Two neighboring isentropic
surfaces with labels s and s′=s+δs are taken. Consider a cylinder ‘rolled’
within a layer between these surfaces, which leans on two reducible
closed material contours L and L′, lying on the surfaces ∑s and Σs′,
respectively. Due to Kelvin’s theorem, the velocity circulations 
 and  over the curves L and L′ are constant following the fluid
motion. Here v is the velocity vector and dl, dl′ are elements of the arc
around curves L and L′, respectively. Kelvin’s theorem is valid because
curves L and L′ lay in isentropic surfaces, with pressure and density
being in one-to-one functional dependence on each other. In this way,

Under adiabatic approximation δs is constant, and consequently

Along with this the mass of the cylinder is constant. The latter quantity
could be taken as

δM=ρσh(δs),
where σ is an average area encircled within the contours L and L′, and h
(δs) is an average distance between ∑s and ∑s′ inside the cylinder. That
is why
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We note that  Using Stokes’ theorem and taking the limit
case of δs→0, σ→0, one readily arrives at Ertel’s potential vorticity I
conservation law.

It could be seen that the potential vorticity is a pseudoscalar, i.e., it
changes its sign when a mirror transformation of coordinates is
performed. 

As a result, in the atmospheres over the Northern Hemisphere (NH)
and Southern Hemisphere (SH), respectively, the air parcels, which are
identical in all other respects, will have I-values of opposite sign. They
are positive in the NH and negative in the SH. However, setting of the I-
sign is the result of an agreement only and is based on the choice of the
positive direction for the vector of the angular velocity of the Earth’s
rotation.

Under the influence of diabatic heating and non-potential forces,
including friction, the potential vorticity transforms according to the
equation (Eliassen and Kleinschmidt, 1957; Obukhov, 1962)

(7)

which immediately follows from Equation (10) of Section 1.1 if we put
 and take into account that Friedmann’s equation (9)

from Section 1.1. can be identically re-written as

In the most general case of f=Ψ, where Ψ is an arbitrary function of
spatial coordinates and time, we arrive at the formula

(8)

In the absence of the last right-hand side term in Equation (8), i.e., for
an inviscid fluid subjected to potential external forces only, this formula
was discovered by Ertel (1942) and laid into the basis of his proof for the
potential vorticity theorem.

The potential vorticity concept enables one to distinguish strictly
between two general classes of compressible fluid vortical motion: (i)
flows with vanishing potential vorticity, when the vorticity vector is
tangent everywhere to isentropic surfaces and, as the result, vorticity
filaments lie on these surfaces, and (ii) flows with non-zero potential
vorticity, when the vorticity vector penetrates the isentropic surfaces.
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Motions of the first class could be introduced correctly only when the
right-hand side of Equation (7) vanishes simultaneously. An important
example is a two-dimensional, in the vertical plane, flow of a
compressible fluid with neglect of the background fluid rotation or,
more specifically, when the angular velocity vector of background fluid
rotation is horizontal. Air motion in the equatorial atmosphere belongs
to this case. Air flows of the first class are frequently met in
mesometeorology, and their analysis is important, e.g., for extra-short-
term weather forecasts, including the prediction of severe weather
events, like whirlwinds, squall-lines, tornadoes, rotating storms, etc.

Large-scale synoptic processes belong to the second class flows.
Here, the Earth’s background rotation plays a crucial role. Potential
vorticity sources and sinks are also important.

1.3
Vorticity charge (potential vorticity substance)

The potential vorticity equation can be derived based on the general
theorem for vorticity charge conservation in a compressible fluid
(Obukhov, 1962). To do it, we start from Euler’s equations (1) of
Section 1.1 written in a symbolic form

∂v/∂t=f. (1)
Here,  and all notations are explained in
Section 1.1. We take the curl of Equation (1)

(2)

and multiply scalarly Equation (2) by an arbitrary vector A obeying the
equation ∂A/∂t=G. According to a well-known vector identity, we have

(3)

Because the fluid background rotation vector  is constant, Equation
(2) can be identically re-written as

where n is an arbitrary integer. With account for this, Equation (3)
attains a more general form 

(4)
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Let us consider a special case of the application of the resulting
formula. In Equation (4), we put  where λ is an arbitrary
scalar field and ∂λ/∂t=H. As the result, we have

Further on, this equation is re-written in the form of the conservative
law (1) from Section 1.2

(5)

The most important choice for practical applications is that of n=1, λ= s
(p, ρ). Substituting the concrete form of f into Equation (5), performing
some identical transformations and omitting certain non-divergent terms
in braces in the left-hand side of Equation (5), one arrives at the
equation of vorticity charge conservation (Obukhov, 1962):

(6)

The vector of the total vorticity charge flux j can be taken in several
equivalent forms (Obukhov, 1962; Haynes and McIntyre, 1987;
Kurgansky and Tatarskaya, 1987)

(7)

where (÷) denotes the equality with the accuracy of a non-divergent
vector, and the notation  is used.

When a flow is adiabatic and subjected to potential forces only,
Equation (6) takes a form of the continuity equation (1) from
Section 1.1 with the accuracy of ρ to be replaced by  

Re-writing this equation as

and using the continuity equation, we immediately arrive at the Ertel’s
potential vorticity conservation theorem dI/dt=0,  the
latter quantity being interpreted as the specific vorticity charge density
per unit mass. Contrary to the term ‘potential vorticity substance’
(PVS), adopted by Haynes and McIntyre (1990), we prefer ‘vorticity
charge’ as suggested by Obukhov (1962). Among other things, the latter
term stresses an analogy between the fluid dynamic theorem on 
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conservation and the mathematical expression for electric charge
conservation in electrodynamics. As it is appropriate in physics,
potential vorticity I is referred to as an intensive quantity, similar in this
respect to the kinetic temperature T, and vorticity charge ρI as an
extensive, or additive, quantity. The total vorticity charge, contained in
a fluid volume V is expressed by the integral

According to Gauss—Ostrogradsky’s theorem, as vector  is solenoidal,

where n is a unit vector orthogonal to ∂V and directed outward from the
volume V. When the domain V can be contracted either into a point or
into a closed curve (in the latter case V is a torus-like domain) and is
bounded by a closed isentropic surface s=S0,

and there are exactly equal amounts of positive and negative vorticity
charge inside V, which annihilate each other (Haynes and McIntyre,
1987; McIntyre and Norton, 1990). If we have such a volume V
bounded by a closed isentropic surface Σ, and, what is more, there are
volumes Vi (i=1, …, n) which are cut-off from its interior and have non-
isentropic closed boundaries σi, the net vorticity charge can attain non-
zero values. An example is the entire Earth’s atmosphere as a spherical
shell bounded from inside by the non-isentropic Earth’s surface.

However, we could formally apply the vorticity charge conservation
theorem to the entire physical volume V, bounded by a closed isentropic
envelope Σ, if we assume that inner volumes Vi are filled with a certain
weightless substance. It is supposed that a substance inside each volume
Vi possesses a certain amount of vorticity charge Zi, the latter value
being quite arbitrary. The only requirement is that the sum of the
vorticity charge Z in a real fluid and of virtual vorticity charges Zi is
equal to zero: 

These speculations become more definite in the case of n=1. The
example of the Earth’s atmosphere as a spherical gaseous shell is such a
case. Our treatment is essentially topological, i.e., it disregards the
volume ratio  Tending this ratio to zero, we arrive at the case of
volume V with cut-off internal points where the singular vorticity
charges are placed. Now, the volume V, being bounded by a closed
isentropic surface, can accumulate non-zero vorticity charges. In the
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nature, it can happen when aerosols and water droplets are suspended in
the air.

1.4
Helicity

The generality of Equation (4) of the preceding section enables one to
formulate another fundamental conservation principle in fluid
dynamics, namely that of helicity, or kinematic helicity, to be
distinguished from magnetic helicity in magnetohydrodynamics,
determined as a scalar product of the magnetic field on the vector
potential (see, e.g., Lesieur, 1997).

In fluid dynamics, the helicity concept appeared for the first time in
connection with the problem of the construction of isoscalar surfaces Ψ
(x)= const, which should be orthogonal to fluid streamtubes of finite
cross-section (see Loitsyansky, 1973). By the definition of a
streamtube, the condition  has to hold for an arbitrary
function λ. Taking the curl of this equality, we obtain  and,
by necessity,  When the quantity  which is called the
helicity, is non-zero, such a construction is impossible. Meanwhile, let
us note that an arbitrary vector field A(x, t) with  is referred to
as a screwed (helical) field, and  is known to be the helicity of the
vector field A. 

We apply the helicity concept to the velocity vector field in non-
stationary fluid flows. Setting n=2, A=v, G=f in Equation (4) of
Section 1.3, we obtain

In the left-hand side of this equation, under the partial time-derivative
sign, one finds a quantity which generalizes the helicity concept onto
the case of background fluid rotation. We write this equation using the
explicit form of vector f:

Using the identities
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and the definition of Ertel’s potential vorticity I

we arrive at the equation of general helicity balance

(1)

A different procedure for the derivation of this equation was used in
Kurgansky (1989) which generalized a more specific relation
established by Hide (1989).

Now, we consider a special case of isentropic flow of a compressible
fluid (s=const). Here, Equation (1) takes the form

Using the identity

we re-write this equation as

It is possible to simplify the resulting equation in the case when there is
no background fluid rotation  and only potential forces are present
(F=0)
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We re-write this equation as

and eliminate the velocity divergence  using the continuity equation.
As the result, we have

(2)

Integration of Equation (2) over a material volume V gives

where n is a unit vector orthogonal to ∂V and directed outward the
volume V. When  i.e., no vorticity filament penetrates the
boundary surface, the invariant of helicity exists (Moreau, 1961;
Moffatt, 1969):

The invariant H is a measure of structural complexity of the velocity
field. For example, when there are singular vortex filaments inside
volume V, H characterizes the degree of their knottedness or linkage
(Moffatt, 1969). In the simplest case of two linked concentrated vortex
filaments with intensities Г1 and Г2, one has H=±2Г1Г2. It is possible to
prove this statement using quite simple arguments. The invariant H is of
topological origin and its numerical value does not change at any
continuous deformation of vortex filaments. Let us stretch one of them
to such an extent that it can be considered locally as a straight vortex
filament closed at infinity. The second vortex filament is transformed to
the circular vortex ring of radius R2 with the center posed in any point
of the straight vortex filament. The vortex ring should be in a plane
orthogonal to the straight vortex filament. According to the Biot-
Savart’s law, the tangent velocity induced by the straight vortex filament
at distance R2 is equal to v1=Г1/2πR2 and is directed according to the
right-hand screw rule. As a result, the corresponding contribution to H
is equal to ±2πR2v1Г2= ±Г1Г2. Here, the plus sign corresponds to the
case when the vortex filaments belong to the righthand screw system,
i.e., to the case when the circular vortex ring moves along the direction
of the vorticity vector for the straight vortex filament. The minus sign
agrees with the alternative case. Actually, the vortex filaments enjoy
equal rights. Replacing them, i.e., stretching the second vortex filament
and making the first one circular, of radius R1, we shall have the
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contribution ±2πR1(Г2/2πR1)Г1=±Г2Г1 to helicity H. Summing up, one
has H=±Г1Г2±Г2Г1=±2Г1Г2 which completes the proof.

In a non-isentropic fluid flow the helicity H loses its invariant
properties. Instead, it evolves in time according to Equation (1). If one
restricts himself to motions with vanishing Ertel’s potential vorticity I ≡
0, when all non-potential forces, including viscous friction, are also
absent (see Section 1.2), the helicity becomes the constant of motion
again.

The existence of the second, supplementary to energy, non-trivial
constant of motion essentially transforms the properties of the
barotropic fluid flows and grants a relative persistence to helical flow
structures. Examples are tornadoes, whirlwinds, horizontally oriented
vortex-like structures in the planetary boundary layer (‘cloud streets’),
etc. (Etling, 1985; Lilly, 1985).

Using the Lagrangian action W defined by the formula L=DW/Dt,
Equation (2) can be re-written as

Recalling Ertel’s general formula (8) from Section 1.2, we put Ψ=W in
it and take into account that  for a barotropic fluid.
Immediately, we have

and, thus, arrive to the material conservation law

(3)

discovered by Ertel and Rossby (1949). This material constant has
served as a predecessor for a set of Hollmann’s (1964) material
constants of the three-dimensional adiabatic flow of a baroclinic fluid.
Hollmann’s invariants have not found broad practical applications yet,
though they are regularly discussed in the literature (see, e.g., Diky,
1972; Egger, 1989). Here, we note that equation (3), along with the
above additional constrains on the topological structure of the vorticity
field, immediately results in the conservation of helicity H.

Meso- and small-scale atmospheric vortices, e.g., tornadoes,
whirlwinds, squall lines, are as a rule associated with high values of
helicity bulk density  This quantity has the dimension of
acceleration, so it is convenient to be measured in units of gravity
acceleration, g. In intense atmospheric vortices, |χ|~g by the order of
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magnitude. An appropriate helicity index is the so-called relative
helicity

i.e., the cosine of the angle between the velocity and vorticity vectors. As
a rule, in well-developed mesoscale vortices |σ|≈1/2. The maximum
possible value |σ|=1 is attained in the so called Beltrami flows when

 or, more generally, when  Here,  the
parameter λ being an arbitrary function of spatial coordinates and time.
In a stationary Beltrami flow not subjected to diabatic heating, the
Ertel’s potential vorticity vanishes identically

In aerodynamics, the Beltrami flow concept is used to describe the
genesis of vortices occurring at the edge of an aircraft wing
(Loitsyansky, 1973). In meteorology, under definite limitations, this
concept could be applied in order to describe the structure of intense
atmospheric vortices (see, e.g., Lilly, 1982; Slezkin, 1990; Bluestein,
1992). To understand the origin of these vortices better, more detailed
further analysis of both observational data and numerical and laboratory
modeling results is needed not only from the standpoint of such
customarily utilized characteristics as energy and vorticity, but also from
the viewpoint of helicity.

1.5
Energy and entropy of the atmosphere

The Earth’s atmosphere is found to be in a ceaseless motion. To support
it against dissipation a permanent feed of Solar radiation is needed. This
energy supply is measured in terms of the solar constant f=1,370±10
W·m−2. The Earth’s atmosphere absorbs only that fraction of the total
energy radiated by the Sun which is screened by the area πa2, a being the
Earth’s radius. Due to the diurnal Earth’s rotation this radiation is
diluted over the total Earth’s area 4πa2, so that the net solar radiation
flux is equal to  With the account for the Earth’s
planetary albedo   one arrives at a more accurate estimate of

 As a characteristic time rate of kinetic energy
dissipation into heat, we adopt the estimate D=5W·m−2 (Brunt, 1941).
Thus, the efficiency of the atmosphere as a heat engine is close to 2%.
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If, as recommended by Lorenz (1967), we use a later estimation of D=2.
3 W·m−2 by Oort (1964), we arrive at an approximately two times
smaller efficiency of ~1%. It is interesting to support such a ‘naive’
approach by a more thorough consideration of atmospheric energetics,
invoking the general principles of thermodynamics.

The energy balance equation

(1)

is a direct consequence of the governing equations of an inviscid
compressible fluid subjected to potential external forces only, when
there is no diabatic heating. Here, ρv2/2 is the kinetic energy bulk
density, ρe is the internal energy bulk density, and ρh is the enthalpy
bulk density. The gravity field, with potential Ф, is taken into account,
so ρΦ is the potential energy bulk density. As the Coriolis force is
gyroscopic, Equation (1) keeps its form both in absolute and rotating
frames of reference, with the accuracy of Φ to be replaced by

 When both viscous friction and diabatic heating are
present, the energy equation becomes

Vector-I describes the energy flux due to viscosity and has the
components −Ik=−viσik, where

is the tensor of viscous stresses. Here, tensorial notations are used and
the repeated indices denote the summing up. This equation incorporates
both the heat fluxes due to temperature gradients  where λ is the
thermal conductivity, and the fluxes −S of radiation being absorbed and
re-radiated by atmospheric gases and aerosol. The divergent form of the
energy equation excludes the existence of its internal sources or sinks.
The air is assumed to be efficiently dry, i.e., latent heating is
disregarded, although it could be essential at the lowest tropospheric
levels and especially in the equatorial troposphere.

Consideration of atmospheric energetics is associated with definite
specifics. Compressible air is subjected to gravitational forces, with the
gravity acceleration  being of significant magnitude. As the
result, large-scale atmospheric circulation systems are quasi-static

 and the atmosphere is stably stratified in the vertical
plane. Thus, the preferred direction exists which coincides with that of
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the action of the gravity force, and fluid dynamic equations lose their
primary symmetry. In the frame of a quasi-static approximation, for a
perfect gas without viscosity and diabatic heating, the energy equation
takes the form (Brunt, 1934; Van Mieghem, 1973)

(2)

Here, u is the horizontal component of air parcel velocity v. This is just
what is called the wind in meteorology. Further on,  is the horizontal
symbolic Hamilton’s operator, and z is altitude above the sea level. In
large-scale atmospheric circulation systems the vertical velocity w is at
least two orders of magnitude smaller than |v| (in fact, at mid and high
latitudes the former is by three orders of magnitude smaller than the
latter). Thus, Equation (2) is a very good approximation to Equation
(1). After integrating Equation (2) over the entire atmospheric volume,
we arrive at the conservation law for total atmospheric energy

(3)

Under a quasi-static approximation, for a dry air and in the absence of
mountains

∫∫∫gzρdτ≡∫∫∫RTρdτ,
and potential and internal energy terms in Equation (3) cannot change in
time independently but are rigidly linked by the ratio R/Cv. This
statement is also valid for individual air columns of infinite vertical
extent. So, the sum of potential and internal energy ∫∫∫cpTρdτ deserves to
be considered as a unified form of energy called the total potential
energy (Margules theorem). Actually, this is the total atmospheric
enthalpy. Due to what has been said above, the conservation law (3) can
be re-written in the form

(4)

Equation (4) is the basis for further discussion in this Section.
Still, the analysis of atmospheric energetics directly in terms of

kinetic energy (KE) and total potential energy (TPE) is not advantageous
by at least two reasons. First, these two components of the total energy
are incomparable in magnitude, KE being of the order of fractions of
one percent of TPE. Second, when using the KE and TPE concepts
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directly, it is impossible to gain a clear understanding of energy
conversion in the atmosphere. TPE converts into KE of large-scale
atmospheric eddies at the expense of the instantaneously occurring
sloping thermal convection in the atmosphere (ascent and simultaneous
poleward displacement of warm air parcels; descent and equatorward
translations of cool ones). Just the same amount of KE is dissipated by
viscosity and goes for the increase of TPE. This problem is discussed in
more detail in Lorenz (1967) and Van Mieghem (1973). That is why the
concept of available potential energy (APE) has become of great
importance for meteorology, and its use successfully eliminated both
these two difficulties. Nowadays, there are, at least, two main
approaches to the estimation of APE. The first approach proposed by
Lorenz (1955) is based on the construction of a mechanically stable
atmospheric state which corresponds to a minimum APE value. This
state is called the reference state. It is constructed by the adiabatic
rearrangement of air masses with the conservation of the total air mass
within a layer enclosed between two arbitrary isentropic surfaces. The
reference atmospheric state is barotropic, the air pressure being
uniformly distributed along the isentropic surfaces. From this it follows,
in particular, that the reference state is a state of comparison only but not
a really attainable atmospheric state. Available potential energy is
determined by the difference between the TPE values of the actual and
the respective reference states. Calculations show that KE and APE
become comparable in magnitude and, what is the most important, only
a small fraction of KE converts into APE via viscous dissipation. In
other words, because of viscous dissipation the sum of KE and APE
decreases, i.e., behaves as if it were the total atmospheric entropy taken
with the minus sign (Lorenz, 1967).

The second approach to the estimation of APE, more general from
the standpoint of thermodynamics, is based on the construction of a
reference state which is stable not only mechanically but also
thermodynamically. This reference state has the same value of total
entropy as the actual atmospheric state, and the physical process leading
to it could be treated as a sequence of idealized thermodynamical
Carnot cycles. The difference between the TPE values of actual and
respective thermodynamically equilibrium reference states can be called
the ‘atmospheric free energy’. This concept was first introduced by
Obukhov (1949) as a measure of temperature inhomogeneity in an
incompressible fluid turbulent flow. It is clear that the free energy
always exceeds the Lorenz APE by its magnitude. In fact, even in the
state with the vanishing value of the latter the atmosphere has a definite
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amount of free energy although it could not be directly converted into
kinetic energy. This can be done indirectly, e.g., with the help of a
thermocouple connected to an electric motor. That is why the free
energy concept overestimates the kinetic energy production as
compared with the Lorenz APE concept. On the other side, the resulting
estimate is thermodynamic. It means that the higher degree of kinetic
energy generation than it is predicted by the free energy theory is
impossible because in the opposite case it would contradict the general
thermodynamic principles.

Various aspects of the available potential energy theory, including
those to be discussed in the context of general thermodynamic
statements, are highlighted in Marquet (1991); a detailed historical
sketch of the problem is given starting from the works of the founders
of thermodynamics: Kelvin, Maxwell and Gibbs (see also pp. 33–54 of
Gibbs’ Collected Works (1928)).

The general approach to the problem of available potential energy is
simpler than that by Lorenz and we shall start with it. An account for
the rigorous formulation of the available potential concept after Lorenz,
which needs the usage of a special isentropic coordinate system, is
reserved for Chapter 4.

A starting point is the equation of the second law of thermodynamics
written for the case of a perfect gas

We divide both sides of the equation by temperature T and integrate it
over the entire atmospheric volume using a well-known Leibnitz’ rule
for the differentiation of integrals

We assume that after a finite time-interval TO the atmosphere reaches a
certain isothermal state reversibly, i.e., with the total entropy S=∫∫∫spdτ
preserved. During this transition, the heat exchange between air
parcels constituting the atmosphere and surrounding bodies (the Sun,
the solid Earth) is permitted. The only requirement is that after the
interval τ0 the S value must coincide with that for the initial state. It is
additionally assumed that in the final isothermal state the air pressure is
uniform over the Earth’s surface, when mountains are not considered. In
the presence of orography, the surface air pressure varies along with the
orography height according to the barometric formula. Denoting all the
variables corresponding to the final state by (*), we have
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∫∫∫cplnTρdτ−∫∫∫cplnT*ρ*dτ −∫∫∫Rlnpρdτ+∫∫∫Rlnp*ρ*dτ=0.
We assume that the initial state is quasi-static (the final state is by all
means hydrostatic), and transform two last integrals correspondingly as
∫∫∫cplnTρdτ−∫∫∫cplnT*ρ*dτ−∫∫∫Rg−1lnpdpdσ +∫∫∫Rg−1lnp*dp*dσ=0.

Using the atmospheric mass constancy ∫∫∫ρdτ=∫∫∫ρ*dτ, we calculate the
integrals in question denoting the surface pressure by p0:

(5)

where integration in double integrals is extended over the Earth’s
surface Σ.

We introduce the averaging operators both over the entire
atmospheric volume and the Earth’s surface, respectively:

Note that  because the atmospheric mass is constant. From
Equation (5), it follows that

According to Margules theorem, the total potential energy of the
atmosphere over the Earth’s relief of height z=h, where h is a function
of both latitude and longitude, is equal to

Without the loss of generality it is assumed that  In the final state

and as the result, the free atmospheric energy is given by the formula
(here, the condition of atmospheric mass constancy  is used once
again)
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Taking T and p0 in the form  and using a linearized
version of the barometric formula  valid with
the accuracy of the terms of the second order of magnitude inclusively,
we find that

(6)

Atmospheric free energy appears as the sum of two terms: (i) three-
dimensional energy which originates from the consideration of isobaric
processes (Obukhov, 1949), and (ii) two-dimensional energy which
characterizes the atmospheric air mass rearrangement in the course of
reconstruction towards the thermodynamically equilibrium state.

According to Pearce (1978), who introduced the concept of available
potential energy in a somewhat different way (under quadratic
approximation it coincides with the first term in Equation (6), see below
in more detail), we adopt that

and  Setting  and assuming the absence of
mountains, we take (72.0 hPa2)1/2 =8.5 hPa as the characteristic scale of
surface air pressure deviation from the mean value (Dobryshman et al.,
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1982). As the result, the ratio of the surface (without the account for
orography) and volume integrals is characterized by a factor of the
order of 10−3. Thus, when approximating the free energy in Equation (6)
by its first term, we obtain  which is roughly 20
times as large as the characteristic value of specific kinetic energy per
unit mass,  (Oort, 1964).

The ratio  specifies the fraction of the total potential
energy (total enthalpy) which could be spent on the generation of the
kinetic energy of atmospheric motions. According to the above data, ε≈
1%. This is consistent with the estimate of the atmospheric heat engine
efficiency derived earlier by means of the power arguments.

Now, we shall evaluate the increase in the total atmospheric entropy
S after the complete spatial uniformization of both temperature and
surface pressure fields (in the presence of mountains, pressure is
allowed to vary along with the mountain height according to the
barometric formula) provided the total energy

and the total atmospheric mass are constant. It could be written (all the
variables corresponding to the final state are marked by (**)) that

and, besides,  because the atmospheric mass is constant. As a
consequence of energy conservation law, we have

and, thus,
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(7)

if the terms squared in (T−T**)/T** and  are retained and the
linear version of the barometric formula  is used.

The problem of the relation between temperatures T** and  is easily
solved in the case without orography. Here, one has

On the other hand, by definition,  and  
 i.e., T** exceeds  by the value of 10−3 in relative units.

The temperatures T** and  are close also in the presence of
mountains, though it is not easy to determine the sign of inequality:

 When replacing T** by  in Equation (7), we obtain

(8)

where K is the kinetic energy of atmospheric motions. Under the
influence of irreversible factors (viscosity, thermoconductivity,
radiation exchange) the energy sum K+F monotonously decreases along
with the entropy deficit ∆S, the latter quantity being an integral
parameter which characterizes the deviation between the actual
atmospheric state and the ultimate state of complete thermodynamic
equilibrium (Dutton, 1973).

Further on, we shall discuss briefly Pearce’s (1978) approach to the
available potential energy problem. The starting point is to use both the
entropy equation

and the equation for the total atmospheric potential energy (without
account for mountains)
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Here, C is the rate of potential-to-kinetic energy conversion. A constant
quantity Θ, with the dimension of temperature, is introduced and the
linear combination

is constructed. Further on, this equation is integrated over time under
assumption that starting from an actual atmospheric state it is possible
to arrive at an isothermal atmospheric state with temperature Θ, after a
finite time-interval τ1

(9)

The constant Θ is chosen in such a way that  i.e.,

and, consequently,  i.e., The very idea of the choice of this
particular Θ is the resulting extreme simplicity of the first integrand in
the right-hand side of Equation (9)

where only  i.e., the deviation of the heating term from its
massaveraged value, plays the role. Thus, the net contribution to APE
generation is only due to diabatic heating unevenly distributed in space.
From this point of view, the dissipative processes create a quasi-uniform
heating background in space and, in fact, do not contribute to APE

FIGURE 1 Relation between characteristic temperatures Θ, T*, and T** in
atmospheric free energy theory.
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generation. Along with this, the total atmospheric enthalpy, determined
by the mean temperature  increases. A factor, which sets an upper
limit to  growth, is the outgoing infrared radiation of the atmosphere.
The corresponding radiative equilibrium temperature Te is determined
through the equation  (σ is the Stefan-Boltzmann
constant) and is equal to 255 K (see, e.g., Golitsyn, 1973), which is
close to  It is worth mentioning that on other planets of the
Solar system (on Venus and Mars) the temperatures  and Te are not
close at all. To explain this, special argumentation is necessary which is
beyond the scope of this book.

The left-hand side of Equation (9) takes the form

i.e., under quadratic approximation one has the same mathematical
expression for the free energy as in the frame of approach developed
before. The term

depicts the time rate of APE generation by diabatic heating. The relation
between different characteristic temperatures appearing in the theory is
shown in Figure 1. To the accuracy of neglected cubic terms one has

 i.e.,  According to Pearce (1978), Θ= 248
K and the value of T*, as we stated before, is between Θ and  It was
pointed out above that K≈0.05F, so with good accuracy

 A natural entropy unit is the
value of specific heat at constant pressure cp=1004 m2·s−2 K−1, so

. This non-dimensional factor is an indicator of intensity of
general atmospheric circulation. The dissipative factors tend to decrease
the entropy deficit, i.e., lead the atmosphere to the state of complete
thermodynamic equilibrium. Differential heating of the atmosphere by
solar radiation increases this deficit and, thus, enables the atmosphere to
escape from the ultimate state of ‘heat death’.

LARGE-SCALE ATMOSPHERIC DYNAMICS 39



1.6
Atmospheric angular momentum

Displacements of air masses over the rotating spherical Earth are
controlled by one of the most important principles in Newtonian
mechanics. It is the angular momentum conservation law. Dealing with
this topic, we arrive at the necessity to use the explicit form of
atmospheric governing equations written in spherical coordinates. We
start from the mathematical expression for the specific kinetic energy of
atmospheric motions relative to the rotation of a spherical coordinate
system at a constant angular velocity  with the poles situated in the
Earth’s geographic poles and with the origin of coordinates in the solid
Earth’s center:

(1)

Here r is the radius, υ is the co-latitude, λ is the longitude and the
wellknown expression for spherical metrics (the squared distance
between two infinitely closely spaced points) is used

(dl)2=(dr)2+r2(dυ)2+r2 sin2υ(dλ)2 (1′)
The point above the variables in Equation (1) denotes the material time-
derivative. The Lagrange equations are further written as (cf. Kochin et
al., 1964; Sretensky, 1987)

(2)

The spherical coordinates r, υ, λ play the role of generalized coordinates
qi (i=1, 2, 3) in classical mechanics, Φ is the gravity potential and F
stands for any non-potential force. Taking into account that the latter is
primarily the viscous force, we write it as if it were a bulk force (see
Section 1.1). Starting from Equations (1, 2) it is technically not difficult
to write down the Euler’s equations in rotating spherical coordinates.
We need only one of the three resulting equations. Longitude λ is the so-
called cyclic coordinate, i.e., it does not enter the spherical metrics (1′)
explicitly and the gravitational potential does not depend on longitude,
either. Consequently

We arrived at the equation for the axial component of the angular
momentum vector. Representing the atmosphere by a thin fluid film of a
thickness much less than the Earth’s radius a and introducing a zonal
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component of velocity uλ=asinυλ, we obtain the equation for the axial
component of the angular momentum in Eulerian variables

We integrate the resulting equation over the entire atmospheric volume

(3)

where dτ=a2sinυdυdλdz and z=r−a. In the presence of mountains (it is
assumed that large-scale orography is described by the equation z=h(λ,
υ), where h are the distances between the points lying on the Earth’s
surface and their projections onto a perfect sphere of radius a) the first
right-hand side term in Equation (3) is non-zero and equals to

To derive it, the rule of differentiation of integrals with variable
integration limits was first used. Secondly, the notation dσ=a2sinυdυdλ
is introduced for the area of an element of the Earth’s surface Σ, and
p0=p(λ, υ, h (λ, υ), t) stands for surface air pressure. Equation (3) can be
re-written in a more symmetric form

where both the surface pressure P0 and the mountain height h enter in
equivalent terms.

Variations of atmospheric angular momentum are caused, first, by the
orographic torque due to the differences between pressure pW and pE on
the western and eastern mountain slopes taken at the same altitude and
latitude. In particular, in the lee of meridionally oriented mountain
ridges (such as Rocky Mountains and Andes) overblown by westerlies,
one usually observes pressure troughs. Thus, the atmospheric wind
‘pushes’ mountains, and also the entire solid Earth, in the eastward
direction. In turn, mountains push the air in the opposite, westward
direction, i.e., damp the westerlies. Secondly, the variations of
atmospheric angular momentum are caused by the surface friction
torque.

Let us introduce a tensor of frictional stresses Tik (i, k=1, 2, 3) such
that Fi=∂Tik/∂xk, by definition. Using Gauss-Ostrogradsky’s theorem,
one has

LARGE-SCALE ATMOSPHERIC DYNAMICS 41



(4)

where the unit vector n is orthogonal to the Earth’s surface and is
oriented downward, beneath the ground. It is assumed that frictional
stresses vanish at the top of the atmosphere. The second integral in the
right-hand side of Equation (4) can be approximately taken at z=0 and is
used in the form −∫∫Tλdσ, where Tλ is the zonal component of frictional
stresses on the Earth’s surface. It is usually assumed that

where the numerical coefficient cD is determined on the basis of both
empirical and experimental data processing and is of the order of 10−3.
The values of cD depend on both the stratification of the atmospheric
boundary layer and underlying physical surface properties. For
example, cD=0.0013 over oceans (see Lorenz, 1967). In more detail, the
dissipative processes in the atmospheric boundary layer are discussed in
Chapter 5.

In the presence of mountains and under the action of surface friction,
we can speak of the conservation of the angular momentum for the
entire ‘atmosphere—solid Earth’ system

Here,  is the axial component of the solid Earth angular
momentum, and  is the corresponding principal
momentum of inertia (Barnes et al., 1983). Any variation of the
atmospheric angular momentum results in a change of the solid Earth
angular momentum, equal in magnitude but of opposite sign

Currently, the length-of-day (l.o.d.) Λ=2πΩ−1, averaged over 5 days, is
reliably measured by precise astronomical methods (see, e.g., Bureau
International de 1’Heure, 1979, 1980). Using the notation ∆* for l.o.d. Λ
deviations from the standard value Λ0=86400 s, one has, under a linear
approximation

Because the net atmospheric mass transport across latitudinal circles is
small, the atmospheric angular momentum variations are mainly caused
by the fluctuations of the relative angular momentum

M=∫∫∫uλasinυρdτ
determined by the zonal wind variability

42 M.V.KURGANSKY



δ∫∫∫Mρdτ≈δM.
Terrestrial atmosphere is observed in a state of super-rotation when air
parcels in their zonal motion (along latitudinal circles) leave the
Earth behind themselves. This occurs due to atmospheric baroclinity.
Air temperature decreases towards the poles in the main atmospheric bulk
but air pressure varies in the meridional direction in much smaller
extent. Resulting slopes between isothermal and isobaric surfaces can
persist only due to the action of the Coriolis force. This implies an
increase of the positive (eastward-directed) wind component uλ with
altitude (which is called the thermal wind) which, because surface
winds are rather weak due to viscous friction, leads to the positive
values of the relative atmospheric angular momentum with the
dominant contribution of the thermal wind. According to Sidorenkov
(1976), the estimate of the relative atmospheric angular momentum is
12.8×1025 kg m2·s−1. When divided by the total atmospheric mass mA=5.
3×1018 kg, it gives  If we imagine that the
atmosphere rotates like a rigid body and has just this value of relative
angular momentum, it would correspond to the equatorial air parcel
linear velocity  Thus, roughly speaking, individual
air parcels, leaving the Earth behind themselves, make one revolution
around the Earth per approximately 80 days.

Based on these estimates, let us calculate the decrease of l.o.d. in an
hypothetical case when large-scale air motion in the atmosphere ceases
and the solid Earth gains all the angular momentum the atmosphere had
before. Here,  It means that the length of year
would decrease by less than 1 s. With relative accuracy approaching 10
−8 (10−6%) for motions studied in dynamic meteorology, the Earth’s
rotation angular velocity can be considered as a constant, and the solid
Earth can be regarded as an angular momentum reservoir of infinite
capacity, thus invoking an analogy with thermodynamics where a
thermostat is treated as a heat reservoir of infinite capacity.

A more complete theory should take into account the vectorial
essence of the concept of the atmospheric angular momentum

i.e., the existence of two atmospheric angular momentum equatorial
components, in addition to the axial component (see Figure 2). The
consequences of the exchange of angular momentum between the
atmosphere and the solid Earth are not only l.o.d. changes but also
excursions of the geographic poles along the Earth’s surface. The
observed displacements of the rotation axis occurring within the limit of
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several meters correspond to relative variations in the magnitude of the
equatorial components of  of the order of 10−6. Account of these
problems is given in detailed papers by R. Hide and co-authors (Hide et
al., 1980; Barnes et al., 1983; Bell et al., 1991) which give impressive
examples of intercomparison between the coordinates of the
instantaneous Earth’s rotation axis computed with the help of
atmospheric General Circulation Models and the astronomically
observed coordinates. In these papers a reader will find a vast
bibliography on the subject.6

Treatment of the problem of temporal variations in the value of
atmospheric angular momentum is related directly to the fundamental
aspects of atmospheric energetics. In the absence of kinetic energy
generation the atmosphere would rotate together with the solid Earth
like a rigid body with a vanishing relative angular velocity. It would be
a state of the absolute  kinetic energy minimum of the ‘atmosphere—

FIGURE 2 Axial M1 and equatorial M2, M3 components of the atmospheric
angular momentum vector. When the atmosphere is represented by a thin film
of incompressible fluid, a rigid-body-rotation about axis 1 is described by a
stream function proportional to  a rigid-body-rotation about axis 2 by

 (λ=0 corresponds to the Greenwich meridian) and about axis 3 by
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solid Earth’ system, provided the total angular momentum of this
coupled system is a prescribed constant. Differential heating of the
terrestrial atmosphere by the Sun drives the atmospheric heat engine.
Due to this, the angular momentum is redistributed between the
atmosphere and the solid Earth and the former gains a positive relative
angular momentum (due to westerlies). The concept of angular
momentum can be directly incorporated into atmospheric energetics via
the concept of unavailable kinetic energy. This is the kinetic energy of
atmospheric rigid-body-like superrotation which, under the atmosphere
approximation as a thin fluid film, is determined completely by an
excessive, if compared to the state of relative rest, atmospheric angular
momentum. The latter value is close to the relative atmospheric angular
momentum. Specific (per unit mass) unavailable kinetic energy is
determined by the formula  (Kurgansky, 1981) where  is
the specific relative atmospheric angular momentum. If the intensity of
the atmospheric rigid-body-like rotation is measured in terms of the
linear velocity of air particles at the equator  then KM=(1/3)U2.
Kurgansky (1981) gave an estimate of KM for the Northern Hemisphere
on the basis of data available at that time. An annual mean KM value is
6–7% of the total kinetic energy. To date, much more detailed data on
the atmospheric angular momentum have appeared (see, e.g., Bell et al.,
1991) which, on the whole, confirm the accuracy of Kurgansky’s
(1981) estimate.

As it was stated above, in order for the atmosphere to keep positive
values of the excessive angular momentum it should have a permanent
supply of power W. Based on general physical arguments, Sidorenkov
(1976) suggested the use of the functional dependence  with x>0.
We can try to make the exponent x value concrete based on the concept
of unavailable kinetic energy. We estimate its viscous dissipation rate
by the formula  which results from the law of quadratic surface
friction resistance. Now, it follows that x=1/3. Estimates show that the
power required to support the atmospheric superrotation is several
percent of the total kinetic energy viscous dissipation rate.

It is necessary to remember that there is a mechanism for the
redistribution of angular momentum between the atmosphere and the
solid Earth which requires no purposeful power expenses. We mean
orography, the influence of which explains the major part of short-term

6More recently, the role of the equatorial components of the atmospheric angular
momentum was investigated in Bell (1994) and Egger and Hoinka (1999).
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atmospheric angular momentum fluctuations (with periods of few
days). Averaging Equation (4) over a sufficiently long time-period,
when orographic torque fluctuations due to the atmospheric weather
variability are smoothed, we arrive at the requirement of approximate
vanishing of the surface friction torque (small systematic terms which
account for the angular momentum seasonal course are also to be
retained)

(5)

It is possible to fulfill the requirements of Equation (5) only in the case
when the zonal wind uλ changes its sign somewhere on the Earth’s
surface. Atmospheric circulation satisfies this necessary condition in the
most rational way. Vanishing of uλ takes place at about 30–35° latitude
in both hemispheres. Between these critical latitudes we find the belt of
easterlies (trade winds). In mid and high latitudes, we observe more
intensive westerlies. The latter are stronger because the distance from
the Earth’s rotation axis is smaller there. Information on the details of
the atmospheric angular momentum budget and a summary of
theoretical ideas on the atmospheric general circulation can be found in
classical monographs by Starr (1966), Lorenz (1967), Palmen and
Newton (1969) and in more recent books by Peixoto and Oort (1992),
Wiin-Nielsen and Chen (1993), James (1994). Here, we only emphasize
that the budget of angular momentum should be carefully checked in the
course of numeric modeling of atmospheric circulation.

The requirements of atmospheric angular momentum conservation
law make it necessary to correct some statements in the previous section
which discussed problems of atmospheric energetics. In that piece of
text, where energetic isolation of the atmosphere is assumed to be
necessary, we should, generally speaking, also assume that the
atmospheric angular momentum is constant. Indeed, the assumption of
the frictionally caused exchange of angular momentum between the
atmosphere and the solid Earth contradicts the requirement of
atmospheric energy conservation. This is because a certain portion of
heat emanated in the course of kinetic energy viscous dissipation is
transferred to the solid Earth. Its future fate has to be inspected in a
special way taking into account the physical properties of the underlying
Earth’s surface, e.g., soil thermal conductivity, emissivity, etc. Now, the
ultimate state of complete thermodynamical equilibrium becomes a
state of rigid-body-like rotation which is fully determined by the value
of excessive angular momentum of the actual atmospheric state. As a
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consequence, in the main formula (8) from Section 1.5 the total kinetic
energy should be replaced by the difference K−KM. Following a
suggestion by Kurgansky (1981), the latter quantity could be named the
available kinetic energy (cf. Starr (1966)). Strictly speaking, the final
state of rigid-body-like rotation with non-zero excessive angular
momentum is dynamically incompatible with the existence of
mountains. A candidate for such a final state could be a stationary
solution resulting in the problem of the Earth’s relief overflow by an
isothermal air stream given the excessive angular momentum. One
possible difficulty is the non-uniqueness of such solutions.
Hydrodynamic stability requirements could serve as a criterion for the
selection of these solutions. 
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CHAPTER 2
Reduced Equations of Atmospheric

Dynamics

This chapter is devoted to the problems of simplification (reduction) of
the atmospheric fluid dynamic equations with the account of spatio-
temporal scales of the class of motions considered in the monograph.
When writing the first three sections, the author followed the ideas of a
classical paper ‘On the question of geostrophic wind’ by A.M.Obukhov
(1949a). In Section 2.1 the equations for a two-dimensional atmospheric
model are derived, primarily in a more general case than in (Obukhov,
1949a), i.e., taking into account the atmospheric two-dimensional
baroclinicity. After that, transition to the case of a barotropic
atmosphere is performed. Section 2.2 considers the barotropic
atmosphere motion, with infinitesimal deviations from the geostrophic
equilibrium state, and the problem of the adjustment of meteorological
fields. Particular attention is paid to the energetics of the adjustment
process. Section 2.3 reproduces a classical asymptotic procedure of the
derivation of nonlinear quasi-geostrophic equations for the case of a
barotropic atmosphere. Also, non-linear quasi-geostrophic equations for
a baroclinic three-dimensional atmosphere are briefly discussed (giving
only efficacious formulae), which are necessary for the following (see
Chapters 3 and 5). Section 2.4 considers non-divergent barotropic
Rossby waves on a rotating sphere; the author starts from nonlinear
equations of motion and treats Rossby wave harmonics as their exact
solutions. The fifth section touches upon the relatively recently raised
problem of spontaneous emission of waves and the derivation of an
evolutionary equation for the slow large-scale component of motion,
proceeding from the principle of wave emission minimum. This is of
interest in relation to the initialization procedure, which deals with
constructing a correct initial atmospheric state for weather forecasting.



2.1
Two-dimensional atmospheric models (‘shallow-

water’ approximation)

Below, we develop a procedure for reducing primitive atmospheric
dynamic equations to simplif ied two-dimensional equations. They are
attractive because of their simplicity, clearness, computational
cheapness and also their completeness in describing non-linear
atmospheric processes.

A system of atmospheric dynamic equations, taken under quasi-static
approximation and used in the form of conservation laws, is considered.
Thermodynamic processes are assumed to be adiabatic, and external
forces to have a potential. For simplicity of notations, Cartesian
coordinates are used with the x-axis directed eastward, the y-axis
oriented northward, and the z-axis aligned upward; u, v and w are the
corresponding velocity components. Thus, we start with the equations:

Here, l is the doubled vertical component of the Earth’s angular velocity
Ω (the Coriolis parameter).

The field-averaging operations over height are introduced:
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The averaged atmospheric dynamic equations take the form:

(1)

The impermeability condition w=0 on the Earth’s surface z=0 is used (in
the absence of orography) along with the assumption of the lack of
vertical fluxes of momentum, mass and energy at the upper boundary of
the atmosphere, z→∞. Let us clarify the meaning of the variables in (1):

is the two-dimensional air density mass proportional to the surface air
pressure;

is the two-dimensional density of potential energy.
We set   then   

 It is assumed that the atmospheric wind slightly changes with altitude,
i.e., thermal wind is neglected, the none hasapproximately 

  As a result, instead of the first three equations in (1) we
will have:

(2)

The resulting system is not closed, because the number of unknown
variables    exceeds that of equations by one. To close the system,
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we use the energy conservation law. When doing it, we apply the
identity

with u=(u, v), which is readily established by integration by parts.
Assume that the atmosphere is isentropic in the vertical, i.e., ∂T/∂z+g/
cp=0, then

Strictly speaking, a neutrally stratified atmosphere has the finite height
H0 =cpT0/g≈30 km, where T0 is the averaged surface air temperature.
Nevertheless, one may disregard this in all formulae and extend
integration up to infinitely large altitudes, if one defines the air density
field in such a way that ρ=0 at z>H0. According to the Margules’
theorem, one has

which, according to the above assumptions, leads to

Further on, it is not difficult to write down that 

As a result, we have

(3)

Finally, averaging the equation of state, we find that  The
equation for the kinetic energy of vertically averaged motion follows
from the first two Equations (2)

When combining the resulting equation with Equation (3), we shall
have
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where the symbol

for the two-dimensional material time-derivative is introduced. As a
result, we arrive at a closed system of equations of motion of a two-
dimensional, compressible, baroclinic fluid film in the field of the
Coriolis force, which was originally derived by Alishayev (1980):1 

(4)

Equations (4) differ from the purely two-dimensional equations (when
w≡0 in the entire atmospheric volume) in the respect that in the
thermodynamic equation one finds the quantity (2к−1)/к=9/7, instead of
the heat capacity ratio к=cp/cv=7/5>9/7, which holds for two-atomic
molecules of the gas of which the Earth’s atmosphere practically fully
consists.2 Thus, Alishayev’s model realizes a lesser degree of horizontal
elasticity of a fluid as compared with an ordinary two-atomic gas.
Correspondingly, a lower speed of sound is realized at the same
absolute temperature, this being due to the fact that Equations (4)
implicitly allow the vertical air motion.

Equations (4) may be deduced by a simpler method than that
demonstrated above if we recall that fluid dynamic equations could be
closed either by the energy equation or entropy equation (Landau and
Lifshitz, 1988, paragraph 49). It should be recalled that in meteorology
it is more convenient to use the potential temperature θ instead of the

1A two-dimensional baroclinic atmosphere model over the topography with
height h has been considered in Kurgansky et al. (1996). For that model, under
quasi-geostrophic approximation (see Section 2.3) it has been shown that the
energy integral coincides with the sum of kinetic and free energy (a specific
form of available enthalpy) from Section 1.5.
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entropy. From the adiabaticity condition Dθ/Dt=0, it follows after
averaging over height

We assume that the potential temperature does not change with altitude
 and get

Finally, we determine the functional dependence between variables θ, 
and 

(5)

with  Based on this, we arrive at the last Equation (4).
The formulated atmospheric model contains the effect of horizontal

baroclinicity, which has been taken into account in a classical paper by
Blinova (1943). What is the horizontal baroclinicity itself? It should be
recalled that a baroclinic fluid is a fluid with not coinciding equiscalar
surfaces of any two thermodynamic variables: p and ρ, p and T, etc.
When intersecting, these isoscalar surfaces generate families of
thermodynamic solenoids (tubes) which, according to the well-known
Bjerknes’ theorem (Haltiner and Martin, 1957; Haltiner and Williams,
1980; Pedlosky, 1987), determine the vorticity genesis in the

2 After averaging over height, the adiabatic index transforms according to the rule
к→к*=(2к−1)/к. Note that к*—к=(к—1)2/к > 0 and к*=к if and only if к=1, i.e.,
the process is isothermal. The transformation rule written above has a solution к
=f(m)=(2m+3)/(2m+1), where m is an integer. It means that when к =f(m), к* =f
(m+1). For instance, if к=5/3, к*=7/5 and if к=7/5, к*=9/7, and so on. We
conclude that the three-dimensional quasi-static dynamics of an m-atomic
gaseous atmosphere is reduced to the two-dimensional dynamics of an m+1-
atomic gaseous atmosphere. Suppose additionally that the gas molecular weight
µ and the gas constant R are the constants of the transformation in question:
R=R*. In this case, the specific heat capacity at constant pressure transforms
according to the rule: c=Rк/(к−1)→cp

*=R*к*/(к*−1)=R(2к−1)/(к—1). As the
result, cv

*=cp
*/к*=cp, the following statement holds: the total potential energy of

a three-dimensional quasi-static atmosphere after averaging transforms into the
internal energy of a two-dimensional atmosphere.
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atmosphere. When a family of horizontal planes cuts the solenoids in
question into cells of finite volume, this property is attributed to the
horizontal baroclinicity of the atmosphere. In the framework of reduced
Equations (4) the effect of horizontal baroclinicity appears as the lack of
coincidence between isolines  and  is why the model
is able to reproduce the genesis of vorticity in the atmosphere. For
instance, the problem of zonal flow baroclinic instability could be set
and effectively solved (Alishayev, 1980).3 Nevertheless, the physical
interpretation of the results obtained  provides certain difficulties,
mainly when it concerns small-scale perturbations. Theory predicts their
unlimited growth—something similar to ‘the ultraviolet catastrophe’ (in
the theory of black-body radiation) is observed. It is necessary to note
that the time rate of perturbation growth reaches saturation when the
spatial scale decreases, which makes the analogy not perfect. A more
correct account of the vertical baroclinicity of the atmosphere and the
allowance for the updraft and downset motions, supporting the
geostrophic balance, enables one to arrive at a qualitatively correct
baroclinic instability diagram of a zonal flow with no amplifying small-
scale perturbations (see Chapter 3).4

Fundamentally important results are obtained in a special case of a
barotropic atmosphere when the latter is horizontally compressible, but
the variables  and  are in one-to-one functional dependence. For
example, it is sufficient to demand that the atmosphere has a spatially
uniform potential temperature within its entire volume. We introduce a
barotropic potential as a new variable

After that, using a chain of equalities

we reduce Equations (4) to the system

3 A one-level non-divergent model of the atmosphere with horizontal buoyancy
which imitates the baroclinic effects has been developed by Tennekes (1977),
who gives a physical interpretation of the zonal flow instability mechanism
resulting in this model. The mean western zonal wind is maintained by thermal
forcing. Relatively warm (and light) air parcels deviate poleward due to the
Coriolis force, and relatively cold (and heavy) air parcels deviate equatorward.
This is the case of the so-called large-scale convection in the field of the
Coriolis force.
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(6)

Assuming c2 to be a constant quantity equal to c0
2, one arrives at a

system of equations written down by Obukhov (1949a)

(7)

Here c0
2=RT0 is the isothermal (Newtonian) speed of sound estimated

for the average surface air temperature value. Under real conditions, one
has T0 ≈288 K and c0≈280m·s−1. Let us perform the formal limit
transition to the case of incompressible fluid κ=cp/cv→∞ in Equations
(4). Instead of the last Equation (4) one will have

or

This is the model of incompressible but horizontally heterogeneous
fluid, when ρ=ρ(x, y, t). The height of the fluid free surface h=h(x, y, t)
is related to the bottom pressure p0(x, y, t) according to the equation
h=P0/ρg. The resulting system of equations formally coincides with the
equations for two-dimensional adiabatic motion of a perfect gas with

4Equations (4) have been obtained by averaging the three-dimensional,
quasistatic hydrothermodynamic equations over height, assuming that the
horizontal wind and potential temperature do not significantly change in the
vertical direction. This rough approximation disregards the coupling between
the horizontal and vertical components of motion resulting from the thermal
wind relation. Strictly speaking, Equations (4) should be considered as a
correction to barotropic equations, taking into account small effects of
horizontal inhomogeneity in the temperature field. Nevertheless, they give
surprisingly good results, as was already mentioned by Tennekes (1977). A
simple climate model constructed based on similar principles and successfully
applied for the global and regional climate peculiarities modeling is described in
Petoukhov et al. (2000).

LARGE-SCALE ATMOSPHERIC DYNAMICS 55



the polytropic index n=2 (cf. Landau and Lifshitz, 1988, paragraph 53).
The most fundamental is the case of a homogeneous fluid. Here, instead
of (5), one has

The result are the so called ‘shallow water’ equations 

(8)

The quantity

is an analog of the speed of sound in acoustics. In the framework of this
model, c has the simple meaning of the velocity of propagation for long
gravity waves (‘shallow water waves’). This velocity coincides with the
speed of sound propagation in the barotropic atmospheric model if the
condition gh=RT0 holds, i.e., the mean depth of the fluid layer in the
shallow water model is equal to the atmospheric scale height H0=RT0/g≈
8 km.

Subjecting the first two Equations (7) to cross-differentiation in order
to eliminate the potential  one has

where it is assumed that the Coriolis parameter l depends on the
latitudinal coordinate y. Writing down the left-hand side of this equation
and cancelling the similar terms, we obtain

Eliminating the two-dimensional divergence  from the
above written equation and the continuity equation, we arrive at the
equation of potential vorticity conservation

(9)

discovered by Rossby (1940) for the shallow water model (8), and later
obtained by Obukhov (1949a) for the barotropic atmospheric model (7).
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It looks as if the term ‘potential vorticity’ has been proposed by Rossby
and Obukhov independently of each other, most probably, by analogy
with the potential temperature. The ‘potentiality’ for the creation of
vorticity due to changes in the mass  of a fluid column of a unit
horizontal area is clearly expressed by formula (9). Equation (9) is the
fluid dynamic interpretation of the principle of angular momentum
conservation applied to a cylinder with vertical walls and the base area
σ, cut off from the fluid. In the course of fluid motion the mass of this
cylinder  is, first, time-constant. Second, the angular momentum
proportional to the product of vorticity (doubled angular velocity of a
fluid local rotation) on the inertia momentum of the cylinder is
conserved. It means that the ratio of the angular momentum to the mass
squared is invariant. This is just the potential vorticity conservation law.

In the framework of a simple model (7) the meaning of the vorticity
charge concept introduced in Chapter 1 becomes evident. If in a
Cartesian plane a material domain Σ is given, which is bounded by a
material closed curve, the vorticity charge of a fluid enclosed within Σ
is expressed by the integral

which coincides with the absolute vorticity flux across Σ. Invariant Z is
independent of the invariant of the mass of fluid

It is natural to attribute the potential vorticity value averaged over Σ to
the ratio Z/M.

An analogy exists between the dynamics of Ertel’s potential vorticity
on isentropic surfaces in a three-dimensional baroclinic atmosphere and
two-dimensional barotropic fluid dynamics, the latter being realized in
the case of a rapid background rotation. In the two-dimensional model
we are free from the necessity to account for the influence of baroclinic
factors which, though permanently present in the atmosphere, often play
an indirect role. This role mainly reduces to the generation of vortices
within narrow spatial and temporal intervals. In the framework of a
barotropic model this could be replaced by the action of some effective
external source of vorticity. On the other hand, when solving the
modern problems, withstanding the theory of atmospheric motion
predictability, the nonlinear dynamic processes adequately described by
equations similar to Equations (7, 8) happen to be the most important.
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A close analogy between the two-dimensional barotropic atmospheric
dynamics (7) and shallow water dynamics in the field of the Coriolis
force (8) had been made the basis of effective methods of modeling of
large-scale atmospheric processes using rotating laboratory setups
(Lorenz, 1967; Hide and Mason, 1975; Dolzhanskii and Golitsyn,
1977). The most delicate point is how to fulfil the requirements of the
criteria of similarity when performing such a modelling, particularly
with account for viscous dissipation.

2.2
Adjustment of fluid dynamic fields

Let us first consider a barotropic horizontally incompressible
atmosphere moving on an l-plane, i.e., when l=const. With the account
for the incompressibility of motion, the stream function  is introduced
such that   and the Coriolis force in Equations (7)
of Section 2.1 becomes a potential force, having the potential  As it
follows from the vorticity equation, the motion of such an
incompressible uniformly rotating fluid is dynamically indistinguishable
from that of a fluid without background rotation. The only difference is
that the potential  for a rotating fluid is related to that  for a non-
rotating fluid as

(1)
i.e., in the rotating frame of reference a strong linear dependence
between the pressure field and the velocity (stream function) field 
appears. We shall recall that the potential  satisfies Poisson’s equation

where J denotes the Jacobian operator. When the rotation is rapid, one
arrives at the equation of approximate geostrophic balance

(2)
which holds to the accuracy of the terms dropped out in (1). In fact, for
large-scale atmospheric processes, this is the accuracy of 10%. The
geostrophic wind equations 

are the direct consequence of Equation (2).
The geostrophic wind is directed along the isobars. In the Northern

Hemisphere, if one stands with one’s back to the wind, the pressure
increases in the right-hand side direction in order to compensate for the
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deflective Coriolis force (Buys Ballot law).5 For real air flows the
geostrophic wind equation is satisfied approximately. In this case, air
motion is called quasi-geostrophic.

Several general questions arise. Why the wind is close to the
geostrophic wind, nevertheless? How, taking into account the
atmospheric horizontal compressibility, one can explain the mutual
adjustment between the pressure and velocity fields? What will happen
further on, if the wind deviates from its geostrophic value at the initial
time? It is difficult to solve a non-linear, non-stationary problem, which
arises when one attempts to answer the above questions. It is possible to
consider a small part of the atmosphere with a slight imbalance between
the wind and pressure fields and to use the procedure of linearization of
governing equations.

The problem of the adjustment of oceanic (marine) fields had been
formulated by Rossby (1938), and in a one-dimensional case had been
studied by Cahn (1945). The most complete solution for the barotropic
atmosphere belongs to Obukhov (1949a). Account for the atmospheric
vertical stratification, i.e., for the entropy variations with height, does
not bring conceptually new difficulties into the adjustment problem. An
additional class of internal gravity waves appears, and the adjustment of
meteorological fields in the main bulk of the atmosphere occurs through
the emission of these waves. This takes place only after the vertically
averaged meteorological characteristics due to purely barotropic
mechanisms have been adjusted, and somehow lengthens the
adjustment process.

As a background atmospheric state we consider the uniform
geostrophic air motion with straight line isobars, along which air parcels
steadily move without acceleration  Averaging
symbols in the equations of the previous section will be omitted further,
and the background atmospheric state is marked by subscript ‘g’. This
state is superimposed by small perturbations u=ug+u′, v=vg+v′, ø=øg+ø′,
and lug =−∂ø/∂y, lvg=∂ø/∂x, the Coriolis parameter being considered as
a constant. Without the loss of generality, because of the Galilean
principle, it can be  assumed that ug=vg=0. Linear (with respect to the
perturbations) equations (7) of Section 2.1 take the form

5Professor Buys Ballot of Utrecht wrote in 1857: ‘If in the Northern hemisphere
you stand with your back to the wind, pressure is lower on your left hand than
on your right. In the Southern hemisphere the reverse is true’ (see Wallace and
Hobbs, 1977).
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(3)

We take divergence and curl operations from the first two Equations
(3), respectively:

When combining the second resulting equation with the third equation
(3), we arrive at the local conservation law

(4)

which stands for the linear version of the theorem on potential vorticity
conservation (see Equation (9) in Section 2.1). The conservation law (4)
has been obtained for linear equations only, but this is actually a much
stronger statement if compared with the potential vorticity conservation
law in a general nonlinear case. In a linear problem, there is eternal
local memory, and the initial values  are remembered forever.
The existence of the invariant  gives one a possibility to classify
the solutions of Equations (3) in a general way. There are, first,
stationary solutions of Equations (3) with non-vanishing field  and,
second, the wave solutions, for which  by definition.

With the account for the compressibility of motion we decompose the
velocity field onto the sum of solenoidal and potential components

where ψ′ is the stream function and φ′ is the velocity potential. The
divergence and vorticity equations are written as

A benefit of the transition (u′, v′)→(ψ′, φ′) is due to the fact that it is
possible to reduce the order of equations by ‘dropping away’ the
Laplace operator  from both their sides, because the solutions, being
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harmonic functions, are assumed to be regular at infinity. As a result,
we arrive at the equations

(5)

where the primes over the variables are omitted. Equations (5) contain
two classes of solutions. First, the stationary solutions which describe
the geostrophic balance between the velocity and pressure fields lψs=øs,
φs=0 (cf. Equation (2)). System (5) is degenerative for these solutions.
From the third equation (5) in a stationary case it follows that 
which is a simple consequence of the second equation. At the same
time, one of the variables, either ψs or øs, stays arbitrary. These
stationary solutions are characterized by non-zero values of the
invariant 

where L0=c0/l is some characteristic length-scale. Second, there are non-
stationary or wave solutions of Equations (5) which are gauged by the
condition of the invariant (4) vanishing

(6)

When such calibration is used, each variable ζw=(φw, ψw, øw) satisfies
the wave equation of Klein-Gordon type

(7)

which has a particular solution in the form of a harmonic wave

where k is the two-dimensional wave vector and σ is frequency, if and
only if the characteristic equation σ2=l2+k2 c0

2 holds. Thus, the waves
have the lowest limit frequency l, which coincides with that of inertial
oscillations.

One could arrive at Equation (6) more easily. We start from Equation
(4) and search for its wave solutions, with harmonic time-dependence
exp {−iσt}, the frequency σ being non-zero. Substituting this solution
into Equation (4), we get  As a ≠ 0, one has with necessity that
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Let us formulate the initial, or Cauchy, problem for Equations (5).
Assume that at the initial time, t=0, the hydrodynamic fields are
geostrophically balanced everywhere on an unbounded plane except of
some domain of diameter 2R much smaller than the length scale L0. In
this way, non-zero initial conditions

are specified inside a circle of radius R for the wave equation (cf.
Equation (7))

that results from Equations (5). We shall not write down the explicit
form of the solution of the resulting problem, referring the reader to the
corresponding mathematical literature (e.g., Courant and Hilbert, 1953)
as well as to the original paper by Obukhov (1949a). Instead, some
qualitative arguments, based on the energy conservation principle, will
be proposed, which lead to the same ultimate result. The reader eager to
study the adjustment theory at first hand, will find a reproduction of the
paper by Obukhov (1949a) in the book (Obukhov, 1988). A detailed
account of the results gained in the adjustment theory for the baroclinic
atmosphere could be found in the textbook by Monin (1990).

The energy conservation law for Equations (5) reads as

which, along with the regularity of solutions at infinity, results in the
total energy conservation

with an integration extended over the entire unlimited plane. We
decompose the hydrodynamic fields onto the sum of stationary and
wave components: u=us+uw, v=vs+vw, ø=øs+øw, with lus=−∂øs/∂y,
lvs=∂øs/∂x. In such a way, the energy is split onto three terms
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The second integral in this sum is transformed by integration by parts

Under imposed boundary conditions at infinity, it vanishes for an
arbitrary function ψs if and only if  Now, the energy is equal to
the sum of energies of the stationary and wave components: E=Es+Ew.
In our problem the energy of the wave component at the initial moment
of time t= 0 is concentrated within a circle of radius R. If A0 is the
amplitude of the function f(x, y, 0), then the estimate holds

As time goes on, Ew dissipates within a circle of gradually increasing
radius  Based on the energy conservation law (with the account
for Es= invariant), we shall have

which immediately leads to the conclusion that the amplitude of
velocity potential A(t) decreases in time according to the law 

The adjustment process is characterized by the time-scale τ=2R/C0. If
we take R=500 km and c0=280 m·s−1, then τ≈1 h. A more thorough
analysis shows that after a time of 3–4 h the geostrophic balance
between the fields in question is practically re-established inside the
domain with the initial filed imbalance. The wind field is uniquely
determined through the theorem on the conservation of 

(8)

One could arrive at condition (8) starting from a variational principle
proposed by Diky (1969). It is postulated that the adjustment process
occurs in such a way that the outgoing wave has the least energy among
all possible differences between the initial and the final stationary state.
The minimum of the functional
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is searched for by giving variations to the stream function ψs of a
stationary state, towards which the adjustment occurs. The first
variation δEw has the form

Integration by parts gives

Because the variation δψs is arbitrary, Equation (8) follows immediately
from the requirement that δEw =0. It is easily checked that Ew is
minimal when Equation (8) holds.

The equation

where δ(r) is a two-dimensional delta function, has the solution

(9)

which serves as the fundamental solution of Equation (8). With its help,
and based on a superposition principle, a general solution of Equation
(8) can be constructed, for an arbitrary function in its right-hand side

Using a well-known asymptotics for the McDonald function K0(r/L0)
valid at r>>L0, we shall have

Thus, scale L0 has the meaning of a radius of screening of a point
singularity in the field of invariant  In the Russian-language
literature, L0 is called the Obukhov’s synoptic scale, or Rossby-
Obukhov’s radius of deformation. In mid latitudes, L0≈3000 km. When
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r<<L0, or formally in the case of a two-dimensionally incompressible
atmosphere, with L0→∞, the Green’s function (9) transforms into ψ=(к/
2π) lnr, which refers to a concentrated (point) Helmholtz’ vortex in two-
dimensional incompressible fluid dynamics (Batchelor, 1967), being the
fundamental solution of the Poisson’s equation for a stream function
over an unbounded domain.

The concept of a singular geostrophic vortex (see Equation (9)) has
been laid into the basis of investigation on the dynamics of a system of
point vortices described by Kirchhoff’s equations, with the Hamiltonian
function containing −K0(r/L0) instead of Inr (see, e.g., Gryanik, 1983a).
When the baroclinicity effects are taken into account, the Rossby’s
internal radius of deformation L1=NH/l becomes essential. Here H=c0

2/g
is the scale height and N=10−2 s−1 is the Brunt-Vasala frequency, which
is the principal characteristic of the atmospheric vertical stratification.
For the Earth’s atmosphere, (L1/L0)2≈0.1. It is of interest to note that the
singular geostrophic vortices have been modelled in a laboratory
(Griffiths and Hopfinger, 1986).

The most important external similarity criterion for planetary
atmospheres is the ratio of a planet radius a to the scale L0, which
enables one to classify the planets of the Solar System according to the
types of general circulation of their atmospheres (Golitsyn, 1973). Earth
and Mars, with a/L0 ≥1, are moderate rapidly rotating planets. Here the
radius of the domain of influence of a point source in the potential
vorticity field is limited from above by the scale L0. Jupiter and Saturn,
with a/L0>>1, are rapidly rotating planets. Venus, with a/L0<<1, is a
slowly rotating planet, when the domain of influence of a point source
in the potential vorticity field is limited from above by the planetary
size.

In the framework of a laboratory experiment, modelling the
geophysical fluid flows, the external geometrical scale of a laboratory
setup, R, often plays the role of the planet radius a. For instance, it
could be the width of a channel if the experiment is carried out in an
annulus. In particular, when R/L0≤1, the flow patterns similar to the
motions observed in the Earth’s atmosphere are reproduced (see, e.g.,
Dolzhanskii et al., 1979). In these experiments the external scale R
determines the characteristic spatial scale of motion. When R/L0>>1,
one can expect that the laboratory experiment would reproduce the
characteristic features of atmospheric circulation on giant planets (see
Nezlin, 1986).

Adjustment of meteorological fields: an example. We have shown
that energy E could be split into the sum of energy of the adjusted state
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Es and wave energy Ew. Besides, energy is divided into kinetic and
potential energy. If at the initial time the pressure field is spatially
uniform, and the velocity field is determined by the stream function ψ0,
the initial potential energy is zero. If the radius of the initial vortex is
small as compared with Obukhov’s synoptic scale L0, the potential
energy P equal to the difference between the kinetic energies of the
initial and final states is approximately equally divided between the
adjusted state and the wave component. To prove it, we compose the
difference between the kinetic energies of the initial and ultimate states,
denoting the function of the latter stream as ψs:

Using the Green’s formula and the regularity of fields at infinity, we
shall have

The stream function ψs is determined by the equation

For motions with a spatial scale much smaller than L0 one has ψs≈ψ0
and

which proves the above statement. In this case the velocity field has
changed insignificantly, but the pressure field has been transformed
dramatically. Now, instead of the vanishing values ø0=0, one has

 Thus, the pressure field has been adjusted to the
velocity field. As the kinetic energy is one order of magnitude larger
than the potential energy, it is the pressure field that transforms during
the adjustment process. In this way, the smallest energy is spent for the
generation of the outgoing wave.

Consider a simple example when
ψ0(x, y)=A0J0(r/R), r2=x2+y2

.
Here J0 is the Bessel function of the zeroth order R<<L0 is the vortex
spatial scale and A0/R is the wind speed scale. The stream function ψs is
calculated simply as

Therefore
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On the other hand, the potential (elastic) energy of the adjusted state is
estimated by the integral

so that P≈2Ps.

2.3
Filtered (quasi-geostrophic) equations

In the previous section, we considered in detail the problem of the
adjustment of hydrodynamic fields for a barotropic atmosphere model.
In the framework of a linear problem the exact geostrophic balance re-
establishes at the expense of emission of waves transporting excess
energy to infinity. This process takes a time not exceeding the value τ~l
−1=104 s=3 h. Non-linear processes, as well as the effect of Earth’s
sphericity (the latter appearing in the form of latitudinal Coriolis
parameter changes, though weak, for spatial scales considered), being
ignored in such a treatment, permanently tend to turn the atmosphere
away from the state of exact geostrophic balance. However, the time
necessary for these mechanisms to work efficiently, is one order of
magnitude greater than the characteristic time-scale of the adjustment
process. From this point of view the latter is a rapid process. As the result,
the atmosphere never deviates noticeably from the adjusted state, and
the ratios of the geostrophic wind ‘work well’ to the accuracy of about
10%.

Thus, from the standpoint of physics there are two characteristic time-
scales inherent in our problem: (i) the fast time-scale τ which is the
characteristic time-scale of the adjustment process, and (ii) the slow
time-scale T due to the perturbative influence of both non-linearities and
beta-effect (as meteorologists call the effect of the variability of the
Coriolis parameter with latitude in fluid dynamic equations). Our
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further goal is to arrive at self-consistent equations for slow evolution,
with the characteristic timescale T, of adjusted atmospheric states.
Equations we are searching for should describe only the
meteorologically significant motions and not to contain (filter out) the
‘wave noise’.

First, it is necessary to reduce Equations (7) of Section 2.1 to a non-
dimensional form convenient for analysis. We would write these
equations once more, omitting all the symbols above the variables

(1)

We introduce the wind speed scale U, spatial scale L, slow time-scale
T= L/U and determine the dimensionless variables

The Coriolis parameter l varies with latitude y and has a characteristic
(average) value  which is used to determine the dimensionless Coriolis
parameter  The ø′-scale is estimated on the basis of the
geostrophic balance relation so that  When reduced to a
dimensionless form, Equations (1) become

(2)

Here, because U=10 m·s−1 and L=106 m for large-scale processes, the
small Kibel’—Rossby parameter  and the small parameter
of large-scale atmospheric compressibility 
appear. For motions with the spatial scale L comparable to the Obukhov’s
synoptic scale L0 the parameters ε and εβ2 are of the same order of
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magnitude. It is assumed that  where the variable λ is of the
order of unity, i.e., the Coriolis parameter λ varies by the value of εl
over the spatial scale L.

We seek the solution of Equations (2) in the form of expansion onto
powers of the small parameter ε: u=u0+εu1+…, v=v0+εv1+ …, ø′=ø′0 +εø
′1+…. The bar above the variables is omitted hereafter. In the zeroth
order of ε one has

(3)
i.e., the velocity field of the zeroth order of approximation is solenoidal
and has a stream function, which coincides with ø′0. Let us mention that
the system (3) is degenerative: the third equation is the direct
consequence of the first two equations and, simultaneously, one variable
remains arbitrary. It is convenient to assume that this is the function ø′0.
Further on, ø′0 is defined by the condition of resolvability of equations
for the first order of approximation on ε. This is the idea underlying the
quasi-geostrophic expansion. Starting from the resulting first
approximation equations it is easy to arrive at the vorticity equation

where

By eliminating the two-dimensional velocity divergence from this
equation as well as from the continuity equation taken at the same first
approximation, we get the closed evolutionary equation for the field ø′0
(x, y, t):

having the form of a material conservation law. Returning back to the
dimensional variables and introducing the geostrophic stream function
ψ=  we finally arrive at the theorem on potential vorticity
conservation in quasi-geostrophic approximation

(4)

where J denotes the Jacobian operator

Equation (4) has been derived by A.M.Obukhov (1949) in the neglect of
the beta-effect though a possibility of its account has been mentioned.
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Virtually at the same time, J.Charney (1948), using a scaling analysis,
established an equation very close to Equation (4). In notations used in
this Section, Charney’s (1948) equation reads as

That is why Equation (4) is often referred to as the Charney-Obukhov
equation.6 In fact, this is one of the fundamental equations of modern
dynamic meteorology and geophysical fluid dynamics, which is
definitely of everlasting theoretical significance.

It is the easiest way to derive the corresponding equation for the
baroclinic atmosphere, with the account for altitudinal field
dependence, by using isobaric coordinates, with pressure p becoming an
independent variable instead of altitude. Under quasi-static
approximation, the use of such coordinates (∂p/∂z=−ρg) greatly
simplifies the form of equations of motion and continuity. The
procedure of the transition to p-coordinates is thoroughly described in
(Kibel’, 1957; Thompson, 1961; Ryym, 1990). The idea is that for every
scalar function/the identity f(x, y, z, t)=f{x, y, p(x, y, t), t} could be
written down. By differentiating both of its parts with respect to the 
arguments x, y, z, and t, the relations we seek are easily derived. Below,
we give the equations of horizontal motion and continuity:

without derivation. Here, the geopotential height z(x, y, p, t) of an
isobaric surface becomes a dependent function. We should recall that gz
is named the geopotential and is equal to the amount of work which

6Ertel (1941) was the first to derive the equation 
which differs from Equation (4) by the absence of the term  which
accounts for the atmospheric large-scale compressibility. When deriving this
equation, Ertel (1941) deliberately neglected the horizontal wind divergence
term lD, because he assumed that for synoptic-scale motions magn (lD)=(10−1

−10−2) magn  though nowadays one might not agree with the lower
boundary of this estimate.
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should be performed in order to replace a unit air mass from the Earth’s
surface to a given baric level. Besides, w*=dp/dt (which is an analog of
vertical velocity) also becomes a dependent variable, and

is the symbol of material time-derivative taken along an isobaric
surface. All the derivatives with respect to horizontal coordinates and
time are taken at p=const but, as before, u and v remain the genuine
horizontal wind components. The thermodynamic equation is taken in
an approximate form, analogous to that used for simplification of the
continuity equation in the shallow water model

where c0
2=RT0 again. Here T0 is the average surface air temperature,

and the notation α2 is adopted for the baroclinicity parameter 
  is the dry adiabatic lapse rate) which, generally
speaking, is allowed to be a weak function of altitude (pressure) at the
expense of corresponding variations of values of temperature lapse rate
γ and temperature T averaged over isobaric surfaces. For simplicity, it is
assumed that α2≈0.1 is a quasi-constant.

Asymptotic expansion of the above written equations with respect to
the powers of the small Kibel’—Rossby parameter, practically
analogous to that made for the barotropic atmosphere, enables one to
arrive at the conservation law for quasi-geostrophic potential vorticity:

(5)

where the parameter m2=L0
−2α−2 has the dimension of a wave number

squared. The quantity L1=m−l is the internal Rossby radius of
deformation and its value is close to 106 m. The scale L1 has the
meaning of the radius of influence of a point singularity in the potential
vorticity field (a point ‘vorticity charge’). In the case of l=const, the
dynamics of the point vorticity charges is governed by equations given
in (Gryanik, 1983b), where the fluid motion stream function is
expressed through the Green’s function of a boundary problem which
could be posed for Equation (5). Equation (5) is written in terms of a
geostrophic stream function  It is of the second order with
respect to the variable p and should be supplied by the proper boundary
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conditions at the upper and lower boundaries of the atmosphere.
Customarily, it is assumed that

at p→0. There are more difficulties associated with the lower boundary.
Strictly speaking, the boundary condition has to be written at the surface
z(x, y, p, t)=0, specified by the solution itself, which extremely
complicates the problem. That is why, in practice, this condition is
approximately taken at the isobaric level p=P0, which in the best way,
e.g., in the least squares sense, fits the Earth’s surface. Now, from the
thermodynamic equation and the vertical velocity definition in p-
coordinates

under the condition of the Earth’s surface impermeability, and using
the hydrostatic equation in order to estimate ∂z/∂p at P=P0, the
following boundary condition follows

(6)

where the variable Θ is proportional to the deviation of the surface air
potential temperature from its value averaged over the Earth’s surface.

2.4
Rossby waves

Dynamic meteorology also uses more accurate approximations than the
quasi-geostrophic approximation. One of the appropriate methods to
improve the accuracy of quasi-geostrophic equations is to use a quasi-
solenoidal approximation, which results from the expansion of
dependent variables into asymptotic sets arranged with respect to the
powers of the Mach number squared. The principal part of the velocity
field becomes its solenoidal component u=−∂ψ/∂y, v=∂ψ/∂x. The
potential vorticity conservation law for the atmospheric barotropic
model, described by Equations (7) of Section 2.1, is reduced to the
relation

(1)

and the linkage between the fields ψ and ø is given by the balance
equation
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which appears, by the way, as the second approximation equation in
quasi-geostrophic expansion of Equations (7) in Section 2.1. The
relation between ψ and ø, equivalent to the linear balance equation, has
been established by Blinova (1943).

Equations of quasi-solenoidal approximation are valid both near the
equator, where the Coriolis parameter l is small and quasi-geostrophic
approximation fails, and in the extratropics, where the Kibel’—Rossby
number ε is small. In extratropics, Equation (1) holds with accuracy O
(ε2), the accuracy of the quasi-geostrophic equation being only O(ε) in
this case. However, the reconstruction of the velocity field starting from
the known potential vorticity q-distribution meets here with the well-
known mathematical difficulties (Bolin, 1955; Charney, 1955; Monin,
1972).

Mention should also be made of semi-geostrophic equations
(Hoskins, 1975; Blumen, 1981), where an increase in accuracy by one
order of magnitude is achieved as compared to the quasi-geostrophic
case (under the limitation of l=const), at the expense of coordinate
transformation according to the rule

(x, y)→(x+vg/l, y−ug/l),
where ug and vg are geostrophic wind components.7 This transformation
has been suggested by Yudin (1955).

The case of an incompressible atmosphere (c0
2=∞) is conceptually

much simpler. Here Equation (1) reduces to the conservation law for the
absolute vorticity vertical component, and it is not necessary any more
to consider the balance equation. In spherical coordinates, with the
poles situated on the Earth’s rotation axis, this equation takes the form

(2)

where  is the Laplace operator on the sphere (sometimes, called the
Legendre operator, which is the angular-dependent part of the true
Laplace operator), and the brackets denote the Jacobian operator

Here λ is the longitude, υ is the co-latitude (equal to π/2−ø, where ø is
the latitude), and a is the Earth’s radius.

In the absence of rotation, when Ω=0, Equation (2) is invariant with
respect to a group of arbitrary rotations of the sphere. Solution of
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Equation (2) can be represented by an expansion onto spherical
harmonics

where Pn
m are associated Legendre polynomials of the first kind. A set

of functions Yn
m with the fixed lower index n (degree) forms an

elementary state (subspace) of dimension 2n+1, which is invariant with
respect to a group of arbitrary solid-body-like rotations of the sphere.
Each point of this subspace corresponds to a Laplace operator
eigenfunction, with the eigenvalue −n(n+l)/a2. The simplest situation,
with n=1, corresponds to an ordinary three-dimensional space with
basis functions Y1

0, Y1
1 and Y1

−1. Every function from this space
accounts for a fluid solid-body-like rotation on the sphere about an axis,
which is arbitrarily directed respective to the spherical coordinate axes.
If this axis is directed along the axis of a fluid rotation, then the fluid
motion pattern is described by the spherical harmonic

If we take an arbitrary Laplace operator eigenfunction, which
obligatorily belongs to a certain elementary state, then it will be an
exact stationary solution of the Helmholtz equation (2), when Ω=0,
because of the well-known anti-symmetric property of Jacobian
operators: J(A, B)= −J(B, A). In the presence of background rotation,
these stationary solutions are ‘animated’, and the ψn-function, which
belongs to an elementary state with index n (with Yn

m as the basis
functions), gains an explicit time dependence

ψn=ψn(υ, λ−ωnt),
where

In other words, the entire pattern of isolines ψn=const starts to rotate, in
solid-body-like manner, with the angular velocity ωn, directed opposite
to the angular velocity Ω of the background rotation and proportional by
magnitude to Ω (vanishing simultaneously with Ω), and monotonically
decreasing along with index n increasing. We have obtained a solution
of atmospheric dynamic equations which corresponds to nonlinear
Rossby-Haurwitz-Blinova waves (Rossby et al., 1939; Haurwitz, 1940;
Blinova, 1943).

7 Later on, using Hamiltonian methods, semi-geostrophic equations have been
derived for a general case, free of limitation l=const (see Salmon, 1998).
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When the atmosphere rotates in zonal direction like a solid body with
an angular velocity αΩ, Equation (2) has the exact solution

where

Isolines  become stationary relative to the Earth’s surface
provided α=2/[n(n+1)−2]. That is why one can observe semi-permanent
centers of action in the atmosphere, which are the vast baric minima and
maxima occupying a stationary position over the Earth’s surface in the
presence of westerlies (Rossby et al., 1939).

In the most general case, when the vector of a fluid solid-body
rotation angular velocity is not directed along the vector  an exact time-
dependent solution of the Helmholtz equation on a sphere is pointed out
in Rochas (1986). As special cases, it contains all the exact solutions of
Equation (2), derived earlier in Ertel (1943) (see also references in
Kochin et al., 1964); Craig, 1945; Blinova, 1946; Neamtan, 1946;
Thompson, 1982; Verkley, 1984.

If the internal (Newtonian) viscosity is taken into account, one has to
introduce the term  into the right-hand side of Equation
(2). Here v is the coefficient of kinematic fluid viscosity. The
mathematical form of this viscous term is uniquely dictated, along with
the account of the differential operator order, by: (i) the requirement of
the viscous operator covariance with respect to the group of solid-body-
like rotations of a sphere (any polynomial of  satisfies this
requirement), and (ii) by the requirement that viscosity should not
influence the fluid solid-body-like rotation, i.e., the viscous operator must
vanish for every eigenfunction from the elementary state n=1.

Account for the atmospheric large-scale compressibility (c0
2≠∞)

results in a dramatic complication of the theory. A structure of small-
amplitude oscillations about the atmospheric state of rest is described by
eigenfunctions of the Laplace’s tidal operator, which are called the
Hough functions (Hough, 1898). In the general case these functions are
expressed in the form of infinite superposition of spherical harmonics
belonging to different elementary states. One can find a summary of
Hough function theory and their applications in Longuet-Higgins
(1968), Diky (1969), and also Lindzen (1990). We only notice that this
theory essentially includes the parameter γ=4Ω2a2/c0

2, which makes
Hough functions not universal, contrary to the spherical harmonics.8
Linear Rossby waves are the asymptotic (at γ→0) solutions of the
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Laplace’s tidal equation, under the simultaneous requirement that the
ratio of wave frequency to Ω remains finite.

2.5
Continuous (spontaneous) wave emission

We should distinguish between spontaneous emission of rapid waves,
accompanying continuous adjustment of meteorological fields towards a
more balanced atmospheric state, and emission as the result of
unbalanced initial conditions. The latter is the subject of the Rossby’s
adjustment problem considered in Section 2.2. In any case, the
adjustment process is accompanied with energy changes as well as with
air mass local redistribution. McIntyre and Norton (1989)9 have
proposed a general scheme of finding the balanced states, when the
potential vorticity field is known, which is based on the principle of a
minimum of spontaneous wave emission. It is worth mentioning that the
extrapolation of the well-known Lighthill’s aerodynamic theory of
sound wave generation (see, e.g., Crighton, 1981) to the case of non-
zero fluid background rotation needs additional studies. In connection
with this problem, an idealized example of spontaneous wave emission
by a pair of singular vortices within a rotating fluid is given at the end
of this Section.10

A nonlinear system of governing equations for the shallow water
model on a unbounded l-plane is considered:

These equations are re-written in equivalent terms

8 Negative γ=4Ω2a2/gh values (h is a dynamically equivalent fluid depth) must
be included in a complete calculation of the response of the atmosphere to
external forces (in the tidal theory).
9 The full publication of McIntyre and Norton (1989) results in the open
literature had been delayed until 2000 (see McIntyre and Norton, 2000). Below,
all the corresponding references are given to McIntyre and Norton (2000).
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where the notations

are used. Finally, introducing new dependent variables of vorticity ζ=
(∂v/∂x)−(∂u/∂y) and velocity divergence δ=(∂u/∂x)+(∂v/∂y), we consider
the problem

(1)

(2)

(3)

Here,  A
heterogeneous wave equation for the divergence δ follows from
Equations (1)–(3)

(4)

We split the velocity field into the sum of solenoidal and divergent
components:  The underlying idea is that
the resulting system would account for a slow temporal evolution of

10 The current status of the problem is characterized in Ford et al. (2000) (see
also McIntyre (2001). From this paper a reader will learn about conceptual
difficulties associated with the concept of ‘slow invariant manifold’. This is an
invariant functional subspace, on which the atmospheric dynamics is governed
by potential vorticity conservation principle solely, and the information on
potential vorticity field alone completely characterizes the atmospheric state,
without inertia-gravity waves. The paper cited contains an interesting discussion
of the issue of the impossibility for a strict slow manifold to exist, because of a
loss of time-reversibility property owing to inevitably present irreversible
spontaneous wave emission. From this viewpoint, our example of wave
emission by two point vortices, with an asymptotic limit state of no wave
radiation also deserves certain attention.
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dependent variables at the expense of time changes in 
occurring according to the equation

The quantity  is related to the deviation of the potential vorticity 
 from its reference value  described by the exact

formula  All the other fields must be expressed
diagnostically through 

The simplest way to derive the desired approximate equations, which
is the ‘first-order inversion’ by terminology adopted in McIntyre and
Norton (2000), has been proposed by Charney (1955) and consists in
the full neglect of the divergent velocity component as compared with
the solenoidal component. In other words, both divergence δ and its
first derivative with respect to time ∂δ/∂t are taken to equal zero. Instead
of Equations (2), we now have a nonlinear balance equation

This equation has to be solved together with the equation

where I(x, t) is a given function.
‘Second-order direct inversion’, proposed by McIntyre and Norton

(2000), consists in the use of heterogeneous wave Equation (4), in the
neglect of the divergence second time derivative ∂2δ/∂t2 in its left-hand
side:

(5)

Further on, this equation will be used instead of Equation (3).
Moreover, like in the ‘first-order inversion’, the first time derivative ∂δ/
∂t in Equation (2) is taken to equal zero:

Lynch (1989) has derived his ‘slow equations’ by neglecting the term
 in the right-hand side of Equation (5). McIntyre and Norton

(2000) have chosen another route. The local time derivative of velocity,
∂v/∂t, is replaced by an auxiliary diagnostical variable a, with the
dimension of acceleration, which is closely related to the ideas
suggested earlier in the framework of the initialization theory. Now,
Equation (5) takes the form
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In order to arrive at the closed system of equations, one needs to use
Equation (1) once more, also substituting a for ∂v/∂t there:

The proposed procedure can be generalized towards a ‘third-order
inversion’, etc. when the derivatives ∂2δ/∂t2, ∂3δ/δt3, etc. are taken to
equal zero but, at the same time, the non-vanishing values of the time
derivatives of a lower degree are taken into account. The method of
deriving these equations is rather simple. To arrive at a more accurate
approximation one needs additional time differentiations which increase
the formal order of equations. The emerging derivatives ∂v/∂t are
replaced in a regular manner with auxiliary diagnostic variables a1, a2,
etc. The scheme proposed in McIntyre and Norton (2000) does not
exactly conserve energy and momentum. Neither it allows the local
conservation of mass, because all these quantities vary in the course of
adjustment. Only the total atmospheric mass is constant. This procedure
had been tested for the shallow water equations over a hemisphere (the
problem was solved by the iteration method, using the inversion
schemes of both second and third order) and had shown a remarkably
good agreement with the results of direct integration of primitive
Equations (8) of Section 2.1. This indicates that the information
accumulated in the potential vorticity field is virtually exhaustive for
meteorological purposes.

From the standpoint of a refined fluid dynamic theory, two promising
directions for the development of the initialization procedure could be
drawn. The first direction is related to the use of the Hough function,
when initial fields are projected onto rotational Hough modes only.
These modes correspond to the Rossby waves in the asymptotic case of
incompressible atmosphere (see Section 2.4). Following the second
direction, the potential vorticity concept is applied, and initial fields are
concorded with the help of a routine of potential vorticity field
computation and subsequent inversion. Recently, in the course of a
practical realization of the initialization procedure, an integration of
governing equations with time-increments directed forward and
backward in time has been commonly used. Because of the
irreversibility of both diabatic heating and friction, one should introduce
a special correction to compensate for the systematic action of these
factors. A corresponding procedure is called the diabatic initialization.

Example of spontaneous wave emission. As a wave source, consider
two singular point vortices, with intensities Г1>0 and Г2>0, which are
separated at a distance 2a from each other and permanently rotate about
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the center of vorticity with the angular velocity ω=(Г1+Г2)/8πa2. The
validity of the system of inequalities is assumed

4πa2l≤Г1+Г2<<8πac0, (6)
which means that, on the one hand, the angular velocity of the rotation
of the vortices exceeds the vertical component of the Earth’s rotation l/2,
but, on the other hand, Mach number M=(Г1+Г2)/8πac0 is small, i.e., the
approximation of a nearly incompressible fluid is used.

Axial coordinates (r, υ) are introduced, with the origin of co-
ordinates being placed in the center of vorticity that lies on a straight
line connecting the vortices. At distances r~a the atmosphere can be
treated as horizontally incompressible. Outside the vortices, the vorticity
field is potential, the time-variable part of a velocity potential φ,
induced by the vortices, being given by the formula (see Milne-
Thompson, 1960; Batchelor, 1967)

(7)

valid at a<<r<<πc0ω−1.
At large distances from the vortices one has to account for fluid

compressibility and, therefore, for its background rotation. However,
the velocity field could be estimated under linear approximation. In a
wave zone, at r≥πc0ω−1, the velocity potential satisfies: (i) the wave
equation (7) from Section 2.2; (ii) the wave radiation condition at
infinity, and (iii) the condition of matching with (7) at r<< πc0ω−1, and
is given by the formula

Here H2
(2)(kr) is the Hankel function of the second kind and k2=(4ω2

−l2)/c0
2. A flux of energy, transported by waves at infinity across the

circumference of a circle of a sufficiently large radius R, is given by the
integral

where the asterisk denotes the complex conjugate. Using an asymptotic
of the Hankel function at kr>>1 and formula (5) of Section 2.2 which
gives the relation between ø and φ in the waves, one gets

(8)
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Without background rotation, at l=0, this formula has been derived in
(Klyatskin, 1966; Gryanik, 1983).

Power needed for wave emission is taken from the energy of
interaction of the vortices, E=−(Г1Г2/2π)ln2a, where a non-essential
additive constant is omitted. When losing energy, the vortices diverge
and the frequency ω=(Г1+Г2)/8πa2 of emitted waves monotonously
decreases. The maximum distance at which the vortices are able to go
away from each other is determined through the condition ω=l/2 and is
given by the formula 2ã=[(Г1+Г2)/π/]1/2. When going away at the
distance 2ã from each other, the vortices do not emit waves. Here the
interaction energy is minimum and is equal to  Thus,
the energy difference

characterizes the portion of the vortex interaction energy which is
available for the continuous wave emission in an inviscid fluid.

After introducing a new dependent variable ξ=(a/ã)2, the energy
conservation law d(∆E)/dt=−I may be written in the form of a
differential equation

(9)

Solution of Equation (9), satisfying the initial condition ξ(t0)=ξ0, is
given by the formula

(10)

where τ=2πc0
4/Г1Г2l3 appears to be the characteristic time-scale of the

vortex system transformation due to wave emission. The time interval τ
is extremely large as compared with l−l. In the simplest case of Г1=Г2=Г,
τ=(L0/ã)4/2πl. Here, L0 is the Obukhov’s synoptic scale. In particular,
τ≈12 days for Г=4πα2l, with ã2=2a2 and L0=10ã. According to Equation
(10), the square of the distance between the vortices increases initially
(when ξ<<1) following the law (cf. Klyatskin, 1966)

(11)

and at the final stage, when ξ→1–0, according to the asymptotic
formula

(1−ξ)−2≈t/τ. (12)

From the function ξ(t) found, it is not difficult to calculate the temporal
behavior of power emitted by the vortices
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According to Equation (11), at ξ0<<ξ<<1, one has I≈(1/12π)Г1Г2t−1, and
when ξ→1, I≈(1/8π)(Г1Г2/τ)(τ/t)3/2, in resemblance to Equation (12).
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CHAPTER 3
Hydrodynamic Instability of

Conservative Motions

This chapter addresses the problem of large-scale atmospheric motion
instability. As a bedrock, the method of non-linear stability analysis
with the help of adiabatic motion constants is used. This method
proposed by Arnol’d (1965) appears to be a generalization of the well-
known Lyapounov’s method in the theory of basic stability for the case
of fluid dynamics. Problems of atmospheric motion instability are
elucidated in more detail in special monographs (Diky, 1976; Drazin
and Reid, 1982; Dymnikov and Filatov, 1990; Shakina, 1990) and also
in Gill (1982), Pedlosky (1987), Lindzen (1990), Monin (1990),
Bluestein (1992), Holton (1992), Cushman-Roisin (1994), and other
textbooks.

3.1
Barotropic instability

To clarify the essence of the forthcoming arguments, consider, first, a
simple example of the force-free motion of a solid body with a unique
fixed point, which coincides with the position of the center of mass.
Such a motion is described by the Euler’s equations (see, e.g., Landau
and Lifshitz, 1973)

(1)



Here Ii (i=1, 2, 3) are the momenta of inertia relative to the principal
axes xi of the solid body; ωi are the angular velocities of rotation about
xi. For definiteness, it is assumed that I1>I2>I3

Equations (1) possess two independent constants of motion: (a) of
energy

and (b) of angular momentum squared

Note that Equations (1) describe an inviscid homogeneous fluid motion
inside an ellipsoidal cavern, which is called the hydrodynamic gyroscope
(Gledzer et al., 1981; Obukhov, 1988). In this case, the constant M2 has
the meaning of a sum of squares of fluid velocity circulation about
principal ellipsoid cross-sections. We should also point out that the
maximum simplified dynamic equations for the barotropic atmosphere,
in the neglect of the beta-effect, could be reduced to Equations (1)
(Lorenz, 1960). In this case, M2 stands for the averaged value of the
vorticity squared (enstrophy).

A steady (permanent) rotation about any principal axis of inertia,
having an arbitrary angular velocity magnitude, is an equilibrium state
of the system described by Equations (1). These permanent rotations
appear to be simple analog of the atmospheric zonal circulation. It is
convenient to introduce the angular momentum components Mi = Iiωi,
then the first integrals of Equations (1) are re-written in the form:

(2)

(3)
In Mi-coordinates, Equations (2, 3) describe the surface of an ellipsoid
with semi-axes (2EIi)1/2 and a spherical surface of radius M,
respectively. In the course of motion, the edge of the M-vector slides
along the line of intersection of these surfaces. Evidence of this
intersection is provided by the inequalities 2EI3<M2<2EI1.
Geometrically, this means that the radius of the sphere is of an
intermediate value with respect to the minor and major ellipsoid semi-
axes. In two particular cases, when M2=2EI1, 2EI3, the sphere and the
ellipsoid become tangent in the points lying on the minor or major axis,
respectively. These cases correspond to the dynamically stable
permanent rotations of the gyroscope about the axis, corresponding to
the maximum and minimum momenta of inertia, respectively. In the
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case of small deviations from these stationary states, the edge of the M-
vector will move along certain closed curves, which in the infinitesimal
limit are the ellipses, encompassing the axes M1 and M3 in the
neighbourhood of corresponding poles of the ellipsoid. This explains
why these permanent rotations are stable. In the case of M2=2EI2, the
ellipsoid and the sphere intersect along two circumferences of a big
circle crossing each other in the poles of the ellipsoid lying on the M2-
axis. This relates to the unstable permanent rotation about the middle axis.
In the case of small perturbations, the trajectories of the M-vector edge
become hyperbolae and pass away onto large distances from these
points.

Thus, qualitatively, using visual geometric arguments (cf. Landau and
Lifshitz, 1973; Gledzer et al., 1981) it has been proven that for a
permanent gyroscope rotation to be stable, it is necessary and sufficient
that energy has an extreme value on the surface, M2=const. Let us prove
this statement more strictly, so much so that the arguments given below
will prove convenient in further discussions of more sophisticated
problems of hydrodynamic stability.

Let us assume that the extremum of energy E is sought on condition
that M2=const. The Lagrange’s method of undefined multipliers is used,
and a linear combination of the constants of motion I=E+λM2 is
composed. Here, λ is a undefined constant multiplier and we seek the
absolute extremum for the following expression

in the assumption, which does not restrict the generality, that this
extremum is achieved for a permanent rotation about the x1-axis. Now,
one has  For a perturbed motion, we have 

 We decompose I onto a series, which is a
finite sum for this particular case, arranged according to the powers of
small perturbations of the δMi magnitude:  where

 and  In order for I to have an
extremum when  it is necessary that the first variation δI vanishes:

 Because of this, λ=−1/(2I1) and 
simultaneously. We write the second variation, using the λ-value found
above:
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In the cases of a permanent rotation about the axis with the minimum or
maximum momentum of inertia the second variation has a definite sign,
i.e., the extremum is actually achieved. Let us prove that these
permanent rotations are stable. Suppose for definiteness that the second
variation δ2I is positively defined and I1>I2>I3. We have I=(1/2)δ2I, and
δ2I is also a constant of motion. If we take  as a
measure of deviations from a stationary state, we immediately have

where c1=I3
−1−I1

−1 and c2=I2
−1−I1

−1. Let us choose an arbitrary constant
quantity ε>0. Assume that  at an initial time-instant t=t0.
Consequently, δ2I ≤c2δ(ε). However, δ2I is a constant of motion, so
δ2I≤c2δ(ε), and  for any finite time-instant t=t0+τ, τ> 0. It
is sufficient to choose δ(ε)=(c1/2c2)ε in order always to have 
which means stability in the Lyapounov’s sense (Chetaev, 1990;
Dymnikov and Filatov, 1990). We have proved the stability of a
permanent rotation about the shortest axis, with the largest momentum
of inertia. To establish the stability of a permanent rotation about the
longest axis, one should simply consider −δ2I, or |δ2I|, and perform the
same steps as above.

Instability of a permanent rotation about the middle axis is proved
with the help of the function V=δM2δM3. For definiteness, it is assumed
that I3 <I1<I2. Variations of δMi obey the equations (cf. Equation (1))

so, for function V one has

Choosing initial perturbations to have V=V0>0 at t=t0, one arrives at dV/
dt>0  This means that a positive constant L>0 can be
found, such that dV/dt≥L. That is why V≥V0 +L(t−t0), i.e., however
small the initial value V0 is taken, after a sufficiently long time-interval
t− t0, the magnitude of V will exceed any a priori given value of ε. The
latter means instability (Chetaev, 1990).
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After such an introduction, consider a two-dimensional barotropic
model of the atmosphere over the spherical Earth, which is governed by
the equation of conservation of absolute vorticity η, taken under quasi-
solenoidal approximation (see Section 2.4)

(4)

Here ψ is the stream function

J denotes the Jacobian operator

written for two arbitrary functions A and B; λ is the geographic longitude
and υ is the co-latitude.

We proceed from the expression for the axial component of the
atmospheric absolute angular momentum in terms of unit mass of an air
column positioned over a unit area of the Earth’s surface

Integrating by parts we find that

This is an analog of the well-known two-dimensional fluid dynamics
formulae for the Cartesian components of the fluid momentum
(Batchelor, 1967). The conservation law

FIGURE 3 Examples of plane unidirectional flows for which Rayleigh’s
criterion on hydrodynamic stability holds (a) or does not hold (b), respectively.
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where Φ is an arbitrary function, also holds for Equation (4).1
We seek the extremum of M provided that F=const (cf. Fjortoft,

1950). For this, we find the absolute extremum of a functional I=M+F.
The conditions for the extremum of I are the vanishing of the first
variation δI=0 and the definite sign of the second variation δ2I. From the
necessary extremum condition

it follows that the vorticity field η may be only zonal, if taken in an
‘extremum point’. As it is seen from the formula for the second
variation 

the angular momentum M is extreme, if η(υ) is a monotonic function.
This means stability after Lyapounov for such a zonal flow. In such a
way, we arrive at Rayleigh—Kuo’s criterion for barotropic stability
(Kuo, 1949; Rayleigh, 1880; see also Diky, 1976).

In the case of no background fluid rotation (Ω=0), in order for the
instability to occur it is necessary that at least one inflection point exists
for the angular momentum density profile

m(x)=−(1−x2)(∂ψ/∂x),
where x=cosυ and 2πa2m(x)dx is the angular momentum of an air ring
enclosed between two latitudinal circles x=const and x+dx=const. For a
plane, unidirectional shear flow, the stability criterion is formulated in
terms of the lack of inflexion points in the velocity profile (Rayleigh’s
(1880) criterion, see also Arnol’d (1965) and Lin (1966)). Examples of
velocity profiles for which the Rayleigh’s criterion holds or does not
hold, respectively, are shown in Fig. 3. In this context, we should note
that the instability of a permanent ellipsoid rotation about a middle axis
is an analog of the instability of a plane unidirectional shear flow with
an inflexion point in the velocity profile.

When we study the stability of mean non-zonal flows, i.e., of a
harmonic Rossby wave of a finite amplitude, which is an exact
stationary solution of non-linear Equation (4) in an appropriate co-
moving reference system, it is necessary to invoke additionally an
energy integral

1In modern literature, the latter constants of fluid motion are often referred to as
Casimir functionals or simply Casimirs (cf. Salmon, 1998).
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and to construct the Lyapounov function, starting from a linear
combination of constants of motion E+UM+F, where U is a Lagrange
multiplier of velocity dimension.

Curiously, it is possible to suggest an alternative method for deriving
the Rayleigh—Kuo’s criterion if the absolute vorticity η is used as a
latitudinal coordinate and the latitude of an isoscalar line η=const is
taken as a dependent variable. When doing this, it is convenient to pass
to the variable x=cosυ. Now, the formula for the atmospheric angular
momentum takes the form

It is assumed that non-zonal perturbations are so small that the
monotonicity of the absolute vorticity η with latitude, which is
necessary to assume in order for such a variable transformation to be
justified, is not violated anywhere. The following averaging operator
along the isoscalar lines η=const is introduced:

In the framework of a conservative problem, one has  In fact,
the quantity  coincides exactly with the ‘polar cap’ area
encircled with a closed contour η=const and it is constant because of the
two-dimensional incompressibility of motion. Due to Schwartz’
inequality  the angular momentum M reaches its maximally
possible value Mmax in the case of a zonal flow, when  That is why
the difference

(5)

is positive, which proves the stability after Lyapounov for the case of
zonal flows with the monotonic dependence η(x).

When the Earth’s surface relief is taken into account, the atmospheric
angular momentum is not a conservative property anymore. Instead, the
total angular momentum of the coupled system ‘atmosphere-solid
Earth’ is constant now. The non-constancy of the atmospheric angular
momentum results in a specific type of instability called the orographic
instability (Charney and Devore, 1979; Paegle, 1979; Källen, 1984;
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Galin and Kirichkov, 1985), which should be added to more well-
known atmospheric instability types, namely the barotropic and
baroclinic ones.

With account for orography, the absolute vorticity conservation law
should be replaced by the principle of potential vorticity conservation.
Under quasi-solenoidal approximation, when c0

2→∞ (see Section 2.4),
the potential vorticity can be represented by a sum of absolute vorticity
and a certain additional term, which does not include an explicit time-
dependence and is uniquely determined by the orography height. In this
case, within the accuracy of a non-significant additive constant, the
atmospheric angular momentum is determined by the functional of the
field of potential vorticity 

and the angular momentum deficit (5) becomes a real quantity, which
may contribute to the atmospheric angular momentum increase, due to
resonant non-linear interactions between Rossby waves and a zonal flow
under the control of orography. This effect is discussed in Pisnichenko
(1986), who also gives an approximate account for atmospheric large-
scale compressibility.

The generalization of the above considerations for the case of a
baroclinic atmosphere is not as straightforward as one may want. The
main difficulty is associated with the necessity to account for essentially
non-isentropic Earth’s surface.

3.2
Baroclinic instability

Hereinafter, a more complicated problem of zonal flow stability within
a three-dimensional baroclinic atmospheric model is considered. The
beta-plane approximation is used, the air flow is assumed to be periodic
in the zonal direction with a period L, the latter being equal to the
latitudinal circle average length. On both its northern and southern sides,
the flow is bounded by the vertical walls positioned strictly along the
latitudinal circles.

Under quasi-geostrophic approximation and the neglect of both
diabatic heating and frictional and other non-potential forces,
atmospheric motion is governed by the non-linear equation of potential
vorticity conservation (5) from Section 2.3

(1)

90 M.V.KURGANSKY



It is convenient to consider the atmosphere to be bounded from above
by the isobaric surface  where the following boundary condition is
used

(1′)

the variable ξ being proportional to air temperature. As it has been
already stressed in Section 2.3, the condition of vertical velocity
vanishing at the Earth’s surface Σ can be approximately replaced by the
corresponding condition at a lower isobaric level p=p0:

(1″)

where the variable Θ is proportional to surface air potential
temperature. It is necessary to adopt some boundary conditions at the
vertical walls. Consider these boundaries to be impermeable for air
parcels

and the velocity circulation to be time-constant at each baric level

The foregoing arguments are related to the existence of constants of
motion. The first constant is energy, which is the sum of kinetic energy,
baroclinic available potential energy and barotropic available potential
energy

It is readily checked that E is constant, due to the governing equations
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Symbols  and ∫∫ denote integration over the isobaric surfaces p=p0 and
 respectively. In this section, subscripts x, y, p, t denote taking

derivatives with respect to the corresponding variables. Transformation
of both volume and surface integrals has been performed using
integration by parts with the help of boundary conditions.

Secondly, the zonal component of atmospheric momentum is
constant

Actually,

We use Equations (1–1″) in the following form

and extend the chain of equalities further on
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which proves the statement declared.
Third, because the potential vorticity q is a material constant for the

motion in isobaric surfaces and the area at every baric level p=const is
also constant, the following infinite set of integrals

must be constant, where Φ is an arbitrary function of two variables.
This could be also readily checked by formal calculations

Because of the boundary conditions, the following quantities

are constant, where Г and X are arbitrary functions.
We compose a linear combination of constants of motion I=E−UP+F

+G+H, where a constant quantity U has the dimension of velocity. Let
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ψ0 be a given zonal flow, the stability of which is studied. The quantity
I[ψ]− I[ψ0] is a constant of motion. Assuming a perturbation δψ=ψ−ψ0
be sufficiently small, we decompose I[ψ]−I[ψ0] onto series arranged
according to the powers of δψ and its derivatives

i.e., onto the series of variations of increasing order. By the appropriate
choice of arbitrary functions Φ, Г, and X, one arrives at a vanishing
first variation δI for any given zonal flow ψ0 and for any arbitrarily
taken constant quantity U. Let us carry out these computations

Here, integration by parts has been used and, what is more, the δψ-field
has been assumed to satisfy the following conditions

which agree well with the boundary conditions. In order for the first
variation to vanish, at the substitution ψ=ψ0, it has to be

(2)

If for every p-value we assume the monotonic behavior of q0 with
respect to latitude y, and the same property is assumed for both Θ at
p=p0 and ξ at  then conditions (2) can be satisfied.
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Now, we calculate the second variation

Using Equations (2), we shall have

(3)

If the quadratic form (3) is positively defined, i.e., all coefficients before
the field variables squared are positive, the zonal flow ψ0 is stable after
Lyapounov.

Indeed, consider a close neighborhood of the point ψ=ψ0 in the
functional space. Choosing it so small that the absolute value of a
residual term in the decomposition of I[ψ]−I[ψ0] onto δψ powers becomes
smaller than one-quarter of the second variation δ2I, we arrive at the
estimate

If we use the sum of integrals

as a norm in the functional space, i.e., as the measure of deviations of
δψ from zero, then because of the positiveness of coefficients in (3), this
norm will be equivalent to the second variation

with
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when this minimum is strictly less than unity and c1=1 in the opposite
case. In an analogous way,

when this maximum is strictly greater than unity and c2=1 in the
opposite case. That is why

where c3=(1/4)c1 and c4=(3/4)c2. When it is chosen that  at an
initial time instant t=t0, then I[ψ]−I[ψ0] ≤ c4δ. But I[ψ]−I[ψ0]=inv, and
for any finite time-instant t>t0

or

It is sufficient to take δ=(1/2)(c3/c4)ε, where ε>0 is an arbitrarily small
but finite number, in order to obtain  This means the stability
after Lyapounov.

What does this criterion give in practice, i.e., what kind of zonal
flows satisfy it? First, from the very beginning, we have supposed that
potential vorticity is a monotonic function of latitude at every baric
level. The most natural is to assume that this is a monotonically
increasing function, i.e., q0 behaves similarly to the planetary vorticity,
namely to the Coriolis parameter l. The observed atmospheric zonal
flows have predominantly eastward direction, i.e., ∂ψ0/∂y<0. Choosing
the constant U, which has been absolutely arbitrary up to now, to exceed
the maximum of the modulus of a main zonal flow wind speed, we see
that all volume integrals in (3) become positive. The situation with the
integrals over the lower boundary is much worse. The first of them is
positive. As far as the second integral is concerned, in our choice of U it
appears negative, because Θ0 decreases towards the poles, as a rule. The
decrease of temperature towards the poles is a destabilizing factor, and
this is quite natural. The integral taken over the upper atmospheric
boundary is positive when the temperature decreases towards the poles
and is negative in the opposite case, the latter being regularly observed
in the stratosphere. However, when  the contribution of the latter
integral becomes negligible.

Nevertheless, in which case one could guarantee the stability? If we
consider a uniform surface air potential temperature field and assume
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that the upper boundary is isothermal, we could introduce an essential
simplification into all the preceding arguments. Namely, instead of the
boundary conditions (1′,1″) it is possible to use simpler conditions of
vanishing for both Θ-perturbations at P=P0 and ξ-perturbations at 
 Then all the surface integrals in Equation (3) disappear along with the
difficulties associated with them. In such a way, we arrive at Charney-
Stern (1962) criterion for baroclinic instability.

Note that this criterion could be arrived at, by using, instead of I, a
simpler functional  having an arbitrary zonal flow
ψ0 as its stationary point with the unique requirement that q0, Θ0 and ξ0
are the monotonic function of latitude. The second variation of this
functional is given by the formula

For isentropic Earth’s surface and isothermal upper baric level, or
simply at  the surface integrals are dropped out and  is
negatively defined for the case of ∂q0/∂y>0. That is why, in this
particular case, the total momentum of a zonal flow with a monotonic
increase towards a pole of potential vorticity at all p-levels is maximum
among all possible atmospheric states, having the same air parcel
distribution on potential vorticity values for every isobaric surface.
Instability of such a zonal circulation would be accompanied, with
necessity, by a decrease in its total momentum, which is impossible,
because the latter quantity is a constant of motion. Thus, such zonal
circulation is obviously stable with respect to small but finite-amplitude
perturbations.

When the second variation (3) has no definite sign, a zonal flow is
said to be unstable with respect to the metrics  Consider a
perturbation δψ obeying the requirements

(4)
where τ0 and v>0 are constants and, what is more, the τ0 values are
sufficiently large, and the v values are, in contrast, sufficiently small. To
prove the instability of the ψ0-solution, it is sufficient to discover in the
functional space at least one trajectory which falls outside the domain
defined by Equation (4) for increasingly small numerical values of an
initial perturbation  at t=t0When seeking such a trajectory it is
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admissible to linearize the governing equations with respect to both
perturbation, δψ itself and its spatial derivatives. The solution of the
instability problem is thus reduced to the linear problem analysis.
Within the framework of the linear problem, the existence of at least
one solution infinitely growing in time guarantees instability.

Consider a case when latitudinal changes in the Coriolis parameter
can be neglected. Here, no favorable latitudinal direction exists for the
increase of potential vorticity. For simplicity, let us assume that the
potential vorticity field is uniform at every isobaric level. Due to
governing equations, when staying within the framework of adiabatic
and frictionless approximation, it is clear that irrespective of the exact
form of the zonal flow disturbance we would always arrive at the
atmospheric state with an even potential vorticity distribution on p-
surfaces. Therefore, we replace Equation (1) by the condition of q
perturbations vanishing within the entire atmospheric volume. Now, the
corresponding volume integral in (3) disappears. The zonal flow
stability is guaranteed when such a constant U exists that (cf. Blumen,
1968)

(5)

In the opposite case the instability is possible. Condition (5) can be
satisfied if and only if Θ0 and ξ0 have the opposite directions of growth.
An exception is the case when  and the corresponding integral
contribution is increasingly small. When the upper boundary is essential
and the direction of the increase of ξ0 coincides with that of 00 at the
Earth’s surface, the necessary conditions for instability are satisfied.
The linear analysis of instability supports this conclusion.

3.3
Linear analysis (Eady model)

A mathematical treatment becomes the easiest, when we consider a
horizontal atmospheric layer, enclosed between two adjacent isobaric
surfaces  and make an assumption analogous to that
of the atmospheric air weak compressibility. Now, the metric multiplier
n2=m2p2 in the expression for potential vorticity q is admittable to be
considered as a constant. To investigate the baroclinic instability
mechanism in its pure form, consider a main zonal flow, with wind
speed depending on altitude only, wind shear magnitude being the
measure of atmospheric baroclinicity. When assuming that the zonal
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velocity is given by the function  superposing small non-zonal
perturbations on it, and linearizing Equation (1) of Section 3.2 with
respect to these perturbations, we shall have

(1)

As the main flow stream function is given by the formula 
 where F is an arbitrary function, the corresponding potential

vorticity field reads as

In order to maximum simplify the problem, assume that 
where Λ and P are certain constant quantities. Finally, one gets

 where the Coriolis parameter l is taken to be constant.
In such a way, Equation (1) takes the form

This equation is supplied with the boundary conditions 
The latter are taken under approximation of motions of a spatial scale

much smaller than that of the planetary ones, when the atmospheric
horizontal compressibility could be neglected. It means that when L is a
characteristic horizontal scale and L0 is the Obukhov’s synoptic scale,
(L/L0)2<<1. In terms of a stream function, the boundary conditions
linearized with respect to perturbations take the form (cf. Equations (1′,
1″) of Section 3.2)

Assuming that perturbations are independent of the latitude y and using
the thermal wind relation  we arrive at the Eady’s
(1949) problem:
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A solution of this problem is searched as a superposition of normal
modes  The amplitude of perturbation  is
complex, the wave number k is real, and the parameter c which is,
generally speaking, complex, becomes an eigenvalue of the problem.
The main flow is unstable if c possesses a positive imaginary part.
However, because our problem is conservative (its non-linear prototype
permits an energy conservation law), then if one has a certain
eigenvalue c1, it follows with necessity that there should be the
corresponding complex conjugate eigenvalue c2= c1

*. That is why, to
prove instability, it is sufficient to discover a complex eigenvalue c within
the spectrum of our problem. When substituting the given solution in
our equations, we shall get

(2)

Dividing the first Equation (2) by  and, thus, dropping away a
continuous spectrum of our problem, we arrive at the equation

which has a general solution

With account for the two last Equations (2) we shall have a system of
two homogeneous equations for two unknown variables A and B.
Equalizing the corresponding determinant to zero, we obtain the
characteristic equation for the determination of the eigenvalues

The question of instability has been reduced to the investigation of the
sign of the resulting quadratic equation discriminant

Using the identity cothα=(tanh(α/2)+coth(α/2))/2, the discriminant is re-
written in the form
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As α/2≥tanh(α/2), the value of α critical for instability is determined
through the transcendental equation αc/2=coth(αc/2), having an
approximate root αc≈2.4. When α>αc, the solution of our problem is a
superposition of two neutral modes. For the case of α<αc there exist two
complex-conjugate roots c, i.e., the instability has a long-wave
character. An increment of the growing mode is equal to

Despite the fact that Imc(α)-value reaches its maximum for ultralong
wave-lengths, one has that the increment kImc→0 at k→0. Thus, the
value αm ≈1.75 should exist, which maximises this increment. The most
unstable mode wavelength is determined by the formula

Assuming for an estimate that  we get λ= 2π/
mαm≈3600 km. One-quarter of this wavelength, equal to 900 km, is
fairly close to the characteristic scale of 1000 km, which had been laid
in the basis of the quasi-geostrophic approximation of atmospheric
dynamic equations. With the help of the parameter values just taken, the
maximum increment is given by the formula  which
corresponds to e-folding time of 

For the sake of completeness let us study the continuous spectrum of
the problem described by Equations (2). Integration of the first Equation
(2) over p gives

The left-hand side of this equality is transformed by integrations by
parts, with the help of both the second and third Equations (2). Now, we
have

There exists a continuum of solutions of this equation of the following
type  Every such eigenfunction corresponds to a
real eigenvalue  It means that the continuous spectrum does not
contain any growing solution.

The Eady model appears to be of significant theoretical interest.
There are several reasons for it. One of them is that the model allows a
lot of improvements without losing its analytical nature, e.g., with the
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account of fluid compressibility, of variable static stability, of non-
geostrophicity of motion (the Eady model in semi-geostrophic
coordinates), etc. (Williams, 1974; Bell and White, 1988; Rotunno and
Fontini, 1989). The Eady model can be used for the interpretation of
laboratory experimental results obtained using non-uniformly heated
rotating cylindrical setups (dishpans) (Lorenz, 1967; Hide and Mason,
1975). A principal physical shortcoming of the model is the disregard of
the stabilizing action of the beta-effect on the longest spatial modes.
Nevertheless, it is possible to construct a theory which would be more
correct in this respect but still sufficiently simple, using a two-layer
model proposed by Phillips (1951).

3.4
Two-layer Phillips’ model

Consider a model, with atmospheric characteristics continuously
varying with altitude being replaced by an atmosphere, essentially
composed of two layers: the first extending from p0 to p0/2 and the
second from p0/2 to 0  We replace the quasi-geostrophic
potential vorticity conservation Equation (1) of Section 3.2 by the
system of two equivalent equations:

(1)

(2)

where w*=dp/dt and  is the mean Coriolis parameter. Equation (1) is
written on isobaric surfaces 750 and 250 hPa, and Equation (2) on the
500 hPa surface, both using the finite-difference approximation of the
derivatives with respect to pressure. The approximate boundary
condition w*=0 is used at p=0 and p=p0=1000 hPa levels, which reliably
describe the large-scale processes, with the only exception of planetary
scale processes. The spatial scale of motions under consideration should
be much less than the Obukhov’s synoptic scale L0. A typical profile w*

(p) is characterized by an extremum in the vicinity of the atmospheric
middle pressure level. For practical purposes, this profile could be often
approximated by a parabolic function w*=W(p0−p)p, where W depends
both on horizontal co-ordinates and time. The fluid dynamic variables,
taken at baric levels p =250, 500 and 750 hPa, are supplied with indices
‘1’, ‘3/2’ and ‘2’, respectively. As a result, one has:
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To close the system, we set ψ3/2=(ψ1+ψ2)/2. Now, the following
identities hold

When eliminating from the above written system the unknown w*
3/2, we

arrive at the atmospheric two-layer model equations (Phillips, 1951;
Pedlosky, 1987)

(3)

(4)

Writing the expression for potential vorticity q at 250 and 750 hPa
levels, assuming that air temperature is finite at the top of the
atmosphere, and using at the lower level p=p0 so that

it is easy to obtain the formula

At the same time,

i.e., the invariant ζ2 is a linear combination of q2 and Θ
The local Cartesian co-ordinates are used further on. As in the

continuous model, the flow within a channel is studied with the
boundary conditions on side walls, discussed in Section 3.2. Then, due
to Equations (3, 4), the energy
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momentum

and an infinite set of integrals

with arbitrary functions Φ1 and Φ2, are constant. The method of
checking these to be actually constants of motion is analogous to that
performed in Section 3.2, for a continuously stratified atmosphere.

The stability of a zonal flow  is studied. This main
flow is superimposed by small perturbations δψ1 and δψ2. A functional
I=E−UP+F is constructed, where U is an arbitrary constant quantity
with the dimension of velocity. In order for the first variation of this
functional

to vanish through the substitution  it should be
(5)

If we assume the monotonicity of  and  with latitude, then these
conditions could be always satisfied. Now, the second variation takes
the form

(6)

The mean flow stability after Lyapounov is guaranteed when the
integrand in (6) is positively defined for at least a single value of U.
What do we have in reality? As in Section 3.2, it is natural to assume
that   Thus, for all values of U which exceed the maximum of
the modulus of zonal velocity at the 250 hPa level, the corresponding
term in (6) is obviously positive. The problems arise with the lower
level. We have shown that the invariant  is a linear superposition of
the potential vorticity  and surface potential temperature 
Moreover, according to the observational data, the terms  and

 are close in absolute value but are of opposite sign. Thus, the
derivative  may vanish at certain latitudes. A necessary condition
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for instability is that the invariant  fails to be a monotonically
increasing function of latitude, contrary in this respect to  It is
possible to give a simple example of a flow, when this necessary
condition for instability coincides with the sufficient condition.

Let us restrict ourselves with a class of flows with the zero horizontal
wind shear, which means the case of pure baroclinic instability, as in
Section 3.3. Now, one has  and, what is
more,  The critical case, separating stability and instability,
corresponds to the condition

i.e.,  and, besides, when  the
necessary conditions for instability are satisfied. This estimate finds its
confirmation in the results of a linear spectral theory, according to
which the instability actually takes place when this inequality holds. A
solution of Equations (3, 4), which are linearized with respect to δψ1
and δψ2, is searched in the form

where A1 and A2 are the complex amplitudes, two real quantities kx and
ky are the components of a wave vector and c is the eigen-, or spectral,
parameter of the problem. When the latter is complex, one has
instability, following analogous arguments in Section 3.3. Transparent
enough algebraic manipulations, which could be found in (Thompson,
1961; Pedlosky, 1987), enable one to arrive at the explicit form of a
neutral stability curve (see Figure 4):

(7)

A wave number for the most rapidly growing (most ‘unstable’) mode is
given by the formula  This corresponds to the zonal
wavelength  Here, the condition ky=0 is used,
which accounts for the infinite channel extent in the meridional
direction. As it follows from (7), there exists the lowest threshold for
wind shear  leading leading to instability.

In the atmosphere over the Northern Hemisphere, in the latitudinal
range of 30–60°, a fairly good agreement between zonal flow
characteristics and the threshold value  derived for the two-layer
model, has been established empirically (Stone, 1978). In the Southern
Hemisphere, this correspondence is much worse, and the appearing
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asymmetry between the hemispheres needs to be explained, possibly by
invoking the barotropic mechanisms of the loss of stability.

The Phillips’ model is the simplest in an hierarchical set of multi-
layer baroclinic atmospheric models which, when taken free from the
quasi-geostrophic approximation, are laid in the basis of the modern
numerical simulation of atmospheric general circulation and climate
processes. For recently used models the number of levels approaches 30,
or even more, which enables one to describe the fine peculiarities in the
vertical atmospheric structure and to bring a model nearer to reality.

3.5
Vertical stability of atmospheric motions.

Richardson’s criterion

What is the physical mechanism of baroclinic instability studied in the
preceding three sections? To answer this question, let us consider a
simple scheme (see Figure 5), depicting the configuration of both
isentropic and equipotential surfaces (the latter being the geopotential
equiscalar surfaces) within a baroclinic atmosphere. A slope of
isentropic surfaces with respect to a horizontal plane, characterized by a

FIGURE 4 The neutral stability curve for the two-layer baroclinic model by
Phillips (1951); x=(kx

2+ky
2)2m−4, y=(∆u)2m4(dl/dy)−2.
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small angle α≈1/300, is sustained by effects of both background rotation
and vertical wind shear. The latter are necessary in order to establish a
geostrophic balance at each horizontal level. When, for some reason, an
air parcel makes an excursion from point O to either point A or point B,
it has a chance to find itself in the ambience of air parcels with either
larger (in point A) or, respectively, smaller (in point B) potential
temperature values. An appearing buoyancy force will tend to turn the
air parcel at a greater distance from its initial position. Thus, the
baroclinic instability is a specific form of thermal convection and is
determined by the mutual configuration of both isentropic and
equipotential surfaces. For the Eady’s model it could be strictly proven
that the maximum rate of release of the available potential energy,
which is stored in a main zonal flow, is accompanied by the excursion of
a fluid parcel along the bisectrix of angle α.

Let us ignore the effects of both rotation and relation between the
vertical wind shear and the horizontal slope of isentropic surfaces. It is
clear that the vertical wind shear itself plays a destabilizing role because
it is associated with a certain amount of kinetic energy available for the
transformation into that of eddies. The stabilizing influence is due to the
stable atmospheric density stratification, characterized by Brunt-Vaisala
frequency N= (gcp

−1ds/dz)½. An appropriate measure of shear flow
stability is the non-dimensional combination of field variables Ri =N2

(∂v/∂z)−2, which is called the Richardson number. The smaller the
Richardson number, the easier the instability arises. One should
distinguish between three cases: (a) Ri<0, i.e., N2<0, when the
convective instability perpetually happens, with the exclusion of very
thin viscous and thermoconductive fluid layers, when the instability is

FIGURE 5 Disposition of isentropic surfaces accompanying the baroclinic
instability; α is the angle of slope of surfaces θ=const with respect to the
horizontal.
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determined by Rayleigh’s (1916) criterion, (b) Ri> Ricr, when the flow
is invariably stable, and (c) 0<Ri<Ricr, when the instability is possible.

What is the critical value Ricr of Richardson number? Both
observations and various sorts of estimations show that Ricr≤1 (Monin
and Yaglom, 1971; Miles, 1986). For large-scale atmospheric motions,
one has, as a rule, Ri~102>>Ricr. Exceptions are sharp frontal zones
which will be discussed at the very end of this section.

Richardson’s criterion has a simple fluid dynamic meaning.
Consider, for the convenience of the calculation, the case of an
incompressible heterogeneous fluid, when s=−cplnρ+const and N=
(−gdlnρ/dz)1/2. Within the fluid, we cut off a round cylinder with the
horizontal axis. Let us assume that the mass of a cylinder’s unit-length
portion is equal to m and the corresponding momentum of inertia (with
respect to the horizontal axis) is I. The cylinder’s center of gravity lies
below its geometrical center (to good accuracy, the center of inertia) at a
distance of l0. Deflecting the cylinder from its equilibrium state to a
certain angle φ and/or conveying a certain initial angular velocity  to
it, we force the cylinder to oscillate. These oscillations are described by
the governing equation of a physical pendulum

On assumption that at the initial time-instant  φ=0, after
integration of this equation one gets

It is clear that in order to overturn the cylinder in the gravity field, it is
necessary to satisfy the condition mgl0/Iω2≤1/4. It means that the kinetic
energy of the initial revolution must be not smaller than the doubled
potential energy deficit 2mgl0. It is not difficult to relate the parameters
m, I, and l0 to the Brunt-Vaisala frequency N. We use the fact that l0= −
(1/4)R2(dlnρ/dz) and I=0.5mR2, where R is the cylinder’s radius. As the
result, we arrive at the criterion N2/2ω2≤1/4. If the kinetic energy of an
initial push is taken from the kinetic energy stored in a unidirectional
shear flow having a velocity profile  then upon assumption that

 we formulate a condition for the shear flow instability as
the condition of a ‘fluid dynamic pendulum’ overturning, in the form of
criterion  with Ricr=1/2. By its essence, this is the
condition for wave-to-vortices transformation, when a fluid motion
becomes turbulent and, thus, irreversible. That is why Richardson’s
criterion is often referred to as the condition for the non-decadence of
turbulence.
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Richardson’s criterion, initially derived from energy balance
considerations (see Brunt, 1941; Monin and Yaglom, 1971, 1975), has
received an important support in results of the linear stability theory for
stratified fluid unidirectional shear flows. Miles (1961) for a monotonic
velocity profile  and Howard (1961) for an arbitrary profile 
have shown that a sufficient condition for stability with respect to
normal mode-like perturbations is the validity of inequality Ri>1/4
everywhere within a fluid flow domain. This is the Miles-Howard’s
criterion of stability. Nevertheless, in the framework of the non-linear
theory, one is unable to formulate general conditions for stability after
Lyapounov in the form of a universal Richardson’s criterion, as it has
been done for the Rayleigh-Kuo criterion for two-dimensional flows of
a homogeneous fluid (Arnol’d, 1965, see Section 3.1) and for the
Charney-Stern criterion in the case of quasi-geostrophic dynamics of a
baroclinic atmosphere (Blumen, 1968; Diky and Kurgansky, 1971, see
Section 3.2). Inevitably, instability with respect to short-wave
perturbations is always permissible, the fact which has been pointed out
in a pioneering paper by Diky (1965). Only when performing a finite-
dimensional truncation of fluid dynamic equations one succeeds in
formulating a sufficient stability condition in the Lyapounov sense. In
such an approach, perturbations are assumed to have the minimum
spatial scale λ. Surprisingly, nevertheless, the stability condition is
written not in terms of Richardson’s number but includes the
combination of the velocity field and its second spatial derivative:

 (Abarbanel et al., 1986; Kurgansky, 1988). A criterion
 different from the Richardson’s criterion, appears in the

analysis of the conditions for the existence of the stationary solutions of
well-known Long’s equation within the problem of stratified fluid shear
flow over an obstacle (Blumen, 1989). Along with the increase in the
order of the finite-dimensional dynamic system, which approximates the
fluid dynamic equations, or, in other words, when decreasing the scale
λ, the stability domain collapses and, in the framework of the infinite-
dimensional problem, the instability is possible even when the
corresponding linear problem analysis guarantees the stability with
respect to normal modes, like in Miles (1961) and Howard (1961). The
lack of complex eigenvalues in the linear problem spectrum does not
obligatorily mean the stability after Lyapounov (Abarbanel et al.,
1986). This is a noticeable difficulty of the basic hydrodynamic stability
theory. This issue contains a lot of problems and needs further
investigations.
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The Richardson’s number appears in a natural way when treating the
energetics of a stratified fluid mixing at the expense of the turbulence
resulting from the hydrodynamic instability of a main flow with the
horizontal velocity vector v(z). For a horizontally homogeneous fluid
layer of depth h, with an infinite horizontal extent, the potential energy
taken per fluid column of unit cross-section is equal to

The origin of coordinates is placed in the midst of the layer. For the
sake of simplicity, the case of an incompressible but heterogeneous
fluid is considered. For a completely mixed layer the fluid density
becomes heightindependent, and, what is more, its constant value ρ0 is
determined from the mass conservation condition

The amount of work needed for mixing such a fluid is equal to the
potential energy deficit

Let us restrict ourselves with a thin layer analysis and expand the ρ(z)-
function to Taylor series with respect to altitude z:

For such a linear approximation, ρ0=ρ(0), due to mass conservation.
Here, the following formula holds (Turner, 1973; Ozmidov, 1983):

One would get just the same expression for a work for compressible
heterogeneous fluid mixing, if it is taken that N2=gcp

−1(ds/dz)
(Kurgansky, 1983).

The work for fluid mixing within the layer can be performed at the
expense of kinetic energy stored inside

However, not the total kinetic energy is actually available for the
transformation into potential energy. The quantity K has the precise
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minimum, which is determined from the condition for the horizontal
component of fluid motion momentum conservation

Indeed, let us search for the minimum of K on condition that P and m
are constants. We compose the functional H=K+λ·P+µm, where a
constant vector λ and a constant scalar quantity µ play the role of non-
defined Lagrange multipliers, and seek the absolute minimum of H.
From the condition of the first variation δH vanishing we have v=
−λ=v0=const. Now, the minimum kinetic energy is equal to

i.e., is completely determined by both the momentum and mass values.
The difference K′=K−Kmin is called the available kinetic energy (Starr,
1966). Expanding the horizontal velocity field v onto Taylor series with
respect to z

and restricting ourselves to linear terms only, we shall get

As the result, in order for fluid mixing to occur, the following condition
should be satisfied:

Ri=N2(dv/dz)−2≤1/2.
To overturn all the fluid within the layer the double amount of work,
equal to twice as large potential energy deficit, is needed. Herewith, the
condition Ri≤1/4 must be satisfied.

FIGURE 6 Sketch of a frontal layer separating two distinct air masses; h is the
frontal layer thickness, α is the angle of slope of a frontal surface with respect to
the horizontal, L is the width of a zone formed by the intersection between the
frontal layer and the Earth’s surface.
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As an illustration of the application of Richardson’s criterion to
largescale atmospheric dynamic problems, let us estimate the physical
width h of a frontal discontinuity, using a simplified theoretical model of
atmospheric fronts proposed by Margules. Let us suppose that we have
a plane stationary separation surface between two air masses with all
thermodynamic parameters, except pressure, having a jump across this
surface. To a good accuracy the following formula holds for an angle α
of the slope of this surface with respect to the horizontal plane

(1)

Here ∆θ/θ is the relative potential temperature jump across the front,
and ∆u is the corresponding wind speed jump. The derivation of
formula (1) is given in numerous texts on dynamic and synoptic
meteorology (Brunt, 1941; Haltiner and Martin, 1957; Palmen and
Newton, 1969). Here, we only note that this is the integral form of the
thermal wind equation ∂u/∂z≈ −gl−1(∂lnθ/∂z). The representation of the
front by the separation surface is, certainly, a crude idealization. In
reality, one should speak of a sharp transitional zone between two air
masses, inside which the meteorological fields change abruptly. A
rough estimate of such a transitional layer width could be performed,
starting with the assumption that a self-sustained Richardson’s number
value, close to the critical value for the onset of instability, is
established in the layer (cf. Brunt, 1941): Ri≤Ricr. Indeed, assume that
Ri becomes significantly less than Ricr. The vertical air turbulent mixing
would immediately develop, which will smooth the spatial gradients in
meteorological fields and correspondingly increase the value of Ri. If, in
contrast, the value of Ri would become noticeably greater than unity,
the large-scale advective (frontogenetic) processes, associated with non-
zero deformation velocity fields, will play their role, thus reducing Ri
up to its critical value. Replacing the vertical derivatives in the
definition of Richardson’s number by finite differences, we shall have

which results in
h≤θ(∆u)2/g∆θ

Assuming that   and g≈10 m·s−2, we arrive at the
estimate h≤100 m. The width of a band formed by intersection between
the transitional frontal zone and the Earth’s surface, which is the frontal
zone width in its common sense (see Figure 6), is estimated by the value
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which agrees with observations.
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CHAPTER 4
Isentropic Analysis of Large-scale

Processes

This chapter gives certain elements of a complex (using the potential
vorticity field) isentropic analysis of large-scale atmospheric processes
based on observational data handling. This is a development of the
isentropic analysis well-known in meteorology (Namias, 1939; Rossby
et al., 1937; Bugaev, 1947). Material is presented largely based on the
results of investigations carried out at the Institute of Atmospheric
Physics, Russian Academy of Sciences, Moscow. The author was lucky
to participate in this research activity. Hereafter, an attempt is made to
give an account of theoretical fundamentals of the method in question.
Section 4.3 stands a little bit aside and is devoted to the precise
formulation of Lorenz (1955) available potential energy concept. This is
done for two reasons. First, because of the necessity to complete
Chapter 1 in the part which relates to atmospheric energetics. Second,
certain concepts and ideas of Section 3 are essentially used further on in
this chapter.

4.1
Isentropic coordinates

Describing large-scale atmospheric processes, a quasi-static
approximation can be used with good accuracy. A corresponding
estimate shows that the quasi-static approximation is appropriate for
motions with horizontal spatial scale not less than 200 km. Dealing with
quasi-static atmospheric dynamic equations, the use of isobaric, or p-
coordinates is well-known to give major advantages. In these
coordinates, pressure plays the role of a vertical coordinate, and the
height of isobaric surfaces becomes a dependent variable (Eliassen,
1948). A system of p-coordinates, as well as a system of σ-coordinates
derived from it, with the independent variable σ being equal to the ratio
of pressure p to the surface pressure at a given geographic position



(Phillips, 1957), is nowadays widely used for numerical weather
forecasting and in atmospheric general-circulation and climate models. 

However, from the theoretical viewpoint the isentropic coordinate
system, with potential temperature θ as the altitude, seems to be more
attractive (see Eliassen, 1987). Many theoretical results are expressed
more clearly and precisely in the isentropic coordinates. In particular,
under a quasi-static approximation, the potential vorticity conservation
law is formulated in the simplest way in these coordinates, and it
appears possible to give a precise mathematical formulation to the
concept of available potential energy, which is important in
meteorology. The above refers primarily to the processes which can be
considered dry-adiabatic, but the advantages associated with the use of
isentropic coordinates go beyond the framework of adiabatic
approximation. In these coordinates the impact of diabatic heating can
be estimated in the most correct and precise way.

It is assumed that potential temperature monotonically increases with
altitude everywhere within the atmosphere, i.e., the latter is stable
stratified. Transition from Cartesian (x, y, z) coordinates to θ-
coordinates is performed using the formula

φ(x, z)=φ(xθ, θ),
where φ is an arbitrary scalar function. For simplicity, we have fixed the
values of the second spatial coordinate y and of the time t and provided
the horizontal coordinates in θ-coordinate system by the subscript ‘θ’
However, one should remember that x-coordinate is measured, as
before, along the horizontal plane, so actually xθ≡x. Now, the equality
for differentials is written in the form

where a subscript ‘z’ or ‘θ’ denotes that the derivative is taken at a
constant value of the corresponding variable. As

and dxθ≡dx, it follows that

Equating the coefficients before independent differentials, we have
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In a special case of φ=z, it gives

Combining this and the previous formula, one gets

Analogous relations hold for the derivatives with respect to the second
horizontal coordinate y and time t.

We write the equations of horizontal motion

where F and G are the components of a non-potential force, including
that of viscosity. With the account for the definition of potential
temperature θ, these equations are easily re-written in terms of the
Exner function П= cp(p/P00)k, k=R/cp:

Here, the hydrostatic equation takes the form ∂П/∂z=−g/θ. Performing a
transition to θ-coordinates and following the above-written formulae
taken at φ=П,

one finally gets

(1)

The function M=Пθ+gz≡cpT+gz is called the Montgomery stream
function, or the Montgomery isentropic potential, after a scientist who
was the first to perform the transition to this variable (Montgomery,
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1939). The Montgomery function is simply related to the Exner function
by the formula ∂M/∂θ=П, which replaces the hydrostatic equation in θ-
coordinates.

The material time-derivative in θ-coordinates takes the form

φ being an arbitrary scalar function.
Thus, under adiabatic approximation, when θ=0, air motion looks like

a two-dimensional one. All fluid parcel trajectories lie in the isentropic
surfaces. A ‘three-dimensionality’ appears only due to diabatic heating

  are the specific heating rates per unit mass. Herewith, the
trajectories of air parcels penetrate the isentropic surfaces, though in
reality this penetration happens at very small angles, of the order of 10
−4 (in radian measure), see Section 4.4.

In order to formulate a closed system of atmospheric dynamic
equations in θ-coordinates, we have to re-write the mass-continuity
equation

in these coordinates. First, we have

Second, by definition w=Dz/Dt, and we can, consequently, write

Substituting these expressions in the mass-continuity equation and
cancelling similar terms, we finally get
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and, besides, ρ∂z/∂θ=−g−1∂p/∂θ, due to the hydrostatic equation. The
latter quantity will be denoted as ρθ later on,

We have to formulate the boundary condition at the Earth’s surface.
Here, it is necessary to mention the main difficulty, which accompanies
the introduction of isentropic coordinates and has created until now a
barrier for their wide use in the practise of synoptic analysis and
numerical weather forecasting. The slope of isentropic surfaces to a
horizontal plane is approximately 30 times as large as the corresponding
slope for isobaric surfaces. Thus, the Earth’s surface could not be
considered an isentropic surface even approximately. In contrast, in p-
coordinates the lower boundary condition is commonly written at an
isobaric surface, which is the closest to the Earth’s surface. In θ-
coordinates the latter would be a sophisticated constructed surface, the
exact form of which is determined implicitly by the solution of the
problem. Assuming the absence of mountains and treating the air as an
ideal fluid, we adopt the impermeability condition w=0 for the Earth’s
surface z=0. In isentropic coordinates this condition takes the form

An additional complication is provided by the fact that the atmosphere
is, as a rule, unstably stratified just above the Earth’s surface. Thus, to
arrive at a surface potential temperature value, one either takes the θ-
value at the very top of the atmospheric planetary boundary layer,
approximately at 925 hPa, or extrapolates the θ-values from the upper
levels beneath.

4.2
Theorem on potential vorticity

Ertel (1942) has shown that a quantity  called the
potential vorticity, is a material constant for adiabatic air motion
occurring in the field of potential forces only. Under quasi-static
approximation, a mathematical expression for Ertel’s potential vorticity
is as follows

In isobaric coordinates one has, correspondingly,
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where the subscript ‘p’ indicates that the derivatives are taken at
constant pressure values. In braces, the first term describes the impact
of the barotropic factors; the second and the third terms, the contribution
of baroclinic ones. In extratropics, for large-scale processes, the
contribution of the last two terms is fairly small. Using the thermal wind
relation, it could be shown that this contribution is always negative and
is equal by its relative value to the reciprocal of the Richardson’s
number Ri, the latter being as large as Ri~102 for large-scale processes.
That is why it is admissible to use an approximate formula

(1)

in practical computations.
A certain advantage of the use of isentropic coordinates is that one gets

a single-termed expression for I, which looks similar to Equation (1)
but, however, combines both barotropic and baroclinic effects and thus
appears to be exact in the framework of quasi-static approximation. Let
us perform the necessary computations. 

We eliminate the Montgomery function M from the horizontal motion
equations (1) of Section 4.1 by their cross-differentiation and then
subtracting one from the other:

Performing some simple identical transformations, one arrives at the
following equation (Haynes and McIntyre, 1987)

(2)

where ωaθ=(∂v/∂x)θ−(∂u/∂y)θ+l is the absolute vorticity component
orthogonal to isentropic surfaces. In such a way, we obtain a theorem on
the conservation of the vorticity charge ωaθ in isentropic coordinates.
An elegant method to derive Equation (2) is to start from Equations (1)
of Section 4.1 taken in the Gromeka-Lamb form
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By eliminating the Bernoulli function B from these equations, one
immediately arrives at Equation (2). Note that there is no a term like

 in the left-hand side of Equation (2). It indicates the absence
of the diffusion of the vorticity charge across isentropic surfaces. From
the mass-continuity equation,

(3)

it follows that the isentropic surfaces are permeable for air parcels, in so
far as one speaks of diabatic heating. In the course of diabatic heating,
isentropic surfaces descend through the air; and the other way round,
when the air is cooling they lift.

Under adiabatic approximation  and the assumption of the
potential character of external forces (F=G=0), Equation (2) could be re-
written in the form

On these grounds, with the account of Equation (3) taken under
adiabatic approximation, one arrives at the theorem of potential vorticity
conservation

DI/Dt=0, I=ωaθ/ρθ.
In a very similar form, this result was established by Rossby (1940),
well before the most general Ertel’s theorem appeared.

4.3
Precise formulation of the available potential

energy concept

Isentropic coordinates are especially convenient for the general
theoretical treatment of the problems related to atmospheric energetics.
Let us formulate the energy conservation law in θ-coordinates. We start
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from multiplying Equation (1) of Section 4.1 by ρθu and ρθv,
correspondingly, and by summing up the results obtained

Hereinafter, the subscript ‘θ’ near the derivatives is omitted
everywhere. Using the mass-continuity equation 

we have

Taking into account that ρθ=−g−1∂p/∂θ, by definition, we transform the
third term in the right-hand side of the previous equation

Due to the hydrostatic equation ∂M/∂θ=П, we have

We transform the fourth term in the right-hand side of the same
equation, as above

As the result, we arrive at the equation
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It remains to use the mass-continuity equation multiplied by (u2+v 2)/2,
and to add the resulting equation to the one written above in order to
obtain the total atmospheric energy balance equation:

(1)

As it was mentioned above, the use of the isentropic coordinates leads
to a conceptual difficulty associated with essentially non-isentropic
Earth’s surface. If we consider the general problems of atmospheric
energetics, this difficulty is overcome with the help of an artificial
approach suggested by Lorenz (1955). Namely, let us assume that at a
certain point on the Earth’s surface with coordinates (x0, y0) we have
θ=θ0, p=P0. Let us extrapolate the pressure field beneath the Earth’s
surface, assuming that p=p0 at x=x0, y=y0, 0≤θ≤θ0. In other words,
isentropic surfaces are continuously prolonged beneath the Earth’s
surface, but the air underneath is considered to be weightless. At the
Earth’s surface, z=0, by definition

(2)
Beneath the Earth’s surface the hydrostatic equation ∂M/∂θ=П0 is also
fulfilled. Now, for the range of 0≤θ≤00 it follows that M=П0θ, where we
assumed that M=0 at θ=0. Only this expression for M is consistent with
formula (2).

We integrate Equation (1) over the entire atmospheric volume, taking
into account that ρθ≡0 beneath the Earth’s surface, and M=0 at θ=0:

(3)

When integration in Equation (3) is extended only over a certain portion
of the atmosphere, appropriate boundary conditions are imposed on the
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lateral boundaries of the integration domain. For example, it is
sufficient either to restrict oneself to the impermeability condition or to
assume a spatial periodicity with respect to one or both horizontal
directions. At the top of the atmosphere, where θ→∞, we assume that

Under quasi-static approximation in question, the total energy is
represented as a sum of the kinetic energy of the horizontal component
of motion and the total potential energy, which reads as follows

(4)

Only a small fraction of the latter, related to the buoyancy forces, could
be transformed into the kinetic energy of atmospheric motions in purely
adiabatic processes. The maximal part of the potential energy capable of
such a transition, is called the available potential energy. Let us find it.

Before doing it, we shall prove a lemma, which is necessary for
further discussion (Dutton and Johnson, 1967). We integrate the mass-
continuity equation

over the atmospheric volume above an arbitrary but fixed isentropic
surface, θ=const. With the account of the pressure field extrapolated
beneath the Earth’s surface, we get

At the atmospheric upper boundary it is assumed that  In the
left-hand side, the integration is extended over the surface, θ=const.
Using the impermeability condition at the lateral boundaries, we have

We define the pressure  averaged over isentropic surfaces, θ=const, by
the formula  Under adiabatic approximation the quantity

 is a constant of motion; in the diabatic case  and

(5)
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where 
Subtracting Equation (5) from Equation (3), we finally have

(6)

As it follows from the Goelder’s inequality, the total potential energy (4)
is minimal in the atmospheric state, when pressure p on isentropic
surfaces is uniform and equal to the corresponding average pressure
value  This minimum is exactly equal to

(7)

Thus, in the left-hand side of Equation (6) one observes a positively
defined quantity, which is just the available potential energy after
Lorenz (1955). The latter quantity, to an accuracy of the third order
magnitude terms, is equal to the integral 

In fact, the exact formulation of the concept of available potential
energy has not been called for in papers on atmospheric energetics, as
far as we know. Most likely, it happened due to the difficulties
associated with the practical usage of θ-coordinates, because the Earth’s
surface is non-isentropic. Usually, certain approximations of this exact
concept are used. The first such an approximation was suggested by
Lorenz (1955) himself:

(8)

Here, a bar above the variables denotes averaging over isobaric surfaces;
the isobaric surface p=p0 bounds the atmosphere from below. The
quantity (8) enters, as a constituent, into the exact constant of motion
for linearized (with respect to deviations from the reference atmospheric
state) dynamic equations, as well as for a certain class of simplified non-
linear atmospheric models, particularly, for the quasi-geostrophic model
(see Van Mieghem, 1973).

Equation (8) is laid in the basis of currently available numerous
estimates of the amount of available potential energy stored in the
atmosphere, as well as of characteristics of the main energetic cycle in
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the atmosphere (Lorenz, 1967; Van Mieghem, 1973; Peixoto and Oort,
1992). Most famous are the estimations by Oort (1964), according to
which one has A= 55×105 J·m−2, per unit Earth’s surface area. It
exceeds the kinetic energy K =15×105 J.m−2 more than three times. The
generation of available potential energy within the atmospheric general
circulation processes (see Equation (6))

is estimated by the value of 2.3 W·m−2 taken per unit area. Just at the
same rate the available potential energy converts into the kinetic
energy, mainly due to baroclinic instability, which is a special sort of a
sloping thermal convection in the Coriolis force field. Afterwards, at
just the same rate the kinetic energy dissipates into heat, the major part
of the latter going for the increase of the unavailable potential energy
(7). The structural diagram of it is shown in Figure 7. 

4.4
Diabatic transformation of potential vorticity

In the adiabatic case, isentropic surfaces translate in space following air
motion, so they are impermeable for air parcels. Under the influence of
diabatic heating, weak diffusion of air parcels across the isentropic
surfaces begins. It is more convenient to speak of the slow displacement
of isentropic surfaces relative to the air, with typical velocities around
several millimeters per second. In a reference system linked to
isentropic surfaces it is convenient to judge on the diabatic heating
impact, observing the relative displacements of equiscalar lines of
Ertel’s potential vorticity

 on these surfaces. From the point of view of theory, the
starting point is the equation of potential vorticity transformation

FIGURE 7 Main atmospheric energy cycle, after Oort (1964). Available
potential energy A and kinetic energy K values are given in 105 J·m–2 units,
theirs conversion rate C and dissipation rate D are expressed in W·m–2 units.
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(1)

where all non-potential forces, including friction, acting on fluid parcels
are neglected in the right-hand side. Such an approximation is
admissible for free atmosphere conditions, well above the planetary
boundary layer, in the framework of which we shall stay.

We write Equation (1) in θ-coordinates, assuming the motion to be
quasi-static, and start from the equations of motion on isentropic
surfaces in the field of potential forces (see Section 4.1)

Du/Dt−lv=−∂M/∂x, Dv/Dt+ lu=−∂M/∂y.
By eliminating the M-function from these equations, we arrive at the
Friedmann’s Equation (9) of Section 1.1, written in θ-coordinates 

where ωaθ is the absolute vorticity component orthogonal to an
isentropic surface. We write the mass-conservation equation in θ-
coordinates in the form

Eliminating the isentropic velocity divergence (∂u/∂x)+(∂v/∂y) from the
above written equations, we arrive at the equation of transformation of
potential vorticity I=ωaθ/ρθ

(2)

For large-scale atmospheric processes, this equation gains a simple
approximate form (Hoskins et al., 1985)

(3)

Suppose, we apply a localized diabatic heating source, with vertical
extent small enough compared to the atmospheric scale-height. On the
other hand, this diabatic heating is assumed to be smoothly distributed
with altitude in such a way that local Richardson’s number remains
positive everywhere, and the vertical convection does not start. As a
consequence, just above the heat source the air mass enclosed between
two neighboring isentropic surfaces increases, and right beneath the
heat source it decreases. For a cold source the picture is reversed. By its
very definition, the potential vorticity is the specific vorticity charge
density per unit mass. Thus, just above the heat source, the potential
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vorticity values decrease, and anticyclogenesis takes place, and right
below the diabatic heating source they increase, i.e., cyclogenesis
happens (see Figure 8).

What was said above, could be illustrated using the analysis of
Equation (3). Consider a simple problem, one-dimensional in the
vertical direction, when the equation in question takes the form

(4)

Let us assume that diabatic heating  is distributed with height
according to the law  where  ζ is a vertical Lagrangian
coordinate, and is switched on at the initial time-instant t=0. This
parameterization is based on the assumption that diabatic heating is
directly related to some conservative air parcel properties, i.e., to
specific concentration of optically active species, including ozone,
which absorb the solar radiation. Equation (4) is re-written in the form

(5)

FIGURE 8 Mechanism responsible for anticyclogenesis (A) in a region above a
diabatic heating source and for cyclogenesis (C) happening below it, due to
diminishing (or, correspondingly, increasing) of vorticity charge concentration
within a layer enclosed between two isentropic surfaces. The solid line denotes
isentropic surfaces at initial time instant t=0, the dashed line—at a time-
moment t=τ>0. In the case of diabatic cooling, the picture should be reversed.
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and further such a function Z is introduced that I–1=∂Z/∂θ and
 Now, Equation (5) is satisfied identically, and Z becomes

a Lagrange invariant
Ż=0. (6)

So, one has that Z=φ(ζ), where φ is a certain scalar function. Therefore,
it could be assumed that

(7)
Equations (6), (7), under the initial condition θ=ξ, t=0 have the solution

Z1(θ)=Z0(ξ), θ=ξ+F[Z0(ξ)]t.
Thus, one obtains

(8)

It is assumed that the initial field of potential vorticity I0=(dZ0/dξ)–1 has
the same sign over all the altitudes. For definiteness, let it be I0>0.
Above the point of diabatic heating maximum dF/dZ0<0, and dF/dZ0>0
below this point. In the first case, one has the diabatic anticyclogenesis;
in the second case, the cyclogenesis, respectively. A ‘catastrophe’ will
happen at the time-instant when the denominator in formula (8) will
vanish, After ‘switching on’ the diabatic heating source, this will occur
in a time-interval τ, determined through the condition

Suppose that at initial time-instant the diabatic heating is distributed
over altitude by the Gaussian law

and, what is more, the Gaussian curve semi-width a corresponds to |ξ–
ξ0| =10 K. Now,  Assuming A=1 K·days–1, which suits well
the free atmosphere conditions, we arrive at the estimate τ≈10 days.
Thus, treating time-intervals ∆t=1–2 days, one can use adiabatic
approximation with fair confidence. 

Accounting for the horizontal structure of both potential vorticity and
diabatic heating rate fields, Equation (3) takes the form

where the notation
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for material time-derivative along isentropic surfaces is introduced.
Under adiabatic approximation, the derivatives Dθ/Dt and D/Dt become
identical. Let us determine the translation velocity u of the isoline/
=const along isentropic surfaces, starting from the characteristic
equation   The diabatically induced propagation velocity
vd=u–v of the isoline I =const, considered relative to the air and taken
along isentropic surfaces, is determined through the equation

Typical vd values are of the order of 1 m·s–1. Integrating the resulting
equation over altitude, starting from the given isentropic level θ=const
up to the very top of the atmosphere, where it is assumed that 
we shall have

(9)

Diabatic heating causes a gradual movement of isolines I=const through
the air in the direction of I growing within the entire air column above
the chosen equiscalar surface, θ=const. The integral relation (9) can be
put into the ground of a diabatic heating rate  computation,
which is based on available information on dynamic processes at
overlying isentropic levels (Agayan et al., 1990; Kurgansky and
Tatarskaya, 1990). In practice, using Equation (9) it is possible to
restrict oneself by integrating over one-two atmospheric scale-heights.
In particular, in the vicinity of the tropopause, the  is determined
by dynamic processes in the stratosphere, which opens definite
prospects for estimating the stratospheric reverse action on large-scale
tropospheric processes (cf. McIntyre and Norton, 1990; Holton et al.,
1995).

4.5
General properties of air adiabatic motion

After the principal role of diabatic heating processes in potential
vorticity field transformation and the respective conditions of applying
the adiabatic approximation to large-scale processes analysis, have been
discussed, let us consider some general questions in the theory of
adiabatic invariants.
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1
Gauge invariance in potential vorticity definition

Along with Ertel’s potential vorticity  there exists an
infinite set of adiabatic invariants, linear by the vorticity field

(1)

where f(θ) is a certain differentiable function. This is an immediate
consequence of Ertel’s (1942) theorem. Every quantity under the
material time-derivative sign in Equation (1) could be called the
potential vorticity. We impose a sole condition for f to be a monotonic
function of its argument. Let f′(θ)>0, for definiteness. In particular, as it
was already stressed in Chapter 1, the choice f(θ)=cplnθ+const is
convenient in theoretical studies. Restrict a set of f-functions, assuming
that f(θ)→A=const at θ→ ∞, and, what is more, A=0, without the loss
of generality. For such a subset of f-functions, the integral

taken over the entire atmospheric volume, remains a finite quantity
irrespective of the precise formulation of the boundary conditions at the
top of the atmosphere. If the f-function increases monotonously with θ
and tends to zero at θ→∞, it is negative everywhere. As suggested by
Obukhov (1964), we take it in the form  where g is
the gravity acceleration and p*(θ) is the reference pressure distribution
upon isentropic levels, which could be calculated, for example, from the
reference atmosphere variables. Namely, Obukhov (1964) introduced
the invariant

In isentropic coordinates the potential vorticity  is written in the form

and in the case when the vertical stratification parameters coincide with
those of the reference atmosphere,  is identical to the absolute
vorticity ωaθ.

The existing arbitrariness in the choice of p*(θ) is removed, for
example, if we equate the latter to the average pressure on isentropic
surfaces for an actual atmospheric state

where integration is extended over surfaces θ=const. Pressure  is
proportional to the atmospheric mass above the given isentropic surface
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and is a constant of adiabatic motion. The exact concept of Lorenz’
available potential energy is formulated with the help of  (see
Section 4.3).

The second, independent, method of choosing the function p*(θ)
could be based on one consequence from Kelvin’s circulation theorem,
namely on the coincidence of absolute vorticity fluxes across a given
isentropic surface for both actual and reference atmospheric states

∫∫ω*aθdσ=∫∫ ωaθdσ.
Assuming that a reference atmospheric state could be achieved with the
help of an adiabatic process, with Ertel’s potential vorticity conservation
in every air parcel, when ω*aθ/ρ*θ=ωaθ/ρθ, we write the preceding
equality in the form

∫∫ωaθ(ρ*θ/ρθ)dσ=∫∫ωaθdσ
or

ρ*θ=∫∫ωaθdσ/∫∫ωaθ/ρθ)dσ.
At high and mid latitudes, where |ωaθ|>0, this operation is well defined.

These two methods are the most admissible when the problem of
reproduction of the field of motion starting from the known
potential vorticity field appears. This is the problem of ‘inversion’ of
the potential vorticity field (McIntyre and Norton, 2000). Accounting for
the diabatic factors, the explicit time-dependence p*=p*(θ, t) appears in
the function p* found by these methods. Thus, in the course of
statistical investigations both these two methods are inconvenient
because they lead to a necessity to recompute the function p* every
time. It is more suitable to choose p* as the climate mean pressure
distribution upon isentropic surfaces, as it was proposed in Tatarskaya
(1978).

In most papers on the isentropic analysis and diagnosis of large-scale
atmospheric processes, including those in the troposphere (e.g.,
Hartmann, 1995; Magnusdottir and Haynes, 1996), Ertel’s potential
vorticity I is used directly. This quantity has a good property to enable
one to clearly distinguish between air of tropospheric and stratospheric
origin. Due to a higher extent of stratospheric static stability, the
corresponding Ertel’s potential vorticity/values are, as a rule, several
times as large as in the troposphere. The isoscalar surface I=I0, with I0=
(1−2)×10−6 m2·K·s−1·kg−1 fits with good accuracy the position of the
extratropical tropopause (Reed, 1955; Reed and Danielsen, 1959;
Danielsen, 1968). It should be emphasized that all morphological
peculiarities of the potential vorticity field, among them those which
manifest themselves in the potential vorticity gradient field, taken along
isentropic surfaces, do exist independently from the choice of the
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function f(θ) in (1). In such an invariant manner, with respect to
function f, evidence appears, e.g., of the intersection between an
isentropic surface and that of the tropopause, where the potential
vorticity experiences a jump. However, the question of the appropriate
choice of f(θ)-function is more important for the description of the
vertical structure of the meteorological field. The traditionally used
couple of variables (θ, I) is not very convenient in this respect because
Ertel’s potential vorticity I increases rapidly with altitude, competing in
this respect with potential temperature θ. As the result, the gradients 
and  become nearly collinear. Geometrically, the replacement θ→f(θ)
means the change in the slope between the isoscalar potential vorticity
surface and the horizontal plane. By choosing an appropriate/-function
this angle could be on average made much larger than for equiscalar
surfaces with I=const (Figure 9).

2
Topological invariants

During adiabatic processes in the atmosphere, the tangent property
between isentropic surfaces and isoscalar potential vorticity surfaces is
conserved. It is easy to see that under the influence of the replacement
θ→f(θ) in the potential vorticity definition a corresponding tangent point
can neither appear nor disappear, if only ƒ is a monotonic function, the
latter property being especially compromised. Thus, in future
theoretical treatments, the Ertel’s potential vorticity I will be used, to be
definite. The local structure of isoscalar surfaces θ=const and I=const is
naturally characterized by the vector field  where B is a
tangent vector to both these surfaces and also to the line of their
intersection. Starting from the adiabatic motion equations

we compose the local time-derivative of the vector field B:

Because vector B is solenoidal and applying a well-known vectorial
identity, we arrive at the equation
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Using the Helmholtz’ operator helm introduced in Section 1.1, we re-
write this equation as helmB=0, which according to Friedmann (1934)
theorem means that B is conserved in the adiabatic motion of a
compressible fluid, i.e., figuratively speaking, is frozen in a fluid. If at
an initial time instant vector B vanishes in any material parcel, i.e., a
‘tangent event’ between the isentropic and isoscalar potential vorticity
surfaces happens, this property will survive exactly in the same material
parcel and for all subsequent time-instants. The points in which B=0 are
called singularities.

It is beneficial to consider I field on isentropic surfaces. In this case,
one could speak of isentropic potential vorticity maps (Hoskins et al.,
1985). Here, singularities are the points where potential vorticity
gradient, taken along an isentropic surface, vanishes. If the singularities
are primary (simple), i.e., the corresponding quadratic form constructed
from I spatial derivatives is non-degenerative, then they could be of
only two types: either centers (extrema of I), or coles (saddles). We
restrict ourselves to the consideration of primary singularities
exceptionally, because other manifolds, for which the tangency of

FIGURE 9 Cross-section in a vertical plane of isentropic surfaces (bold solid
lines), equiscalar surfaces of Ertel’s potential vorticity defined through potential
temperature (thin solid lines), equiscalar surfaces of Ertel’s potential vorticity
defined via specific entropy (dashed lines). and equiscalar surfaces of potential
vorticity, modified following Obukhov (1964) (wavy lines).
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isoscalar surfaces θ=const and I=const might occur, are structurally
unstable. According to a well-known topological assertion, sometimes
called the Euler-Poincaré theorem (Arnol’d, 1978), an uneven (odd)
number of singularities always exists inside any closed isoline I=const
lying in an isentropic surface; what is more, the number of centers
exceeds the number of saddles by unity. Under mild diabatic heating
and friction, which are permanently present in the atmosphere, the
number of singularities might change but only by a multiple of two.
Two main types of such elementary reconstructions of the potential
vorticity field, when the number of singularities increases by two, i.e.,
one center and one saddle point are added, are possible. First, that which
leads to the low cut off formation (Figure 10b) and, second, that which
results in the blocking high cut-off (Figure 10a). As a whole, the
frequency of the potential vorticity field topological reconstructions on
isentropic surfaces is the measure of non-adiabaticity of atmospheric
processes. Changes in the number of singularities are most probable in
spring and fall, when the influence of the diabatic factor on the
atmospheric general circulation is maximum.

In the case of atmospheric adiabatic motion there are two immediate
consequences of the above arguments, to which we would like to draw
the reader’s attention: (i) the extremum values of potential vorticity on
isentropic surfaces, as well as I values in the saddle points, are time-
constant, 

and (ii) on isentropic surfaces single connected regions, bounded by
the closed potential vorticity isolines, are conserved. This could be
proved, i.e., ad absurdum; actually, violation of the property of a
domain to be single connected would result, with necessity, in the
appearance of new singularities, the latter being impossible due to the
assumption that the motion is strictly adiabatic.

It is worth mentioning that a pioneering paper on numerical weather
forecasting (Charney et al., 1950), aiming at the numerical code control
and estimation of the degree of applying the model to reality, has
suggested to compare the initial and predicted absolute vorticity fields
on a 500 hPa surface in order to test the main consequences of absolute
vorticity conservation. The latter quantity is the material constant for the
barotropic atmospheric model used for numerical forecasting. These
consequences are: (i) constancy of the extremum values of vorticity, (ii)
conservation of the single connectedness property of domains bounded
by absolute vorticity isolines, and, finally, (iii) constancy of area
encircled by any closed absolute vorticity isoline. The first two
invariants are completely transferred onto the case of a three-
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dimensional baroclinic atmosphere, as it has been already made above,
but the last invariant needs serious modification.

3
Account for compressibility of motion on isentropic

surfaces

Strictly speaking, an area enclosed by a contour I=const taken in an
isentropic surface is not constant, although sometimes this is implicitly
hypothesized and utilized when diagnosing large-scale atmospheric
processes (Butchart and Remsberg, 1986). One may speak of
approximate area conservation, giving oneself an account for the
accuracy of the assumption used. Fortunately, in the three-dimensional
baroclinic case there is an invariant, which generalizes the area
conservation principle in the two-dimensional problem. According to

FIGURE 10 Two main types of the reconstruction of Ertel’s potential vorticity
field I on isentropic surfaces: with blocking high cut-off (a) and cyclonic low cut-
off (b). Equiscalar lines I=const are marked with solid lines; letters C and S
denote the emergence of a new center and a saddle point (cole), respectively; V
is a singularity which corresponds to the circumpolar vortex.
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Kelvin’s circulation theorem, the absolute vorticity  flux across a
material area Σ taken on an isentropic surface, which is encircled within
a reducible closed contour I=const

under assumption of the absence of both diabatic heating and non-
potential external forces. Here,  is a unit vector orthogonal to
the isentropic surface. Using both absolute vorticity definition

 and Stokes’ theorem, we re-write this invariant in the form

(2)

where a reducible contour L encloses Σ and coincides with an isoline I=
const. With the aim to analyze qualitatively a comparative role of the two
terms in Equation (2), we assume that contour L is a circle of radius r. If

 is an average value of tangent velocity at L, and  the value of
average planetary vorticity  over Σ, we shall have 

(3)
For small- and mesoscale motions, formally at r→0, the Earth’s rotation
is of minor significance and an approximate  holds.
According to it, the tangent velocity changes according to angular
momentum conservation law demands, at the expense of horizontal
compressibility, i.e., of the changes in radius r. For large-scale motion,
with r~1000 km, both terms in Equation (3) are equally important,
though at a first glance it might seem that the first term greatly exceeds
the second term in magnitude. The matter is that such large-scale
motion is nearly incompressible in isentropic surfaces due to the
closeness of the meteorological fields to the geostrophic balance (cf.
Chapter 2). Thus, an additional πr2≈invariant exists which, taken with
an appropriate coefficient, could be subtracted from Equation (3) in
order to arrive at

(4)
Here,  is a reference Coriolis parameter. For large-scale motions

 and both terms in Equation (4) are of the same order of
magnitude. The motions of the gravest, or planetary, scale, with r≥3000
km, could also be of interest. Here, the first term in Equation (3)
becomes dominating, so  and the horizontal
compressibility starts to play a decisive role again. The given situation
could be characterized as the limiting case of strong atmospheric
baroclinicity. These dominating baroclinic factors determine the vertical
wind shear and in such a way impose the upper limit on possible
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horizontal wind shears. In other words, they suppress the ‘fluid dynamic
induction’ mechanism, which is responsible for the generation of the
relative vorticity at the expense of the planetary one. Here, we arrive at
an approximation

(5)

and by the theorem on the mean values  where is the
average value of  over Σ. As a consequence, along with its
poleward excursion, the area of a domain encircled by the closed
contour I=const decreases, and in the course of a equatorward excursion
it increases. It is of interest to consider an example of a ring domain,
having the isolines I= I1, I2 as the lateral boundaries, which encircle the
pole and are oriented nearly along the latitudinal circles. If the outer
diameter of the ring is diminished, its area will also decrease, but due to
the meridian convergence the ring’s width will increase, though not so
strongly, as if it were for incompressible motion. To gain a qualitative
impression of this effect, let us consider the case of strictly zonal
circulation, when the isolines I= I1, I2 coincide with the latitudinal
circles φ=φ1, φ2, write down the condition for conservation of the
approximate invariant (5) for such a ring

If the ring is thin enough, i.e., ∆φ=φ2–φ1<<π/2, then ∆φ sin(φ2+φ1)
≈invariant, and its width is minimum at (φ2+φ1)/2=45°. Along with any
changes in the outer diameter of the ring, leading to either its increase
or decrease, the ring becomes thicker in any case. If we start from the
principle of such a ring’s area conservation, we would have

Likewise, for a thin ring ∆φ cos((φ2+φ1)/2)≈invariant and it has the
minimum width at low latitudes, and becomes monotonously thicker
when its outer diameter diminishes. Both the principle of area
conservation and the principle of planetary vorticity flux conservation
(5) are two different constructive approximations to the precise
principle of absolute vorticity flux conservation (2). As we have just
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seen for a simple example of the ring domain, these principles lead to
different consequences. Which principle is more advantageous for the
diagnostics of large-scale atmospheric processes could be said only
staying on the grounds of further isentropic analysis.

4
Invariant flux tubes and their deformation

A family of isentropic surfaces θ=const, intersecting with isoscalar
Ertel’s potential vorticity surfaces I=const, forms a set of invariant
tubes, or solenoids. During adiabatic processes, occurring in the
potential force field, these tubes behave as material objects, i.e., they are
frozen in a fluid and move following fluid parcels. They can be either
closed or end on fluid boundaries. In this respect they are quite
analogous to common vorticity tubes in barotropic fluid dynamics.
Infinitely thin (θ, I)-tubes are completely characterized by the vector

 which is conserved in the processes in question, i.e., obeys
the governing equation

or

(6)

As it is well-known (Pedlosky, 1987), Equation (6) accounts for two main
effects: (i) the lengthwise stretching, and (ii) the transversal tilting of
such a tube. Indeed, let us orient the x-axis of Cartesian (x, y, z)
coordinates, with unit orthogonal vectors (i, j, k), along the vector B,
thus assuming that B=Bi. The right-hand side of equation (6) is written
in the form

The first two terms describe the tilting of a tube and the last term, its
stretching. A screwing effect remains not taken into account. Such a
problem does not appear in the framework of basic fluid dynamics
because of fluid homogeneity. From the very beginning, we make a
reservation that stable vertical atmospheric stratification imposes a
severe restriction on such screwing. The latter is allowed only in the
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form of shearing, along isentropic surfaces, of the parallelogram, which
according to a well-known theorem on infinitesimal quantities could
always approximate the cross-section of an infinitely thin (θ, I)-solenoid.
A good illustration of this is the shift of a pack of cards, laying on a
table, under an applied effort of fingers.

A strict theory of (θ, I)-solenoid screwing is rather complicated. If we
use the Cartesian coordinates xi(i=1, 2, 3), then such a screwing is
described by a quantity 

where the repeated indices denote summation. Extracting the symmetric
(with respect to the commutation of indices i and k) and antisymmetric
parts, one gets

Using an adiabatic assumption, the symmetric part of this expression is
presented in the form  and the antisymmetric part as

 respectively. For large-scale atmospheric processes, it
could be shown that  with an accuracy of about 1%.
Thus, the invariant tube screwing effect could be equally measured in
terms of a material time-rate of the scalar product of the vectors  and

 and by the quantity 
A simplified treatment of (θ, I)-solenoid screwing could be proposed

in isentropic θ-co-ordinates, where the equality

holds for adiabatic processes. This is an immediate consequence of the
potential vorticity conservation law. Using the thermal wind relations
∂u/∂θ =−l−1∂П/∂y), ∂v/∂θ=l−1(∂П/∂x), we shall have

where J denotes the Jacobian operator. The latter vanishes when and
only when П=Φ(I, θ) with Φ as an arbitrary function, i.e., when three
gradients   and  are complanar and the corresponding mixed
product vanishes. The effect of (θ, I)-solenoid screwing is determined
by the mutual position of the invariant solenoids and the
thermodynamic (П, θ)-solenoids which, according to the Bjerknes’
circulation theorem, determine the vorticity production rate and are
permanently present in the atmosphere (Figure 11). Fortunately, for the
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invariant tubes of finite cross-section, which are constructed based on
the observational data, the screwing effect is of secondary significance
because of the flatness of these tubes in vertical direction, if only they
are far away from degeneration. In other words, the angle λ, between
the isoscalar surfaces θ=const and I=const should be not small.

Under the influence of diabatic heating and non-potential forces the
characteristic vector B transforms according to the equation1

Due to the Friedmann’s theorem, in order for the invariant tubes to be
conserved, the adiabatic condition plus the existence of external force
potential  should be assumed, or a less restrictive condition 

FIGURE 11 Spatial orientation of the main vectors determining invariant tubes
and their screwing. In a general case the vectors   and  are non-
complanar;  is the baroclinicity vector;  The screwing
effect is absent when and only when the vectors   and  become
complanar.
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could be adopted which includes an assumption of non-adiabaticity of a
special type. Here, Ψ is an arbitrary function of both spatial coordinates
and time. It is clear that in reality Ψ=Ψ(θ, I, t) and, which is more,

(7)
Equations (7) formally coincide with the Hamiltonian equations in
classical mechanics. For steady air motion, Ψ is a Lagrangian invariant.
The above arguments allow an analogy with the general theory for
Clebsch transformation in basic fluid dynamics (Lamb, 1945). In an
adiabatic case, passing from Ertel’s potential vorticity  to the
modified potential vorticity  the slope of isoscalar
potential vorticity surfaces to the horizontal plane changes. All adiabatic
motion properties remain unchanged. Under general circumstances,
when non-adiabatic factors play the role, this is not the case. In
particular, let us clarify how it is necessary to transform the vertical
coordinate θ in order to arrive again at the condition of non-adiabaticity
of a special type

in new coordinates  where  is a certain new
function. The corresponding canonical transformation (Leech, 1958) is
performed with the help of a generating function  which
satisfies .

the equation  Here, I=∂F/∂θ, 
 Assuming that  we obtain  φ=Φ. So, it is

necessary to put (φ′)−1=f′. In this case the Jacobian operator of the
transformation from the variables (θ, I) to the variables  is equal to
unity.

1 To derive this equation, one has to start from the general commutation formula
(Ertel, 1960; Hollmann, 1964)

valid for three arbitrary scalar fields Θ1, 02, Θ3 (ρ is the compressible
fluid density). The further steps are: (i) to substitute Θ2=I, Θ3=θ; (ii) to
use successively Θ1=x, y, z (which are the Cartesian coordinates) and
(iii) to combine the three resulting scalar equations into a vectorial one
(see Kurgansky and Tatarskaya, 1987; Kurgansky and Pisnichenko,
2000).
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4.6
Isentropic potential vorticity maps and invariant

flux tubes

Let us illustrate the theoretical constructions of the preceding Sections
by examples of potential vorticity field calculations on isentropic
surfaces based on observational data. Hereafter, the adiabatic invariant

 defined after Obukhov (1964)

is considered as potential vorticity. In isentropic coordinates, it takes the
form

The data archive of the First Global 1978–79 GARP Experiment
(FGGE), the so called level IIIa (NMC2 data), has been used. Here,
GARP is the abbreviation for the Global Atmospheric Research
Programme. Data on the geopotential, temperature and wind speed were
presented for the Northern and Southern hemispheres at 12 standard
isobaric levels (1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70
and 50 hPa) in the grid points, with a 2.5° step in latitude and longitude.
First, the potential vorticity field  was calculated on isobaric surfaces
with the help of an approximate formula (1) from Section 4.2, written in
spherical coordinates, and then it was interpolated onto isentropic
surfaces. To compute the atmospheric static stability and to interpolate
the variables in the vertical direction, cubic splines were used. The
values of pressure p for the reference atmospheric model, averaged over
all seasons, were used to construct the p*(θ) function. This method is
described in more detail in Kurgansky and Tatarskaya (1987, 1990) and
Obukhov et al. (1988).

In the papers just cited, large-scale synoptic processes in the
troposphere were analyzed. Primarily, charts of potential vorticity  on
the so called  main isentropic surfaces were drawn. These are the
isentropic surfaces, with θ=300–315 K, which could be followed inside
the troposphere over the whole latitudinal range, from the equator to the
poles, not quitting it either to the stratosphere above or ‘underground’
below. In Figure 12, as an example, the potential vorticity distribution
on the isentropic surface θ= 307 K in the Northern Hemisphere on
December 24, 1978 at 0 h GMT is shown. For comparison, the

2 National Meteorological Center, USA; now the National Centers for
Environmental Prediction (NCEP).
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geopotential height of a 500 hPa level for the same date is also
presented (Kurgansky and Tatarskaya, 1987). Comparison of the maps
clearly shows that a blocking formation (a vortex pair constituted from
an anticyclone and cyclone) in Figure 12a over the Northern Atlantic,
indicated by arrow I, corresponds to a similar (by configuration)
structure in Figure 12b (near arrow I). The latter has low potential
vorticity values, less than 0.5×10−4 s−1, in the northern part where the
anticyclone is situated, and high potential vorticity, up to 3×10−4 s−1, in
the southern cyclonic part. In the course of blocking formation the
meridional air mass exchange occurs: an arrow in Figure 12b clearly
shows how subtropical air penetrates into polar regions. A strong
cyclone over Northern Siberia (arrow II in Figure 12a) corresponds to
the region with the highest potential vorticity values of 8×10−4 s−1 for the
date in question. Figure 13 presents the distribution of potential vorticity
on three various isentropic surfaces in the Southern Hemisphere, and
Figure 14 gives the meridional cross-section of potential temperature
and potential vorticity fields, through both the Northern and Southern
Hemisphere. Isentropic potential vorticity maps are well-adequate to
baric topography charts, but are more informative in the respect that
every such a map, due to static stability contribution to the values of 
reflects the linkage of meteorological processes between different baric
levels. Isentropic potential vorticity maps have good spatial resolution,
they are relief, allow one to distinguish clearly the impact of the
horizontal advection of air masses on the formation of weather
peculiarities. Because the potential vorticity behaves like a quasi-
Lagrangian material constant, these maps might be an ideal tool for a
classical meteorologistsynopticist, who traditionally thinks in terms of
individual air mass transformations. Currently, it should be stated that
only lone and humble attempts are made to adapt these maps to the
practice of operational weather analysis and forecasting. These maps
find much broader applications in studies of minor gaseous constituents
in the stratosphere, where an analogy between quasi-Lagrangian
behavior of the potential vorticity, on the one hand, and specific
concentration of chemical species, on the other hand, is used
effectively.

Coordinate surfaces θ=const and  divide the atmosphere into
invariant flux tubes, along which air parcels travel during adiabatic
processes. From an infinite set of such tubes the so called reference
invariant flux tube has been chosen (Obukhov et al., 1988). This tube is
generated by the intersection of the isoscalar surfaces θ=305, 310 K and

    in the Northern Hemisphere and 
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in the Southern Hemisphere). In distinction to all other invariant flux
tubes this reference tube may be followed over the entire hemisphere,
without fragmentation onto separate regional structures, and reflects air

FIGURE 12 The field of the geopotential height (in decameters) on a 500 hPa
surface (a), and the distribution of modified potential vorticity (in units of 10−4 s
−1) on a 307 K isentropic surface (b) over the Northern Hemisphere on
December 24, 1978. The maps are bounded with the latitudinal circles 20 N (a)
and 16 N (b); L and H are the regions of low and high pressure, respectively.
The meaning of arrows I and II is explained in the text. (From Kurgansky and
Tatarskaya, 1987.)
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circulation within the middle troposphere over high and middle latitudes
during adiabatic processes. Besides, it is situated just inside the zone of
maximum values of the modulus of potential vorticity gradient, being

FIGURE 13 Modified potential vorticity distribution on 307 K (a), 327 K (b)
and 347 K (c) isentropic surfaces over the Southern Hemisphere on June 2,
1979 (in units of –10–4 s−1, the potential vorticity being of the opposite sign to
that in the Northern Hemisphere). The maps are bounded with the latitudinal
circle 20 S. Arrows I and II show the regions with low potential vorticity (by
their absolute value), which correspond to anticyclones; arrows III, IV and V
denote high potential vorticity domains (cyclones). The charts clearly
demonstrate how well the potential vorticity field correlates at different
altitudes. (From Kurgansky and Tatarskaya, 1987.)
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taken along isentropic surfaces. Thus, this reference tube has a minimum
width among all other tubes, with the same difference  across the
tube, which enables one to monitor the meridional air displacements
with sufficient resolution.

Strictly speaking, one can consider an invariant flux tube as a material
object only when the air circulation time about the closed tube does not
exceed, at least, the tube’s transformation time due to diabatic heating.
An estimate shows that for the reference invariant tube this demand is
not satisfied, generally speaking, and this tube consists of different air
parcels in different time instants, being a system open by mass. Thus, a
mixed Eulerian-Lagrangian approach (cf. Pierrehumbert, 1991) seems
to be the most appropriate approach to describe its temporal evolution.

A convenient form of presenting such a three-dimensional object is
its projection on the Earth’s surface map. Figure 15 shows a reference
tube reflection on the Northern hemisphere map for the period
December 25, 1978 to January 8, 1979 (Obukhov et al., 1988). Arrow 1
shows a diffluent type of blocking over the Northern Atlantic, and arrow
2 that of meridional type over Rocky Mountains and Pacific Ocean;
arrow 3 denotes the sector where the cyclonicity is established. The
genesis of cut-off cyclonic lows could be observed (Figure 15e, f), as
well as the breakdown of the tube into two fragments (Figure 15d), the
latter showing the extreme extent for the topological reconstruction of
the potential vorticity field of this particular type.

FIGURE 13 (c)
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As another example taken from Kurgansky and Tatarskaya (1990),
Figure 16 depicts a reference invariant tube reflection onto the Northern 
  

Hemisphere map on February 22, 1979. At the end of February 1979,
a major stratospheric warming took place, which is essentially the
stratospheric circumpolar vortex destruction, being accompanied with
potential vorticity meridional mixing along isentropic surfaces
(McIntyre and Palmer, 1983, 1984; Hess, 1991). In the troposphere, this
phenomenon was accompanied by well-developed cyclonic processes
over Eurasia and North America. On relative topography maps 1000/
500 hPa, describing the mean temperature of an air column, bounded

FIGURE 14 Modified potential vorticity and  potential temperature θ
distribution in the λ=60 W meridional plane on December 24, 1978; isolines
θ=const (1), isolines  “reference invariant tube” cross-section (3).
(From Kurgansky and Tatarskaya, 1990a.)
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from above and below by isobaric surfaces 500 and 1000 hPa,
respectively, certain strong cold centers were observed in these regions.
Because zonal processes (as a direct consequence of well-expressed
high-latitude cyclonicity) were well-developed over the entire
hemisphere in that period, the reference invariant tube reflection onto

FIGURE 15 The temporal evolution of the ‘reference invariant tube’: December
24, 1978 (a), December 28, 1978 (b). (From Obukhov et al., 1988.)
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the hemispheric map has a latitudinal orientation, as is seen in
Figure 16.

As it has been stressed above, blocking formations regularly develop
in the atmosphere, which distort the zonal flow, and transform it into the
meridional jet stream over certain hemispheric sectors. When compared

FIGURE 15 The temporal evolution of the ‘reference invariant tube’: December
30, 1978 (c), January 1, 1979 (d). (From Obukhov et al., 1988.)
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with routine baric topography maps, the reference invariant tube reflects
very clearly the development of this process. Figure 17 shows the
behavior of the reference invariant tube during the period of Indian
summer. During the Indian summer of 1979, blocking anticyclones
were persistent for one   month and a half over Eurasia and North

FIGURE 15 The temporal evolution of the ‘reference invariant tube’: January
2, 1979 (e), January 8, 1979 (f). (From Obukhov et al., 1988.)
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America and they were so strong that for certain dates the warm centers
on relative topography 1000/500 hPa maps (dotted lines) were noticed
not only over continents but over the Northern Pole, where air masses
blow over the pole directly. Here, the reference invariant tube changes
its topological structure, breaking into two fragments. These topological
reconstructions are reliable, because the difference of the potential
vorticity values taken in characteristic field points (singularities) exceeds
the error of its computation (≈0.2×10−4 s−1) several times. Transitions of
the reference invariant tube from one topological type to another
happened repeatedly during the period in question. It could be explained
by the choice of the final period of Indian summer, when along with the
strengthening cyclonic processes the circumpolar cold center was also
amplified, and a unified reference tube was temporarily re-established,
though did not gain its classical form, like that in Figure 16. The
reference invariant tube breaks probably correlate with the moments of
maximum individual temporal changes of adiabatic invariants, when
diabatic factors have the maximum influence on general atmospheric
circulation.

Thus, temporary analysis of the evolution of the reference invariant
tube enables us to monitor more clearly the large-scale atmospheric
dynamics and to estimate qualitatively the degree of importance of

FIGURE 16 A reflection of the ‘reference invariant tube’ onto the Northern
Hemisphere map on February 22, 1979, 3 h GMT; ‘reference invariant tube’
(1), ‘invariant tube’, generated by isoscalar surfaces   and

 cold centers on the 1000/500 hPa relative topography map
(3). (From Kurgansky and Tatarskaya, 1990a.)
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diabatic factors. An essential problem remains to estimate the impact of
these factors quantitatively. 

FIGURE 17 A reflection of the ‘reference invariant tube’ onto the Northern
hemisphere map during the autumn of 1979: October 6 (a), October 7 (b). (From
Kurgansky and Tatarskaya, 1990.)
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4.7
Distribution of adiabatic invariants in the

atmosphere

Air mass distribution  on θ and  values is a constant of adiabatic
atmospheric motion. The quantity  is a relative portion

FIGURE 17 A reflection of the ‘reference invariant tube’ onto the Northern
hemisphere map during the autumn of 1979: October 8 (c), October 9 (d). (From
Kurgansky and Tatarskaya, 1990.)
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of the total atmospheric mass, enclosed within an infinitely thin tube
formed by the intersection of the isoscalar surfaces θ, θ+dθ=const and

  It could be statistically treated as a probability to
discover an air mass with θ and  values falling into a given range of
variations of their magnitudes (Obukhov, 1964). In equal terms, 
is the probability density of θ and  values for a randomly chosen air
parcel. The pioneering computations of the µ-function, based on limited
empirical material, have been performed by A.Karunin at the Institute
of Atmospheric Physics in Moscow (see Monin, 1972). Further
computations made in Kurgansky and Tatarskaya (1987, 1990),
provided information on the global distribution of θ and  in the
atmosphere for the entire FGGE period. Examples of the µ-distribution
are presented in Figure 18. Seasonal changes are clearly seen and,
moreover, the summer µ-distribution for the Northern Hemisphere is the
‘sharpest’, showing a tendency towards air mass concentration in the
limited range of potential vorticity values.

Aiming to reduce errors, induced both by the hidden influence of
diabatic heating and/or friction and computational imperfections, and to
present information in a more compressed form, a temporal evolution of
the Northern and Southern hemispheric air mass portion M, separately,
falling into the range  all θ values, is given in
Figure 19 (Kurgansky and Tatarskaya, 1990). A ranning 7-day
averaging has been applied to smooth the curves. A clear asymmetry
between the Northern and Southern Hemisphere is evident. A well-

FIGURE 17 A reflection of the a ‘reference invariant tube’ onto the Northern
hemisphere map during the autumn of 1979: October 10 (e). (From Kurgansky
and Tatarskaya, 1990.)
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pronounced seasonal course in M-values is observed only in the
Northern Hemisphere and is practically absent in the Southern
Hemisphere. 

Table 1 Monthly-mean (FGGE period) informational entropy values for the
atmospheres of the Northern Hemisphere HN and of the Southern Hemisphere HS.

Year, month HN HS Year, month HN HS

1978 XII 0.745 0.706 1979 VI 0.622 0.754
1979 I 0.754 0.708 VII 0.623 0.746

II 0.752 0.715 VIII 0.629 0.745
III 0.747 0.722 IX 0.640 0.744

FIGURE 18 Air mass distribution on potential temperature and modified
potential vorticity normalized to unity; Northern Hemisphere, December 24,
1979 (a), Southern Hemisphere, December 24, 1979 (b), Northern Hemisphere,
June 2, 1979 (c), Southern Hemisphere, June 2, 1979 (d). (From Kurgansky and
Tatarskaya, 1987.) Note that figures are numbered from right to left.
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Year, month HN HS Year, month HN HS

IV 0.723 0.722 X 0.657 0.722
V 0.664 0.743 – – –

A comprehensive cumulative characteristic of  distribution is
its informational entropy defined after Shannon (Tatarskaya, 1978;
Kurgansky and Tatarskaya, 1987)

(1)
where K>0 is a normalization factor. A non-essential additive constant
has been omitted. The actual µ-distribution is calculated in the form of a
two-dimensional table, with the total cell number equal to N. If the
condition  is satisfied, where all the cells are summed up,
then the informational entropy is determined by the formula

(2)

Entropy H defined in this way reaches its maximum value, which is
equal to unity, in the case of uniform air mass distribution between N
cells. In Kurgansky and Tatarskaya (1987) the H-values have been
computed with the use of formula (2) for the Northern and Southern
Hemisphere, separately. They are denoted as HN and HS,
correspondingly. The monthly-mean values for 11 months of the FGGE
period are given in Table 1. In the winter hemisphere the informational

FIGURE 19 Temporal evolution for the entire FGGE period of the northern
hemispheric air the modified potential vorticity range

 and the corresponding part M of the southern
hemispheric air mass for   The dates starting
from December 1, 1978 up to November 30, 1979 are plotted on the horizontal
axis. (From Kurgansky and Tatarskaya, 1990.)
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entropy values are greater than in the summer one and, which is more,
the seasonal changes in HN exceed those in HS approximately twofold.

4.8
The concept of atmospheric vorticity charge and

its applications

A quantity
(1)

is called the total atmospheric vorticity charge. Here, integration is
extended over the entire atmospheric mass. Due to Ertel’s (1942)
theorem, for adiabatic motion in the field of potential external forces
only,

Taking into account that the absolute vorticity  is a solenoidal vector
field, and using the Gauss-Ostrogradsky’s theorem, one could write

Here, dσ is an element of a surface enclosing the atmosphere, and n is a
unit vector orthogonal to this surface and directed outward the
atmospheric volume. Because the atmosphere is a spherical shell, the
integration is taken over both the Earth’s surface and an outer
atmospheric boundary. The latter is regarded as a certain control
spherical surface, co-centered with the solid Earth. It is constructed far
away from the Earth’s surface, i.e., 200 km above the sea level, where
the fluid dynamic equations are still valid, but only a negligibly small
atmospheric mass portion is dropped away. In the considered case this
is less than one millionth. Due to the property p*(θ)→ 0 at θ→∞, the
integral taken over the outer atmospheric boundary vanishes, A non-
zero contribution is only due to integration over the Earth’s surface Σ.
With the account for the vector n directed downward, beneath the
Earth, we shall have

(2)

where ωaz is the vertical, directed upward, absolute vorticity component
estimated on the Earth’s surface.

In the most general case, the vorticity charge conservation law holds
(Obukhov, 1962; Haynes and McIntyre, 1987, 1990; Lait, 1994)
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(3)

which excludes the existence of the vorticity charge internal sources and
sinks. Here, F is an arbitrary non-potential force field, including
friction; χ=–p*(θ)/g, and  are local χ-sources due to diabatic heating.
An integral form of Equation (3), with the account for Equation (2), is
of interest:

(4)

As it is seen, the atmospheric vorticity charge temporal change is
determined by its net flux J across the Earth’s surface Σ. This flux
consists of the heat JH and frictional JF components. With the account
for both quasi-static and quasi-geostrophic nature of large-scale
atmospheric motions and the atmospheric stable vertical stratification,
the sign of JH in the Northern Hemisphere is opposite to that of the
diabatic heating rate  In the Southern Hemisphere these signs
coincide. Due to this circumstance, the surface diabatic heating
provokes the destruction of the positive vorticity charge accumulated in
the atmosphere over the Northern Hemisphere as well as the destruction
of the negative vorticity charge in the Southern Hemisphere’s
atmosphere. In the Northern Hemisphere, the frictional component of
the vorticity charge flux is negative in cyclonic areas and positive in
anticyclonic ones. In the Southern Hemisphere the pattern is reversed.
Now, it is seen that a compensation, at least partial, of JH and JF is
possible. It does happen when the surface air diabatic heating in
anticyclonic areas occurs, and in cyclonic areas the diabatic cooling
takes place.

In a formal way, using similar ideas proposed by Lorenz (1955) in the
available potential energy theory (see Section 4.3), one might avoid the
necessity to consider the vorticity charge fluxes across the Earth’s
surface if one smoothly extrapolates both isentropic surfaces and
vorticity tubes underneath the Earth, allowing the existence of a certain
‘weightless’ perfect gas there. In this case, all the isentropic surfaces,
among them those with  which intersect with the Earth,
become closed, and a gas beneath the Earth’s surface is ascribed a
certain amount of vorticity charge.3 Now, one can speak of the vorticity
charge conservation for the extended system, i.e., for the atmosphere
completed with the weightless substance introduced above. The latter
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could be characterized conditionally  as the ‘vorticity charge vacuum’.
In the course of atmospheric diabatic heating, isentropic surfaces
descend beneath the Earth and a corresponding portion of the
atmospheric vorticity charge, for which these surfaces are impermeable
(Haynes and McIntyre, 1987, 1990), is transferred to the vacuum. In
contrast, when atmospheric diabatic cooling happens, the vorticity
charge is extracted from the vacuum and transferred to the atmosphere.
This is a rough scheme of the observed annual course in the
atmospheric vorticity charge (see below).

The artificial approach used might be attempted to be laid into the
basis of a method of integration of the atmospheric governing equation,
written in θ-coordinates. A primary domain with curvilinear and non-
stationary lower boundary is imbedded into a broader domain,
containing a weightless gas beneath the Earth’s surface, but enclosed
from below by a fixed isentropic surface, with a simple boundary
condition being imposed on it. For example, it could be a condition of
the vertical velocity component vanishing D[θ(∂M/∂θ)–M]/Dt=0.

We re-write the vorticity charge flux density in Equation (4) in a form
more convenient for estimates:

An appearing constant A, with the dimension of the reciprocal of time,
has to be determined. A condition of the annihilation of the ‘frictional’
and ‘heat’ vorticity charge fluxes jz=0 is formulated as

With the help of the baroclinicity parameter α2=R(γa–γ)/g≈0.1, we re-
write this condition in the form

3 Hoskins (1991) (see also Holton et al. (1995)) proposed a rational division of
the atmosphere into three major parts: the ‘overworld’ with θ>380 K (isentropic
surface θ≈380 K corresponds roughly to the tropical tropopause position), the
‘middleworld’ where θ*<θ<380 K, which follows the property of the closeness
of isentropic surfaces at θ≥θ*, and the ‘underworld’ at θ<θ*, where isentropic
surfaces lie entirely in the troposphere and intersect with the Earth’s surface.
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To estimate A, a modification of the Ekman boundary layer problem
(Ekman, 1905), proposed by Taylor (1914), is used. Some more details
are given in Section 5.2. The following equations are solved

(5)

where vT stands for the eddy viscosity, ug and vg are the Cartesian
geostrophic wind components. A complex variable w=u+iv is
introduced, such that wg=ug+ivg. In notations  we have,
instead of Equations (5):

This equation has a general solution

where A and B are complex constants and the notation h2=2vT/l is
introduced. The main nuance is in imposing the boundary condition. By
Ekman, w→wg,  at z→∞ and w=0,  at z=0. By Taylor, 
 at z→∞, as above, but a weaker slipwise condition ∂w/∂z=λw,

 is used at z=0. Here, λ, is a constant quantity with the
dimension of the reciprocal of length. At λ→∞, Taylor’s problem
reduces to Ekman’s one. A more general case of a non-linear boundary
condition ∂w/∂z=λ(w)w has been studied in Ingel’ and Mikhailova
(1990). In notations p=(λh)−1+1, q=(λh)−1 the solution of Taylor’s
problem could be written in the form

which is followed immediately by

As the result, one has Λ/l=λh/[(λh+1)2+1]. The quantity Λ/l, as a
function of its argument λh, reaches the maximum value

 On the other hand, it is not difficult to relate λ,
to the angle φ between the surface and geostrophic wind. Here, a simple
relation holds: tanφ=λh/(λh+2). According to observational
data, φ≈30°, which corresponds to  and to

 respectively. This does not deviate significantly from
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the estimate 0.207, resulting from the maximization Λ/l. Note that the
maximum of Λ/l corresponds to  and φ≈22.5°. Assuming
that Λ/l is close to its maximum value, we arrive at a simple estimate

 For example, consider a case of an anticyclone, with
relative vorticity −0.5×10−4 s−1 at a 500 hPa level, the surface relative
vorticity being 40% of this value (Charney and Eliassen, 1949). Now,
under assumption that surface air potential temperature is close to 300 K,
we arrive at an estimate  It could not be excluded that this
mechanism is responsible for ultra-long, up to 2 month, blocking high
maintenance, provoking severe droughts in the case of summer blocking
events (Agayan et al., 1986). In this particular case, favourable
conditions for surface air radiative overheating are established over the
anticyclonic region, which promotes the preservation of anticyclonic
circulation.

In the atmospheric general circulation processes the request of
identical vanishing of the vertical component of vorticity charge flux
density jz=0 is excessive and unjustified. It is more natural to restrict
oneself with the requirement of approximate vanishing of the net
vorticity charge flux J=JH +JF across the entire Earth’s surface, or at
least its hemispheric part. To be definite, consider a case of winter
atmospheric circulation in the Northern Hemisphere. Here, cyclonic
areas, along with surface air diabatic heating inside them, are the
territories where the vorticity charge is transported away from the
atmosphere. Such a process might happen to be the most extensive
inside the so called ‘energy active zones’, i.e., within the regions over
Gulfstream and Kuroshio (Atmosphere, Ocean, Space—Russian
‘Razrezy’ Program, 1983–1990). Areas where the vorticity charge
enters the atmosphere are most likely to be less localized.
Geographically, it happens where one has both anticyclonic circulation
at the lower atmospheric levels and surface air diabatic cooling. Such
conditions are realized over gross lands of Siberia and North America.

Formula (2) could serve as the basis for computations of the vorticity
charge accumulated in the atmosphere, using the given surface potential
temperature and wind velocity fields, provided a functional dependence
p*(θ) is specified. However, it is more convenient to use the possibility
to determine independently ZA on the basis of calculations of air mass
distribution density  on θ and  values (see Section 4.7). Using the
µ function, which is normalized by the condition
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where integration is taken over all θ and  values, the net atmospheric
vorticity charge is given by the formula

(mA is the total atmospheric mass) and is related to the mass-weighted
potential vorticity  by the formula  Actually, it was not
the function  itself but the corresponding probability densities

 and  for the Northern and Southern Hemisphere,
respectively, which had been calculated in Kurgansky and Tatarskaya
(1987, 1990). The equality holds

Here, the normalization conditions are satisfied

and it is assumed that mN=mS=mA/2, where mN and mS are the
atmospheric masses over the Northern and Southern Hemisphere,
respectively. If the atmospheric vorticity charge for the Northern and
Southern hemispheres is determined by the formula

then ZA=ZN+ZS. The corresponding   values are related to  by
the formula  Computational results are given in Table 2.
As it follows from Table 2, FGGE annually mean net atmospheric
vorticity charge per unit mass is close to the value

Thus, the Earth’s atmosphere as a whole is ‘charged’ negatively. This
might be a manifestation of the thermal asymmetry between the
hemispheres: the northern hemispheric atmosphere, if annually
averaged, is slightly warmer than that of the Southern Hemisphere. 

It is clear that two functions µN and µS contain more information
than [i alone. Thus, the informational entropy H of the µ-distribution
determined by formula (1) of Section 4.7 always exceeds the sum of
informational entropies HN and HS for the distributions µN and µS.
Remarkable empirical evidence is that nearly all air parcels with 
are concentrated over the Northern Hemisphere, and nearly all air
parcels with  over the Southern Hemisphere. That is why the
functions µN and µS can be regarded as independent and their
informational entropy values could be summed up: H=HN+HS. In the
general case, the informational entropy difference ∆H =H–(HN+HS)

162 M.V.KURGANSKY



describes the dynamic interaction (air mass exchange) between the
hemispheric atmospheres.

Table 2 Monthly-averaged (FGGE period) vorticity charge values per unit
atmo- spheric mass for the Northern and Southern  as well as the doubled
value of the net atmospheric vorticity charge per unit mass,  

Year, month ∆*

104s–1 103s

1978 XII 0.63 −0.54 0.09 2.98
1979 I 0.65 −0.52 0.13 2.99

II 0.64 −0.52 0.12 2.84
III 0.61 −0.52 0.09 3.05
IV 0.56 −0.56 0.00 3.10
V 0.50 0.57 −0.07 2.79

1979 VI 0.43 –0.57 –0.14 2.26
VII 0.41 –0.59 –0.18 1.92
VIII 0.41 –0.60 –0.19 2.13
IX 0.45 –0.58 –0.13 2.33
X 0.53 −0.55 –0.02 2.78
XI 0.61 −0.53 0.08 2.55

Using the thermal wind relation, it could be shown that the total
atmospheric vorticity charge ZA is proportional to the difference
between the axial components of relative atmospheric angular
momentum over the Northern Hemisphere MN and the Southern
Hemisphere MS (Kurgansky, 1991):

ZA=C(MN–MS). (6)
Here, C is a factor whose concrete value could be found in the paper
just cited. Because the meteorological field seasonal changes in the
Northern 

Hemisphere noticeably exceed those in the Southern Hemisphere, the
seasonal variations of the right-hand side of relation (6), along with
those of ZA, correlate well with the changes in the relative angular
momentum of the entire atmosphere MA=MN+MS. The latter quantity
determines the seasonal variations in the total atmospheric angular
momentum, with minor corrections due to the planetary (so-called
‘omega’) angular momentum contribution. Atmospheric angular
momentum variations could be estimated independently, with the help of
precise astronomical methods of determining the length-of-day
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fluctuations (see, e.g., Hide et al., 1980; Barnes et al., 1983; Bell et al.,
1991). The monthly-mean values of the length-of-day deviations ∆*
from the standard value 86400 s for FGGE period (Bureau International
de 1’Heure (BIH) 1979, 1980 Rapport annuel pur 1978, 1979. Paris) are
also given in Table 2.

The coefficient of correlation between the seasonal changes in HN,
HS (see Table 1) and   (see Table 2) is equal to r=0.97, –0.87,
respectively, and is meaningful in both cases. This indicates a possible
functional relation between these two variables. The simplest
hypothesis is to assume a Boltzmann-type distribution for the
probability densities µN and µS:

(7)

Here, A(θ) is a weighting function, such that ∫A(θ)dθ=1 and B is a
positive constant. It is easy to show that  for the Northern
Hemisphere and  for the Southern Hemisphere. Along with this,
the informational entropy determined by formula (1) of Section 4.7 and
the vorticity charge are functionally related

HB=KlnB+Kln(e/A). (8)
Note that ‘Boltzmann’s’ entropy defined by formula (8) is greater than
the actual informational entropy H, provided the atmospheric vorticity
charge value is kept constant, as well as the air mass distribution on θ
values. Estimates show that the relative informational entropy ‘deficit’
(HB –H)/HB is about 3–4%. This is one order of magnitude less than
that of the relative informational entropy deficit, which can be estimated
using both formula (2) from Section 4.7 and data from Table 1.

Below, some arguments are given, attempting to justify distribution
(7) and determine the weighting function A(θ). Equation (3) does not
change its form, or is covariant, under the transformation (cf.
Kurgansky and Pisnichenko, 2000)

Here, Φ is an arbitrary differentiable function and Ф′ represents a
derivative of Φ with respect to the argument χ. In Section 4.5.4 it has
been shown that Friedmann’s (1934) condition for  tube
conservation is not violated under the transformation

where Ψ is another arbitrary differentiable function of the argument χ.
These two transformations are consistent in the case

Ф=Ψ=χ,
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i.e., the Friedmann’s condition might be formulated, if at all, only for a
single couple of variables  The fulfillment of Friedmann’s
requirements is essentially identical to the air mass constancy for every
zonally oriented infinitely thin  flux tube (cf. Kurgansky and
Tatarskaya (1990) and Nakamura (1995), where a general form of
continuity equation in  coordinates is discussed) and one can speak
on a stationary atmospheric mass distribution between infinitely thin

 flux tubes. Starting from the vorticity charge concept, when
considering for definiteness the case of the Northern Hemisphere, and in
close resemblance to (7) the following stationary reference distribution
is introduced as ‘an intelligent guess’

(9)
where  and X is the minimum χ-value, being proportional
to the total hemispheric air mass. Here, air mass is equipartitioned
between equal increments dχ and equal intervals of p*(θ), as well. This
is a very useful property of µB-distribution because it enables one to
identify p*(θ) with the average pressure on isentropic surfaces, in
particular (see Section 4.5.1).

In the  coordinates used in Kurgansky and Tatarskaya (1987),
Obukhov et al. (1988) and Pisnichenko and Kurgansky (1996) the
corresponding distribution 

has a maximum in the vicinity of θ=θ0, where  which is in
quantitative agreement with the plot depicted in Figure 18, see also
Figure 20. It follows also that  

Further on, we pass to the one-dimensional probability density
(10)

by integrating (9) over all χ-values. The closeness between the actual
monthly-mean  and the corresponding Boltzmann-like

 has been mentioned by Kurgansky and Prikazchikov
(1994), who used a PV field computed in Kurgansky and Tatarskaya
(1987) and Obukhov et al. (1988), with the help of the climatological
data for χ definition.

The one-dimensional probability density  of potential vorticity
values for a randomly chosen air parcel, with the prescribed first
moment  of  coincides with the probability density of vorticity
charge values  for an appropriately constructed ensemble of
hemispheric atmospheres, provided the expectation value of  for a
given  is equal to  The realizations of this ensemble are the
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hypothetical hemispheric atmospheres, with a completely mixed, or
homogenized, potential vorticity field  Here, the total hemispheric air
mass is set equal to unity, which enables one to identify the hemispheric
vorticity charge with  Now, the distribution (9) becomes a canonical,
in Gibbs’ sense, vorticity charge distribution for this ensemble. This
distribution supplies the maximum of informational entropy4

FIGURE 20 Atmospheric air mass distribution on an optimally modified PV
and potential temperature θ for January 1980 (a) (from Kurgansky, M.V. and
Pisnichenko, I.A. (2000) ‘Modified Ertel’s Potential Vorticity as a Climate
Variable’, JAS 57, 822–835. © 2000 American Meteorological Society (AMS));
the corresponding reference Boltzmann-like distribution (b). Figure courtesy of
Dr. I.A.Pisnichenko.
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among all other possible vorticity charge distributions between the
realizations of this ensemble. The maximum value is completely
determined through  and is equal to

To be sure to apply distribution (10) to the case of a real atmosphere, we
must adopt a set of hypotheses, which could be justified by the evidence
of closeness between reference distribution (10) and that calculated on
the basis of real data. The hemispheric atmosphere, with spatially non-
uniform PV field, provides an example of a globally non-equilibrium, in
statistical  sense, system. Nevertheless, it is assumed that its almost
every small portion, or subsystem, with quasi-uniform PV field, is
observed in the state of local statistical equilibrium.5 Only a small
number of subsystems give the exclusion. This means that after a long
enough, but still finite, time- interval the local (averaged over the sub-
domain) PV-value passes through all the range of possible PV
variations. In other words, a very strong mixing occurring in a PV-
functional space, sometimes called K-mixing, i.e., the mixing in
Kolmogorov’s sense (see Dymnikov and Filatov, 1997) is assumed. In
contrast, the time-interval in question should be small enough compared
with the characteristic time of changes in ‘external conditions’, which
are primarily  temporal variations due to the annual course of
insolation. A compromise time-interval is estimated to be close to one
month, which is in accordance with the averaging period traditionally
used in classical climatology. The basis for the assumption of local
statistical equilibrium is the observed very high degree of spatio-
temporal variability in the PV field. In particular, as we have seen in
Section 4.6, PV values in cyclonic regions in mid-latitudes may be as
high as 8×10−4 s−1, and in blocking anticyclones at the same latitudes
they could be as low as (0.3−0.5)×10−4 s−1. Moreover, these vortices are
transient, being transported by wind. Thus, the range of possible PV
variations in a fixed spatial position exceeds several times the PV mean
value typical of these latitudes. An unprecedented high temporal
variability of PV compared with all other known meteorological
variables gives one the right to apply the approximation of local
statistical equilibrium to this variable. A small spatial correlation radius
in the PV field, i.e., the low cross-correlation between PV temporal

4 An example of the constructive application of the principle of informational
entropy maximum (under the constraint of energy and enstrophy conservation)
in the dynamic oceanography is given in Holloway (1993).
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changes in different positions provides the basis for assuming the
existence of a very large number of effectively independent atmospheric
subsystems, each of which is in the state of local statistical equilibrium.
Thus, distribution (10) can be applied, as a reference, to the hemispheric
atmosphere as a whole. The impact of the stratosphere, where the
assumption of local statistical equilibrium might be not justified at all,
is ignored because it contains a relatively small portion of the total
atmospheric mass.

Globally, the atmosphere is permanently observed in the state of
chaos, which serves as a background for more individually
distinguishable irregular processes of different temporal and spatial
scales (the so-called atmospheric circulation regimes and/or quasi-
periodic global atmospheric phenomena with different periods,
including quasi-biennial oscillations (QBO) with the average period
about 27 months). Chaotic dynamics of the atmospheric climate system
occurring on its attractor (Lorenz, 1995) could be regarded equilibrium
in the sense that on the attractor we assume [and for  certain
atmospheric climate models it could be strictly proved (Dymnikov and
Filatov, 1997)] the existence of a unique stationary statistical
distribution, i.e., an essential invariant measure on the attractor does
exist. To characterize the attractor of the atmospheric climate system in

 it is proposed to use a hypothetical reference state, described
by (9), to which the atmosphere closely approaches but never reaches
precisely. This reference distribution describes a ‘climate background
noise’. From the standpoint of statistical fluid mechanics it could be
regarded as a distribution corresponding to the equipartitioning of ‘PV
substance’ (vorticity charge) between a finite, though large, number of
degrees of freedom, which are effectively excited in the atmospheric
climate system. The dynamics of the atmospheric climate system is not
Hamiltonian, by all means, but the very existence of a stationary
statistical distribution (9) for the climate system attractor, under certain
additional assumptions, makes this approach appropriate.

In reality, even for the best possible choice of  an actual
 deviates from the reference one  Primarily, this

happens because of the discrepancies between diabatic and frictional
forcings, actually present in the atmosphere, and those which satisfy the
condition of ‘external PV forcing of a special kind’ (see Section 4.5.4).

5 This ‘subsystem’ concept is very close to the commonly used hydrodynamic
definition of a fluid parcel (see, e.g., Brown, 1992).
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Qualitatively, the closeness between the actual and reference
distributions is characterized by the informational entropy deficit

∆H=HB–H.
There is a possibility to determine  in question by
minimizing ∆H with the help of a special class of ‘trial’ functions χ(θ),
containing that χ*(θ) which fits the observed atmospheric climate state.
The proposed procedure has been tested by Kurgansky and Pisnichenko
(1997, 2000) with the use of 1980–89 ECMWF data. The following
trial functions

χ(Θ)=A[π/2−tan−1(C(θ−θ0))],
were taken, with variations given to the parameters C and θ0 and the
parameter A being determined through the condition of the total
atmospheric mass constancy. It has been proven that the minimum of
∆H does exist and is achieved for relative informational entropy values
(HB–H)/HB of the order of a few tenths of a percent. The position of the
minimum in the (C, θ0)-plane is described through a linear dependence

θ0–292.55=321.4×(C−0.04614),
found by applying the linear regression method (here, θ0 is expressed in
Kelvin (K) and C is given in K−1). This holds for both extremal seasons 

(January and July) and for both hemispheres within the entire 10-year
period. This straight line passes very close to the point θ0=293 K, C= 0.

FIGURE 21 Atmospheric mass distribution on optimally modified potential
vorticity for January 1980–1989, the Northern Hemisphere; AD, actual
distribution and BD, the corresponding Boltzmann-like distribution. Figure
courtesy of Dr. I.A.Pisnichenko.
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04614 K−1, which accounts for χ*(θ), empirically found by Kurgansky
and Tatarskaya (1987). Figure 21 demonstrates the evident closeness
between actual  and reference  distribution for such an
optimal PV modification. Here, the monthly-mean  statistics for
January 1980–1989, the Northern Hemisphere was used. Systematic
deviations occur only at large  and could be partly explained by the
fact that  values are limited from above in the real atmosphere but in
the framework of the  distribution arbitrary high  are allowed.

With the help of the mass continuity equation we re-write Equation
(3) as

Obukhov (1962) has pointed out a possibility of compensation between
diabatic heating and frictional PV forcing, resulting in the non-
divergence of Nχ. As above, this property is consistent with the
requirement of preservation of a covariant form of Equation (3) only for
a unique choice of  In these coordinates the
potential vorticity  is materially conserved despite the action of
diabatic heating and frictional forcing. Here, a reference stationary one-
dimensional distribution (10) might be introduced, but in distinction to
the previous approach, the existence of a two-dimensional reference
distribution, similar to (9), remains questionable. Which of the two
possible conditions for diabatic and frictional PV forcing compensation,
the Friedmann’s or the Obukhov’s, fits the real external PV forcing in
the atmosphere, remains an open problem and needs further
investigations.

Simple model with exponential µ-distribution. The following
arguments have been inspired by an analogy with the well-known
Schmidt’s (1925) explanation of the sedimentation process of dust
particles and other suspensions in the turbulent atmosphere, leading to
an exponential density distribution with height. Under quasi-static
approximation, we may use the PV equation in the form (cf. Hoskins et
al., 1985)

where f describes the possible impact of frictional and latitudinal
dependent diabatic PV forcing. Elimination of  with the use of
equation
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which follows from the Friedmann’s (1934) necessary and sufficient
conditions for the conservation of  then integration over 
and, finally, averaging of the ensemble (denoted with angular brackets)
gives the Taylor-Richardson’s expression for the diffusivity of air
parcels in the  for the particular choice  of an
‘initial’  value (cf. Monin and Yaglom, 1971, 1975; Lesieur, 1997)

Assume that

stands for the air parcel ‘sedimentation rate’ in the 
induced by diabatic (predominantly radiative) heating of the lowest
tropospheric levels and a subsequent diabatic destruction of the PV-field
(cf. Danielsen (1990) where, inversely, PV production in the
stratosphere due to diabatic cooling is discussed extensively). Given an
arbitrary, but fixed  level in this configuration space, the air mass flux
towards low  is equal to  In the stationary case it is cancelled by
the diffusivity flux  directed towards high 

Integration over  gives

which coincides with distribution (10) in the particular case

As it follows from these speculations, in the limit case  when
diabatic heating of the tropospheric lowest levels is suppressed, but the
surface friction strongly ‘ties’ the atmosphere to the underlying rotating
solid Earth, one arrives at a quasi-uniform air mass distribution on PV
values. In contrast, when  but the surface air heating is intensive
enough, there is a tendency towards air mass concentration at zero PV
values. This corresponds to the limiting case of vanishing of the
differential (in latitudinal direction) atmospheric heating. Here, in the
main atmospheric bulk one observes exclusively micro- and meso-scale
motions with identically vanishing PV, which originate from vertical
convective instability. In its major part, the first scenario is closer to the
atmospheric winter-time general circulation, and the second one to the
summer-time circulation, particular to that in the Northern Hemisphere.
This helps us to understand more clearly the peculiarities in the
seasonal course of the µ-distribution already mentioned in Section 4.7.
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In the hypothetical case of K=0 the hemispheric vorticity charge 
 (the hemispheric air mass is set equal to unity). The work of the heat
engine of atmospheric general circulation, driven by differential diabatic
heating, results in the production of  In the framework of this
scheme, it is natural to assume that in order to create non-zero vorticity
charge  it is necessary to create, at the first step, the vorticity
charge  and then the vorticity charge  If these two steps are
independent, one arrives at the functional relation 

 which immediately leads to distribution (10). 

172 M.V.KURGANSKY



CHAPTER 5
Dissipative Processes in the

Atmosphere

For atmospheric motions with the characteristic wind speed U=10 m·s−1

and the spatial scale L=104 m comparable with the atmospheric scale
height, the Reynolds number Re=UL/v, which in the Navier-Stokes
equations characterizes the inertial-to-viscous force ratio, reaches a
value of the order of 1010, when the molecular air viscosity kinematic
coefficient v 10−5 m2·s−1 is taken. Consequently, one may disregard the
molecular viscosity in the bulk of the atmosphere, except a very thin air
film joining with the Earth’s surface, because it is the molecular
viscosity that supplies the velocity vector vanishing on the solid Earth’s
surface. The fact that air parcels are forced to ‘stick’ to the Earth’s
surface is the reason for an atmospheric boundary layer to appear. The
latter has its own particular intrinsic dynamics and the main function to
supply the needed transition from zero wind velocities at the Earth’s
surface to the velocities of the order of 10 m·s−1, which dominate in the
free atmosphere.

The concept of the atmospheric boundary layer is very much
sophisticated. It is more correct to speak of an hierarchy of nested
boundary layers with differentiating vertical scales, each of which has
its own determining physical factors (Figure 22, see also Etling, 1996).
A very thin air layer directly above the Earth’s surface, where a drag
force between the atmosphere and underlying surface dominates (this
force exceeds all others by at least one order of magnitude) is named the
surface boundary layer.

5.1
Surface boundary layer

Consider an idealized situation when a steady wind of uniform direction
and with altitude-depending magnitude blows over an absolutely plane
Earth’s surface (see Figure 23). We choose the Cartesian axes in such a



way so as to direct the x-axis along the wind, the z-axis vertically
upward, and place the origin of coordinates onto the Earth’s surface. We
write Equation (1) of Section 1.1, being projected onto the x-axis

where the molecular viscosity dynamic coefficient η is considered as a
constant. Because the surface boundary layer is very thin, and velocity
of the wind is fairly small if compared with the speed of sound, air is
treated as a homogeneous fluid, with ρ=const, and its motion is
considered to be nearly incompressible

(∂u/∂x)+(∂v/∂y)+(∂w/∂z)=0.
Combining these two equations, one gets 

(1)

We shall denote the running time-mean of fluid dynamic fields by a bar
above, and deviations of instantaneous variable values from their means
by a prime:  etc. Regarding fluid dynamic fields
as random, we assume their stationarity and horizontal homogeneity at
every level z=const. After averaging Equation (1), we get

FIGURE 22 Atmospheric boundary layer structure.
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Due to the impermeability condition w=0 on the Earth’s surface, z=0,
one can write

Integration of this equation over z gives 
(2)

where a constant τ0 stands for the frictional stress at the Earth’s surface.
From the dimensional considerations it is beneficial to write 
where u*=0.3 m·s−1 is the so-called friction velocity. The latter
numerical value has been obtained on the basis of numerous
experimental data handling. With account of surface air density values
close to 1.25 kg·m−3 we get τ0≈ 0.1 N·m−2, i.e., under typical conditions
one Earth’s surface square metre is affected from aside the atmosphere
by a horizontal force of 0.1 N.

Our goal is to relate a vertical wind profile  to the frictional stress
at the Earth’s surface τ0. Due to the determining parameters of the
problem we have  Because the dimension of velocity
does not contain the mass unit, actually one gets

 At first, we estimate the viscous sublayer
width δ, starting from the condition that molecular viscous stresses

FIGURE 23 Wind profile within a surface boundary layer.
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dominate in the left-hand side of Equation  The quantity
δ could be conditionally defined, for example, as such a z-value, at
which turbulent stresses reach 10% of the magnitude of the viscous term
(Monin and Yaglom, 1971, 1975). From dimensional arguments it
follows that δ=Cv/u*, where C is a non-dimensional constant of the
order of unity. Its exact numerical value depends on the δ-definition and
should be extracted from experimental data. An interval of plausible C
values happens. luckily. to be not too broad. Most frequently it is assumed
that C=5, which for atmospheric air with v=0.15 cm2·s−1, u*=30 cm·s−1

corresponds to δ≈0.3 mm. At z>>δ additional Reynolds stresses
dominate in the left-hand side of Equation (2):  Here,
because molecular viscosity does not enter any more the list of the
determining parameters and we are not obligated to control the no-slip
condition validity at the Earth’s surface, the governing equations become
Galilean invariant. Thus, the method of similarity theory and
dimensional analysis has to be used to specify the vertical wind shear,
which is a true Galilean invariant quantity:  (see Landau
and Lifshitz, 1988). From dimensional arguments it follows
immediately that  where an appearing constant к is named
the von Kármán constant and is approximately equal to 0.4. The latter
value has been obtained based on numerous experimental data
handling. After integration, we shall have

The atmospheric layer, where this relation is valid, is named the
logarithmic, or Prandtl, boundary layer (Monin and Yaglom, 1971,
1975; Etling, 1996). 

An underlying surface, with the vertical roughness scale not
exceeding δ, is named the aerodynamically smooth surface. In nature,
one usually deals with aerodynamically rough surfaces and has to
introduce the roughness height z0 to characterize them. For example, for
a smooth snow field z0~0.1 cm, for a grass cover z0~1 cm, and for a
forest z0~1 m. In the case of a rough surface, the expression

 is used and

i.e.,  and, thus, the logarithmic singularity of  in
the coordinate origin is eliminated.

By analogy with viscous stresses, following Boussinesq hypothesis,
it is adopted that
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where ηT is the dynamic coefficient of turbulent (eddy) viscosity. If we
introduce the kinematic eddy viscosity vT=ηT/ρ and take into account
the above written relations, it is easy to obtain vT=кu*z. A formal
analogy exists between the formula just deduced and the mathematical
expression for a kinematic coefficient of molecular viscosity v~cλ,
resulting in the classical kinetic theory of gases. In the latter case, c is
the characteristic velocity of chaotic molecular motion, close to the
speed of sound, and λ is the free-path length of gas molecules. Under
standard atmospheric conditions, c≈3.2×102 m·s−1, λ≈5×10−8 m, and
v=0.16×10−4 m2·s–1. On the other hand, at the height z=1 m the eddy
viscosity vT=1.2×10−1 m2·s−1 already exceeds the molecular viscosity
103 times. However, one cannot consider vT an unlimited quantity
increasing with altitude. Beginning from a height of several tens of
meters, the factor of stable atmospheric stratification starts to play a
role. Following Obukhov (1946), let us estimate the upper limit vTlim,
based on the Richardson’s criterion for turbulence non-degeneration

(3)
The vertical potential temperature profile  is controlled by the heat
flux across the Earth’s surface. Under Boussinesq approximation, which
is well-justified for this problem, it could be written (Monin and
Yaglom, 1971, 1975; Landau and Lifshitz, 1988):

and, which is more, under the approximation in question the concepts of
the potential θ and kinetic T temperature become indistinguishable. The
coefficient of heat conductivity λ is assumed to be a constant quantity.
Averaging this equation over time, on assumption of stationarity and
horizontal homogeneity of random fluid dynamical fields, we obtain

Integrating this equation over altitude, we get

where q0 stands for the heat flux across the Earth’s surface. Again,
based on dimensional arguments, one could write q0=cppu*θ*, where θ*
is the temperature fluctuation scale being commonly of the order of a
few tenths of degree. Outside the viscous sublayer (for air, the
molecular Prandtl’s number is Pr=η/(λ/cp)=0.7 and, hence, the width of
the thermal and viscous sublayers is nearly the same)
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Assume that  where χT is the coefficient of eddy thermal
conductivity. If potential temperature increases with altitude, i.e., the
atmosphere is stably stratified, then heat is transported downward,
towards the Earth. Assuming that the boundary layer turbulence
structure is predominantly determined by the surface friction, we take
that   Now, on the basis of Equation (3) we shall have

or

where a combination of variables L, with the dimension of the length,
which appears in the right-hand side of this inequality is, as a rule, of
the order of a few tens of meters. The quantity L is positive for stable
atmospheric stratification, is negative for unstable stratification, when
convection develops, and transits through infinity for the neutral
stratification limit. In this sense, the L-scale is an analog of absolute
(Kelvin) temperature in thermodynamics if positive temperatures are
completed with negative ones. For the first time, the L-scale has
appeared in Obukhov (1946). In a recent literature it is commonly
referred to as the Monin—Obukhov length, after Monin and Obukhov
(1954). Given the above, the upper limit value vTlim can be re-written in
the form of vTlim=кu*L. The Monin-Obukhov length is taken as

We use the Brunt-Vaisala frequency squared  whose
exact value corresponds to the upper limit of potential temperature
gradient  and, besides, we take that χTlim=vTlim=кu*L. In this
way, we arrive at the relation  from which it follows that
L=u*/кN and, consequently,  Taking u*=0.3 m·s−1, N=10−2 s
−1 we find that L=80 m and vTlim=10 m2·s−1. The resulting upper limit of
eddy viscosity exceeds the molecular viscosity one million times.

Above the level z≈0.1L one has to consider the deflective action of
the Coriolis force.
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5.2
Ekman boundary layer

Within the altitudinal range of 10–1000 m in the atmosphere the balance
between the turbulent friction force and the deflective Coriolis force is
the crucial factor.

An assumption of the independence of the horizontal pressure
gradient components of height is made, which is common for boundary
layer theories. The easiest way to demonstrate this is to take the
derivatives with respect to x and y from both sides of the hydrostatic
equation ∂p/∂z=−ρg. The latter equation is undoubtedly valid here,
because the horizontal spatial scale of boundary layer motions
significantly exceeds their vertical spatial scale. The next step is to
replace the order of taking the derivatives on assumption that ρ=const.

We start from the equations of motion

where the x-axis is directed along the geostrophic wind ug=−(ρl)−1∂p/
∂y and the motion at every horizontal level is considered rectilinear and
with uniform velocity, so that Du/Dt=Dv/Dt=0, by the Galilean
principle. The turbulent eddy viscosity vT is assumed to be independent
of height. The horizontal homogeneity of fluid dynamical variables is
postulated. So, the two equations

(1)

for two unknown functions u and v hold. We multiply the second
equation by the imaginary unity i, sum up the first equation, and introduce
a new unknown function w=u+iv. As a result, we get

vT (∂2w/∂z2)=ilw—ilug.
With the help of an auxiliary variable  this equation reads as

It has a general solution

where A and B are complex constants, generally speaking, and the
notation h2=2vT/l has been introduced for brevity. Taking vT=25 m2·s−1,
which is the same order of magnitude as the value of vTlim predicted in
Section 5.1, and l=10−4 s−1, we obtain h≈700 m. Due to the boundary
conditions w= 0,  at z=0 and w→ug,  at z→∞, we write
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Separating the real and imaginary part of this equality, we finally have

(2)

This wind distribution with height can be displayed with the help of
vectorial arrows beginning in the sole point and depicting the wind
speed at different levels by their direction and magnitude (see
Figure 24). Connecting the vector edges, we arrive at a continuous
curve. What is needed more is only to draw altitudinal marks in several
of its points to be able to distinguish the magnitude and direction of
wind at any desired level. This curve is actually a logarithmic helix and
is named the Ekman spiral after Ekman (1905) who was the first among
geophysicists to arrive at the solution (2) and to construct the
corresponding wind hodograph. The Ekman spiral enters the origin of
coordinates in the (u,v)-plane, having an angle of 45° with the u-axis
and, what is more,  at z→0, and approaches
asymptotically u=ug, v=0, at z→∞. The helix intersects the u-axis an
infinite number of times and performs it for such u-values which are
either greater or smaller than ug, but which are the closer to ug the
higher altitude z is. If we disregard these minor deviations from ug, the
schematic Figure 24 well agrees with the observations which also show
the wind speed increase with height up to geostrophic wind values and
the right wind rotation. In meteorology, the wind rotation with height
shown in Figure 24 is termed the right rotation, because an observer

FIGURE 24 Ekman spiral over the solid Earth surface. Wind speed at the
surface level vanishes, and the deflection angle is equal to 45°. At high altitudes,
wind v becomes geostrophic vg. The sketch is drawn for the Northern
Hemisphere. Ageostrophic wind va=v–vg is shown with dashed arrows. Ekman
spiral is the so called equiangular helix: in all its points an angle between va and
the corresponding tangent vector is constant and is equal to 45° in the case
considered.
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staying with his face to the wind discovers that the wind at an upper
layer blows from his right-hand side (Koschmieder, 1933).

A characterization of such wind rotation with height is the helicity
 (see Chapter 1). For the Ekman spiral, in the above

chosen right-handed coordinate system, one has
χ=−u(∂v/∂z)+v(∂u/∂z),

where u and v are determined through expressions (2). The distribution
of χ with altitude is given by the formula (see also Hide, 1989)

i.e. one has the right wind rotation in the main bulk of the Ekman
boundary layer, which at high altitudes is replaced by alternations of
right and left rotations along with the wind vector v=(u, v) performing
small oscillations about the vector vg. The total helicity in a vertical air
column of unit horizontal cross-section is determined by the easily
calculated integral

(3)

However, the expression for H could be arrived at even in an easier way,
if we start from the readily checked identity, valid at vT=const,

With its use and account for h2=2vT/l and  at z→0, we arrive
at formula (3).

As it follows from the general helicity balance Equation (1) from
Section 1.4, applied to the Ekman boundary layer problem, the time rate
of helicity dissipation due to eddy viscosity is determined by the
formula

which is valid for an arbitrary functional dependence VT(z). With the
account for the boundary conditions, we have
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So, in the absence of a divergent term in the right-hand side of the
helicity balance equation the total helicity would decay in time
following the exponent

However, it will not in fact contradict an initial assumption on the
stationarity of Ekman solution (2), because the destruction of helicity is
exactly compensated for by its supply from the free atmosphere
(Kurgansky, 1989).

In the Southern Hemisphere, the Ekman spiral is just a mirror
reflection of the curve in Figure 24 with respect to the u-axis.
Correspondingly, one has to reverse the sign of both helicity H and the
time rate of its destruction, assuming that in the above formula l>0, thus
taking the absolute value of the Coriolis parameter.

The described simple model reproduces the situation within a
boundary layer qualitatively correctly, but the observed angles φ of the
surface wind deviation from the geostrophic wind are smaller than the
theoretically predicted value φ=45°. Typically, the φ values are around
20–30°. For an unstable stratified boundary layer, i.e., in the case of
convection, φ is rather small, about several degrees. In the case of stable
stratification this angle may reach 40°. If one stays on positions of the
semi-empirical turbulence theory and uses the eddy viscosity, one could
attempt to improve the shortcoming of the Ekman solution by using at
least two methods. The first method is to try a more realistic altitude
dependence in the eddy viscosity vT =vT(z) (Brown, 1972). The other
method proposed by Taylor (1914) is to replace the non-slip condition
w=u+iv=0 on the Earth’s surface by the free slip condition ∂w/∂z=λw,
with λ as a certain constant. Here, the existence of the surface boundary
layer is taken into account implicitly and the lower boundary condition
is posed, actually, at its top, say, at a height z =10 m. When λ→∞,
Taylor’s problem reduces to Ekman’s problem. Algebraic
transformations are a little bit more cumbersome in Taylor’s problem,
but one manages to link the parameter λ, with the wind deviation angle
φ by a simple relation tan φ=λh/(2+λh).

If τx, τy are the components of the friction force, acting onto a unit
Earth’s surface area from aside the atmosphere, then according to the
third Newton’s law
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Due to the free slip condition on the Earth’s surface 

and the direction of the vector of surface friction stresses 
coincides with that of the surface wind vs=(us, vs), deviating from the
direction of the geostrophic wind vg=(ug, vg) by an angle φ. Expressing
λ, in terms of this angle, we shall have

(4)

Taylor (1914), based on both general fluid dynamic arguments and the
dimension theory, suggested the validity of quadratic, or ballistic,
resistance law

(5)
where by experimental evidence CD~10−3. Currently, formula (5) is
widely used in numerical modeling of large-scale atmospheric processes
(Lorenz, 1967; Van Mieghem, 1973).

Comparison of formulae (4, 5) gives that

The modulus of the surface wind vector |vs| is related to the geostrophic
wind vector modulus  Keeping in mind that
2vT=h2l, we finally get

Taking  we shall have h≈230
m and vT ≈2.7 m2·s−1. The latter value is somewhat lower if compared
with our previous estimates. This gives evidence to the uncertainty level
which is immanent to this sort of boundary layer theories.

5.3
Ekman friction mechanism

Assume that the geostrophic wind velocity depends weakly (or, as it is
sometimes said, parametrically) on the transversal, with respect to the
wind direction, coordinate y: ug=ug(y). Let us calculate the appearing
vertical velocity at the top of the Ekman boundary layer. We start from
the incompressibility equation

(∂u/∂x)+(∂v/∂y)+(∂w/∂z)=0.
When integrating it over height, one gets
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Now, with account for Equations (1) from Section 5.2, we shall have

where τx and τy stand for surface friction stress components. According
to the Ekman solution τx=τy=ρvTug/h, and thus

If we introduce a relative vorticity vertical component in the free
atmosphere, the formula obtained, which has been derived by Dubuc
(1947) and Charney and Eliassen (1949), could be written in an
invariant form

(1)
where ψ stands for the geostrophic stream function.

One might say that some sort of a pump works inside the Ekman
boundary layer. In a cyclonic region, air is pumped aloft, into the free
atmosphere. The other way round, where anticyclonicity occurs, it is
sucked into the boundary layer. Such an asymmetric behavior of
vertical velocity actually represents an adequate reaction of boundary
layer intrinsic dynamics to large-scale motion in the free atmosphere,
which is generally characteristic of stable systems (cf. Le Chatelieur’s
principle in thermodynamics or Lentz’ rule in electrodynamics). As the
Ekman spiral shows, the wind is always deviated towards the lower
pressure. In a cyclonic region, this results in a convergence of the mass
flux which, due to a weak air compressibility, leads to updraft motions
developing at the top of the boundary layer. In contrast, inside an
anticyclone, a divergence of the mass flux occurs and the vertical
velocity at the top of the Ekman boundary layer is directed downwards.
In the former case, a free atmospheric effect of vortex tube contraction
in the vertical direction is observed. This, due to the theorem of potential
vorticity conservation, results in the damping of the vertical component
of absolute vorticity. In the latter case, the tubes are stretching, vorticity
increases and an anticyclone weakens.

Addressing a more formalistic treatment of the Ekman friction
mechanism, we start from the quasi-geostrophic potential vorticity
equation (see Equation (5) of Section 2.3)

(2)
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Relation (1) supplies the lower boundary condition for Equation (2); what
is more, one might write without the loss of accuracy (because the
quasi-geostrophic approximation is valid)

and in p-coordinates, respectively,

Combining these relations with the thermodynamic equation, we shall
have for geostrophic stream function ψ=gz/l that

(3)

We perform a reduction to the barotropic atmosphere case by
integrating Equation (2) over pressure with the account for the boundary
condition (3) and the corresponding condition at the atmospheric top
(see Chapter 2):

Utilizing the barotropic motion properties, we have commutated the
derivatives D/Dt and ∂/∂p in the integrand of the second left-hand side
term. After performing non-laborious transformations, we arrive at the
Charney-Obukhov Equation (4) from Section 2.2 with the account for
Ekman friction

(4)

An appearing constant  has the dimension of an
inverse of time (here, H is the atmospheric scale-height). Parameter τ=µ
−1 specifies the characteristic time-scale of relative vorticity decay due
to the Ekman friction. In the atmosphere, τ≈2·105 s≈2.3 days. To
characterize the Ekman dissipation, the non-dimensional Ekman
number E=(h/H)2≈ 10−2 is sometimes used. It is easily seen that 
 On the other hand, racalling that  we get  i.e.,
under free atmospheric conditions, the Ekman number describes the
ratio of the turbulent friction force to the Coriolis force.

On the basis of Equation (4), the energy balance equation is readily
written
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The specific rate of the energy frictional dissipation is characterized by
the value

ε=0.5×10−5 s−1.102 m2·s−2=0.5×10−3 m2·s−3,
which is close to empirical estimates by Oort (1964, 1983), Wiin-
Nielsen and Chen (1993) and others and stresses the particular role
which the Ekman layer plays to establish the atmospheric energy
balance.

As for the integral of one-half of potential vorticity 
squared taken over the atmospheric volume, which is named the
potential enstrophy, the balance of this quantity could be provided only
at the expense of the horizontal, or Newtonian, viscosity, taking into
account the term  in the right-hand side of Equation (4). The
viscous dissipation of potential enstrophy occurs at the finest spatial
scales λ, and is determined by the integral  This dissipative
function density ε1, with the units of s−3, completely determines the
energy distribution over the wave number k spectrum within the inertial
range  according to the law 

(5)
which is different from the Kolmogorov-Obukhov ‘minus 5/3’ power
law (see Monin and Yaglom, 1971, 1975; Landau and Lifshitz, 1988).
Here, L is the external scale, at which the potential enstrophy is
supplied, and C is a universal non-dimensional constant. In
meteorology, the law (5), generally valid for two-dimensional and quasi-
two-dimensional flows (see Charney, 1971; Monin, 1990 and references
therein) has found a support both in observational data and in the
numerical modeling results for the zonal wave number range k=7–20,
which borders upon the baroclinic instability range k=6–7.

5.4
Turbulent Ekman layer

Following the ideas by Dolzhanskii and Manin (1993), at the very end of
this Chapter we attempt to relate the friction stress vector  to the
geostrophic wind vector vg, based solely on both primary symmetry
principles and basic fluid dynamic similarity arguments, but not using
the eddy viscosity concept explicitly.

In the most general case, one might assume that the variables w=u+iv
and wg=ug+ivg of Section 5.2 are linearly related
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w=Awg, (1)
where A=a+ib, with a and b as functions of the non-dimensional
vertical coordinate ζ=z/L. Here, L is a characteristic scale-height of the
boundary layer, which, generally speaking, depends on horizontal
coordinates x, y. Below, L will be defined more precisely.

For the following purposes, it is convenient to re-write Equation (1)
in tensorial notations, by using components vj, vgj(j= 1, 2) of two-
dimensional vectors v=(u,v), vg=(ug,vg):

Vj=Ajk(ζ)vgk,
where matrix Ajk has the form (x1=x, x2=y, x3=z)

Ajk=aδ
jk

+be
3jk.

Here δpq and epqr are the Kronecker and Levi—Civita tensors,
respectively. 

Due to the adjustment between actual and geostrophic wind at ζ→∞,
it follows that a→1, b→0, Ajk→δjk. Thus, it is convenient to write

vj=δjkvgk+(Ajk−δjk)vgk. (2)
The vertical velocity at the top of the Ekman boundary layer is given by
the formula (see Section 5.3)

(3)

After substituting expression (2) into formula (3), we shall have

We take into account that ζ=z/L, ∂ζ/∂xj=−ζ∂1nL/∂xj and get

Finally, we integrate over ζ instead of z:
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Assume that the geostrophic wind is non-divergent ∂vgj/∂xj=0. After
integration by parts, with the account for Ajk→δjk at ζ→∞, we get

In notations  finally reads as
(4)

and, what is more, 
The constants α and β are positive, because the wind vector has the

right rotation with height (see Figure 23) and its modulus  is smaller
than the geostrophic wind modulus  almost everywhere.

Consider several particular cases of the application of the general
formula (4).

In the simplest case of L=h/2β=const we arrive at the Dubuc-Charney-
Eliassen’s formula, see Equation (1) of Section 5.3. Thus, the linear
Ekman friction law is obtained.

Assuming  we arrive at a quadratic dependence

It is convenient to re-write this formula as

where  is the two-dimensional, in (x, y)-plane, Hamiltonian operator.
With the use of the identity

with a unit vector k directed upward, we shall get
(5)

Comparing expression (5) with the general equation (see Section 5.3)

one gets
(6)
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where Φ is an arbitrary scalar differentiable function, which may be set
equal to zero without the loss of generality. The second term, appearing
in the right-hand side of Equation (6) and absent in formula (5) of
Section 5.2, is not accidental, because vectors Vs and vg are not
collinear. This term does not influence atmospheric energetics, but
transforms the stability properties of large-scale atmospheric motions
affected by friction (Danilov, 1992). Relation (6) could be derived
directly, if we start from formula (5) of Section 5.2 and use the
decomposition of vector |vs| vs into the system of two orthogonal
vectors |vg| vg and k×|vg| vg (in our case all the three vectors in question
are complanar)

Here C1 and C2 are certain positive constants. This is guaranteed by the
right rotation of vector v with height (see Figure 24).

Charney-Obukhov’s equation with the quadratic friction term in its
right-hand side is written in the form (Dolzhanskii and Manin, 1993)

(7)

i.e., friction does not lead only to energy dissipation but redistributes
energy over spatial scales, thus modifying the beta-effect. Here, as
usually, J denotes the Jacobian operator.

Instead of the Coriolis parameter l, one may adopt the averaged
(characteristic) value of bulk helicity density within the Ekman
boundary layer χ0 as one of the key parameters which, along with |vg|
determines the scale L. The χ0-value is determined not only by l, but
also by the vertical stratification of the atmospheric boundary layer and
the underlying surface roughness. As it follows from the Richardson’s
criterion, the second factor sets a definite upper limit to vertical wind
shear. The latter factor determines the surface wind strength. For the
Ekman boundary layers χ0~10−1 m·s−2. 

Now, the characteristic vertical scale, which is determined by 
 acquires the value ~103 m, and thus happens to be of the same order of
magnitude as the observed vertical scale of the boundary layer. As the
result, we arrive at the cubic friction law

with matrix elements Bjk being of the order of unity. For the cubic
friction, Charney-Obukhov’s equation takes the form
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(8)

There exists the only possibility to answer the question, which of the
viscous resistance laws, linear, quadratic or, maybe, cubic, suits the
turbulent Ekman boundary layer conditions the best. It is to continue
work with Equation (4) of Section 5.3, and Equations (7, 8),
accompanying it with analysis and interpretation of experimental data.
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adiabatic approximation, 5, 19, 106,
126, 130, 134, 140, 141

adiabatic invariants, 5, 19, 20, 89, 141,
154, 167

in classical mechanics, 6
anticyclogenesis (diabatic), 137, 139
anticyclones, 2, 4, 174, 199, 200;

see also atmospheric blocking
Arnol’d method of stability analysis,

89
atmospheric angular momentum, see

conservation laws
atmospheric blocking, 155, 158, 159,

163, 166, 174, 181
atmospheric free energy, 35, 37, 38,

42, 55
atmospheric heat engine, 31, 32, 38,

49, 185
attractor of climate system, 11, 181,

182
available enthalpy, 55
available kinetic energy, 50, 116, 120
available potential energy, 34, 35, 38,

98, 116, 123, 124, 133, 134, 135,
142

baroclinic instability, 96, 97, 115, 116
in Eady’s model, 106–110
in Phillip’s model, 113, 114
in two-dimensional model, 57

barotropic instability, 89, 96, 115
Beltrami flow, 31

Bernoulli function, 15, 129
beta-effect, 72, 75, 90, 110, 205
beta-plane approximation, 97
Bjerknes’ circulation theorem, 57, 151
boundary layer, 45, 46

surface layer, 187–193
Ekman layer, 172, 173, 193–199,
201

Boussinesq approximation, 17, 191
Brunt-Vaisala frequency, 3, 4, 70, 116,

117, 193
Buys Ballot law, 63;

see also geostrophic wind

Carnot cycle, 35
Casimir functionals, 94
Charney-Obukhov’s equation, 75,

201, 205, 206
Charney-Stern criterion, 104, 118;

see also baroclinic instability
conservation laws,

of absolute vorticity, 79, 93, 96,
129, 147
of angular momentum, 5, 43–50,
61, 90, 93, 96, 97, 176, 177
of energy, 5, 39, 54, 66–68, 85, 87,
90, 98, 108, 112, 130
of helicity, 26, 27, 29–31, 195–
197, 205
of momentum, 85, 94, 99, 105,
112, 120
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of potential vorticity, 5, 22, 23,
70, 78, 82, 96
of potential vorticity inquasi-
geostrophicapproximation, 75, 97,
110;
see also quasi-
geostrophic potential vorticity
of potential vorticity in the shallow
water model, 60, 61, 64, 84
of vorticity charge, 23–26, 61,
129, 169–172, 174, 175, 182

Clebsch transformation of fluid
dynamic equations, 153

Coriolis parameter, 2, 4, 52, 60, 63,
72–74, 78, 105, 107, 205

cyclones, 2, 4, 155, 157, 159, 163,
181, 199, 200

cyclogenesis (diabatic), 137, 139

deformation radius,
Rossby’s internal (baroclinic), 3,
4, 70, 77
Rossby-Obukhov’s external
(barotropic), see Obukhov’s
synoptic scale

Ekman boundary layer, see boundary
layer

Ekman number, 201
Ekman pumping (suction), 199, 200
Ekman spiral, 195, 197, 199, 200
energy, see conservation laws
enstrophy, 90, 180
enthalpy, 12, 32
entropy, 12, 14, 20, 35, 38, 56

informational, 169, 176, 177, 180
entropy deficit, 40, 43

information theoretic, 177, 182
Ertel’s commutation formula, 153
Ertel’s potential vorticity, 20, 21, 25,

30, 31, 61, 128, 136, 141, 142–144,
153, 170;

see also conservation laws and
potential vorticity

Euler’s equations for a rigid rotator,
89

Exner function, 14, 125, 126

Friedmann’s theorem, 17, 145, 152,
178, 184

Friedmann’s vorticity equation, 15,
22, 136

Galilean invariance (principle of), 63,
190, 194

general atmospheric circulation, 2, 43
geostrophic adjustment, 62, 63, 67, 68,

70–72, 82
geostrophic balance, 62, 65, 66, 68,

72, 73, 116
geostrophic singular (point) vortex, 70
geostrophic wind, 62, 63, 173, 195,

198, 202–204
Gibbs’ potential (free enthalpy), 12
Gromeka-Lamb equations, 15, 129

Headly’s regime of atmospheric
general circulation, 2

helicity, see conservation laws
Helmholtz’ operator (Helmholtzian),

16, 145
Helmholtz’ vorticity equation, 80, 81
Hollmann’s invariants, 30
horizontal baroclinicity, 57
Hough functions, 81, 85
hurricanes (typhoons), 2
hydrodynamic instability, 50, 89

baroclinic, see baroclinic
instability
barotropic, see barotropic
instability
orographic, see orographic
instability
shear instability of stratified
flows, see Richardson’s criterion
of stability

hyperviscosity, 11
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inertial oscillations, 66
internal energy, 11, 32

of a two-dimensional atmosphere,
56

isentropic analysis, 154, 155 143, 149
isentropic coordinates, 35, 124, 127,

128, 130, 132, 142, 151, 154
isentropic potential vorticity maps,

145, 154, 155
invariant flux tube, 149, 151–155,

158–167

jet stream, 1, 163

Kelvin’s circulation theorem, 3, 21,
142, 147

Kibel’—Rossby parameter (number),
74, 77, 78

Kolmogorov’s microscale of
turbulence, 1

Kolmogorov-Obukhov’s spectral law,
202

laboratory experiments, 62, 70, 110
Lagrangian invariants, 20, 138, 153,

155
Laplace’s tidal operator, 81
length-of-day fluctuations, 46, 47, 177
Lighthill’s theory of sound wave

generation, 82
Lyapunov’s method in the stability

theory, 89, 92, 95, 96, 102, 104,
113, 118

Mach number, 78, 86
Margules theorem, 34, 37, 54
Miles-Howard criterion of stability,

118
Monin-Obukhov’s length in the

boundary layer theory, 193
Montgomery stream function, 126,

129

Newtonian (internal) viscosity, 10,
81, 201

Noether’s theorem, 6

Obukhov’s synoptic scale, 70, 71, 74,
87, 107, 111;

see also deformation radius
orographic instability, 96
orographic torque, 45, 49

particle-relabelling symmetry, 6
planetary boundary layer, 3, 4, 136;

see also boundary layer
planetary vorticity, 4, 104;

see also Coriolis parameter
point vorticity charge, 26, 77;

see also conservation laws
potential enstrophy, 201
potential temperature, 14, 20, 56, 57,

61, 78, 98, 104, 121, 124, 125, 128,
143, 174, 191, 192

potential vorticity,
see also conservation laws and
Ertel’s potential vorticity
in isentropic coordinates, 124,
130, 137–141
in isobaric coordinates, 128
modified after Obukhov, 141,
142, 154–170, 174–185

Prandtl (logarithmic) boundary layer,
190

Prandtl number, 192
pressure (isobaric) coordinates, 75,

123, 127, 128
pseudo-potential vorticity, 5
quasi-biennial oscillation, 2, 181
quasi-geostrophic approximation, 17,

51, 55, 63, 78, 79, 97, 109, 115,
135, 171, 200

quasi-geostrophic potential vorticity,
5, 77, 200;

see also conservation laws
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quasi-solenoidal approximation, 78,
93, 96

quasi-static approximation, 17, 33, 52,
58, 75, 123, 124, 128, 133, 171

Rayleigh-Kuo’s criterion, 95, 118;
see also barotropic instability

Rayleigh (linear) friction, 11
Rayleigh’s criterion of the onset of

convection, 117
relative helicity, 31
Reynolds number, 187
Richardson number, 116, 119, 122,

128, 137
Richardson’s criterion of stability,

116–118, 121, 191, 205
Rossby’s deformation radius, see

deformation radius
Rossby’s regime of atmospheric

general circulation, 2
Rossby waves, 51, 80, 81, 85, 97

their stability, 95

semi-geostrophic equations, 79, 110
semi-permanent centres of action, 81
shallow-water model, 52, 59, 62, 82,

85
singular (point) vortices, 70, 82, 85
slow invariant manifold, 82
spontaneous wave emission, 51, 82,

86
super-rotation of the atmosphere, 46,

47, 49
surface friction torque, 45, 49

thermal wind relation, 3, 47, 53, 58,
107, 121, 128, 151, 176

topological invariants,
of vorticity field, 29;
see also helicity
of potential vorticity field on
isentropic surfaces, 145, 158, 159,
166

total enthalpy, 34, 38, 42,

see also total potential energy
total potential energy, 34, 37, 38, 41,

56, 133, 135;
see also Margules theorem

unavailable kinetic energy, 49
unavailable potential energy, 135

vorticity charge, see conservation
laws
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