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Preface

This book is the result of a thorough revision of the lecture notes “Descriptive
Statistics and Probability” that were developed by Peter Goos for the course
“Statistics for business and economics 1” at the Faculty of Applied Economics of the
University of Antwerp in Belgium. Encouraged by the success of the Dutch version
of this book (entitled Beschrijvende Statistiek en Kansrekenen, published in 2013 by
Acco Leuven/Den Haag), we joined forces to create an English version. The book
provides a detailed treatment of basic probability theory, descriptive statistics, and
graphical representations of data. We pay equal attention to mathematical aspects,
the interpretation of all the statistical concepts that are introduced, and their practical
application. In order to facilitate the understanding of the methods and to appreciate
their usefulness, the book contains many examples involving real-life data. To
demonstrate the broad applicability of statistics and probability, these examples have
been taken from various fields of application, including business, economics, sport,
engineering, and natural sciences.
We had two motivations in writing this book. First, we wanted to provide students

and teachers with a resource that goes beyond other textbooks of similar scope in
its technical and mathematical content. It has become increasingly fashionable for
authors and statistics teachers to sweep technicalities and mathematical derivations
under the carpet. We decided against this, because we feel that students should be
encouraged to apply their mathematical knowledge and that doing so deepens their
understanding of statistical methods. Reading this book requires some knowledge of
mathematics, including the use of derivatives, integrals, and some matrix algebra.
In most countries, these topics are taught in secondary or high school. Moreover,
these topics are often revisited in introductory mathematics courses at university.
Therefore, we are convinced that many university students have a sufficiently strong
mathematical background to appreciate and benefit from the more thorough nature
of this book. A particular strength is that all mathematical derivations are shown in
detail. We included all intermediate steps, even those that might be trivial for mathe-
maticians. We hope that this keeps the book readable for less mathematically gifted
readers and also shows that the mathematical derivations are actually not as difficult
as these readers might first imagine.
Our second motivation was to ensure that the concepts introduced in the book

can be successfully put into practice. To this end, we show how to generate graphs,
calculate descriptive statistics and compute probabilities using the statistical software
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package JMP (pronounced “jump”). We chose JMP as supporting software because
it is powerful yet easy to use, and suitable for a wide range of statistically oriented
courses (including descriptive statistics, hypothesis testing, regression, analysis of
variance, design of experiments, reliability, multivariate methods, and statistical and
predictive modeling). We believe that introductory courses in statistics and probabil-
ity should use such software so that the enthusiasm of students is not nipped in the
bud. Indeed, we find that, because of the way students can easily interact with JMP,
it can actually spark enthusiasm for statistics and probability in class.
In summary, our approach to teaching descriptive statistics and probability theory

combines theoretical andmathematical depth, detailed and clear explanations, numer-
ous practical examples, and the use of a user-friendly and yet very powerful statistical
package. Our companion book Statistics with JMP: Hypothesis Tests, ANOVA and
Regression, (based on Verklarende Statistiek: Schatten en Toetsen, Acco Leuven/Den
Haag, 2014), follows the same philosophy.

Software

As mentioned, we use JMP as enabling software. With the purchase of a hard copy
of this book, you receive a one-year license for JMP’s Student Edition. The license
period starts when you activate your copy of the software using the code included
with this book (see inside front cover). To download JMP’s Student Edition, visit
http://www.jmp.com/wiley. For students accessing a digital version of the book, your
lecturer may contact Wiley in order to procure unique codes with which to download
the free software. For more information about JMP, go to http://www.jmp.com.
JMP is available for Windows and Mac operating systems. This book is based on
JMP version 12 for Windows.
In our examples, we do not assume any familiarity with JMP: the step-by-step

instructions are detailed and accompanied by screenshots. For more explanations and
descriptions, www.jmp.com offers a substantial amount of free material, including
many video demonstrations. In addition, there is a JMP Academic User Community
where you can access content, discuss questions and collaborate with other JMP
users worldwide: instructors can share teaching resources and best practices, students
can ask questions, and everyone can access the latest resources provided by the JMP
Academic Team. To join the community, go to http://community.jmp.com/academic.

Data files

Throughout the book, various data sets are used. We strongly encourage everybody
who wants to learn statistics to actively try things out using data. JMP files containing
the data sets as well as JMP scripts to reproduce figures, tables, and analyses, can be
downloaded from the publisher’s companion website to this book:

http://www.wiley.com/go/goosandmeintrup/JMP

http://www.jmp.com/wiley
http://www.jmp.com
http://www.jmp.com
http://community.jmp.com/academic
http://www.wiley.com/go/goosandmeintrup/JMP
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There, we also provide some additional supporting files to generate maps, or visualize
probability distributions and densities. For instructors who would like to use the book
in their courses, there are slides available that cover the material presented. The infor-
mation on how to access these teaching resources can also be found on the companion
website.

Peter Goos
peter.goos@biw.kuleuven.be

David Meintrup
david.meintrup@thi.de

mailto:goos@biw.kuleuven.be
mailto:meintrup@thi.de
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1

What is statistics?

The world is ready for the truth; the modern age is here; every year another report
appears that examines poverty by means of statistical research rather than romantic
claptrap.

(from The Crimson Petal and the White, Michael Faber, p. 334)

In this introductory chapter, we give a general description of the topics of statistics
and probability theory. Some examples illustrate the purpose and applications of both
disciplines, as well as the differences between them. As statistics has more applica-
tions in science, industry, and economics than probability theory, statistics is typically
given far more attention in degree subjects like business, industrial and bio-science
engineering, applied economics, and natural or social sciences. Nevertheless, one
should pay some attention to probability theory as well. In fact, both disciplines are
strongly connected to each other: it is impossible to understand the working of sta-
tistical inference without a sound knowledge of probability theory. Therefore, in this
book, we discuss both probability theory and statistics.

1.1 Why statistics?

For many years, statistics has been a subject, often a dreaded one, in several fields of
study at universities and colleges. The reason is that quite a few people will, sooner or
later, be confrontedwith problems of data analysis during their professional activities.
A sound statistical background not only allows us to analyze the data and to make
concrete decisions based on the analysis, but it also provides an advantage in the data
collection process.
Nevertheless, statistics is not immediately perceived as useful by most students.

This is mainly due to the fact that, during a statistics course, they are still unfamiliar
with the sorts of practical decision problems managers, economists, engineers, and

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup



2 STATISTICS WITH JMP

researchers face on a daily basis. Many students will start realizing the usefulness
of statistics when they start to work on their bachelor’s or master’s thesis. The many
examples in this basic course are intended to advance this awareness by several years.
In an introductory statistics course, one often finds a whole series of quotes as

an attempt to motivate students. A classic example is “Statistical thinking will one
day be as necessary for efficient citizenship as the ability to read and write.” from
the British writer Herbert George Wells (1866–1946). More recent is the judgment
by the US quality guru W. Edwards Deming, to whom a large part of the down-
right spectacular economic recovery in Japan after World War II is attributed. He
claimed that “Statistics is too important to be left to statisticians. The goal is to
have many statistically-skilled workers: engineers, scientists, managers...” Hal Var-
ian, chief economist at Google says the following: “I keep saying that the most sexy
job in the next 10 years will be statistician. And I’m not kidding.” In Europe, Willy
Buysse, former CEO at SN Brussels Airlines, states that too few decisions are made
based on data. Only recently, his many years of diligence establishing a research
department, where statistical and other quantitative methods are used to address all
sorts of problems, has been rewarded.
Another justification for a thorough training in statistical methods can be found in

the so-called Six Sigma improvement program. The purpose of this program is to
solve concrete problems with a large financial impact both in service and industrial
companies, and to reduce the number of faults and defects to 3.4 per million opportu-
nities. The approach is based on statistical methods, as presented in Figure 1.1. The
figure shows that the traditional method to solve a practical problem is to immedi-
ately search for practical solutions. This approach is typically based on guessing and
trial-and-error, so that it will often take a long time to find a final solution to the prob-
lem. The Six Sigma improvement program promotes a more thoughtful, scientific
approach to problems. First, data is collected in the so-called measurement phase.
Then, using statistical methods, the data is carefully examined. This often leads to
interesting insights and recommendations to improve existing products, services, or
processes. The Six Sigma approach also relies on the use of statistical process control
and statistically designed experiments. Hence, statistics helps to find the best possible
solution for all kinds of practical problems.
To achieve a successful cooperation between practitioners, on one hand, and

statisticians, on the other, some openness is required on both sides. Engineers,
economists, or scientists need a solid knowledge of the basic principles and
techniques of statistics. Statistics is thus an indispensable skill in the repertoire of

Practical problem Statistical problem

Statistical solutionPractical solution

Figure 1.1 Using statistical methods to solve problems.
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an effective employee. This explains why statistics is taught not only in the first and
second years of many bachelor’s degrees in engineering, sciences, and economics,
but also later, for example in master’s programs.
Finally, a thorough training in statistics is also a prerequisite for students of political

and social sciences. They will also be confronted with numerous data sets in their
professional careers that are impossible to interpret without a statistical background.
For them, statistics is a stepping stone to econometric research methods.

1.2 Definition of statistics

The word statistics may sound familiar to anyone. A statistic usually refers to numer-
ical information, for example, information about

• the population of a country: birth and death rates, immigration and
emigration,… (such statistics are called population statistics),

• the economy: employment and unemployment rates, investments, prices, gross
national products (GNP),… (these statistics are called economic statistics), or

• a company or sector: sales figures, income statements, growth, acquisitions,
layoffs,… (these figures are called business statistics).

More formally, statistics can be defined as the set of methodologies for collecting,
representing, analyzing, and interpreting data. This shows that the statistical science is
a very general auxiliary science, which plays an important role in almost any environ-
ment. Applications of statistics are countless in engineering, medicine, economics,
natural sciences, and business management, but statistics is also used in literature,
history, political science, criminology, and even musicology.
In our modern society, data is massively present:

• computer files in companies contain sales data, cost data, and customer data
(such as addresses, ordered quantities, and order frequencies),

• the financial pages of newspapers contain stock prices, commodity prices, and
exchange rates,

• federal and regional authorities regularly publish data on population, trade, and
industry, and

• the Internet is a source of numerous data sets.

Companies collect data naturally and actively. Among other things, this takes place
by carrying out experiments (e.g., to design new products), in the context of statis-
tical process control, or by measuring all kinds of properties of products, services,
and processes. By continuously analyzing data, quality departments of companies
attempt to deliver products or services with as few defects as possible and with the
highest reliability. In addition, business processes are organized in such a way that
waste is minimized, inspections of finished products are reduced to the minimum,
and customer requirements are satisfied with minimal costs.
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Research agencies collect data via surveys by phone, by post, via the Internet or by
street interviews. Such surveys are designed to gather information about the shopping
behavior of consumers, about the voting behavior of the population, or public opinion
on social issues.
Statistics allows us to turn data into usable information. The role that statistics plays

herein may be best illustrated based on some examples.

1.3 Examples

Example 1.3.1 An airline conducted a study on the behavior of its passengers on
intercontinental flights and recorded

• the number of passengers with reservations that do not show up (the so-called
no-shows),

• the weight of the luggage of passengers (often there is a limit of 20 kilograms),
and

• the time the passengers arrive before the official departure time of the flight (for
intercontinental flights, the passengers are asked to be at the airport at least
two hours prior to departure).

The company recorded this data over several months and then made a distinction
between passengers in economy class and passengers in business class. The data is
analyzed with the aim of instituting appropriate policies. An example may be to allow
overbooking, that is, to take more reservations than there are seats on the plane, or
to apply more stringent action against passengers carrying too much luggage.

Example 1.3.2 In the production of coffee, the humidity during production is of
crucial importance for the quality of the final product. The humidity is kept under
control by a system that does not work flawlessly. Therefore, several measurements
of the humidity are taken daily to determine whether it remains within appropriate
limits. This approach is referred to as statistical process control.

Example 1.3.3 A filling machine for bottles usually has several filling heads, so
that many bottles can be filled in parallel. In such a filling process, operators typ-
ically weigh a certain number of bottles every hour, to verify that each filling head
delivers the desired amount of liquid into the bottles. Another interesting question
in this context is whether differences occur between measurements that have been
carried out by different operators.

Example 1.3.4 Thanks to loyalty cards, supermarkets collect massive data sets.
Data that is typically recorded includes

• the amount spent per visit at the store, maybe broken down into categories
(food, clothing,… ),
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• the number of items sold,

• the payment method (cash, debit card, credit card, or voucher).

Researchers use statistical methods to summarize this huge amount of information
and to present it in a way suitable for decision making. Supermarkets exploit this
information to send out personalized promotional materials.

Example 1.3.5 Financial analysts are interested in the degree of risk of investing in
a particular stock. To this end, they keep track of the monthly return rates of stocks
over many years. They take into account price changes, but the dividends as well.
Moreover, monthly return rates of the global market, for example the Euro Stoxx 50
index, are tracked. If the return rate of a stock rises or falls to a larger extent than
the market, then the share is called risky. In the opposite case, one speaks of a share
with little risk. Using statistical methods, one can investigate relations between the
return rate of the stock and of the overall market.

1.4 The subject of statistics

In each of the examples in the previous section, the interest is in one or more ques-
tions concerning a population of objects or elements, or concerning a process that
generates objects or elements.
The data of the population or process is obtained by recording one or more proper-

ties or characteristics of their elements. These properties or characteristics are called
variables. The name indicates that the value of the property varies from element to
element. Therefore, statistics is sometimes referred to as the study of variability.
Usually, it is impossible to include all elements of a population or process in a study.

Therefore, one works with a subset of the elements: the sample. It is not always
easy to collect sample data in a correct way. In any statistical survey, one should
pay a lot of attention to the data collection process. In this context, the abbreviation
GIGO1 is often used. This stands for garbage in, garbage out and refers to the fact
that any statistical methods can only extract little reliable information from data of
poor quality.

Example 1.4.1 For a study of the electoral behavior in European elections, the
population can be described easily: all citizens of Europe who are entitled to vote.
Variables that could be registered in this context are gender, occupation, political
beliefs, age, and so on.

Example 1.4.2 Tossing a die is a process that generates data. A possible sample
involves throwing the die 50 times. Variables that could be registered are the number
of dots or whether or not the number of dots is even.

In Examples 1.3.2 and 1.3.3, we can consider all times at which the production pro-
cess is in operation to be the population. At a limited or finite number of points in time,

1 This abbreviation is a parody of the abbreviations FIFO (first in first out) and LIFO (last in first out),
used in accounting for booking items in stock.
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measurements or observations are made, for example, measurements of the humid-
ity (Example 1.3.2) or weight (Example 1.3.3). All measurements together form the
sample. For the financial analyst in Example 1.3.5, the sample is formed by a finite
set of return rates and market indices. In Example 1.3.4, the population of interest
for the researcher is the set of all customers of the supermarket. One possible sample
consists of all customers that have visited the store during one month and that made
use of their loyalty card.
The data collected in a sample can be represented in many ways using tables and

graphs. In addition, one can calculate characteristic values or statistics, such as the
mean, to generate a clear idea of the collected data. The different ways of present-
ing sample data are summarized under the term descriptive statistics. This topic is
covered in Chapters 2 and 3.
In many cases, describing the sample data is only a first step in an investigation. A

second phase involves analyzing and interpreting the sample. Analysis and interpreta-
tion is necessary in order to find answers to questions about the population or process
that were set in advance, to test hypotheses, or to assess the quality of a proposed sta-
tistical model. The answers and conclusions obtained from the statistical analysis are
generalized to the population or the process. This generalization is called inference,
which explains the term inferential statistics.
The generalization of conclusions from sample data to an entire population or to a

process immediately discloses the weakness of statistics: based on sample data, one
can never make statements with certainty about the population or process in question.
These statements may be considered reliable if statistically valid methods were used
for the collection of the sample data. The degree of confidence in a particular state-
ment is expressed by means of a probability, so that a basic knowledge of probability
theory is required to be able to understand and apply statistical methods.

1.5 Probability

The words chance and probability sound even more familiar than the term statistics.
Intuitively, everyone has a good idea of the meaning of a probability of 1/4 when par-
ticipating in a gambling game. Such a probability can be used by virtually everyone
to decide whether or not to participate in the game. However, the calculation of such
a probability can already raise difficulties.
Probability theory studies processes or experiments in which the outcome is uncer-

tain. Here, the terms process and experiment should be interpreted in their broadest
sense. Examples are throwing a die, the price of a share when the stock exchange
closes, a mortgage interest rate, the demand for laptop computers of a particular
brand, the percentage of defective products in a production line during a certain
period, the number of visitors to a website, or drawing a winner from all the par-
ticipants in a lottery.
The difference between probability and statistics is that, in probability theory, pop-

ulations and processes are studied directly, while statistics does this through sample
data. Probability theory always starts with a set of assumptions about the population
or the process. Some examples will illustrate this.
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Example 1.5.1 If the process is throwing a die, then, with the help of probability
theory, we can try to figure out the probability of obtaining a six 20 or more times
when we toss the die 100 times. This calculation is only possible if we make an
important assumption about the die used: the die is fair, or, in other words, the die is
completely homogeneous and symmetrical, so that it is equally likely to obtain a one
as it is to obtain a two, a three, a four, a five, or a six.
A statistical question about the die could be to investigate the fairness of the die.

The die may be thrown a (large) number of times to collect the required sample data.
Based on these data, one can draw a statistical conclusion about the hypothesis that
the die is fair.

Example 1.5.2 In an industrial filling process, one can calculate, based on some
assumptions concerning the settings and the accuracy of the filling machine, the
probability that a bottle will not be full enough. Another possibility is to calculate
the probability that, in a lot with 1,000 bottles, at most 5% of the bottles will not have
been filled enough.
A statistical analysis of the same filling process typically may involve regular weigh-

ings of a number of bottles (the sample), in order to verify whether the average content
of the bottles is too large or too little, and whether or not the content of the bottles
varies too much.

Example 1.5.3 Using probability theory, one could study the electoral behavior of
the European population assuming that 30% will vote for party A, 25% for party B,
20% for party C, and 25% for smaller parties. Probability theory can then calculate
that, for every 500 voters, on average 150 will opt for party A, 125 for Party B, 100
for Party C, and 125 will choose other parties.
Statistics, however, will make a statistical prediction based on a sample of, for

example, 2,000 voters. This prediction can also be given with a margin of error.

It is important to realize that statistics works with a limited amount of information
obtained from a sample. Therefore, statements about populations and processes can
be false. This is the weakness of statistics. Ideally, the probabilities of error are small.
The probability for errors can be reduced by collecting a lot of high quality data in a
sensible manner.
Probability theory also has a weakness: the assumptions about the studied process

or population may be wrong, so that its conclusions are invalid.

1.6 Software

In probability and statistics, a lot of calculations are needed. It is important to create
summary tables of all the data in a sample, or to represent the data graphically. This
makes the use of a computer and of specialized statistical software necessary. As
mentioned in the Preface, in this book, we use the statistical software package JMP®.
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Data and its representation

A microphone in the sidewalk would provide an eavesdropper with a cacophony of
clocks, seemingly random like the noise from a Geiger counter. But the right kind of per-
son could abstract signal from noise and count the pedestrians, provide a male/female
breakdown and a leg-length histogram …

(from Cryptonomicon, Neal Stephenson, p. 147)

Data is a set of measurements of one or more characteristics or variables of some
elements of a population, or of a number of objects generated by a process. Different
types of variables can be measured.

2.1 Types of data and measurement scales

Variables are classified according to the measurement scale on which they are mea-
sured. Categorical or qualitative variables are measured on a nominal scale or on an
ordinal scale. Quantitative variables are either measured on an interval scale or on a
ratio scale.

2.1.1 Categorical or qualitative variables

2.1.1.1 Nominal variables

Elements of a sample or a population can be classified using a nominal variable: the
value of the variable places an element in a certain class or category. Examples of
such variables are

• gender (male/female),

• nationality (Belgian, German, and so on),

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup



DATA AND ITS REPRESENTATION 9

• religion (Catholic, Protestant, and so on), and

• whether or not one owns a car (yes/no).

Sometimes it can be useful to assign labels, code numbers, or code letters, to the
different classes or categories. For example, a Belgian person may be assigned the
code “1”, a Dutch person the code “2”, a French person the code “3”, and a German
person the code “4”. It is important to note that these figures do not imply any order
and/or quantity. Therefore, except for calculations of frequencies and percentages,
most arithmetic operations on nominal variables are meaningless.

2.1.1.2 Ordinal variables

If a nominal variable implies a logical order between the elements of a sample, then
the variable is ordinal. Typical examples of ordinal variables can be found in all kinds
of surveys. There, respondents are typically asked whether they consider the quality
of a product or service as “1: very good”, “2: good”, “3: moderate”, “4: bad”, or “5:
very bad”. In other surveys, the respondents are asked if they “1: strongly disagree”,
“2: rather disagree”, “3: neither agree nor disagree”, “4: rather agree”, or “5: strongly
agree” with a particular statement. Other examples of ordinal variables include the
number of Michelin stars of restaurants and the number of stars of hotels.
An ordinal scale has no fixed measurement unit. This means that the difference

between two levels cannot be expressed as a number of units on the measuring scale.
For example, the difference between a hotel with three stars and one with two stars
is not necessarily the same as the difference between a hotel with two stars and one
with only one star. It is obvious that it is also not very useful to perform arithmetic
operations with ordinal variables.

2.1.2 Quantitative variables

A variable that is measured on a quantitative scale can be expressed as a fixed number
of measurement units. Examples are length, area, volume, weight, duration, number
of bits per unit of time, price, income, waiting time, number of ordered goods, and
so on. For quantitative variables, almost all arithmetic operations make sense. This
is due to the fact that the difference between two levels of a quantitative variable can
be expressed as a number of units in contrast to differences between two levels of
an ordinal variable. Within the class of quantitative variables, a distinction is made
between variables that are measured on an interval scale and variables measured on
a ratio scale.

2.1.2.1 Interval scale

An interval scale has no natural zero point, that is, no natural lower limit. For
variables measured on an interval scale, calculating ratios is not meaningful.
Well-known examples of interval variables are the time read on a clock or the
temperature expressed in degrees Celsius or Fahrenheit. The difference between
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2 o’clock and 4 o’clock is the same as the difference between 21:00 and 23:00, but
it’s not like 4 o’clock is twice as late as 2 o’clock. This is due to the fact that time
read on a clock has no absolute zero. The same applies to the temperature measured
in degrees Celsius: 20∘C is not four times as hot as 5∘C.

2.1.2.2 Ratio scale

A ratio scale does have an absolute zero. Therefore, for variables measured on a ratio
scale, ratios can be calculated. A length of 6 cm is twice as much as a length of 3 cm,
as the length scale has an absolute zero point. Analogously, an order of six products
is twice as large as an order of three products. The temperature measured in Kelvin
does have an absoluteminimum, so that temperature is sometimesmeasured on a ratio
scale. Zero Kelvin (−273.15∘C) is the coldest possible temperature, and therefore an
absolute lower limit for the temperature.

2.1.2.3 Discrete versus continuous variables

A discrete variable can only take a finite or infinite countable number of different
values, while a continuous variable can take a continuum of values. Examples of
discrete variables are the number of passengers on a flight, the number of children in a
family, or the number of insurances that a family contracted. Examples of continuous
variables are length, duration, weight, and body mass index.
In practice, all observations of a continuous variable are discrete: a continuous

length is measured up to a certain accuracy (e.g., one millimeter), thus turned into
a discrete number. Nevertheless, we will consider length as a continuous variable.

2.1.3 Hierarchy of scales

It is clear that there is a hierarchy in the measurement scales. The highest or most
informative measurement scale is the ratio scale, followed by the interval scale, the
ordinal, and the nominal scale. Data that has been measured on a certain scale can
be transformed into data of a lower measurement scale. Data measured on a ratio
scale (e.g., length) are naturally interval scaled (the difference between 6 and 3 cm
is the same as the difference between 15 and 12 cm), ordinal (ordering lengths is
meaningful), and nominal (lengths can be divided into classes). Conversely, nominal
data can never be transformed into ordinal or quantitative data. Therefore, all tech-
niques that are applicable to nominal data are automatically also applicable to ordinal
and quantitative data. All techniques that are applicable to ordinal data can be useful
for quantitative data. One rarely makes a distinction between data measured on an
interval scale and data measured on a ratio scale.

2.1.4 Measurement scales in JMP

JMP distinguishes between nominal, ordinal, and quantitative variables. The software
refers to measurement scale as “Modeling type”, and uses “Nominal”, “Ordinal”, and
“Continuous” for nominal, ordinal, and quantitative variables, respectively.
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2.2 The data matrix

Data is often presented in a matrix, with a row for each element or observation of a
sample, and a column for every measured variable. A complete row in a data matrix
is sometimes referred to as an observation vector.

Example 2.2.1 Figure 2.1 contains data from a survey on a number of characteris-
tics of Spanish red wines. The sample contains 70wines. Figure 2.2 shows the symbols
that JMP is using to indicate the different measurement scales, “Nominal”, “Ordi-
nal”, and “Continuous”. The variable “Name” is a nominal variable. The variables
“Rating” and “Price category” are ordinal variables. The other variables are quan-
titative. The measurement scale of a variable can be changed in JMP by a right-click
on the name of a column, and then selecting “Column info”.

In this chapter, we will mainly treat so-called univariate and bivariate representa-
tions of variables. A univariate representation refers to one variable, while a bivariate
representation refers to two variables simultaneously. Likewise, multivariate data is
nothing but data consisting of several variables. In the remainder of the chapter,

Figure 2.1 Part of the data matrix on Spanish red wines.
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Figure 2.2 Symbols used by JMP for the different measurement scales.

we assume that we have a data sample. However, the various representations that
we will address may also be used for data of entire populations.

2.3 Representing univariate qualitative variables

Categorical or qualitative variables allow us to put data into categories or classes. The
absolute frequency, or simply the frequency, of a class is the number of elements of
the sample that belong to that class. The relative frequency of a class is the ratio of
the frequency and the total number of observations in the sample.

Example 2.3.1 The data set described here on Spanish wines contains the final
rating of the wines. The following coding is used:

• E: excellent,

• G/E: good to excellent,

• G: good,

• F/G: fair to good,

• F: fair, and

• P/F: poor to fair.

The final rating is clearly a qualitative, ordinal variable. The absolute and relative
frequencies for each class are shown in Table 2.1, which is called a frequency table.
The same information can also be presented using a bar chart. Figure 2.3 shows
two versions of a bar chart, which have exactly the same shape. The bar chart in
Figure 2.3a shows the absolute frequencies, while that in Figure 2.3b displays the
relative frequencies.
It is useful to let JMP know that a rating “Excellent” is better than a rating “Good

to excellent”, and that a rating “Good to excellent” is in turn better than a rating
“Good”. This can be done by right-clicking on the column heading “Rating”, choos-
ing “Column Properties” in the resulting pop-up menu, and selecting the option
“Value Ordering”. To create a bar chart in JMP, one can use the “Chart” option
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Table 2.1 Frequency table for the final rating of Spanish red wines.

Rating E G/E G F/G F P/F Sum

Abs. frequency 3 5 16 35 9 2 70
Rel. frequency .043 .071 .229 .500 .129 .029 1
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Figure 2.3 Bar charts for the final rating of Spanish red wines.

in the “Graph” menu. After choosing that option, the variable “Rating” has to be
selected as well as the desired type of chart, “Bar Chart”. For a bar chart showing
absolute frequencies, the option “N” has to be chosen under “Statistics”. In order
to show relative frequencies instead, the option “% of Total” has to be picked. A
frequency table can be obtained in JMP using the option “Tabulate” within the “An-
alyze” menu. If you want to display the result in a separate data table, you need to
select the option “Make Into Data Table” in the pop-up menu that appears when
clicking on the red triangle icon next to the word “Tabulate”. This is illustrated in
Figure 2.4. Such a red triangle is called a hotspot in JMP. Hotspots appear in practi-
cally all reports and data tables. Clicking a hotspot always opens a menu containing
additional options that are specific to the graphical or statistical analysis you are
doing.

If the classes are arranged in decreasing order of their frequency and the cumulative
frequencies are plotted, the result is called a Pareto chart, a Pareto diagram, or a
Pareto plot. The purpose of a Pareto chart is to draw attention to the classes with
the highest frequencies1. A cumulative representation of the frequencies means that
the frequencies of the different classes are summed. This is clarified in the following
example.

1 In quality control, the classes with the highest frequencies are called the “vital few”, while the classes
with the lowest frequencies are called the “trivial many”. A commonly used rule of thumb says that 80%
of the quality problems can be attributed to 20% of the causes.
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(a) Step 1 (b) Step 2

Figure 2.4 Creating a frequency table in JMP.

Example 2.3.2 The quality department of a manufacturer of mobile phones
inspected 2530 devices. During the inspection the employees found 115 faulty
phones. Devices with scratched surfaces or cracks, deformed devices, and devices
with missing parts (incomplete) were labeled as defective. The data, a bar chart, and
the corresponding Pareto chart are shown in Figure 2.5.
In the Pareto chart in Figure 2.5c, the left vertical axis is for the bars, while the right

vertical axis is for the cumulative frequencies shown by means of the black line. It can
easily be seen in the Pareto chart that the most common problem is missing parts. This
problem has a relative frequency of 41.74%. The second most common problem is the
occurrence of scratches, with a relative frequency of 27.83%. The relative frequency
of the two most common problems together is 41.74% + 27.83% = 69.57%. If we add
the relative frequency of devices with cracks to this, we obtain a cumulative frequency
of 41.74% + 27.83% + 20% = 89.57%.
To create a Pareto chart in JMP, one can use the “Analyze” menu. In this menu,

the option “Quality and Process” has to be chosen first. The next step is to select
the option “Pareto Plot”. Figure 2.6 shows the resulting dialog window, in which the
variable “Type of Defect” has to be entered in the field “Y, Cause”, and the variable
“Absolute Frequency” has to be entered in the field “Freq”.

Another graphical representation of absolute and relative frequencies for a qualita-
tive variable is the pie chart.
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Figure 2.5 Causes of defective mobile phones in Example 2.3.2.

Figure 2.6 Dialog window for creating a Pareto chart in JMP.
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Figure 2.7 Market share (in percent) of operating systems for smartphones in the
first quarter of 2012.

Example 2.3.3 Figure 2.7 shows the market share (in percent) of various operating
systems on smartphones in the first quarter of 2012. One possible way to make a pie
chart in JMP is via the menu “Graph”, by using the option “Chart”, and selecting
“Pie Chart”.

2.4 Representing univariate quantitative variables

2.4.1 Stem and leaf diagram

The stem and leaf diagram is an interesting representation of quantitative data because
it does not only give a picture of the frequencies of the various kinds of values for the
variable under study, it also preserves every individual observation.

Example 2.4.1 Figure 2.8 shows a stem and leaf diagram of the price variable in the
data set of Spanish red wines (see Example 2.2.1). Note that prices are unavailable for
11 wines in the data set, so that the stem and leaf diagram only contains information
on 59 wines. Here, the stem shows the whole part of the price (the number before
the decimal point), while the leaves represent the first digit after the decimal point
of the 59 prices, after rounding to one decimal. The diagram indicates that the four
cheapest wines cost €2.2, 2.5, 2.6, and 2.7. The most expensive wine costs €13.6.
Most wines cost between €4 and 6.
Creating a stem and leaf diagram in JMP can be done via the option “Distribution”

in the “Analyze” menu. In the resulting dialog window, shown in Figure 2.9, the



DATA AND ITS REPRESENTATION 17

Stem and Leaf

13
12

11

10

9

8

7

6

4

3

2

2

CountLeafStem
56

0115

01

1224667

2229

2389

023345789999

02236788999

0126

2567

2|2 represents 2.2

134

56

3

2

4

2

7

4

4

12

11

4

4

5

Figure 2.8 Stem and leaf diagram of the prices of Spanish red wines.

Figure 2.9 Creating a stem and leaf diagram in JMP: Step 1.

variable “Price” has to be entered in the field “Y, Columns”. This results in an output
involving a histogram and a lot of statistics. To obtain the stem and leaf diagram,
one then has to click on the hotspot (red triangle icon) next to the word “Price”. In
the pop-up menu that appears after doing so, the option “Stem and Leaf” has to be
selected. This step is shown in Figure 2.10.

2.4.2 Needle charts for univariate discrete quantitative
variables

A needle chart, just like a bar chart, displays absolute or relative frequencies of the
values of a variable. Therefore, the names “needle chart” and “bar chart” are often
used interchangeably.
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Figure 2.10 Creating a stem and leaf diagram in JMP: Step 2.

Example 2.4.2 For 100 flights from Brussels to London, Brussels Airlines registered
the number of passengers who did not show up, despite the fact that they reserved a
seat in business class. In the professional jargon, one calls these “no-shows”. The
absolute and relative frequencies are shown in Table 2.2. The relative frequencies
are displayed in Figure 2.11. The representation in Figure 2.11a was created in JMP
with the option “Needle Chart”, while the representation in Figure 2.11b was made
with the option “Bar Chart”. Both of these options become available after selecting
the “Chart” platform in the “Graph” menu.

Table 2.2 Absolute and relative frequencies of the numbers of passengers not
showing up for 100 flights of Brussels Airlines.

Number of no-shows 0 1 2 3 4 5 6

Abs. frequency 11 38 32 9 6 3 1
Rel. frequency 11% 38% 32% 9% 6% 3% 1%

Example 2.4.3 The first lottery drawing with 42 numbers in Belgium happened on
April 30, 1984. When considering all drawings, some numbers were drawnmore often
than others, as shown in Table 2.3. For each integer from 1 to 42, the table contains
the frequency, the relative frequency and the date on which it was drawn for the last
time. A bar chart for the relative frequencies is shown in Figure 2.12.
It would be a good exercise to compare the relative frequencies in Table 2.3 and

Figure 2.12 with the theoretical probability for drawing a certain number using a
statistical hypothesis test. This topic is discussed in the book Statistics with JMP:
Hypothesis Tests, ANOVA and Regression.
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Figure 2.11 Graphical representations of the numbers of passengers who did not
show up.
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Figure 2.12 Bar chart of the relative frequencies of the 42 lottery numbers. The
horizontal reference line represents the theoretical probability of 7∕42 = 1∕6 that a
specific number is drawn at any lottery drawing.

Example 2.4.4 Two students organize a game night and want to test that the two
dice they use are fair. The first student throws the first die 20 times and calculates the
relative frequencies of the numbers of dots. The second student is more diligent and
throws the second die 100 times. Using a needle diagram, each student compares his
results for every number of dots with the theoretical probability of 1/6. The corre-
sponding needle diagrams are shown in Figure 2.13. The results of the samples are
shown in gray, while the theoretical probabilities are shown in black. In this con-
text, one can introduce sampling frequencies (i.e., the observed relative frequencies)
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Table 2.3 Data for the lottery drawings in Belgium.
(source: http://www.nationale-loterij.be/, 04/01/2012)

Number Number of
drawings

Relative
frequency

Date of most
recent drawing

1 406 16.76% 28/09/2011
2 416 17.18% 27/08/2011
3 407 16.80% 24/09/2011
4 416 17.18% 21/09/2011
5 430 17.75% 28/09/2011
6 396 16.35% 24/09/2011
7 442 18.25% 21/09/2011
8 363 14.99% 17/09/2011
9 417 17.22% 14/09/2011
10 405 16.72% 03/09/2011
11 391 16.14% 20/08/2011
12 438 18.08% 20/08/2011
13 417 17.22% 10/09/2011
14 418 17.26% 24/09/2011
15 356 14.70% 16/07/2011
16 433 17.88% 24/08/2011
17 405 16.72% 28/09/2011
18 379 15.65% 28/09/2011
19 403 16.64% 17/09/2011
20 376 15.52% 10/09/2011
21 397 16.39% 31/08/2011
22 449 18.54% 17/09/2011
23 405 16.72% 28/09/2011
24 439 18.13% 14/09/2011
25 419 17.30% 14/09/2011
26 385 15.90% 28/09/2011
27 395 16.31% 24/09/2011
28 411 16.97% 24/09/2011
29 411 16.97% 06/08/2011
30 383 15.81% 21/09/2011
31 390 16.10% 14/09/2011
32 385 15.90% 07/09/2011
33 415 17.13% 24/09/2011
34 401 16.56% 17/09/2011
35 381 15.73% 24/08/2011
36 395 16.31% 17/08/2011
37 382 15.77% 07/09/2011
38 430 17.75% 03/09/2011
39 369 15.24% 24/09/2011
40 392 16.18% 24/08/2011
41 402 16.60% 28/09/2011
42 404 16.68% 24/08/2011

http://www.nationale-loterij.be
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Figure 2.13 Needle diagrams for testing dice.

and population frequencies (i.e., the theoretical relative frequencies). The relative
frequencies of the first student (with only 20 throws) deviate quite strongly from the
theoretical probabilities, while the relative frequencies of the second student (who did
100 throws) are fairly close to the theoretical probabilities. Based on these needle dia-
grams, one may want to perform a statistical hypothesis test to determine whether the
dice are fair or not. Hypothesis tests are not covered here, but in the book Statistics
with JMP: Hypothesis Tests, ANOVA and Regression.
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2.4.3 Histograms and frequency polygons for continuous
variables

2.4.3.1 Histograms

Undoubtedly, the most popular way to visualize the values of a continuous quantita-
tive variable is a histogram. A histogram involves several bars, the heights of which
are absolute or relative frequencies. Each bar corresponds to an interval of values
of the variable under study. These intervals are obtained by dividing the range of
the sample values (i.e., the smallest interval covering all values measured for the
quantitative variable) into a number of smaller intervals or classes. Typically, but
not always, the same width is used for all these smaller intervals or classes. In a
histogram showing relative frequencies, the sum of the heights of all bars is equal
to 1. In a histogram showing absolute frequencies, the sum of all heights equals the
number of observations.

Example 2.4.5 Figure 2.14 shows a histogram of 50 breaking strengths (expressed
in kg), each measured for a bundle of 20 woolen fibers. The minimum and maxi-
mum breaking strengths are 3.16 and 162.39 kg, respectively. The histogram involves
6 classes with a width of 28 kg. These choices ensure that the histogram covers all
values of the variable breaking strength between 0 kg and 6 × 28 kg = 168 kg.

Breaking Strength

0

35,70%

8,16%

2,4% 3,6%
1,2% 1,2%

28 56 84 112 140 168

Figure 2.14 Histogram of the 50 breaking strengths in Example 2.4.5.

Note that the rectangles of a histogram are placed right next to each other.
This emphasizes the continuous nature of the depicted variable and distinguishes
histograms from bar charts for qualitative variables and needle charts for discrete
quantitative variables.
Later, we will learn that we do not always use the original sample data in a statisti-

cal analysis. Instead, we will sometimes use transformed data. For example, instead
of using the original data for a histogram, we could first apply a mathematical oper-
ation. A transformation that is frequently used is the logarithmic transformation.
Sometimes, this transformation ensures that we obtain amore or less symmetrical his-
togramwith one peak. A histogram for the natural logarithm of the breaking strengths
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Figure 2.15 Histogram of 50 values of ln(breaking strength).
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Figure 2.16 Histogram of 50 breaking strengths with logarithmic scale.

is shown in Figure 2.15. Note that this histogram displays the absolute frequencies
and the relative frequencies, separated by a comma, on top of each bar.
Figure 2.16 shows a histogram similar to that in Figure 2.15. The difference

between the two histograms is that the histogram in Figure 2.16 shows the original
breaking strengths with a logarithmic scale on the horizontal axis, while the
histogram in Figure 2.15 shows the natural logarithm of the breaking strengths on
a linear scale. The linear scale in Figure 2.15 can be identified by the fact that the
distance between 1 and 2 is the same as the distance between 3 and 4. On the loga-
rithmic scale in Figure 2.16, this is not the case, but the distance between 1 (= 100)
and 10 (= 101) is the same as the distance between 10 (= 101) and 100 (= 102).

2.4.3.2 Construction of histograms

A disadvantage of histograms and frequency polygons is that their ultimate form
strongly depends on the number of intervals or classes chosen. The final aim of a
histogram should be to give a clear picture of the location of the data. Too many
classes provide too detailed an image, while too few classes in a histogram display
insufficient details. Typically, we work with 5–20 classes. A classic rule of thumb
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is to set the number of classes to the square root of the number of observations. For
a sample of 50 observations, one should use

√
50 ≈ 7 classes according to this rule

of thumb.
Creating a histogram in JMP is extremely easy via the “Analyze” menu, in which

you have to select the “Distribution” option. You will then obtain the dialog window
shown in Figure 2.17. The next step is to indicate the variable whose distribution you
wish to plot using the histogram. By default, JMP displays the histogram vertically,
but it is easy to switch to a horizontal display. To do so, you need to click on the
hotspot (red triangle) next to the name of the variable at the top of the output,
and uncheck the option “Vertical” under “Histogram Options”. Under “Histogram
Options”, you can also adjust the width of the intervals or classes (“Set Bin Width”)
and chose to display the absolute and/or relative frequencies (“Show counts” and/or
“Show percents”) at the top of each of the histogram’s bars. All of these options
are shown in Figure 2.18. The “Grabber” tool allows you to change the bin width

Figure 2.17 Dialog window for creating a histogram.

Figure 2.18 Options for a histogram in JMP.
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dynamically. To do so, select the little hand symbol in the “Tools” menu, place your
cursor anywhere in the histogram, and click and drag the histogram bars. Depending
on the direction of your movement, you will dynamically increase or decrease the
width of the histogram bars.
If you would like to add a title on the histogram’s axis, or switch from a linear to a

logarithmic scale, you can right-click on the axis. You will then get various options
to adjust the axis according to your taste. These options are shown in Figure 2.19.

Figure 2.19 Options for the axis in a histogram in JMP.

Another interesting feature of histograms in JMP is that you can click and
double-click on their bars. Clicking on a bar in a histogram automatically selects the
corresponding rows in the data table. Double-clicking on a bar in a histogram creates
a new data table, containing only the corresponding data. So, double-clicking on a
bar in a histogram is a fast way to create a subset of the original data set. If you want
to select several histogram bars, hold down the “Shift” key while you select the bars.
Holding down the “Shift” key while double-clicking creates a data table with the
data corresponding to all selected histogram bars.

2.4.3.3 Frequency polygons

In a frequency polygon, the bars of a histogram are replaced by straight lines that
connect the tops of the adjacent bars. An example of a frequency polygon, along
with the corresponding histogram, is shown in Figure 2.20.

2.4.3.4 Construction of frequency polygons

To construct a frequency polygon in JMP, we start by creating a histogram, as
described previously. In the hotspot menu (red triangle icon), we then have to press
“Save” and select the option “Level Midpoints”. This step is shown in Figure 2.21.
JMP has now created a new column in your data table, containing the midpoints
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Figure 2.20 Histogram and corresponding frequency polygon for the natural loga-
rithm of 50 breaking strengths.

Figure 2.21 Constructing a frequency polygon: Step 1.

of the histogram bars. Next, we need to select the “Summary” option from the
“Tables” menu. In the resulting dialog window, we have to choose “% of Total”
from the “Statistics” drop-down menu, and drag the new variable containing the
midpoints to the “Group” field. This second step is shown in Figure 2.22. Clicking
“OK” will create a new data table, shown in Figure 2.23. Working with this new
data table, we then need to select the “Graph Builder” in the “Graph” menu. This
is a highly flexible platform for the creation of a wide range of graphics that we
will use frequently. We will cover more details on the use of the Graph Builder in
Section 2.5.1. For the purpose of creating a frequency polygon, we should drag
the variable “% of Total” from the list of columns displayed at the top left to the
drop zone called “Y”, and the variable containing the midpoints to the drop zone
called “X”. Finally, we need to click the “Area” button from the toolbar on top of
the window to get the desired frequency polygon. This is illustrated in Figure 2.24.
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Figure 2.22 Constructing a frequency polygon: Step 2.

Figure 2.23 Constructing a frequency polygon: Intermediate data table.

By clicking on the button named “Done”, renaming the axes by clicking on their
labels and scaling the graph by dragging the corners, you can produce a graph that
looks exactly as the frequency polygon shown in Figure 2.20b.

2.4.4 Empirical cumulative distribution functions

Empirical cumulative distribution functions can be constructed both for discrete and
continuous quantitative variables. Graphical representations of such functions are
used frequently, because they allow one to determine quantiles, such as the quar-
tiles and the median of a data set (see Sections 3.1.1 and 3.2.2), in a single glance.
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Figure 2.24 Constructing a frequency polygon: Step 3.

Also, to test whether sample data originated from a normally distributed population,
the empirical cumulative distribution function is often used (e.g., in the Lilliefors test
and the Kolmogorov–Smirnov test, see the book Statistics with JMP: Hypothesis
Tests, ANOVA and Regression). The construction of an empirical cumulative distri-
bution function can best be explained using an example.

Example 2.4.6 Imagine that, in a small sample, we obtained the observations 6, 4,
3, 1, 7, 6, and 10. Ranking these seven observations from small to large, we get 1, 3,
4, 6, 6, 7, 10. In this sample, every value occurs once, except for the value 6, which
occurs twice. These different values and the corresponding observed frequencies are
shown in the first two rows of Table 2.4. The relative frequencies are calculated by
dividing the observed frequencies by the number of observations, 7. Finally, the last
row of the table shows the cumulative relative frequencies. The cumulative relative
frequency of a sample value is simply the sum of its relative frequency and the relative
frequencies of all the smaller observations in the sample. For instance, the cumulative
relative frequency of the observation 4 is equal to the sum of the relative frequencies
of the observations 1, 3, and 4. This yields the value 3/7. A graphical representation

Table 2.4 Calculating the empirical cumulative distribution function for the
sample in Example 2.4.6.

Observations

1 3 4 6 7 10

Frequency 1 1 1 2 1 1
Rel. frequency 1/7 1/7 1/7 2/7 1/7 1/7
Cum. rel. frequency 1/7 2/7 3/7 5/7 6/7 1
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of the cumulative relative frequencies for this example, all of which are given in the
last row of Table 2.4, is given in Figure 2.25.

Example 2.4.7 Figure 2.26 contains the graphical representations of the empirical
cumulative distribution functions of the numbers of no-shows in Table 2.2 and of the
breaking strengths of Example 2.4.5. It is a useful exercise to reconstruct the function
in Figure 2.26a by yourself.

Creating an empirical cumulative distribution function using JMP is quite easy. In
the “Analyze” menu, choose the option “Distribution”. Next, click on “CDF Plot” in
the hotspot (red triangle) menu next to the name of the variable under study (in the
figure, “Breaking strength”). This final step is shown in Figure 2.27. Note that CDF
is the abbreviation of cumulative distribution function.
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Figure 2.25 Graphical representation of the empirical cumulative distribution func-
tion for the sample in Example 2.4.6.
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Figure 2.26 Empirical cumulative distribution functions of the numbers of
no-shows in Table 2.2 and of the breaking strengths of Example 2.4.5.
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Figure 2.27 Creating an empirical cumulative distribution function in JMP.

2.5 Representing bivariate data

2.5.1 Qualitative variables

A cross tabulation, also known as a contingency table, is a convenient way to rep-
resent bivariate data in tabular form. A cross tabulation is designed for nominal and
ordinal data, but it can also be used for quantitative variables provided their values
are put into categories or classes.

Example 2.5.1 Based on the Spanish red wine data described in Example 2.2.1, a
cross tabulation can be made for the variables rating and price. The variable rating
is an ordinal variable, but the price is a quantitative variable. Therefore, for that
variable, we need to define several classes. Suppose that we use three classes or price
categories: cheap (< €6), moderately priced and expensive (≥ €10). The resulting
cross tabulation is displayed in Table 2.5.
In JMP, we create a cross tabulation using the “Analyze” menu, with the “Fit Y

by X” platform. The corresponding dialog window is shown in Figure 2.28. In this

Table 2.5 Cross tabulation for the data set of Spanish red wines.

Rating
Price category Sum

F/G G G/E E

Cheap (< €6) 2 1 7 21 31
Moderately priced 1 3 5 9 18
Expensive (≥ €10) 0 1 4 5 10
Sum 3 5 16 35 59
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Figure 2.28 Creating a cross tabulation and mosaic plot in JMP.

dialog window, you need to enter the variable “Price category” as the y variable,
and the variable “Rating” as the x variable. At first, this produces the output in
Figure 2.29. Each cell in this table contains four numbers: the absolute frequency
for each cell, and three relative frequencies. The number 2 in the first cell of the table
tells us that there are two cheap wines with rating excellent (E). The number 3.39 tells
us that 3.39% of all 59 wines are both cheap and excellent. The number 6.45 tells
us that 6.45% of all 31 cheap wines are excellent. Finally, the number 66.67 tells us
that 66.67% of all three excellent wines are cheap. The last row and the last column
of the cross tabulation contain the column totals and the row totals, and the relative
frequency of each price category and of each rating, respectively.
The initial cross tabulation produced by JMP can be simplified by unchecking some

of the options in the hotspot (red triangle) menu next to the word “Contingency Table”
at the top of the output.
A graphical alternative to a cross tabulation is called a mosaic plot. This graphical

representation is produced together with a cross tabulation using the “Fit Y by X”
platform. The mosaic plot corresponding to the cross tabulation in Table 2.5 and
Figure 2.29 is shown in Figure 2.30. The interpretation of the mosaic plot is as
follows:

• In the mosaic plot, every price category has its own color. This way, we see
immediately that the cheap wines are the most numerous and expensive wines
the least numerous.

• Each rectangle in the mosaic plot corresponds to a cell in the cross tabulation.
The larger the surface area of a rectangle, the more observations correspond
to that cell. The largest rectangle in the mosaic plot in Figure 2.30 is located at
the lower right corner. This cell refers to the cheap wines with a rating of fair
to good (F/G).
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Figure 2.29 Initial cross tabulation produced by JMP.



DATA AND ITS REPRESENTATION 33

1.00

0.75

0.50

0.25

0.00

E G

G
/E

F
/G

Expensive (>= 10 euros)

Moderately priced

Cheap(< 6 euros)

Rating

P
ri

c
e
 c

a
te

g
o

ry

Figure 2.30 Mosaic plot corresponding to the cross tabulation in Table 2.5 and
Figure 2.29.

• The widest rectangles in the mosaic plot are for wines with rating fair to good
(F/G). This means that the fair to good wines are the most numerous. The nar-
rowest surfaces are for excellent (E) wines, which are the least numerous.

• The heights of the rectangles indicate how numerous the wines are in the
different price categories for each of the ratings separately.

• Finally, the horizontal marks on the right vertical axis indicate the overall
proportions of cheap, moderately priced, and expensive wines.

If we switch the roles of the variables “Price category” and “Rating” in the
dialog window in Figure 2.28, we obtain an alternative mosaic plot with the price
categories on the horizontal axis instead of the vertical axis. This mosaic plot is
shown in Figure 2.31.
In a mosaic plot in JMP, it is possible to click on a rectangle so that all observations

in the data table associated with this area are highlighted. If you have created a
histogram for the same data, then all parts of the histogram corresponding to the
same observations are also highlighted.
As an alternative to the mosaic plot, a multiple bar chart can be used to graphi-

cally display the information contained within a cross tabulation. In Figure 2.32, two
multiple bar charts are shown for the variables “Price category” and “Rating”.
The creation of a multiple bar chart in JMP requires the use of the option “Graph

Builder” in the “Graph” menu. This is a highly flexible platform for the creation
of a wide range of graphics. The start screen of the “Graph Builder” is shown in
Figure 2.33. On the left, the screen shows all variables in the data set of Spanish red
wines. At the top of the start screen, a range of buttons is visible, each corresponding
to a type of graph that can be created. Finally, in the center, the screen involves sev-
eral drop zones for variables, named “X”, “Y”, “Group X”, “Group Y”, “Overlay”,
“Color”, and “Size”.
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Figure 2.31 Alternative mosaic plot corresponding to the cross tabulation in
Table 2.5 and Figure 2.29.

By dragging variable names to the various drop zones and choosing a chart type
from the top, we can create a large number of graphical representations of data. For
example, in order to get the multiple bar chart in Figure 2.32a, we first need to drag
the variable “Price category” to the “X” zone, and then click the seventh button at
the top of the screen to obtain a bar chart. This is illustrated in Figure 2.34.
Next, we need to drag the variable “Rating” to the “Overlay” zone. This is illus-

trated in Figure 2.35. Finally, clicking on the “Done” button completes the construc-
tion of the multiple bar chart. Figure 2.32b is obtained by using the “Stacked” bar
option, obtained by right-clicking in the graphics area of the previous figure.

2.5.2 Quantitative variables

Data concerning two quantitative variables can be represented graphically using a
so-called scatter plot. This is a two-dimensional figure, in which each dimension cor-
responds to a variable under study and each point corresponds to an observation. The
first coordinate of any point is the value of the corresponding observation for the first
variable, whereas its second coordinate is the value for the second variable. A scatter
plot shows the relation or association between the two variables (see Section 3.9.2).

Example 2.5.2 Figure 2.36 shows the scatter plot for the variables “Alcohol mea-
sured” (displayed on the horizontal axis) and “Price” (displayed on the vertical axis)
for 59 Spanish red wines (see Example 2.2.1). In the figure, it is clearly visible that
a high alcohol content is frequently associated with a high price, and a low alcohol
content often corresponds to a low price.
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Figure 2.33 Start screen of the “Graph Builder” in JMP.

Figure 2.34 Construction of the multiple bar chart in Figure 2.32a with the “Graph
Builder” in JMP: Step 1.
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Figure 2.35 Construction of the multiple bar chart in Figure 2.32a with the “Graph
Builder” in JMP: Step 2.
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Figure 2.36 Scatter plot for the variables price and measured alcohol content for
the data set of Spanish red wines.
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There are different ways to create a scatter plot in JMP. One option is to make use
of the “Graph Builder”. If you wish to use this option, you have to drag the variable
“Price” to the “Y” zone, and the variable “Alcohol measured” to the “X” zone.
Finally, you need to make sure that, at the top of the “Graph Builder”, only the button
for a scatter plot has been activated. This is illustrated in Figure 2.37. An alternative
method is to make use of the option “Scatterplot Matrix” in the “Graph” menu. With
this option, you can create a matrix of scatter plots for data tables with more than two
quantitative variables. This option can also be used for nominal or ordinal variables.
Figure 2.38 shows a scatter plot matrix for “Rating”, “Alcohol measured”, “Alcohol
declared” (on the bottle), and “Price” for the data set of Spanish red wines.

Figure 2.37 The construction of a scatter plot with the “Graph Builder” in JMP.

An interesting feature of any scatter plot in JMP is that clicking on a point in
the scatter plot will highlight the corresponding row in the data table. Conversely,
selecting a row in a data table will highlight the corresponding point in the scatter
plot. The same thing holds for the selection of several points or rows.

2.6 Representing time series

If a variable is measured at successive time points, it is common to plot that variable
on the vertical axis, put the time on the horizontal axis, and connect the successive
data points by means of a straight line.
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Figure 2.38 Scatterplot matrix.

Example 2.6.1 On a dark Tuesday night in November 2013, John, George, Adam,
Peter, and Frank, all members of the international research staff at the Department
of Applied Statistics at the University of Cardiff, went to the local go-kart track. The
initiative for the evening out came from Frank, who thought that the conventional
snooker or bowling evenings were not exciting enough. The lap times in Figure 2.39
clarify why Frank insisted on a go-kart event. He invariably drove the fastest laps. The
four others were significantly slower, especially in the first lap. Later they improved
their performance, without really getting close to Frank’s lap times.

The construction of the graph in Figure 2.39 starts in the same way as the creation
of a scatter plot. The only additional step required is that an extra button at the top
of the “Graph Builder” is clicked. This button is shown in Figure 2.40. Clicking it
ensures that successive points are connected.

2.7 The use of maps

In newspapers and on television, statistical information is often displayed usingmaps.
This is also possible using JMP. The only requirement is that JMP recognizes the
names of the geographical regions. This is no problem for the names of the various
countries of the world, and for US states. By default, however, JMP does not recog-
nize, for instance, the names of the Belgian or Dutch provinces and municipalities.
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Figure 2.39 Lap times of five members of the research staff of the University of
Cardiff on a go-kart track.

This can be resolved by loading two special files into JMP. When, for example,
you are interested in the Belgian municipalities, you will need the names of the
municipalities and a file that delimits the geographical area of these municipali-
ties. The creation of these name and shape files is not easy, but they conform to the
ESRI standard and can often be downloaded. For the Belgian municipalities, the files
“Belgium-Cities-Names.jmp” and “Belgium-Cities-XY.jmp” were created.
Figure 2.41 presents a picture of the production of wind energy in the different

European countries. Every country in Europe has a certain color tone in the figure.
The darker the tone, the more energy the country produces using windmills.
Figure 2.42 contains a similar graph for four different years. The starting point for
the construction of both figures is the data table in Figure 2.43.
The data table contains the amount of wind energy (expressed in megawatts: MW)

for each European country for each year from 1998 to 2010. The table also contains
a column with the decimal logarithm of the amount produced. It is this logarithm that
was used in Figures 2.41 and 2.42. Before explaining step by step how the figures can
be reproduced, it is helpful to note that not all rows in the data table are used in the
creation of the graphics (and any calculations). Indeed, some rows in the table have
a small red prohibition sign. This prohibition sign indicates rows that are excluded
from all calculations. In Figure 2.43, only the observations for the years 2001, 2004,
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Figure 2.40 Graphical representation of a time series with the “Graph Builder” in
JMP.
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Figure 2.41 Graphical representation of the production of wind energy in Europe.
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Figure 2.42 Graphical representation of the evolution of the production of wind
energy in Europe.

2007, and 2010 are used. The fastest way to achieve this is by using a histogram of
the variable “Year” and right-clicking on the bars for years that should be excluded.
In the menu that appears, you need to choose “Row Exclude”. If you want to undo
the exclusion of these data points later on, you can select “Clear Row States” in the
“Rows” menu.
Both Figures 2.41 and 2.42 can be created with the “Graph Builder”. The first step

that is required is to drag the variable “Country” to the zone named “Map Shape”.
You will immediately see a non-colored map of Europe, as shown in Figure 2.44.
To display a color corresponding to the average production of wind power in each
country, you need to drag the variable “Log (MW)” to the “Color” zone. JMP auto-
matically chooses a color pattern that can be seen in the legend at the right of the
figure (see Figure 2.45). If you prefer a different color pattern or if you would like
to adjust the legend, you can right-click on the legend, select the “Gradient” option,
and change whatever you like in the menu shown in Figure 2.46. Finally, if you want
to get separate figures for the years 2001, 2004, 2007, and 2010, you have to drag the
variable “Year” to the “Wrap” zone.
An alternative way to select a subset of your data for an analysis or a graph involves

the use of data filters. JMP has a “Data Filter” in the “Rows” menu, and a local data
filter embedded in each report window. In contrast with the data filter in the “Rows”
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Figure 2.43 JMP data table for creating the Figures 2.41 and 2.42.

Figure 2.44 First step in the creation of Figures 2.41 and 2.42.
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Figure 2.45 Second step in the creation of Figures 2.41 and 2.42.

Figure 2.46 Dialog window for adjusting the legend in Figures 2.41 and 2.42.

menu, the local data filter does not affect or alter the associated data table or other
associated reports. After reproducing Figure 2.42, as described here, you can access
the “Rows” menu and select the option “Clear Row States”. This changes your report
window immediately: it now contains a graph for all years from 1998 to 2010 instead
of only four. In the hotspot (red triangle) menu of the “Graph Builder”, you then have
to select “Script”, and then “Local Data Filter”. This step is illustrated in Figure 2.47.
In the resulting local data filter on the left side, select the column “Year” and click
“Add”. In the list of years that appears, you can then select the years you would like
to compare, for example 2000 and 2008. The result is shown in Figure 2.48. Notice
that your data table has not changed as a result of your use of the local data filter,
since it does not affect the row states in your data table.
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Figure 2.47 Activating the local data filter from a report window.

Figure 2.48 Comparing wind energy production in 2000 and 2008 with the local
data filter.
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Figure 2.49 shows the US states that voted predominantly for Barack Obama or for
Mitt Romney in the 2012 US presidential elections. This figure was also made with
the “Graph Builder”, based on the data table in Figure 2.50. Here, JMP automatically
takes a blue color for the states where Barack Obama won, and a red color for the
states where Mitt Romney won. You can modify these colors by right-clicking on
them in the legend.

Winner

B.Obama

M.Romney

Presidential Elections USA

120° W 110° W 100° W 90° W 80° W 70° W

20° N

25° N

30° N

35° N

40° N

45° N

50° N

55° N

Figure 2.49 Graphical representation of the voting behavior in the presidential
elections in 2012.

Figure 2.50 Data table on the voting behavior in the US presidential elections in
2012.



DATA AND ITS REPRESENTATION 47

Electoral Votes per State

38

55

3

3

511

6
9

3

7

6

10
4

6

5

3

3

7

10

12

16

16

29

20

6

10

6

9

15

29

8

6

20

11

18

13
8

11

4

9

5

10

3

4

11

14

4

7

3

4

3

Winner

B.Obama

M.Romney

120° W 110° W 100° W 90° W 80° W 70° W

20° N

25° N

30° N

35° N

40° N

45° N

50° N

55° N

Figure 2.51 Graphical representation of the voting behavior in the US presidential
elections in 2012 showing the number of electoral votes per state.

Figure 2.51 resembles Figure 2.49, but it also shows the number of electoral votes
for each state. In order for the number of electoral votes to appear in the figure, you
should use the variable “Electoral Votes” as a label. To do this, right-click on the
column “Electoral Votes” first and choose “Label/Unlabel”. Then, select all rows of
the table, and by means of a right-click on a selected row, choose the option “Label/
Unlabel” once more. After that, each row in the data table will be marked with a
symbol indicating that it is labeled.

2.8 More graphical capabilities

Nowadays, statistical software packages like JMP can not only represent univariate
and bivariate data graphically, but alsomultivariate data. The following examples deal
with the weight, price, and fuel consumption of cars. In both examples, a graphical
representation of three variables is provided. Example 2.8.1 deals with two quantita-
tive variables and a qualitative one, while Example 2.8.2 involves three quantitative
variables.

Example 2.8.1 Figure 2.52 contains a scatter plot for the weight (in kg) and the
price (in dollars) of 74 cars. In the graphical representation, a distinction was made
betweenUS and non-US cars. ForUS cars, a square symbol is used, while, for non-US
cars, a triangle is used. The advantage of this graphical representation is that it imme-
diately shows

• that there is a positive relation between price and weight for both US and
non-US cars, and

• that for a given price, US cars are heavier than non-US cars.
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Figure 2.52 Stratified scatter plot for the weight and price (in dollars) of 74 US
and non-US cars.
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Figure 2.53 Bubble plot of weight (in kilograms), price (in dollars) and energy effi-
ciency (in km/l fuel) of 74 cars. The area of each circle corresponds to the price of
the car.
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Whenever different symbols are used in a graphical representation for different cat-
egories, this is called stratification or a stratified graphical representation.
To create a stratified scatter plot in JMP, you can use the “Graph Builder”. Start

by making a regular scatter plot and then drag the variable that indicates the origin
of the cars to the “Overlay” zone.

Example 2.8.2 Figure 2.53 contains a so-called bubble plot for the weight (in kg),
energy efficiency (in km/l fuel) and the price (in dollars) of 74 cars. A bubble plot is
in fact nothing more than a classic scatter plot, with the additional feature that each
symbol in the scatter plot (here a circle) has a different size. In Figure 2.53, the size of
each circle indicates the price of the corresponding car. The location of each symbol
in the figure indicates the weight and the energy efficiency of the corresponding car.
The advantage of this graphical representation is that it is immediately clear that

• there is a negative relation between the weight of a car and its energy efficiency,

• there is also a negative relation between the price and the energy efficiency of
a car, and

• there is a positive relationship between the weight and the price of a car.

Figure 2.54 Saving a graph in a data table in JMP.
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Figure 2.55 Scripts for generating graphs saved in the data table.

Indeed, the smallest circles generally appear at the top left of the figure, while the
largest circles can be found at the bottom right.
There are twoways to generate bubble plots in JMP. First, you can choose the option

“Bubble Plot” in the “Graph” menu. Second, you can use the “Graph Builder”.
When using the second approach, you have to drag one quantitative variable to the
“Size” zone. In the example, this was done with the price variable.

When constructing figures in JMP, you can always edit all symbols and lines by
left- or right-clicking on them. You can also change colors, as well as modify the
appearance of the axes, titles, and legends. Obtaining optimal results often requires
some practice. The most important is that you dare to experiment. If you are satisfied
with the result, you can save the graph by clicking the hotspot (red triangle) next to
the name of your graph, choosing the option named “Script”, and selecting “Save
Script to Data Table”, as shown in Figure 2.54. The script is then saved at the top
left of the JMP data table (see Figure 2.55), and can be run at any time – even if the
rows in the data table have changed. You can change the name of your script after
clicking on it.
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Figure 2.56 A heatmap that visualizes the times at which there were small or large
delays on all flights in the USA in 2007.

Figure 2.57 First step in the creation of the heatmap in Figure 2.56.
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To reproduce the graph, you need to click on the hotspot (red triangle) next to the
name of the script, and then select “Run script”.

Example 2.8.3 Another interesting display is called heatmap. Figure 2.56 shows
a heatmap for the average delay at arrival of all 7,453,215 flights in the USA in
2007. Each row in the heatmap corresponds to a day of the week (with a “1” for
Monday, a “2” for Tuesday … ). Each column in the heatmap corresponds to a month
(with a “1” for January, a “2” for February … ). White colored boxes indicate times
characterized by low (or even negative) delays2. Dark gray or black colored boxes
denote times that are characterized by large delays.
It is striking that the columns for the months 1, 2, 6, 7, 8, and 12 are predominantly

colored in dark gray or black. Consequently, in summer and winter months, there are
larger delays. The months of September, October, and November (columns 9, 10, and
11) score much better in terms of delay. The row corresponding to Saturday (row 6)
is the least gray colored row, suggesting that there usually are no major delays on
Saturdays.
In order to generate a heatmap, you should use the “Graph Builder”. First, drag

the variable “Month” to the “Group X” zone, and the variable “DayOfWeek” to the
“Group Y” zone. You will then obtain the screen shown in Figure 2.57. The next step
is to drag the variable “ArrDelay” to the “Color” zone. As a final step, you have

Figure 2.58 Second step in the creation of the heatmap in Figure 2.56.

2 A negative delay means that the plane arrives early.
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Table 2.6 Average delay (expressed in minutes) for each combination of weekday
and month for the flights in the USA in 2007.

Day Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Monday 13 14 6 6 4 19 16 12 5 8 11 12
Tuesday 5 11 4 8 6 20 13 9 5 5 5 8
Wednesday 4 13 12 15 9 19 13 11 2 5 5 15
Thursday 11 18 15 12 11 17 18 17 5 10 3 17
Friday 14 15 13 10 9 17 13 16 8 12 5 23
Saturday 3 10 11 2 3 10 7 7 −1 0 −1 16
Sunday 15 12 7 7 6 13 17 12 2 5 5 22

to click on the “Heatmap” button at the top of the screen. In Figure 2.58, this is the
eleventh button in the long row of buttons at the top of the “Graph Builder”.
The heatmap provides the same information as Table 2.6, which can be constructed

with the option “Tabulate” in the “Analyze” menu.



3

Descriptive statistics of
sample data

Agnes lowers the latest issue of The Illustrated London News to her lap, offended and
upset. An article has just informed her that the average Englishwoman has 21,917 days
to live. Why, oh why must newspapers always be so disagreeable?… 21,917 days. Less
in her case, as she’s been alive for so long already. How many days are left to her?

(from The Crimson Petal and The White, Michael Faber, pp. 253–254)

Sample data can be summarized based on a number of descriptive statistics. In this
chapter we discuss the most important statistics for location, variation and skewness.
Roman letters are typically used to name statistics of sample data. If the statistics are
calculated for an entire population or an entire process, they are called parameters
rather than statistics. Parameters are represented by Greek letters. A list of all Greek
letters can be found in Appendix A.
The number of statistics that can be calculated depends on the nature of the data.

If we want to talk about the location of nominal data, the numerical information is
limited to the frequencies (the greatest frequency, in particular). For ordinal data, we
can take into account the order in the data. Therefore, it can make sense to speak, for
example, about the middle element of a sample. For variables measured on an interval
scale or a ratio scale, the arithmetic mean plays an important role. An overview of
the statistics that we address in this book can be found in Table 3.1. It is important to
note that statistics that are defined for a particular measurement scale can generally
be used for data on a higher measurement scale as well (see also Section 2.1.3).
The focus in this chapter is mainly on univariate descriptive statistics for quantita-

tive variables. Statistics for bivariate quantitative data are discussed in Section 3.9.2.

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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Table 3.1 Summary of descriptive statistics for each measurement scale.

Nominal Ordinal Interval/ratio

Location Mode Mode
Median
Quartiles

Mode
Median
Quartiles
Arithmetic mean
Geometric mean

Variation Nominal
dispersion index

Range
Interquartile
range
Ordinal
dispersion index

Range
Interquartile range
Mean absolute
deviation
Variance and standard
deviation
Coefficient of variation

Moments Central and non-central
moments

Skewness Pearson
Fisher

Steepness Kurtosis

Location, variation,
and skewness

Box plot Box plot

Correlation or
association

Rank correlation
coefficient

Covariance
Correlation coefficient
Rank correlation
coefficient

Throughout, we denote the number of observations in a sample or the sample size
by n. Whenever we discuss a single quantitative variable, we call the variable x and
the n observations for that variable x1, x2,… , xn. Whenever we discuss two variables,
we refer to them as x and y, and denote the n observations as x1, x2,… , xn and y1,
y2,… , yn.

3.1 Measures of central tendency or location

Location statistics are values that best describe the central tendency of data. In other
words, they give an indication of how big or how small the data set is. The most com-
monly used statistics are the arithmetic mean, the median, and the mode. Sometimes,
the geometric mean makes more sense than the arithmetic mean. Therefore, we also
discuss the geometric mean.
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3.1.1 Median

When data was recorded on an ordinal, interval or ratio scale, using the order of the
data, we can determine the median.

Definition 3.1.1 The median Me of a set of observations is the middle element of the
ordered data set:

• if the number of elements n is odd: the n+1
2
-th element,

• if the number of elements n is even: the mean of the n
2
-th and the

(
n
2
+ 1

)
-th

element.

Example 3.1.1 Suppose that a sample consists of the following 10 observations:
6, 3, 4, 7, 4, 6, 7, 6, 5, 3. So, we have that n = 10, x1 = 6, x2 = 3,… , x10 = 3. To
determine the median of this data set, we first rank the observations from small to
large: 3, 3, 4, 4, 5, 6, 6, 6, 7, 7. Since there is an even number of observations in
the data set, the median is the mean of the two middle elements 5 and 6. Hence, the
median of the sample is Me = 5.5.

Example 3.1.2 The median of the sample in Example 2.4.2 concerning no-shows for
flights of Brussels Airlines is 2 because, after ranking the observations from small to
large, both the 50th and the 51st observation equal 2. This is very easy to verify by
means of the empirical cumulative distribution function in Figure 3.1. It suffices to
determine which number of no-shows corresponds to a cumulative relative frequency
of 0.5. This is shown graphically by the dotted lines in the figure.

1.0

0.8

0.6

0.4

0.2

0.0

0 1 2 3 4 5 6 7
Number of No-Shows

F
(x

)

Empirical Cumulative Distribution Function

Figure 3.1 Finding the median no-show value for Example 2.4.2 using the empirical
cumulative distribution function.
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Some properties of the median are:

• About 50% of the observations are below/above the median.

• The median is not affected by a few extremely large or extremely small
observations.

• The sum of the absolute deviations of the observations xi from a constant c,∑n
i=1 |xi − c|, is minimal if c = Me.

• The median is the mean of a truncated data set in which only the middle (the
two middle) observation(s) remain(s).

3.1.2 Mode

For nominal data, the only numerical information is the frequency of the different
classes or categories. Apart from determining frequencies, we cannot perform any
calculations with the data. For this type of data, the most commonly used statistic is
the class with the largest frequency in the sample.

Definition 3.1.2 The mode Mo of a sample is the observation with the highest
frequency.

Example 3.1.3 In Example 2.3.1, a needle diagram was used to plot the ratings
of Spanish red wines. The mode is the judgment “F/G: fair to good” because this
judgment is the most frequent one.

Example 3.1.4 In Example 2.3.2, missing parts (incomplete) is the most common
defect for the defective mobile phones. Consequently, this is the mode in this example.

Example 3.1.5 Figure 2.12 shows that 22 was the most frequently drawn number in
the Belgian lottery. Therefore, the mode is 22.

Example 3.1.6 The mode of the data in Example 2.4.2 concerning the number of
no-shows for flights of Brussels Airlines is 1 because this value has the highest fre-
quency (38%) in the data set.

Definition 3.1.3 The mode Mo of a set of grouped data is the class center of the
modal class, while the modal class is the class with the highest frequency.

Example 3.1.7 The modal class in Figure 2.14 is the interval [0,28]. Therefore, the
mode is 14. In Figure 2.20, the mode is 2.750.

The examples made clear that the mode can not only be determined for nominal
variables, but also for ordinal variables, interval variables, and variables measured
on a ratio scale. However, the mode is rarely used for continuous quantitative vari-
ables because there are better statistics for this type of data. For grouped data, the
mode strongly depends on which intervals are used for grouping the data (i.e., which
intervals are chosen for constructing a histogram or for calculating frequencies),
which does not make its use attractive.
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The mode may not be unique: it sometimes happens that there are several values
or classes with the same highest frequency. When two or more peaks occur in a his-
togram, one speaks of a bimodal or multimodal histogram (the different peaks do not
need to have the same height). If a histogram has only one peak, it is called unimodal.
Multimodal histograms often result from using too large a number of classes, or from
a sample based on data from more than one population, or a process that can operate
in more than one way.

Example 3.1.8 Figure 3.2 shows a bimodal histogram of 143 male and female stu-
dents from the University of Connecticut. The female students are indicated by means
of gray dots, while the male students are indicated by means of black dots. The stu-
dents have been classified according to their height. The lowest class corresponds to
a height of about 5 feet (about 152 cm), while the students in the highest class are
about 6 feet 5 inches (about 192.5 cm). The dots in the picture form a histogram with
two main peaks. The first peak is located at the class “5:6” (5 feet 6 inches), while the
second peak is located at the class “5:10” (5 feet 10 inches). Therefore, the histogram
is bimodal.

5:0 5:1 5:2 5:3 5:4 5:5 5:6 5:7 5:8 5:9
Size

5:10 5:11 6:0 6:1 6:2 6:3 6:4 6:5

Male

Gender
Female

Figure 3.2 Bimodal histogram.

3.1.3 Arithmetic mean

The arithmetic mean, also called the sample mean, is undoubtedly the best known
measure of central location.

Definition 3.1.4 The arithmetic mean or sample mean x of observations x1,… , xn
is

x = 1
n
(x1 + x2 + · · · + xn) =

1
n

n∑

i=1
xi.

Example 3.1.9 The arithmetic mean of the data in Example 3.1.1 is

x = 1
10

(6 + 3 + 4 + 7 + 4 + 6 + 7 + 6 + 5 + 3) = 5.1.
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Definition 3.1.5 The arithmetic mean x for grouped data is

x = 1
n
(f1x1 + f2x2 + · · · + fkxk) =

1
n

k∑

i=1
fixi,

where xi is the center of the i-th class, fi is the (absolute) frequency of the i-th class,
n is the number of observations and k is the number of classes.

Example 3.1.10 The arithmetic mean of the number of no-shows in Example 2.4.2
equals

x = 1
100

(11 × 0 + 38 × 1 + 32 × 2 + 9 × 3 + 6 × 4 + 3 × 5 + 1 × 6) = 1.74.

If the arithmetic mean is calculated for a finite population with N elements, then
we write

𝜇 = 1
N

N∑

i=1
xi.

In practice, the population mean 𝜇 is almost always unknown. Therefore, we
usually have to work with arithmetic means x of samples. The connection between
sample means x and the population mean 𝜇 is an issue that is discussed in the book
Statistics with JMP: Hypothesis Tests, ANOVA and Regression.
Some properties of the arithmetic mean of a sample are:

• The sum of all observations is equal to the arithmetic mean multiplied by the
sample size n:

∑n
i=1 xi = nx.

• The sum of the deviations of the observations from the mean is zero:
∑n

i=1(xi −
x) = 0.

• The sum of the squared deviations of the observations from a constant c,∑n
i=1 (xi − c)2, is minimal if c = x.

• The arithmetic mean of a sample of constant values a,… , a equals the constant
value itself: a = a.

• The arithmetic mean of a number of observations ax1 + b,… , axn + b (where a
and b are constants), obtained by linearly transforming an original set of obser-
vations, x1,… , xn, can be obtained by applying the linear transformation to the
original mean: ax + b.

Example 3.1.11 Table 3.2 includes 21 stages of the Tour de France 2005, a
three-week professional cycling race in France. The average length of a stage is
equal to 170.67 km. This is the total distance that the cyclists have to cover (3584 km)
in the 2005 Tour de France, divided by 21. However, the typical American is not
familiar with a statistic expressed in kilometers and prefers to express distances
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Table 3.2 The 21 stages of the Tour de France 2005.

1 Saturday 2 July 19 km Fromentine - Noirmoutier-en-l’Ile
(indiv. time trial)

2 Sunday 3 July 182 km Challans - Les Essarts
3 Monday 4 July 208 km La Châtaigneraie - Tours
4 Tuesday 5 July 66 km Tours - Blois (team time trial)
5 Wednesday 6 July 179 km Chambord - Montargis
6 Thursday 7 July 187 km Troyes - Nancy
7 Friday 8 July 225 km Lunéville - Karlsruhe
8 Saturday 9 July 235 km Pforzheim - Gérardmer
9 Sunday 10 July 170 km Gérardmer - Mulhouse

10 Tuesday 12 July 192 km Grenoble - Courchevel
11 Wednesday 13 July 173 km Courchevel - Briançon
12 Thursday 14 July 187 km Briançon - Digne-les-Bains
13 Friday 15 July 162 km Miramas - Montpellier
14 Saturday 16 July 220 km Agde - Ax-3 Domaines
15 Sunday 17 July 205 km Lézat-sur-Lèze - Saint-Lary Soulan

(Pla d’Adet)
16 Tuesday 19 July 177 km Mourenx - Pau
17 Wednesday 20 July 239 km Pau - Revel
18 Thursday 21 July 189 km Albi - Mende
19 Friday 22 July 154 km Issoire - Le Puy-en-Velay
20 Saturday 23 July 55 km Saint-Etienne - Saint-Etienne

(indiv. time trial)
21 Sunday 24 July 160 km Corbeil-Essonnes - Paris

Champs-Élysées

in miles. To express the average length of the stages in miles, he may either first
divide the 21 distances by 1.609344 (one mile is 1.609344 km) and calculate
the average based on the transformed data, or he may simply divide the mean
expressed in kilometers by 1.609344. Both approaches lead to a mean stage length
of 106.05 miles.

Example 3.1.12 The average temperature in Belgium is 11.2∘C1. To determine the
average temperature in ∘F2, we can multiply the average in ∘C by 9/5 and add 32,

1 The Swedish scientist Anders Celsius (1701–1741) defined 0∘ as the boiling point and 100∘ as the
freezing point of water. His successor, the Swedish astronomer Strömer, turned this around, setting 0 as
the freezing point and 100 as the boiling point of water. To avoid confusion the name Celsius was kept for
this scale.

2 Gabriel Fahrenheit (1686–1736) created the first reliable thermometer. Hewas the first to usemercury
and to close the glass tube of the thermometer at the top, so that it would not react to changes in air pressure.
Negative numbers were unusual in his time. Therefore, he assigned the value of 0∘ to the lowest temperature
that he was able to obtain with a mixture of ice, salt, and ammonium chloride. He assigned the value of
100∘F to the average body temperature of a human being.
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since the transformation formula is given by

temperature is degrees Fahrenheit = 9
5
temperature in ∘C + 32.

This yields an average temperature of 52.16∘F for Belgium. In Kelvin3, the average
temperature in Belgium is 11.2 + 273.15 = 284.35Kelvin. Indeed, the transformation
formula is

temperature in Kelvin = temperature in ∘C + 273.15.

An advantage of the arithmetic mean in comparison with ordinal location measures
such as the median or the quartiles is that all observations are used in its calculation.
This advantage, however, sometimes turns into a disadvantage, namely when the data
set contains extremely high or extremely low values. Such extreme values exert a
major influence on the mean. These extreme values are called outliers, and may cause
problems in the statistical processing of data. It is often difficult to determine the cause
of outliers. Frequently, but not always, they are due to errors in recording or inputting
data, faulty measurements or defective machines. If the cause can be traced, then the
extreme values can possibly be corrected. If not, and if the cause is an error, it is
best to drop the extreme values from the data set. If no obvious cause for an extreme
value can be found, then a decision on whether or not to keep the observation in the
sample is not easy. The investigator should then attempt to make a good decision, for
example, based on past experience. It is also useful to compare an analysis including
the extreme value(s) and an analysis excluding the extreme value(s).

Example 3.1.13 Suppose that a sample consists of the following 10 data points: 60,
3, 4, 7, 4, 6, 7, 6, 5, and 3. The arithmetic mean of this data set is

x = 1
10

(60 + 3 + 4 + 7 + 4 + 6 + 7 + 6 + 5 + 3) = 10.5,

which is considerably higher than the average of 5.1 in Example 3.1.1, despite the
fact that only one observation is different. The median in the current example and
the median in Example 3.1.1 are identical. This illustrates that the arithmetic mean
is more sensitive to extreme values than the median.

3.1.4 Geometric mean

In certain contexts, the so-called geometric mean makes more sense than the arith-
metic mean. An example will clarify this.

Definition 3.1.6 The geometric mean G of a set of observations x1,… , xn is

G = n
√
x1 ×… × xn = (x1 ×… × xn)

1
n =

(
n∏

i=1
xi

) 1
n

.

3 The British physicist Kelvin (1824–1907) set his temperature scale to the value 0 for the absolute
zero, −273.15∘C.
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This definition implies that the geometric mean can only be calculated for strictly
positive observations. The geometric mean is always smaller than or equal to the
arithmetic mean. Both are equal only if all observations in a data set are equal.

Example 3.1.14 The so-called FIRST account offered by a big European insur-
ance company was an insurance account, offering the investor a variable return rate,
namely a base interest rate of 3% plus an annual bonus. The realized annual return
rates are shown in Table 3.3.

Table 3.3 Annual return rates of the FIRST account.

Year Return Year Return Year Return Year Return

1989 7.50% 1994 7.00% 1999 6.00% 2004 5.10%
1990 7.50% 1995 7.00% 2000 6.50% 2005 6.00%
1991 9.00% 1996 6.50% 2001 6.50% 2006 6.20%
1992 8.25% 1997 6.00% 2002 3.75% 2007 5.20%
1993 7.25% 1998 5.50% 2003 4.50% 2008 3.00%

An investor who deposited a sum of €10,000 in her account on January 1, 1989,
ended up with a total of

€10,000 × (1.075)(1.075)(1.09)(1.0825)… (1.03) = €33,322.66

after 20 years.
To calculate the average annual return rate, we determine the geometric mean of

the growth rates 1.075, 1.075, 1.09,… , 1.03:

G = 20
√
(1.075)(1.075)(1.09)(1.0825)… (1.03) = 1.06203.

The average annual return rate therefore is 1.06203 − 1 = 0.06203, that is,
6.203%. It is not difficult to verify that

(1.075)(1.075)(1.09)(1.0825)… (1.03) = (1.06203)20.

If we had invested €10,000 for 20 years at an annual return rate of 6.203%, we
would have ended up with €33,322.66.
If we calculate the arithmetic mean of all return rates in Table 3.3, we obtain

6.2125%. If we would invest €10,000 at this rate for 20 years, we would end up with
€33,382.02. This is different from the €33,322.66, which the FIRST account actually
yielded. Therefore, in this kind of application, we prefer the geometric mean over the
arithmetic mean.
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3.2 Measures of relative location

Ameasure of relative location indicates the position of an observation in comparison
to the values of the other observations.

3.2.1 Order statistics, quantiles, percentiles, deciles

Definition 3.2.1 The i-th order statistic x(i) in a sample of n observations is the i-th
observation after ranking the observations from small to large.

The first order statistic is the minimum, while the last order statistic is the maxi-
mum. We call these two values xmin and xmax.

Example 3.2.1 For the data in Example 3.1.1, the first order statistic is x(1) =
xmin = 3, the third order statistic x(3) = 4, and the tenth order statistic x(10) =
xmax = 7.

Definition 3.2.2 The (100 × p)-th percentile or quantile cp of a sample, where 0 <

p < 1, is a real number that is greater than (about) 100 × p% of the observations,
and smaller than (about) 100 × (1 − p)% of the observations.

There are several slightly different methods to calculate percentiles. The different
approaches lead to noticeable differences in small data sets, but for large data sets,
there is virtually no difference between the methods of calculation. Next, we discuss
the method used by JMP:

• For the calculation of percentiles, sort the n observations from small to large in
positions 1, 2,… , n.

• Calculate the position of the (100 × p)-th percentile as q = p(n + 1).

• If q is an integer, then x(q) is the (100 × p)-th percentile or quantile cp of the
sample.

• If q is not an integer,

– first, determine the largest integer that is less than q, and call that integer a;

– next, determine the difference between q and a, and call that difference f ;

– then, the (100 × p)-th percentile or quantile cp of the sample is

cp = (1 − f ) ⋅ x(a) + f ⋅ x(a+1),

= x(a) + f ⋅ (x(a+1) − x(a)). (3.1)
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Example 3.2.2 Consider once more the data from Example 3.1.1. The 25th
percentile is in position q = 0.25(10 + 1) = 2.75. Hence, a = 2 and f = 0.75.
Consequently, using the first formula in Equation (3.1), we obtain

c0.25 = (1 − 0.75)x(2) + 0.75x(3) = 0.25 × 3 + 0.75 × 4 = 0.75 + 3 = 3.75.

Of course, the second formula in Equation (3.1) provides exactly the same result:

c0.25 = x(2) + 0.75(x(3) − x(2)) = 3 + 0.75(4 − 3) = 3 + 0.75 = 3.75.

The 50th percentile is in position 0.5(10 + 1) = 5.5. Hence, a = 5, f = 0.5, and

c0.5 = (1 − 0.5)x(5) + 0.5x(6) = 0.5 × 5 + 0.5 × 6 = 2.5 + 3 = 5.5.

Finally, the 80th percentile is in position 0.8(10 + 1) = 8.8. Hence, a = 8, f = 0.8,
and

c0.8 = (1 − 0.8)x(8) + 0.8x(9) = 0.2 × 6 + 0.8 × 7 = 1.2 + 5.6 = 6.8.

If the product (100 × p) is a multiple of 10, the corresponding percentile is some-
times called the (10 × p)-th decile. The fifth decile, that is, the 50th percentile or
quantile c0.5, is always equal to the median.
Among other things, quantiles are used to test whether a data sample might orig-

inate from a given probability density. This can be done by constructing so-called
quantile diagrams (see the book Statistics with JMP: Hypothesis Tests, ANOVA and
Regression).

3.2.2 Quartiles

Definition 3.2.3 The first/second/third quartile Q1/Q2/Q3 is the 25/50/75-th per-
centile of the sample. In other words, Q1 = c0.25, Q2 = c0.5, and Q3 = c0.75.

It is obvious that the second quartile is the median. Together with the median and
the arithmetic mean, the first and third quartile are generally shown in so-called box
plots (see Section 3.7).

3.3 Measures of variation or spread

The best known statistics of variation or spread are for quantitative data. These statis-
tics measure the variation or spread around a central value. Data with the same mean
or median may still differ greatly in this respect. There exist also lesser-known mea-
sures of variation for nominal and ordinal variables.

3.3.1 Range

The easiest measure of variation of a data set is its range. To determine the range, at
least an ordinal scale is needed.
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Definition 3.3.1 The range R of a set of observations is the difference between the
value of the largest and the smallest observation:

R = xmax − xmin.

The biggest advantage of the definition of the range is its simplicity. A major
drawback is that only two observations are used in the calculation. All intermediate
observations have no influence. It is clear that the range is particularly sensitive to
extreme values. In industry, the range is often used in statistical process control.

3.3.2 Interquartile range

A better picture of the variation or spread of sample data is obtained by using the
distance between the first and third quartile:

Definition 3.3.2 The interquartile range Q is defined as the difference between the
third and the first quartile:

Q = Q3 − Q1.

Since half of the data is between Q1 and Q3, the interquartile range is a measure of
spread for half of the data set. This measure of spread is insensitive to extreme values,
as long as less than 25% of the data values are extremely small and less than 25% are
extremely large.

3.3.3 Mean absolute deviation

Ameasure of variation of a sample of quantitative data around the arithmetic mean is
the mean absolute deviation (MAD). Just like the arithmetic mean, the mean absolute
deviation is sensitive to extreme values.

Definition 3.3.3 The mean absolute deviation is the arithmetic mean of the absolute
values of the deviations of the observations from the arithmetic mean:

MAD =
∑n

i=1 |xi − x|
n

.

3.3.4 Variance

For sample data measured on a ratio scale or an interval scale, the variance is used
more often as a measure of spread than the mean absolute deviation.

Definition 3.3.4 The sample variance s2 of a set of observations x1,… , xn is

s2 = 1
n − 1

n∑

i=1
(xi − x)2.
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The sample variance is the mean of the squared deviations from the arithmetic mean
x, dividing by n − 1 instead of n. The sample variance can also be calculated with the
alternative formulas

s2 = 1
n − 1

(
n∑

i=1
x2i − nx2

)

= 1
n − 1

⎧
⎪
⎨
⎪
⎩

n∑

i=1
x2i −

1
n

(
n∑

i=1
xi

)2⎫
⎪
⎬
⎪
⎭

.

In order to show that these alternative formulas are valid, we need to make use of
the fact that

n∑

i=1
xi = nx,

which follows from the definition of the arithmetic mean. Then, we can rewrite the
definition of the sample variance as follows:

s2 =
∑n

i=1 (xi − x)2

n − 1
,

= 1
n − 1

n∑

i=1
(xi − x)2,

= 1
n − 1

n∑

i=1
(x2i − 2xix + x2),

= 1
n − 1

{
n∑

i=1
x2i −

n∑

i=1
2xix +

n∑

i=1
x2
}

,

= 1
n − 1

{
n∑

i=1
x2i − 2x

n∑

i=1
xi + nx2

}

,

= 1
n − 1

{
n∑

i=1
x2i − 2x(nx) + nx2

}

,

= 1
n − 1

{
n∑

i=1
x2i − nx2

}

,

= 1
n − 1

{
n∑

i=1
x2i − n

(∑n
i=1 xi
n

)2}

,

= 1
n − 1

⎧
⎪
⎨
⎪
⎩

n∑

i=1
x2i − n

1
n2

(
n∑

i=1
xi

)2⎫
⎪
⎬
⎪
⎭

,

= 1
n − 1

⎧
⎪
⎨
⎪
⎩

n∑

i=1
x2i −

1
n

(
n∑

i=1
xi

)2⎫
⎪
⎬
⎪
⎭

.
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If we compute the variance of all N elements of a population or a process with
N elements, then we speak of a population variance or a process variance. For
these variances, the symbol 𝜎2 is used. They are calculated based on the following
equation:

𝜎
2 =

∑N
i=1 (xi − 𝜇)2

N
, (3.2)

where 𝜇 represents the population mean. For large samples, the sample variance and
the population variance are similar.
Since the population variance is calculated as the arithmeticmean of a set of squared

deviations, it is more intuitive than the sample variance, where we divide by n − 1
instead of n. As will be explained in the book Statistics with JMP: Hypothesis Tests,
ANOVA and Regression, dividing by n − 1 provides slightly better estimates for a
sample variance than dividing by n. The sample variance cannot be calculated when
the data set contains only one observation, because we need to divide by n − 1.
Considering the meaning of the sample variance, this makes sense, as a single obser-
vation does not contain any information about spread.
The denominator n − 1 in the definition of the sample variance is called the number

of degrees of freedom. Each degree of freedom corresponds to a unit of information.
In a sample of n observations, we have n units of information. To calculate the sample
variance, we need to calculate the sample mean (arithmetic mean) first. Calculating
this value costs us one unit of information. Then, there are only n − 1 units of infor-
mation or degrees of freedom left to calculate the variance.
Just as the arithmetic mean, the sample variance can be calculated with the aid of

frequencies if the data is grouped. The required formula is

s2 = 1
n − 1

k∑

i=1
fi(xi − x)2,

where xi is the center of the i-th class, fi the frequency of the i-th class, n the number
of observations, and k the number of classes.
It is worth noting that a variance is always non-negative, and zero if and only if all

observations in the sample have the same value, that is, if and only if the observations
do not vary. A variance is always expressed in a unit that is the square of the originally
measured unit. For example, if the data is measured in seconds, then the variance is
measured in seconds squared.
The variance of a linear transformation y1 = ax1 + b, y2 = ax2 + b,… , yn = axn +

b of observations x1, x2… , xn, where a and b are constants, is equal to the variance of
the original data multiplied by a2. This is easy to show. Suppose that s2y is the sample
variance of the newly created data set y1, y2,… , yn, and that s

2
x is the sample variance

of the original data set x1, x2,… , xn. Then,

s2y =
1

n − 1

{
n∑

i=1
y2i − ny2

}

,

= 1
n − 1

{
n∑

i=1
(axi + b)2 − n(ax + b)2

}

,
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= 1
n − 1

{
n∑

i=1
(a2x2i + 2abxi + b2) − n(ax + b)2

}

,

= 1
n − 1

{
n∑

i=1
(a2x2i + 2abxi + b2) − n(a2x2 + 2abx + b2)

}

,

= 1
n − 1

{

a2
n∑

i=1
x2i + 2ab

n∑

i=1
xi + nb2 − na2x2 − 2nabx − nb2

}

,

= 1
n − 1

{

a2
n∑

i=1
x2i + 2ab

n∑

i=1
xi − na2x2 − 2nabx

}

,

= 1
n − 1

{

a2
n∑

i=1
x2i + 2nabx − na2x2 − 2nabx

}

,

= 1
n − 1

{

a2
n∑

i=1
x2i − na2x2

}

,

= a2
1

n − 1

{
n∑

i=1
x2i − nx2

}

,

= a2s2x .

3.3.5 Standard deviation

The sample standard deviation is the (positive) square root of the sample variance:

s =
√
s2.

Analogously, the population standard deviation is the (positive) square root of the
population variance:

𝜎 =
√
𝜎2.

Standard deviations are expressed in the same unit as the original data.
In general, the sample standard deviation gives a better picture of the distribution

of the data set than the range. However, if we only have two observations, then the
sample standard deviation and the range contain the same information. Indeed,

s = R
√
2
=

|x1 − x2|√
2

=
|x2 − x1|√

2

if n = 2. It is a useful exercise to prove this equality.

Example 3.3.1 Kevlar is a material that is highly resistant to conditions of high
pressure. For that reason, it is used in space shuttles and bicycle tires. In order to test
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the strength of the material, it is exposed to a particular stress level, and the life span,
the time that elapses until the material breaks, is recorded. Ten of these stress tests
yielded the following life spans: 50.1, 118.0, 353.0, 29.6, 84.2, 669.7, 118.5, 166.0,
202.0, and 137.8 hours.
The arithmetic mean of these values is 192.89 hours. The range is 640.1 hours, the

interquartile range Q3 − Q1 = 239.75 − 75.675 = 164.075 hours. The mean abso-
lute deviation can be calculated as

MAD = |29.6 − 192.89| + |50.1 − 192.89| + · · · + |669.7 − 192.89|
10

,

= 129.21 hours.

The sample variance of the data is

s2 = (29.6 − 192.89)2 + (50.1 − 192.89)2 + · · · + (669.7 − 192.89)2

9
,

= 36314.72 (hours)2.

The sample standard deviation of the life spans of kevlar is

s =
√
36314.72 hours = 190.56 hours.

3.3.6 Coefficient of variation

Although the variance and the standard deviation play an extremely important role in
statistics, they are sometimes not the best choices as measures of spread.

Example 3.3.2 Consider the following two data sets with eight observations:

• Sample 1: 15, 20, 20, 30, 35, 35, 40, 45

• Sample 2: 1015, 1020, 1020, 1030, 1035, 1035, 1040, 1045

The arithmetic means of the two sets are 30 and 1030, while the sample variance is
equal to 114.2857 for both samples. Therefore, the sample standard deviation is also
the same for both samples. It equals 10.69. Nevertheless, it is clear that – relative to
the arithmetic mean – the variability in the second sample is considerably smaller
than in the first sample.

Definition 3.3.5 The coefficient of variation CV is defined as the ratio of the sample
standard deviation s and the arithmetic mean x:

CV = s
x
.

Example 3.3.3 It is easy to check that the coefficients of variation for the samples
in Example 3.3.2 are 0.3563 and 0.0104.
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The coefficient of variation is unreliable when x is very small and it is sensitive to
outliers. The coefficient of variation is useful for comparing spread of data with dif-
ferent means and indispensable when comparing the variation of data with different
dimensions (i.e., data expressed in different units of measurement).

3.3.7 Dispersion indices for nominal and ordinal variables

For the spread of nominal and ordinal data, so-called nominal and ordinal dispersion
indices, abbreviated as nDi and oDi, are used.
The spread for nominal data is interpreted in a different way than that for ordinal

data. For nominal data, the spread is a measure of heterogeneity, while, for ordi-
nal data, it is a measure of polarization. Also, the calculation of the nominal and
ordinal dispersion indices differ. For the latter index, cumulative relative frequencies
are used in the calculations, while this is not the case for the nominal dispersion index.

3.3.7.1 Nominal dispersion index
Definition 3.3.6 The nominal dispersion index of a nominal variable with k different
categories or classes is

nDi = 1 −
observed homogeneity

maximal homogeneity
,

= 1 −

∑k
i=1

(
f ∗i − 1

k

)2

1 − 1
k

,

where f ∗i is the relative frequency of the i-th class.

In the definition of the nominal dispersion index, the sum of squares

k∑

i=1

(
f ∗i − 1

k

)2

is a measure of homogeneity. The larger this measure, the bigger the extent to which
the observations fall within a single category. The relative frequency f ∗i equals the
(absolute) frequency fi divided by the number of observations n.
The nominal dispersion index always lies between 0 and 1. If the index is equal

to 0, then there is no spread at all. All observations then belong to the same
category or class, and the homogeneity is maximized. If the index is equal to 1,
then the observations are evenly distributed across all categories or classes, and
the heterogeneity is maximized. In most practical cases, the dispersion index takes
values between 0 and 1.

Example 3.3.4 The Technical University of Munich has an international master’s
program and wants to examine fromwhich European countries the students originate.
To this end, it wishes to quantify the heterogeneity of the students in terms of their ori-
gin. Suppose that there are 40 students in a particular course and that 8 students come
from each of the following five countries: France, Italy, Poland, Spain, and Portugal.
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Since there are 40 students, n is of course equal to 40. Since there are five different
categories or classes, k = 5, and the maximal homogeneity is

1 − 1
k
= 1 − 1

5
= 0.8.

The frequencies f1, f2,… , f5 for all five categories are equal to 8. The initial calcu-
lations for the determination of the nominal dispersion index are shown in Table 3.4.

Table 3.4 Calculating the observed homogeneity in Example 3.3.4.

Class Country fi f ∗i f ∗i − (1∕k) (f ∗i − (1∕k))2

1 France 8 0.20 0 0
2 Italy 8 0.20 0 0
3 Poland 8 0.20 0 0
4 Spain 8 0.20 0 0
5 Portugal 8 0.20 0 0

In this example, the observed homogeneity is

k∑

i=1

(
f ∗i − 1

k

)2
=

5∑

i=1

(
f ∗i − 1

5

)2
= 0 + 0 + 0 + 0 + 0 = 0.

Hence, the nominal dispersion index is equal to

nDi = 1 −

∑5
i=1

(
f ∗i − 1

5

)2

1 − 1
5

= 1 − 0
0.8

= 1.

Example 3.3.5 Consider again the scenario in Example 3.3.4, but now assume that
all 40 students come from Poland. The initial calculations for the determination of
the nominal dispersion index in that case are shown in Table 3.5.

Table 3.5 Calculating the observed homogeneity in Example 3.3.5.

Class Country fi f ∗i f ∗i − (1∕k) (f ∗i − (1∕k))2

1 France 0 0 −0.2 0.04
2 Italy 0 0 −0.2 0.04
3 Poland 40 1 0.8 0.64
4 Spain 0 0 −0.2 0.04
5 Portugal 0 0 −0.2 0.04
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In this example, the observed homogeneity is

k∑

i=1

(
f ∗i − 1

k

)2
=

5∑

i=1

(
f ∗i − 1

5

)2
= 0.04 + 0.04 + 0.64 + 0.04 + 0.04 = 0.8.

Hence, the nominal dispersion index is equal to

nDi = 1 −

∑5
i=1

(
f ∗i − 1

5

)2

1 − 1
5

= 1 − 0.8
0.8

= 0.

In Example 3.3.5, all students come from Poland, which leads to a nominal disper-
sion index of 0. If all students had come from any other single country, the nominal
dispersion index would also have been 0.

Example 3.3.6 Consider again the scenario in Example 3.3.4, but now assume that
the 40 students are unevenly scattered over the five countries. The calculations for
the determination of the nominal dispersion index in that case are shown in Table 3.6.

Table 3.6 Calculating the observed homogeneity in Example 3.3.6.

Class Country fi f ∗i f ∗i − (1∕k) (f ∗i − (1∕k))2

1 France 20 0.500 0.300 0.0900
2 Italy 2 0.050 −0.150 0.0225
3 Poland 5 0.125 −0.075 0.0056
4 Spain 3 0.075 −0.125 0.0156
5 Portugal 10 0.250 0.050 0.0025

In this example, the homogeneity is

k∑

i=1

(
f ∗i − 1

k

)2
=

5∑

i=1

(
f ∗i − 1

5

)2
= 0.09 + · · · + 0.0025 = 0.1362.

Therefore, the nominal dispersion index is equal to

nDi = 1 −

∑5
i=1

(
f ∗i − 1

5

)2

1 − 1
5

= 1 − 0.1362
0.8

= 0.82975.
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3.3.7.2 Ordinal dispersion index

Definition 3.3.7 The ordinal dispersion index of an ordinal variable with k different
categories or classes is

oDi = 1 − observed concentration
maximal concentration

,

= 1 −

∑k−1
i=1

(
F∗
i −

1
2

)2

k−1
4

,

where F∗
i is the relative cumulative frequency of the i-th class.

In the definition of the ordinal dispersion index, the sum of squares

k−1∑

i=1

(
F∗
i −

1
2

)2

is a measure of concentration. The larger this measure, the larger the extent to which
the observations fall within a single category. The relative cumulative frequency F∗

i
is equal to the sum of the absolute frequencies f1, f2,… , fi, divided by the number
of observations n. Note that in the sum of squares for the calculation of the concen-
tration, we only add the first k − 1 values of (F∗

i −
1
2
)2.

Like the nominal dispersion index, the ordinal dispersion index always lies between
0 and 1. If the index is equal to 0, then there is no polarization at all. All observations
then belong to the same category or class, and the concentration is maximal. If the
index is equal to 1, the observations are evenly distributed between the two extreme
categories or classes. In that case, the polarization is maximal: the observations are
all at the two extremes, the two poles. In most practical cases, the ordinal dispersion
index takes values between 0 and 1.

Example 3.3.7 Suppose you want to quantify the extent to which the population is
in favor of or against immigrant voting rights. You set up a survey in which you ask
the question “What is your attitude towards voting rights for foreigners?”. As pos-
sible answers, you offer the options: very positive (++), positive (+), neutral (+/−),
negative (−), and very negative (−−). Suppose you asked 40 people to participate in
the survey, 20 of whom turn out to have a very positive attitude and 20 of whom turn
out to have a very negative attitude towards immigrant voting rights.
Since there are five response categories, k = 5, and the maximal concentration is

k − 1
4

= 5 − 1
4

= 1.
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The frequencies f1 and f5 for the two extreme classes (very positive and very nega-
tive) are both equal to 20. The initial calculations for the determination of the ordinal
dispersion index are shown in Table 3.7.

Table 3.7 Calculating the observed concentration in Example 3.3.7.

Class Attitude fi Fi F∗
i F∗

i − 0.5 (F∗
i − 0.5)2

1 ++ 20 20 0.5 0 0.00
2 + 0 20 0.5 0 0.00
3 +∕− 0 20 0.5 0 0.00
4 − 0 20 0.5 0 0.00
5 −− 20 40 1.0 0.5 0.25

In this example, the observed concentration is

k−1∑

i=1

(
F∗
i −

1
2

)2
=

5−1∑

i=1

(
F∗
i −

1
2

)2
= 0.00 + 0.00 + 0.00 + 0.00 = 0.

Therefore, the ordinal dispersion index is equal to

oDi = 1 −

∑5−1
i=1

(
F∗
i −

1
2

)2

5−1
4

= 1 − 0
1
= 1.

Example 3.3.8 Consider again the scenario in Example 3.3.7, but now assume that
all 40 people surveyed are neutral towards immigrant voting rights. The initial cal-
culations for the determination of the ordinal dispersion index in that case are shown
in Table 3.8.

Table 3.8 Calculating the observed concentration in Example 3.3.8.

Class Attitude fi Fi F∗
i F∗

i − 0.5 (F∗
i − 0.5)2

1 ++ 0 0 0 −0.5 0.25
2 + 0 0 0 −0.5 0.25
3 +∕− 40 40 1.0 0.5 0.25
4 − 0 40 1.0 0.5 0.25
5 −− 0 40 1.0 0.5 0.25
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In this example, the observed concentration is

k−1∑

i=1

(
F∗
i −

1
2

)2
=

5−1∑

i=1

(
F∗
i −

1
2

)2
= 0.25 + 0.25 + 0.25 + 0.25 = 1.

Hence, the ordinal dispersion index is equal to

oDi = 1 −

∑5−1
i=1

(
F∗
i −

1
2

)2

5−1
4

= 1 − 1
1
= 0.

In the preceding example, all answers are concentrated in the category “neutral
(+/−)”. This leads to an ordinal dispersion index of 0. If the answers had all been
concentrated in a different category, this would have led to an ordinal dispersion index
of 0 as well.

Example 3.3.9 Consider again the scenario in Example 3.3.7, but now assume that
all 40 people surveyed are unevenly distributed over the five answer categories. The
initial calculations for the determination of the ordinal dispersion index in that case
are shown in Table 3.9.

Table 3.9 Calculating the observed concentration in Example 3.3.9.

Class Attitude fi Fi F∗
i F∗

i − 0.5 (F∗
i − 0.5)2

1 ++ 5 5 0.125 −0.375 0.1406
2 + 10 15 0.375 −0.125 0.0156
3 +∕− 2 17 0.425 −0.075 0.0056
4 − 3 20 0.500 0.000 0.0000
5 −− 20 40 1.000 0.500 0.2500

In this example, the observed concentration is

k−1∑

i=1

(
F∗
i −

1
2

)2
=

5−1∑

i=1

(
F∗
i −

1
2

)2
= 0.1406 + 0.0156 + 0.0056 + 0.0000 = 0.1618,

so that the ordinal dispersion index is equal to

oDi = 1 −

∑5−1
i=1

(
F∗
i −

1
2

)2

5−1
4

= 1 − 0.1618
1

= 0.8382.
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3.4 Measures of skewness

Histograms and stem and leaf plots of sample data can be symmetric or asymmetric.
A histogram that is not symmetric is called skewed. In a histogram that is skewed to
the left (or negatively skewed), the left-hand tail is longer than the right-hand tail. In
a histogram that is skewed to the right (or positively skewed), the right-hand tail is
longer than the left-hand tail.
In a unimodal histogram, skewness can be determined based on the positions of

the arithmetic mean, the median and the mode. In a perfectly symmetrical histogram,
the three statistics are identical. In a histogram that is skewed to the left, the mean is
smaller than the median, which in turn is smaller than the mode. When a histogram
is skewed to the right, the mode is smaller than the median, which itself is smaller
than the arithmetic mean. The reason for this is that the arithmetic mean is more
sensitive to extremely large or extremely small values than the median. Based on this
observation, Pearson4 introduced a measure of skewness:

Definition 3.4.1 Pearson’s coefficient of skewness is defined as

SP =
3(x −Me)

s
.

In the definition of Pearson’s coefficient of skewness, we divide by the sample stan-
dard deviation to obtain a measure that is independent of the unit of measurement.
Without this division, x −Me could easily be made artificially large or small, simply
by changing themeasurement unit. The factor 3 in the definition of the skewness coef-
ficient ensures that it is always between −3 and +3. In a right-skewed or positively
skewed distribution, x > Me, and consequently SP > 0. In a left-skewed or negatively
skewed distribution, the opposite is true.

Example 3.4.1 For the data in Example 3.3.1 concerning the life span of kevlar,
Pearson’s coefficient of skewness is

SP =
3(x −Me)

s
= 3(192.89 − 128.15)

190.56
= 1.02.

This indicates a slightly positive skewness, which corresponds to the fact that the
histogram in Figure 3.3 has a long right tail.

4 Karl Pearson (1857–1936) was one of the founders of statistics. Among other things, he laid the
foundations for testing hypotheses and principal component analysis. Pearson claimed that statistics is the
grammar of science. Einstein called Pearson’s book “The Grammar of Science”, a mandatory reading for
all students.
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Lifespan of Kevlar

Figure 3.3 Histogram for the results of the stress tests in Examples 3.3.1 and 3.4.1.

A second measure of skewness is derived from the third central moment of the
sample data. Generally, the k-th central moment of a sample of size n is defined as
follows:

Definition 3.4.2 The k-th central sample moment5 of a sample is the mean of the
k-th powers of the deviations from the sample mean:

mk =
∑n

i=1 (xi − x)k

n
.

The skewness of Fisher6, perhaps the most commonly used measure for skewness,
is based on the third central moment m3 and is calculated as m3∕s3, or a function
thereof. JMP calculates Fisher’s skewness as

SF = n2

(n − 1)(n − 2)
m3

s3
= n

(n − 1)(n − 2)

n∑

i=1

(
xi − x

s

)3

.

The skewness measure is dimensionless and it is zero for a symmetric histogram
(SF = 0), positive for a right-skewed histogram (SF > 0) and negative for a left-
skewed histogram (SF < 0).

Example 3.4.2 For the data in Example 3.1.1, we have s = 1.524 and x = 5.1.
Therefore,

m3 =
1
10

{(6 − 5.1)3 + (3 − 5.1)3 + · · · + (3 − 5.1)3} = −0.528 cm3
,

5 The k-th non-central sample moment is

m′
k =

∑n
i=1 x

k
i

n
.

6 Sir Ronald Aylmer Fisher (1890–1962) was an English statistician and geneticist. He is considered
the founder of statistics. He laid the foundations for the analysis of variance, the maximum likelihood
method, and the statistical design of experiments.
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and

SF = 102

9 × 8

m3

s3
= 102

9 × 8
−0.528
(1.524)3

= −0.207.

Therefore, the data are skewed to the left.

Example 3.4.3 For the data in Example 3.3.1 and Figure 3.3, we compute Fisher’s
skewness as

SF = 102

9 × 8

m3

s3
= 102

9 × 8
10293932.3
(190.56421)3

= 2.066,

indicating that the data are skewed to the right.

3.5 Kurtosis

The extent to which a histogram has a sharp peak is quantified by a number called
kurtosis. Kurtosis can be viewed as a measure of steepness.

Definition 3.5.1 The kurtosis of a data sample is

g = n(n + 1)
(n − 1)(n − 2)(n − 3)

n∑

i=1

(
xi − x

s

)4

− 3(n − 1)2

(n − 2)(n − 3)
.

Like the skewness, the kurtosis is dimensionless. The kurtosis is zero for normally
distributed data. A positive value for the kurtosis indicates a sharper peak than in
normally distributed data, while a negative value indicates a flatter peak.

Example 3.5.1 For the data of Example 3.3.1, the kurtosis is

g = 10 × 11
9 × 8 × 7

(40.70662021) − 3 × 92

8 × 7
= 4.545095681,

indicating a sharp peak.

3.6 Transformation and standardization of data

In previous sections, we have already seen how the mean and the variance of a data
set xi are affected by a linear transformation yi = axi + b, where a and b are constants.
The mean of linearly transformed data can be found by applying the linear transfor-
mation to the mean of the original data, that is, y = ax + b. It is not difficult to show
that the median of linearly transformed data is equal to the linear transformation of
the original median. The variance of the yi values can be calculated as s

2
y = a2s2x , that

is, a2 times the original variance. The standard deviation of the yi values is equal to
sy = |a|sx. The skewness coefficients for the transformed data are identical to those
of the original data if a is positive, and to their opposite if a is negative. The kurtosis
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remains unchanged under a linear transformation of the data. It is a useful exercise
to demonstrate all this.
For non-linear transformations, no simple formulas exist to calculate summary

statistics. For example, if yi = x2i , it is not true that y = x2. If yi = ln(xi), then y ≠ ln(x).
It is easy to check this for a small example.
By far the most commonly used linear transformation in statistics is called a stan-

dardization. For this kind of transformation, a and b are set to 1∕s and −x∕s, respec-
tively. Typically, the new variable obtained using this transformation is denoted by
the letter z. A standardized value

zi =
xi − x

s

expresses how many standard deviations an observation xi is away from the sample
mean, since xi = x + zis. For any standardized variable z, the mean is zero and the
variance is one.
Note that standardized variables are used in the calculation of Fisher’s skewness

and of the kurtosis.

3.7 Box plots

A frequently used graphical representation of univariate ordinal or quantitative data
is the so-called box plot. There are a lot of different versions of box plots that can be
found in the statistical literature. The central part of the data is usually represented
by means of a box. The box is bounded by the first and the third quartile. Typically,
the median is represented with a line in between these two quartiles. In addition, the
mean is often indicated with another symbol.
In addition to these statistics, a box plot indicates extremely large and extremely

small values using dots. For this purpose, rules of thumb are used. One such rule of
thumb states that an observation xi is extreme if

xi < Q1 − 1.5 × Q

or
xi > Q3 + 1.5 × Q.

In this expression, Q is the interquartile range, as defined in Section 3.3.2.
Some box plots also contain lines or whiskers that reach down to the smallest and

up to the largest sample value that are not considered extreme values.

Example 3.7.1 Figure 3.4 contains two box plots of the lengths of the 21 stages in the
Tour de France 2005 shown in Table 3.2. The box plots in the figure indicate that there
are three outliers within the 21 data points, namely three stages with a considerably
shorter length than the other stages. These three data points correspond to the stages
1, 4, and 20. A closer inspection of the data in Table 3.2 reveals that the stages 1 and
20 were individual time trials, while stage 4 was a team time trial. It is common for
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Figure 3.4 Box plots of the lengths of the 21 stages in the 2005 Tour de France (see
Example 3.7.1). The three dots represent extreme values.

time trials to be substantially shorter than ordinary stages. The difference between
the two box plots in Figure 3.4 is that one box plot indicates the mean, while the other
one does not.
The box plots only show three extremely small observations. Thus, there are no

extremely large observations in this data set. The whiskers of the box plots extend
to the maximum value (239 km) on one side, and to the smallest value that is not an
extremely small value (154 km) on the other. The median is 182 km, while the first
and the third quartile are 161 km and 206.5 km. The interquartile range is 45.5 km.
The arithmetic mean is 170.67 km.
From the first and third quartile, we learn that half the stages of the 2005 Tour de

France were between 161 km and 206.5 km long. However, the interval [161, 206.5] is
not the shortest possible interval that contains 50% of all stage lengths. The shortest
interval is represented by the vertical bracket next to the box plots in Figure 3.4. From
the figure, we can deduce that the shortest interval extends from (about) 160 km to
(about) 190 km.
The box plot in Figure 3.4b indicates the arithmetic mean by means of a diamond.

The center of the diamond corresponds to the mean. The end points of the diamond
correspond to the lower limit and the upper limit of the 95% confidence interval for
the mean. The derivation of such a confidence interval is not covered in this book,
but in Statistics with JMP: Hypothesis Tests, ANOVA and Regression.
In JMP, box plots as in Figure 3.4 can be created with the option “Distribution” in

the “Analyze” menu. By default, you get a graphical display with both a histogram
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and a box plot. You can ensure that only the box plot is displayed via the hotspot (red
triangle icon) next to the name of the variable “Distance”. As shown in Figure 3.5, to
this end, you have to uncheck the option “Histogram” in the “Histogram Options”.
You can also uncheck the option “Vertical” if you want your box plot to be displayed
horizontally instead of vertically.

Figure 3.5 Creating a box plot using JMP.

Example 3.7.2 Between 28 March and 30 October 2003, several flights of Brus-
sels Airlines to Brussels were delayed. Figure 3.6 contains box plots for the delays
(expressed in minutes) of flights from Bordeaux (BOD), Florence (FLR) and Budapest
(BUD). For the first two cities, the data set contains 215 observations, while 185
observations are available for Budapest. Each of the three box plots contains sev-
eral extremely large values, so the data is skewed to the right. The Budapest airport
scores pretty well: the delays from this airport are notably smaller than those for the
other airports. Also, the variability of the delays for flights from Budapest is small
compared to that of the flights from Florence and Bordeaux. Some flights from Flo-
rence and Bordeaux had delays of more than two hours, and sometimes even more
than three hours. This is shown by the dots located above the values of 120 and 180
minutes on the vertical axis in Figure 3.6.
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Figure 3.6 Box plots for delays in Example 3.7.2.

Table 3.10 Statistics for the delays on flights from Bordeaux,
Budapest and Florence.

Statistics Bordeaux Budapest Florence

Maximum 202 74 238
90% Percentile 36 10 57
Third quartile 19 −2.5 25
Median 9 −11 11
First quartile 2 −18 0
10% Percentile −2 −23.4 −6
Minimum −9 −32 −18

Arithmetic mean 14.67 −8.14 21.88
Standard deviation 23.20 15.54 42.11
Number of observations 215 185 215
Variance 538.45 241.39 1773.19
Skewness 3.95 2.12 3.09
Kurtosis 23.78 7.17 10.41
Interquartile range 17 15.5 25
Range 211 106 256

Table 3.10 contains a summary of the most important statistics for the delays on
flights from Bordeaux, Budapest, and Florence. It is an interesting exercise to com-
pare the information provided by the box plots in Figure 3.6 with these statistics.
The generation of the three box plots in Figure 3.6 can be done using the “Graph

Builder” in the “Graph”menu of JMP. To do so, you have to drag the variable “Delay
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Time Arrival” to the “Y” zone, and the variable “Departure Airport” to the “X” zone.
The resulting screen is shown in Figure 3.7. Finally, you have to click the button with
the box plots in the upper center of the “Graph Builder”. So, there are various ways
to generate box plots in JMP: via the “Distribution” platform in the “Analyze” menu,
and via the “Graph Builder”.

Figure 3.7 Creating the box plots in Figure 3.6 with the “Graph Builder” in JMP.

Finally, it is useful to note that, for certain data sets, the median and the first or
third quartile coincide. This gives the corresponding box plots an unusual look and
complicates their interpretation.

Example 3.7.3 Figure 3.8 contains a box plot for the delays of all flights to Brussels
between March 28 and October 30, 2003, with Brussels Airlines. The box plot indi-
cates that some flights arrived more than 25 minutes early. The largest delay exceeds
350 minutes, for a flight from Edinburgh to Brussels.

–50 0 50 100 150 200 250 300 350

Figure 3.8 Box plot of delays of all flights to Brussels with Brussels Airlines.

An interesting feature of the box plots in JMP is that you can select the extreme
values with your mouse. If you do so, the corresponding rows are highlighted in the
data table. In this way, you can obtain a quick overview of the observations that led
to extreme values.



84 STATISTICS WITH JMP

3.8 Variability charts

In the introduction, we already mentioned the quality improvement program Six
Sigma. If you participate in a Six Sigma training, you will undoubtedly be confronted
with the following quote by the US author W. Edwards Deming: “Uncontrolled vari-
ation is the enemy of quality.” In order to reduce variation, it is important to first
identify the source(s) of variation in your process or product. To this end, graphics like
the variability charts that we introduce in this section can be tremendously helpful.
In its simplest form, a variability chart can be considered as a systematic way to

create several box plots side by side, as shown in the following example.

Example 3.8.1 In Example 3.7.2, we looked at the delay at arrival of flights to Brus-
sels from three different departure airports. Figure 3.9 shows a variability chart of
this data set. Essentially, it contains the box plots of the delay for the three departure
airports Bordeaux, Budapest, and Florence. It is very similar to Figure 3.6, but there
are two differences. First, the variability chart contains all data points. Second, below
the box plots, there is a second graph showing the standard deviations of the delays
for each departure airport.

Figure 3.9 Variability chart for the delays for flights to Brussels.
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If you manage the airport in Florence, you might wonder whether the poor results
you are responsible for are evenly distributed over the entire period from April to
October 2003, or whether there were better and worse months. To address this ques-
tion, we need to split the data by a second variable, the month of departure. Splitting
data by several variables and looking at the variation side by side is exactly what
variability charts are built for. Figure 3.10 shows the result for our example.

Figure 3.10 Variability chart of delays for flights to Brussels, by month and depar-
ture airport.

Now, it is easy to see that Budapest airport does not only consistently have the low-
est average delay time, but the standard deviation is very stable over time as well. The
situation is very different in Florence. There are severe outliers nearly every month.
The average delay time is not that different from the one in Bordeaux, but the varia-
tion is much larger than that for Bordeaux. The bottom part of the variability chart
tells us that Florence has good months, for example August, and very bad months, for
example May. As manager of the Florence airport, one can now try to find a special
cause explaining the difference in performance between August and May.
To create a variability chart in JMP, you have to select the option “Quality and Pro-

cess” in the “Analyze” menu, and then pick “Variability/Attribute Gauge Chart”. In
the resulting dialog window, you need to drag the variable “Delay Time Arrival” to
the “Y” field, and the variables “Departure Airport” and “Month” to the “X, Group-
ing” field. This step is shown in Figure 3.11. It is important to make sure that the order
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Figure 3.11 Creating a variability chart: Step 1.

of the grouping variables is correct. Otherwise, your chart will be nested the other
way around. By default, the resulting variability chart contains range bars. To remove
these, go to the hotspot (red triangle) menu next to the word “Variability Gauge”
in the initial output, uncheck “Show Range Bars”, and check “Show Box Plots”.
This step is shown in Figure 3.12. The result will be the variability chart shown in
Figure 3.10.

Variability charts are sometimes called “multi-vari charts”, indicating that they
can help identify variability that comes from multiple sources. Typically, one can
distinguish three types of variation, the so-called “within variation”, “between vari-
ation”, and the “variation over time”. In our delay time example, the within variation
is the variation within one airport, the between variation is the variation between the
airports, and the variation over time is the spread observed over the months.
Variability charts have numerous application areas. A prominent one is measure-

ment system analysis, which investigates part-to-part variation, operator-to-operator
variation, machine-to-machine variation, lot-to-lot variation, and so on. We end this
section with another typical application in quality control, the comparison of produc-
tion lines.
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Figure 3.12 Creating a variability chart: Step 2.

Example 3.8.2 Over the past years, solar companies based in Europe struggled to
survive due to the pricing pressure coming from solar panels produced in Asia. In
order to keep the production costs low, a German solar company built a small pro-
totype factory in Germany, and then rebuilt a bigger version of the same production
site twice in Malaysia. Although the Malaysian engineers were trained regularly on
the German site, this strategy still involved some risks. It is easy to build a copy of
an existing factory, but would it be possible to transfer the production quality from
Germany to Malaysia, too?
Figure 3.13 shows a variability chart of some yield data, comparing the three fac-

tories, named “Germany”, “Malaysia A”, and “Malaysia B”, each containing three
production lines. The chart contains the group means, which is another option in the
menu for creating the variability chart in JMP. One can immediately recognize that
both factories in Malaysia do not reach the same average yield as the German one.
In addition, the variation in the “Germany” and “Malaysia A” sites is more or less
the same and does not change much from one production line to the next. However,
the “Malaysia B” site has a clear quality problem. The spread of the yield is much
bigger in that factory than in the two other factories.
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Figure 3.13 Variability chart comparing yield data of production lines in Germany
and Malaysia.

3.9 Bivariate data

In this section, we look at situations where we study two variables, in general x and
y, simultaneously. We have n observations of the first variable x, and n corresponding
observations of the second variable y. The structure of the data is shown in Table 3.11.
For example, we obtain a bivariate data table when we record the height (x) and
weight (y) of a number of people. A data table with more than two variables, such as
the data on Spanish wines in Figure 2.1, is called amultivariate data table.

Table 3.11 General structure of a
bivariate data table for two
variables x and y.

Observation x y

1 x1 y1
2 x2 y2
3 x3 y3
⋮ ⋮ ⋮
n xn yn
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Measuring and interpreting the relationship or association between two (or more)
variables is one of the main tasks of statistics. The covariance and the correlation are
frequently used to measure the strength of a linear relationship between two quanti-
tative variables.

3.9.1 Covariance

Suppose that you have a data set with n observations of two quantitative variables x
and y, as shown in Table 3.11.

Definition 3.9.1 The sample covariance between the variables x and y is defined as

sXY = 1
n − 1

n∑

i=1
(xi − x)(yi − y).

The covariance can be positive or negative. A term (xi − x)(yi − y) in the definition
of the sample covariance is positive if observation i has

• an x value smaller than x, and a y value smaller than y, or

• an x value bigger than x, and a y value bigger than y.

A term (xi − x)(yi − y) in the definition of the sample covariance is negative if obser-
vation i has

• an x value smaller than x, and a y value bigger than y, or

• an x value bigger than x, and a y value smaller than y.

If the number of negative terms is dominant, this results in a negative covariance.
In the other case, the covariance is positive.
An example of a scatter plot with a negative covariance is shown in Figure 3.14.

In this figure, four quadrants are marked by drawing a vertical line at x = 5.1, and
a horizontal line at y = 3.8. The observations with a positive cross-product (xi − x)
(yi − y) will always lie in quadrant I or III. The observations with a negative
cross-product (xi − x)(yi − y) will always lie in quadrant II or IV. If the observations
in quadrants I and III are dominant, then x and y have a positive covariance. If the
observations in quadrants II and IV dominate, then the covariance between x and y
is negative. It is clear that the observations in Figure 3.14 are almost all located in
quadrants II and IV.

Example 3.9.1 Suppose that a data set with 10 observations for two variables x and
y is given: (6,2), (3,6), (4,5), (7,3), (4,6), (6,3), (7,2), (6,3), (5,2), and (3,6). This data
is shown in tabular form in Table 3.12 and as a scatter plot in Figure 3.14. It is easy
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Figure 3.14 Scatter plot with negative covariance.

Table 3.12 Bivariate data
table for Example 3.9.1.

Observation x y

1 6 2
2 3 6
3 4 5
4 7 3
5 4 6
6 6 3
7 7 2
8 6 3
9 5 2

10 3 6

to check that x = 5.1 and y = 3.8. The sample covariance is

sXY = 1
9
{(6 − 5.1)(2 − 3.8) + (3 − 5.1)(6 − 3.8) + · · · + (3 − 5.1)(6 − 3.8)},

= −20.8
9

= −2.311.

The calculations that we need to perform for the determination of the sample
covariance are shown schematically in Table 3.13, where the deviations from the
means x = 5.1 and y = 3.8 (in other words, xi − x and yi − y) and the products
(xi − x)(yi − y) are determined sequentially.
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Table 3.13 Calculating the sample covariance in Example 3.9.1.

Observation xi yi xi − x yi − y (xi − x)(yi − y)

1 6 2 0.9 −1.8 −1.62
2 3 6 −2.1 2.2 4.62
3 4 5 −1.1 1.2 −1.32
4 7 3 1.9 −0.8 −1.52
5 4 6 −1.1 2.2 −2.42
6 6 3 0.9 −0.8 −0.72
7 7 2 1.9 −1.8 −3.42
8 6 3 0.9 −0.8 −0.72
9 5 2 −0.1 −1.8 0.18

10 3 6 −2.1 2.2 −4.62
Sum −20.8

The concept of a covariance can also be applied to a population or a process. For a
finite population of N elements, the covariance is defined as follows:

Definition 3.9.2 The population covariance between the variables x and y is defined
as

𝜎XY = 1
N

n∑

i=1
(xi − 𝜇X)(yi − 𝜇Y ),

where 𝜇X is the population mean of the variable x and 𝜇Y is the population mean of
the variable y.
The alert reader will have noticed that the sample variance is a special case of

the sample covariance, and the population variance a special case of the population
covariance. A variance is simply the covariance of a variable with itself. Conse-
quently, we have s2X = sXX and 𝜎

2
X = 𝜎XX .

A disadvantage of the covariance as a statistic for the association between two
variables is that the result depends on the unit of measurement used for each of the
variables. Whenever, for example, a variable that was originally expressed in meters
is re-expressed in centimeters, the covariance of that variable with any other given
variable will be multiplied by 100.

Example 3.9.2 Suppose that a data set with 10 observations for two variables x
and y is given: (6,20), (3,60), (4,50), (7,30), (4,60), (6,30), (7,20), (6,30), (5,20), and
(3,60). This data set is the same as the one in Example 3.9.1, except for the fact that
all y values have been multiplied by a factor of 10. It is easy to verify that x = 5.1
and y = 38. The sample covariance is sXY = −23.11, which is 10 times larger than
the covariance of Example 3.9.1.

Because of its sensitivity to the units ofmeasurement, themagnitude of a covariance
is hard to interpret. The correlation coefficient, which does not suffer from this prob-
lem, is a more popular measure of the association between two quantitative variables.
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3.9.2 Correlation
Definition 3.9.3 The sample correlation coefficient, also known as Pearson’s coef-
ficient of correlation, of the observations (x1, y1), (x2, y2),… , (xn, yn) is defined as

rXY =
sXY
sXsY

=
∑n

i=1(xi − x)(yi − y)
√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
.

The population correlation coefficient between two variables is

𝜌XY =
𝜎XY

𝜎X𝜎Y
.

Example 3.9.3 For the data of Example 3.9.1, we can verify that sX = 1.524 and
sY = 1.751, hence rXY = −2.311∕(1.524 × 1.751) = −0.866. The two variables in
Example 3.9.2 have the same sample correlation coefficient, namely −0.866.

Correlation coefficients are bounded between −1 and 1. Variables with a correla-
tion of +1 are perfectly positively correlated. Variables with a correlation of −1 are
perfectly negatively correlated. In each of these cases, there is a linear relationship of
the form y = ax + b between the two variables under study. This can be proven easily.
A correlation coefficient always has the same sign as the corresponding covariance.
Variables with a correlation of 0 are called uncorrelated.
An important remark concerning correlation coefficients is that they only indicate

the extent to which there is a linear relationship between two variables. A correlation
of (almost) zero only indicates that there is no linear relationship between the two
variables. However, there might be a quadratic, cubic, or logarithmic relationship
between the variables.

Example 3.9.4 For the sample with observations (6,1), (7,4), (6.5,2.25), (4,1), (8,9),
and (2,9), the correlation coefficient between the observed variables x and y is rXY =
−0.0955. Therefore, the two measured variables are almost uncorrelated. Neverthe-
less, there is a functional relation between the two variables, namely y = (x − 5)2.

Example 3.9.5 The covariance and the correlation between the measured and the
declared alcohol percentage of the Spanish red wines in Example 2.2.1 equal 0.203
and 0.818, respectively. The covariance and the correlation between the measured
alcohol content and the price of Spanish red wines in Example 2.2.1 amount to
0.827 and 0.507, respectively. Finally, the covariance between the declared alcohol
content and the price is 0.517, while the correlation between these two variables is
equal to 0.391.
All this can be verified in Figure 3.15, where a correlation matrix and a covariance

matrix are shown for the variables “Alcohol measured”, “Alcohol declared”, and
“Price”. The computation of the correlation matrix and the covariance matrix can
be done in JMP using the “Analyze”menu, by first choosing “MultivariateMethods”,
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Figure 3.15 Correlation matrix, covariance matrix, and scatter plots to determine
the relationship between the price, the measured, and the declared alcohol content
of the Spanish red wines from Example 2.2.1.
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and then selecting the option “Multivariate”. The next step is to enter the names of the
three variables in the field called “Y”. By default, you only get to see the correlation
matrix. The covariance matrix can be obtained via the hotspot (red triangle) next
to the word “Multivariate” at the top of the initial output. In the resulting pop-up
menu, you can select the option “Covariance Matrix”. JMP automatically generates
a “Scatterplot Matrix” for all selected variables.
Notice that the correlation matrix contains ones on the diagonal. This means that

each variable is perfectly positively correlated with itself. Each diagonal element
of the covariance matrix represents a covariance of a variable with itself. In other
words, it represents the variable’s variance. For example, the variance of the variable
“Price” is €28.694.

Sometimes, linear combinations of variables need to be investigated. Suppose that
you want to calculate the mean and the variance of the linear combination u = ax +
by + c, where a, b, and c are constants. It takes only a little effort to demonstrate that
u = ax + by + c. A slightly more difficult exercise is to prove that s2u = a2s2x + b2s2y +
2absXY .

Example 3.9.6 As part of the evaluation of exams that students take, schools and
universities calculate correlations between the results of various courses. This shows
over and over again that results for subjects such as mathematics, statistics, oper-
ations research, and physics are quite strongly positively correlated. Between these
mathematically oriented subjects and subjects such as philosophy and sociology, the
correlation is close to zero.

3.9.3 Rank correlation

The major criticism on the correlation coefficient of Pearson introduced in
Section 3.9.2 is that it only quantifies the extent to which there is a linear relationship
between two (quantitative) variables. An alternative is Spearman’s rank correlation
coefficient7, measuring whether there is a monotone relationship between two
(quantitative or ordinal) variables. Spearman’s correlation coefficient also quantifies
non-linear increasing or decreasing relationships between variables.
The calculation of Spearman’s rank correlation coefficient requires two sets of ranks

for all observations, one set for each of the two variables under study. In some cases,
the ranks of two observations with respect to a certain variable will be the same.
To deal with this kind of tie, an averaged rank is used. Once the ranks have been
determined, the (ordinary) Pearson correlation coefficient is computed for the ranks.
The result is Spearman’s rank correlation coefficient.

Example 3.9.7 Suppose that you have the scores of 10 students for the English
and mathematics exams, and that you want to quantify the association between these

7 Charles Spearman (1863–1945) was an English psychologist who became famous for his work in
statistics and on human intelligence. He came up with the rank correlation coefficient and developed the
first form of factor analysis. He was a colleague of Karl Pearson at the University College in London, but
the two gentlemen were not on very good terms.
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two scores. In other words, you wish to determine whether a high (low) score for
English is associated with a high (low) score for mathematics. If you are not nec-
essarily interested in a linear relationship, then it is better to calculate Spearman’s
rank correlation coefficient. Table 3.14 illustrates how the ranks are determined for
the 10 pairs or scores. This is the first step in the calculation of the rank correlation
coefficient. Student H is given rank 1 for English and rank 1 for mathematics because
she has the best score for both courses. Student I is in rank 2 for English, but only
has rank 3 for mathematics. Student C has rank 10 for both subjects because she has
the worst score for both English and mathematics.

Table 3.14 Determination of ranks without ties.

Student Score English Score mathematics Rank English Rank mathematics

A 56 66 9 4
B 75 70 3 2
C 45 40 10 10
D 71 60 4 7
E 61 65 7 5
F 64 56 5 9
G 58 59 8 8
H 80 77 1 1
I 76 67 2 3
J 62 63 6 6

If we now calculate the (usual) Pearson correlation coefficient for the two columns
with ranks, we find a value of 0.6606. In other words, Spearman’s rank correlation
coefficient is 0.6606 in this example.
If we calculate the (ordinary) Pearson correlation coefficient for the original scores

for mathematics and English, we would obtain a value of 0.8038.

Note that there exists an alternative formula for Spearman’s rank correlation coef-
ficient in case there are no ties in the ranks, as in Example 3.9.7. In many cases, this
formula cannot be used due to the presence of ties. Our advice is to ignore that for-
mula, which is in many textbooks, and to always use the following procedure when
calculating Spearman’s rank correlation coefficient for two variables x and y:

• Sort all observations from large to small according to the variable x and assign
ranks to all observations based on this ranking.

• Sort all observations from large to small according to the variable y and assign
ranks to all observations based on this ranking.

• Calculate the (ordinary) Pearson correlation coefficient for the two sets of
ranks.

• The result of this calculation is Spearman’s rank correlation coefficient.
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The following example illustrates how to deal with ties in the rankings required for
the computation of the rank correlation coefficient.

Example 3.9.8 Suppose again that you have the scores of 10 students for the
English and mathematics exams, and that you want to quantify the association
between these two scores. Again, you are not particularly interested in a linear
relationship. Table 3.15 shows a slightly modified data table in comparison to
Example 3.9.7, now with a tie between student E and student J regarding the English
score. Both students come in sixth place in the ranking for the English course. The
next student is student G, who occupies the eighth position. Instead of using the
rank 6 twice for student E and student J, we attribute the average rank 6.5 to both
students. The reasoning behind this is that both students together occupy positions 6
and 7, and the average of 6 and 7 is 6.5.

Table 3.15 Determination of ranks with ties.

Student Score English Score mathematics Rank English Rank mathematics

A 56 66 9 4
B 75 70 3 2
C 45 40 10 10
D 71 60 4 7
E 61 65 6.5 5
F 64 56 5 9
G 58 59 8 8
H 80 77 1 1
I 76 67 2 3
J 61 63 6.5 6

If we now calculate the (usual) Pearson correlation coefficient for the two columns
with ranks, we find a value of 0.6687. In other words, Spearman’s rank correlation
coefficient is 0.6687 in this example.
If we would calculate the (ordinary) Pearson correlation coefficient for the original

scores for mathematics and English in Table 3.15, we would obtain a value of 0.8005.

The calculation of Spearman’s rank correlation coefficient can also be done with
JMP. In the “Analyze” menu, just as for the (ordinary) correlation coefficient of Pear-
son, you need to choose “Multivariate Methods” followed by “Multivariate”. The
next step is to enter the names of the two variables under study in the field called “Y”.
Once JMP has computed the (ordinary) Pearson correlation coefficient, as shown in
Section 3.9.2, you can choose “Nonparametric Correlations” followed by “Spear-
man’s 𝜌” via the hotspot (red triangle) next to the word “Multivariate” at the top of
the output. This step is illustrated in Figure 3.16. As can be seen in Figure 3.17, JMP
then generates an extra piece of output that contains Spearman’s rank correlation
coefficient.
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Figure 3.16 The computation of Spearman’s rank correlation coefficient using JMP.

Figure 3.17 JMP output with both the Pearson correlation coefficient and Spear-
man’s rank correlation coefficient.



98 STATISTICS WITH JMP

3.10 Complementarity of statistics and graphics

It is highly recommended to not blindly calculate all sorts of statistics during the study
of a data set. Often, a graphical representation of the data provides important insights
that go unnoticed when only means, variances, and correlations are calculated. We
illustrate this fact based on seven data sets with two variables x and y. The first data set
has an (ordinary) correlation coefficient of 0.7, and is shown bymeans of a scatter plot
in Figure 3.18. This scatter plot represents a typical situation in which two variables
show a positive linear correlation, without the linear relationship being perfect.
Remarkably, the six data sets shown in Figure 3.19 also all have a correlation coef-

ficient of 0.7. For none of the six scatter plots in this figure, the correlation coefficient
provides a good description of the relationship between the variables x and y:

1. All but one point in Figure 3.19a are located at the bottom left and show no
pattern at all. In the data, however, there is one outlier, which not only leads to
an increase of the mean x-value and the mean y-value, but also to a correlation
of 0.7. If this outlier is deleted, the correlation of the data would become nearly
zero.

2. Except for one point, the data points in Figure 3.19b exhibit an almost perfect
linear relationship. Considering only these points, the correlation coefficient
would be near 1. However, the outlier in the data causes the correlation coeffi-
cient to drop to 0.7.

3. In Figure 3.19c, we recognize two clearly separated sets of data points, each
having a correlation of zero. However, the fact that the larger set of points is
located at the bottom left and the smaller scatter plot is located at the top right
of the figure leads to a correlation coefficient of 0.7 for the complete data set.

4. The points in Figure 3.19d have a special pattern: the value of the x-variable
is always larger than the value of the y-variable. This situation occurs if the
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Figure 3.18 Scatter plot for two variables with correlation 0.7.
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Figure 3.19 Scatter plots for two variables that all have correlation 0.7.

variable y is a component of the variable x. As an example, imagine that x rep-
resents the total energy consumption of a family, and y the heating consumption.
In such a case, it does not make sense to calculate the correlation coefficient.

5. In Figure 3.19e we clearly recognize two sets of points that both lie more or less
on a straight line. In such situations, the two sets of points usually correspond
to two clearly identifiable groups of objects. It may be, for instance, that one
set of points corresponds to a group of men, while the other set corresponds to
a group of women.
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6. The points in Figure 3.19f exhibit a perfect quadratic functional relation.
Despite this perfect relation, the correlation is not equal to one. This is due to
the fact that the correlation coefficient only measures the strength of a linear
relationship.

3.11 Descriptive statistics using JMP

JMP offers the possibility to compute nearly all statistics discussed in this chapter.
The easiest way to do so is to make use of the “Distribution” platform in the “Ana-
lyze” menu. For a quantitative variable, you will then automatically get a histogram, a
box plot, the main percentiles (including the median, the first, and third quartile), the
sample’s arithmetic mean, and the standard deviation. For a qualitative variable, the
output is limited: you will only see a bar chart and a table with the (absolute) frequen-
cies for each category or class. The standard outputs for quantitative and qualitative
variables are shown in Figure 3.20 and Figure 3.21, respectively.
In Figure 3.21, the bar for the most expensive wines was selected by clicking on it

with the mouse. This explains the darker color of this bar. Therefore, all expensive
wines are automatically highlighted in the histogram of the ratings in the same figure.
This reveals that the most expensive wines either get a good (G) or a fair to good (F/G)

Figure 3.20 Descriptive statistics in JMP: quantitative variables.
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Figure 3.21 Descriptive statistics in JMP: qualitative variables.

rating. Not a single expensive wine gets an excellent (E) rating. At the same time, all
observations that correspond to expensive wines are also highlighted in the data table.
Using the “Shift” key one can select several bars in a histogram. Double-clicking
on a bar in a histogram automatically creates a new data table with only the data
corresponding to the selected bar.
By default, the standard output for quantitative variables only shows a small sub-

set of all possible statistics that JMP can compute. A wide range of statistics can be
obtained by clicking on the hotspot (red triangle) next to the term “Summary Statis-
tics” in the output. Choosing “Customize Summary Statistics” in the resulting pop-up
menu brings up the dialog window in Figure 3.22, where additional statistics can be
selected.
The available statistics are the following:

• the arithmetic or sample mean: “Mean”,

• the “Geometric Mean”,

• the standard deviation of the sample mean: “Std ErrMean” (see the book Statis-
tics with JMP: Hypothesis Tests, ANOVA and Regression),
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Figure 3.22 Dialog window for additional descriptive statistics in JMP.

• the lower and upper limit of a confidence interval for the arithmetic or sample
mean: “Lower Confidence Limit” and “Upper Confidence Limit” (see the book
Statistics with JMP: Hypothesis Tests, ANOVA and Regression),

• the “Median”,

• the “Mode”,

• the sample standard deviation: “Std Dev”,

• the sample variance: “Variance”,

• the “Kurtosis”,

• the skewness coefficient of Fisher: “Skewness”,

• the “Range”,
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• the “Interquartile Range”,

• the coefficient of variation: “CV”,

• the sum of the observations: “Sum”,

• the number of observations: “N” (as well as the number of missing observations
“N Missing”, the number of observations equal to 0 “N Zero”, and the number
of unique observations “N Unique”),

• the truncated mean: “Trimmed Mean”.

The truncated mean is the arithmetic mean obtained after deleting the smallest and
the largest observations. At the bottom of Figure 3.22, you can see that, by default,
JMP computes the truncated mean omitting the 5% smallest and 5% largest obser-
vations. The truncated mean is useful when the arithmetic mean of all data points is
highly influenced by extreme values. Excluding the largest and smallest observations
circumvents this problem.
As shown in Figure 3.21, JMP automatically calculates a frequency table with abso-

lute and relative frequencies for qualitative variables. Additionally, JMP can also
calculate cumulative relative frequencies, which is useful in preparing a Pareto chart
or when calculating the ordinal dispersion index. To this end, right-click on the fre-
quency table and select “Columns” followed by “Cum Prob”. This is illustrated in
Figure 3.23 for the rating variable. The resulting output is shown in Figure 3.24.
An alternative method to calculate descriptive statistics using JMP is to make use of

the menu “Tables”. In that menu, you can select the “Summary” option. This option

Figure 3.23 Computing relative cumulative frequencies using JMP.
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Figure 3.24 Table with cumulative relative frequencies in JMP for the rating
variable.

Figure 3.25 The “Tabulate” option in JMP.
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Figure 3.26 The “Tabulate” option in JMP applied to Example 3.7.2.

allows the computation of the most important statistics, including any percentile you
need. Even more interesting is the option “Tabulate” in the “Analyze” menu, the use
of which is illustrated in the next example.

Example 3.11.1 If you want to get a quick overview of the delays by departure
airport for the data in Example 3.7.2, you can use the “Tabulate” option in the “An-
alyze” menu, which produces the dialog window in Figure 3.25. Drag the variable
“Delay Time Arrival” to the zone called “Drop zone for columns”, select “Add Anal-
ysis Column”, and then drag the variable “Departure Airport” to the zone called
“Drop zone for rows”. Finally, you can select the statistics “N”, “Mean”, “Std Dev”,
and “Median” simultaneously by using the “CTRL” key, and dragging these statis-
tics to the table. You will then obtain the screen in Figure 3.26. The final step is to
click on the hotspot next to the word “Tabulate” and choose the option “Make Into
Data Table”. This produces a new data table with the computed summary statistics.



4

Probability

The likelihood of William’s wits being nearer their end than those of his poor wife seems
small, . . . .

(from The Crimson Petal and the White, Michel Faber, p. 588)

‘Anyway, by your wonderful succession of logical inferences –’
‘Well, it’s more a matter of a probabilistic matrix than strict syllogistic logic –’
‘By whatever screwy juju you rely upon, you decided to stake out one particular door-
way. And you got lucky.’
‘Lucky?Obviously, you haven’t heard anything I said. It was amatter of applying Bayes’
Theorem to estimate the conditional probabilities, giving due weight to the prior prob-
abilities and thus avoiding the fallacies of –’

(from The Ambler Warning, Robert Ludlum, p. 302)

The founders of probability theory are people like Pascal, Fermat, Huygens, and
Bernoulli. Blaise Pascal (1623–1662) was one of the greatest thinkers, theologians,
philosophers, mathematicians, and physicists in Western history. Together with the
French mathematician Pierre de Fermat, he laid the mathematical foundations of
probability theory. His interest in probability theory was awakened during a stay in
Paris, following a recommendation of his doctor to get rid of some chronic diseases.
After a severe depression, he retired to a monastery in 1654 and dedicated himself
to theology and philosophy. Fermat (1601–1665) is one of the most famous math-
ematicians in history, who also made important contributions to probability theory.
His most controversial results concerned number theory and were only discovered
on loose sheets of paper after his death. However, no solid proofs were found. Some
of his statements were proven years later (including by Euler), others disproved.

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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Christiaan Huygens (1629–1695) was a Dutch mathematician who became inter-
ested in probability theory after a visit to Paris, where he heard of Fermat and Pascal.
In his article “Van Rekeningh in Spelen van Geluck” (On Probability in Gambling
Games), he published 14 problems with solutions and five unsolved problems, that
would later be addressed by Bernoulli. Jacob (aka Jacques) Bernoulli (1654–1705)
was forced by his wealthy parents to study philosophy and theology in Basel. At
the same time, however, he also attended lectures in mathematics and astronomy. He
declined an offer to serve the Church, and accepted a professorship in mathemat-
ics at the University of Basel instead. He made important contributions to algebra,
infinitesimal calculus, and the theory of series, but is best known for his work on prob-
ability theory. His book Ars Conjectandiwas published posthumously. The work was
groundbreaking because new applications of probability theory were treated, an inter-
pretation of probability was given, and the idea that one can estimate probabilities by
means of the observed relative frequencies was developed.
Probability theory deals with processes and experiments whose outcome is

uncertain. Here, the words “process” and “experiment” have to be interpreted in a
broad sense. Such processes or experiments take place on a daily basis. In principle,
some processes are deterministic: if certain conditions are met, then the outcome
of the process or the outcome of the experiment can be predicted with certainty.
For example, pure water will boil at a pressure of 760mm and a temperature of
100∘C. Because it is not easy to accurately meet the conditions “pure water” and
“pressure of 760mm”, it is, however, somewhat uncertain as to whether the water
will actually boil at exactly 100∘C. This illustrates that deterministic processes and
experiments hardly exist in practice. There will almost always be at least a little bit of
uncertainty. Therefore, almost all processes are probabilistic or stochastic: there is
uncertainty about the outcome. Such processes are called probability experiments,
random experiments, or stochastic processes. In the following, we shall use the
term “random experiment” or simply “experiment”. A well-known example of a
(random) experiment is throwing a die. The unpredictability of the result is not due
to the ignorance of the person who throws the die, but to the inherently stochastic
nature of the underlying process. Another example of a (random) experiment is a
student taking an exam: no matter how well the student is prepared, her result is
uncertain because it depends, for example, on the set of questions or the day’s form.
Probability theory studies what statements can be made about random or stochastic

experiments. The aim is to understand and quantify the likelihood of certain out-
comes. A probability or a chance is an expression of the likelihood that we attach to
these outcomes. The more likely we consider a certain outcome or event, the greater
the probability we assign to it.
Outcomes of random experiments can always be interpreted as a data sample from

a population or a process. A die can be thrown several times, leading to a number
of observations that form a sample. The exam results of a group of students can also
be considered as outcomes of a number of random experiments and be treated as a
sample. The sample contains the information that is necessary to better understand a
process or to obtain a better description of a population.
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4.1 Random experiments

A random experiment E has more than one possible outcome. The set of possible
outcomes is the sample space Ω. Examples of experiments and the corresponding
sample spaces include:

• E1: flipping a coin: Ω1 = {head∕tail};

• E2: throwing a die: Ω2 = {1, 2, 3, 4, 5, 6};

• E3: the number of times a die must be thrown before the result is a six: Ω3 =
{1, 2, 3,…};

• E4: throwing a red die and a blue die: Ω4 = {(1, 1), (1, 2), (1, 3),… , (6, 6)};

• E5: whether an arbitrary Spanish family has a DVD player: Ω5 = {yes, no};

• E6: the time between the arrivals of two customers at a cash machine: Ω6 =
{t ∶ t > 0};

• E7: the service time of a customer at a counter in a post office:Ω7 = {t ∶ t > 0};

• E8: the number of accidents in a company during onemonth:Ω8 = {0, 1, 2,…}.

Some sample spaces, such as Ω1, Ω2, Ω4, and Ω5, are finite sets. Sample spaces
Ω3 and Ω8 are infinite but countable. Sample spaces Ω6 and Ω7 are infinite and not
countable. These examples show that every possible set can serve as the sample space
of an experiment.
For any given experiment, multiple sample spaces can be considered. For example,

in experimentE2, one can also use the sample spaceΩ′
2 = {odd, even}.Which sample

space is used depends on the questions one wants to answer. Quite often, the key to
solving a probability problem lies in a good choice of the sample space.
An eventG is a set of possible outcomes of an experiment. The sample space itself,

Ω, and the empty set, ∅, are also considered events. An event is thus a subset of the
sample space. Examples of events are:

• for E1: obtaining a head: G1 = {head};

• for E2: obtaining an even number: G2 = {2, 4, 6};

• forE3: less than five throws are needed before obtaining a six:G3 = {1, 2, 3, 4};

• for E4: the sum of the number of dots obtained from throwing the two dice is
five: G4 = {(1, 4), (2, 3), (3, 2), (4, 1)};

• for E5: a family has no DVD player: G5 = {no};

• for E6: the time between two arrivals is between 2 and 5 minutes: G6 = {t ∶
2 ≤ t ≤ 5};

• for E7: the service time exceeds 10 minutes: G7 = {t ∶ t > 10};

• for E8: there are no accidents in the company during one month: G8 = {0}.



PROBABILITY 109

If an event contains only one outcome, it is called an elementary event. Examples
of such elementary events are G1, G5, and G8. An event G occurs if the outcome of
the random experiment belongs to the set G. Event G2 occurs, for example, when a
4 is obtained. Event G6 occurs when a customer appears 3 minutes and 12 seconds
after the previous one.
As one can guess from these examples, set theory is particularly useful in probabil-

ity theory. Relations between and operations on subsets are essential for the calcula-
tion of probabilities.

Example 4.1.1 A few years ago, the Belgian postal service introduced the so-called
priority stamp. This stamp was more expensive than an ordinary stamp, but guar-
anteed that the letter would arrive at its destination the next (business) day. The
introduction of the priority stamp was accompanied by many problems. The system
of the priority stamp was regularly tested by various agencies and organizations and
found to be insufficient. For a normal shipping, with a normal (non-priority) stamp the
postal service promised delivery within three working days. After several years, the
Belgian postal service quietly abandoned the system of the priority stamp. In Great
Britain, however, the RoyalMail postal service still offers a “First ClassMail” (deliv-
ery the next working day) and a “Second Class Mail” (delivery latest at the latest
after three days). In 2014, a First Class Mail stamp cost 62 pence, while a Second
Class Mail stamp cost only 53 pence.
One random experiment in this context could be to determine how much time is

needed for a randomly selected letter to reach its destination and what kind of stamp
the randomly selected letter has. The possible outcomes of the experiment are shown
in Table 4.1. In the table, each outcome is denoted using the Greek letter 𝜔.

Table 4.1 Sample space for the random experiment with the Royal
Mail. The letter X refers to the type of stamp, while the letter Y
indicates the delivery time of the letter (expressed in number of days).

Y

1 2 3 > 3

X First Class 𝜔11 𝜔12 𝜔13 𝜔14
Second Class 𝜔21 𝜔22 𝜔23 𝜔24

For this experiment, the following events may be defined:

• G1 = {𝜔11, 𝜔12, 𝜔13, 𝜔14}: the letter has a First Class stamp;

• G2 = {𝜔11, 𝜔12, 𝜔21, 𝜔22}: the letter is delivered within two days;

• G3 = {𝜔12, 𝜔13, 𝜔14}: the letter has a First Class stamp and is delivered late;

• G4 = {𝜔24}: the letter has a Second Class stamp and is delivered late;

• G5 = {𝜔12, 𝜔13, 𝜔14, 𝜔24}: the letter is delivered late.
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A set can be the union of a number of other sets: G = G1 ∪ G2 ∪ · · · = ∪iGi. In
Example 4.1.1, the event G5 is the union of G3 and G4: G5 = G3 ∪ G4. Event G5
occurs if the outcome of the experiment either belongs to G3 or to G4, or belongs to
both G3 and G4. A union is exhaustive if it equals the entire sample space, that is, if
∪iGi = Ω.
An event can also be the intersection of two or more sets: G = G1 ∩ G2 ∩ · · · =

∩iGi. In Example 4.1.1, we have that G3 = G1 ∩ G5. If the intersection of two sets is
empty, we call them “disjoint”. The associated events cannot occur together: they are
mutually exclusive. Examples of mutually exclusive events are G3 and G4.
A set can also be the difference between two sets. For example, in Example 4.1.1,

the event G3 is the difference between the events G5 and G4, which is denoted by
G3 = G5 \G4. In that case, G3 is a subset of G5 (because all elements of G3 are also
elements of G5). Similarly, G3 is a subset of G1. We denote this by G3 ⊆ G1.
Another important definition is the complement of an event. A set Gc is the

complement of an event G if Gc = Ω \G. Each element of the sample space
is either in G or in Gc. In Example 4.1.1, the complement of G4 is equal to
Gc
4 = {𝜔11, 𝜔12, 𝜔13, 𝜔14, 𝜔21, 𝜔22, 𝜔23}.
Finally, we define a partition of the sample space Ω as a set of non-empty subsets

of Ω, which are exhaustive and pairwise disjoint. A partition G1, G2, G3,… satisfies
the following conditions: G1 ∪G2 ∪G3 ∪ · · · = Ω and Gi ∩ Gj = ∅ for each i ≠ j.
Clearly, each non-empty event G and its complement Gc constitute a partition of the
sample space.

4.2 Definition of probability

In this section, we define the probability that an event G occurs, in other words, that
the outcome of a random experiment belongs to the setG. The probability quantifies
the likelihood that the event G occurs. It is expressed by means of a function P(G),
which assigns a real number to the event G.
An intuitive way to introduce the concept of probability is to repeat an experiment

n times and record the frequency fn(G) of the event G. The relative frequency of G is
fn(G)∕n. For small values of n, the relative frequency is not stable, but, for large n, it
stabilizes. If we let n increase towards infinity (i.e., if we repeat the experiment many
times), the relative frequency of the event approaches the probability of G, namely
P(G). Mathematically, this is written as

P(G) = lim
n→∞

fn(G)
n

.

Example 4.2.1 Suppose G is the event of obtaining an even number of dots with a
die. In order to determine the probability of event G, you toss a die 10 times. If you
observe an even number of dots seven times, you could argue that the probability
P(G) of the event G is equal to the relative frequency of 7/10. When repeating the
experiment 100 times, you may record an even number of dots 57 times. The relative
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frequency is then 57/100, and 0.57 would be your estimate of the probability P(G).
After 1,000 experiments, you might have recorded an even number of dots 492 times.
That suggests that the probability P(G) is 0.492. After 10,000 experiments with 5038
occurrences of the event G, the estimated probability is 0.5038. This shows how the
relative frequency approaches 0.5 when the number of repetitions of the random
experiment is increased. Therefore, the probability P(G) is 0.5.

This definition is called the empirical or frequency definition of probability.
This definition is imprecise because the number of times that an experiment must be
repeated is not specified. Another definition that is sometimes used is the so-called
classical definition of Laplace1. This definition assumes that the probability of
occurrence is known for all possible elementary events. Often, it is assumed that
all outcomes are equally likely. For example, in the case of throwing a die, it is
typically assumed that the six possible outcomes are equally likely, and equal to
1/6. To determine the probability of obtaining an even number of dots, one can then
count the number of possible outcomes with an even number of dots (three), and the
total number of possible outcomes (six). This results in the following probability of
an even number of dots:

P(G) = number of even outcomes
total number of possible outcomes

= 3
6
= 1

2
.

The empirical definition and the classical definition of Laplace are inadequate if we
want to make statements concerning experiments that cannot be repeated, or where
we have no information about the likelihood of possible outcomes. The launch of a
new product, for instance, can only happen once. Nevertheless, companies attempt
to estimate the probability that the new product will be a commercial success or that
it will be a failure. Obviously, it would be unrealistic to blindly apply the classical
definition of Laplace and state that the probability of a commercial success is 1/2,
simply because there are only two outcomes (success or failure).
The so-called axiomatic definition of probability does not assume that the random

experiment under investigation can be repeated or that the likelihood of the elemen-
tary outcomes is known. It is quite different from the previous two definitions:

Definition 4.2.1 A function P() is a probability function if it assigns a real number
to each event G, and the following conditions are met:

• Axiom 1: P(G) ≥ 0,

• Axiom 2: P(Ω) = 1,

• Axiom 3: If G1, G2, G3,… are pairwise disjoint events, then P(G1 ∪ G2 ∪G3 ∪
…) =

∑
iP(Gi).

1 Pierre-Simon Laplace (1749–1827) began university studies in theology at Caen, but soon after
moved to Paris where he published influential mathematical articles at the age of 19. He is not only
a founder of probability theory, but he also made important contributions to the fields of differential
equations, astronomy, and physics.
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This general, abstract definition forms the basis for the derivation of calculation
rules for probabilities. A disadvantage of the definition is that it does not contain any
information on how initial probabilities can be determined.

Example 4.2.2 Table 4.2 contains the relative frequencies of the delivery time of let-
ters. The meaning of the relative frequencies is clear: 40%of all letters are First Class
letters that arrive after one day, 18%of the letters are Second Class letters that arrive
after one day, and so on. If we perform an experiment consisting of randomly select-
ing one specific letter sent via the Royal Mail, the eight relative frequencies could
serve as estimates of the probabilities of the eight possible outcomes. The probability
that the random letter that we draw is a First Class letter that arrives after one day
would be estimated to be 0.40. This shows how relative frequencies, calculated based
on sample data, can be used to estimate (unknown) probabilities.

Table 4.2 Relative frequencies used as an approximation for
probabilities in a random experiment concerning the Royal Mail.

Y

1 2 3 > 3

X First Class 0.400 0.060 0.035 0.005
Second Class 0.180 0.225 0.085 0.010

Example 4.2.3 Applying the classical probability definition of Laplace is not always
easy. Suppose that we want to calculate the probability that flipping two (fair) coins
yields two heads. Some will argue that this experiment has three possible outcomes:
two heads, two tails, and one head and one tail. One of these outcomes is the one we
are interested in, so that the desired probability is

P(2 heads) =
number of good outcomes

total number of outcomes
= 1

3
.

Others, however, will argue that there are four possible outcomes: two heads, two
tails, a head with the first coin and a tail with the second, and a tail with the first coin
and a head with the second. Then, the desired probability is

P(2 heads) =
number of good outcomes

total number of outcomes
= 1

4
.

In order to ensure that the final reasoning is the only correct one, it is useful to label
the coins or give them a color. You can also check for yourself, by flipping two coins a
large number of times, that the relative frequency of the event of obtaining two heads
is closer to 1/4 than to 1/3.
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4.3 Calculation rules

The axioms given in the axiomatic definition of probability allow us to derive some
rules for calculating probabilities by means of a few simple rules from set theory:

• P(∅) = 0;

• If G1 ⊆ G2, then P(G2\G1) = P(G2) − P(G1);

• If G1 ⊆ G2, then P(G1) ≤ P(G2);

• For any event G, the probability P(G) is at least zero and at most one: 0 ≤

P(G) ≤ 1;

• P(G) + P(Gc) = 1;

• the summation rule: P(G1 ∪ G2) = P(G1) + P(G2) − P(G1 ∩ G2);

• the generalized summation rule:

P(G1 ∪ G2 ∪ G3) = P(G1) + P(G2) + P(G3)

− P(G1 ∩ G2) − P(G1 ∩ G3) − P(G2 ∩ G3)

+ P(G1 ∩ G2 ∩ G3).

Example 4.3.1 Consider an experiment in which a single card is randomly drawn
from a classic 52-card deck (13 clubs, 13 spades, 13 diamonds, and 13 hearts), and
the following events:

• G1: the card drawn is black (clubs or spades),

• G2: the card drawn is a spade,

• G3: the card drawn is a seven.

With the help of the classic definition of probability, it is easy to figure out that
P(G1) = 26∕52 = 1∕2, P(G2) = 13∕52 = 1∕4 and P(G3) = 4∕52 = 1∕13. We can
also calculate various other probabilities:

• G4 = G1 ∪ G2: the card drawn is black or spades (or both). P(G4) = 26∕52 =
1∕2.

• G5 = G1 ∪ G3: the card drawn is black or a seven (or both). P(G5) = 28∕52 =
7∕13.

• G6 = G2 ∪ G3: the card drawn is a spade or a seven (or both). P(G6) =
16∕52 = 4∕13.

• G7 = G1 ∪ G2 ∪ G3: the card drawn is black or a spade or a seven. P(G7) =
28∕52 = 7∕13.
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• G8 = G1 ∩G2: the card drawn is black and a spade. P(G8) = 13∕52 = 1∕4.

• G9 = G1 ∩G3: the card drawn is black and a seven. P(G9) = 2∕52 = 1∕26.

• G10 = G2 ∩ G3: the card drawn is spade seven. P(G10) = 1∕52.

• G11 = G1 ∩ G2 ∩ G3: the card drawn is spade seven. P(G11) = 1∕52.

• G12 = G1 \G2: the card drawn is black but no spade. P(G12) = 13∕52 = 1∕4.

• G13 = Gc
2: the card drawn is not a spade. P(G13) = 39∕52 = 3∕4.

These examples can be used to verify the calculation rules. For example, the gen-
eralized summation rule can be verified by means of event G7: P(G7) = 26∕52 +
13∕52 + 4∕52 − 13∕52 − 2∕52 − 1∕52 + 1∕52.

4.4 Conditional probability

It is often necessary to calculate the probability of an event G1, given that another
event G2 already occurred. The event G2 provides us with additional information
that may have an impact on the probability of event G1.
Insurance companies are interested in the probability of death (event G1) of an

insured person. This probability depends on the age of the insured person (event =
G2), their gender, smoking habits, and so on. The random drawing of the nine of
spades (= G1) from a deck of 52 cards has a probability of 1/52. If, however, you
know that a black card has been drawn (= G2), this rises the probability that it is the
nine of spades to 1/26 because there are only 26 black cards. Finally, it is clear from
Table 4.2 that the probability that a letter is delivered within one day (= G1) given
that it has a First Class stamp (= G2) is different from the probability of a delivery
within one day in the absence of information concerning the type of stamp.

Example 4.4.1 Consider a small consultancy firm that had to complete 10 projects
during the last year. Five of the projects have been carried out by Person X. Only 4
of the 10 projects were finished on time. This information is shown in Figure 4.1 by
means of a Venn diagram. Each dot in the figure represents a completed project. The
large oval represents the set of all projects, while the smaller ovals represents the set
of projects that were finished on time and the set of projects carried out by Person
X. The intersection of the two latter sets contains two dots, indicating that two of the
projects done by Person X were finished on time.
First, we calculate the probability that a project carried out by Person X was fin-

ished on time. Figure 4.1 shows that there are two projects that were completed by
Person X and were finished on time. In total, Person X worked on five projects. The
probability that a project was ready on time, given that Person X completed it, is
therefore equal to 2/5. This follows from the classical definition of probability.
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Ω

Person XDelivered on time

Figure 4.1 Venn diagram relevant for Example 4.4.1.

In Example 4.4.1, we have implicitly used the following definition:

Definition 4.4.1 The conditional probability of an event G1, given that event G2 has
occurred, is defined as

P(G1 ∣ G2) =
P(G1 ∩ G2)

P(G2)
.

In the example, event G1 was an on-time completion of a project, while event G2
was the fact that Person X worked on the project. With this notation, P(G1 ∩ G2) =
2∕10 and P(G2) = 5∕10, so that P(G1 ∣ G2) = (2∕10)∕(5∕10) = 2∕5.
The conditional probability P(G1 ∣ G2) is also called an a posteriori probability, in

contrast to P(G1), which is called the unconditional or a priori probability. It is as
if the a priori probability is being recalculated when additional information becomes
available. The result of the recalculation is the a posteriori probability.
Rewriting the definition of conditional probability yields the so-calledmultiplica-

tion rule:
P(G1 ∩G2) = P(G1 ∣ G2)P(G2).

This rule can be generalized to more than two events:

P(G1 ∩ G2 ∩ G3) = P(G3 ∣ G1 ∩ G2)P(G1 ∩ G2),

= P(G3 ∣ G1 ∩ G2)P(G2 ∣ G1)P(G1),

and

P(G1 ∩ G2 ∩ · · · ∩ Gk)

= P(Gk ∣ G1 ∩ G2 ∩ · · · ∩ Gk−1)…P(G3 ∣ G1 ∩ G2)P(G2 ∣ G1)P(G1).
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Example 4.4.2 Consider again the data in Table 4.2. A user organization wants to
know the probability of a delivery time of at least 2 days for First Class letters. Before
calculating this conditional probability, we start with the unconditional probability
of a delivery time of more than one day:

P(“delivery > 1 day”)

= P{(“X = First Class” ∩ “Y = 2”) ∪ (“X = First Class” ∩ “Y = 3”)

∪ (“X = First Class” ∩ “Y > 3”) ∪ … ∪ (“X = Second Class” ∩ “Y > 3”)},

= P(“X = First Class” ∩ “Y = 2”) + P(“X = First Class” ∩ “Y = 3”)

+ P(“X = First Class” ∩ “Y > 3”) +… + P(“X = Second Class” ∩ “Y > 3”),

= 0.06 + 0.035 + 0.005 + 0.225 + 0.085 + 0.01,

= 0.42.

The unconditional probability for a randomly selected letter to be a First Class letter
is

P(First Class) = 0.4 + 0.06 + 0.035 + 0.005 = 0.5.

The probability that the events “delivery > 1 day” and First Class letter occur
together is

P(“delivery > 1 day” ∩ First Class letter) = 0.06 + 0.035 + 0.005 = 0.1.

Therefore, the conditional probability that the delivery time is at least two days, given
the knowledge that we deal with a First Class letter, is

P(“delivery > 1 day” ∣ First Class) =
P(“delivery > 1 day” ∩ First Class)

P(First Class)
,

= 0.1
0.5

= 0.2.

The interpretation of this result is that 20%of all First Class letters are delivered late.

Example 4.4.3 You belong to a group of 15 people and you would like to calculate
the probability that at least two group members have the same birthday. For con-
venience, you ignore the existence of leap years and assume the probability that a
person is born on a particular day to be 1/365.
The probability that at least two people have the same birthday is difficult to cal-

culate. The probability of the complement Gc of this event G is, however, easier to
find. The probability P(Gc) is the probability that everyone has a different birthday.
To calculate this probability we define the events

• G1: the first person is born on any day of the year;

• G2: the second person is born on another day than the first person;

• Gi: the i-th person is born on another day than the first i − 1 persons (i =
3, 4,… , 15).
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Then, the probability that everyone has a different birthday is

P(Gc) = P(G1 ∩ G2 ∩ · · · ∩ G15),

= P(G1)P(G2 ∣ G1)P(G3 ∣ G1 ∩ G2)…P(G15 ∣ G1 ∩G2 ∩ · · · ∩ G14),

= 1 × 364
365

× 363
365

× 362
365

× 361
365

× · · · × 352
365

× 351
365

= 0.747.

As a result, the probability that at least two people are born on the same day is
P(G) = 1 − P(Gc) = 1 − 0.747 = 0.253.
It is a good exercise to determine how large the group has to be so that the proba-

bility that two individuals have the same birthday is greater than or equal to 0.5.

Example 4.4.4 Out of a quartet of two men and two women, we want to randomly
choose a committee of two people. What is the probability that the committee even-
tually involves two persons of the same gender?
We have two people of the same gender in the committee if both selected members

are male (event A) or female (event B). These events are mutually exclusive, so that

P(A ∪ B) = P(A) + P(B).

In order to calculate the probability that both committee members are males, we
define the events

• G1: the first person in the committee is a man;

• G2: the second person in the committee is a man.

We then have that

P(A) = P(G1 ∩ G2) = P(G1)P(G2 ∣ G1).

Here, P(G1) is the probability that the first randomly drawn committee member is a
man. Applying the classical probability definition yields a value of 2/4 = 1/2 for this
probability. The probability P(G2 ∣ G1) is the probability that the second committee
member is also a man, and it is 1∕3. Again, this can be verified with the classical
definition of probability. Combining these two results produces a probability of

P(A) = 1
2
× 1
3
= 1

6

for an entirely male committee. In the same way, we can calculate that the probabil-
ity of a completely female committee is P(B) = 1∕6. Hence, the probability that the
committee is composed of two people of the same gender is

P(A ∪ B) = 1
6
+ 1

6
= 1

3
.

Example 4.4.5 In this example, we calculate the probability that the six numbers
indicated on a lottery ticket are those actually drawn on a certain Wednesday or
Saturday (lottery days in many European countries) out of a drum with 42 balls num-
bered from 1 to 42. The six balls drawn from the drum are not replaced.
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To compute the required probability, we first define the events Gi as “the i-th number
that is drawn matches a number indicated on the lottery ticket”. The probability of
winning the first prize, that is that the six numbers drawn are identical to those on
the lottery ticket, is

P( first prize) = P(the first number drawn is one of the six on the ticket

AND the second number drawn is one of the six on the ticket

…

AND the sixth number drawn is one of the six on the ticket),

= P(G1 ∩ G2 ∩ · · · ∩ G6),

= P(G1)P(G2 ∣ G1)P(G3 ∣ G1 ∩ G2)…P(G6 ∣ G1 ∩ G2 ∩… ∩ G5),

= 6
42

× 5
41

× 4
40

× 3
39

× 2
38

× 1
37

= 1
5,245,786

.

The probability that the first number drawn is indicated on the ticket, P(G1), is 6/42,
because there are 42 numbers in total and 6 of them are good ones. The probability
that the second number drawn is also indicated on the ticket, P(G2 ∣ G1), is 5/41,
because 41 balls are in the drum when drawing the second number. Five of these are
indicated on the ticket. In the same way, we can determine the remaining conditional
probabilities.

Example 4.4.6 OnWednesdays and Saturdays, in Belgium, you can not only partic-
ipate in the traditional lottery game, but you can also play the Joker game. Players
of this game have a form with six ordered digits ranging from 0 to 9. In every game,
six numbers are drawn from a drum involving 10 balls numbered from 0 to 9. In the
Joker game, each time a ball has been drawn, it is placed back into the drum. So, in
contrast with the traditional lottery, the Joker game is a draw with replacement. To
win the first prize, the six numbers on your form have to appear in the same order as
that in which they were drawn.
To compute the probability of winning the first prize, we first define the events Gi as

“the i-th number drawn corresponds to the i-th number on our form”. The probability
of winning the first prize then is

P( first prize) = P(the first number drawn is the first on the form

AND the second number drawn is the second on the form

…

AND the sixth number drawn is the sixth on the form),

= P(G1 ∩ G2 ∩… ∩G6),

= P(G1)P(G2 ∣ G1)P(G3 ∣ G1 ∩ G2)…P(G6 ∣ G1 ∩ G2 ∩… ∩ G5).
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The probability that the first number drawn is the first on the form, P(G1), is obvi-
ously 1/10. The probability that the second number drawn is the second on the form,
given the fact that the first ball was already correct, P(G2 ∣ G1), is again 1/10. The
reason is that, at the moment the second number is drawn, all 10 balls are back in the
drum. This is due to the fact that every ball drawn is placed back into the drum before
the next ball is drawn. Hence, for each following number, we also have a chance of
1/10 that it coincides with our number, and

P( first prize) = 1
10

× 1
10

× 1
10

× 1
10

× 1
10

× 1
10

= 1
106

.

An essential difference between the calculations for the lottery and those for the
Joker game is that, in the latter, all conditional probabilities are the same. This is due
to the fact that, in the Joker game, the events G1, G2, … are independent, because
each ball drawn is placed back in the drum before the next drawing.

4.5 Independent and dependent events

Definition 4.5.1 Event G1 is independent of event G2 if the occurrence of event G2
has no impact on the probability that event G1 occurs:

P(G1) = P(G1 ∣ G2).

In case event G1 is independent of event G2, the information contained in G2 does
not change the probability forG1. For independent events, the probability P(G1 ∩ G2)
therefore simplifies:

P(G1 ∩G2) = P(G1 ∣ G2)P(G2) = P(G1)P(G2).

Moreover,

P(G2 ∣ G1) =
P(G2 ∩ G1)

P(G1)
=

P(G2)P(G1)
P(G1)

= P(G2).

Therefore, if G1 is independent of G2, then G2 is also independent of G1. The events
G1,G2,… ,Gk are (mutually) independent if, for any subset of these k events, the
following equality holds:

P(Gi1
∩ Gi2

∩ · · · ∩ Gib
) = P(Gi1

)P(Gi2
)…P(Gib

).

If a set of events is pairwise independent, this does not imply that they are independent
when considered all together. The following example illustrates this.

Example 4.5.1 You throw one red and one blue die. Define the following events:

• G1: the number of dots on the red die is even, P(G1) = 1∕2;

• G2: the number of dots on the blue die is even, P(G2) = 1∕2;

• G3: the sum of dots on the two dice is even, P(G3) = 1∕2.
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Applying the classical definition of probability, it can be seen that

• P(G1 ∩ G2) = 9∕36 = 1∕4 = P(G1)P(G2);

• P(G1 ∩ G3) = 9∕36 = 1∕4 = P(G1)P(G3);

• P(G2 ∩ G3) = 9∕36 = 1∕4 = P(G2)P(G3).

Thus, the three events are pairwise independent. Nevertheless,

P(G1 ∩ G2 ∩G3) = 9∕36 = 1∕4 ≠ P(G1)P(G2)P(G3) = 1∕8,

so that the three events, when considered together, are not independent.

Finally, it should be noted that independent events should not be confused
with mutually exclusive events. For mutually exclusive events A and B, we have
P(A ∩ B) = P(∅) = 0.

Example 4.5.2 For manufacturing companies, it is essential that the quality of their
products does not depend on (in other words, is independent of) the location where
the production took place, the shift that assembled the products, the production line,
and so on. Consider the data in Table 4.3.

Table 4.3 Data for Example 4.5.2.

Quality

excellent (E) acceptable (A) bad (B)

Production P1 0.40 0.20 0.20
line P2 0.10 0.05 0.05

The figures in the table indicate that 80% of the production is done on line P1, and
only 20% on line P2. Half of the quantity produced is excellent (E). A quarter of the
production has an acceptable (A) quality, and another quarter is of bad (B) quality.
The independence of the production line and the quality follows from the following

calculations:

P(P1) = 0.80,

P(P1 ∣ E) = 0.40∕0.50 = 0.80,

P(P1 ∣ A) = 0.20∕0.25 = 0.80,

and
P(P1 ∣ B) = 0.20∕0.25 = 0.80,
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and

P(P2) = 0.2,

P(P2 ∣ E) = 0.10∕0.50 = 0.20,

P(P2 ∣ A) = 0.05∕0.25 = 0.20,

and
P(P2 ∣ B) = 0.05∕0.25 = 0.20.

Similar calculations can be made for P(E ∣ P1), P(A ∣ P1),…
Independence of the two properties implies that the distribution across the two pro-

duction lines is the same for excellent, acceptable and bad products (here, 80–20%).
Conversely, the distribution of the three qualities does not change from one produc-
tion line to the other.

Example 4.5.3 A safety system consists of two subsystems A and B, which are seri-
ally connected with each other. Subsystem A consist of two components A1 and A2,
which operate in parallel. The safety system functions properly as long as the two sub-
systems A and B work. Subsystem A functions as long as one of the two components
works.
The system is presented graphically in Figure 4.2. For each component in the

figure, the reliability is specified, that is the probability that the component will work
the entire year. We assume for simplicity that the functioning of one component
does not affect the service life of any other component. To quantify the reliability of
the entire security system, we calculate the probability that the system fails in the
coming year.

A1 (0.7)

A2 (0.7)

B (0.9)

Figure 4.2 Simple safety system involving components A1, A2, and B, along with an
indication of their reliabilities.
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First, we define the following events:

• A1: component A1 fails;

• A2: component A2 fails;

• A: component A fails;

• B: component B fails;

• S: The entire system fails.

Since the system fails if either of the components A or B stops working, we have
that

P(S) = P(A ∪ B) = P(A) + P(B) − P(A ∩ B),

where
P(A) = P(A1 ∩ A2) = P(A1)P(A2) = (0.3)(0.3) = 0.09,

and
P(A ∩ B) = P(A)P(B) = (0.09)(0.1) = 0.009.

As a result, the probability that the system fails is equal to

P(S) = 0.09 + 0.1 − 0.009 = 0.181.

4.6 Total probability and Bayes’ rule

Theorem 4.6.1 Let G0 be any event and G1,G2,… ,Gk a partition of the sample
space Ω. Then, the probability of the event G0 can be calculated as

P(G0) =
k∑

i=1
P(G0 ∣ Gi)P(Gi).

This proposition is called the theorem of total probability. The proof of the
theorem builds on the concept of a partition. First, due to the fact that G1,G2,… ,Gk
form a partition of the sample space Ω, their union is the sample space. This allows
us to write that

G0 = Ω ∩ G0,

= (G1 ∪ G2 ∪ · · · ∪ Gk) ∩ G0,

= (G1 ∩ G0) ∪ (G2 ∩ G0) ∪ · · · ∪ (Gk ∩ G0).

Since, for each i and j, with i ≠ j, the sets (Gi ∩ G0) and (Gj ∩ G0) are disjoint (due
to the fact that G1, G2,… , Gk form a partition), we have that
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P(G0) = P{(G1 ∩ G0) ∪ (G2 ∩ G0) ∪ · · · ∪ (Gk ∩G0)},

=
k∑

i=1
P(Gi ∩ G0),

=
k∑

i=1
P(G0 ∣ Gi)P(Gi).

Example 4.6.1 In order to meet the increasing demand for decaffeinated coffee,
three production lines are required. Production line P1 produces half of the coffee
packages. On average, 2% of those packages exhibit leakage. Production line P2
contributes 30% to the production and has 3% of poor output. Finally, production
line P3 produces the remaining 20% of coffee packages. This line has the worst per-
formance, as it delivers 6% of leaky packages. We calculate the probability that a
package that is randomly selected from the warehouse has a leakage.
We start again by defining some events:

• P1: the selected package comes from production line P1;

• P2: the selected package comes from production line P2;

• P3: the selected package comes from production line P3;

• L: the selected package has a leakage.

Since the events P1, P2, and P3 form a partition, the theorem of total probability
can be used:

P(L) = P(L ∣ P1)P(P1) + P(L ∣ P2)P(P2) + P(L ∣ P3)P(P3),

= (0.02)(0.5) + (0.03)(0.3) + (0.06)(0.2),

= 0.031.

Consequently, 3.1% of the total production is defective.

Problems using the theorem of total probability or Bayes’ rule (see next) are
often represented graphically by means of so-called probability trees. For instance,
Figure 4.3 shows the probability tree for the problem in Example 4.6.1. It is a useful
exercise to draw probability trees for the next few examples in this section.

Example 4.6.2 When the tennis player Kim Clijsters (a former no. 1 ranked tennis
player) planned her comeback after numerous injuries in Spring 2005, her man-
agement organized a small exhibition tournament in her hometown. The first game
scheduled for KimClijsters served as the openingmatch of the tournament. Her oppo-
nent in that game was youngster Kirsten Flipkens. In the second game, Sharapova
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(0.5)(0.02) = 0.010

(0.5)(0.98) = 0.490

(0.3)(0.03) = 0.009

(0.3)(0.97) = 0.291

(0.2)(0.06) = 0.012

(0.2)(0.94) = 0.188

P(P1) = 0.5

P(P3) = 0.2

P(P2) = 0.3

P(Lc|P3) = 0.94

P(Lc|P2) = 0.97

P(L|P1) = 0.02

P(Lc|P1) = 0.98

P(L|P3) = 0.06

P(L|P2) = 0.03

Figure 4.3 Probability tree for the problem in Example 4.6.1.

and Kuznetsova would play against each other. The winners of these matches would
play the final on the next day.
Kim Clijsters’ management decided to calculate the probability that she would win

the tournament. This required the estimation of the probability that each of the four
participating players would beat any other player in a single match. Estimates of
these probabilities are shown in Table 4.4.

Table 4.4 Probabilities for each of the participating tennis players to beat
any other player in a single match.

Winner

Clijsters Flipkens Sharapova Kuznetsova

Clijsters – 0.1 0.4 0.3
Loser Flipkens 0.9 – 0.95 0.9

Sharapova 0.6 0.05 – 0.4
Kuznetsova 0.7 0.1 0.6 –

If we assume that the players recover quickly, so that the first match does not impact
the probability of winning a possible second match, then the probability that Clijsters
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wins the tournament can be calculated as follows:

P(Clijsters wins tournament) = P(Clijsters beats Flipkens AND wins her second match),

= P(Clijsters beats Flipkens)P(Clijsters wins her second match),

= 0.9 P(Clijsters wins her second match).

The probability that Clijsters wins her second match needs to be calculated using
the theorem of total probability since her opponent in the second match is unknown
prior to the tournament:

P(Clijsters wins her second match)

= P(Clijsters beats Sharapova ∣Sharapova reaches the final) × P(Sharapova reaches the final)

+ P(Clijsters beats Kuznetsova ∣Kuznetsova reaches the final) × P(Kuznetsova reaches the final),

= P(Clijsters beats Sharapova ∣Sharapova beats Kuznetsova) × P(Sharapova beats Kuznetsova)

+ P(Clijsters beats Kuznetsova ∣Kuznetsova beats Sharapova) × P(Kuznetsova beats Sharapova),

= (0.6)(0.6) + (0.7)(0.4),

= 0.64.

As a result,

P(Clijsters wins tournament) = (0.9)(0.64) = 0.576.

The probabilities for the other players to win the tournament can be calculated in a
similar fashion. The success probabilities for the four players add up to 1.

Theorem 4.6.2 Let G0 be any event and G1,G2,… ,Gk a partition of the sample
space Ω. Then,

P(Gj ∣ G0) =
P(G0 ∣ Gj)P(Gj)

∑k
i=1 P(G0 ∣ Gi)P(Gi)

.

The proof of this theorem, which is best known as Bayes’ rule2, is very easy:

P(Gj ∣ G0) =
P(Gj ∩ G0)

P(G0)
=

P(G0 ∣ Gj)P(Gj)
∑k

i=1 P(G0 ∣ Gi)P(Gi)
.

2 Thomas Bayes (1702–1761) was a British mathematician and Presbyterian priest who formulated
a special case of the Bayes’ rule. The interesting result was published posthumously by Bayes’ friend
Richard Price and was a response to a question fromAbraham deMoivre, a famous French mathematician.
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Example 4.6.3 Consider again the situation described in Example 4.6.1. We now
calculate the probability that a randomly chosen defective coffee package was pro-
duced on production line P1. To do this, we use Bayes’ rule:

P(P1 ∣ L) = P(L ∣ P1)P(P1)
P(L ∣ P1)P(P1) + P(L ∣ P2)P(P2) + P(L ∣ P3)P(P3)

,

= (0.02)(0.5)
(0.02)(0.5) + (0.03)(0.3) + (0.06)(0.2)

,

= 0.3226.

The probability that a random defective product comes from line P2 is 0.2903. For
line P3, the probability is 0.3871. These probabilities can be calculated in a similar
manner. Note that the three probabilities add up to 1.

Example 4.6.4 In order to counteract the spread of AIDS, a country’s Department
of Public Health might consider a compulsory AIDS test for couples who intend to
marry. Suppose that the sensitivity of the available AIDS test is 98%, that is, the prob-
ability that the AIDS test is positive for someone who is infected is 98%. Moreover,
assume that the specificity of the test is 95%, which means that someone who is not
infected with the virus has a 95% chance of a negative test and therefore a 5% chance
of a positive outcome.
Now, suppose you spontaneously undergo an AIDS test before you become active

on the “wedding market” and the test result indicates that you are infected with the
AIDS virus. What is the probability that you are indeed carrier of the virus?
To calculate this probability, we use Bayes’ rule:

P(aids ∣ positive test)

=
P( positive test ∣ aids)P(aids)

P( positive test ∣ aids)P(aids) + P( positive test ∣ no aids)P(no aids)
,

= (0.98)P(aids)
(0.98)P(aids) + (0.05)P(no aids)

.

To finalize the calculation, we still need to estimate the probability that you have
AIDS, before knowing your test result. This probability, P(aids), is called the a priori
probability . You can use the percentage of the total population that is infected as an
estimate for the probability that you are infected. Suppose that 0.1%of the population
is infected with the virus, so that P(aids) = 0.001, and, of course, P(no aids) = 0.999.
Then,

P(aids ∣ positive test) = (0.98)(0.001)
(0.98)(0.001) + (0.05)(0.999)

,

= 0.0192.

This probability is the a posteriori probability of having AIDS, after the positive test
result becomes known. This probability is quite small, indicating that, even though
there is an undesirable test result, you should not worry too much about your health.
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Now, suppose that you are a drug user, who is not afraid of using someone else’s
syringe and having unsafe sex. In that case, using the a priori probability P(aids) =
0.001 in your calculations would be incorrect. Suppose that, in the environment in
which you live, 0.25 is a more realistic estimate of the a priori probability of being
infected, P(aids). Then,

P(aids ∣ positive test) = (0.98)(0.25)
(0.98)(0.25) + (0.05)(0.75)

,

= 0.8673.

Clearly, in this second scenario, you have much more reason to be worried about the
positive test result.
Should the Department of Public Health now require an AIDS test for everyone who

wants to get married? To answer this question, we can start from a fictitious group of
100,000 tested people. Only 0.1%of them, 100 people, are carriers of the AIDS virus.
In 2% of the cases, the test is falsely negative, so that we can expect that two carriers
of the virus will get a wrong diagnosis. 99,900 of the 100,000 tested people do not
carry the virus, but on average 5% of them, 4995 people, will get a falsely positive
result. As a result, a substantial number of healthy people will unnecessarily be upset
and need to undergo costly additional medical exams. These calculations indicate
that making the AIDS test mandatory for all engaged couples is not advisable. The
reason is that, overall, AIDS is a fairly rare disease, at least in many countries.

4.7 Simulating random experiments

In many practical situations, uncertainty and variability play an important role. Since
many practical situations are more complex than most of the computed examples in
books on probability theory, it is often difficult to calculate probabilities for success,
defect rates or other problems analytically.

Example 4.7.1 In the different stages of a construction project, resources such as
workers, cranes, concrete mixers, and so on are needed. Once a particular phase of
a project has been completed, the tools that are no longer needed can be moved to
another site. When planning projects, entrepreneurs have to assess the availability of
all tools properly, not to be confronted with a shortage of resources. Entrepreneurs
therefore must have a clear view of the duration of each phase of a project.
However, the durations of project phases are stochastic. As a matter of fact, the

precise duration of a phase depends on all sorts of random factors such as weather,
the punctuality of suppliers, and illnesses of employees. The variability in the dura-
tion complicates the task of entrepreneurs who would like to draw up a solid planning
and estimate the completion dates of projects accurately. A major difficulty is to avoid
shortages of resources at any point in time.
When submitting bids, entrepreneurs could try to be on the safe side by using large

estimates of the duration of the various phases of the project. In that case, how-
ever, they risk that other entrepreneurs, promising a faster finishing time, will get
the projects.
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In such situations, the use of simulation models (for instance, to study the dis-
tribution of completion dates of projects as a function of random events such as the
weather, illnesses, etc.) often makes sense. The purpose of these models is to simulate
reality, and to test different alternatives using those models. A detailed treatment of
this topic is beyond the scope of this book, but simulations will be used occasionally.
To simulate probabilities for simulation experiments, a computer has to generate

random numbers. True random numbers cannot be generated by a computer.
Therefore, computer-generated random numbers are usually called pseudo-random
numbers. This is due to the fact that a computer can only perform user-specified
tasks. However, a lot of research has been done to find good ways to generate
pseudo-random numbers with a computer. Nowadays, many computer packages
allow the generation of high-quality pseudo-random numbers.
In Section 6.6, we address how to generate pseudo-random numbers with JMP.
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Additional aspects
of probability theory

Stops were rarely used alone. They tended to be piled on top of each other in combi-
nations that were designed to take advantage of the available harmonics (… ). Certain
combinations in particular were used over and over again. … The organ included an
ingenious mechanism called the preset, which enables the organist to select a particular
combination of stops – stops he himself had chosen – instantly.

(from Cryptonomicon, Neal Stephenson, pp. 8–9)

This chapter focuses on some interesting additional aspects of probability. We start
with some aspects of combinatorics. Next, we turn our attention to applications of
probability theory.

5.1 Combinatorics

In order to apply the classical definition of probability by Laplace, we need to know
the number of elementary outcomes of a random experiment. For a simple throw of a
die, this does not require much effort: there are six possible outcomes. For the Belgian
lottery (see Example 4.4.5) or in the Joker Game (see Example 4.4.6), it is a lot harder
to count the number of possible outcomes. In this section, we provide an overview of
the main counting rules.

5.1.1 Addition rule

If a first eventG1 can occur inN1 different ways and a second eventG2 inN2 different
ways, and the two events are mutually exclusive, then the event G1 ∪ G2 can occur in
N1 + N2 different ways.

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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Example 5.1.1 Event G1, drawing a heart from a deck of 52 cards, can occur in
13 ways. The same applies to G2, the event of drawing a spade. Consequently, event
G1 ∪ G2, drawing a heart or a spade, can occur in 13 + 13 = 26 ways.

The addition rule can be generalized to more than two events.

5.1.2 Multiplication principle

If an event G1 of one experiment contains N1 elementary outcomes, and an event G2
of another experiment contains N2 elementary outcomes, then the combined event
G1 ∩ G2 can occur in N1N2 different ways.

Example 5.1.2 A combined experiment consists of flipping a coin and throwing a
die. As the first experiment has two possible outcomes and the second one has six pos-
sible outcomes, the number of possible outcomes of the combined experiment equals
12. The sample space of the combined experiment contains the elements (head, 1),
(head, 2),… , (head, 6), (tail, 1),… , (tail, 6).

Example 5.1.3 Another combined experiment consists of throwing one red and one
blue die. This experiment has 36 possible outcomes:

Blue

1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

Red 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

The result remains unchanged when we throw the same die twice, rather than one
red and one blue die. In the above table, this requires replacing “Blue” by “First
throw” and “Red” by “Second throw”.

Example 5.1.4 The Joker Game in Example 4.4.6 is actually composed of six ran-
dom experiments, each with 10 possible outcomes. Therefore, the number of possible
outcomes of the Joker Game is 106.

5.1.3 Permutations

If we have a set of n different objects, we can wonder in how many different ways
this set can be ordered or permuted.
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Example 5.1.5 Three tasks a, b, and c, can be performed in six different orders: abc,
acb, bac, bca, cab, and cba.

In this example, it is possible to enumerate all possibilities. If the set of objects is
bigger, a complete enumeration becomes impracticable. The following reasoning is
helpful in that case.
For the first position in the ordering of n objects, we have n different possibilities.

Once the first position has been filled, only n − 1 options remain for position 2. Once
the object in position 2 has also been determined, there remain n − 2 options for
position 3. We can continue in the same way up to the final position, for which only
one object remains. Applying the multiplication principle now tells us that there are
n(n − 1)(n − 2)… (2)1 = n! (read: n factorial) possible orders or permutations of the
n objects. We denote this by

nPn = n!

If we have n objects, but we only need to order r of them, then the number of
orderings or permutations is

nPr = n(n − 1)(n − 2)… (n − r + 1) = n!
(n − r)!

.

This follows from a reasoning similar to the one above.

Example 5.1.6 In order to win a prediction contest for the Olympic 100m running
final in London, you have to predict the first three athletes in the correct order. Since
there are eight athletes in the final, the number of possible predictions is 8P3 = 8 ×
7 × 6 = 336.

5.1.4 Combinations

Example 5.1.7 Suppose that in the prediction contest of Example 5.1.6, the order
was not important. In other words, your prediction was considered correct if you
were able to predict who would be the first three athletes who crossed the finish line
regardless of their order. In that case, the 3P3 = 3! = 6 predictions (Gatlin, Blake,
Bolt), (Gatlin, Bolt, Blake), (Bolt, Gatlin, Blake), (Bolt, Blake, Gatlin), (Blake, Bolt,
Gatlin), and (Blake, Gatlin, Bolt) would be correct. If the order is not important, there
are only 8P3∕3! = 336∕6 = 56 different predictions.

The task in Example 5.1.7 was no longer to determine how many rankings of three
athletes from a set of eight could bemade, but to determine howmany sets of three can
be composed. As shown in the example, the number of possible sets is equal to the
number of possible permutations of three athletes out of a set of eight, divided by
the number of permutations of the three selected athletes. In general, we can calcu-
late the number of sets with r objects chosen from a set with n objects as

(n
r

)
= n!

(n − r)! r!
.

This number is called the number of combinations of r objects out of n.
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Example 5.1.8 The indoor amateur football team The Monkeys plays against FC
The Magicians. The team The Monkeys has nine team members, while its opponent
FC The Magicians team has 11 members. How many different combinations of 10
players, five on each side, can be on the pitch at the start of the match? The Monkeys

can start the match with
(
9
5

)
= 126 different teams, while FC The Magicians has

(
11
5

)
= 462 options. Applying the multiplication principle, we find that there are

126 × 462 = 58212 possible combinations of players to start the game.

Example 5.1.9 In Example 4.4.5, we calculated the probability that, out of the six
numbers indicated on a Belgian lottery ticket, all six are good. What is the probability
that, from those six numbers, only four are actually drawn, if you know that the six
numbers are drawn from the set {1, 2,… , 42}. The total number of possible combi-
nations of six different numbers from 42 is

(
42
6

)
. How many of these combinations

contain four good numbers (numbers indicated on our ticket) and two bad numbers
(numbers that are not indicated)?
Of the six numbers marked on the lottery ticket, four are actually drawn. There

are
(
6
4

)
= 15 possible ways in which this can happen. Out of the 36 numbers not

indicated on the lottery ticker, two are actually drawn. There are
(
36
2

)
= 630 possible

combinations of two out of 36 numbers. Applying the multiplication principle, we
learn that there are 15 × 630 = 9450 possible ways in which four good and two bad
numbers can be drawn.
Therefore, the probability that we indicated four good numbers and two bad ones

on the lottery ticket is

number of combinations with four good numbers

total number of possible combinations
=

(
6
4

)(
36
2

)

(
42
6

) = 15 × 630
5, 245,786

,

= 9450
5, 245,786

= 0.0018.

5.2 Number of possible orders

In probability theory, sequences of successes and failures are of interest. The quality
inspection of manufactured goods may show that some goods are defective (failure)
and some other goods are not defective (success). In a penalty shoot-out after a foot-
ball match that ends in a tie, there are usually a number of penalties that are converted
into a goal (success) and a number of penalties that are not converted into a goal (fail-
ure). We will learn in Chapter 8 howwe can compute probabilities using the binomial
distribution in such scenarios. To grasp the meaning of the mathematical expression
of the binomial distribution, it is essential that we can count the number of possi-
ble sequences with a certain number of successes and failures. In Section 11.6, we
study the multinomial probability distribution, a generalized version of the binomial
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distribution, which is useful if there are more than two possible outcomes. This is
relevant when, for example, we want to calculate the probability of obtaining a 1 five
times, a 2 six times, and a 3 four times after 15 throws of a die. To this end, we need
to know the number of sequences involving five ones, six twos, and four threes.

5.2.1 Two different objects

Example 5.2.1 Suppose that a football team scores two goals out of five penalty
kicks, and thus has three failures. In how many orders can this happen? It may be
that the team starts out with three misses and ends with two goals, but it might also
be that the team starts with a miss, then scores twice, and ends with two misses.
Counting the number of possible orders, we encounter the problem that we study

five objects in total (five penalties), but that these objects are not different from each
other. There are only two types of objects, goals and misses. The two goals are iden-
tical objects for us, as are the three missed penalties. If the five penalty kicks were
five completely different objects, the number of possible orders would be equal to the
number of permutations of five different objects, 5!.
However, we do not have five different objects, but a set of two identical objects

(goals) and another set of three identical objects (misses). If we could distinguish
between the two goals in the first set of identical objects, this distinction would give
2! possible orders of these two penalties. However, such a distinction is impossible.
As a result, we do not have 5! possible orders of our five penalties, but only 5!∕2!
if we consider the first set of identical objects. If we could distinguish between the
three missed penalties, we would have 3! possible orders of these three penalties.
This distinction is, however, also impossible, so that we do not end up with 5!∕2!
possible orders, but only with

(5!∕2!)∕3! = 5!
2! 3!

= 10,

if we also take into account the second set of identical objects. These 10 possible
orders are shown in Table 5.1.

If we order n objects, n1 objects of type 1 (e.g., successes) and n2 = n − n1 objects
of type 2 (e.g., failures), the total number of possible orders is equal to

n!
n1! n2!

=
(

n
n1

)
=
(

n
n2

)
.

5.2.2 More than two different objects

If we order n objects, n1 objects of type 1, n2 objects of type 2, … , and nk objects of
type k, the total number of possible orders is equal to

n!
n1! n2! … nk!

.
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Table 5.1 Ten possible orders of two converted penalty
kicks (S= success) and three missed penalty kicks
(F= failure) in a series of five.

Penalty kick
Order

1 2 3 4 5

1 S S F F F
2 S F S F F
3 S F F S F
4 S F F F S
5 F S S F F
6 F S F S F
7 F S F F S
8 F F S S F
9 F F S F S
10 F F F S S

Example 5.2.2 The number of possible orders in which we can obtain a 1 five times,
a 2 six times, and a 3 four times using 15 throws of a die is equal to

15!
5! 6! 4!

= 630630.

5.3 Applications of probability theory

5.3.1 Sequences of independent random experiments

Suppose that, due to a change in the exam regulations, a student can take the same
exam many times. The probability that she passes one exam is P(success) = p, and
the probability that she is not successful is P(failure) = 1 − p = q. Suppose that the
student does not adopt her studying intensity as time goes by, and that the teacher
assessing the exam is also not guided by the number of attempts that the student
already made. In other words, we assume that the successive attempts to pass the
exam are independent random experiments, and that the probabilities p and q do not
change. We now calculate the probability that the student will eventually pass. We
call this event H. We can determine the probability of eventually passing as follows:

P(H) = P(Students succeeds at first attempt OR

student succeeds for the first time at attempt 2 OR

student succeeds for the first time at attempt 3 OR

… ).

The probability that a student passes at the first attempt is equal to p. The probability
to fail once and succeed at the second attempt is equal to qp. The probability that the
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student succeeds for the first time at attempt 3 is q2p, . . . . In other words,

P(H) = p + qp + q2p + q3p + · · · = p(1 + q + q2 + q3 +… ).

This expression is an infinite geometric series that converges if −1 < q < 1. This
condition is fulfilled if p > 0. In that case, the series converges to

P(H) =
p

1 − q
=

p

p
= 1.

This result indicates that the student will pass the exam with certainty (probability
100%), regardless of the probability p. The only requirement is a minimal study effort
and minimum intelligence to ensure a strictly positive p.
In a similar way it can be argued that the Earth may not be the only planet with

intelligent living beings. Suppose that we include all planets in our investigation and
that the probability of finding intelligent life on any planet is p. The probability that
we finally are successful in our search for life in space is, of course,

P(“life”) = P(life is found on planet 1 OR

life is found for the first time on planet 2 OR

life is found for the first time on planet 3 OR

…

life is found for the first time on planet N),

= p + qp + q2p + q3p + · · · + qN−1p,

= p(1 + q + q2 + q3 + · · · + qN−1),

where N represents the number of planets in the universe. The sum 1 + q + q2 + q3 +
· · · + qN−1 is a finite geometric series, which is equal to

1 − qN

1 − q
.

The desired probability therefore is

P(“life”) =
p(1 − qN)
1 − q

=
p(1 − qN)

p
= 1 − qN .

Even if we use a very small probability p, for example p = 1∕106, the probability of
intelligent extraterrestrial life in an investigation of 100,000 planets is already 9.5%.

5.3.2 Euromillions

Euromillions is a European lottery in which the winning combination is determined
based on two separate, independent draws. First, five numbers are drawn randomly
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andwithout replacement from a total of 50. Second, two stars are drawn from a total of
11 (also without replacement). A player who, on his simple1 lottery ticket, checked
the five numbers drawn and the two stars drawn wins the largest amount of prize
money.
The total number of possible draws of five numbers from a total of 50 is

(50
5

)
= 50!

(50 − 5)! 5!
= 50!

(45)! 5!
= 50 × 49 × 48 × 47 × 46

5 × 4 × 3 × 2 × 1
= 2,118,760,

while the number of possible draws of two stars out of a total of 11 is equal to
(11
2

)
= 11!

(11 − 2)! 2!
= 11!

9! 2!
= 11 × 10

2 × 1
= 55.

For the total number of possible draws of five numbers out of 50 and two stars out of
11, we can use the multiplication principle. In total, there are

(50
5

)
×
(11
2

)
= 2,118,760 × 55 = 116,531,800

possible draws.
If you are participating in the Euromillions lottery with a simple ticket, then you

have a chance of 1 in 116,531,800 to win the lottery, that is to have the right five
numbers and the right two stars.
In the Euromillions lottery, you also win some cash if you have not marked all

five numbers and both stars correctly. For example, you also win if you have marked
three out of the five numbers drawn and one of the two stars drawn. To calculate the
probability that this happens is a bit more difficult than to determine the probability
of winning the largest cash prize. To do so, we first have to determine the number of
possible tickets with three good numbers (out of five) and one good star (out of two).
To start the calculations, it is important to realize that there are five good numbers
(the ones that are drawn) and 45 bad ones (those that are not drawn), and that there
are two good stars (the ones that are drawn) and nine bad ones (those that are not
drawn).
The number of combinations of three good numbers out of a total of five is

(5
3

)
= 10.

Automatically, two bad numbers are drawn from the 45 undesirable ones if only three
desirable ones are drawn. In total, there are

(45
2

)
= 990

combinations of two bad numbers out of 45. There are
(2
1

)
= 2

1 There are forms of the game in which a player can mark more than five numbers and more than two
stars. Thus, a player can increase his chances of winning against paying a greater fee. We do not investigate
this additional complication.
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Table 5.2 Probabilities of success for the Euromillions lottery.

Rank Numbers Stars Combinations Probability

1 5 2 1 0.0000000086
2 5 1 18 0.0000001545
3 5 0 36 0.0000003089
4 4 2 225 0.0000019308
5 4 1 4050 0.0000347545
6 4 0 8100 0.0000695089
7 3 2 9900 0.0000849554
8 2 2 141,900 0.0012176934
9 3 1 178,200 0.0015291963
10 3 0 356,400 0.0030583926
11 1 2 744,975 0.0063928902
12 2 1 2,554,200 0.0219184806
13 2 0 5,108,400 0.0438369612

combinations of one good star from a total of two, and
(9
1

)
= 9

combinations of one bad star from a total of nine. Because of the multiplication prin-
ciple, there are

(5
3

)
×
(45
2

)
×
(2
1

)
×
(9
1

)
= 10 × 990 × 2 × 9 = 178, 200

possible tickets with three good numbers and one good star. Given the total number
of 116,531,800 possible draws, the probability of three good numbers and one good
star is

178, 200
116, 531, 800

= 0.0015.

In a similar way, all the probabilities of winning various amounts of cash in
Table 5.2 can be computed.
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Univariate random variables

Therefore I will not talk to you this evening about voices, this evening I will talk mathe-
matics: since no-o-obody knows if there is anything on the other side of our death or if
there is nothing there, we can deduce from this complete ignorance that the chances that
there is something there are exactly the same as the chances that there is nothing there.
Fifty percent for cessation and fifty percent for survival. For a Jew like me, a Central
European Jew from the generation of the Nazi Holocaust, such odds in favor of survival
are not at all bad.

(from A Tale of Love and Darkness, Amos Oz, p. 515)

6.1 Random variables and distribution functions

Definition 6.1.1 A random variable is a function X() or X that assigns a real number
to each outcome 𝜔 of a random experiment.

If, for instance, a random experiment is carried out with possible outcomes
{𝜔1, 𝜔2,… , 𝜔9}, then the function X() assigns a real number to 𝜔1, a (not necessar-
ily different) real number to 𝜔2, a (not necessarily different) real number to 𝜔3, and
so on.

Example 6.1.1 Testing a product, there are two possible outcomes: good and bad.
We assign the value 1 to the outcome good and the value 0 to the outcome bad. We
write this as X(good)= 1 and X(bad)= 0.

To denote a random variable, we use X() or simply X. The notation X() indicates
that a random variable is a function. In practice, however, the notation X is virtually
always used. Other letters, such as Y and Z, are used for additional random variables.
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David Meintrup.
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Typically, capital letters from the end of the alphabet are used to denote random
variables, while lowercase letters represent real numbers. For example, the expression
P(X = x) is the probability that the random variable X takes the value x after the
corresponding random experiment has been carried out. The expression P(X < x) is
the probability that the random variable X takes a value smaller than the real number
x. When sticking to this notation, an expression like P(x < 10) makes no sense.

Example 6.1.2 A random experiment that consists of throwing a red and a blue die
has 36 possible outcomes. These outcomes were discussed in detail in Example 5.1.3.
A possible random variable X associated with that experiment is the sum of the dots
on the two dice. This random variable has 11 possible outcomes: the integers 2, 3,
4,… , 12. Another potential random variable Y is the absolute value of the difference
between the number of dots on the red die and the blue die. The random variable Y
can take the values 0, 1, 2, 3, 4, and 5.

In some experiments, the values the random variable can take are identical to the
elementary outcomes of the experiment. This is illustrated in the next example.

Example 6.1.3 A random experiment involves drawing a random number R from
the interval [0, 1]. The random variable X is the real number R itself. Based on this
experiment, however, we may define other random variables. For example, we can
define a random variable Y, which takes the value 0 if 0 ≤ R < 0.1, the value 1 if
0.1 ≤ R < 0.2, … , and the value 9 if 0.9 ≤ R < 1.

Probabilities concerning random variables can be calculated based on the probabil-
ities of the underlying events. If Gx is the event that X = x, then

P(X = x) = P(Gx).

Example 6.1.4 Consider again the random variable X, the sum of the number of
dots obtained by throwing two dice. In order to calculate the probability that the sum
equals 3, P(X = 3), we need to calculate the probability of the event G3, which is the
set of all outcomes for which X = 3. That set is G3 = {(1, 2), (2, 1)}. Therefore,

P(X = 3) = P(G3),

= P((1, 2) is obtained or (2, 1) is obtained),

= P((1, 2) is obtained + P((2, 1) is obtained),

= 1
36

+ 1
36

= 1
18

.

When we calculate the probability for each of the possible values of a random vari-
able, then implicitly we have determined the probability distribution of the variable
under study. For a formal definition of a probability distribution, we need to make a
distinction between a discrete random variable and a continuous random variable.
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6.2 Discrete random variables and probability
distributions

Definition 6.2.1 A random variable X is discrete if the number of possible values that
the variable can take is finite or at most a countably infinite set of discrete values.

Examples of discrete random variables are the variables introduced in Defini-
tion 6.1.1 and Example 6.1.1. The random variables X and Y in Example 6.1.2 are
also discrete random variables. An illustration of a discrete random variable with a
countably infinite number of values can be found in the following example.

Example 6.2.1 A random experiment consists of repeatedly throwing a die until a
six is obtained. A random variable X, defined as the number of attempts required
to obtain a six, may take the values 1, 2, 3, . . . . There is no upper limit so that the
number of possible values is countably infinite.

Definition 6.2.2 If a discrete random variable X can take k different values
x1, x2,… , xk, then

pX(xi) = P(X = xi), i = 1, 2,… , k,

is the probability distribution of X.

A probability distribution for a discrete random variable with possible values
x1, x2,… , xk has the following properties:

• pX(xi) ≥ 0 for each i = 1, 2,… , k. This property follows from the fact that prob-
abilities are always non-negative.

•
∑k

i=1 pX(xi) = 1. This property is a consequence of the fact that, when per-
forming the experiment, the random variable X will take one of the values
x1, x2,… , xk with certainty.

As the name already suggests, the probability distribution of a random variable X
involves the distribution of the probabilities across all possible values of the variable.
It is clear that, for a discrete random variable with an infinite number of possible
values,

∞∑

i=1
pX(xi) = 1.

Finally, we define the concept of a cumulative distribution function for a discrete
random variable X:

Definition 6.2.3 For a discrete random variable X with possible values x1 ≤ x2 ≤
· · · ≤ xk, we define

FX(x) = P(X ≤ x) =
∑

xi≤x

pX(xi) for every real number x.

The function FX(x) is called the (cumulative) distribution function of X.
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Example 6.2.2 In Example 6.1.2, the probability that the sum of the number of dots
on two dice, which is the random variable X in the example, is equal to 3 was calcu-
lated. If we calculate the probabilities for all possible values of X, that is the values
2, 3, 4, … , 12, we would obtain the probability distribution of X. This probability
distribution is shown in Table 6.1, as well as the cumulative distribution function.
It is easy to verify that the sum of all probabilities of the probability distribution

pX(x) is equal to 1. It turns out that the number 7 is the most likely outcome for the
random variable X. This explains why the number 7 plays a major role in the board
game “Settlers of Catan”. In that game, the participants have to position themselves
strategically on the board, in order to collect as many resources as possible. Players
earn resources if they own a village at the edge of a square with a number that matches
the sum of the dots on two dice thrown. It is therefore important for the players to
position their villages at the edges of squares with frequent outcomes for the sums of
the dots. From the probability distribution in Table 6.1, we learn that it is a good idea
to occupy squares with the numbers 6 and 8. Obviously, occupying a square with the
number 7 would be better, but no such squares exist in the game. So, the numbers
6 and 8 are the best choices, which explains why the numbers 6 and 8 are colored
red in the “Settlers of Catan”. Squares with the numbers 2 and 12 are to be avoided
because these numbers are rarely thrown. If a 7 is rolled, players must return half of
the resources they collected.
The computation of the cumulative distribution function FX(x) can be best illus-

trated using an example. For instance,

FX(5) = P(X ≤ 5),

= P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5),

= 1
36

+ 2
36

+ 3
36

+ 4
36

,

= 10
36

.

In the same way, FX(x) = P(X ≤ x) can be determined for all possible values of x
ranging from −∞ to +∞. This results in the following function:

FX(x) = P(X ≤ x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0 for −∞ < x < 2,

1∕36 for 2 ≤ x < 3,

3∕36 for 3 ≤ x < 4,

⋮

35∕36 for 11 ≤ x < 12,

1 for 12 ≤ x < +∞.

The probability distribution of the random variable X is shown graphically
in Figure 6.1. The corresponding cumulative distribution function is shown in
Figure 6.2. Cumulative distribution functions of discrete random variables are
always step functions. The heights of the steps are the individual probabilities
pX(x) = P(X = x). In Section 8.8.2, we describe how these graphs can be generated
with JMP.



142 STATISTICS WITH JMP

Table 6.1 Probability distribution and cumulative distribution function of the
random variable X, the sum of the dots on two dice.

x 2 3 4 5 6 7 8 9 10 11 12

pX(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
FX(x) 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 1
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Figure 6.1 Probability distribution of the random variable X in Example 6.1.2.
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Figure 6.2 Cumulative distribution function of the random variable X in Example
6.1.2.
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6.3 Continuous random variables and probability
densities

Definition 6.3.1 A random variable X is continuous if it can take a continuum of
values.

An example of a continuous random variable is the variable X introduced in
Example 6.1.3. Another example is the net weight of a beer bottle. In order to
get a probability distribution for such variables, we would have to enumerate all
possible values that the random variable can take. However, this is impossible, as
we are are dealing with a continuum of possible values. Therefore, we cannot assign
probabilities to the individual values that a continuous random variable can take.
For this reason, for continuous random variables, there is an alternative to the

probability distribution, namely a probability density. In order to get an intuitive
idea of a probability density, it is useful to recall the histograms and polygons
introduced in Section 2.4.3. Each interval in a histogram has a relative frequency,
which can be regarded as the probability that the random variable under study takes
a value that is within the interval. Similarly, the area under a polygon between two
values a and b is approximately equal to the relative frequency of the interval [a, b].
Therefore, it is approximately equal to the probability that the random variable takes
a value between a and b.
If now we increase the sample size and if we simultaneously reduce the size of the

classes in the corresponding histogram, then the polygon converges to a continuous
curve, which is the probability density. As for the polygon, the total area under this
continuous curve will be equal to one. This leads to the following definition of a
probability density:

Definition 6.3.2 A non-negative function fX(x), which is defined on the real line, such
that for any interval [a, b],

P(X ∈ [a, b]) = P(a ≤ X ≤ b) =
∫

b

a
fX(x)dx,

is called probability density or density function of a continuous random variable X.

The probability density is the continuous counterpart of a probability distribution.
Since P(X ∈ [a, b]) is a probability, the probability density fX(x) satisfies the follow-
ing conditions:

• fX(x) ≥ 0, and

• P(−∞ < X < +∞) = ∫
+∞
−∞ fX(x)dx = 1.

The second condition indicates that the random variable X takes a value between
−∞ and +∞ with certainty. In addition, the condition also implies that the area
under the curve fX(x) is equal to 1, as for a polygon and a histogram that show
relative frequencies.
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An important insight is that the probability P(a ≤ X ≤ b) that a continuous random
variable X takes a value in the interval [a, b], is equal to the area under the curve fX(x)
between the lower bound a and the upper limit b of the interval. In general, we use
integrals to calculate areas under curves. Here, we compute the integral of the density
function fX(x).
The probability that the continuous variable X takes values less than or equal to a

certain number a, P(X ≤ a), is equal to the probability that X takes values between
−∞ and a. This probability, P(−∞ < X ≤ a), is the integral from −∞ to a of the
probability density fX(x). It is the area under the curve fX(x) to the left of a.
If we calculate the probability P(X ≤ a) for all possible values of a, we get a func-

tion. This function is called the (cumulative) distribution function.

Definition 6.3.3 The (cumulative) distribution function of a continuous random
variable X is defined as

FX(x) = P(X ≤ x) =
∫

x

−∞
fX(y)dy.

Note that in the definition of the cumulative distribution function, y is used as vari-
able in the integral because the variable x is already used as the upper limit for the
integral.
This function has a number of intuitive properties:

• FX(x) is a non-decreasing function, in other words FX(x1) ≤ FX(x2) if x1 ≤ x2;

• FX(−∞) = lim
x→−∞

FX(x) = 0;

• FX(+∞) = lim
x→+∞

FX(x) = 1.

The interpretation of the latter two properties is that a cumulative distribution func-
tion increases from 0 to 1. These properties are also true for the cumulative distribu-
tion function of a discrete random variable.

Example 6.3.1 Figures 6.3 and 6.4 clarify the relationship between the probability
density and the (cumulative) distribution function. In both figures, the probability that
the random variable X is less than or equal to 1 is indicated.
Figure 6.3 shows the probability density fX(x) of a continuous random variable X.

The total area under the curve is equal to 1. The shaded part of the area under the
curve is the probability P(X ≤ 1).
Figure 6.4 shows the cumulative distribution function FX(x) that corresponds to the

probability density fX(x) in Figure 6.3. This cumulative distribution function contains
information about all possible probabilities of the type P(X ≤ x), for all possible val-
ues of x between −∞ and +∞. As the cumulative distribution function in Figure 6.2,
the cumulative distribution function in Figure 6.4 is a non-decreasing function, which
increases from 0 to 1.
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Figure 6.3 Graphical representation of a probability density. The probability
P(X ≤ 1) is the shaded area under the curve and is equal to 0.8413.
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Figure 6.4 Cumulative distribution function corresponding to the probability den-
sity in Figure 6.3. The probability P(X ≤ 1) is 0.8413 and is the value of the cumula-
tive distribution function at x = 1, FX(1).

The probability P(X ≤ 1) in Figure 6.3 is the same as FX(1) = 0.8413, the value of
the function in Figure 6.4 at x = 1. Therefore, a probability can always be determined
in two ways: one calculation method uses the probability density, while the other
method uses the cumulative distribution function.

The probability density in Example 6.3.1 is the standard normal probability den-
sity, which we will study in detail in Chapter 10. This probability density is nicely
bell-shaped and symmetrical. However, not all probability densities are symmetric.
In Example 6.3.2, we study a probability density that is not symmetrical.
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Example 6.3.2 Suppose that the probability density of a random variable X is given
by

fX(x) =

{
1
2
(3 − x), 1 ≤ x ≤ 3,

0, otherwise.

This density is depicted graphically in Figure 6.5. The (cumulative) distribution
function corresponding to this density can be calculated by integrating the probability
density fX(x). The result of the integral depends on the value of x. If x < 1, then

∫

x

−∞
fY (y)dy =

∫

x

−∞
0dy = 0.

f X
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)
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Figure 6.5 Probability density in Example 6.3.2.

If x lies between 1 and 3, then

∫

x

−∞
fY (y)dy =

∫

x

−∞
0dy +

∫

x

1

1
2
(3 − y)dy = 0 +

[−1
4
y2 + 3

2
y
]x

1
= −1

4
x2 + 3

2
x − 5

4
.

Finally, if x > 3, then

∫

x

−∞
fY (y)dy =

∫

x

−∞
0dy +

∫

3

1

1
2
(3 − y)dy +

∫

x

3
0dy = 0 + 1 + 0 = 1.

Hence, the cumulative distribution function is equal to

FX(x) =
⎧
⎪
⎨
⎪
⎩

0, x < 1,

− 1
4
x2 + 3

2
x − 5

4
, 1 ≤ x ≤ 3,

1, x > 3.

This cumulative distribution function is shown in Figure 6.6.
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Figure 6.6 Cumulative distribution function corresponding to the probability
density in Figure 6.5.

We now compute the probability that the random variable X takes values in intervals
of width 0.1 around the values x = 1.25 and x = 2.65. It follows from Definition 6.3.2
that these probabilities can be calculated as

P(1.2 ≤ X ≤ 1.3) =
∫

1.3

1.2

1
2
(3 − x)dx = 0.0875

and

P(2.6 ≤ X ≤ 2.7) =
∫

2.7

2.6

1
2
(3 − x)dx = 0.0175.

The probability that X takes values in the interval [1.2,1.3] is five times as large as the
probability for the interval [2.6,2.7]. In other words, the probability to get a value in
the vicinity of 1.25 is five times bigger than the probability to get a value near 2.65.
Note that the probability P(1.2 ≤ X ≤ 1.3) may also be computed using the cumu-

lative probability distribution:

P(1.2 ≤ X ≤ 1.3) = P(X ≤ 1.3) − P(X ≤ 1.2) = FX(1.3) − FX(1.2),

= 0.2775 − 0.19 = 0.0875.

This is true in general:

P(a ≤ X ≤ b) = P(X ≤ b) − P(X ≤ a) = FX(b) − FX(a).

We conclude this section with some remarks on continuous random variables and
their densities:

• If a random variable X only takes values in an interval [a, b], then fX(x) equals
zero outside this interval. In this case, we have that ∫

b
a fX(x)dx = 1. The

cumulative distribution function FX(x) is zero for all x values smaller than a
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and 1 for all x values larger than b. Between a and b, the function FX(x) is
non-decreasing.

• For a continuous random variable X it is always true that

P(X = c) = P(c ≤ X ≤ c) =
∫

c

c
fX(x)dx = 0.

This result makes sense because c is only one of an uncountably infinite number
of possible values of the continuous random variable.

• From the previous remark, it follows that, for any a and b, with a < b,

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b).

The interpretation of this result is that, when calculating probabilities for con-
tinuous random variables, it does not matter whether we use strict inequalities
or not, that is, whether we use ≤ or <, or ≥ or >.

• In contrast with the probability distribution pX(x) of a discrete random variable,
a probability density fX(x) can take values greater than 1.

Example 6.3.3 The probability density

fX(x) =

{
2, 0 ≤ x ≤ 1

2
,

0, otherwise,

is a valid probability density function that takes values greater than 1.

Example 6.3.4 The probability density

fX(x) =

{
2
3
x−1∕3, 0 < x ≤ 1,

0, otherwise,

is a valid probability density that goes to infinity when x approaches zero.

• A probability P(a ≤ X ≤ b) for a continuous random variable X can always be
calculated in various ways. As mentioned earlier, an integral can be used for
this purpose. An alternative is to proceed as follows:

P(a ≤ X ≤ b) = P(X ≤ b) − P(X ≤ a) = FX(b) − FX(a),

or

P(a ≤ X ≤ b) = P(X ≥ a) − P(X ≥ b).

This is illustrated graphically in Figures 6.7 and 6.8 for a = −1 and b = 1, using
the probability density of Example 6.3.1.
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Figure 6.7 Graphical illustration of the fact that P(−1 ≤ X ≤ 1) =
P(X ≤ 1) − P(X ≤ −1).

• The probability density fX(x) can be determined from the cumulative distribu-
tion function FX(x) by taking the derivative with respect to x:

fX(x) =
d
dx

FX(x).
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Figure 6.8 Graphical illustration of the fact that P(−1 ≤ X ≤ 1) =
P(X ≥ −1) − P(X ≥ 1).

• A probability density that is frequently used is the so-called uniform proba-
bility density:

fX(x) =

{
1, 0 ≤ x < 1,

0, otherwise.
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The corresponding distribution function is given by

FX(x) =
⎧
⎪
⎨
⎪
⎩

0, x < 0,

x, 0 ≤ x < 1,

1, x ≥ 1.

The uniform density describes a process where numbers are randomly drawn
from the interval [0, 1].

6.4 Functions of random variables

Sometimes, we are not interested in a random variable X itself but in a function Y =
g(X) of it. This new variable Y is also a random variable with a probability distribution
or density, depending on whether the original variable X is discrete or continuous. A
natural question to ask is what the probability distribution or probability density of
the new random variable Y is.

6.4.1 Functions of one discrete random variable

For a discrete random variable X, it is very easy to determine the probability distri-
bution of Y = g(X). We illustrate this with an example.

Example 6.4.1 The probability distribution of X is given by the following table:

x −3 −2 −1 0 1 2 3

pX(x) 0.08 0.14 0.19 0.28 0.17 0.08 0.06

Then, the probability distribution of the function Y1 = 2X + 1 is

y1 −5 −3 −1 1 3 5 7

pY1 (y1) 0.08 0.14 0.19 0.28 0.17 0.08 0.06

The probability distribution of a second function, Y2 = X2, is given by

y2 0 1 4 9

pY2 (y2) 0.28 0.36 0.22 0.14
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To construct this probability distribution, we first need to find out which values Y2
can take. In this example, the only values Y2 can take are 0, 1, 4, and 9. The probability
that Y2 takes the value 9, for instance, is calculated as follows:

P(Y2 = 9) = P(X = −3 or X = 3),

= P(X = −3) + P(X = 3) = 0.08 + 0.06 = 0.14.

6.4.2 Functions of one continuous random variable

A first approach to find the probability density of a function Y = g(X) of a continuous
random variable X is based on the cumulative distribution function. The approach
involves three steps:

1. Determine the values that Y can take, using Y = g(X) and the possible values
of X.

2. Compute the cumulative distribution function FY (y) = P(Y ≤ y) of Y .

3. Take the derivative ofFY (y)with respect to y. This yields the probability density
function fY (y) of Y = g(X).

Example 6.4.2 We start with the random variable X given in Example 6.3.2, and we
consider the functions V = 2X − 1 and Y = X2. The probability density of X is only
strictly positive in the interval [1, 3]. We start with the probability density of V:

1. Since the probability density of X is only non-zero between 1 and 3, X can only
take values between 1 and 3. As a result, V = 2X − 1 can only take values in the
interval [1,5], and the probability density of V is only non-zero between 1 and
5. As a result, the cumulative probability distribution of V is zero for v values
smaller than 1 and one for v values larger than 5.

2. The cumulative distribution function is given by

FV (v) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0, v < 1,

P(V ≤ v) = P(2X − 1 ≤ v) = P
(
X ≤

v+1
2

)
,

= FX

(
v+1
2

)
= − 1

4

(
v+1
2

)2
+ 3

2

(
v+1
2

)
− 5

4
,

= 1
16
(−v2 + 10v − 9), 1 ≤ v ≤ 5,

1, v > 5.

3. Taking the derivative results in

fV (v) =

{
1
8
(5 − v), 1 ≤ v ≤ 5,

0, otherwise.
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Next, we compute the probability density of Y:

1. Since the probability density of X is only non-zero between 1 and 3, X can only
take values between 1 and 3. As a result, Y = X2 can only take values in the
interval [1,9], and the probability density of Y is only non-zero between 1 and
9. As a result, the cumulative probability distribution of Y is zero for y values
smaller than 1 and one for y values larger than 9.

2. The cumulative distribution function is given by

FY (y) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0, y < 1,

P(Y ≤ y) = P(X2 ≤ y) = P
(
X ≤ +

√
y
)
,

= FX

(√
y
)
= − 1

4

(√
y
)2 + 3

2

(√
y
)
− 5

4
,

= −1
4
y + 3

2

√
y − 5

4
, 1 ≤ y ≤ 9,

1, y > 9.

3. Taking the derivative results in

fY (y) =

{
− 1

4
+ 3

4
√
y
, 1 ≤ y ≤ 9,

0, otherwise.

A second approach for determining the probability density of a function of a con-
tinuous random variable is only usable under certain conditions and is based on a
theorem fromdifferential calculus. LetX be a continuous randomvariablewith proba-
bility density fX(x) on the interval [a, b] and g() be a differentiable, strictly increasing
or strictly decreasing function on the same interval. Then, the probability density
function of Y = g(X) is given by

fY (y) = fX(x)
||||
dx
dy

||||
= fX{g−1(y)}

|||||

dg−1(y)
dy

|||||
, (6.1)

where g−1() is the inverse function of g().

Example 6.4.3 We start again with the random variable X discussed in
Example 6.3.2. Since both V = 2X − 1 and Y = X2 are strictly increasing functions
on the interval [1,3], we can use the second approach for the calculation of their
probability density.

• To determine the probability density of V, we first write x = g−1(v) = 1
2
(v + 1).

Consequently, dx
dv

= 1
2
, and

fV (v) = fX
(1
2
(v + 1)

) ||||
dx
dy

||||
= 1

2
(3 − 1

2
(v + 1))

||||
1
2

||||
,

= 1
8
(5 − v), for 1 ≤ v ≤ 5.
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• To determine the probability density of Y, we first write x = g−1(y) = +
√
y.

Consequently, dx
dy

= 1
2
√
y
, and

fY(y) = fX
(√

y
) ||||

dx
dy

||||
= 1

2

(
3 −

√
y
) ||||||

1

2
√
y

||||||
,

= −1
4
+ 3

4
√
y
, for 1 ≤ y ≤ 9.

6.5 Families of probability distributions
and probability densities

Definition 6.5.1 A (parametric) family of probability distributions or probability
densities is a set of densities or distributions indexed by one or more parameters.
For each value of the parameter(s) in a given domain, the resulting function is a
probability distribution or a probability density.

Example 6.5.1 Consider the function

fX(x) =

{
0, x ≤ 0,

𝜆e−𝜆x, x > 0.

This function is a probability density for all values of 𝜆 > 0. Therefore, fX(x) defines
a family of probability densities. In this case, the parameter 𝜆 is the only parameter
of the family of probability densities.
Descriptive statistics, such as the expected value and variance, typically depend on

the parameter(s). In this example, the expected value of X is equal to E(X) = 1∕𝜆,
and the variance is 𝜎2

X = 1∕𝜆2 (for more details on expected values and variances,
see Chapter 7). To indicate this dependence, one sometimes writes fX(x; 𝜆) instead of
simply fX(x).

In many applications, the researcher has an idea of the family to which the proba-
bility density of a population or a process belongs. For example, a random variable X
that represents the number of customers per week typically follows a Poisson distribu-
tion. The time between the appearance of two successive customers typically follows
an exponential density. Both the Poisson distribution and the exponential density are
families that we will study in detail in the next few chapters. However, to determine
the exact values of the parameters of the distributions or densities, we need infor-
mation from a sample of data. Based on a sample of data, the researcher can try to
get an idea about the parameter values, or – as we say in the statistical jargon – to
estimate the parameters. This problem is discussed in the book Statistics with JMP:
Hypothesis Tests, ANOVA and Regression.



UNIVARIATE RANDOM VARIABLES 155

6.6 Simulation of random variables

Simulation techniques are often used to imitate a process with a given distribution.
This was already explained in Section 4.7. In this section, we explain how the cumu-
lative distribution function can be used to generate pseudo-random numbers from a
probability distribution or a probability density.

Example 6.6.1 Suppose that we want to simulate the random selection of 10 First
Class letters of the Royal Mail in Great Britain with a computer. Of all the First Class
letters, 80% are already delivered after one day, 12% arrive after two days, 7% after
three days, and 1% after four days. The probability distribution is given in Table 6.2,
together with the associated cumulative distribution function.
The random selection of a letter is shown graphically in Figure 6.9. The step func-

tion in the figure is the cumulative distribution function FX(x). The starting point of the
selection of a letter is a pseudo-random number between 0 and 1, namely 0.908546.
Virtually every software package has a function to generate such pseudo-random
numbers. Next, the number 0.908546 is converted into a pseudo-random number of

Table 6.2 Probability distribution and cumulative distribution
function of the number of days required to deliver a First Class letter
via the British Royal Mail.

x 1 2 3 4

fX(x) 0.800 0.120 0.070 0.010
FX(x) 0.800 0.920 0.990 1.000

0.2

0.4

0.6

0.8

1.0

0.908546

F
X
(x

)

0 1 2 3 4 5

Number of days x

Figure 6.9 Illustration of the generation of a pseudo-random observation of a dis-
crete random variable with the cumulative distribution function from Table 6.2.
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Figure 6.10 The drawing of pseudo-random numbers in JMP.

the probability distribution fX(x). This conversion, shown by means of the dotted line
in Figure 6.9, yields the value 2. So, the randomly selected letter requires two days
to be delivered.
JMP allows pseudo-random numbers from the probability distribution in

Table 6.2 to be generated in a fairly simple manner. First, one needs a column with
pseudo-random numbers between 0 and 1. Next, a formula must be programmed to
perform the conversion to pseudo-random numbers from the desired distribution.
Figure 6.10 shows the resulting JMP file, while Figure 6.11 shows the formula
needed to generate the pseudo-random numbers. In Figure 6.10, it can be seen that
seven of the 10 pseudo-random numbers from the probability distribution are equal
to 1. Two of the pseudo-random numbers are equal to 2, and one pseudo-random
number is equal to 3.
Creating a new data table in JMP is done via the menu “File”. In that menu, you

first have to select the option “New”, followed by “Data Table”. Creating a formula
in JMP can be done by right-clicking on a column header in a data table, and then
choosing “Formula”. Creating a new column can be done by right-clicking on the
header to the right of the last column, and then choosing the option “New Column”.
Alternatively, you can choose the option “New Column” in the “Cols” menu.

In a similar way, data can be simulated for a continuous random variable with a
given cumulative probability distribution.

Example 6.6.2 Consider the cumulative probability distribution FX(x) derived
in Example 6.3.2 and represented graphically in Figure 6.6. The drawing of a
pseudo-random observation from the corresponding probability density function is
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Figure 6.11 Formula to generate pseudo-random numbers using the cumulative dis-
tribution function in Table 6.2.

F
X
(x

)

0.0

0.2

0.4

0.6

0.8

1.0

0.51523

0.0 1.0 2.0 3.0 4.01.60749

x

Figure 6.12 Illustration of the generation of a pseudo-random observation of a con-
tinuous random variable with the cumulative distribution function from Figure 6.6.

illustrated graphically in Figure 6.12. First, a pseudo-random number R is drawn
from the interval [0,1]. Suppose that this number is equal to 0.51523. Then, by
means of the inverse distribution function x = F−1

X (R), this number is converted
into a pseudo-random observation of a process with density fX(x). Here, the inverse
distribution function is

x = F−1
X (R) = 3 − 2

√
1 − R.
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This function, which we obtained by solving the equation

−1
4
x2 + 3

2
x − 5∕4 = R

for x, yields the result

x = F−1
X (0.51523) = 3 − 2

√
1 − 0.51523 = 1.60749

for the pseudo-random number 0.51523. Hence, the pseudo-random number from the
probability density in Example 6.3.2 and Figure 6.5 is 1.60749. The formula required
to calculate this outcome in JMP is “3− 2 * Sqrt(1− 0.51523)”1.

1 The easiest way to enter this formula in JMP is to use the “Log” screen. You can access this screen
via the “View” menu, by selecting the option “Log”. An alternative method is to press “CTRL + SHIFT +
L” on your keyboard. In the “Log” screen, you can type in the formula you want to evaluate, for example,
“3− 2 * Sqrt(1− 0.51523)”. Finally, you need to select the formula you entered and click on the white
button with the red runner in the menu bar. Alternatively, you can press “CTRL + R” after selecting the
typed formula.
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Statistics of populations
and processes

Ira Titcomb, the beekeeper, kidded with Homer. Ira was sixty-five, but he had another
number marked on the trailer he used to carry his hives: the number of times he’d been
stung by his bees.
“Only two hundred and forty-one times,” Ira said. “I been keepin’ bees since I was
nineteen,” he said, “so that amounts to only five point two stings a year. Pretty good,
huh?”

(from The Cider House Rules, John Irving, p. 456)

In Chapter 3, we introduced a series of statistics for sample data. For some special
cases, we already mentioned the corresponding statistics of populations and pro-
cesses. This chapter provides more details on this topic.

7.1 Expected value of a random variable
Definition 7.1.1 The expected value𝜇X or E(X) of a discrete random variableX with
possible values x1, x2,… , xk and probability distribution pX(xi), i = 1, 2,… , k, is

𝜇X = E(X) =
k∑

i=1
xipX(xi).

Definition 7.1.2 The expected value 𝜇X or E(X) of a continuous random variable
X with probability density fX(x) is

𝜇X = E(X) =
∫

+∞

−∞
xfX(x)dx.

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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If the sum (for discrete random variables) or the integral (for continuous random
variables) is not finite, then one says that the expected value does not exist. The
expected value is sometimes called themean value. As a matter of fact, the definition
of the arithmetic or sample mean for grouped data (see Definition 3.1.5) is similar in
structure to the expression for the expected value of a discrete random variable in
Definition 7.1.1.

Example 7.1.1 The probability distribution for the First Class letters in
Example 6.6.1 has expected value

E(X) = (0.8)1 + (0.12)2 + (0.07)3 + (0.01)4 = 1.29 days.

This example illustrates that the expected value of a random variable does not nec-
essarily have to be a value that can be taken by the variable. The random variable in
this example can only take the values 1, 2, 3, or 4, while the mean value is 1.29.

Example 7.1.2 It is easy to verify that the expected value of the probability distri-
bution in Example 6.2.2 (the sum of the dots on two dice) is equal to 7.

Example 7.1.3 The expected value of the random variable X in Example 6.3.2
equals

E(X) =
∫

+∞

−∞
xfX(x)dx,

=
∫

1

−∞
0xdx +

∫

3

1
x
1
2
(3 − x)dx +

∫

+∞

3
0xdx,

= 0 +
∫

3

1

1
2
(3x − x2)dx + 0,

=
[
3
4
x2 − x3

6

]3

1

,

= 27
4

− 27
6

− 3
4
+ 1

6
,

= 5
3
.

Example 7.1.4 You are sitting in a bar with a fellow student, who offers you two
different bets. In the first bet, you can make €1 if you win, or you have to pay €1 if you
lose. In the second bet, you can make €100 if you win, but you also need to pay €100
if you lose. What bet do you choose if the probability of winning is 50% in both bets?
Let us denote the gain in the two bets by X1 and X2. The expected profit in the first

bet is, of course,
E(X1) = −1(0.5) + 1(0.5) = 0,

while the expected profit in the second bet is equal to

E(X2) = −100(0.5) + 100(0.5) = 0.
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Therefore, the expected profit is the same in both bets. However, it is unlikely that
you do not have a preference, because the two possible values of X2 are much further
apart than the two possible outcomes of X1.

Example 7.1.5 The scores of some multiple-choice tests involve a correction for
guessing. The idea is that the expected score of someone who does not know anything
about the subject and therefore provides random answers to all questions should
be zero. Without a correction for guessing, the good students would have a relative
disadvantage. We calculate the correction for guessing on a multiple choice question
with four possible answers. We assume that the first option is the correct answer.
A student who randomly answers the questions uses the following distribution:

Answer 1 2 3 4

Probability 0.25 0.25 0.25 0.25

Assume that the student earns one point for a correct answer and loses c points for
a wrong answer. Then, the expected score on one question is

E(points) = 1(0.25) − c(0.25) − c(0.25) − c(0.25) = 0.25 − 0.75c.

As we want this to be zero, we set the correction for guessing to c = 1∕3.
Suppose that a student who studied all night before the exam can eliminate one

wrong answer, for example option 4, so that she only needs to select one of three
possible answers. The probability distribution for this student will be

Answer 1 2 3 4

Probability 1/3 1/3 1/3 0

For that student, the expected score, taking into account a correction for guessing
of c = 1∕3, is

E(points) = 1(1∕3) − c(1∕3) − c(1∕3) − c(0) = 1
3
− 2

3
c = 1

3
− 2

9
= 1

9
.

The positive expected value suggests that it is rational to guess as soon as one can
exclude one of the answers with certainty.

7.2 Expected value of a function of a random variable

The expected value of a function Y = g(X) of a discrete random variable X can be
calculated as

𝜇Y = E(Y) = E{g(X)} =
∑

y

ypY (y),
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where pY (y) represents the probability distribution of Y . The summation runs over all
possible values of Y . We explained in Section 6.4.1 how the probability distribution
pY (y) for a function Y = g(X) can be computed starting from pX(x).

Example 7.2.1 The expected value of the function Y2 = X2 in Example 6.4.1 is equal
to

E(Y2) = 0(0.28) + 1(0.36) + 4(0.22) + 9(0.14) = 2.5.

An alternative, more direct way to calculate E{g(X)}, is as follows:

𝜇Y = E(Y) = E{g(X)} =
∑

x

g(x)pX(x).

Example 7.2.2 The expected value of Y2 = X2 in Example 6.4.1 can also be calcu-
lated as

E(Y2) = (−3)2(0.08) + (−2)2(0.14) + (−1)2(0.19)

+ 02(0.28) + 12(0.17) + 22(0.08) + 32(0.06) = 2.5.

The expected value of a function Y = g(X) of a continuous random variable X can
be calculated as

𝜇Y = E(Y) = E{g(X)} =
∫

+∞

−∞
yfY (y)dy,

where fY (y) represents the probability density of Y . We explained in Section 6.4.2
how to compute the probability density fY(y) of the function Y = g(X) starting from
fX(x). Alternatively,

𝜇Y = E(Y) = E{g(X)} =
∫

+∞

−∞
g(x)fX(x)dx.

Example 7.2.3 The expected value of the random variable Y = X2 in Example 6.4.2
is

E(Y) =
∫

9

1
yfY (y)dy =

∫

9

1
y

[
−1
4

+ 3

4
√
y

]

dy =
∫

9

1

[
−y
4

+
3
√
y

4

]

dy = 3,

or, alternatively,

E(Y) =
∫

3

1
x2fX(x)dx =

∫

3

1
x2

[1
2
(3 − x)

]
dx =

∫

3

1

[
3x2

2
− x3

2

]
dx = 3.

7.3 Special cases

Theorem 7.3.1 If Y is a linear function of a random variable X, that is, Y = aX + b
(where a and b are constants), then

𝜇Y = E(Y) = E(aX + b) = a𝜇X + b.
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Proof: For a continuous random variable, we have that

𝜇Y =

+∞

∫
−∞

(ax + b)fX(x)dx = a

+∞

∫
−∞

xfX(x)dx + b

+∞

∫
−∞

fX(x)dx = a𝜇X + b.

The last step follows from the definition of the expected value, and from the fact that
the area under the curve fX(x) is equal to 1. ◾

This theorem can be used to calculate the expected values of the functions Y1 and
V in Examples 6.4.1 and 6.4.2.
A similar feature of the arithmetic mean of a sample was described and illustrated

in Section 3.1.3. Two consequences of Theorem 7.3.1 are:

• The expected value of a constant is the constant itself. A simple proof is
obtained by setting a = 0 in the previous proof.

• E(X − 𝜇X) = 0.

These consequences are similar to some properties of the arithmetic or samplemean
given on page 59.

Theorem 7.3.2 For a random variable Y =
k∑

i=1
aigi(X), with real constants a1,

a2,… , ak and functions g1(X), g2(X),… , gk(X) of a random variable X, we have
that

𝜇Y = E(Y) = E

{
k∑

i=1
aigi(X)

}

=
k∑

i=1
aiE{gi(X)}.

The proof of this theorem is an easy exercise.

Example 7.3.1 For a random variable X with uniform density,

fX(x) =

{
1, 0 ≤ x < 1,

0, otherwise,

we can calculate the expected value of 3X2 − 2X + 4:

E(3X2 − 2X + 4) = 3E(X2) − 2E(X) + 4 = 3
∫

1

0
x2dx − 2

∫

1

0
xdx + 4 = 4.

7.4 Variance and standard deviation of a random
variable

Definition 7.4.1 The variance 𝜎2
X or var(X) of a random variable X is defined as

𝜎
2
X = var(X) = E{(X − 𝜇X)2}.
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The variance is the expected value of the function g(X) = (X − 𝜇X)2 and can also
be defined as

k∑

i=1
(xi − 𝜇X)2pX(xi)

for a discrete random variable X, and as

∫

+∞

−∞
(x − 𝜇X)2fX(x)dx

for a continuous random variable. It is useful to compare the expression for a discrete
random variable with Equation (3.2) for a population variance.

Definition 7.4.2 The standard deviation 𝜎X of a random variable X is the (positive)
square root of the variance:

𝜎X =
√

𝜎
2
X .

As with sample data, the population or process variance and the population or pro-
cess standard deviation are used as measures of spread. The larger the variance or the
standard deviation of a random variable X, the bigger the spread around the expected
value.

Example 7.4.1 The variance of the random variable X in Examples 6.6.1 and 7.1.1
is

𝜎
2
X = (0.8)(1 − 1.29)2 + (0.12)(2 − 1.29)2 + (0.07)(3 − 1.29)2 + (0.01)(4 − 1.29)2,

= 0.4059 days2.

Therefore, the standard deviation is 𝜎X =
√
0.4059 = 0.6371 days.

Example 7.4.2 The variance of the random variable in Example 6.2.2 (the sum of
the numbers of dots on two dice) is 5.833.

Example 7.4.3 The variances of the gains in the bets in Example 7.1.4 are

𝜎
2
X1

= (−1 − 0)2(0.5) + (1 − 0)2(0.5) = 1

for the first bet, and

𝜎
2
X2

= (−100 − 0)2(0.5) + (100 − 0)2(0.5) = 10,000

for the second bet. The variances clearly indicate that the spread around the expected
value in the second bet is much bigger than in the first. This example illustrates that
the concept of variance can be associated with the concept of risk. Variances are
often used in the calculation of risks, for example, of equity portfolios.
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Example 7.4.4 The continuous random variable X in Example 6.3.2 (see also
Example 7.1.3) has variance

𝜎
2
X =

∫

3

1
(x − 5

3
)2[1

2
(3 − x)]dx = 2

9
= 0.2222,

and standard deviation 𝜎X =
√
0.2222 = 0.4714.

The variance of a random variable can sometimes be calculated more easily than
by literally applying the definition. This is because

𝜎
2
X = E{(X − 𝜇X)2},

= E(X2 − 2X𝜇X + 𝜇
2
X),

= E(X2) − 2𝜇XE(X) + 𝜇
2
X ,

= E(X2) − 2𝜇X𝜇X + 𝜇
2
X ,

= E(X2) − 𝜇
2
X .

Example 7.4.5 We recalculate the variance of the continuous random variable X in
Example 6.3.2 (see also Examples 7.1.3 and 7.4.4):

𝜎
2
X =

∫

3

1
x2

[1
2
(3 − x)

]
dx − 𝜇

2
X ,

= 3 −
(5
3

)2
,

= 2
9
.

Theorem 7.4.1 If Y is a linear function of a random variable X, that is, Y = aX + b,
then

𝜎
2
Y = var(Y) = var(aX + b) = a2𝜎2

X .

Proof: First, we know from Theorem 7.3.1 that 𝜇Y = a𝜇X + b. Hence,

𝜎
2
Y = E{(Y − 𝜇Y)2},

= E{(aX + b − 𝜇Y )2},

= E{(aX + b − a𝜇X − b)2},

= E{(aX − a𝜇X)2},

= E{a2(X − 𝜇X)2},

= a2E{(X − 𝜇X)2},

= a2𝜎2
X . ◾

As a consequence, 𝜎Y = |a|𝜎X .
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Note that the constant b has no impact on the variance and standard deviation of
Y = aX + b. To understand this, it is useful to consider V = X + b for a moment.
Here, the values of the random variable V are simply shifted values of the original
random variable X. Therefore, the values of V lie at the same distance from their
expected value, so that their spread does not change. A similar result exists for the
variance of a sample (see page 67).
Two consequences of Theorem 7.4.1 are:

• The variance and standard deviation of a constant are zero.

• A standardized random variable

Z =
X − 𝜇X

𝜎X

has an expected value of zero (E(Z) = 0) and a standard deviation of 1 (𝜎2
Z =

𝜎Z = 1). This applies to any standardized random variable, regardless of the
probability distribution or probability density of the original random variable
X. Standardized random variables will be used extensively later in this book.

Example 7.4.6 For the random variable X in Example 6.6.1, we calculated in
Examples 7.1.1 and 7.4.1 that 𝜇X = 1.29 days and that 𝜎X = 0.6371 days. First, we
compute the values of the standardized random variable Z = (X − 𝜇X)∕𝜎X:

x 1 2 3 4

z −0.4552 1.1144 2.6840 4.2536
pX(x) = pZ(z) 0.80 0.12 0.07 0.01

It is easy to verify that, up to some rounding errors, E(Z) = 0 and 𝜎
2
Z = 1.

7.5 Other statistics

As for sample data, some other statistics can also be defined for random variables.
First, we discuss statistics of central location, then statistics of relative location.

Definition 7.5.1 The mode of a random variable X is the value x for which the prob-
ability distribution or probability density takes a maximum value.

The mode does not exist if there is no maximum. Sometimes, a random variable has
several modes.

Example 7.5.1 The mode of X in Example 6.6.1 is 1 because the probability density
fX(x) reaches its maximum at this value.
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Definition 7.5.2 The median of a random variable X is the value 𝛾0.5 for which

FX(𝛾0.5) = P(X ≤ 𝛾0.5) ≥
1
2

and P(X ≥ 𝛾0.5) ≥
1
2
,

if X is discrete, or

FX(𝛾0.5) =
∫

𝛾0.5

−∞
fX(x)dx =

∫

+∞

𝛾0.5

fX(x)dx =
1
2
,

if X is continuous.

Example 7.5.2 The median of the continuous random variable X in Example 6.3.2
can be calculated as follows:

1
2
=
∫

𝛾0.5

−∞
fX(x)dx,

=
∫

𝛾0.5

1
fX(x)dx,

=
∫

𝛾0.5

1

1
2
(3 − x)dx,

= 1
2

[
3x − x2

2

]
𝛾0.5

1

,

= 1
2

(

3𝛾0.5 −
𝛾
2
0.5

2
− 3 + 1

2

)

,

= 1
2

(

3𝛾0.5 −
𝛾
2
0.5

2
− 5

2

)

.

Solving this equation gives two roots, namely 1.586 and 4.414. Only one of them
makes sense as a median, namely 1.586, because the random variable X can only
take values between 1 and 3, so that the median should also be located between 1
and 3. Therefore, we conclude that the median, 𝛾0.5, is equal to 1.586.

As the arithmetic mean for sample data, the expected value is usually used as a
measure of central location. In some cases, however, the median and the mode give a
better view of the central location of a random variable. If, for example, the random
variable X represents the amount of a money transfer to a bank account opened to
help the victims of the Tsunami in December 2012, then the expected value will be
quite large. This does not necessarily mean that an ordinary person transfers a large
amount. The expected value of this random variable may be strongly influenced by a
few large amounts that wealthy individuals and businesses transfer to the account. In
that case, the median and the mode would give a better picture of what an ordinary
person contributes.
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Definition 7.5.3 The 100× p-th quantile value or the 100× p-th percentile 𝛾p of a
continuous random variable X satisfies

p =
∫

𝛾p

−∞
fX(x)dx = FX(𝛾p).

Definition 7.5.4 The first, second and third quartile are 𝛾0.25, 𝛾0.5, and 𝛾0.75, respec-
tively.

The second quartile is the same as the median.

Example 7.5.3 The first and third quartile of the random variable X in
Example 6.3.2 are 1.268 and 2, respectively.

Definition 7.5.5 Pearson’s population skewness coefficient SPpop of a random vari-
able X is equal to

SPpop =
3(𝜇X − 𝛾0.5)

𝜎X
.

This coefficient lies between −3 and +3. It is negative for a left-skewed, 0 for a
symmetric, and positive for a right-skewed probability distribution or density.

Definition 7.5.6 The skewness coefficient of Fisher of a random variable X is

skewness coefficient =
E{(X − 𝜇X)3}

𝜎
3
X

.

This coefficient is also negative for a left-skewed, 0 for a symmetric, and positive
for a right-skewed probability distribution or density.

Example 7.5.4 The probability density in Figure 6.5 (Example 6.3.2) is obviously
skewed to the right. Pearson’s skewness coefficient SPpop has a positive value for that
density, namely 0.513. The skewness coefficient of Fisher fromDefinition 7.5.6 equals
0.5657 and is also positive.

Definition 7.5.7 The r-th non-central moment of a random variable X is

𝜇
′
r = E(Xr), r = 0, 1, 2,… .

Obviously, the zeroth and the first non-central moment are equal to 𝜇
′
0 = 1 and

𝜇
′
1 = 𝜇X , respectively.

Definition 7.5.8 The r-th central moment of a random variable X is

𝜇r = E[(X − 𝜇X)r], r = 0, 1, 2,… .

It is a useful exercise to check that the zeroth, first, and second central moment are
equal to 𝜇0 = 1, 𝜇1 = 0, and 𝜇2 = 𝜎

2
X , respectively.
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7.6 Moment generating functions

Finding the moments of a random variable is not always obvious. In some cases,
the use of the so-called moment generating function enables us to determine the
non-central moments relatively easily. The approach involving moment generating
functions works both for discrete and for continuous random variables. The moment
generating function is the expected value of a special function, namely etX:

Definition 7.6.1 The moment generating function of a random variable X is

mX(t) = E(etX),

provided this expected value exists.

Theorem 7.6.1 If the moment generating function mX(t) exists in an interval around
t = 0, then the r-th non-central moment can be calculated as

𝜇
′
r = E(Xr) =

drmX(t)
dtr

||||t=0
.

This theorem means that, if we are looking for the r-th non-central moment of a
random variable, we can take the r-th derivative of its moment generating function,
and set the variable t in this derivative to 0.

Proof: To prove Theorem 7.6.1 for a continuous random variable X, we use the series
expansion of the exponential function:

mX(t) =
∫

+∞

−∞
etx fX(x) dx =

∫

+∞

−∞

( ∞∑

n=0

tn

n!
xn
)

fX(x) dx.

Interchanging the order of the integration and the summation1, we can rewrite this as

mX(t) =
∞∑

n=0

(

∫

+∞

−∞
xnfX(x) dx

)
tn

n!
=

∞∑

n=0
E(Xn) t

n

n!
.

The first derivative of this expression with respect to t is

dmX(t)
dt

=
∞∑

n=1
E(Xn) tn−1

(n − 1)!
.

Setting t = 0 in this expression makes all terms in this sum zero, except for the first
one:

dmX(t)
dt

||||t=0
= E(X1)0

0

0!
= E(X),

1 To justify this step, one needs an argument frommeasure theory that is beyond the scope of this book.
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since 00 and 0! are both one. The second derivative with respect to t is

d2mX(t)
dt2

=
∞∑

n=2
E(Xn) tn−2

(n − 2)!
.

Setting t = 0 in this expression yields E(X2). The r-th derivative equals

drmX(t)
dtr

=
∞∑

n=r
E(Xn) tn−r

(n − r)!
.

Setting t = 0 in this expression yields E(Xr), which completes the proof for a con-
tinuous random variable. The proof for a discrete random variable is completely
analogous, and requires replacing the integral by a sum. ◾

We illustrate Theorem 7.6.1 using two examples. The first example shows how the
moment generating function can be used for a discrete random variable, while the
second example deals with the case of a continuous random variable.

Example 7.6.1 A discrete random variable X has the following distribution:

xi 1 2 3 4

pX(xi) 0.15 0.25 0.35 0.25

The moment generating function of this random variable is

mX(t) = E(etX),

=
4∑

i=1
etxipX(xi),

= 0.15etx1 + 0.25etx2 + 0.35etx3 + 0.25etx4 ,

= 0.15et + 0.25e2t + 0.35e3t + 0.25e4t.

To find the first non-central moment of X, we determine the first derivative of the
moment generating function with respect to t. This results in

dmX(t)
dt

= 0.15et + 0.5e2t + 1.05e3t + 1e4t.

If we evaluate this derivative at t = 0, we obtain the first non-central moment, the
expected value

𝜇
′
1 = 𝜇X = 0.15 + 0.5 + 1.05 + 1 = 2.7.

For the second non-central moment, we first need the second derivative of the moment
generating function:

d2mX(t)
dt2

= 0.15et + 1e2t + 3.15e3t + 4e4t.
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If we set t to 0 in this second derivative, we find the second non-central moment:

𝜇
′
2 = E(X2) = 0.15 + 1 + 3.15 + 4 = 8.3.

The variance of X can now easily be determined based on the first and second
non-central moment:

𝜎
2
X = E(X2) − 𝜇

2
X = 8.3 − (2.7)2 = 1.01.

This example shows how Theorem 7.6.1 can be applied. However, in this example
the use of the moment generating function to calculate the expected value and the
variance is not the simplest or the quickest method. This is different in the following
example. In this example, the method of the moment generating function is the fastest
and easiest way to find the expected value and the variance.

Example 7.6.2 A random variable X has the following probability density:

fX(x) =

{
𝜆e−𝜆x, x ≥ 0,

0, otherwise.

The moment generating function of the probability density is

mX(t) = E(etX)

=
∫

+∞

−∞
etx fX(x) dx,

=
∫

+∞

0
etx 𝜆e−𝜆x dx,

= 𝜆
∫

+∞

0
e(t−𝜆)x dx,

= 𝜆
1

t − 𝜆 ∫

+∞

0
e(t−𝜆)x d(t − 𝜆)x,

= 𝜆

t − 𝜆

[e(t−𝜆)x]+∞0 ,

= 𝜆

t − 𝜆

(e−∞ − e0),

= −𝜆
t − 𝜆

,

= 𝜆

𝜆 − t
,

if t < 𝜆.
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To find the first non-central moment of X, we determine the first derivative of the
moment generating function with respect to t. This results in

dmX(t)
dt

= 𝜆

(𝜆 − t)2
.

Therefore,

𝜇
′
1 = 𝜇X = E(X) = 𝜆

𝜆
2
= 1

𝜆

.

For the second non-central moment, we first need the second derivative of the moment
generating function:

d2mX(t)
dt2

= 2𝜆
(𝜆 − t)3

.

Setting t = 0 in this expression yields

𝜇
′
2 = E(X2) = 2𝜆

𝜆3
= 2

𝜆2
,

so that

𝜎
2
X = E(X2) − 𝜇

2
X = 2

𝜆
2
−
(1
𝜆

)2
= 1

𝜆
2
.



8

Important discrete probability
distributions

Of course, he was right to realize it was easy to win money on one of those machines,
easier than earning it by working for a boss. But that was balanced by the fact that its
much easier to lose money on that same machine, and probability was something our
Heavy had never heard of.

(from The Misfortunates, by Dimitri Verhulst, p. 62)

In the previous chapters, we introduced random variables, probability distributions,
and probability densities. In these chapters, we paid little attention to practical appli-
cations, and the examples were sometimes artificial. In this chapter, we focus on
a number of probability distributions with important practical applications. Some
important probability densities follow in the next chapter.

8.1 The uniform distribution

A fundamental distribution is the discrete uniform probability distribution. In this
distribution, all possible outcomes have the same probability. If there are k possible
outcomes, then each of these outcomes has probability 1∕k.

Example 8.1.1 A die has six possible outcomes. In case the die is fair, each out-
come is equally likely and has probability of 1/6. If X represents the number of dots
obtained when throwing a die, then X is uniformly distributed.

The mathematical expression for the discrete uniform distribution is

pX(x; k) = P(X = x) = 1
k
, x = 1,… , k.

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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The corresponding cumulative distribution function is

FX(x; k) = P(X ≤ x) =
x∑

i=1

1
k
= x

k
, x = 1,… , k.

The number of outcomes k is the parameter of the discrete uniform probability
distribution.

Example 8.1.2 The probability distribution of the number of dots obtained by throw-
ing a fair die is

pX(x; 6) = P(X = x) = 1
6
, x = 1,… , 6,

and the cumulative distribution function is

FX(x; 6) =
x
6
, x = 1,… , 6.

The graphical representations of these functions are shown in Figure 8.1.
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(a) Probability distribution
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(b) Cumulative distribution function

Figure 8.1 Discrete uniform probability distribution for k = 6.

The expected value of a discrete uniformly distributed random variable X is

𝜇X = E(X) =
k∑

x=1
xpX(x),

=
k∑

x=1
x
1
k
,

= 1
k

k∑

x=1
x,

= 1
k
k(k + 1)

2
,

= k + 1
2

.
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In this derivation, we made use of the fact that the sum of all integer numbers up to
and including k is equal to k(k + 1)∕2:

k∑

x=1
x = k(k + 1)

2
.

The variance of a discrete uniformly distributed random variable X is

𝜎
2
X = var(X) = E(X2) − (E(X))2,

= 1
k

k∑

x=1
x2 −

(k + 1
2

)2
.

By induction, it can be shown that

1
k

k∑

x=1
x2 = 1

k
k(k + 1)(2k + 1)

6
,

so that

𝜎
2
X = 1

k
k(k + 1)(2k + 1)

6
− (k + 1)2

4
,

= 2(k + 1)(2k + 1) − 3(k2 + 2k + 1)
12

,

= k2 − 1
12

.

8.2 The Bernoulli distribution

A random variable X is Bernoulli1 distributed if it takes the values 0 and 1 with prob-
abilities 1 − 𝜋 and 𝜋, respectively. The probability distribution is given by

pX(x; 𝜋) = 𝜋
x(1 − 𝜋)1−x, x = 0, 1.

Since the parameter 𝜋 represents a probability, it is required that 0 ≤ 𝜋 ≤ 1. It is
a good exercise to show that the expected value of a Bernoulli distributed random
variable is equal to

𝜇X = E(X) = 𝜋,

and that its variance is equal to

𝜎
2
X = var(X) = 𝜋(1 − 𝜋).

1 The distribution was named after Jacob Bernoulli whose life has already been described briefly on
page 107.
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Each random variable that can only take two values is Bernoulli distributed: flipping
a coin (head/tail), the gender of a newborn (male/female), passing an exam (yes/no),
the quality of a product (good/defective), and so on.

Example 8.2.1 Assembled products often undergo inspection to verify that there are
no defects. If an assembly line delivers 100𝜋% defective products, then the probability
that a randomly drawn product is defective, is equal to 𝜋. When assigning the value
1 to a defective product and the value 0 to a good product, we obtain a Bernoulli
distributed random variable.

In Bernoulli processes, the terms “success” (abbreviated S) and “failure” (F) are
typically associated with the outcomes 1 and 0. Therefore, the probability 𝜋, which is
associated with the outcome 1, is also called the success rate. The probability 1 − 𝜋

is called the failure rate. A process in which one observation is generated from a
Bernoulli distribution is called a Bernoulli experiment.
Figure 8.2 shows three different Bernoulli distributions, namely those with success

rates 𝜋 = 0.25, 𝜋 = 0.5, and 𝜋 = 0.75, and the corresponding cumulative distribution
functions.

8.3 The binomial distribution

8.3.1 Probability distribution

A binomial process consists of n consecutive Bernoulli experiments with the same
success rate 𝜋 that are performed independently of each other. The number of “suc-
cesses” in a binomial process is a random variable. In the worst case, none of the
n Bernoulli experiments yields a success. In the best case, each of the n Bernoulli
experiments leads to success. Therefore, the number of successes can take the values
0, 1, 2,… , n. The probability distribution of the number of successes, which we call
X, is the binomial distribution

pX(x; n, 𝜋) =
n!

x!(n − x)!
𝜋
x(1 − 𝜋)n−x, x = 0, 1, 2,… , n. (8.1)

This expression represents the probability that n consecutive Bernoulli experiments
yield exactly x successes. Of course, there are automatically n − x failures if x suc-
cesses are recorded. Consequently, the formula for the binomial distribution also
gives the probability for n − x failures. A logical consequence of this is that the num-
ber of failures is also binomially distributed2.

2 If we represent the number of failures in n Bernoulli experiments with success probability 𝜋 using
the random variable Y, then the probability distribution of Y equals

pY (y; n, 1 − 𝜋) = n!
y!(n − y)!

(1 − 𝜋)y𝜋n−y
, y = 0, 1, 2,… , n,

which is a binomial distribution with parameters n and 1 − 𝜋.
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Figure 8.2 Bernoulli probability distributions and corresponding cumulative
distribution functions.

The values n and 𝜋 are the parameters of the binomial distribution. If a random
variable X is binomially distributed with parameters n and 𝜋, this is sometimes abbre-
viated to

X ∼ bin(n, 𝜋).
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(f) Cumulative distribution function with π = 0.8.

Figure 8.3 Binomial distributions and cumulative distribution functions for n = 8.

The parameter n has to be a positive integer, while the success probability 𝜋 needs
to be between 0 and 1, just as in a Bernoulli distribution. If n = 1, the binomial dis-
tribution is simply a Bernoulli distribution.
Figure 8.3 shows three binomial distributions and the corresponding cumulative

distribution functions. The corresponding probabilities are listed in Table 8.1.
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Table 8.1 Binomial probability distributions for n = 8 and 𝜋 = 0.2, 0.5 and 0.8.

x 𝜋 = 0.2 𝜋 = 0.5 𝜋 = 0.8

pX(x) FX(x) pX(x) FX(x) pX(x) FX(x)

0 0.1677722 0.1677722 0.0039063 0.0039063 0.0000026 0.0000026
1 0.3355443 0.5033165 0.0312500 0.0351563 0.0000819 0.0000845
2 0.2936013 0.7969178 0.1093750 0.1445313 0.0011469 0.0012314
3 0.1468006 0.9437184 0.2187500 0.3632813 0.0091750 0.0104064
4 0.0458752 0.9895936 0.2734375 0.6367188 0.0458752 0.0562816
5 0.0091750 0.9987686 0.2187500 0.8554688 0.1468006 0.2030822
6 0.0011469 0.9999155 0.1093750 0.9648438 0.2936013 0.4966835
7 0.0000819 0.9999974 0.0312500 0.9960938 0.3355443 0.8322278
8 0.0000026 1.0000000 0.0039063 1.0000000 0.1677722 1.0000000

The probability distributions show two interesting properties, which are valid for
any value of the parameter n:

1. First, it is clear from Figure 8.3c and Table 8.1 that the binomial distribution is
symmetrical if 𝜋 = 0.5. The probability of one success, for example, is identical
to the probability of seven successes. The same is true for the probability of
three and five successes. In general, one can say that P(X = x) = P(X = n − x)
for a binomially distributed random variable X with success rate 𝜋 = 0.5. An
alternative way of writing this equality is pX(x) = pX(n − x). This implies that
P(X ≤ x) = P(X ≥ n − x) if 𝜋 = 0.5.

2. In addition, the probability distributions in Figure 8.3a and Figure 8.3e mir-
ror each other. In Table 8.1, for example, the probability of one success with
𝜋 = 0.2 is identical to the probability of seven successes with 𝜋 = 0.8. The rea-
son for this is that the probability of success for the probability distribution in
Figure 8.3a, namely 0.2, is the complement of the success probability of the
probability distribution in Figure 8.3e, namely 0.8. Therefore, we can inter-
pret Figure 8.3a as the probability distribution of the number of successes in
n = 8 Bernoulli experiments with success rate 𝜋 = 0.2, and Figure 8.3e as the
probability distribution of the number of failures in the same eight Bernoulli
experiments. Conversely, Figure 8.3e can also be interpreted as the probabil-
ity distribution of the number of successes in n = 8 Bernoulli experiments with
success rate 𝜋 = 0.8, and Figure 8.3a as the probability distribution of the num-
ber of failures in the same eight Bernoulli experiments.

To understand the origin of the mathematical expression of the binomial proba-
bility distribution, it is useful to first calculate the probability of a particular series
of outcomes, for example, S, S, F, S, F, … , F, S. Suppose that, in this series, out-
come S appears x times and outcome F appears n − x times. The multiplication rule
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(see Section 5.1.2) can be used to compute the probability of this sequence:

𝜋𝜋(1 − 𝜋)𝜋(1 − 𝜋)… (1 − 𝜋)𝜋 = 𝜋
x(1 − 𝜋)n−x.

It is not difficult to see that the same probability is obtained for any sequence involv-
ing x occurrences of the outcome S and n − x occurrences of the outcome F. From
combinatorics (see Section 5.2.1), we know that there are exactly

(n
x

)
= n!

x!(n − x)!

such sequences. Since all different sequences with x occurrences of outcome S and
n − x occurrences of outcome F are mutually exclusive events, the probability of x
successes (and, consequently, n − x of failures) equals

P(x successes) = P(first possible sequence with x successes and n − x failures

OR second possible sequence with x successes and n − x failures

…

OR last possible sequence with x successes and n − x failures),

= P(first possible sequence with x successes and n − x failures)

+ P(second possible sequence with x successes and n − x failures)

+…

+ P(last possible sequence with x successes and n − x failures),

= 𝜋
x(1 − 𝜋)n−x + 𝜋

x(1 − 𝜋)n−x + · · · + 𝜋
x(1 − 𝜋)n−x,

= n!
x!(n − x)!

𝜋
x(1 − 𝜋)n−x.

Example 8.3.1 Historical data of a production process indicate a defect rate of
𝜋 = 0.10. Assume that the defects appear independently of each other and calculate

1. the probability that exactly 2 out of 20 produced units are defective, and

2. the probability that at least 3 out of 20 produced units are defective.

Let X be the number of defects in the 20 products under investigation. The random
variable X is binomially distributed with parameters 𝜋 = 0.10 and n = 20. The first
probability we look for is

P(X = 2) = pX(2; 20, 0.1) =
20!

2!(20 − 2)!
0.12(1 − 0.1)20−2 = 20!

2!18!
0.12(0.9)18

= 20 × 19
2

0.12(0.9)18 = 0.2852.

This value can easily be computed with a calculator. Alternatively, one can use
JMP. For the probability P(X = 2), we need the formula “Binomial Probability(0.1,
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20, 2)”. Generally, the formula for a probability of the type P(X = x) for a binomially
distributed random variable with parameters n and 𝜋 is “Binomial Probability(𝜋, n,
x)”. More details on this formula can be found in Section 8.8.
The second probability is

P(X ≥ 3) = 1 − P(X ≤ 2) = 1 − P(X = 0) − P(X = 1) − P(X = 2),

= 1 − 0.1216 − 0.2702 − 0.2852 = 0.3231.

The probability P(X ≤ 2) can also be calculated directly in JMP using the function
“Binomial Distribution(0.1, 20, 2)”.

There are large tables to determine probabilities based on the binomial distribution.
Some of them are given in Appendix B. These tables contain probabilities of the type
P(X ≥ x). As computers and appropriate software are now widespread, these tables
become increasingly less useful. Nevertheless, it is a good exercise to reconstruct
the probabilities calculated in Example 8.3.1 with the help of the tables. Another
useful exercise is to reconstruct one of the tables in Appendix B by yourself, using
the binomial distribution in Equation (8.1).
A limitation of the tables in Appendix B is that they only contain probabilities for

𝜋 ≤ 0.5. To determine probabilities for larger values of 𝜋, we have to make use of the
fact that the number of failures, Y , in n consecutive Bernoulli experiments is bino-
mially distributed with parameter 1 − 𝜋 if the number of successes, X, is binomially
distributed with parameter 𝜋. This is illustrated in the following example:

Example 8.3.2 A football player takes 10 consecutive penalty kicks. For each of
the penalties, his probability to score a goal is 0.75. We determine the probability
that the player scores at least 8 times. We denote the number of goals by X and the
number of missed penalties by Y. The random variables X and Y are both binomially
distributed with n = 10 as the first parameter. The random variable X has 𝜋 = 0.75
as its second parameter, while Y has 𝜋 = 0.25 = 1 − 0.75 as its second parameter.
Note that X + Y = 10 in this example. Indeed, if, for example, four penalty kicks are
scored, inevitably six penalties are missed.
First, the probability of at least 8 goals is

P(X ≥ 8) = P(X = 8) + P(X = 9) + P(X = 10),

= 0.2816 + 0.1877 + 0.0563,

= 0.5256.

This can be verified using a calculator, or using JMP. If, however, in the absence of a
calculator or computer, we want to use the tables in Appendix B, we have to rewrite
the probabilities in terms of binomially distributed random variables with a success
rate smaller than or equal to 0.5. This can be done as follows:

P(X ≥ 8) = P(Y ≤ 2) = 1 − P(Y > 2) = 1 − P(Y ≥ 3).

Indeed, the probability to make at least eight goals is equal to the probability that at
most two penalty kicks are missed. The probability P(Y ≥ 3) can be easily retrieved in
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the table in Appendix B, for n = 10 and 𝜋 = 0.25. This probability is equal to 0.4744,
so that

P(X ≥ 8) = 1 − P(Y ≥ 3) = 1 − 0.4744 = 0.5256.

Example 8.3.3 The manager of a hotel has 200 rooms available for rent. The past
few years, the manager noted that 5% of all people who reserved a room did not
show up. Therefore, he begins to systematically accept more bookings than he has
rooms. However, he does not want to overbook too much so that he does not have
to disappoint too many potential customers. More specifically, the manager does not
want to run out of rooms on more than 1% of the evenings. How many overbookings
can the manager afford?
First, we need to translate the risk that the manager accepts into a probability. Sup-

pose that we are using the random variable X to describe the number of guests that
show up at the hotel on a certain day with a valid room reservation. Then, the proba-
bility that the manager has to disappoint one or more guests with a valid reservation
is P(X > 200) or P(X ≥ 201). The manager now needs to determine the maximum
number of bookings for which this probability does not exceed 1%:

P(X ≥ 201) ≤ 0.01.

The probability P(X ≥ 201) can be calculated using the binomial distribution. The
number of bookings is the parameter n of the binomial distribution, while 𝜋 = 0.95
is the probability that a guest who booked a room actually shows up. What we need
to do to solve the hotel manager’s problem, is to compute the probability

P(X ≥ 201) = 1 − P(X ≤ 200) = 1 − FX(200)

for different values of n. The biggest n for which this probability is smaller than or
equal to 1% is the maximal number of bookings that the manager can accept. As
shown in Figure 8.4, it is particularly easy to perform these calculations in JMP.

Figure 8.4 Solution of the problem of the hotel manager in Example 8.3.3 using the
binomial distribution.
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It can be seen in the figure that the largest number of bookings that meets the condi-
tion is 204. The formula needed for the calculation of the column “P(X ≤ 200)” in
Figure 8.4 in JMP is “Binomial Distribution(0.95, Number of bookings, 200)”.

8.3.2 Expected value and variance

The expected value of a binomially distributed random variable X is equal to

𝜇X = E(X) = n𝜋,

while the variance is given by

𝜎
2
X = var(X) = n𝜋(1 − 𝜋).

This is easy to prove using the fact that a binomially distributed random variable
with parameters n and 𝜋 is the sum of n independent Bernoulli distributed random
variables X1,X2,… ,Xn. The expected value of X can be computed as3

E(X) = E(X1 + X2 + · · · + Xn),

= E(X1) + E(X2) + · · · + E(Xn),

= 𝜋 + 𝜋 + · · · + 𝜋,

= n𝜋.

The variance of X can be calculated as4

var(X) = var(X1 + X2 + · · · + Xn),

= var(X1) + var(X2) + · · · + var(Xn),

= 𝜋(1 − 𝜋) + 𝜋(1 − 𝜋) + · · · + 𝜋(1 − 𝜋),

= n𝜋(1 − 𝜋).

Example 8.3.4 A football player takes 10 consecutive penalty kicks. For each of the
penalties, his probability to score a goal is 0.75. The expected value of the number
of goals in the 10 penalties is 10(0.75) = 7.5. The variance is 10(0.75)(1 − 0.75) =
1.875.

A random variable that is closely linked to a binomially distributed random variable
X is the fraction of successes P̂ = X∕n. This fraction is a linear function of X, so that
E(P̂) = E(X)∕n = 𝜋 and var(P̂) = var(X)∕n2 = 𝜋(1 − 𝜋)∕n (see Theorems 7.3.1 and
7.4.1 for the expected value and variance of a linear function of a random variable).

3 In Chapter 12, we will learn that the expected value of the sum of a number of random variables is
equal to the sum of the individual expected values.

4 In Chapter 13, we will learn that the variance of the sum of a number of independent random variables
is equal to the sum of the individual variances.
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Finally, it is interesting to note that the binomial distribution can be approximated
by the normal probability density. This is discussed in detail in Section 14.4 and is
important for some hypothesis tests (see the book Statistics with JMP: Hypothesis
Tests, ANOVA and Regression).

8.4 The hypergeometric distribution

In the context of the binomial distribution, it is assumed that a series of Bernoulli
experiments are executed independently of each other. The success rate, 𝜋, always
remains the same. This is not the case for the hypergeometric distribution, where the
success probability is different for each Bernoulli experiment. We illustrate this in
the following example.

Example 8.4.1 Suppose that an urn contains 4 red and 5 blue balls, and we ran-
domly draw three balls from the urn. Drawing a ball from the urn is of course a
Bernoulli experiment because there are only two possible outcomes: we either obtain
a red ball or a blue one. Suppose that, for us, drawing a red ball is a success, while
drawing a blue ball corresponds to a failure. The probability of success in the first
draw is 4∕9, since there are 4 red balls and a total of 9. Suppose now that we do not
put the first ball drawn back into the urn before drawing a second ball. The proba-
bility of success in the second drawing has two possible values. If the first ball drawn
is red, then the probability of success in the second drawing is 3∕8 (there are still 3
red balls in the urn, and a total of 8). If the first ball drawn is blue, then the success
probability is 4∕8 (there are still 4 red balls in the urn, and a total of 8). In the third
drawing, the success rates are 2∕7, 3∕7, or 4∕7, depending on the number of red balls
that we obtain in the first two drawings. This shows that the probability of success
changes with each drawing, and that the successive Bernoulli experiments are not
independent. The probability of success, in any given Bernoulli experiment, depends
on the results of the previous Bernoulli experiments.

We consider a population of N elements: A elements of type I (successes) and B =
N − A elements of type II (failures). From this population, a sample of n elements is
randomly drawn without replacement. Of course, the number of drawings, n, cannot
be bigger than the number of elements in the population, N. The random variable
X, the number of successes in the sample, then follows a so-called hypergeometric
distribution:

pX(x;N,A, n) =

(
A
x

)(
N−A
n−x

)

(
N
n

) , max(0, n − (N − A)) ≤ x ≤ min(n,A).

This distribution has three independent parameters:N, n, andA. The fourth parameter,
B, is not independent: B can always be calculated from N and A.
A hypergeometrically distributed random variable X has expected value

𝜇X = E(X) = n
A
N
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and variance
𝜎
2
X = n

(A
N

)(B
N

)(N − n
N − 1

)
.

If we rewrite the fraction of successes A∕N as 𝜋 and the fraction of failures B∕N as
1 − 𝜋, then we get the expected value

𝜇X = E(X) = n𝜋

and the variance
𝜎
2
X = n𝜋(1 − 𝜋)

(N − n
N − 1

)
.

The expected values of the hypergeometric distribution and of the binomial distribu-
tion are the same, but the variances of the two distributions differ (with the variance
of the hypergeometric distribution being the smallest). IfN is large compared to n, the
variances of the two distributions are almost the same, and the binomial distribution
can be used as an approximation of the hypergeometric distribution.
Hypergeometric probabilities can be calculated in JMP. For the probability P(X =

x), we need the function “Hypergeometric Probability(N,A, n, x)”. For the probability
P(X ≤ x), we can use the command “Hypergeometric Distribution(N, A, n, x)”.

Example 8.4.2 In the classic Belgian lottery, 6 numbers were randomly drawn from
a total of 42. On the eve of the lottery drawing, you had 6 of the 42 numbers marked on
your lottery ticket. This meant that just before the draw, the population of 42 balls in
the drum consisted of 6 good balls and 36 bad ones. If the 6 numbers drawn matched
the numbers marked on your ticket, you won a large sum of money. The hypergeo-
metric distribution with N = 42, A = 6, B = 36 and n = 6 can be used to calculate
the probability that you had all 6 numbers right, or 5 out of the 6, or 4 out of the 6,
and so on:

P(X = 6) =

(
6
6

)(
36
0

)

(
42
6

) = (1)(1)
42!
36!6!

= 1
5245786

,

P(X = 5) =

(
6
5

)(
36
1

)

(
42
6

) = (6)(36)
42!
36!6!

= 216
5245786

,

P(X = 4) =

(
6
4

)(
36
2

)

(
42
6

) = (15)(630)
42!
36!6!

= 9450
5245786

.

These results match those in Examples 4.4.5 and 5.1.9. The reasoning followed in
Example 5.1.9 is the basis for understanding the logic behind the mathematical
expression of the hypergeometric probability distribution.
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Table 8.2 Probabilities for two hypergeometric distributions with
N = 9, A = 4 and B = 5 (see Figure 8.5).

x n = 3 n = 6

pX(x) FX(x) pX(x) FX(x)

0 0.119047619 0.119047619 – –
1 0.476190476 0.595238095 0.047619048 0.047619048
2 0.357142857 0.952380952 0.357142857 0.404761905
3 0.047619048 1 0.476190476 0.880952381
4 – – 0.119047619 1
5 – – – –
6 – – – –

Example 8.4.3 The expected value of the number of red balls that we obtain from n =
3 drawings in Example 8.4.1, where N = 9, A = 4 and B = 9 − 4 = 5, is 3(4∕9) =
4∕3. The variance is 3(4∕9)(5∕9){(9 − 3)∕(9 − 1)} = 5∕9. The probability distribu-
tion of the number of red balls is shown in Figure 8.5a. The probability distribution
clearly shows that there are four possible outcomes if we perform three drawings,
namely 0, 1, 2, or 3 red balls. Each of these outcomes has a strictly positive proba-
bility. Table 8.2 shows the probabilities of the four possible outcomes in detail.

Example 8.4.4 The expected value of the number of red balls that we obtain from
n = 6 draws instead of n= 3 draws in Example 8.4.1 is 6(4∕9) = 8∕3. The variance
is 6(4∕9)(5∕9){(9 − 6)∕(9 − 1)} = 5∕9. The probability distribution of the number of
red balls is shown in Figure 8.5b. The probability distribution shows that there still
are four possible outcomes if we perform six drawings, namely 1, 2, 3, or 4 red balls.
Of course, it is impossible to draw more than four red balls, since the urn contained
only four such balls at the start of the experiment. It is not possible not to draw at
least one red ball because the urn contains only five non-red balls and we perform
six draws. Table 8.2 provides the details of the probabilities for the four possible
outcomes.

Example 8.4.5 In a chemical plant, 5000 bottles were filled with a certain substance.
There is a suspicion that the content of 300 of the bottles is contaminated. How many
bottles should be randomly drawn from the lot of 5000 and be inspected to have a
chance of at least 99% that the contamination is detected? The contamination is
considered as being detected as soon as one contaminated bottle is found. Suppose
that the random variable X represents the number of contaminated bottles discovered.
In this problem, one wants to know the minimum number of bottles n to inspect for

which P(X ≥ 1) ≥ 0.99. In this expression, X is a hypergeometric random variable
with N = 5000 and A = 300. The condition to be satisfied can be rewritten as 1 −
P(X = 0) ≥ 0.99 or P(X = 0) ≤ 0.01.
The attentive reader will quickly realize that this problem is similar to the one in

Example 8.3.3. With the formula “Hypergeometric Probability(5000, 300, Number
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Figure 8.5 Hypergeometric distributions for N = 9, A = 4, and B = 5 (see
Examples 8.4.1, 8.4.3, and 8.4.4).

Figure 8.6 Solution to the problem of the chemical production plant in
Example 8.4.5 based on the hypergeometric probability distribution.

of bottles, 0)” in JMP, it is not difficult to find out that P(X = 0) drops below 0.01
as soon as n ≥ 74. Hence, a sample of 74 bottles is the minimum required in order
to have a sufficiently high probability to discover the contamination. The data table,
which contains hypergeometric probabilities for several numbers of bottles to inspect,
is shown in Figure 8.6. If the company wants a 99.9% probability to discover the
contamination, a sample of 111 bottles is needed. This naturally leads to higher costs.
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Since the sample in this example is madewithout replacement (indeed, repeating the
inspection of a bottle makes no sense), the hypergeometric rather than the binomial
distribution was used. Since N is a lot bigger than n, the binomial distribution can be
used as an approximation. With JMP, it is a small exercise to find out that, using the
binomial distribution, the minimum sample size is 75 for P(X ≥ 1) to be larger than
or equal to 0.99, and 112 for P(X ≥ 1) to be larger than or equal to 0.999. Since we
were able to find the correct probability by means of the hypergeometric distribution,
the approach using the binomial distribution is only of theoretical interest.

8.5 The Poisson distribution

A particularly interesting probability distribution is the so-called Poisson distribu-
tion5. The reason for this is that a whole range of random variables in practice are
(approximately) Poisson distributed. Typical examples are

• the number of defects in a material per unit length or per unit area,

• the number of accidents or crimes per unit of time in a certain place,

• the number of cars that drive on a certain road per unit of time,

• the number of customers that enter in a bank per unit of time,

• the number of bacteria in a liquid per unit volume, and

• the number of earthquakes per unit of time in a specific area.

The reason why these random variables are often Poisson distributed is that the
processes underlying them typically satisfy the following mathematical conditions6

for a Poisson process quite well:

1. Events do not occur in clusters: the probability of at least two events in a very
short time interval is negligibly small in comparison with the probability of one
or no event.

2. The probability of an event in a short time interval is constant over time. This
condition implies a constant occurrence rate over time, for example five events
per minute.

3. The occurrences of events in two non-overlapping time intervals are
independent.

5 Siméon Denis Poisson (1781–1840) was a leading French mathematician who made important con-
tributions in mechanics and physics. In Paris, he was a student of Laplace and Lagrange. He published the
Poisson distribution for the first time in “Recherches sur la probabilité des jugements en matière criminelle
et matière civile” in 1837. He also introduced the “Law of large numbers”, a theorem that is related to the
central limit theorem (see Chapter 14).

6 In the description of a Poisson process, the term time interval is used, but this can be replaced by
length, volume, area…
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The probability distribution of a Poisson distributed random variable X is

pX(x; 𝜆) =
e−𝜆𝜆x

x!
, x = 0, 1, 2,… , (8.2)

where 𝜆 is a strictly positive parameter. No upper limit is imposed on X. Examples
of the Poisson distribution for values of 𝜆 equal to 1, 2, 3, and 4.5 are given in
Figures 8.7–8.10. The corresponding probabilities are listed in Table 8.3. Note that
the largest value of x on the horizontal axis in the figures and in the table is 10. It is
possible that a Poisson distributed random variable takes values greater than 10, but
this is not likely for 𝜆 equal to 1, 2, 3, or 4.5. Therefore, we did not include larger val-
ues of x in the figures or in the table. A random variable X that is Poisson distributed
with parameter 𝜆 is sometimes denoted by

X ∼ Poisson(𝜆).
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Figure 8.7 Poisson distribution with parameter 𝜆 = 1.
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Figure 8.8 Poisson distribution with parameter 𝜆 = 2.
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Figure 8.9 Poisson distribution with parameter 𝜆 = 3.
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Figure 8.10 Poisson distribution with parameter 𝜆 = 4.5.

Table 8.3 Probabilities for the Poisson distributions in Figures 8.7–8.10.

x 𝜆 = 1 𝜆 = 2 𝜆 = 3 𝜆 = 4.5

pX(x) FX(x) pX(x) FX(x) pX(x) FX(x) pX(x) FX(x)

0 0.3678794 0.3678794 0.1353353 0.1353353 0.0497871 0.0497871 0.0111090 0.0111090
1 0.3678794 0.7357589 0.2706706 0.4060058 0.1493612 0.1991483 0.0499905 0.0610995
2 0.1839397 0.9196986 0.2706706 0.6766764 0.2240418 0.4231901 0.1124786 0.1735781
3 0.0613132 0.9810118 0.1804470 0.8571235 0.2240418 0.6472319 0.1687179 0.3422960
4 0.0153283 0.9963402 0.0902235 0.9473470 0.1680314 0.8152632 0.1898076 0.5321036
5 0.0030657 0.9994058 0.0360894 0.9834364 0.1008188 0.9160821 0.1708269 0.7029304
6 0.0005109 0.9999168 0.0120298 0.9954662 0.0504094 0.9664915 0.1281201 0.8310506
7 0.0000730 0.9999898 0.0034371 0.9989033 0.0216040 0.9880955 0.0823629 0.9134135
8 0.0000091 0.9999989 0.0008593 0.9997626 0.0081015 0.9961970 0.0463292 0.9597427
9 0.0000010 0.9999999 0.0001909 0.9999535 0.0027005 0.9988975 0.0231646 0.9829073
10 0.0000001 1.0000000 0.0000382 0.9999917 0.0008102 0.9997077 0.0104241 0.9933313
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The expected value of a Poisson distributed random variable is equal to

E(X) =
+∞∑

x=0
x
𝜆
xe−𝜆

x!
,

=
+∞∑

x=1
x
𝜆
xe−𝜆

x!
,

=
+∞∑

x=1

𝜆
xe−𝜆

(x − 1)!
,

= e−𝜆𝜆
+∞∑

x=1

𝜆
x−1

(x − 1)!
,

= e−𝜆𝜆
+∞∑

z=0

𝜆
z

z!
with z = x − 1,

= e−𝜆𝜆 e𝜆,

= 𝜆.

The one but last step in the derivation uses the series expansion of the exponential
function e𝜆. It can also be demonstrated that

𝜎
2
X = var(X) = 𝜆

for a Poisson distributed random variable X.
An important property of the Poisson distribution is the following: if the number

of events per time unit is Poisson distributed with parameter 𝜆, then the number of
events in t time units is also Poisson distributed, but with parameter 𝜆t. Of course,
the same applies to lengths: if the number of events per unit of length is Poisson
distributed with parameter 𝜆, the number of events over d units of length is Poisson
distributed with parameter 𝜆d. This property is used in Example 8.5.1.
Probabilities for Poisson distributed random variables can be calculated in JMP.

For a probability P(X = x), we have the function “Poisson Probability(𝜆, x)”, while
the function “Poisson Distribution(𝜆, x)” is needed for a probability P(X ≤ x).
Appendix C contains some tables with probabilities of the type P(X ≥ x) for Poisson
distributed random variables. As with the binomial distribution, these tables can be
reconstructed by hand, using the probability distribution in Equation (8.2).

Example 8.5.1 The number of calls for a taxi service is Poisson distributed with an
average of 30 calls per hour or 0.5 calls per minute. The probability of not receiving
any calls during a period of three minutes is equal to

pX(0; 𝜆 = 1.5) = (1.5)0e−1.5

0!
= e−1.5 = 0.223.
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Note that 𝜆 was set to 1.5 here because a calling rate of 0.5 per minute corresponds
to a rate of 1.5 per 3 minutes. The JMP function needed to compute this probability
is “Poisson Probability(1.5, 0)”. The probability of more than 5 calls in an interval
of 5 minutes (𝜆 = 2.5) is given by

P(X ≥ 6) =
+∞∑

x=6

(2.5)xe−2.5

x!
= 1 −

5∑

x=0

(2.5)xe−2.5

x!
= 0.042.

The latter can also be calculated with the function “1−Poisson Distribution(2.5, 5)”
in JMP.

Example 8.5.2 A street hawker, whose foreign diploma in statistics is not recognized
by the German authorities, sells flowers every evening in the restaurants and bars of
Berlin. Because the flowers are worthless the next day, the vendor wants the stock he
buys per day to be as small as possible. However, to maximize his profit, he wants to
avoid the flowers selling out too often. Suppose that he is selling an average of 20
flowers per night and that he wants to be able to meet with the demand for flowers
on at least 90% of evenings. The man explores his statistical knowledge and argues
that his stock v must satisfy

P(X ≤ v) ≥ 0.90 or P(X > v) ≤ 0.10,

where the random variable X represents the number of flowers demanded during one
night. That random variable is Poisson distributed with parameter 𝜆= 20. He uses
a similar approach as the hotel manager in Figure 8.4 and finds out that a stock of
26 units is large enough. The solution approach for the flower vendor is shown in
Figure 8.11.

Figure 8.11 Solution to the problem of the flower vendor in Example 8.5.2.
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Example 8.5.3 At the Football World Cup in France in 1998, in 48 games involving
48 × 2 = 96 playing teams, 126 goals were scored. The frequencies of the numbers
of goals scored by all playing teams are shown in Table 8.4. On average, the num-
ber of goals per match per team was 126∕96 = 1.3125. This average is simply the
total number of goals, 126, divided by the number of occasions on which a team was
playing, 96.

Table 8.4 Frequency of the numbers of goals scored by all teams playing in the
Football World Cup in 1998 compared with a Poisson distribution with parameter
𝜆 = 1.3125.

x 0 1 2 3 4 5 6

Frequency 26 34 24 8 1 2 1
pX(x; 𝜆) 0.2691 0.3533 0.2318 0.1014 0.0333 0.0087 0.0019
96 × pX(x; 𝜆) 25.84 33.91 22.26 9.74 3.19 0.84 0.18

Table 8.4 also shows the probability distribution pX(x, 𝜆) of a Poisson distributed
random variable with parameter 𝜆 = 1.3125. The probabilities pX(x, 𝜆) indicate how
likely it is that a team scores x goals in one match at the World Cup. In the table,
these probabilities are multiplied by 96 to get an idea of the number of goals that a
team would score in 96 games. If we compare the numbers that we obtain in this way
with the initial data, we see that the Poisson distribution with parameter 𝜆 = 1.3125
is actually a good summary of the data.

It should be mentioned that the Poisson distribution is a limiting case of the bino-
mial distribution. If n and 𝜋 are the parameters of the binomial distribution, n is
large and n𝜋 = 𝜆, then the Poisson distribution and the binomial distribution create
(almost) the same probabilities. This is illustrated in Table 8.5.
Finally, the Poisson distribution, as well as the binomial distribution, can

be approximated by a normal distribution with mean 𝜆 and variance 𝜆. This

Table 8.5 Comparison between probabilities of the Poisson distribution with
parameter 𝜆 = 1 and several binomial distributions with n𝜋 = 1.

Binomial distribution Poisson

n 5 10 20 50 100 200 500 𝜆 = 1
𝜋 0.2 0.1 0.05 0.02 0.01 0.005 0.002

P(X = 0) 0.3277 0.3487 0.3585 0.3642 0.3660 0.3670 0.3675 0.3679
P(X = 1) 0.4096 0.3874 0.3774 0.3716 0.3697 0.3688 0.3682 0.3679
P(X = 2) 0.2048 0.1937 0.1887 0.1858 0.1849 0.1844 0.1841 0.1839
P(X = 3) 0.0512 0.0574 0.0596 0.0607 0.0610 0.0612 0.0613 0.0613
P(X = 4) 0.0064 0.0112 0.0133 0.0145 0.0149 0.0151 0.0153 0.0153
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approximation works well for large values of 𝜆. With increasing 𝜆, the graphical
representation of the Poisson distribution approaches a perfect bell shape. This can
be seen in Figures 8.7–8.10. The normal distribution will be discussed in detail in
Chapter 10.
If the parameter 𝜆 of the Poisson distribution is an integer, the distribution has

a remarkable feature: the probability P(X = 𝜆 − 1) is then equal to the probability
P(X = 𝜆). This can be verified in Figures 8.7– 8.9 and in Table 8.3. For example,
for the Poisson distribution with 𝜆 = 2, we have that P(X = 1) = P(X = 2). Such an
equality of probabilities does not occur for non-integer values of 𝜆. We can prove this
property of the Poisson distribution as follows:
Consider the two consecutive probabilities

P(X = x) = e−𝜆𝜆x

x!
and

P(X = x + 1) = e−𝜆𝜆x+1

(x + 1)!
.

These two probabilities are the same if

e−𝜆𝜆x

x!
= e−𝜆𝜆x+1

(x + 1)!
,

which can be simplified to
𝜆
x

x!
= 𝜆

x+1

(x + 1)!
.

This equation can be rewritten as

𝜆
x

x!
= 𝜆 ⋅ 𝜆x

(x + 1) ⋅ x!
,

which can be simplified to

1 = 𝜆

x + 1

and
x = 𝜆 − 1.

Consequently, the probabilities for x = 𝜆 − 1 and x = 𝜆 are equal. This is only pos-
sible if 𝜆 is an integer, as a Poisson distributed random variable X can only take
non-negative integer values.

8.6 The geometric distribution

If a random variable X counts the number of attempts that we need until the first
success in a series of independent Bernoulli experiments, then X is geometrically
distributed:

pX(x; 𝜋) = (1 − 𝜋)x−1𝜋, x = 1, 2, 3,… ,
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where 𝜋 represents the probability of success. Obviously, 𝜋 again lies between 0 and
1. The expected value and variance of X are equal to

𝜇X = E(X) = 1
𝜋

and
𝜎
2
X = var(X) = 1 − 𝜋

𝜋
2

.

The probability distribution and the cumulative distribution function for 𝜋 = 0.2 are
shown in Figure 8.12. For comparison, the probability distribution and the cumulative
distribution function for 𝜋 = 0.1 are displayed in Figure 8.13. The smaller success
rate implies that the probabilities for small values of the random variable are signifi-
cantly smaller in Figure 8.13 than in Figure 8.12. The opposite is true for larger values.
It is a useful exercise to calculate some probabilities for a geometrically distributed

random variable by hand and draw the associated probability distribution and cumu-
lative distribution function. To illustrate this, Table 8.6 contains the probabilities for
the distributions in Figures 8.12 and 8.13. Note that we only display probabilities for
values of x up to 30. A geometric random variable can take values greater than 30.
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Figure 8.12 Geometric distribution with parameter 𝜋 = 0.2.
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Figure 8.13 Geometric distribution with parameter 𝜋 = 0.1.

However, if the success probability 𝜋 is equal to 0.1 or 0.2, this is rather unlikely. For
𝜋 = 0.2 for example, P(X > 30) is only 0.001238. Therefore, Figures 8.12 and 8.13
and Table 8.6, do not contain probabilities for x > 30.
To demonstrate that the expected value of a geometrically distributed random vari-

able is equal to 1∕𝜋, one can use the following series expansion, which states that,
for y-values between 0 and 1,

1
(1 − y)2

=
+∞∑

i=1
iyi−1.

If we replace the variable y by 1 − 𝜋 and i by x in this equation, we obtain

1
(1 − (1 − 𝜋))2

= 1
𝜋2

=
+∞∑

x=1
x(1 − 𝜋)x−1.

The expected value of a geometrically distributed random variable X can then be
determined as

𝜇X =
+∞∑

x=1
xpX(x;𝜋) =

+∞∑

x=1
x(1 − 𝜋)x−1𝜋 = 𝜋

+∞∑

x=1
x(1 − 𝜋)x−1 = 𝜋

1
𝜋2

= 1
𝜋

.
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Table 8.6 Probabilities for the geometric distributions in Figures 8.12 and 8.13.

x 𝜋 = 0.1 𝜋 = 0.2

pX(x) FX(x) pX(x) FX(x)

1 0.1 0.1 0.2 0.2
2 0.09 0.19 0.16 0.36
3 0.081 0.271 0.128 0.488
4 0.0729 0.3439 0.1024 0.5904
5 0.06561 0.40951 0.08192 0.67232
6 0.059049 0.468559 0.05536 0.737856
7 0.0531441 0.5217031 0.0524288 0.7902848
8 0.04782969 0.56953279 0.04194304 0.83222784
9 0.043046721 0.612579511 0.033554432 0.865782272
10 0.038742049 0.651321560 0.026843546 0.892625818
11 0.034867844 0.686189404 0.021474837 0.914100654
12 0.031381060 0.717570464 0.017179869 0.931280523
13 0.028242954 0.745813417 0.013743895 0.945024419
14 0.025418658 0.771232076 0.010995116 0.956019535
15 0.022876793 0.794108868 0.008796093 0.964815628
16 0.020589113 0.814697981 0.007036874 0.971852502
17 0.018530202 0.833228183 0.005629500 0.977482002
18 0.016677182 0.849905365 0.004503600 0.981985602
19 0.015009464 0.864914828 0.003602880 0.985588481
20 0.013508517 0.878423345 0.002882304 0.988470785
21 0.012157666 0.890581011 0.002305843 0.990776628
22 0.010941899 0.901522910 0.001844674 0.992621302
23 0.009847709 0.911370619 0.001475740 0.994097042
24 0.008862938 0.920233557 0.001180592 0.995277634
25 0.007976644 0.928210201 0.000944473 0.996222107
26 0.007178980 0.935389181 0.000755579 0.996977686
27 0.006461082 0.941850263 0.000604463 0.997582148
28 0.005814974 0.947665237 0.000483570 0.998065719
29 0.005233476 0.952898713 0.000386856 0.998452575
30 0.004710129 0.957608842 0.000309485 0.998762060

8.7 The negative binomial distribution

The geometric distribution is a special case of the negative binomial distribution,
which is sometimes called the Pascal distribution. The probability distribution is
given by

pX(x;𝜋, r) =
(x − 1
r − 1

)
(1 − 𝜋)x−r𝜋r

, x = r, r + 1, r + 2,… , (8.3)
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Figure 8.14 Negative binomial distribution with parameters 𝜋 = 0.2 and r = 2.
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Figure 8.15 Negative binomial distribution with parameters 𝜋 = 0.4 and r = 2.

where X represents the number of consecutive independent Bernoulli experiments
until r successes are obtained. If r is equal to 1, the negative binomial distribution
reduces to the geometric distribution.
A negative binomially distributed random variable cannot take any value less than

r for the simple reason that one cannot achieve r successes before one has done r
attempts. Figures 8.14 and 8.15 show negative binomial distributions with parameters
𝜋 = 0.2 and r = 2, and with parameters 𝜋 = 0.4 and r = 2, respectively. The higher
success probability in the second figure ensures that there is a higher probability for
small values of the random variable. In other words, in the second case, there is a
greater chance to obtain two successes with fewer attempts.
Table 8.7 compares the probabilities obtained using the geometric distribution and

the negative binomial distribution with r = 2 for values of x ranging from 0 to 10, for
the same success probability 𝜋 = 0.2. Obviously, P(X = 1) = 0 for the negative bino-
mial distribution. The reason for this is that it is impossible to obtain two successes
in only one Bernoulli experiment.
To a large extent, the derivation of the negative binomial distribution resembles

the one of the (ordinary) binomial distribution. Suppose that we are interested in
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Table 8.7 Geometric distribution versus negative binomial distribution
with r = 2, both with success probability 𝜋 = 0.2.

x Neg. Binom. Geometric x Neg. Binom. Geometric

1 0.0000 0.2000 6 0.0819 0.0655
2 0.0400 0.1600 7 0.0786 0.0524
3 0.0640 0.1280 8 0.0734 0.0419
4 0.0768 0.1024 9 0.0671 0.0336
5 0.0819 0.0819 10 0.0604 0.0268

the probability that we need x independent Bernoulli experiments to achieve r suc-
cesses. A possible sequence of r successes and x − r failures is, for example, F, S, F,
S, F, … , F, S. This sequence of successes and failures ends at the moment where the
r-th success is achieved. To determine the probability of this particular sequence, the
multiplication rule (see Section 5.1.2) is used:

(1 − 𝜋)𝜋(1 − 𝜋)𝜋(1 − 𝜋)… (1 − 𝜋)𝜋 = 𝜋
r(1 − 𝜋)x−r.

It is not difficult to see that the exact same probability is obtained for any other
sequence involving the outcome S r times and the outcome F x − r times. From com-
binatorics (see Section 5.2.1), we know that there are

(x
r

)
= x!

r!(x − r)!

such sequences. If, however, we are interested in the number of attempts until we are
successful exactly r times, all relevant sequences of successes and failures have to
end with a success. Therefore, only the order of the first x − 1 outcomes, of which
r − 1 are successes, can be interchanged for the negative binomial distribution. As a
result, there are only

(x − 1
r − 1

)
= (x − 1)!

(r − 1)!(x − 1 − (r − 1))!
= (x − 1)!

(r − 1)!(x − r)!

possible orders of r successes and x − r failures that end with the r-th success. If we
now apply the summation rule, it follows that the probability that we need x attempts
to achieve r successes equals the probability in Equation (8.3).
Probabilities of the type P(X = x) for negative binomially distributed random vari-

ables (and thus also for geometrically distributed randomvariables) can be obtained in
JMP using the function “Neg Binomial Probability(𝜋, r, x − r)”. Since, when consid-
ering a geometrically distributed random variable, the required number of successes
r is equal to 1, probabilities for geometrically distributed random variables can be
determined with the function “Neg Binomial Probability(𝜋, 1, x − 1)”. Probabilities
of the type P(X ≤ x) for negative binomially distributed random variables (and thus
also for geometrically distributed random variables) can be calculated using the func-
tion “Neg Binomial Distribution(𝜋, r, x − r)”.
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8.8 Probability distributions in JMP

Using JMP, it is not difficult to create probability distributions and cumulative distri-
bution functions. JMP contains numerous functions for this purpose. The use of these
functions is demonstrated in this section. JMP can also display probability distribu-
tions and cumulative distribution functions graphically.

8.8.1 Tables with probability distributions and cumulative
distribution functions

To generate a probability distribution or a cumulative distribution function, we start
with a new data table (via the “File” menu, where you successively choose “New”
and “Data Table”). We fill the first column with the list of possible values the random
variable can take. Suppose that we are interested in a binomially distributed random
variable with parameters n = 9 and 𝜋 = 1∕3. For this reason, we list all integer num-
bers from 0 to 9 in the first column of the data table. These are the possible values
of a binomially distributed random variable with n = 9. We call this first column x.
Changing the name of a variable in a column header can be done by double-clicking
on the header.
Next, we create two new columns by right-clicking on the column header next to

the first column (see Figure 8.16). We call the two new columns pX(x) and FX(x).
Then, we need to enter a formula for the two new columns. This can be done
by right-clicking on the column header and choosing the option “Formula” (see
Figure 8.17).
Now, we only need to enter the appropriate formula. The formulas available in JMP

are divided into categories, ranging from formulas on trigonometry (sine, cosine, … ),

Figure 8.16 Generating a table with a probability distribution and a cumulative
distribution function: Step 1.
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Figure 8.17 Generating a table with a probability distribution and a cumulative
distribution function: Step 2.

transcendental formulas such as logarithms, statistical formulas, and numerical
formulas (rounding, … ) to formulas of probability. There are two types of formulas
from probability theory, namely formulas for discrete probability distributions and
formulas for continuous probability densities. The formulas for discrete probability
distributions are contained within the category “Discrete Probability”, while the for-
mulas for continuous probability densities can be found in the category “Probability”.
Since we want to produce a binomial distribution here, we obviously need the

category “Discrete Probability” (see Figure 8.18). For the column pX(x), we have to
select the “Binomial Probability” function, while, for the column FX(x), the function
“Binomial Distribution” is needed. The first function provides probabilities of the
type P(X = x), while the latter function provides probabilities of the type P(X ≤ x).
Both functions have three arguments. The first two arguments are used to specify
the two parameters 𝜋 and n of the binomial distribution. The third argument is used
to specify the value of x. Figure 8.19 shows the inputs needed for both the columns
pX(x) and FX(x).
When entering the two formulas, it is important to click on the name of the column

x for the last argument (and not enter a number, letter or name by yourself). JMP then
computes the probabilities corresponding to each value of x in the first column of the
data table. The final result of all these operations is shown in Figure 8.20.
To calculate probabilities of known families of probability distributions, we can also

use the script “JMP Distribution and Probability Calculator”. A screen generated by
this script is shown in Figure 8.21. The figure shows the probability that a binomially
distributed random variable with parameters n = 9 and 𝜋 = 1∕3 is less than or equal
to 1. As indicated at the bottom of the screen, that probability is equal to 0.1431.
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Figure 8.18 Generating a table with a probability distribution and a cumulative
distribution function: Step 3.

(a) Probability distribution pX(x) (b) Cumulative distribution function FX(x)

Figure 8.19 Generating a table with a probability distribution and a cumulative
distribution function: Step 4.
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Figure 8.20 Generating a table with a probability distribution and a cumulative
distribution function: final result.

Figure 8.21 “JMP Distribution and Probability Calculator” for calculating the
probability that a binomially distributed random variable with parameters n = 9 and
𝜋 = 1∕3 is less than or equal to 1.
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8.8.2 Graphical representations

There are several ways to generate graphical representations of probability distribu-
tions and cumulative distribution functions using JMP. Here, we describe one of the
possibilities.

8.8.2.1 Probability distributions

For a picture of a probability distribution of a discrete random variable, a data table
like the one in Figure 8.20 is an ideal starting point. If you have created such a table,
you can choose the “Overlay Plot” option in the “Graph” menu. You will then get
a dialog window where you need to enter the column pX(x) in the “Y” field and the
column x in the “X” field, as shown in Figure 8.22. This will generate an initial graph
like the one in Figure 8.23. This figure can be transformed into a needle chart of the
desired probability distribution by clicking the hotspot (red triangle) next to the word

Figure 8.22 Drawing a probability distribution of a discrete random variable:
Step 1.

Figure 8.23 Drawing a probability distribution of a discrete random variable: inter-
mediate result.
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“Overlay Plot”, choosing the option “Needle” and unchecking “Show Points” under
“Y Options”. This is illustrated in Figure 8.24.
The resulting needle chart is shown in Figure 8.25. This needle chart can still be

modified by right-clicking on the horizontal and vertical axis, or the needles of the
diagram. In this way, you can make minor aesthetic changes according to your per-
sonal taste. To change the color of the needles, use the “Y Options” in the hotspot
(red triangle) menu, and choose the “Connect Color” option.
It is also possible to copy a chart from JMP and paste it, for example, in Word or

PowerPoint documents. Figure 8.26 shows how this can be done. You can obtain the
menu in this figure by right-clicking on the needle diagram.

Figure 8.24 Drawing a probability distribution of a discrete random variable:
Step 2.

Figure 8.25 Drawing a probability distribution of a discrete random variable: final
result.
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8.8.2.2 Cumulative distribution functions

To draw a cumulative distribution function of a discrete random variable, the “Over-
lay Plot” option can also be used, but it requires a little detour. First, a new data table
should be created, as in Figure 8.27. In this table, every value of x appears twice. This
is necessary to get the desired graph of FX(x). The first time it appears, every x value
is used for the probability P(X ≤ x − 1). The second time every x value appears, it is
used for the probability P(X ≤ x). The fastest way to achieve this is to make use of a

Figure 8.26 Copying a graph from JMP.

Figure 8.27 Drawing a cumulative distribution function of a discrete random vari-
able: required data table.
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special formula, which is shown in Figure 8.28. This formula uses the function “If”
from the category “Conditional”, the function “Row” from the category “Row”, the
function “Modulo” from the category “Numeric”, and a comparison from the cate-
gory “Comparison”. Finally, the function “Binomial Distribution” from the category
“Discrete Probability” is used.
Once the formula in Figure 8.28 has been entered, select the “Overlay Plot” option

in the “Graph” menu. Next, enter the column FX(x) in the “Y” field, and the column
x in the “X” field. You then obtain the picture in Figure 8.29. It is important to check
either the “Function Plot” or the “Step” option in the “YOptions”. Now you can again

Figure 8.28 Drawing a cumulative distribution function of a discrete random vari-
able: required formula for creating the data table in Figure 8.27.

Figure 8.29 Drawing a cumulative distribution function of a discrete random vari-
able: final result.
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Figure 8.30 Saving the script of a figure in JMP.

Figure 8.31 Reproducing a figure by means of a saved script in JMP.

make aesthetic adjustments by right-clicking on the axes or the figure. Copying the
figure can be done in the same manner as in Figure 8.26.
In JMP, it is possible to save a figure together with the data. To do so, click on the

hotspot (red triangle) next to the word “Overlay Plot”, and choose the option “Save
Script to Data Table” under “Script”. This is illustrated in Figure 8.30. The result of
these operations is a hotspot named “Overlay Plot” in the top left of the data table.
The figure can be reproduced at any time by clicking on the hotspot and choosing
“Run Script”. This is shown in Figure 8.31.
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8.9 The simulation of discrete random variables
with JMP

In Section 6.6, we already explained how random variables with a predetermined
discrete probability distribution can be simulated. For the generation of random
variables with a Bernoulli distribution, a binomial distribution, a Poisson distribution
or a uniform distribution, it is, however, easier to make use of a number of
pre-programmed formulas in JMP.
The first thing you need to do is to create a new data table, as in Figure 8.32.

Then, right-click on the header of the second column. Select the option “Formula”,
as shown in Figure 8.33. In the resulting formula dialog, select “Random”. Now, you

Figure 8.32 Generating pseudo-random numbers of a discrete probability distribu-
tion: Step 1.

Figure 8.33 Generating pseudo-random numbers of a discrete probability distribu-
tion: Step 2.
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can choose from a variety of families of probability distributions and probability den-
sities. This is illustrated in Figure 8.34.
If you would like to generate pseudo-random numbers for a discrete uniform

distribution with five possible outcomes, you can choose “Random Integer” and
the value 5 as an argument. You will then see the screen shown in Figure 8.35.
Figure 8.36 contains a possible final result. If you repeat this exercise at home, you

Figure 8.34 Generating pseudo-random numbers of a discrete probability distribu-
tion: Step 3.

Figure 8.35 Generating pseudo-random numbers of a discrete probability distribu-
tion: Step 4.
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Figure 8.36 Generating pseudo-random numbers of a discrete probability distribu-
tion: final result.

will typically obtain other pseudo-random values than those in Figure 8.36. Note
that, in Figure 8.36, the outcome 5 does not appear at all. This is not a mistake: just
as you may never get a six when you throw a die, it may be that one or more values
do not appear when you generate a set of pseudo-random numbers.
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Important continuous
probability densities

I do not pick the place or the time. I use an old math book with a table of random
numbers. I have numbered the street index of my Falkplan Berlin mit Cityplan Potsdam.
I combine the two books: The random numbers tell me what street to go to, and at what
house number to begin. If you want to play the game of entropy, you have to be as
reckless as entropy itself. The random tables also indicate on what day I will appear at
a given spot, and how many minutes after sunset this will occur. I love random numbers.
There is no pattern to my movements, nobody can predict when and where I will strike.
I will never get caught.

(from Omega Minor, Paul Verhaeghen, p. 49)

In Chapter 6, continuous random variables were introduced as random variables that
can take any value in an interval. In practice, however, one rarely finds a pure continu-
ous random variable. The lifespan of a light bulb produced by an industrial production
process is, in principle, a continuous random variable. But, even with very sophis-
ticated equipment, the lifespan of a light bulb cannot be measured exactly. Each
measuring device has a certain precision (for example, the lifespan could bemeasured
to the nearest second), so that in fact we get discrete measurements. Consequently,
the set of possible values for the “continuous” random variable is discrete and, strictly
speaking, the random variable cannot be treated as a continuous random variable.
Another issue is that in practice, a property is typically studied for a large, but

finite population. Despite the finiteness of the population, the property under study is
still considered a continuous random variable. Again, the “continuous” random vari-
able can only take a limited number of values. A stock of goods, for example, might

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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have a net weight per package that is considered normally distributed. Implicitly,
then, the net weight per package is treated as a continuous random variable, even
though the stock is finite.
Despite all this, continuous random variables are used in many cases for studying

real life problems, generally without any noteworthy trouble. In the following, we
will also not worry about these considerations.
In the previous chapter, we discussed discrete random variables that were Bernoulli

distributed or binomially distributed. Given that discrete random variables have a
probability distribution, this choice of wording makes sense. Continuous random
variables are also said to be normally or exponentially distributed, even though,
strictly speaking, they do not have a probability distribution but a probability density.
This lack of logic in terminology can also be found in many other languages.
The most important probability density is undoubtedly the normal probability den-

sity. Therefore, we will discuss this density in a separate chapter, along with the
lognormal probability density. This is done in Chapter 10.

9.1 The continuous uniform density

A (continuous) random variable X is uniformly distributed over the interval [𝛼, 𝛽] if
its probability density is given by

fX(x; 𝛼, 𝛽) =

{
1

𝛽−𝛼 , 𝛼 ≤ x ≤ 𝛽,

0, otherwise,

where the parameters 𝛼 and 𝛽 are arbitrary real numbers with 𝛼 < 𝛽.
Starting from the definitions of the expected value and the variance of continuous

random variables in Section 7.1 and Section 7.4, it is easy to verify that

𝜇X = E(X) = 𝛼 + 𝛽

2

and

𝜎
2
X = var(X) = (𝛽 − 𝛼)2

12
.

Applying the definition of the cumulative distribution function of a continuous ran-
dom variable in Section 6.3, we can derive the cumulative distribution function of a
continuous uniformly distributed random variable:

FX(x; 𝛼, 𝛽) =
⎧
⎪
⎨
⎪
⎩

0, x < 𝛼,

x−𝛼
𝛽−𝛼 , 𝛼 ≤ x ≤ 𝛽,

1, x > 𝛽.

The median of a continuous uniformly distributed random variable is equal to the
expected value.
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Example 9.1.1 Figure 9.1 shows the probability density and the corresponding
cumulative distribution function of a continuous uniformly distributed random vari-
able with parameters 𝛼 = 2 and 𝛽 = 7. The probability density function and the cumu-
lative distribution function are

fX(x; 2, 7) =

{
1

7−2 = 1
5
, 2 ≤ x ≤ 7,

0, otherwise,

and

FX(x; 2, 7) =
⎧
⎪
⎨
⎪
⎩

0, x < 2,
x−2
7−2 = x−2

5
, 2 ≤ x ≤ 7,

1, x > 7.

The expected value of the random variable is (2 + 7)∕2 = 4.5, while its variance is
equal to (7 − 2)2∕12 = 25∕12.

x
0 1 2 3 4 5 6 7 8 9

f X
(x

)
F

X
(x

)

0.00

0.05

0.10

0.15

0.20

0.25

(a) Probability density

0.00

0.25

0.50

0.75

1.00

(b) Cumulative distribution function

x
0 1 2 3 4 5 6 7 8 9

Figure 9.1 Continuous uniform probability density and distribution function for
𝛼 = 2 and 𝛽 = 7.

Here, the uniform density was defined on the closed interval [𝛼, 𝛽]. Alternatively,
the density can be defined over the open interval ]𝛼, 𝛽[, or over a half-open interval.
This has no impact on the statistics of the distribution, because the differences only
affect one or two x values with zero probability.
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9.2 The exponential density

Inmany applications, we are interested in random variables that can only take positive
values. The lifespan of a light bulb or the waiting time for a customer in a bank are
two examples of such random variables. Although there are several other suitable
probability densities for these random variables, the exponential probability density
is by far the best known and most widely used.

9.2.1 Definition and statistics

A random variable X is exponentially distributed with parameter 𝜆 if

fX(x; 𝜆) =
{
𝜆e−𝜆x, x ≥ 0,
0, otherwise.

The parameter 𝜆 is an arbitrary real number greater than 0. The exponential den-
sity is often used for random variables that indicate waiting times or times between
two events.
If X is exponentially distributed with parameter 𝜆, which is often written as

X ∼ Exp(𝜆),

then
𝜇X = E(X) = 1

𝜆

and
𝜎
2
X = var(X) = 1

𝜆2
.

The expected value and the variance can be determined using the method of the
moment generating function. This was done in Example 7.6.2.
The cumulative distribution function of an exponentially distributed random vari-

able is given by

FX(x; 𝜆) =
{
0, x < 0,
1 − e−𝜆x, x ≥ 0.

Using this function, it is not difficult to show that the median of an exponentially
distributed random variable with parameter 𝜆 is equal to

𝛾0.5 =
ln(2)
𝜆

≈ 0.6931
𝜆

.

Thus, the median is smaller than the expected value. As indicated in Section 3.4, this
is typical for right-skewed distributions and densities.
Graphical representations of exponential probability densities with 𝜆 = 1∕2 and

𝜆 = 1∕4, and the corresponding cumulative distribution functions are given in
Figure 9.2. You can verify in Figure 9.2a that an exponential probability density
takes the value 𝜆 in x = 0, and that the densities are skewed to the right.
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Figure 9.2 Exponential probability densities and cumulative distribution functions
for 𝜆 = 1∕2 (solid line) and 𝜆 = 1∕4 (dotted line).

9.2.2 Some interesting properties

The exponential density has a remarkable property: it is memoryless. The following
theorem explains the details:

Theorem 9.2.1 If the random variable X is exponentially distributed, then

P(X > t1 + t2 ∣ X > t2) = P(X > t1) for any t1 > 0 and t2 > 0.
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Proof:

P(X > t1 + t2 ∣ X > t2) =
P{(X > t1 + t2) ∩ (X > t2)}

P(X > t2)
,

=
P(X > t1 + t2)
P(X > t2)

,

=
1 − P(X ≤ t1 + t2)
1 − P(X ≤ t2)

,

= 1 − (1 − e−𝜆(t1+t2))
1 − (1 − e−𝜆t2 )

,

= e−𝜆(t1+t2)

e−𝜆t2
,

= e−𝜆t1e−𝜆t2

e−𝜆t2
,

= e−𝜆t1 ,

= 1 − (1 − e−𝜆t1 ),

= 1 − P(X ≤ t1),

= P(X > t1).
◾

The practical meaning of this derivation is best illustrated by means of an example.

Example 9.2.1 Imagine that you are about to visit a post office and that the time
T between the arrival of two customers in the office is exponentially distributed. You
enter at time zero. The probability that no new customer arrives in the first t1 min-
utes is P(T > t1). At time t2, you are standing there still waiting. The curious thing
about the exponential distribution is that the probability that there is no new cus-
tomer during the next t1 minutes still is same as when you came: P(T > t1 + t2 ∣ T >

t2) = P(T > t1). After t2 minutes, the exponential density behaves as if it has forgot-
ten that you have already waited that long. Due to this strange property, the use of
the exponential density is not always realistic.

Most of the other distributions do have a memory. For example, for a uniform den-
sity with 𝛼 = 0 and 𝛽 = 1 one can verify that P(X > 0.8 ∣ X > 0.5) = P(X > 0.3 +
0.5 ∣ X > 0.5) ≠ P(X > 0.3). However, the geometric distribution is also memory-
less: for any value of the success probability 𝜋, we have that P(X > x + c ∣ X > c) =
P(X > x), if X is geometrically distributed. It is a useful exercise to prove this.
The following theorem shows that there is a link between the exponential distri-

bution and the Poisson distribution. We assume, for simplicity, that the dimension in
which the exponentially distributed random variable is measured is time.
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Theorem 9.2.2 For a Poisson process with parameter 𝜆, which is the average number
of events in a time interval of length 1, the time T between two consecutive events is
exponentially distributed with parameter 𝜆. The converse is also true.

Proof: To prove the theorem, we start from the fact that the probability that we have
to wait for more than time t between two consecutive events is equal to the probability
that no event occurs in a time interval of length t. In other words,

P(T > t) = P(X = 0),

where the random variable T represents the time between two events, and X is the
number of events in a time interval of length t. If X is Poisson distributed with
expected value 𝜆t in an interval of length t, then

FT(t) = P(T ≤ t),

= 1 − P(T > t),

= 1 − P(X = 0),

= 1 − e−𝜆t(𝜆t)0

0!
,

= 1 − e−𝜆t.

Hence, the cumulative distribution function of T is the one of the exponential
distribution. ◾

An alternative way to phrase this theorem is as follows: If the number of events
in a time interval of length t is Poisson distributed with parameter 𝜆t, then the time
between successive events is exponentially distributed with parameter 𝜆. This argu-
ment is often used in queuing theory, an important field of study within operations
research. Queuing theory studies service stations such as counters where customers
wait to be served or servers that have to process orders. The purpose of this field is to
calculate average waiting times, to determine the occupancy rate of service stations
or servers, to assess the effect of additional service stations or servers, and so on. The
first applications of queuing theory were intended to address capacity issues of the
first telephone lines in the 1920s.
A final interesting feature of the exponential probability density function is related

to the minimum of a set of exponentially distributed random variables:

Theorem 9.2.3 The minimum of k independent exponentially distributed random
variables with parameter 𝜆 is exponentially distributed with parameter k𝜆.

Proof: Suppose that the random variable X represents the minimum of k indepen-
dent exponentially distributed random variables X1,X2,… ,Xk, all with parameter 𝜆.
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To determine the probability density of the minimum, we start with the cumulative
distribution function:

FX(x) = P(X ≤ x),

= P(min(X1,X2,… ,Xk) ≤ x),

= 1 − P(min(X1,X2,… ,Xk) > x).

For the minimum of k random variables to be greater than x, each of them individually
must be greater than x. Hence,

FX(x) = 1 − P(X1 > x and X2 > x and … and Xk > x).

The independence of the random variables X1,X2,… ,Xk allows us to rewrite this
expression as

FX(x) = 1 − P(X1 > x) × P(X2 > x) ×… × P(Xk > x).

As the k random variables X1,X2,… ,Xk are all exponentially distributed with param-
eter 𝜆, for any individual Xi, we have that

P(Xi > x) = 1 − FXi
(x) = 1 − (1 − e−𝜆x) = e−𝜆x.

As a result,
FX(x) = 1 − e−𝜆xe−𝜆x · · · e−𝜆x,

= 1 − (e−𝜆x)k,

= 1 − e−k𝜆x.

This is the cumulative distribution function of an exponentially distributed random
variable with parameter k𝜆. We can therefore conclude that the minimum of
k independent exponentially distributed random variables is also exponentially
distributed. ◾

The exponential density is a special case of the gamma probability density and of
theWeibull probability density. This is useful to know in order to perform calculations
involving exponentially distributed random variables in JMP because there are no
direct functions in JMP for the exponential density. For values of the exponential den-
sity function, fX(x; 𝜆), we can use the formula “GammaDensity(x, 1, 1∕𝜆)” in JMP, or
the function “Weibull Density(x, 1, 1∕𝜆)”. For values of the corresponding cumula-
tive distribution function, FX(x; 𝜆), we can use the function “Gamma Distribution(x,
1, 1∕𝜆)” or “Weibull Distribution(x, 1, 1∕𝜆)”. To determine quantiles or percentiles,
the functions “Gamma Quantile” or “Weibull Quantile” are available. For example,
the median is found with “Gamma Quantile(0.5, 1, 1∕𝜆)” or “Weibull Quantile(0.5,
1, 1∕𝜆)”.
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If you do not have a computer at your disposal, you can rely on tables (see
Appendix D) to calculate probabilities for exponentially distributed random vari-
ables. It is a useful exercise to reconstruct one of these tables by yourself, based on
the cumulative exponential distribution function.

9.3 The gamma density

The gamma probability density has two strictly positive parameters k and 𝜃. The
parameter k is called the shape parameter and the parameter 𝜃 is called the scale
parameter. The probability density function is given by the following expression for
x ≥ 0:

fX(x; k, 𝜃) =
1
𝜃k

⋅ 1
Γ(k)

⋅ xk−1e−
x
𝜃 ,

where Γ() is the gamma function1. The gamma function is a special function, which
is beyond the scope of this book. There is no simple mathematical expression for
the cumulative distribution function of a gamma distributed random variable. The
expected value and the variance of a gamma distributed random variable are

𝜇X = E(X) = k𝜃

and
𝜎
2
X = var(X) = k𝜃2.

A special case of the gamma probability density is the exponential probability den-
sity. Indeed, if k = 1 and 𝜃 = 1∕𝜆, then the gamma probability density simplifies to
the exponential probability density. Another special case of the gamma density is the
𝜒
2 distribution (pronounced chi-squared), which will play a prominent role in the

book Statistics with JMP: Hypothesis Tests, ANOVA and Regression.
The gamma probability density is used for random variables that can only take

positive values, such as themagnitude of insurance claims or the amount of rainfall, as
well as waiting times and lifespans (as the exponential density). Four different gamma
densities are graphically shown in Figure 9.3. All these densities have the same value
for the parameter 𝜃, namely the value 2. However, they have different values for the
parameter k. The density with k = 1 is equal to the exponential probability density
with 𝜆 = 1∕2 (compare this density from Figure 9.3 to the density represented by the
solid line in Figure 9.2a). The gamma densitywith k = 0.9 in Figure 9.3 is very similar
to the exponential density, but it has a larger value at x = 0 and drops to zero faster.
The gamma densities with k > 1 differ substantially from the exponential probability
density because they are not strictly decreasing functions.
In JMP, values of the gamma density function, fX(x; k, 𝜃), can be computed with

the formula “Gamma Density(x, k, 𝜃)”. For values of the corresponding cumulative

1 The gamma function is an extension of the factorial function for integers, n! = n × (n − 1)… 2 × 1. If
z is a positive real number, then Γ(z) = (z − 1)Γ(z − 1) = ∫

+∞
0 e−ttz−1dt. A special case is Γ(1∕2) =

√
𝜋.

In addition, Γ(1) = Γ(2) = 1! = 0! = 1, and Γ(n) = (n − 1)! for all integers n.
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Figure 9.3 Four gamma probability densities with 𝜃 = 2 and k = 0.9 (dotted line),
k = 1 (solid line), k = 2 (dash-dotted line), and k = 4 (dashed line).

distribution function, FX(x; k, 𝜃), the formula “Gamma Distribution(x, k, 𝜃)” can be
used. To determine quantiles or percentiles, the “Gamma Quantile” function is avail-
able. For example, the median is found with the command “Gamma Quantile(0.5,
k, 𝜃)”.

9.4 The Weibull density

Another continuous probability density is the Weibull2 density. This probability den-
sity is used for modeling lifespans, wind speeds and strength measurements, and for
other applications with random variables that can only take values from 0 to+∞. The
Weibull probability density has two strictly positive parameters, k and 𝜃:

fX(x; k, 𝜃) =
k
𝜃

⋅
( x
𝜃

)k−1
⋅ e−(x∕𝜃)

k
.

The corresponding cumulative distribution function is not difficult to derive, and is
equal to

FX(x; k, 𝜃) = 1 − e−(x∕𝜃)
k
.

2 Waloddi Weibull (1887–1979) was a Swedish engineer and mathematician, who used the Weibull
density for strength measurements and other applications on reliability of materials.
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The expected value and the variance of a Weibull distributed random variable are

𝜇X = E(X) = 𝜃 Γ
(
1 + 1

k

)

and

𝜎
2
X = var(X) = 𝜃

2 Γ
(
1 + 2

k

)
− 𝜇

2
X ,

where Γ() is again the gamma function. The median is

𝛾0.5 = 𝜃 {ln(2)}1∕k.

When the parameter k is equal to 1 and the parameter 𝜃 is equal to 1∕𝜆,
the Weibull probability density simplifies to the exponential density. Four different
Weibull densities are graphically shown in Figure 9.4. The density with k = 1 and
𝜃 = 2 is equivalent to the exponential probability density with 𝜆 = 1∕2 (compare this
density from Figure 9.4 to the density represented by the solid line in Figure 9.2a).
Figure 9.4 clearly shows that the shape of the Weibull probability density changes
drastically depending on the parameter values used. The Weibull probability density
is strictly decreasing if k ≤ 1.
It is not difficult to show that the minimum of a set of Weibull distributed random

variables is also Weibull distributed. Earlier in this chapter, we encountered a similar
feature for exponentially distributed random variables. Another interesting exercise
is to demonstrate that, if a random variable X is Weibull distributed, the transformed
random variable Y = aXb (with a > 0 and b > 0) is also Weibull distributed.
In JMP, values of theWeibull density function, fX(x; k, 𝜃), can be computed with the

formula “Weibull Density(x, k, 𝜃)”. For values of the corresponding cumulative dis-
tribution function, FX(x; k, 𝜃), the formula “Weibull Distribution(x, k, 𝜃)” can be used.
To determine quantiles or percentiles, the function “Weibull Quantile” is available.
For example, the median is found with the command “Weibull Quantile(0.5, k, 𝜃)”.
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Figure 9.4 Four Weibull probability densities.
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9.5 The beta density

The exponential probability density, the gamma probability density and the Weibull
probability density all have the interval [0,+∞[ as domain, and thus can serve for
continuous random variables that take only positive real values ranging from 0 to
+∞ (such as waiting times and lifespans). Other continuous probability densities
have the unit interval [0, 1] as domain. An example is the beta density, which has two
strictly positive parameters 𝛼 and 𝛽:

fX(x; 𝛼, 𝛽) =
Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

x𝛼−1(1 − x)𝛽−1,

where Γ() again represents the gamma function. A beta distributed random variable
X has expected value

𝜇X = E(X) = 𝛼

𝛼 + 𝛽

and variance
𝜎
2
X = var(X) = 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
.

The beta probability distribution is suitable for random variables that represent per-
centages or proportions, as percentages and proportions lie between 0 and 1.
Figure 9.5 shows four beta probability densities with 𝛼 = 𝛽. In that case, the beta

probability density is symmetric and the expected value is equal to 1∕2. If 𝛼 = 𝛽 = 1,
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Figure 9.5 Four beta probability densities with 𝛼 = 𝛽.
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Figure 9.6 Four beta probability densities with 𝛽 = 2𝛼.

the beta probability density function is identical to a continuous uniform probability
density on the interval [0, 1]. The figure clearly shows that the variance of a beta
distributed random variable decreases as 𝛼 and 𝛽 increase. Figure 9.6 shows four beta
probability densities for which 𝛽 is twice as large as 𝛼. In that case, the expected value
is equal to 𝛼∕(𝛼 + 𝛽) = 𝛼∕(𝛼 + 2𝛼) = 1∕3. Again, the variance decreases as 𝛼 and 𝛽
increase. Figure 9.7 shows four beta probability densities for which 𝛼 is twice as large
as 𝛽. In that case, the expected value is equal to 𝛼∕(𝛼 + 𝛽) = 2𝛽∕(2𝛽 + 𝛽) = 2∕3.
Here, too, it is obvious that the variance decreases as 𝛼 and 𝛽 increase. Note that the
probability densities in Figure 9.7 are mirror images of the probability densities in
Figure 9.6. Finally, Figure 9.8 shows four beta probability densities for which at least
one of the parameters 𝛼 or 𝛽 is smaller than 1.
In JMP, values of the beta density function, fX(x; 𝛼, 𝛽), can be computed with the

formula “Beta Density(x, 𝛼, 𝛽)”. For values of the corresponding cumulative distri-
bution function, FX(x; 𝛼, 𝛽), the formula “Beta Distribution(x, 𝛼, 𝛽)” can be used.
To determine quantiles or percentiles, the function “Beta Quantile” is available. For
example, the median is found with the command “Beta Quantile(0.5, 𝛼, 𝛽)”.

9.6 Other densities

There are many more densities in the statistical literature. Next to the normal
density, the lognormal density, the uniform density, the exponential density, the
gamma density, the Weibull density, and the beta density, we mention the logistic,
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Figure 9.7 Four beta probability densities with 𝛼 = 2𝛽.
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Figure 9.8 Four beta probability densities with at least one parameter 𝛼 or 𝛽 smaller
than 1.
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Gumbel, Pareto, and Cauchy densities. Each of these densities has its specific
field of application. For example, the Gumbel density is a so-called extreme value
distribution. It is used in areas where researchers are interested in extremely large
values, for example when dealing with diamonds (a single large diamond determines
the profitability of a diamond mine) or in the reinsurance business (reinsurers need
to get an idea of the highest possible claim that they might have to pay sooner
or later).

9.7 Graphical representations and probability
calculations in JMP

To create a graphical representation of a probability density or cumulative distribution
function, your first task is to generate a new data table, as in Figure 9.9. This data table
contains a column with a large number of possible values of the random variable
X. The more values are listed, the more precise the graph will be. This looks like
a lot of work but JMP allows you to create series of values automatically. This is
illustrated in Figure 9.10: in the data table, the first two numbers are entered, with
the intention to generate a long series of numbers 0.00025, 0.0005, 0.00075, 0.001,
0.00125, … , all the way up to the number 1. After entering the numbers 0.00025
and 0.0005, select both numbers and right-click on them. From the resulting pop-up
menu, choose “Fill”, followed by “Continue Sequence to”. Then, JMPwill ask you to
indicate up to which row you want to continue the series. As the final number should

Figure 9.9 Graphical representation of a probability density: Step 1.
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Figure 9.10 Continuing a sequence in JMP.

be 1, we need to specify row number 4000. The resulting data table will then contain
4000 rows.
The next step in the generation of a graph of the probability density is to right-click

on the header of the second column. Next, select the “Formula” option in the resulting
menu, as shown in Figure 8.33. In the dialog window for building the required for-
mula, you then need to select the category “Probability”, after which you can choose
one from a variety of families of probability densities. As an example, we choose
the “Beta Density” and enter the x column and twice the value 3 as arguments (these
values of 3 mean that the beta density with 𝛼 = 3 and 𝛽 = 3 will result). This yields
the formula in Figure 9.11, and, ultimately, the data table shown in Figure 9.12.
The next step is to select the “Graph Builder” in the “Graph” menu. In the “Graph

Builder”, you need to drag the column fX(x) to the “Y” field, and the column x to
the “X” field. You will then see the screen shown in Figure 9.13 with the desired
graph. Note that the “Smoother” button at the top of the “Graph Builder” has been
pressed to ensure that JMP connects the data points using a continuous curve. This
button is indicated in Figure 9.13 by the left arrow. Because we have used a formula
to determine the values of the probability density function, we can also use the button
indicated by the right arrow in Figure 9.13. The latter option usually provides a more
accurate graphical representation.
Of course, we can still refine the graph by right-clicking on the axes, and by chang-

ing the color or thickness of the curve. The legend can be edited by double-clicking
on it.
Creating a graphical representation of a cumulative distribution function for a con-

tinuous random variable is done in a similar way to a graph for a probability density.
To calculate probabilities using known families of probability densities, we

can also use the script “JMP Distribution and Probability Calculator”. A screen
generated by the script is shown in Figure 9.14. The figure shows the probability
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Figure 9.11 Graphical representation of a probability density: Step 2.

Figure 9.12 Graphical representation of a probability density: Step 3.



IMPORTANT CONTINUOUS PROBABILITY DENSITIES 229

Figure 9.13 Graphical representation of a probability density: Step 4.

Figure 9.14 “JMP Distribution and Probability Calculator” to compute the proba-
bility that an exponentially distributed random variable with parameter 𝜆 = 1∕2 (or
a gamma distributed random variable with parameters k = 1 and 𝜃 = 2) takes values
between 1 and 3.
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that an exponentially distributed random variable with parameter 𝜆 = 1∕2, in other
words, a gamma distributed random variable with parameters k = 1 (the shape
parameter) and 𝜃 = 2 (the scale parameter), takes values between 1 and 3.

9.8 Simulating continuous random variables in JMP

We already explained in Section 6.6 how random variables can be simulated for a
predetermined continuous probability density. However, to generate random vari-
ables with a uniform, exponential, gamma, Weibull, or beta density, it is easier to
use existing formulas in JMP.
In order to do so, start with a new data table that has as many rows as you want

pseudo-random numbers. An example of such a table is shown in Figure 8.32 in
Section 8.9. Then, right-click on the header of the second column, and select the
option “Formula” in the resulting pop-up menu, as shown in Figure 8.33. In the
dialog window for building the required formula, you then need to select the “Ran-
dom” option, after which you can choose one from a variety of families of probability
distributions and probability densities (see Figure 8.34) to generate pseudo-random
numbers from. The functions needed to simulate the random variables discussed in
this chapter are “Random Uniform”, “Random Exp”, “Random Gamma”, “Random
Weibull”, and “Random Beta”.

Figure 9.15 Generating pseudo-random numbers from an exponential probability
density with parameter 𝜆 = 1∕2: required formula.
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Figure 9.16 Generating pseudo-random numbers from an exponential probability
density with parameter 𝜆 = 1∕2: final result.

When generating pseudo-random numbers using these functions, the following
points are important:

• If you want to generate uniformly distributed pseudo-random numbers on the
interval [𝛼, 𝛽], then you need the formula “Random Uniform(𝛼, 𝛽)”.

• If you want exponentially distributed pseudo-random numbers with parameter
𝜆, then you need the formula “Random Exp()/𝜆”.

• If you want to generate gamma distributed pseudo-random numbers with
parameters k and 𝜃, then you need the formula “𝜃 * Random Gamma(k)”.

• If you want to generate Weibull distributed pseudo-random numbers with
parameters k and 𝜃, then you need the formula “Random Weibull(k, 𝜃)”.

• If you want to generate beta distributed pseudo-random numbers with param-
eters 𝛼 and 𝛽, then you need the formula “Random Beta(𝛼, 𝛽)”.

Figure 9.15 shows the formula that is needed to generate pseudo-random numbers
from an exponential density with parameter 𝜆 equal to 1∕2. Figure 9.16 contains a
possible final result. The pseudo-random numbers in Figure 9.16 all lie between 0 and
8, with values closer to 0 being more frequent than values closer to 8. This matches
the exponential probability density in Figure 9.14.
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The normal distribution

Nothing seemed to fit, yet there were plenty of clues to indicate everything was somehow
related. I knew the random probability of so many coincidences was zero.

(from The Eight, Katherine Neville, p. 120)

The normal density is undoubtedly the most important density in univariate statistics.
Some reasons for this are:

• Many practical processes generate data that is (more or less) normally
distributed.

• Important functions of normally distributed random variables are again
normally distributed.

• Even important functions of random variables that are not normally distributed
turn out to be approximately normally distributed.

The last two reasons will be exploited on various occasions in the book Statistics with
JMP: Hypothesis Tests, ANOVA and Regression.
The normal density was derived for the first time by Abraham de Moivre

(1667–1754), a French mathematician who made many contributions to mathemat-
ics and probability theory. He obtained the normal density as an approximation of
the binomial distribution in 1733. However, due to a historical error, the discovery
of the normal density was attributed to the German Johann Carl Friedrich Gauss
(1777–1855). The genius Gauss was a nightmare for teachers and professors, so he
had many ups and downs on his way to gaining a diploma and doctorate. In 1809,
he acquired everlasting fame1 by briefly mentioning the normal density in a book
on astronomy. At that time, the density was not yet referred to as the normal density.

1 The portrait of Gauss with the normal density featured on the German 10 mark banknote for many
years (see Figure 10.1).

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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Figure 10.1 Tribute to Gauss: former German 10 mark banknote (Deutsche
Bundesbank, Frankfurt am Main).

This name came in vogue after an influential Belgian statistician, Adolphe Quetelet2

(1796–1874), found out that many physiological and behavioral characteristics
of humans were distributed around the values of a “normal” person according to
this density, which he then logically named normal density. For example, Quetelet
showed that the normal distribution provides a good description for the chest sizes
of 5738 Scottish soldiers. Later, he taught statistics to Florence Nightingale, who
introduced statistical methods in hospitals and, as a result, indirectly saved many
people’s lives.

10.1 The normal density

A random variable X is normally distributed with parameters 𝜇 and 𝜎 if its probability
density is

fX(x;𝜇, 𝜎) =
1

𝜎

√
2𝜋

e
− (x−𝜇)2

2𝜎2 , −∞ < x < +∞,

where the first parameter 𝜇 can be any real number and the second parameter 𝜎 can
be any positive real number.
To indicate that a random variable X is normally distributed with parameters 𝜇 and

𝜎, we use the following notation:

X ∼ N(𝜇, 𝜎2).

Some examples of normal densities are shown in Figure 10.2. The figure shows
that a change of the parameter 𝜇 has no effect on the shape of the curve, but only on
the location. The larger the value of 𝜇, the more the curve of the normal probability
density shifts to the right. The smaller the value of 𝜇, the more the curve of the normal

2 A portrait of Adolphe Quetelet, who also defined the body mass index, featured on a Belgian stamp
published in 1974, the 100th anniversary of his death.
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Figure 10.2 Normal densities for different values of 𝜇 and 𝜎
2. The solid line indi-

cates a (standard) normal density with 𝜇 = 0 and 𝜎
2 = 1, the dotted line indicates

a density with 𝜇 = 0 and 𝜎
2 = 2, and the dashed line indicates a density with 𝜇 = 1

and 𝜎
2 = 1.

probability density shifts to the left. Since𝜇 has no influence on the shape of the curve,
this parameter also has no effect on the variance.
Unlike the parameter 𝜇, the parameter 𝜎 does drive the spread. The larger the value

of 𝜎 (or of 𝜎2), the wider the curve of the normal density. Automatically, the top of
the curve is lower for larger values of 𝜎 or 𝜎2. Conversely, the smaller the value of 𝜎
(or of 𝜎2), the narrower the curve of the normal density, and the higher the top.
For a normally distributed random variable X, it can be shown that

𝜇X = 𝜇

and
𝜎
2
X = 𝜎

2
.

In other words, the two parameters of a normally distributed random variable, 𝜇 and
𝜎, are identical to its expected value and standard deviation.
Other properties of the normal density are the following:

• Any normally distributed random variable can take negative as well as positive
values.

• The normal density is bell-shaped and converges asymptotically to zero for
x → −∞ and x → +∞.

• The density is symmetric around 𝜇. This means that fX(𝜇 + 𝛿;𝜇, 𝜎) = fX(𝜇 −
𝛿;𝜇, 𝜎) for all possible values of 𝛿.



THE NORMAL DISTRIBUTION 235

• The mode, the median, and the expected value of the normal density coincide.

• The density has inflection points at x = 𝜇 − 𝜎 and x = 𝜇 + 𝜎. This can easily
be demonstrated by means of the second derivative.

• There is no analytical expression for the cumulative distribution function. The
function

FX(x;𝜇, 𝜎) = P(X ≤ x) =
∫

x

−∞

1

𝜎

√
2𝜋

e
− (y−𝜇)2

2𝜎2 dy,

some examples of which are shown in Figure 10.3, can only be calculated by
means of numerical methods or using a computer. Seemingly, this implies that
one needs tables for all possible values of 𝜇 and 𝜎 to determine probabilities
for normally distributed random variables. However, because a linear transfor-
mation of a normally distributed random variable also is a normally distributed
random variable (see Theorem 10.1.1 on page 236), we only need the table for
the so-called standard normal density. The standard normal density is a nor-
mal density with 𝜇 = 0 and 𝜎 = 1. It is depicted by the solid line in Figure 10.2.

For a standard normal random variable, it is customary to use the letter Z instead
of the letter X. The standard normal density is

fZ(z) =
1

√
2𝜋

e−
z2

2 , −∞ < z < +∞.
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Figure 10.3 Cumulative normal distribution functions corresponding to the densi-
ties in Figure 10.2.
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The corresponding cumulative distribution function is denoted by

Φ(z) = FZ(z) = P(Z ≤ z) =
∫

z

−∞

1
√
2𝜋

e−
u2

2 du.

As already mentioned previously, to be able to calculate probabilities for normally
distributed random variables before the computer age, we had to rely on tables. The
following theorem was then indispensable:

Theorem 10.1.1 A linear transformation Y = g(X) = aX + b of a normally dis-
tributed random variable X with expected value 𝜇 and variance 𝜎

2 is itself a
normally distributed random variable with expected value E(Y) = a𝜇 + b and
variance var(Y) = a2𝜎2.

Proof: The proof of this theorem is a simple application of Equation (6.1) in
Section 6.4.2. Because x = g−1(y) = (y − b)∕a, we have that

dx
dy

= 1
a
,

and that

fY (y) = fX(x)
||||
dx
dy

||||
,

= fX

(
y − b

a

)
||||
1
a

||||
,

= 1

𝜎

√
2𝜋

e
−

(
y−b
a −𝜇

)2

2𝜎2
||||
1
a

||||
,

= 1

𝜎

√
2𝜋

e
− (y−b−a𝜇)2

2a2𝜎2
||||
1
a

||||
,

= 1

|a|𝜎
√
2𝜋

e
− (y−(a𝜇+b))2

2(|a|𝜎)2 ,

which corresponds to a normally distributed random variable with mean a𝜇 + b and
variance a2𝜎2. The standard deviation is |a|𝜎. ◾

An immediate consequence of this theorem is that the random variable

Z = X − 𝜇

𝜎

,

where X is normally distributed with expected value 𝜇 and variance 𝜎2, has a standard
normal distribution.
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10.2 Calculation of probabilities for normally
distributed variables

Nowadays, it is easy to determine probabilities for normally distributed random vari-
ables with a computer. In this section, we show how to calculate such probabilities
without a computer. In addition, we illustrate how probabilities for normally dis-
tributed random variables can be calculated in JMP.

10.2.1 The standard normal distribution

The cumulative distribution function for a standard normal random variable is avail-
able in tables, which allow the determination of probabilities for variables with a
standard normal distribution. An example of such a table is shown in Appendix E.
This table contains the so-called exceedance probabilities P(Z ≥ z) for z ≥ 0. For
example, we can read from the table that P(Z ≥ 1.54) = 0.06178. Since Z is a con-
tinuous random variable, it is also true that P(Z > 1.54) = 0.06178. This probability
corresponds to the shaded area under the curve in Figure 10.4.
If we are interested in a probability of the form P(Z ≤ z) with z ≥ 0, then we can

still use the table, but it requires a little detour. To do so, we have to remember that
P(Z ≤ z) = 1 − P(Z > z) = 1 − P(Z ≥ z). As a result, we need to search for P(Z ≥ z)
in the table. For example,P(Z ≤ 1.54) = 1 − P(Z ≥ 1.54) = 1 − 0.06178 = 0.93822.
This probability corresponds to the white area under the curve in Figure 10.4.
If z ≤ 0, then we can get a probability of the form P(Z ≤ z) by making use of the

symmetry of the standard normal distribution around 0. Due to the symmetry, P(Z ≤

0.0

0.1

0.2

0.3

0.4

f Z
(z

)

–3 –2 –1 0 1 2 31.54
z

Figure 10.4 Standard normal probability density. The shaded area under the curve
represents the probability P(Z ≥ 1.54). The white area under the curve represents the
probability P(Z ≤ 1.54).
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Figure 10.5 Standard normal probability density. The shaded area on the left indi-
cates the probability P(Z ≤ −1.54), while the shaded area on the right represents
the probability P(Z ≥ 1.54) . Both probabilities are equal. The white area under the
curve represents the probability P(−1.54 ≤ Z ≤ 1.54).

z) = P(Z ≥ −z). For example, Figure 10.5 shows that the probabilities P(Z ≤ −1.54)
and P(Z ≥ 1.54) are the same. The white area under the curve in the figure indicates
the probability P(−1.54 ≤ Z ≤ 1.54). The figure clearly shows that

P(−1.54 ≤ Z ≤ 1.54) = 1 − P(Z ≤ −1.54) − P(Z ≥ 1.54),

= 1 − P(Z ≥ 1.54) − P(Z ≥ 1.54),

= 1 − 2 P(Z ≥ 1.54),

= 1 − 2 × 0.06178,

= 0.87644.

In general, if z ≥ 0, then P(−z ≤ Z ≤ z) = 1 − 2 P(Z ≥ z). A probability of the form
P(Z ≥ z), with z ≤ 0, can be calculated as

P(Z ≥ z) = P(Z ≤ −z) = 1 − P(Z ≥ −z).

For example,

P(Z ≥ −1.54) = P(Z ≤ 1.54) = 1 − P(Z ≥ 1.54) = 1 − 0.06178 = 0.93822.

10.2.2 General normally distributed variables

Theorem 10.1.1 allows us to apply the table in Appendix E to any normally distributed
random variable. Indeed, if X is a normally distributed random variable with expected
value 𝜇 and variance 𝜎2, then
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P(a ≤ X ≤ b) = P(a − 𝜇 ≤ X − 𝜇 ≤ b − 𝜇),

= P

(
a − 𝜇

𝜎

≤
X − 𝜇

𝜎

≤
b − 𝜇

𝜎

)
,

= P

(
a − 𝜇

𝜎

≤ Z ≤
b − 𝜇

𝜎

)
,

= P
(
Z ≥

a − 𝜇

𝜎

)
− P

(
Z ≥

b − 𝜇

𝜎

)
.

These last two probabilities can be obtained directly or indirectly from the table in
Appendix E, as we explained in Section 10.2.1. For example, assume that the random
variable X is normally distributed with expected value 80 and variance 25. The stan-
dard deviation of X is thus equal to 5. The probability that X takes a value between
72.3 and 87.7 is

P(72.3 ≤ X ≤ 87.7) = P(72.3 − 80 ≤ X − 80 ≤ 87.7 − 80),

= P(−7.7 ≤ X − 80 ≤ 7.7),

= P
(−7.7

5
≤

X − 80
5

≤
7.7
5

)
,

= P(−1.54 ≤ Z ≤ 1.54),

= 1 − 2 P(Z ≥ 1.54),

= 0.87644.

This probability is shown in Figure 10.6 by means of the shaded area.
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Figure 10.6 Normal density with expected value 80 and variance 25. The shaded
area represents the probability P(72.3 ≤ X ≤ 87.7).
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10.2.3 JMP

Obviously, it is easier to make use of available software to calculate probabilities for
normally distributed random variables than to use the table in Appendix E. Both the
normal densities and the corresponding cumulative distribution functions are avail-
able in JMP. The required formulas are “Normal Density(x, 𝜇, 𝜎)” and “Normal
Distribution(x, 𝜇, 𝜎)”. If you omit the last two arguments of these formulas, by only
typing “Normal Density(x)” or “Normal Distribution(x)”, then JMP assumes that you
want to use the standard normal density with expected value 0 and variance 1.
For the calculation of the probability P(Z ≤ 1.54) for a standard normal random

variable Z, alternatively, you can enter the JMP formula “Normal Distribution(1.54,
0, 1)” or “Normal Distribution(1.54)”. If you want to determine the probability
P(72.3 ≤ X ≤ 87.7) for a normally distributed random variable X with expected
value 80 and standard deviation 5, you should use the command “Normal Distribu-
tion(87.7, 80, 5)−Normal Distribution(72.3, 80, 5)”. Another option is to use the
script “Distribution and Probability Calculator”. Figure 10.7 shows the probability
P(72.3 ≤ X ≤ 87.7) for the normally distributed random variable X determined by
means of the script.
If you want to determine quantiles or percentiles for a normally distributed random

variable X, you should use the function “Normal Quantile(p, 𝜇, 𝜎)”. If you need
quantiles or percentiles of a standard normal random variable, “Normal Quantile(p)”

Figure 10.7 Using the “Distribution and Probability Calculator” to compute the
probability P(72.3 ≤ X ≤ 87.7).
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Figure 10.8 Using the “Distribution and Probability Calculator” to compute the
10th quantile or percentile of a standard normal random variable.

is sufficient. The 10th and 90th quantile or percentile of a standard normal variable
are −1.28155 and 1.28155, respectively. The required commands for these values are
“Normal Quantile(0.1)” and “Normal Quantile(0.9)”. Again, an alternative is to make
use of the “Distribution and Probability Calculator”. This is illustrated in Figure 10.8,
where the 10th percentile of a standard normal random variable is computed.
Note that the 10th and the 90th percentiles of a standard normal random variable

only differ in their sign. This follows from the fact that the standard normal distribu-
tion is symmetric around 0.

10.2.4 Examples

Example 10.2.1 The following probabilities have some interesting applications:

P(𝜇 − 𝜎 ≤ X ≤ 𝜇 + 𝜎) = P(𝜇 − 𝜎 − 𝜇 ≤ X − 𝜇 ≤ 𝜇 + 𝜎 − 𝜇),

= P(−𝜎 ≤ X − 𝜇 ≤ 𝜎),

= P

(
−𝜎
𝜎

≤
X − 𝜇

𝜎

≤
𝜎

𝜎

)
,

= P(−1 ≤ Z ≤ 1),

= P(Z ≥ −1) − P(Z ≥ 1),
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= 1 − P(Z ≥ 1) − P(Z ≥ 1),

= 1 − 2 P(Z ≥ 1),

= 1 − 2 × 0.15866,

= 0.68268;

P(𝜇 − 2𝜎 ≤ X ≤ 𝜇 + 2𝜎) = 1 − 2 P(Z ≥ 2),

= 1 − 2 × 0.02275,

= 0.9545;

P(𝜇 − 3𝜎 ≤ X ≤ 𝜇 + 3𝜎) = 1 − 2 P(Z ≥ 3),

= 1 − 2 × 0.00135,

= 0.9973.

For the last but one step in the three calculations, we used the table in Appendix E.
The interpretation of the results in this example is that approximately 68% of the
observations from a normally distributed population are less than one standard devi-
ation away from their expected value. About 95%of the data is less than two standard
deviations away, and 99.7% of the data is less than three standard deviations away
from their expected value.
The calculations in this example offer us the opportunity to counter a common

criticism on the use of the normal distribution in practice. Critics point out that the
normal distribution is often used for random variables that can only take positive
values (lengths, weights, … ), despite the fact that the distribution allows values from
−∞ to +∞. However, if the value of zero is more than three standard deviations
away from the expected value of the normal distribution, then this distribution will
only very rarely generate a negative value. Consequently, in these cases, the normal
distribution can be safely used.

Example 10.2.2 Scores on intelligence tests typically follow a normal distribution.
The tests can be constructed in such a way that the median or the mean of the dis-
tribution is equal to 100 and the standard deviation is equal to 15. This is illustrated
in Figure 10.9. Table 10.1 shows how IQ scores are used in the healthcare sector to
classify less gifted people. In addition, we have the following facts:

• The lower limit for admission to the army of the United States is 70.

• Actress Sharon Stone is supposed to have an IQ score of 154.

• MENSA is an international organization whose sole criterion for membership
is a score at or above the 98th percentile on a standardized IQ test that has
been taken under supervision. This means the requirement is a score of 130 or
more.
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Figure 10.9 IQ scores and the normal density.

Table 10.1 Terminology used in the healthcare sector.

Term Interval

Normally gifted IQ ≥ 85
Retarded 70 ≤ IQ < 85
Mildly mentally disabled 50 ≤ IQ < 70
Moderately mentally disabled 35 ≤ IQ < 50
Severely mentally disabled 20 ≤ IQ < 35
Very severely mentally disabled IQ < 20

Example 10.2.3 For the construction of confidence intervals (see the book Statistics
with JMP: Hypothesis Tests, ANOVA and Regression), it is useful to know that

P(𝜇 − 1.645𝜎 ≤ X ≤ 𝜇 + 1.645𝜎) = 90%,

P(𝜇 − 1.96𝜎 ≤ X ≤ 𝜇 + 1.96𝜎) = 95%,

and
P(𝜇 − 2.576𝜎 ≤ X ≤ 𝜇 + 2.576𝜎) = 99%.

Example 10.2.4 The label on a package indicates 16 grams as minimum net weight.
However, the fillingmachine does not always deposit exactly 16 grams in the package:
the net weight is normally distributed around the setting point of the filling machine,
with a standard deviation of 0.2 grams.
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1. Suppose that the machine is set to a weight of 16.32 grams. What percentage
of the filled packages will have a weight lower than the 16 grams mentioned on
the package? If X represents the net weight of a package, then the percentage
is given by

P(X < 16) = P
(X − 16.32

0.2
<

16 − 16.32
0.2

)
,

= P(Z < −1.6),

= P(Z > 1.6),

= P(Z ≥ 1.6),

= 0.0548.

Therefore, slightly more than 5% of all packages will be too light. The last
probability can be looked up in the table in Appendix E, or calculated using the
formula “1 − Normal Distribution(1.6)” in JMP. An alternative is to calculate
the probability P(X < 16) directly by using the formula “Normal Distribu-
tion(16,16.32,0.2)” or by using the “Distribution and Probability Calculator”.

2. To which value of 𝜇 should the machine be set to ensure that only 1% of all
packages have a net weight of less than 16 grams? If the random variable X
again represents the net weight of an individual package, then the imposed
condition is P(X < 16) = 0.01. Now,

P(X < 16) = P

(
X − 𝜇

0.2
<

16 − 𝜇

0.2

)
,

= P

(
Z <

16 − 𝜇

0.2

)
.

The table in Appendix E tells us that P(Z ≥ 2.33) = 0.0099 ≈ 0.01. Conse-
quently, P(Z < −2.33) is also equal to 0.0099 ≈ 0.01. Therefore, to find the
desired value of 𝜇, the equation

16 − 𝜇

0.2
= −2.33

has to be solved. This results in a value of 16.466 for 𝜇. An alternative to find
the value−2.33 is to make use of the formula “Normal Quantile(0.01)” in JMP,
or to use the “Distribution and Probability Calculator”.

3. Increasing the setting value 𝜇 of the filling machine is one solution of the prob-
lem. However, it is expensive because most of the packages will be overfilled.
Another solution might be to buy a new machine that operates more precisely,
that is, with a smaller standard deviation. The same effect can be achieved by
a better maintenance of the machine, or by replacing parts that are worn out.
How small must the standard deviation 𝜎 be so that keeping the original setting
of 16.32 grams yields only 1% of packages with insufficient weight? Again, the
imposed condition is P(X < 16) = 0.01. However, now we have that
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P(X < 16) = P
(X − 16.32

𝜎

<
16 − 16.32

𝜎

)
,

= P
(
Z <

16 − 16.32
𝜎

)
.

We already know that P(Z ≥ 2.33) = 0.0099 ≈ 0.01, and that, consequently,
P(Z < −2.33) = 0.0099 ≈ 0.01. To find the required standard deviation 𝜎, we
therefore have to solve the equation

16 − 16.32
𝜎

= −2.33.

This returns 𝜎 = 0.1373 as the solution to the problem.

Due to the Japanese quality guru Genichi Taguchi, reducing the variability in prod-
ucts and processes is now one of the key ideas in quality management. Therefore, it
is one of the main objectives of the immensely popular quality improvement program
Six Sigma, as the “Sigma” in the name suggests. This is illustrated in the following
example.

Example 10.2.5 Six Sigma is a brand name of a training program for quality man-
agers. The ultimate goal of the training program is to develop processes that generate
less than 3.4 defects per million opportunities (3.4 parts per million, abbreviated as
ppm). This is achieved by reducing the variance of the process in such a way that
the target value of the process is at least six standard deviations 𝜎 (hence the name)
away from the specification limits.
Specification limits are upper and lower limits that a certain characteristic of a

product must satisfy. These limits are typically specified by a customer. For example,
a customer who orders elevator cables may want cables with a diameter of 1 cm, and
typically defines an interval, such as [0.99 cm, 1.01 cm], of acceptable values for the
thickness. The limits of this interval are called specification limits: the lower limit
is the lower specification limit (LSL) and the upper limit is the upper specification
limit (USL). The target (T) here is 1 cm.
The intended situation is shown in Figure 10.10: the mean or expected value 𝜇 of

the production process, which is represented by the normal density, coincides with the
target value. The variance of the production process is so small that LSL and USL
are 6 standard deviations or 6𝜎 away from the process mean 𝜇. In this situation, the
probability of a product being rejected, is equal to

P(rejected product) = P( product characteristic is out of specification limits),

= P(X ≤ LSL or X ≥ USL),

= P(X ≤ LSL) + P(X ≥ USL),

= P

(
X − 𝜇

𝜎

≤
LSL − 𝜇

𝜎

)
+ P

(
X − 𝜇

𝜎

≥
USL − 𝜇

𝜎

)
,
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Figure 10.10 Centered 6𝜎-process.

= P

(
X − 𝜇

𝜎
≤

−6𝜎
𝜎

)
+ P

(
X − 𝜇

𝜎
≥

6𝜎
𝜎

)
,

= P(Z ≤ −6) + P(Z ≥ 6),

= 2 P(Z ≥ 6),

= 2 × 0.000000001,

= 0.002
1000000

,

= 0.002 ppm.

We used JMP to compute the probability P(Z ≥ 6) in the penultimate step of this
calculation because this probability is so small that it is not listed in the table in
Appendix E. The result 0.002 ppm means that on average only 0.002 per million
produced products will not satisfy the specifications.
A centered process, where the process mean 𝜇 is exactly equal to the target T, thus

results in very few defects. Now, you might wonder, why the Six Sigma program is
associated with an error rate of 3.4 ppm. Indeed, in this centered process we found
a defect rate much smaller than 3.4 ppm. The reason for this is that the Six Sigma
program assumes that it is extremely difficult to keep the process mean 𝜇 exactly
equal to the target value T. Therefore, it is part of the Six Sigma philosophy to allow
the process mean 𝜇 to deviate up to 1.5𝜎 from the target value T. The situation in
which the process mean 𝜇 differs by 1.5𝜎 from the target T is shown in Figure 10.11.
Possible reasons for such deviations include wear of the equipment, or fatigue of the
operator. The probability of rejection in the situation depicted in Figure 10.11 is

P(rejected product) = P(X ≤ LSL) + P(X ≥ USL),

= P

(
X − 𝜇

𝜎

≤
LSL − 𝜇

𝜎

)
+ P

(
X − 𝜇

𝜎

≥
USL − 𝜇

𝜎

)
,
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Figure 10.11 Non-centered 6𝜎-process.

= P

(
X − 𝜇

𝜎

≤
−7.5𝜎
𝜎

)
+ P

(
X − 𝜇

𝜎

≥
4.5𝜎
𝜎

)
,

= P(Z ≤ −7.5) + P(Z ≥ 4.5),

= 0 + 0.0000034,

= 3.4 ppm.

10.3 Lognormal probability density

A normally distributed random variable takes values between −∞ and +∞. In
Chapter 9, we have already encountered several probability densities of random
variables that only take values between 0 and +∞. The lognormal probability
density, which is closely related to the normal density, is another probability density
that is suitable for random variables that only take non-negative real values.
A random variable X is lognormally distributed if its probability density is given

by

fX(x;𝜇, 𝜎) =
1

x𝜎
√
2𝜋

e
− (ln x−𝜇)2

2𝜎2 , 0 < x < +∞.

The expected value of a lognormally distributed random variable is equal to

𝜇X = E(X) = e 𝜇+𝜎2∕2
,

and its variance is equal to

𝜎
2
X = var(X) = (e𝜎2 − 1)e 2𝜇+𝜎2

.
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Figure 10.12 Four different lognormal probability densities.

The median is
𝛾0.5 = e𝜇,

and the mode is e𝜇−𝜎
2
. Some lognormal probability densities, with 𝜇 equal to 0 or 1

and 𝜎 equal to 1 or 1.5, are shown in Figure 10.12.
The lognormal probability density has many successful applications, including

lengths, weights, sizes of cities, the maximum amount of rainfall, income, interest
rates, and price indices.
If a random variable X is lognormally distributed with parameters 𝜇 and 𝜎, the

transformed random variable Y = ln(X) is normally distributed with expected value
𝜇 and variance 𝜎2. It is a useful exercise to demonstrate this. The proof of this property
is analogous to the proof of Theorem 10.1.1. The converse is also true: if a random
variable X is normally distributed with expected value 𝜇 and variance 𝜎

2, then the
random variable Y = eX is lognormally distributed with parameters 𝜇 and 𝜎.
It is not difficult to show somemore properties of the lognormal probability density:

• If a random variable X is lognormally distributed with parameters 𝜇 and 𝜎, then
the transformed random variable Y1 = 1∕X is also lognormally distributed, but
with parameters −𝜇 and 𝜎.

• If a random variable X is lognormally distributed with parameters 𝜇 and 𝜎,
then the transformed random variable Y2 = aX, where a is a strictly positive
constant, is also lognormally distributed, but with parameters ln(a) + 𝜇 and 𝜎.

• If a random variable X is lognormally distributed with parameters 𝜇 and 𝜎,
then the transformed random variable Y3 = Xa, where a is a non-zero constant,
is also lognormally distributed, but with parameters a𝜇 and |a|𝜎.
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• If a random variable X is lognormally distributed with parameters 𝜇 and 𝜎,
then the transformed random variable Y4 = bXa, where a is a non-zero con-
stant and b a strictly positive constant, is also lognormally distributed, but with
parameters ln(b) + a𝜇 and |a|𝜎. This follows from combining the results for
Y2 and Y3.

The starting point for proving these properties is always that ln(X) is normally dis-
tributed with expected value 𝜇 and variance 𝜎2 if X is lognormally distributed with
parameters 𝜇 and 𝜎. We begin with the random variable Y1 = 1∕X. The natural log-
arithm of Y1 is

ln(Y1) = ln
( 1
X

)
= ln(1) − ln(X) = 0 − ln(X) = − ln(X).

Since ln(X) is normally distributed with expected value 𝜇 and variance 𝜎2, we know
that − ln(X) is normally distributed with expected value −𝜇 and variance 𝜎

2. This
follows from Theorem 10.1.1. Consequently,

Y1 = eln(Y1) = e− ln(X)

is lognormally distributed with parameters −𝜇 and 𝜎.
Next, we look at the random variable Y2 = aX. The natural logarithm of Y2 is

ln(Y2) = ln(aX) = ln(a) + ln(X).

Since ln(X) is normally distributed with expected value 𝜇 and variance 𝜎2, we know
that ln(a) + ln(X) is normally distributed with expected value ln(a) + 𝜇 and variance
𝜎
2. This again follows from Theorem 10.1.1. Hence,

Y2 = eln(Y2) = eln(a)+ln(X)

is lognormally distributed with parameters ln(a) + 𝜇 and 𝜎.
Finally, we consider the random variable Y3 = Xa. The natural logarithm of Y3 is

ln(Y3) = ln(Xa) = a ln(X).

Since ln(X) is normally distributed with expected value 𝜇 and variance 𝜎2, we know,
again from Theorem 10.1.1, that a ln(X) is normally distributed with expected value
a𝜇 and variance a2𝜎2. Hence, the standard deviation is |a|𝜎 and

Y3 = eln(Y3) = ea ln(X)

is lognormally distributed with parameters a𝜇 and |a|𝜎.

Example 10.3.1 The yield of an investment fund, expressed in %, is lognormally
distributed with parameters 𝜇 = 0.5 and 𝜎 = 0.75. Determine the probability that
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Figure 10.13 Using the “Distribution and Probability Calculator” to compute the
probability P(X ≥ 5) for a lognormally distributed random variable.

the yield of the investment fund is greater than or equal to 5%. If we denote the yield
using the variable X, then the probability we seek is equal to

P(X ≥ 5) = P(ln(X) ≥ ln(5)).

Since ln(X) is normally distributed with expected value 𝜇 = 0.5 and standard devia-
tion 𝜎 = 0.75, we can determine this probability as follows:

P(X ≥ 5) = P(ln(X) − 0.5 ≥ ln(5) − 0.5),

= P

(
ln(X) − 0.5

0.75
≥

ln(5) − 0.5
0.75

)
,

= P(Z ≥ 1.47925055),

= 0.06954.

Figure 10.13 illustrates how this probability can be determined with the “Distribution
and Probability Calculator” in JMP.

Example 10.3.2 In Example 10.2.1, we learnt that

P(𝜇 − 𝜎 ≤ X ≤ 𝜇 + 𝜎) = 0.68268,

P(𝜇 − 2𝜎 ≤ X ≤ 𝜇 + 2𝜎) = 0.9545,
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and
P(𝜇 − 3𝜎 ≤ X ≤ 𝜇 + 3𝜎) = 0.9973,

if X is normally distributed with expected value 𝜇 and variance 𝜎2. It follows that

P(e𝜇−𝜎 ≤ eX ≤ e𝜇+𝜎) = 0.68268,

P(e𝜇−2𝜎 ≤ eX ≤ e𝜇+2𝜎) = 0.9545,

and

P(e𝜇−3𝜎 ≤ eX ≤ e𝜇+3𝜎) = 0.9973.

In these expressions, eX is lognormally distributed with parameters 𝜇 and 𝜎. The
expressions can be rewritten as

P(e𝜇e−𝜎 ≤ eX ≤ e𝜇e𝜎) = P
(e𝜇

e𝜎
≤ eX ≤ e𝜇e𝜎

)
= 0.68268,

P(e𝜇e−2𝜎 ≤ eX ≤ e𝜇e2𝜎) = P
( e𝜇

e2𝜎
≤ eX ≤ e𝜇e2𝜎

)
,

= P

(
e𝜇

(e𝜎)2
≤ eX ≤ e𝜇(e𝜎)2

)
,

= 0.9545,

and

P(e𝜇e−3𝜎 ≤ eX ≤ e𝜇e3𝜎) = P
( e𝜇

e3𝜎
≤ eX ≤ e𝜇e3𝜎

)
,

= P

(
e𝜇

(e𝜎)3
≤ eX ≤ e𝜇(e𝜎)3

)
,

= 0.9973.

The values e𝜇 and e𝜎 are the geometric mean and the geometric standard devia-
tion, respectively, of a lognormally distributed random variable. Just as the geometric
mean was an alternative to the arithmetic mean in Chapter 3, the geometric mean
and geometric standard deviation are alternatives to the expected value and the ordi-
nary standard deviation here. If we introduce the notation 𝜇∗ for the geometric mean
and 𝜎

∗ for the geometric standard deviation, then we can state that a lognormally
distributed random variable takes values in the interval [𝜇∗∕𝜎∗

, 𝜇
∗
𝜎
∗] with a proba-

bility of 68.268%, in the interval [𝜇∗∕𝜎∗2
, 𝜇

∗
𝜎
∗2] with a probability of 95.45%, and

in the interval [𝜇∗∕𝜎∗3
, 𝜇

∗
𝜎
∗3] with a probability of 99.73%.
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Multivariate random variables

Goldfarb was there with his friends from Lowell House. They were sitting in a cor-
ner of the room, deeply entrenched in a discussion over a matter of life and death,
namely the game-theoretical aspects of blackjack and whether or not it was possible to
cheat the bank using purely mathematical principles… She didn’t interrupt her danc-
ing for so much as a nanosecond, but she waved at the boys, or so it seemed, with
the sparkling white rubber soles of her flat shoes, thereby drawing even more attention
to those marvelous legs. For one long agonizing moment, the four boys each indepen-
dently considered the possibility that the development of an ultimate probability theory
for casino-goers might be just an idle pastime…On top of that, all their calculations
on paper napkins and even the quick simulation study with a real deck of cards had led
the group of friends to the final conclusion – unanticipated yet uncontested – that there
is after all an untraceable element of chance in blackjack, and this had made them all
feel inexplicably blue.

(from Omega Minor, Paul Verhaeghen, pp. 167–170)

11.1 Introductory notions

A (univariate) random variable, as introduced in Chapter 6, assigns one real number to
each outcome of an experiment. If several real numbers are assigned to each outcome,
we have a multivariate random variable. For a k-variate random variable, k numbers
are assigned to an outcome 𝜔. We can denote these numbers by x1(𝜔), x2(𝜔),… ,
xk(𝜔). This notation emphasizes the fact that a random variable is a function. Usually,
however, the k numbers are indicated by x1, x2,… , xk instead. Those numbers are
realizations of the k-variate random variable1 Xk = (X1,X2,… ,Xk). Again, capital

1 Sometimes, this variable is also called a probability vector instead of a multivariate random variable.

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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letters are used to indicate random variables and lowercase letters are used to indicate
real values or realizations of random variables. Bold letters indicate vectors.

Example 11.1.1 An experiment consists of throwing a red and a blue die. A bivariate
random variable can be defined as X2 = (X1,X2), where X1 represents the number of
dots on the red die and X2 represents the number of dots on the blue die.

Example 11.1.2 A cross-hatch test is a test to evaluate the quality of adhesion per-
formed by pulling off an adhesive tape applied to a surface. The adhesion can be
“perfect”, “excellent”, “good”, or “insufficient”. An experiment consists of carrying
out the test on a specific product. A four-variate random variable is defined as

X1 = 1,X2 = 0,X3 = 0,X4 = 0, if the adhesion is perfect,

X1 = 0,X2 = 1,X3 = 0,X4 = 0, if the adhesion is excellent,

X1 = 0,X2 = 0,X3 = 1,X4 = 0, if the adhesion is good,

X1 = 0,X2 = 0,X3 = 0,X4 = 1, if the adhesion is insufficient.

This four-variate random variable can be simplified to a three-variate random vari-
able with no loss of information:

X = 1,Y = 0,Z = 0, if the adhesion is perfect,

X = 0,Y = 1,Z = 0, if the adhesion is excellent,

X = 0,Y = 0,Z = 1, if the adhesion is good,

X = 0,Y = 0,Z = 0, if the adhesion is insufficient.

The reason why this simplification can be made is that X1, X2, X3, and X4 are con-
nected by the constraint X1 + X2 + X3 + X4 = 1. Because of this constraint, the fourth
variable can be determined from the other three.

Example 11.1.3 The surface tension of a plastic material is the sum of a polar and a
dispersive component. If an experiment involves measuring the dispersive and polar
surface tension, then a bivariate random variable is given byX2 = (X1,X2), where X1
is the dispersive surface tension of the material, and X2 is the polar surface tension.
The surface tension of materials largely determines how easy or how difficult it is to
make a coating stick to a surface.

Example 11.1.4 An economist examines household incomes and interviews
members of several families in France. The researcher is particularly interested in
a bivariate random variable X2 = (X1,X2), where X1 represents the income of the
householder and X2 the income of his/her partner.

These examples show that multivariate random variables can, as univariate ran-
dom variables, be discrete or continuous. In the next sections, we focus on discrete
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bivariate random variables. Then, we briefly study continuous multivariate and, in
more detail, continuous bivariate random variables, which require the use of multiple
integrals. An extension to higher dimensions (i.e., to situations with more than two
random variables) is conceptually not difficult, but the notation quickly becomes a
little confusing.
In the statistical literature, it is common to use the letters X and Y for bivariate

random variables instead of the symbols X1 and X2. Therefore, in the remainder of
this book, we denote the two random variables of a bivariate probability distribution
or probability density by X and Y . We call the pair (X, Y) a bivariate random variable.
For trivariate probability distributions or densities, one will often find the letters X,
Y , and Z for the three random variables involved.

Example 11.1.5 An experiment consists of randomly drawing a letter that will be
delivered by the Royal Mail. With each letter, two real numbers are associated. The
first number is a 1 or a 0, depending on whether the letter is a First Class letter or not.
The second number is the number of days the Royal Mail needs to deliver the letter.
Consequently, (X,Y) is a bivariate random variable, with 0 and 1 as possible values
for X, and 0, 1, 2,… as possible values for Y. Randomly selecting a letter yields a
realization of the bivariate random variable, leading to an observed or realized value
x for X and an observed or realized value y for Y.

11.2 Joint (discrete) probability distributions

For a bivariate discrete random variable (X,Y), the joint discrete probability distribu-
tion is defined as

pXY (x, y) = P(X = x, Y = y),

= P{(X = x) ∩ (Y = y)}.

If D is the set of all possible combinations of values of the bivariate random variable
(X,Y), then the probability distribution satisfies the conditions

0 ≤ pXY(x, y) ≤ 1,

and ∑

(x,y)∈D
pXY (x, y) = 1.

Example 11.2.1 In Table 11.1, a bivariate probability distribution for the bivariate
discrete random variable defined in Example 11.1.5 is given. For instance, the prob-
ability that a random letter we select is a First Class letter that arrives after one day
equals pXY (1, 1) = P(X = 1, Y = 1) = 0.40. A graphical representation of the proba-
bility distribution is shown in Figure 11.1. To reproduce this figure in JMP, you need to
create a data table with three columns (Shipment, Days, and pXY), using the data from
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Table 11.1 Bivariate probability distribution of
Example 11.2.1.

Y

1 2 3 4

X 1 First Class 0.400 0.060 0.035 0.005
0 Second Class 0.180 0.225 0.085 0.010
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Figure 11.1 Graphical representation of the bivariate probability distribution in
Table 11.1.

Table 11.1. Then, you need to select the option “Scatterplot 3D” from the “Graph”
menu, and enter the columns “Shipment”, “pXY”, and “Days”, in this order, as “Y”
columns. In the resulting output, you then have to click on the hotspot (red triangle)
next to the term “Scatterplot 3D” and choose the option “Drop Lines”. By adjusting
the “Drop Line Thickness” in the same menu, you can change the thickness of the
lines according to your taste.
The probability that a randomly selected letter is on the way for at most two days

and is not a First Class letter is equal to

P{(X = 0) ∩ (Y ≤ 2)} = P{(X = 0) ∩ (Y = 1)} + P{(X = 0) ∩ (Y = 2)},

= pXY (0, 1) + pXY (0, 2),

= 0.18 + 0.225,

= 0.405.
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Of course, there is an analogy between the concept of the joint probability dis-
tribution and the relative frequency distribution in Table 4.2 in Example 4.2.2. The
frequency, however, relates to sample data, while the probability distribution refers
to a population or a process.

11.3 Marginal or unconditional (discrete) probability
distribution

We again consider a bivariate discrete random variable (X, Y) with joint probability
distribution pXY (x, y). A natural question that arises is whether individual univari-
ate probability distributions for X and Y can be derived from the joint probability
distribution. The answer to this question is affirmative. These individual probability
distributions are called marginal or unconditional distributions. There is essentially
no difference between a marginal probability distribution of X or Y and a univariate
probability distribution of X or Y , as introduced in Chapter 6. By using the adjective
marginal, however, we emphasize that the distribution was derived from a multivari-
ate probability distribution.
If (X,Y) is a bivariate discrete random variable with probability distribution

pXY (x, y), then the marginal (or unconditional) distributions of X and Y are

pX(x) =
∑

y

pXY (x, y)

and
pY(y) =

∑

x

pXY(x, y),

respectively. In the expression for pX(x), we sum over all possible values of Y , while,
in the expression for pY (y), the sum is over all possible values of X.

Example 11.3.1 The marginal distributions of X and Y in Example 11.2.1 are shown
in Table 11.2. It is easy to verify that, for example, pX(1) is obtained by summing all
probabilities in the first row of Table 11.1. In the same way, pY (2) is obtained by
adding up all probabilities in the second column of Table 11.1. All row totals form
the marginal probability distribution of X, while all column totals form the marginal
probability distribution of Y.

Table 11.2 Bivariate probability distribution and associated
marginal probability distributions for Example 11.2.1.

Y
pX(x)

1 2 3 4

X 1 0.400 0.060 0.035 0.005 0.500
0 0.180 0.225 0.085 0.010 0.500

pY (y) 0.580 0.285 0.120 0.015 1.000
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Although the marginal probability distributions can be derived from a multivariate
probability distribution, the converse is usually not the case. Reconstructing a multi-
variate probability distribution based on the marginal probability distributions is only
possible for independent random variables.

Definition 11.3.1 The discrete random variables X and Y are independent if their
joint probability distribution is the product of the marginal probability distributions
for all possible combinations of values of X and Y, that is,

pXY (x, y) = pX(x)pY (y) for all (x, y) ∈ D.

If this condition is not met, then X and Y are called dependent. The concept of
independence here is strongly related to that of independent events in Chapter 4.

Example 11.3.2 It is easy to verify that the random variables X and Y in
Example 11.3.1 are dependent. Indeed,

pXY(1, 1) = 0.4 ≠ pX(1)pY (1) = 0.5 × 0.58 = 0.29.

The definition of independent random variables can be extended to a situation
involving k random variables instead of two:

Definition 11.3.2 The discrete random variables X1,X2,… ,Xk are independent if
their joint probability distribution is the product of the marginal probability distribu-
tions for all possible combinations of values of X1,X2,… ,Xk, that is,

pX1X2…Xk
(x1, x2,… , xk) = pX1 (x1)pX2 (x2)… pXk (xk)

for all (x1, x2,… , xk) ∈ D.

11.4 Conditional (discrete) probability distribution

The concept of a conditional probability distribution is best introduced by means of
an example.

Example 11.4.1 Using the data from Example 11.2.1, we can calculate the proba-
bility that a randomly selected letter needs three days to be delivered, given that it is
a First Class letter:

P(Y = 3 ∣ X = 1) = P{(Y = 3) ∩ (X = 1)}
P(X = 1)

=
pXY (1, 3)
pX(1)

= 0.035
0.500

= 0.070.

To calculate this probability, we applied the definition of a conditional probability
from Chapter 4 (Definition 4.4.1). Repeating this for all possible values of Y when
X = 1, we find that P(Y = 1 ∣ X = 1) = 0.800, P(Y = 2 ∣ X = 1) = 0.120, and P(Y =
4 ∣ X = 1) = 0.010. Together, these four probabilities form the conditional probabil-
ity distribution of Y, given that X = 1. Their sum is 1.
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In general, a conditional probability distribution of a random variableX given Y = y
is defined as

pX|Y (x ∣ y) =
pXY (x, y)
pY (y)

.

The conditional probability distribution of Y given X = x is

pY|X(y ∣ x) =
pXY (x, y)
pX(x)

.

These definitions show that the joint probability distribution pXY (x, y) of (X,Y) cannot
be derived from the two marginal distributions, but from the marginal distribution
of one random variable and the conditional probability distribution of the other. In
general, a joint probability distribution pXY (x, y) can be reconstructed in two ways.
The first way is

pXY (x, y) = pY|X(y ∣ x)pX(x),

and the second way is
pXY (x, y) = pX|Y (x ∣ y)pY (y).

In the special case of independent random variables X and Y , we have that

pX|Y(x ∣ y) =
pXY (x, y)
pY (y)

=
pX(x)pY (y)

pY (y)
= pX(x)

and

pY|X(y ∣ x) =
pXY (x, y)
pX(x)

=
pX(x)pY (y)

pX(x)
= pY(y).

In short, for independent random variables, the conditional probability distribution is
identical to the marginal probability distribution for each given x or y value.

11.5 Examples of discrete bivariate random variables

Example 11.5.1 At an international football tournament, the Netherlands play the
quarter-final against Germany. After 120 minutes, both teams tie. To determine a
winner, each team takes five penalty kicks. For years, the Dutch players have been bad
at taking penalty kicks. The probability that a Dutch football player scores a penalty
kick is equal to 0.7, while the probability for a German player to score one is 0.9. The
team with the highest number of successful penalties wins the match. Assume that the
shoot-out does not end when the winner is known with certainty, but that each team
takes five penalties anyway. In addition, assume that the probability of converting a
penalty kick remains unchanged for each team during the entire shoot-out and that
the number of goals scored by the Dutch team is independent of the number of goals
scored by the German team.

1. What is the expected number of penalties that the Dutch team will convert?
What is the expected number of penalties that the German team will convert?
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2. What is the expected number of penalties that the Dutch team should take until
they miss a penalty? What is the expected number of penalties that the German
team should take until they miss a penalty?

3. What is the probability that Germany leaves as winner after five penalties?
What is the chance of a tie after five penalties?

4. What is the most likely outcome after the series of five penalty kicks for each
team?

5. Suppose Germany scored three times. What is the probability that the Nether-
lands win?

To answer all these questions, we need the binomial and the geometric distribution.
We also need the joint probability distribution on the set of the number of goals scored
by both teams.

1. The number of goals scored by the Dutch team is binomially distributed with
parameters n = 5 and 𝜋 = 0.7, while the number of goals scored by the Ger-
man team is binomially distributed with parameters n = 5 and 𝜋 = 0.9. As the
expected value of a binomially distributed random variable is equal to n𝜋, the
expected number of Dutch goals is 5 × 0.7 = 3.5, while the expected number of
German goals equals 5 × 0.9 = 4.5.

2. The number of penalties that the Dutch team has to take until missing one,
is geometrically distributed with parameter 𝜋 = 0.3, the probability that the
Netherlandsmiss a penalty. The expected value of this geometrically distributed
random variable is 1∕𝜋 = 1∕0.3 = 10∕3 = 3.33. For Germany, we can follow
a similar reasoning. The expected number of penalties that the German team
has to take until the first miss is 1∕0.1 = 10.

3. In order to determine the probability that Germany wins, or that the shoot-out
ends in a tie, we need to determine the joint probability distribution of the num-
bers of goals scored by the German team and the Dutch team. Suppose that the
random variable X represents the number of goals scored by the Dutch team
and Y the number of goals scored by the German team. To determine the joint
probability distribution of X and Y, we start from the marginal probability dis-
tributions. The marginal probability distribution of both X and Y is a binomial
distribution with n = 5. The two binomial distributions are shown in Table 11.3.
The joint probability distribution of X and Y is easy to determine because X
and Y are assumed to be independent. Hence,

pXY (XY) = pX(X)pY(Y).

The joint probability that the Netherlands score twice and Germany scores
three times equals

pXY (2, 3) = pX(2)pY(3) = (0.13230)(0.07290) = 0.00964467.

In the same way, we can compute the joint probability for each possible combi-
nation of values of X and Y. All joint probabilities that we obtain in this manner
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Table 11.3 Marginal (binomial) probability distributions for the
number of goals scored by the Dutch team (X, with success
probability 𝜋 = 0.7) and by the German team (Y , with success
probability 𝜋 = 0.9).

Netherlands Germany
x

pX(x) pY(y)

0 0.00243 0.00001
1 0.02835 0.00045
2 0.13230 0.00810
3 0.30870 0.07290
4 0.36015 0.32805
5 0.16807 0.59049

are shown in Table 11.4, together with the marginal probability distributions
pX(X) and pY (Y).

The probability that Germany wins is the sum of all joint probabilities for
which Y > X:

P(Germany wins) = P(Y > X),

= P((X = 0) ∩ (Y = 1)) + P((X = 0) ∩ (Y = 2)) +…

· · · + P((X = 0) ∩ (Y = 5))

+ P((X = 1) ∩ (Y = 2)) + P((X = 1) ∩ (Y = 3)) +…

· · · + P((X = 1) ∩ (Y = 5))

+ P((X = 2) ∩ (Y = 3)) + P((X = 2) ∩ (Y = 4)) + P((X = 2) ∩ (Y = 5))

+ P((X = 3) ∩ (Y = 4)) + P((X = 3) ∩ (Y = 5))

+ P((X = 4) ∩ (Y = 5)),

= pXY (0, 1) + pXY (0, 2) + · · · + pXY (0, 5)

+ pXY (1, 2) + pXY (1, 3) + · · · + pXY (1, 5)

+ pXY (2, 3) + pXY (2, 4) + pXY (2, 5)

+ pXY (3, 4) + pXY (3, 5)

+ pXY (4, 5),

= 0.00000109 + 0.00001968 + 0.00017715 + 0.00079716 + 0.00143489

+ 0.00022964 + 0.00206672 + 0.00930022 + 0.01674039

+ 0.00964467 + 0.04340102 + 0.07812183

+ 0.10126904 + 0.18228426

+ 0.21266497,

= 0.65815272.
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Hence, there is a probability of more than 65% that Germany wins after a series
of five penalty kicks. The probability that the penalty shoot-out ends in a tie is

P(tie) = P(X = Y),

= P((X = 0) ∩ (Y = 0)) + P((X = 1) ∩ (Y = 1)) +…

· · · + P((X = 5) ∩ (Y = 5)),

= pXY (0, 0) + pXY (1, 1) + · · · + pXY (5, 5),

= 0.00000002 + 0.00001276 + 0.00107163

+ 0.02250423 + 0.11814721 + 0.09924365,

= 0.24097950.

The probability that the Netherlands win is

P(Netherlands win) = 1 − P(Germany wins) − P(tie),

= 1 − 0.65815272 − 0.24097950,

= 0.10086778.

4. The most likely outcome of the penalty shoot-out is 4–5 in favor of Germany.
This outcome has a probability of 0.21266497.

5. Finally, the conditional probability that the Netherlands win, given that Ger-
many scored three times, is

P(Netherlands win ∣ Germany scored 3 times) = P(X > 3 ∣ Y = 3),

= P((X > 3) ∩ (Y = 3))
P(Y = 3)

,

= P((X = 4) ∩ (Y = 3)) + P((X = 5) ∩ (Y = 3))
P(Y = 3)

,

=
pXY (4, 3) + pXY (5, 3)

pY (3)
,

= 0.02625494 + 0.01225230
0.07290000

,

= 0.52822.

This probability can also be determined in a different way, using the fact that
the number of goals scored by the Dutch team is independent of the number of
goals scored by the German team. As a result, we have that

P(X > 3 ∣ Y = 3) = P(X > 3) = P(X = 4) + P(X = 5),

= 0.36015000 + 0.16807000 = 0.52822.
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Example 11.5.2 An urn contains one yellow ball, two red balls, and three blue balls.
A blindfolded person randomly draws two balls from the urn. After selecting the first
ball, the ball is put back into the urn. As a result, there are again six balls in the
urn for the second draw. Suppose we are interested in the number of red balls and the
number of blue balls drawn. We call the number of red balls drawn X and the number
of blue balls drawn Y.
To find the joint probability distribution pXY (x, y) of X and Y, we need to enumerate

all possible scenarios. For the draw of the first ball, there are three possibilities. For
the draw of the second ball, again there are three possibilities, no matter which ball
was drawn first. This gives a total of nine scenarios. Not all of these scenarios are
equally likely because the numbers of yellow, blue, and red balls in the urn differ. The
nine scenarios are listed in Table 11.5, together with the resulting numbers of red and
blue balls, X and Y. Note that the sum of the numbers of red and blue balls drawn is at
most 2. In the scenario where two yellow balls are drawn, both the random variables
X and Y take the value 0. This is the least likely scenario because there is only one
yellow ball in the urn.
Based on Table 11.5, it is not difficult to construct the joint probability distribution

pXY (x, y) of X and Y. The joint probability distribution is shown in Table 11.6, together
with the marginal probability distributions pX(x) and pY (y).
The expected number of red balls is E(X) = 24∕36 = 2∕3, while the expected num-

ber of blue balls is equal to E(Y) = 36∕36 = 1. These expected values can be deter-
mined based on the marginal probability distributions. To find the variances of the
numbers of red and blue balls, we first compute E(X2) and E(Y2). This yields

E(X2) = 16
36

× 02 + 16
36

× 12 + 4
36

× 22 = 32
36

= 8
9
,

and
E(Y2) = 9

36
× 02 + 18

36
× 12 + 9

36
× 22 = 54

36
= 3

2
.

Table 11.5 Nine possible scenarios in Example 11.5.2 with an indication of the
numbers of red (X) and blue (Y) balls drawn and the associated probabilities.

First draw Second draw
X Y Probability

Color Probability Color Probability

Yellow 1∕6 Yellow 1∕6 0 0 1∕36
Red 2∕6 1 0 2∕36
Blue 3∕6 0 1 3∕36

Red 2∕6 Yellow 1∕6 1 0 2∕36
Red 2∕6 2 0 4∕36
Blue 3∕6 1 1 6∕36

Blue 3∕6 Yellow 1∕6 0 1 3∕36
Red 2∕6 1 1 6∕36
Blue 3∕6 0 2 9∕36
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Table 11.6 Joint probability distribution and marginal
probability distributions for the numbers of red (X) and
blue (Y) balls drawn in Example 11.5.2.

Y
X pX(x)

0 1 2

0 1∕36 6∕36 9∕36 16∕36
1 4∕36 12∕36 − 16∕36
2 4∕36 − − 4∕36

pY (y) 9∕36 18∕36 9∕36 1

Hence, the variances of X and Y are

𝜎
2
X = E(X2) − [E(X)]2 = 8

9
−
(2
3

)2
= 4

9

and
𝜎
2
Y = E(Y2) − [E(Y)]2 = 3

2
− 12 = 1

2
.

Example 11.5.3 In Example 11.5.2, the first ball drawn was put back in the urn
before drawing the second ball. Suppose that this is not the case, and that, again,
we are interested in the numbers of red and blue balls drawn. We again denote the
number of red balls drawn by X and the number of blue balls drawn by Y.
To find the joint probability distribution pXY (x, y) of X and Y, we again have to enu-

merate all possible scenarios. However, now, there are only eight possible scenarios
instead of nine. The reason for this is that there is only one yellow ball in the urn.
Because the first ball drawn is not put back into the urn, the second ball cannot be
yellow if the first one is. If the first ball drawn is red or blue, there are still three
possibilities for the second draw.
The eight possible scenarios are listed in Table 11.7, along with the resulting num-

bers of red and blue balls, X and Y. Note that, once again, the sum of the numbers of
red and blue balls is at most 2.
Based on Table 11.7, the joint probability distribution pXY (x, y) of X and Y can be

derived. The joint probability distribution is shown in Table 11.8, together with the
marginal probability distributions pX(x) and pY (y).
The expected number of red balls is E(X) = 20∕30 = 2∕3, while the expected num-

ber of blue balls is equal to E(Y) = 30∕30 = 1. To find the variances of the numbers
of red and blue balls, we first calculate E(X2) and E(Y2). This yields

E(X2) = 12
30

× 02 + 16
30

× 12 + 2
30

× 22 = 24
30

= 4
5

and
E(Y2) = 6

30
× 02 + 18

30
× 12 + 6

30
× 22 = 42

30
= 7

5
.
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Table 11.7 Eight possible scenarios in Example 11.5.3, with an indication of the
numbers of red (X) and blue (Y) balls drawn, and the associated probabilities.

First draw Second draw
X Y Probability

Color Probability Color Probability

Yellow 1∕6 Red 2∕5 1 0 2∕30
Blue 3∕5 0 1 3∕30

Red 2∕6 Yellow 1∕5 1 0 2∕30
Red 1∕5 2 0 2∕30
Blue 3∕5 1 1 6∕30

Blue 3∕6 Yellow 1∕5 0 1 3∕30
Red 2∕5 1 1 6∕30
Blue 2∕5 0 2 6∕30

Table 11.8 Joint probability distribution and
marginal probability distributions for the
numbers of red (X) and blue (Y) balls drawn in
Example 11.5.3.

Y
X pX(x)

0 1 2

0 − 6∕30 6∕30 12∕30
1 4∕30 12∕30 − 16∕30
2 2∕30 − − 2∕30

pY (y) 6∕30 18∕30 6∕30 1

Hence, the variances of X and Y are

𝜎
2
X = E(X2) − [E(X)]2 = 4

5
−
(2
3

)2
= 36

45
− 20

45
= 16

45

and
𝜎
2
Y = E(Y2) − [E(Y)]2 = 7

5
− 12 = 2

5
.

In this example, where the first ball drawn is not put back into the urn, the variances
are a little smaller than in Example 11.5.2 where the first ball drawn is put back. Sim-
ilarly, the variance of a hypergeometrically distributed random variable was slightly
smaller than the variance of a binomially distributed random variable (see page 185
in Chapter 8). The expected values of X and Y in this example and in Example 11.5.2
are identical. Again, this is consistent with the results from Chapter 8.
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11.6 The multinomial probability distribution

In Section 8.3, we introduced the binomial distribution. This distribution is useful
when we are interested in the number of successes obtained from a series of inde-
pendent random experiments with two possible outcomes, success or failure. Such
experiments are called Bernoulli experiments. The probability distribution of the
number of successes, which we call X, in n consecutive independent Bernoulli exper-
iments, is the binomial distribution

pX(x; n, 𝜋) =
n!

x! (n − x)!
𝜋
x(1 − 𝜋)n−x, x = 0, 1, 2,… , n,

where 𝜋 is the probability of success in a single Bernoulli experiment, and 1 − 𝜋 is
the probability of failure.
We can use an alternative description for the binomial distribution, if we denote by

X1 the number of successes, by X2 the number of failures, by 𝜋1 the success probabil-
ity and by 𝜋2 = 1 − 𝜋1 the failure probability. This alternative expression is equal to

pX1X2 (x1, x2; n, 𝜋1, 𝜋2) =
n!

x1! x2!
𝜋
x1
1 𝜋

x2
2 ,

for x1, x2 = 0, 1, 2,… , n, where x1 + x2 = n.

Some random experiments have more than two possible outcomes. Suppose that we
have k possible outcomes in a random experiment and that we carry out this random
experiment n times. Let X1 be the number of times that the first outcome occurs, and
𝜋1 be the probability of the first outcome. In the same way, we define X2, X3,… , Xk,
and the corresponding probabilities 𝜋2, 𝜋3,… , 𝜋k. The joint probability distribution
of X1, X2,… , Xk is called the multinomial probability distribution, and is equal to

pX1X2…Xk
(x1, x2,… , xk; n, 𝜋1, 𝜋2,… , 𝜋k) =

n!
x1! x2! … xk!

𝜋
x1
1 𝜋

x2
2 …𝜋

xk
k ,

for x1, x2,… , xk = 0, 1, 2,… , n, where x1 + x2 +…+ xk = n. (11.1)

An example of a multinomial probability distribution is shown in Table 11.9. It is
the probability distribution for a situation where four independent experiments with
three possible outcomes are carried out. The probability of outcome 1, 𝜋1, is 0.4,
while the probabilities of outcome 2 and outcome 3, 𝜋2 and 𝜋3, are equal to 0.1 and
0.5, respectively. The joint probability that outcome 1 occurs once, outcome 2 occurs
twice, and outcome 3 occurs once is equal to

pX1X2X3 (1, 2, 1; 4, 0.4, 0.1, 0.5) =
4!

1! 2! 1!
(0.4)1(0.1)2(0.5)1,

= 24
1 × 2 × 1

(0.4)(0.01)(0.5),

= 12 × 0.002,

= 0.024.
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Table 11.9 Multinomial probability distribution with
three possible outcomes for each individual random
experiment (also known as trinomial probability
distribution), n = 4, 𝜋1 = 0.4, 𝜋2 = 0.1, and 𝜋3 = 0.5.

x1 x2 x3 Probability

4 0 0 0.0256
3 1 0 0.0256
3 0 1 0.1280
2 2 0 0.0096
2 1 1 0.0960
2 0 2 0.2400
1 3 0 0.0016
1 2 1 0.0240
1 1 2 0.1200
1 0 3 0.2000
0 4 0 0.0001
0 3 1 0.0020
0 2 2 0.0150
0 1 3 0.0500
0 0 4 0.0625

Amultinomial distribution with k = 3 is called a trinomial distribution. The general
expression for the probability distribution is

pX1X2X3 (x1, x2, x3; n, 𝜋1, 𝜋2, 𝜋3) =
n!

x1! x2! x3!
𝜋
x1
1 𝜋

x2
2 𝜋

x3
3 ,

for x1, x2, x3 = 0, 1, 2,… , n, where x1 + x2 + x3 = n.

In JMP, there is no simple formula for calculating the probabilities of a multino-
mial distribution. However, you can enter the formula of Equation (11.1) yourself.
Figure 11.2 shows what the required formula looks like in JMP. To obtain the full
probability distribution, you must first create three columns in which all possible
values of X1, X2, and X3 are listed (just as in Table 11.9).

Example 11.6.1 A fair die is tossed 15 times. The probability that, for example,
twice the result is a 1, three times a 2, no 3, five times a 4, twice a 5, and three
times a 6 can be determined using the multinomial distribution with k = 6, n = 15
and 𝜋1 = 𝜋2 = · · · = 𝜋6 = 1∕6. Suppose that X1 represents the number of times that
a 1 is obtained, X2 the number of times that a 2 is obtained, and so on. Then, for
the requested probability, we have x1 = 2, x2 = 3, x3 = 0, x4 = 5, x5 = 2, and x6 = 3.
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Figure 11.2 Formula required to calculate probabilities for a trinomially dis-
tributed random variable in JMP with n = 4, 𝜋1 = 0.4, 𝜋2 = 0.1 and 𝜋3 = 0.5.

Notice that x1 + x2 + · · · + x6 = 15. The desired probability is

pX1X2X3X4X5X6 (2, 3, 0, 5, 2, 3; 15, 1∕6, 1∕6, 1∕6, 1∕6, 1∕6, 1∕6)

= 15!
2! 3! 0! 5! 2! 3!

(1∕6)2(1∕6)3(1∕6)0(1∕6)5(1∕6)2(1∕6)3,

= 75675600 (1∕6)15 = 350350
612

≈ 0.00016.

11.7 Joint (continuous) probability density

For a continuous bivariate random variable (X,Y), we denote the joint continuous
probability density by fXY (x, y), where X and Y can take values in the domain D. In
some cases, the bivariate random variable (X,Y)may take every possible combination
of real values. In that case, D = ℝ2. In other cases, X and Y can both take all possible
values in the interval [0, 1]. In this case, D a square with vertices (0,0), (1,0), (0,1),
and (1,1), which we refer to as [0, 1]2.
In order to be valid, a probability density function fXY (x, y) must satisfy two

conditions:
fXY (x, y) ≥ 0,

and

∫ ∫

(x,y)∈D

fXY (x, y) dy dx = 1.
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Example 11.7.1 An example of a bivariate continuous probability density is

fXY (x, y) =

{
6x2y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0, otherwise.

Figure 11.3 shows four graphical representations of this bivariate probability density.
The figure was created using the option “Surface Profiler” in JMP. To use this option,
you must first choose “Contour Profiler” from the “Graph” menu. Then, you can
choose the “Surface Profiler” option. As shown in Figure 11.3, this allows you to
view a three-dimensional figure from different angles. Notice that, in this example,
the domain D of the bivariate random variable (X, Y) is equal to [0, 1]2.
To check whether the function fXY (x, y) is a valid probability density, we have to

verify that the double integral

∫ ∫

(x,y)∈D

fXY (x, y) dy dx =
∫

1

0 ∫

1

0
6x2y dy dx
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Figure 11.3 Graphical representations of the bivariate probability density of
Example 11.7.1.
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is equal to 1. This double integral measures the volume under the probability density.
Working out the integral in detail, we obtain

∫

1

0 ∫

1

0
6x2y dy dx =

∫

1

0
[3x2y2]10 dx,

=
∫

1

0
[3x2 × 12 − 3x2 × 02] dx,

=
∫

1

0
3x2 dx,

= [x3]10,

= 13 − 03,

= 1.

In this calculation, we first determined the inner integral, which integrates over the
variable y. An alternative method, which can be used here because the limits of the
integration domain are not functions of x or y, is as follows:

∫

1

0 ∫

1

0
6x2y dy dx =

∫

1

0
3x2 dx ⋅

∫

1

0
2y dy,

= [x3]10 ⋅ [y
2]10,

= [13 − 03] ⋅ [12 − 02],

= 1.

Thus, the function fXY (x, y) in this example is a valid probability density.

Example 11.7.2 Another example of a continuous bivariate probability density is

fXY (x, y) =

{
𝜆
2e−𝜆y, 0 ≤ x < +∞, x ≤ y < +∞,

0, otherwise,

where 𝜆 is a positive real number. Figure 11.4 shows what this bivariate probability
density looks like for 𝜆 = 1∕2.
To check whether fXY (x, y) is a valid probability density, we have to verify that the

double integral

∫ ∫

(x,y)∈D

fXY (x, y) dy dx =
∫

+∞

0 ∫

+∞

x
𝜆
2e−𝜆y dy dx

is equal to 1. Working out the integral in detail, we obtain

∫

+∞

0 ∫

+∞

x
𝜆
2e−𝜆y dy dx =

∫

+∞

0
(−𝜆)

∫

+∞

x
e−𝜆y d(−𝜆y) dx,



MULTIVARIATE RANDOM VARIABLES 271

=
∫

+∞

0
(−𝜆)[e−𝜆y]+∞x dx,

=
∫

+∞

0
(−𝜆)[0 − e−𝜆x] dx,

=
∫

+∞

0
𝜆e−𝜆x dx,

= −
∫

+∞

0
e−𝜆x d(−𝜆x),

= −[e−𝜆x]+∞0 ,

= −[0 − e−𝜆×0],

= −(−1),

= 1.
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Figure 11.4 Graphical representations of the bivariate probability density of
Example 11.7.2 , in case 𝜆= 1/2.
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Thus, the function fXY (x, y) in this example is a valid probability density. Notice that
the integration domain D of the probability density in this example is more compli-
cated than in the previous example, because the values that the random variable Y
can take, have the value of the random variable X as lower limit (rather than a con-
stant as lower limit). Therefore, the double integral in this example cannot be split
into a product of two single integrals.

Calculating probabilities for bivariate random variables also requires the computa-
tion of double integrals. In general, the probability that a bivariate random variable
(X,Y) takes values that lie inside a domain G is given by

P((X,Y) ∈ G) =
∫ ∫

(x,y)∈G

fXY (x, y) dy dx.

We illustrate this by means of some examples.

Example 11.7.3 In this example, we calculate some probabilities for the bivariate
random variable (X,Y) defined in Example 11.7.1. We first determine the probabil-
ity that X and Y are both simultaneously smaller than 1∕2. This is the probability
that a realization of the bivariate random variable is located in the area delimited
by the inequalities 0 ≤ x ≤ 1∕2 and 0 ≤ y ≤ 1∕2. The left- and right-hand sides of
these inequalities are the lower and upper limits of the double integral we need to
calculate

P(X ≤ 1∕2,Y ≤ 1∕2) =
∫

1∕2

0 ∫

1∕2

0
6x2y dy dx,

=
∫

1∕2

0
[3x2y2]1∕20 dx,

=
∫

1∕2

0

[
3x2 ×

(1
2

)2
− 3x2 × 02

]
dx,

= 1
4 ∫

1∕2

0
3x2 dx,

= 1
4
[x3]1∕20 ,

= 1
4

[(1
2

)3
− 03

]
,

= 1
32

.

Hence, the requested probability is only 1/32. This result means that the volume under
the probability density function in Figure 11.3 above the square with vertices (0, 0),
(1∕2, 0), (0, 1∕2), and (1∕2, 1∕2) is equal to 1/32.
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We can also quantify the probability that the random variable X takes a value
smaller than the random variable Y. We can write the desired probability as P(X <

Y), or, because X and Y are continuous random variables, P(X ≤ Y). Since both
X and Y can only take values between 0 and 1, we can rewrite this probability as
P(0 ≤ X ≤ Y , 0 ≤ Y ≤ 1). In this way, we get lower and upper bounds for the double
integral we have to determine. An alternative expression for the probability P(X ≤ Y)
is P(0 ≤ X ≤ 1,X ≤ Y ≤ 1), which gives us different lower and upper limits for the
same problem. Note that, in the first notation, the upper limit of X is given by Y and
so is not constant. In the second notation, the lower limit of Y is given by X and
therefore it is also not a constant. Computing the corresponding double integrals, we
must ensure that the integral with two constants as lower and upper limit is the outer
integral. If we use the first notation, we obtain

P(X < Y) = P(0 ≤ X ≤ Y , 0 ≤ Y ≤ 1),

=
∫

1

0 ∫

y

0
6x2y dx dy,

=
∫

1

0
[2x3y]y0 dy,

=
∫

1

0
[2 × y3 × y − 2 × 03 × y] dy,

=
∫

1

0
2y4 dy,

= 2
5
[y5]10,

= 2
5
[15 − 05],

= 2
5
.

If we use the second notation, we obtain

P(X < Y) = P(0 ≤ X ≤ 1,X ≤ Y ≤ 1),

=
∫

1

0 ∫

1

x
6x2y dy dx,

=
∫

1

0
[3x2y2]1x dx,

=
∫

1

0
[3x2 × 12 − 3x2 × x2] dx,

=
∫

1

0
[3x2 − 3x4] dx,
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=
[
x3 − 3

5
x5
]1

0
,

=
[(

13 − 3
5
× 15

)
−
(
03 − 3

5
× 05

)]
,

= 1 − 3
5
,

= 2
5
.

Thus, both methods lead to the same result.
The probability P(X2 ≥ Y) can be calculated in a similar manner:

P(X2
≥ Y) = P(0 ≤ X ≤ 1, 0 ≤ Y ≤ X2),

=
∫

1

0 ∫

x2

0
6x2y dy dx,

=
∫

1

0
[3x2y2]x20 dx,

=
∫

1

0
[3x2 × (x2)2 − 3x2 × 02] dx,

=
∫

1

0
3x6 dx,

= 3
7
[x7]10,

= 3
7
[17 − 07],

= 3
7
.

As a final example, we calculate the probability that Y takes values that are greater
than or equal to the value of X∕2:

P(Y ≥ X∕2) = P(0 ≤ X ≤ 1,X∕2 ≤ Y ≤ 1),

=
∫

1

0 ∫

1

x∕2
6x2y dy dx,

=
∫

1

0
[3x2y2]1x∕2 dx,

=
∫

1

0

[
3x2 × 12 − 3x2 ×

( x
2

)2
]
dx,

=
∫

1

0

(
3x2 − 3

4
x4
)

dx,
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=
[
x3 − 3

20
x5
]1

0
.

=
[(

13 − 3
20

× 15
)
−
(
03 − 3

20
× 05

)]
,

= 1 − 3
20

,

= 17
20

.

The domain of the integral required to compute the probability P(Y ≥ X∕2) is shaded
in gray in Figure 11.5. The calculated probability, 17/20, is the volume above this gray
area under the bivariate probability density fXY (xy). The gray area in the figure shows
that, for each possible value of X, the values that the random variable Y can take
range from X∕2 to 1. The figure also shows that, as long as Y ≤ 1∕2, the variable X
can take values between 0 and 2Y. However, if Y ≥ 1∕2, then the variable X can take
any value between 0 and 1. Hence, the probability P(Y ≥ X∕2) can also be calculated
as follows:

P(Y ≥ X∕2) = P(0 ≤ Y ≤ 1∕2, 0 ≤ X ≤ 2Y) + P(1∕2 ≤ Y ≤ 1, 0 ≤ X ≤ 1),

=
∫

1∕2

0 ∫

2y

0
6x2y dx dy +

∫

1

1∕2 ∫

1

0
6x2y dx dy,

= 3
4
+ 1

10
,

= 17
20

.

(0,1) (1,1)

(0,0) (1,0)

(1,½)

X

Y

Y = X / 2
 of  X

 = 2Y

Figure 11.5 Graphical representation of the integration domain for the computation
of the probability P(Y ≥ X∕2) in Example 11.7.3.
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11.8 Marginal or unconditional (continuous)
probability density

In Section 11.3, we learnt how to convert a probability distribution pXY (x, y) of a dis-
crete bivariate random variable (X,Y) into two separate distributions for X and Y . We
have called the separate probability distributions marginal or unconditional proba-
bility distributions. In this section, we will see that a continuous bivariate probability
density fXY (x, y) can also be turned into two separate, marginal, or unconditional prob-
ability densities for X and Y .
If (X,Y) is a bivariate continuous random variable with density fXY(x, y), then the

marginal (or unconditional) densities of X and Y , are, respectively,

fX(x) =
∫

+∞

−∞
fXY (x, y) dy

and

fY(y) =
∫

+∞

−∞
fXY (x, y) dx.

In the expression for fX(x), the variable y is eliminated by integrating over all pos-
sible values of y, while in the expression for fY (y), the variable x is eliminated by
integrating over all possible values of x.

Example 11.8.1 We compute the marginal probability densities of X and Y from
Example 11.7.1. For the random variable X, we obtain

fX(x) =
∫

+∞

−∞
fXY(x, y) dy,

=
∫

0

−∞
0 dy +

∫

1

0
6x2y dy +

∫

+∞

1
0 dy,

= 0 + [3x2y2]10 + 0,

= [3x2 × 12 − 3x2 × 02],

= 3x2.

This marginal probability density is shown in Figure 11.6. Comparing this density to
the bivariate probability density in Figure 11.3c, we see that the marginal probability
density of X results from the bivariate probability density if we contract the Y-axis.
For the random variable Y, we obtain

fY(y) =
∫

+∞

−∞
fXY (x, y) dx,

=
∫

0

−∞
0 dx +

∫

1

0
6x2y dx +

∫

+∞

1
0 dx,



MULTIVARIATE RANDOM VARIABLES 277

= 0 + [2x3y]10 + 0,

= [2 × 13 × y − 2 × 03 × y],

= 2y.

This marginal probability density is shown in Figure 11.7. Comparing this density to
the bivariate probability density in Figure 11.3b, we see that the marginal probability
density of Y results from the bivariate probability density if we contract the X-axis.

X
0.0 0.2 0.4 0.6 0.8 1.0

f X
(x

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 11.6 Graphical representation of the marginal probability density of X in
Example 11.8.1.
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0.0 0.2 0.4 0.6 0.8 1.0

f Y
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0.5

1.0

1.5

2.0

Figure 11.7 Graphical representation of the marginal probability density of Y in
Example 11.8.1.
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Example 11.8.2 We compute the marginal distributions of X and Y in
Example 11.7.2. For the random variable X, we obtain

fX(x) =
∫

+∞

−∞
fXY(x, y) dy,

=
∫

x

−∞
0 dy +

∫

+∞

x
𝜆
2e−𝜆y dy,

= 0 − 𝜆
∫

+∞

x
e−𝜆y d(−𝜆y),

= −𝜆[e−𝜆y]+∞x ,

= −𝜆[0 − e−𝜆x],

= 𝜆e−𝜆x,

for x ≥ 0. This probability density is the exponential probability density (see
Section 9.2).
For the random variable Y, we obtain

fY (y) =
∫

+∞

−∞
fXY(x, y) dx,

=
∫

0

−∞
0 dx +

∫

y

0
𝜆
2e−𝜆y dx +

∫

+∞

y
0 dx,

= 0 + 𝜆
2e−𝜆y[x]y0 + 0,

= 𝜆
2e−𝜆y[y − 0],

= 𝜆
2ye−𝜆y,

for y ≥ 0. This probability density is a gamma probability density with parameters
k = 2 and 𝜃 = 1∕𝜆 (see Section 9.3).

Even though the marginal probability densities can be derived from a multivariate
probability density, the converse is usually not the case. Reconstructing the multi-
variate probability density function based on the marginal probability densities can
only be achieved for independent random variables.

Definition 11.8.1 The continuous random variables X and Y are independent if their
joint probability density is the product of the marginal probability densities of X and
Y, in other words, if

fXY (x, y) = fX(x)fY (y) for all (x, y).

If this condition is not satisfied, X and Y are dependent. Obviously, the concept of
(in)dependence of continuous random variables is essentially the same as that of the
(in)dependence of events in Chapter 4.
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Example 11.8.3 It is easy to verify that the random variables X and Y in
Examples 11.7.1 and 11.8.1 are independent. Indeed, the joint probability density

fXY (x, y) = 6x2y

is equal to the product of the marginal probability densities:

fX(x)fY(y) = (3x2)(2y) = 6x2y,

if both x and y lie between 0 and 1. If x and y do not both lie between 0 and 1, then the
joint probability density fXY (x, y) is equal to zero, as is the product of the marginal
probability densities fX(x)fY (y).

Example 11.8.4 The random variables X and Y in Example 11.7.2 are dependent.
The values that the random variable Y can take depend on the value of the random
variable X. The opposite is also true: the values that the random variable X can take
depend on the value of the variable Y. The reason for this is that the probability
density in Example 11.7.2 only differs from zero if 0 ≤ x < +∞ and x ≤ y < +∞.

The definition of independence can be extended to scenarios with more than two
random variables:

Definition 11.8.2 The continuous random variables X1,X2,… ,Xk are independent
if their joint probability density is the product of the marginal probability densities
of X1,X2,… ,Xk, in other words, if

fX1X2…Xk
(x1, x2,… , xk) = fX1 (x1)fX2 (x2)… fXk (xk)

for all (x1, x2,… , xk).

11.9 Conditional (continuous) probability density

The conditional probability density of a continuous random variable X, given that the
random variable Y takes the value y, is defined as

fX∣Y (x ∣ y) =
fXY (x, y)
fY (y)

if fY (y) > 0.

The conditional probability density of Y , given that the random variable X takes the
value x, is defined as

fY∣X(y ∣ x) =
fXY (x, y)
fX(x)

if fX(x) > 0.

These definitions indicate that, in general, the joint probability density of (X,Y)
cannot be deduced from the two marginal densities, but it can be derived from the
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marginal probability density function of one random variable and the conditional
probability density of the other:

fXY (x, y) = fX∣Y (x ∣ y)fY (y)

or
fXY (x, y) = fY ∣X(y ∣ x)fX(x).

Conditional probability densities are like cross-sectional views of a joint probability
density for a specific value of x, or a specific value of y.
In the special case of independent random variables X and Y , we have that

fX∣Y (x ∣ y) =
fXY (x, y)
fY (y)

=
fX(x)fY (y)
fY (y)

= fX(x)

and

fY ∣X(y ∣ x) =
fXY (x, y)
fX(x)

=
fX(x)fY (y)
fX(x)

= fY (y).

In short, for independent random variables, the conditional probability densities are
identical to the marginal (or unconditional) probability densities.

Example 11.9.1 If X and Y follow the joint probability density of Example 11.7.2,
the conditional probability density of X, given that the random variable Y takes the
value y, is

fX∣Y(x ∣ y) =
fXY(x, y)
fY(y)

= 𝜆
2e−𝜆y

𝜆2ye−𝜆y
= 1

y
for 0 ≤ x ≤ y.

Hence, for any value of y, the random variable X has a uniform probability density,
with 0 as the smallest possible value and y as the largest possible value.
If X and Y follow the joint probability density of Example 11.7.2, the conditional

probability density of Y, given that the random variable X takes the value x, is

fY ∣X(y ∣ x) =
fXY(x, y)
fX(x)

= 𝜆
2e−𝜆y

𝜆e−𝜆x
= 𝜆e−𝜆(y−x) for y ≥ x.

This function is an exponential probability density function, with the variable being
y − x. The joint probability density fXY (x, y) is positive only if y ≥ x. The conditional
probability density found for Y states that, if the random variable X takes the value
x, the difference between Y and x is exponentially distributed.
The conditional probability densities allow us to calculate conditional probabilities

for continuous random variables. Suppose, for example, that we want to calculate
the conditional probability P(0 ≤ X ≤ 1∕2 ∣ y = 3∕4). First, we need to compute the
conditional probability density fX∣Y (x ∣ 3∕4). To this end, we replace y by 3∕4 in the
expression for fX∣Y (x ∣ y) and obtain

fX∣Y (x ∣ 3∕4) =
1

3∕4
= 4

3
for 0 ≤ x ≤ 3∕4.
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Then, the desired probability is

P(0 ≤ X ≤ 1∕2 ∣ y = 3∕4) =
∫

1∕2

0
fX∣Y (x ∣ 3∕4) dx =

∫

1∕2

0

4
3
dx,

=
[4
3
x
]1∕2

0
= 4

3
× (1∕2 − 0) = 2

3
.

The probability P(X ≥ 1∕2 ∣ y = 3∕4) is

P(X ≥ 1∕2 ∣ y = 3∕4) = P(1∕2 ≤ X ≤ 3∕4 ∣ y = 3∕4) =
∫

3∕4

1∕2

4
3
dx,

=
[4
3
x
]3∕4

1∕2
= 4

3
× (3∕4 − 1∕2) = 1

3
.
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Functions of several random
variables

“You got a better chance in a plane,” Wally said.
“Yes, a chance,” Candy said scornfully. “Why would you want to be anywhere where
all you get is a chance?”
“Good question,” Olive said crossly…
“A chance is enough,” said Homer Wells, who did not immediately recognize the tone
in his own voice. “A chance is all we get, right? In the air, or underwater, or right here,
from the minute we’re born.”

(from The Cider House Rules, John Irving, p. 347)

As in the previous chapter, we discuss discrete random variables as well as continuous
random variables. The focus is on bivariate probability distributions and densities,
although some more general results are mentioned too. The results in this chapter are
generalizations of those in Section 6.4, where functions of one random variable were
discussed.

12.1 Functions of several random variables

We are interested in the probability distribution or the probability density of a func-
tion Y = g(X1,X2,… , Xk) of k random variables X1,X2,… ,Xk. This function Y is
also a random variable and takes the value y = g(x1, x2,… , xk) if the realizations
x1, x2,… , xk of the random variables X1,X2,… ,Xk are known.

Example 12.1.1 In Example 11.1.2, we can look at the number of acceptable prod-
ucts. A product is acceptable if the adhesion is perfect or excellent. Consequently, we

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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consider the random variable Y = X1 + X2. This random variable takes the value 1
if the adhesion is acceptable, and the value 0 if the adhesion is not acceptable.

Example 12.1.2 In Example 11.1.3, the total surface tension Y = X1 + X2 is impor-
tant. This new random variable is a function of the two original random variables
that represent the polar and the dispersive surface tension.

Researchers are usually not only interested in the probability distribution or the
probability density of a function of several random variables, but also in the expected
value E(Y) = E[g(X1,X2,… ,Xk)] of this function.

12.2 Expected value of functions of several random
variables

Definition 12.2.1 The expected value of a function W= g(X ,Y) of two discrete
random variables with joint probability distribution pXY (x, y), where (x, y) ∈ D, is
defined as

E(W) = E[g(X,Y)] =
∑

(x,y)∈D
g(x, y)pXY (x, y).

Definition 12.2.2 The expected value of a function W= g(X ,Y) of two continuous
random variables with joint probability density fXY(x, y) on the area D is defined as

E(W) = E[g(X,Y)] =
∫ ∫

(x,y)∈D

g(x, y)fXY (x, y) dy dx.

These expressions generalize Definitions 7.1.1 and 7.1.2 of the expected value of a
univariate discrete and of a continuous random variable.

Example 12.2.1 Suppose that we want to determine the expected values of the func-
tions S = X + Y, V = Y − X, U = XY and Q = X∕Y, in case the joint probability
distribution pXY (x, y) of X and Y is given in Table 11.1. Using Definition 12.2.1, we
find that

E(S) = (1 + 1)(0.4) + (1 + 2)(0.06) + (1 + 3)(0.035) + (1 + 4)(0.005)

+ (0 + 1)(0.18) + (0 + 2)(0.225) + (0 + 3)(0.085) + (0 + 4)(0.010) = 2.07,

E(V) = (1 − 1)(0.4) + (2 − 1)(0.06) + (3 − 1)(0.035) + (4 − 1)(0.005)

+ (1 − 0)(0.18) + (2 − 0)(0.225) + (3 − 0)(0.085) + (4 − 0)(0.010) = 1.07,

E(U) = (1)(1)(0.4) + (1)(2)(0.06) + (1)(3)(0.035) + (1)(4)(0.005)

+ (0)(1)(0.18) + (0)(2)(0.225) + (0)(3)(0.085) + (0)(4)(0.010) = 0.645,
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and

E(Q) = (1∕1)(0.4) + (1∕2)(0.06) + (1∕3)(0.035) + (1∕4)(0.005)

+ (0∕1)(0.18) + (0∕2)(0.225) + (0∕3)(0.085) + (0∕4)(0.010) = 0.4429.

Using the marginal probability distributions derived in Example 11.3.1, we can also
calculate the expected values of X and Y:

E(X) = (1)(0.5) + (0)(0.5) = 0.5,

and
E(Y) = (1)(0.58) + (2)(0.285) + (3)(0.12) + (4)(0.015) = 1.57.

These calculations show that E(S) = E(X + Y) = E(X) + E(Y) and E(V) = E(Y −
X) = E(Y) − E(X). In contrast, the example shows that E(U) = E(XY) ≠ E(X)E(Y)
and E(Q) = E(X∕Y) ≠ E(X)∕E(Y).

The fact that E(X + Y) = E(X) + E(Y) and E(Y − X) = E(Y) − E(X) in the example
mentioned earlier is not a coincidence. This result is true in general. It is a direct
consequence of the following theorem:

Theorem 12.2.1 For arbitrary constants a0, a1, a2,… , am and m functions
Yi = gi(X1,X2,… ,Xk) of k random variables X1,X2,… ,Xk, we have

E

(

a0 +
m∑

i=1
aiYi

)

= E

[

a0 +
m∑

i=1
aigi(X1,X2,… ,Xk)

]

= a0 +
m∑

i=1
aiE[gi(X1,X2,… ,Xk)].

This theorem, which is valid for discrete as well as continuous random variables,
has some interesting consequences:

• The expected value of a linear combination of random variables is the same
linear combination of the expected values of the individual random variables.
Indeed, if k = m and gi(X1,X2,… ,Xk) = Xi, then Theorem 12.2.1 states that

E

(

a0 +
m∑

i=1
aiXi

)

= a0 +
m∑

i=1
aiE(Xi).

• The expected value of a sum of random variables is the sum of the expected
values of the individual random variables. Indeed, if k = m, gi(X1,X2,… ,Xk) =
Xi, a0 = 0 and a1 = a2 = · · · = ak = 1, then Theorem 12.2.1 states that

E

(
m∑

i=1
Xi

)

=
m∑

i=1
E(Xi).
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• The expected value of a difference of two random variables is the difference of
the expected values. Indeed, if k = m = 2, gi(X1,X2) = Xi, a0 = 0, a1 = 1, and
a2 = −1, then Theorem 12.2.1 states that

E(X1 − X2) = E(X1) − E(X2).

An application of the theorem and its consequences can be found in Example 12.2.1.
Another example from the financial world is given next.

Example 12.2.2 An investment project runs over six years and requires an initial
investment of €1million (year 0). The next five years, the returns X1, X2,… , X5 of the
project are uncertain, but an estimation provides expected values E(X1) = 100,000,
E(X2) = 300,000, E(X3) = 500,000, E(X4) = 400,000, and E(X5) = 200,000.
If interest rates in the coming years are equal to 10%, then the net present value

(NPV) of the investment project is equal to

NPV = −1,000,000 +
5∑

i=1

Xi

(1.10)i
,

which is a linear combination of the random variables X1, X2, … , X5. The expected
value of the net present value (NPV) is

E(NPV) = −1,000,000 + 100,000
1.1

+ 300,000
(1.1)2

+ 500,000
(1.1)3

+ 400,000
(1.1)4

+ 200,000
(1.1)5

= 111,890,

so that the expected return rate of the investment project is 111,890∕1,000,000 =
11.189%.
In this example, it was assumed that the interest rate is known. In reality, the annual

interest rate is uncertain and therefore a random variable. In that case, the calcu-
lation of the expected net present value of the project involves expected values of
quotients of two random variables (a return divided by a function of the interest rate).
Since there is generally no simple way to calculate the expected value of a quotient
of random variables, advanced methods are needed.

In general, the expected value of a product of functions of random variables is not
equal to the product of the expected values of the functions. This has been demon-
strated in Example 12.2.1. If, however, the random variables are independent, then
the following theorem can be proven:

Theorem 12.2.2 If the random variables X1,X2,… ,Xk are independent, we have

E

(
k∏

i=1
gi(Xi)

)

=
k∏

i=1
E(gi(Xi)).
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A direct consequence of this theorem, which is also valid for discrete as well as
continuous multivariate random variables, is that the expected value of the product
of independent random variables is equal to the product of the expected values of the
individual variables:

E(X1X2 …Xk) = E(X1)E(X2)…E(Xk).

Hence, for two independent random variables X and Y , we obtain that

E(XY) = E(X)E(Y).

Moreover,
E(X∕Y) = E(X)E(1∕Y),

but this is not equal to E(X)∕E(Y). For example, for discrete random variables,

E
( 1
Y

)
=
∑

y

1
y
pY(y) ≠

1
E(Y)

= 1
∑

y
y pY (y)

,

where the sum is calculated over all possible values of Y .
The equation E(XY) = E(X)E(Y) for independent random variables is not difficult

to prove. For continuous random variables, the proof is as follows:

E(XY) =
∫ ∫

(x,y)∈D

xyfXY (x, y) dy dx,

=
∫ ∫

(x,y)∈D

xyfX(x)fY (y) dy dx,

=
[

∫x
xfX(x) dx

]
⋅
[

∫y
yfY (y) dy

]
,

= E(X)E(Y).

While the double integral is calculated over all possible values of the pair (x, y), the
two simple integrals are calculated over all possible values of x and all possible values
of y.

Example 12.2.3 In Example 11.8.3, we found out that the random variables X and
Y from Example 11.7.1 are independent. Therefore, we can calculate the expected
value E(XY) for these random variables in two ways. A first method makes use of the
joint probability density:

E(XY) =
∫ ∫

(x,y)∈D

xy fXY (x, y) dy dx,

=
∫

1

0 ∫

1

0
xy 6x2y dy dx,
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=
∫

1

0 ∫

1

0
6x3y2 dy dx,

=
∫

1

0
[2x3y3]10 dx,

=
∫

1

0
[2x3 × 13 − 2x3 × 03] dx,

=
∫

1

0
2x3 dx,

=
[2
4
x4
]1

0
,

=
[2
4
× 14 − 2

4
× 04

]
,

= 2
4
= 1

2
.

Alternatively, we can determine the expected values E(X) and E(Y) using the
marginal probability densities of X and Y derived in Example 11.8.1 and multiply
them. The expected values are

E(X) =
∫

1

0
x fX(x) dx,

=
∫

1

0
x 3x2 dx,

=
∫

1

0
3x3 dx,

=
[3
4
x4
]1

0
,

=
[3
4
× 14 − 3

4
× 04

]
,

= 3
4
,

and

E(Y) =
∫

1

0
y fY (y) dy,

=
∫

1

0
y 2y dy,

=
∫

1

0
2y2 dy,
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=
[2
3
y3
]1

0
,

=
[2
3
× 13 − 2

3
× 03

]
,

= 2
3
.

The product of these expected values is

E(X)E(Y) = 3
4
× 2
3
= 2

4
= 1

2
,

which is equal to E(XY).

12.3 Conditional expected values

The definition of a conditional expected value differs from the definition for an uncon-
ditional expected value in only one aspect: instead of the marginal probability distri-
bution or probability density, the conditional probability distribution or probability
density is used.

Definition 12.3.1 The conditional expected value of a discrete random variable X,
given that Y = y, is

E(X|Y = y) = E(X|y) =
∑

x

x pX|Y (x|y).

Analogously, the conditional expected value of a discrete random variable Y, given
that X = x, is

E(Y|X = x) = E(Y|x) =
∑

y

y pY|X(y|x).

Example 12.3.1 For the distribution in Table 11.1, we obtain

E(Y|X = 0) = (1)(0.36) + (2)(0.45) + (3)(0.17) + (4)(0.02) = 1.85.

For the computation of the conditional probability distribution that is needed here,
we refer to Example 11.4.1. You can also check that

E(X|Y = 1) = (1)(0.6897) + (0)(0.3103) = 0.6897.

Definition 12.3.2 The conditional expected value of a continuous random variable
X, given that Y takes the value y, is

E(X|Y = y) = E(X|y) =
∫x
xfX|Y (x|y) dx.
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Analogously, the conditional expected value of a continuous random variable Y,
given that X takes the value x, is

E(Y|X = x) = E(Y|x) =
∫y
yfY|X(y|x) dy.

Example 12.3.2 In Example 11.9.1 we showed that

fX|Y (x|y) =
1
y
for 0 ≤ x ≤ y,

if, as in Example 11.7.2, the two random variables X and Y have the following bivari-
ate continuous probability density:

fXY (x, y) =
{
𝜆
2e−𝜆y, 0 ≤ x < +∞, x ≤ y < +∞,

0, otherwise.

Then, the conditional expected value of X given that Y takes the value y, is

E(X|Y = y) =
∫

y

0
x
1
y
dx =

[
x2

2
⋅
1
y

]y

0

=
y2

2
⋅
1
y
− 02

2
⋅
1
y
=

y

2
.

This result is not surprising because we found out in Example 11.9.1 that the random
variable X is distributed uniformly on the interval [0, y] and the expected value of
a uniformly distributed continuous random variable is the midpoint of the interval
it covers. The result for the conditional expected value E(X|Y = y) means, that, for
example, the expected value of X is equal to 4 if you know that the random variable
Y takes the value 8.

12.4 Probability distributions of functions of random
variables

12.4.1 Discrete random variables

If the random variablesX1,X2,… ,Xk are discrete and have a finite number of possible
values, then it is relatively easy to derive the probability distribution of a function Y =
g(X1,X2,… ,Xk). The required approach is similar to the one used in Section 6.4.1.

Example 12.4.1 For the bivariate random variable (X, Y) in Table 11.1, we compute
the probability distribution of the function U = g(X, Y) = XY. It is easy to check that
the new random variable U can only take five values, namely 0, 1, 2, 3, and 4. We
obtain the value 0 whenever X takes the value 0. Consequently,

P(U = 0) = P[(X = 0) ∩ (Y = 1)] + P[(X = 0) ∩ (Y = 2)]

+ P[(X = 0) ∩ (Y = 3)] + P[(X = 0) ∩ (Y = 4)],

= 0.18 + 0.225 + 0.085 + 0.01 = 0.5.
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The random variable U only takes the value 1 if both X and Y take the value 1. Hence,
P(U = 1) = P[(X = 1) ∩ (Y = 1)] = 0.4. In a similar manner, the probabilities that
U takes the values 2, 3, and 4 can be determined. The probability distribution of the
function U is shown in the following table:

u 0 1 2 3 4

pU(u) 0.500 0.400 0.060 0.035 0.005

This distribution can be used to calculate the expected value of the function U:

E(U) =
∑

u

u pU(u),

where the sum is taken over all values that the function U can take. Applied to the
example, we obtain

E(U) = 0(0.5) + 1(0.4) + 2(0.06) + 3(0.035) + 4(0.005) = 0.645.

This provides us with a second way to determine the expected value of a function of
random variables (see Example 12.2.1). This exercise can of course also be carried
out for the functions S, V, and Q defined in Example 12.2.1.

12.4.2 Continuous random variables

If the random variables X1,X2,… ,Xk are continuous, then it is not that easy to derive
the probability density of a function Y = g(X1,X2,… ,Xk). One possible method uses
the moment generating function, while another technique, the so-called transforma-
tion method, makes use of a special matrix, the Jacobian.

12.4.2.1 Method of the moment generating function

To determine the probability density of a function Y = g(X1,X2,… ,Xk), one can try
to find the moment generating function of Y . In some cases, this moment generat-
ing function has a form that we recognize. Most known probability densities have
a recognizable moment generating function. For example, the normal density with
expected value 𝜇 and variance 𝜎2 has the following moment generating function:

mX(t) = e𝜇t+
1
2
𝜎
2t2
. (12.1)

If, at any given time, we encounter a function Y with a moment generating function
of that form, we know immediately that Y is normally distributed. The expected value
of the normal density of Y is the coefficient of t in the exponent in Equation (12.1),
while the variance is equal to the coefficient of 1

2
t2.
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The method of the moment generating function for computing the probability den-
sity of Y = g(X1,X2,… ,Xk) is useful if X1,X2,… ,Xk are independent random vari-
ables and if we are interested in a function of the form

Y = a0 +
k∑

i=1
aiXi.

Then, the moment generating function of Y is equal to

mY (t) = ea0t
k∏

i=1
mXi

(ait).

It is not difficult to demonstrate this, starting from the definition of the moment
generating function and using the fact that all the random variables X1,X2,… ,Xk are
independent:

mY (t) = E(etY ),

= E(et(a0+a1X1+a2X2+···+akXk)),

= E(eta0eta1X1eta2X2 … etakXk ),

= E(eta0 )E(eta1X1 )E(eta2X2 )… E(etakXk ),

= eta0E(eta1X1)E(eta2X2)… E(etakXk ),

= eta0mX1
(ta1) mX2

(ta2) … mXk
(tak),

= ea0t
k∏

i=1
mXi

(ait).

In the special case that a0 = 0 and a1 = a2 = · · · = ak = 1, the function

Y =
k∑

i=1
Xi

is a simple sum and the moment generating function of this sum is the product of the
individual moment generating functions:

mY (t) =
k∏

i=1
mXi

(t).

Now, suppose that X1, X2, and X3 are all normally distributed with expected values
equal to 𝜇1, 𝜇2, and 𝜇3, and variances equal to 𝜎

2
1 , 𝜎

2
2 , and 𝜎

2
3 . The moment generating

function of the sum
Y = X1 + X2 + X3
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is the product of the individual moment generating functions:

mY (t) = mX1
(t)mX2

(t)mX3
(t),

= e𝜇1t+
1
2
𝜎
2
1
t2 ⋅ e𝜇2t+

1
2
𝜎
2
2
t2 ⋅ e𝜇3t+

1
2
𝜎
2
3
t2
,

= e𝜇1t+
1
2
𝜎
2
1
t2+𝜇2t+

1
2
𝜎
2
2
t2+𝜇3t+

1
2
𝜎
2
3
t2
,

= e(𝜇1+𝜇2+𝜇3)t+
1
2
(𝜎21+𝜎

2
2+𝜎

2
3 )t

2
.

If we substitute
𝜇Y = 𝜇1 + 𝜇2 + 𝜇3

and
𝜎
2
Y = 𝜎

2
1 + 𝜎

2
2 + 𝜎

2
3 ,

we obtain the following result:

mY (t) = e𝜇Y t+
1
2
𝜎
2
Y
t2
.

This moment generating function has exactly the same form as the one in
Equation (12.1). Therefore, we can conclude that Y , the sum of three independent
normally distributed random variables, is also normally distributed, with expected
value 𝜇Y = 𝜇1 + 𝜇2 + 𝜇3 and variance 𝜎2

Y = 𝜎
2
1 + 𝜎

2
2 + 𝜎

2
3 .

Similarly, it can be proven that any linear combination of independent normally
distributed random variables is again normally distributed.

12.4.2.2 Transformation method

The transformation method for determining probability densities of functions of sev-
eral random variables generalizes the second approach in Section 6.4.2, where trans-
formations of a single continuous random variable were studied. We learnt that the
computation of a probability density of a strictly increasing or strictly decreasing
function Y = g(X) can be based on the equation

fY (y) = fX(x)
||||
dx
dy

||||
= fX{g−1(y)}

|||||

dg−1(y)
dy

|||||
, (12.2)

where g−1() is the inverse function of g().
Suppose that two random variables X1 and X2 have the joint probability density

function fX1X2 (x1, x2), but that we are interested in the functions Y1 = g1(X1,X2) and
Y2 = g2(X1,X2). Here, it is important that the functions g1() and g2() are bijective.
This means that each pair (x1, x2) of realizations of X1 and X2 corresponds to exactly
one pair (y1, y2) of realizations of Y1 and Y2, and vice versa. In that case, it is possible
to express X1 and X2 as functions of Y1 and Y2:

X1 = h1(Y1, Y2)
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and
X2 = h2(Y1,Y2).

In this case, the joint probability density of Y1 and Y2 can be computed as

fY1Y2 (y1, y2) = fX1X2 (x1, x2)
|||||||

det
⎡
⎢
⎢
⎣

𝜕x1
𝜕y1

𝜕x1
𝜕y2

𝜕x2
𝜕y1

𝜕x2
𝜕y2

⎤
⎥
⎥
⎦

|||||||

,

= fX1X2 (h1(y1, y2), h2(y1, y2))
|||||||

det
⎡
⎢
⎢
⎣

𝜕x1
𝜕y1

𝜕x1
𝜕y2

𝜕x2
𝜕y1

𝜕x2
𝜕y2

⎤
⎥
⎥
⎦

|||||||

.

The matrix of partial derivatives in this expression is called the Jacobian or Jacobian
matrix, after the Germanmathematician Carl Gustav Jacobi.We need the determinant
of this matrix.
It is not difficult to extend the transformation method to more than two random

variables. If we are working with three random variables instead of two, the Jaco-
bian is a three-dimensional square matrix instead of a two-dimensional matrix. An
important difference between the transformation method and the method of moment
generating functions is that the first one can also be used to study dependent random
variables.
We illustrate the transformation method for two random variables by means of an

example.

Example 12.4.2 Suppose that X1 and X2 are independent exponentially distributed
random variables with parameter 𝜆 = 1, so that the joint probability density of these
two random variables is equal to

fX1X2 (x1, x2) = fX1 (x1)fX2(x2) = e−x1e−x2 = e−x1−x2 ,

if x1 and x2 are greater than or equal to zero. Suppose that we are rather interested
in the random variables

Y1 = X1 + X2,

and

Y2 =
X1

X1 + X2

than X1 and X2. Hence, we need the probability densities of Y1 and Y2.
The first step to determine the probability densities of Y1 and Y2 is to find the val-

ues that these two random variables can take. Since X1 and X2 are exponentially
distributed, these variables can both take any non-negative real value: x1 ≥ 0 and
x2 ≥ 0. It follows that Y1 can also take all non-negative real values, and that Y2 can
take all values between 0 and 1. In mathematical terms, this means that y1 ≥ 0 and
0 ≤ y2 ≤ 1.
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The next step is to determine an expression for X1 and X2 as functions of Y1 and Y2.
Since Y1 = X1 + X2, it is not difficult to see that

Y2 =
X1

Y1
.

Hence,
X1 = Y1Y2.

Consequently,
Y1 = Y1Y2 + X2,

and
X2 = Y1 − Y1Y2 = Y1(1 − Y2).

The partial derivatives that we need for the Jacobian matrix are

𝜕x1
𝜕y1

= y2,

𝜕x1
𝜕y2

= y1,

𝜕x2
𝜕y1

= 1 − y2,

and
𝜕x2
𝜕y2

= −y1.

Thus, the Jacobian is [
y2 y1

1 − y2 −y1

]
,

and the determinant of this matrix is

−y1y2 − (1 − y2)y1 = −y1y2 − y1 + y1y2 = −y1.

Hence, the joint probability density of Y1 and Y2 is

fY1Y2(y1, y2) = fX1X2 (x1, x2) ⋅ |−y1|,

= fX1X2 (y1y2, y1(1 − y2)) ⋅ |−y1|,

= e−y1y2−y1(1−y2) ⋅ y1,

= y1e
−y1 ,

for y1 ≥ 0 and 0 ≤ y2 ≤ 1.
The marginal probability densities of Y1 and Y2 are

fY1 (y1) = ∫

1

0
y1e

−y1 dy2 = y1e
−y1 ,
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and

fY2 (y2) = ∫

+∞

0
y1e

−y1 dy1 = 1.

The conclusion is that Y1 is gamma distributed with parameters k = 2 and 𝜃 = 1
(see Section 9.3), and that Y2 is uniformly distributed over the interval [0,1] (see
Section 9.1). Note that the computation of the integral for the marginal probability
density of Y2 is not obvious. The easiest way to see that the integral is equal to 1, is
to observe that the integrand, y1e

−y1 , is a gamma density. Hence, the integral

∫

+∞

0
y1e

−y1 dy1,

the area under the gamma probability density, must be equal to 1. Otherwise, y1e
−y1

would not be a valid probability density function.

This example illustrates that by combining various random variables (here, expo-
nentially distributed random variables), we can construct new random variables with
known probability density functions (here, a gamma probability density and a uni-
form probability density). This is of great importance in testing hypotheses in statis-
tics, where t-distributed, F-distributed, and 𝜒

2-distributed random variables play a
crucial role. The densities of these random variables can be derived from the (stan-
dard) normal probability density from Chapter 10. For example, it can be shown
that a sum of squared independent standard normally distributed random variables
is 𝜒2-distributed. The t-, F-, and 𝜒

2-distributions are not discussed here, but in the
book Statistics with JMP: Hypothesis Tests, ANOVA and Regression, which deals
with estimating population parameters and performing hypothesis tests.

12.5 Functions of independent Poisson, normally,
and lognormally distributed random variables

In this section, we start with two interesting theorems associated with functions of
independent Poisson and normally distributed random variables. For the proof of
these theorems, themethod of themoment generating functions from Section 12.4.2.1
can be used. Later, we use another approach to prove properties of lognormally dis-
tributed random variables.

Theorem 12.5.1 If X1,X2,… ,Xk are independent Poisson distributed random vari-
ables with parameters equal to 𝜆1, 𝜆2,… , 𝜆k, then the sum of these random variables
Y =

∑k
i=1 Xi is also Poisson distributed, with parameter 𝜆 =

∑k
i=1 𝜆i.

The proof of this theorem follows the same lines of thought as the proof for the sum
of independent normally distributed random variables in Section 12.4.2.1. The only
difference is that the theorem is about Poisson distributed random variables instead of
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normally distributed random variables. The moment generating function of a Poisson
distributed random variable X with parameter 𝜆 is

mX(t) = e𝜆(e
t−1)

.

Example 12.5.1 An assembly line is fed by three production lines in which iden-
tical parts are manufactured. These three production lines produce parts according
to three independent Poisson processes: Machine 1 produces an average of 𝜆1 = 2
parts per minute, Machine 2 generates an average of 𝜆2 = 1 part per minute, and
Machine 3 delivers an average of 𝜆3 = 3.5 parts per minute. What is the probability
that, in a period of 5 minutes, at least 30 parts are supplied to the assembly line?
The number of parts delivered per minute to the assembly line is a random variable

Y, which is the sum of the three independent Poisson distributed random variables.
Therefore, the random variable Y is Poisson distributed with parameter 𝜆 = 2 + 1 +
3.5 = 6.5 parts per minute. Hence, every 5 minutes, we have an average number of
5 × 6.5 = 32.5 parts. The number of parts that arrive in a time interval of 5minutes is
therefore a Poisson distributed random variable W with parameter 32.5. The desired
probability can now be written as

P(W ≥ 30) = 1 − P(W ≤ 29) = 1 − FW (29),

which can be calculated in JMP with the formula “1 – Poisson Distribution(32.5,
29)”. This leads to the result 0.6932.

Theorem 12.5.2 If X1,X2,… ,Xk are independent normally distributed random vari-
ables with expected values E(X1) = 𝜇1,E(X2) = 𝜇2,… ,E(Xk) = 𝜇k and variances
var(X1) = 𝜎

2
1 , var(X2) = 𝜎

2
2 ,… , var(Xk) = 𝜎

2
k , then the linear function Y = a0 +∑k

i=1 aiXi is also normally distributed, with expected value E(Y) = a0 +
∑k

i=1 ai𝜇i
and variance var(Y) =

∑k
i=1 a

2
i 𝜎

2
i .

This theorem is similar to the central limit theorem in Chapter 14, Section 14.2,
which states that the sum of a sufficiently large number of independent random
variables approximately follows a normal distribution. A direct consequence of
Theorem 12.5.2 is that the sum of any number of normally distributed random
variables is exactly normally distributed. For a proof of Theorem 12.5.2, we can use
the method of the moment generating function from Section 12.4.2.1.
If we look at the sum of k independent normally distributed random variables Xi,

where all Xi have the same parameters 𝜇 and 𝜎
2, then this sum is again normally

distributed with expected value k𝜇 and variance k𝜎2. The random variables’ average∑k
i=1 Xi∕k is also normally distributed, namely with expected value 𝜇 and variance

𝜎
2∕k.
The sum X1 + X2 of two independent normally distributed random variables X1

(with expected value 𝜇1 and variance 𝜎2
1) and X2 (with expected value 𝜇2 and vari-

ance 𝜎2
2) is again normally distributed with mean 𝜇1 + 𝜇2 and variance 𝜎

2
1 + 𝜎

2
2 . The

difference X1 − X2 is normally distributed with mean 𝜇1 − 𝜇2 and variance 𝜎2
1 + 𝜎

2
2 .
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Example 12.5.2 The filling process of a bottle with a capacity of 1 liter is set
to a value of 1.01 l. The process has a standard deviation of 0.02 l and provides
a normally distributed content. The bottles are packed in groups of 6. What is the
probability that a pack of 6 bottles has a volume that is less than 6 l?
The content of 6 bottles is normally distributed with expected value 6 × 1.01 =

6.06 l and variance 6 × (0.02)2 = 0.0024 l2 (and thus a standard deviation of√
0.0024 = 0.049 l). The desired probability P(X < 6), where X represents the total

volume of the 6 bottles, can be calculated using the table of the standard normal
distribution in Appendix E, or using the command “Normal Distribution(6, 6.06,
0.049)” in JMP. This gives a probability of 0.1104.

Example 12.5.3 Assume that the height of a man is normally distributed with
expected value 𝜇M = 180 cm and standard deviation 𝜎M = 8 cm, and that the height
of a woman is normally distributed with expected value 𝜇F = 170 cm and standard
deviation 𝜎F = 6 cm. Also assume that men and women, when choosing a partner,
do not take into account each other’s height. What is the probability that, in a mixed
marriage, the man is taller than the woman?
To answer this question, we first define the random variable M as the height of a

man, and the random variable F as the height of a woman. The probability that the
man is taller than the woman is

P(M > F) = P(M − F > 0).

The difference M − F is a difference of two independent normally distributed random
variables. Hence, M − F is itself normally distributed, with expected value

𝜇M−F = 𝜇M − 𝜇F = 180 − 170 = 10,

and variance
𝜎
2
M−F = 𝜎

2
M + 𝜎

2
F = 82 + 62 = 100.

Therefore, the standard deviation of the difference M − F, 𝜎M−F, is 10. The desired
probability can be calculated as

P(M − F > 0) = P

(
M − F − 𝜇M−F

𝜎M−F
>

0 − 𝜇M−F
𝜎M−F

)
,

= P
(
Z >

0 − 10
10

)
,

= P(Z > −1),

= 0.8413.

This probability can be found in the table in Appendix E. Alternatively, one can use
the formulas “1−Normal Distribution(−1)” and “1−Normal Distribution(0, 10,
10)” in JMP.
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In Belgium, a married couple does not have to consist of a man and a woman.
Therefore, let us consider a couple consisting of two men and find the probability
that the older one is taller than the younger one. The heights of both the older and
the younger man are normally distributed with expected value 180 cm and standard
deviation 8 cm. It follows that the difference in height between the twomen is normally
distributed with expected value 0 and that the probability that the older man is taller
than the younger one is exactly equal to 0.5.

Theorem 12.5.3 If X1,X2,… ,Xk are independent lognormally distributed random
variables with parameters 𝜇1, 𝜇2,… , 𝜇k and 𝜎1, 𝜎2,… , 𝜎k, then the product Y =
X1X2 …Xk is lognormally distributed with parameters

𝜇Y =
k∑

i=1
𝜇i and 𝜎Y =

√√√√
k∑

i=1
𝜎
2
i .

Proof: For simplicity, we only prove this theorem for two independent lognormally
distributed random variables X1 (with parameters 𝜇1 and 𝜎1) and X2 (with param-
eters 𝜇2 and 𝜎2). In that case, we seek the probability density of a product of two
lognormally distributed random variables, Y = X1X2. As X1 and X2 are lognormally
distributed, both ln(X1) and ln(X2) are normally distributed, with expected values 𝜇1
and 𝜇2, and variances 𝜎

2
1 and 𝜎

2
2 . Moreover, as X1 and X2 are independent, ln(X1) and

ln(X2) are also independent. Since Y = X1X2, the natural logarithm of Y equals

ln(Y) = ln(X1) + ln(X2).

In other words, ln(Y) is the sum of two independent normally distributed random
variables with expected values 𝜇1 and 𝜇2 and variance 𝜎

2
1 and 𝜎

2
2 . Hence, ln(Y) is

normally distributed with expected value 𝜇1 + 𝜇2 and variance 𝜎
2
1 + 𝜎

2
2 . As a result,

eln(Y) = eln(X1)+ln(X2) = eln(X1X2) = X1X2 = Y

is lognormally distributed with parameters 𝜇Y = 𝜇1 + 𝜇2 and 𝜎Y =
√

𝜎
2
1 + 𝜎

2
2 . ◾

Theorem 12.5.4 If X1 and X2 are independent lognormally distributed random vari-
ables with parameters 𝜇1 and 𝜎1 and 𝜇2 and 𝜎2, respectively, then the quotient Y =
X1∕X2 is lognormally distributed with parameters

𝜇Y = 𝜇1 − 𝜇2 and 𝜎Y =
√

𝜎
2
1 + 𝜎

2
2 .

The proof of this theorem is completely analogous to the proof of Theorem 12.5.3.

Example 12.5.4 Suppose that X1, X2, and X3 represent annual growth rates of a
three-year investment, and that these three growth rates are independent lognor-
mally distributed random variables. The overall growth rate over three years is Y =
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X1X2X3. The overall growth rate is a product of three independent lognormally dis-
tributed random variables, and therefore also lognormally distributed. The parame-
ters of the lognormal probability density of the overall growth rate Y are

𝜇Y = 𝜇1 + 𝜇2 + 𝜇3 and 𝜎Y =
√

𝜎
2
1 + 𝜎

2
2 + 𝜎

2
3 .

Example 12.5.5 Suppose that X1 represents the weight of an adult person, expressed
in kilograms, and X2 represents the height of this person, expressed in meters. Sup-
pose that both random variables are independent and lognormally distributed with
parameters 𝜇1 and 𝜎1 (for X1) and 𝜇2 and 𝜎2 (for X2). Then, we can wonder what the
probability density of the so-called “body mass index” (BMI) is, defined as

BMI =
X1

X2
2

.

To answer this question, we first look at the natural logarithm of the BMI:

ln(BMI) = ln(X1) − ln(X2
2) = ln(X1) − 2 ln(X2).

The natural logarithm ln(BMI) is a linear combination of two independent normally
distributed random variables, and therefore also normally distributed. More specifi-
cally, ln(BMI) is normally distributed with expected value 𝜇BMI = 𝜇1 − 2𝜇2 and vari-
ance 𝜎2

BMI = 𝜎
2
1 + 4𝜎2

2 . As a result,

eln(BMI) = eln(X1)−2 ln(X2) = eln(X1∕X
2
2 ) =

X1

X2
2

= BMI

is lognormally distributed with parameters

𝜇BMI = 𝜇1 − 2𝜇2 and 𝜎BMI =
√

𝜎
2
1 + 4𝜎2

2 .
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Covariance, correlation, and
variance of linear functions

Langdon frowned. Kohler was right. Holy wars were still making headlines. My God
is better than your God. It seemed there was always close correlation between true
believers and high body counts.

(from Angels & Demons, Dan Brown, p. 57)

In Section 3.9.2, we introduced the concepts of covariance and correlation between
two quantitative variables as measures of (linear) relationship. Although these
concepts were initially defined for sample data, we already briefly indicated that
covariances and correlations can be calculated for populations. In this chapter,
we focus on the calculation of population correlations and covariances. We also
pay attention to the variance, which in fact is a special case of a covariance. The
definitions and properties in this section are almost all valid for both continuous and
discrete random variables. Only expressions with double summations are only valid
for discrete random variables.

13.1 Covariance and correlation

We derive the terms covariance and correlation based on an example, and compute
the population covariance for this example, as defined on page 91.

Example 13.1.1 Assume that we want to investigate the covariance between two
random variables X and Y, and that the joint and marginal probability distributions
of these variables are given as in Table 13.1. In this example, X represents the size of

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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Table 13.1 Joint probability distribution pXY (x, y) and marginal
probability distributions pX(x) and pY(y) of X and Y for
Example 13.1.1.

Y
pX(x)

1 2 3 4

1 0.10 0.10 0.05 0.02 0.27
X 2 0.05 0.10 0.20 0.15 0.50

3 0.00 0.05 0.10 0.08 0.23

pY (y) 0.15 0.25 0.35 0.25 1.00

an order. This random variable takes the value 1 for orders of less than €1000, the
value 2 for orders between €1000 and 5000, and the value 3 for orders of more than
€5000. The random variable Y corresponds to the number of days elapsing between
the order and the delivery.
If the population consists of 200 elements, then it follows from the probability dis-

tribution that 20 (= 0.10 × 200) of those elements take the value 1 for both variables
X and Y, 20 (= 0.10 × 200) elements take the value 1 for X and the value 2 for Y, and
so on. Therefore, the population covariance between X and Y can be calculated as

𝜎XY = 1
200

[20(1 − 𝜇X)(1 − 𝜇Y ) + 20(1 − 𝜇X)(2 − 𝜇Y ) + · · · + 16(3 − 𝜇X)(4 − 𝜇Y)],

=
∑

xi

∑

yi

pXY (xi, yi)(xi − 𝜇X)(yi − 𝜇Y ),

which shows that the population covariance can be computed based on the joint prob-
ability distribution of X and Y directly.

Definition 13.1.1 For two discrete random variables X and Y with joint probabil-
ity distribution pXY (x, y), or two continuous random variables X and Y with joint
probability density fXY(x, y), the population covariance is defined as

𝜎XY = cov(X, Y) = E[(X − 𝜇X)(Y − 𝜇Y )].

For discrete random variables, the expected valueE[(X − 𝜇X)(Y − 𝜇Y)] can be com-
puted as

𝜎XY = cov(X, Y) =
∑

x

∑

y

(x − 𝜇X)(y − 𝜇Y )pXY (x, y),

where the summation is taken over all possible values of X and Y . This expression
is actually an application of the general Definition 12.2.1 of the expected value of a
function of several discrete random variables: the covariance between two variables
X and Y is the expected value of the function (X − 𝜇X)(Y − 𝜇Y ) of these variables.
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For continuous random variables, the expected value can be computed as

𝜎XY = cov(X,Y) =
∫ ∫

(x,y)∈D

(x − 𝜇X)(y − 𝜇Y )fXY(x, y) dy dx.

Similarly, this expression is an application of the general Definition 12.2.2 of the
expected value of a function of several continuous random variables: the covariance
between two variables X and Y is the expected value of the function (X − 𝜇X)(Y − 𝜇Y )
of these variables.
The intuition behind these formulas is exactly the same as the one outlined in

Chapter 3 on sample data. We will not repeat this explanation here.
A special case of a population covariance is the covariance of a variable X with

itself:
𝜎XX = E[(X − 𝜇X)(X − 𝜇X)] = E[(X − 𝜇X)2] = 𝜎

2
X ,

which is the population variance of X. Starting from the population covariance, the
population correlation between two random variables can be defined as

𝜌XY = corr(X, Y) =
𝜎XY

𝜎X𝜎Y
. (13.1)

Here again, we have that −1 ≤ 𝜌XY ≤ 1. If Y = aX + b, with a ≠ 0, then the cor-
relation will be exactly −1 or +1. If a > 0, then the correlation is +1. In the other
case, the correlation is −1. The absolute size of a has no effect on the correlation
coefficient. Whether a is 100 or 0.001 does not make a difference: the correlation
between X and Y = aX + b will be equal to +1. If a = 0, then the correlation is not
defined (since in that case, 𝜎XY = 0 and 𝜎Y = 0). This means that the correlation of
any random variable with a constant is not defined. It is a good exercise to verify
all this.
The fact that the correlation can only take values between −1 and +1 offers the

advantage that the strength of the linear relationship between X and Y is easy to
interpret. Covariances can be arbitrarily large or small depending on the units of the
measurements, which considerably complicates their interpretation. If, for example,
the variable X is expressed in centimeters rather than in meters, this increases the
covariance 𝜎XY by a factor of 100. The correlation coefficient is not affected by this
rescaling.
Note that, from the definition of the population variance in Equation (13.1), we can

derive that

𝜎XY = 𝜌XY𝜎X𝜎Y .

Example 13.1.2 It is a useful exercise to verify for the random variables of
Example 13.1.1 that 𝜇X = 1.96, 𝜇Y = 2.7, 𝜎XY = 0.298, 𝜎X = 0.706, 𝜎Y = 1.005,
and 𝜌XY = 0.42. This positive correlation indicates that larger orders typically have
a longer delivery time than smaller orders.
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The computation of the covariance is usually simplified to

𝜎XY = E(XY) − 𝜇X𝜇Y .

This expression can be found as follows:

𝜎XY = E[(X − 𝜇X)(Y − 𝜇Y )],

= E[XY − 𝜇XY − X𝜇Y + 𝜇X𝜇Y ],

= E(XY) − E(𝜇XY) − E(X𝜇Y ) + E(𝜇X𝜇Y ),

= E(XY) − 𝜇XE(Y) − 𝜇YE(X) + 𝜇X𝜇Y ,

= E(XY) − 𝜇X𝜇Y − 𝜇Y𝜇X + 𝜇X𝜇Y ,

= E(XY) − 𝜇X𝜇Y .

Example 13.1.3 For the random variables from Example 13.1.1, we have E(XY) =
5.59, so that 𝜎XY = 5.59 − (1.96)(2.7) = 0.298. Indeed, 𝜇X = 1.96 and 𝜇Y = 2.7.

Example 13.1.4 For the random variables X and Y in Example 11.5.2 (which deals
with an urn containing one yellow ball, two red balls, and three blue balls, and where
the first ball drawn is put back into the urn), we have that

E(XY) = 1
36

× 0 × 0 + 6
36

× 0 × 1 + 9
36

× 0 × 2

+ 4
36

× 1 × 0 + 12
36

× 1 × 1 + 4
36

× 2 × 0,

= 12
36

.

Hence,

𝜎XY = E(XY) − 𝜇X𝜇Y = 12
36

− 2
3
× 1 = −12

36
= −1

3
.

Indeed, we calculated in Example 11.5.2 that 𝜇X = E(X) = 2∕3 and 𝜇Y = E(Y) = 1.
We see that there is a negative covariance between the random variables X and Y (the
numbers of red and blue balls drawn). This negative relationship is perfectly logical
because drawing a red ball implies that no blue ball is drawn, and drawing a blue
ball implies that no red ball is drawn.
The correlation between X and Y is

𝜌XY =
𝜎XY

𝜎X𝜎Y
=

−1∕3
√

16∕36
√

1∕2
= −

√
2
2

≈ −0.707,

because we found in Example 11.5.2 that 𝜎2
X = 16∕36 and 𝜎

2
Y = 1∕2.

Example 13.1.5 For the random variables X and Y of Example 11.5.3 (which also
deals with an urn containing one yellow ball, two red balls, and three blue balls, but
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where the first ball drawn is not put back into the urn), we have that

E(XY) = 6
30

× 0 × 1 + 6
30

× 0 × 2 + 4
30

× 1 × 0 + 12
30

× 1 × 1 + 2
30

× 2 × 0 = 12
30

.

Hence,

𝜎XY = E(XY) − 𝜇X𝜇Y = 12
30

− 2
3
× 1 = − 8

30
.

Indeed, we calculated in Example 11.5.3 that 𝜇X = E(X) = 2∕3 and 𝜇Y = E(Y) = 1.
The correlation between X and Y is

𝜌XY =
𝜎XY

𝜎X𝜎Y
=

−8∕30
√

16∕45
√

2∕5
= − 1

√
2
= −

√
2
2

≈ −0.707,

because we found in Example 11.5.3 that 𝜎2
X = 16∕45 and 𝜎2

Y = 2∕5.

Theorem 13.1.1 If X and Y are independent random variables, then 𝜎XY = 0 and
𝜌XY = 0.

Proof: This theorem is easy to prove because, for independent random variables,
we have that E(XY) = E(X)E(Y). This is a direct consequence of Theorem 12.2.2.
Therefore,

𝜎XY = E(XY) − 𝜇X𝜇Y ,

= E(X)E(Y) − 𝜇X𝜇Y ,

= 𝜇X𝜇Y − 𝜇X𝜇Y ,

= 0.

Of course, in that case, the correlation is zero as well, 𝜌XY = 0, because 𝜌XY =
𝜎XY∕(𝜎X𝜎Y ). ◾

The converse of this theorem is not true. It is possible that the correlation between
two variables is equal to zero, but that they are not independent. The correlation is
a measure of linear relationship between two random variables. Dependence of two
variables, however, is a broader concept that includes linear, but also quadratic or
logarithmic relationships. This is illustrated in the following example.

Example 13.1.6 Suppose that the joint probability distribution of the random vari-
ables X and Y is given by

pXY (x, y) =
⎧
⎪
⎨
⎪
⎩

1∕3 if x = 0 and y = 1,

1∕3 if x = 1 and y = 0,

1∕3 if x = −1 and y = 0.

It can be shown that these two random variables are dependent (see Defini-
tion 11.3.1). In fact, Y = 1 − X2. However, the covariance and correlation between
the variables X and Y are both equal to zero.
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13.2 Variance of linear functions of two random
variables

In order to determine the variances of linear functions of two random variables, the
covariances are also needed. This is shown by the following theorem.

Theorem 13.2.1 For two random variables X and Y, and arbitrary real constants a,
b, and c,

var(aX + bY + c) = a2var(X) + b2var(Y) + 2ab cov(X,Y),

= a2𝜎2
X + b2𝜎2

Y + 2ab 𝜎XY .

Proof:

var(aX + bY + c) = E{[aX + bY + c − E(aX + bY + c)]2},

= E{[aX + bY + c − (a𝜇X + b𝜇Y + c)]2},

= E{[aX + bY + c − a𝜇X − b𝜇Y − c]2},

= E{[aX + bY − a𝜇X − b𝜇Y ]2},

= E{[a(X − 𝜇X) + b(Y − 𝜇Y )]2},

= E[a2(X − 𝜇X)2 + b2(Y − 𝜇Y )2 + 2ab(X − 𝜇X)(Y − 𝜇Y )],

= E[a2(X − 𝜇X)2] + E[b2(Y − 𝜇Y )2] + E[2ab(X − 𝜇X)(Y − 𝜇Y )]

= a2E[(X − 𝜇X)2] + b2E[(Y − 𝜇Y )2] + 2abE[(X − 𝜇X)(Y − 𝜇Y )]

= a2var(X) + b2var(Y) + 2ab cov(X,Y),

= a2𝜎2
X + b2𝜎2

Y + 2ab 𝜎XY . ◾

Example 13.2.1 The previous theorem allows the variance of the sum and difference
of the random variables X and Y from Example 13.1.1 to be calculated. For the sum
S = X + Y, we have that a = 1, b = 1, and c = 0, while, for the difference V = X − Y,
we have that a = 1, b = −1, and c = 0. The variances are

var(S) = var(X + Y),

= var(X) + var(Y) + 2 cov(X, Y),

= (0.706)2 + (1.005)2 + 2(0.298),

= 2.1044,

and
var(V) = var(X − Y),
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= var(X) + var(Y) − 2 cov(X, Y),

= (0.706)2 + (1.005)2 − 2(0.298),

= 0.9125.

The same result can be found by first computing the probability distribution of S and
V (see Section 12.4.1) and then calculating the variance directly. For example, the
probability distribution of the variable S is given in the following table:

s 2 3 4 5 6 7

pS(s) 0.10 0.15 0.15 0.27 0.25 0.08

It follows that

𝜇S = E(S) = 2(0.10) + 3(0.15) + · · · + 7(0.08) = 4.66,

E(S2) = 22(0.10) + 32(0.15) + · · · + 72(0.08) = 31.5221,

and, by using the formula on page 165,

𝜎
2
S = E(S2) − 𝜇

2
S = 31.5221 − (4.66)2 = 2.1044.

13.3 Variance of linear functions of several random
variables

In order to determine the variances of linear functions of several random variables,
the concept of a covariance matrix is needed.

Definition 13.3.1 Let X1,X2,… ,Xk be random variables with pairwise covariances
cov(Xi,Xj) = 𝜎ij. Then, their covariance matrix is given by

C =

⎡
⎢
⎢
⎢
⎢
⎣

𝜎11 𝜎12 … 𝜎1k

𝜎21 𝜎22 … 𝜎2k

⋮ ⋮ ⋱ ⋮

𝜎k1 𝜎k2 … 𝜎kk

⎤
⎥
⎥
⎥
⎥
⎦

.

As the covariance of a variable with itself is equal to the variance (and hence 𝜎ii =
𝜎
2
i ) and cov(Xi,Xj) = cov(Xj,Xi), the covariance matrix can be rewritten as

C =

⎡
⎢
⎢
⎢
⎢
⎣

𝜎
2
1 𝜎12 … 𝜎1k

𝜎12 𝜎
2
2 … 𝜎2k

⋮ ⋮ ⋱ ⋮

𝜎1k 𝜎2k … 𝜎
2
k

⎤
⎥
⎥
⎥
⎥
⎦

.
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The matrix is symmetric. Using a covariance matrix, Theorem 13.2.1 can be rewritten
as follows:

Theorem 13.3.1 For two random variables X and Y, and arbitrary real constants a,
b, and c,

var(aX + bY + c) =
[
a b

]
[
𝜎
2
X 𝜎XY

𝜎XY 𝜎
2
Y

][
a

b

]
.

This result can be generalized to more than two random variables:

Theorem 13.3.2 For k random variables X1,X2,… ,Xk and arbitrary constants
a0, a1, a2,… , ak, we have that

var

(

a0 +
k∑

i=1
aiXi

)

=
[
a1 a2 … ak

]
⎡
⎢
⎢
⎢
⎢
⎣

𝜎
2
1 𝜎12 … 𝜎1k

𝜎12 𝜎
2
2 … 𝜎2k

⋮ ⋮ ⋱ ⋮

𝜎1k 𝜎2k … 𝜎
2
k

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

a1
a2
⋮

ak

⎤
⎥
⎥
⎥
⎥
⎦

,

=
k∑

i=1

k∑

j=1
aiaj𝜎ij,

=
k∑

i=1
a2i 𝜎

2
i +

k∑

i=1

k∑

j=i+1
2aiaj𝜎ij.

The proof of this theorem is not difficult and is left as an exercise.

13.4 Variance of linear functions of independent
random variables

13.4.1 Two independent random variables

The variance of a linear function of two independent random variables X and Y is eas-
ier to calculate than the variance of a linear function of dependent random variables
because the covariance between independent random variables is zero. For indepen-
dent random variables X and Y , it is true that cov(X,Y) = 𝜎XY = 0. It then follows
from Theorem 13.2.1 that

var(aX + bY + c) = a2var(X) + b2var(Y) = a2𝜎2
X + b2𝜎2

Y .

The variance of a sum or a difference of two independent random variables X and
Y is therefore equal to the sum of the variances of X and Y:

var(X + Y) = var(X − Y) = var(X) + var(Y) = 𝜎
2
X + 𝜎

2
Y .
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Notice that the variance of the difference is not equal to the difference of the vari-
ances, but to their sum.

13.4.2 Several pairwise independent random variables

Since, for pairwise independent random variables X1,X2,… ,Xk, all covariances 𝜎ij
are equal to zero, the variance of a linear function of several independent random
variables X1,X2,… ,Xk is simply

var

(

a0 +
k∑

i=1
aiXi

)

=
k∑

i=1
a2i var(Xi) =

k∑

i=1
a2i 𝜎

2
i .

The variance of a sum of pairwise independent random variables X1,X2,… ,Xk is
thus the sum of the individual variances:

var

(
k∑

i=1
Xi

)

=
k∑

i=1
var(Xi) =

k∑

i=1
𝜎
2
i .

13.5 Linear functions of normally distributed random
variables

Without proof, we mention a theorem on linear functions of normally distributed
random variables. This theorem generalizes Theorem 12.5.2, which is only valid for
independent normally distributed random variables.

Theorem 13.5.1 If X1,X2,… ,Xk are normally distributed random variables with
expected values E(X1) = 𝜇1,E(X2) = 𝜇2,… ,E(Xk) = 𝜇k, with variances var(X1) =
𝜎
2
1 , var(X2) = 𝜎

2
2 , …, var(Xk) = 𝜎

2
k , and with covariances cov(Xi,Xj) = 𝜎ij for every

i and j (i ≠ j), then a linear function Y = a0 +
∑k

i=1 aiXi is also normally distributed,
with expected value

E(Y) = a0 +
k∑

i=1
ai𝜇i

and variance

var(Y) =
k∑

i=1
a2i 𝜎

2
i +

k∑

i=1

k∑

j=i+1
2aiaj𝜎ij.

Example 13.5.1 Suppose that, as in Example 12.5.3, the height of a man is normally
distributed with expected value 𝜇M = 180 cm and standard deviation 𝜎M = 8 cm,
and that the height of a woman is normally distributed with expected value 𝜇F =
170 cm and standard deviation 𝜎F = 6 cm. Now, suppose that men and women, when
choosing a partner, take into account each other’s height: more specifically, that tall
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men/women tend to marry tall women/men. This is reflected by a positive correlation
𝜌MF = 51∕96 between the height of a man and a woman in a marriage. What is the
probability that, in a mixed marriage, the man is taller than the woman?
To answer this question, we first define the random variable M as the height of a

man, and the random variable F as the height of a woman. The probability that the
man in a mixed marriage is taller than the woman is

P(M > F) = P(M − F > 0).

The difference M − F is a difference of two (dependent) normally distributed random
variables. Hence, M − F is itself normally distributed. The expected value of this new
normally distributed random variable is

𝜇M−F = 𝜇M − 𝜇F = 180 − 170 = 10,

while the variance is equal to

𝜎
2
M−F = 𝜎

2
M + 𝜎

2
F − 2𝜎MF ,

= 𝜎
2
M + 𝜎

2
F − 2𝜌MF𝜎M𝜎F,

= 82 + 62 − 2 ⋅
51
96

⋅ 8 ⋅ 6,

= 64 + 36 − 2 ⋅ 51 ⋅ 8 ⋅ 6
96

,

= 100 − 51,

= 49.

Therefore, the standard deviation of the difference M − F, 𝜎M−F, is 7. The desired
probability can be calculated as

P(M − F > 0) = P

(
M − F − 𝜇M−F

𝜎M−F
>

0 − 𝜇M−F
𝜎M−F

)
,

= P
(
Z >

0 − 10
7

)
,

= P(Z > −1.428571),

= 0.9234.

This probability can be found in the table in Appendix E. Alternatively, one can cal-
culate it with the formulas “1− Normal Distribution(−1.428571)” and “1− Normal
Distribution(0, 10, 7)” in JMP.
The probability that the man is taller than the woman in a mixed marriage, is bigger

if there is a positive correlation between the heights of the two people than if there is
no correlation.
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13.6 Bivariate and multivariate normal density

In Chapter 10, we introduced the univariate normal probability density. There is also a
multivariate version. The multivariate normal density is of great importance in statis-
tics. In regression analysis, the estimators are (approximately) multivariate normally
distributed and also many other techniques of multivariate statistics rely on the mul-
tivariate normal distribution. These topics are beyond the scope of this book.

13.6.1 Bivariate normal probability density

The simplest multivariate normal density is the bivariate normal density. Two random
variables X and Y are bivariate normally distributed if their joint probability density
is equal to

fXY (x, y) =
1

2𝜋𝜎X𝜎Y

√
1 − 𝜌

2
XY

e
− 1

2(1−𝜌2
XY

)

[
(x−𝜇X )2

𝜎
2
X

+ (y−𝜇Y )2

𝜎
2
Y

−2𝜌XY
(x−𝜇X )(y−𝜇Y )

𝜎X𝜎Y

]

, (13.2)

where 𝜇X and 𝜎
2
X are the expected value and the variance of X, 𝜇Y and 𝜎

2
Y are the

expected value and the variance of Y , and 𝜌XY is the correlation between X and Y .
An alternative notation of the bivariate normal probability density uses a vector for

the random variables and the covariance matrix

C =

[
𝜎
2
X 𝜎XY

𝜎XY 𝜎
2
Y

]

=

[
𝜎
2
X 𝜌XY𝜎X𝜎Y

𝜌XY𝜎X𝜎Y 𝜎
2
Y

]

,

where 𝜎XY = 𝜌XY𝜎X𝜎Y is the covariance between X and Y . This alternative notation
is

fXY (x, y) =
1

2𝜋
√
det(C)

e
− 1

2

[
x − 𝜇X y − 𝜇Y

]
C−1

⎡
⎢
⎢
⎣

x − 𝜇X

y − 𝜇Y

⎤
⎥
⎥
⎦
.

Note that

det(C) = 𝜎
2
X𝜎

2
Y − 𝜎

2
XY = 𝜎

2
X𝜎

2
Y − 𝜌

2
XY 𝜎

2
X𝜎

2
Y = 𝜎

2
X𝜎

2
Y (1 − 𝜌

2
XY),

and

C−1 = 1

𝜎
2
X𝜎

2
Y(1 − 𝜌

2
XY )

[
𝜎
2
Y −𝜌XY𝜎X𝜎Y

−𝜌XY𝜎X𝜎Y 𝜎
2
X

]

.

13.6.2 Graphical representations

A graphical representation of a bivariate normal density with parameters 𝜇X = 𝜇Y =
0, 𝜎2

X = 𝜎
2
Y = 1 and 𝜌XY = 0 is given in Figure 13.1. This probability density is per-

fectly bell-shaped and has an equal width in the x- and y-direction. The reason for
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Figure 13.1 Bivariate normal density with parameters 𝜇X = 𝜇Y = 0, 𝜎2
X = 𝜎

2
Y = 1,

and 𝜌XY = 0.

this is that 𝜎2
X = 𝜎

2
Y . A characteristic of this probability density function is that it is

constant for all pairs (x, y) at the same distance from the point (𝜇X , 𝜇Y ) = (0, 0). In
other words, all the points on a circle around (𝜇X , 𝜇Y ) = (0, 0) have the same value
for fXY (x, y).
Figure 13.2 shows three different bivariate normal probability densities with 𝜇X =

10, 𝜇Y = 20, and 𝜌XY = 0. Figure 13.2a shows a density where 𝜎2
X = 𝜎

2
Y = 1. As the

one in Figure 13.1, this density is perfectly bell-shaped with the same width in the x-
and y-direction. All points on a circle around (𝜇X , 𝜇Y ) = (10, 20) have the same value
for fXY (x, y).
Figure 13.2b shows a density where 𝜎

2
X = 1 and 𝜎

2
Y = 0.25. This density is not

as wide in the x-direction as in the y-direction: because of the smaller variance 𝜎2
Y ,

the density is narrower in the y-direction than in the x-direction. It is no longer the
case that all points on a circle around (𝜇X , 𝜇Y ) = (10, 20) have the same value for
fXY (x, y). Also note that the probability density in Figure 13.2b is higher than the one
in Figure 13.2a. The reason for this is that, because of the smaller variance 𝜎2

Y , the
bell shape in Figure 13.2b is narrower than the one in Figure 13.2a. Therefore, as the
volume under the density in Figure 13.2b needs to be equal to 1 (otherwise it is not a
valid probability density), the density must be higher.
Finally, Figure 13.2c shows a density where 𝜎2

X = 0.25 and 𝜎2
Y = 1. This density is

not as wide in the x-direction as in the y-direction: because of the smaller variance
𝜎
2
X , the density is narrower in the x-direction than in the y-direction. The probability

density in Figure 13.2c is higher than the one in Figure 13.2a because its bell shape
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Figure 13.2 Graphical representations of three different bivariate normal probabil-
ity densities with 𝜇X = 10, 𝜇Y = 20, and 𝜌XY = 0.

is narrower. Again, as the volume under the density in Figure 13.2c needs to be 1
(otherwise it is not a valid probability density), the density must be higher.
The three-dimensional graphical representations in Figures 13.1 and 13.2 are called

surface plots. They can be generated in JMP using the “Contour Profiler” option
in the “Graph” menu. Selecting the “Contour Profiler” option will not immediately
result in the surface plot. First, you need to click on the hotspot (red triangle icon)
next to the word “Profiler” in the header of the output of the “Contour Profiler” and
then check the “Surface Profiler” option.
The bivariate probability densities in Figures 13.1 and 13.2 can also be displayed

graphically using a so-called contour plot. A contour plot is a two-dimensional rep-
resentation of a function of two variables. Each line in a contour plot corresponds to
a set of pairs (x, y) for which the function takes exactly the same value. JMP offers
the possibility to generate this type of graphical representation via the “Contour Plot”
option in the “Graph”menu. By default, JMP provides a contour plot with white back-
ground, but this can be changed by selecting the option “Fill Areas” from the hotspot
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Figure 13.3 Contour plot for the bivariate normal probability density with
𝜇X = 𝜇Y = 0, 𝜎2

X = 𝜎
2
Y = 1 and 𝜌XY = 0 in Figure 13.1.

(red triangle) menu next to the word “Contour Plot”. Each colored area indicates a
set of combinations of x- and y-values with similar values of the function studied.
The contour plot corresponding to Figure 13.1 is shown in Figure 13.3. All lines in

this figure form concentric circles, because all the points located at the same distance
from the point with coordinates (0, 0) take the same function value for the bivariate
probability density fXY (x, y).
Figure 13.4 shows the contour plots that correspond to the three probability den-

sities in Figure 13.2. The contour plot in Figure 13.4a contains concentric circles
because all points at the same distance from the point (10, 20) have the same func-
tion value for the probability density. In general, a contour plot involves concentric
circles for a bivariate normal probability density if 𝜎2

X = 𝜎
2
Y and 𝜌XY = 0. As soon as

𝜎
2
X ≠ 𝜎

2
Y and/or 𝜌XY ≠ 0, the lines in the contour plot of a bivariate normal probability

density become concentric ellipses. This is illustrated in Figures 13.4b and 13.4c. A
feature of the ellipses in these two figures is that their symmetry axes are parallel to
the horizontal and vertical axes. This is typical for bivariate normal densities with
𝜌XY = 0.
Note that Figure 13.4a does not contain very dark colored areas (unlike

Figures 13.4b and 13.4c) because the bivariate normal probability density with
𝜎
2
X = 𝜎

2
Y = 1 does not take very large values. This was also demonstrated in

Figure 13.2a, which shows that the maximum of the bivariate normal probability
density with 𝜎2

X = 𝜎
2
Y = 1 is much lower than when 𝜎2

X or 𝜎2
Y is equal to 0.25.
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Figure 13.4 Contour plots for the three bivariate normal probability densities with
𝜇X = 10, 𝜇Y = 20, and 𝜌XY = 0 in Figure 13.2.

13.6.3 Independence, marginal, and conditional densities

Two bivariate normally distributed random variables X and Y are independent if
the correlation coefficient 𝜌XY is equal to zero. The converse is also true: if two
multivariate normally distributed random variables are uncorrelated, then they are
also independent. Consequently, the terms uncorrelated and independent are synony-
mous for normally distributed random variables. As explained in Section 13.1, this is
not true in general. Two random variables that are independent automatically have a
correlation of zero. However, two uncorrelated random variables can be dependent.
This is the case if there is a relationship between the two random variables that is
not linear.
Figure 13.5 contains the graphs of two bivariate normal probability densities with

a non-zero correlation 𝜌XY . Figure 13.5a shows a density with a positive correlation,
while Figure 13.5b shows a density with a negative correlation. The corresponding
contour plots are shown in Figure 13.6. A striking feature of these contour plots is that
their symmetry axes are no longer horizontal and vertical. This applies to all bivariate
normal probability densities with 𝜌XY ≠ 0.
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Figure 13.5 Graphical representations of two bivariate normal probability densi-
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Figure 13.6 Contour plots for the bivariate normal probability densities with
𝜇X = 10, 𝜇Y = 20, 𝜎2

X = 1, 𝜎2
Y = 0.25, and 𝜌XY ≠ 0 from Figure 13.5.

The positive correlation between X and Y in Figures 13.5a and 13.6a means that
the random variable Y has a tendency to take a large value if X takes a large value
(or vice versa), and a tendency to take a small value if X takes a small value (or vice
versa). The negative correlation between X and Y in Figures 13.5b and 13.6b means
that the random variable Y has a tendency to take a small value if X takes a large value
(or vice versa) and a tendency to take a large value if X takes a small value (or vice
versa).
The unconditional or marginal probability density of X is the univariate normal

density

fX(x) =
1

𝜎X

√
2𝜋

e
− (x−𝜇X )2

2𝜎2
X ,
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while the unconditional or marginal probability density of Y is the univariate normal
density

fY (y) =
1

𝜎Y

√
2𝜋

e
− (y−𝜇Y )2

2𝜎2
Y .

The expected value of X is 𝜇X , while the variance is 𝜎2
X . The expected value and

variance of Y are 𝜇Y and 𝜎
2
Y , respectively.

The conditional probability densities are univariate normal probability densities.
The conditional probability density of X, given that Y takes the value y, is the uni-
variate normal density with expected value

𝜇X∣Y = 𝜇X +
𝜎X

𝜎Y
𝜌XY (y − 𝜇Y)

and variance
𝜎
2
X∣Y = (1 − 𝜌

2
XY )𝜎

2
X .

The conditional probability density of Y , given that X takes the value x, is the uni-
variate normal density with expected value

𝜇Y ∣X = 𝜇Y +
𝜎Y

𝜎X
𝜌XY (x − 𝜇X)

and variance
𝜎
2
Y ∣X = (1 − 𝜌

2
XY )𝜎

2
Y .

It is a good exercise to derive these conditional probability densities, using the
definitions fX∣Y (x ∣ y) = fXY(x, y)∕fY (y) and fY ∣X(y ∣ x) = fXY(x, y)∕fX(x). The fact that
the conditional probability densities of X and Y are univariate normal probability
densities means, in graphical terms, that each horizontal or vertical cross section
of the probability densities in Figures 13.1, 13.2, and 13.5 is again a bell-shaped
curve.
It is not difficult to show that X and Y are independent if 𝜌XY = 0: the joint proba-

bility density of X and Y in Equation (13.2) then is

fXY (x, y) =
1

2𝜋𝜎X𝜎Y
√
1 − 02

e
− 1

2(1−02)

[
(x−𝜇X )2

𝜎
2
X

+ (y−𝜇Y )2

𝜎
2
Y

−2×0× (x−𝜇X )(y−𝜇Y )
𝜎X𝜎Y

]

,

= 1
2𝜋𝜎X𝜎Y

e
− 1

2

[
(x−𝜇X )2

𝜎
2
X

+ (y−𝜇Y )2

𝜎
2
Y

]

,

= 1
√
2𝜋

√
2𝜋𝜎X𝜎Y

e
− (x−𝜇X )2

2𝜎2
X

− (y−𝜇Y )2

2𝜎2
Y ,
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= 1

𝜎X

√
2𝜋

e
− (x−𝜇X )2

2𝜎2
X ⋅ 1

𝜎Y

√
2𝜋

e
− (y−𝜇Y )2

2𝜎2
Y ,

= fX(x)fY (y). (13.3)

In other words, if 𝜌XY = 0, then the joint probability density of X and Y is equal to the
product of the marginal probability density of X and the marginal probability density
of Y .

Example 13.6.1 Around 1900, the heights of fathers were on average 173 cm, while
the average height of sons was 175 cm. The standard deviations of the heights of
fathers and sons were both equal to 5 cm. The correlation between these two heights
was 0.5. It is also known that the heights of fathers and sons were bivariate normally
distributed. If we denote the height of a father with the random variable X and the
height of a son with the random variable Y, then the parameters of the bivariate
normal distribution are 𝜇X = 173, 𝜇Y = 175, 𝜎X = 𝜎Y = 5, and 𝜌XY = 0.5.
We can now wonder what the expected height of a son is, given that his father has

a height of 2 m or 200 cm. This conditional expected value is

𝜇Y ∣200 = 175 + 5
5
(0.5)(200 − 173) = 175 + 0.5 × 27 = 188.5 cm.

The variance of the height of the son, given that his father measures 200 cm, is

𝜎
2
Y∣200 = (1 − (0.5)2) × 52 = 18.75.

The conditional probability that the son is taller than his father, given that his father
measures 200 cm, is

P

(
Y∗ − 188.5
√
18.75

>
200 − 188.5
√
18.75

)

= P(Z > 2.6558) = 0.00396,

where Y∗ represents a normally distributed random variable with expected value
𝜇Y∣200 = 188.5 and variance 𝜎2

Y ∣200 = 18.75.
The (unconditional) probability that a son is taller than his father is

P(Y > X) = P(Y − X > 0) = P

(
Y − X − 2

√
25

>
0 − 2
√
25

)

,

= P(Z > −0.4) = 0.6554.

This calculation uses the fact that Y − X has an expected value of 175 − 173 = 2 and
a variance of

𝜎
2
X + 𝜎

2
Y − 2𝜌XY𝜎X𝜎Y = 52 + 52 − 2 × 0.5 × 5 × 5 = 25.
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Note that such an unconditional probability has already been calculated in
Example 13.5.1. The information that a father has a height of 200 cm has a negative
impact on the probability that his son is taller than him.

13.6.4 General multivariate normal density

For the general multivariate normal density, we have to use a vector notation. Suppose
that we study kmultivariate normally distributed random variablesX1,X2,… ,Xk with
k-dimensional covariance matrix

C =

⎡
⎢
⎢
⎢
⎢
⎣

𝜎11 𝜎12 … 𝜎1k

𝜎21 𝜎22 … 𝜎2k

⋮ ⋮ ⋱ ⋮

𝜎k1 𝜎k2 … 𝜎kk

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜎
2
1 𝜎12 … 𝜎1k

𝜎12 𝜎
2
2 … 𝜎2k

⋮ · · · ⋱ ⋮

𝜎1k 𝜎2k … 𝜎
2
k

⎤
⎥
⎥
⎥
⎥
⎦

,

where each diagonal element 𝜎ii = 𝜎
2
i represents the variance of the i-th random vari-

able Xi, and each non-diagonal element 𝜎ij = 𝜎ji represents the covariance between
the i-th random variable Xi and the j-th random variable Xj. Moreover, suppose that
the expected values of X1,X2,… ,Xk equal 𝜇1, 𝜇2,… , 𝜇k, respectively.
The general expression for the k-variate normal density is

fX1X2…Xk
(x1, x2,… , xk) =

1

(2𝜋)k∕2
√
det(C)

e−
1
2
c
,

where

c =
[
x1 − 𝜇1 x2 − 𝜇2 … xk − 𝜇k

]
C−1

⎡
⎢
⎢
⎢
⎢
⎣

x1 − 𝜇1

x2 − 𝜇2

⋮

xk − 𝜇k

⎤
⎥
⎥
⎥
⎥
⎦

.

A shorter notation of this density is

fX1X2…Xk
(x1, x2,… , xk) =

1

(2𝜋)k∕2
√
det(C)

e−
1
2
(x−𝝁)′C−1(x−𝝁)

,

where

x =

⎡
⎢
⎢
⎢
⎢
⎣

x1
x2
⋮

xk

⎤
⎥
⎥
⎥
⎥
⎦

and

𝝁 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜇1

𝜇2

⋮

𝜇k

⎤
⎥
⎥
⎥
⎥
⎦

.
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The central limit theorem

The odds were that one out of every two hundred ball bearings had something wrong
with it; at the end of the day, you turned in the bad ball bearings. If you had a day with
no bad ball bearings, the foreman told you that you weren’t looking each ball bearing
over carefully enough.

(from The Cider House Rules, John Irving, p. 332)

The central limit theorem is perhaps the most important theorem in statistics. Usually,
the theorem is used to make a statement on the probability density of an arithmetic
mean or a sample mean. Earlier, we introduced the notation x for an arithmetic or
sample mean. In this chapter, however, we use the notation X to indicate that the
sample mean can be interpreted as a function of random variables X1,X2,… ,Xn,
which all have the same probability distribution or density, and therefore can itself be
considered as a random variable. The sample mean X of X1,X2,… ,Xn therefore has
a probability distribution or probability density, just like any other random variable.
This chapter deals with the probability distribution or density of a sample mean.

14.1 Probability density of the sample mean from
a normally distributed population

In the case of a normally distributed population, we can use Theorem 12.5.2. In this
case, all observations X1,X2,… ,Xn are normally distributed random variables with
the same expected value 𝜇 and the same variance 𝜎2. It follows from Theorem 12.5.2
that the mean of all observations X1,X2,… ,Xn is also normally distributed with
expected value 𝜇 and variance 𝜎

2∕n. Hence, in this case the arithmetic or sample

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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mean X is normally distributed with mean 𝜇 and variance 𝜎2∕n. This is indicated by
the notation

X ∼ N

(
𝜇,

𝜎
2

n

)
.

This result is valid for any number of random variables n, no matter how small or
large. In this context, the number of random variables n is called the sample size:
every random variable corresponds to an observation of an element in a population
or from a process.

14.2 Probability distribution and density of
the sample mean from a non-normally
distributed population

When a non-normally distributed population is being studied, the probability
distribution of the sample mean can often not be determined exactly. In that case,
having a large sample size is helpful, because the central limit theorem can be
used for a large number of observations. One version of this theorem, namely
Theorem 14.2.3, states that, for large n, the sample mean is approximately normally
distributed with mean 𝜇 and variance 𝜎2∕n.

14.2.1 Central limit theorem

The so-called central limit theorem is one of the main theorems of statistics. This
theorem also explains why the normal density is so crucial in statistics. There are
different versions of the theorem.

Theorem 14.2.1 If X1,X2,… ,Xn are independent random variables with expected
values E(Xi) = 𝜇i and variances var(Xi) = 𝜎

2
i , then, under very general conditions

and for a sufficiently large value of n, the following is true:

1. The random variable Y =
∑n

i=1 Xi is approximately normally distributed with
mean 𝜇Y =

∑n
i=1 𝜇i and variance 𝜎2

Y = var(Y) =
∑n

i=1 𝜎
2
i .

2. As a result, the random variable

Y −
∑n

i=1 𝜇i
√∑n

i=1 𝜎
2
i

is approximately standard normally distributed.

The general conditions mentioned in the theorem refer to the fact that none of
the individual variances 𝜎

2
i provides a dominant contribution to the total variance

of Y . In many practical applications of the central limit theorem, all random vari-
ables X1,X2,… ,Xn have the same distribution or density. In that case, X1,X2,… ,Xn
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all have the same variance, in which case this requirement is fulfilled. If all random
variables X1,X2,… ,Xn have the same distribution or density, then the central limit
theorem can be rewritten as follows:

Theorem 14.2.2 If X1,X2,… ,Xn are independent random variables with expected
value E(Xi) = 𝜇 and variance var(Xi) = 𝜎

2, then, for a sufficiently large value of n,
the following is true:

1. The random variable Y =
∑n

i=1 Xi is approximately normally distributed with
mean 𝜇Y = n𝜇 and variance 𝜎2

Y = var(Y) = n𝜎2.

2. As a result, the random variable

Y − n𝜇

𝜎

√
n

is approximately standard normally distributed.

The central limit theorem can also be stated in terms of the sample mean X =
Y∕n:

Theorem 14.2.3 If X1,X2,… ,Xn are independent random variables with expected
value E(Xi) = 𝜇 and variance var(Xi) = 𝜎

2, then, for a sufficiently large value of n,
the following is true:

1. The random variable X = Y
n
=

∑n
i=1 Xi
n

is approximately normally distributed

with mean 𝜇 and variance 𝜎
2

n
.

2. As a result, the random variable

X − 𝜇

𝜎√
n

is approximately standard normally distributed.

An important practical question is how big the sample size n must be before one
can apply the central limit theorem. There is no general answer to this question. The
required size of n depends on the distribution or density of the individual random
variables Xi:

• If the probability density of Xi is similar to the normal density, n = 5 is suffi-
cient.

• If the probability density of Xi does not show any pronounced peaks, such as,
for example, the uniform density, then n = 12 should be sufficient.

• If the probability distribution or density of Xi shows pronounced peaks, it
is difficult to specify a value of n. A value of n = 100 will usually suffice.
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An example of a distribution with a peak is P(X = 1) = 0.06 and P(X = 10) =
1 − P(X = 1) = 0.94.

• For continuous variables that appear in practice, typically n = 30 is sufficient.

The next section illustrates the third version of the central limit theorem
(Theorem 14.2.3) in detail, using simulations.

14.2.2 Illustration of the central limit theorem

Suppose that some students are interested in the value of the Euro Stoxx 50 index,
made up of 50 of the largest andmost liquid stocks inside the Euro zone. Student 1will
take a sample of n observations of the Euro Stoxx 50 index and calculate the mean,
namely X1. Student 2 will also take a sample of n observations. Since the Euro Stoxx
50 index changes from minute to minute, Student 2 will obviously observe different
values of the Euro Stoxx 50 index (unless by coincidence they observe exactly at
the same times). Student 2 also calculates the mean of his sample: X2. In this way,
all students collect n observations and calculate their sample mean. If there are 200
students, we finally obtain 200 sample means X1,X2,… ,X200.
The third version of the central limit theorem now states that these 200 means have

a distribution that is very similar to the normal density. With a histogram of these 200
means, this is easy to verify.
This is exactly what will happen in this section. We will not use real students but we

will simulate the scenario outlined here in JMP. So, we will work with hypothetical
students. To this end, in JMP, we will create 200 samples of n observations (one for
each hypothetical student), calculate the mean for each sample and create a histogram
of the 200 sample means. This simulation requires that we specify a probability dis-
tribution or probability density in JMP for the generation of the observations.
We start with a normal distribution. Hence we assume that the Euro Stoxx 50 index

behaves like a normally distributed random variable. We use 𝜇 = 3000 as the mean
of this normal distribution (more or less the value of the index when this book project
was started in March 2014), and we choose 𝜎 = 100 as the standard deviation. We
assume that all observations of the students are independent of each other.

14.2.2.1 Normally distributed X

First, suppose that each student collects a sample of five observations, in other words,
that n = 5. In that scenario, we need to simulate 5 observations 200 times using JMP.
To this end, we create a data table in JMP with 200 rows and 5 columns, filled
with pseudo-random numbers from a normal probability density with parameters
𝜇 = 3000 and 𝜎 = 100. The formula we use in each of the 5 columns is “Random
Normal(3000, 100)”. We calculate the mean of the 5 observations in each row, and
then display all means in a histogram. If we create a second data table in the same
way, this corresponds to a second group of 200 hypothetical students who also collect
samples of 5 observations. Two possible histograms obtained in this way are shown
in Figure 14.1. The resulting histograms are quite bell-shaped, indicating that the
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2800 2850 2900 2950 3000 3050 3100 3150 3200

Mean Mean

(a) (b)

2800 2850 2900 2950 3000 3050 3100 3150 3200

Figure 14.1 Two histograms of 200 sample means for normally distributed data
and samples of 5 observations.

sample means are normally distributed, as Theorem 14.2.3 (and also Theorem 12.5.2
because, here, we assume that the observations are normally distributed) predicts.
The fastest way to generate 200 new samples is to ask JMP to recalculate the

formula “Random Normal(3000, 100)”. This is done with the command “Rerun For-
mulas”, that appears when you click on the hotspot (red triangle) menu next to the
name of the data table. This is illustrated in Figure 14.2.
If students take samples of 20 instead of 5 observations, the histograms have a

different shape: they are still bell-shaped but they are significantly narrower. Two
histograms for 200 sample means of samples with 20 observations are shown in
Figure 14.3. The bell shape tells us that the sample means are still distributed nor-
mally. The fact that the histograms are narrower should not come as a surprise since
the central limit theorem states that the variance of the sample mean is equal to 𝜎2∕n.

Figure 14.2 Generating new pseudo-random observations in JMP with the option
“Rerun Formulas”.
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2800 2850 2900 2950 3000 3050 3100 3150 3200
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(a)

2800 2850 2900 2950 3000 3050 3100 3150 3200

Mean

(a) (b)

Figure 14.3 Two histograms of 200 sample means for normally distributed data
and samples of 20 observations.

As a consequence, sample means of 20 observations have a variance that is four times
smaller than the variance of sample means of 5 observations.

14.2.2.2 Uniformly distributed X

Suppose that the value of the Euro Stoxx 50 index is not normally distributed, but
uniformly distributed between 2800 and 3200. First, suppose again that each student
takes a sample of 5 observations. For this new scenario involving the uniform density,
we again simulate 200 samples of 5 observations using JMP. To this end, we need to
enter the formula “Random Uniform(2800, 3200)” in five columns of a data table
with 200 rows. For each sample of 5 observations, we calculate the mean, and then
we display all means in a histogram. Two possible histograms obtained in this way are
shown in Figure 14.4. It is striking that, again, the histograms are quite bell-shaped,

2800 2850 2900 2950 3000 3050 3100 3150 3200

Mean

(a)

2800 2850 2900 2950 3000 3050 3100 3150 3200
Mean

(b)

Figure 14.4 Two histograms of 200 sample means for uniformly distributed data
and samples of 5 observations.
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2800 2850 2900 2950 3000 3050 3100 3150 3200 2800 2850 2900 2950 3000 3050 3100 3150 3200

Mean Mean

(a) (b)

Figure 14.5 Two histograms of 200 sample means for uniformly distributed data
and samples of 20 observations.

indicating that the sample means are still approximately normally distributed, even
though the original data is uniformly distributed.
When the students take samples of 20 instead of 5 observations, the corresponding

bell-shaped histograms are significantly narrower. Two histograms for 200 sample
means of samples with 20 observations are shown in Figure 14.5.

14.2.2.3 Bernoulli distributed X

Now, suppose that the value of the Euro Stoxx 50 index is Bernoulli distributed, with
a 50% chance that the value is 2800, and a 50% chance that the value is 3200. First,
suppose again that each student takes a sample of 5 observations. We again need
to simulate 200 samples of 5 observations using JMP. This time, we need to enter
the formula “2800 + 400 * Random Binomial (1, 0.5)” in 5 columns of a data table
with 200 rows. For each sample of 5 observations, we calculate the mean, and dis-
play the resulting 200 means in a histogram. Two possible histograms obtained in
this way are shown in Figure 14.6. This time, the histograms are not bell-shaped.
It is clearly visible that the original data comes from a discrete distribution, namely
the Bernoulli distribution. The central limit theorem does not seem to work for the
Bernoulli distribution and a sample size of 5 observations.
When, however, the students take samples of 20 instead of 5 observations, the his-

tograms are totally different. Although the histograms still do not show a perfect
bell shape, it is not obvious anymore that the original data had a discrete probabil-
ity distribution. Two possible histograms for 200 sample means of samples with 20
observations are shown in Figure 14.7. In order to obtain an even better bell shape, a
slightly larger sample size is required.
This last example demonstrates that the central limit theorem is very powerful.

Even probability distributions or probability densities that are quite different from
the normal density still lead to distributions of sample means that are approximately
normal, provided that the number of observations is sufficiently large.
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2800 2900 3000 3100 3200 2800 2900 3000 3100 3200
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Figure 14.6 Two histograms of 200 sample means for Bernoulli distributed data
and samples of 5 observations.

2800 2850 2900 2950 3000 3050 3100 3150 3200 2800 2850 2900 2950 3000 3050 3100 3150 3200

Mean Mean

(a) (b)

Figure 14.7 Two histograms of 200 sample means for Bernoulli distributed data
and samples of 20 observations.

14.3 Applications

Example 14.3.1 The label of a coffee package mentions “1 kg net weight”. The
filling machine is set at an average weight of 𝜇 = 1.003 kg. A standard deviation of
𝜎 = 10 g = 0.01 kg has to be tolerated for the filling process.

1. What is the probability that the average net weight of a batch of 100 packages
of coffee sent to a customer weighs less than 1 kg?

2. What is the probability that the total net weight of the batch of 100 packages
exceeds 100.5 kg?

3. If the net weight of a filled package is normally distributed, then what is the
probability that a randomly picked individual package weighs less than 1 kg ?
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For the solution of the first two questions, we need to apply the central limit theorem,
whereas this is not necessary for the third question:

1. Due to the central limit theorem, the average net weight of 100 coffee pack-
ages, X, is approximately normally distributed with expected value E(X) = 𝜇 =
1.003 kg and variance

var(X) = 𝜎
2

n
= (0.01)2

100
kg2 = 0.000001 kg2.

Thus, the standard deviation of X is
√
0.000001 = 0.001 kg. The probability

that the average net weight of a batch of 100 coffee packages sent to a customer
weighs less than 1 kg is

P(X < 1) = P

(
X − 1.003
0.001

<
1 − 1.003
0.001

)
,

= P
(
Z <

−0.003
0.001

)
,

= P(Z < −3),

= 0.00135.

2. The total net weight of 100 coffee packages is, due to the central limit theorem,
approximately normally distributed with expected value

E

(
100∑

i=1
Xi

)

= 100𝜇 = 100.3 kg

and variance

var

(
100∑

i=1
Xi

)

= 100𝜎2 = 100 × 0.0001 kg2 = 0.01 kg2.

The standard deviation of the total net weight thus is
√
0.01 = 0.1 kg. The prob-

ability that the total net weight of the batch of 100 packages exceeds 100.5 kg is

P

(
100∑

i=1
Xi > 100.5

)

= P

(∑100
i=1 Xi − 100.3

0.1
>

100.5 − 100.3
0.1

)

,

= P
(
Z >

0.2
0.1

)
,

= P(Z > 2),

= 0.02275.
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3. If the net weight of a filled package, X, is normally distributed, then the prob-
ability that a randomly picked individual package weighs less than 1 kg is

P(X < 1) = P
(X − 1.003

0.01
<

1 − 1.003
0.01

)
,

= P
(
Z <

−0.003
0.01

)
,

= P(Z < −0.3),

= 0.38209.

14.4 Normal approximation of the binomial
distribution

In 1733, Abraham de Moivre showed that the binomial distribution can be approxi-
mated by a normal density. This can easily be demonstrated based on the central limit
theorem.
Suppose that X1,X2,… ,Xn are independent and identically distributed Bernoulli

random variables with parameter 𝜋, so that 𝜇i = E(Xi) = 𝜋 and 𝜎
2
i = var(Xi) =

𝜋(1 − 𝜋). By definition, the sum of these random variables is binomially distributed
with parameters n and 𝜋. According to the second version of the central limit
theorem (Theorem 14.2.2), this sum is also approximately normally distributed with
mean

∑n
i=1 𝜇i = n𝜋 and variance

∑n
i=1 𝜎

2
i = n𝜋(1 − 𝜋).

A good approximation of the binomial distribution by the normal distribution
requires that n is large. However, the quality of the approximation also depends
on 𝜋. Ideally, both n𝜋 and n(1 − 𝜋) are bigger than 5. Then, the approximation is
considered to be good.

Example 14.4.1 An exam consists of 60multiple choice questions with four possible
answers per question. What is the probability that a student who randomly answered
the 60 questions got at most 15 correct answers?
If the random variable X represents the number of questions answered correctly,

then X is binomially distributed with n = 60 and 𝜋 = 0.25. The exact answer to our
question is

P(X ≤ 15) =
15∑

x=0

(
60
x

)
(0.25)x(0.75)60−x.

With the formula “Binomial Distribution(0.25, 60, 15)” in JMP, we obtain the value
0.5688 for this probability.
We now try to approximate the probability using the normal distribution. To use an

approximation obviously does not make sense if you have access to JMP, but, during,
for instance, a statistics exam, it may be that you only have access to a limited set
of tables with probabilities for binomially distributed random variables. Such a set
of tables is given in Appendix B. The tables, however, do not include information
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concerning binomially distributed random variables with parameter values n = 60
and 𝜋 = 0.25. In that case, you have to find a solution with an approximate method.
We first try the normal approximation with 𝜇 = n𝜋 = 15 and variance 𝜎2 = n𝜋(1 −

𝜋) = 11.25. Since n𝜋 and n(1 − 𝜋) are both greater than 5, this approximation should
indeed be good. However, we find that

P(X ≤ 15) = P

(
X − 15
√
11.25

≤
15 − 15
√
11.25

)

= P(Z ≤ 0) = 0.5,

which is quite different from the exact value 0.5688. This big difference is due to
the fact that a continuous density is used to approximate a discrete distribution. The
best illustration of the difference between both is that, according to the binomial
distribution, P(X = 15) = 0.1182, while the normal approximation states that P(X =
15) = 0. In such cases, a continuity correction is applied. This means that, instead
of computing the probability P(a ≤ X ≤ b), the probability P(a − 1

2
≤ X ≤ b + 1

2
) is

calculated. The probability P(X = a) = P(a ≤ X ≤ a) is then approximated by P(a −
1
2
≤ X ≤ a + 1

2
). Applying this type of correction to the example, we obtain

P(X ≤ 15.5) = P

(
X − 15
√
11.25

≤
15.5 − 15
√
11.25

)

= P(Z ≤ 0.149) = 0.559,

which indeed is closer to the correct value. In addition,

P(X = 15) = P

(
14.5 − 15
√
11.25

≤
X − 15
√
11.25

≤
15.5 − 15
√
11.25

)

,

= 1 − 2 P(Z ≥ 0.149) = 0.1185

is a good approximation of the exact value we found using the binomial distribution.

The approximation of the binomial distribution by the normal density is used in the
so-called sign test (see the book Statistics with JMP: Hypothesis Tests, ANOVA and
Regression).



Appendix A

The Greek alphabet

In mathematics and statistics, Greek letters are often used to denote variables, param-
eters, or functions. Below is a list of all the Greek letters.

Name Uppercase letter Lowercase letter

alpha A 𝛼

beta B 𝛽

gamma Γ 𝛾

delta Δ 𝛿

epsilon E 𝜖

zeta Z 𝜁

eta H 𝜂

theta Θ 𝜃

iota I 𝜄

kappa K 𝜅

lambda Λ 𝜆

mu M 𝜇

nu N 𝜈

xi Ξ 𝜉

omicron O o
pi Π 𝜋

rho P 𝜌

sigma Σ 𝜎

tau T 𝜏

upsilon Y 𝜐

phi Φ 𝜙

chi X 𝜒

psi Ψ 𝜓

omega Ω 𝜔

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup



Appendix B

Binomial distribution

This table contains exceedance probabilities for the binomial distribution. For
example, if n = 4 and 𝜋 = 0.20, then

P(X ≥ 2) = 0.1808.

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

2 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0975 0.1900 0.2775 0.3600 0.4375 0.5100 0.5775 0.6400 0.6975 0.7500
2 0.0025 0.0100 0.0225 0.0400 0.0625 0.0900 0.1225 0.1600 0.2025 0.2500

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

3 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.1426 0.2710 0.3859 0.4880 0.5781 0.6570 0.7254 0.7840 0.8336 0.8750
2 0.0073 0.0280 0.0608 0.1040 0.1562 0.2160 0.2818 0.3520 0.4253 0.5000
3 0.0001 0.0010 0.0034 0.0080 0.0156 0.0270 0.0429 0.0640 0.0911 0.1250

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

4 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.1855 0.3439 0.4780 0.5904 0.6836 0.7559 0.8215 0.8704 0.9085 0.9375
2 0.0140 0.0523 0.1095 0.1808 0.2617 0.3483 0.4370 0.5248 0.6090 0.6875
3 0.0005 0.0037 0.0120 0.0272 0.0508 0.0837 0.1265 0.1792 0.2415 0.3125
4 0.0001 0.0005 0.0016 0.0039 0.0081 0.0150 0.0256 0.0410 0.0625

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

5 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.2262 0.4095 0.5563 0.6723 0.7627 0.8319 0.8840 0.9222 0.9497 0.9688
2 0.0226 0.0815 0.1648 0.2627 0.3672 0.4718 0.5716 0.6630 0.7438 0.8125
3 0.0012 0.0086 0.0266 0.0579 0.1035 0.1631 0.2352 0.3174 0.4069 0.5000
4 0.0005 0.0022 0.0067 0.0156 0.0308 0.0540 0.0870 0.1312 0.1875

5 0.0001 0.0003 0.0010 0.0024 0.0053 0.0102 0.0185 0.0313

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

6 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.2649 0.4686 0.6229 0.7379 0.8220 0.8824 0.9246 0.9533 0.9723 0.9844
2 0.0328 0.1143 0.2235 0.3446 0.4661 0.5798 0.6809 0.7667 0.8364 0.8906
3 0.0022 0.0159 0.0473 0.0989 0.1694 0.2557 0.3529 0.4557 0.5585 0.6563
4 0.0001 0.0013 0.0059 0.0170 0.0376 0.0705 0.1174 0.1792 0.2553 0.3438

5 0.0001 0.0004 0.0016 0.0046 0.0109 0.0223 0.0410 0.0692 0.1094
6 0.0001 0.0002 0.0007 0.0018 0.0041 0.0083 0.0156

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

7 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.3017 0.5217 0.6794 0.7903 0.8665 0.9176 0.9510 0.9720 0.9848 0.9922
2 0.0444 0.1497 0.2834 0.4233 0.5551 0.6706 0.7662 0.8414 0.8976 0.9375
3 0.0038 0.0257 0.0738 0.1480 0.2436 0.3529 0.4677 0.5801 0.6836 0.7734
4 0.0002 0.0027 0.0121 0.0333 0.0706 0.1260 0.1998 0.2898 0.3917 0.5000

5 0.0002 0.0012 0.0047 0.0129 0.0288 0.0556 0.0963 0.1529 0.2266
6 0.0001 0.0004 0.0013 0.0038 0.0090 0.0188 0.0357 0.0625
7 0.0001 0.0002 0.0006 0.0016 0.0037 0.0078

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

8 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.3366 0.5695 0.7275 0.8322 0.8999 0.9424 0.9681 0.9832 0.9916 0.9961
2 0.0572 0.1869 0.3428 0.4967 0.6329 0.7447 0.8309 0.8936 0.9368 0.9648
3 0.0058 0.0381 0.1052 0.2031 0.3215 0.4482 0.5722 0.6846 0.7799 0.8555
4 0.0004 0.0050 0.0214 0.0563 0.1183 0.1941 0.2936 0.4059 0.5230 0.6367

5 0.0004 0.0029 0.0104 0.0273 0.0580 0.1061 0.1737 0.2604 0.3633
6 0.0002 0.0012 0.0042 0.0113 0.0253 0.0498 0.0885 0.1445
7 0.0001 0.0004 0.0013 0.0036 0.0085 0.0181 0.352
8 0.0001 0.0002 0.0007 0.0017 0.0039



APPENDIX B 333

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

9 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.3689 0.6126 0.7684 0.8658 0.9249 0.9596 0.9793 0.9899 0.9954 0.9980
2 0.0712 0.2252 0.4005 0.5638 0.6977 0.8040 0.8789 0.9295 0.9615 0.9805
3 0.0084 0.0530 0.1409 0.2618 0.3993 0.5372 0.6627 0.7682 0.8505 0.9102
4 0.0006 0.0083 0.0339 0.0856 0.1657 0.2703 0.3911 0.5174 0.6386 0.7461

5 0.0009 0.0056 0.0196 0.0489 0.0988 0.1717 0.2666 0.3786 0.5000
6 0.0001 0.0006 0.0031 0.0100 0.0253 0.0536 0.0994 0.1658 0.2539
7 0.0003 0.0013 0.0043 0.0112 0.0250 0.0498 0.0898
8 0.0001 0.0004 0.0014 0.0038 0.0091 0.0195
9 0.0001 0.0003 0.0008 0.0020

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.4013 0.6513 0.8031 0.8926 0.9437 0.9718 0.9865 0.9940 0.9975 0.9990
2 0.0861 0.2639 0.4557 0.6242 0.7560 0.8507 0.9140 0.9536 0.9767 0.9893
3 0.0115 0.0702 0.1798 0.3222 0.4744 0.6172 0.7384 0.8327 0.9004 0.9453
4 0.0010 0.0128 0.0500 0.1209 0.2241 0.3504 0.4862 0.6177 0.7340 0.8281

5 0.0001 0.0016 0.0099 0.0328 0.0781 0.1503 0.2485 0.3669 0.4956 0.6230
6 0.0001 0.0014 0.0064 0.0197 0.0473 0.0949 0.1662 0.2616 0.3770
7 0.0001 0.0009 0.0035 0.0106 0.0260 0.0548 0.1020 0.1719
8 0.0001 0.0004 0.0016 0.0048 0.0123 0.0274 0.0547
9 0.0001 0.0005 0.0017 0.0045 0.0107

10 0.0001 0.0003 0.0010

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

12 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.4596 0.7176 0.8578 0.9313 0.9683 0.9862 0.9943 0.9978 0.9992 0.9998
2 0.1184 0.3410 0.5565 0.7251 0.8416 0.9150 0.9576 0.9807 0.9917 0.9968
3 0.0196 0.1109 0.2642 0.4417 0.6093 0.7472 0.8487 0.9166 0.9579 0.9907
4 0.0022 0.0256 0.0922 0.2054 0.3512 0.5075 0.6533 0.7747 0.8655 0.9270

5 0.0002 0.0043 0.0239 0.0726 0.1576 0.2763 0.4167 0.5618 0.6956 0.8062
6 0.0005 0.0046 0.0197 0.0544 0.1178 0.2127 0.3348 0.4731 0.6128
7 0.0001 0.0007 0.0039 0.0143 0.0386 0.0846 0.1582 0.2607 0.3872
8 0.0001 0.0006 0.0028 0.0095 0.0255 0.0573 0.1117 0.1938
9 0.0001 0.0004 0.0017 0.0056 0.0153 0.0356 0.0730

10 0.0002 0.0008 0.0028 0.0079 0.0193
11 0.0001 0.0003 0.0011 0.0032
12 0.0001 0.0002
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n x 𝜋 =0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

14 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.5123 0.7712 0.8972 0.9560 0.9822 0.9932 0.9976 0.9992 0.9998 0.9999
2 0.1530 0.4154 0.6433 0.8021 0.8990 0.9525 0.9795 0.9919 0.9971 0.9991
3 0.0301 0.1584 0.3521 0.5519 0.7189 0.8392 0.9161 0.9602 0.9830 0.9935
4 0.0042 0.0441 0.1465 0.3018 0.4787 0.6448 0.7795 0.8757 0.9368 0.9714

5 0.0004 0.0092 0.0467 0.1298 0.2585 0.4158 0.5773 0.7207 0.8328 0.9102
6 0.0015 0.0115 0.0439 0.1117 0.2195 0.3595 0.5141 0.6627 0.7880
7 0.0002 0.0022 0.0116 0.0383 0.0933 0.1836 0.3075 0.4539 0.6047
8 0.0003 0.0024 0.0103 0.0315 0.0753 0.1501 0.2586 0.3953
9 0.0004 0.0022 0.0083 0.0243 0.0583 0.1189 0.2120

10 0.0003 0.0017 0.0060 0.0175 0.0426 0.0898
11 0.0002 0.0011 0.0039 0.0114 0.0287
12 0.0001 0.0006 0.0022 0.0065
13 0.0001 0.0003 0.0009
14 0.0001

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

16 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.5599 0.8147 0.9257 0.9719 0.9900 0.9967 0.9990 0.9997 0.9999 1.0000
2 0.1892 0.4853 0.7161 0.8593 0.9365 0.9739 0.9902 0.9967 0.9990 0.9997
3 0.0429 0.2108 0.4386 0.6482 0.8029 0.9006 0.9549 0.9817 0.9934 0.9979
4 0.0070 0.0684 0.2101 0.4019 0.5950 0.7541 0.8661 0.9349 0.9719 0.9894

5 0.0009 0.0170 0.0791 0.2018 0.3698 0.5501 0.7108 0.8334 0.9147 0.9616
6 0.0001 0.0033 0.0245 0.0817 0.1897 0.3402 0.5100 0.6712 0.8024 0.8949
7 0.0005 0.0056 0.0267 0.0796 0.1753 0.3119 0.4738 0.6340 0.7728
8 0.0001 0.0011 0.0070 0.0271 0.0744 0.1594 0.2839 0.4371 0.5982
9 0.0002 0.0015 0.0075 0.0257 0.2671 0.1423 0.2559 0.4018

10 0.0002 0.0016 0.0071 0.0229 0.0583 0.1241 0.2272
11 0.0003 0.0016 0.0062 0.0191 0.0486 0.1051
12 0.0003 0.0013 0.0049 0.0149 0.0384
13 0.0002 0.0009 0.0035 0.0106
14 0.0001 0.0006 0.0021

15 0.0001 0.0003
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n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

18 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.6028 0.8499 0.9464 0.9820 0.9944 0.9984 0.9996 0.9999 1.0000 1.0000
2 0.2265 0.5497 0.7759 0.9009 0.9605 0.9858 0.9954 0.9987 0.9997 0.9999
3 0.0581 0.2662 0.5203 0.7287 0.8647 0.9400 0.9764 0.9918 0.9975 0.9993
4 0.0109 0.0982 0.2798 0.4990 0.6943 0.8354 0.8917 0.9672 0.9880 0.9962

5 0.0015 0.0282 0.1206 0.2836 0.4813 0.6673 0.8114 0.9058 0.9589 0.9846
6 0.0002 0.0064 0.0419 0.1329 0.2825 0.4656 0.6450 0.7912 0.8923 0.9519
7 0.0012 0.0118 0.0513 0.1390 0.2783 0.4509 0.6257 0.7742 0.8811
8 0.0002 0.0027 0.0163 0.0569 0.1407 0.2717 0.4366 0.6085 0.7597
9 0.0005 0.0043 0.0193 0.0596 0.1391 0.2632 0.4222 0.5927

10 0.0001 0.0009 0.0054 0.0210 0.0597 0.1347 0.2527 0.4073
11 0.0002 0.0012 0.0061 0.0212 0.0576 0.1280 0.2403
12 0.0002 0.0014 0.0062 0.0203 0.0537 0.1189
13 0.0003 0.0014 0.0058 0.0183 0.0481
14 0.0003 0.0013 0.0049 0.0154

15 0.0002 0.0010 0.0038
16 0.0001 0.0007
17 0.0001

n x 𝜋 = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

20 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.6415 0.8784 0.9612 0.9885 0.9968 0.9992 0.9998 1.0000 1.0000 1.0000
2 0.2642 0.6083 0.8244 0.9308 0.9757 0.9924 0.9979 0.9995 0.9999 1.0000
3 0.0755 0.3231 0.5951 0.7939 0.9087 0.9645 0.9879 0.9964 0.9991 0.9998
4 0.0159 0.1330 0.3523 0.5886 0.7748 0.8729 0.9556 0.9840 0.9951 0.9987

5 0.0026 0.0432 0.1702 0.3704 0.5852 0.7625 0.8818 0.9490 0.9811 0.9941
6 0.0003 0.0113 0.0673 0.1958 0.3838 0.5836 0.7546 0.8744 0.9447 0.9793
7 0.0024 0.0219 0.0867 0.2142 0.3920 0.5834 0.7500 0.8701 0.9423
8 0.0004 0.0059 0.0321 0.1018 0.2277 0.3990 0.5841 0.7480 0.8684
9 0.0001 0.0013 0.0100 0.0409 0.1133 0.2376 0.4044 0.5857 0.7483

10 0.0002 0.0026 0.0139 0.0480 0.1218 0.2447 0.4086 0.5881
11 0.0006 0.0039 0.0171 0.0532 0.1275 0.2493 0.4119
12 0.0001 0.0009 0.0051 0.0196 0.0565 0.1308 0.2517
13 0.0002 0.0013 0.0060 0.0210 0.0580 0.1316
14 0.0003 0.0015 0.0065 0.0214 0.0577

15 0.0003 0.0016 0.0064 0.0207
16 0.0003 0.0015 0.0059
17 0.0003 0.0013
18 0.0002



Appendix C

Poisson distribution

This table contains exceedance probabilities for the Poisson distribution. For
example, if 𝜆 = 0.6, then

P(X ≥ 3) = 0.0231.

x 𝜆= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0952 0.1813 0.2592 0.3297 0.3935 0.4512 0.5034 0.5507 0.5934 0.6321
2 0.0047 0.0175 0.0369 0.0616 0.0902 0.1219 0.1558 0.1912 0.2275 0.2642
3 0.0002 0.0011 0.0036 0.0079 0.0144 0.0231 0.0341 0.0474 0.0629 0.0803
4 0.0001 0.0003 0.0008 0.0018 0.0034 0.0058 0.0091 0.0135 0.0190

5 0.0001 0.0002 0.0004 0.0008 0.0014 0.0023 0.0037
6 0.0001 0.0002 0.0003 0.0006
7 0.0001

x 𝜆= 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.6671 0.6988 0.7275 0.7534 0.7769 0.7981 0.8173 0.8347 0.8504 0.8647
2 0.3010 0.3374 0.3732 0.4082 0.4422 0.4751 0.5068 0.5372 0.5663 0.5940
3 0.0996 0.1205 0.1249 0.1665 0.1912 0.2166 0.2428 0.2694 0.2963 0.3233
4 0.0257 0.0338 0.0431 0.0537 0.0656 0.0788 0.0932 0.1087 0.1253 0.1429

5 0.0054 0.0077 0.0107 0.0143 0.0186 0.0237 0.0296 0.0364 0.0441 0.0527
6 0.0010 0.0015 0.0022 0.0032 0.0045 0.0060 0.0080 0.0104 0.0132 0.0166
7 0.0001 0.0003 0.0004 0.0006 0.0009 0.0013 0.0019 0.0026 0.0034 0.0045
8 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0008 0.0011
9 0.0001 0.0001 0.0002 0.0002

Statistics with JMP: Graphs, Descriptive Statistics, and Probability, First Edition. Peter Goos and
David Meintrup.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: wiley.com/go/goosandmeintrup
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x 𝜆= 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.8875 0.8892 0.8997 0.9093 0.9179 0.9257 0.9328 0.9392 0.9450 0.9502
2 0.6204 0.6454 0.6691 0.6916 0.7127 0.7326 0.7513 0.7689 0.7854 0.8009
3 0.3504 0.3773 0.4040 0.4303 0.4562 0.4816 0.5064 0.5305 0.5540 0.5768
4 0.1614 0.1806 0.2007 0.2213 0.2424 0.2640 0.2859 0.3081 0.3304 0.3528

5 0.0621 0.0725 0.0838 0.0959 0.1088 0.1226 0.1371 0.1523 0.1682 0.1847
6 0.0204 0.0249 0.0300 0.0357 0.0420 0.0490 0.0567 0.0651 0.0742 0.0839
7 0.0059 0.0075 0.0094 0.0116 0.0142 0.0172 0.0206 0.0244 0.0287 0.0335
8 0.0015 0.0020 0.0026 0.0033 0.0042 0.0053 0.0066 0.0081 0.0099 0.0119
9 0.0003 0.0005 0.0006 0.0009 0.0011 0.0015 0.0019 0.0024 0.0031 0.0038

10 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004 0.0005 0.0007 0.0009 0.0011
11 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003
12 0.0001 0.0001

x 𝜆= 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.9592 0.9666 0.9727 0.9776 0.9817 0.9850 0.9877 0.9899 0.9918 0.9933
2 0.8288 0.8532 0.8743 0.8926 0.9084 0.9220 0.9337 0.9437 0.9523 0.9596
3 0.6201 0.6603 0.6973 0.7311 0.7619 0.7898 0.8149 0.8374 0.8575 0.8753
4 0.3975 0.4416 0.4848 0.5265 0.5665 0.6046 0.6406 0.6743 0.7058 0.7350

5 0.2194 0.2558 0.2936 0.3322 0.3712 0.4102 0.4488 0.4868 0.5237 0.5595
6 0.1054 0.1295 0.1559 0.1844 0.2149 0.2469 0.2801 0.3142 0.3490 0.3840
7 0.0446 0.0579 0.0733 0.0909 0.1107 0.1325 0.1564 0.1820 0.2092 0.2378
8 0.0168 0.0231 0.0308 0.0401 0.0511 0.0639 0.0786 0.0951 0.1133 0.1334
9 0.0057 0.0083 0.0117 0.0160 0.0214 0.0279 0.0358 0.0451 0.0558 0.0681

10 0.0018 0.0027 0.0040 0.0058 0.0081 0.0111 0.0149 0.0195 0.0251 0.0318
11 0.0005 0.0008 0.0013 0.0019 0.0028 0.0041 0.0057 0.0078 0.0104 0.0137
12 0.0001 0.0002 0.0004 0.0006 0.0009 0.0014 0.0020 0.0029 0.0040 0.0055
13 0.0001 0.0001 0.0002 0.0003 0.0004 0.0007 0.0010 0.0014 0.0020
14 0.0001 0.0001 0.0002 0.0003 0.0005 0.0007

15 0.0001 0.0001 0.0001 0.0002
16 0.0001
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x 𝜆= 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.9959 0.9975 0.9985 0.9991 0.9994 0.9997 0.9998 0.9999 0.9999 1.0000
2 0.9744 0.9826 0.9887 0.9927 0.9953 0.9973 0.9981 0.9988 0.9992 0.9995
3 0.9116 0.9380 0.9570 0.9704 0.9797 0.9862 0.9907 0.9938 0.9958 0.9972
4 0.7983 0.8488 0.8882 0.9182 0.9409 0.9576 0.9699 0.9788 0.9851 0.9897

5 0.6425 0.7149 0.7763 0.8270 0.8679 0.9004 0.9256 0.9450 0.9597 0.9707
6 0.4711 0.5543 0.6310 0.6993 0.7586 0.8088 0.8504 0.8843 0.9115 0.9329
7 0.3140 0.3937 0.4735 0.5503 0.6218 0.6866 0.7438 0.7932 0.8351 0.8699
8 0.1905 0.2560 0.3272 0.4013 0.4754 0.5470 0.6144 0.6761 0.7313 0.7798
9 0.1056 0.1528 0.2084 0.2709 0.3380 0.4075 0.4769 0.5443 0.6082 0.6672

10 0.0538 0.0839 0.1226 0.1695 0.2236 0.2834 0.3470 0.4126 0.4782 0.5421
11 0.0253 0.0426 0.0668 0.0985 0.1378 0.1841 0.2366 0.2940 0.3547 0.4170
12 0.0110 0.0201 0.0339 0.0533 0.0792 0.1119 0.1513 0.1970 0.2480 0.3032
13 0.0045 0.0088 0.0160 0.0270 0.0427 0.0638 0.0909 0.1242 0.1636 0.2084
14 0.0017 0.0036 0.0071 0.0128 0.0216 0.0342 0.0514 0.0739 0.1019 0.1355

15 0.0006 0.0014 0.0030 0.0057 0.0103 0.0173 0.0274 0.0415 0.0600 0.0835
16 0.0002 0.0005 0.0012 0.0024 0.0046 0.0082 0.0138 0.0220 0.0335 0.0487
17 0.0001 0.0002 0.0004 0.0010 0.0020 0.0037 0.0066 0.0111 0.0177 0.0270
18 0.0001 0.0002 0.0004 0.0008 0.0016 0.0030 0.0053 0.0089 0.0143
19 0.0001 0.0001 0.0003 0.0007 0.0013 0.0024 0.0043 0.0072

20 0.0001 0.0003 0.0005 0.0011 0.0020 0.0035
21 0.0001 0.0002 0.0004 0.0009 0.0016
22 0.0001 0.0002 0.0004 0.0007
23 0.0001 0.0001 0.0003
24 0.0001 0.0001



Appendix D

Exponential distribution

This table contains exceedance probabilities for the exponential distribution with
𝜆 = 1. For example, if x = 1.43, then

P(X ≥ 1.43) =
∫

+∞

1.43
e−x dx = 0.2393.

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 1.0000 0.9900 0.9802 0.9704 0.9608 0.9512 0.9418 0.9324 0.9231 0.9139
0.1 0.9048 0.8958 0.8869 0.8781 0.8694 0.8607 0.8521 0.8437 0.8353 0.8270
0.2 0.8187 0.8106 0.8025 0.7945 0.7866 0.7788 0.7711 0.7634 0.7558 0.7483
0.3 0.7408 0.7334 0.7261 0.7189 0.7118 0.7047 0.6977 0.6907 0.6939 0.6771
0.4 0.6703 0.6637 0.6570 0.6505 0.6440 0.6376 0.6313 0.6250 0.6188 0.6126

0.5 0.6065 0.6005 0.5945 0.5886 0.5827 0.5769 0.5712 0.5655 0.5599 0.5543
0.6 0.5488 0.5434 0.5379 0.5326 0.5273 0.5220 0.5169 0.5117 0.5066 0.5016
0.7 0.4966 0.4916 0.4868 0.4819 0.4771 0.4724 0.4677 0.4630 0.4584 0.4538
0.8 0.4493 0.4449 0.4404 0.4360 0.4317 0.4274 0.4232 0.4190 0.4148 0.4107
0.9 0.4066 0.4025 0.3985 0.3946 0.3906 0.3867 0.3829 0.3791 0.3753 0.3716

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.0 0.3679 0.3642 0.3606 0.3570 0.3535 0.3499 0.3465 0.3430 0.3396 0.3362
1.1 0.3329 0.3296 0.3265 0.3230 0.3198 0.3166 0.3135 0.3104 0.3073 0.3042
1.2 0.3012 0.2992 0.2952 0.2923 0.2894 0.2865 0.2837 0.2808 0.2780 0.2753
1.3 0.2725 0.2698 0.2671 0.2645 0.2618 0.2592 0.2567 0.2541 0.2516 0.2491
1.4 0.2466 0.2441 0.2417 0.2393 0.2369 0.2346 0.2322 0.2299 0.2276 0.2254

1.5 0.2231 0.2209 0.2187 0.2165 0.2144 0.2122 0.2101 0.2080 0.2060 0.2039
1.6 0.2019 0.1999 0.1979 0.1959 0.1940 0.1920 0.1901 0.1882 0.1864 0.1845
1.7 0.1827 0.1809 0.1791 0.1773 0.1755 0.1738 0.1720 0.1703 0.1686 0.1670
1.8 0.1653 0.1637 0.1620 0.1604 0.1588 0.1572 0.1557 0.1541 0.1526 0.1511
1.9 0.1496 0.1481 0.1466 0.1451 0.1437 0.1423 0.1409 0.1395 0.1381 0.1367
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x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
2.0 0.1353 0.1340 0.1327 0.1313 0.1300 0.1287 0.1275 0.1262 0.1249 0.1237
2.1 0.1225 0.1212 0.1200 0.1188 0.1177 0.1165 0.1153 0.1142 0.1130 0.1119
2.2 0.1108 0.1097 0.1086 0.1075 0.1065 0.1057 0.1044 0.1035 0.1023 0.1013
2.3 0.1003 0.0993 0.0983 0.0973 0.0963 0.0954 0.0944 0.0935 0.0926 0.0916
2.4 0.0907 0.0898 0.0889 0.0880 0.0872 0.0863 0.0854 0.0846 0.0837 0.0829

2.5 0.0821 0.0813 0.0805 0.0797 0.0789 0.0781 0.0773 0.0765 0.0758 0.0750
2.6 0.0743 0.0735 0.0728 0.0721 0.0714 0.0707 0.0699 0.0693 0.0686 0.0679
2.7 0.0672 0.0665 0.0659 0.0652 0.0646 0.0639 0.0633 0.0627 0.0620 0.0614
2.8 0.0608 0.0602 0.0596 0.0590 0.0584 0.0578 0.0573 0.0567 0.0561 0.0556
2.9 0.0550 0.0545 0.0539 0.0534 0.0529 0.0523 0.0518 0.0513 0.0508 0.0503

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
3.0 0.0498 0.0493 0.0488 0.0483 0.0478 0.0474 0.0469 0.0464 0.0460 0.0455
3.1 0.0450 0.0446 0.0442 0.0437 0.0433 0.0429 0.0424 0.0420 0.0416 0.0412
3.2 0.0408 0.0404 0.0400 0.0396 0.0392 0.0388 0.0384 0.0380 0.0379 0.0373
3.3 0.0369 0.0365 0.0362 0.0358 0.0354 0.0351 0.0347 0.0344 0.0340 0.0337
3.4 0.0334 0.0330 0.0327 0.0324 0.0321 0.0317 0.0314 0.0311 0.0308 0.0305

3.5 0.0302 0.0299 0.0296 0.0293 0.0290 0.0287 0.0284 0.0282 0.0279 0.0276
3.6 0.0273 0.0271 0.0268 0.0265 0.0263 0.0260 0.0257 0.0255 0.0252 0.0250
3.7 0.0247 0.0245 0.0242 0.0240 0.0238 0.0235 0.0233 0.0231 0.0228 0.0226
3.8 0.0224 0.0221 0.0219 0.0217 0.0215 0.0213 0.0211 0.0209 0.0207 0.0204
3.9 0.0202 0.0200 0.0198 0.0196 0.0194 0.0193 0.0191 0.0189 0.0187 0.0185

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
4.0 0.0183 0.0181 0.0180 0.0178 0.0176 0.0174 0.0172 0.0171 0.0169 0.0167
4.1 0.0166 0.0164 0.0162 0.0161 0.0159 0.0158 0.0156 0.0155 0.0153 0.0151
4.2 0.0150 0.0148 0.0147 0.0146 0.0144 0.0143 0.0141 0.0140 0.0138 0.0137
4.3 0.0136 0.0134 0.0133 0.0132 0.0130 0.0129 0.0128 0.0127 0.0125 0.0124
4.4 0.0123 0.0122 0.0120 0.0119 0.0118 0.0117 0.0116 0.0114 0.0113 0.0112

4.5 0.0111 0.0110 0.0109 0.0108 0.0107 0.0106 0.0105 0.0104 0.0103 0.0102
4.6 0.0101 0.0100 0.0099 0.0098 0.0097 0.0096 0.0095 0.0094 0.0093 0.0092
4.7 0.0091 0.0090 0.0089 0.0088 0.0087 0.0087 0.0086 0.0085 0.0084 0.0083
4.8 0.0082 0.0081 0.0081 0.0080 0.0079 0.0078 0.0078 0.0077 0.0076 0.0075
4.9 0.0074 0.0074 0.0073 0.0072 0.0072 0.0071 0.0070 0.0069 0.0069 0.0068
5.0 0.0067 0.0067 0.0066 0.0065 0.0065 0.0064 0.0063 0.0063 0.0062 0.0062



Appendix E

Standard normal distribution

This table contains exceedance probabilities of the standard normal distribution. For
example, P(Z ≥ 1.96) = 0.02500.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414
0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465
0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591
0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827
0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207

0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760
0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510
0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476
0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673
0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786
1.1 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702
1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853
1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08692 0.08534 0.08379 0.08226
1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07214 0.07078 0.06944 0.06811

1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592
1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551
1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673
1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938
1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831
2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426
2.2 0.01390 0.01355 0.01321 0.01287 0.01254 0.01222 0.01190 0.01160 0.01130 0.01101
2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639

2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00509 0.00494 0.00480
2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00403 0.00391 0.00379 0.00368 0.00357
2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00263
2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193
2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100
3.1 0.00097 0.00094 0.00090 0.00087 0.00085 0.00082 0.00079 0.00076 0.00074 0.00071
3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050
3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035
3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024

3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017
3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011
3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00009 0.00008 0.00008 0.00008
3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005
3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

4.0 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002



Index

a posteriori probability, 115, 126
a priori probability, 115, 126
addition rule, 129
arithmetic mean, 58
for grouped data, 59

bar chart, 13, 19, 100
in JMP, 13, 18
multiple, 33, 36

Bayes’ rule, 125
Bernoulli distribution, 175
beta density, 223
binomial distribution, 176, 331
normal approximation, 328

bivariate data, 30
qualitative, 30
quantitative, 34

bivariate random variable, 253, 254
examples, 258

body mass index, 299
box plot, 79–83
bubble plot, 48–50
in JMP, 50

calculation rules, 113
CDF plot, 29
central limit theorem, 320
applications, 326
illustration, 322

central moment
of a random variable, 168
of a sample, 77
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chart in JMP, 12, 16, 18
Clear Row States, 44
coefficient of skewness

Fisher, 168
Pearson, 76

coefficient of variation, 69
Column info, 11
Column Properties, 12
combinations, 131
combinatorics, 129
complement, 110
conditional expected value, 288
conditional probability, 115
contingency table, 30
continuity correction, 329
continuous uniform density, 213
contour plot, 312–315

in JMP, 312
Contour Profiler, 269, 312
correlation, 98, 99, 315

rank, 94
correlation coefficient, 92
covariance

of a sample, 89
of two finite populations, 91
of two random variables, 301

covariance matrix, 93, 306
cross tabulation, 30–32, 35
cumulative distribution function, 140, 144

empirical, 27–30, 56
graphical representation, 206

CV, see coefficient of variation
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data
bivariate, 88, 90
transformation, 78

data filter, 42
local, 42, 45

data matrix, 11
decile, 64
degrees of freedom, 67
density

beta, 223
continuous uniform, 213
exponential, 215
gamma, 220
graphical representation in JMP, 226
lognormal, 247
other, 224
Weibull, 221

density function, 143
descriptive statistics, 6, 54, 55
difference, 110
dispersion index

nominal, 70
ordinal, 73

distribution
Bernoulli, 175
binomial, 176, 331
exponential, 339
geometric, 194
hypergeometric, 184
in JMP, 16, 24, 29, 80, 100
negative binomial, 197
Poisson, 188, 336
uniform, 173

distribution function
of a continuous random

variable, 144
of a discrete random

variable, 140

event, 108
elementary, 109

expected value
conditional, 288
of a continuous random variable, 159
of a discrete random variable, 159
of a function, 161, 283

exponential density, 215
memoryless, 216

exponential distribution, 339

family of probability distributions, 154
Fit Y by X, 30, 31
Formula in JMP, 156, 200, 209, 227, 230
frequency

absolute, 12, 18
cumulative, 13
relative, 12, 18

frequency polygon, 25, 26
construction, 25–28

gamma density, 220
generalized summation rule, 113
geometric distribution, 194
geometric mean, 61
Grabber, 24
Gradient in JMP, 42
Graph Builder, 26, 33, 36, 38, 42, 46, 49,

50, 52, 82, 83, 227
Greek alphabet, 330

heatmap, 51–53
heterogeneity, 70
histogram, 22, 23, 26, 77, 323

bimodal, 58
construction, 23–25

Histogram Options, 24, 81
hotspot, 13
hypergeometric distribution, 184

independence
of several continuous random variables,

279
of several discrete random variables, 257
of two continuous random variables, 278
of two discrete random variables, 257
of two events, 119

inference, 6
inferential statistics, 6
interquartile range, 65
intersection, 110
interval scale, 9

kurtosis, 78

Label/Unlabel, 47
Level Midpoints, 25
likelihood, 107, 110
local data filter, 42, 45
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Log window, 158
lognormal probability density, 247
lower specification limit, 245
LSL, see lower specification limit

MAD, see mean absolute deviation
Make Into Data Table, 13, 105
maps, 39
mean
arithmetic, 58
for grouped data, 59
geometric, 61
of a sample, 58

mean absolute deviation, 65
mean value, 160
measurement scale, 8
in JMP, 10, 12

measures
of central tendency, 55
of location, 55
of relative location, 63
of skewness, 76
of spread, 64
of variation, 64

median
of a random variable, 167
of a sample, 56

memoryless exponential density, 216
method
of moment generating functions, 290
transformation, 292

mode
of a random variable, 166
of a sample, 57
of grouped data, 57

modeling type, 10
moment generating function, 169
mosaic plot, 31, 33, 34
multinomial probability distribution, 266
multiple bar chart, 33, 36
multiplication principle, 130
multiplication rule, 115
Multivariate in JMP, 92, 96

needle chart, 17, 19, 21
in JMP, 18

negative binomial distribution, 197
New Column, 156
Nominal dispersion index, 70

non-central moment
of a random variable, 168
of a sample, 77

normal density, 233
standard, 235, 237

normal distribution
bivariate, 310, 312
calculation of probabilities, 237
conditional, 316
density, 233
general, 238
graphical representation, 310
in JMP, 240
independence, 314
linear functions, 308
linear transformation, 236
marginal, 315
multivariate, 318
standard, 237, 341

number of orders
more than two objects, 133
two objects, 133

order statistic, 63
ordinal dispersion index, 73
Overlay Plot, 204, 206, 207

parameter, 54
Pareto chart/plot, 13

in JMP, 14, 15
Pearson’s coefficient of correlation, 92
Pearson’s population skewness coefficient,

168
percentile

of a random variable, 168
of a sample, 63

permutations, 130
pie chart, 14

in JMP, 16
Poisson distribution, 188, 336
polarization, 70
population, 5
population covariance, 301
probability, 6, 107, 110

a posteriori, 115, 126
a priori, 115, 126
axiomatic definition, 111
classical definition, 111
conditional, 114, 115
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probability, (Continued)
empirical definition, 111
unconditional, 115

probability density, 143
conditional, 279
graphical representation in JMP, 226
joint, 268
marginal, 276
of sample mean, 319, 320
uniform, 150

probability distribution, 140
conditional discrete, 257
family of, 154
graphical representation, 204
in JMP, 200
joint discrete, 254
marginal discrete, 256
multinomial, 266
of a discrete random variable, 140

probability experiments, 107
probability function, 111
probability theory, 107
probability trees, 123, 124
process, 5

deterministic, 107
stochastic, 107

pseudo-random numbers, 128

qualitative variable, 12
Quality and Process, 14, 85
quantile

of a random variable, 168
of a sample, 63

quantitative variable, 16
quartile

of a random variable, 168
of a sample, 64

random experiment, 107, 108
sequence of independent, 134
simulation, 127

random number, 128
pseudo-, 128, 156, 323

random variable, 138
continuous, 143
discrete, 140
function of one continuous, 152
function of one discrete, 151
function of several, 282
k-variate, 252

multivariate, 252
simulation, 155
simulation in JMP, 209, 230
standardized, 166

range, 65
interquartile, 65

rank correlation, 94
ratio scale, 10
Run script, 52

sample, 5
sample space, 108
sample variance, 65
Save Script to Data Table, 50, 208
scale

hierarchy, 10
interval, 9
ratio, 10

scale parameter, 230
scatter plot, 34, 37, 90

stratified, 48
Scatterplot 3D, 255
Scatterplot Matrix, 38, 39, 94
script, 50, 52, 208
Set Bin Width, 24
shape parameter, 230
Show counts, 24
Show percents, 24
Six Sigma, 2, 245
skewness, 76
skewness coefficient

Fisher, 168
Pearson, 168

software, 7
standard deviation

of a finite population, 68
of a random variable, 164
of a sample, 68

standard normal density, 235, 237
standard normal distribution, 237, 341
standardization, 79
standardized random variable, 166
statistics, 3, 5

and graphics, 98
descriptive, 6, 54, 55

in JMP, 100–102
inferential, 6

stem and leaf diagram, 16–18
stratification, 49
subset, 110
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Summary in JMP, 25, 103
Summary Statistics, 101
summation rule, 113
generalized, 113

surface plot, 312
Surface Profiler, 269, 312

Tabulate, 13, 53, 104, 105
target, 245
theorem
central limit, 320
of total probability, 122

time series, 38, 41
transformation method, 292

unconditional probability, 115
uniform distribution, 173
uniform probability density, 150
union, 110
upper specification limit, 245
USL, see upper specification limit

Value Ordering, 12
variability chart, 84–88
Variability/Attribute Gauge Chart, 85
variable, 5

bivariate, 88
categorical, 8
continuous, 10
discrete, 10
nominal, 8
ordinal, 9
qualitative, 8, 12
quantitative, 9, 16

variance
of a finite population, 67
of a random variable, 163
of a sample, 65
of linear functions, 305–307

Venn diagram, 114, 115

Weibull density, 221
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