


Understanding Political 
Science Statistics
In politics, you begin by asking theoretically interesting questions. Sometimes 
statistics can help answer those questions. When it comes to applied statistics, 
students shouldn’t just learn a vast array of formula—they need to learn the basic 
concepts of statistics as solutions to particular problems. Peter Galderisi demon-
strates that statistics are a summary of how to answer the problem: learn the 
math but only after learning the concepts and methodological considerations 
that give it context. 

With this as a starting point, Understanding Political Science Statistics asks 
students to consider how to address a research problem conceptually before being 
led to the appropriate formula. Throughout, Galderisi looks at problems through 
a lens of “observations and expectations,” which can be applied to myriad sta-
tistical techniques, both descriptive and inferential. This approach links the 
answers researchers get from their individual data analysis to the research designs 
and questions from which these analyses are derived.

By emphasizing the underlying logic of statistical analysis for greater under-
standing and drawing on applications and examples from political science (includ-
ing law), the book illustrates how students can apply statistical concepts and 
techniques in their own research, in future coursework, and simply as an informed 
consumer of numbers in public discourse.

The following features help students master the material:

 ■   Legal and Methodological sidebars highlight key concepts and provide applied 
examples on law, politics, and methodology;

 ■   End-of-chapter exercises allow students to test their mastery of the basic con-
cepts and techniques along the way; 

 ■   A Sample Solutions Guide provides worked-out answers for odd-numbered 
exercises, with all answers available in the Instructor’s Manual; 

 ■   Key Terms are helpfully called out in both Marginal Definitions and a Glossary; 
 ■   A Companion Website (www.routledge.com/cw/galderisi) with further 

resources for both students and instructors; 
 ■   A diverse array of data sets include subsets of the ANES and Eurobarometer 

surveys; CCES; US Congressional district data; and a cross-national dataset 
with political, economic, and demographic variables; and 

 ■   Companion guides to SPSS and Stata walk students through the procedures for 
analysis and provide exercises that go hand-in-hand with online data sets.

Peter Galderisi has taught political science methods and statistics for more than 
three decades, and is currently a lecturer and local internship director in the 
Political Science Department at the University of California, San Diego. Previ-
ously, Galderisi was a Professor or Visiting Professor at Utah State, UCLA, UC 
Santa Cruz, and Cal State Fullerton. He specializes in U.S. political parties, 
campaigns and elections, American political development, interest groups, and 
election law.
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Preface

 OF OBSERVATIONS AND EXPECTATIONS

This textbook has been decades in the making, informed by 30 years of 
teaching undergraduate political science statistics. It started off as a series of 
supplemental notes for my course, Introduction to Quantitative Research 
Methods, at UCLA (1990s). I had not found any statistics text geared to an 
entry-level class of primarily innumerate students that did not water down 
the math so much as to be useless to those who wished to develop the foun-
dation for more advanced study. Students (many from fields other than 
political science) constantly asked (no, pleaded) for extra notes. Eventually, 
after many trials at distributing notes, I decided that a full text that presented 
the material as one would lecture would be most helpful. In almost two 
decades, this text has gone through multiple iterations and changes. Its original 
title was Statistics as if Understanding Mattered, a handle deemed too “cheeky” 
by a reviewer for my first publisher. During the long and arduous transition 
to my new publisher, I developed a better understanding of the interconnecting 
themes of methodology and statistics. As a result, this text consistently dis-
cusses and takes its name from the concept of “observations and  expectations.” 
Most students of statistics are aware of this concept, but only in the context 
of one statistic—chi-square. In reality the comparison of observations and 
expectations can apply to a myriad of statistical techniques, both descriptive 
and inferential. More importantly, this concept of observations and expecta-
tions links the answers we derive from our individual, real-world tests of data 
to the research designs and questions from which these tests are derived. 
Given, for example, our expectation that, based on history and logic, partisans 
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are more likely to vote than non-partisans can be examined through an 
exploration of whether that expectation is confirmed when we observe the 
results of our statistical analysis in any given election year or type. It is this 
consistent theme of observations and expectations that ties together method-
ology and statistical analysis and, I believe, makes this book different from 
others in the field.

This text is rich with features that help guide students through the material, 
from chapter-opening learning objectives that frame topics to end-of-chapter 
exercises that allow students to test their mastery of concepts and techniques 
along the way. A Sample Solutions Guide provides worked-out answers for 
odd-numbered exercises, with all the solutions provided in the online instruc-
tor’s material, allowing students to check their work and not only see if they 
have the right answer but also understand how to arrive at it and what that 
answer means for political analysis. Political science examples throughout and 
integration with a diverse array of data sets make the text truly applicable to 
the field and statistics in the real world. Legal and methodological sidebars 
show students applied examples of law, politics, and methodology; other 
sidebars highlight key concepts in statistics. More than 150 figures and tables 
help clarify concepts and make the text visually engaging. Student learning 
and studying is enhanced by bolded key terms, marginal definitions, and a 
glossary, which provide multiple ways to find terms and concepts. Additionally, 
a free companion website (www.routledge.com/cw/galderisi) includes further 
resources for both students and instructors.

Along with this text, I and Ellen C. Seljan (Lewis & Clark College) have 
produced corresponding volumes that walk students through the use of 
statistical programs that help to match the expectations of our research designs 
with observations of real-world data: Understanding Political Science Statistics 
Using SPSS and Understanding Political Science Statistics Using Stata. A future 
volume discussing the use of R is planned, but only after enough library 
entries have been created to lower the curve needed to learn how to use a 
program during a small part of a brief quarter- or semester-long political 
analysis class. The data sets offered with these companion volumes include 
subsets of the 2008 and 2012 American National Election Studies as well as 
a Eurobarometer survey. We are fortunate to have been given permission to 
incorporate the 2012 CCES (Cooperative Congressional Election Study) data 
study into another file with enough cases to allow any instructor to lead her 
or his students through the parsing and dissecting of relationships while 
controlling for a myriad of factors. Along with these individual cased sets of 
surveys, two detailed U.S. congressional district files (2008 alone and an 
integrated 2008–2012 to allow for analyzing the effects of redistricting) have 
been developed and are also included. Finally, a multinational data set com-
posed of political, economic, and demographic variables from multiple sources 
has been added. More data sets and examples will be added to this volume’s 
website as time and copyright laws allow. I welcome the adopters of this text 

www.routledge.com/cw/galderisi
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to offer suggestions about other sets that could be included. Although, for 
purposes of easy demonstration, artificial examples will often be employed, 
the majority of examples from this text will use data gleaned from these data 
sets as well as other real-world examples.

The text follows the assumption that any student can learn the basic 
concepts of statistics if those statistics are introduced as solutions to particular 
problems, and not formulas with a life of their own. In this text, students 
are introduced to a problem and asked to consider, conceptually, how one 
would address that problem, and then are led through to the appropriate 
statistical formula. Students are required to learn the math, but only after 
they understand the concepts. Statistical formulas are offered as generic, 
mathematical summary tools for concepts with fairly clear meaning. Students 
are walked through the formula in plain language to increase their under-
standing of both the procedure and the interpretation of results. The real-world 
importance of the differing interpretations of different statistics can then be 
highlighted. Another basic assumption is that most of the statistics covered 
in an introductory political analysis course are connected through a small 
number of basic statistical concepts. These concepts, in my estimation, are 
better understood when, at the beginning of a course, the mathematical 
complexity of the statistic is comparatively limited. Thus, for example, much 
more time is spent in the first few chapters discussing basic statistics such as 
frequency distributions, modes, medians, and means, as well as some simple 
measures of variation than in many other analysis texts. Standardization is 
one of the most important, if not the most important, concept in statistical 
theory. Introducing this concept while discussing how to compare frequency 
distributions (Chapter 2) takes away much of the complexity that many 
students struggle with when the concept is not introduced until a discussion 
of standard scores. The importance of understanding the effects of outliers 
is easier to understand when discussing the difference between medians and 
means (Chapter 3) than when applied to regression analysis. In addition, an 
understanding of basic, nominal statistics, too often ignored by my profession, 
provides the conceptual cornerstone for statistical analyses that assume more 
precisely measured data.

Another reason for the extra time spent on basic statistics is that more 
mathematically complex statistics are based on both the math and logic of 
mathematically simpler ones. Regression, after all, is calculated with means 
and variances. Its measure of goodness of fit (R-squared) is based on com-
parison of the calculated best-fitting line with the variance from the mean. 
Even this notion of proportional reduction of error or variance can be intro-
duced when discussing a basic and easily understandable measure of association 
with nominal data, lambda (Chapter 9). Measures like lambda naturally 
follow the logic of the concept of goodness of fit, introduced as early as the 
discussion of the variation ratio (Chapter 4). Although logistic regression is 
not covered in this text, an understanding of error reduction (e.g., lambda) 
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and cross product or odds ratios (derived from the concept of paired com-
parisons introduced in the discussion of the Index of Qualitative Variation 
in Chapter 4) is essential in understanding the derivation and interpretation 
of binary logistic estimates.

The last, and perhaps most important, basic assumption driving the under-
lying theme and development of this text is that statistics are summary 
measures that are only useful (other than mental exercises) when tied into 
basic but important methodological considerations. Statistics help us to answer 
questions that have been formulated after a thorough consideration of concept 
development, hypothesis formation, and theoretical importance. They help 
us to answer questions that are naturally derived from these formulations. 
The “what” and “why” that we try to answer to confirm our methodologically 
derived questions are answered in the real world with statistical summaries 
of individual tests that are derived from those questions. This volume is not 
meant to substitute for a more thoroughly written and example-laden research 
design volume, but it is written with the understanding that statistics without 
research design and methodology is just mathematics, not analysis.

I would like to thank two decades of students at four universities who 
have, both willingly and unwillingly, forced me to think continuously about 
how to best explain statistics to those with a wide array of logical and math-
ematical skill sets. This volume is a far cry from what I originally produced 
as class notes at UCLA decades ago, and I thank my students for holding 
me to the task of finding better ways, without dumbing down the presenta-
tion, of teaching political analysis. I am especially indebted to those students, 
too numerous to name, who, often on their own initiative, took the time to 
help me understand when that presentation was not clear enough and to 
those who, over the years, offered suggestions that helped me edit the work 
as it transitioned from class notes to locally published copyrighted manuscript 
to this final text. I would be remiss not to acknowledge the dozens of graduate 
students who worked with countless variations of this manuscript as they 
assisted me in my classes over the past 20 years. Special thanks go to Vladimir 
Kogan, Patrick Rogers and, most recently, Zachary C. Steinert-Threlkeld who, 
with their intensive knowledge of the R programming language, set up many 
of the graphs found in this text. I can never thank my wife, best friend, and 
partner, Holly, enough for her love and support over the two decades during 
which this manuscript slowly progressed. I am forever grateful to Seidy Cruz 
and her staff at Cognella Press who, for almost 8 years, gave this manuscript 
a copyright home as I used it in my Political Analysis course at UC San 
Diego. I am especially indebted to Michael Kerns and his team at Routledge 
Press (most prominently the ever-patient and surviving—I wore out 
several—development editor Alison Daltroy) who, some 5 years ago, took 
on this orphaned project and allowed me to concentrate on the analysis of 
politics rather than my original publisher’s insistence on a statistics text that 
attempted to cover every subject in the social sciences and beyond. Statistical 
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analysis is not just some “one size fits all” set of rote procedures meant to 
process and interpret any set of numbers. It is not just a listing of steps that 
one must complete to get the “right” mathematical answer. Rather, it is a 
tool to help understand real-world outcomes and the types of events that 
cause them. I have been a political scientist for well over three decades, and 
it is politics that I best understand, interpret, and can relate through these 
procedures. It is my hope that I help the students who read this text to do 
the same. Let us begin.

Peter Galderisi
Cardiff by the Sea, California
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CHAPTER 1

Political Science, the 
Scientific Method, 
and Statistical 
Analysis
An Overview

C o n t e n t s

 ❚ The Language of  
Science 02

 ❚ The Structure of  
Hypotheses 07

 ❚ The Beauty of  
Hypotheses for  
Research 10

 ❚ The Logic of 
Causation—A  
Review 12

 ❚ Key Terms 17

 ❚ Questions and  
Exercises 17

Learning Objectives:

 ■ To understand that political science can be studied scientifically
 ■ To understand the language of science
 ■ To understand what a hypothesis is and how it should be structured
 ■ To understand the components necessary to make a causal argument

Political Science is the study of actors and agencies within a legal, institutional 
setting. As with any science, the observations derived from measuring and 
analyzing actual data must follow from the creation of questions of interest 
that are derived from a proper and logically reasoned generalized statement of 
the relationship between or among types of political events. In order to under-
stand, for example, the reasons why Barack Obama did better in most areas 
in 2008 than John Kerry did in 2004, we need to investigate the reasons why 
individuals choose to vote the way that they do in more than just those two 
elections. Comparing differences between those two years may help to confirm 
or disconfirm our general explanation of why candidates win and by what 
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margin. But so can comparing any other two elections. And they should also, 
by finding irregularities or anomalies, help us to understand the circumstances 
under which our statistical findings do not match our causal expectations.

Statistics can help us to summarize our findings for any given two years, 
or any other combination of events, but, as mentioned in the Preface, they 
can do so only as tests that are naturally derived and implied from theoret-
ically sound methodological formulations. Without proper and generalizable 
measurements and designs, they are of interest, they are suggestive, but they 
are not fully scientifically consequential. They are an important but not the 
only essential component of scientific inquiry.1

Part of the nature of scientific inquiry is the sharing of knowledge. One’s 
study is not to be read in a vacuum, but in the context of other work inves-
tigating similar, and sometimes quite different, political, economic, social, 
and psychological relationships. Knowledge cannot be shared if we are all 
speaking our own language. Part of the difficulty of sharing in the “social,” 
sometimes pejoratively categorized as the “soft” sciences, is that, unlike many 
of the more traditional or “harder” sciences, we often use terms for which 
there is no or little common definitional agreement. What do we mean by 
“democracy,” “political authority,” and, even more narrowly, “voter intention” 
(as the 2000 recounts in Florida and 2008 in Minnesota demonstrated)? 
Does the discipline share the same common understanding of these terms as 
say, “wind velocity,” “distance,” or “white cell count”? As science is partly 
defined as this “sharing of common knowledge,” a lack of a common vocab-
ulary hampers the growth of our discipline.

This text, with its greater, if not exclusive, interest in statistical analysis 
will not try to single-handedly resolve all of these definitional conflicts (other 
than to advise one to state as clearly and precisely as possible what one 
means). It will, however, offer a brief accounting of the definition of basic 
terms that are the core of scientific inquiry.2

 THE LANGUAGE OF SCIENCE

Following is a simple vocabulary for terms of scientific research that will be 
used throughout this text. Later, we will discuss how these terms interact 
with each other.

Units of Analysis, Case, or Fact

The units of analysis, case, or fact are the entities, drawn from a known or 
theoretical population, from which we take or may later be able to take 
measurements. Some examples follow:

units of analysis, case,  
or fact Entities from  
which measurements are 
taken.
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a. Peter Galderisi
b. My dog, Treana
c. The chair I’m now sitting on as I write this text
d. The United States
e. The European Union
f. Congressman Darrell Issa (my current representative)

For example, in an exit survey of voters, each surveyed individual would 
be a “unit of analysis.” The “units” of analysis would be survey respondents. 
In a comparative study of election laws in different countries, the unit of 
analysis would be each country. The number of cases for each study is usually 
abbreviated as n or N. For example, if we were to list ballot forms in the 
different states, N would equal 50 (51 if Washington, D.C., is included for 
analysis). If we were to study roll call votes in the U.S. Congress, N would 
equal 435 for the House and 100 for the Senate. The number of cases in an 
exit poll would equal the actual number surveyed.

Properties, Concepts, and Variables

Properties exist in nature whether we know them or not, concepts are our 
guesses about those properties, and variables are our observable or potentially 
observable measurements of those concepts. The important factor about 
properties is that, unlike units of analysis, they are generalizations or 
abstractions—characteristics, behaviors, attitudes—that can be used to discuss 
and describe many different units of analysis. Any unit of analysis can be 
described using categories of a host of properties. For example, in describing 
Peter Galderisi, we can use gender (category male), ethnicity (category 
Italian-American), marital status (happily married), height (69 inches in 
stocking feet), age (62 years, probably 63 when this is finally published), 
weight (don’t ask), hair color (brown with a dusting of gray), partisan pref-
erence, ideology, vote choice, views about gay rights, and so forth. Notice 
that these properties can not only be used to “define” me, but also other 
units of analysis. Those units don’t even have to share the same biological 
type. All of the unit of analysis examples listed previously can be described 
by their age. “Partisan preference” can be used to describe both myself and 
Congressman Issa (although my dog does seem to react differently given 
which political pundit is on TV).

What is both important and difficult is to ascertain which properties are 
most important in our analyses of political behavior. Gender and ethnicity 
(or at least the values associated with them) are probably important deter-
minants of partisan preference. Height is probably not (although it may act 
as a surrogate for gender or ethnic differences). Although we tend to eliminate 

number of cases The total 
units of analysis from which 
measurements are taken.

properties/concepts The 
generalizations we believe 
are important to measure 
from our cases.

variable The actual, 
real-world measurement of 
properties/concepts.
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certain properties as politically irrelevant in a given analysis, we may find out 
later that they are very relevant (keep this in mind when we discuss the 
importance of randomization later on).

Students often confuse variables (which must vary) with the categories of 
those variables (which don’t). “How one voted for president” would be a 
common variable in an exit poll. The “Republican percentage of the presi-
dential vote” would be a variable measured from each state (or voting precinct). 
Each possible response or measurement is referred to as a category of the 
relevant variable. For each voter, the category would correspond to the vote 
choice (Republican, Democratic, Green, etc.). For each state, a category would 
be listed as the percentage (46%, 54%, etc.) that voted Republican in each 
state.

Laws and Hypotheses

Laws exist in nature, and hypotheses are our guesses about laws.3 These are 
our generalized guesses or expectations about how properties relate to each 
other. Stating that “men are more likely to support Republican candidates 
than are women” is a statement about our expectations about the interaction 
between gender and partisan preference. Hypotheses (more on this later) are 
never just about two facts (we don’t just compare one man and one 
woman—although that might act as a limited test of that hypothesis)—
they are generalizations about the relationship between and among properties 
that can be tested in many ways. Stating that “I am more likely to vote 
Republican than my wife” is an expected outcome that naturally follows from 
our hypothesis. It is a “factual statement,” that is, one that can be proved 
true or false on limited investigation, not a hypothesis itself (it’s not a gen-
eralization). We’ll discuss “how to create a good” hypothesis in the next 
section.

laws/hypotheses The actual 
and perceived relation-
ships between or among 
properties/concepts.

factual statement Test of 
a hypothesis that is proved 
true or false on limited 
investigation.

 TABLE 1.1 Listing and Comparison of Terms

In Nature Our Guesses about Them Our Measurements  
of Them

Property Concept Variable
Law Hypothesis Test Implication/

Factual Statement

In this text, I will take the liberty to use “properties” and “concepts” interchangeably. “Variable” 
will be used when we discuss their actual measurement in the real world.
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Theories

Theories are a broader generalized knowledge that help to explain why prop-
erties are related to the way we hypothesize. Let’s take a simple example. Do 
any of us have to see someone cut a limb from a tree to be able to predict 
that it will fall to the ground? Well, no, for two reasons:

1. Experience—you have seen this occur so often that you are fairly certain 
about its predictive force (common sense). A myriad of observations have 
always met your expectations.

2. Theoretical link—it can not only be predicted but also explained by the 
theory of gravity, stated simply as:

■ Objects of mass greater than zero are attracted to each other.
■ The attraction favors the object of greater mass.
■ A limb has less mass than the earth.
■ Therefore: if I cut a tree limb, it will “fall” to the ground unless held 

up by some other means.

Notice the importance of theory here. It not only predicts that but explains 
why the tree limb should fall. Like a hypothesis, it has generalizable utility. 
It can predict and explain the falling of any severed tree limb, the unfortunate 
collapse of a building whose structure is compromised, and the falling of a 
duck when shot (thereby removing its innate ability to keep itself airborne). 
However, the theory of gravity helps explain so much more. It helps to explain 
why the moon revolves around the earth as we revolve around the sun. It 
helps to explain tidal patterns. Many scientists believe that gravitational pulls 
might help to explain the timing of certain types of earthquakes. To really 
move out there, some believe that planetary gravitational forces can help to 
explain mood swings. Remember that the term “lunatic” is derived from the 
Latin name for the moon. The “explanation,” factually absurd, is that the 
moon exerts greater force when it is “full.” The “fullness” of the moon, of 
course, has nothing to do with mass, but earthly shadows.

Granted, few if any full-blown theories exist in political science, although 
“rational choice” theory probably comes close. However, we should, at least, 
come up with some sort of “theory sketch” to help explain why our 
hypotheses-based expectations are borne out by specific data-based observa-
tions, not just that they do. What is it about the social status, differential 
childhood socialization, or different needs and expectations from government 
that “causes” women to gravitate more to the Democratic Party than do men?

Theories or theory sketches allow us not only to explain what we expect 
to see, but also to relate our research to that of others, even outside of our 
narrow field of study. A thorough understanding of a theory that we use to 

theories/theory sketches 
A broad explanation of why 
we expect to observe what 
our hypotheses predict.
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help explain a generalized outcome might also, given proper conditions, 
reverse what we would expect. Take for example the commonly held hypothesis 
that “older citizens are more likely to vote than younger ones.” Those who 
have most recently benefited from changes in the franchise, those from 18 
to 20 years of age, vote at a dismally poor level—only 37.4% claim to have 
exercised their franchise in the 2012 presidential election. Turnout increases 
linearly as one gets older, with those 65 and over voting at almost twice the 
rate of their younger cohort (72.0%). Only with advancing years does turnout 
start to decline, most likely due to the infirmities that inevitably come with 
age. Only 3.1% of those under 24 claim illness or disability as a reason for 
not voting. That figure climbs to 42.0% for those 65 and older.4

Two theories can be offered for this age bias in voting. The life-cycle 
theory basically states that one becomes more likely to vote as one gets older 
because one’s interest in what government does and does not do becomes 
more salient. Taxes and mortgage deductions become more relevant, as do 
educational policy, business regulation, medical policies, and social security 
benefits. Additionally, age brings a form of education gained through expe-
rience if not formal training. Although not a perfect relationship, as one gets 
older, one is also less likely to move, thus decreasing the time and effort 
necessary to re-register (most other countries have national voter IDs) and 
learn about the local political terrain. This life-cycle explanation helps to 
explain the decline in voting turnout in the late 1960s. Two events coincided 
to increase the proportion of potential young voters during this period. The 
first was the coming of age of the baby-boom generation (i.e., those born in 
exceptionally high numbers following the return of troops after World  
War II and the Korean conflict). The second was the previously mentioned 
enfranchisement of 18- to 20-year-olds. In essence, a large cohort of young 
citizens, those least inclined to participate, flooded the political marketplace, 
much like the enfranchisement of women had done in the 1920s. Unfortu-
nately, unlike the history of women’s suffrage, these newly enfranchised citizens 
did not vote as they got older in the proportions that the life-cycle theory 
would predict. If they had, voting turnout would have increased in the 1970s, 
1980s, and 1990s, rather than continuing to decline.

The second explanation, the generational theory, helps to explain this 
seeming anomaly. Older citizens are not more likely to vote because they are 
older. They were also highly likely to vote when they were young, with 
life-cycle tendencies only increasing their turnout marginally. Perhaps partisan 
politics seemed more salient, with differences over New Deal policies offering 
clear choices to voters coming of age. More importantly, however, older 
citizens are more likely to vote because they have and, most importantly, 
have always had a higher sense of civic duty. These are citizens who came of 
age during the Great Depression and World War II, when a sense of civic 
community, born of surviving two long-term dramatic events, was much 
more prevalent than has been the case since. Additionally, this adherence to 

life-cycle theory Explaining 
political behavior based on 
differences in circumstances 
that occur as one ages.

generational theory 
Explaining political behavior 
based on differences in 
what was occurring when 
an individual entered politi-
cal awareness.
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democratic perspectives was passed down to the next generation (baby boom-
ers), even if at a somewhat diminished level. By the time that the grandchildren 
of the “Greatest Generation” were born, this democratic transmission was all 
but lost.

Note that these theoretical assessments open up an entire range of possible 
additions or new areas of study. Each of the assumptions of the theory can 
be separately tested (“are older citizens more likely to have a sense of civic 
duty?”). They may help to explain discrepancies in our findings (“are younger 
citizens as likely to vote as older ones if, for whatever reason, they share the 
same sense of civic obligation?”). They may also “travel” differently in time 
and space. If the generational theory is relevant, then we would expect our 
hypothesis to predict an opposite relationship if we make the same age com-
parisons in the 1940s when the effects of depression and war should have 
been more immediately salient for younger generations. In newly emerging 
democracies, younger generations, raised during the fight or transition to 
democratic norms, should be more tied into a democratic civic culture and, 
therefore, more likely to vote than their parents. The same theoretical gen-
eralizations can therefore lead to different expectations that follow from 
well-formed hypotheses that can be studied by testing those expectations in 
the real world.

 THE STRUCTURE OF HYPOTHESES

As mentioned, our hypotheses are our best-informed guesses or expectations 
about the relationship between two or more properties or concepts, measured 
as variables that can be tested with real-world data. They should automatically 
lead to testing for their confirmation (what I will call direct confirmation) but 
also logically follow from a theoretical backdrop (indirect confirmation). Both 
direct and indirect confirmation are essential for a hypothesis to be useful.

Several texts do a very good job of delineating all of the components of 
good hypothesis formation and, later, testing.5 Let me offer a way to sum-
marize the numerous variations many others make by combining them into 
two general categories.

Falsifiability

Hypotheses are generalizations that, although we would like to think will 
always be proved true, must also be written and structured in such a way 
that evidence could be found that would disconfirm them. Science, after all, 
is not just about the sharing of knowledge; it is also about the ability to 
challenge that knowledge in order to gain greater understanding. The following 
are several factors that affect potential falsifiability.

falsifiability The possibility 
that what we observe 
will not confirm what our 
hypotheses predict.
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1. Lack of clarity—if we don’t have an agreed on meaning of our prop-
erties, then at least describe exactly what you mean. For example:

The higher the overall level of education, the more likely a country will be 
democratic.

Problem: “Democratic” is what we call a cluster concept. It has several 
components. Which one does the author mean (ability to vote, voter turnout, 
freedom of speech and press, economic democracy, or some combination)? 
If we don’t know, then we don’t know what observed evidence might con-
tradict it. What if we found a country with high overall levels of formal 
education, but little tolerance for a free press? Well, the author could always 
claim that he/she meant “ability to vote,” not “freedom of the press.” Be as 
specific as possible without necessarily detailing exactly how it would be 
measured (that will come later).

One improvement:

The higher the overall education level within a country, the greater the level 
of voting turnout in a country.

2. Lack of direction—do the two properties increase together, change 
direction, or have no directional consistency at all (statistically, the null hypoth-
esis). Terms like “are related,” “is a function of,” and “is associated with” might 
make some intuitive, common sense, but they don’t tell us what observed 
evidence could contradict the statement. The expectation is not clear. Thus, 
we don’t know for sure what observations might contradict it. For example:

Education and democracy are related.

Problem: What if, after better defining “democracy,” we compare two 
countries and find that the “more highly educated” one is less democratic? 
That doesn’t negate the original statement—maybe that was the author’s 
expectation. The definitional improvements listed previously can work here 
also. The two properties listed (“overall education level” and “level of voting 
turnout”) are hypothesized to increase together.

3. No explicit comparison—only one side of one property is posited. 
Remember, comparison is the fundamental key to research. For example:

Stating that “voting turnout among individuals with low education levels is 
low” sounds intuitively correct but doesn’t negate the possibility that, upon 
observation in any given instance, turnout might be even lower among “highly 
educated” people. A better comparative expectation might be stated as:

Voting turnout among individuals with low education levels is lower than 
among those with higher education levels.

As we will see in a later chapter, the failure to understand this distinction 
may have led many to misread the meaning of the gender gap in politics 
(i.e., that “men are more likely to vote Republican than are women”).
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4. Value (normative) judgments. In science, we constantly leave ourselves 
open to contradictory information. In religion, we don’t. There is nothing 
wrong with that (I consider myself to be a very religious person)—the two 
are just different. One is based on fact and is subject to falsification. The 
other is based on faith and, unless we are non-denominational theologians, 
we don’t try to find evidence contradictory to our beliefs. For example:

The death penalty is bad (or good).

If we mean that even the state should not have the ability to terminate a 
life because it is morally wrong (or, adversely, “an eye for an eye . . .”), then 
what is there to study? These are religiously held beliefs. However, is there 
anything that can be analyzed scientifically? Certainly. Define “bad” or “good” 
as something measurable, concrete, and as devoid of moral or value judgments 
as possible (e.g., does it deter other would-be criminals?). Then, as an 
example:

States with a death penalty will have lower capital crime rates than states 
without that penalty.

Or
When a state abolishes the death penalty, capital crime rates increase.

Not Immediately Verifiable

Students seem to have the most trouble with this. If a statement can be 
“proved” true or false on limited investigation (verifiability), then we don’t 
have a hypothesis—just a test implication6 or observation of a potential 
hypothesis. Test implications are factual statements (true or false on limited 
investigation) that help to confirm or disconfirm our more generalized hypoth-
eses and expectations. They are not, however, hypotheses themselves. They 
do let us know whether what we expect from our hypothesis is actually 
observed in the real world. For example:

Senator Dianne Feinstein (D-CA) is more powerful than Senator Barbara 
Boxer (D-CA).

Problem 1: What do we mean by “more powerful?” Better at arm wres-
tling? Let’s define “power” as “the ability to have one’s proposed legisla-
tion passed by the entire Congress.”

Now: Senator Dianne Feinstein has a greater proportion of her proposed legis-
lation passed than does Senator Barbara Boxer.

However, there is still a problem: This is true or false on limited investi-
gation. It is therefore a factual statement—not a hypothesis. Look up some 
congressional records, and your job is done (at least when both retire). Here’s 

value (normative)  
judgment A moral or 
religious sense that a 
certain occurrence or action 
is “good” or “bad” that 
is based on religious or 
philosophical principles not 
subject to testing.

test implication An observ-
able test of a hypothesis 
that is implied by that 
hypothesis.

verifiability The ability of a 
factual statement or test 
implication to be proved 
true or false on limited 
investigation.
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the test—is there any hint of cause? That hint comes from specifying two 
properties/measurable variables. The independent property is the posited 
causal agent. The dependent property is the expected outcome. We have 
the outcome: “the ability to have one’s proposed legislation passed by the 
entire Congress.” What is the possible cause, or independent property—“de-
gree of Boxerness”?

Individual senators share certain characteristics, but not all. The question 
is, what might be different (on a separately measured property) between these 
two, or any two, representatives that might explain why one is more “pow-
erful” than the other? On what property might they vary in such a way as 
to both predict and help explain the outcome?

One possibility:

The more seniority a member of Congress has, the higher the proportion of 
his/her proposed legislation that passes.

We now not only have two properties listed, but the statement is gener-
alizable beyond an immediate comparison of just these two senators. The 
independent property (i.e., the one that we hypothesize or expect is the causal 
agent) is “level of seniority.” The dependent property or outcome is “propor-
tion of legislation passed.”

 THE BEAUTY OF HYPOTHESES FOR RESEARCH

Once we specify a properly worded hypothesis, we now have a lead into how 
our research should develop. Too often, I’ve had students come and state that 
their “topics” cannot possibly lend themselves to 12- or 20-page papers. Once 
the topic (e.g., “I’m fascinated by the fact that the congressperson from my 
neighboring district seems more ‘powerful’ than my own representative”) is 
turned into a hypothesis (e.g., “The more seniority a member of Congress 
has, the higher the proportion of his/her proposed legislation that passes”), 
different avenues of research and “filling” those 20 pages become obvious.

Increasing the Number and Types of Tests

Because the hypothesis is a generalized statement of expectations, we can find 
several ways to test (observe) what is logically expected or implied from that 
hypothesis:

1. We can compare one or many pairs of congresspersons at a given time 
(comparative analysis).

2. We can rank order all congresspersons on both properties at a given time 
and compare those rankings (traditional “quantitative” analysis).

independent property That 
property that we hypothe-
size has a causative effect 
on another.

dependent property That 
property that we hypothe-
size was caused by another.
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3. We can follow the success/power of the same congressperson over time 
(case study).

If the original hypothesis is correct, then our expectation should lead to 
the following observations. These are all tests, which can be proved true or 
false, that are directly implied from our generalized expectation or 
hypothesis:

1. A congressperson with more seniority will be observed to be “more 
powerful” than the congressperson of lesser seniority to whom he/she is 
compared.

2. As we move from congresspeople with the lowest to highest seniority, we 
should observe a movement from the least to most “powerful.”

3. As any individual congressperson increases, over time, his/her seniority, 
we should observe an increase in his/her “power.”

Broadening Our Frame of Reference or Context

We can also test this with state legislatures or legislative bodies in other 
countries. I have often told my undergraduate students, when they are trying 
to find a research topic, to take a hypothesis that has been well tested at one 
level and see if it can be generalized to another. This is an important com-
ponent of any research area. Does the expectation travel? Do we observe this 
expected relationship between seniority and “power” in other countries? Does 
it make a difference in a specified direction whether the country’s legislature 
operates, as does the U.S. Congress, under a winner-take-all (WTA), pro-
portional, or mixed regime? Do we observe our expected differences in state 
legislatures (and what happens when a state institutes term limits)? A test on 
a narrow subject might not be of much interest to someone in another field. 
However, the more generalizable the hypothesis, the more others can learn 
from another’s study and perhaps use a similar analysis in their own research.

Uncovering Theoretical Relevance

Because a hypothesis must also admit to “indirect” confirmation, we should 
spend some time researching the underlying theoretical reasons for why we 
think our two properties are related as hypothesized. This should cause us to 
do a thorough “literature search” on seniority or the legislative process or 
personal relationships among congresspersons, and so forth.

Even after going through all of the processes discussed previously, and 
even if we can run every comparative, quantitative, and case study imaginable, 
we are never finished. Although we may have enough confirmation (both 
direct and indirect) to feel comfortable that our cause-effect expectation is 
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correct, we can never fully prove it. Why? Unless we drastically change our 
(and other nations’) institutional arrangements, legislators will exist in the 
future. There will always be more tests where our observations might con-
tradict our hypothetical expectation. Once we have a true hypothesis, we 
have much to write about, now and in the future. A factual statement, one 
that is true or false on limited investigation, can be discussed on a note card.

 THE LOGIC OF CAUSATION—A REVIEW

Science is more than just about cataloguing information and making predic-
tions. Science deals with explaining and examining why properties are related 
in the ways our hypotheses specify. We are not satisfied in finding out that 
two properties as measured are related, but why a change in the independent 
or causal property should cause a change in the dependent property or 
outcome.

In order to demonstrate causality (at least with a certain degree of cer-
tainty), we need to fulfill the following conditions.

Test

Test the hypothesis in the real world. This is what we call a direct confirmation 
of our hypothesis. Do our observations match our expectations (based on 
our hypothetical statement)?

Example: If we are stating that voter turnout is higher in systems that 
employ a proportional representation rule than they are in systems that employ 
(like the United States) a WTA, single-member districting provision, then 
we need to actually measure whether the hypothesis is borne out or observed 
in the real world. Note that the statement is a hypothesis—even if it is 
completely true at this point in time we may find past or future examples 
when the outcomes do not come out as predicted.

Theory or Theory Sketch

Provide a logical reason for the causal direction of the hypothesis. This is 
called theory or indirect confirmation. Why should we expect turnout to be 
lower in WTA than proportional systems? Several reasons can be offered, the 
most important being that unless you live in a district, state, or other WTA 
electoral unit where elections tend to be perennially close, you won’t feel that 
your single vote has an impact. A senator from a deep red state can win 
re-election in a two-party race with 60% or 80% of the vote. The margin of 
victory is not important (at least in deciding a winner). On the other hand, 
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in a proportional representation (PR) system, a legislature is divvied out to 
parties roughly in direct proportion to the vote they receive. Whether a party 
nationally gets 60% or 70% of the vote means a difference of 10% of the 
legislative seats.7

Why do we need theory? Well, for a number of reasons. The first is to 
eliminate what we call accidental, historical generalizations. For years, the 
outcome of the baseball World Series victories (which league wins) seemed 
to fairly consistently predict presidential election victories (which party wins). 
Although they seemed to be in sync for a large portion of history, one would 
be hard pressed to find an explanation for why they should be related.8

The other reason is to help rule out alternate explanations. We’ll go through 
a fuller rendition of this when we cover design and associational statistics. 
For now, we need to ask whether there may be other reasons why turnout 
is higher in PR systems that have nothing to do with PR and may be the 
true cause of turnout differences. Can we ever eliminate every alternate 
explanation—of course not, as we are not divine. Our job, however, is to 
eliminate the most obvious ones. Go back to our example. Perhaps citizens 
in a nation choose proportional representation because they are more com-
mitted to the democratic premise that every vote should count. That com-
mitment might be the cause of both the choice of electoral system and high 
turnout (what we’ll refer to later as a spurious relationship). Perhaps systems 
operating under PR have higher overall educations, and it is that level of 
education that positively drives voter turnout, independent of the type of 
electoral aggregation employed.

One problem students often face is in finding a theory or theory sketch 
that already exists and that can be used for a full understanding of their 
hypothetical links. The same is true with finding pre-existing studies that might 
have already offered some direct confirmation of that hypothesis. Often, we 
must generalize beyond what we think our original hypothesis is meant to 
study. Many years ago, I had one student who noticed something unusual as 
she was studying the gender gap in U.S. electoral politics (“men are more 
likely to support Republican causes and candidates than are women”). Indirectly, 
she discovered that, at least for that survey and year, the partisan gap was even 
stronger between married (more Republican) than unmarried individuals. Little 
had yet to be written about this marriage gap. On the other hand, she decided 
that, like much of the rational choice voting literature indicated, voting deci-
sions can be analyzed much the same (with the limitation that a choice is 
made regardless of whether one votes) as economic ones. Although the rela-
tionship between marriage, having children, and political choices was not yet 
supported by a massive political science literature, much was written about 
marital and child status and economic decisions. Married individuals were 
more reserved and conservative in their economic choices. They were also more 
socially conservative. Particularly after the 1970s, that would make them more 
likely to lean Republican than their single counterparts.

historical generalization 
Our hypothesized inde-
pendent and dependent 
properties are only related 
accidentally and are not 
causally linked.

spurious relationship Our 
hypothesized independent 
and dependent properties 
are actually both dependent 
on a third property.
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Similarly, another student was studying, across time, the hypothesis that 
those who anticipated a close election were more likely to vote than those 
who anticipated a one-sided result. Anthony Downs’s classic economic model 
of democracy and its progeny had already dealt with this issue.9 However, 
following a collective class hunch, my student also noticed that among those 
who anticipated a one-sided election, those who supported the anticipated 
winning candidate were more likely to vote than those who were more closely 
aligned with the anticipated loser. Where could one find research that might 
offer the theoretical backdrop to explain why that relationship should exist? 
The decision was made to treat elections much like a sporting event. After 
all, rabid supporters of a team will watch the game until the end for the 
personal satisfaction of seeing the opposition (often hated) crushed. Those 
supporting the losers tend to head for the parking lot. Lo and behold, journals 
associated with sports psychology and the like did address such behavior, and 
a literature and potential theoretical confirmation were found.

Triangulization

We will find that no form of measurement is perfect, nor is any design in which 
we check our guessed causal relationship. We are safer if we measure our prop-
erties in more than one way (as each will have a different potential source of 
bias). We are also safer if we create different designs. This varied measurement 
and testing is called triangulization. For example, if the general hypothesis about 
voting systems and turnout is true, then we could “design” our analysis two ways:

a. At any point in time, compare all countries with PR against all countries 
with WTA. We would hope to observe turnout higher in all of the former 
or, at least, for turnout to be higher “on average” (see Chapter 3).

b. See if a country changed from one type of system to another. Italy, for 
example, moved from PR to WTA and back. We would expect to find 
turnout dropping then rebounding.

Alternate Explanations

Alternate explanations10 can come from two sources. First, is there something 
potentially problematic with how we measure our evidence? Second, is there 
something potentially problematic with how we set up the design in which we 
collect our measurements and check for correct causal sequences? All of these 
problems are potential (i.e., just because they might be of concern does not mean 
that they are). We might only have a partial print and therefore can’t legally define 
a match. However, that doesn’t mean that the partial did not come from the 
suspect. This is an outline of potential measurement and design problems that will 
each be more thoroughly addressed along with statistics in subsequent chapters.

triangulization Measuring 
our concepts and testing 
our hypotheses in as many 
different ways as possible.

alternate explanations  
Reasons other than that 
which are hypothesized for 
why our properties/variables 
are related as hypothesized.
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“Potential” Measurement Problems

Three potential problems with measurement follow.

 ■ Reliability of measurement—are we measuring anything with consist-
ency? (random error)
 ■ Internal validity of measurement—are we measuring what we think we 
are measuring? (systematic error)
 ■ External validity of measurement—can we generalize out our evidence 
to a broader “target” population/time/circumstance? (generalization error)

“Potential” Design Problems

Just as with measurement, internal validity and external validity can also apply 
to designs (i.e., how we test our hypotheses in the real world). Just as with 
measurements, it is virtually impossible to create a test situation (design) totally 
free of internal and external validity problems. Before I elaborate, let’s clarify 
our terms. IV stands for our hypothesized and measured independent variable; 
DV is the hypothesized outcome or dependent variable (named “dependent” 
because we are hypothesizing that it is caused or conditioned by another variable). 
The distinction is much the same as we made for measurement problems:

 ■ Internal validity of design—is the change in the IV the cause of the change 
in the DV, or is it something else?
 ■ External validity of design—change in the IV causes change in the DV, but 
perhaps only given certain other conditions, only for a certain subpopula-
tion, only during a particular time period—how generalizable are our results?

If “X” refers to the hypothesized causal (independent) variable, then an 
“internally invalid” conclusion would occur if some variable other than “X” 
caused the outcome (e.g., another type of historical event). An “externally 
invalid” conclusion would occur if “X” did cause the outcome, but only 
because of some other condition or circumstance. It is only, therefore, a 
partial or conditional cause. “External validity” refers to how far we can 
generalize our results, both in terms of target populations (all voters), all 
times (historical elections as well as present ones), and research conditions 
(that may increase the intrusion of alternate explanations).

You will quickly discover that, even under the best experimental conditions 
of measurement and design, no measurement or design is devoid of potential 
problems, either internal or external. The best we can hope for is to do the 
best we can do, control for the most obvious alternate explanations, be careful 
and as precise as possible in our measurements, and measure and test in as 
many ways as possible. Each test, as with each type of measurement, will have 
a potential internal or external validity problem. We can’t control for all of 

reliability of measurement 
Measurements are consis-
tent and meaningful.

internal validity of design 
Our hypothesized indepen-
dent variable is actually the 
cause of our outcome or 
dependent variable.

external validity of design 
Our hypothesized indepen-
dent variable is actually the 
cause of our outcome or 
dependent variable for all 
targeted populations and 
circumstances.

external validity of  
measurement Our mea-
surements are generalizable 
to our targeted populations 
and circumstances.

internal validity of  
measurement We are 
actually measuring what we 
think we are measuring.
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them but, if each test has a different type of validity problem yet our obser-
vations always match our hypothesized expectations, then we are much more 
confident in our conclusion (although never fully sure). Again, this is called 
“triangulization” or, in some texts, “triangulation.” Think about the evidentiary 
burden again as one would in law. If we were to wait until the hypothesis has 
been confirmed beyond a reasonable doubt (the standard in a criminal law 
case), we may never feel satisfied with our research. On the other hand, if we 
can demonstrate that the preponderance of evidence confirms our expectations, 
and that the most obvious alternate explanations have been addressed (the 
standard in a civil trial), we should have enough to present our findings.

Sidebar 1.1: Causation—Law & Order Edition

Some of you reading this text are considering law school (in some departments you are in the 
majority) and are wondering why you need to know any of this (OK, maybe you all are). You actu-
ally go through this sequence every time you watch an episode of Law & Order, CSI, NCIS, or other 
legal drama.1 Here are the legal analogies (you may use your favorite TV show sound or music as 
background):

Test = evidence. We can better demonstrate that the suspect was the killer if his/her fingerprints 
are found on the murder weapon.

Theory = motive. We can make a better case if we can explain why the suspect would be likely 
to kill the victim. Was the spouse having an affair? Did the suspect just take out a huge insurance 
policy on the victim?

Alternate explanations. Any good prosecutor will try to make sure that the defense counsel 
does not try to sow doubt about how the evidence was collected or whether it is sufficient. One 
needs to be ready to address these alternate possibilities. Might the weapon be one that was a 
commonly used household item such as a kitchen knife? Was the suspect the primary cook of the 
house? Was the evidence tainted by a police officer or prosecutor with a hidden agenda or ven-
detta against the suspect?

Triangulate—get as much evidence, collected as differently as possible. You have a safer bet if 
you find fingerprints tested by one lab technician and DNA (under the fingernails of the victim 
that matches the suspect) tested by another. Having a record that a large insurance settlement 
was set away in an offshore bank account doesn’t hurt either.

These issues of measurement and design will be covered more fully in subsequent chapters as 
we delve into the concepts and mathematics of statistics. Let us begin.

1 Actually, statistics and law are constantly intertwined. For example, how do we gauge the accuracy of a 
DNA sample as matching that of a suspect? How can a defense attorney argue that a jury might not be 
reflective of the community? More commonly, how do we show that new ballot forms might increase or 
decrease discarded ballots? We use statistics, especially those involving probabilities.
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 KEY TERMS

alternate explanations (14)

dependent property (10)

external validity of design (15)

external validity of measurement (15)

factual statement (04)

falsifiability (07)

generational theory (06)

historical generalization (13)

independent property (10)

internal validity of design (15)

internal validity of measurement (15)

laws/hypotheses (04)

life-cycle theory (06)

number of cases (03)

properties/concepts (03)

reliability of measurement (15)

spurious relationship (13)

test implication (09)

theories/theory sketches (05)

triangulization (14)

units of analysis, case, or fact (02)

value (normative) judgment (09)

variable (03)

verifiability (09)

 QUESTIONS AND EXERCISES

1. In the following statement, what is the independent property?
Catholics are less likely to support abortion rights than non-Catholics.
a. Members of the Catholic faith
b. Support for abortion rights
c. Religious denomination/affiliation/faith
d. The Catholic faith

2. What is not a requirement for a statement to be considered a hypothesis?
a. Clear specification of direction of relationship
b. Falsifiability
c. Not normative or value based
d. Must be completely verifiable

3. Which of the following is a property/variable (not a fact or category)? 
What are the other choices examples of?
a. Education level
b. A highly educated person
c. Educated people
d. Twelve years of education

4. When discussing measurement, internal validity refers to:
a. Whether taking the survey validates one’s internal sense of tranquility
b. Only whether a measure is consistent
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c. Whether a measure is generalizable to a larger target population
d. Whether a variable measures what it’s supposed to measure

 5. Which of the following is the best-phrased hypothesis? What problems 
exist with the others?
a. The economy is related to crime.
b. Educated individuals are tolerant.
c. Younger Americans were more likely to vote for Obama than older 

people.
d. Those who see a difference between political alternatives are more 

likely to vote than those who don’t.
 6. Rephrase the other statements in Question 5 so that they better match the 

requirements of a hypothesis.
 7. The presumed relationship between variables X and Y is said to be “spuri-

ous.” This means that
a. Both X and Y are dependent on some third variable. They have no 

direct impact on each other.
b. The causal relationship between X and Y is reversed (Y is really the 

independent variable).
c. Another variable influences changes in Y but not X. No causal link 

exists between the two.
d. The two variables are just connected by historical coincidence.

 8. Turn each of the following statements into researchable hypotheses. You 
need to:
■ Explain, in detail, why each statement does not meet the requirements 

of a researchable hypothesis,
■ Rephrase each statement so that it is a researchable hypothesis, and
■ List the independent and dependent properties/variables for each of 

your revised statements.
(1) The Democratic Party lost the U.S. House in 2010.
(2) Turnout tends to be high in traditional democracies.
(3) The economy and immigration regulation are related.

 9. Hypotheses do not need theoretical, indirect confirmation (T/F) to be 
confirmed.

10. For the following hypotheses, specify the independent and dependent 
properties.
Republicans are more supportive of the military than are Democrats.
College graduates earn more than do high school graduates.
Democratic countries are less likely to engage in military conflict than are 

non-Democratic countries.
11. Going back to our opening example, develop a hypothesis that would 

help explain why Barack Obama did better in 2008 than his predecessor, 
John Kerry did in 2004. Remember, the hypothesis should also predict 
and explain diff erences between any other two candidates/years. A full 
discussion of this appears on the web page for this volume.
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 NOTES

 1 See Exercise 11 in this chapter.
 2 The definitions here are those found in the traditional philosophy of science 

literature. See, for example, Carl G. Hempel’s Philosophy of Natural Science 
(Prentice-Hall, 1966). Even within political science, however, these definitions 
are not always as rigidly applied as in this text.

 3 In traditional sciences, the terms “laws” and “hypotheses” are often interchangeable, 
especially when the hypothesis has been tested often enough and in enough 
different ways to provide scientists with an established sense of certainty. I prefer 
to keep the distinction.

 4 All census estimates taken from an analysis of the 2012 U.S. Census. Source: 
U.S. Census Bureau, Current Population Survey (U.S. Census Bureau, November 
2012).

 5 See Maryann Barakso, Daniel Sabet, and Brian Schaffner, Understanding Political 
Science Research: The Challenge of Inference (Routledge, 2013), the companion 
volume in this series, for a full discussion of the components of research 
methodology and the study of politics.

 6 Many authors use hypothesis and test implication interchangeably. This author 
prefers the distinction based in the philosophy of science literature, while 
admitting that the distinction is sometimes clouded.

 7 Of course, the theory behind our hypothesis should also predict that turnout 
would be high in perennially closely contested electoral districts.

 8 See Martin Kelly, “Predicting the Presidential Election with Baseball,” About.
com, 2004, http://americanhistory.about.com/od/elections/a/baseballpres.htm

 9 Anthony Downs, An Economic Theory of Democracy (Harper, 1957).
10 A more generalized research methods text will cover this in much greater detail 

as will we in later chapters (6 and 10) dealing with hypothesis testing and 
controls.

http://americanhistory.about.com/od/elections/a/baseballpres.htm
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Learning Objectives:

 ■ To understand the benefits and limits of statistics
 ■ To learn about problems with how concepts are measured
 ■ To understand differences in the level or precision of measurements
 ■ To interpret data summarized in a frequency distribution
 ■ To understand the critical importance of standardization
 ■ To interpret the different types of graphs that can be used to present visualiza-
tions of your data distributions

 ■ To realize that how we present and categorize our data can lead to different 
interpretations

In every election, candidates differ over who is at fault or should gain glory 
for current economic conditions and offer alternatives as to how to “grow” 
the economy in future years. They all seem to make a decent argument for 
their claim, sometimes even citing different economic decline or growth 
statistics. Are these just political slogans without substance? Perhaps. Are they 
legitimate accusations against the misuse of statistics by the opposition? 
Perhaps. In every election year, candidates rely on different sets of data, based 
on different conceptual assumptions and baselines of comparisons and ana-
lyzed using different statistical procedures. They often talk past each other, 
and most of the American public has to depend on its own sense of each 
candidate’s veracity and understanding to assess the merits of candidates’ 
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claims. The political world will always be, well, political, colored by partisan 
and ideological lenses. However, as students of politics, we have an obligation 
to try to make independent, objective assessments of the relative worth of 
each candidate’s proposals. In order to do so, we must have not only a basic 
understanding of statistical procedure, but also a firm grasp of what data are 
being statistically analyzed and how those data differ from other similar 
measures. We also need to understand how those data and statistics help to 
answer the questions that we propose.

As introduced in the last chapter, one begins research by asking theoretically 
important questions. Sometimes, and only sometimes, statistics can help us to 
answer those questions. Statistics are merely a summary tool. They help us 
with our research, but they are not the driving force behind it. They are as 
good as the data we collect and the research we design—no better. The basic 
premise of this text follows sound methodological guidelines: statistics can 
sometimes help us to answer certain questions; therefore, we need to under-
stand exactly which question each statistic answers. Remember, statistics can 
never substitute for the English (or any other) language—they only comple-
ment it by serving as summary tools. Before these tools can be employed, 
theoretically useful questions about the relationships between and among 
well-defined and measurable properties must first be asked.

 STATISTICAL MEASUREMENT—AN INTRODUCTION

With that introductory premise in mind, let us present two simple, but often 
overlooked facts about statistical measurement. Each will be developed further 
as we progress through the chapters.

First, as we summarize information, we lose information. Before we analyze 
data statistically, we need to make a decision about how much information 
we can afford to lose or need to lose to simplify our analysis. For example, a 
simple summary measure of the relationship between education and voting 
turnout would tell us that a strong and positive mathematical relationship 
exists between years of schooling and the expectation that one will vote. Most 
college-educated individuals will vote in any given presidential election, but 
not all. Any summary measure that causes us to predict that any particular 
college-educated person will vote will sometimes be incorrect, even if it usually 
allows for a correct prediction. That summary also masks the individual reasons 
why each college-educated person does vote (it might be something other than 
education). We may need to include more “pieces” of information in our 
analysis such as race, partisanship, and age; however, at a certain point, we 
need to reach a tentative conclusion. As soon as we do, we are probably leaving 
out some important distinction among certain individuals that also explains 
differences in voting turnout. Research is a continuous, not finite process.
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Second, politicians, journalists, and the general public love the expression, 
“Lies, damn lies and statistics.” Statistics, however, don’t lie. They have no 
life and, therefore, no conscience. They have no capacity to lie. Individuals 
(often the politicians and journalists who decry their use), however, do lie—or 
at least choose information and statistics that place their point of view in the 
most favorable light (sometimes unintentionally). Statistics just summarize 
information—good or bad. If the information acquired doesn’t accurately 
measure a certain property or relationship, or if there exists no commonly 
agreed on measure of that property, then no statistical summary of that 
measure will give us an accurate or satisfactory assessment of any proposed 
relationship. Even if the data collected do adequately measure the property 
at hand, different statistics might give us different impressions about those 
data. We will see in Chapter 9, for example, that given a certain distribution 
of party affiliation and voting by members of a legislature, we can choose 
one statistic that implies that the legislature is totally partisan, another that 
implies that it is somewhat partisan, and another that implies that the voting 
tendencies of legislative members are not related to partisanship at all—and 
even that seeming complexity does not take into account the different meaning 
of “partisanship” itself. Is it difference just for the sake of opposition, or is 
it backed by truly felt philosophical differences? Each statistic makes different 
assumptions about the data and the meaning of a relationship between two 
variables (in this example, partisanship and the vote). A statistic doesn’t lie, 
but one can easily understand how two analysts can give two totally different 
assessments of the partisan divisiveness of a legislature using the same data 
but different statistics. A candidate can run for re-election claiming that she 
was able to bring together both Democrats and Republicans in a common 
effort. Her partisan opponent can claim that the partisan divisions within 
Congress are as bad as ever. The statistics their flacks will present will not 
lie. However, they may be based on a different set of congressional roll call 
votes, or they might be summarized using different statistical techniques.

The same can be said of the different tax and budget proposals offered by 
candidates in any country. Each is often dependent on a different projection 
of future budget surpluses and deficits. Are these projections always based 
on a careful, multidimensional analysis that takes into account the impact 
of the respective proposals, or are they just assuming that the surplus or 
deficit can be measured as a continuation of a current trend? Each may also 
be politically motivated by a different assessment of the validity of the public’s 
desire to pay down the national debt or to preserve the integrity of entitle-
ment funds like pension allotments or Social Security. When survey respon-
dents overwhelming state they prefer certain options, are they expressing their 
true feelings (on which their vote might be based), or are they giving what 
they thought was a politically correct response? After all, in most U.S. national 
surveys, these are the same respondents who claim to have voted and to have 
voted for the winner in proportions that are often well above what actually 
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occurred in the election. The statistics that summarize these survey results 
don’t lie. They just reflect the potential internal invalidity of the responses.

Our task as scholars is to understand the limitations of the data we use. 
We can then embark on the task of understanding what each statistic mea-
sures, what data and relationship assumptions it makes, and how it precisely 
calculates that measurement. If we do so, then we can make our own, inde-
pendent decision about the validity or worth of the assessment. We sometimes 
have a tendency to accept others’ statistical findings as gospel or reject them 
as trivial when, in fact, we make no attempt to try to understand what the 
politician, pundit, or researcher tried to accomplish. Ignorance may be bliss, 
but it is not academically virtuous.

Many methodological factors—the reliability of our measurements and 
the internal and the external validity of measurements—must be considered 
when collecting data and analyzing relationships found within them (a broader 
discussion of external validity will be addressed in Chapter 6). Let us turn 
to a short list of some potential measurement problems. Again, a more elab-
orate discussion of each, and how these problems can be minimized, can be 
found in the accompanying or other research design texts.

Reliability of Measurement

Are we measuring with consistency? If we measured the variable twice, would 
we obtain the same results?

Cause: 1. Erratic, unexpected events that are not consistent or measurable
  2.  Incomplete information/instructions on which to base a mea- 

surement

Example: What if we measured someone’s height with a tape measure that 
had a tendency to bend? The exact measurement would change from attempt 
to attempt. The biggest reliability threats occur when, in deciding how to 
measure, we come up with an inexact measuring device or instrument. Take, 
for example, a survey. If we asked people whether they approve of a certain 
bill, referenced by the House or Senate number only (e.g., House Bill #2087), 
but didn’t give them the option of stating, “I don’t know,” we’ll probably get 
an unreliable measure. The respondent might say “yes” once and the next 
day say “no.” He/she would be making up an answer each time unless the 
respondent has a certain response bias (e.g., always saying “no” when unfa-
miliar with the question). That would be consistent and reliable but wouldn’t 
tell us much about attitudes (other than detesting anything done by 
Congress).

This problem frequently occurs when researchers hire others (or entice 
their graduate assistants) to help with “content analysis” (i.e., the extraction 
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of meaning and emphasis in, e.g., newspaper articles as a way of measuring 
the “partisan or ideological bias” of the paper or correspondent). When 
the instructions are not clear and open to interpretation, content analyzers 
might just guess meaning or intention. Given another pass through, they 
might code the articles differently.1 Probably the most obvious example of 
reliability issues comes with the re-counts that have increasingly become 
part of U.S. elections and folklore. How does one measure “voter inten-
tion,” a guideline used in many state re-counting laws, when no clear 
instructions are provided? Note, this is not the same as bias inherent with 
vote re-counters consciously or not consciously estimating intent in a way 
that produces the most votes for their party. Those re-counts would be 
consistent if redone. They might, however, be consistently biased in the 
same direction as they will always coincide with the partisan interests of 
the counter. It is that partisan interest, rather than actual intention, that 
may be measured. This is an example of a potential internal validity 
problem.

Internal Validity of Measurement

Are we measuring what we think we are measuring, or are we measuring 
something else? Even if reliable (the measurement is always the same), might 
the measurement not match the property we think we are measuring?

Example: Let’s use surveys again. If I try to limit reliability problems, I 
might want to be more specific on the wording of the question. What if I 
state: “Do you approve or disapprove of the House Speaker’s proposed bill 
#2087?” We might really be measuring how individuals feel about the House 
Speaker, not the bill itself.

Example: In a survey, ask people their age. Many will reliably (consistently) 
understate it. Even more obvious—in most post-election surveys, more people 
say they voted than is possible. You are asking whether or not they voted. 
They are responding to, “What is the politically correct answer?” A better 
example comes in the form of what we call the “Bradley effect.” Tom Bradley 
was a long-term, Democratic, black mayor of Los Angeles who ran for gov-
ernor of California in 1982. The exit polls indicated he would win, but he 
didn’t. The general view about why the polls were off was because many 
white citizens, especially Democrats, did not want to acknowledge a racial 
bias. In fact, the polls were not all that wrong. Bradley only lost after the 
absentee ballots (at that time mostly Republican) were counted. There was 
still an external validity problem—but it was that exit polls do not always 
validly measure all votes (same day, early, and absentee voters are excluded). 
Barack Obama, for example, in both of his presidential elections did much 
better proportionately among those who voted early than those who voted 
on Election Day.2

Bradley effect The tendency 
for individuals to give 
responses that they feel are 
more politically or socially 
correct or reflect better on 
their own perceived moral 
values.
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Internal invalidity is always problematic but may not be as dysfunctional 
as one might guess. What if, in a host of studies, we discover that surveys 
overestimate the vote for minority candidates, especially among Democrats? 
In a new survey conducted right before an election in a heavily Democratic 
district with a black Democrat running against a white Republican, the results 
indicate overwhelming support for the Republican candidate. If we are fairly 
certain of the potential problems inherent with the “Bradley effect,” then, 
although we might not be able to estimate the Republican’s winning percentage 
with any kind of accuracy, we would feel fairly certain that, given how the 
survey would be biased against her, she will most likely win.

Example: Are surveys the only problem? No. They are certainly replete 
with potential validity problems, but, as we will see when we discuss designs, 
they offer benefits not derived from other types of more aggregated measures. 
For now, let’s just use an example. From the 1930s to the 1960s, voter turnout 
for Democrats was notoriously overstated in Chicago. Sometimes, turnout 
exceeded the size of the electorate in certain areas (especially districts containing 
cemeteries). Are politicians likely to “misstate”? I like to call this the “Chicago 
effect.” In a sense, it is the “Bradley effect” brought up to institutional pro-
portions. What needs to be stated by governments or other large institutions 
to stay in the good graces of their constituents and/or maintain funding for 
their agency? In 2014, we witnessed a very depressing example of this as we 
discovered that several Veterans Administration hospitals underreported the 
wait times of their patients, many of whom died waiting for service.3

Chicago effect The author’s 
term for the intentional or 
unintentional misreporting 
of information by govern-
mental or other agencies.

Sidebar 2.1: The Chicago Effect and Crime Statistics

In 2010, an investigation into the collecting and categorizing of crime statistics by the New York 
City Police Department found that, in an effort to show reduced crime figures, many property 
crimes were downgraded from grand larcenies (>$1,000) to misdemeanors. There was also an 
increase in attempts to persuade victims not to file a complaint. To be fair, the accuracy of this 
report was questioned by several police officials and politicians who used other data to argue 
that New York had indeed become a safer city.

Source: William K. Rashbaum, “Police Manipulated Crime Data, Retired City Officials Say,” New York 
Times, February 7, 2010, http://www.nytimes.com/2010/02/07/nyregion/07crime.html?_r=0.

Reliability versus Internal Invalidity

The best way I have ever found to demonstrate the difference is to think of 
an archery contest. Someone who is reliable but internally invalid would 
consistently miss the center, but in the same location (say outside, 

http://www.nytimes.com/2010/02/07/nyregion/07crime.html?_r=0
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bottom-right). That person is a reliably bad shot. Someone who is unreliable 
would scatter the arrows all over the target, with no apparent pattern. Someone 
who is reliable and internally valid would consistently hit the center mark.4 
Note that, as with many research dilemmas, providing enough information 
to assure reliability might call into question the internal validity of our survey 
question.

 PRECISION IN MEASUREMENT

Part of the problem with collecting data is that we cannot always collect it 
in as precise a way as we would like, or, more likely, the data are not collected 
or reported as precisely as we would like by another group of researchers or 
agency. Much of what we study has already occurred and been measured in 
the past, without the imposition of the standards we would have preferred. 
As far as measurement goes, this would not pose as great a problem as it 
does except for the potential limitations imposed by the precision, or lack 
thereof, of the data collected. These limitations might be conceptual. For 
example, if age is collected in categories (young, middle aged, old) rather 
than precise years, we may not be able to test our generational theory of 
voting unless that threefold categorical breakdown closely corresponds to 
our generational ones. Of greater importance in this text is that the level of 
precision often limits the type of statistic we can choose to measure our 
properties and test for their interactions.

There are a myriad of statistics from which to choose. We make our choices 
based on several fundamental criteria. Each can be considered a constraining 
device, narrowing down our options of choice. The first constraining device 
is the level of measurement, or mathematical precision with which data are 
collected. What are the mathematical assumptions we can make? What 
mathematical rules can apply, and what manipulations can we perform? 
Statistics are mathematical summary tools. We need to be careful that our 
manipulations of the data do not go beyond what the data have to offer 
mathematically.

All collection methods allow our cases or units of analysis (people in 
surveys, countries in comparative analyses) to be placed into different cate-
gories of a particular variable. The general rules for the creation of categories 
are that the categories are clearly mutually exclusive (i.e., distinctly different 
from each other—we should have no trouble deciding in which category to 
place any case), exhaustive (all possibilities are included—no cases are left 
out), and fairly parsimonious (although we lose information in the process, 
we generally try to limit the number of categories to those essential for 
maintaining conceptual diversity, or to guarantee sufficient case sizes for useful 
analysis, particularly when we are trying to generalize from a small sample). 
These rules apply to all levels of mathematical precision.
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Data can be collected and measured with differing levels of mathematical 
precision. There are three basic levels: nominal (sometimes called qualitative), 
ordinal (ordered qualitative), and interval (continuous or quantitative).

Nominal is the least precise; very few mathematical assumptions can be 
made about the data. Interval is the most precise. These levels are, in the 
language of computer operating systems, backwards compatible, both in mea-
surement and application. If data can be mathematically assumed to be interval, 
they also automatically carry ordinal and nominal properties. Ordinal data only 
carry ordinal and nominal assumptions. Additionally, with intervally measured 
data, interval, ordinal, and nominal statistical summary tools are possible. 
Nominal data can only be summarized nominally.5 Consider that all data are 
nominal. With some extra mathematical assumptions, they can also be con-
sidered ordinal; with some more, interval. A description of each follows.

 LEVELS OF MEASUREMENT—MATHEMATICAL 
ASSUMPTIONS

Nominal Data

All data can be categorized according to the rules of mutual exclusiveness 
and exhaustiveness. Nominal comes from the Latin root nomen, or “name.” 
If data are purely nominal data, then all we can say is that the categories 
are different from each other (different names). The codes or numbers we 
assign to each category are purely arbitrary and are only necessary to ease 
data entry (it is easier to enter a “1” than a “Romney”). They just set a place 
for cases or units of analysis with similar classifications to be listed together. 
As an example, take a survey item that asked individuals to specify how they 
voted in the 2000 presidential election (when third-party candidates played 
a small but significant role in the outcome). For simplicity, let’s assume that 
the respondents mentioned only the following four candidates (many more 
candidates were on the ballot in each state):

1. Al Gore, Jr.
2. George W. Bush
3. Ralph Nader
4. Pat Buchanan

For this variable, four categorical placements are possible. The number we 
assign to each category is purely arbitrary. The only mathematical requirement 
here is one of equivalence (=). For this variable, everyone with a code of “1” 
is considered to be similar (they all voted, or claim to have voted, for Gore). 
They are different from everyone coded “2” or “3” or “4” (ignore the problem 
with butterfly ballots or hanging chads). The operative term here is “difference.” 

nominal data Data that are 
assumed to be measured 
only by differences in cate-
gorization. All data are, by 
their very nature, nominal.
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We could just as easily assign the numbers “1, 4, 3, 2” to the four listed 
possibilities or any other numerical (or alphabetic) scheme that provided four 
different entries. The numbers themselves are meaningless. They just create 
statistical boxes into which we can place voters who voted differently.

As another example, in many standard European surveys (Eurobarometers), 
respondents are asked which of the following is most important in determining 
a country’s or group of countries power.

1. Its economic power
2. Its political influence
3. Its military strength
4. Its cultural influence
5. Other/don’t know

Again, the numerical entries are arbitrary. Any five different numbers 
would maintain the mathematical property of equivalence.

Ordinal Data

Certain data allow us not only to categorize differently, but also to assign 
rank orderings to the categories. Data measured at the ordinal data level 
allow us to discuss not only differences between categories, but also the 
direction of that difference. Let us explain by way of example. Take the fol-
lowing variable coding from the American National Election Studies of the 
variable IDEOLOGY:

1. Strongly Liberal
2. Liberal
3. Moderately Liberal
4. Moderate
5. Moderately Conservative
6. Conservative
7. Strongly Conservative

As with any variable, the data are measured nominally. An individual 
coded as a “Conservative” (6) is different in ideology from one coded as 
“Moderately Liberal” (3). Another way of looking at this variable is to treat 
it as “degree of conservativeness.” Not only is “Conservative” different from 
a “Moderately Liberal,” but the former is “more conservative” than the latter. 
Anytime it makes sense to talk about “more” or “less,” “greater” or “lesser,” 
then we have ordinally measured data. The numbers we assign are still rather 
arbitrary. There is nothing intrinsically meaningful about coding “Conserva-
tive” as a “6.” The number “6” only has meaning when we trace its coding 
within a particular study. The only requirement is that the numerical entries 

ordinal data Data for which 
we can discern differences 
among categories and for 
which a set rank ordering of 
categories makes concep-
tual sense.
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we arbitrarily assign to the seven ideological categories be different and main-
tain the proper conceptual rank ordering. Coding “Strongly Conservative” as 
a “75” would maintain the requirement of ranking (“maintaining the ordering 
through a monotonic transformation” is the official language that we will all 
now forget). Mathematically, ordinal data maintain the mathematical rule of 
equivalence (=), but also those associated with rankings, such as transitivity. 
If a strong liberal (1) is less conservative than a moderate liberal (3), and a 
moderate liberal is less conservative than a moderate conservative (5), then, 
by definition, a strong liberal is less conservative than a moderate conservative. 
The numbers assigned to each should confirm this (1 < 5).6

Go back to our presidential vote example. Can we rank order these cat-
egories in a consistently meaningful way? Although it may be possible to say 
that someone who voted for Pat Buchanan (4) in 2000 was more supportive 
of him than one who voted for George W. Bush (2), does it make sense to 
say that a Nader voter (3) was more supportive of Buchanan than one who 
voted for Bush (or Gore)? Can we reclassify the variable as “degree of support 
for Buchanan,” or by reversing the scale, “degree of support for Gore”?  
A European who believes that “military strength” (3) is the major characteristic 
that defines a country’s power is more likely to believe in that defining char-
acteristic than one who believes it is a country’s political influence (2), but 
also more likely than someone who believes it lies in a country’s cultural 
influence (4). These categories are different, but not different in a consistent 
direction. Other data considered ordinal would be any survey item measured 
on a standard Likert scale (Strongly Disagree to Strongly Agree) or any 
common assessment of presidential performance (poor, fair, good, 
excellent).

Interval Data

Interval data (also called continuous or quantitative) maintain all the math-
ematical properties of nominal data (=) and ordinal data (< , >). In addition, 
standard mathematical rules of addition and subtraction apply. With interval 
data, the numbers assigned are no longer arbitrary; they must have intrinsic 
meaning. Let us say we ask several people their income. The category “$40,000” 
is not arbitrary but precisely measures one’s annual salary. Of course, the 
individual might be purposely understating his true income, thus producing 
a potential internal validity problem. As with all nominal data, someone 
earning “$40,000” earns a different income than someone earning “$20,000.” 
As with ordinal data, someone earning “$40,000” earns more than someone 
earning “$20,000” (different in a specified direction). However, in addition, 
we can subtract the two values and say that someone earning “$40,000” earns 
exactly “$20,000” more than someone earning “$20,000” (different by how 
much). “Income” therefore qualifies as intervally measured data. If these two 

interval data Data for which 
we can discern differences 
among ranked categories 
and that allow us to answer 
the question, “different by 
how much?”
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income earners marry, we can add their salaries and list their family income 
as “$60,000.” If we can consider “Income” as having a meaningful zero point 
($0 = no income), then these data can also be considered ratio since rules of 
multiplication and division apply. One earning “$40,000” earns twice as much 
as one earning “$20,000” (different by a certain factor).

Return to our ideology scale. Does it make sense to say that a “Conser-
vative” (6) is 2 units more, or 1.5 times more conservative than a “Moderate” 
(4)? Can we marry the two and create a family that is unbelievably conser-
vative (“10”)? Can we subtract the two and produce a “Liberal” (2)? It would 
be even more conceptually ludicrous to add and subtract religions, presidential 
vote categories, and views about what defines a country’s prominence. Other 
true intervally measured variables would be age, years of schooling, height, 
weight, percentage of the vote, population counts, number or percentage of 
a given ethnic group, and temperature. All can also be considered ratio, except 
for temperature. A “40”-year-old is different in age than a “20”-year-old, is 
older, is 20 years older, and is twice as old. Seventy degrees is different from 
35°, is hotter, is 35° hotter, but is not twice as hot. Zero degrees Fahrenheit 
is, after all, not the absence of temperature, a fact to which anyone living in 
states like Minnesota or Maine can attest.

Data collected at a lower level of measurement can often be aggregated 
to produce a set of data with more precise mathematical properties—a source 
of confusion for many students. Let’s return to our 2000 presidential election 
example. If individuals are our unit of analysis, then the data are clearly 
nominal. What, however, if we aggregated individual voters into states or 
congressional districts, adding all those who voted the same way together? 
The unit of analysis would now be states, and the sum total or percentage 
of individuals who voted for, say, George W. Bush would be interval. Can-
didate Nader, for example, won slightly more than 10% of the total presidential 
vote in Alaska. In Ohio, he won approximately 2.5%. His percentage support 
was different in both states (nominal), higher in Alaska (ordinal), and higher 
by roughly 7.5 percentage points (interval).

 LEVELS OF MEASUREMENT—CONCEPTUAL 
ASSUMPTIONS

Even if data comply with all the mathematical properties needed to qualify 
as interval/ratio (the greatest level of precision), we still need to make sure 
that those data are measuring a property that we conceive of as precisely. Let 
us take age. Mathematically, as we have shown, the data are interval/ratio. 
However, what if we are using age as a way of measuring a less precise con-
cept, “maturity”? We might be willing to claim that someone who is 60 is 
generally more mature than someone who is 30 (an ordinal claim), but are 
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we comfortable with the claim that the first person is 30 units more mature, 
or twice as mature? “Maturity,” for some, is at best an ordinal concept.7 Think 
carefully about whether or not you wish to summarize it with interval sta-
tistics. The same can be said if we are using income as an indirect measure 
of “standard of living.” Take the following four individuals (A, B, C, D) listed 
with their incomes:

A earns $10,000
B earns $80,000
C earns $50,000,000
D earns $50,070,000

Mathematically, the difference in earnings between B and A is the same 
as the difference between D and C ($70,000). Making the interval assumption 
that the difference in living standards between B and A is the same as the 
difference between D and C carries the conceptualization a bit too far. B is 
comfortably middle class; A is a struggling grad student. D and C are both 
rich. Of course, to match the data more closely to our concept, we can 
transform them using logarithms or other mathematical tools or perhaps 
think of them in purely ratio terms (B earns eight times more than A, but 
D earns only .14% more than C). For the most part, however, we are prob-
ably not willing to think of “standard of living” in such precise terms. We 
should therefore probably not use a statistic that mathematically assumes too 
much precision in the data.

Mathematical and conceptual assumptions constrain the class of statistic 
we can use. A third consideration may also constrain the class, but more 
precisely, it will narrow down our choices within classes. This final constraint 
in choosing the appropriate statistic has to do with the question that we ask. 
The more precise the question, the easier the choice. How to choose a certain 
statistic from interval (or ordinal or nominal), descriptive (or inferential),8 
univariate (or bivariate or multivariate)9 statistics is the subject of the rest 
of this and several more advanced texts. Let us for now just offer one con-
ditional statement. Even if data are measured intervally, and conceived of 
intervally, we may still wish to use an ordinal statistic to mathematically 
answer our question. For example, if we need to find out if individuals who 
stay in school longer generally have higher salaries, we are asking an ordinal, 
bivariate question. The fact that “years of schooling” and “income” are interval 
is inconsequential. If, on the other hand, we need to estimate exactly how 
much additional income is to be expected for each additional year of school-
ing, then we are asking an interval question that requires a mathematically 
interval, bivariate statistic. Don’t choose statistics before you know which 
question you are asking. The more precise the question, the easier choosing 
the appropriate statistic will be.

descriptive statistics A class 
of statistics that allow us to 
measure and analyze what 
we actually observe.

multivariate statistics A 
class of statistics that allow 
us to measure and analyze 
the relationship among 
three or more variables.

bivariate statistics A class 
of statistics that allow us to 
measure and analyze the 
relationship between two 
variables.

univariate statistics A class 
of statistics that allow us to 
measure and analyze only 
one variable at a time.

inferential statistics A 
class of statistics that allow 
us to make inferences or 
estimates about populations 
based on our samples.
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 FREQUENCY DISTRIBUTIONS AS MEASUREMENT AND 
OBSERVATION

Throughout U.S. history, and the history of other democracies, questions 
have been raised as to the authenticity of the vote. How internally valid are 
the numbers produced by the respective election officials of each state or 
country? This issue came to prominence in 2000, when the U.S. presidential 
election hinged on the counting of irregularly marked or processed ballots 
in Florida. The answer to the question, “Who won?” (translated as, “Who 
received the most votes?”) was dependent on the standards that were used 
for counting and, thus, the standardized baseline of comparison among the 
candidates. Was it the number of ballots clearly cast? Or was it the number 
of ballots for which a preference could be ascertained (vote intention)? 
Although highlighted in 2000, this undercounting of votes has reached epi-
demic proportions in the United States, with the number of discarded ballots 
estimated from 1 to 6 million per national election year.

Lost in the midst of the 2000 controversy over hanging chads and butterfly 
ballots was an important point. More individuals who were eligible to vote 
in Florida stayed home on Election Day than voted for any one of the pres-
idential candidates. In fact, for certain elections in many states, the number 
of “stay-at-homes” often exceeds the vote count for all of the candidates 
combined. How then do we measure if, in a given election, a candidate has 
a mandate to rule? Conceptual assessments of the mandates given by the 
public to their elected officials, and ultimately appraisals of the success of 
democratic institutions, are dependent on how we count, whom we count, 
and on which total we base our count.

Previously in this chapter, we stated that a statistic is nothing more than 
a summary measure. In fact, most of you are probably already familiar with 
one statistic—a type of summary called a frequency distribution. Every day, 
in every newspaper, certain magazines, and many websites, for example, you 
come across summaries of responses of survey questions. Whom do you feel 
won the debate? Which motion picture should win the academy award? Do 
you feel that the country is moving in the right direction? Should your 
country join the European Union? Should pornography be restricted on the 
Internet? These summaries can all be considered statistics, as they provide in 
a nutshell or quick listing the feelings and attitudes of hundreds, thousands, 
or, in certain cases, millions of respondents.

The summaries of election results that we awaited in November 2000 were 
also stated as frequency distributions. We did not, after all, produce a listing 
of each voter’s preference, one by one, until more than 100 million preferences 
were listed. Instead, we summarized the results—how many voted for George 
W. Bush? By what margin did he win a particular state? This was not, of 
course, intended to diminish the significance of each particular voting act. 

frequency distribution A 
presentation of a distribu-
tion’s cases summarized by 
their respective categories.
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Indeed, in states like Florida, the presidential election was determined by an 
interpretation of each and every voting act in several counties. However, once 
again, statistics are summaries, intended to give us a quick impression of the 
behavior or characteristics of a large number of cases.

Frequency distributions can be listed in several ways, depending on the 
information that we need to summarize. Let us start off with a simple exam-
ple. In November 2010, the state of California, along with 36 other states, 
held an election for governor. Roughly 10 million votes were cast in that 
race (10,095,485 to be exact).10 Listing each voter’s preference would fill 
countless volumes. Instead, the election results could be summarized using 
the following frequency statistics. Let us briefly describe each statistic and 
then relate it to an interpretation of the “mandate” granted by the California 
gubernatorial results.

Absolute Frequency

The absolute frequency (also called the tally or count) is simply the actual 
number of cases observed within each category (in this example, the number 
of voters who voted for each candidate). Absolute frequencies are useful in 
evaluating one population or group. For example, in Table 2.1 voting results 
for the 2010 California gubernatorial election are listed. The Democrat, Jerry 
Brown, received 5,428,458 (absolute) votes. The absolute frequencies tell us 
who won most elections (whichever candidate had the highest absolute fre-
quency).11 The Democrats regained the governorship (held previously by 
Republican Arnold Schwarzenegger) in California because their candidate 
received more votes than his closest opponent, Republican Meg Whitman, 
who received 4,127,371 votes.

Absolute frequencies, however, don’t allow us to answer factual statements 
like “which state is the most Republican?” even just in terms of gubernatorial 

absolute frequency/tally/
count The actual observed 
number of cases within each 
category of a frequency 
distribution.

 TABLE 2.1 2010 California Gubernatorial Vote

Party of Candidate Cat. Code* Absolute Frequency

Democrat 1 5,428,458
Republican 2 4,127,371
Green 3 129,231
Libertarian 4 150,898
Other/Write-In** 5 259,527
Total Base (n=) 10,095,485

*Remember that these are arbitrary as is the order of the parties listed.
**Often, “other” includes all but the top two or three vote getters.
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 TABLE 2.2 2010 Utah Gubernatorial Vote

Party of Candidate Cat. Code* Absolute Frequency

Democrat 1 188,911
Republican 2 381,531
Green* 3       0
Libertarian 4  11,723
Other/Write-In 5  11,842
Total Base (n=) 594,007

*The “Desert Green” Party did not have a candidate on the ballot that year. The entry is left so as 
to match the table with the California results.

voting. More citizens voted Republican for governor in California than in, 
for example, Utah (4,127,371 vs. 381,531); however, more also voted 
Democratic (5,428,458 vs. 188,911), Libertarian (150,898 vs. 11,723), and 
just about any other party you can think of (Table 2.2). California just has 
many more people and, therefore, will be likely to have more people who 
vote a certain way, who think a certain way, who dress a certain way, and 
so forth.

Relative Frequencies: Percentages and Proportions

Absolute frequencies, therefore, are not very useful in making comparisons 
between populations with different case sizes. In order to make comparisons, 
we need to standardize the bases. Percentage (often called relative frequency) 
accomplishes this end.12 With percentages, the total of the categorical entries 
is always equal to 100%, regardless of the number of cases those percentages 
represent. We need to be careful, however, in deciding which base to use or 
in understanding which base was used by others in calculating that 
percentage.

In order to compare relative partisan strength, we need to standardize the 
base. Percentages or relative frequencies allow us to do so. Percentages for 
each category are simply the relevant absolute frequency divided by the total 
number of cases or, in this example, voters, multiplied by 100. Utah guber-
natorial candidate Herbert received only a fraction of the absolute vote of his 
Republican counterpart in California, Meg Whitman (see Tables 2.3 and 2.4).

However, he received 53.8% of the ballots cast in his state (381,531/ 
594,007 × 100). Whitman received only 40.9% (2,990,822/8,541,476 × 
100). In terms of gubernatorial voting, Utah is therefore more Republican. 
The listed percentages also tell us that in 2010 Utah was less Democratic 
(31.8% vs. 53.8%), more Libertarian, and so forth.

relative frequency The 
proportion or percentage of 
observed cases within each 
category of a frequency 
distribution.
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 TABLE 2.3 2010 California Gubernatorial Vote

Party of Candidate Cat. Code* Absolute Frequency Proportion/Relative 
Frequency

Democrat 1 5,428,458 53.8%
Republican 2 4,127,371 40.9%
Green 3 129,231 1.3%
Libertarian 4 150,898 1.5%
Other/Write-In** 5 259,527 2.6%
Total Base (n=) 10,095,485 100.0%*

*Due to rounding error (the percentages are carried out to only one decimal place), the totals will 
sometimes equal 99.9% or 100.1%.
**Category 3 (Green) is kept in Figure 2.4 to maintain consistency. This can be considered 
another form of standardization.

 TABLE 2.4 2010 Utah Gubernatorial Vote

Party of Candidate Cat. Code* Absolute Frequency Proportion/Relative 
Frequency

Democrat 1 188,911 31.8%
Republican 2 381,531 64.2%
Green 3 0 0.0%
Libertarian 4 11,723 2.0%
Other/Write-In 5 11,842 2.0%
Total Base (n=) 594,007  100.0%

 THE IMPORTANCE OF STANDARDIZATION

This notion of standardization, quite simply understood in the context of 
frequency distributions, is an extremely important concept in statistical 
theory, perhaps the most important, and we’ll devote much time to it in 
subsequent chapters. Percentages standardize by eliminating the differences 
in the number of cases. The total of all percentages in a table will always 
equal 100% (give or take some rounding error), regardless of the number 
of cases those percentages represent. Therefore, “100%” becomes the stan-
dardized base. As in our example, percentages allow us to compare election 
results across states with different populations. They also allow us to compare 
election results across races in a given year (more people usually vote for 
president than senator or House member) and elections across years (Dem-
ocrat Franklin Roosevelt won the 1936 election with more than 60% of the 
votes cast even though he received only about half the votes of Barack Obama 

standardization The applica-
tion of a common numerical 
and/or conceptual base 
to different data so that 
different measurements can 
be compared.
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in 2012). In 1976, a younger Jerry Brown won a second term as governor 
with a higher percentage (56.1) but many fewer absolute votes (3,878,812). 
Other methods will be needed to standardize on other differences. For 
example, one statistic (regression) will allow us to compare differences on 
one variable (say education) with differences on another (say income), even 
though education and income are measured in different units (years and 
dollars).

One main consideration in the standardization that allows us to measure 
outcomes in comparative ways is to decide on the appropriate base for 
comparison. In computing percentages or relative frequencies, we first need 
to ask the question, “relative to what?” In the previous example, the base 
on which we calculated our percentages was equal to the number of indi-
viduals who voted for governor in their respective states. On that basis, 
Jerry Brown received a majority of the total votes cast for governor. However, 
some individuals voted on Election Day, but not for governor (perhaps only 
voting for senator or one of California’s many ballot propositions). The total 
number of individuals who cast a ballot on Election Day was 10,302,324. 
The total number of registered voters, many of whom did not vote on 
Election Day, was 17,205,883. The total number of eligible voters, as esti-
mated by census figures, was 23,551,699.13 Dividing the absolute frequency 
for Brown by these different bases (and then multiplying by 100), we find 
that although the governor-elect received a vote from 53.8% of the total 
number of individuals who voted for governor, he received a vote from 
slightly less, 52.7%, of all those who voted on Election Day, from only 
31.6% of all registered voters, and from a mere 23.0% of the estimated 
eligible electorate. Unless we are certain that those who did not vote would 
have split their support for Brown in roughly the same proportions as those 
who did (and a general survey of voters and nonvoters can help us to 
ascertain this), the idea of a mandate for the Democratic governor-elect 
only holds up if we use as our base the number of people who showed up 
at the polls. Among the eligible electorate, more than three-fourths voted 
against or withheld their vote from Brown. In fact, in many recent U.S. 
elections, the percentage of non-voters usually exceeds the percentage of 
voters and certainly almost always exceeds the percentage received by the 
winning candidate. Always be careful to understand the base used in the 
proportions. Whether Brown conceptually received a mandate depends on 
which figures you use. He did not receive active majority support from 
everyone who could have voted, nor from even everyone registered to vote. 
Lest the Republicans amongst you rejoice too quickly, remember that regard-
less of the base used, GOP candidate Whitman fared even worse. Partisanship 
aside, however, this exercise does demonstrate that active support for can-
didates in the United States is generally limited at best. The candidate with 
the most votes wins regardless of the turnout, but public acceptance of the 



H O W  D O  W E  M E A S U R E  A N D  O B S E R V E ?

37

victory may be questionable, especially in low-turnout elections like primaries 
or in countries where eligible voters stay home to protest what they feel 
will be a rigged election.14 

Cumulative Frequency

Before we move on to other statistics, let’s discuss one more type of frequency 
calculation. A cumulative frequency is the percentage of relevant cases that 
has a certain level or degree of a variable or less. Consider the following 
distribution of ideological preference (degree of conservativeness) taken from 
the 2000 American National Election Studies (ANES) survey of the U.S. 
eligible electorate.15

Table 2.5 lists, as before, both the absolute frequencies and percentages 
for each category of ideological placement. Because the categories are ordered 
from the least conservative (Strongly Liberal) to the most conservative 
(Strongly Conservative), it also allows us to determine what percentage of 
individuals place themselves at a certain level of conservativeness or less. For 
example, 36.1% of all respondents categorized themselves as Moderately 
Liberal or less conservative (or more liberal); 76.8% of those respondents 
who expressed an ideological preference were Moderately Conservative or less 
conservative.

Note that cumulative frequencies only make sense with data that are 
measured at the ordinal or interval level. The phrase “or less” doesn’t make 
sense with data that are only nominally measured. Refer back to our Cali-
fornia percentage table. Would it make sense to state that 94.7% of the voters 
voted “Republican or less othered?” The ordering of the voting categories is 

cumulative frequency A 
display within a frequency 
table that indicates the 
proportion or percentages 
that are contained within a 
certain category and cate-
gories ranked below it. Data 
must be measured at least 
at the ordinal level.

 TABLE 2.5 Ideology, United States, 2000 ANES

Ideology (degree of 
conservativeness)

Cat. Code Absolute 
Frequency

Proportion/
Relative 
Frequency

Cumulative 
Frequency

Strongly Liberal 1 70 4.4% 4.4%
Liberal 2 156 9.8% 14.2%
Moderately Liberal 3 350 21.9% 36.1%
Moderate 4 110 6.9% 43.0%
Moderately 
Conservative 5 539 33.8% 76.8%
Conservative 6 231 14.5% 91.2%
Strongly Conservative 7 140 8.8% 100.0%
Total Base 1,596 100.0%
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arbitrary. The ordering of ideology is not, as it follows a certain conceptual 
ranking.16

 FROM NOMINAL TO INTERVAL DATA

As mentioned before, data collected at a lower level of measurement can 
often be aggregated to produce a set of data with more precise mathematical 
properties. In our California gubernatorial example, the data are purely 
nominal. The variable is the gubernatorial vote or “for which candidate did 
the individual cast his/her ballot.” The case or unit of analysis is the indi-
vidual voter; the number of cases (n) equals 10,095,485 (only gubernatorial 
voters will be used for this example). The frequency distribution summarizes 
the categorical choices of those millions of voters. A similar frequency 
distribution can be created for the other 36 states in which gubernatorial 
elections were held in 2010. We have already produced one for Utah. If we 
take, as one possibility, the percentage of the vote received by the Demo-
cratic candidate in each state, we can create a new variable, “% Democratic 
gubernatorial vote,” with each state now serving as the case or unit of 
analysis, and with the number of cases now equaling 37. This variable is 
mathematically interval. The Democratic candidate received a different 
percentage of the vote in California and Utah (nominal). He received a 
higher percentage of the vote (ordinal). The percentage he received was 
roughly 22% higher (interval). Considering the data as ratio, we can also 
state that his percentage was roughly 1.7 times higher. In many research 
studies, both individual and aggregate data are analyzed to substantiate one’s 
claims. Each have their potential limitations, so each are used as a check 
against the other.

Scaling techniques can also be used to create interval data from nominal 
data even at the individual level. One, for example, could add the number of 
all of the Democratic candidates chosen by an individual in any given election 
and, then, divide by all of the elections in which one voted. We would then 
produce the number or percentage of times a candidate voted Democratic in 
any given election year. In many comparative country studies, a scale is pro-
duced using individual items measuring different democratic procedures in 
use in each country—whether free elections take place, the transparency of 
the electoral process, freedom of speech and the press, and so forth. Adding 
the number of items on which a country scores (nominally) as democratic 
produces an interval “level of democracy” scale. Of course, although the 
numbers are easily added, scholars disagree as to which items conceptually 
should be included and whether or not they should be weighed equally.
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 GRAPHS AS VISUALIZATIONS OF OUR OBSERVATIONS

The adage that “one picture is worth a thousand words” applies to statistical 
summarization as well as crime scene photos. Different graphing methods 
can be used to visualize the distributions listed in a table (or the relationship 
between variables discussed in subsequent chapters). We will only present a 
few here. Use graphs when they help your audience understand what the 
data are relating. Don’t use them if they complicate the presentation.17

Bar Chart

For nominal, categorical data, two types of graphical displays are usually 
appropriate, bar charts or histograms and pie charts. In a bar chart, the 
absolute frequency or percentage of each relevant category is displayed by 
the height or length of the bar, with each category represented by a separate 
bar. Generally, the categories are listed, equally spaced, along a horizontal 
axis, with the vertical axis representing the number or percentage of cases 
within each category.18 The bars can be two- or three-dimensional, with 
the latter often providing a more dramatic display. The absolute frequency 
or percentage can be included in the chart in order to provide the reader 
with precise information. Return to our California example. Figure 2.1 
graphically represents the distribution of support for each party’s candidate 
(or combination of minor-party candidates). The victor is the person with 
the highest bar, Democrat Jerry Brown.

60%

50%

40%

30%

20%

10%

0%

Dem
ocra

t

Rep
ublic

an

Gre
en

Lib
er

ta
ria

n

Oth
er

FIGURE 2.1 Bar Chart of the Vote for California Governor, 2010

bar chart A graphical 
representation of data 
where each category is 
separated into bars. The 
height or length of each bar 
represents the number or 
proportion of cases within 
each category.
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pie chart A graphical rep-
resentation of data where 
each category is separated 
into wedges. The area of 
each wedge represents the 
number or proportion of 
cases within each category.
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53.7%

Libertarian
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Green
1.3%

Republican
40.9%

FIGURE 2.2 Pie Chart of the Vote for California Governor, 2010

Pie Chart

Alternatively, a pie chart can be constructed, with each candidate’s support 
represented by a proportional slice of a pie. In Figure 2.2 the slices for the 
top two candidates are separated from the others. Both types of charts present 
a strong visual image of the Democratic candidate’s victory, the majority 
(>50%) nature of that victory, and the lack of third-party support. A note 
of caution: many analysts consider pie charts to lack usefulness because it is 
often difficult to truly estimate, without percentages attached, the exact 
magnitude of each “slice.” With a small number of slices, however, and 
especially when one or two are predominant, the visual impact may actually 
be more compelling than a bar chart.

Consider how different the charts, particularly the pie chart, would appear 
if the base for percentages and, thus, the size of the individual pie slices 
factored in all eligible voters. Both Figures 2.2 and 2.3 represent the same 
election, but the sense of victory or mandate differs greatly.

In order to compare the election results in both states, a combined bar 
chart, rather than pie chart, would prove extremely useful (see Figure 2.4). 
Remember to use percentages, and not absolute frequencies, since you wish 
to visualize relative differences of support for each party in each state.

Frequency Polygon and Line Charts

What if we have a large number of categories, and those categories represent 
data that can be measured intervally? As part of a 2004 Eurobarometer survey 
(and most surveys), respondents were asked their age. These ages ranged from 
18 to 97. For each of those ages, a bar is drawn (as in our example of the 
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FIGURE 2.4 Bar Chart of the Vote for California and Utah Governors, 2010
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FIGURE 2.3 Pie Chart of the Vote for California Governor, 2010—Non-Voters 
Included

California vote) whose height represents the number, proportion, or percent-
age of respondents who specified that exact age (see Figure 2.5). On the 
horizontal axis, each category is listed in order, with each bar directly adjacent 
to each other. We represent the distribution with a whole series of bars, one 
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for each of the 81 possible age categories. In simple terms, assume that each 
voter is the same height. Voters of similar ages stand atop each other. They 
line up next to voters of proximate ages.

Alternatively, we can hide the bars, and connect their tops by a line (see 
Figure 2.6). Although the graph is represented by a line, it is, in reality, a 
smoothed-over bar chart with a large number of categories.

As we will see later, this frequency polygon allows us to visualize, and later 
measure, the proportion or percentage of individuals between any two given 
ages. That proportion will be measured as the area under the curve between 
those two age points (much like the proportion of a wedge of a pie chart).19

Time Series Charts

The line chart, or frequency polygon, displayed on the previous page represents 
a distribution of each category (18, 19, . . . 98) of one intervally measured 
variable (age) at one point in time. A different type of line chart, commonly 
called a time series chart or graph, represents one or more categories of one 
variable measured at different points in time. As such, it can be very useful in 
showing proportional changes of a variable over time. The horizontal axis 
displays the years; the vertical axis displays the relevant percentage for the 
variable in question. Although no data are collected for points between years 
(which the lines would seem to indicate), the lines do allow the reader to 
visualize a flow of change over time.

Consider the following listing for the estimated percentage voter turnout 
in the United States in every presidential election since 1952.20 Turnout 
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FIGURE 2.5 Bar Chart of Age, Eurobarometer 62

frequency polygon A 
graphical representation of 
data with bars representing 
each of a large number of 
categories. A line is then 
drawn connecting the tops 
of each bar.

time series chart A graphical 
representation where data 
for one or more categories 
of a variable or variables are 
plotted for each year and 
where the yearly data points 
are connected. The area of 
each wedge represents the 
number or proportion of 
cases within each category.



H O W  D O  W E  M E A S U R E  A N D  O B S E R V E ?

43

18

Fr
eq

u
en

cy

0

100.0

200.0

300.0

400.0

38 58
Age

78 98

FIGURE 2.6 Frequency Polygon of Age, Eurobarometer 62

figures are calculated with both the voting age and voting eligible figures (see 
endnote 13). Each point in Figure 2.7 represents one category (percentage 
voting) for each year (refer back to our discussion in the section “From 
Nominal to Interval Data”). For example, in 1976, 55.2% of the eligible 
electorate voted while 44.8% did not. Note that more people voted in 2000 
than in 1960. The population of the country increased, and the franchise 
had been extended to residents of the District of Columbia and 18- to 20- 
year-olds by constitutional amendments ratified in 1961 and 1971, respec-
tively. The percentage voting, however, generally decreased over this time 
(partially as a result of the extension of the franchise to groups less likely to 
vote than others). The data for each year could be listed, but that form of 
presentation would not be as dramatic as the graph. Time series charts, like 
frequency polygons, are really a set of bars with lines connecting the top of 
each bar, with the bars themselves disguised to make for easier presentation. 
In our example of voting turnout, only one category is graphed for each year. 
The line connecting the top of the percentage of nonvoters for each year is 
left out, as it would be directly and inversely proportional to the line repre-
senting the percentage of voters. If more than two categories are possible, as 
would be the case for party identification, ideology, or presidential vote 
(third-party candidates included), then one line can be graphed for each 
category of the variable. Also note that, for clarity of presentation, the bottom 
of the graph is truncated, with the y-axis starting at a point well above the 
theoretical minimum turnout figure of 0%.
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Sidebar 2.2: Felony Disenfranchisement and Standardization

Traditionally, this voting age population (VAP) underestimate was caused by the counting of legal 
immigrants to the United States who, by the twentieth century, had lost their ability to vote in 
any election. Their inclusion in the denominator of our voting turnout calculations deflated the 
quotient. In the last quarter century or so, however, an increasingly sizeable proportion of the 
remaining calculation base is disenfranchised because of a felony conviction. Some states deny 
the franchise to those currently incarcerated (although in some states these same individuals can 
run for office). Others delay the franchise until parole and/or probation have been completed. 
However, in several states, particularly in the South, a felony conviction bars an individual from 
voting for life—sometimes even when the individual has satisfied the franchise terms in a state 
from which he moved.

Current estimates range as high as nearly 6 million individuals who could not vote in 2012 due 
to a felony restriction. That burden falls disproportionately on the black, male population. In Florida, 
the percentage of that population disenfranchised because of a conviction has now reached 23%.

Although the voting eligible population (VEP) seems a more valid base on which to calculate 
turnout, many comparative scholars feel that using the VAP provides a more accurate cross-national 
view as most countries do not restrict the vote in as many ways as does the United States.

Source: http://www.sentencingproject.org/doc/publications/fd_Felony%20Disenfranchisement%20
Primer.pdf.
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A word of caution in reviewing graphical representations. Even small 
changes can seem pronounced if the minimum and maximum chart values 
are distant from each other, or if the graph is rescaled. One picture might 
be worth a thousand words, but one can easily change the meaning of those 
words. The previous chart has been resized to give the appearance of maxi-
mum (Figure 2.8) and minimum (Figure 2.9) change and variation over time.
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One More Example

It is often possible to combine some level of time series with aggregations of 
individual data. In the following example, using data from the Latinobarómetro 
surveys21 (2008–2009), data are summarized for each country on the individual 
survey question representing the percentage of respondents who agreed that 
“democracy is preferable to any other type of government.” The within-country 
percentages for each country aggregated for 2008 are subtracted from the 
aggregations produced for 2009. We now have a “within-year” measurement 
of change for each country (for simplicity, only five countries are listed). The 
differences can be positive (faith in democracy increased in that country), 
negative (decreased), or 0 (stayed the same). As the percentage differences 
can be positive or negative, a standard bar chart would have bars that rise 
above or fall below the axis (no change). In Figure 2.10 countries are listed 
alphabetically, although some prefer to list countries in the order of the 
differences.
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FIGURE 2.10 Change in Views about Democracy, 2008–2009

 MEASURING PROPERTIES AND THE IMPORTANCE  
OF CATEGORIZATION

Before moving on to the next chapter, one important methodological point 
needs to be made. Frequency distributions and the charts that represent them 
can lead to differing conclusions based on how we originally categorize the 
data. Presidential job performance ratings, for example, often differ between 
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FIGURE 2.11 Pie Charts of Ideology by Exclusion/Inclusion of Moderate Ideologues

survey organizations based on the number and type of choices offered respon-
dents. Adding middle-of-the-road choices such as “fair” leads to a much less 
positive (or negative) appraisal than if only “good” or “not so good” are 
offered. Similarly, researchers and journalists will often combine categories 
to further simplify their analyses, especially if they are interested in presenting 
easily interpretable graphics (a pie sliced three ways is easier to picture, and 
uses fewer newspaper colors or shades, than one sliced seven ways). How 
they combine or collapse categories, however, can have significant effects on 
how data are interpreted.

Notice what happens to the table and our summary understanding of 
ideological preferences when we collapse categories (Figure 2.11). If we con-
sider categories 1–3 to be liberal (L), 4 to be moderate (M), and 5–7 to be 
conservative (C, in pie chart A), we come up with a frequency distribution 
that implies that the electorate is rather polarized with 36.1% identifying 
themselves as liberal, 57.0% as conservative, and only 6.9% as moderate.  
If, instead, we consider categories 3–5 to be some level of moderation  
(chart B), then our liberal/conservative/moderate breakdown becomes 
14.2%/62.6%/23.2%, and we would consider the electorate to be very mod-
erate. Remember, statistics don’t lie. However, we have to be careful how  
we choose to categorize the data they summarize. The two pie charts in  
Figure 2.11 visually demonstrate very different outcomes based on similar 
responses. Consider that a time series of ideology would also appear differently 
depending on how we categorized that variable.
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Let’s turn to another example, one which will be brought up in a subse-
quent chapter. The ethnic or racial diversity of a culture, for example, can 
be viewed differently depending on how different ethnic and racial categories 
are combined. Whether or not an individual who is both racially black and 
ethnically Hispanic is categorized as “black” or “Hispanic” can change our 
perception of a group’s or geographic area’s ethnic composition. It can also 
dramatically affect how the courts evaluate redistricting plans that are sensitive 
to racial and ethnic considerations.

 KEY TERMS

absolute frequency/tally/count (33)

bar chart (39)

bivariate statistics (31)

Bradley effect (24)

Chicago effect (25)

cumulative frequency (37)

descriptive statistics (31)

frequency distribution (32)

frequency polygon (42)

inferential statistics (31)

interval data (29)

multivariate statistics (31)

nominal data (27)

ordinal data (28)

pie chart (40)

relative frequency (34)

standardization (35)

time series chart (42)

univariate statistics (31)

 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the SPSS 
and Stata manuals that accompany this text. Sections 3.1 (RECODE), 
3.2 (COMPUTE), 3.3 (IF), and 3.4 (SELECT IF) demonstrate how to 
re-categorize, select, and create scales of data. A video on re-categorizing data 
with SPSS is also available on this text’s website. Section 4.1 demonstrates 
how to create your own frequency distributions and graphs. Another video 
presents examples on how to export your SPSS output into MS Excel in 
order to produce more vivid graphs.

1. Which one of the following is true?
a. A measure can be internally valid but unreliable.
b. A measure can be reliable but internally invalid.
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2. The term “Bradley effect” generally refers to:
a. Survey responses that are mere guesses
b. Survey responses that may be internally invalid because individuals 

choose to give politically correct responses
c. The problem with re-counting ballots
d. None of the above

3. A government agency overreports its success rate in order to maintain 
or increase its funding. According to the author, this is an example of a 
________________.

4. Which of the following is most true?
a. Nominal data always carry ordinal properties.
b. Ordinal data carry interval properties.
c. Ordinal data carry nominal properties.

5. Which of the following can be considered (mathematically) interval data?
a. Country of origin for a group of immigrants (Nigeria, Colombia, 

Italy, Japan, etc.)
b. Total percentage of Nigerian immigrants
c. A four-point scale of support for a tax increase (Not supportive, 

Somewhat supportive, Supportive, Very supportive) asked of survey 
respondents

d. Total PAC contributions received by each congressional candidate
6. Several questions were asked from sampled respondents in the 2012 

ANES survey (a subset of these data can be found in the SPSS and 
Stata manuals that accompany this text). Which of the following are 
purely nominal (no other assumptions made), purely ordinal, and purely 
interval?
a. Marital status (married, divorced, widowed, single, partnered)
b. Hispanic or Latino heritage (yes, no)
c. Age (in actual number of years)
d. Education (none, grade school only, high school, some college, bach-

elor’s degree, master’s or equivalent, more than master’s)
e. Does religion provide guidance? (some, quite a bit, a great deal)
f. View about death penalty (approve strongly, approve not strongly, dis-

approve not strongly, disapprove strongly, don’t know)
g. Religious denomination (eight categories including mainline Protes-

tant, Roman Catholic, Jewish, Other, Not Religious)
h. Candidate affect: Does the Democratic candidate make you happy? 

(yes, no)
i. A scale that measures the number of times the respondent checked off 

a positive affect for the Democratic candidate.
j. A feeling thermometer rating President Obama on a scale from 0° 

(most negative) to 100° (most positive) with 50° indicating neutrality. 
All values between 0 and 100 are allowed.
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7. In a district file of members of Congress (two are provided in the SPSS 
and Stata manuals that accompany this text), which of the following are 
interval?
a. Member’s seniority in years
b. Percentage received by the Democratic candidate
c. Total amount of PAC contributions given to each candidate
d. Presidential support score: the proportion of times a member sup-

ported the president on a vote for which the president expressed a 
preference

e. The party whose candidate won the district (Democrat, Republican, 
Independent)

f. Percentage of a district’s population whose citizens are 65 or older
8. Conduct an anonymous survey of your classmates. Query them on at least 

ten variables. Make sure that at least two are purely nominal, two purely 
ordinal, and one interval.

9. The following table lists the absolute frequencies of party identification 
from the 2000 ANES survey. Compute and interpret the proportions and 
cumulative frequencies (assume independents to be categorically between 
Democrats and Republicans). Re-compute your figures after collapsing the 
seven categories into three. First, treat “Independent Leaning Democrat” 
and “Independent Leaning Republican” as Independents (categories 0–1, 
2–4, and 5–6 combined). Next, treat each group as partisans (categories 
0–2 and 4–6 combined, with category 3—true independents—standing 
alone). How do the different methods of combining categories affect 
your interpretation of the partisanship of the U.S. electorate? For rea-
sons unknown to the author, “Strong Democrats” have always been listed 

 TABLE 2.6 Party Identification, 2000 ANES

Party ID (degree 
Republican)

Cat. Code Absolute Frequency

Strong Democrat 0 345
Weak Democrat 1 274
Independent Leaning 
Democrat 2 275
Independent 3 221
Independent Leaning 
Republican 4 231
Weak Republican 5 209
Strong Republican 6 221
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(until 2012) as category “0” in the ANES codebooks. Remember, how-
ever, that as the data are only ordinal, and not interval, the numbers are 
arbitrary as long as they maintain a proper rank order.

10. Cumulative frequencies make sense for which of the following types 
of data?
a. Nominal
b. Ordinal
c. Interval

11. Produce a frequency table with all relevant percentages for the following 
set of class grades: 8 A’s, 24 B’s, 12 C’s, 4 D’s, 7 F’s. Interpret all figures. 
For example, what proportion of students received a B or better? Produce 
a bar or pie chart for this distribution.

12. Produce a frequency distribution for each of the variables in your class sur-
vey. If more than seven categories exist, collapse the distribution into no 
more than three categories. Justify your scheme for combining categories.

 NOTES

 1 John Geer admits that, when judging the negativity of political ads, he 
himself coded the ads differently 15% of the time. See John G. Geer, In 
Defense of Negativity: Attack Ads in Presidential Campaigns (University of 
Chicago Press, 2006).

 2 See Michael P. McDonald, “The Return of the Voter: Voter Turnout in the 2008 
Presidential Election,” Forum 6, no. 4 (2008): Article 4, http://www.bepress.
com/forum/vol6/iss4/art4.

 3 See Michael Shear and David Oppel, Jr., “V.A. Chief Resigns in Face of Furor 
on Delayed Care,” New York Times, May 30, 2012, http://www.nytimes.
com/2014/05/31/us/politics/eric-shinseki-resigns-as-veterans-affairs-head.
html?_r=0.

 4 This analogy is found in W. Phillips Shively, The Craft of Political Research, 4th 
ed. (Prentice Hall, 1998).

 5 When only two categories exist—what we call a dichotomy—we can actually 
employ ordinal and even interval statistics. More on this later.

 6 In dealing with ranked data, expect to see the notations “<” and “>” (less than 
and greater than). Since this scale of ideology is ordinal, we can actually reverse 
the ranking and treat the variable as “degree of liberalness.” A lower number 
denotes “more liberal,” a higher number “less liberal.”

 7 This is really a subjective assessment on my part. I would like to thank one 
reviewer for informing me that some developmental psychologists are comfortable 
with an interval assessment of “maturity” based on age.

 8 “Inferential” is a class of statistics that allow us to make estimates about 
populations from which samples are taken. They will be taken up in subsequent 
chapters.

 9 “Univariate” is a measurement of one variable; “bivariate,” a measure of the 
mathematical relationship between two; and “multivariate,” a measure of the 
relationships among three or more.

http://www.bepress.com/forum/vol6/iss4/art4
http://www.bepress.com/forum/vol6/iss4/art4
http://www.nytimes.com/2014/05/31/us/politics/eric-shinseki-resigns-as-veterans-affairs-head.html?_r=0
http://www.nytimes.com/2014/05/31/us/politics/eric-shinseki-resigns-as-veterans-affairs-head.html?_r=0
http://www.nytimes.com/2014/05/31/us/politics/eric-shinseki-resigns-as-veterans-affairs-head.html?_r=0
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10 The year 2010 was a midterm election. During the presidential election years 
of 2004 and 2008, voting turnout in California was much higher.

11 Most U.S. elections require a mere plurality to achieve victory. The candidate 
with the most votes wins, even if all other candidates received more votes. In 
some cases, a certain threshold must be reached for the highest vote winner to 
be declared the winner. Many Southern states, for example, particularly in 
primaries, require the victorious candidate to win a majority, that is 50% + 1, 
or more than all other candidates combined. If no candidate breaks this mark, 
a runoff is held between the two candidates who garnered the most votes. 
Louisiana uses this method to narrow down the general election field to two 
candidates, as does, in a somewhat different manner, California. In both, the 
top two candidates may be, and often are, of the same party. Several countries 
also require a second vote (Two-Tiered System) if no presidential candidate 
receives 50% + 1 on the first ballot.

12 We could also use proportions. Percentages are merely a proportion (out of 1) 
multiplied by 100 (to sum to 100%).

13 All California voting figures come from the California secretary of state’s office. 
In Utah, the lieutenant governor’s office maintains these figures.

14 The “eligible” electorate itself is subject to some interpretation. We often are 
presented with different voting turnout figures because different bases are used 
in calculating turnout proportions. Some use the voting age population (VAP) 
while others use the voting eligible population (VEP = VAP − noncitizens − 
non-voting felons). McDonald and Popkin (2001) argue that a reliance on the 
former might have led to an overestimation of turnout decline between 1970 
and 2000. McDonald and Popkin (2001), “The Myth of the Vanishing Voter,” 
APSR 95 (2001): 963–974.

  In some reference works, Brown’s vote will be listed as 56.8% of the two-party 
vote (only Republican and Democratic votes included). In certain respects, this 
is another, conceptual form of standardization. Some states make it easier for 
third parties to gain access to the ballot, and third-party access was much easier 
in the nineteenth century, prior to the adoption of the Australian (secret) ballot. 
Whether or not we include third-party votes in our base is a subject of much 
theoretical debate.

15 For simplification, I’ve included only those who expressed an ideological 
preference. Many others refused to answer or stated that they could not place 
themselves on this type of left-right continuum.

16 One could argue that a “Moderate” might not be categorically in the middle of 
the liberal-conservative distribution, but might be an individual who doesn’t 
think in terms of a left-right continuum. Since an option is left for respondents 
to opt out of such categorizations, however, it is safe to assume that most 
moderates can be placed in this fashion.

17 Edward Tufte, former political scientist turned graphing expert, warns that, on 
occasion, too complicated a graph or figure might be better expressed in a few 
words. For a thorough and interesting rundown on using graphs to visualize 
large quantities of data, see Edward R. Tufte, The Visual Display of Information, 
2nd ed. (Graphics Press, 2001).

18 This is not sacred. Depending on your circumstances, you may want to reverse 
the axes. Many newspapers and websites report poll results this way.

19 These figures were produced using the SPSS statistical software package: IBM 
Corp., IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp., 2013).
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20 My thanks to Dr. Michael P. McDonald for providing estimates of both the voting 
age (VAP) and voting eligible (VEP) population (see endnote 14). Summaries of 
his data can be found at http://elections.gmu.edu/voter_turnout.htm.

21 These years are chosen as they reflect a year in which a major recession hit 
most countries (the United States included). The analysis sought to measure 
in which countries faith in democracy diminished as a result of bad economic 
times and the resilience of democratic sentiment in spite of it. Source: The 
Latinobarometre Poll: “A Slow Maturing of Democracy, Economist, Dec. 12, 
2009, pp. 55–56.

http://elections.gmu.edu/voter_turnout.htm
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 ■ To understand the meaning of central tendency
 ■ To understand the differences among measures of central tendency
 ■ To understand measures of central tendency as games of chance
 ■ To understand the problems inherent with using the term “average”
 ■ To know when to use a weighted mean

Frequency distributions impart a great deal of information about data. As sum-
mary devices, however, they start to become less useful as we increase the number 
of categories (as would be the case with most interval, continuous data) or when 
we need to summarize the distributions for a large number of different popu-
lations. Just imagine listing the frequency distributions for all candidates in each 
of the 37 states that held gubernatorial contests in 2010. Because of our need 
to present our findings in a readily available fashion, we need to develop other 
measures that do even more to summarize our data (remember, however, that 
the more we summarize, the more information we lose). With frequency dis-
tributions, several numbers (absolute frequencies, relative frequencies, etc.) have 
to be listed and discussed. We now turn to statistics that summarize a distribution 
of data with only one number. These summaries help us to create measures that 
are directly applicable to the tests we derive from our hypotheses.

For univariate (one variable) summaries, statistics can be broken into two 
classes. The first determines one number that defines the central tendency 

central tendency A summary 
measure that describes the 
central or most prevalent 
category of a distribution.
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of the distribution. These numbers are often referred to as averages, although, 
as we will see, this term can apply to several different measures. The second 
derives one number that measures the dispersion or variation of the entire 
distribution, often relative to that measure of central tendency. This second 
class is sometimes used as a measure of how useful the associated measure 
of central tendency is in summarizing the distribution. This notion of good-
ness of fit is, along with standardization, a major, consistent focus of statistical 
theory and explanation. Measures of central tendency and measures of vari-
ation can be both descriptive (what do the data tell us about the cases from 
which they were measured?) and inferential (what do they allow us to infer 
about a larger population from which the cases were sampled?) in nature. 
For now, we will deal only with descriptive measures.

 MEASURES OF CENTRAL TENDENCY

Statistics are available for summarizing the central tendency of a distribution 
for each level of measurement already discussed. The mode assumes only 
nominal properties. The median also assumes ordinality. The mean takes into 
account the full precision of interval or continuous data. The level of mea-
surement limits our choices. Purely nominal data can only be summarized 
by the mode (dichotomies are an exception). Ordinal data can be summarized 
by the mode or median, depending on the question asked. With interval/
continuous data, of course, all the listed measures are mathematically appro-
priate. The choice of statistic will then be determined by what question we 
need to answer about the distribution.

Mode

The mode is that category or categories (if there are ties) that contain(s) the 
largest absolute frequency or highest proportion/percentage of cases. It is the 
category appearing with the greatest frequency.

Review the 2010 California gubernatorial vote tables (Tables 2.1 and 2.3) 
The mode, or modal category, is “1,” standing for Democrat. More people 
voted for the Democratic candidate, Jerry Brown, than for any other candi-
date. Mr. Brown won more votes (absolute frequency) and a higher percentage 
(relative frequency) than did anyone else. He had the largest slice of the pie; 
his bar is the tallest. In our original seven-point table of ideology (Table 2.5), 
the category with the highest number of respondents is “Moderately Conser-
vative” (5). Category 5 is thus the modal category, even though it only 
comprises 33.8% of the survey distribution. If we include all eligible voters 
in the distribution, the modal category for recent U.S. elections will almost 
always be “did not vote.” With non-voters excluded, the mode is usually the 

mode The category within a 
distribution that has the 
most cases.
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winner of an election. “Usually” because in certain Southern states, particularly 
in primaries, candidates need to win by a majority in order to be declared 
the winner. A runoff election would be required between the top two con-
tenders if a majority is not secured by any candidate on the first ballot. In 
the 2014 Mississippi Republican primary, eventual Senate winner Thad 
Cochran did not win his party’s nomination until a primary runoff was held, 
as he obtained only 49% in the first round of balloting. His opponent, Tea 
Party favorite Chris McDaniel beat him (49.4%) but did not secure the 
necessary majority victory. In the runoff between these two candidates, Senator 
Cochran won by a bare majority, most likely due to the crossover support 
of Democrats fearful of a McDaniel victory. Democratic incumbent Wyche 
Fowler (49%) was the modal (plurality) but not majority winner of the 1994 
Georgia Senate race. In the two-candidate runoff, however, the Republican 
Paul Coverdell secured the modal (now majority) victory. French legislative 
elections follow a similar rule. Candidates do not win the first ballot unless 
by majority. On the second ballot, however, all candidates who receive more 
than 12.5% make it to the second round. The winner of that election may 
be either plurality or majority. Similar systems exist in other countries.

Sidebar 3.1: Election Law in the United States

Other than a relatively small but important number of constitutional provisions and amendments, 
federal law, and a larger number of court cases, almost all standards that govern the time and 
manner in which elections take place in this country are determined by state law. For example, 
states differ not only as to the winning threshold in either primaries or general elections (plurality 
or majority), but also as to the qualifications and application procedures for being a candidate in 
these elections, as well as who can vote in them (see the sidebar on felony disenfranchisement, 
Sidebar 2.2, in Chapter 2). This is especially true in primaries, where some states allow only regis-
tered or announced voters of each party to vote in their respective party primaries (closed), some 
allow independents to vote in a party primary (semi-open), and others allow primaries to be open 
to all voters (open)—and this is a simplified categorization.

Most countries do not allow such local autonomy. Although this makes for a great deal of 
difficulty in teaching about U.S. electoral politics, it also allows for a great deal of analysis as, in 
any given year, 50 cases are available to study comparatively.

Many texts and articles have been written about the variety of laws that affect our electoral 
process, including voting rights, primary types, campaign finance regulations, and how votes get 
counted. For one excellent overview, see Matthew J. Streb, Law and Election Politics: the Rules 
of the Game, 2nd ed. (Routledge, 2013). For a full, if dated, overview of the laws that govern 
and the results of primaries and primary types, see Peter Galderisi et al. (eds.), Congressional 
Primaries and the Politics of Representation (Rowman & Littlefield, 2001).
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 UNDERSTANDING STATISTICS AS GAMES OF CHANCE

Statistics, even descriptive ones, can often be understood as we would games 
of chance. This concept will take on great importance later on as we discuss 
inferential statistics, but let us introduce it now while we are dealing with 
statistical manipulations that are simpler and more intuitive.

Let us say that we are sitting in a restaurant trying to pass the time with 
a companion. An individual walks into the establishment who claims to have 
voted in the 2010 California gubernatorial election. Your companion chal-
lenges you to guess how that person voted. You can guess any single candidate. 
The rules of the game are fairly simple and stipulate that if you guess correctly, 
you gain $1; if you guess incorrectly, you lose $1. Your choices can only 
come from the five categories listed in our table (you can’t guess a collection 
such as “she didn’t vote for the Democrat, Brown”). You are allowed to see 
the listed distribution. Which is the safest guess? The answer is the mode, 
category 1, Democrat, Brown. That would be your best overall expectation, 
but you may be wrong with any single observation. The probability of being 
correct here is better than guessing any other single category. You would have 
a 53.8% chance (our relative frequency or percentage), or .538 probability, 
of guessing correctly. Stated differently, if every eligible voter was paraded 
before you and you could only make the same guess for each, you would 
lose the least amount of money, and gain the most, by guessing category 1. 
Of course, given our seven-point ideological scale (the modal category con-
tained fewer than 50% of all respondents), you would lose more than you 
would gain. However, any other guess would prove even more costly. The 
same would be true for the presidential races from 1992 to 2000. The Dem-
ocratic candidates always won the popular vote, but each time with less than 
50%. Returning to our restaurant example, you might try to use other 
information such as the voter’s age or gender or race to come up with a 
better guess, but these are the subject of measures of association (bivariate 
and multivariate).

All data can be summarized using the mode. However, as the number of 
categories increases, the mode produces a less useful summary. The mode is 
obviously less useful as a summary measure in our seven-point ideology scale 
than in either of the three-point scales (although note that the modal category 
is different in those two different three-point scales). Much of the information 
reported in the U.S. census, unless collapsed into fewer categories, is even 
less usefully summarized by the mode. If we include all categories of ancestry, 
for example, over 1,000 categories would be listed. According to the 2010 
U.S. Census estimates, more people might be 19 than any other single age, 
but only a very small percentage would be 19. Many other age categories, 
from 1 to over 100, will have frequencies close to that number. If the data 
are purely nominal (as with ancestry), then we might collapse categories 
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according to general geographic location (European, Asian, etc.), keeping in 
mind the concern that the more we summarize information with the creation 
of fewer categories, the more information we lose. If those with Italian 
ancestors from different regions of Italy might be fairly distinct in terms of 
physical and cultural attributes, those with European roots (including Italian) 
would of necessity be more distinct still.1 On the other hand, if the data are 
measured ordinally or intervally (as with age), other measures can be used 
to summarize a distribution’s central tendency without necessarily collapsing 
categories.

Median

The median is that category below which 50% of all cases in the distribution 
fall (i.e., half of the cases would be at that categorical point or less). Refer 
to your table on ideology (Table 2.5). Take the 1,596 individuals from that 
survey and place them side by side. The most conservative 140 students 
would be on the extreme right of the line (no pun intended). The most 
liberal 70 would be on the extreme left. All others would be placed in the 
line according to their degree of conservativeness. Where you place individuals 
with similar rankings (say the 350 moderate liberals) is arbitrary, as long as 
they are all to the right of the 156 liberals, and to the left of the 110 mod-
erates. Starting from the left, count off the respondents until you have counted 
half. With a sample of 1,596, the halfway point is reached after the 798th 
respondent, with 798 respondents still to go. That point is reached between 
the 798th and 799th respondents, both of whom are within the group of 
“moderate conservatives.” Half of the respondents will be moderately con-
servative or less conservative. Half will be moderately conservative or more 
conservative.

Remember our discussion of cumulative frequencies. Go down that column 
until you reach 50%. That would not occur until category 5. Remember that 
the median is not necessarily the middle category (in this example, category 
4), but it can coincidentally be so. What if we had 200 more moderates, or 
200 fewer moderate conservatives? The 798th and 799th respondents would 
be within category 4. Also note that the median doesn’t need to be an actual 
existing value (unlike the mode). For example, consider the following list 
(not frequency distribution) of incomes earned by ten individuals (measured 
in thousands of dollars).

20 20 30 40 50 90 90 100 320 360

The median would separate the first five individuals (incomes of 20, 20, 
30, 40, 50) from the last five (90, 90, 100, 320, 360). The median could be 
any number between 50 and 90. By convention, we usually specify the exact 
midpoint, in this instance 70. Half of the individuals in this list earned less 

median The category that 
represents the midpoint of 
a distribution at or below 
which half of all cases lie. 
Data must be measured at 
least at the ordinal level.
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than $70,000, and half earned more. If we only had the first nine in the 
distribution, the median would be that category corresponding to the fifth 
person ($50,000), with four earning less and four earning more.

Listed as a very basic formula, when the number of cases is odd, the case 
with the median would be as follows. Remember all cases must first be rank 
ordered (N = total number of cases).

 (N + 1)/2 (3.1)

When there is an even number of cases, the median would be that category 
that falls between the following two cases:

 N/2 and (N/2) + 1 (3.2)

Notice that medians must assume rankings. Purely nominal data cannot be 
summarized in this way. We cannot rank religion or presidential vote. Refer 
back to the Utah gubernatorial table (Table 2.4). We cannot state that 50% 
voted Republican or less “othered.” Terms like “less than” or “more than” 
have no meaning with purely nominal data. Remember that the ordering of 
the categories (do we place Democratic or Republican voters first?) is purely 
arbitrary. Also note that in distributions re-categorized into fewer categories, 
the median might be the same, even though the original distributions are 
fairly distinct. Let’s take 2000 Census figures for both Florida and Utah 
(Table 3.1). To simplify our analysis, we limit our categories to four (some 
rounding error is visible):

The median category for age in both our Florida and Utah examples is 
the second category, “Young Adult.” Fifty percent of all residents in either 
state are “young adults” or younger. Note, however, that we would have to 
virtually exhaust all of the individuals in the second category in Florida before 
the 50% cutoff is achieved. We almost reach it with the first category in 
Utah. In reality, when the age distribution is not collapsed into four categories, 
but maintains its full, original, interval listing, the medians for each state are 

 TABLE 3.1 Age Groupings, Florida and Utah (2010)

Age Group Cat. Code Florida Utah

Youngest (0−24) 1 31.1 46.4
Young Adult 
(25−44) 2 28.5 28.0
Older Adult 
(45−64) 3 18.0 17.0
Oldest (65 and 
above) 4 17.6 8.5
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quite different. The median age in Florida was 38.7 years, in Utah it was 
only 27.1 years. In Florida, 50% of the residents were 38.7 or younger. In 
Utah, 50% of the residents were only 27.1 or younger. Because both “27.1” 
and “38.7” are within the range of our second category, however, the medians 
in the four-point tables are the same.

Later we will discuss in detail the concept of percentiles. For now, let 
us just state that the median can be considered to be that category that 
corresponds to the 50th percentile. In gambling terms, the median allows 
us to equalize our odds of success. If one of the ten individuals whose 
incomes are listed walked into the restaurant, we would have an equal 
chance of being correct if we guessed that person to be above or below the 
median value. Medians, as with any statistic based on percentiles, allow us 
to make comparisons in a relative way. Medians separate the bottom half 
of a distribution from the top half. They don’t tell us anything about the 
intrinsic importance of the individual values within those halves. For exam-
ple, if we were to determine that only those individuals in the top half of 
their high school classes should be admitted to college, we would not 
necessarily know much about the quality of that top 50% and how that 
might differ from school to school. Judgments about absolute qualities 
(students who can maintain a 3.0 GPA) must take into account more 
precise information. This is the characteristic of continuous or interval 
statistics.

Mean

Let us define the measurement intuitively by way of an example. Go back 
to our list of ten individuals’ incomes. There are two modes (two individuals 
earned $20,000 and two earned $90,000). Half earned less than $70,000 
(the median). Another way of summarizing the central tendency of this 
distribution is to consider how much everyone would have earned if everyone 
earned the same amount (i.e., if you could take from the rich and give to the 
poor until contributions were equalized). How would you compute this value? 
If you are redistributing wealth, you would need to take the sum total of all 
incomes and then divide them equally among all members of the distribution. 
In this example, you would add the ten incomes and then divide by the total 
number of cases in the distribution (10):

The total of all incomes would be as follows:

$20(000) + 20 + 30 + 40 + 50 + 90 + 90 + 100 + 320 + 360(000) = $1,120,000

Evenly distributed ten ways:

$1,120,000/10 = $112,000
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The arithmetic mean of that distribution is $112,000. Notice first that in 
order to add values, the data have to be measured intervally. Ideology and 
party vote cannot be added. Notice also that the mean, like the median, does 
not need to be an actual value earned by any particular individual. No indi-
vidual person earned $112,000. As a game of chance? The rules become more 
complex. The rules for the modal and median game penalized you each time 
you were wrong, that is, each time you placed someone in the wrong category 
(penalized for the wrong category) or half (penalized for the wrong direction). 
Here you would be penalized not if you guessed the wrong income but by 
how much your guess was off. If you were told that you would be given the 
difference between your guess and the actual income of the unsuspecting income 
earner if your guess were too high, but that you would lose the difference if 
your guess were too low, you would break even by always guessing the mean 
for each of these ten individuals. Go through the computations to prove this. 
In doing so, you will learn something about an essential element of interval 
measures of dispersion, the deviation score. Hold that thought for now.

Notice that for our ten individuals, the mean is higher than the median. 
The median separated our distribution of people in half, five above and five 
below. In this example, however, the mean separated our individuals much 
differently. Eight had incomes less than $112,000. Only two had incomes 
above $112,000. The difference is rather simple to explain. Medians treat 
data only as ordinal. All we are stating is that half earned incomes above 
$70,000. How much above, or below, makes no difference. If our wealthiest 
person earned $3,000,000, the median would remain the same (but the mean 
would be higher still—compute the mean to demonstrate this to yourself ). 
With someone earning $3 million, we would have much more money to 
redistribute. In our gambling scenario, we would have to move our guess 
upward in order to reach the break-even point. If our top two individuals 
earned $120,000 each, the median would still not be altered (but the mean 
would be lower). The median only takes into account whether a case has a 
higher or lower value. “How much” higher or lower is inconsequential. “How 
much” implies that our data, and our questions, assume interval properties. 
The mean takes that into consideration and uses the data in the most precise 
way. The median does not. The median separates cases (in this example, 
individuals) into the lower and upper halves. The mean separates total value 
(in this example, income) into lower and upper halves. Collectively, our ten 
individuals earned $1,200,000. Half of that total is $600,000. If we added 
the incomes from that of the poorest to the wealthiest, we would not reach 
that total until after the eighth person.

Arithmetic means can be computed for any interval/continuous distribution 
of data.2 Although it seems intuitively if not politically plausible to redistribute 
wealth, consider the mean of other variables to be that value of that variable 
that everyone would have if everyone had the same value. Heights, weights, 
years of education, age, any aggregated data such as proportions, and so forth, 

arithmetic mean The cate-
gory that all cases would 
have if the total value of a 
variable for all cases were 
evenly distributed among 
them.
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can be summarized this way even if we cannot actually (and unfortunately 
for me with age and weight) ever hope to redistribute these values.

Let us examine the difference between medians and means graphically. 
Take our ten income recipients. If we are to compute the median, we would 
only need to place each individual side by side in order of their income. The 
order of individuals with similar incomes is arbitrary. Let us imagine that 
they are standing, evenly spaced, on a board. We also need to assume that 
each weighs the same.

20 20 30 40 50 90 90 100 320 360
____________________________

$70,000

In order to balance the bar, we would need to place our fulcrum, or 
balancing wedge, midway between the fifth and sixth persons, at a point 
corresponding to $70,000. Let us now replace the individuals on a balancing 
board, again in order of their income, but now spacing them according to 
their differences in income, as if the board were a ruler with income indicators 
rather than inches:

20    90
20 30 40 50   90 100    320 360
_____________________________________ .. .. ..  .. .. _______

                       $112,000

The fulcrum needs to be moved over to the right (in a positive direction) 
because the two wealthiest persons are far off on the positive side of the 
board. If we placed the fulcrum at the median of $70,000, the board would 
tip over to the right. The fulcrum, and thus the mean, must be adjusted to 
the right in order to accommodate these positive outliers. When a distribution 
is stretched to the positive, or graphically right direction, we state that the 
distribution is positively skewed (see Figure 3.1). In a positively skewed 
distribution, the mean will be greater than the median in most circumstances. 
If the outliers are on the low, or left, end of the distribution, we state that 
the distribution is negatively skewed (see Figure 3.2). In a negatively skewed 
distribution, the mean is usually lower than the median. For example, take 
the following income distribution, again expressed in thousands of dollars:

20 20 200 220 240 260 280 300 300 340

The median equals $250,000 (half above and half below). The mean equals 
$218,000. The distribution is negatively skewed or stretched by the two 
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individuals earning far below the others (perhaps two part-time clerks in a 
law office).

Generally, the greater the difference between the mean and median, the 
greater the skewness. If the distribution is a symmetrical distribution, with 
both the number of cases and their spacing even on both sides of the fulcrum 
(i.e., the distribution above the mean is a mirror image of the distribution 
below the mean), then the mean and median will be equal (see Figures 3.3 
and 3.4). For example, take the following income distribution:

40 40 60 70 80 90 100 110 130 130

Both the median and mean equal $85,000. No skew exists. The distribution 
is perfectly symmetrical.3

symmetrical distribution 
A distribution of a variable 
where the side to the left 
of the median is a mirror 
image of the side to the 
right.

FIGURE 3.1 A Positively Skewed Distribution

Median < Mean

FIGURE 3.2 A Negatively Skewed Distribution

Mean < Median

Mean = Median

FIGURE 3.3 A Symmetrical, Unimodal Distribution
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As these examples demonstrate, medians are insensitive to extreme values 
or skewness, but means are not. Any statistic that uses the mean as part of 
its calculation (e.g., linear regression) will also be sensitive to extreme values. 
Differences in skewness are not politically inconsequential. Consider two tax 
proposals that would be written specifically for our original ten income 
earners. One proposal is to increase taxes on the wealthier half of individuals. 
Five of our earners would be adversely affected. The other proposal would 
increase taxes on those earning above the mean. Only two would be so 
affected. The second would obviously be more popular, at least in terms of 
potential votes (of course wealthier people are more likely to vote and gen-
erally carry more political influence). We do ourselves no service when we 
talk about raising taxes for those who earn above the “average.” Do we mean 
$70,000 or $112,000 (or one of the modes)? Remember that income in the 
United States, and elsewhere, is positively skewed. The bulk of the population 
has incomes spanning across a fairly small range. As we move to the wealthier 
income brackets, we find fewer and fewer individuals and families making 
more and more money, falling further and further away to the right of the 
bulk of citizens, or on the positive end of the income distribution. The mean 
income is therefore higher than the median.

For example, according to the 2000 decennial Census estimates, the median 
family income was $48,950, but the mean was $62,636.4 Half the families 
in the United States earned incomes equal to or above $48,950, and half 
earned that income or less. The mean income of $62,636 is exceeded only 
by about one-third or so of the population. Remember, as an extreme example, 
one Bill Gates (to the right of the mean) earns as much as thousands of 
lower-income wage earners (to the left of the mean).

Similar differences existed in 1976. In the 1976 presidential election 
campaign, Jimmy Carter, the Democratic candidate and eventual victor, 
offered his general views on tax reform. He suggested that the tax code be 
revised so that those who earned more than the “average” would pay more 
in taxes and those who earned less than the “average” would pay less. The 
Republican candidate, President Gerald Ford, quickly countered that Carter’s 
plan would raise the taxes of 50% of all taxpayers, including many middle-class 

skewness The degree to 
which a distribution (think 
frequency polygon) is pulled 
or stretched. A stretch to the 
right or highest values of 
the distribution indicates a 
positive skew, and to the 
left, a negative skew.

Mean = Median

FIGURE 3.4 A Symmetrical Bimodal Distribution
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families. Governor Carter countered that his proposal would raise the taxes 
of roughly only the wealthiest 30% to 40%, and actually lower taxes for 
many in the middle class. Who was lying? Actually neither. Each was using 
a different measure of “average.” Their lack of specificity created a political 
controversy that did not really exist.

When Jimmy Carter suggested raising taxes on those earning above the 
average, he was referring to the mean. About one-third of the population 
had taxable incomes above that level. Since the term “average” can refer to 
different measures of central tendency, President Ford’s staff interpreted his 
comments to refer to the median wage earner, suggesting that Governor 
Carter wanted to raise the taxes of 50% of the population. Since those earning 
between the median and mean incomes are more likely to vote than those 
earning below the median, the political significance of the difference was 
greater still. The moral of the story is to be specific.

Sidebar 3.2: Medians versus Means in Liability Cases

In order to award reparations for injury or wrongful death for someone without an established 
employment history, forensic economists have to estimate earnings losses throughout one’s 
expected lifetime. Whether one calculates those estimates using medians or means for the appro-
priate demographic group (age, education level) in which the plaintiff belongs can have a signifi-
cant impact on the award granted. One study finds the difference can range from 9.74% to 59.48%. 
The differences only increase as inflationary adjustments are made for each additional year. Need-
less to say, the difference between medians and means can be quite important in determining 
monetary judgments in these and other such cases.

Source: Lawrence M. Spizman, “Developing Statistical Based Earnings Estimates: Median versus Mean 
Earnings,” Journal of Legal Economics 19, no. 2 (2013): 77–82.

 FORMULAS AS SHORTHAND DEVICES

Now for the part that initially intimidates many students in statistics classes. 
Statistics usually appear as, and we normally associate them with, bizarre 
formulas. These formulas are just shorthand devices that generically apply 
our conceptual understanding to any variable for any number of cases (thus, 
standardizing the math). They allow us to easily program computers to inter-
pret any type of data set. They can be easily interpreted if broken down into 
their component parts. Let’s start with the mean as its calculation is fairly 
straightforward. The basic format of this calculation will be consistently 
reapplied as we look at interval measures of dispersion (Chapter 4).



C H A P T E R  3  C E N T R A L  T E N D E N C Y  A S  S U M M A R Y  O B S E R V A T I O N

66

We have already determined that the mean is computed by adding all the 
individual values of a variable and then dividing by the total number of cases. 
Let us introduce mathematical shorthand. We normally designate a generic 
variable by the use of an uppercase letter. The standard convention is to use 
the letters X or Y.5 Individual cases (in our income example people) are des-
ignated generically by the lowercase i, where i can take any number from the 
first to the last person in the distribution (in our example 1 to 10). The 
individual value for any case is generically listed as a lowercase letter (x) 
followed by a subscripted i.6 The total number of cases in any distribution 
(whether the 10 here or several hundred in a survey) is designated as N. The 
mean is designated by our uppercase X with a line or bar across the top. 
Think of this as a “leveling” designation. The mean is the equalized value.

For our distribution of ten incomes, the mean is defined as follows:

X  = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)/N

where x1 = $20,000, x9 = $320,000, etc.
          N = 10

This same generic formula can be used to compute the mean of any other 
intervally measured variable, such as height or weight from any ten individuals. 
It can also be the shorthand for a calculation of the mean of voting turnout 
across ten election years. However, what if there were only five cases, or 
5,000? Would we have to come up with a different shorthand for each (and 
run out of paper for the second)? One more shorthand designation is needed, 
that of summation notation. The uppercase Greek letter Σ (sigma) tells us 
to perform an operation (listed to the right of it) for every designated case 
(designated by inserting the first case below it and the last above), and then 
sum or add each of the individual results of that operation.

The arithmetic mean is therefore defined mathematically and generically 
as follows:

    (2)       (1)

   X
x

N

i
i

N

= =
∑

1   (3) (3.3)

where N refers to the number of cases
  xi is the value for each case (1 to N)

Essentially, (1) take the value of each and every case (all of the xi’s), from 
the first (x1) to the last (xn), (2) add them (Σ), and then (3) divide by the 
total number of cases (N). That’s how we calculated the mean income. It’s 
that simple. Don’t let the formula intimidate you.
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We can first convert this distribution into a list, with one entry for each 
of the 94 web patrons:

(0,0,1,1,1,1,1,1 . . . 4 . . . 10,10)

We would then add the number of visits for each patron, and then divide 
by the total number (94). That seems, however, a bit tedious. We can instead 
do some simple math. Adding 1 + 1 is the same as multiplying 2 (the number 
of patrons who visited only once) times 1 (the number of times that those 
two visited). Instead of adding the number 2 44 times (2 + 2 + 2 . . . + 2), 
we can just multiply 44 (the number of patrons) by 2 (the number of visits). 
Continue for each category. The calculation then becomes:

[(2 × 1) + (44 × 2) + (38 × 3) + (5 × 4) + (3 × 6 ) + (2 × 10)]
______________________________________________

94

The 94 patrons collectively visited their favorite site 262 times in the given 
month. If the patrons did not vary in their number of visits, each would 
have made 262/94 = 2.79 visits. The number 2.79 is therefore the mean. 
Generically, for any variable, with any number of cases, the mean can be 
computed as follows:

 
X

f x

N

k k
k

K

= =
∑ *

1

  
(3.4)

Formula for the Mean Derived from a Frequency Distribution

On occasion, we might not have direct access to the full listing of data for 
a sizeable distribution of cases. For example, take Table 3.2, which shows the 
frequency distribution of the number of times that an individual visited his 
or her favorite political website in a particular month.

 TABLE 3.2 Frequency Distribution of Political Website Visits

Number of Visits Absolute Frequency Relative Frequency 
Proportion

1 2 2.1%
2 44 46.8%
3 38 40.4%
4 5 5.3%
6 3 3.2%
10 2 2.1%
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where xk is the value assigned to each category (1, 2, 3, 4, 6, and 10 in our  
     example)
 fk  is the frequency count for each category (2, 44, 38, 5, 3, and 2 in our  

example)
 K  is the total number of categories (six in our example). Later we’ll  

understand why K rather than C is used.

In simple words, we would first multiply the number of cases within each 
category (fk) by the value of each category (xk). We would do so starting from 
the first (k = 1) category to the last (k = K) category. This would be the same 
as adding each value for each case individually. We would then add all of 
these products (Σ) and divide by the number of cases in our distribution (N).

We can also use proportions, or relative frequencies, to compute our mean. 
Since the proportion is the number of cases within each category (xk) divided 
by the total number of cases (N), the formula can be rewritten as follows:

 
X p xk k

k

K

=
=
∑ *

1  
 (3.5)

where pk is the proportion or relative frequency for each category
  xk is the value of each category

Since the relative frequencies introduce rounding error, however, the first two 
formulas are preferable if the relevant information exists.

One final potential adjustment needs to be discussed, and we’ll do so by way 
of a recent example. In the 2012 presidential election, the Democratic candidate 
and winner, Barack Obama, won 51.06% of the popular vote (see the appendix 
to this chapter). If we calculate the percentage of the vote that he won in each 
of the 50 states and the District of Columbia (whose residents can vote for 
president but not Congress), and then take the mean of those 51 percentages, 
we come up with a value of 49.03%, very close to Romney’s 49.00%. Why the 
difference? If each state had the same population, then the mean of the individual 
state values should equal 51.06%. However, states have different populations 
and voter turnouts. More than 13 million people cast their votes for president 
in California (where Obama won by a wide margin), and roughly one-quarter 
million did the same in Wyoming (where Romney won comfortably). In taking 
the mean of each state’s vote percentage, we treat California and Wyoming the 
same, although the contributions of the total, national vote for Obama (or 
Romney) from each state are substantially different. Aside from the effects on 
the winner-take-all nature of the Electoral College vote,7 this fact also explains 
why the mean of the individual state values is less than the actual, nationwide 
vote Obama received. In order for the two figures to coincide, we must calculate 
what is called a weighted mean (i.e., add each state’s value in proportion to its 
total impact on the vote). To do so, we would multiply the candidate percentage 
in each state by the number of presidential voters in each state, add them all, 
and then divide by the total number of individuals who cast their ballot for 

weighted mean The arith-
metic mean adjusted for 
the number or proportion 
of cases within each unit of 
analysis, used when a full 
listing of individual values is 
not obtainable.

unimodal symmetrical 
distribution A distribu-
tion in which both sides of 
the distribution are mirror 
images of each other and 
where the mode is the 
median category.

bimodal symmetrical 
distribution A distribu-
tion in which both sides of 
the distribution are mirror 
images of each but two 
modes; one on each side of 
the distribution exist equally 
distant from the median.
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president (which equaled 129,085,403 by the final certified count listed by the 
Federal Election Commission). The full listing is available at the end of this 
chapter for those who wish to check the figures.

 A NOTE ON MEDIANS AND MEANS

As a review, take the last two distributions presented in Figures 3.3 and 3.4. 
The first distribution is a unimodal symmetrical distribution. The mean, 
the median, and the mode are the same. The second distribution represents 
a bimodal symmetrical distribution. In the first, incomes are clustered 
around the middle, with a tail of poverty and wealth. This represents a classic 
middle-class society. In the second, incomes are polarized; there exist very 
poor and very wealthy individuals with a limited middle class. It is important 
to note that the means and medians might be the same for both. However, 
unlike the first distribution, the incomes represented in the second distribution 
are clustered around the two extremes. Obviously, just knowing the median 
and mean does not give us any sense of the differences between the first and 
second distributions. For that, we need to discuss our second class of statistics— 
measures of variation or dispersion—in the next chapter.

APPENDIX

2012 PRESIDENTIAL VOTE

 TABLE 3.3 2012 Presidential Vote

State Obama % Romney %

Alabama 795,696 38.36% 1,255,925 60.55%
Alaska 122,640 40.81% 164,676 54.80%
Arizona 1,025,232 44.59% 1,233,654 53.65%
Arkansas 394,409 36.88% 647,744 60.57%
California 7,854,285 60.24% 4,839,958 37.12%
Colorado 1,323,102 51.49% 1,185,243 46.13%
Connecticut 905,083 58.06% 634,892 40.73%
Delaware 242,584 58.61% 165,484 39.98%
District of Columbia 267,070 90.91% 21,381 7.28%
Florida 4,237,756 50.01% 4,163,447 49.13%



C H A P T E R  3  C E N T R A L  T E N D E N C Y  A S  S U M M A R Y  O B S E R V A T I O N

70

Georgia 1,773,827 45.48% 2,078,688 53.30%
Hawaii 306,658 70.55% 121,015 27.84%
Idaho 212,787 32.62% 420,911 64.53%
Illinois 3,019,512 57.60% 2,135,216 40.73%
Indiana 1,152,887 43.93% 1,420,543 54.13%
Iowa 822,544 51.99% 730,617 46.18%
Kansas 440,726 37.99% 692,634 59.71%
Kentucky 679,370 37.80% 1,087,190 60.49%
Louisiana 809,141 40.58% 1,152,262 57.78%
Maine 401,306 56.27% 292,276 40.98%
Maryland 1,677,844 61.97% 971,869 35.90%
Massachusetts 1,921,290 60.65% 1,188,314 37.51%
Michigan 2,564,569 54.21% 2,115,256 44.71%
Minnesota 1,546,167 52.65% 1,320,225 44.96%
Mississippi 562,949 43.79% 710,746 55.29%
Missouri 1,223,796 44.38% 1,482,440 53.76%
Montana 201,839 41.70% 267,928 55.35%
Nebraska 302,081 38.03% 475,064 59.80%
Nevada 531,373 52.36% 463,567 45.68%
New Hampshire 369,561 51.98% 329,918 46.40%
New Jersey* 2,125,101 58.38% 1,477,568 40.59%
New Mexico 415,335 52.99% 335,788 42.84%
New York* 4,485,741 63.35% 2,490,431 35.20%
North Carolina 2,178,391 48.35% 2,270,395 50.39%
North Dakota 124,827 38.69% 188,163 58.32%
Ohio* 2,827,710 50.67% 2,661,433 47.69%
Oklahoma 443,547 33.23% 891,325 66.77%
Oregon 970,488 54.24% 754,175 42.15%
Pennsylvania 2,990,274 51.97% 2,680,434 46.59%
Rhode Island 279,677 62.70% 157,204 35.24%
South Carolina 865,941 44.09% 1,071,645 54.56%
South Dakota 145,039 39.87% 210,610 57.89%
Tennessee 960,709 39.08% 1,462,330 59.48%
Texas 3,308,124 41.38% 4,569,843 57.17%
Utah 251,813 24.75% 740,600 72.79%
Vermont 199,239 66.57% 92,698 30.97%
Virginia 1,971,820 51.16% 1,822,522 47.28%
Washington 1,755,396 56.16% 1,290,670 41.29%
West Virginia 238,269 35.54% 417,655 62.30%
Wisconsin 1,620,985 52.83% 1,407,966 45.89%
Wyoming* 69,286 27.82% 170,962 68.64%
U.S. Total 65,907,213 51.06% 60,933,500 47.20%

*Four states adjusted their totals after the official count was released.
Source: Federal Election Commission (FEC), Official 2012 Presidential General Election Results: http://www.fec.gov/pubrec/
fe2012/2012presgeresults.pdf.

http://www.fec.gov/pubrec/fe2012/2012presgeresults.pdf
http://www.fec.gov/pubrec/fe2012/2012presgeresults.pdf
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 KEY TERMS

arithmetic mean (61)

bimodal symmetrical distribution (68)

central tendency (54)

median (58)

mode (55)

negative skew (64)

positive skew (64)

skewness (64)

symmetrical distribution (63)

unimodal symmetrical distribution (68)

weighted mean (68)

 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the SPSS 
and Stata manuals that accompany this text. Modes, medians, and means can 
be calculated as part of a frequency distribution (Section 4.1). Means can also 
be calculated with the MEANS procedure (Section 4.2).

1. The median can be used to summarize which of the following types of 
data?
a. Nominal
b. Ordinal
c. Interval
d. All of the above

2. If a distribution’s mean is higher than the median, that distribution is 
most likely:
a. Positively skewed
b. Negatively skewed
c. Symmetrical

3. If a distribution of data is symmetrical, the median will always equal the 
mean (T/F).

4. A number of lawyers in a firm make contributions to a candidate. The 
candidate reports that the mean contribution of the lawyers is $1,500, 
but the median is $150. Are the candidate’s records incorrect, or can such 
a difference be possible? If so, how?

5. A state advertises that it pays back 60% of all money gambled on its edu-
cation lottery. However, about 99% of those who purchase lottery tickets 
win nothing. Explain this seeming paradox.

6. We collect data on the percentage of the vote received by the Republican 
gubernatorial candidate in each of a state’s congressional districts. The 
number of districts is odd. We calculate the median of that vote as equal 
to 54.5%. Fully interpret that median value.



C H A P T E R  3  C E N T R A L  T E N D E N C Y  A S  S U M M A R Y  O B S E R V A T I O N

72

 7. A listing is given specifying the percentage of the eligible voting age pop-
ulation that voted in each country for representatives to the European 
Parliament. The mean for that listing is lower than the median. Describe 
the distribution.

 8. Compute and interpret the mode and median for the grade list presented 
in the exercises for Chapter 2 (Exercise 11).

 9. Consider the following two distributions of total PAC contributions 
given to five members of Congress:
Distribution 1: $20,000, $40,000, $60,000, $80,000, $100,000
Distribution 2: $20,000, $40,000, $60,000, $80,000, $1,000,000

  Compute the mode(s), median, and mean for each. Verbally interpret 
each figure, and compare the two distributions.

10. Compute and interpret the mode and median for the distribution of party 
affiliation presented in the exercises for Chapter 2 (Exercise 9). Repeat the 
exercise for each of the combined frequency distributions.

11. The following table lists the Democratic vote percentages for House elec-
tions in ten state districts before and after the Supreme Court forced states 
to reapportion districts to guarantee equal populations in each. Compute 
the mode, median, and mean for each list (all ten districts). Interpret and 
compare the figures for each list (1964 vs. 1966). Note: this is a list, not a 
frequency distribution—the unit of analysis is a congressional district, the 
number of cases = 10.

12. Following is a list of median ages estimated from the yearly census samples 
over a span of 100 years. What can we say about the age of the U.S. popu-
lation over this time, as well as the difference between males and females?

 TABLE 3.4 Democratic Percentage of the Vote, 1964 

versus 1966

 1964 1966

D1 56 62
D2 65 62
D3 57 58
D4 72 67
D5 71 64
D6 67 62
D7 35 41
D8 45 48
D9 62 68
D10 48 49
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 TABLE 3.5 Median Ages by Gender, 1900–2000

 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

All 22.9 24.1 25.3 26.5 29 30.2 29.5 28.1 30 32.9 35.3
            
Males 23.3 24.6 25.8 26.7 29.1 29.9 28.7 26.8 28.8 31.7 34
            
Females 22.4 23.5 24.7 26.2 29 30.5 30.3 29.3 31.2 34.1 36.5

13. Following is a list of 21 African nations for which information is available 
on voter turnout (percentage of the voting age population) for president 
between 2005 and 2008. Compute and interpret the median and mean 
percentage turnout.

 TABLE 3.6 Presidential Voter Turnout, 21 African Countries, 2005–2008

Country Year % Turnout VAP

Burkina Faso 2005 36.4
Cape Verde 2006 78.59
Central African  
 Republic 2005 45.14
Chad 2006 71.4
Comoros 2006 52.14
Djibouti 2005 67.82
Egypt 2005 16.41
Gabon 2005 51.47
Gambia 2006 50.66
Guinea-Bissau 2005 66.84
Kenya 2007 54.49
Liberia 2005 59.01
Madagascar 2006 50.85
Mali 2007 48.18
Mauritania 2007 53.55
São Tomé and  
 Príncipe 2006 69.76
Senegal 2007 55.11
Seychelles 2006 97.08
Sierra Leone 2007 62.02
Zambia 2008 34.18
Zimbabwe 2008 47.27

Source: IDEA (Institute for Democracy and Electoral Assistance), http://www.
idea.int/vt/viewdata.cfm.

http://www.idea.int/vt/viewdata.cfm
http://www.idea.int/vt/viewdata.cfm
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14. For each of the variables in your class survey, compute (where appropri-
ate) and interpret the mode, median, and mean for each variable.

15. (Three separate assignments possible). Table 3.7 shows the 2012 elec-
tion results for 16 counties in Central-Southern California. It includes 
the percentage of the vote received by the Democratic presidential can-
didate (incumbent Barack Obama), by the Democratic Senate candidate 
(incumbent Dianne Feinstein), and for Prop 34 (yes = abolish the death 
penalty), as well as the partisan leaning of the county:

 TABLE 3.7  Vote Percentages, 16 California Counties, 2012

County Party Leanings* % Vote for 
Obama

% Vote for 
Feinstein

% Vote for 
Prop 34

Monterey D 67.1 69.6 53.2
San Benito D 59.2 61.1 42.3
Fresno D 49.9** 51.1 35.5
Kings R 41.3 42.6 30.1
Tulare R 41.3 42.9 31.5
Inyo R 42.6 42.6 32.8
San Luis  
 Obispo R 48.8** 50.8 43.1
Kern R 40.4 42.3 31.2
Santa Barbara D 57.6 59.6 49.0
Ventura D 52.3 54.4 43.2
Los Angeles D 69.7 71.5 54.5
San  
 Bernardino D 52.5 54.0 38.8
Orange R 45.6 47.5 39.1
Riverside R 49.7 51.9 37.9
San Diego D 52.6 54.4 45.5
Imperial D 65.2 67.2 43.9

*Defined by their most proximate registration figures (Source: California Secretary of State, 
Voter Registration Statistics by County: http://www.sos.ca.gov/elections/sov/2012-general/02-
voter-reg-stats-by-county.pdf; President: http://www.sos.ca.gov/elections/sov/2012-general/10-
president.pdf; United States Senator: http://www.sos.ca.gov/elections/sov/2012-general/11-us-
senator.pdf; State Ballot Measures: http://www.sos.ca.gov/elections/sov/2012-general/15-ballot-
measures.pdf ).
**In several counties where President Obama received less than 50% of the vote, he still beat 
Governor Romney. Third parties picked up a small percentage of the vote in many. For example, 
in Fresno County, the president received 49.9%, Governor Romney received 48.1%, with the 
remaining 2% going to six other minor party or independent candidates. California’s “top two” 
primary system limits general election placement to the top two Senate primary candidates—no 
third parties in this case.

http://www.sos.ca.gov/elections/sov/2012-general/02-voter-reg-stats-by-county.pdf
http://www.sos.ca.gov/elections/sov/2012-general/02-voter-reg-stats-by-county.pdf
http://www.sos.ca.gov/elections/sov/2012-general/10-president.pdf
http://www.sos.ca.gov/elections/sov/2012-general/10-president.pdf
http://www.sos.ca.gov/elections/sov/2012-general/11-us-senator.pdf
http://www.sos.ca.gov/elections/sov/2012-general/11-us-senator.pdf
http://www.sos.ca.gov/elections/sov/2012-general/15-ballot-measures.pdf
http://www.sos.ca.gov/elections/sov/2012-general/15-ballot-measures.pdf
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a. Compute the median and mean for one variable for ALL 16 counties. 
Describe and interpret fully what each figure tells you in words. (For 
example, don’t just calculate the median; describe what it tells you 
about this group of counties.)

b. By comparing the median and mean, comment on the expected skew 
(+/−/none?) of your distribution.

c. Now, do the same (a and b) for only the Democratic and, separately, 
only the Republican-leaning counties. Be complete in your calcula-
tion and answers.

d. Give as detailed a written summary as you can comparing your results 
for all 16 counties, the 7 Republican and 9 Democratic ones.

e. Why isn’t the mean of the percentages of all 16 counties equal to the 
actual total percentage of the vote for your variable in those 16 coun-
ties? Try to offer two reasons. The major one is discussed in the text. 
The other will take some more thought.

16. Using the data in Question 15, answer the following questions:

a. Compute the median and mean for both the county vote for Obama 
and the county vote for Feinstein for ALL 16 counties. Describe and 
interpret fully what each figure tells you in words.

b. By comparing the median and mean of each variable, comment on the 
skew (+/−/none?) of your distributions.

c. Compare the results between the percent vote for Obama and the per-
cent vote for Feinstein. What might this tell you about the difference 
and/or similarities between presidential and senatorial voting?

 NOTES

1 For the two records that I have of my grandfather’s arrivals to the United States, 
his nationality was listed as “Italian” in the first, but “Italian-Southern” in the 
second. That distinction, based on a presumption of education and occupational 
class distinctions between Italian regions was not just part of changing U.S. 
immigration quota law, but has also defined Italian culture and politics for 
centuries. See David Abulafia, The Two Italies (Cambridge University Press, 
2010).

2 In other disciplines, geometric and harmonic means are often computed with 
slightly different calculations. From this point on, we will use the generic term 
“mean” to refer only to the “arithmetic mean.”

3 It is possible for the mean and median to be the same in a non-symmetric 
distribution. I would like to thank an anonymous reviewer for bringing up this 
point with the following example, with mean and median equal to 20: 11, 11, 
13, 15, 25, 25, 25, 35.

4 Congressional action now prevents the full Census from including full income 
data. Analysts must now use one or a series of smaller ACS (American Community 
Survey) Census collections or follow-up supplements.
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5 Some texts use “Y.” Most use “X.” The designation is arbitrary. In this text, I’ll 
use the more customary “X.”

6 Some texts keep the uppercase designation here.
7 George W. Bush lost the popular vote nationwide in 2000, but he won the 

popular vote in more states than did his Democratic competitor, Al Gore,  
Jr. More importantly, he won more small states.
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Learning Objectives:

 ■ To understand the measures of dispersion/variation and goodness of fit
 ■ To understand those measures’ relationships to measures of central tendency
 ■ To learn about error measures and deviation scores
 ■ To introduce yourself to the concept of paired comparisons
 ■ To once again understand the critical importance of standardization

Measures of central tendency give us a single number that we can use to 
make the best guess (under different Vegas house rules) about any individual 
within a distribution, no matter how varied or diverse. The measures don’t, 
however, indicate the usefulness of that guess and may often give us the 
wrong impression about any given distribution. The modal category of state 
age distributions originally listed in Table 3.1 is “1,” “youngest (0–24),” 
but most residents of Utah and especially Florida are not correctly specified 
by that category. Review the California gubernatorial frequency distribution. 
Our best guess would be to guess the mode, that is, to claim that since 
more people voted for Jerry Brown (category 1), we would be more likely 
to be correct in guessing that category for any eligible voter than any other 
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category. However, we would still be wrong a large proportion of the time, 
a majority if all registered voters are included in our base. Additionally, the 
mode only tells us the value of the most popular category. It tells us nothing 
about how the cases are spread throughout the other categories. Was the 
California race close, or were the remaining votes spread among several 
different candidates? In the first instance, we would be helped with some 
statistic that would indicate how well the mode fits the distribution (termed 
“goodness of fit measure”). In the second, we would want to calculate 
some measure of spread, dispersion, or variation. I will spend more time 
in this text than in most discussing nominal measures of variation. I do so 
not only because of my own sense that such measures have been underuti-
lized as is the entire field of qualitative analysis, but also because they allow 
us to introduce and discuss certain concepts (standardization, observed 
versus expected outcomes, and paired comparisons), early on in our devel-
opment, that are instrumental in understanding more complicated measures 
later on.

Much attention has been paid in recent years to the question of racial, 
ethnic, ideological, and cultural diversity. What if our hypothesis were to 
start with “the more ethnically diverse a country is . . .”? How would we 
measure that property of “diversity”? Even more debate has centered on the 
role of government in fostering that diversity. Beyond politics, however, 
diversity can be viewed in both a positive and negative light. All but the 
most prejudiced amongst us would argue that cultural diversity adds to a 
nation’s character, providing all with an opportunity to experience a wide 
and interesting array of food, music, literature, and folklore. Great diversity, 
or perhaps better expressed, disparity in incomes, however, would not be 
viewed favorably by many, particularly those in the bottom end of the income 
distribution. Mathematically, the level of diversity can be understood in terms 
of measures of dispersion or variation. Those measures themselves imply no 
direct negative or positive connotations. It is up to the researcher or reader 
to make those judgments. The statistical measures we will cover only provide 
the numerical foundation for those judgments and the social and political 
debates that follow.

 MEASURES OF DIVERSITY FOR NOMINAL DATA

One way of discussing the usefulness, or goodness of fit, of nominal data is to 
calculate how much information is lost in using the mode as a summary mea-
sure. The modal category in our age example correctly places 31.1% of our 
Florida residents and 46.4% of our Utah residents. For Florida, 68.9% would 
be placed incorrectly by this modal guessing procedure (i.e., 68.9% of the data 
would be “lost” with our summary), and 53.6% in Utah. The probabilities of 

goodness of fit measure 
A statistical procedure 
that measures how well a 
measure of central tendency 
summarizes a distribution.
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incorrectly guessing a person’s age category by guessing the mode are .689 (in 
Florida) and .536 in Utah, respectively. When we calculate the probability of 
an incorrect guess or placement using the mode, we define a statistic called the 
variation ratio (VR   ), calculated as described subsequently.

Variation Ratio

 VR pmk= −1   (4.1)

where pmk is the proportion of cases within the modal category

Quite simply, the VR is the proportion of all cases not contained within the 
modal category. For example, if we guessed that a particular individual in 
Florida was to be found within the “youngest” category, the probability of 
our guessing incorrectly would be equal to the VR, .689.

A proportion, as discussed in Chapter 2, is simply the number of cases 
within a particular category divided by the total number of relevant cases. 
We can therefore alternately write the equation as follows:

 VR f
N
mk= −1  (4.2)

where  fmk is the number of cases (absolute frequency) within the modal 
category

Note that our probability of incorrectly guessing the vote choice in our 
California gubernatorial example increases as we include all those who voted 
on Election Day (N = 10,302,324, VR = .473). The mode becomes less useful 
(fits the data worse) and actually changes as we include all those who were 
registered or eligible to vote but didn’t.1

A simple mathematical transformation (1 = N/N) allows us to rewrite the 
equation as follows:

 VR
N
N

f
N
mk= −  (4.3)

or

 VR
N f

N
mk=

−
 (4.4)

The VR is, after all, the proportion of non-modal cases. The number of 
non-modal cases is equal to (N − fmk). The formulas are all the same, so use 
whichever is easiest, or possible (perhaps you are only given voting percent-
ages, not raw counts, thus limiting you to only the first equation). The last 
formula, however, presents us with a useful introduction to two fundamental 

variation ratio A goodness 
of fit measure that indicates 
the proportion of cases that 
vary from or are not within 
the modal category.
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concepts in statistical theory—error terms or deviation scores and the differ-
ence between what we observe and what we expect. Let’s discuss this 
further.

The formula N − fmk can be interpreted as an error term that is the number 
of times we would be incorrect in applying a certain guess, in this instance 
the mode. In guessing the mode, we are expecting that any of the N indi-
viduals that might randomly enter the California restaurant would have voted 
for Brown (at least that’s our best expectation). If every individual did enter 
the restaurant, however, we would observe that only fmk actually fit in that 
category. The difference between our expectation (all N cases are the same) 
and observation equals the number of times we would err in guessing the 
mode for each individual. It is the number of times we would deviate from 
the correct answer. Since that number is a function of the total number of 
cases (the more people we have, the greater the likelihood that one will be 
misplaced), we need to standardize that error term. We obviously have a 
greater absolute chance of miscategorizing an individual among a voting 
population of 10 million than only 10. As with a frequency distribution, we 
therefore standardize this error term by the total number of cases (N). The 
VR is therefore the total number of miscategorized cases standardized by the 
total number of cases possible from our distribution. If we represent the 
number of times we would expect each person to be categorized by the mode 
if the mode perfectly fit the data (N) as fe (expected frequency), and the 
number of times each person actually is categorized by the mode (fmk) as fo 
(observed frequency), the formula can also be listed as follows:

 VR
f f

f
e o

e

=
−

 (4.5)

Most students of statistics will be familiar with a variation of this standardized 
formula as it applies to an inferential measure called chi-square (covered in 
Chapters 8 and 9). The concept of observations and expectations, however, 
can also be used in our discussion of other descriptive statistical measures, 
such as the one to which we will soon turn. First, one more point needs to 
be made about the VR.

Most, but not all statistics are standardized to allow the calculated values 
to range from 0 to an absolute value of 1 (directional statistics can produce 
a negative calculation down to −1). The VR will be 0 when 100% of the 
cases fall within one category (pmk = 1). For elections, this would be the case 
with a non-contested election if non-voters are excluded. You would guess 
that everyone voted for the winner, and you would always be correct (1 − 1 
= 0). A “0” therefore stands for no variation from the mode. The mode 
“perfectly fits” the data. You would always observe what you expect. In 2010, 
for example, 12 members of the U.S. Congress ran totally unopposed, thus 
receiving 100% of the vote. That number increases if we discount minor vote 
incursions by third parties. As late as 1998, more than 10% of House seats 
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were won by 100%. Before the 1960s, when the South was a virtually 
one-party (Democratic) regime, that number was much higher. When one 
party predominates, competition is more likely to occur within that party’s 
primary.

What is the highest value that the VR can reach? That is partially a function 
of the number of categories, but it approaches yet never reaches 1. For the 
VR to be 1, pmk, our most popular category, would have to equal 0, and we 
would have no distribution at all. Just consider that as the value approaches 
“0,” the goodness of fit of the guessing procedure (the mode) is quite high, 
and the mode is a useful summary measure; when the value calculated is 
close to 1, there is much greater variation from that modal guess, and the 
goodness of the modal fit is quite poor. This would generally be the situation 
when we have a very large number of categories. For example, if we list U.S. 
residents by their age, more might be 19 years old than any other single age, 
but only slightly more than 1% (.01) would be 19. The VR would therefore 
be close to 1.

The VR measures goodness of fit (i.e., variation from the mode). Let us 
now turn to a statistic that measures dispersion or spread. If the data are 
dichotomous (i.e., only two categories are possible), then we can measure 
the evenness of the distribution by subtracting the two relative frequencies. 
In a two-candidate election, for example, a tie would produce a difference 
of 0%, indicating an even split. As the value gets closer to 100% (or a pro-
portion of 1), the vote is more one sided. Note that the VR for a tie would 
be .5; a one-sided race would have a value close or equal to 0. Most variables, 
however, consist of more than two categories. A more complex measure of 
dispersion therefore needs to be found that can assess the differences among 
categories.

Index of Qualitative Variation

Let’s start with a simple example. As part of the standard Eurobarometer 
survey set, individuals are asked to place themselves on a ten-point ideology 
scale ranging from 1 (Left) to 10 (Right). For simplicity (but always worrying 
about how categorization can affect outcomes), we produce three categories 
for Table 4.1: Left, Center, and Right. In a pre-test of the measure, 240 
respondents are chosen from three different towns in one of the sampled 
countries.

For each distribution, the mode is category 1, Left-leaning. The VR is .25 
for the first two distributions (25% are not Left-leaning), but .625 for the 
third. The VR therefore differentiates the last from the first two distributions. 
The mode (Left) is at its worst as a summary measure for the ideology of 
the selected members of the third town. It is equally and more useful in 
summarizing the ideology in the first two towns. Notice, however, that the 
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 TABLE 4.1 Ideological Divisions in Three European Towns

Ideology Cat. Code Absolute 
Frequency
Town 1

Absolute 
Frequency
Town 2

Absolute 
Frequency
Town 3

Left 1 180 180 90
Center 2 30 59 80
Right 3 30 1 70

#1 #2 #3

FIGURE 4.1 Paired Comparisons with Three Residents

degree of spread across the categories differs in the first two distributions, 
even though they share the same VR. There is a much greater spread or 
diversity of cases in the first than the second. How can we measure this 
variation across all categories (not just variation from the mode)?

We first need to introduce a new concept here that you will run into again 
in any discussion of ordinal measures of association, that of paired comparisons. 
So let’s take some extra time introducing and understanding it now. There 
are 240 residents in each example. If we continually pull 2 different individuals 
from any group (a unique pair), how many unique pairings of residents will 
we produce? Let us start with a basic example. With 3 residents, we will 
produce three unique pairings (Figure 4.1):

#1         #2          #3         #4

FIGURE 4.2 Paired Comparisons with Four Residents

With 4 residents, we will produce six unique pairings:
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Generically, the total number of unique pairings will always be equal to:

 N N( )− 1
2

 (4.6)

where N equals the number of cases

For a distribution of 3 cases, the total number of unique pairings equals 
3(2)/2 = 3.

For a distribution of 4 cases, the total number of unique pairings equals 
4(3)/2 = 6.

For a distribution of 30 cases, the total number of unique pairings equals 
30(29)/2 = 435.

For a distribution of 240 cases, the total number of unique pairings equals 
240(239)/2 = 28,680.

In the first instance, we can pull 2 different residents from our group three 
possible ways. In the last, there exist 28,680 possible unique pairs of 
residents.

The numbers we just calculated indicate how many ways we can pull out 
2 different residents, without regard to their ideology. Each pair can share the 
same ideological preference (2 Left, 2 Center, or 2 Right) or a different ideo-
logical preference (1 Left, 1 Center; 1 Left, 1 Right; or 1 Center, 1 Right). 
Conceptually, the variation or diversity of any group can be thought of as a 
function of the number of times we can randomly draw two cases with 
different categories of a variable. If we always pulled out 2 residents with the 
same ideological preference, we wouldn’t consider that town to be very ideo-
logically diverse (of course, assuming the 240 residents chosen represent the 
town). If we always pulled out 2 residents with different ideologies, we would 
consider the group to be highly diverse.

In example #1, how often can we possibly pull out 2 residents (from the 
possible 28,680 combinations) with different ideological preferences? Well, 
every time we pull out a Left-leaner and a centrist, the two will be different. 
Each of the 180 Left-leaners can be matched with each of the 30 centrists. 
This will occur 180 × 30, or 5,400, total possible times. Left-leaner with 
Right-leaner matchups will also be different, again 180 × 30, or 5,400, total 
possible times. A centrist can be matched with a Right-leaner 30 × 30, or 
900, total possible times. The sum total of unique pairings of town residents 
with different or diverse ideological preference will therefore equal 11,700. 
The other 16,980 pairings will be of residents who share the same ideology. 
That 11,700 is (11,700/28,680), 40.79% of the total number of possible 
pairings, or a fractional equivalent of .4079. If we pull out every one of the 
28,680 unique pairings or combinations of residents, we will pull out a 
differently matched (diverse ideological preference) pair 40.79% of the time. 
Stated differently, if we randomly pulled two residents out of town #1, the 
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probability of drawing two with different ideological preferences would be 
.4079. We have just computed the index of diversity, calculated by dividing 
the number of differently paired matchups (11,700) by the total possible 
number of unique matchups (different or the same, 28,680).

The problem with the index of diversity is that its value varies as a function 
of the number of categories. The only time that this index can be close to 1 
(i.e., you will be correct in guessing that any two residents are ideologically 
different close to 100% of the time) is when the number of categories (K) 
is close to the number of cases (N). The index can only be equal to 1 when 
K = N; otherwise residents with similar ideological preferences will have to 
be drawn. Consider the following simple example. We have a small group 
of six residents. We only have three ideological choices (L, C, R). By defini-
tion, some residents have to share the ideology. For example:

Resident Ideology
1 L
2 C
3 R
4 R
5 L
6 C

With six cases, we have 15 possible unique pairings (6 × 5/2). The first 
resident has a different ideology than the second, different than the third, 
different than the fourth, and different than the sixth (4 different or diverse 
pairings). The second resident is different from the third, from the fourth, 
and from the fifth (3 different or diverse pairings). Note that we don’t com-
pare the second and first resident again since that has already been done. We 
only want unique pairings. The third resident is different from the fifth and 
sixth (2 different or diverse pairings). The fourth resident is also different 
from the fifth and sixth (2 different or diverse pairings). Last, the fifth and 
sixth resident differ (1 different or diverse pair). Twelve of the 15 possible 
unique pairings are between residents with different ideological preferences. 
Three pairings are of residents with the same preference (1 and 5 are both 
Left-leaning, 2 and 6 are both centrists, and 3 and 4 are both Right-leaning). 
The index of diversity is therefore equal to 12/15 = .8. We will draw two 
residents with different ideological preferences 80% of the time. With three 
ideological categories and six residents, however, this distribution is as diverse 
as it can possibly be. The residents are evenly distributed among the three 
ideological categories, with two in each.

To solve this problem (which only worsens as the number of cases con-
tinues to exceed the number of categories), we need to standardize our sta-
tistic one more way. One way of doing this is to divide the number of 

index of diversity A varia-
tion or dispersion measure 
calculated as the total 
proportion of times that two 
unique cases that categor-
ically differ on any variable 
can be drawn from any 
distribution.
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different pairs observed by the total number of different pairs that we could 
ever possibly expect given the number of categories in our distribution. Con-
sider the following: as we increase the disparity between the categories, we 
will decrease the number of different matchups. By the same logic, we would 
increase the number of differently matched pairs (ideologically diverse) as we 
more evenly divide the residents among the three categories. For example, if 
all 240 residents were Left-leaning, we would be able to randomly pull out 
2 residents with different ethnic backgrounds 0 times. If the breakdown were 
238, 1, and 1, we would draw 2 residents with different ideologies 477 times 
([238 × 1] + [238 × 1] + [1 × 1]). Our current example (180, 30, and 30) 
produced 11,700 pairs of ideologically diverse residents. If the 240 were 
evenly distributed among the three categories (80 in each), we would produce 
the maximum number of differently paired (ideologically diverse) matchups 
possible, 19,200 ([80 × 80] + [80 × 80] + [80 × 80]). If we divide the observed 
number of different or ideologically diverse pairings (11,700) by the maximum 
possible number (given the number of categories) of different or ideologically 
diverse pairings (19,200), we come up with a rounded figure of .6093.

Congratulations, you have just calculated the index of qualitative variation 
(or IQV), a standardized version of the index of diversity. We use term 
“qualitative” to denote categorical differences. “Quantitative” would denote 
the ability to treat the categories mathematically (such as age or income). 
Let’s review the calculation. The observed paired differences were computed 
by multiplying the actually observed frequency (fo) in each category by the 
frequency in each other category and then adding the products. The maximum 
possible paired differences were similarly computed, but this time assuming 
that the cases were even distributed among the categories (i.e., 80 in each). 
That would be the number of residents we would expect (fe) in each category 
if the residents were evenly distributed among the three ethnic categories. 
The calculation breaks down as follows:

observed differences = (180 × 30) + (180 × 30) + (30 × 30) = 11,700

maximum possible differences expected if cases were evenly distributed
= (80 × 80) + (80 × 80) + (80 × 80) = 19,200

IQV = observed different pairings/maximum possible different pairings
= 11,700/19,200 = .6093

Translation: the distribution of cases among the three ideological categories 
is 60.93% of the best (most diverse) distribution possible.

I suggest listing the observed and expected frequencies in tabular form 
(see Table 4.2) to make sure that you understand the logic (this will also 
come in handy when we look later at the chi-square calculation).

index of qualitative 
variation A variation or 
dispersion measure that 
standardizes the index of 
diversity by dividing by 
the maximum qualitative 
variation possible.
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 TABLE 4.2 Observed and Expected Frequencies

Ideology Cat. Code Observed 
Frequency (fo)

Expected 
Frequency (fe)

Left 1 180 80
Center 2 30 80
Right 3 30 80

Now for the (not so) hard part. One can compute the IQV intuitively as 
we have done previously. Remember, however, that statistics can be defined 
by generic formula, not just one limited to 240 cases and three categories. 
Let’s make the conversion from specific (our example) to generic (any distri-
bution). For the numerator, we compute the total number of different pairings 
that we actually observe in the distribution. As in our example, we do so by 
multiplying the number of observed cases in each category by the number of 
observed cases in every other different category. We do this for every possible 
pair of different categories. We then add those products together. Multiplying 
the observed cases in one category (generically noted as category I), by those 
in another (category J) can be generically listed as:

 f foI oJ×  (4.7)

where I ≠ J (i.e., the categories are different)

The sum of these can be listed as follows:

 ∑ ×foI oJf  (4.8)

The denominator is the same, except that we substitute for each frequency 
the number that would exist, or that we would expect, if the cases were evenly 
distributed. We designate the expected frequencies as feI and feJ.

Generically, this calculation can be represented as the following:

 IQV
f f
f f

oI oJ

eI eJ

= ∑
∑

×

×

 
 (4.9)

where foI  foJ  equals the product of each unique pair of frequencies observed 
in each category (I, J)

feI  feJ  equals the product of each unique pair of frequencies expected 
in each category if the cases were evenly distributed

We can, and perhaps should, end here, but we can re-specify the formula one 
more way. Remember that the expected frequency of each category is found 
by dividing the total number of cases by the number of categories. In our 
example, this would be 240/3 = 80. Generically, we can list this as follows:

N
K
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where N equals the number of cases
 K equals the number of categories

We then multiply this number by itself (the number of cases in each category 
is the same), which is the same as squaring that number. Each product is 
therefore generically defined as follows:

N
K






2

We then add the products, but how many products will we have? In our example 
we had three, not because we have three categories (that is just a coincidental 
outcome of our example), but because there are three ways in which individuals 
with different ideological preferences can be matched (category 1 with category 
2, category 1 with category 3, and category 2 with category 3). As with the 
computation of case pairings, the number of times that we will need to multiply 
the frequency in one category by the frequency in another is generically equal 
to K(K − 1)/2, where K equals the number of categories. With only 2 categories, 
we would perform the multiplication only once. If, for example, we were to 
test for the degree of gender diversity in a class, the only possible different 
pairing would be between a male and female student. With 4 categories, we 
would have six different ways to pull different pairs. With 20 categories, the 
number of different types of pairs equals 20 × 19/2 = 190, and we then discover 
the benefits of computers and generic formula.

Generically, therefore, the IQV is defined as follows:

 IQV
f f

K K N
K

oI oJ=
− 





∑ ×

×

 

( )1
2

2  (4.10)

where N equals the total number of cases in the distribution
  K equals the number of categories
  foI  foJ  equals the product of each unique pair of categorical frequencies 

(I, J )
  I, J refer to different categories (I ≠ J)

Translation: for the numerator, multiply each category’s actual observed 
frequency by the frequency of a different category, until you exhaust all 
possibilities. Then sum (∑) each of these products. This gives you the 
number of times you can actually draw or observe a pair from different 
categories. For the denominator, divide the total number of cases (N) by 
the number of categories (K) to produce the number of cases that each 
category would have if each category had the same number of cases (even 
distribution). You would then, as in the numerator, multiply the frequency 
of each category by the frequency of each other category. Since the fre-
quencies are the same (N/K), this is the same as squaring the frequency. 
How often would you perform this calculation? Again, as often as there 
are different categories to multiply, K(K − 1)/2 times. The denominator 
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Sidebar 4.1: Does Ending Affirmative Action Reduce Diversity?

In 1996, California voters passed Prop 209, a measure that would ban affirmative action in college 
admissions for schools within the University of California and California State University systems. 
Other states passed similar initiatives or legislation, while other affirmative action programs were 
successfully challenged in the courts.

Many felt that the passage of Proposition 209 would deprive California universities of the benefits 
of a diverse ethnic and racial student body, and that it would undermine the state’s mandate to 
serve its broad-based constituency. Some worried that it would actually decrease admission rates 
for white, non-Hispanic students as the number of students of Asian heritage would increase.

Were any of these expectations actually observed in the changing demographics of college 
admissions? The answer depends on how one reads the data. Indeed, the proportion of graduating 
white, non-Hispanic students, the largest single group if not any longer a majority, who entered 
the California system declined (and the VR consequently increased marginally from, by my calcu-
lations, .579 to .583). However, the proportion of white, non-Hispanics among California’s high 
school graduates declined by an even greater amount, with corresponding VRs of .535 to .553.1 
Similarly, the IQV for the pre- and post-209 era changed only marginally upward, indicating a 
slightly greater diversity in the entering college pool.

Does this mean that Prop 209 and similar state changes had no effects? As one multistate 
analyst described it, although the total levels of entry may have seemed to change little, the 
quality of the universities attended did: “affirmative action bans can cause a large fall in under-
represented minority enrollment at certain universities and an increase at others. Estimating the 
effects only on the mean university may mask these distributional effects.”2 We will return to the 
hidden effects of other variables in Chapter 10.

1 Data derived from figures in Peter Arcidiacono et al., “The Effects of Proposition 209 on College Enrollment 
and Graduation Rates in California,” December 2011, http://public.econ.duke.edu/~psarcidi/prop209.pdf.
2 Peter Laroy Hinrichs, “The Effects of Affirmative Action Bans on College Enrollment, Educational Attain-
ment, and the Demographic Composition of Universities,” Review of Economics and Statistics 94, no. 3 
(2012): 712–722 (719).

produces the maximum number of different pairings possible or expected 
given the number of categories in the distribution.

The IQV reaches its minimum value of 0 when the numerator is 0 (i.e., 
when all the cases fall into one category, such as everyone is a centrist). The 
IQV reaches its maximum value of 1 when the numerator equals the denom-
inator. This can only happen when the actual distribution matches the best 
possible distribution (i.e., when the cases are actually observed to be evenly 
divided among the categories). Consider values between the two to represent 
the degree of variation among the categories. In our example, we calculated 
an IQV of .6093 (i.e., 60.93% as evenly distributed as possible).

http://public.econ.duke.edu/∼psarcidi/prop209.pdf
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Refer back to our California gubernatorial distribution. Computing an 
IQV here can be rather trying, especially if you do not have a calculator that 
allows for power notation (try multiplying the number of Democratic voters 
by the number of Republican voters). An alternate proportion-based formula 
for the IQV can be computed, however, with a slight possibility of rounding 
error introduced. Substitute the proportion of cases for the number of cases 
in each category (e.g., .538 for California Democrats). For the total number 
of cases (N), substitute 1 (the total of all proportions must equal 1).2 The 
rest is the same. One of the chapter exercises will ask you to compute the 
IQV for both California and Utah. Which is more partisanly diverse?3

 MEASURES OF DIVERSITY FOR ORDINAL AND 
INTERVAL DATA

The VR measures the proportion of times we would be wrong if we guessed 
the modal category of a distribution for all cases within that distribution. The  
IQV measures the degree of variation among categories. As we move to 
interval data, we can derive measures of dispersion that take into account 
not whether or not we have guessed the right category or differences, but by 
how much we are off. Let’s look at the following three distributions of incomes 
for police officers in three different cities, all unimodal and symmetrical with 
the same modes, medians and means:

$20,000 $40,000 $60,000 $80,000

A

B

C

$100,000

FIGURE 4.3 Three Symmetrical Income Distributions

Reporting the modal, median, or mean value for each distribution 
($60,000) would imply that the distribution of income is similar in each 
city. A VR would provide some differentiation between the distributions, but 
since very few officers share the exact modal value (there are many categories), 
the VR would be rather high for each. The distributions, however, are rather 
different. In distribution A, most officers earn somewhere around the mean 
income, with a low tail in both the negative (lower income) and positive 
(higher income) direction. In this city, very little distinction is made among 
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most officers, but a few seem to be relatively disadvantaged or advantaged 
compared to their peers. Perhaps salary adjustments are fairly uniform with 
a limited ability to reward or punish only a handful of outstanding individ-
uals. Perhaps salaries are low during a short training period, settle toward the 
mean during one’s service, and rise only for those who achieve supervisory 
status. In city B, salaries tend to be more evenly distributed along the pay 
scale. Perhaps the reward system is much more forcefully applied and varied, 
or promotions are steady throughout one’s career, with a small percentage 
added for each year of service. City C seems to have a similar method of 
salary distribution than B. Most salaries are concentrated around the mean, 
but there seems to be less variation at the extremes. The reward/punishment 
or seniority system seems less severe.

The Range and Interquartile Range

One way to discuss the differences in the degree of dispersion is to compute 
the range. The range is the difference between the highest value in the dis-
tribution and the lowest. For income, the range would tell us what the 
maximum difference or income disparity would be between any two indi-
viduals picked at random from the distribution (remember that the IQV 
only takes into account whether two cases are different, not by how much). 
The range allows us to differentiate between the distributions in cities A and 
C ($40,000 vs. $80,000), but not between cities B and C (both $80,000). 
One solution is to calculate a “middle range,” say the maximum difference 
in salaries for individuals within the middle 50% of the cases. In order to 
calculate these figures, we would figure out the salary below which 75% of 
the cases fell (the 75th percentile) and the salary below which 25% of the 
cases fell (the 25th percentile), and we would subtract the latter from the 
former. This interquartile range (IQR) calculates the range of dispersion for 
the middle of a distribution. Without looking at precise figures, we can 
visualize that the middle 50% of the cases in distribution B would spread 
over a more narrow range than the middle 50% in distribution C.

Remember that for the range and IQR to be computed, we need to be 
able to measure data at the ordinal or interval level. Purely nominal data 
cannot be ranked; therefore, like the median, percentiles cannot be ascertained. 
The range and IQR can be calculated for ordinal data, but the interpretation 
is not very precise. Calculating differences generally implies that the categorical 
numbers have intrinsic meaning. At best, we can say that the middle 50% 
of cases span across a certain number of ordinal categories (e.g., moderately 
liberal to moderately conservative). The range, IQR, and similar measures of 
spread or diversion are most appropriate, however, for data measured at the 
interval or ratio level, where the numbers, and their differences, have intrinsic 
meaning.

range The maximum cate-
gorical difference possible 
between any two cases in a 
distribution.

interquartile range The 
maximum categorical differ-
ence possible between any 
two cases in a distribution’s 
middle 50%.
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As an example, let us return to our example of ten incomes in Chapter 3.  
The mean for that distribution was $112,000. These incomes have a range 
(maximum disparity) of $340,000 ($360,000–$20,000). If we guessed that 
the difference between any two randomly picked individuals was no greater 
than $340,000, we would never be wrong. To compute the IQR, we need 
to figure out that salary associated with the 75th percentile. This value would 
be that of the eighth case ($100,000). Two and a half cases would be at that 
level or higher, and seven and a half would be at that level or less. The 25th 
percentile would correspond to the value associated with the third case 
($30,000). The IQR would therefore be calculated as $100,000–$30,000. 
The range, or maximum disparity, of the middle 50% is therefore $70,000. 
The middle 50% of income recipients vary by no more than $70,000.

I<-------       $340,000       -------->I
20 20 30 40 50 90 90 100 320 360

I<--- $70,000 --->I

Measures like the IQR eliminate the impact of extreme values. Note that, 
like the median, the IQR would not change if the highest income was 
$3,600,000. The range would, however, be much higher ($3,580,000) because 
the disparity between the lowest and highest incomes would be much greater. 
The IQR would not, however, differentiate between our original listing of 
ten incomes and one with much less variation around the mean, such as:

20 20 30 100 100 100 100 100 320 360

We don’t necessarily want to discount the importance of extreme values. 
Inequalities of wealth are, after all, important components of a society’s eco-
nomic and social character. Can we use the full richness of our data to measure 
the precise level of diversity or dispersion of incomes? Yes. If the data are 
interval, we can derive an even more precise measure of dispersion.

Each of our individuals has an income that can vary from the mean. The 
precise amount of that variation for each case can be measured by subtracting 
the mean from that individual’s income. Our first individual would vary from 
the mean by −$92,000 (i.e., he earns $92,000 less than the mean income 
for the entire group). The last person would vary by +$248,000 (i.e., she 
earns $248,000 more than the mean income for the entire group).

Deviation Scores

For each of the ten cases, we can calculate the difference between the actual 
value and the mean value. This difference is called the individual deviation 
score and is calculated as follows:

 d x Xi i= −  (4.11)

deviation score The differ-
ence between an individual 
case’s value and the mean 
of all values within a 
distribution.
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where X  is the mean of the distribution and
 xi is the value for each individual case

The deviation score can be interpreted as the disparity between an individual’s 
value (in this instance, income) and the mean value for all of those in the 
distribution. Returning to our discussion of observations and expectations, 
it can also be considered an error term between what an individual’s actually 
observed income is and the income we would expect or guess if that income 
equaled the mean.

Table 4.3 lists the actual value for each of the ten cases (xi), as well as the 
associated deviation score (di). For the first case, the individual’s actual value 
falls $92,000 short of the mean. If you guessed the mean for his/her income, 
you would overestimate by $92,000. For the tenth case, you would under-
estimate by $248,000. Remember that the mean is that value that each case 
would get if the total value of income (not the cases) were evenly distributed. 
The tenth individual would have to relinquish $248,000 to the redistribution 
pool. The first person would receive a subsidy of $92,000.

We now have a listing of ten deviation scores. We now need to summarize 
that listing. Remember that when we had ten actual incomes (xi), we com-
puted the mean as a summary measure of the distribution. It would therefore 
make sense to summarize the distribution of ten deviation scores by calculating 
their mean:

 d
x X

Ni

i
i

N

=
−

=
∑( )

1  (4.12)

 TABLE 4.3 Deviation Scores of Income

Case xi di

(xi − X
–

)

i = 1 $20,000 −$92,000
i = 2 $20,000 −$92,000
i = 3 $30,000 −$82,000
i = 4 $40,000 −$72,000
i = 5 $50,000 −$62,000
i = 6 $90,000 −$22,000
i = 7 $90,000 −$22,000
i = 8 $100,000 −$12,000
i = 9 $320,000 +$208,000
i = 10 $360,000 +$248,000
Mean $112,000
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We have a problem. Unfortunately, the mean of the deviation score for this 
distribution, and for every distribution, is equal to 0. Why? Remember, the 
mean is that value that balances the case values (i.e., the point of redistribu-
tion). Guessing the mean for each case would force us to totally overestimate 
by as much as we totally underestimate. The amount that would be taken 
from the top two income earners ($456,000) would be redistributed to the 
other eight individuals (check this calculation).

A statistic that always equals 0 is obviously not very useful. We need to 
find some way to prevent the negative deviation scores from cancelling out 
the positive deviation scores. Recall your basic math training. One way to 
get rid of the negativity problem is to take the absolute value of a score (treat 
it as a positive value), and the other is to square the number.

Table 4.4 redisplays the absolute deviation scores and the squared deviation 
scores listed. Two new mean-based measures can now be calculated. One 
calculates the mean of the absolute deviations, and the other the mean of 
the squared deviations. The first, called the absolute deviation, or, as I like to 
call it, mean absolute deviation, is calculated as follows.

 TABLE 4.4 Absolute and Squared Deviation Scores of Income

Case xi di

(xi − X
–

)
| di |
| (xi − X

–
) |

di
2

(xi − X
–

)2

E10

i = 1 $20,000 −$92,000 $92,000 $$.8464
i = 2 $20,000 −$92,000 $92,000 $$.8464
i = 3 $30,000 −$82,000 $82,000 $$.6724
i = 4 $40,000 −$72,000 $72,000 $$.5184
i = 5 $50,000 −$62,000 $62,000 $$.3844
i = 6 $90,000 −$22,000 $22,000 $$.0484
i = 7 $90,000 −$22,000 $22,000 $$.0484
i = 8 $100,000 −$12,000 $12,000 $$.0144
i = 9 $320,000 +$208,000 $208,000 $$4.3264
i = 10 $360,000 +$248,000 $248,000 $$6.1504

Mean $112,000 $0 $91,200 $$1.3856

Mean Absolute Deviation

 d
x X

Ni

i
i

N

=
−

=
∑ ( )

1   (4.13)
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First take the absolute value of each of the deviation scores (xi − X– ), and then  
compute the mean of those absolute values. For our distribution, the MAD 
(absolute or mean absolute deviation) equals $91,200. On mean average, 
each individual’s income varies from the mean by $91,200. If we expected 
everyone’s income to be equal to the mean (i.e., the same), the actual observed 
incomes would be off, on mean average, by $91,200. Note that with the 
MAD, direction is not taken into account. We are just computing generic 
differences. We don’t concern ourselves with whether or not we are overes-
timating or underestimating, just that we would be misestimating by a certain 
amount. If we were to be penalized for guessing the mean for each individual, 
we can expect to be penalized, on mean average, $91,200. The MAD treats 
deviation scores like driving distances—the odometer on a car would increase 
by the same amount for each mile that we drive in any direction. The mean 
mileage for ten drivers would not consider direction.

If we were only concerned about describing distributions, the MAD would 
be a sufficient, easily interpretable measure of variation or dispersion. Because 
of our need also to make inferences about populations based on samples 
(discussion starts in Chapter 6), however, variation measures based on the 
squared deviations become more useful. We now turn to the calculation of 
a statistic called the variance. Note, however, that the basic formula (the 
mean) stays the same. What we add for each case is what changes. You will 
see that the variance is an essential part of the last statistical procedures 
covered in this text, regression analysis.

Variance (Mean Squared Deviation)

 d
x X

Ni

i
i

N

2 1

2

=
−( )

=
∑

 (4.14)

To compute the variance, we square each of the deviation scores (xi − X– ), and 
then take the mean of those squared deviations (add them and divide by the 
number of cases). Notice what happens to our measure. In the first place we 
wind up with an incredibly large set of numbers: (−92,000)2 equals 8,464,000,000. 
When we square dollars ($), we come up with squared dollars ($$). So the 
numbers are large and the units are confusing (squared inches make sense, but 
not any other squared unit of measurement). The sum (∑) of all the squared 
deviations is equal to $$138,560,000,000. Dividing by 10 (N) produces a 
variance for our distribution equal to $$13,856,000,000 (i.e., 13 billion, 856 
million squared dollars). In order to bring both the unit of measurement and 
magnitude of the value back to standard terms (thousands of dollars), we take 
the square root of the variance. This produces the most commonly used measure 
of dispersion for continuous data, the standard deviation.

variance The mean of the 
squared values of deviation 
scores.

MAD (absolute or mean 
absolute deviation) The 
mean of the absolute values 
of deviation scores.

standard deviation The 
square root of the variance.
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Standard Deviation

 d
x X

Ni

i
i

N

2 1

2

=
−( )

=
∑

 (4.15)

First, compute the variance (the mean of the squared deviations or error 
terms), and then take its square root. Remember, the final calculation is to 
compute the square root. Make sure that you don’t first take the square roots 
of each individual squared deviation score before you add them. The standard 
deviation of our distribution equals $117,711.51. Note that the standard 
deviation (sx) is higher than the MAD. That is because the larger deviation 
scores (computed from the outliers that positively skew our distribution) 
carry even greater weight when they are squared.4 There is, for the moment, 
no simple verbal description of the standard deviation. Consider it to be the 
same as the MAD, but with an extra penalty assigned for extremely incorrect 
(outlier) estimations.

We now have completed measures of central tendency and measures of 
variation or dispersion. We have introduced concepts of standardization, 
goodness of fit, paired comparisons, and the comparison of observations and 
expectations. Review all that you have learned. It comprises most of the 
building-block concepts of statistical theory. You have also learned how to 
create and interpret generic formulas, including some that seem rather bizarre 
at first glance (IQV and standard deviation). Other than the concepts of 
relative placement and association, you are well on your way to understanding 
statistics.

Sidebar 4.2: The Polarization of Congress

Do you ever get the sense that the U.S. Congress has become polarized recently? One (and only 
one) way to measure this is to look at the level of dispersion in support for the president. Each 
year, each member of Congress is rated according to the percentage of times that he/she supported 
the president on legislation for which his position was known. Assuming that a greater difference 
denotes a larger divergence between the parties (and further investigation supports this—see 
Figures 4.4 and 4.5), any increase in the range and MAD of presidential support scores would be 
indicative of increased polarization. This polarization can be caused by greater ideological differ-
ences between the parties (as well as greater consistency within each one with few in the middle), 
an indication that parties are offering increasingly greater choices. It may also indicate that, in 
order to make political points, members of the opposition are not willing to grant the president 
a victory and, perhaps, the president’s party is willing to do so.
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In 1981, the first year of Republican Ronald Reagan’s presidency, the range of presidential 
support scores was 84%; that is, there was an 84% (91% if generally non-policy unanimous votes 
are excluded) difference between the support percentage of the most supportive Congress member 
and the least. In 2009, the first year of Democrat Barack Obama’s presidency, the range had 
increased to 96% (98%). Of course, ranges are influenced by outliers, and perhaps a few extreme 
outliers anchored both ends. In order to keep these outliers in check, the MADs for each year 
was also calculated. The results were 15.6% (20.0%) in 1981 and 30.2% (36.3%) in 2009.

My thanks to Professor George C. Edwards III for compiling and granting permission to use 
the data from which these results were derived: http://presdata.tamu.edu/ArchiveData/prezscor.
html.
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FIGURE 4.4 Presidential Support Scores, 1981
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FIGURE 4.5 Presidential Support Scores, 2009

http://presdata.tamu.edu/ArchiveData/prezscor.html
http://presdata.tamu.edu/ArchiveData/prezscor.html
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 A SUMMARY EXAMPLE WITH AGGREGATED DATA

Table 4.5 lists the 25 European Union countries admitted as of 2005. The 
figures refer to the percentages of respondents in each country who were 
satisfied with how democracy worked in the EU, ranked from the country 
most satisfied to the country least satisfied.5 The median (52%) and the 
mean (52.7%) are fairly close, indicating a small positive skew (check the 
calculations). In half of the nations, 52% or less of the sample was satisfied 
with democracy in the EU; in half, the satisfaction level was 52% or more. 
Although the mean for the 25 nations is 52.7%, the percentage satisfaction 
for the entire European Union (composed of those 25 nations) is only 
about 49%. Why the difference? Once again, as was the case with states 
within the United States, the mean of the countries does not take into 
account the difference in country populations. The fewer than half a million 
residents (or at least the sample of residents) from Malta carry as much 
weight in the calculation of the mean as do the roughly 80 million resi-
dents of Germany.

Now, compute the range, the IQR, and, using that mean figure, the 
deviation scores, the mean absolute value of the deviation scores, and then 
the variance and standard deviation. You should come up with the fol-
lowing. The range of percentage values is 25%; that is, no country’s citizens 
collectively differed by more than 25% from any other country in their 
positive assessment of democracy in the EU. The IQR would assess the 
maximum difference between the middle 50% of the distribution of coun-
tries. With 25 countries, the IQR would cut out the lower “6.25 countries” 
and the upper “18.75” countries—leaving us with the middle 12.5 coun-
tries, or 50%. We, therefore, after ranking the countries from lowest to 
highest proportional support, subtract the value of the 7th country (in 
which the 6.25 case would reside—Finland) from the 19th (Czech Repub-
lic). The IQR is equal to 10%; that is, the middle 50% of countries do 
not vary in their support by more than 10%.6 The MAD and standard 
deviations should be 5.67% and 7.24% respectively. Try the calculations 
yourself.
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 TABLE 4.5 Percentage of Sampled Individuals 

in Each Country Satisfied with the Level of 

Democracy in the European Union

Country %

Entire EU 49
Luxembourg 66
Belgium 65
Slovenia 65
Ireland 61
Denmark 60
Spain 59
Czech Rep. 58
Cyprus 57
Italy 53
Estonia 53
Malta 53
Hungary 53
Latvia 52
Poland 52
Greece 52
Portugal 49
Slovakia 49
Lithuania 49
Finland 48
Germany 47
Austria 46
France 45
Sweden 42
The Netherlands 42
United Kingdom 41

 KEY TERMS

deviation score (91)

goodness of fit measure (78)

index of diversity (84)

index of qualitative  
variation (85)

interquartile range (90)

MAD (absolute or mean absolute 
deviation) (94)

range (90)

standard deviation (94)

variance (94)

variation ratio (79)
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 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the SPSS 
and Stata manuals that accompany this text. Ranges, variances, and standard 
deviations can be calculated as part of a frequency distribution (Section 4.1). 
Remember to suppress the actual frequency tables if you don’t want too much 
output.

1. Interpret the following VRs: .00, 1.00, .43.
2. The modal ethnicity for a certain group of 140 European Union legisla-

tors is German. The VR is .7. How many Germans are in that group?
3. The MAD is calculated for the number of terms served by each of those 

140 legislators. That MAD is 2. Explain what that “2” represents.
4. Compute and interpret the VR and IQV for each of our three category 

listings of party ID presented in Chapter 2, Exercise 9.
5. Exam scores for a class of 200 students produce a standard deviation of 0. 

What can be said about the exam scores of those 200 students?
6. Compute and interpret the IQV for the second and third ideological dis-

tributions in this chapter.
7. Compute the range, MAD, and standard deviations for the two distribu-

tions of PAC contributions listed in Exercise 9 in Chapter 3. Notice how 
the difference between the MAD and the standard deviations changes 
from one distribution to the other. Why?

8. Compute, interpret, and compare the VR s and the IQVs for the Califor-
nia and Utah gubernatorial races in Chapter 2.

9. Following is a listing of the 1996 presidential support scores for each of 
the 17 Illinois members of the U.S. House of Representatives who won re-  
election in 1996. The score represents the proportion of times that each 
Congress member supported the president (Clinton) on a bill on which 
he had a stated position. The party of the member is listed along with his/
her respective score. Compute and interpret the median, mean, range, 
and MAD for each of the following: all 17 members, all Democrats, and 
all Republicans. For all statistics calculated, compare the results between 
Democrats and Republicans. You must show all calculations. Don’t just 
give the results. (Presidential support scores as well as a host of other dis-
trict data for the U.S. House of Representatives from 2008 to 2012 can 
be analyzed with data supplied with the SPSS and Stata manuals that 
accompany this volume.)

10. Turn to the list of African presidential elections in Chapter 3 (Exercise 
13). Compute and interpret the range, MAD, and standard deviation.

11. Compute the range, MAD, and standard deviation for the two election 
lists found in Exercise 11 in Chapter 3.
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12. Turn to your class survey. Compute and interpret the VR and IQV for 
one of your purely nominal variables (with at least three categories). Com-
pute and interpret the range, IQR, MAD, and standard deviation of one 
of your interval variables (if applicable).

13. See Chapter 3, Exercise 15 (Three separate assignments possible).
a. Compute the range and the MAD for each of the three vote distribu-

tions. Describe and interpret fully what each figure tells you in words. 
(For example, don’t just calculate the MAD; describe what it tells you 
about this group of counties.)

b. Now, do the same for only the Democratic and, separately, only the 
Republican-leaning counties. Be complete in your calculation and 
answers.

14. Using the data in Question 13, compute the range and MAD for both 
the county vote for Obama and the county vote for Feinstein for all 16 
counties. Describe and interpret fully what each figure tells you in words.

 NOTES

1 If our base from which to guess is all registered (17,205,883) or eligible voters 
(23,551,699), then our mode changes to that category representing those who 
did not vote for a candidate. What would be the variation ratio for each?

2 Alternately, one can use percentages (relative frequencies). N then becomes 100 
as the total of all proportions must equal 100%.

 TABLE 4.6 Presidential Support Scores for 17 Illinois U.S. House Members, 1996*

CD1 Rush (D) 78%
CD2 Jackson (D) 85%
CD3 Lipinski (D) 65%
CD4 Guitierrez (D) 81%
CD6 Hyde (R) 39%
CD8 Crane (R) 34%
CD9 Yates (D) 72%
CD10 Porter (R) 42%
CD11 Weller (R) 41%
CD12 Costello (D) 66%
CD13 Fawell (R) 43%
CD14 Hastert (R) 37%
CD15 Ewing (R) 34%
CD16 Manzullo (R) 33%
CD17 Evans (D) 75%
CD18 LaHood (R) 39%
CD19 Poshard (D) 61%

*Two members were not in office long enough in 1996 to have been included.
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3 Many texts use alternate and easier formulas for proportions that produce the 
same results. One is the following:

K
K

pi−
−( )∑1

1 2  where i refers to each of the different categories

My preference is based on understanding the comparison between observed and 
expected frequencies that allow students a more intuitive understanding of 
the IQV.

4 A simple example will demonstrate this point. The mean of two numbers, 2 
and 4, is 3. If we first square those numbers (4, 16), then the mean equals 10. 
The square root of that mean is 3.16.

5 Source: Eurobarometer 63: Public Opinion in the European Union (European 
Commission, 2005).

6 Many computer programs will artificially parse out the actual differences among 
the cases when calculating the median and IQR. You may see fractional differences 
between your hand calculations and what these programs produce. SPSS, for 
example, produces an IQR of 11%.
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Learning Objectives:

 ■ To learn the importance of standardizing measures
 ■ To understand the concept of a normal distribution
 ■ To learn to interpret individual Z-scores
 ■ To begin to understand the idea of confidence intervals
 ■ To understand what confidence intervals can and can’t tell us

As we have seen, standard deviations are not yet easily interpretable, except as 
a variation of the mean absolute deviation (MAD) with an extra penalty 
assessed for the greatest deviations from the mean. If we were only concerned 
about description, the MAD would probably be the only measure of dispersion 
necessary. If we are concerned about making inferences about populations 
from randomly drawn samples, however, the standard deviation becomes 
necessary. Standard deviations are fairly consistent from sample to sample 
drawn from any given population, provided the sample sizes are relatively large.
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We’ll get back to the use of sample standard deviations later. For now, let 
us address their use in the computation of something new, standard or (I 
prefer) standardized scores. We have already introduced the concept of stan-
dardization. Standardization allows for comparisons between and among 
different distributions. Relative frequencies, for example, standardize absolute 
frequencies by dividing them by the total number of cases in their distribu-
tion. All relative distributions add to the same number, 100%, regardless of 
the size (N) of the distribution. The index of qualitative variation ranges 
between 0 and 1 regardless of the number of categories (K) or cases (N) in 
the distribution. Let us now move to the computation of standardized scores.

 HOW WELL OFF ARE WE?

Consider the following problem. A major part of the political dialogue in any 
election is the question of whether or not one believes he/she is better off than 
in the past or will be better off in the future. Ronald Reagan’s parting line in 
the 1980 presidential debate, “Are you better off now than you were four years 
ago?” has become, in varying forms, part of the vernacular of challengers in 
campaigns. For each of us, the notion of “better off” is premised not only on 
the basis of where we are financially at any given time, but where we expected 
to be. For decades after the Second World War, for example, families prided 
themselves on leaving their children better off than they had been. We had 
developed the expectation (now badly bruised) that each generation would be 
better off than the ones preceding it. A noble idea, but how do we measure 
“better off”? Allow me to use a personal example. When I was 55 (2006), my 
combined family income was approximately $100,000. When my father was 
55 (1973), his last year of full-time employment, his family income was 
approximately $10,000. Who was better off? Economists can provide us with 
a precise comparison based on an assessment of how much purchasing power 
each income has in its respective time period. Using the standard consumer 
price index (CPI) inflation scale, we observe that the purchasing power of 
$100,000 in 2006 was equivalent to the purchasing power of approximately 
$22,000 in 1973.1 Looking at this from my father’s perspective, he would 
have had to have made more than $45,000 to equal my purchasing power. 
By either calculation, I’m much better off financially. Or am I?

One’s assessment of financial worth or living standard is often premised 
on more than just absolute purchasing power or a simple observation of what 
one can buy. That assessment often also includes an evaluation of how well 
off one is compared to or relative to one’s peers. Poor people sometimes feel 
fairly well off if they live in a poor area, as long as they are relatively better 
off than most of their neighbors. By the same token, a teenager in Beverly 
Hills, Malibu, or Marin County, California, may feel relatively deprived even 
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if his standard of living is objectively rather high. We oftentimes make judg-
ments based on our relative position in society, not just an absolute measure 
of wealth. Expectations of what constitutes a decent standard of living change 
(smartphones, laptops, or tablets) over time and influence the political battle 
over what we expect families, societies, and governments to provide.

What if, in 2006, my wife and I earned less than most of the people with 
whom we regularly associated, or more than just a small percentage, and my 
father and mother earned more than most of their equivalent peer group? 
My parents might have felt relatively better off, even if they had less expensive 
and fewer if any cars (none) and TVs (1) and a less elegant home (a three-room 
apartment to be exact) than their son at the same time in his life. Their 
judgment was based not on what they could purchase in absolute terms, but 
what they could purchase in comparison to others with whom they associated. 
In hindsight, we might observe fewer material goods in my father’s household, 
but those goods, after serving in the military for five years during World War 
II, might have more than exceeded his expectations.

How do we precisely compare relative worth (i.e., relative to others in 
their area)? First, as in our calculation of relative frequencies, we need to 
establish the peer base against which to compare, or standardize, each salary. 
Is it one’s colleagues or neighbors, or the residents of an entire city? For sake 
of argument, let’s make the base the large, metropolitan neighborhood in 
which each lived. Next we need to determine the proportion of households 
in each neighborhood whose income they each exceeded. The assessment of 
wealth then becomes not better off by how much, but rather better off than 
how many, or, since the size of the neighborhoods may differ, better off than 
“what proportion.” Both father and son can be ranked by their incomes, as 
we did to calculate the median, against others in their neighborhood to 
determine their income percentile (i.e., the percentage of households whose 
income they exceeded). My parents might have been better off than roughly 

Sidebar 5.1: Standardization in Surveys

Certain data-gathering organizations perform a routine standardization of particular measures in 
order to allow for relative comparisons across countries and time. In listing income categories for 
respondents in each of the countries in the regular Eurobarometer survey, for example, incomes are 
standardized into quintiles (five equally populated 20% of the population categories) to standard-
ize relative income within countries and across time. In a poorer country, one can earn the same 
salary, measured in euros, than a colleague in a wealthier one. What each can buy may be relatively 
equal. However, the individual in the poorer country would be relatively better off as that person 
would be able to buy more than a higher percentage of others in her country, thus placing her in a 
higher quintile (see Exercise 6 at the end of this chapter).
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90% of their neighborhood’s households. In 2006 in California, my family 
might have been better off than roughly only 68% of ours. In relative terms, 
therefore, my parents were better off.

You are probably most familiar with the notion of relative standardization 
when you look at scores from some national testing programs such as the 
SAT, GRE, MCAT, or LSAT. Your absolute score is only important as it 
places you in a certain position relative to others who took the exam. Stan-
dardized scores can be converted into percentiles. An LSAT score of 160 is 
meaningless except that it may place you in the top 20% of exam takers. It 
is this relative position that is of interest to law schools, not your actual score, 
although the two should be positively and closely related.2 Some state uni-
versity systems allow entry to the top 9% or 10% of graduates of each high 
school. The absolute educational talent of those students is not as important 
as the fact that they have scored better than 90% of their local peers.

We can always figure out an individual’s percentile on any measure by 
ranking all individuals from lowest to highest and counting off until we reach 
the appropriate cutoff. We have already employed this technique in the 
calculation of the median, the point that defines the 50th percentile. Rank 
ordering a large number of cases within a distribution can be tedious, although 
computers can help. If the distribution is of a known shape, however, calculus 
can be employed to measure the points that define each percentile cutoff. 
One commonly analyzed distribution is what is called the normal distribu-
tion, a particular family of bell-shaped symmetrical curves, which match or 
approximate distributions of cases for many different types of variables such 
as age, height, and weight. The following discussion will assume that the 
family incomes of our two neighborhoods were normally distributed. Although 
this may not be the case, the logic that follows would work with any type 
of distribution in which we rank order cases from the lowest to the highest 
value. The formula and calculations would be different, but the logic would 
remain the same. We need to start with one, so we’ll start with the normal 
distribution. Later, we’ll see why this particular unique distribution is so 
important.

We first need to know if each family earned more or less than the mean 
for its neighborhood and by how much. We’ve already calculated this figure. 
It’s the deviation score discussed in Chapter 4:

 d x Xi i= −   (5.1)

If the mean household income in my parents’ neighborhood was $8,000, 
then their deviation score would be +$2,000 (i.e., they earned $2,000 more 
than the mean income in their neighborhood that year). What if I lived in 
a fairly upper-middle-class neighborhood with a mean income of $80,000? 
My family deviation score is +$20,000 (i.e., we earned $20,000 more than 
the mean income in our neighborhood). So were we relatively better off? 

normal distribution A family 
of symmetrical distribu-
tions whose mathematical 
equation is determined 
by its mean and standard 
deviation.
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That depends. One’s relative standing is not only a function of how much 
one is above or below the mean, but also how diverse their neighborhood’s 
income is. The distribution of incomes in my father’s neighborhood might not 
have varied much. An income of $10,000 might have been at the very top of 
that neighborhood’s income distribution. The distribution of incomes in our 
California neighborhood might vary by a much wider amount, placing an income 
of $100,000 relatively closer to the mean salary than the 100th percentile.

 STANDARDIZATION AVND Z-SCORES

Because the spread of each distribution might vary, we need to standardize the 
respective deviation scores by some measure of that dispersion or distribution. 
As we discussed in Chapter 4, the standard deviation is the most commonly 
used measure of dispersion for interval data. The standardized deviation score 
is then calculated as the deviation score divided by the standard deviation for 
the given distribution. If the data are normally distributed, with a mean of 0 
and a standard deviation of 1, this standard score, or, as I prefer, standardized 
score, is called a Z-score and is represented by the following equation:

 Z
x X

i
i

x

=
−

s
 (5.2)

where xi is the observed value for any individual case (i)
     X  is the mean of all the values in the distribution that contains xi

     sx  is the standard deviation of all of the individual values in that  
distribution

The Z-score standardizes any particular value, in our example income, in 
relation to the distribution of which it is a part. That distribution is defined 
by both its mean ( X ) and its standard deviation (sx). Let us say that we find 
from census figures that the standard deviation of incomes for my neighbor-
hood was $20,000, and $1,000 for my parents’ neighborhood. Let’s calculate 
the Z-score for each of us, father and son, respectively:

 Z father =
−

=
$ , $ ,

$ ,
10 000 8 000

1 000
2   

(5.3)
 Zson =

−
=

$ , $ ,
$ ,

100 000 80 000
20 000

1

Z-scores convert absolute deviations (how many dollars above or below 
the mean is our income?) to standardized ones (how many standard deviations 
above or below the mean is our income?). My parents earned 2 standard 

Z-score A measure of devi-
ation from the mean stan-
dardized by the standard 
deviation of a distribution 
when the mean is 0 and the 
standard deviation is 1.



S T A N D A R D I Z E D  S C O R E S / N O R M A L  D I S T R I B U T I O N S

107

deviations above the mean of their neighborhood. We earned only 1 standard 
deviation above the mean of ours. We were therefore relatively worse off 
(i.e., relatively worse off for our local comparison group) than my parents 
were at the same point in their lives, even if our purchasing power was 
greater.

Before we move on to a more precise interpretation of these values, one 
important point needs to be made. Notice that when we computed Z-scores 
the unit of measurement ($) drops out. This allows us to make standardized 
relative judgments about incomes across time (1973 dollars vs. 2006 dollars) 
and across cultures (dollars vs. euros or pesos). Again remember that these 
are comparisons of relative worth, not absolute purchasing power. To figure 
out the latter, we would need to turn to inflation charts and currency con-
verters. As we will see when we discuss regression (Chapter 11), standardized 
scores also allow us to make comparisons between distributions measuring 
entirely different properties (e.g., education [measured in years] and income 
[measured in dollars]). Z-scores have no differential unit of measurement. 
The units are measured as standard deviations and are therefore universally 
comparable.

A normal distribution, which we are assuming our neighborhood incomes 
follow, has a well-defined shape and allows us to pinpoint the exact percentile 
of any particular value. That percentile defines the proportion of all cases in 
the distribution below that value. A normal distribution is presented in 
Figure 5.1, along with the percentile cutoffs for each value associated with a 
whole Z-score. Other types of distributions could be similarly plotted, along 
with their corresponding cutoffs.

Since the distribution is symmetrical about the mean, the mean and the 
median are the same. As it is unimodal, the mode also equals the median 
and mean. Fifty percent of the distribution must therefore lie at or below 
the mean, and 50% at or above. An individual value equal to the mean 
would have a Z-score of 0 since that value would not deviate at all from the 
mean. In 2006, an income of $80,000 would be associated with a Z-score 
of 0, corresponding to the 50th percentile. Half of the neighborhood families 
earned $80,000 or less, and half $80,000 or more. In a normal distribution, 
34.13% of all cases lie between the mean and a Z-score of +1, and, since 
the distribution is symmetrical, 34.13% lie between the mean and a Z-score 
of −1. An additional 13.60% of the normal distribution lies between a Z-score 
of +1 and +2, or −1 and −2. Adding these figures, 47.73% of all the cases 
in a normal distribution lie between the mean (Z = 0) and a Z-score of +2, 
and 47.73% between the mean and a Z-score of −2. In a normal distribution, 
95.46% of all the cases lie between a Z-score of −2 and +2, and 68.26% 
between −1 and +1. An additional 2.13% of all cases lie between a Z-score 
of +2 and +3, or −2 and −3; 49.86% of all the cases lie between the mean 
and a value associated with a Z-score of +3 or −3; and 99.72% of all the 
cases lie between these two values.
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Let us return to our example. My family Z-score of +1 placed us at the 
84.13% cutoff or percentile of the income distribution of our neighborhood 
(50% + 34.13%). In 2006, we earned more than 84.13% of the families in 
our area and less than the remaining 15.87% (Figure 5.2).

0.4

0.3

0.2

0.1

0.0

X

−3 −2 −1 0 1 2 3
Z score

%1.0%1.0
%1.2%1.2 13.6%

34.1% 34.1%

13.6%

FIGURE 5.1 The Normal Distribution (Z )

−3 −2 −1 0 1 2 3

$100,000 (2006)

FIGURE 5.2 Z = 1
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My parents’ income computed to a Z-score of +2 (see Figure 5.3), thereby 
placing them at the 97.73 percentile (50% + 47.73%). Rounding off, we 
can say that they ranked in the upper 2.5% of their distribution (actually 
2.17%). My parents were therefore relatively better off because they earned 
more than an additional 13.6% of all the individuals in their comparison 
group than we did. Note that these percentiles refer to proportion of cases, 
not to how much more each made. They were relatively better off because 
they earned more than a higher proportion of individuals in their neighbor-
hood. If our views about our living standards were based exclusively on our 
relative worth, then our expectations of government policy and our evaluations 
of the promises made by candidates would most likely have been different.

−3 −2 −1 0 1 2 3

$10,000 (1973)

Z

FIGURE 5.3 Z = 2

A Policy Example

What if, at both points in time, the local government decided to apply a 
surtax to those families whose incomes placed them in the top 10% of income 
earners (let’s assume that the relevant comparison group for father and son 
was all citizens within that local government’s jurisdiction)? Although my 
father had a much lower absolute standard of living, he would have been hit 
by that tax as his relative status placed him in the top 10% of his comparison 
group. Living a much more comfortable life, but within a wealthier commu-
nity, I would be free of that extra assessment.

As it is, most government programs that deal with taxes and benefits are 
not set by percentiles, but usually by actual dollar amounts. Surtaxes usually 
apply across the board to everyone who pays taxes. To help pay for the 
Vietnam War, a 10% surtax was added to each individual’s already existing 
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tax liability (therefore exacting a greater percentage from high-income earners 
who were originally taxed at a higher marginal rates). Recently, surtaxes on 
those who made more than a certain specified income (not percentile) have 
been suggested as a way to pay for the revamping of our nation’s health care 
system. Low-income benefits programs operate in much the same way, with 
cutoffs for eligibility based not on one’s percentile ranking but on a certain 
dollar income figure based on the poverty rate. The financial problems with 
these programs occur as the costs can swing even more widely than one 
based on percentiles. During a recession, for example, the percentage of 
individuals who fall below the pre-established cutoff rises dramatically, thereby 
increasing the cost of the program. The alternative is to only provide benefits 
to those below a certain percentile threshold—perhaps more fiscally sound 
but morally questionable. Of course, one can achieve similar results by 
increasing the absolute income cutoff or changing how income is measured, 
thus allowing a smaller percentage of families to qualify. In 2011, for example, 
Michigan added a family’s bank assets over $5,000 and vehicles valued over 
$15,000 to the base from which food stamp eligibility was determined. The 
state argued that it could no longer handle the growing number of recipients 
who, by past income determinations, increased by more than 40% from 
2008 to 2011.3

Furthering Our Understanding of Z-Scores

Z-scores are not always whole integers. A 2006 salary of $87,000 would 
correspond to a Z-score of +.35 (.35 standard deviations above the mean). 
Table 5.1 lists the proportions of cases that fall between the mean (Z = 0) 
and any given positive or negative Z-score. Look down the leftmost column 
to find a given Z-score carried out to only one decimal place. Stop at the 
line beginning with the Z-score of .3. Next move along that line until you 
reach the column headed by .05. This carries the score to a second decimal 
place. At the intersection of that line (.3) and column (.05), you will find a 
proportion associated with a Z-score of .35, .1368. In a normal distribution, 
13.68% of the area, or cases, is found between the mean (Z = 0) and a value 
associated with a Z-score of plus or minus .35. Since 50% of all cases must 
lie below the mean (the distribution is symmetrical), then a family earning 
$87,000 earned more than 63.68% (50% + 13.68%) of all individuals in 
that neighborhood and less than 36.32% (100% − 63.68%) (see Figure 5.4).

Z-scores can also be negative (values are below the mean). In 2006, a 
family with an income of $50,000 would have a corresponding Z-score of 
−1.5 (1.5 standard deviations below the mean); 43.32% of the area under 
the curve (i.e., 43.32% of all the cases in a normal distribution) would lie 
between the mean and a Z of −1.5 (see Figure 5.5). A family earning $50,000 
therefore made more than only 6.68% of the families in their neighborhood 
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 TABLE 5.1 Areas under the Normal Curve

Proportion of Cases between a Z-Score of 0 and a Z-Score of ± Z

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

 .0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
 .1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
 .2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
 .3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
 .4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
 .5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

 .6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
 .7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
 .8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
 .9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
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and less than 93.32% (that 43.32% plus the 50% above the mean). Make 
sure that you understand how to use the chart by finding the percentile 
rankings corresponding to a Z-score of +1.12 (86.86), −.75 (22.66), and 1.96 
(97.50). I suggest that you always draw out a normal curve and place a mark 
close to where the Z-score would be. This prevents you from confusing 
positive (always above the mean and higher than the 50th percentile) and 
negative (always below the mean and below the 50th percentile) scores.

−3 −2 −1 0 1 2 3

$87,000 (2006)

FIGURE 5.4 Z = .35

−3 −2 −1 0 1 2 3

$50,000 (2006)

FIGURE 5.5 Z = −1.5
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Relative Placement:  
Why a Student Should Never Ask That Grades Be Curved

The Z-score formula can be quite useful in determining relative placement. 
As an example, let us say that you scored 90 points on an exam (out of 
100). Should you receive an “A” in this class? Well, if the professor has 
made an objective judgment that 90 out of 100 constitutes “A” performance, 
then the answer is yes. If the professor, on the other hand, makes relative 
judgments, then your grade is dependent on how well you have done relative 
to others who have taken the test. If the mean exam score is 85, with a 
standard deviation of 5 points, then your corresponding Z-score is +1, 
placing you in the top 15.87% of the class. If your professor will only give 
“A’s” to the top 10%, then you won’t receive an “A,” no matter how well 
you may have otherwise, objectively, done. What is the minimal score 
needed to receive an “A”? In order to answer this question, we need to find 
the Z-score that corresponds to the top 10%, that is, the 90% cutoff. 
Remembering that the chart lists proportions on each side of a symmetrical 
normal curve, we need to look at the body of the chart to find a proportion 
close to .4000 (50% + 40% = 90%). A Z-score of 1.28 is pretty close (see 
Figure 5.6).

−3 −2 −1 0 1 2 3

90th percentile = A cutoff 
Z

FIGURE 5.6 The 90th Percentile
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Now, enter that Z-score into the Z-score equation, and solve for the actual 
score (x90 will be used to designate the score corresponding to the 90th 
percentile) that corresponds to that cutoff:

1.28 = (x90 − 85 pts)/5 pts
6.40 pts = x90 − 85 pts

x90 = 91.4 pts

You would have to earn at least 91.4 points, or 92 if a fraction is not possible, 
to place you above the 90% cutoff and receive an “A.” Close, but, as they 
say, no cigar. Students often ask their professors to “curve” their grades, 
assuming that everyone gets bumped up. A curve just means granting grades 
based on relative placement. If the grades are normally distributed (i.e., fit 
in the normal “curve”), and the professor only grants A’s to the top 10%, 
then only a score of 92 or better will do. This is true regardless of the diffi-
culty level of the exam or the mean average intelligence of the class. If you 
are in a class of geniuses with easy exams, watch what you ask for.

Sidebar 5.2: Forced Ranking and Job Discrimination

For years, companies have used a ranking method to promote, give out bonuses to, or fire 
employees. One controversial case involved Ford Motor Company’s attempt to rate its managers 
on an A, B, C scale, with the top 10% rated an A and the bottom 10% rated a C. Two consecutive 
“C” ratings could lead to a manager’s dismissal—even if that manager met or exceeded all of the 
expectations of his job. It was not absolute but relative performance that mattered. The AARP 
and other organizations argued that this was a less than subtle way of releasing older and more 
expensive employees, especially in light of the fact that the ranking method seemed somewhat 
arbitrarily biased against older workers. Ford eventually settled out of court for $10.5 million. For 
a full discussion of forced ranking systems and their effects, see Meredith Myres, “Grades Are No 
Longer Just for Students: Forced Ranking, Discrimination, and the Quest to Attain a More Com-
petent Workforce,” Seton Hall Law Review 33 (2003): 681–709. The case in question is Siegel v. 
Ford Motor Co., No. 01–102583-CL (Mich. Circ. Ct. Wayne Co. Jan. 23, 2001).

Continuing the example, this professor wishes to grant an A+ to any 
student who scores in the top 2.5% of this class and an F to those in the 
bottom 2.5%. What are the corresponding actual exam scores?

Let’s first find the score below which a student would receive an F grade; 
97.5% of all scores would be above that cutoff. Fifty percent would be above 
the mean (85, Z = 0), and the remaining 47.5% would be between that score 
and the mean. Look at the Z-score table. Find the figure .4750. The corre-
sponding Z-score is 1.96; 47.5% of all cases lie between a Z-score of 0 (the 
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mean) and a Z-score of 1.96 (upper end), and 47.5% of all cases lie between 
the mean and a Z-score of −1.96. The 2.5% cutoff is therefore associated 
with a Z-score of −1.96 (see Figure 5.7).

Now solve for the unknown (i.e., the exact score associated with that 
cutoff):

−1.96 = (x2.5 − 85 pts)/5 pts
−9.80 pts = x2.5 − 85 pts

x2.5 = 75.2 pts

Rounding off, anyone who scores 75 points or less fails the exam. Note that 
a score of 75 would normally be associated with a “C” grade. However, we 
are looking at relative placement. This might be a smart class, or this might 
be an easy exam. It doesn’t matter. What matters is that a grade below 75 
points places you in the bottom 2.5% of the class. Thus, you fail.

An A+ will be given to anyone who scored in the upper 2.5% (see 
 Figure 5.8). That score is associated with a Z of +1.96 (50% below the mean, 
47.50% above).

The calculation is as follows:

+1.96 = (x97.5 − 85 pts)/5 pts
+9.80 pts = x97.5 − 85 pts

x97.5 = 94.8 pts

Rounding off, anyone who scores 95 points or better receives an A+.

−3 −2 −1 0 1 2 3

passing cutoff

FIGURE 5.7 The 2.5th Percentile
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Let’s review this one other way. The middle 95% of all exam takers would 
have scores between these two cutoffs (47.5% below the mean, 47.5% above). 
The corresponding actual values are 75.2 and 94.8. The corresponding Z-scores 
are −1.96 and +1.96. In a normal distribution, 95% of the cases would always 
lie between these two Z-scores. The range of that middle 95% in this example 
is 94.8 − 75.2, or 19.6 points (3.92 standard deviations). In a fashion similar 
to one interpretation of the range, if you randomly chose two individuals 
within the middle 95% of all exam takers, they would differ by no more 
than 19.6 points.

Remember the interquartile range? That corresponds to the middle 50%. 
What are the corresponding Z-scores? Refer once more to the Z-score table. 
To find the relevant scores that border the middle 50%, we need to find a 
Z-score (− and +) that corresponds to a table value of .2500 (25% below the 
mean, 25% above). That value is somewhere between .67 and .68, so let’s 
call it .675. The middle 50% of all cases in a normal distribution will always 
lie between Z-scores of −.675 and +.675. The middle 50% will span across 
1.35 standard deviations. As a review, compute the actual scores between 
which 50% of all our exam takers lie (81.625 and 88.375 points).

Let’s end this chapter by going back to our original 2006 income example. 
In my neighborhood, the mean income was $80,000 with a standard deviation 

−3 −2 −1 0 1 2 3

97.5th percentile = A+ cutoff 

Z

FIGURE 5.8 The 97.5th Percentile
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of $20,000. Therefore, 97.5% of this neighborhood’s households had incomes 
below $119,200 because:

+1.96 = (x97.5 − $80,000)/$20,000
$39,200 = x97.5 − $80,000

x97.5 = $119,200

Similarly, 2.5% of the households had incomes below, and 97.5% will have 
incomes above $40,800 because:

−1.96 = (x2.5 − $80,000)/$20,000
−$39,200 = x2.5 − $80,000

x2.5 = $40,800

Ninety-five percent of all households in this town will have incomes between 
these two values (Figure 5.9), and we can represent this middle 95% range 
as follows:4

$40,800 < xi < $119,200

Next, note that if we were to randomly draw a household, the chance or 
probability of drawing a household with an income between these two values 

−3 −2 −1 0 1 2 3

x97.5x2.5  = $119,200 = $40,800

$40,800 <  xi  <  $119,200  

FIGURE 5.9 The Middle 95%
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would be .95 or 95%. Is it possible to randomly sample a household with 
an income of less than $40,800 or greater than $119,200? The answer is 
yes, but the probability of such a random draw is less than 5%. Thus, if we 
were placing bets on the incomes of households randomly drawn from this 
neighborhood, we could “safely” or “confidently” bet that each household 
drawn would earn between $40,800 and $119,200—“confidently” because 
we would chance being wrong only 5% of the time. Notice, that 5% refers 
only to how often we might be wrong (commonly called alpha error), not 
by how much. Five percent of the households earn incomes outside of that 
middle 95% range—2.5% below $40,800 and 2.5% above $119,200. This 
game of chance is much like the one we introduced in discussing the median. 
We could guess someone to be above the median, with a 50% chance of 
guessing correctly. We would be allowing ourselves a 50% confidence range 
(all on one side of the distribution). Fifty percent of all the cases would 
have values at or above the median value. In the current example, we are 
allowing ourselves a 95% confidence range (47.5% on each side of the 
distribution)—a pretty safe bet, but one that we will discover is common 
in statistical applications.

alpha error The probability 
of erroneously rejecting the 
null hypothesis.

Sidebar 5.3: The Prosecutor’s Fallacy

In court trials, probabilities are often offered as a way of providing evidence against a 
suspect—often incorrectly. Just because only 1% of a given population (incidence rate) carries 
a certain characteristic also carried by the suspect does not mean that there is only a 1% chance 
of the suspect being innocent. This “transposition of the conditional” is so commonly used that 
it has been named “the prosecutor’s fallacy.” Arguments have been made for a more thorough 
approach based on Bayes Theorem that would include the use of prior odds of being a suspect 
along with the incidence rate evidence offered. For three very useful overviews of the misinter-
pretation of evidence by both prosecutors and defense attorneys in criminal cases, see William 
C. Thompson and Edward L. Schumann, “Interpretation of Statistical Evidence in Criminal Trials: 
The Prosecutor’s Fallacy and the Defense Attorney’s Fallacy,” Law and Human Behavior 11, no. 3 
(Sep. 1987): 167–187; Philip Dawid, “Probability and Statistics in the Law,” Proceedings of the 
Tenth International Workshop on Artificial Intelligence and Statistics, January 6–8, 2005, Barba-
dos, edited by Zoubin Ghahramani, Robert G. Cowell, and Robert G. Cowell. http://www.gatsby.
ucl.ac.uk/aistats/fullpapers/123.pdf; and Michael O. Finkelstein, Basic Concepts of Probability and 
Statistics in the Law (Springer-Verlag, 2009). Bayes Theorem, which allows prior information to 
condition our interpretation of future outcomes, incidentally, has been successfully used by Nate 
Silver and other analysts to predict electoral outcomes.

http://www.gatsby.ucl.ac.uk/aistats/fullpapers/123.pdf
http://www.gatsby.ucl.ac.uk/aistats/fullpapers/123.pdf
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 A CAUTIONARY TALE

Let us proceed one step further. We are told that a household was ran-
domly drawn from a neighborhood in 2006, but not told which one. 
That household’s income was $40,000. Could we “confidently” guess that 
this household was not randomly drawn from our neighborhood (with a 
mean income of $80,000)? Yes. While the possibility exists, it is highly 
unlikely because the probability of randomly drawing a household from 
that town with an income below $40,800 is only 2.5% (we halved the 
5% figure because we are not even considering individuals who earn less 
than the mean; when we are only concerned about one side of the curve, 
we perform such a one-tailed test). Might we be wrong in rejecting them 
as residents of that neighborhood? Certainly, but the probability of being 
wrong in that  rejection is slim, and therefore we would be willing to take 
that chance.

Note that even if we are correct in stating that they are probably not 
residents of that town, this does not tell us what neighborhood they might 
be a resident of (although we may wish to guess that it has a higher mean 
income and/or a larger standard deviation). Several different neighborhoods 
might have household incomes that, if we computed their middle 95% range, 
would include $40,000. Certainly, a town whose mean income was $40,000 
is a possibility. So would a town with the same standard deviation ($20,000) 
but a higher mean of, say, $60,000. Being 1 standard deviation below the 
mean, this household’s income (Z = −1) would be greater than 15.87% of 
all households, certainly within that 95% range. Similarly, that income would 
be within the middle 95% range of a town with an income standard deviation 
of $10,000 and a mean income of $30,000 (Z = 1). There is no single pos-
sibility. If you understand this, you already understand a very important 
concept in the study of inferential statistics discussed in the next chapter. We 
will always be able to confidently reject some limited possibility (knowing 
that there is a slight chance of being wrong in rejecting that possibility). 
However, we can never state exactly what the random sampling procedure 
will produce. At best we can offer a range of outcomes within a certain 
confidence interval. With that knowledge, we will now turn to an intro-
duction to inferential statistics.

 KEY TERMS

alpha error (118)

confidence interval (119)

normal distribution (105)

Z-score (106)

confidence interval A range 
of values that we use to 
safely predict a random 
choice.
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 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the 
SPSS and Stata manuals that accompany this text. Means and standard 
deviations can be calculated as part of a frequency distribution (Section 4.1). 
Remember to suppress the actual frequency tables if you don’t want too much 
output.

 1. a. In any symmetrical distribution, what percentile would be associated 
with the mean value?
b. What Z-score?

 2. In a normal distribution, the mean will always equal the median. (T/F)
 3. We compare two scores on a normal distribution. We find that the first 

score has a Z that is 2.5 times the size of the second score’s Z. Is the corre-
sponding percentile of the first Z also 2.5 times the size of the percentile 
corresponding to the second score’s Z?

 4. What percentage of cases (or area under the normal curve) lie BELOW a 
Z-score of .87?

 5. If cases are normally distributed, what proportion of cases would lie 
between a Z-score of −1.0 and a Z-score of +1.73 (carry out to two deci-
mal places)?

 6. We wish to compare the relative standard of living for two government 
officials. One lives in an Italian village with a mean income of 20,500 euros 
and standard deviation of 4,800 euros. The other lives in a U.S. town, 
with a mean income of $52,000 and standard deviation of $22,750. Their 
respective incomes are 19,000 euros and $48,000, respectively. Who is 
relatively better off (compared to their locale)? Why?

 7. The mean taxable family income in a state is $42,000, with a standard devia-
tion of $17,000. That state’s legislature plans to issue a special tuition voucher 
to each family whose taxable income falls in the bottom 15% of the distri-
bution of family incomes. Assuming that taxable incomes are normally dis-
tributed (and that the voucher program passes constitutional muster), what 
is the maximum family taxable income that could be earned before being 
disqualified from the program? (You can use the closest applicable Z-score.)

 8. A survey is conducted in one European Union nation in 2012, asking 600 
respondents of voting age their views about newly re-elected U.S. president 
Barack Obama. One of the items in the survey asks the respondents to rate 
their feelings toward the U.S. president on a scale from 0 (very cold/negative) 
to 50 (neutral) to 100 (very positive/warm). The distribution of data is surpris-
ingly normal. The calculated values for these 600 individuals are as follows:

Mean = 70.4 degrees
Standard deviation = 9.6 degrees
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 a.  What percentage of respondents gave President Obama a scale 
rating above 85 degrees?

 b. What percentage gave him a rating below 65 degrees?
 c.  What would be the lowest and highest ratings that define the 

middle 95% of the ratings given by these 600 individuals?
9. For Question 8c, is it possible to randomly draw an individual who gave 

President Obama less than or more than the calculated ratings? What is 
the probability of doing so?

10. We collect information from the FEC (Federal Election Commission) 
cataloguing all individual contributions given to a presidential primary 
candidate’s election campaign. The distribution of those contributions is 
(surprisingly) normally distributed about the mean for that distribution. 
The mean is $575, with a standard deviation of $250. The candidate’s advis-
ers suggest giving out special certificates to those who contributed at least 
$100 (bronze), $250 (silver), $500 (gold), and $1,000 (platinum diamond). 
What percentage of contributors would receive each certification level? 
Again, drawing a normal curve will help you to understand the process here.

 NOTES

1 CPI index calculated from http://www.bls.gov/data/inflation_calculator.htm. 
One would also need to calculate locational differences in the cost of living 
between the two cities, but we can probably assume that, if anything, New 
York City’s living costs are equal, if not higher.

2 I recently consoled a student who had taken the LSAT (Law School 
Application Test) twice, received the same absolute score, but wound up 
with two different percentile placements. Evidently, in the same year, the 
quality of students taking the exam differed across examining periods.

3 “Michigan Changing Food Stamp Eligibility Rules,” AP: http://www.mlive.
com/politics/index.ssf/2011/09/michigan_changing_food_stamp_e.html.

4 We are using the middle 95% for our range of confidence. We could also 
reject any high income above which 95% of the households fell (one-tailed 
test). Looking at the normal table chart, the corresponding Z-score would 
be approximately −1.645 (5% above the mean). The 5% of the households 
would have incomes below $47,100 because:

−1.645 = (x5 − $80,000)/$20,000
−$32,900 = x5 − $80,000

x5 = $47,100

    We could then safely guess that a randomly drawn household would have 
an income below $47,100. For illustrative purposes, we chose the middle 
95%, however, much like we did in computing the interquartile range (i.e., 
the middle 50%).

    The discussion of one- versus two-tailed tests will be discussed further in 
the next chapter.

http://www.bls.gov/data/inflation_calculator.htm
http://www.mlive.com/politics/index.ssf/2011/09/michigan_changing_food_stamp_e.html
http://www.mlive.com/politics/index.ssf/2011/09/michigan_changing_food_stamp_e.html
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CHAPTER 6

An Intuitive 
Introduction to 
Inference and 
Hypothesis Testing

C o n t e n t s

 ❚ Inferential Statistics 123

 ❚ The Sampling  
Distribution of Means  
and the Central Limit 
Theorem 127

 ❚ Hypothesis Testing 136

 ❚ Considerations in 
Sampling 137

 ❚ t -Tests and Statistical 
Hypothesis Testing 140

 ❚ Statistical Hypothesis 
Testing and 
One-Tailed Tests 142

 ❚ Key Terms 142

 ❚ Questions and  
Exercises 143 Learning Objectives:

 ■ To understand the meaning and purpose of inferential statistics
 ■ To understand the importance of the sampling distribution of means and the 
central limit theorem

 ■ To understand all of the steps needed in hypothesis testing
 ■ To understand the concept of statistical hypothesis testing
 ■ To realize the limitations inherent in random sampling and their partial 
solutions

 ■ To know when to use one-tailed tests

The notion of standardized Z-scores discussed so far assumes that data are 
normally distributed. Many exam scores are. In fact, the types of questions 
asked are often adjusted over time to guarantee such a normal approximation. 
Unfortunately, very few sets of data other than height or weight are ever 
normally distributed around their own mean. The distributions of societal 
incomes certainly are almost always positively skewed. What then is the 
importance of the normal distribution to these data? As we will see, several 
important sample statistics are normally distributed about the statistic of the 
population from which those samples are drawn. The mean is one such 
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statistic; so, as we will discuss in Chapter 8, are dichotomous (two-category) 
proportions. The normal and other known sampling distributions are essential 
in the calculation and interpretation of inferential statistics.

 INFERENTIAL STATISTICS

Inferential statistics are that subset of statistical theory that allows us to infer, 
estimate, or guess about population characteristics on the basis of character-
istics of samples drawn from that population.

Before we can investigate the mathematical components of inference, we 
first need to draw on what we learned briefly in Chapters 1 and 2. We first 
need to be as certain as possible that our measurements are reliable and 
internally valid in the data that we collect and observe. We then ask whether 
that data can be generalized, and, if so, to which population, geography, time 
period, and so forth. Generalizability is both methodological (do I have a 
representative sample of the population to which I wish to generalize?) and 
statistical (given what I observe with my data, what is my comfortable or 
expected range of estimates of the true population value?).

The latter issue is one of mathematical chance or random error and assumes 
that the sample is representative. The former issue is one of systematic error 
or external validity (i.e., whether a representative sample actually exists). The 
most famous example of an externally invalid sample came out of the Literary 
Digest poll of 1936. A very large number of individuals were polled and 
asked how they would vote in the upcoming election. A majority stated they 
would vote for Alf Landon, Kansas governor and Republican presidential 
nominee. In reality, Democratic incumbent Franklin Delano Roosevelt was 
re-elected to a second term in the largest landslide in U.S. history. What 
went wrong? Assuming that individuals gave internally valid answers (they 
weren’t lying nor would they legitimately change their minds by Election 
Day), the problem had to do with the nature of the sample. The sample was 
drawn disproportionately from upper-middle-class and wealthy citizens who 
were not only more likely to vote Republican than the voting population at 
large, but also more likely to respond to surveys. If the Literary Digest analysts 
had limited their conclusion to that particular type of respondent, the results 
would most likely have been close to reality. The trouble was in generalizing 
those results to a broader, demographically and politically different population. 
In a similar vein, polls taken by cable news talk show hosts of their viewers 
might be good measures of what their most ardent viewers think, but can 
we generalize to the entire adult population, which is probably less conser-
vative/liberal than those viewers? Assessing whether students want a fee hike 
for athletics by asking students walking out of a campus gym might not 
validly assess what the entire student body would be willing to pay for.

Literary Digest poll of 1936 
Poll infamous for making 
the wrong prediction about 
the outcome of the 1936 
presidential election. The 
sample was biased toward 
individuals more likely to be 
Republicans than the voting 
population as a whole.
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None of this should imply that unrepresentative samples are without use. 
An externally invalid measure can, if we can figure out the direction of the 
bias, work to our advantage. If a majority of ideological cable news viewers 
offer a majority opinion in opposition to what we would expect (e.g., a 
conservative audience approving of a liberal president’s proposal), then we 
can be fairly confident that the direction of that viewpoint will be carried 
out to the general public (even if it is hard to exactly estimate it). If athletes 
are not willing to pay extra for the facilities that they will use, then we would 
be fairly safe in assuming that the rest of the campus population would be 
even more hesitant to do so. Even with its external validity problems (dis-
proportionately Republican), we often forget that the Literary Digest correctly 
predicted FDR’s 1932 (if not 1936) victory. To a certain extent, low-income 
citizens were less likely to vote in 1932; the sample, therefore, might have 
been more representative of the actual voting population in 1932 than in 
1936. Perhaps more importantly, enough Republicans were upset with the 
Hoover administration’s lack of action when the Great Depression started 
that they decided to punish their own party and temporarily vote like Dem-
ocrats. When the Democratic Congress and FDR moved this country eco-
nomically left, those Republicans returned home while poorer individuals 
became more likely to vote. With a survey that disproportionately interviewed 
Republicans and a subset of Republicans who were more likely to respond 
to the survey, the potential misrepresentation of the outcome became much 
more pronounced.1

How might we solve this problem? We can ask every voter how they voted, 
but that’s tactically impossible. We can try to have a proper proportion of 
each category of each property that we think is theoretically relevant. Aside 
from the inherent difficulty of such a procedure, what if there were a property 
that we aren’t even aware of as an important determinant of some outcome 
we are trying to predict? Our best bet is, when taking a sample, to make it 
a random sample, or what I prefer to call equiprobable. Figure out the 
target population to which you want to generalize. Then do whatever you 
can to make sure that everyone in that target population has an equal chance 
of being drawn into the sample. With a large sample size, differences in 
political philosophy, gender, and other attributes and behaviors will be math-
ematically sorted out, and the sample will look close to the targeted population, 
most importantly even for properties we don’t even know exist but might 
have a causal link to the outcomes we observe.

Drawing a random or equiprobable survey also dictates that the chance 
of drawing any second case is not affected by the first case that is drawn. For 
example, if we first randomly draw a male into a sample, that doesn’t mean 
we must next draw a female. The selection of each case must be independent 
of each other, much like the flipping of a coin.2 Even if we flip ten heads in 
a row, since the flips are independent of each other, we still have a 50% 
chance of flipping a head on the 11th try. Similarly it is possible, although 

random (equiprobable) 
sample A random sample 
assumes that any case 
within the target population 
we are analyzing has an 
equal chance of being 
drawn into the sample as 
any other case. Also referred 
to as an equiprobable 
sample.
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highly unlikely, that we could randomly draw a sample that was almost 
entirely made up of men. Even if the first nine individuals sampled were 
male, in a purely random selection process, we would not change our sam-
pling technique to guarantee sampling a female on the 10th try.

The mathematical rules that define inference are based on the laws of chance. 
Given any kind of Las Vegas game, there is a certain expectation about what 
outcome should be produced. The gambling odds are based on these expecta-
tions. In the long run, with a large enough sample, or with repeated samples 
or trials, what is actually observed should look much like what is expected. 
However, with a small sample, or a single trial, what is observed might be rather 
different from what we would expect in the long run. Let’s take the example of 
tossing a coin. Don’t worry about the math. Think about it intuitively. The 
probability of flipping a head or tail at any time is .50 (i.e., you would have a 
50% chance of flipping either a head or tail). This assumes, as with any random 
technique, that there is no bias to either the coin (it is equally distributed 
between its head and tail) or the flipper (one doesn’t always start with the head 
facing up and flipping it so it rotates the same number of times). Those biases 
would make the flips internally invalid as we are not measuring the true prob-
ability of a random flip, but rather the error produced by an off-center coin or 
strategic flipper. If you were to flip a coin a large number of times, you would 
expect heads to be produced 50% of the time and tails the other 50%. With a 
small number of flips, say ten, we would not want to bet the farm on an exact 
50%/50% split. Just on the basis of mathematical chance, or, stated differently, 
the luck of the toss, we might come up with 50%/50%, or 60%/40%, or 
40%/60%, and so forth. There is even a slight chance that on one trial of ten 
we may toss ten heads (100%/0%), or ten tails, although that is unlikely. What 
we observe with any one trial is not always what we would theoretically expect 
(50/50). We always have to allow for a range of possibilities.

The Law of Large Numbers

Does that allowance change as we increase our number of flips? With 1 
million flips, we would probably be willing to bet that the number of heads 
would be within a certain range, and that that range would be proportionately 
less than with 100 or 10 flips. Think about it. How much would you be 
willing to bet that the proportion of heads with 10 flips would be neither 0 
(0%) nor 10 (100%)? Some, but if you are as cautious as I am, probably 
not your life’s salary. Now, with 1 million flips, would you be more willing 
to bet or willing to bet more money against 0 (0%) or 1 million (100%) 
heads? Probably so. As the saying goes, there is safety in numbers. In most 
of my classes, few students will bet that the number of heads will be between 
3 and 7. However, I can usually get most to bet that the number of heads 
will be between 300,000 and 700,000 (at least hypothetically), even though 

law of large numbers As 
we increase our sample size, 
our estimates of population 
values draw closer to the 
true population value.
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the proportions are the same (30%–70%). I actually don’t flip a coin 1 million 
times, although a computer can simulate that occurrence. As we increase our 
number of tosses, or our sample size, we will be more willing to bet on a 
smaller proportional range of possibilities. We can say that we are confident 
with a proportionately smaller range of possibilities as we increase our number 
of tosses. We might be wrong as even 1 million heads in a row is theoretically 
possible, but we sense that the chance of being wrong in rejecting a range 
of extreme possibilities (0 to 299,999, 700,001 to 1 million heads) is minimal. 
So we are willing to risk the bet.

Note that we would never bet on any particular number of heads, especially 
when the number of tosses is high. With 1 million flips, we would have to 
be enormous risk takers to bet that we will flip exactly 500,000 heads and 
500,000 tails or any other particular split. We will, however, bet on a range 
of possibilities. Similarly, when we draw samples of individuals from a large 
pool, say the entire U.S. voting population, we have to make the same 
allowance for observing in a sample something different from what we expect 
(i.e., would find in the population from which a sample is drawn). If 52% 

Sidebar 6.1: Sampling and the U.S. Census—Political Changes?

In 2000, the U.S. Census Bureau collected short form schedules from more than 100 million house-
holds. The information gathered was limited to the number of individuals per household, age, 
gender, and race/ethnicity (the first and last needed for redistricting purposes). Roughly 18 million 
households were asked to fill out the long form that gathered other types of demographic and 
economic information needed for the allocation of federal, state, and local funds. Some considered 
the long form too intrusive, costly to administer, and without constitutional justification. Others 
viewed those concerns as a not so subtle way to make it more difficult to administer governmental 
programs and perhaps, because of the lack of information, eliminate them. Another concern was 
the way in which unresponsive households might be counted, if at all. Suggestions were offered 
that included taking a mean average of the number of individuals in adjacent households or con-
ducting a follow-up, face-to-face random survey of those households.

In 1999, the U.S. Supreme Court argued that only a full counting, or enumeration, could be 
used to determine the population of each state for apportionment purposes (i.e., the number 
of congressional districts allocated to each state). However, it left unchallenged the use of 
annual sampling for estimating a series of demographic figures, such as race, age, and income, 
for the allocation of government resources. See Department of Commerce et al. v. U.S. House 
of Representatives et al. (525 U.S. 316 (1999)). Congress, however, limited the number of demo-
graphic features that could be asked of respondents in the 2010 Census long form. For those 
figures, one must turn to the annual American Community Survey that, because of its smaller 
sample size and limited counting of communities with small populations, is not as accurate as 
was the long form.
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of the people in the adult population are female, we may draw a small sample 
with the same percentage, but we have to allow for some variation just because 
of the luck of the draw. Inferential statistics basically tell us how much vari-
ation we must accept solely based on mathematical chance (i.e., the luck of 
the random draw). They cannot directly measure the impact of internal bias 
(the wrong question is asked) or external bias (we purposely/accidentally 
oversample men by only interviewing in bars). Let’s carry out the argument 
by extending the logic of income distributions and mean incomes presented 
in Chapter 5. We will turn fully to proportions in Chapter 8.

 THE SAMPLING DISTRIBUTION OF MEANS AND THE 
CENTRAL LIMIT THEOREM

Let us begin by taking a random sample of 100 or more households from 
my California neighborhood (2006). For that sample, we can compute a 
mean value for income, designated as X

_
1. It may be equal to the mean for 

all of the households, but it may be somewhat higher or lower, just because 
of the random luck of the draw. For example, you may have randomly chosen 
a few extra extremely wealthy households, the equivalent of proportionately 
more heads than tails, thereby producing a mean for the sample higher than 
the mean for the entire neighborhood. Say we take a second independent 
random sample of equal size and calculate its mean (X

_
2), we take a third and 

calculate its mean (X
_

3), and so on for a large number of samples. After you 
calculate each mean, plot it on a graph just as you did for individual values. 
Place each mean on the line according to its value, designating it as X

_
. 

Continue to do so for each sample mean. If you draw a sample with a mean 
income equal to one drawn previously, stack it atop (give equal heights to 
each plotted mean value). If we look at all of our sample means together, we 
have a distribution of sample means, known as the sampling distribution 
of means.

X
X  X  X  X X  X X

____________________________________________________

$80,000 = mean of all households in town

If we draw a very large number of independent samples, compute their 
means, and plot them, our sampling distribution of means will be approximately 
normally distributed around the mean income for every household in the 
neighborhood. This phenomenon is referred to as the central limit theorem. 
Since the distribution is normal, the mean (this may seem tricky, so read 
through it carefully) of all of the sample means will be equal to the mean of 

sampling distribution of 
means The distribution 
of means drawn from an 
infinite or very large set of 
random samples from a 
population that results in a 
normal distribution around 
the true population mean.

central limit theorem 
The distribution of sample 
means and dichotomous 
proportions will be normally 
distributed around the 
population mean, regardless 
of the shape of the original, 
individual data distribution.
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the individual incomes for the entire neighborhood (i.e., the mean of the sam-
pling distribution is the same as the population mean of the variable).

X
X X X

X X X X
X X X X X

X X X X X X
X X X X X X X X

X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X X X X X X
___________________________________

$80,000 = mean of all individual households
$80,000 = mean of all sample means

What is extremely important is that the means of an infinite or very 
large number of samples of size greater than 100 randomly drawn from a 
population will be roughly normally distributed around the population 
mean, regardless of the shape of the original distribution of individual values 
(xi). Even if our original distribution of household incomes is positively 
skewed, or negatively skewed, or bimodal, or so forth, the distribution of 
means computed from a large number of samples (N > 100) will always be 
approximately normal.

Before we move on, let’s discuss some new terminology. To avoid confusion, 
we need to find a way to differentiate between the values associated with an 
entire population (e.g., all of the neighborhood’s households) and the values 
associated with any given sample drawn from that population (e.g., 100 of 
those households). By convention, statisticians use letters from the Greek 
alphabet to denote population statistics or parameters and letters from the 
Roman alphabet to denote sample statistics. The mean of any sample will 
thus be denoted as we have before as X. The mean of an entire population 
from which that sample was drawn is denoted as μx, the lower case “mu.” 
Similarly, the standard deviation of a sample of cases will be denoted as sx, 
and the standard deviation of the population as σx, the lowercase “sigma.”

Remember that the mean of all of the sample means (X1, X2, X3, . . .) is 
equal to the mean of all of the individual values in the entire population (μx):

 µ µx X=  (6.1)

where μx is the mean of all of the individual values (x) in a population
      µ µx X=   is the mean of all of the means (X) of samples randomly drawn  

from that population
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The standard deviation of the means (X’s) of the samples drawn from a pop-
ulation will, however, be smaller than the standard deviation of the individual 
values (x’s) of that population and is a function of the sample size (i.e., the 
larger the number of cases within the samples, the more closely proximate 
will the sample means be to the population mean). Think of it in terms of 
the influence of extreme values. One extremely high income will tend to pull 
the mean out to the right of the distribution since the distribution will be 
positively skewed. If the sample size is relatively small, one high value will 

Sidebar 6.2: The Central Limit Theorem in Real Time

As a way to visualize the central limit theorem, Figure 6.1 was produced. We started with  the 
54,535-case 2012 CCES (Cooperative Congressional Election Study) data set as our “population.” 
Next, 1,000 rounds of 1,000 samples of N = 1,000 were randomly drawn from that population, with 
the means of each sample plotted. For simplicity, the means were clustered into 30 equally divided 
bins or categories. Note that even with sample size of only 1,000 the distribution of sample means 
very nearly fits the pattern of a normal curve. The mean of all of these samples is 52.23, not very 
different from the true mean of the population.

50

0

20

40

60

80

51 52 53 54

μ = 52.24

FIGURE 6.1 1,000 samples of N = 1,000
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exert an extremely strong pull as one large income needs to be redistributed 
among a small number of other cases. However, if the sample size is large, 
that one income will not have so strong a pull since it will be balanced by 
many other cases. As another example, think of sampling men in Brooklyn, 
New York, and computing their heights or weights. New Brooklyn Nets center 
Kevin Garnett has an equiprobable chance of being drawn into a sample. If 
the sample is small, say 10, the inclusion of his height (almost 7 feet) will 
make that sample’s mean quite different from the true mean of the entire 
population, and different from the means of samples in which he is not 
included. If the sample is quite large, say 2,000, whether Garnett is drawn 
into the sample makes little difference on that sample’s mean computation.

The standard deviation of the sample means is also a function of the standard 
deviation of the original, individual values. As an extreme example, if everyone 
had the same income, then the individual values would all be equal to each 
other and, therefore, would not deviate at all from the population mean. Any 
sample would have the same mean as any other sample. They would not deviate 
from each other. The greater the dispersion or deviation among the individual 
incomes, however, the greater the possible difference between the means of two 
randomly drawn samples as well as between the mean of a sample and the 
mean of the entire population. One sample may have randomly drawn a few 
extremely wealthy individuals, and another a few extremely poor ones.

Sample means within a sampling distribution of means can be thought 
of exactly the same way as individual values distributed normally about a 
population mean. Actual sample mean values can be standardized using the 
Z-score formula, with a few changes in representation. Remember that in 
the standard individualized Z-score formula, our normal curve represented 
the distribution of individual values (say income) as they deviated from the 
central point of the distribution, its mean. Those deviation scores were then 
standardized by dividing by the standard deviation of the individual values. 
The individualized Z-score formula was represented by:

 i
i

xZ   x
  X
s=
−

 (6.2)

where xi stands for the individual value on a given variable X
      X stands for the mean of the distribution of a given variable X
       sx  stands for the standard deviation of the individual values of a  

given variable X

Similarly, the theoretical distribution of sample means around the population 
mean would also be represented by a normal curve. The Z-score formula for 
sample means distributed around the population mean would be represented by:

 X
x

X
Z   

X   
=

− µ
σ  (6.3)
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where X stands for the individual sample mean
       µx  stands for the mean of the distribution of individual values for  

the entire population
       σx  stands for the standard deviation of the sample means, commonly  

called the standard error of the mean

The standard error of the mean, as mentioned, is a function of both the 
standard deviation of the entire population and the sample size and is com-
puted as follows:

 X

x

N
σ

σ=  (6.4)

where σx stands for the standard deviation of the individual values for the 
entire population

N stands for the size of the sample (number of cases) randomly drawn 
from that population

Let us return to our California example (2006). Suppose we draw a large 
number of random samples of households from the entire neighborhood. 
The mean of the samples would be equal to the population mean more often 
than any other single mean (it would be the modal category), but we could 
also draw samples with means less than or greater than the population mean 
according to the probabilities associated with the normal curve. If we draw 
independent random samples of 400 cases (N = 400), then the standard error 
of the mean would be equal to $1,000 because:

 
Xσ =

$ , $20 000
400

1000=  (6.5)

In other words, the standard deviation of the means of a very large number of 
samples of size 400 randomly drawn from that population would be $1,000, 
much smaller than the $20,000 standard deviation of the individual household 
incomes. As the distribution of sample means is normal, 95% of all possible 
random independent samples would have means that lie between a corresponding 
Z-score of −1.96 and +1.96. Using our standard Z-score formula for sample means 
drawn from a population, we see that 95% of the samples of 400 (N) that could 
be drawn from a population with a mean income of $80,000 (μX), and a standard 
deviation of $20,000, would have means between $78,040 and $81,960 because:

−1.96 = (X2.5 − $80,000)/$1,000 +1.96 = (X97.5 − $80,000)/$1,000
X2.5 = −1.96 ($1,000) + $80,000 X97.5 = +1.96 ($1,000) + $80,000
X2.5 = −$1,960 + $80,000   X 97.5 = +$1,960 + $80,000
X2.5 = $78,040 X97.5 = $81,960

$78,040 < X- < $81,960

Translation: 95% of all the possible samples (of size 400) that can be ran-
domly drawn from this population of households will have a mean sample 

standard error of the mean 
The standard deviation of 
sample means in a sampling 
distribution of means based 
on dividing the standard 
deviation of the individual 
cases by the square root of 
the sample size.
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income between $78,040 and $81,960. In drawing a sample of 400, therefore, 
we can expect to be off by as much as $1,960 (give or take) when we calculate 
a sample mean just by the luck of the random draw of 400. This $1,960 is 
called the margin of error expected with a sample of 400 (and the given 
standard deviation). We will be off by as much as $1,960 less or more than 
the true population mean (of $80,000) 95% of the time. This range is com-
monly called the 95% “confidence interval” of possible sample means. It is 
possible to randomly draw a sample of this size and come up with a sample 
mean income less than $78,040 or greater than $81,960, but the probability 
of doing so is less than 5%.

If we randomly drew 400 households from this neighborhood, we would 
guess the mean income for that sample to be somewhere between those two 
figures, and we would have a .95 probability of being correct. If we made 
that guess for all of the samples, we would be correct 95% of the time. Not 
bad odds by Las Vegas standards. However, always remember that even 95% 
certainty is not total. On any given random draw, we could produce a sample 
with a mean income outside of this range, say $83,000 or $77,000 but we 
rather confidently reject those possibilities as highly, if not totally, unlikely.

An Example: The Gender Gap in Wages

Much has been made over the last several decades about income disparities 
between men and women. Currently, women as a whole make about 77 cents 
for every dollar made by men, roughly 82 cents when limited to full-time 
or salaried workers.3 Although the gap has narrowed since the 1960s, and is 
greatly reduced among younger cohorts of men and women, the gender wage 
gap actually increases as one moves up the economic ladder. Our California 
neighborhood, with its $80,000 mean household salary, is ranked above all 
households within the nation with a mean of roughly $71,000 and median 
of roughly $51,000 (positively skewed).4 For the sake of argument, let us 
stipulate that we only have information about the mean and standard devi-
ations of income for the entire metropolitan neighborhood. So now let us 
say that we are given a listing of households in which men are the sole or 
main income earner (henceforth labeled “male households”). We are not, 
however, given a listing of all such households’ incomes. We wish to know 
if male-headed households earn more, on mean average, than households in 
this neighborhood generally. We have enough time and money to interview 
only 400 such households. We randomly draw a sample of 400 of these 
households from among this population, ask their income, and compute a 
mean household income of $83,000 for male-contributing households, which 
is higher, on (mean) average, than the population of all households as a 
whole. Could we have randomly drawn any 400 households from the entire 
population and come up with that high a mean by chance alone (i.e., without 
specifying any particular demographic subset)? The answer is probably not; 
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that is, the possibility of randomly drawing a sample of 400 households with 
a mean income greater than $81,960 is fairly remote (less than 2.5%; mean 
incomes higher than $81,960 fall beyond the top end of the 95% range 
specified). Another way of expressing this is to say that the mean of our male 
sample is “significantly different” from the mean of the population of all 
households. Thus, we reject the possibility (commonly called the null hypoth-
esis, H0) that this sample could have been randomly drawn from a population 
with a mean income of $80,000. Male households in this neighborhood, in 
all likelihood, have incomes with a higher mean average than the general 
population. Might we be wrong in this guess? Certainly, but it is highly 
unlikely.5

If, on the other hand, our sample produced a mean income within the 
specified range of acceptance or confidence interval (e.g., $81,000), we would 
not be able to reject the null hypothesis, that is, the probability that the mean 
income of all male households equaled the mean income of all households 
($80,000). The sample mean of $81,000 is not “significantly” different enough 
to reject that probability. The $1,000 difference between what we observed (X) 
in the sample and what we would have expected from the original population 
( µx) is small enough to be attributed to the random luck of the draw (i.e., it 
is within an acceptable level of sampling or random error). Note that not being 
able to confidently reject the null hypothesis that the true mean of the entire 
male population is $80,000 does not tell us what the true population mean for 
those households actually is. It does not, for example, give us proof that the 
mean for this subgroup is exactly $80,000. At best, we can only say that the 
sample mean ($80,000) is not statistically inconsistent with such a possibility.

Similarly, as we cautioned at the end of the previous chapter, confidently 
rejecting a possibility is not the same as knowing which possibility to accept. 
We feel safe in stating that a sample with a mean income of $83,000 was 
probably not randomly drawn from a population with a mean income of 
$80,000, but we have no way of exactly knowing what the mean for the entire 
population of contributing households may be. Of course, knowing what the 
population mean probably isn’t may not give us as much information as we 
need. We may wish to derive a range of possible population means; that is, 
given a certain sample mean, within what range of values could we “safely” 
or “confidently” say that the mean of the population from which that sample 
was randomly drawn would lie?

Let us return to our example. The sample of 400 male households produced 
a mean income of $83,000. We don’t know the mean income for the pop-
ulation from which that sample was randomly drawn (i.e., all male house-
holds), although we are rather confident that it is not $80,000. If we don’t 
know the mean for that population ( µx), then, quite obviously, we can’t know 
the population standard deviation (sx), a necessary element in computing the 
standard error of the mean (σX). Do not fear. Because standard deviations 
are fairly consistent across samples (the reason we use them rather than mean 
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absolute deviations), we can usually use the standard deviation of our sample 
(sx) as an estimate of the standard deviation of the population from which 
that sample was randomly drawn. Thus, our formula for deriving the standard 
error of the mean would be as follows:

 X

x x

N
s
N

σ
σ= ≈  (6.6)

where sx stands for the standard deviation of the random sample (com-
puted using a denominator of N − 1)6

N is the size of the sample (number of cases)

Our task now is to estimate what the mean income of all male households 
might be. It can be $83,000, but it may be slightly lower or higher than that. 
Remember, any samples may be off by some margin of random sampling 
error. We need to determine the range of means of populations this sample 
may have been randomly drawn from. Stated differently, from what populations 
could this sample of 400 have probably been randomly drawn? Let’s begin 
with a visual presentation. Look at Figure 6.2. The normal distribution to the 
left represents the distribution of means of random samples around a certain 
population mean ( µL). Our sample with a mean of $83,000 could have been 
randomly drawn from a population with a mean income of µL, lying just at 
the top of that distribution’s 95% range, corresponding to a Z-score of +1.96. 
Our sample would lie on the bottom of the 95% range of the distribution 
to the right, with a mean represented by µH, corresponding to a Z-score 

Sidebar 6.3: The Gender Gap in Wages

Several laws and actions, starting with the 1963 Equal Pay Act, Title VII of the 1964 Civil Rights 
Act, the 2009 Lilly Ledbetter Fair Pay Act, several state and local acts, and, most recently, President 
Obama’s 2014 Executive Order to enforce provisions of the yet-to-be-passed Paycheck Fairness Act, 
attempt to enforce a narrowing of the gap in wages between the genders.1 Some critics of these 
laws state, with justification, that wage differences are based upon a host of factors including 
self-made choices, particularly the time that women have spent on the job (disrupted by raising 
children). Others argue that, even when controlling for all of these differences, a gender wage gap 
of about 9 percentage points still exists, indicating true discrimination in the workforce.2 See side-
bar, Chapter 10, on Simpson’s Paradox for a more thorough discussion of these possibilities.

1 See U.S. Equal Employment Opportunity Commission, http://www.eeoc.gov/laws/types/equalcompen 
sation.cfm, for a review of all wage discrimination laws.
2 See Francine D. Blau and Lawrence M. Kahn, “The Gender Gap: Have Women Gone as Far as They 
Can,” Academy of Management Perspectives 21 (2007): 7–23. Not surprisingly, this article has been used 
to justify both sides of the wage gap argument.

http://www.eeoc.gov/laws/types/equalcompensation.cfm
http://www.eeoc.gov/laws/types/equalcompensation.cfm
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of −1.96. Our sample mean would also fall within the 95% range of distributions 
anchored by means between µL and µH. Stated differently, a sample with a mean 
of $83,000 could have been randomly drawn from populations with means 
anywhere between those two figures (including $83,000).

The sample of 400 contributing households produced a sample mean of 
$83,000. If the standard deviation of incomes of that sample was $20,000 
(as it is coincidentally for the entire population—they need not be the same), 
then our estimate of the standard error of the mean (σX ) would be, as before, 
$1,000. We now need to compute two formulas to solve for two hypothetical 
population means (μL and μH). This would give us the lowest (μL) and the 
highest (μH) means of populations from which this sample could have prob-
ably been randomly drawn:

+1.96 = ($83,000 − μL)/$1,000 −1.96 = ($83,000 − μH)/$1,000
+$1,960 = $83,000 − μL −$1,960 = $83,000 − μH

−μL = $1,960 − $83,000 −μH = -$1,960 − $83,000
−μL = −$81,040 −μH = −$84,960
μL = $81,040  μH = $84,960

$81,040 < μx < $84,960

What we do in computing this “reverse confidence interval” around our 
sample mean is to specify the lowest and highest theoretical means of a 
population from which our sample could have been randomly drawn. The 
mean of $83,000 would be the highest probable mean for a sample randomly 
drawn from a population with a true mean of $81,040; it would be the 
lowest probable mean of a sample randomly drawn from a population with 
a true mean of $84,960. We would not want to reject the possibility that 
this sample could have been drawn randomly from any population with a 

μL= $81,040 μH = $84,960

FIGURE 6.2 Two-Curve Population Estimate
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mean between these two values (e.g., $82,000 or $84,000), because the sample 
mean of $83,000 would be within the 95% confidence intervals of the sam-
pling distribution of means of any such population. The differences between 
$83,000 and those two figures are small enough to attribute to the random 
luck of the draw. The true mean income of all contributing households might 
not be either $82,000 or $84,000, but a sample mean of $83,000 is not 
statistically inconsistent with either of those possibilities, or any possibility in 
between. Might this sample have been drawn from a population with a mean 
income outside of that range? Certainly, but the possibility is slim.

 HYPOTHESIS TESTING

We have just conceptually gone through an example of statistical hypothesis 
testing. Hypothesis testing is used to see if our real-world observations confirm 
our hypothesized expectations. In this instance, we were trying to determine 
if male households earned more, on mean average, than the population of 
all households. That is the hypothesis that we are trying to confirm (denoted 
as H1). In almost all texts, the term “hypothesis testing” refers only to Step 5, 
and that is what we will concentrate on in this chapter. As research is more 
than just about numbers, however, we should really be looking at all of the 
following. Steps 6 and 7 will be covered in later chapters.

 ■ STEP 1: Are our measurements reliable and internally valid? Are our 
respondents making up numbers, or are they listing higher/lower amounts 
than they actually earned (an example of the Bradley effect mentioned in 
Chapter 2). If we are confident enough of the reliability and internal valid-
ity of our measurement, then we turn to . . .

 ■ STEP 2: Does our hypothesis make theoretical sense? Do we have an adequate 
reason to expect the hypothesized relationship to exist? If so, we then turn to . . .

 ■ STEP 3: Is our sample a random, equiprobable representation of all targeted 
(male) households (i.e., is our sampling method externally valid)? If we are 
confident enough that it is, then we turn to . . .

 ■ STEP 4: Does our observation match our hypothesized expectation (H1)? Yes, 
as in this instance, the mean income level of male households is greater than 
that of the household population as a whole. We now turn to . . .

 ■ STEP 5: Is the observed difference small enough to attribute to the random luck of the 
draw or significant enough to confidently reject that as a possibility? If the latter, then we 
can confidently (but never absolutely) reject the null hypothesis (H0) that the incomes of 
all of the male households and all households generally are the same ($80,000).

 ■ STEP 6: Along with Steps 1 and 2, are there other reasons why our two varia-
bles are related. Are there any alternate explanations? If so, then . . .

 ■ STEP 7: Can we generalize our hypothesis to other populations, times, exper-
imental conditions?
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There are actually two ways to statistically test this hypothesis (Step 5). 
The first, as we saw, is to figure out, using a 95% confidence interval test, 
the estimated range of the means of populations from which this sample was 
randomly drawn. The income of $83,000 is outside of that range. The other 
is to determine the Z-score of a household with an observed income of 
$83,000 compared to a hypothesized population mean of $80,000. If it is 
outside of the margin of error used, then we can confidently reject the null 
hypothesis that this set of households was randomly sampled from that 
hypothesized population.
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A Z-score of 3 is certainly beyond our margin of error (corresponding to 
a Z of 1.96). We can therefore confidently, but not absolutely, reject the 
possibility that this male household sample could have been randomly drawn 
from a population of all male households with a mean income of $80,000 
(H0). In all likelihood, male households, on mean average, make more than 
all households in this neighborhood (H1).

Two important decisions need to be made regarding any inferential 
statistic. First, what confidence interval are we comfortable with; that is, 
proportionately how often do we wish to chance being wrong in rejecting 
values outside of that interval or range (the “null hypothesis” when dealing 
with single means)? This is a function of our gambling sensitivities and 
what the profession views as acceptable for mathematical “significance.” 
Ninety-five percent is not a sacred confidence interval, but one that is 
generally used in the profession. Second, within that confidence interval, 
by how much can we afford to be off? What margin of error between our 
sample observation and true population value can we accept? This is a 
function of the sample size, which, as you recall, is used in computing 
the standard error of the mean (σX ). Look at the formula. Does doubling 
the sample size reduce our margin of error by half? No. I’ll leave it to the 
reader to figure this out in one of the exercises at the end of this 
chapter.

 CONSIDERATIONS IN SAMPLING

Under most circumstances, it is only the size of the sample, not the size of 
the population that is important in calculating standard errors and margins 
of error. When the population is relatively small, however, the margin of 
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error is reduced. As long as the sample size is 5% or less of the population, 
we need not worry about this adjustment. Most national, state, or even local 
surveys would usually be sampling far less than 5% of their relevant 
populations.

The sample size, in and of itself, however, is not as important as how 
that sample was produced. As mentioned previously, all of our calculations 
are based on a random, or equiprobable, sample. Each individual in the 
target population must have an equal chance of being included in the 
sample. Although modern media and polling agencies are much more 
careful than the Literary Digest had been, a rush to make the first pre-
diction often leads to similar results in kind if not magnitude. In the 
2000 presidential election in Florida, the prediction that Al Gore would 
win that state was partially based on a sample that did not include those 
western counties where the polls closed later than the rest of the state. 
These are counties that tend to be more Republican than the state as a 
whole. Of course, if we look at voter intentions rather than the tabulation 
of ballots, Al Gore did receive more votes than the certified winner, 
George W. Bush. Some Floridians seem to have voted for Pat Buchanan 
even though they thought they voted for Gore. In either case, the margin 
was so slim, however, that no prediction should probably have been made. 
The eventual declaration of “too close to call” was perhaps the most 
responsible.

Totally random samples are usually impossible to produce. The problem 
is more one of logistics and costs than anything else. Let us say that we want 
to draw a sample of 2,000 voting-age individuals throughout the country, 
and we want to interview each of those individuals face-to-face (a procedure 
that increases both our response rate and the number of questions that we 
can ask). Even if we could easily acquire a full national listing of every eligible 
voter, the cost to send an interviewer out to each possible sampling area 
would be prohibitive. A purely random sample might choose one person in 
the far reaches of northern Alaska, one in the mountains of Utah, and one 
in the vast expanses of South or North Dakota. The possibility even exists 
that the 2,000 respondents will be so geographically distributed that we would 
have to send out 2,000 interviewers to collect the needed responses in a short 
period of time.

In order to limit the costs of interviewing, many survey organizations vary 
their sampling method to approximate but not replicate a pure random 
sample. The American National Election Studies (ANES) surveys that produce 
most of the data political scientists use to analyze presidential and congres-
sional elections employ such a strategy—that of a multistage random area 
sample. Think of it as a series of random samples. A standard procedure 
would be to first randomly sample congressional districts or some other, U.S. 
Census–defined, primary sampling units. Next, from each of those units 
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initially sampled, a random sample of geographic subunits, perhaps voting 
precincts, would be drawn. We would continue this procedure of randomly 
sampling smaller units until we reached a sample of households. Last, one 
individual from each household would be randomly selected. Because this is 
a series of random samples, the margins of error will be a bit higher than 
those produced by a purely one-shot random sample. The organizations that 
produce such samples will normally give these adjusted figures. For example, 
a typical ANES survey would list a maximum margin of error of 6% for a 
sample size (N) of 500. For a pure random sample, the maximum margin 
of error would be less than 4.5%. Keep in mind that, unless they can be 
reprogrammed, standard statistical packages assume total randomness, and 
thus lower margins of error.

Also note that intentionally or not, samples might be quite different 
in characteristics than the population, even by more than what the ran-
dom luck of the draw could produce. The Eurobarometer and World 
Values Survey series are two that intentionally adjust their samples.7 In 
order to produce a statistically meaningful (i.e., fairly low margin of error 
and representative demographic diversity) sample in each country 
included, it is necessary for the sample size in each country to be fairly 
large. The Eurobarometer researchers set the figure at about 1,000, and 
the World Values Survey sets the figure at roughly 1,500. Not all coun-
tries, however, have equal populations. As long as each country is analyzed 
separately, then no problem exists. However, if all the cases from all the 
countries are combined, then some countries might be overrepresented 
given their small size. The 1,500 respondents from Estonia will carry as 
much weight in the survey as the 1,500 from Russia, even though the 
Russian population is about 100 times greater. There are two ways to 
compensate for this over- and underrepresentation. One, to increase the 
size of the sample in the larger countries commensurate with their larger 
populations, would be prohibitively expensive. To proportionately match 
the 1,500 Estonians, more than 150,000 Russians would have to be 
surveyed. The other is to apply a weight to each respondent to reduce 
or increase his/her contribution to the results by the proportion by which 
they are over- or underrepresented. Each Russian’s response might be 
duplicated ten times. Alternatively, each Estonian’s could be worth .1. 
Similar weights need to be applied to samples that purposely oversample 
certain demographic groups (e.g., African-Americans in a U.S. nationwide 
survey) or those that unintentionally undersample individuals who work 
during the day.

Even with careful sampling, responses might not measure what they are 
intended to measure, producing a source of internal invalidity. Question 
wording might affect how people answer. Even timing is important. For 
example, polls conducted several days before an election might accurately 
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portray the intentions of the voters on the day the question was asked. 
In many recent elections (the 2012 South Carolina primary comes to 
mind), however, many voters had not made up their minds until a few 
days before or the day of the election. If that last-minute vote swing is 
one-sided, the final results can be quite different from the earlier predic-
tions. The now famous, but incorrect headline announcing the 1948 victory 
of Republican Thomas Dewey over incumbent President Harry Truman 
was based on a poll that had been conducted more than one week before 
the election. Many Democrats decided to either turn out to vote for their 
candidate the week of the election or, as is usually the case, switched their 
vote intentions away from third-party candidates as the Election Day 
neared.

Even with careful sampling, question wording, and timing, we need to 
remember that the margins of error calculated are not absolute. Although 
a sample proportion might be off by as much as or no more than a certain 
amount 95% of the time, it will be off by more than that amount 5% of 
the time. In other words, even the most careful of surveyors will be wrong 
in the range of possibilities they report 1 out of 20 times. In a one-sided 
race or issue preference, the general prediction will still be correct. How-
ever, what about in a close race? One should always remember, but not 
be paralyzed by, the fact that in 100 flips of a coin, 100 heads can  
turn up.

 T-TESTS AND STATISTICAL HYPOTHESIS TESTING

One last point before we move on. When the population standard deviation 
is unknown, we should really be looking not at the normal distribution 
associated with Z-scores, but at a series of distributions known as “t.” The 
t-test (or Student’s t) is a series of curves that look like the normal curve, 
unimodal and symmetrical, but flatten out and widen as our sample size 
decreases. A differently shaped distribution exists for each degree of freedom 
(df  ) of our distribution (see Figure 6.3). For “t,” the degrees of freedom are 
equal to N − 1. Given a set mean, each value of the distribution can be 
changed except for the last one, thus N − 1 degrees of freedom.8 For large 
samples (100 or greater), the t-distribution approximates the normal curve, 
and thus Z-scores can be used as approximations. With sample sizes less than 
100, calculations based on t-scores would have to be used, even when the 
population standard deviation is known. The logic, however, is exactly the 
same. The 95% confidence intervals would just be bounded by t-scores with 
absolute values greater than 1.96. A table of the t-score intervals follows (see 
Table 6.1). Fortunately, most computer programs like SPSS and Stata use 
t-scores for absolute precision.

t-test Also known as the 
Student’s t is a series of 
symmetrical distributions 
based on sample size 
(N − 1) that approaches 
the normal (Z ) curve as the 
sample size increases.
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FIGURE 6.3 t-Test Values

 TABLE 6.1 t-Test Values

α (Alpha) One-Tailed .05 .025 .01 .005
α (Alpha) Two-Tailed .1 .05 .02 .01
df  
 1 6.314 12.707 31.819 63.655
 2 2.920 4.303 6.965 9.925
 3 2.353 3.182 4.541 5.841
 4 2.132 2.776 3.747 4.604
 5 2.015 2.571 3.365 4.032
 6 1.943 2.447 3.143 3.707
 7 1.895 2.365 2.998 3.500
 8 1.860 2.306 2.897 3.355
 9 1.833 2.262 2.821 3.250
10 1.812 2.228 2.764 3.169
11 1.796 2.201 2.718 3.106
12 1.782 2.179 2.681 3.055
13 1.771 2.160 2.650 3.012
14 1.761 2.145 2.625 2.977
15 1.753 2.131 2.603 2.947
16 1.746 2.120 2.584 2.921
17 1.740 2.110 2.567 2.898
18 1.734 2.101 2.552 2.878
19 1.729 2.093 2.540 2.861
20 1.725 2.086 2.528 2.845
     
30 1.697 2.042 2.457 2.750
     
100 1.660 1.984 2.364 2.626
     
Infinity 1.645 1.960 2.326 2.576
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 STATISTICAL HYPOTHESIS TESTING AND 
ONE-TAILED TESTS

If, as we did in our male household example, posit a certain direction to 
our hypothesis, then a one-tailed significance test can and should be 
used. The 5% cutoff would not come evenly from both sides of the normal 
or t-distribution, but only the top, positive end. We are not even consid-
ering the alternative that the sample mean may be lower than the mean 
of the population. Fifty percent of the rejected area is therefore below the 
mean, and 45% is above. We therefore need to find a figure on the Z-score 
table close to 45% or .4500. That would lie about equally between 1.64 
and 1.65 (see Figure 6.4). We can therefore reject our null hypothesis even 
if the calculated Z-score is less than +1.96 but above 1.645 (see the last 
value listed in the first column of Table 6.1). Ours (Z = 3) certainly 
qualifies.

one-tailed significance 
test A test to gauge 
the significance of the 
difference between our 
sample observation and 
expected population value 
when a direction is posited.

−3 −2 −1 0 1 2 3

Z=1.645

Z

FIGURE 6.4 One-Tailed Test, Z = 1.645
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 KEY TERMS

central limit theorem (127)

law of large numbers (125)

Literary Digest poll of 1936 (123)

one-tailed significance test (142)

random (equiprobable) sample (124)

sampling distribution of means (127)

standard error of the mean (131)

t-test (140)

 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the SPSS 
and Stata manuals that accompany this text. t-tests for the comparison of a 
sample and population mean can be found in Section 4.3.

1. If we draw a very large number of random samples (N > 100) from a given 
population, and compute the mean age of each sample, the distribution of 
those sample means will be approximately normal:

a. Only if the distribution of individual ages is normal
b. Only if the mean of individual ages equals the median
c. Regardless of the shape of the original distribution of individual ages
d. Only if the standard deviation of age is 0

2. The standard deviation of all of those sample means is a function of 
both the standard deviation of the individual ages in the population and 
___________________________.

3. We compute the mean age of all individuals in the population as 47 years. 
We draw a large number of random samples of individuals from that pop-
ulation (N > 100) and compute the mean age for each sample. The mean 
of all of those mean sample ages would be ______ years.

4. Describe, in words, what is meant by the standard error of the mean.
5. The central limit theorem only applies to the distribution of sample means 

(T/F).
6. With a randomly drawn sample of 800, a sample mean weight of 170 lbs., 

and a sample standard deviation of 20 lbs., what would be our estimate 
of the range of possible mean weights of the population from which this 
sample was drawn? With a sample size of 400? With a sample size of 200? 
In each instance, can we confidently reject the possibility that the true 
population mean weight is 168 lbs.? Can we reject that possibility without 
any chance of being wrong?

7. A government program in a European country is set up to distribute sub-
sidized business loans in towns with a mean independent, single-owned 
business income below 30,000 euros. Samples of 600 such businesses are 



C H A P T E R  6  I N F E R E N C E  A N D  H Y P O T H E S I S  T E S T I N G

144

taken from each town. If a town’s mean business income, based on its 
sample, is calculated as 30,500 euros, with a sample standard deviation 
of 7,000 euros, should it be disqualified from the program? Why or why 
not? Base your answer on 95% confidence intervals.

8. Return to our presidential primary candidates contributions in Chapter 5, 
Exercise 10. Let us assume that this is a random sample of contributions 
from donors with the same mean ($575) and standard deviation ($250). 
If the sample size (this group) was 625, and using 95% confidence inter-
vals (and the Z table), what would we be able to confidently claim is our 
range of estimates for the true mean contribution level of the population 
from which this sample was randomly drawn? Can the true mean value be 
outside of this range? Why or why not?

 What if the sample size was twice that (i.e., 1,250)? Answer the same 
questions.

9. In the 2012 presidential election, much was made of the Republican can-
didate’s religion. W. Mitt Romney is a practicing member of the Church 
of Jesus Christ of Latter-Day Saints (also known as Mormons). In the 
2012 ANES survey (included in the SPSS and Stata guides for this text), 
individuals were able to rate parties, candidates, and groups on a 0–100 
feeling thermometer scale. Measuring their feelings toward Mormons, 
we calculate a sample mean of 50.48°, a sample standard deviation of 
21.902°, with a sample size of 5,385. Using the two-curve method of 
estimation and a 95% confidence interval, what is range of estimates of 
the mean from which this sample was drawn (assume random sampling)?

10. Given the results in Exercise 9, can we confidently reject the possibility 
that, in the population from which this sample was drawn, the actual 
mean thermometer rating of Mormons is less than 50°? Use either 
the two-curve estimates or the Z-score calculation demonstrated in 
equation 6.7.

11. Can we state with any confidence what the population mean exactly is?
12. Can we state with absolute certainty that the population mean feeling 

thermometer isn’t lower than 50°?

 NOTES

 1 See Peverill Squire, “Why the 1936 Literary Digest Poll Failed,” Public Opinion 
Quarterly 52 (1988): 125–133 for a full discussion of why the 1936 poll was 
so far off in its prediction.

 2 This independence also assumes what we call “sampling with replacement.” After 
one individual is sampled, they must then be placed back in the population and 
could possibly be sampled again. Of course, with a fairly large population (e.g., 
all households within the United States) the chance of sampling the same 
household twice is fairly remote. Most sampling organizations therefore don’t 
worry about replacement.
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 3 Several sources report these median differences. See, for example, the U.S. Bureau 
of Labor Statistics website: http://www.bls.gov/opub/ted/2013/ted_20131203.htm.

 4 Carmen DeNavas-Walt, Bernadette D. Proctor, and Jessica C. Smith, “Income, 
Poverty, and Health Insurance Coverage in the U.S.: 2012.” U.S. Census Bureau 
Current Population Reports, September 2013, Table A-1: http://www.census.gov/
prod/2013pubs/p60-245.pdf.

 5 That 2.5% indicates that 97.5% of the samples that could be randomly drawn 
from that population, with a mean household income of $80,000, would have 
sample means of $81,960 or less.

 6 Dividing by N − 1 produces what is called an unbiased estimate. In essence, 
since we are estimating the population standard deviation from a sample, we 
want to be conservative and overestimate its magnitude. By dividing by a smaller 
number, we increase the size of the standard deviation. Of course, with large 
sample sizes, whether we divide by N or N − 1 is fairly inconsequential.

 7 Both the Eurobarometer and World Values Surveys series, as well as the ANES 
surveys used throughout this text are available through the Inter-university 
Consortium for Political and Social Research (ICPSR). The author is fully 
responsible for any errors made in discussing or analyzing these surveys.

 8 Let’s take four numbers with a mean of 6. Once we set the first three of those 
numbers (say 2, 4, 6), the fourth is set (it must be 12 for the mean to equal 6). 
We are, thus, only free to alter the first three cases or numbers.

http://www.bls.gov/opub/ted/2013/ted_20131203.htm
http://www.census.gov/prod/2013pubs/p60-245.pdf
http://www.census.gov/prod/2013pubs/p60-245.pdf
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Learning Objectives:

 ■ To continue our discussion of hypothesis testing
 ■ To understand how to apply the central limit theorem and normal curves to the 
analysis of differences between means

 ■ To understand and learn how to calculate the standard error of mean differences
 ■ To understand the difference between groups that are sampled independently 
and those in which the sampling in the second group is dependent on the first

Thus far, we have acquainted ourselves only with descriptive and inferential 
measures of univariate statistics. The mathematical logic behind our next set 
of presentations on bivariate statistics follows the concepts already discussed. 
Before moving to an analysis of the association between two variables, how-
ever, some further terms need to be reintroduced.2

We generally are concerned with analyzing bivariate (and eventually multi-
variate) statistics because we are trying to determine some causal linkage between 
two (or more variables). Let’s review some of the terms used in Chapter 1. 
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Perhaps we are trying to determine whether one’s gender affects one’s income 
in some expected way (with women earning less than men), or if race determines 
one’s chance of being selected for grand jury service (with minorities having a 
lower chance of selection than white Anglo-Americans), or if the type of voting 
system influences turnout (with proportional representation systems typically 
having higher turnout than single member districting systems). In the strictly 
bivariate case, we are trying to determine if differences in one variable (the 
causal agent or antecedent condition) affect the value of another (the outcome 
or consequence). The measured outcome, as you recall, is referred to as the 
dependent variable because its value is dependent on some causal or antecedent 
variable. The antecedent variable is called the independent variable. In our first 
example, the independent variable is gender (i.e., whether or not one is male 
or female); the dependent variable is income. In the second, the independent 
variable is minority (race or ethnicity) status, and the dependent variable is 
whether or not one is selected for jury service. In the third, the independent 
variable is the type of electoral system, and the dependent variable is turnout 
percentage. We would generally posit a guess about the relationship between 
these two variables. This guess, as we discussed in Chapter 1, is called a hypoth-
esis. One such general hypothesis for our first example could be as follows:

Males have a higher income than females.

A hypothesis, as the one stated, must be a general one. It cannot be so specific 
as to be proved true or false with limited evidence. For example, stating that 
turnout in a particular country that uses proportional representation in one year 
is higher than in another country using a single member districting system is 
not a fully general hypothesis because it can be proved true or false on limited 
investigation. That statement is what we call a factual or test implication of the 
broader, more general hypothesis. Its truth or falseness, together with evidence 
about other countries or other times, helps us to understand the usefulness of 
the general hypothesis. The general statement itself cannot ever be proved con-
clusively because even if we can investigate every country at every point of time 
in the past and present, the possibility that we might find an example in the 
future that does not confirm our hypothesis is still possible. Statistics are helpful 
in determining the usefulness of a hypothesis by telling us whether the impli-
cations of that hypothesis are, for only the data we have at hand, true or false.

Return to our hypothesis. For any particular time or place, bivariate 
statistics can both describe the observed differences between males and 
females and make inferences about the population from which a sample of 
males and females did or did not come. Please note, however, that statistics 
are only summaries of mathematical association. Mathematical association is 
only one element in a causal argument (e.g., are gender differences in income 
caused by intentional discrimination against women?). Summarizing the 
steps listed in the last chapter, one must also be able to determine whether 
the two variables are theoretically linked (should one have a causal effect on the 
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other, or is the link just a mere coincidence?).3 One must eliminate alternate 
explanations. Statistics, as mathematical summaries, can only offer us a 
baseline mathematical standard of analysis. Knowing that men make more 
than women in any profession does not necessarily demonstrate actual 
discrimination, even in just that one profession at any given point in time, 
but it gives us one indication that discrimination may be taking place. It 
can tell us whether or not the evidence is mathematically consistent with a 
discriminatory effect.

 COMPARISON OF TWO MEANS

For our gender and income analysis, many measures of association between 
two variables can be computed, depending on the exact wording of our 
hypothesis or test implication. We may have income categorized only as 
“low,” “medium,” or “high.” Our hypothesis would then be nominal (“Males 
are more likely to earn high incomes than are females”). Since income is 
an intervally measured variable, and as the formulas are still fresh in our 
minds from the last several chapters, let’s begin our analysis by using the 
mean as a summary of the income distributions of males and females. We 
could then compare the means, rewording our hypothesis (H1) as 
follows:

Males have a higher mean income than do females.

Our analysis then becomes a comparison of the difference between two 
means. Say that we take a random sample of males and a random sample of 
females in a given profession and find their mean salaries to be $32,800 and 
$32,000, respectively. Can we make at least a mathematical claim that salary 
discrimination is based on gender?

Let us go through the first five steps of hypothesis testing brought up in 
the last chapter. We’ll assume that the first three steps (reliability and validity 
of measures, theoretical relevance, and random sampling) have been satisfied. 
We then move to the following:

STEP 4: Does our observation match our hypothesized expectation (H1)?

 H1: μM − μF > 0 (7.1)

Yes: As expected, males make $800 more than females in our samples, since:

 X XM F− = − =$ , $ , $32 800 32 000 800 (7.2)

We have one piece of evidence for our claim. The difference we observe is 
in the hypothesized direction. Our observation matches our expectation of 
discrimination, however slight.
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We now finish our test by turning to the following step:

STEP 5: Is the observed difference small enough to attribute to the 
random luck of the draw or significant enough to confidently reject that 
as a possibility? If the latter, then we can confidently (but never abso-
lutely) reject the null hypothesis (H0) that the incomes of males in this 
profession is exactly the same on mean average as the incomes of females.

 H0: μM − μF = 0 (7.3)

Stated differently, could we have come up with a slightly higher paid sample 
of males and a slightly lower sample of females just by the luck of the random 
draw, even if no difference between the means actually exists in that entire pop-
ulation (μM − μF = 0)? Could we have produced an $800 difference in the same 
way that we could flip 100 coins one time and come up with 52 tails, but produce 
52 heads with another flip of those 100 coins? Or is an $800 difference more 
like two sets of flips producing 92 tails and 92 heads—possible but highly unlikely?

We therefore need to find some way to determine whether the observed 
difference of $800 between our two samples is significantly large enough to 
reject the possibility that no difference exists in the populations from which 
the samples were randomly drawn, a posited hypothetical or expected difference 
of $0. Sound familiar? It should. The problem breaks down to a standard 
t- or Z-score formulation.4 As with univariate means and dichotomous pro-
portions, the central limit theorem applies. If we were to draw random 
samples from any given population for two groups of individuals (say males 
and females), compute the difference between the sample means, repeat the 
procedure a very large number of times, and plot the sample mean differences, 
the distribution of those sample mean differences would be normally distrib-
uted around the difference between the means of the two groups in the entire 
population (Figure 7.1). The theoretical distribution of the difference between 
sample means around the population mean would be represented by:

−3 −2 −1 0 1 2 3

Z

X1 − X2 X1 − X2 X1 − X2 X1 − X2

μ1 – μ2

FIGURE 7.1 The Middle 95%, Mean Differences
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The Z-score formula for sample mean differences distributed around the 
population mean (Z = 0) difference would be represented by:

 Z
X X

X X
X X

1 2

1 2

1 2 1 2
−

−

=
− − −( ) ( )

( )

µ µ
σ

 (7.4)

where X X1 2−  stands for the difference between the means of the  
  samples

µ µ1 2−  stands for the true difference between the means in the  
population

σ ( )X X1 2−  stands for the standard deviation of the sample mean 
differences, commonly called the standard error of the mean 
differences

With large enough sample sizes, if we drew a very large number of indepen-
dent samples, and subtracted the difference between them, 95% of the time 
that difference would be between values associated with a Z of −1.96 and 
+1.96. We need to expect that much variation just from the luck of the 
random draws.

Now let’s turn to the calculation of the standard error of the mean dif-
ferences. Because we have two sampled groups, the standard error is a com-
bined function of the standard deviations and sample size for each group. It 
is computed as follows:5

 σ
σ σ

( )X X N N1 2

1
2

1

2
2

− = +
2
 (7.5)

where σ  stands for the standard deviation of the individual values of the  
entire population for each group, 1 and 2

N  stands for the size of the sample (number of cases) randomly 
drawn from that population for each group, 1 and 2

standard error of the mean 
differences The standard 
deviation of the differences 
between two samples 
randomly drawn from a 
population.
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As with the univariate case, the standard deviations of the respective 
samples can be substituted for the standard deviation of the populations), 
giving us the following recalculated formula:

 σ( )X X

s
N

s
N1 2

1
2

1

2
2

2
− ≈ +  (7.6)

Let us go back to our example. If the mean income of a random sample of 
300 males is $32,800, with a standard deviation of $4,000, and the mean 
income of a sample of 200 females is $32,000, with a standard deviation of 
$3,000, then the standard error of the mean differences would be equal to:
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 (7.7)

Now, turning to our Z-score formula:

 Z X XM F− =
− −

= =
($ $ ) ($ )

$ .
$

$ .
.32800 32000 0

313 58
800

313 58
2 55 (7.8)

Note that the hypothesized difference between the population means is set 
at “$0.” We can actually set it at any value, but we choose “$0” because we 
are trying to determine if we can confidently reject “no difference in incomes 
in the entire population” as a possibility (our usual null hypothesis, H0). 
We therefore want to compare our observed difference of $800 against a 
hypothesized or expected difference of $0. A difference of $0 mathematically 
indicates no discriminatory results based on gender.6

If we randomly draw a large number of samples of the given sizes from 
a population, 95% of the time we can expect to calculate a Z-score between 
−1.96 and +1.96. If the Z-score we actually do calculate is within 1.96 
standard deviations from the true difference (in our case, $0), we can’t con-
fidently reject the possibility that, in the population from which these samples 
were drawn, no difference exists between the mean incomes of males and 
females. No direct mathematical evidence of discrimination would exist. Our 
calculated Z-score of 2.55 is higher. We can therefore confidently reject the 
null hypothesis that no difference exists between the mean incomes of males 
and females in the entire profession’s population. Males in all likelihood make 
more on mean average than do females. Might we be wrong in this rejection? 
Of course, sometimes samples are randomly drawn that vary by more than 
our set margin of error. Even taking that fact into account, does our calcu-
lation conclusively prove discrimination? No, but the evidence is at least 
mathematically consistent with that claim.7
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The evidence might actually be stronger. We compared our calculation to 
a Z-score of +1.96. However, if we were not even considering the possibility 
that men might make less than women (μM < μF), then we might want to 
use a one-tailed test of significance. (See the discussion of one-tailed tests in 
Chapter 6.) If the true population means were equal, then 50% of the time 
we would randomly draw samples where females made the same or less than 
males on mean average. Forty-five percent of the time, males, on mean 
average, would make more. The critical cutoff value would then be 1.645; 
that is, 95% of the time, by random chance, the sample differences would 
produce Z-scores ≤ 1.645. Using a directional, or one-tailed test (Figure 7.2), 
we can reject the null hypothesis with even greater confidence.

One more point needs to be made before we move on to another example. 
We used $0 as our hypothesized difference of mean incomes. We were testing 
to determine whether we could reject the possibility that gender had no effect 
on mean incomes in this profession’s population (a concept we will later discuss 
as statistical independence). The Z-score (or t-score) formula, however, need 
not assume equality as our hypothesis of rejection, although the formula is 
often presented in other texts as if this were the only possibility (thus leaving 
off the second half of the numerator). What if the government, limited in its 
ability or desire to follow up on discrimination claims, wished to set a cutoff 
for claims that it would pursue? As an example, it chooses to follow up only 

−3 −2 −1 0 1 2 3

Z = 1.645

Z

FIGURE 7.2 One-Tailed Test, Z = 1.645, Mean Differences
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Sidebar 7.1: Employment Discrimination

The issue of the limitations of carrying out government regulations is no small matter. The EEOC 
(Equal Employment Opportunity Commission) has consistently fallen behind in its processing of 
wage discrimination claims that now include claims based not only on race, national origin, and 
gender, but also age (after the Age Discrimination in Employment Act of 1965), disability (the 
Americans with Disabilities Act of 1990), sexual orientation (under an interpretation of the Civil 
Rights Act of 1964 and recent presidential executive order), and genetic typing information (the 
Genetic Information Non-discrimination Act of 2008). Part of this is intentional, as a more con-
servative Congress would prefer less regulation. Budget stalemates that force the sequestering 
(across-the-board cuts) of funding also adversely impact all governmental activities. Part, however, 
is purely an instance of the dramatic increase in claims, including workplace discrimination other 
than wage based, that no level funding could adequately satisfy. An EEOC division director testi-
fied to Congress that, although the EEOC is entrusted with examining every case of employment 
discrimination, by 1995 its director had decided to target resources on the strength of the discrimi-
nation evidence and increased its requests that such claims be dealt with by mediation rather than 
the traditional EEOC charging process.

Source: U.S. Congress, Senate, Committee on Labor and Human Resources, Burgeoning Workload Calls 
for New Approaches (U.S. General Accounting Office, 1995).

Is the observed $500 difference significantly different enough from $500 
(not $0) to confidently reject the possibility that the true difference between 
the mean incomes of males and females was $500 (or less)? The denominator 
of our equation, the standard error, would remain as before. The numerator 
will change because the expected or hypothesized population difference 
changed:

 Z X XM F− =
− −

= =
($ $ ) ($ )

$ .
$

$ .
.32800 32000 500

313 58
300

313 58
0 97 (7.10)

Even using a one-tailed test, which would make it easier to reject the new 
null hypothesis, the Z-score that we calculated is lower than the rejection 

when it can feel confident that the true mean income difference (μM − μF) is 
greater than $500. It will reject claims if it can’t confidently reject the possi-
bility that the true population differences are less than or equal to $500. 
Would the government take action in our case? The logic of the analysis is 
the same as before, but the theoretical distribution of sample mean differences 
would be symmetrically distributed around a new null hypothesis:

 H0: μM − μF = $500 (7.9)
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cutoff (1.645). We therefore cannot confidently reject the possibility that the 
income differences in the population were $500 (or less).

What mean income difference would we have to find in order for the 
government to take action? Well, that’s partially a function of the standard 
deviations and sizes of any two samples that we drew, as that would produce 
our standard error estimate. Let’s assume that the standard deviation and 
sample sizes were the same as before. Let’s also use a one-tailed test. Our job 
is to determine the lowest sample mean difference that would qualify for 
governmental action, that is, a difference that would equate to a Z-score just 
above the 1.645 critical value.
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1 01
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 (7.11)

The government would follow up only if the mean income difference between 
males and females in the samples was greater than $1,015.84. Only then would 
it feel confident that the true population difference was at least $500.

The Marriage Gap and Feelings toward Parties

Let us look at another example. As discussed in Chapter 1, although we tend 
to concentrate on the gender gap in politics (women are more likely to 
associate with, have positive feelings toward, and vote for candidates of the 
Democratic Party than men), there is a growing body of research discussing 
the even greater importance of a marriage gap, with those currently in or 
who had been in traditional marriages (married or widowed) being more 
likely to side with the Republicans than those in non-traditional arrangements 
(single, divorced, partnered).8

In 2012, more than 5,000 respondents were interviewed by the American 
National Election Studies organization (ANES).9 One survey item asked about 
their marital status, and two others about their feelings toward each of the 
two major parties, ranked on a scale of 0 (coldest/least favorable) to 50 
(neutral) to 100 (warmest/most favorable). In the following analysis, for each 
respondent, feeling thermometer ratings for the Democratic Party were sub-
tracted from feeling thermometer ratings for the Republican Party. A positive 
thermometer difference indicates more warmth or favorability assigned to the 
Republicans, a 0 indicates equal feelings (not just 0 for each), and a negative 
difference indicates favorability toward the Democrats.10 In order to test for 
the following hypothesis:

 H1: μT − μNT > 0° (7.12)

marriage gap A recent 
U.S. electoral division 
where married couples, 
especially those with 
children, are more likely 
to vote Republican than 
non-married individuals, 
especially single females 
with children.



H Y P O T H E S I S  T E S T I N G  A N D  A S S O C I A T I O N

155

the means and standard deviations of the differences were calculated separately 
for those in “traditional” (T) marital arrangements and those in “non- 
traditional” (NT) ones.

Again, let’s assume that Steps 1 (measurements are reliable and internally 
valid) and 3 of our hypothesis testing have been satisfied (although the ANES 
is not a purely random sample).11 Let’s move on to the following step.

STEP 2: Is there a theoretical reason to believe that marital status and party 
leanings should be related as hypothesized? Many scholars have addressed 
this. Reasons include the fact that married individuals are more culturally 
conservative and more likely to attend church services, both positively 
related to Republican affiliation. Married individuals also tend to have 
higher incomes.12 Having satisfied Steps 1–3, we now turn to Step 4.

STEP 4: Does our observation match our hypothesized expectation (H1)?

 H1: μT − μNT > 0° (7.13)

Yes, as expected, the mean difference of party feelings leans more Republican 
(slightly positive) for traditionalists than for non-traditionalists (negative) for a 
combined mean difference of 19.311°. Of course, this difference indicates that 
marital status is not the only predictor and causal agent of partisan leanings. If 
it were, the difference would be 200°.13 Having at least somewhat confirmed 
our hypothesis descriptively (what we observed), we now need to test it infer-
entially. Could that difference of 19.311° be an artifact of the mathematical 
peculiarities of random sampling, or is it significant enough to reject the possi-
bility that, in the population from which these samples were drawn, a difference 
greater than 0° exists? In other words, is that difference large enough to confidently 
reject the null hypothesis of equality of means between the two samples?

 H1: μT − μNT = 0° (7.14)

Let’s carry out our calculations:
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 TABLE 7.1 Differential Thermometer Ratings by Marital Status

Traditional Status Non-Traditional Status

Sample Mean  .7623° −18.5487°
Sample Standard Deviation 47.56289°  48.73523°
N  3,487  2,417
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Now, turning to our Z-score formula:14
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−( ( ) ( )
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.
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1 27728

o o

o

o

o 115 1189.  (7.16)

Clearly, this Z-score is so much larger than the 1.645 one-tailed confidence 
cutoff for a 95% confidence interval that we can be very confident that 
those whose marital status is traditional have higher mean difference ratings 
(+Republican) than those whose status is non-traditional. In actuality, the 
significance level works out to less than 0.4888 E−51 (the p-value calculated 
by SPSS or Stata). If the population difference in the population from which 
these samples were drawn was truly 0, the chance of randomly sampling 
two groups with a mean difference this high would be infinitesimal. 
 Translation: a marriage gap in all likelihood does truly exist—at least 
mathematically.

Once again, we should always realize what these findings tell us and what 
they do not.

 ■ Being able to confidently reject the null hypothesis is not the same as being 
absolutely certain. With a 95% confidence interval, we still have a 5% 
probability (called alpha error) of erroneously rejecting the null hypothesis 
because our calculated Z- or t-value is beyond the cutoff values for that 
interval.
 ■ Not being able to confidently reject the null hypothesis is not the same 
as accepting it (i.e., that the true population difference is exactly the 
same as that specified in the null hypothesis, usually 0). A population 
difference of 0 is only one of many values consistent with any sample 
difference that fell within our 95% confidence range, even a difference  
of 0.

One more qualification must be made. When ascertaining the causal 
relationship between two variables, two more steps (6 and 7 in Chapter 6) 
must be satisfied. Is there something internally or externally invalid about 
how we designed our test other than a problem with measurement? For 
example, if wealthier individuals are more likely to get married and 
wealthier individuals are more likely to favor Republicans over Democrats, 
might we not really have a spurious relationship (Chapter 1) where wealth 
is the real causative agent of marital status and party leanings? Can these 
results from one test be generalized to other election years? Might the 
relationship be stronger/weaker for subsets of the population sampled (say 
different races). This last step requires an understanding of controls and 
multivariate statistics, subjects to which we will return in Chapters 10 
and 12.
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 SPECIAL COMMENT ON SIGNIFICANCE TESTS

For the most part, I adhere to a traditionalist view of the use of significance 
tests: only when a random sample of a population is used (or, if not random, 
where we can estimate irregularities) are significance tests relevant. After all, 
inferential statistics just deal with how much we need to attribute to the 
random luck of the draw to feel safe or confident with our estimates. Without 
random or equiprobable draws, the mathematics of significance levels and 
tests are somewhat misplaced.

Many in the discipline (often called “frequentists”), however, including 
the editorial boards of most peer-reviewed journals, believe that significance 
tests can play a wider role. Everything in life, one could argue, is random. 
Thus, one can use significance tests, for example, to determine whether the 
behavior of Republican and Democratic members of Congress are “signifi-
cantly different” from each other on any single vote or cumulatively through-
out a session. As a traditionalist, I might want to argue that one chosen 
Congress is similar or is representative of a certain type of Congress—but 
that is a research design parameter, not a mathematical one.

In order to satisfy the different methodological views of anyone using this 
text, let me offer a compromise with two qualifiers: If the difference/associ-
ation we observe in the real, if not random, world is no better than we would 
get by random chance alone, then we may want to dismiss the relationship 
as not important enough to study.

Caveat 1: Never confuse statistical significance with conceptual—especially 
if sample sizes are extremely large (miniscule differences/associations can be 
statistically significant; i.e., different from 0). How far would we want to 
study a relationship based upon a 0.1% proportional difference?

Caveat 2: With small N, little will ever be “statistically significant.” Green 
and Gerber have argued that studies with large N are more likely to be 
published because they are more likely to come up with “statistically signif-
icant” results. But if, for example, members of the U.S. Supreme Court are 
consistently more likely to defer to the president and Congress on foreign 
policy issues than domestic ones, might that not be a conceptually significant 
finding, even if the case size in any one or series of years prevents us from 
achieving a statistically (mathematically) significant result? Similarly, countries 
with proportional representation systems might, in every series of elections, 
have a mean turnout higher than countries with single member districting 
rules. Unless we increase our “sample size” to all countries for all election 
years (treated as separate data points) over an extended period of time, our 
small case size (N) might prevent us from achieving a statistically significant 
difference. But, if in any decade, the difference that we observe is what we 
would expect, isn’t that result conceptually significant?15
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APPENDIX

COMPARISON OF TWO VARIABLES, SAME OR MATCHED GROUPS

In the previous examples, we were comparing two different groups against each other, usually referred 
to as an “independent samples test.” What if, instead, we were investigating one group and assessing 
how the individuals within that group differed on two separate issues, or across time on the same 
issue, or when the sampling of two groups are not independent of each other (e.g., we compare males 
and females within married couples)? We would then need to employ a paired or dependent samples 
test. The numerator stays the same, as we are still comparing the observed difference of means against 
a hypothetical population difference (usually 0). The denominator, however, changes substantially, as 
it must consider the mean differences for each individual in the one group sample in order to calculate 
the standard error of the paired differences (D). The calculation of that standard error is:
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where Di equals the difference in scores for each case in the sample
D equals the mean of those differences
N equals the number of cases in the sample

The Z-score calculation is therefore:
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In general, the same differences in sample means for a paired test will yield a higher Z-score than 
for an independent samples test as the standard error of the differences (σD ) will usually result in a 
lower value than the standard error of independent means (X X1 2− ).

Statistical analysis packages, such as SPSS and Stata will run different tests depending on whether 
you have selected paired or independent samples. They will also adjust for small sample sizes and 
whether or not the variances between the samples are the same or different.

independent samples test 
A test of significance for 
which the cases within 
each comparison group are 
drawn independently of 
each other.
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 KEY TERMS

dependent samples test (159)

independent samples test (158)

marriage gap (154)

standard error of the mean differences (150)

 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the SPSS 
and Stata manuals that accompany this text. t-tests for the comparison between 
two means (independent and dependent tests) can be found in Section 4.3.

 1. For an entire population, the mean of one variable is calculated for two 
groups within that population. The difference between those two means 
is calculated and represented as μ1 − μ2. We draw a large number of 
large samples of two categories of a variable and compute the difference 
between the means calculated for each category. The mean of those sam-
ple differences will be equal to __________________ .

 2. We draw a large random sample from a population and measure the cam-
paign contributions that respondents give to a political candidate. We 
calculate the mean contribution and standard deviations of contribu-
tions for those who oppose ObamaCare in that sample and, separately, 
for those who support it. Using 95% confidence intervals, we find that 
we can’t confidently reject the possibility that the difference of the mean 
contribution level (between opponents and supporters) in the population 
is 0. Which of the following statements best describes what we found?
a. The population difference has to be 0.
b. The population difference might be 0, but that is only one of several 

possibilities.
c. The population difference has to be higher than 0.
d. The population difference has to be lower than 0.

 3. Same scenario: We draw a large random sample from a population and 
measure the campaign contributions given to a certain candidate by each 
respondent. We calculate the mean contribution and standard deviations of 
contributions for ObamaCare opponents in that sample and, separately, for 
supporters. Using 95% confidence intervals, we find that we can confidently 
reject the possibility that the difference of the means in the population is 0.

True or False: It is therefore impossible for the population difference to be 0.

dependent samples test 
A test of significance for 
which the sampling of each 
case in the second group is 
contingent or dependent on 
the draw on the first.
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 4. Although it is not a necessity, when comparing differences between 
means we usually set the expected population difference (µ1 − µ2) to 
____________ .

 5. For several decades, the ANES group has conducted extensive surveys of 
the voting age population for each biannual election cycle. One of the 
survey items asks respondents to place a candidate, other political figure, 
organization, or group on a scale ranging from 0 to 100. On this “feeling 
thermometer,” a “0” represents the least positive, or cold placement; 100 
represents the most positive, or hot placement; and 50 represents neutral-
ity (take him or leave him). Following are the relevant means, standard 
deviations, and sample sizes for males and females for feeling thermome-
ters for Republican Party candidate and eventual winner George W. Bush 
(pre-election). Using this information, address the following statement:

In 2000, men were more supportive of George Bush than were women.

 Note that this is not a hypotheses, but an empirical, factual statement, 
proved true or false upon limited investigation (the data presented). 
Hypotheses are more general in their structure and would apply to more 
than one piece of factual evidence. A possible hypothesis would be that 
“men are more supportive of Republican candidates than are women,” a 
specification of a political gender gap that might define a whole series of 
elections across time.

    Feeling Thermometer Ratings
   Men  Women
George W. Bush X  = 56.65 X   = 55.74
    s = 24.55 s = 25.12
    N = 781  N = 980

 Did a gender gap exist in 2000? Answer the question both descriptively 
and inferentially. Make sure you can explain the difference.

 6. As in Exercise 5, use the following statistics to address this statement:

In 2000, women were more supportive of Democratic candidate Al Gore, Jr., 
than were men.

Al Gore  X   = 53.92 X   = 60.44
    s = 25.32 s = 25.56
    N = 781  N = 993*
* N varies because 13 more women had an opinion about Al Gore than 

they did about George W. Bush.

 7. Compare the results in Exercises 5 and 6. In which is the gender gap more 
evident?
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 8. A sample is taken measuring the level of total contributions given by indi-
viduals to a Senate candidate and all PACs, SuperPacs, 501(c)s, 527s, and 
other organizations that contributed to or otherwise supported her cam-
paign (in reality, even before Citizens United, this would be very difficult 
to trace, so let’s assume that this is a survey in which individuals answered 
truthfully). The following figures are produced:

  Mean Standard Deviation N
Conservatives $580 $225 750
Liberals $450 $185 600

 Answer the following question. Can you confidently state, in the entire 
population of contributors from which this sample was randomly taken, 
that conservatives gave more (i.e., >$0), on mean average, to the Senate 
candidate’s campaign than did liberals? Or could the $130 sample differ-
ence be explained by the luck of the random sampling draw?

 9. A random survey of 200 individuals is taken from two European Union 
nations. Each respondent is asked to estimate how much of his or her total 
taxes go to pay for national security. The mean of the sample in country 
A is €1,100, with a standard deviation of €150. The corresponding mean 
for the respondents in country B is €1,075 with a standard deviation of 
€160. Can we confidently state that, in the populations from which these 
samples were randomly drawn, the estimates are exactly the same?

10. For Exercise 9, would your answer be different if the sample size was 2,000?

 NOTES

 1 This volume will only cover the difference between two means. When more than 
two means need to be compared, statistics such as ANOVA (analysis of variance) 
would be used.

 2 In actuality, we hinted at this when we compared the income of male households 
against the entire population in the last chapter. Intuitively, when we did so, we 
were considering the possibility that the incomes of male households was higher 
than female households.

 3 Sports and politics provide us with a classic example of the coincidental association 
between two variables. Between 1940 and 1976, a baseball World Series victory 
by the representative of the National League was followed by a presidential 
victory by the Democratic candidate 100% of the time (5/5). A World Series 
victory by the representative of the American League was followed by a Republican 
presidential election victory 80% of the time, the only exception being 1948, 
when the Republicans were predicted as easy winners, a prediction made by 
some newspapers as late as the morning after the election. Few social science 
variables are as closely mathematically associated. One would be hard pressed, 
however, to claim that election outcomes in November are caused by baseball 
victories in October. Before the longer, protracted era of primaries, the old adage 
that Americans would concentrate on presidential politics only after the series 



C H A P T E R  7  H Y P O T H E S I S  T E S T I N G  A N D  A S S O C I A T I O N

162

was over certainly made some sense. However, it explained the priority that 
Americans placed on sports as opposed to politics, not a causal link between 
the two. See Martin Kelly, “Predicting the Presidential Election with Baseball: 
Can the Winner of the World Series Predict the Presidential Election?” (2004). 
http://americanhistory.about.com/od/elections/a/baseballpres.htm.

 4 In actuality, the test is usually classified as a t-test. Recall from a previous chapter, 
however, that if the sample sizes are large enough, the t-test values will be close 
to or equal to the Z-score values. The degrees of freedom for a one-variable t-test 
would be N − 1. The degrees of freedom for a two-variable t-test would be  
N1 + N2 − 2 if we assume the standard deviations for each group in the sample 
to be equal, and somewhat less (a function of both sample sizes and standard 
deviations) if we don’t. Most statistical computer packages, such as SPSS or 
Stata, will compute the test for the proper case sizes, which define the degrees 
of freedom for both assumptions. A test for equality of variances will also be 
performed. If that test produces a significantly high number, related to a 
significance level of less than .05, then we can reject the possibility that the 
standard deviations are equal in the population and use the t-test score for 
non-equal deviations. With large samples, the differences between the two 
calculations will usually be slight.

 5 Note that this is the standard error formula if the two samples are independent 
of each other. If the women were chosen because they were married to the 
sample of men, or if two measures were taken from the same group (say 
the incomes of men before and after completing a probationary period or the 
temperature of individuals before and after taking medication), then a different 
formula would have to be used. Additionally, this formula does not assume that 
the standard deviation for males and females is equal. Again, many statistical 
packages will provide the ability to test for differences between samples that are 
not independent of each other.

 6 I use the word “indicates” because, absent other information, it does not prove 
the lack of discrimination. Perhaps women tend to have more seniority or work 
longer hours. Making the same income under those conditions would certainly 
lead us to believe that discrimination might be taking place. Perhaps women 
make more on mean average than men at the lower end of the profession’s job 
scale, but less at the top, indicating two biases that negate each other. See the 
sidebar in Chapter 10.

 7 We have only confidently rejected one possible actual population difference. Can 
we estimate what the true population differences are? Yes, by following the same 
analysis as in previous chapters. We would compute the lowest mean difference 
of a population from which this sample, with a difference of $800, could 
have been randomly drawn (Z = +1.96) and the highest (Z = −1.96). Having 
gone through this exercise numerous times, this author leaves the calculations 
to the student.

 8 Although I am not personally comfortable with this “traditional/non-traditional” 
characterization, I will use it as it is commonly stated this way in much of the 
literature.

 9 The American National Election Studies (ANES; http://www.electionstudies.
org). The ANES 2012 Time Series Study [data set]. Stanford University and the 
University of Michigan [producers].

10 I prefer this difference assessment to looking at individual thermometer ratings 
as one would expect an individual to vote for the candidate of the party to 
which they are more warmly or positively disposed. The fact that one has high/
low ratings for the Democratic Party or candidate does not negate the possibility 

http://americanhistory.about.com/od/elections/a/baseballpres.htm
http://www.electionstudies.org
http://www.electionstudies.org
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that she has equally high/low ratings for the Republicans. We may misestimate 
the influence of partisan feelings by looking only at one side of the equation. 
More on this when we get to regression (Chapters 11 and 12).

11 We of course could question whether the traditional/non-traditional 
dichotomization is an internally valid measure of marital status and certainly 
would question whether the ANES survey is truly random.

12 For a fairly thorough breakdown of the reasons for the marriage gap and its 
outcomes written by a student, see Shikole Struber, “The Effect of Marriage on 
Political Identification,” Student Pulse 2, no. 1 (2010).

13 If someone’s rating of Republicans is 100 and of Democrats is 0, the mean 
difference would be 100. If the reverse holds, the mean difference would be 
−100. If all traditionally married individuals had a difference in ratings of 100 
and all non-traditionalists had a rating of −100, the mean difference would be 
200 degrees.

14 This is the more conservative calculation with equal variances not assumed. With 
equal variances of the two groups ratings assumed, the figure would be roughly 
15.185. The difference is slight as the number of cases in each group is large.

15 For an excellent discussion of this problem, see Alan S. Gerber, Donald P. Green, 
and David Nickerson, “Testing for Publication Bias in Political Science,” Political 
Analysis 9(2001): 385–92. 
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Learning Objectives:

 ■ To understand that inferential tests of dichotomous proportions follow the 
logic of tests of means

 ■ To understand the concept of observed and expected frequencies given categor-
ical, nominal data

 ■ To be able to use chi-square as an inferential measure of one-variable nominal 
distributions

 ■ To understand the concept of degrees of freedom with one-variable nominal 
distributions

 ■ To further understand what inferential tests can and cannot tell us

The controversy over the 2000 presidential election outcome in Florida 
began well before the question of hanging chads and butterfly ballots was 
raised. On election night, the polls first predicted George Bush the winner, 
then Al Gore, and finally, they decided the election was too close to call. 
Part of the problem had to do with calling the election before all of the 
Florida polls had closed, thus deriving the prediction from a potential 
geographically biased sample. However, polls can be “wrong” even when 
the sample is not biased. Even with large samples, polls can merely provide 
estimates, allowing us to make predictions given a calculated margin of 
error. Sometimes, again only because of the laws of probability, we can be 
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off by even more than that calculated margin. On rare occasions, we can 
flip close to 100 heads.

We have just discussed how, by using Z-scores and the normal curve, 
we can estimate the mean value, or a range of mean values, of a population 
(µx) from the mean ( X ) of a sample randomly drawn from that population. 
The logic behind comparing sample observations and mean expectations 
by way of the normal curve also applies to proportions, but only when the 
variable we are measuring is dichotomous (i.e., just two categories; see the 
appendix in this chapter for a demonstration). Some variables, like gender, 
are naturally dichotomous. You are either male or female. Others are dichot-
omous by the researcher’s decision if only two choices are offered, say, 
“agree” or “disagree.” Of course, all variables, regardless of the number of 
categories, can be dichotomized after the fact. A four-category agreement 
question (“strongly agree,” “agree,” “disagree,” “strongly disagree”) can be 
collapsed into two categories. So can multicandidate voting outcomes. 
Several candidates were on the 2000 presidential election ballot other than 
George W. Bush and Al Gore. The responses to a question asking presi-
dential vote choice can be collapsed to “Bush” or “Other candidate.”1 
Electoral systems can be dichotomized into “proportional” or “not,” even 
though the “not” incorporates several forms of single member districting 
and mixed aggregation methods.

 DICHOTOMOUS PROPORTIONS

When we deal with proportions of dichotomies, just as we did with means, 
there is a fairly straightforward procedure to determine the margin of error 
that can be attributed to the luck of the draw. Let us designate the first of 
two proportions of any dichotomous variable/dichotomies in a population 
as the Greek character π. Note that as only two categories exist, and the sum 
of both proportions must equal 1, the second proportion must be equal 
to, and can be designated as, 1 − π. Holding to our convention of using the 
Roman alphabet for sample statistics, let us designate the proportions calcu-
lated from any sample as p and 1 − p. We only need to concern ourselves 
with calculating estimates for one of the two proportions—the other directly 
follows. Now, if we draw a large number of random samples from a population 
with actual proportions of a dichotomous variable equal to π and 1 − π, and 
if we plotted those sample proportions for either of the two categories (let’s 
use p), then the sample proportions would be normally distributed around 
their respective population proportion (π). Once again, the central limit 
theorem and the Z-score formula would apply, with one of the sample pro-
portions (p) substituting for the sample mean ( X ), the population proportion 

dichotomous variable/
dichotomies A variable for 
which only two categories 
exist.
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(π) substituting for the population mean (µx), and the standard error of the 
sample proportions (σp) substituting for the standard error of the sample 
means (µX):

 Z
p

p
p

=
− π
σ

 (8.1)

where p stands for the sample proportion
π stands for the population proportion
σp stands for the standard deviation of the sample proportions around 

the population proportion, the standard error of proportions

σp is calculated as:

 σ p N
=

× −π π( )1
 (8.2)

The formula for the standard error of proportions can be restated as:

 σ p N
=

× −π π( )1
 (8.3)

Note the similarity between the formulas for the standard error of the mean 
(µX) and the reconfigured standard error of proportions (σp). The denominator 
( N ) is the same in both. Remember that the standard error of the mean, 
as well as the calculated margin of error, was not only a function of the 
square root of the sample size but also of the variance, and thus the standard 
deviation, of the individual distribution. For nominal data, the margin of 
error is also a function of variance or the evenness of the split between the 
two proportions (π and 1 − π) of a dichotomy. Recall that when we discussed 
the index of diversity and the index of qualitative variation (Chapter 4), we 
determined that variation could be measured by computing the number or 
proportion of times that two individuals who differed on a variable (as 
opposed to sharing the same attribute) were drawn. In order to do so, we 
multiplied the number in each category by the number in every other cate-
gory. The highest number or standardized proportion occurred when there 
existed an even split between or among the categories (the computation of 
the denominator of the index of qualitative variation [IQV]). Consequently, 
the numerator of the standard error of dichotomous proportions will be 
highest when the split is 50/50, that is, when π × (1− π) = .5 × .5 = .25. 
Any other combination will produce a smaller product (e.g., .6 × .4 = .24). 
As the split becomes rather one sided, say 90/10, the value of π × (1 − π) 
becomes rather small (.09). Obviously, there isn’t much room above 90% for 
one proportion to vary in any particular sample.
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As with means, a range of possible population proportions can be 
estimated from the proportions of a given sample using the Z-score formula 
for proportions. Let us take the following example. A survey is taken from 
a random sample of 500 citizens in a Latin American country. Along with 
other items, the respondents are asked if they approve of their government’s 
U.S. foreign policy. Fifty-two percent express approval, and 48% do not. 
Can the nation’s leaders confidently assume that a majority (>50%) of 
citizens support them? Well, assuming that everyone is responding truth-
fully, and that the question was not worded in a way that would prompt 
a positive response, a slim majority of the respondents observed in the 
sample do approve.2 A sample, however, only provides one estimate of what 
the actual level of approval is in the population from which the sample 
was drawn (i.e., what we can expect in that entire population). The question 
that still needs to be answered is whether that sample could have been 
randomly drawn from a population where support is less than majority, 
or 50%.

We can approach this from several angles. Let’s do the following. 
Fifty-two percent is just an estimate of the proportion that approve in 
the population. The actual approval rate in the population could be 52%, 
but it could be more or less. How much more or less? That depends on 
which confidence interval we choose. As with the mean, let’s use 95%, 
 corresponding to an absolute Z-score of 1.96. Although we are just 
 interested in “how much less,” we’ll calculate both “less” and “more” in 
order to provide an estimate of the entire range of probable population 
proportions.

We proceed as we did with the calculation of probable population means 
and calculate the lowest (πL) and highest (πH) proportion of approval in 
populations from which this sample could have been randomly drawn. The 
number .52 lies at the top of the 95% confidence interval of a population 
with an actual approval rating of πL and at the bottom of a population with 
an actual approval rating of πH (Figure 8.1). We would not want to reject 
the possibility that this sample could have been randomly drawn from a 
population with actual approval levels as low or as high as these values, or 
any value in between (including π = .52).3

In order to determine those minimum and maximum values, we first need 
to calculate the standard error of proportions. We can, as we did when we 
substituted the sample standard deviation in computing the standard error 
of the mean, substitute the sample proportions (p and 1 − p) for the popu-
lation proportions (π and 1− π). Thus, our formula for deriving the standard 
error of proportions would be:

 σ
π π

p N
p p

N
=

× − × −( ) ( )1 1 ≈ σ
π π

p N
p p

N
=

× − × −( ) ( )1 1  (8.4)
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In our example, this would be:

 σ p =
×

= = =
. (. ) . . .
52 48

500
2496
500

000499 0223 (8.5)

We now need to compute two formulas to solve for two hypothetical pop-
ulation proportions (πL and πH). This would give us the lowest and the highest 
approval proportions of populations from which this sample could have 
probably been randomly drawn (i.e., would lie at the edge of their 95% 
confidence intervals):

+1.96 = (.52 − πL)/.0223 −1.96 = (.52 − πH)/.0223
+.0437 = .52 − πL −.0437 = .52 − πH

−πL = .0437 − .52 −πH = −.0437 − .52
−πL = −.4763 −πH = −.5637
πL = .4763 πH =.5637

       .4763 < π < .5637

The .0437 calculated on the second line is the margin of error. That is, given 
this sample size and this split in approval, we have to allow for the possibility 
that our sample proportion might be off by as much as 4.37% (more or less) 
from the true population value just because of the luck of the random draw 
of respondents. The last line tells us that, if we are using a 95% confidence 
interval, we would not feel safe in rejecting the possibility that this sample 
(with a p = .52) could have been randomly drawn from a population where 
47.63% (52% − 4.37%) approve of their country’s foreign policy, where 
56.37% (52% + 4.37%) approve, or any rate of approval in between these 
two figures. To restate our original question, can the country’s leaders safely 

πL p = .52 πH

FIGURE 8.1 Two-Curve Population Estimate, Dichotomous Proportions
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reject the possibility that the true level of support for foreign policy is below 
50%? Not quite. Fifty percent is within our calculated margin of error of 
4.37%. It is not significantly different enough from .50, or .49, or even .48 
to reject these as possibilities. The country’s leadership may take a calculated 
risk. After all, that .4763 is at the bottom end of the probable level of support 
in the population. Support might be as high as 56.37%. However, also 
remember, although it is highly unlikely that this sample could have been 
randomly drawn from a population where the real level of support was even 
lower than 47.63%, say, 47% or 46%, it is not impossible. Tough call. Of 
course, this nation’s leaders might sense that the issue is not all that important 
to most citizens, except for the most anti-U.S. citizens. They might therefore 
decide that, given differing levels of intensity on the issue, they should not 
proceed for fear of suffering significant political damage.

We could have approached the problem in a more direct way. The nation’s 
leaders have a precise question they need answered. They need to know if 
.52 is significantly different enough from .50 (or one voter less) to confidently 
reject that as a possible population value. The null hypothesis is therefore:

H0: percentage support = 50% or, more accurately, H0 ≤ 50%
and

H1 percentage support is > 50%

Is that difference of .02 within the estimated margin of error, basing that 
decision on a 95% confidence interval and a Z-score of 1.96 (or 1.645 in a 
one-tailed test)? Let’s solve for the Z-score and see if it’s less or more than 
1.96. If it is more, then we can confidently reject the possibility (πL< 50) as 
it is outside of the 95% range of possibilities. If it is less than 1.96, then 
we can’t.

As we are specifying a particular population proportion for comparison 
(.5), we need not depend on the sample proportions (.52, .48) as estimates 
of the true population proportions. That .50 is the expected proportion that 
we are trying to reject as a possibility (our null hypothesis, or H0). The stan-
dard error would therefore be recalculated using .5 × .5 as our variance (the 
maximum possibility). The standard error would be marginally higher than 
before, rounded to .0224 (.02236068 carried out). The formula then is listed as:

 Z p =
−

= =
. .

.
.

.
.52 50

0224
02

0224
894Z p =

−
= =

. .
.

.
.

.
52 50

0224
02

0224
894  (8.6)

The calculated Z-score of .894 (actually .8944272) is substantially less than 
1.96 (or 1.645). Thus, we cannot confidently reject the possibility (our null 
hypothesis) that this sample could have been randomly drawn from a pop-
ulation with an actual level of approval of .50. Fifty-two percent is within 
the 95% confidence interval of that population.
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Now what if the sample size were 5,000? The standard error would then 
be .0071 (.7071068). Check this to make sure you understand the calculation. 
The recalculated Z-score would be 2.82 (2.8284271 without rounding error). 
Although we start with the same sample proportion, we can now confidently 
reject the possibility that the sample could have been randomly drawn from 
a population where the true proportional support was .50 or less. With a 
larger sample size, less of the difference between sample and posited popu-
lation proportions can be attributed to the random luck of the draw. We can 
therefore confidently reject a larger range of possibilities (including ≤ .50).

Just as with means, when we are only concerned with one side of the 
equation, as we are in this analysis, we might want to perform what is called 
a “one-tailed” test. We only need to know if .52 is significantly greater than 
.50. The difference with a one-tailed, or directional, test is that the Z-score 
value would be different since we are only concerned with one side of the 
normal curve. Look at the following normal curve (Figure 8.2). If we ran-
domly draw samples from a population with a proportional support of π, 
95% of those samples will have proportional support (p) less than the cutoff 
designated on the graph.

Refer back to our normal table chart (Table 5.1). Fifty percent of the sam-
pling distribution of dichotomous proportions would lie below a Z-score of 0, 
or the point corresponding to the true sample proportion (π). Forty-five percent 

−3 −2 −1 0 1 2 3

1.645
Z

FIGURE 8.2 One-Tailed Test, Z = 1.645, Dichotomous Proportions
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would lie between that point and a Z-score somewhere between 1.64 and 1.65, 
or about 1.645. As we are concerned with only “one tail” of this distribution, 
the 95% confidence interval would have its upper bound not at 1.96 (the 
two-tailed version), but 1.645. Is the calculated Z-score still less than this? In 
our example of a sample of 500, yes. Even with a one-tailed, or directional, 
test, this nation’s leaders could still not safely reject the possibility that the true 
level of approval was .50.

News agencies and political groups that commission surveys usually list a 
“maximum margin of error” in reporting their results. This maximum margin 
is that which, given the sample size, would exist if an even split (50/50) 
existed between the proportions. Remember from both our discussion of the 
indices of diversity and qualitative variation and this chapter that the maxi-
mum value for the variance (and thus the calculation of the standard error 
of proportions) exists when the cases are evenly distributed. As they usually 
report more than one result, with several different splits between categories, 
they list this maximum rather than a separate calculation for each table. 
Additionally, since the sample proportions are used as estimates of the true 
population proportions, this procedure allows for the maximum amount of 
variance in the population. The actual margin of error will often be less than 
that which is listed.

 CHI-SQUARE (χ2)

The previous calculations based on the normal curve and Z-scores only work 
with proportions when the variable is nominally measured with only two 
possible categories (i.e., dichotomous). For nominal variables with more than 
two categories, a different inferential test is needed. The chi-square (χ2) 
procedure is most commonly used. It also deals with comparing the differences 
between population expectations and sample observations.

Let’s develop the logic of this procedure by way of a Law & Order example. 
Let us say that a task force is formed in a California county to determine 
whether the composition of capital crimes jury pools (those finally seated on 
juries) is representative of the demographics of the county as a whole. Through-
out the year, 1,000 individuals served as jurors (and, we assume, only served 
once). Of those 1,000, 44% were of Hispanic origin, 30% were non-Hispanic 
white, 22% were of some Asian or Pacific Islander origin, and the remaining 
4% were non-Hispanic black. The Hispanic community complains that, 
according to the most recent census figures, their community was underrep-
resented in jury selection. For the entire population, the relevant percentages 
of jury-age citizens are 51%, 28%, 18%, and 3%, respectively.4 Was the 
recruitment technique biased?

The task force argues that, just as with the flip of a coin, one should expect 
some difference to occur solely based on the laws of mathematical chance. 

chi-square An inferential-only 
statistic that tests for 
the possibility that the 
proportions we observe in 
a sample could have been 
randomly drawn from a 
population with different 
expected proportions. The 
chi-square must be used 
when more than two cate-
gories of a variable exist.
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They could not hope to contact every citizen in every home, but they did 
try to come up with a fairly representative sample. They argue that they can’t 
be asked to do better than what could have been produced by a purely ran-
dom selection process.5 The problem then gets framed as the following: are 
the differences between what is observed in the sample (the 1,000 jurors) 
significantly different enough from what would have been expected from the 
population to confidently reject the possibility that the recruitment technique 
was unbiased? Or are the differences so slight that, as with the flip of coins, 
a purely random procedure could have produced them?

In order to answer this question, we need to compute the chi-square 
statistic for this sample with the following statistical hypotheses:

H0: percentage of four ethnic groups equals 51%, 28%, 18%, and 3%, 
respectively,

and
H1: percentage support is significantly different from those percentages

Let’s do the computations in stages. First, we need to compute the observed 
(absolute) frequency for each ethnic category. For example, with a total 
recruitment jury of 1,000, we observe (  fo ) 440 individuals of Hispanic origin 
(44%). We next calculate the expected frequency (i.e., how many Hispanics 
should we have expected). Given the population breakdown, we would have 
expected an absolute frequency (  fe ) of 510 (51%). We therefore find that 70 
fewer Hispanic individuals were selected and seated for jury service than 
would have been expected if the selection process exactly reflected the pro-
portion of Hispanic-Americans in the entire population. The observation 
deviates from the expectation by −70 (  fo − fe ). Compute the observed and 
expected frequencies for the other three categories, and subtract them to see 
by how many individuals the observations exceed or fall short of the expec-
tations based on the population figures. It is best to set up a table at this 
stage (Table 8.1).

Expected values for each category are subtracted from the observed values 
to produce a count of how much deviation there is from our population-based 
expectation. Think of this as a categorical, rather than an individual, deviation 

observed frequency The 
actual number of cases in 
each category observed in a 
sample.

expected frequency The 
number of cases in each 
category expected from a 
specified population from 
which a sample is randomly 
drawn.

 TABLE 8.1 Observed and Expected Number of Jurors

Ethnic/Racial 
Category

f o f e f o − f e

Hispanic 440 510 −70
Non-Hispanic White 300 280  20
Asian/Pacific 220 180  40
Black  40  30  10
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score. As with the computation of the individual deviation scores in Chapter 
4, summing up these deviations across all categories will cancel each other 
out (70 fewer Hispanic-Americans must be made up by 70 more from the 
three other categories). Thus, as in the computation of the variance, we square 
those deviations (adding them will always produce a value of “0”). Of course, 
we now have a large number of “squared individuals” (4,900, 400, 1,600, 
and 100). As with the computation of the standard deviation, we need to 
bring this number back into alignment with our original values. We could 
add them and take the square root, but a different method is employed. 
Additionally, as with the computation of Z-scores, it would be useful to 
standardize these “squared deviations” to remove the unit of analysis (in this 
case, individuals).

In order to standardize these squared values, we divide each by the 
respective expected frequency (fe) of each category. Think of it this way. 
With a small number of individuals in any particular category, our sample 
could not be much different in absolute terms from its population. Having 
a larger number of individuals, however, produces a much greater range 
of possibilities for over- or undersampling. Dividing by the expected fre-
quency (our population estimate) re-calculates the squared difference in 
relative terms (i.e., as a proportion of the number of cases that originally 
exist). Notice that the oversampling of 10 black Americans produced a 
higher relative deviation than the 20 non-Hispanic whites. Add these 
proportional deviation scores to the table.6 Now take their sum (i.e., add 
them together).

Again, a generic formula is useful, although not essential, in depicting the 
needed calculations. The formula for chi-square is as follows:

 χ2
2

1

=
−

=
∑ ( )f f

f
o e

ek

K

 (8.7)

where K = number of categories (not cases)
fo = frequencies actually observed for each sample category
fe = frequencies expected from the population for each category

Compute the expected frequency for each category, and subtract it from the 
observed frequency. Next, square that difference and divide by the expected 
frequency. Do this for each category, and then add them together.

You may justifiably surmise that a number like 23.26 has no intrinsic 
meaning. However, neither did a Z-score of 1.96 or any other value until 
we converted it to area under a normal curve. The logic here is similar, even 
if the graphs are not normal.

Sometimes, as in the calculation of a sample mean or dichotomous 
proportion, what we observe in the sample is identical to what we would 
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observe in, or what we would have expected from, the population. Given 
this condition, the Z-score will be equal to “0.” In our current scenario, if 
we observed in the sample exactly what we expected from the population 
for each of our four categories, the chi-square value would be equal to “0.” 
There would be no difference between observed and expected frequencies, 
the square of “0” is “0,” “0” divided by any number is “0,” and the sum 
of four “0s” is “0.” Of course, it would be highly probable that in any 
single random sample we would produce a distribution a bit different from 
that of the population. As we increase the difference between observed (in 
the sample) and expected (from the population) values, we increase the 
calculated value of chi-square. However, could we have drawn by random 
chance enough fewer Hispanic-Americans, enough more black Americans, 
and so forth, to produce a chi-square value as high as 23.26 (or higher)? 
The question we need to ask is whether a set of observations producing a 
chi-square of 23.26 could have been randomly sampled from the given 
population. Or is it so high that the differences between observed and 
expected frequencies were probably caused by some bias, intentional or not, 
in the selection technique? Is 23.26 within a reasonable mathematical margin 
of error, or is it highly unlikely (like the flip of 100 heads)? In order to 
determine this, look at the table of critical values of chi-square (Table 8.3). 
First, figure out which row to peruse by calculating the “degrees of freedom” 
(df). The degrees of freedom for a single frequency distribution are equal 
to the number of categories (K) minus 1. Since we have four ethnic/racial 
categories, the degrees of freedom are equal to 3.7 Move over to the column 
marked “.05” and notice the figure “7.815 (Figure 8.3).” Translation: if we 
randomly draw a large number of samples from any given population with 
four categories of any variable (and 3 degrees of freedom), 95% of the time 
the differences between observed (in the sample) and expected (from the 
population) frequencies will produce a chi-square between 0 and 7.815 
(Figure 8.3). The “.05” represents the area to the right of the critical value 
(i.e., outside of the 95% confidence interval).

Consider this to be much like the −1.96 and +1.96 Z-score values for the 
normal curve with two differences. First, because we square the differences, 

critical value The value of 
a statistic, like chi-square, 
above which allows us to 
confidently reject a null 
hypothesis.

 TABLE 8.2 Chi-Square Calculation for a Four-Category, One-Variable Distribution

Category f o f e f o − f e (f o − f e)2 (f o − f e)2/f e

Hispanic 440 510 −70 4,900 9.61
Non-Hispanic White 300 280  20   400 1.43
Asian/Pacific 220 180  40 1,600 8.89
Black  40  30  10   100 3.33

∑ = 23.26 = χ2
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chi-square values can only be positive, thus the lowest value is “0.” Second, 
like the set of t-distributions discussed at the end of Chapter 6, the shape of 
the chi-square distribution is different for each degree of freedom, or number 
of categories (−1). Interestingly enough, as we increase the degrees of freedom 
(say, 100), the χ2 distribution becomes less skewed and more normal in its 
appearance (Figure 8.4).

As we increase the number of categories, we increase the possible ways 
that a sample can deviate from its population. Therefore, we decrease the 
likelihood of a computed chi-square close to 0 and increase the probability 
of a calculated chi-square well above 0. Note that the critical values or cutoff 
values for any confidence interval increase as we increase the number of 
categories and, thus, the degrees of freedom. Let us say that we had seven 

 TABLE 8.3 Critical Values of the Chi-Square Distribution

Area to the Right of the Critical Value

.100 .050 .025 .010 .005 .001

df
1 2.7055 3.8414 5.0238 6.6349 7.8794 10.828
2 4.6051 5.9914 7.3777 9.2103 10.5966 13.816
3 6.2513 7.8147 9.3484 11.3449 12.8381 16.266
4 7.7794 9.4877 11.1433 13.2767 14.8602 18.467

5 9.2363 11.0705 12.8325 15.0863 16.7496 20.515
6 10.6446 12.5916 14.4494 16.8119 18.5476 22.458
7 12.0170 14.0671 16.0128 18.4753 20.2777 24.322
8 13.3616 15.5073 17.5346 20.0902 21.9550 26.125
9 14.6837 16.9190 19.0228 21.6660 23.5893 27.877

10 15.9871 18.3070 20.4831 23.2093 25.1882 29.588
11 17.2750 19.6751 21.9200 24.7250 26.7569 31.264
12 18.5494 21.0261 23.3367 26.2170 28.2995 32.909
13 19.8119 22.3621 24.7356 27.6883 29.8194 34.528
14 21.0642 23.6848 26.1190 29.1413 31.3193 36.123

15 22.3072 24.9958 27.4884 30.5779 32.8013 37.697
16 23.5418 26.2962 28.8454 31.9999 34.2672 39.252
17 24.7690 27.5871 30.1910 33.4087 35.7185 40.790
18 25.9894 28.8693 31.5264 34.8058 37.1564 42.312
19 27.2036 30.1435 32.8523 36.1908 38.5822 43.820

20 28.4120 31.4104 34.1696 37.5662 39.9968 45.315
21 29.6151 32.6705 35.4789 38.9321 41.4010 46.797
22 30.8133 33.9244 36.7807 40.2894 42.7956 48.268
23 32.0069 35.1725 38.0757 41.6384 44.1813 49.728
24 33.1963 36.4151 39.3641 42.9798 45.5585 51.179
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ethnic/racial categories instead of four. In order to confidently reject the 
possibility (95% confidence interval) that our sample could have been ran-
domly drawn from a posited population, a chi-square value greater than 
12.5916 (df = 6) would have to be calculated.

Could a chi-square greater than 7.815 be calculated for a randomly sampled 
group divided into four distinct categories? Like a high Z-score, it is possible 
but highly unlikely. “23.26” is so much higher than (significantly different 
from) “0” (and “7.815”) that we can confidently reject the possibility that 
this sample of jurors was randomly drawn from the adult population.8 The 
differences between observed and expected frequencies (and the chi-square 
produced) are more than we are willing to attribute to a random luck of the 
draw. The likelihood of bias in the sampling procedure is therefore statistically 
rather high. Hispanic-Americans were either intentionally (prosecuting or 
defense attorneys were more likely to eliminate them from the pool) or 
unintentionally (Hispanic-Americans might earn relatively low salaries and 
can therefore delay or cancel their jury duty) underrecruited. Stated differently, 

FIGURE 8.3 Chi-Square Distribution with Three Degrees of Freedom
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FIGURE 8.4 Different Chi-Square Distributions

the real population from which this group was sampled probably does not 
mirror the actual total population (but rather a disproportionately non-Hispanic 
one).9 Legal controversy still remains over whether one needs to demonstrate 
intentional bias. Statistics can’t answer that question, but they can provide a 
minimal base of data for its debate—a debate that is often used to question 
the legitimacy of the pool of individuals who serve on jury duty.

If, on the other hand, the differences between observed and expected 
frequencies produced a chi-square below our critical value (e.g., 5.6), then 
we would not be confident in rejecting the possibility that those differences 
were caused simply by random sampling procedures (much like we couldn’t 
reject the possibility that support for a nation’s foreign policy was 50% with 
a Z-score of less than 1.645). We would have no statistical basis for claiming 
discrimination. Of course, this does not mean that discrimination does not 
exist—only that the evidence is consistent with a fair recruiting procedure 
(as well as several biased ones).

Before we move on to the next chapter, let’s discuss this notion of expected 
frequencies further. Recall that, with the IQV, the expected value was that 
which would occur if the cases were evenly distributed among all of the 
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categories. With χ2, the expected value is based on the proportional break-
down of any given population against which we wish to compare our sample. 
Could this sample have been randomly drawn from that given population? 
The cases can be evenly distributed or not. Let us take an example where an 
even distribution is our expectation and the traditional rules of statistical 
inference apply.

A state gaming commission is concerned that a casino is not using regu-
lation decks, thereby reducing the probability of certain cards appearing. The 
commission doesn’t have time to count and identify every card. Instead, it 
shuffles all of the casinos decks together and randomly draws 1,000 cards 
from this master deck. The draw produces 265 Diamonds, 245 Hearts, 260 
Clubs, and 230 Spades. Can we confidently claim that the house decks are 
rigged (i.e., can we confidently reject the possibility that the suits are evenly 
distributed throughout the decks)?

Once again, we will produce a table comparing observed and expected 
frequencies for each suit. In a normal deck of cards, the number of each suit 
should be identical (i.e., the cards are evenly distributed among the four 
suits). With 1,000 cards, the expected frequency for each suit would be 250.

The calculated χ2 of 3 is less than the 7.815 critical value cutoff. The 
commission cannot reject the possibility that, in the population of all cards 
from which these 1,000 were sampled, the cards were evenly distributed 
among the four suits. Does that guarantee that the decks are indeed evenly 

Sidebar 8.1: Discrimination in Jury Selection

Courts will generally not challenge the method of jury selection as long as the discrepancy between 
the percentage of jurors of a protected group and that group’s actual population percentage 
does not exceed ten percentage points. What that implies, of course, is that any group that con-
stitutes less than 10% of the population can be excluded without question. This also means that 
black citizens are denied the chance to challenge in 75% of U.S. counties, and Hispanics and 
Asian-Americans in more than 90%.

Of course, prosecutors, defense counsels, and judges can eliminate a certain number of jurors 
without a specifically mentioned cause. Former justice Thurgood Marshall complained that, even 
though the court made challenges based on race easier to pursue, these individuals could “easily 
assert facially neutral reasons for striking a juror, and trial courts are ill equipped to second-guess 
those reasons” (Batson v. Kentucky, 476 U.S. 79 at 106).

For a full discussion of this issue, particularly the implications of the Batson decision, see the 
report of the Equal Justice Initiative, Illegal Racial Discrimination in Jury Selection: A Continuing 
Legacy (Equal Justice Initiative, 2010), available online at http://www.law.berkeley.edu/files/thcsj/
IllegalRacialDiscriminationJurySelection.pdf.

http://www.law.berkeley.edu/files/thcsj/IllegalRacialDiscriminationJurySelection.pdf
http://www.law.berkeley.edu/files/thcsj/IllegalRacialDiscriminationJurySelection.pdf


I N F E R E N T I A L  S T A T I S T I C S  F O R  P R O P O R T I O N S

179

distributed? No, but the evidence does not allow them to reject that as one 
possibility.

What if the commission randomly sampled 10,000 cards with the same 
proportional results (2,650, 2,450, 2,600, 2,300)? Recalculate the χ2 value. 
The value is now 30. The commission now has statistical evidence that the 
cards are probably rigged. Why the difference? Remember, sample sizes are 
important when making inferences about any statistic. The larger the sample 
size, the closer any sample should be to the true population value. The 
anticipated margins of error should be proportionately less. As with our 
calculation of the Z-scores for dichotomous proportions, a larger sample size 
should and does produce a larger chi-square value—even though the observed 
proportions are the same.

One last question. Is the evidence of bias now absolutely conclusive? 
No. Just as with means and dichotomous proportions, even extreme dif-
ferences between sample observations and population expectations are pos-
sible, even if highly unlikely. Additionally, the bias might not have been 
intentional (perhaps a card manufacturing error). This evidence alone would 
probably not hold up to proof “beyond a shadow of a doubt.” However, 
it would provide at least a piece of the evidence required for a successful 
prosecution.

Similar to this analysis of observed and expected frequencies of cards, we 
could use the same logic in trying to determine if a sample of ethnic groups 
like the one we chose could have been randomly drawn from a population 
with perfect diversity among those groups. As with our calculation of the 
denominator of the IQV (Chapter 4), the expectation of the IQV would be 
an equal number of individuals within each of the four ethnic categories that 
exist in this community. Of course, one could claim that more ethnic cate-
gories would equate with greater diversity. However, given just these four 
sampled groups, could we reject the possibility that an equal number of each 
group exists in the population? Carry out the calculations to find out.

The use of the χ2 statistic as an inferential measure for one variable (uni-
variate) is not commonly found in most statistics texts, although the reason 
for its omission is not clear to this author. It provides a useful measure of 
the goodness of fit between a distribution of sample observations and a posited 

 TABLE 8.4 Chi-Square Calculation of Sampled Cards

Category f o f e f o − f e (f o − f e)2 (f o − f e)2/f e

Diamonds 265 250  15 225  .9
Hearts 245 250  −5  25  .1
Clubs 260 250  10 100  .4
Spades 230 250 −20 400 1.6

∑ = 3.0 = χ2
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distribution of population observations for data measured at the categorical, 
or nominal, level. Its interpretation matches nicely with that used for 
Z-scores.10 It can be used to judge whether or not a sample could have been 
drawn from a population with an even distribution among all categories (our 
expectation for the IQV). Its more common application will be covered as 
we discuss measures of association between two variables (bivariate), a dis-
cussion that we will begin in the next chapter. Other than the concepts of 
association and control, however, you have now been introduced to the basic 
elements of statistical theory—description and inference, central tendency, 
variation, and goodness of fit, as well as the notion of observed and expected 
values. Each of these will be re-introduced in the coming chapters.
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APPENDIX

VISUALIZING DICHOTOMOUS PROPORTIONS AS MEANS

Although we would be hard-pressed to conceptualize dichotomies as interval data (we use ordinal 
terms like “more male,” but can we state “by how much”?), there is, however, a direct mathematical 
equivalence between the two. Let us say that a statistical program, not knowing the limitation of the 
data, computed a mean value of gender of 2.6. Males are arbitrarily categorized as “1,” and females 
as “5.” Given that mean, and the category values arbitrarily assigned, one and only one combination 
of proportions of males and females is possible. Why? Let’s categorize the proportion of males as 
“M” and the proportion of females as “F.” Because males and females constitute the entire universe 
of categories for gender (proportion = 1), then the proportion of females can be listed as “1 − pM.” 
In Chapter 3 we stated that the mean can be computed with proportions using the following 
formula:

X  = p xk
k

K

k
=
∑ ×

1

Carrying that out with the gender information given:

 2.6 = (pM) × 1 + (1 − pM) × 5
 2.6 = pM + 5 − 5 pM

 2.6 = 5 − 4 pM

 −2.4 = −4 pM

 M = .6

The proportion of men equals .60, or 60% of the total. The proportion of women must therefore 
equal .4, or 40%. Given that mean, and those arbitrarily assigned categories, no other pair of pro-
portions is possible. This exercise might seem silly, but it helps us to understand why dichotomous 
proportions and means can be analyzed similarly. It also explains why dichotomous variables can be 
used in regression analysis (dummy variables), a statistical technique that assumes interval properties 
for its variables. We’ll discuss regression analysis in Chapters 11 and 12.
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 KEY TERMS

chi-square (171)

critical value (174)

dichotomous variable/ 
dichotomies (165)

expected frequency (172)

observed frequency (172)

 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the SPSS 
and Stata manuals that accompany this text. Inferential tests for dichotomous 
proportions and one-variable chi-squares can be found in a set of legacy 
procedures Section 4.4.

 1. A European newspaper reports that the maximum margin of error for 
its poll sample, using a 95% confidence interval technique, is 4.4%. 
Seventy-two percent of the sample members state that they support the 
stricter restrictions on immigration from non-EU countries (28% do not). 
Using that maximum margin of error, what would be our estimate of the 
true proportion of supporters of stricter restrictions in the population? 
Could we confidently reject the possibility that the true, or expected, pro-
portion was 66%? Is that percentage impossible?

 2. An exit poll has a margin of error of 5.6%. The observations derived from 
this poll predict that the incumbent member of Congress will retain her 
seat with 54% of the two-candidate vote. How safe is the polling agency 
in calling the race for the incumbent?

 3. Return to the figures in Exercise 1. Use the sample proportions as esti-
mates of the true population proportions. The sample size is 500. What 
can we expect the range of population support to be?

 4. A variable has four possible responses. How many degrees of freedom 
exist for that variable? If we are using a 95% confidence interval test, what 
would be the critical chi-square value? What does that critical value mean?

 5. A variable has eight possible responses. How many degrees of freedom 
exist for that variable? If we are using a 95% confidence interval test, what 
would be the critical chi-square value? What does that critical value mean?

 6. Why do you think the critical value in Exercise 5 is higher than that in 
Exercise 4?

 7. Return to the three ideological listings in Chapter 4, Table 4.1. The third 
has 90 individuals on the left of the spectrum, 80 in the center, and 70 on 
the right. Assume this is a random sample. Could this sample have been 
drawn from a population where the individuals are evenly distributed 
(80) among the three categories?
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 8. Can we specify exactly what the population proportional breakdown is in 
Exercise 7?

 9. Perform the same calculation and analysis as in Exercise 7, but with a 
population proportional breakdown of 60%, 20%, and 20%.

10. Perform the same calculation and analysis as in Exercise 7, but with a sam-
ple ten times larger (2,400) and with the same proportional breakdown in 
the sample (900, 800, 700). Do our inferential results differ? What does 
this tell you about the “law of large numbers”?

 NOTES

 1 Of course, as we saw in Chapter 2, how we treat “non-voters” will affect the 
outcome regardless of which statistic is used.

 2 An example of such a biased question would be: “The United States is a 
trading partner that purchases many of our goods. Although one might not 
agree with all of our diplomatic relations with the United States, increasing 
tensions between our countries might lead to economic sanctions against 
our products. This will most likely lead to a substantial loss of jobs. Do you 
approve of our nation’s U.S. foreign policy?” Notice, this would not be the 
same as asking: “We have many concerns about U.S. involvement in our 
region. Do you approve of your nation’s foreign policy toward the United 
States?”

 3 We’ve truncated the discussion here because our discussion of sample means 
covered this fully. The logic is exactly the same and is based on a series of 
theoretical sampling distribution of proportions in which .52 would lie 
within each distribution’s 95% confidence interval.

 4 Of course, the census is itself an estimate. Many argue that certain ethnic 
groups are severely underrepresented. It is, however, the best full enumeration 
we have. For purposes of illustration, let’s proceed as if it were complete.

 5 Here I am using my compromise version of significance test use.
 6 Note the similarity to the variation ratio formula re-calculated as the difference 

between observations and expectations found in Chapter 4. The order of 
subtraction differs ( fe − fo rather than fo − fe ), but squaring the difference 
removes the disparity (either order would produce the same result). Note, 
however, that the variation ratio measures the standardized difference from 
the mode for an entire distribution. For the chi-square, we measure the 
standardized difference for each category of a distribution based on expected 
values for each category.

 7 If we fix the number of cases of the first three categories and keep the total 
number of cases constant, then the number of cases in the fourth category 
is no longer free to vary. Once we know the number of Hispanic, non-Hispanic 
white, and Asian jurors, then, with a fixed number of individuals of 1,000, 
we can automatically determine the number of individuals who are black.

 8 Most computer programs will actually compute the exact point on the 
chi-square distribution on which the calculated value falls and specify the 
area to the right of that point. If that value is less than .05 (as it is in our 
example), then we can reject the null hypothesis that the sample could have 
been randomly drawn from the posited population.
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 9 Unfortunately, unlike means and dichotomous proportions, we cannot even 
begin to specify a range of actual possible population values from which this 
group of 1,000 was drawn. With more than two categories, the possibilities 
are virtually infinite. Of course, using the chi-square formula, we can compare 
our observed distribution to any hypothesized distribution and determine if 
the differences are statistically significant or not.

10 This match between interpretations is more than coincidental. Go back to 
the data from which we calculated our original Z-score (52%/48% split). 
List the observed and expected frequencies (not proportions). With a sample 
of 500, the observed frequencies would be 260 and 240, respectively. As we 
are testing whether this could have been randomly drawn from a population 
with 50% support, the expected frequencies are 250 and 250. Calculate the 
chi-square. It should equal .8, which is the square of the Z-score of .8944272. 
As we shall see later, statistics are often related to each other in more than 
conceptual ways.

Category f o f e f o − f e (f o − f e)2 * (f o − f e)2/f e

Approve 260 250  10 100 .4
Disapprove 240 250 −10 100 .4

∑= .8 = χ2

 In the next chapter, we’ll discuss a modification of this formula when only 
1 degree of freedom exists, as it does in this example.
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Learning Objectives:

 ■ To learn how to read a bivariate contingency table
 ■ To understand the concept of observed and expected frequencies given categor-
ical, nominal data for two variables

 ■ To be able to use chi-square as an inferential measure of two-variable nominal 
distributions

 ■ To understand the concept of a proportional reduction of error measure
 ■ To learn the differences between alternate definitions of association and no 
association

 ■ To understand why different statistics can produce drastically different results 
with the same crosstabular data

 ■ To realize that many statistics are variations of others

 CONTINGENCY TABLES

Thus far, when dealing with categorical, nominal data, we have mainly discussed 
questions dealing with the distribution of values on one variable (frequency 
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distributions, modes, variation ratios, indexes of qualitative variation, and infer-
ences based on proportions). As we noted in Chapter 7, however, most important 
issues in the social sciences deal with discussing the relationship or association 
between and among the values of two or more variables. We will not discuss 
bivariate (two variable) differences between dichotomous proportions, although 
the logic and math is similar to those of the difference between means. This 
chapter will discuss how one measures the differences between proportions with 
any number of categories. For this we will use a crosstabulation or contingency 
table. Just as a frequency distribution provided a pictorial review of the distri-
bution of one variable, a crosstabulation provides similar information about the 
relationship between two or more variables.

Crosstabulations can provide a wealth of information about the association 
between variables. Comparing sets of percentages can answer several interesting 
questions. Each set of contingent percentages, however, answers a different 
question. We must be careful in how we read those percentages. Let us turn 
to the following crosstabulation for an example.

In the following table, information is provided from the 1988 American 
National Election Studies (ANES) survey.1 Two variables are presented, gender 
and presidential vote, each with two possible categories (dichotomies). Note 
that only those respondents who claim to have voted for one of the major 
party candidates are listed (third-party and non-voters are excluded from this 
analysis, as they are from most electoral discussions). A claim has been made 
that there exists a gender gap between men and women over their political 
attitudes and behaviors. Specifically, women are more likely to think and 
behave like Democrats than are men. Men, in turn, are more likely to behave 
like Republicans than are women. The independent variable, or property 
specified is gender; that is, we are hypothesizing that one’s gender has a direct 
effect on one’s partisan orientation. Gender is in actuality a surrogate measure 
for personality and cultural differences. Women, for example, seem to be 
more likely to be concerned with social welfare issues (an issue cluster ben-
eficial to Democrats) than are men. Remember that by considering all women 
as a unit, we are losing the distinctiveness among them. Not all women are 
concerned about social welfare issues. Similarly not all men are not concerned. 
Multivariate analysis can help us to determine which aspects of gender dif-
ferences are most important, and which men and women are most likely to 
behave in a “normal” manner. For now, we’ll deal only with a bivariate 
analysis; but keep in mind that the universe, political or otherwise, is much 
more complex.

One way to operationalize the outcome of partisan orientation is to deter-
mine how people vote for president. Presidential vote, or the partisan direction 
of that vote, is therefore the dependent variable. We provide one test implication 
by analyzing survey results in 1988.

Table 9.1 provides both absolute frequencies (how many), and a series of 
relative frequencies (what percentage) for the bivariate distribution between 

crosstabulation or  
contingency table A fre-
quency table that represents 
the distribution of data 
simultaneously on two or 
more variables.
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our independent (gender) variable and our dependent (1988 presidential 
vote) variable. Now we need to use this information to confirm or disconfirm 
the following test implication of our general gender gap hypothesis:

In 1988, women were more likely to support the Democratic presidential 
candidate, (Michael Dukakis), than were men.

. . . which is a logical test implication of the following general 
hypothesis:

Women are more likely to vote Democratic than are men.

Notice that we can’t answer this question by looking at the absolute frequen-
cies. More females than males voted Republican, but more females also voted 
Democratic. There just happen to be more females in the survey.2 Refer back 
to our discussion of frequency distributions in Chapter 2. When the total 
case sizes are different, one cannot compare absolute counts. Instead, one 
must standardize to a common base that depends on proportions, or relative 
frequencies. In order to answer the question, we must first determine what 
proportion of the 533 men in our sample voted Democratic (232/533 = 
43.5%) and Republican (301/533 = 56.5%) for president. We then calculate 
the proportions of the 662 females who voted Democratic (331/662 = 50%) 
and Republican (331/662 = 50.0%).

Women were more likely to vote Democratic than were men. Looking at 
the column percentages, we can state that, in this sample, females were 6.5 
percentage points (50.5–43.5) more likely to vote Democratic than were males. 
That 6.5% is called the relevant percentage difference. Of course both groups 
gave the Republican candidate, George H. W. Bush, at least half of their 
support. Certain summary measures of association are sensitive to this, and 
can indicate very high or very low degrees of association between these vari-
ables. We’ll return to this example as we cover more statistics of association 

relevant percentage 
difference The difference 
in the percentages of cases 
between dependent variable 
categories for one or more 
independent variable 
categories.

 TABLE 9.1 The Gender Gap in 1988

Gender

PRESIDENTIAL VOTE 1
Male

2
Female

Total

1 Democratic 232
43.5%

331
50.0%

563
47.1%

2 Republican 301
56.5%

331
50.0%

632
52.9%

Total
533
44.6%

662
55.4%

N = 1,195
100.0%
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in this chapter. First, however, make sure that you understand how to per-
centage properly. Our hypothesis asks us to compare the proportion of all 
533 males and 662 females who voted Democratic. Thus, we calculated column 
percentages. Row percentages would tell us what proportion of those who 
voted Democratic were males (232/563 = 41.2%) and what proportion were 
females (331/563 = 58.8%). The Republican breakdown would be 47.6% 
and 52.4%, respectively. These figures, often presented in the press as profiles 
of partisan supporters, would indicate that Democrats are more dependent 
on the votes of females than are Republicans, but, while important to cam-
paign consultants, would not directly answer the question proposed by our 
hypothesis.

We have only produced part of the answer to our question. Our sample 
evidence confirms our guess about the differences between men and women. 
Women were more likely to support the Democratic presidential candidate 
(Michael Dukakis) by 6.5 percentage points. Of course, gender is not the 
only determinant of the vote. If it were, the proportional levels of support 
for each candidate should be polar opposites or close to it (roughly 100% 
of women should have voted Democratic, and roughly 0% of men). Whether 
or not a 6.5% point difference (rather than 100%) is theoretically significant 
or important is a question that is debated by political commentators and 
consultants, and the answer to that question is not directly addressed by 
statistical techniques.

Two-category by two-category tables are fairly unique, so let’s hold off on 
a further analysis to later in this chapter. Let us look at another cross table. 
The data represented here come from another hypothetical survey of that same 
Latin American country discussed in Chapter 8. In an effort to bolster support 
for its U.S. foreign policy, governmental leaders are trying to determine the 
demographics of support in order to best fashion and target their message. 
Respondents are asked, among other items, their age and their support for 
better relations with the United States (support, not support). We’ll treat age 
as the independent variable, one’s level of support as the dependent variable 
(see Table 9.2). For simplicity, we will combine respondents into only three 
categories based on their age (younger = below 30, middle = 30–50, older = 51 
and above).3 Remember (Chapter 2) that how we combine categories can 
dramatically affect our understanding of a group’s characteristics. It can also 
affect our interpretation of the relationship between variables.

One might hypothesize that one’s age has a direct bearing on one’s support 
for improved U.S. relations:

H1: The older one is, the more likely one is to support improved relations 
with the United States.

For this sample, our guess is correct. The oldest respondents were 17  percentage 
points more likely to support improved relations than those in the middle 



A S S O C I A T I O N  F O R  N O M I N A L  A N D  O R D I N A L  D A T A

189

 TABLE 9.2 Age and Foreign Policy Support

                             Age

IMPROVED U.S. 
RELATIONS

1
Younger

2
Middle

3
Older

Total

Support
120

40.0%
110

55.0%
360

72.0%
590

59.0%

Do Not Support
180

60.0%
 90
 45.0%

140
28.0%

410
41.0%

Total
300

30.0%
200

20.0%
500

50.0%
N = 1,000
100.0%

age group, 32 percentage points less likely than the youngest. Once again, 
of course, it seems that other factors also have a bearing on the relationship 
(income, education, etc.) otherwise we would expect even greater discrimi-
nation (e.g., 100% of the oldest respondents favoring improved relations).

 THE CHI-SQUARE STATISTIC

We have confirmed our hypothesis by way of this one test, but only descrip-
tively (Step 4 in our process first discussed in Chapter 6).4 However (Step 
5), are those relevant percentage point differences in the sample of 17% and 
32% significant enough to be able to confidently claim that differences in 
support among individuals of different age classifications at some level greater 
than 0 also exist in the population from which this sample was randomly 
drawn? Or can those differences be small enough to be attributed to the luck 
of the random draw (we just accidently drew a few more young respondents 
who opposed improved relations, etc.)? For nominal, crosstabular data, the 
null hypothesis that we usually wish to reject is that the proportional support 
(the dependent variable) for each subcategory of the independent variable 
(in this example, age) is equal, that is, where the differences in the proportion 
of support among the youngest, middle, and oldest age categories is 0%. 
Stated differently, are the proportions that we observe significantly different 
enough from the proportions we would expect if our three groups of respon-
dents did not differ in their support in the population at all? Or are the 
differences small enough to be attributed to random sampling error?

This notion of proportional equivalence is a form of non-association known 
as statistical independence. We say that statistical independence obtains 
when one’s placement on one variable (in this case, age) has absolutely no 
bearing on one’s placement on a second variable. The probability of a young 
person supporting improved relations is no different from the probabilities 
for those who are older.

statistical independence 
A type of no association 
between two variables 
where percentages on the 
dependent variable are 
invariant across indepen-
dent variable categories.
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A standard, familiar way of addressing this question is by looking at a 
standard deck of 52 playing cards. Decks of cards have two “variables”—suit 
(Diamonds, Clubs, Hearts, Spades) and face value (Ace, two, . . . King). 
There are four jacks in a standard deck. The probability of drawing a jack 
from an entire deck is therefore 4/52 = 1/13. Now let us pull out only dia-
monds (13 cards) and shuffle them. The probability of pulling out a jack is 
still 1/13; that is, the probabilities have not changed even when we have 
restricted the suit drawn. The same 1/13 probability would exist if we only 
pulled out clubs or hearts or spades. We therefore say that the suit of a card 
and the face value of a card are statistically independent of each other. Math-
ematically, statistical significance is said to obtain when the probability of 
the joint occurrence of two variables is equal to the product of the probabilities 
of the separate occurrences of two variables. There is a 1/4 probability of 
randomly drawing a diamond from a deck of cards. There is a 1/13 probability 
of drawing a jack. The product of these probabilities is 1/52, exactly the 
probability of randomly drawing a jack of diamonds. Look at our hypothetical 
survey results. The probability of randomly drawing an older respondent who 
supports improved U.S. foreign relations (360 of 1,000, or 36.0%) is not 
the same as the product of randomly drawing out an older respondent (50%) 
and a supporter (59%), which is equal to 29.5%.

The probability of randomly pulling out someone in our entire sample who 
supports improved relations is equal to 590/1,000 = 59%. We now use the 
same logic as we did with cards but with different probabilities. If we restrict 
ourselves to any of the three age categories of respondents, we observe that 
the probability of randomly pulling out a supporter is different from 59%; 
it is respectively 40%, 55%, and 72%. If we guessed that any one of the 
1,000 sampled individuals support the policy, we would guess wrong a pro-
portionately different number of times depending on the age category of the 
respondent. Statistical independence is not in evidence here. The question 
remains, however, whether statistical independence can obtain in the popu-
lation from which the sample was randomly drawn. Is it possible that the 
level of support in the sampled population from each group is exactly the 
same as for all respondents combined (i.e., 59%)? Can the differences between 
what we observe and what we would expect if the two variables were statis-
tically independent be small enough to be attributed to the random luck of 
the draw?

As we did with our one-variable chi-square in Chapter 8, we now need 
to compare our observed sample frequencies with what we would have expected 
if statistical independence obtained (i.e., where each group supports improved 
relations 59% of the time). Once again the formula for χ2 is:

 
χ2

2

1

=
−

=
∑ ( )f f

f
o e

ek

K

 (9.1)
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where now K = number of cross-classification categories (table cells)
  fo =  frequencies actually observed for each sample category  

(cell)
  fe =  frequencies expected from the population for each cell, in 

this instance if the two variables are statistically independent

Remember that chi-square (two variables) is purely an inferential statistic. 
A “high” value only tells you that the chance of randomly drawing a sample 
where the association is not statistically independent (χ2 > 0) from a popu-
lation in which statistically independence obtains is less than, say, 5%. 
Translation: the differences in this sample are so great that we have to assume 
that a difference (of some unknown size greater than 0) probably also exists 
in the population from which this sample was randomly drawn. The differ-
ences are too great to be attributed to the random luck of the draw alone. 
We would thus state that some level of nominal association exists in that 
population (although we don’t know exactly at what level). If the calculated 
chi-square is less than the critical (.05) value, then we could not confidently 
reject the possibility that there is no difference between the categories in the 
population from which the sample was randomly drawn. The differences are 
minor enough to fall within the margin of sampling error.

Also remember that the observed frequency in this chi-square calculation 
is what the sample actually produces, that is, the actual number observed in 
each cell (cross-category). The expected frequency is what we would expect if 
the two variables are totally independent of each other (like the face value 
of a card in an unbiased deck of cards is totally independent of its suit). 
Fifty-nine percent of the total sample supports improved relations. If age (as 
categorized) and support were statistically independent of each other, then 
59% of the youngest age group would have supported improved relations, 
59% of those in the middle group, and 59% of those in the oldest. If one’s 
age is independent of one’s support for improved relations, then we would 
expect 59% (59/100) of the youngest group to support improved relations 
(just like Diamonds and Jacks); 59% of 300 equals 177.5 We sampled 57 
fewer young respondents who support improved relations than we would 
have expected if age and support were statistically independent of each other 
(again, think of this as a categorical deviation score). The entries for the chi-
square statistic are calculated and displayed in Table 9.3. Remember to 
standardize the squared differences by the expected, not observed frequencies 
(since the expectation is the base against which we wish to compare).

Chi-square gives us an inferential value for the nominal association between 
two variables. We need to determine if the value computed from the sample 
is high enough to safely reject the possibility that the given sample could have 
been randomly drawn from a population where those within different age 
categories all had the exact same level of support (59%), that is, where statistical 
independence obtained between those two variables. We can safely reject that 

chi-square (two variables) 
An inferential measure of 
association that compares 
the observed frequencies 
within a contingency table 
against a certain frequency 
expectation, usually one 
that matches statistical 
independence.
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 TABLE 9.3 Chi-Square Calculation

Category (Age/
Support)

f o (observed) f e (expected) f o − fe (f o − f e)2 (f o − f e)2/f e

Youngest/Support 120 177a −57 3,249 18.36
Middle/Support 110 118 −8 64 .54
Oldest/Support 360 295 65 4,225 14.32
Youngest/Not 
Support 180 123 57 3,249 26.41
Middle/Not 
Support 90 82 8 64 .78
Oldest/Not 
Support 140 205

 
−65 4,225 20.61

∑ = 81.02 = χ2

a Given a cross table, the expected cell frequencies can be calculated by multiplying the 
appropriate total row frequency (in which the cell resides) by the appropriate column 
frequency, and then dividing by the total frequency of the table.

(Ro × Co)/To = fe

Where ro is the observed frequency for the entire row, co is the observed frequency for the 
entire column, and To is the total number of observations for the entire table. The expected 
frequency within each crosstabular cell is listed as fe.
So, given our cross table between age and support:

fe for (Youngest/Support) = (590 × 300)/1,000 = 177
After all, 590 (the column frequency) divided by 1,000 (the total frequency) is the proportion 
of the entire sample that supported a tax increase. With 300 young respondents, we would 
expect that 177 of them would have supported improved relations if the two variables were 
statistically independent. This may seem simple, especially with a total sample size as clean as 
1,000, but using this calculation helps to reduce rounding error from that which would be 
produced if we first calculated a proportion, and then multiplied it by the row frequency.

possibility (as in our one variable example) if the computed chi-square value 
lies outside of the 95% confidence interval. Remember that the value needed 
to meet the 5% criterion is dependent not on the number of cases (as in 
dichotomous proportions), but on the shape of the chi-square distribution, 
which is contingent on the “degrees of freedom” of the cross-classification table.

The “degrees of freedom” for a cross table are somewhat different than for 
a univariate distribution and are calculated as the product of the number of 
categories of one variable (minus 1) times the number of categories of the 
other variable (minus 1):6

df = (R − 1) × (C − 1)

where R = number of row categories
  C = number of column categories
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In our example of a 3 × 2 table, 2 degrees of freedom exist. For a distribution 
with two degrees of freedom, 95% of the samples that could be randomly 
drawn from such a population would have, just on the basis of the luck of 
the draw, chi-square values below 5.9914 (Figure 9.1, Table 9.4). Think of 
“5.9914” as the maximum tolerable margin of error. Samples with calculated 
chi-square values greater than 5.9914 could have been randomly drawn from 
such a population, but the chance of such a random draw is less than 5%. 
This sample probably was drawn from a population where some difference in 
support exists between different types of respondents. We can’t say exactly 
what it is (it might be less or more than those observed), but the difference 
is most likely greater than 0%.

A few qualifiers need to be mentioned. First, the chi-square should not 
be used if the sample size is less than 50.7 Second, the chi-square should not 
be used if any expected cell frequency is less than 5. As with most inferential 
statistics, small values make the inferences very tentative. Also, as the χ2 

FIGURE 9.1 Chi-Square Example, Degrees of Freedom = 2
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5.9914

81.02
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formula is an approximation of the true value, if df equals “1” (2 × 2 table), 
a correction for continuity has to be made. This correction occurs in the 
numerator of the equation as:

 (| fo − fe| − .5)2 (9.2)

First take the absolute value of the difference and then subtract .5 before 
squaring the difference. This gives us a more conservative (smaller) χ2 value, 
which in turn makes it more difficult to confidently reject the null hypothesis 
of statistical independence.

 TABLE 9.4 Critical Values of the Chi-Square Distribution

Area to the Right of the Critical Value

.100 .050 .025 .010 .005 .001

df
1 2.7055 3.8414 5.0238 6.6349 7.8794 10.828
2 4.6051 5.9914 7.3777 9.2103 10.5966 13.816
3 6.2513 7.8147 9.3484 11.3449 12.8381 16.266
4 7.7794 9.4877 11.1433 13.2767 14.8602 18.467

5 9.2363 11.0705 12.8325 15.0863 16.7496 20.515
6 10.6446 12.5916 14.4494 16.8119 18.5476 22.458
7 12.0170 14.0671 16.0128 18.4753 20.2777 24.322
8 13.3616 15.5073 17.5346 20.0902 21.9550 26.125
9 14.6837 16.9190 19.0228 21.6660 23.5893 27.877

10 15.9871 18.3070 20.4831 23.2093 25.1882 29.588
11 17.2750 19.6751 21.9200 24.7250 26.7569 31.264
12 18.5494 21.0261 23.3367 26.2170 28.2995 32.909
13 19.8119 22.3621 24.7356 27.6883 29.8194 34.528
14 21.0642 23.6848 26.1190 29.1413 31.3193 36.123

15 22.3072 24.9958 27.4884 30.5779 32.8013 37.697
16 23.5418 26.2962 28.8454 31.9999 34.2672 39.252
17 24.7690 27.5871 30.1910 33.4087 35.7185 40.790
18 25.9894 28.8693 31.5264 34.8058 37.1564 42.312
19 27.2036 30.1435 32.8523 36.1908 38.5822 43.820

20 28.4120
29.6151
30.8133
32.0069
33.1963

31.4104 34.1696 37.5662 39.9968 45.315
21 32.6705 35.4789 38.9321 41.4010 46.797
22 33.9244 36.7807 40.2894 42.7956 48.268
23 35.1725 38.0757 41.6384 44.1813 49.728
24 36.4151 39.3641 42.9798 45.5585 51.179
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Let’s return to our original gender gap table. Compute the expected fre-
quencies, i.e., those that would exist if gender and the vote were statistically 
independent of each other. For example, since 47.1% of all voters in the 
sample, regardless of gender, voted for the Democratic candidate, we would 
expect 47.1% of the 553 men and 47.1% of the 662 women to have voted 
for him. Table 9.5 lists all of the relevant figures, with the correction for 
continuity added. We used the method of calculation addressed in footnote 
1, Table 9.3, to avoid double rounding errors. Although we can’t really expect 
fractional voters, carry out the expected frequency to two decimal places.

With one degree of freedom, 95% of the time, just by the random luck 
of the draw, we will draw a sample with observed frequencies that will be 
identical to or different enough from the expected frequencies to create a 
chi-square value of less than 3.84. Our calculated χ2 of 4.71 (4.97 without 
the continuity correction) is greater than that critical value. We can therefore 
(Step 5) reject the null hypothesis that support for the candidates is 

FIGURE 9.2 Chi-Square with df = 1
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3.84 4.71
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proportionately exactly the same between men and women in the population 
from which this sample was randomly drawn. In all likelihood, women were 
more supportive of the Democratic candidate, Michael Dukakis than were 
men in the population, even if not by a majority.

An Important Note

Stating that two variables are most likely not statistically independent must 
be viewed with care. We must first look at the observed results to see if they 
are in the right hypothesized direction. Look at either of our previous chi-
square examples. We could switch the frequencies between or among  
categories—say making women more supportive of George H. W. Bush—but 
the chi-square would not vary. Chi-square, after all, is a nominal measure. 
Thus, the direction of the association does not matter. Whether women are 
6.5 percentage points more or less supportive makes no difference in the 
calculation of the chi-square statistic (nor any other statistic with which it is 
associated). As you will notice subsequently, lambda, a purely nominal statistic, 
must be viewed the same way.

 PROPORTIONAL REDUCTION OF ERROR AND LAMBDA

Percentage differences are useful in descriptively summarizing one table. 
However, what if we have a series of tables, with different numbers of cate-
gories (say parties), or measuring different variables (gender, views about 
health care reform, etc.)? Statisticians rely on several measures of association 
which, like the mean, mode, or standard deviation, produce a single value 
for each cross table. Some of these measures are nominal, some ordinal (“The 
more children one has, the more supportive one is of a property tax increase 
to support education”). In general, a value of “0” means that no statistical 

 TABLE 9.5 Chi-Square Calculation

Category fo fe fo − fe (| fo − fe| − .5)2 (| fo − fe| − .5)2/fe

Male/Democrat 232 251.11 −19.11 346.33 1.38
Female/
Democrat 331 311.89 19.11 346.33 1.11
Male/Republican 301 281.89 19.11 346.33 1.23
Female/
Republican 331 350.11 −19.11 346.33 0.99

∑ = 4.71 = χ2
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relationship or association between the variables exists, a value of 1 (or −1 
if direction is important) means that perfect association exists. We won’t have 
time to cover all of this in detail in this chapter, but different statistics have 
different interpretations of “no” and “perfect.” So be careful which statistics 
are used. Statistics don’t lie, but individuals can choose statistics to make 
their points more forcefully.

Let us begin our discussion of descriptive nominal measures of association 
by introducing a new concept and coming back to an old one. Remember 
our original bar game in our discussion of the mode in Chapter 3 and apply 
it to our foreign policy support example. If one of these 1,000 Latin American 
individuals walked into a bar, and all we knew was how the 1,000 felt about 
improved U.S. relations (referred to as the support marginals), what would 
we guess the choice for that person to be (see Table 9.6)? We determined 
that guessing the mode (in this case, “Support”) was the safest bet because 
we would be wrong less often (410) by doing so if we had to guess the 
preference of all 1,000 individuals. Another way of stating this is to say that 
our probability of being wrong by guessing the mode, “Support for improved 
U.S. relations” for any individual is .410. Let’s make the game a bit more 
interesting. What if we were also told that individual’s age category, and also 
given the preference distributions for each “age” group (the entire table). We 
would still use the mode as our safest guessing rule, but the additional infor-
mation proves helpful. If the person was within the youngest group, we would 
bet on his/her being against improved relations (the modal category for that 
group), but be wrong 120 times for that group. If the person was in the 
middle age category, we would guess a different mode (Support) and be 
wrong 90 times. If that person were in the oldest, we would guess the same 
modal category (Support) as for someone in the middle group and be wrong 
140 times. Collectively, we would be wrong in guessing the modal category 
for each group (120 + 90 +140) 350 times. Our probability of being wrong 
would be reduced to .350.

 TABLE 9.6 Age and Foreign Policy Support

Age

IMPROVED U.S. 
RELATIONS

1
Youngest

2
Middle

3
Oldest

Total

Support
 120
 40.0%

110
55.0%

360
72.0%

590
59.0%

Do Not Support
 180
 60.0%

90
45.0%

140
28.0%

410
41.0%

Total
 300
 30.0%

200
20.0%

500
50.0%

N = 1,000
100.0%
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Did we improve our ability to make a correct guess about support for 
improved relations knowing information about one’s age? Yes, we reduced 
our probability of error from .410 to .350. Of course, how much we can 
reduce our probability of error is a function of how high that probability is 
to begin with (the more we are off the more we can improve). We therefore 
standardize that difference by the original probability. Proportionately, we 
reduced our probability of error by [(.410 − .350)/.410] .146, or 14.6%. 
Knowledge of the independent variable (age) reduced our error in predicting 
ones placement on the dependent variable (support) proportionately by 14.6% 
over predicting blindly (i.e., without such knowledge).

We have just completed an introduction to a class of statistics known as 
PRE (proportional reduction of error) measures. PRE measures generically 
tell us by what proportion do we reduce our error in making guesses about 
the dependent variable by having knowledge about the independent variable. 
The general formula for PRE measures is the following:

 
PRE =

−P P
P

( ) ( )
( )

1 2
1

  (9.3)

where P(1)  is the probability (or proportion) of incorrectly guessing place-
ment on the dependent variable blindly (i.e., without informa-
tion about the independent variable)

     P(2)  is the probability of incorrectly guessing placement on the 
dependent variable with information about the independent 
variable

We then say that the independent and dependent variables are related or 
associated if knowledge about the independent variable reduces our probability 
of error in guessing placement on the dependent variable. “Age” and “Support 
for Improved U.S. Relations” are associated in our example to the extent that 
knowledge about age proportionately reduces our probability of error in 
predicting support by 14.6% over predicting blindly (the mode for everyone). 
PRE measures can range from 0 (where no reduction is made) to 1 (where 
knowledge about the independent variable completely eliminates our prob-
ability of error).

PRE measures exist for nominal, ordinal, and interval data, and employ 
different rules for making guesses about the dependent variable. If the data 
are nominal, and the rule for guessing is the mode (as in our case), then the 
PRE measure is called lambda (λ). Since λ is based on the proportional 
number of times we make wrong guesses, a raw score formula can be calcu-
lated as follows:

 
λ =

−
N
N

N
N

N
N

( ) ( )

( )

1 2

1

 
 (9.4)

PRE (proportional  
reduction of error) 
measure Any measure of 
association that assesses 
proportionately how much 
better off we are with infor-
mation about the indepen-
dent variable than without.

lambda A nominal measure 
of association, based on 
the mode, that assesses 
how much better off we are 
with information about the 
independent variable.
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where N(1)  equals the number (absolute frequency) of total errors in pre-
diction for the entire table by guessing blindly

  N(2)  equals the number of total errors in prediction with knowl-
edge about the independent variable

  N  equals the total number of cases in our crosstabular distribution

Some quick mathematics and our formula for λ becomes, allowing us to use 
the number or absolute frequencies of incorrect guesses:

 
λ =

−N N
N

( ) ( )
( )

1 2
1

 (9.5)

Notice also that P(1) and P(2) are equal to the proportion of cases not included 
in the respective modal categories. Sound familiar? P(1) is the Variation Ratio 
(VR) for the support variable. P(2) is the (weighted) mean average variation ratio 
for support for each category of the independent variable, age. Lambda can there-
fore also be thought of as a PRV (proportional reduction of variation) measure:

 
λ =

−VR VR
VR

( ) ( )
( )

1 2
1  

 (9.6)

where VR(1)  is the original variation (from the mode) of the dependent 
variable

  VR(2)  is the variation unexplained (left over) by the independent 
variable

We’ll return to the similarities between PRE and PRV measures in a subsequent 
discussion of regression analysis. For now let’s investigate the circumstances under 
which lambda will achieve its lowest value (0) and its highest value (1). Lambda 
can never be negative. More information can never increase the number or 
probability of a wrong guess (some of my students might argue with that). 
Lambda will equal 0, indicating no relationship between the two variables, when 
the proportional breakdown on the dependent variable (support) within each 
category of the independent variable (age) is the same. This is the condition that, 
in our discussion of chi-square, we called statistical independence. The variation 
ratios of support for those in each age category are equal. Stated differently, our 
probability of incorrectly guessing one’s support by guessing the mode is the 
same regardless of one’s age. Refer to our original table, but substituting a set of 
observed frequencies that just happen to match our expected ones (Table 9.7).

 
λ =

− + +
=

−
=

410 123 82 205
410

410 410
410

0( )

 
 (9.7)

Every statistic has some potential limitations or peculiarities, and lambda, 
unfortunately, is no exception. When two variables are statistically indepen-
dent, lambda will always equal 0. The reverse, however, is not true. A lambda 
of 0 does not necessarily indicate statistical independence.
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 TABLE 9.7 Age and Foreign Policy Support—Version 2

 Age

IMPROVED U.S. 
RELATIONS

1
Youngest

2
Middle

3
Oldest

Total

Support
177 118 295 590

 59.0%

Do Not Support
123  82 205 410

 41.0%

Total
300
 30.0%

200
 20.0%

500
 50.0%

N = 1,000
  100.0%

 TABLE 9.8 Age and Foreign Policy Support—Version 3

Age

IMPROVED U.S. 
RELATIONS

1
Youngest

2
Middle

3
Oldest

Total

Support
151 110 360 621

62.1%

Do Not Support
149 90 140 379

37.9%

Total
300

30.0%
200

20.0%
500

50.0%
N = 1,000
100.0%

Let’s vary the original table just a bit (see Table 9.8). Split the support of 
those in the youngest age category 151/149. Keep the other breakdowns the 
same. Re-compute the percentage differences. Re-compute lambda. Compare 
your results. Notice that although the percentages still indicate a relationship 
between “age” and “support,” lambda (0) indicates that no relationship exists.

 λ =
− + +

=
−

=
379 149 90 140

379
379 379

379
0( )

 
 (9.8)

So long as the modal categories remain the same, regardless of the proportion 
within that modal category (which would change the variation ratios), lambda 
will always equal 0. This is a condition we call accord. Statistical independence 
is only one example, or a subset of accord. The modal category is the same 
with the same proportions within each independent variable category. Com-
pute lambda for our original gender table. Since women divided evenly 
between George H. W. Bush and Michael Dukakis, either vote can be con-
sidered modal, and lambda will equal 0. Accord also applies here.

accord A type of no associa-
tion between two variables 
where percentages on the 
dependent variable can vary 
across independent variable 
categories as long as the 
modal categories remain 
invariant.
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 λ =
− +

=
−

=
533 0 0

533
533 0

533
1

( )

 
 (9.9)

 DIFFERENT STATISTICS, DIFFERENT ASSUMPTIONS, 
DIFFERENT CALCULATIONS

Many nominal statistics, if each variable is dichotomous, are derived from 
ordinal or interval statistics. One such statistic is called Yule’s Q, a nominal, 
2 × 2 version of an ordinal statistic, gamma. Briefly (we’ll cover it in detail 
later in this chapter), it is based on the cross-products ratio. Let’s take the 
following graphic representation, where the letters (a–d) represent the absolute 
frequencies within each cross-classification category:

c d

a b

Yule’s Q is calculated as:8

 

ad bc
ad bc

−
+  

 (9.10)

Yule’s Q A measure of 
nominal association for 
two dichotomous variables 
based on the cross products. 
It is derived from the ordinal 
measure gamma.

 TABLE 9.9 Gender and the Vote—Version 2

Gender

PRESIDENTIAL VOTE 1
Male

2
Female

Total

1 Republican 533
100.0%

    0
    0.0%

533
44.6%

2 Democratic 0
0.0%

662
50.0%

662
55.4%

Total
533
44.6%

662
55.4%

N = 1,195
100.0%

When will lambda equal 1? When each independent category is perfectly 
matched with only one dependent category (e.g., if all women voted for 
Michael Dukakis, and all men voted for George H. W. Bush). Knowing one’s 
gender would reduce our probability of error by 100%. Knowing one’s gender 
would allow us to perfectly predict one’s vote (Table 9.9).
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Let’s look at the following hypothetical breakdown of a vote in the U.S. 
House of Representatives in support of adding a provision in a Medicare 
spending bill (Table 9.10). The Democrats are evenly split, the Republicans 
are unified in opposition:

Just eyeballing the table would tell us that Democrats were more likely to 
accept the addition than were their Republican counterparts. They were 
50 percentage points more likely to be in support. A considerable relationship 
between party and this vote seems to be in evidence (and, if we calculated 
chi-square, the difference would be statistically significant). However, what 
about the value of Yule’s Q ?

Q
ad bc
ad bc

=
−
+   

Q =
−
+

=
−
+

=
240 95 95 0
240 95 95 0

22800 0
22800 0

1* *
* *  

 (9.11)

Yule’s Q indicates that this was a perfect partisan vote! Let’s move on to 
lambda.

λ =
−N N

N
( ) ( )

( )
1 2

1   
λ =

− +
= =

95 0 95
95

0
95

0( )

 
 (9.12)

Oops. Lambda indicates that this vote had no partisan influence.
The difference lies in the assumptions of each statistic (and the fact that 

one is derived from an ordinal measure). Let’s look at it in this fashion. 
Someone would use lambda, which reaches 0 under conditions of accord (or 
weak “no association”), if they only viewed votes where a majority of one 
party voted in opposition to a majority of the other, as partisan (and these 
are the only ones used in creating a variety of “party unity” scores). This bill 
would, well, not fit the bill. Someone would use Yule’s Q, on the other hand, 
if they wished to consider a vote to be partisan if defections only came from 
one side of the aisle (in this instance, the Democrats).

 TABLE 9.10 Party and Medicare Voting

Party

INCREASE 
SPENDING

1
Republicans

2
Democrats

Total

1 Add
0
0.0%

95 
50.0%

95
22.1%

2 Don’t Add
240
100.0%

95  
50.0%

335
77.9%

Total
240

55.8%
190 
44.2%

N = 430
100.0%
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We need to understand that each statistic makes different assumptions 
about the data, some indicating perfect association and/or no association 
under different conditions. Some will be sensitive to variations in the mar-
ginals (imbalance between and among categories). Some will be symmetrical 
(i.e., they will not vary if we switch independent and dependent variables). 
Others will be directional, or asymmetrical. Some, based on notions of accord, 
will be lower than most others and can be 0 even when other statistics indicate 
perfect association. Others will be 1 under weak conditions of perfect asso-
ciation (like Q). The moral of the story is to be careful. Choose statistics 
based on what you conceive a relationship to be and an understanding of 
each statistic’s base assumptions—and be cognizant of the statistics that others 
choose.

We have already seen that, even with the same cross tabular breakdown, 
different statistics might lead us to different summary views about the rela-
tionship between variables. Often, with two dichotomous (two-category) 
variables, the differences are partially due to the underlying assumptions about 
the data. Are they treated as nominal, ordinal or interval (all of which can 
be mathematically assumed about dichotomies)? In general, however, statistics 
often differ because they make different assumptions about what is meant 
by “perfect association” and “no association” as well as how sensitive they are 
to distributional imbalances between/among categories and whether or not 
the two variables have the same or different numbers of categories. The 
following offers a brief description of several nominal (as well as ordinal and 
sometimes interval) level statistics and how each is affected by the differing 
conditions just mentioned.9 An example of each is also presented.

Symmetrical versus Asymmetrical Measures

If a symmetrical measure is employed, the same value will be produced 
regardless of which of the two variables is considered dependent (i.e., the 
variable we are trying to explain or predict). The calculation and interpretation 
of an asymmetrical measure, however, are contingent on which variable is 
chosen as the dependent one. If we hypothesize one variable causes another, 
then we are talking about explaining one variable given another (dependent) 
and an asymmetrical measure would be generally appropriate (all other criteria 
being satisfied). Chi-square is a symmetrical measure. We would have the 
same observed and expected frequencies regardless of whether gender or the 
presidential vote were treated as dependent (check the proportions here). 
Since chi-square is generally measured against a baseline of statistical inde-
pendence, the measure is appropriate even though a causal direction is 
specified. The probability of drawing an ace is not altered by the suit we first 
draw; the probability of drawing a diamond is not altered by the face value 
we first draw.

symmetrical measure  
A measure of association 
that doesn’t take into 
account the direction of an 
association. Independent 
and dependent variables are 
treated equally.

asymmetrical measure 
A measure of association 
that takes into account the 
direction of an association. 
Independent and dependent 
variables must be specified.
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Interpretation of the Values of Measures of Association

The value of a measure of association should have some clear, intuitive 
meaning. We would normally expect the values of a measure of association 
to lie between 0 and 1, where 0 would refer to the total absence of a 
relationship given some definition of “no relationship,” and 1 would refer 
to the statistic’s definition of “perfect association.” What if the statistic 
changes its value (±) according to the placement of the categories within 
the variables? After all, these are nominal measures, and their values 
should be generally invariant given the arbitrary ordering of the categories. 
Some nominal measures, however, are actually variations of ordinal or 
interval measures, and thus a “negative” value can be obtained. Absolute 
values of the measure should, however, be of equal magnitude. The 
meaning of values between 0 and 1 is dependent on the operational value 
of the statistic. Statistics will vary according to when they achieve their 
minimum (0) and their maximum (±1) absolute values. For illustration, 
we will present analyses of hypothetical roll call results in a state 
legislature.

 No and Perfect Association

Nominal measures of association differ according to their criteria for determining 
that no association or perfect association exists between two variables.

 Statistical Independence

To say that no association obtains between two variables usually, but not 
always, implies that they are statistically independent. Knowledge of a person’s 
score on one variable, for example, does not help us in predicting his value 
on another. Mathematically, we can say that the probability of the joint 
occurrence of both events (placement within a unique pairing of an inde-
pendent and dependent variable category) equals the product of the probability 
of their separate occurrences. This is the logic employed in calculating the 
“expected” cell frequencies for a chi-square test. Given our example, “no 
relationship” would exist if Republicans and Democrats were equally likely 
to have voted affirmatively. Their proportional support for the bill is identical 
(80/140 = 40/70).

 R D
Yea 80 40
Nay 60 30
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 Accord

It is highly unlikely to ever find a situation where the proportional breakdown 
within each independent variable category is exactly the same. We thus might 
be willing to say that “no association” existed between two variables if the 
modal category (of the dependent variable) were the same within each inde-
pendent variable category. We may not, for example, wish to consider party 
affiliation as an important explanatory variable in our example if a majority 
of each party vote the same way. Note that statistical independence is a subset 
of accord.

Statistics that operate under accord are likely to produce lower values than 
those operating under statistical independence.

 R D
Yea 140 50
Nay 0 30

Nominal measures of association differ according to their criteria for 
classifying an association as “perfect.”

 Strict Perfect Association

Each value of one variable is uniquely associated with a value of the other. 
Given knowledge of a category on either variable allows us to perfectly predict 
the categorical placement on the other. Measures which reach their highest 
absolute values only under strict perfect association must be symmetrical 
and assume that the table on which the measure is calculated is square (each 
variable has the same number of categories).

 R D
Yea 140  0
Nay  0 80

     Weak Perfect Association

We may wish an association to be considered “perfect” even if homogeneity 
exists for only one category of each variable. For example, many congressional 
bills are so popular that we wouldn’t expect much of a vote against (or in 
favor of ) them. We might consider these votes, however, to be strong measures 
of the inherent differences between the two parties. Under such conditions, 
we might wish to state that any divergence from the majoritarian position 

strict perfect association  
A type of perfect associa-
tion between two variables 
where each category of one 
variable is uniquely matched 
with a category of another.

weak perfect association 
A type of perfect associa-
tion between two variables 
where variation on the 
dependent variable occurs 
only within one category of 
the dependent variable.
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would be an indication of a perfect partisan vote if that divergence emerged 
purely from within the ranks of only one of the parties. The association 
between party and the vote would then be as “perfect” as possible given the 
overwhelming majority given to one position. A measure which would obtain 
its maximum value under “weak” perfect association does so as long as one 
of the two parties voted as a unit. Statistics that operate under assumptions 
of weak perfect association are more likely to produce higher values than 
those operating under strict perfect association. Note that the example given 
is the same as for accord. Also note that the Democratic breakdown could 
have been 79 to 1 and weak perfect association would still obtain—even with 
only one defector.

 R D
Yea 140 50
Nay 0 30

 Implicit Perfect Association

One variable will frequently have more categories than the other and, thus, 
strict perfect association could never be obtained (and neither could a max-
imum value be reached under that restriction). Strict perfect association 
would, for example, be impossible if we had more parties than vote choices. 
Measures which reach their maximum values under implicit perfect association 
compensate for the non-squareness of the cross table. Implicit measures need 
to be asymmetrical: within each category of the independent variable, only 
one dependent category exists. Implicit perfect association adjusts for the 
discrepancy between differing number of categories. Like the IQV it allows 
us to measure whether our results are as perfect as would be possible given 
categorical limitations.

 R D Libertarian
Yea 0 80 20
Nay 140  0 0

 Sensitivity to Marginal Distributions

Several measures will produce a different value, even if the underlying associ-
ation is the same, if the marginal distributions (the totals for each category) 
are different. Statistics which are impervious to this problem are said to be 
insensitive to the skewness of the marginal distributions, that is, invariant to 
differences in a variable’s index of qualitative variation (deja vu). Such a measure 
would produce the same result for both table A and table B, each representing 
a different distribution of issue preferences for a sample of 120 legislators:

implicit perfect  
association A type of 
perfect association between 
two variables where 
adjustments are made if 
the number of independent 
and dependent categories is 
different.
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A B
R D Libertarian R D Libertarian

Yea 140 20 10 Yea 70 60 30
Nay 100 10 20 Nay 50 30 60

Notice that the proportions of support within each partisan category are 
similar for each table. In table A, however, Republicans comprise a much 
greater proportion of the legislature than in table B. A measure sensitive to 
differing marginal distributions (marginal sensitivity) would probably give 
us different, usually lower values for the former, thereby allowing us to 
“erroneously” claim that the association between party and preferences were 
different within each of these two samples. Lambda is one such statistic. 
With one large independent variable category, the number of errors could 
increase dramatically. Go back to our original age and foreign policy table 
(Table 9.2). Multiply the number of young supporters and non-supporters 
by 10. The relevant percentage differences remain the same, but what happens 
to lambda? When comparing different samples or populations, we would 
therefore hesitate to use any such measure. Also notice that if we converted 
or standardized the row entries to percentages, the problem of differing 
marginal distribution would disappear. Any measure that bases its calculation 
on proportions or percentages should therefore be insensitive to marginal 
variation. Percentages, as we mentioned much earlier, allow us to standardize 
across populations with differing sizes.

All Roads Lead To …10

Statistics are often adjustments to or variations of other statistics. As men-
tioned, Yule’s Q is a dichotomous nominal version of an ordinal statistic 
(gamma). Return to our opening gender and vote table (Table 9.1). As both 
variables are dichotomies, they can be treated ordinally. A female is more 
female than a male. A Democratic vote is more Democratic than a Republican 
one. We can then rephrase our test implication as follows:

H1: As one becomes “more female,” one becomes “more Democratic” as op-
posed to more “Republican.”
Or

As we compare a female to a male, we are more likely to compare a 
Democrat to a Republican than a Republican to a Democrat.

Our analysis follows the logic of paired comparisons discussed in Chapter 4. 
This time, however, we are testing not only for the number of unique pairs 
of different cases, but for pairs of different cases that are also different on 

marginal sensitivity A 
condition that changes 
values of a statistic as the 
proportion of cases in each 
variable’s categories change, 
even if the overall associa-
tion remains the same.
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two variables. There are two possibilities. Pairs that differ in the hypothesized 
direction (a female will vote more Democratic than a paired male) and pairs 
that differ in the opposite direction (a female will vote more Republican than 
a paired male). The former are referred to as concordant pairs (i.e., in con-
cordance with our hypothesis), and the latter as discordant pairs in this 
example. Generally, concordant pairs are those that differ on two variables 
in the same direction (greater on one and greater on the other = a positive 
relationship), discordant in opposite directions (greater on one, but less on 
the other = a negative relationship). Whether pairs are concordant or discor-
dant will often depend on the arbitrary designation we make in the order of 
categories (should Republicans be listed first or second?). When we have 
more than two categories, as with age in Table 9.2, a logical order (youngest 
to oldest) is easier to discern.

The number of times that we will match a female who voted “more Dem-
ocratic” than a male (concordant pair) would be 331 (F-D) × 301 (M-R) 
times. Each one of those 331 voters would be more female and more Dem-
ocratic than those 301 males. The number of times that we will match a 
female who voted “less Democratic” than a male (discordant) would be 331 
(F-R) × 232 (M-D) times.

The calculation for gamma would be: 
 
 

C D
C D
−
+

=
×( ) − ×( )
×( ) + ×( )

=
−331 301 331 232

331 301 331 232
99 631 76 79, , 22
99 631 76 792, ,+

  
= =

22 839
176 423

129,
,

.
 
 (9.13)

Translation:

 ■ We come up with two individuals who differ on both variables (gender and 
the vote) in the direction we hypothesized (concordance) 99,631 times.
 ■ We come up with two individuals who differ on both variables (gender and 
the vote) in the direction opposite of what we hypothesize (discordance) 
76,792 times.
 ■ We therefore have 22,839 more pairs that support our hypothesis than the 
opposite.
 ■ As we discussed over and over in this text, those numbers are partially a 
function of how many individuals we have in our group and, therefore, how 
many concordant and discordant pairs we can generate, so . . .
 ■ We standardize by the total number of pairs that differ (both C and D) on 
both of our variables.
 ■ We are therefore 12.9% more likely to compare a Democratic female with 
a Republican male (our hypothesis) than a Republican female with a Dem-
ocratic male.

concordant pairs All pairs of 
two unique cases that differ 
in the same direction on 
two variables.

gamma A measure of ordinal 
association that assesses 
the proportional difference 
between concordant and 
discordant pairs.

discordant pairs All pairs of 
two unique cases that differ 
in the opposite directions on 
two variables.
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In the language of ordinal statistics, as we increase the level of “femaleness” 
we increase the level of “Democraticness” 12.9% more often than we decrease 
that level. Our unique pairings of individuals who differ on both variables 
are 12.9% more likely to differ in our hypothesized direction than the opposite 
direction.

Gamma can also be interpreted as a PRE measure by taking the following 
steps:

 ■ Without knowing the order of our independent variable (gender), our best 
guess (expectation) on the order of all pairs that differed on the dependent 
variable (partisan nature of the vote) would be a 50/50 split. We can either 
randomly pull a Democratic voter first or a Republican. It is purely arbi-
trary. Our proportion of error is .50, or 88,211.5 times.
 ■ We now, as we did with lambda, get to use information about the order of 
our independent variable, gender. Our hypothesis posits the expectation that 
as we compare a male to a female we should compare a Republican voter to 
a Democratic one. We are correct more often than not, but we would still be 
wrong (discordant pairs) 43.5% of the time or with 76,792 pairings.
 ■ Using our standard PRE formula, where P(1) is the number or proportion 
of times we are wrong by blind guessing without knowledge of the order of 
the independent variable and P(2) is the number or proportion of times we 
are still wrong with that knowledge:

 

P P
P

1 2
1

88 211 5 76 792
88 211 5

11 419 5
88 211 5

12
( ) − ( )

( )
=

−
= =

, . ,
, .

, .
, .

. 99
 
 (9.14)

 ■ Knowledge of the order of the independent variable reduces our error in 
guessing the order of the dependent variable proportionately by 12.9%.

As a keen observer, you may have noticed that any two individuals in our 
group of 1,195 could differ on only one variable (same gender, different vote/
different gender, same vote) or on both (same gender, same vote). These are 
neither concordant nor discordant, but tied cases. We designate these ties as 
follows:

Tx tied on the independent variable only (gender)
Ty tied on the dependent variable only (vote)
Txy tied on both variables

To determine the number of ties only on the independent variable, multiply 
the number of female Democrats by the number of female Republicans, the 
number of male Democrats by the number of male Republicans, and add 
those two products together. To determine the number of ties only on the 
dependent variable, multiply the number of Democratic females by the 
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number of Democratic males, the number of Republican females by the 
number of Republican males, and add those two products together. We are 
then left only with those unique pairs of individuals who are tied on both. 
To calculate this number, for each cell within the table, multiple the number 
of cases in that cell by the number of cases minus 1, then divide by 2.

For our gender and vote table, you should have produced the following:

Tx 179,393
Ty 176,423
Txy 181,176

Adding these “tied” cases to the number of concordant and discordant cases 
produces a value of 713,415. We can pull out two different individuals from 
a group of 1,195 713,415 times. Going back to Chapter 4 and the IQV, 
you will notice that this is the same as:

N(N − 1)/2 = 1,195(1,194)/2 = 713,415

With the exception of a statistic that we will not cover (Spearman’s rho), 
all ordinal measures of association contain the same numerator (C − D) 
but differ as to whether and which ties are included in the denominator. 
Somers’ D is an asymmetrical measure in which ties on either the inde-
pendent or dependent variable are added to the denominator. With a 
hypothesis, we generally would only use ties on the dependent. In reality, 
as a PRE measure, this counts ties on the outcome as counting half for us, 
half against:

 
Somers’D C D

C D Ty
y

=
−

+ +  
 (9.15)

As a PRE measure:

 
Somers’

. .

. .
D

C T D T

C T D Ty
y y

y y

=
+( ) − +( )
+( ) + +( )

5 5

5 5  
 (9.16)

With more than a two-by-two table, ordinal statistics would follow a similar 
calculation rationale. For example, return to Table 9.2 (age and foreign policy 
support). If our hypothesis is, “The older you are, the more likely you are 
to support improved U.S. relations,” then our concordant pairs would be 
any match between a “younger” person who does not support and an older 
(middle or older) who does, as well as a “middle” age person who does not 
support and an older person who does. We’ll leave the full calculation to 
Exercise 13.

Somers’ D A measure of 
ordinal association, based 
on gamma, with ties on one 
variable counting as half 
hypothesis confirming, half 
disconfirming.
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We will cover interval measures of association in Chapter 11. For now, 
we’ll finish up this chapter by quickly demonstrating once again the congru-
ence of different statistics, let’s briefly discuss phi, a dichotomous version of 
an interval statistic, Pearson’s r. Phi has the same numerator as ordinal mea-
sures, but a denominator based on the sum of each independent and dependent 
variable category:

 Phi (Φ) = 
ad bc

a b c d a c b d
−

+ + + +( ) * ( ) * ( ) * ( ) 
 (9.17)

Phi is also based on the chi-square statistic (without the continuity correction) 
standardized by the number of cases in the table:

 Φ =
χ2

N  
 (9.18)

When more than a two-by two table exists, the equivalent statistic to 
chi-square is Cramer’s V, Φ adjusted for the possible difference in the number 
of row and column categories.

 Cramer,s V
N m

=
χ2

*  
 (9.19)

. . . where m is the smaller of #rows – 1 and #columns – 1.

 KEY TERMS

accord (200)

asymmetrical measure (203)

chi-square (two variables) (191)

concordant pairs (208)

Cramer’s V (211)

crosstabulation or  
contingency table (186)

discordant pairs (208)

gamma (208)

implicit perfect association (206)

lambda (198)

marginal sensitivity (207)

phi (211)

PRE (proportional reduction of error) 
measure (198)

relevant percentage difference (187)

Somers’ D (210)

statistical independence (189)

strict perfect association (205)

symmetrical measure (203)

weak perfect association (205)

Yule’s Q (201)

phi A nominal measure of 
association between two 
dichotomous variables 
based on the interval sta-
tistic Pearson’s r as well as 
chi-square.

Cramer’s V A nominal 
measure of association, 
similar to phi, where more 
than two categories exist for 
either or both variables.
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 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the SPSS 
and Stata manuals that accompany this text. Crosstabular or contingency 
table analysis is covered in Section 4.5.

1. Fill in the following to represent an example of statistical independence:

Southern Non-Southern

Agree with Tea Party Positions 35%
Disagree with Tea Party Positions 65%

2. How many degrees of freedom are in the table in Exercise 1? What adjust-
ment should you make to your chi-square calculation?

3. Fill in the following to represent an example of accord but not statistical 
independence:

Southern Non-Southern

Agree with Tea Party Positions 35%
Disagree with Tea Party Positions 65%

4. Two variables that meet the requirements of statistical independence also 
meet the requirements of accord (T/F).

5. In comparing whether Americans or Europeans have differing views 
about the continuance of the conflict in Afghanistan, we compute a 
lambda of .297. Interpret that lambda. Can we tell which group is more 
supportive?

6. The chi-square value for the previous table is above the critical value for 
the table’s degrees of freedom. What can you say about the relationship 
between the two variables?

7. A cross table is produced with two categories of the independent variable 
and five of the dependent variable. How many degrees of freedom are 
there in that table?

8. Using a 95% confidence interval, what is the critical value cutoff for a 
distribution with that many degrees of freedom?

9. The following is the partisan division of the March 2010 vote in sup-
port of the Patient Protection and Affordable Care Act (PPACA), better 
known as Obama Care (H.R. 3590).
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 TABLE 9.12 Party and the 2011 Debt Ceiling Vote

Party

INCREASE DEBT 
CEILING COMPROMISE

1
Democrats

2
Republicans

Total

1 Yea  95 174 269
2 Nay  95  66 161
Total 190 240 N = 430

100.0%

H1: Republicans are less likely to support increased nationalization of and 
spending for health care than are Democrats. 

Test: In 2010, Republicans were less likely to support the PPACA than were 
Democrats.

Test this hypothesis by calculating and interpreting the relevant per-
centage differences, lambda, Yule’s Q, and Somers’ D from the data 
observed in our table. Why are the last three measures different?

10. The following is the partisan distribution for an August 2011 U.S. House 
vote on increasing the U.S. debt ceiling (H.R. 2480)—a compromise worked 
out between President Barack Obama and the GOP majority in Congress.

H1: Republicans are less likely to support an increase in the debt ceiling than 
are Democrats.

Test: In 2011, Republicans were less likely to support the compromise debt 
ceiling increase than were Democrats.

Test this hypothesis by calculating and interpreting the relevant per-
centage differences, lambda, Yule’s Q, and Somers’ D from the data 
observed in our table. Why are the last three measures so different?

 TABLE 9.11 Party and the 2010 Affordable Care Act Vote

Party

PPAHCA 1
Democrats

2
Republicans

Total

1 Yea 219   0 219
2 Nay  34 178 215
Total 253 178 N = 431

100.0%
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Answer the following questions:
a. Using percentage differences in this sample, which gender group was 

more likely to consider immigration to be beneficial? By what per-
centage point difference?

 Which group was more likely to consider immigration not beneficial?
b. Compute and fully interpret lambda (with views of immigration as 

the dependent variable). In words, what does that value tell us?
c. Using chi-square, can we confidently claim that men and women dif-

fer on immigration in the population from which this sample was 
randomly drawn? Be precise in your answer.

d. Multiply each cell by 10 and recalculate a, b, and c. What have we 
learned? Hint: You will notice a major point is made here.

12. The following table represents data from the 2012 ANES (data set avail-
able with the SPSS and Stata manuals that accompany this text). The 
columns represent one’s ideological position (Liberal/Moderate/Conser-
vative). The rows represent one’s self-proclaimed Party ID (Independents 
only include true independents, not those who lean toward the Demo-
crats or Republicans—see discussion of difference in Chapter 2).

11. The following table gives the breakdown, by gender, of feelings toward 
immigration for a random sample of residents of Spain.

 TABLE 9.13 Gender and Immigration Support

IMMIGRATION

Gender

TotalMale Female

1 Beneficial
2 Don’t Know
3 Not Beneficial

324 334 658
59 76 135

124 116 240
Total 507 526 1,033

 TABLE 9.14 Party and Ideology

IV=Ideology

Liberal Moderate Conservative Total

dependent variable 
= Party ID
Democrat 219 496 44 759
Independent 4 86 21 111
Republican 9 374 341 724
Total 232 956 406 1,594
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Answer the following questions.
a. Using percentage differences in this sample, which ideological group 

was more likely to consider itself to be Democratic? By what percent-
age point difference?

 Which group was more likely to consider itself Independent? Which 
group was more likely to consider itself Republican?

b. Compute and fully interpret lambda (with party identification as the 
dependent variable). In words, what does that value tell us?

c. Using chi-square, can we confidently claim that Liberals, Moderates, 
and Conservatives are proportionately different (> 0%) in their parti-
san affiliation in the population from which this sample was randomly 
drawn? Be precise in your answer.

d. Switch the column entries for lambda and chi-square. Do your results 
differ?

13. For the data in Table 9.2, calculate gamma and Somers’ D with “Support 
for Improved U.S. Relations” as the dependent variable.

 NOTES

1 We are using 1988 because of its uniqueness (an even split among women in the 
sample). The logic and mathematics of the analysis would be the same for a larger 
table that included more presidential vote categories (Reform, Green, etc.).

2 For the 2008 ANES data set that accompanies this text, a weighting factor has 
been applied to match the survey distribution of gender to census figures. The 
2012 study does this with its normal weighting procedure. Women are still more 
prevalent in the voting age population.

3 How one breaks down “age” can be done either by a natural, numerical break—say 
roughly equal thirds—or based on some theoretical construct (e.g., generational 
experience). Let’s assume that some generational derivation was used associated 
with important events between that nation and the United States.

4 We’ll assume that the first three steps—reliability and internal validity of measures, 
theoretical significance, and external validity (random sampling)—have been 
satisfied.

5 Actually, any similar proportion would do (50% in each age category, 80%, etc.). 
Just as with the single-variable chi-square, we can compare our observations against 
any set of expectations. By convention (as with a deck of cards), we use the 
marginal proportional frequency for the entire group (in this instance 59%/41%) 
as we normally test against the expectation of statistical independence. We normally 
do the same when comparing the difference between two means (population 
difference = 0).

6 Look at Table 9.15. Once we fix the number of cases in two of our categories 
(0/Support; 1/Support), the number of cases in the other categories are no longer 
free to vary (they are defined by the difference between the marginal values and 
the two fixed categorical values).
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 TABLE 9.15  Visualizing Degrees of Freedom

Age

IMPROVED U.S. 
RELATIONS

1
Youngest

2
Middle

3
Oldest

Total

Support 120
 40.0%

110
 55.0%

360
 72.0%

590
 59.0%

Do Not Support 180
 60.0%

 90
 45.0%

140
 28.0%

410
 41.0%

Total 300
 30.0%

200
 20.0%

500
 50.0%

N = 1,000
100.0%

 7 Fisher’s exact test, produced by programs like SPSS and Stata, would be more 
appropriate here.

 8 Many texts will have “a” and “b” on top. My preference, which fits in with the 
rest of the discussion here and in subsequent chapters, is to have the “higher” 
value on the top and to the right. The difference would only be in the sign ± 
of the calculation.

 9 For an early and full discussion of these differences, see Herbert Weisberg, 
“Models of Statistical Relationship,” APSR 68 (Dec. 1974): 1638–1655.

10 These statistics are only discussed here descriptively. Inferential tests are associated 
with each and can be calculated using several statistical packages such as SPSS 
and Stata.
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Learning Objectives:

 ■ To be introduced to experimental design
 ■ To understand the limitations in producing a true experimental design
 ■ To learn the logic of introducing a third variable to control for alternate expla-
nations, theoretical links, and specification and interaction effects

After reading the previous chapters, you might have figured out that life is 
not as simple as two-variable causal relations. How well a president does in 
his election in one year will usually predict a Congress member’s support for 
the president in the next—but are they causally related or are they both 
functions of a third variable, a district’s partisan breakdown? Older Europeans 
are less (or at least were less) likely to support European integration than 
younger counterparts, but what is the reason? Older U.S. citizens are more 
likely to vote than younger ones, but is this consistent when broken down 
by other demographics, like gender or across time?

When we introduce a third (or more) variable into our analysis, we are 
able to gain insight into this complexity. Statistics alone will not always allow 
us to determine the way in which a third variable intervenes, especially when 
the data, as in a survey, are all collected at the same time. That must be 
joined by our own theoretical and conceptual logic of a causal order between 
and among variables. However, the standard notion of introducing a third, 
control variable statistically uses the same logic.

control variable A third 
variable that is used to 
eliminate the mediating 
effect that may cause us 
to misread the relationship 
between two variables 
specified in our hypothesis.
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Control variables allow us to parse out distinctions that our research 
designs do not directly allow. We cannot, for example, randomly assign 
individuals into districts or age categories. The notion of “statistical” control 
is not as valid as a properly designed experiment, but it allows us to approx-
imate what a design, based on reality and often pre-collected data cannot 
afford us.

We have already discussed potential problems with measurement: reliability, 
internal validity, and external validity. Internal validity and external validity 
can also apply to designs (i.e., how we test our hypotheses in the real world). 
Just as with measurements, it is basically impossible to create a test situation 
(design) totally free of internal and external validity problems. Before we 
elaborate, let’s once again make the distinction clear. IV stands for hypoth-
esized independent variable; DV is the hypothesized outcome or dependent 
variable. The distinction is much the same as we made for measurement 
problems:

 ■ Internal validity-design—is the change in the IV the cause of the change in 
the DV or is it something else?
 ■ External validity-design—change in the IV causes change in the DV, but 
perhaps only given certain other conditions, only for a certain subpopula-
tion, only when another variable also changes—how generalizable are our 
results?

If “X” refers to the hypothesized causal (independent) variable, then an 
“internally invalid” conclusion would occur if some variable other than “X” 
caused the outcome. An “externally invalid” conclusion would occur if “X” 
did cause the outcome, but only because of some other condition, population 
or circumstance. It is only, therefore, a partial or conditional cause. “External 
validity” refers to how far we can generalize our results, both in terms of 
target populations (all states) and research conditions (only looking within 
a certain time frame).

 CLASSIC EXPERIMENTAL DESIGN

The best way to determine whether potential validity problems exist is to 
first look at what a perfect experimental design entails. If anything is missing, 
then we know that our conclusions might be suspect (i.e., the test might not 
really confirm our hypothesis). A true or classic experimental design can 
be mapped out as follows:1

Test R: Y1t X Y2t
Control R: Y1c ~X Y2c

classic experimental 
design The standard 
against which all research 
designs are compared. This 
design assumes random 
assignment into two groups 
with the only difference 
between the groups being 
differences on the variable 
hypothesized to be the 
causal agent.
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X is the treatment or independent variable. It needs to vary between the test 
and control (comparison) groups. It can, as in the example, be the presence 
(X) or absence (~X) of an independent stimulus or treatment, or different 
levels of that treatment. In medical research, for example, the “treatment” is 
either a drug (given only to the test group) or different levels of a drug (in 
either instance, variation exists between the two groups). In policy research 
it might be whether or not a tax was increased and by how much. You might 
already be thinking of a problem. Individuals might get better just because 
they take a pill (a psychological response), regardless of whether or not the 
compound in it actually causes the benefit (a physiological response). This is 
why in most medical research a “placebo” is given to the control group—a 
pill with the same shape, color, and taste as the real drug but without the 
tested medicinal properties. By doing this, the effects of the medicine, as 
opposed to just taking the pill, can be isolated. Similarly, many policies travel 
across state borders. An increase in a sales tax in one state, for example, might 
influence purchasing behavior both in that state and adjoining ones, making 
it more difficult to assess the effects of the sales tax increase in the state of 
origin.

Y is the outcome or dependent variable. In our design we measure it for 
both groups (t = test, c = control or comparison) and before (time = 1) and 
after (time = 2) the treatment is administered (or, for policy research as an 
example, before and after a policy is implemented).

As you all learned when we discussed hypothesis formation, a comparison 
must be made—thus we need at least two groups to compare. The most 
difficult, if even possible requirement in our research is to make sure that 
the two groups are exactly the same on every important variable except for 
the difference on X. Remember that, in discussing measurement problems, 
we decided that any tested group needed to be a random or equiprobable 
sample of the target population. How can we accomplish this with designs?

One method is by a matching procedure. We try to figure out every 
possible alternative cause of a difference in outcome. With medical research 
this might be health, age, gender, race, and so forth. Although this “match-
ing” or “matched pairs” is often employed when the test and control groups 
are small, it is not preferred. In policy research, we may try to find two or 
several pairs of communities that are, as best as we can discern, equivalent 
on all demographic and political variables that we think may influence the 
outcome of a new policy.

It is very difficult to match on every posited alternate variable (each group 
must have the same age, health, gender, race, etc., breakdown). More impor-
tantly, however, is that we can’t know for sure whether we equally parceled 
out individuals or communities on every variable that might bias our exper-
imental outcome. We are not deities, and therefore can’t be sure that other 
important properties might not exist that are important in determining the 
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usefulness of a treatment (drug/policy) but that we are not even aware exist. 
What if there is a human property called “zenotone,” which influences the 
usefulness of a drug? This might sound silly, but remember, we didn’t even 
know about DNA and its unique difference among individuals a half century 
ago. Yet it is critical in understanding both the implications of medical 
treatments as well as providing excellent data for determining guilt in certain 
crimes.

How can we possibly equalize out the effects of “zenotone” when we can’t 
measure it because we don’t even know it exists? Just as with measurement 
where we employed random, equiprobable selection, we can do so by random 
assignment of individuals into the treatment and control group. If done 
properly and with a large enough original sample, each group will have the 
same proportion, within mathematical margins of error, of individuals with 
every “zenotone” level. In order to do so, each case in the experiment must 
have an exactly equal (equiprobable) chance (50/50) of being selected for 
either the test (drug is given) or control (placebo is given) group. If done 
perfectly, then a “pre-measurement” or “before measurement,” Y1t and Y1c 
is not even necessary—they should break down within mathematical mea-
surement error the same for each group. We often do the pre-measurement, 
however, as a way of testing whether or not we were successful in our random 
assignment process.

Two other conditions, often not mentioned in the Political Science liter-
ature should also be met in order for us to have a true experiment:

1. The experiment should be “double blind.” This means that whether 
or not a group is being given the treatment (drug) should not be known to 
those taking the drug or placebo (otherwise different psychological reactions 
might occur) AND to those measuring outcomes (otherwise it might influence 
how they perceive those outcomes). Every medical practitioner wants to find 
a cure, especially if their continued funding depends on it. We often find 
the same tendency with government agencies. As much as we would like to 
think otherwise, public officials might want to be able to demonstrate that 
the programs for which they fought so hard to receive funds had the intended 
effects if only to make political points or guarantee ongoing funding and 
subconsciously read data differently before and after funding had increased.2 
When, many years ago, I was working on my dissertation, I wondered if 
knowing my hypothesis (“the easier it is to enter a primary, the less successful 
third parties will be in the general election”) in any way compromised my 
interpretation of each state’s election law (looking for “ease” in states with 
limited third-party activity). As a partial check, I had separate graduate col-
leagues check a handful of coding on both my independent (primary ease) 
and dependent (third-party activity) variables.

2. No “cross-contamination.” This means that there can be no “spillover” 
effects from one group to another. Usually we don’t concern ourselves with 
this because cross contamination will tend to reduce the probability that we 

random assignment An 
experimental condition in 
which cases have an equal 
chance of being placed in 
each test and control group.

double blind An 
experimental condition in 
which neither the subjects 
nor the investigators are 
aware of the group in which 
each subject is placed.

cross-contamination/
spillover effect An 
experimental condition in 
which investigators cannot 
limit the influence of a test 
condition to only the test 
subjects.



R E S E A R C H  D E S I G N / U S E  C O N T R O L  V A R I A B L E S

221

will observe the hypothesized differences. Those on a placebo might get a 
psychological boost just by seeing their friends get better. If the test group 
still shows even more improvement than the control, then we can be even 
more certain that the drug works as intended. On the other hand, what if 
the “placebo” group gets depressed because they realize that they are not 
getting better as they notice some of their friends are? This might tend to 
exaggerate the effects of the drug. Similarly, what if we are trying to determine 
if increasing a tax on alcohol consumption decreases the purchase of alcohol 
within a state when we can’t prevent individuals from crossing borders to 
purchase alcohol in a less taxed state? We may very well wind up overesti-
mating consumption in the latter, underestimating it in the former state, 
thereby leading us to erroneously conclude that taxes are having the desired 
effect.

At this point, you should all realize the difficulty of conducting a true 
experiment in Political Science. It’s not impossible, but most of what we 
study has already occurred, with individuals or states or countries deciding 
on their own whether or not they will be part of a future researcher’s test or 
control group. Even if we are looking at the present or future, we can’t force 
some states, for example, to try a new education or tax program and others 
not to. They will choose on their own short of any financial inducements 
from the federal government. Both laboratory and field experiments have 
been offered as alternatives but have often been criticized for suffering from 
potential cross-contamination problems (internal validity) or a lack of gen-
eralizability (external validity) outside of a particular town for a particular 
election at a particular point in time. These potential problems, as we discussed 
with measurement, however, might actually make it more difficult to uncover 
our hypothesized findings, and are therefore certainly not without merit. 
Furthermore, replication of these studies under differing circumstances adds 
validity to the hypotheses offered.

The best we can hope for is to do the best we can do, control for the most 
obvious alternate explanations, and measure and test in as many ways as pos-
sible triangulation. Each test, as with each type of measurement, will have a 
potential internal or external validity problem. We can’t control for all of them, 
but, if each test has a different type of validity problem yet the results always 
come out as anticipated, then we are much more confident in our conclusion 
(although never fully sure).

Sometimes testing for alternate explanations may be, at first glance, diffi-
cult. For example, one might posit that the decline in U.S. voter turnout 
(most likely underestimated as we saw in Chapter 2) after the mid-1960s 
might have been due to an increase in the public's distrust in government. 
Others might claim that it was a function of the entry of “baby boomers” 
into the population. Younger citizens, at least in contemporary America, are 
less likely to vote than their older counterparts. Ratifying a constitutional 
amendment (XXVI) that allowed for still younger citizens to vote would only 

laboratory experiments 
In the social sciences, 
experimental studies that 
occur under controlled 
settings that attempt to 
simulate real world settings.

field experiments 
Experimental studies 
conducted in real-world 
settings.
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exacerbate the decline. However, if an increase in distrust occurred at the 
same time and pace as the entry of younger potential voters, how can we tell 
which event was more causative of voter decline? In effect, to use the language 
of statistics, we would run into a conceptual multicollinearity problem.

The answer to such a dilemma, as with all things scientific, lies with forcing 
a comparison where only one of the events occurs. We cannot run an exper-
iment, for example, removing distrust from an already established political 
environment or changing the age demographics of an era. On the other hand, 
we may be able to find another historical era where one, but not both events 
took place. If turnout declined during another period of distrust that did 
not occur when the population was growing proportionately younger, then 
we have bolstered our hypothesis that “the more distrustful a citizenry, the 
less likely they are to vote.” If turnout did not decline during that era, then 
we cast doubt on that hypothesis and, perhaps, bolster our base alternative—
that “younger citizens are less likely to vote than older citizens.” Similarly, 
we may look for a period in which the population grew proportionately 
younger but with little evidence of changing levels of trust in government.

Another technique to “force” a comparison would be to separate individuals 
based on age (surveys are helpful here even if survey responses are often less 

Sidebar 10.1: Laboratory Experiments and Field Experiments

Laboratory experiments have been utilized in Political Science, especially in the field of rational 
choice theory. For example, single or iterative games have been played attempting to determine 
circumstances under which players will behave more or less altruistically or how well they navigate 
the prisoner’s dilemma. Others have studied how outcomes would differ under different voting 
rules that one could not impose on constituencies in the real world or how individuals react to sub-
tle negativity in political ads. Most recently, studies have been conducted examining brain activity 
as a way of testing for a partisan or ideological gene. In each of these, the experiments are con-
ducted with relatively small samples in conditions controlled by the investigator. One conducts a 
“field experiment” by attempting to replicate an experimental design in the real world rather than 
a laboratory. Examples include the use of vouchers in promoting test taking and test outcomes, the 
effects of differing types of individual campaign communications on turnout, as well as the imposi-
tion of social pressure on turnout and voting choice. What experimenters lose in control, they make 
up in sample size.

An exceptionally useful rundown of the methodology of these and other examples as well as 
the overall validity of laboratory and field experiments can be found in Rebecca B. Morton and 
Kenneth C. Williams, Experimental Political Science and the Study of Causality: From Nature to 
the Lab (Cambridge University Press, 2010). See also Alan S. Gerber and Donald P. Green, Field 
Experiments: Design, Analysis and Interpretation (W. W. Norton, 2012).
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than internally valid). The expectation that the decline was a result of the 
disproportionate growth of younger citizens would be bolstered if we indeed 
discovered that younger citizens were always less likely to vote than their 
senior counterparts. If our observations consistently followed this pattern, 
and if the exact level of turnout could be roughly estimated based on the 
proportion of the citizenry in each age group, then our “youth” hypothesis 
is better confirmed. If, on the other hand, we find that turnout declined 
within all age groups during this period, then we would be more likely to 
posit a period effect (such as growing distrust in government) that had an 
influence on everyone regardless of age. If we do find that, throughout the 
period in question, those who distrusted government were indeed less likely 
to vote than their trusting counterparts, then we have added to the evidence 
supportive of our “trust” hypothesis. Of course, just as with our original 
dilemma, we might find that younger citizens were also consistently the most 
distrustful. The two alternate hypothesized causal agents might be interactive 
and cumulative.3

 INTRODUCING A THIRD VARIABLE

Note that just because there might be an alternate explanation does not mean 
that, in our study, there is an alternate explanation. It is easy to find potential 
fault. Politicians do it all the time. However, as political scientists, we need 
to find ways to offer confirmation that those alternate explanations are more 
valid than those originally proposed. As with all other design limitations, we 
must find ways to control for those other, potentially causative variables. This 
might be, as in the case of voter turnout decline, to try to find evidence from 
different time periods. In a matched pair design, we try to find two or two 
sets of cases that are as similar as possible on all variables we consider poten-
tially significant. Other texts carry out these examples in much greater detail.4 
In this chapter, we will show how we can statistically offer controls to test 
for the validity of our hypotheses by introducing a third variable into our 
analysis when we have no control over the conditions under which those 
data were collected (i.e., we neither have a laboratory nor a field experiment). 
In particular, we will use a third variable to serve three purposes:

1. Test for an alternate explanation. We already listed five steps needed to 
help demonstrate causality (Chapter 6). Here we will move on to Step 
6, testing for alternate explanations. We will use as our example a very 
common version—a spurious one.

In a spurious relationship, both our originally hypothesized independent 
and dependent variables are “caused” by a third variable. The connection 
between the IV and DV are mathematically coincidental, but X and Y are 
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not causally related. They are, in effect, both caused by that third variable. 
A spurious relationship is likely to show up when we collect data at the 
same time, as in surveys, where we have no time sequence to determine 
causal sequencing. We also notice such relationships when, for example, 
we try to, at one time, collect information from two or more states or 
countries that differ on both the independent and dependent variables with 
both being caused by some underlying third, preexisting cultural or political 
condition. When I lived in Utah, I was aware of both a high vice tax on 
alcohol and a fairly low per capita consumption of alcohol. Were high taxes 
acting as a disincentive to the purchase of alcoholic beverages, or were both 
an outcome of a religious majority that, for the most part, did not drink 
and who chose to raise revenue through a source they found detrimental 
to society?

ΔX   ΔY

ΔZ

2. Test for an explanatory relationship:

Here, we are correct in stating that a causal link exists between the inde-
pendent variable (X  ) and the dependent variable (Y ), but we are trying to 
explain the theoretical link between them (Causal Step 2); that is, why should 
they be related?

ΔX   ΔY

ΔZ

Unlike a spurious relationship, changes in X and Y are not both caused 
by our third variable Z. Instead the relationship between X and Y is mediated 
by Z. As we will see, Z might account for the entire explanation of the X/Y 
relationship, or part, leaving a left-over or residual connection between changes 
in X and changes in Y.

3. Test for a specification effect or an interaction effect:

Here we are attempting to deepen our understanding of under what 
conditions the hypothesis can be generalized (Step 7). Is the relationship we 
observe (Step 4) and successfully test for significance (Step 5) stronger or 
weaker given other variable differences in population, time period, or other 
political conditions. Is it at all generalizable beyond our one particular study? 
In this type of research scenario, we are stating that changes in both X and 
Y are related in the hypothesis as specified, but we are also stating that the 
relationship might vary based on differences on a third variable (specification) 
or, in combination with another variable (interaction).

explanatory relationship 
The reason (theoretical 
link) why our hypothesized 
variables should be linked 
as specified.

specification effect The 
determination that a 
hypothesized relationship 
might change when applied 
to different subgroups 
within our cases.

interaction effect The 
determination that a 
hypothesized relationship 
might be enhanced or 
weakened when a third 
variable changes.
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3a. Special case of specification—Simpson’s Paradox

This unique type of specification states that there is a “lurking” variable 
that, when controlled for, reverses the direction of the original IV to DV 
relationship.

In each type of test, especially the first two, the logic of the statistical 
analysis is exactly the same. It is up to us (not the computer) to determine 
conceptually how our third variable intervenes with the others.

The Logic of Control: Tabular Data

Following is a brief “how to” guide on the introduction on how to test for 
the conditioning or mediating effects of a third variable when our data are 
already or can be aggregated into tabular form. The mathematical logic of 
the analysis is the same whether we are using that third variable to test for 
alternate explanations including spuriousness, to determine the applicability 
of an explanation, or to determine whether or not a relationship is enhanced 
or diminishes as the three variables interact.

1. Start off with the original IV/DV contingency table. See what the per-
centage point differences and statistical summaries are for the entire sam-
ple or population.

2. “Control for” the third variable. Statistics and computer-wise, this means 
to break down the original table into a series of tables for each category 
of the control (with nominal controls, I would recode that third variable 
into no more than three categories). What we are doing is, in essence, 
attempting to eliminate variation on the third variable from the original 
table. Each of the “controlled” subsets will have cases that share the same 
category (no variation) on that third variable.

3. If the original differences and their associated statistics disappear (e.g., 
relevant percentage differences = 0), then we are more confident that our 
original relationship is being conditioned or mediated by a third.

4. If the original relationship is maintained, then we should feel more (but 
never absolutely) confident in our original relationship and less certain 
that its two variables are mediated in some way by a third. I say “never” 
because, in science, another alternate explanation might always come up 
(maybe a fourth variable causing the change in the first three). Tests just 
confirm, not prove a hypothesis (see falsifiability in Chapter 1).

A Third Variable Used to Test for an Alternate Explanation

The following table is fictitious, set up to demonstrate the circumstances 
under which one can use a controlled cross table to test for the mathematical 
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effects of a third variable in a neatly presentable manner. Real life is usually 
more complicated than these three variable interactions. Thus, it would be 
difficult to find a real life scenario that would come out as neatly. We will 
start with a test for the existence of a spurious relationship, that is, that 
differences or changes in a third, exogenous variable might actually be the 
cause of differences in both our hypothesized independent and dependent 
variables.

Many students often ask if their college educations are “worth it,” with 
worth measured as one’s lifetime income. The assumption is that one’s income 
will be higher with a college education than without.

ΔX  ΔY

where X  is education level (defined as whether or not one has a college 
degree)

  Y is lifetime income

Look at the hypothesized breakdown in Table 10.1. For the sake of 
simplicity, let us say that education level has been split into two categories— 
No College Degree/College Degree. Similarly, lifetime income is dichoto-
mized into two categories (e.g., roughly below the median value for all or 
above).

The table indicates that a relationship, in the posited direction, exists. 
Those who complete college are 18 percentage points more likely to earn a 
high lifetime income than those without a college education (63.6%–45.6%). 
If this table represents a random sample of a larger population, then the 
chi-square value allows us to confidently reject the possibility that, in that 
population, the true categorical income difference is 0%. Obviously, the 
relationship is not perfect. If it were, we would see a 100% point difference. 
However, the increased chance of earning a higher income may well be seen 
as worth it to most students. The possibility exists, however, that the 

 TABLE 10.1 Education by Lifetime Income

X = Educational Achievement

Y = Lifetime Income No College Completed College Total

Above Median
205 
45.6%

350 
63.6%

555 
55.5%

Below Median
245 
54.4%

200 
36.4%

445 
44.5%

Total 450 550 N = 1,000

Δ = 18.0 percentage points, lambda = .09, chi-square = 32.03 ( p < .001).



R E S E A R C H  D E S I G N / U S E  C O N T R O L  V A R I A B L E S

227

relationship between our variables might be spurious. Is there a third variable 
(Z) whose differences might explain both whether or not one finishes college 
and how high one’s lifetime income will be? Perhaps the financial or educa-
tional status of one’s parents may help to predict and explain both.  College- 
educated parents, by virtue of culture or finances, are better able to advance 
educational opportunities for their children than non-college educated parents. 
Additionally, they are more likely to be in occupational or societal positions 
to afford their children greater future financial opportunities (including taking 
over the family business).

Graphically, this would be presented as follows:

ΔX   ΔY

ΔZ

where Z is parents’ education level (completed college or not).

A series of possibilities exist when we control for one’s parents educational 
achievement. Let us examine the two most extreme ones.

 ■ Scenario 1: If, after controlling for one’s parents’ education, the original 
relationship (Δ = 18.6 percentage points) disappears (Δ = .0 percentage 
points difference within every category of “parents” education) then we are 
more confident in claiming that the original relationship, and the difference 
it produced, is spurious. One’s parents’ education likely explains differences 
on both our original independent and dependent variable. For each parental 
group, the relationship between one’s own educational achievement and 
future income are statistically independent of each other.
 ■ Scenario 2: If, after controlling for one’s parents’ education, the original 
relationship (Δ = 18.6 percentage points) is maintained, then we are more 
confident that one’s own educational achievement independently helps 
determine one’s lifetime earnings.

Statistical Technique—Working through the Logic

In order to “control” for a third variable, we need to keep that variable 
constant so that differences on that third variable cannot intervene in the 
original relationship between our two variables. For simplicity, we separated 
out parental education into three categories: no parent completed college, 
one parent completed college, both parents completed college (see Table 
10.2A–C). Within each of these subtables, parental education cannot have 
a direct or indirect influence on either of our original variables as it does not 
categorically vary.5
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 TABLE 10.2 Scenario 1—Potentially Spurious

A. No parent completed college

X = Educational Achievement

Y = Lifetime Income No College Completed College Total

Above Median  75
 30.0%

 30
 30.0%

 105
 30.0%

Below Median 175
 70.0%

 70
 70.0%

245
 70.0%

Total 250 100 N = 350

Δ = 0 percentage points, lambda = 0, chi-square = 0.

B. One parent completed college

X = Educational Achievement

Y = Lifetime Income No College Completed College Total

Above Median  90
 60.0%

120
 60.0%

210
 60.0%

Below Median  60
 40.0%

 80
 40.0%

140
 40.0%

Total 150 200 N = 350

Δ = 0 percentage points, lambda = 0, chi-square = 0.

C. Both parents completed college

X = Educational Achievement

Y = Lifetime Income No College Completed College Total

Above Median 40
80.0%

200
 80.0%

240
 60.0%

Below Median 10
20.0%

 50
 20.0%

 60
 20.0%

Total 50 250 N = 300

Δ = 0 percentage points, lambda = 0, chi-square = 0.

Note that, within the first subset (no parent completed college), statistical 
independence obtains between our original two variables. One’s own educa-
tional achievement has no statistical bearing on one’s lifetime income. The 
same holds true for the next two subsets.

Within each category of parental education (our Z variable), no lifetime 
income differences exist between one’s own educational achievement and 
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one’s lifetime income. Also note the relationship between parental education 
and both of our original variables, created from the marginals of our three 
subsets (see Tables 10.3 and 10.4).

Two education parent children are 20 percentage points more likely to 
earn high lifetime incomes than those with one college-educated parent, 50 
percentage points more likely than those where neither parent completed 
college, regardless of their own academic achievement.

Children with two educated parents are, within rounding error, 26.2 
percentage points more likely to have gone to college than one parent off-
spring, 54.7 percentage points more likely than those where neither parent 
completed college. The premise behind our spurious control receives some 
confirmation. Now let’s look at another possible scenario, one in which are 
third variable control has little effect on our outcome (Table 10.5).

Note that, within the first subset (no parent completed college), the original 
18.6% point difference is pretty much maintained. Controlling for one’s 
parental achievements seem to have little influence on financial outcomes. 
The same holds true for the next two subsets.

 TABLE 10.3 Parents’ Education and Child’s Lifetime Income

Z = Parents’ Educational Achievement

Y = Child’s Lifetime 
Income

None One Both Total

Above Median 105 
30.0%

210 
60.0%

240 
80.0%

555 
55.5%

Below Median 245 
70.0%

140 
40.0%

 60 
20.0%

445 
45.5%

Total 350 350 300 N = 1,000

 TABLE 10.4 Parents’ and Child’s Educational Achievement

Z = Parents’ Educational Achievement

X = Child’s Educational 
Achievement

None One Both Total

Completed College 100 
28.6%

200 
57.1%

250 
83.3%

550 
55.0%

No College 250 
71.4%

150 
42.9%

 50 
16.7%

450 
45.0%

Total 350 350 300 N = 1,000
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 TABLE 10.5 Original Relationship Maintained (as well as possible given numerical 

constraints)1

A. No parent completed college

X = Educational Achievement

Y = Lifetime Income No College Completed College Total

Above Median 114 
45.6%

 64 
64.0%

178 
50.1%

Below Median 136 
54.4%

 36 
36.0%

172 
49.1%

Total 250 100 N = 350

Δ = 18.4 percentage points, lambda = .128, chi-square = 8.95 (p < .01).2

1 Given the total numbers used, one could either make the data perfectly fit the first or the 
second scenario. Individuals cannot be dissected into parts.

2 Although each of our chi-square values here is significant, it is possible, when we break out our 
original table that it may not be, even if the percentage point differences remain the same. Recall 
that, as the sample size decreases, the likelihood of a significant chi-square decreases as well.

B. One parent completed college

X = Educational Achievement

Y = Lifetime Income No College Completed College Total

Above Median  68 
45.3%

127 
63.5%

195 
55.7%

Below Median  82 
54.7%

 73 
36.5%

155 
44.3%

Total 150 200 N = 350

Δ = 18.2 percentage points, lambda = .09, chi-square = 10.74 (p < .001).

C. Both parents completed college

X = Educational Achievement

Y = Lifetime Income No College Completed College Total

Above Median 23
46.0%

159 
63.6%

182 
60.7%

Below Median 27
54.0%

 91 
36.4%

118 
39.3%

Total 50 250 N = 300

Δ = 17.6 percentage points, lambda = .03, chi-square = 4.7 (p < .05).
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Sidebar 10.2: Welfare and Crime

Analysts continue to argue over the relationship between welfare and crime. One side argues that 
households that are dependent on welfare (food stamps and housing assistance) are more likely 
to produce children who behave in a delinquent fashion and commit crimes than those that are 
not. Their claim is bolstered by the explanatory argument that fathers are less likely to remain in a 
home where the financial situation has been made stable enough by government aid. Children of 
one-parent, particularly female-headed households, lacking paternal guidance, are more likely to 
join the ranks of juvenile delinquents than others.

The opposition argues that delinquency has little to do with the safety net of welfare. More 
importantly, both the need for welfare assistance and the potential for criminal activity are both 
caused by poor economic conditions. Thus, the relationship between welfare and crime is, in this 
situation, spurious (a possibility that proponents dispute).

For a brief rundown of the former argument, see the Cato Institute’s Michael Tanner’s 1995 
testimony before the U.S. Senate’s Subcommittee on Youth Violence: Committee on the Judiciary 
(http://www.cato.org/publications/congressional-testimony/relationship-between-welfare- 
state-crime-0). For a synopsis of literature supporting the latter, see Cao et al., “Family, Welfare, 
and Delinquency,” Journal of Criminal Justice 32 (2004): 565–576. These researchers determine 
that other forms of adult supervision and attachment to schools compensate for the association 
others see between welfare, female-headed households, and delinquency.

 USING A THIRD VARIABLE TO TEST FOR AN 
EXPLANATORY LINK

Using a third variable to explain the reason why the two original variables 
are linked follows the same logic. If the individual subtables produce no 
percentage differences between or among independent variable categorical 
groups, then we can feel more comfortable in stating that we have found an 
explanation for the original relationship. If the outcomes remain the same, 
then we must look for other explanations.

Let’s look at perceptions within the European Union (Table 10.6). In this 
real-world example, “X” stands for one’s age (broken down into three cate-
gories), and “Y” one’s acceptance of one’s country’s membership in the 
European Union. The data are from a 1995 study,6 when, after formal orga-
nization had been established by the Maastricht Treaty, the European Union 
was expanding, economic rules were being standardized, and the movement 
toward a common currency was picking up support.

Older EU citizens were 10.2 percentage points less likely to accept EU 
membership than were the youngest group of citizens, 6.4 percentage points 
less likely than the “middle” age group. Obviously, we would not be able to 

http://www.cato.org/publications/congressional-testimony/relationship-between-welfare-state-crime-0
http://www.cato.org/publications/congressional-testimony/relationship-between-welfare-state-crime-0
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consider this relationship spurious. Unless there is a transformation of a gene 
that occurs with age that also makes one less accepting of international 
agreements, we can’t consider that age is an outcome of another, third, variable 
that causes both aging and international views. As part of our development 
of theory, we would be interested in asking instead why older citizens are less 
likely to accept EU membership. More than a decade ago, one of my talented 
undergraduates offered a reasonable explanation. Might it be the case that 
older citizens (as opposed to younger ones) are more likely to be employed 
in “traditional” occupations like agriculture or manufacturing, or retired and 
concerned about maintaining benefits under a common regional regime? For 
them, European integration, and the consequent removal of tariff and other 
boundaries, might present a threat to their jobs and way of life. On the other 
hand, younger citizens are more likely to be employed or, after education, 
seek employment in newer businesses like international finance, telecommu-
nications and other high tech industries. For them, EU integration presented 
opportunity. The assumption seemed to be borne out by the data (recreated 
from my recollection of his work). For simplicity, Occupational Status has 
been combined into two categories—traditional and modern—reflecting the 
aforementioned logic (see Table 10.7).

Let’s first test for the premise: were older citizens more involved in tradi-
tional occupations than younger ones? Yes, by differences of 49.5 and 17.1 
percentage points, respectively.

If the differences in occupational classification explained all of the differ-
ences in EU acceptance, then the results would be similar to those presented 
in Table 10.2A–C.7 If these differences were inconsequential, then the results 
would be similar to those in Table 10.5A–C. In actuality, the results (as is 
usually the case in real life) weren’t perfect in either direction (see Table 10.8). 

 TABLE 10.6 Age and EU Acceptance

Age Total

15–24 25–54 ≥ 55

EU Membership 
Is Good

Yes 1,797 4,510 2,452 8,759
 64.1%   60.3%   53.9%   59.1%

No/
Neutral

1,008 2,966 2,094 6,068
  35.9%   39.7%   46.1%   40.9%

Total 2,805 7,476 4,546 14,827

Δ = −6.4 percentage points−10.2 percentage points, lambda = 0,1 chi-square = 83.35.
1 Remember that lambda is 0 under conditions of accord, and chi-square only under statistical 

independence. Each age group supported the EU, but at significantly different proportional 
levels.
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 TABLE 10.7 Age and Occupational Status

Age Total

15–24 25–54 ≥ 55

Status Traditional 1,250 5,809 4,307 11,322
  45.3%   77.7%   94.8%    76.4%

Modern 1,556 1,665   238  3,459
  54.7   22.3%    5.2%    23.6%

Total 2,762 7,474 4,545 14,825*

* It is often suggested that, when tables in use have different sample sizes, only those individual 
who answered all relevant questions be included. That practice is employed here (excluding 
those who had no opinion about EU membership and/or fit into one of the two occupational 
codes). Note that the sample size is so large that even small differences would be statistically 
significant (chi-square).

Δ = 17.1 percentage points/49.5 percentage points, lambda = .089, chi-square = 2,455.01.

 TABLE 10.8 Age and EU Acceptance Controlled by Occupational Status

Age Total

15–24 25–54 ≥55

EU Membership 
Is Good

Yes 1,797 4,510 2,452 8,759
  64.1%   60.3%   53.9%   59.1%

No/Neutral 1,008 2,966 2,094 6,068
  35.9%   39.7%   46.1%   40.9%

Total 2,805 7,476 4,546 14,827*

Δ = –6.4/–10.2 percentage points, lambda = 0.

Occupation = Traditional Age Total

15–24 25–54 ≥ 55

EU Membership  
Is Good

Yes   736 3,339 2,289  6,364
  58.9%   57.5%   53.1%    56.0%

No/Neutral   514 2,470 2,018  5,002
  41.1%   42.5%   46.9%    44.0%

Total 1,250 5,809 4,307 11,366*

Δ = –4.4 percentage points/–5.8 percentage points, lambda = 0.

(Continued)
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When that third variable (type of employment) was controlled for, the results 
looked more like the first scenario than the second, but some of the age/EU 
acceptance differences remained for those in traditional occupations. We still 
had some residual differences that needed to be explained by other factors 
(perhaps generational proximity to World War II). The notion of “residuals” 
will be explained in greater detail in our chapter on regression analysis 
(Chapter 11).

Let’s look at another example. We know that, in 2008, older citizens were 
less likely to support candidate Barack Obama than younger ones, continuing 
a reversal of what was once viewed as doctrine (“older citizens are more likely 
to vote for Democratic candidates than younger ones”).

Is there an explanation for this change? One can argue that Barack 
Obama represented the politics of change and that older citizens either 
because of age or social conditioning are more adverse to change than 
younger citizens; see the discussion of life cycle and generational theories 
in Chapter 1. The following table (10.9) breaks the original age (IV) and 
vote (DV) down by attitudes toward gay marriage, an obvious center piece 
of cultural change in the United States. The data come from the 2008 
American National Election Studies (ANES) survey.

Note that for “All Respondents” the oldest group was 19.5 percentage 
points less likely to vote for Barack Obama than the youngest group, and 
6.1 percentage points less likely than middle agers. Notice what happens 
when we control for that third variable, one’s position about gay marriage. 
The distinctions based on age virtually disappear. Although not offering 
total proof, as we never can, this table should lead us to believe that there 
is something about cultural change, minimally defined by gay rights 
positions, that explains age differences and the partisan nature of the  
vote.

 TABLE 10.8 (Continued)

Occupation=Modern Age Total

15–24 25–54 ≥55

EU Membership 
Is Good

Yes 1,061 1,170 162 2,393
  68.2%   70.3%  68.1%   69.2%

No/Neutral   495   495  76 1,066
  31.8%   29.7%  31.9%   30.8%

Total 1,556 1,665 238 3,459*

Δ = –2.2 percentage points/–0.1 percentage points, lambda = 0.
*Rounding error caused by fractional weights alters the sums marginally.
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 USING A THIRD VARIABLE TO TEST FOR 
SPECIFICATION/INTERACTION EFFECTS

In our first hypothetical example, we dealt with a potential internal validity 
problem (spuriousness), and, in the second, we introduced an explanatory 
thread. For our third let’s consider an original relationship’s generalizability 
(external validity). Is it, for example, more likely to occur in combination 
with changes in other variables or for certain subgroups? For quite some 
time, we have noted that older citizens, at least in the United States, are 
more likely to vote, in any given election, than younger ones. Figure 10.1 
summarizes voter turnout among four standard U.S. Census age categories.

Note the greater shift among the youngest group between presidential and 
midterm elections. In particular, note the dramatic decline among young 
people between the presidential election of 2008 and the subsequent turnout 
in the subsequent midterm (2010), helping to return the U.S. House to 
Republican control.8

For our purposes, let’s break our age groups into three standard generational 
specific categories: post–baby boomers, baby boomers, and pre–baby boomers 
or the generation that lived through the Great Depression and World War II 
(often called “the Greatest Generation”).9 As one test of the original hypothesis 

 TABLE 10.9 Age by 2008 Presidential Vote

Gay Marriage Position Age Total

Youngest Middle Oldest

Pro–Gay 
Marriage

Obama 257 126  44   427
 78.4%  80.8%  75.9%   78.8%

McCain  71  30  14   115
 21.6%  19.2%  24.1%   21.2%

Total 328 156  58   542
100.0% 100.0% 100.0%   100.0%

Anti–Gay 
Marriage

Obama  55  78  61   194
 40.7%  35.1%  37.9%   37.5%

McCain  80 144 100   324
 59.3%  64.9%  62.1%   62.5%

Total 135 222 161   518
100.0% 100.0% 100.0%   100.0%

All Respondents Obama 312 204 105   621
 67.4%  54.0%  47.9%   58.6%

McCain 151 174 114   439
 32.6%  46.0%  52.1%   41.4%

Total 463 378 219 1,060
100.0% 100.0% 100.0%   100.0%
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(“the Greatest Generation is more likely to vote than those that followed”), 
let us turn again to the 2012 U.S. Census Voter Supplement File.10

As expected, the Greatest Generation is the most likely to have (or stated 
that they had) voted, being 17.6 percentage points more likely to have 
done so than the post-boomer group, 2.4 percentage points more than the 
“baby boom” generation. Obviously, the greatest difference is between the 
greatest and post-boomer generation, with perhaps “baby boomers” carrying 
some of the civic obligation of their elders. Instead of using a third variable 
to explain why the oldest generation is most likely to vote (is it that they 
have a higher sense of civic obligation?), let us instead examine whether 
these differences are equally generalizable across genders. Presented in Table 
10.10 are our original table and the tables for men and, separately, for 
women.

Notice that the generational difference in turnout increases for men (23.7 
percentage points between the oldest and youngest generations), but decreases 
for women (12.4 percentage points). Evidently, a generational explanation for 
the differences in voter turnout is more relevant for men than for women. 
Interestingly, the lessened influence of generational experience on turnout for 
women comes from two generational features. The oldest cohort of women 
shows lower proportional voter turnout than men partially because it includes 
a subset of women who would have been socialized during a period where, 

FIGURE 10.1 Voter Turnout by Age
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although women had been granted the right to vote, societal mores expected 
greater participation among men. Among the youngest cohort, on the other 
hand, women are more likely to vote than their male counterparts, perhaps 
indicative of the growing sense of opportunity that women in this generation 
experienced.

We usually control as a way of statistically reducing our original differences 
when a third variable is introduced. It is possible, however, that we can under-
generalize our results. What if we have two equally populated groups? For one 
(group A), turnout increases as one ages, and for the other (group B), turnout 
decreases at the same, but negative rate (see Figure 10.2). The two groups would 
cancel each other out and the data would appear as if the two variables (age 
and turnout) were not related at all. Age or generation, however, would have 
a significant impact on turnout for both groups, but in opposite directions.

 TABLE 10.10 Generation and Voting Turnout

Generation Total

Post Boomers Greatest

Did R Vote in 
2008 Election

All 53.9% 69.1% 71.5% 61.8%
Males 50.6% 67.6% 74.3% 59.7%
Females 57.0% 70.6% 69.4% 63.7%

Raw frequencies are not listed as they are in the thousands. Even slight differences will be 
statistically significant. Lambda in all the associated tables is always 0 as a majority stated they 
voted in each generational category. The percentage for the “Greatest Generation” is somewhat 
lessened by the inclusion of the very oldest citizens who, even in this age of convenience voting, 
list physical impairment as the major reason for not voting.

FIGURE 10.2 A Hidden Relationship
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In the United States, white citizens tend to affiliate less with the Democratic 
Party as they move up the educational ladder (until one reaches post-bacca-
laureate education). Black citizens, on the other hand, tend to lean more 
Democratic.11 If the proportion of whites and blacks were the same, the 
educational effects would, when combining the two racial groups, cancel out. 
As the proportion of blacks in this country is only about 1/7 of the proportion  
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of whites, however, the overall effects of education on party identification 
tends to be only partially moderated. The patterns are reflected in Figure 10.3. 
The Democratic percentage includes independent-leaning Democrats.

 AN EXAMPLE WITH MEANS—SIMPSON’S PARADOX

As a special case of hidden effects, let’s finish with a special example of how 
a relationship noticeable for the whole shows something different for sub-
groups within. Return to our hypothetical example of gender income inequal-
ity presented in Chapter 7. As you recall, we determined that, in this company, 
women made significantly less money than men. However, what if we were 
to separate individuals by their full-time or part-time status? Part-time employ-
ees work only half days, or 20 hours per week; full-time employees work full 
days, or 40 hours per week. Is it possible that even though our data indicate 
that males make more than females overall, within each status category, 
females can make more than males? Look at the following breakdown possible 
from our sample:12

 Males Females
All X  = $32,800 X   = $32,000
 (N = 300) (N = 200)
Full-time X  = $40,000 X   = $52,000
 (N = 150) (N = 40)
Half-time  X  = $25,600 X   = $27,000
 (N = 150) (N = 160)

Simpson’s Paradox A unique 
type of specification effect 
where a “lurking” variable, 
when controlled for, reverses 
the direction of the original 
independent to dependent 
variable relationship.

FIGURE 10.3 Race, Education, and Democratic Vote
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Females make more, on mean average, than do males regardless of whether 
they work part-time or full-time. How then can it be possible that, in the 
entire sample, males make more on mean average than do females? The 
answer lies in the fact that females (in this example) are more likely to 
be part-time employees. Part-time employees make much less than do full-
time employees. Since females make more than males in each category, can 
we then claim discrimination against men?

Sidebar 10.3: Simpson’s Paradox

As we read in a previous chapter, demonstrating wage and other employment discrimination is far 
from an easy task. Data like this have often been used by both sides of the controversy. Perhaps 
full-time female employees had to work more years and therefore acquired more seniority and 
expertise than males in order to be rewarded full-time status. By the same logic, those females left 
in part-time jobs would on average have more seniority and expertise than their part-time male 
associates. Perhaps the firms in the profession would only elevate females to full-time status if they 
were exceptional, rewarding males with less talent or motivation. Perhaps the bias, if it exists, is 
societal rather than professional, with females more likely to accept and keep part-time employ-
ment in certain professions (real estate agent comes to mind) because of the greater likelihood 
that they will be primary care givers to their children and primary care takers of elderly relatives. 
Obviously, our statistical evidence only begins to explain the differences both between genders and 
between status categories. Again, more information is needed.

Whatever the determination, we have just presented an example of Simpson’s Paradox, the 
possibility that the direction of an original relationship is reversed when another, lurking variable 
is taken into account.1

1 E. H. Simpson, “The Interpretation of Interaction in Contingency Tables,” Journal of the Royal Statisti-
cal Society, Ser. B, 13 (1951): 238–41.

Sidebar 10.4: A Warning about Inference When Using Tabular Controls

As we break our original cross table into separate tables controlled by a third variable, we may notice 
that the value of our inferential statistics have declined, and, subsequently, we are less likely to reject 
the null hypothesis of statistical independence between our original two variables. Keep in mind that 
this may occur for two reasons. The first is that the actual relationship that we observed has become 
weaker (as in our first analysis of education and income). The other, however, is that the size of the 
sample within each controlled table has decreased. It is possible for percentage differences to actually 
increase within our separated tables but for our inferential significance to decrease.
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In Exercise 7, you will see a different type of specification effect, one that is 
called interactive. Look it over. We will then finish our discussion of the use 
of three or more variables in Chapter 12, multiple regression analysis.

 KEY TERMS

classic experimental design (218)

control variable (217)

cross-contamination/spillover  
effect (220)

double blind (220)

explanatory relationship (224)

field experiments (221)

interaction effect (224)

random assignment (220)

Simpson’s Paradox (238)

specification effect (224)

 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the SPSS 
and Stata manuals that accompany this text. Crosstabular or contingency 
table analysis with more than two variables is covered in Section 4.5, and 
means tests in Section 4.3.

1. The presumed relationship between variables X and Y is said to be “spuri-
ous.” This means that:
a. The causal relationship between X and Y is reversed (Y is really the 

independent variable).
b. Another variable influences changes in Y but NOT X. No causal link 

exists between the two.
c. Both X and Y are both dependent on some third variable. They have 

no direct impact on each other.
2. A comparison is made between two countries with differing electoral 

systems. One operates under a winner-take-all/single member districting 
rule (as in most U.S. elections), and one under a form of proportional 
representation (as in most other countries). Turnout is higher in the 
second.
a. Write a hypothesis for which this would be a potentially useful test.
b. In that hypothesis, what is the independent and what is the dependent 

variable?
c. Can you think of any alternate explanation for the outcome?

3. We find a positive mathematical relationship between two vari-
ables, but when we control for a third, the relationship is reversed 
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(negative) in all categories of the control variable. This is an example of 
______________________ .

4. A table lists the relationship between gender and the congressional vote 
in 2012. The table is then broken down according to one’s views about 
social welfare spending. One’s views about social welfare spending are 
most likely a third variable that we would:
a. Use to test for a spurious relationship
b. Use as an intervening, explanatory variable
c. Use as a specification variable

5. For a design to be considered internally invalid, the cause of differences 
in the dependent variable cannot be differences in our originally hypoth-
esized independent variable (T/F).

6. The following table represents data from the 435 districts of the U.S. 
House. The percentage of citizens who list themselves as black in the cen-
sus is listed, as well as the percentage of the vote received by the Demo-
cratic candidates (Kerry and Obama) in 2004 and 2008, respectively. For 
simplicity, districts are divided on each variable by whether they are above 
or below the national value for each.

 Discuss what the tables tell you, especially what happens when we control 
for the relationship between %Black and %Obama by %Kerry. As part 
of your answer, and for each of the three tables (below median vote for 
Kerry/above/all districts), compute the relevant percentage differences, 
lambda, and chi-square (keeping note of the “special comment” specified 
in using inferential statistics for non-random samples in Chapter 7).

(Continued)

 TABLE 10.11 2008 Vote for Obama

%Black

Total< Median > Median

%Kerry < 
Median

%Obama < Median 118  89 207
 92.9%  93.7%  93.2%

> Median  9  6  15
 7.1%  6.3%  6.8%

Total 127  95 222
100.0% 100.0% 100.0%

%Kerry > 
Median

%Obama < Median  13  5  18
 14.4%  4.1%  8.5%

> Median  77 118 195
 85.6%  95.9%  91.5%

Total  90 123 213
100.0% 100.0% 100.0%
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7. In 2008, Italian citizens were asked whether they intended to vote in the 
upcoming European elections. Look at the following table. Does whether or 
not citizens feel their voice counts in the EU help to determine whether or not 
they intend to vote? How would you describe how a third variable, whether or 
not citizens feel their vote counts in their own country, influences the original 
relationship? As part of your answer, and for each of the three tables (pro/anti/
all), compute the relevant percentage differences, lambda, and chi-square.

 TABLE 10.12 Voting Turnout in the European Union—Italy

Vote Counts in EU

Yes No

VOICE  
COUNTS IN 
COUNTRY

Do Not
Intend to Vote

 11  20  31
 9.6%  42.6%  19.3%

Intend to Vote 103  27 130
 90.4%  57.4%  80.7%

Total 114  47 161
100.0% 100.0% 100.0%

VOICE  
DOES NOT 
COUNT IN 
COUNTRY

Do Not
Intend to Vote

 10 188 198
 25.0%  33.1%  32.6%

Intend to Vote  30 380 410
 75.0%  66.9%  67.4%

Total  40 568 608
100.0% 100.0% 100.0%

Total Do Not
Intend to Vote

 21 208 229
 13.6%  33.8%  29.8%

Intend to Vote 133 407 540
 86.4%  66.2%  70.2%

Total 154 615 769
100.0% 100.0% 100.0%

 TABLE 10.11 (Continued)

%Black

Total< Median > Median

All Districts %Obama < Median 131  94 225
 60.4%  43.1%  51.7%

> Median  86 124 210
 39.6%  56.9%  48.3%

Total 217 218 435
100.0% 100.0% 100.0%

8. There is general consensus that individuals will feel more inclined to vote 
if they feel their vote will make a difference in the outcome. They will be 
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more likely to feel that way if they sense that the vote will be close. They 
are also more likely to feel that way if they feel that a particular candidate 
is more likely to be advantageous to them, and therefore care about who 
wins. The following tables were produced from the 2012 ANES. The first 
helps to test the first hypothesis (“those who think the election will be 
close will be more likely to vote than those who feel it will not”), and 
the second tests the second hypothesis (“those who care who wins will be 
more likely to vote than those who don’t care”). The third includes both 
“perception of closeness” and “caring about outcome” as variables that 
may cause voting turnout.

Answer the following:
 ■ Which independent variable seems to be a better predictor and 

explainer of voting turnout?
 ■ Is there an interactive effect between those two variables and voter 

turnout?

 TABLE 10.13 Reasons for Voting 2012

Not Close Close

Voted? Yes 616 3206 3822
70.0% 77.3% 76.0%

No 264 944 1208
30.0% 22.7% 24.0%
880 4150 5030

Don’t Care Care

Voted? Yes 414 3408 3822
45.4% 82.7% 76.0%

No 497 711 1208
54.6% 17.3% 24.0%
911 4119 5030

Don’t Care/ 
Not Close

Care/ 
Not Close

Don’t Care/ 
Close

Care/Close

Voted? Yes 59 557 355 2851 3822
36.0% 77.8% 47.5% 83.8% 76.0%

No 105 159 392 552 1208
64.0% 22.2% 52.5% 16.2% 24.0%
164 716 747 3403 5030

9. The following set of tables presents data on a country’s tax burden as a per-
centage of the GDP (gross domestic product), government expenditures 
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as a percentage of the GDP, and the unemployment rate in a given year. 
Data for each country are divided into two categories, below the mean 
for all countries or above. Does the tax burden percentage have a positive 
effect on unemployment? Does the government expenditures percentage 
have an effect on unemployment? Are there interactive effects when both 
are used to predict unemployment? Just use percentage differences and 
gamma to answer the questions. Of course, tax burdens and expenditures 
in one year may take some time (called a lag effect) before they can influ-
ence employment and other economic factors.

 TABLE 10.14 Tax Burdens, Expenditures, and Unemployment

GOVGDP Total

<mean >mean

UNEMPLOYMENT >mean  26  23  49
 31.3%  30.3%  30.8%

<mean  57  53 110
 68.7%  69.7%  69.2%

Total
 83  76 159
100.0% 100.0% 100.0%

TAXGDP Total

<mean >mean

UNEMPLOYMENT >mean  28  22  50
 31.5%  31.0%  31.3%

<mean  61  49 110
 68.5%  69.0%  68.8%

Total
 89  71 160
100.0% 100.0% 100.0%

TAXGDP GOVGDP Total

<mean >mean

>mean UNEMPLOYMENT >mean  8 14 22
50.0% 25.5% 31.0%

<mean  8 41 49
50.0% 74.5% 69.0%

<mean UNEMPLOYMENT >mean 18  9 27
26.9% 42.9% 30.7%

<mean 49 12 61
73.1% 57.1% 69.3%

Source: Heritage Foundation’s Index of Economic Freedom database.
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 NOTES

 1 Of course, even the best executed experiment’s results might be limited to the 
population from which our experimental “subjects” were randomly drawn.

 2 Of course, much of this may have been more than subconscious. See Sidebar 
2.1 in Chapter 2.

 3 For those who wish to investigate two powerful studies that not only offer 
alternate explanations but finds ways to test for them, allow me to suggest the 
following—one short, one long:

 A review of Emily Oster’s work on the disparity between male and female births 
in some developing countries discussed in Dubner and Levitt, “The Search for 
100 Million Missing Women,” Slate.com, 2005, http://www.slate.com/
id/2119402/

 Gary C. Jacobson and Samuel Kernell, Strategy and Choice in Congressional 
Elections (Yale University Press, 1981). The authors cast doubt on then standard 
assumptions about the causes of seat losses for the incumbent president’s party 
during midterm elections, come up with a plausible alternate explanation, 
and then follow with the examination of logical derivatives from that 
explanation.

 4 See, for example, Barasko et al., Understanding Political Science Research Methods: 
The Challenge of Inference (Routledge, 2013).

 5 Of course, where parents go to college can make an additional difference in 
outcomes.

 6 Karlheinz Reif and Eric Marlier, Eurobarometer 43.1BIS: Regional Development 
and Consumer and Environmental Issues, May–June 1995, Conducted by INRA 
(Europe), Brussels, 2nd SSD ed. (Swedish Social Science Data Service [producer], 
1998; Swedish Social Science Data Service/Zentralarchiv fuer Empirische 
Sozialforschung/Inter-university Consortium for Political and Social Research 
[distributors], 1998).

 7 Of course, we cannot conclusively prove this as there might be other differences 
associated with age that might be the true cause. Remember, alternate explanations 
always exist.

 8 Source: U.S. Census Bureau, Current Population Survey, Registration and Voter 
Supplement File, 1964–2010.

 9 “Baby boomers” include those born between 1945 and 1964. The generational 
theory, as it applied to voting, can be found in Chapter 1.

10 When possible, I suggest using census figures. The ANES is not as accurate as, 
for one reason, it contains many fewer cases than the U.S. Census Registration 
and Voter Supplement File. On the other hand, it does contain political and 
attitudinal items not possible in the census. Once we go beyond basic 
demographics and turnout, we can’t garner any political attitudes or behaviors. 
However, note that the ANES overestimates turnout much more than does the 
census file. These figures are calculated as the number who stated they voted 
in each group by the number of citizens in each group. This lies between the 
voting age population and voting eligible population as those who were 
disfranchised due to felony convictions are not deducted from the base (see 
Sidebar 2.2, Chapter 2). Source: U.S. Census Bureau, Current Population 
Survey, November 2012.

11 Another former student found that this had more to do with the evangelical, 
church attending nature of lower status blacks. As opposed to their upper status 

http://www.slate.com/id/2119402/
http://www.slate.com/id/2119402/


C H A P T E R  1 0  R E S E A R C H  D E S I G N / U S E  C O N T R O L  V A R I A B L E S

246

counterparts, they could be pulled away from their nominal Democratic 
attachments when cultural issues, such as gay rights, were in play.

12 The following calculations demonstrate how these subgroup means could produce 
the means for all of the individuals in each gender sample. Category 1 is full-
time, and category 2 is part time:

  
X

X N X N
N N

=
+
+

1 1 2 2

1 2

( ) ( )

 This formula is an extension of the formula for the calculation of means when 
data have been categorized in a frequency distribution (Chapter 3). Although 
not everyone (N1 or N2) in each subgroup necessarily makes the same income, 
the mean is the income that each would receive if the total income for that 
subgroup was evenly distributed. Computing the subgroup means by adding 
each individual’s income would produce the same result.

 For males, this is calculated as follows:

  
X =

+
+

=
$ , ( ) $ , ( ) $ ,40 000 150 25 600 150

150 150
32 800

 For females, this is calculated as follows:

  
X =

+
+

=
$ , ( ) $ , ( ) $ ,52 000 40 27 000 160

40 160
32 000
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 ❚ Which Line Fits Best? 
Minimizing the Sum  
of the Squared  
Deviation Scores 252
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 ❚ Linear Is Not Always  
the Best Fit 265

 ❚ Linear Regression  
Considerations 266

 ❚ Key Terms 268

 ❚ Questions and  
Exercises 268

Learning Objectives:

 ■ To realize that you work with regression equations all of the time
 ■ To understand the concept and mathematics of regression
 ■ To understand the concept of a “best-fitting line”
 ■ To understand R2 as a goodness of fit measure
 ■ To be able to judge regression equations inferentially
 ■ To realize the limitations of linear regression

Statistics like lambda help us measure the relationship between two variables 
measured at the nominal level. Ordinal statistics like gamma do so for vari-
ables measured at the ordinal level. In this chapter, we will start our discussion 
of a statistic that helps us test a hypothesis that links two variables measured 
at the interval level—linear regression.

As we develop our understanding of linear regression, we will come back 
to statistics and statistical concepts that were introduced in previous chapters. 
Means and variances will be used. Once again, we’ll discover the importance 
of deviation scores. Standardization will come up as essential in statistical 
analysis. The concept of proportional reduction of error and variance (PRE/
PRV) will be reintroduced, as will the interconnection among different 
types of statistics. As you learn a new statistic, use this and the next chapter 
(third variables) as a review of the key terms and concepts presented 
throughout the text.

linear regression A statistical 
technique that allows us to 
gauge the interaction of one 
variable on another if both 
variables are measured at 
the interval level.
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 YOU ALREADY KNOW THIS: READING A LINEAR 
REGRESSION EQUATION

Most students seem to have difficulty with interpreting or are just plain 
fearful when faced with a regression equation, even a simple linear one. They 
do not, however, realize that they use such equations in everyday life. Before 
we get into the mathematics of regression, let’s demonstrate this point.

We all know how to convert feet into inches. For every 1 foot increase, 
we “expect” an increase of 12 inches. Of course, this “expectation” is exact, 
as the translation between the two has been created to be so. As a formula, 
the translation from feet to inches would be the following:

 # inches = 12(# feet) (11.1)

As another example, when we travel to a foreign country, we usually need 
to convert that country’s currency into our own in order to know how much, 
in our terms, we are spending for a given purchase. At the time of this 
writing, 1 euro (the common currency of most of the European Union) was 
worth US$1.36.

 US$ = 1.36(€) (11.2)

Notice that each formula allows us to convert any number of feet or euros 
to any number of inches or dollars: €15, for example, equals US$20.40. In 
addition, for every increase of 1 euro, we “expect” an increase of US$1.36. The 
difference between €20 and €25 would therefore be US$6.80. In geometric 
terms, those conversion factors are the equivalent of the slope of a line, where 
the slope is equal to the change in dollars (1.36) for every 1-unit change in euros. 
We also know that any given line is defined not only by its slope or angle from 
the horizontal, but also its “intercept,” where the intercept is the point at which 
a line crosses its vertical axis when the horizontal value is equal to 0. When the 
number of euros equals 0, the number of dollars (intercept) will also equal 0 
(see Figure 11.1). The currency translator formula would therefore be equal to:

 US$ = 0 + 1.36(€) (11.3)

Not all conversions intersect at 0. What if we were to convert degrees 
Celsius into the less common (but used in the United States) degrees Fahr-
enheit? Water freezes at 0° Celsius, but 32° Fahrenheit. Every 1-degree increase 
on the Celsius scale corresponds to a 1.8-degree increase Fahrenheit. The 
formula for converting from Celsius to Fahrenheit is therefore:

 °F = 32 + 1.8(°C) (11.4)
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or, more commonly presented as:

 ° °F = +32 9
5

( C) (11.5)

This is graphically represented in Figure 11.2.
In general, the equation for any line, where y represents the value on the 

vertical axis and x represents the value on the horizontal axis is as follows:

 y a b x= + ( ) (11.6)

 where a =  the point at which the line crosses the y-axis when x = 0  
(intercept)

  b = the slope Δy/Δx

intercept The value of the 
dependent variable when 
the independent variable 
equals 0.

slope The expected increase 
in the dependent variable 
for every unit increase in the 
independent variable.

0 € 5 € 10 € 15 € 20 € 25 € 30 € 

15 €

$20.40

intercept=$0

∆ = 5 €

∆=$6.80
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$0.00

$5.00

FIGURE 11.1 A Typical Linear Plot
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Thus far, we have worked with equations that perfectly “predict” the value 
of one variable based on the variable of the other. The data points are exactly 
on the predictor equation line. These “predictions” are perfect because humans 
created these conversions. In the real world, however, predictions are not so 
perfect, especially when we only have comparisons on two variables. Let’s 
start by looking at two variables that should be highly correlated. The  following 
graph, known as a scatterplot, shows the percentage of the vote won by 
candidate Barack Obama in 2008 compared to the vote won by the previous 
Democratic presidential candidate, John Kerry, in 2004 (Figure 11.3). For 
simplicity of representation, we only present those data for the 53 California 
congressional districts. Notice that the data points almost correspond to a 
straight line, but not exactly. Visually, a straight line would represent the 
scattered points extremely well, but there would be some degree of error in 
predicting how well Obama did compared to how well Kerry did four years 
before.

A less uniform example can be demonstrated by displaying the “scatterplot” 
representing the percentage of voting turnout in the 50 states, where our 
horizontal (x) axis represents the percentage of the voting age population 
with a college education or higher (2010 Census), and the vertical axis (y) 
represents the percentage of the voting age population that voted in the 2012 
presidential election (Figure 11.4).

scatterplot A graphical 
 representation of the 
 relationship between two 
(or more) variables.

FIGURE 11.2 Fahrenheit versus Celsius
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FIGURE 11.4 College Education and Turnout
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Notice that although the plot seems visually to demonstrate a positive 
relationship between the percentage of college-educated citizens and voting 
turnout, the points are not nearly as “linearly” fitting as the previous graph. 
Because a “best-fitting” (to be defined later) straight line does not exactly 
allow us perfectly to predict our y-axis variable from our x, the linear regres-
sion equation becomes:

 y b x  a= + ( ) (11.7)

where y = each value of y (turnout) predicted by the best-fitting line  
 y b x  a= + ( )
Graphically, let’s look at the point that represents Hawaii (see Figure 11.5). 
Notice that, for Hawaii, the difference between the actual turnout (44.2%) 
and the turnout predicted by the “best-fitting” line (calculated as 61.38%), 
is greater than for any other state.

 WHICH LINE FITS BEST? MINIMIZING THE SUM  
OF THE SQUARED DEVIATION SCORES

We now need to discuss how that “best-fitting” line is determined. For each 
point (state) in the distribution, there exists a value equal to the difference 
between the value of y that we actually observe, and the value ( y) that we 

FIGURE 11.5 College Education, Turnout, and Hawaii as an Outlier



L I N E A R  R E G R E S S I O N

253

would predict or expect given our best-fitting line. This difference, also called 
the “residual” or “prediction error,” is equal to:

 y − y  (11.8)

Remember that, as we are dealing with interval data, we are not just 
concerned about whether those two are different (nominal), or even just 
whether one is greater (ordinal), but by how much they are different (inter-
val). In linear regression, the best-fitting line is calculated as the one that 
minimizes the sum of the squares of all of those differences or residuals (50 
in this example). This notion of “sum of squares” should already be familiar 
to you, as it is part of the calculation of the variance (see Chapter 4),1 
where we first needed to calculate, for each case (state), the squared   
deviation score.

 d
x X

Ni

i
i

N

2 1

2

=
−( )

=
∑

 (11.9)

As with the variance, we need not worry about negative residuals canceling 
out positive residuals, as these residuals are squared.

How do we determine the slope and intercept of that line? As we are 
linking differences in both the independent (level of education) and depen-
dent variables (turnout), we need to calculate the covariance between those 
two variables. For each case, we first calculate the deviation score on the X 
or independent variable. Next we calculate the deviation score on the Y 
or dependent variable. We do not square each individually as we are 
 measuring the covariances between them. Instead we multiple them by 
each other:

 x Xi −( ) y Yi −( )  (11.10)

As the degree of covariance between two variables is partially contingent 
on how much variance exists in our independent variable (the greater the 
variance on x, the greater the potential for variance on y), we need to stan-
dardize by that original deviation. The slope (b) is therefore calculated as 
follows:

 
b

x X y Y

N

x X

N

i i
i

n

i
i

n=

−( ) −( )

−( )

=

=

∑

∑

1

2

1

 (11.11)
 

best-fitting line The line 
through a scatterplot of two 
variables that minimizes 
the sum of the squared 
 deviation scores of the 
dependent variable.

covariance The degree to 
which two variables vary 
together.
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This can then be simplified as:

 
b

x X y Y
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n
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− −

−

=

=

∑

∑

( )( )

( )

1

2

1

 (11.12)

The intercept for our best-fitting line is then calculated as:2

 a Y b X= − ( )   (11.13)

The slope of a simple linear regression line passes through the means of the 
two variables (see Figure 11.6). That is, a case that has as its value the mean 
of the independent (x) variable will also have as its value the mean of the 
dependent variable.3 Let’s return to our 50-state scatterplot.

Using our equation for the intercept and slope, our linear regression 
equation is the following:

 y x = + ( )43 72 59. .y x = + ( )43 72 59. .   (11.14)

Let’s use these numbers to predict certain outcomes and differences.
If the percentage of adult citizens within a state with at least a college 

education equals 38%, what we predict voting turnout to be?

 y = + ( ) =43 72 59 38 66 1. . . %  (11.15)
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Y = 59.3, X = 27.2

FIGURE 11.6 Best-Fitting Regression Line, and Means
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For that value, our predicted or expected value is not that much off from 
our observed value. Our actual last data point has an x = 38.2% and  
a y = 66.3%. On the other hand, our prediction or expectation if x = 17% 
would be a y of 53.8%. The closest observation is not so close (x = 17.3,  
y = 46.3). Our “best-fitting” line fits some data points better than others.

 ■ Two states differ on their percentage of adult citizens with a college degree 
or more by 15%. What would we expect the difference in turnout between 
those two to be?

Here we need only look at the slope. For every 1% point increase in 
education level, we would expect an increase of .59 percentage points in 
turnout (.5948% if carried out to four decimal places).4 A 15% increase 
would therefore lead to an expected difference of .5948 × 15% = 8.922%.

Let’s look at another set of data, this time comparing education levels 
within 32 European countries and turnout in their parliamentary elections.5 
The general slope this time is negative, not positive (Figure 11.7).

The best-fitting linear equation is calculated as follows:

 y x = − ( )84 731 2577. .   (11.16)

The intercept tells us that, in the unlikely event that the percentage of 
citizens with higher education is 0, then the predicted percentage turnout 
will be 84.73%.6 The slope this time is negative and tells us that for every 
1-unit or percentage point increase in the proportion of adult citizens who 
have completed some level of higher education, we would expect a decrease 
of .25 percentage points in turnout in the most proximate parliamentary 
election.

R2 = 0.0551

FIGURE 11.7 Education and Turnout, Europe
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 REGRESSION AND PRE/PRV MEASURES  
(R-SQUARE)

The question that now needs to be answered is the following. As the 
“best-fitting” line fits the data with different degrees of “best,” how do we 
measure how well the line fits the data? For that we return to a concept we 
used before, a PRE or PRV measure. Remember our discussion of lambda. 
We compared the number of errors we would observe if we guessed the mode 
within each independent variable group (i.e., the number of cases not in the 
respective modal categories) against the number of errors we would observe 
if we made our best, modal guess for the entire distribution.

 λ =
−

=
−N N

N
E E

E
( ) ( )

( )
( ) ( )

( )
1 2

1
1 2

1
  (11.17)

 where E(2)  is the number of errors we make by guessing within each  
independent variable category

  E(1)  is the number of errors we would make by “blind guessing” (i.e., 
guessing the modal category without information about the 
independent variable, the mode for the entire distribution)

For ordinal data (gamma, Somers’ D), we compared the number of times 
we would be wrong in predicting the order of an outcome against a 50% 
correct prediction. If we predicted concordance, then:

 Gamma =
× + −

× +
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[. ( )]
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  (11.18)

Linear regression takes into account not whether or not we are wrong in 
making a particular guess about the dependent variable (nominal), nor whether 
we are wrong in the order we guess (ordinal), but rather by how much we 
are off. In addition, as we discussed previously, that “how much” is squared, 
giving outliers even greater influence in our calculations. The PRE rule is 
much the same as lambda and gamma. First, we take the sum of the squared 
deviation scores ( y − y) from the “best-fitting” regression line (i.e., the for-
mula calculated with information about the independent variable). That is 
our equivalent to E(2). We then calculate the sum of the squared deviations 
we would take from our best guess without such information, this time the 
mean for the entire distribution, y − Y . Our PRE measure thus becomes:
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 (11.19)
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E(1) = sum of squared 
 deviation scores from the 
mean of Y for the entire 
distribution

 E(2) = sum of squared 
deviation scores from the 
best fitting line
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And, as always, standardized 
by the sum of our original 
squared error E(1) squared 
deviation

We can perhaps better understand this by a graphical representation of the 
two sets of residual or deviation scores. The following scatterplot represents, 
as our independent variable (X), the proportion of the vote won by then 
candidate Obama in 2008 in each of the 53 California districts. Our depen-
dent variable (Y) is the proportion of times in 2009 that the winning con-
gressional candidate supported the newly elected president on bills for which 
he had an expressed preference. The hypothesis we are trying to test would 
be the following:

The greater the proportion of the vote received by a president in a congressional 
district, the more likely the Congress member of that district will support the 
president.

As we are not only concerned about order, but by how much, we also need 
to state:

There is a positive linear relationship between the proportion of the vote 
received in a congressional district and that district’s Congress member’s 
subsequent support for the president.

The theoretical logic behind these hypotheses (we look at the obvious alternate 
explanation later) is that Congress members would be more inclined to 
support/not support a popular/unpopular president in their district for fear 
of alienating their voters before their next election. The assumption, of course, 
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is that the vote for the Congress member is actually contingent on the public’s 
view of the incumbent president.7 Figure 11.8 presents the scatterplot of 
these two variables.8

Let’s look at the scatterplot in two ways. The first (Figure 11.9) shows the 
original deviation scores for each district from the mean (i.e., the observed 
support for the president’s positions in 2009 subtracted from the mean level 
of support from all 53 members, yi y Yi − ).

The second (Figure 11.10 on page 260) plots the deviation scores calculated 
with knowledge of the independent variable used in calculating the 
“best-fitting” line ( y −Y).

Notice that the deviation scores in the second graph are generally smaller 
than the deviation scores using the mean. The discrepancy between the two, 
as you recall, increases as the respective deviation scores are squared before 
they are added.

The PRE calculation (equation 11.19),           
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is known as the R-square value or coefficient of determination that, as with 
lambda, provides us with a measure of “goodness of fit.” How much better 
off are we with knowledge of the 2008 presidential vote in each district (and 

R-square A goodness of fit 
measure that calculates 
how much of the variance 
of the dependent variable is 
explained by the independent 
variable variance.
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thus able to compute a slope and intercept) as opposed to “blind guessing” 
the mean of presidential support for each district representative?

Note that our PRE measure can also be listed as follows:

 

( ) ( )

( )

y Y

N

y

N

y Y

N

yi
i

N

i
i

N

i
i

N

−
−

−

−

= =

=

∑ ∑

∑

2

1

2

1

2

1



 (11.20)

which calculates the R-square as a difference between the two variances. Thus, 
we can discuss R-square as a PRV, or proportional reduction in variance 
measure. The first part of the equation, as well as the standardizing denom-
inator, is the original variance (about the mean). The second part of the 
equation is what is called is the “regression” variance (i.e., the variance when 
using our best-fitting line as our y estimator). In our California group, the 
original variance (from the mean) is equal to 1690.4, and the residual (regres-
sion) variance is equal to 385.6.

R2 is calculated as follows:

 
1 690 4 385 6

1 690 4
772, . .

, .
.−

=   (11.21)

Lambda told us by what proportion did we reduce our categorical error in 
guessing the dependent variable with information about the independent 
variable. R2 indicates the proportion of the original variation (about the mean) 
that is explained by variation from the best-fitting line. For these 50 states, 
knowledge of (and utilization of ) the percentage of the vote received in each 
district by president-elect Obama proportionately explains 77.2% of the 
original variance of presidential support. We are still left with 22.8% of the 
original variance unexplained or residual variance.

As with lambda, R2 can vary from 0 (creating a best-fitting line gives us 
no proportional reduction from guessing the mean) to 1 (the regression line 
perfectly fits the data). That value of 1 would apply in guessing inches from 
feet or °F from °C. The regression variance will equal 0 (there is no deviation 
from the “best-fitting” line), thus leaving us with the original variance divided 
by itself. We come close to that in predicting the vote for Obama in 2008 
with the vote for John Kerry in 2004, with an R2 of .986.



L I N E A R  R E G R E S S I O N

261

Sidebar 11.1: Poverty Level and Crime

It is generally taken for granted that poor people are more likely to engage in criminal activity, 
especially property crimes like burglary and theft, than wealthier individuals both in the United 
States and across the globe.1 The following scatterplot compares the proportion of individuals in 
a state (or the District of Columbia) who live below the poverty line and the number of crimes per 
100,000 inhabitants.

Limiting ourselves to property crimes (burglary, larceny, and theft), we can see a reasonably 
strong relationship between the poverty rate and the crime rate. The relationship is not as strong 
for violent crimes (murder, aggravated assault, rape, and robbery). Assessing the effects of inequal-
ity and crime, Morgan Kelly explains the different motivations behind these two types of crime, 
attributing the latter less to poverty and inequality than to social disorganization.2

FIGURE 11.11 Poverty Level and Crime
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 GOING FULL CIRCLE: SLOPES, PEARSON’S R,  
AND BACK TO R -SQUARE

The slope tells us the predicted value of the dependent variable for each value 
of the real or possible value of the independent variable. It does not, however, 
give us any indication of the strength of the association between two variables. 
For that, we need to turn to another statistic, Pearson’s r, more commonly 
referred to as the correlation coefficient. Pearson’s r is the ratio of the products 
of the covariances between our independent and dependent variables, stan-
dardized (divided) by the product of their individual variances. Pearson’s r 
can vary from −1 (a perfect linear negative relationship) to 0 (no relationship) 
to +1 (a perfect linear positive relationship).

There are several ways to calculate this statistic, but, in keeping with the 
theme in this chapter, we will use the simplest one based on deviation scores. 
In order to calculate Pearson’s r, we need to first calculate the original  deviations 
scores from the mean for our independent variable x, then the variation scores 
for our dependent variable y. We then enter them into the following formula:
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Or, alternately:
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Although the evidence seems to confirm our hypothesis, we should not, however, take any of 
this evidence to assume that all poor people are criminals or that all wealthier individuals are 
not. There are just different criminal probabilities within each group.

1  For an international perspective, see “Poverty and Crime: Breaking the Vicious Cycle,” 2013, http://www.
poverties.org/poverty-and-crime.html.

2  Morgan Kelly, “Inequality and Crime,” Review of Economics and Statistics 82, no. 4 (2000): 530−539. Data 
sources: Crime: Federal Bureau of Investigation, Uniform Crime Reports, http://www.fbi.gov/about-us/
cjis/ucr/ucr. Poverty Rate: Department of Commerce, U.S. Census Bureau.

Pearson’s r Also called 
the “product moment 
 coefficient,” it is a measure 
of the linear relationship 
between two interval 
 variables. It is also the 
square root of R-square.

http://www.poverties.org/poverty-and-crime.html
http://www.poverties.org/poverty-and-crime.html
http://www.fbi.gov/about-us/cjis/ucr/ucr
http://www.fbi.gov/about-us/cjis/ucr/ucr
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Notice any similarities with equations 11.11 and 11.12? Let’s return to 
 scatterplot 11.7. This time (Figure 11.12), however, let’s use percent education 
as our dependent variable and percent turnout as our independent one (don’t 
worry about the causal direction here; we’re just going to make a point).

Notice that our R-square value stays the same. R-square assumes no direc-
tion (symmetrical) and therefore does not vary when the independent and 
dependent variables are switched. Now multiply the absolute values of the 
two slopes (.2477 × .2225). Remember that the slopes are based on 
direction—independent and dependent variables matter. Look familiar 
(.0551)? R-square, the symmetrical measure of fit, is the product of the 
individual slopes.

One last point. If we calculate the value of the Pearson’s r for either table, 
it will equal −.235. Square that number, and you should get the R-square 
value. Remember, the bivariate tabular version of r is Φ, which is, in turn, 
connected to chi-square. Yes, statistics are related.

 IS THE SLOPE REALLY DIFFERENT FROM THE  
MEAN? INFERENCE WITH REGRESSION

Normally, as mentioned previously, I’m hesitant to use significance tests with 
non-randomly sampled data (one entire Congress, a set of European countries, 
etc.). If we do have a sample, however, we still need to go from our descriptive 
analyses (r, R-square, and slopes) to an inferential one. Remember that, with 
linear regression, we are comparing estimates of the dependent variables using 
a best-fitting line against estimating the mean for all cases. If the slope is in 
the hypothesized direction, and the R-square is fairly high, then we have mostly 
satisfied our causal Step 4 (the observed results are as expected). We still need 

FIGURE 11.12 Turnout and Higher Education
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to test (Step 5) whether our results are significant enough to reject the possi-
bility (our null hypothesis) that the independent variable has no effect on the 
dependent variable in the population from which the sample was drawn. With 
linear regression, the null hypothesis is that, in the population from which 
our sample was drawn, the true slope is 0, no different from the mean.

Linear regression assumes that, in that population, the values of the dependent 
value y are normally distributed for each value of our independent variable x.9 
When dealing with normal distributions previously, we used t-tests. A variation 
of that test, t-test for slopes, is used to compare our observed slope with a slope 
of “0.” Let’s bypass the math on this one (it’s the slope divided by its standard 
error) and show the results from an analysis of feeling thermometer scores from 
the 2008 American National Election Studies survey. Our independent variable 
is one’s rating of the Democratic Party, and our dependent variable is one’s 
rating of candidate Barack Obama. The results are presented in Table 11.1.     

The unstandardized coefficient (we’ll get to the standardized beta in the 
next chapter) tells us that, using our calculated best-fitting line, an increase 
of 1 degree in feelings toward the Democratic Party predicts an increase of 
.761 degrees for candidate Obama. The R-square value of .467 indicates that, 
descriptively, the regression line fits the data reasonably well, with the variation 
on the independent variable explaining 46.7% of the variance on the depen-
dent variable. The t-test is greater than the two-sided critical cutoff of 1.96, 
with a p of less than .0000. In all likelihood, assuming the requirements for 
linear regression are met, the true slope is between .726 and .797—both 
greater than 0. We can reject the null hypothesis with confidence.

 TABLE 11.1 Regression, Feeling Thermometers: Democratic Party and President Obama

R R-Square
Adjusted 
R-Square

Std. Error of 
the Estimate

.683a .467 .467 20.950

aPredictors: (Constant), V18 B1h. Feeling Thermometer: Democratic Party.

Unstandardized Coefficients

b Std. Error

(Constant) 14.434 1.121
V18 B1h. Feeling Thermometer: Democratic Party  .761  .018

95.0% Confidence Interval for B

t sig. Lower Bound Upper Bound

12.880 .000 12.236 16.631
42.339 .000 .726 .797

t-test for slopes A test of 
significance that determines 
whether the slope of our 
equation is significantly 
different from a slope of 0.
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Sidebar 11.2: Remember the Law of Large Numbers

If we are testing a null hypothesis of a slope of 0, keep in mind that our ability to reject the null, as 
with all other statistics, is partially a function of sample size. Take, for example, the following list 
of ten cases on two variables.

x    y
10   30
20   35
20   42
10   35
30   47
45   50
80   35
20   65
65   80
10   80

Our slope is .152 with an R-square of .013—not a very good fit. Our t-value is only .617, not 
large enough to reject the null hypothesis. If we increase our sample to 300, however, by repli-
cating our ten cases 30 times, our slope and R-square values remain exactly the same. Our t-value, 
however, increases to 2.012, significant at p < .05. Would we really consider this theoretically 
significant?

 LINEAR IS NOT ALWAYS THE BEST FIT

Data can always be placed into a regression calculator, and a “best-fitting” line 
will always be calculated. With a large enough sample size (if we are randomly 
selecting a sample), even a regression analysis with a small R-square value can 
be statistically significant (slope in the population most likely not 0). A quick 
look at a scatterplot, however, will often move us away from a simple linear 
model. Take the following scatterplot, based on data taken from the World 
Bank’s World Development Indicators collection. The independent variable is 
the amount spent per capita on health care (adjusted to U.S. dollars), and the 
dependent variable is the infant mortality rate per 1,000 live births.

A simple linear regression produces a decent R-square value, but it doesn’t 
really pattern the data very well. It seems that most of the decline in the 
mortality rate occurs within the first $1,000 of additional health expenditures, 
then levels off. Above $1,000, increased expenditures seem to have a limited 
effect on infant mortality rates.
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One can divide the data in two, separating countries with $1,000 in 
expenditures or less from those that spend more. The original linear slope 
is −0.0071 (an increase of $1,000 decreases the infant mortality rate by 
.71%, R2 = 0.217). For countries spending below $1,000, the slope is −0.0581 
(R2 = 0.368). For countries that spend more, the slope is basically 0, with 
an R2 of .0165.

We’ll cover these types of specification effects in the next chapter. Let’s end 
this vignette with a suggestion. There are different types of bivariate regression 
models, not all linear. A power model, for example (see the “best-fitting” 
curve displayed as dashes), produces a much more proximate fit to all of the 
data points (see Figure 11.13). That fit is measured as R2 = .776.

FIGURE 11.13 Health Care Expenditures and Infant Mortality

 LINEAR REGRESSION CONSIDERATIONS

Usually, when we think about our hypothesis, it may be of the following 
form:

The higher the overall education level in a state, the higher we expect turnout 
to be.

However, note that this is an ordinal hypothesis. The interval equivalent 
would be as follows:

Education and income will be linearly related in a positive fashion.
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We are asking not only if the variables differ in a particular order, but by 
how much. Order and the direction of a linear regression slope may not 
present the same results. Look at Figure 11.14, which presents a hypothetical 
distribution of two variables with six cases. If we compare the six cases and 
count the number of times an increase in x is associated with a decrease in 
y (discordant pairs), we will come up with ten possibilities (1 with 2, 3, 4, 
and 5; 2 with 3, 4, and 5; 3 with 4 and 5; and 4 with 5). The number of 
times an increase in x is associated with an increase (concordant pairs) in y 
occurs only with five comparisons (case 6 compared to the five others). 
Ordinally, the relationship is clearly negative. Yet, when we run these numbers 
through a simple linear regression, the slope is positive (.5714). That one 
outlier (x = 12, y = 40) pulls our slope upward, much as outliers pulled our 
mean from a distribution’s median.

Is there a way to resolve this dilemma? One is to calculate a “best-fitting” 
equation that is not linear. Statistical packages such as SPSS and Stata pro-
vide us with a host of non-linear regression estimates. The other way is to 
eliminate the outlier as non-representative of the data, or to state the rela-
tionship as conditional: the two variables are linearly perfectly (R2 = 1) and 
negatively associated until x exceeds a certain value. This does not mean that 
we eliminate all discussion of that outlier. Instead, we may use it, or any 
other of the outliers (Hawaii and others in Figure 11.5), as deviant cases 
worthy of study to determine why they do not fit the general pattern. Deviant 
case analysis is not only a fruitful way to come up with an undergraduate 
research topic (why is this state different?) but also adds to our understanding 
of the outcome we are trying to predict (“y should increase predictably with 
x unless . . .”). Such an analysis tells us how far we can generalize our results 
and adds to the broader theoretical knowledge of the discipline.

deviant case analysis 
Research that is used to 
extend our theoretical 
perspective of a relationship 
between two variables by 
intensively examining a case 
that does not fit the normal 
pattern.FIGURE 11.14 Ordinal versus Interval Relationship
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 KEY TERMS

best-fitting line (253)

covariance (253)

deviant case analysis (267)

intercept (249)

linear regression (247)

Pearson’s r (262)

R-square (258)

scatterplot (250)

slope (249)

t-test for slopes (264)

 QUESTIONS AND EXERCISES

NOTE: Several more examples and exercises can be found in both the SPSS 
and Stata manuals that accompany this text. Regression Analysis is covered 
in Section 4.6.

 1. For lambda, we compared our guesses about outcomes using the mode. 
For linear regression, our comparison is based on which measure of cen-
tral tendency?

 2. Interpret each of the following:

a. An R-square of 0. What would be the value of Pearson’s r?
b. An R-square of 1. What would be the value(s) of Pearson’s r?
c. An r (not R-square) of −1

 3. Which of the following is most true?

a. Correlation coefficients (r) and slopes do not differ if independent and 
dependent variables are reversed.

b. Correlation coefficients (r) differ if independent and dependent vari-
ables are reversed, but not slopes.

c. Correlation coefficients (r) and slopes both differ if independent and 
dependent variables are reversed.

d. Correlation coefficients (r) do not differ if independent and depen-
dent variables are reversed, but slopes do.

 4. When doing a regression analysis, we run a t-test to determine if the 
observed slope is significantly different from ______________________
____________ .

 5. It is possible for two variables to be related negatively if viewed as ordinal, 
but positively if viewed as interval. True or False?

 6. Using the data presented in Sidebar 11.2 (“Remember the Law of Large 
Numbers”), hand calculate the slope, intercept, correlation coefficient, 
and R-square. Interpret each.
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 7. Using the data presented in Figure 11.13, hand calculate the slope  
(y dependent), intercept, correlation coefficient, and R-square. Inter-
pret each.

 8. For Sidebar 11.1 (“Poverty Level and Crime”), interpret the intercept, 
slope, and R-square values for the relationship between the percentage of 
households below the poverty line and property crimes.

 9. For Sidebar 11.1 (“Poverty Level and Crime”), interpret the intercept, 
slope, and R-square values for the relationship between the percentage 
of households below the poverty line and violent crimes. Compare the 
results from Exercises 8 and 9.

10. The following corresponds to the scatterplot comparing the 2004 vote for 
Democratic candidate John Kerry with the 2008 vote for Barack Obama. 
Interpret the intercept, slope, and R-square values. In addition, assume for 
the sake of demonstration that this is a random sample of 435 districts, 
interpret the t-test values for the slope (both significance and confidence 
interval).

 TABLE 11.2 Regression, Feeling Thermometers: John Kerry and Barack Obama

R R-Square Adjusted R-Square Std. Error of the Estimate

.965a .931 .931 3.903

aPredictors: (Constant), Kerry.

Unstandardized 
Coefficients

t Sig.

95.0% Confidence 
Interval for b

b Std. Error
Lower 
Bound

Upper 
Bound

(Constant) 4.666 .668  6.985 .000 3.353 5.978
Kerry  .999 .013 76.558 .000  .973 1.025

11. The following represents the linear regression calculations of age and 
one’s placement on a ten-point global warming scale that we will con-
sider interval. A low score on the scale indicates a lack of concern about 
global warming, and a high value indicates serious concern. Interpret 
the intercept, slope, and R-square values. In addition, interpret the t-test 
values for the slope (both significance and confidence interval). Why 
can such a low R-square value be consistent with a significant t-test 
value?
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 TABLE 11.3 Regression, Age, and Global Warming

R R-Square Adjusted R-Square Std. Error of the Estimate

.037a .001 .001 2.109

aPredictors: (Constant), V28 D11 AGE.

Unstandardized 
Coefficients

t Sig.

95.0% Confidence 
Interval for b

b Std. Error
Lower 
Bound

Upper 
Bound

(Constant) 8.033 .035 227.075 .000 7.964 8.103
V28 D11 
AGE −.004 .001 −5.991 .000 −.006 −.003

 NOTES

1 If this information comes from a random sample, the denominator would be 
N − 1.

2 I’m using “a” to represent the intercept. Other texts will represent it as bo.
3 As many courses would not include a hand calculation of slopes and intercepts, 

two examples are reserved as end-of-chapter exercises.
4 We can state “percentage point” here as both of our variables are measured in 

percent. If, on the other hand, our independent variable was “mean years of 
education,” our statement would begin “for each year increase in a state’s mean 
education …”

5 Derived from Eurotstat portal, European Union, http://epp.eurostat.ec.europa.
eu/portal/page/portal/statistics/search_database, and Voter Turnout Database, 
“International Institute for Democracy and Electoral Assistance, Stockholm, 
Sweden, © International Institute for Democracy and Electoral Assistance,” 
http://www.idea.int/vt/viewdata.cfm.

6 I have done analyses where the predicted turnout is over 100% or under 0%. 
The intercept might seem somewhat unusual. We can’t have a turnout of 105%. 
On the other hand, we would also not have 0% of the population of a country 
without any higher education. “Best-fitting” lines will often have unusual 
intercepts, especially when a 0 value on the independent (X) variable is highly 
unlikely or impossible.

7 Edward Tufte and others advanced a similar notion that a president’s popularity 
had a direct effect on how well the president’s party did in midterm elections. 
Of course, this was only an explanation of between-election-cycle change, not 
the overall vote for the president’s party, which is predominantly based on the 
partisan nature of a district. See Tufte, “Determinants of the Outcomes of 
Midterm Elections,” APSR LXIX (1975): 812−826; and, for an updated view, 
see Jacobson and Kernell, Strategy and Choice in Congressional Elections (Yale 
University Press, 1981).

http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
http://www.idea.int/vt/viewdata.cfm
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8 Source for district vote for Obama: DavidNYC, “Presidential Results by 
Congressional District 2000–2008,” http://www.swingstateproject.com/
showDiary.do?diaryId=4161; source for presidential support scores (only 
non-unanimous votes used) courtesy of George C. Edwards III, “The Presidential 
Data Archive,” http://presdata.tamu.edu/ArchiveData/support/text/House09_
revised02052012.txt.

9 There are ways to test for this, but I will leave that to an upper division course 
to pursue.

http://www.swingstateproject.com/showDiary.do?diaryId=4161
http://www.swingstateproject.com/showDiary.do?diaryId=4161
http://presdata.tamu.edu/ArchiveData/support/text/House09_revised02052012.txt
http://presdata.tamu.edu/ArchiveData/support/text/House09_revised02052012.txt
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Learning Objectives:

 ■ To understand the use of three or more variables in multiple regression analysis
 ■ To understand the use of a third variable in testing for a spurious relationship
 ■ To examine the concept of a dummy variable
 ■ To understand the use of a third variable in investigating explanatory effects
 ■ To understand and be able to interpret the difference between standardized and 
unstandardized slopes

 ■ To understand the use of a third variable in testing for additive effects
 ■ To examine how we can inferentially test our multiple regression models
 ■ To understand the use of a third variable in testing for a specification effect
 ■ To bring all that we have learned together as we study multiple regression

As we demonstrated in Chapter 10, political and other life does not fit neatly 
into a two-variable model. In this chapter, we will conclude by applying the 
logic of third variable “controls” to test for spuriousness, suggest an explan-
atory scheme, and define interaction and specification effects. “Spuriousness” 
is one type of alternate explanation (Step 6), an explanatory scheme helps 
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us to develop the theoretical connection between variables (Step 2), and 
interaction and specification effects allow us to determine how best to gen-
eralize our models (Step 7).

 MULTIPLE REGRESSION AND SPURIOUS 
RELATIONSHIPS

You may have noticed that our district vote and support plot seemed to 
indicate that the major component of our line was reflective of the difference 
between two distinct sets of Congress members. In fact, the two clusters 
represent Republican members on the lower left, and Democratic members 
on the upper right. What we have is a type of spurious relationship, where 
a third variable is the true independent variable that causes both the district 
vote for Obama and the district member’s subsequent support for him. 
Districts that vote Democratic for president will usually vote Democratic 
for Congress. These Democratic members will usually share many of the 
policy perspectives of a president of their party. Thus, it is the partisan 
nature of a district that influences both the presidential vote and, less 
directly, the support that district’s representative affords the president (see 
Figure 12.1).

One way to examine this spurious effect, as we did when we looked at 
tabular data and means, is to control for the partisan direction of the district. 
With the assumption, certainly warranted in California’s incumbent-friendly 
districts of 2008, that districts won by each party contain a majority of 
affiliates of that party, we can use the party winning each district as a surrogate 
for its partisan direction. The scatterplots for Democratic and, separately, 
Republican districts follow the plot for all California districts, along with 
their regression equations and R2 measures. Plots have been adjusted to match 
axis differences (see Figure 12.4).

FIGURE 12.1 Presidential Vote and Presidential Support by District

% Obama 2008 %Presidential Support 2009

%Democratic Congressional Vote 2008

Partisan Direction of District
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Sidebar 12.1: Redistricting in the United States and the Power of Graphs

Each state sets up different rules governing how to geographically separate its allotted number 
of U.S. House districts. After a series of 1960s court cases, states were required to do so after each 
decennial census to equalize the population in each. Generally, when a state allows its legislature 
to make that decision subject to its governor’s approval, and if the legislative and executive 
branches are controlled by the same party, a partisan gerrymander is likely to be the result.1 
A partisan gerrymander is one that attempts to maximize the number of seats for the majority 
party by making its safest districts somewhat less so in order to trade majority party voters into 
other seats to either make them safer or to capture them from the opposition.

Gary Jacobson created an excellent set of bar graphs to demonstrate this change.2 The first 
shows the distribution of seats by party control based on party registration (data that can be 
easily obtained for electoral units as small as precincts and blocks) in the decade preceding the 
redistricting. White bars indicate seats that had changed party hands at least once. The second 
shows the distribution of seats in the election immediately after the redistricting (2002). Notice 
both the lack of “white” districts and the abrupt split between Republican and Democratic seats. 
The year 2002 was no exception. In the 265 house elections (53 seats, 5 election cycles) during 
this decade, a district changed party hands only once.
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1 In both Davis v. Bandemar, 478 U.S. 109 (1986) and Vieth v. Jubilirer, 541 U.S. 267 (2004), the U.S. 
Supreme Court determined that partisan gerrymanders could be declared an unconstitutional violation 
of the 14th Amendment’s equal protection clause but set the bar so high that no partisan gerrymander 
has ever been successfully challenged.
2 Gary C. Jacobson, “All Quiet on the Western Front: Redistricting and Party Competition in California 
House Elections,” in P. Galderisi (ed.), Redistricting in the New Millennium (Lexington, 2005).
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FIGURE 12.3 The Distribution of the House Vote, 2002

The most obvious difference in comparison to the original graph is the 
R2 values. Once we separate out (control for) Democratic from Republican 
districts, our original high R2 of .722 drops to a lowly .035 and .066, respec-
tively. Knowledge of the vote received by Obama proportionately explains 
only 3.5% of the variance of presidential support for Democrats and 6.6% 
for Republicans. Additionally, the slopes are also dramatically reduced 
(although it is higher for Republicans, possibly indicative of the slight majority 
vote that Obama received in some of these otherwise Republican districts).

Although this separation of plots helps us to understand, as it did with 
the separation of cross tables, how much of the original relationship between 
vote and support is maintained and how much is lost, it doesn’t give us a 
complete estimate of the importance of all the variables together. For this we 
turn to multiple regression, where two or more independent variables are 
used to explain our outcome or dependent variable.

multiple regression A 
regression model with 
two or more independent 
variables.
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FIGURE 12.4 Regression Plot, District Presidential Vote, and Presidential Support
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dummy variable A nominal, 
dichotomous variable that 
can be used as an indepen-
dent variable in a regression 
model.

Dummy Variables

Of the three variables we already used, one, the party that holds the district, 
is nominal with just two categories—Democratic or Republican. However, 
as we saw in the Chapter 8 Appendix, dichotomous nominal data can be 
used in ordinal or interval statistics. In terms of regression analysis, we use 
the term dummy variable. In essence, we treat a dichotomy as having a code 
of 0 (the absence of a variable) or 1 (the presence). In this example, we will 
code the Democratic districts as 1 and the Republican districts (non- 
Democratic) as 0. Our new regression equation now takes on this generic 
form that applies to any three-variable regression, dummy variable or not:

 
y a b x b x= + ( ) + ( )1 1 2 2  (12.1)

where  x1 and x2 are the values for each case on two different independent 
variables

 and  b1 and b2 represent the slopes for the relationship between x1 and 
y and x2 and y,respectively

For our example, x2 refers to our original percent vote for Obama, and x1 
whether or not the district is Democratic. Two equations are now produced, 
one for Democratic districts (dummy = 1) and one for Republican districts 
(dummy = 0).

Democratic districts: 
∧

PS =1.915 + 80.102 1 + .172 %Obama( ) ( ) (12.2)

= 82.017 + .172 (%Obama)

Republican districts: 
∧

PS = + ( ) + ( )1 915 80 102 0 172. . . %Obama   (12.3)

= 1.915 + .172 (%Obama)

The combined slope indicates that, regardless of which party holds the 
district, for every 1% point increase in the district vote for Obama, we would 
expect an increase in presidential support of .172 percentage points (much 
less than we would with the original plot). The base (%Obama = 0) of pres-
idential support from Democrats starts at 82.017%, and from Republicans 
at 1.915%. Obviously, when using this model, we lose some of the distinc-
tiveness that we enjoyed when looking at the regression models for Democrats 
and Republicans separately. The combined slope might also mask directional 
differences (one positive, one negative) for each party category. However, as 
mentioned in Chapter 2, when we summarize data we lose distinct informa-
tion. Combining the party dummy with the vote for Obama, however, increases 
our R2 to an almost perfect .989. Most of this comes from the party dummy 
variable, with, as would be expected, little explained by the vote for Obama.
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adjusted R-square A varia-
tion of the R-square statistic 
that takes into account the 
number of cases relative to 
the number of independent 
variables introduced into a 
regression model.

Sidebar 12.2: Dummy Variables

A nominal variable with more than two categories can be used in a linear regression equation 
by separating the variable into a series of dichotomous dummies. For example, if we had a  variable 
that split individuals into three categories of party (Democratic/Independent/Republican), two 
dummy variables could be created. The first would separate Democrats (1) from non-Democrats (0) 
(Independents and Republicans included), and the second would separate Independents (1) 
from both types of partisans (0). There would be no need to create a Republican/non-Republican 
variable as that is already subsumed by the first two. A 0 on both means you are a Republican. 
The operative number of dummy variables will always be equal to the number of nominal cate-
gories in a variable minus one.

 MULTIPLE REGRESSION AND EXPLANATORY EFFECTS

Let’s look at another version of multiple regression, this time with two fully 
interval variables. This time we will use all 435 congressional districts. The 
outcome we are trying to explain is the percentage of the 2008 presidential 
vote won by then candidate Obama. Let’s start with the first explanatory 
variable, the percentage of the district population that is black. The linear 
regression formula calculates as follows:

 %OBAMA %Obama


= 47.845 + .473 (%BLACK) (12.4)

 with an R2 = .223

The equation tells us that for every 1% point increase in the percentage 
of blacks in a district, we can expect a .473% point increase in the district 
vote for Obama. We might therefore conclude that black voters voted for 
candidate Obama because he was a person of color, generally identified as 
the first black major party presidential candidate. However, might there be 
an alternate explanation? Is it possible that one’s race and one’s vote are 
mediated by some third, explanatory variable? Is it possible that black voters 
normally vote Democratic, and that the main reason that the districts lined 
up the way they did was because Obama was a Democrat?

FIGURE 12.5 Explanatory Sequence: Race and Obama

%BLACK %OBAMA

%DEMOCRATIC
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Sidebar 12.3: The Aggregate or Ecological Fallacy

In analyzing the relationship between race and the 2008 vote, we are of course making an 
assumption that we can infer the behavior of individuals in our districts with the aggregated data 
for those districts.

When confirming our hypotheses about individual behavior based on this analysis of states, 
we need to be aware of a possible alternate explanation, the aggregate or ecological fallacy (i.e., 
erroneously deducing individual behavior from aggregations, like districts, states, or countries 
within which those individuals reside).1

After the 1968 U.S. presidential election, for example, some studies indicated that in certain 
areas of the South, the county vote for third-party candidate George C. Wallace, segregationist 
governor of Alabama, was positively correlated with the percentage of the county’s citizens that 
were black. Did blacks vote for a segregationist? Most likely not. Rather, on further evaluation, 
white citizens became more concerned about the newly won civil rights of blacks as the propor-
tion of blacks in a county increased. The percentage of blacks within a county helped explain 
why white voters were more or less likely to vote for Wallace. Causative? Most likely. But not 
indicative of black support for the candidate.

Although unlikely, it is at least possible that, as with Wallace in 1968, few black voters voted 
for Obama and that almost all of his votes came from the white population. Other than having 
no theoretical reason (STEP 2) to expect that, we should go one step further (STEP 8?) and inves-
tigate our hypothesis with other types of data, especially those based on individual responses. 
Were black citizens actually more likely to state that they voted for candidate Obama than were 
white ones? As a form of triangulization (Chapter 2), confirmation based on both aggregate- and 
individual-level data makes for a much stronger argument.

1 The pioneering essay on the ecological fallacy is William S. Robinson’s 1950 analysis of the positive 
relationship between immigration rates and literacy. See “Ecological Correlations and the Behavior of 
Individuals,” American Sociological Review 15, no. 3 (1950): 351–357.

As a measure of the Democratic leaning direction of a district vote, let’s 
take the vote that went to the previous Democratic presidential candidate, 
John Kerry. When added to the regression equation, we now have:

 %OBAMA %OBAMA


= 4.778 + .009 %BLACK + .994 %KERRY( ) ( ) (12.5)

 with an R2 = .931

It appears that our alternate explanation is correct. Adding %KERRY to 
our equation explains almost all of the variance in the percent of the district 
votes that went for Obama. Increases in the black population have only 
marginal predictive effects on the presidential vote. In fact, if we just used 
%KERRY as our one independent variable, we would still have an R 2 of .931. 

aggregate or ecological 
fallacy Erroneously inferring 
individual behavior from 
aggregated statistics.
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Adding the percentage of the black population does nothing to help increase 
our explanation of the variance in the Obama vote at all. Assuming our 
aggregate district figures are indeed reflective of individual behavior, and that 
no ecological or aggregate fallacy has been made, then we have been able to 
explain the main reason why black voters chose Obama. It was because, as 
their normal voting pattern would dictate, Barack Obama was the Democratic 
candidate. His race did add to that vote, but only marginally. A contingency 
analysis of individual voters provides us with concurring evidence.1

Sidebar 12.4: Adjusted R -Square

Adding independent variables will always increase our R-square value, even marginally. Some 
analysts prefer, especially when sample sizes are small, to use a variation called the adjusted 
R-square. It adjusts the R-square value based on the number of cases of analysis against the 
number of independent variables entered into a linear regression model and only increases if 
newly entered variables increase our original R-square by more than would occur by the random 
luck of the draw. As such, it is not really relevant when populations or non-random samples are 
the focus of analysis.

    As a statistic partially based on the laws of random selection, the adjusted and non-adjusted 
R-squares will converge as they sample size becomes large (the former can actually be negative 
with extremely small samples). Return to the data in Table 11.2. We will add a second set of 
independent variable values, x2. As before, we’ll replicate the ten cases several times to see the 
difference it makes in the adjusted and non-adjusted R-square values.

x1 x2 y

10 15 30
20 18 35
20 26 42
10 18 35
30 22 47
45 47 50
80 56 35
20 45 65
65 56 80
10 15 80

Two other ways exist to gauge the comparative effects of independent 
variables on an outcome. In the first, we standardize the slopes so they are 
more directly comparable. The second, if sampling conditions apply, is to 
test our slopes inferentially.
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Standardized Slopes

Standardization is needed if the means and standard deviations (calculated 
with the mean) in the two independent variables are substantially different. 
Much as we did in our discussion of Z- and t-scores, our data need to be 
adjusted for these differences. In order to standardize our slopes, we carry 
out the following calculation for each variable:

 β= b
s
s
x

y










 (12.6)

where β = the standardized slope
  b = the unstandardized slope
  sx = the standard deviation of the independent variable (x)
  sy = the standard deviation of the dependent variable ( y)

Table 12.1 now gives us the comparative information we need:
The standardized slopes would be interpreted as the following (notice that, 

as with Z- and t-values, the unit of measurement is dropped):

For each standard deviation increase in %Black, we would predict a .009 
standard deviation increase in %Obama.

For each standard deviation increase in %Kerry, we would expect a .960 
standard deviation increase in %Obama.

 MULTIPLE REGRESSION AND ADDITIVE EFFECTS

Although standardization seems to make little difference in this example 
because the scales (percentages) for each are similar (although with different 
means and standard deviations), the differences would be much more pro-
nounced if we were to, for example, try to predict Obama’s vote percentage 
based on %Black and median household income. Not only are our units of 
measurement different (% and $), but the scales are also substantially different 
(per capita income can change by thousands).

Going back to our 435 district data, we produce the following figures 
(Table 12.2):

standardized slope A 
regression slope adjusted 
by the standard deviations 
of the independent and 
dependent variables.

 TABLE 12.1 Regression, %Black, %Kerry, and %Obama

R2 = .931

b β

Intercept 4.778
%BLACK .009 .009
%KERRY .994 .960
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The unstandardized slope for median household income (MHI) is so low 
because of its scale. For every $1 increase in a district’s MHI, we would 
predict a .000475% point increase in the vote for Obama. Of course, district 
MHIs vary by more than $1. A $10,000 difference between two districts 
would equate to a 4.75% point increase in Obama’s vote. The standardized 
slope still indicates that the black percentage of the district vote is more 
important than MHI, but the latter is not without statistical significance. 
The combination of both variables explains more of the variance in the vote 
for Obama than either alone.

A better example of interaction effects occurs when we attempt to explain 
the vote received by candidate Barack Obama with information on both the 
percentage of blacks within a district and the percentage of individuals 65 
and older. The results are presented in Table 12.3.

 TABLE 12.2 Regression, %Black, MHI, and %Obama

R2 = .257

b β

Intercept 36.1
%BLACK .533 .531
Median Income .000475 .194

 TABLE 12.3 Regression, %Black, %PER65, and %Obama

R2 = .241

b β

(Constant) 57.315
%BLACK .443 .442
%PER65 −.727 −.140

Both the unstandardized and standardized coefficients indicate a positive 
relationship between %Black and %Obama and a negative one between 
%PER65 and %Obama. Combined, they explain 24.1% of the variance of 
the vote, slightly above what they explain separately (22.3% and 5.4%, 
respectively). The standardized betas indicate the greater importance of the 
percentage of the black population than the percentage of older citizens.

 INFERENCE WITH MULTIPLE REGRESSION

Another way to measure the relative importance of each independent variable 
is to test for its statistical significance.2 Can we have come up with a positive 
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 TABLE 12.4 Regression and Statistical Significance, %Black, %Kerry, and %Obama

b β t
Significance 
(2-tailed)

Intercept 4.778 6.922 .000
%BLACK .009 .009 .652 .515
%KERRY .994 .960 66.739 .000

 TABLE 12.5 Regression and Statistical Significance, %Black, MHI, and %Obama

Unstandardized  
Coefficients

Standardized 
Coefficients

b Std. Error β t Sig.

(Constant) 36.099901 2.755783 13.100 .000
%BLACK .532593 .043673 .531 12.195 .000
MHI .000214 4.801261E−5 .194 4.456 .000

or negative slope in a sample even though the true population slope is 0?2 
Again, there is disagreement in the discipline as to whether or not significance 
tests are even relevant when no random sampling is performed (see Special 
Comment, Chapter 7). For illustrative purposes, however, we will use it with 
our district data (Table 12.4), even though these 435 districts are not a 
random sample of a defined population.

For this regression equation, indicated by the t-values and their associated 
significance, the black percentage of the district is not a significant predictor 
of the vote for Obama once we control for the vote John Kerry received in 
2004; the percentage received four years earlier by John Kerry is. In Table 12.5 
we see that both variables are statistically significant. Both the percentage of 
black residents within a district and the MHI help to explain the percentage 
of the vote received by Barack Obama.

 MULTIPLE REGRESSION AND SPECIFICATION EFFECTS

As another example, representing a specification effect (generalizability), 
let’s return to our European parliamentary turnout example from the 
previous chapter. The data represented in Figure 12.6 are divided as to 
whether the country is a former Soviet-bloc nation or not. The individual 
plots and regression data are presented for all countries and each of the 
two groups.
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FIGURE 12.6 Education and Turnout: Former Soviet Bloc Status
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 TABLE 12.6 Regression with a Dummy Variable

R2 = .430 b β

Intercept 80.300
% Higher Ed. −.084 −.056
Dummy −18.585 −.625

The same data are used, but this time with a dummy variable included 
indicating whether or not the country is a former Soviet-bloc nation (1 = yes, 
0 = no).

The standardized slopes, both negative, indicate that the dummy variable, 
whether or not a country is a former Soviet-bloc member, is more mathe-
matically important as an explainer of turnout than the percentage of those 
within a country with a higher education. Note, however, that the individual 
plots show a slight positive relationship between education and turnout for 
former Soviet-bloc nations and a slight negative one for other nations. Does 
the education and turnout relationship that we take for granted in the United 
States not exist when dealing with EU parliamentary elections? Or are these 
aggregations masking the true nature of voting in Europe, a sort of inverse 
aggregate or ecological fallacy?

What I call a specification effect is, in some ways, more commonly called 
in the regression literature an interaction effect. An interaction effect occurs 
when the influence of one independent variable on a dependent variable is 
different for each category of another independent variable. With regression 
we can directly test for this interaction by creating an additional variable that 
is the product of the two perceived interacting ones. In our education and 
turnout analysis, a new variable would be created by multiplying our dummy 
variable (Soviet bloc/non-Soviet bloc) by our education variable. This inter-
action variable would then be included as a third independent variable. This 
differs from a purely additive model in that it does not assume that the slopes 
for each country bloc would be the same (as evidenced by Figure 12.6). We 
will not go into any more depth on interaction effects, as we will leave this 
to a more advanced analysis course.

 KEY TERMS

adjusted R-square (278)

aggregate or ecological fallacy (279)

dummy variable (277)

multiple regression (275)

standardized slope (281)
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 QUESTIONS AND EXERCISES

NOTE: You can replicate these results with the data sets available with the 
SPSS or Stata manuals that accompany this text. Regression analysis is covered 
in Section 4.6. These charts were produced using SPSS. The variable names 
used (V81R, COUNTRY, etc.) are those that appear in the codebooks for 
these data sets.

1. The following table (Table 12.7) was derived from the 2012 American 
National Election Studies (ANES2012A). The dependent variable is the 
post-election feeling thermometer rating (0 through 100) for Republican 
presidential candidate W. Mitt Romney (V17). The independent variables 
are one’s feeling thermometer assessment of Mormons (V81M, Romney’s 
religion) and for rich people (V81R, Romney among them). Both were 
issues during the campaign. Interpret the slopes (both standardized and 
unstandardized), R-square, and the t-test values (with such a large sample 
size, the adjusted R-square would be the same as the non-adjusted one). 
Was there a positive linear relationship between feelings toward Mor-
mons and the rich and feelings toward Mitt Romney? How strong was 
it? Which of the independent variables explains feelings toward former 
Governor Romney better?

 TABLE 12.7 Regression, Feeling Thermometers: Mormons, Rich People, and Romney

R R-Square Adjusted R-Square Std. Error of the Estimate

.315 .099 .098 27.447

Unstandardized 
Coefficients

Standardized 
Coefficients

b Std. Error β t Sig.

(Constant) 19.930 2.152 9.261 .000
Feeling 
Thermometer: 
MORMONS .358 .034 .246 10.576 .000
Feeling 
Thermometer: 
RICH PEOPLE .185 .032 .135 5.786 .000

2.  The following table (Table 12.8) was derived from EURO69.SAV, a 2008 
standard Eurobarometer survey.
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The dependent variable is the ten-point ideological scale (V52), left to 
right. The independent variables are age and, as a dummy variable, whether 
or not one’s country was formerly a Soviet-bloc nation (COUNTRY was 
reclassified with a RECODE to separate out the two sets of countries). 
Interpret the slopes (both standardized and unstandardized), R-square, and 
the t-test values (with such a large sample size, the adjusted R-square would 
be the same as the non-adjusted one). Was there a positive linear relationship 
between age and ideology (degree of conservatism), and how was that rela-
tionship influenced by country status? Which of the independent variables 
better explains differences in ideology?

 TABLE 12.8 Regression, Age, Country, and Ideology

R R-Square Adjusted R-Square Std. Error of the Estimate

.134 .018 .014 2.170

Unstandardized  
Coefficients

Standardized 
Coefficients

b Std. Error β t Sig.

(Constant) 4.077 .060 67.467 .000
V28 AGE  .006 .001 .054  7.951 .000
COUNTRY  .646 .035 .125 18.412 .000

3. The following table (Table 12.9) was derived from the 2012 Cooperative 
Congressional Election Study (CCES2012A). The dependent variable is 
the 100-point survey question (V60) that asks:

“If a state had a budget deficit, what percent should come from tax 
increases and spending cuts?”

0 = All tax increases
50 = Equal
100 = All cuts

The first independent variable is family income (V15). (“Income” is a 
qualified interval variable as it is broken down into 15 non-equally propor-
tioned categories. Individuals with family incomes of $100,000 or more 
were reclassified together.) The second is gender (V1). Only one state (Indi-
ana) is chosen for this analysis (data set = CCES2012I.SAV). Interpret the 
slopes (both standardized and unstandardized), R-square, and the t-test 
values. Was there a positive linear relationship between family income and 
deficit reduction preference toward cuts, and how was it mediated by gender? 
Which of the independent variables better explains differences in reduction 
preference?
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 TABLE 12.9 Regression, Income, Gender, and the Budget

R R-Square Adjusted R-Square Std. Error of the Estimate

.107 .011 .009 25.885

     
Unstandardized 
Coefficients

Standardized 
Coefficients

b Std. Error β t Sig.

(Constant) 65.333 3.790 17.240 .000
Family Income .349 .356 .038 .982 .326
Gender −5.146 1.991 −.099 −2.585 .010

4. The following table (Table 12.10) was derived from CONGRESS2008 
(or the combined CONGRESS2008-2012 file). The dependent variable 
is a house member’s party unity score (the proportion of times each voted 
with his/her party of bills where a majority of Republicans voted against 
a majority of Democrats [gamma=0]) in 2009 (PU09). The independent 
variables are the vote each member won by in 2008 (WV08), and their 
level of seniority going into the election (SENIORITY08). Newly elected 
members were given a seniority code of 0. One might argue that, as a 
Congress member becomes safer (i.e., wins by a large margin), he/she can 
afford to defect from party uniformity more often than others. If this is 
true, might the relationship be spurious—might both variables really be a 
function of seniority that tends to boost both electoral margins and one’s 
sense of safety? Might it be additive?

Here’s the analysis. You may wish not to consider t-tests relevant as this 
is not a random sample.

 TABLE 12.10 Regression, Seniority, Winning Vote, and Party Unity

R R-Square Adjusted R-Square Std. Error of the Estimate

.344 .118 .114 8.340

Unstandardized 
Coefficients

Standardized 
Coefficients

b Std. Error β t Sig.

(Constant) 78.075 1.967 39.693 .000
SENIORITY08 .034 .047 .034 .738 .461
WV08 .211 .029 .334 7.183 .000
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 TABLE 12.11 Regression, Male Employment Rate, Urbanization, and %Males >65

R R-Square Adjusted R-Square Std. Error of the Estimate

.643 .413 .406 11.476

Unstandardized 
Coefficients

Standardized 
Coefficients

b Std. Error β t Sig.

(Constant) 41.375 6.892 6.003 .000
URBANPER .417 .039 .649 10.702 .000
EMP15M .039 .086 .028 .455 .650

5. The following table (Table 12.11) was derived from the cross-national 
data file (CROSSNAT). The dependent variable is the percentage of 
males who live beyond 65 (WDI_65M), and the independent variables 
are the male employment rate (measured as percent of the male popula-
tion 15 and over that is employed = WDI_EM) and a country’s degree 
of urbanization (WDI_UP = percentage living in urban areas). Is there 
a positive or negative linear relationship between employment and male 
longevity, and how does urbanization change the outcome? Which of the 
independent variables better explains male longevity? Is there anything 
about the measure of employment that might influence the outcome?

Here’s the analysis. You may wish not to consider t-tests relevant as this 
is not a random sample.

 NOTES

1 This should not imply the lack of a causal link between race and voting behavior, 
but only that it is mediated mainly through party, not candidate choice.

2 We will not go through all of the calculations here. Just remember that the t 
value is equal to the unstandardized coefficient divided by its associated standard 
error.
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Concluding Remarks

This volume is intended to gently introduce students, especially those with 
a certain degree of math phobia, to the study of statistics and their use in 
political science. It should be a starting point, not an end point, for most of 
you. The influence of so-called big data and the ability to work with it will 
only grow in importance as time goes on. We are a far cry from when I was 
entering data on punch cards, and old-time supercomputers were necessary 
to even begin to tackle data sets as small (in relative terms) as 50,000 cases, 
not to mention U.S. Census data files. You can now run through those 
50,000 cases in seconds on your laptop or tablet.

Remember, however, that data analysis is of little use without proper, meth-
odologically sound development of hypotheses, awareness of the meaningfulness 
of our measurements and designs, and mindfulness of alternate explanations, 
including the peculiarities of different statistical techniques. This should not be 
viewed as a limitation but, rather, as an invitation and challenge to learn and 
analyze more. The skill sets that you will begin to learn from this text and the 
accompanying SPSS and Stata manuals will serve you well in the marketplace 
of the 21st century, but only if you maintain and enhance them.

We have discussed the nature of hypotheses and the multiple methods 
used to test them—both conceptually and mathematically. We have traced 
the steps necessary to use statistics within a proper methodological framework. 
You have been given an invitation and challenge to further your understanding 
of statistics and research methodology. It is now up to you, the student, to 
embark on your own research and do so. I wish you continued success.
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Glossary

absolute frequency/tally/count The actual observed number of cases within 
each category of a frequency distribution.

accord A type of no association between two variables where percentages on 
the dependent variable can vary across independent variable categories as 
long as the modal categories remain invariant.

adjusted R-square A variation of the R-square statistic that takes into ac-
count the number of cases relative to the number of independent variables 
introduced into a regression model.

aggregate or ecological fallacy Erroneously inferring individual behavior 
from aggregated statistics.

alpha error The probability of erroneously rejecting the null hypothesis.
alternate explanations Reasons other than that which are hypothesized for 

why our properties/variables are related as hypothesized.
arithmetic mean The category that all cases would have if the total value of a 

variable for all cases were evenly distributed among them.
asymmetrical measure A measure of association that takes into account the 

direction of an association. Independent and dependent variables must 
be specified.

bar chart A graphical representation of data where each category is separated 
into bars. The height or length of each bar represents the number or pro-
portion of cases within each category.

best-fitting line The line through a scatterplot of two variables that mini-
mizes the sum of the squared deviation scores of the dependent variable.
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bimodal symmetrical distribution A distribution in which both sides of the 
distribution are mirror images of each but two modes; one on each side of 
the distribution exist equally distant from the median.

bivariate statistics A class of statistics that allow us to measure and analyze 
the relationship between two variables.

Bradley effect The tendency for individuals to give responses that they feel 
are more politically or socially correct or reflect better on their own per-
ceived moral values.

central limit theorem The distribution of sample means and dichotomous 
proportions will be normally distributed around the population mean, 
regardless of the shape of the original, individual data distribution.

central tendency A summary measure that describes the central or most 
prevalent category of a distribution.

Chicago effect The author’s term for the intentional or unintentional misre-
porting of information by governmental or other agencies.

chi-square An inferential-only statistic that tests for the possibility that the 
proportions we observe in a sample could have been randomly drawn 
from a population with different expected proportions. The chi-square 
must be used when more than two categories of a variable exist.

chi-square (two variables) An inferential measure of association that com-
pares the observed frequencies within a contingency table against a certain 
frequency expectation, usually one that matches statistical independence.

classic experimental design The standard against which all research designs 
are compared. This design assumes random assignment into two groups 
with the only difference between the groups being differences on the var-
iable hypothesized to be the causal agent.

concordant pairs All pairs of two unique cases that differ in the same direc-
tion on two variables.

confidence interval A range of values that we use to safely predict a random 
choice.

contingency table A frequency table that represents the distribution of data 
simultaneously on two or more variables.

control variable A third variable that is used to eliminate the mediating ef-
fect that may cause us to misread the relationship between two variables 
specified in our hypothesis.

covariance The degree to which two variables vary together.
Cramer’s V A nominal measure of association, similar to phi, where more 

than two categories exist for either or both variables.
critical value The value of a statistic, like chi-square, above which allows us to 

confidently reject a null hypothesis.
cross-contamination/spillover effect An experimental condition in which 

investigators cannot limit the influence of a test condition to only the test 
subjects.

crosstabulation See contingency table.
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cumulative frequency A display within a frequency table that indicates the 
proportion or percentages that are contained within a certain category 
and categories ranked below it. Data must be measured at least at the 
ordinal level.

dependent property That property that we hypothesize was caused by 
another.

dependent samples test A test of significance for which the sampling of each 
case in the second group is contingent or dependent on the draw on the first.

descriptive statistics A class of statistics that allow us to measure and analyze 
what we actually observe.

deviant case analysis Research that is used to extend our theoretical perspec-
tive of a relationship between two variables by intensively examining a 
case that does not fit the normal pattern.

deviation score The difference between an individual case’s value and the 
mean of all values within a distribution.

dichotomous variable/dichotomies A variable for which only two categories 
exist.

discordant pairs All pairs of two unique cases that differ in the opposite di-
rections on two variables.

double blind An experimental condition in which neither the subjects nor 
the investigators are aware of the group in which each subject is placed.

dummy variable A nominal, dichotomous variable that can be used as an 
independent variable in a regression model.

expected frequency The number of cases in each category expected from a 
specified population from which a sample is randomly drawn.

explanatory relationship The reason (theoretical link) why our hypothesized 
variables should be linked as specified.

external validity of design Our hypothesized independent variable is 
 actually the cause of our outcome or dependent variable for all targeted 
 populations and circumstances.

external validity of measurement Our measurements are generalizable to 
our targeted populations and circumstances.

factual statement Test of a hypothesis that is proved true or false on limited 
investigation.

falsifiability The possibility that what we observe will not confirm what our 
hypotheses predict.

field experiments Experimental studies conducted in real-world settings.
frequency distribution A presentation of a distribution’s cases summarized 

by their respective categories.
frequency polygon A graphical representation of data with bars representing 

each of a large number of categories. A line is then drawn connecting the 
tops of each bar.

gamma A measure of ordinal association that assesses the proportional differ-
ence between concordant and discordant pairs.
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generational theory Explaining political behavior based on differences in 
what was occurring when an individual entered political awareness.

goodness of fit measure A statistical procedure that measures how well a 
measure of central tendency summarizes a distribution.

historical generalization Our hypothesized independent and dependent 
properties are only related accidentally and are not causally linked.

implicit perfect association A type of perfect association between two var-
iables where adjustments are made if the number of independent and 
dependent categories is different.

independent property That property that we hypothesize has a causative ef-
fect on another.

independent samples test A test of significance for which the cases within 
each comparison group are drawn independently of each other.

index of diversity A variation or dispersion measure calculated as the total 
proportion of times that two unique cases that categorically differ on any 
variable can be drawn from any distribution.

index of qualitative variation A variation or dispersion measure that 
 standardizes the index of diversity by dividing by the maximum qualita-
tive variation possible.

inferential statistics A class of statistics that allow us to make inferences or 
estimates about populations based on our samples.

interaction effect The determination that a hypothesized relationship might 
be enhanced or weakened when a third variable changes.

intercept The value of the dependent variable when the independent variable 
equals 0.

internal validity of design Our hypothesized independent variable is  actually 
the cause of our outcome or dependent variable.

internal validity of measurement We are actually measuring what we think 
we are measuring.

interquartile range The maximum categorical difference possible between 
any two cases in a distribution’s middle 50%.

interval data Data for which we can discern differences among ranked cate-
gories and that allow us to answer the question, “different by how much?”

laboratory experiments In the social sciences, experimental studies that occur 
under controlled conditions that attempt to simulate real world settings.

lambda A nominal measure of association, based on the mode, that assesses how 
much better off we are with information about the independent variable.

law of large numbers As we increase our sample size, our estimates of popu-
lation values draw closer to the true population value.

laws/hypotheses The actual and perceived relationships between or among 
properties/concepts.

life-cycle theory Explaining political behavior based on differences in cir-
cumstances that occur as one ages.

linear regression A statistical technique that allows us to gauge the interaction 
of one variable on another if both variables are measured at the interval level.
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Literary Digest poll of 1936 Poll infamous for making the wrong predic-
tion about the outcome of the 1936 presidential election. The sample was 
biased toward individuals more likely to be Republicans than the voting 
population as a whole.

MAD (absolute or mean absolute deviation) The mean of the absolute val-
ues of deviation scores.

marginal sensitivity A condition that changes values of a statistic as the pro-
portion of cases in each variable’s categories change, even if the overall 
association remains the same.

marriage gap A recent U.S. electoral division where married couples, es-
pecially those with children, are more likely to vote Republican than 
non-married individuals, especially single females with children.

median The category that represents the midpoint of a distribution at or be-
low which half of all cases lie. Data must be measured at least at the 
ordinal level.

mode The category within a distribution that has the most cases.
multiple regression A regression model with two or more independent variables.
multivariate statistics A class of statistics that allow us to measure and ana-

lyze the relationship among three or more variables.
negative skew See skewness.
nominal data Data that are assumed to be measured only by differences in 

categorization. All data are, by their very nature, nominal.
normal distribution A family of symmetrical distributions whose mathemat-

ical equation is determined by its mean and standard deviation.
number of cases The total units of analysis from which measurements are 

taken.
observed frequency The actual number of cases in each category observed in 

a sample.
one-tailed significance test A test to gauge the significance of the difference 

between our sample observation and expected population value when a 
direction is posited.

ordinal data Data for which we can discern differences among categories and 
for which a set rank ordering of categories makes conceptual sense.

Pearson’s r Also called the “product moment coefficient,” it is a measure of 
the linear relationship between two interval variables. It is also the square 
root of R-square.

phi A nominal measure of association between two dichotomous variables 
based on the interval statistic Pearson’s r as well as chi-square.

pie chart A graphical representation of data where each category is separated 
into wedges. The area of each wedge represents the number or proportion 
of cases within each category.

positive skew See skewness.
PRE (proportional reduction of error) measure Any measure of association 

that assesses proportionately how much better off we are with information 
about the independent variable than without.
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properties/concepts The generalizations we believe are important to measure 
from our cases.

random assignment An experimental condition in which cases have an equal 
chance of being placed in each test and control group.

random (equiprobable) sample A random sample assumes that any case 
within the target population we are analyzing has an equal chance of being 
drawn into the sample as any other case. Also referred to as an equiprob-
able sample.

range The maximum categorical difference possible between any two cases in 
a distribution.

relative frequency The proportion or percentage of observed cases within 
each category of a frequency distribution.

relevant percentage difference The difference in the percentages of cases be-
tween dependent variable categories for one or more independent variable 
categories.

reliability of measurement Measurements are consistent and meaningful.
R-square A goodness of fit measure that calculates how much of the vari-

ance of the dependent variable is explained by the independent variable 
variance.

sampling distribution of means The distribution of means drawn from an 
infinite or very large set of random samples from a population that results 
in a normal distribution around the true population mean.

scatterplot A graphical representation of the relationship between two (or 
more) variables.

Simpson’s Paradox A unique type of specification effect where a “lurking” 
variable, when controlled for, reverses the direction of the original inde-
pendent to dependent variable relationship.

skewness The degree to which a distribution (think frequency polygon) is 
pulled or stretched. A stretch to the right or highest values of the distribu-
tion indicates a positive skew, and to the left, a negative skew.

slope The expected increase in the dependent variable for every unit increase 
in the independent variable.

Somers’ D A measure of ordinal association, based on gamma, with ties on 
one variable counting as half hypothesis confirming, half disconfirming.

specification effect The determination that a hypothesized relationship 
might change when applied to different subgroups within our cases.

spillover effect See cross-contamination.
spurious relationship Our hypothesized independent and dependent prop-

erties are actually both dependent on a third property.
standard deviation The square root of the variance.
standard error of the mean The standard deviation of sample means in sam-

pling distribution of means based on dividing the standard deviation of 
the individual cases by the square root of the sample size.
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standard error of the mean differences The standard deviation of the differ-
ences between two samples randomly drawn from a population.

standardization The application of a common numerical and/or conceptual 
base to different data so that different measurements can be compared.

standardized slope A regression slope adjusted by the standard deviations of 
the independent and dependent variables.

statistical independence A type of no association between two variables 
where percentages on the dependent variable are invariant across inde-
pendent variable categories.

strict perfect association A type of perfect association between two variables 
where each category of one variable is uniquely matched with a category 
of another.

symmetrical distribution A distribution of a variable where the side to the 
left of the median is a mirror image of the side to the right.

symmetrical measure A measure of association that doesn’t take into account 
the direction of an association. Independent and dependent variables are 
treated equally.

test implication An observable test of a hypothesis that is implied by that 
hypothesis.

theories/theory sketches A broad explanation of why we expect to observe 
what our hypotheses predict.

time series chart A graphical representation where data for one or more cat-
egories of a variable or variables are plotted for each year and where the 
yearly data points are connected. The area of each wedge represents the 
number or proportion of cases within each category.

triangulization Measuring our concepts and testing our hypotheses in as 
many different ways as possible.

t-test Also known as the Student’s t is a series of symmetrical distributions 
based on sample size (N − 1) that approaches the normal (Z) curve as the 
sample size increases.

t-test for slopes A test of significance that determines whether the slope of 
our equation is significantly different from a slope of 0.

unimodal symmetrical distribution A distribution in which both sides of 
the distribution are mirror images of each other and where the mode is 
the median category.

units of analysis, case, or fact Entities from which measurements are taken.
univariate statistics A class of statistics that allow us to measure and analyze 

only one variable at a time.
value (normative) judgment A moral or religious sense that a certain occur-

rence or action is “good” or “bad” that is based on religious or philosoph-
ical principles not subject to testing.

variable The actual, real-world measurement of properties/concepts.
variance The mean of the squared values of deviation scores.
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variation ratio A goodness of fit measure that indicates the proportion of 
cases that vary from or are not within the modal category.

verifiability The ability of a factual statement or test implication to be proved 
true or false on limited investigation.

weak perfect association A type of perfect association between two variables 
where variation on the dependent variable occurs only within one catego-
ry of the dependent variable.

weighted mean The arithmetic mean adjusted for the number or proportion 
of cases within each unit of analysis, used when a full listing of individual 
values is not obtainable.

Yule’s Q A measure of nominal association for two dichotomous variables 
based on the cross products. It is derived from the ordinal measure gamma.

Z-score A measure of deviation from the mean standardized by the standard de-
viation of a distribution when the mean is 0 and the standard deviation is 1.
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Sample 
Solutions Guide

Chapter 1

1. Answer—c: This is a generalizable characteristic that applies to and varies 
among a multitude of cases (people)
“a” Represents a group of units of analysis (facts) that share the same char-

acteristic on the property “religious denomination”
“b” As phrased, this is the DEPENDENT variable. Of course, the causal 

direction would be reversed if we assumed that one’s views on abortion 
rights determine which religion one joins. However, then it would be 
phrased as, “Individuals who support abortion rights are more/less 
likely to join . . .”

“d” Is just one of several categories of “religious denomination.” Remem-
ber, variables must vary.

3. Answer—a: This is generalizable and varies among people.
“b” Represents one particular fact or unit of analysis
“c” Represents a group of facts/units who share the same category of the 

variable “education level”
“d” Is one category of “education level”

5. Answer—d: Although we still have to determine how to measure (vari-
able) “difference,” this is clear enough and has a clear direction.
a. The economy is related to crime.
 Problem: “economy” and “crime” are not very specific or clear. Also “is 

related” has no direction.
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b. Educated individuals are tolerant.
 Problem: Even assuming we are fairly clear on what we mean by “edu-

cated” and “tolerant,” we have no specific comparison.
c. Younger Americans were more likely to vote for Obama than older people.
 Problem: This is a factual statement—it’s either true or false with lim-

ited investigation. Take out the fact “Obama” and generalize. Also, 
what is the cutoff for “younger” and “older”?

7. Answer—a: The others are all examples of alternate explanations.
9. Answer—False: The confirmation of hypotheses (never entirely achieved) 

requires both direct (tests) and indirect (theory sketch) confirmation.

Chapter 2

1. Answer—b: If a variable is measured unreliably, then we have no consis-
tent measurement at all. One can’t even consider whether that variable 
measures what it is supposed to measure.

3. A “Chicago effect.”
5. Country of origin (a) is clearly nominal. We can’t order these categories in any 

meaningful way and the numbers we would assign to each category would be 
purely arbitrary. Scales (c) are generally considered ordinal. Someone who is 
“Supportive” (3) is more supportive than one who is “Not supportive.” The 
total percentage of Nigerian immigrants (b) and monetary contributions 
(d), categorized as percentages and dollars, are easily seen as mathematically 
interval. Twelve percent is 7 percentage points higher than 5%; $560,000 
is $200,000 more than $360,000. Note that, on occasion, scales are given 
interval properties by analysts for ease of comparison. Students are usually 
asked to evaluate their faculty using scales ranging from four to ten catego-
ries. At my university, students are given five options for each evaluative item 
(Strongly disagree . . . Strongly agree). Numbers, from 1 to 5, are assigned to 
each category. Whether that numerical assignment is conceptually justified 
is the subject of some debate. The same can be said for letter grades. Is an 
“A,” normally given the numerical equivalent point score of 4, twice as good 
as a “C,” normally given a “2”? Is an “F” (0) always the total absence of any 
demonstration of knowledge? A professor may give an “F” to someone who 
scored anywhere between 0 and 59 out of a total possible 100 points. When 
we use standard grade designations, we may lose a great deal of information 
about the differences between students with the same grade.

7. All but “The party whose candidate won the district” are interval. Years, per-
centages, and proportions are all interval. If only Democrats and Republicans 
won, then we would have a dichotomous nominal variable that can be ana-
lyzed with ordinal statistics (a Republican district is more Republican than a 
Democrat one) and even interval statistics (see reasoning in Chapter 12).

9. The total sample size (N) is 1,776. To compute the relative frequency, divide 
the absolute frequency of each category by 1,776 and multiply by 100. To 
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compute the cumulative frequencies, add the absolute frequency of each cat-
egory and the frequencies of the categories that precede it, and then divide by 
1,776 and multiply by 100. Notice that this may produce a figure somewhat 
different from adding the relative frequencies. This is because of the round-
ing error introduced in calculating each relative frequency. For example, 
19.4% + 15.4% equals 34.8% (if we round off to one decimal place). (345 + 
274)/1,776 × 100, however, rounds off to 34.9%. I suggest always going 
through the full calculation so that rounding error is not compounded.

Party ID
(degree Republican)

Cat. Code Absolute
Frequency

Relative
Frequency

Cumulative 
Frequency

Strong Democrat 0   345   19.4%    19.4%
Weak Democrat 1   274   15.4%    34.9%
Independent Leaning Democrat 2   275   15.5%    50.3%
Independent 3   221   12.4%    62.8%
Independent Leaning Republican 4   231   13.0%    75.8%
Weak Republican 5   209   11.8%    87.6%
Strong Republican 6   221   12.4%   100.0%
N = 1,776 1,776 1,776

Translation: 19.4% of the sample claimed to be (0) strong Democrats; 
11.8% claimed to be weak Republicans (5). The largest single category, 
although not by much, is “Independent Leaning Democrats” with 275, 
or 15.5%, of the respondents claiming this position; 50.3%, slightly 
more than half, are Independent Leaning Democrats or even less Repub-
lican (more Democratic) in their partisan orientation.

Party ID
(degree Republican)

Cat. Code* Absolute
Frequency

Relative
Frequency

Cumulative 
Frequency

Democrat 1   619   34.9%   34.9%
Independent 2   727    .9%   75.8%
Republican 3   430   24.2%   100.0%
N = 1,776 1,776 1,776

*Category codes are arbitrary so long as they are in the proper order; “0, 1, 2” would also work.

Party ID
(degree Republican)

Cat. Code* Absolute
Frequency

Relative
Frequency

Cumulative
Frequency

Democrat 1   894   50.3%   50.3%
Independent 2   221   12.4%   62.8%
Republican 3   661   37.2%   100.0%
N = 1,776 1,776 1,776
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Combining categories differently in this survey presents us with a 
different assessment of the partisan preferences of the voting age popu-
lation in 2000. The first combination (Table 2.2) indicates that a plurality 
of respondents (and, if the survey is an accurate assessment of the total 
eligible electorate, a plurality of voting age Americans), 727 or .9%, are 
Independents, and therefore up for grabs in any election. The second 
combination (Table 2.3) indicates a more partisanly polarized electorate, 
with minimal independence from party (12.4%), and with Democrats 
holding a slim majority (50.3%) of all respondents.

The difference is not insignificant. A major debate among election 
analysts over the past 50 years has centered on the question of whether 
partisanship within the electorate is dead. Over that time, the proportion 
of those claiming Independent status has increased. How large that 
increase has been depends on how we categorize the “Independent lean-
ers,” the group that has seen the largest growth since the 1960s. If we 
treat them as Independents, then there has been a substantial increase. 
The proportion of Independents (leaning or otherwise) in the 1960 
ANES survey was only 23%. If we treat them, however, as partisans, the 
increase has not been so dramatic; 10% claimed pure independence in 
1960. Many studies indicate that these “rhetorical Independents” are 
really closet partisans who claim independence as a politically correct 
answer (I vote the person, not the party) but who otherwise behave as 
partisans (that person almost always seems to be of the same party).

One question remains. If leaners are partisans, and Democrats out-
number Republicans, why have Republican presidential, Senate, and 
most recently, House candidates fared so well during these decades? 
Republicans are more likely to vote and are usually more loyal to their 
candidates than are Democrats. These tables and graphs represent a 
sample of all citizens eligible to vote. If we presented data only for voters, 
the graphs would look different.
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Democrats Independents Republicans

Grade Absolute Frequency Relative Frequency Cumulative 
Frequency

A  8  14.5%  14.5%
B 24  43.6%  58.2%**
C 12  21.8%  80.0%
D  4  7.3%  87.3%
F  7  12.7% 100.0%

N = 55 100.0%*

* Rounding error-sum of individual percentages listed = 99.9%.
** Because of potential rounding error in each cell, it is best to divide the cumulative absolute 
(32) frequency by N (55).

Translation: 24/55 × 100, or 43.6% of all 55 students, received a 
“B”; 80.0% of all students received a “C” or higher (better); and 87.3% 
of all students received passing grades.

Chapter 3

1. Answer—b and c: The median, an ordinal measure of association, can be 
used to summarize any data that carry ordinal traits. Interval data are also, 
by definition, ordinal ($50,000 is greater than $,000).

3. If symmetrical, the median and mean will be equal (there is no skew). The 
opposite is usually but not always true.

5. The state claims that it pays back .60 on every dollar gambled. As most 
who have purchased a lottery ticket know, many will walk away with 
nothing (.00), some will win a small amount, but a few will hit the 
jackpot, earning back many, many times what they spent. This distri-
bution is positively skewed, in fact extremely so. As with any lottery 
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or gambling system, many must lose in order for very few to win big. 
Remember that 60% is not the chance of winning. That chance is 
extremely small. However, most will take the risk of gambling a small 
amount to chance winning a very large payoff. We’ll cover more on 
gambling odds later in the text.

7. That distribution is most likely negatively skewed, with a few countries 
having inordinately low turnouts. Of course, if these are countries with 
limited populations, the actual turnout for the election from all EU coun-
tries would be higher.

9. Translations:
Mode: no single category is more prevalent than any other category.
Median: in both distributions, half received $60,000 or less in PAC con-

tributions, and half $60,000 or more.
Mean: If we could redistribute the PAC contributions so that everyone 

received the same amount, everyone would receive $60,000 in the first 
distribution, but $2,000 in the second. The first distribution (mean = 
median) is symmetrical. The second distribution (mean > median) is 
positively skewed, with one extreme outlier’s contributions having a 
much greater effect on the mean value. Perhaps that individual is a 
chair of an important appropriations committee, and several interest 
groups want to maintain their access to her.

11. In order to answer all of the questions, it is perhaps easier to first rank 
order each list of values separately. The listing of 1964 Democratic vote 
percentages would be:

 35 45 48 56 57 62 65 67 71 72

The mode is that category of Democratic vote percentages that appears 
with the greatest frequency. No mode appears for the 1964 distribution 
since every category appears with the same frequency (once). To compute 
the median, divide the group of ten into lower and upper halves. Half (5) 
of the districts gave Democratic House candidates 57% of the vote or 
less, and half gave 62% or more. By convention, we choose the exact 
midpoint of these two values, 59.5%. The voters of half (5) of all districts 
gave Democratic House candidates fewer than 59.5% of their votes in 
1964, and half gave more. To compute the mean, add the sum total of 
all percentages for all ten districts (578%), and divide by the total number 
of districts (10). The mean Democratic House vote is 57.8%. The dis-
tribution is (slightly) negatively skewed. If you could redistribute all of 
the proportional votes evenly, each district would have given the Demo-
cratic House candidate 57.8% of their votes. Note that this is not the 
same as saying that all ten districts gave 57.8% of their vote to the 
Democratic candidates unless the number of people voting in each district 
is the same.
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The following table compares the statistics for the 1964 and 1966 
percentages:

1964 1966

MODE None 62%
MEDIAN 59.5% 62%
MEAN 57.8% 58.1

Comparing these two sets of answers, we note that the ten districts gave 
Democratic House candidates higher proportional vote shares in 1966 than 
1964, especially if we use the median as our measure of central tendency. 
The 1966 distribution is also more negatively skewed. This could be perhaps 
a function of equalizing populations. It may also have been caused by a 
Democratic partisan gerrymander. Most of the safest Democratic districts 
were made less so in order for the more marginal Democratic districts 
(especially D7) to become safer.

13. The median is equal to 53.55%, and the mean is equal to 55.64%. Half 
of the countries had turnouts equal to or greater than 53.55%, and half 
equal to or less. If every country had equal populations, and we redistrib-
uted the vote, each country would have a turnout percentage of 55.64. 
The distribution seems to have a positive skew, with the Seychelles’ turn-
out anchoring the high end of the spectrum. Of course, given that nation’s 
small population, and Egypt’s large population, the real turnout for all 21 
countries should be far less than 55.64%.

15. %Vote for Obama:

Median 51.10%
Mean 52.24%

a.
Median: half of the counties gave Obama more than 51.10% of the vote, 

and half less.
Mean: assuming the number of voters in each county were the same, if we 

redistributed the vote for Obama so each county’s percentage were the 
same, that would be = 52.24%.

b.
With a slightly higher mean, we expect a slight positive skew in the distri-

bution. Outlying counties were most likely more extreme on the high 
side of the vote percentage.

c–d.

DEM REP

Median 57.60% 42.60%
Mean 58.46% 44.24%
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 As expected, both the medians and means were higher for the Demo-
cratic counties and lower for the Republican counties than for all 16 
counties combined. The combination tends to hide the differences 
between Democratic and Republican counties.

 Note that the figures for Democratic counties more closely align with 
the figures for all 16 counties. This is partially due, however, to having 
more Democratic counties.

e. As with the 2012 U.S. and African nation data, not all counties have 
the same population. Los Angeles County’s percentage counts no 
more than the percentages of much less populated counties. Coun-
ties also differ as to their percentage turnout, with counties with high 
minority populations generally having a lower turnout rate than oth-
ers. In order to get the true total percentage vote for all counties, our 
figures would have to be weighted by the actual total number of indi-
viduals who voted in each election in those counties.

Chapter 4

1. The variation ratio (VR) tells us what proportion of cases is not in the 
modal category.
A VR of .00 indicates that no cases are non-modal (i.e., every case is found 

in the modal category). There is no variation.
A VR of 1.00 is impossible to achieve. If no cases are in the modal cate-

gory, and the modal category is most prevalent, then no distribution 
exists. Values close to, but not equal to 1.00 are possible.

A VR of .43 indicates that 43% of all cases are non-modal (i.e., vary from 
the mode). If you guessed the mode for any case, you would have a .43 
probability of being wrong. Fifty-seven percent of all cases are found 
in the modal category.

3. The mean absolute deviation (MAD) measures deviation from the mean 
without regard to direction. It is the mean of those absolute deviations. 
On mean average, the number of terms served by each legislator varies 
from the mean (of all listed legislators) by 2 terms. Some legislators might 
be off by more than 2, some might be off by fewer than 2. They would all 
be off by exactly 2 only if 70 had 2 more terms than the mean (e.g., 7), 70 
had 2 fewer (e.g., 3). The mean would be 5. That is a limited subset of all 
possibilities.

5. A standard deviation, like the MAD, can only equal 0 if everyone has 
the mean score (i.e., everyone has the same score). No one would deviate 
from the mean, or each other. Note that this is not the same as stating 
that everyone had a score of 0. That is one possibility among a myriad of 
possibilities. A standard deviation of 0 only tells us that everyone has the 
same score, not what that score is.
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7. Distribution 1: $20,000, $40,000, $60,000, $80,000, $100,000
Distribution 2: $20,000, $40,000, $60,000, $80,000, $1,000,000

The range is the maximum difference between the values of any two 
cases in a distribution. The range for distribution 1 is $100,000 – 
$20,000 = $80,000. The values for that distribution differ by no more 
than $80,000. In the second distribution, the range is much greater, 
heavily influenced by the distribution’s positive skew. Those values differ 
by as much as $980,000.

Before we can compute the MAD and standard deviations, we must 
first compute the means for each distribution, which are $60,000 and 
$2,000, respectively. We then can compute a deviation score (xi − X ) 
for each individual in each distribution. The MAD is the mean of the 
absolute deviations. The standard deviation is the square root of the 
mean of the squared deviations.

Case Value Deviation 
Score

Absolute 
Deviation

Squared 
Deviation

Case Value Deviation 
Score

Absolute 
Deviation

Squared 
Deviation

1 $20,000 −$40,000 $40,000 $$1,600 E6 1 $20,000 −$220,000 $220,000 $$48,400 E6
2 40,000 −20,000 20,000 400 E6 2 40,000 −200,000 200,000 40,000 E6
3 60,000 0 0 0 3 60,000 −180,000 180,000 32,400 E6
4 80,000 +20,000 20,000 400 E6 4 80,000 −160,000 160,000 25,600 E6
5 100,000 +40,000 40,000 1,600 E6 5 1,000,000 +760,000 +760,000 577,600 E6

∑ = $120,000 $$4,000 E6 ∑ = $1,520,000 $$724,000 E6
Mean = $24,000 $$800 E6 Mean = $304,000 $$144,800 E6

SD = $28,284.27 SD = $380,525.95

Both the MAD ($24,000/$1,520,000) and the standard deviations 
($304,000/$380,525.95) are much greater in the second distribution 
than the first because of the extreme nature of the last case in the second 
distribution. The standard deviations are greater than the MAD for each 
distribution because extreme values carry even greater weight in the 
computation of the standard deviation. In the first distribution, the 
MAD is roughly 85% of the standard deviation. In the second, it is 
only roughly 80% because of the greater influence of that highly extreme 
value.

9. The following table represents the original and deviation scores for each 
set. Note that the deviation scores change when we analyze within each 
party because the mean is different for each. Republican figures are 
italicized.     
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Original PS Score Deviation Score

(All) (x − 54.4%) (D) (x − 72.9%) (R) (x − 38.0%)

78%  23.6%  5.1%
85  30.6  12.1
65  10.6  −7.9
81  26.6  8.1
39 −15.4  1%
34 −20.4 −4
72  17.6  −0.9
42 −12.4  4
41 −13.4  3
66  11.6  −6.9
43 −11.4  5
37 −17.4 −1
34 −20.4 −4
33 −21.4 −5
75  20.6  2.1
39 −15.4  1  1
61  6.6 −11.9

Mean (X
–

) Median Range MAD

All = 925%/17 = 54.4% 43% 85 − 33 = 52% 295.4%/17 = 17.38%
Dem = 583%/8 = 72.9% 73.5% 85 − 61 = 24% 55%/8 = 6.88%
Rep = 342%/9 = 38.0% 39% 43 − 33 = 10% 28%/9 = 3.11%

To compute the median and range, list each PSS in order from lowest 
to highest:

All 17:  33% 34 34 37 39 39 41 42 43 61 65 66 72 75 78 81 85%

With 17 cases, the median would be the value of the 9th ordered case 
(43%). Half of these 17 members of Congress supported the president 
43% of the time or less, and half 43% of the time or more. The range, 
the difference between the highest and lowest support score is 52%. The 
maximum difference in support between any two of these 17 would be 52%.

Democrats:  61% 65 66 72 75 78 81 85%

With 8 cases, the median would lie between the 4th (72%) and 5th 
(78%) ordered case. Half of the Democrats supported the president less 
than 73.5% of the time, and half more. The range (maximum difference 
between any two Democrats) is 24%.

Republicans: 33% 34 34 37 39 39 41 42 43%
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With 9 cases, the median would be the value of the 5th ordered case 
(39%), which also happens to be the value of the 6th. Half of the 
Republicans supported the president 39% of the time or less, and half 
39% or more. The range for Republicans is 10%.

To calculate the mean, add all the values in each respective list, and 
divide by the number of cases in that list. Interpret the mean as that 
level of support that each member would have if each gave the same 
support. The MAD is the mean average of the absolute deviation scores 
within each listing (how much, not in which direction).

A few observations:

 ■ For all 17, the mean is greater than the median, indicating a positive 
skew. Within each party, the distributions are fairly symmetrical.
 ■ All Republicans seem to be more unified in their opposition than the 
Democrats are in their support. Both the range and MAD confirm this. 
Party does seem to matter, especially for Republicans. No two Repub-
licans differed by more than 10%. Democrats differed by as much as 
24%. If you guessed the mean for all Republicans, you would be off 
by a (mean) average of 3.11%. A similar guess for Democrats would 
produce a (mean) average error of 6.88%.
 ■ Another indication that party matters is that the range and MAD for all 
17 members far exceeds the range and MAD for either party. Note also 
that no Republican is more supportive than any Democrat.

11. Further supporting the assumption of a Democratic gerrymander (see 
Chapter 3, Question 11), the range (27% vs. 37%), MAD (7.28% vs. 
9.60%), and standard deviations (8.57% vs. 11.46%) show less variation 
in 1966 than in 1964. Democratic voters were more evenly distributed 
once the Illinois legislature was forced to redistrict in order to satisfy the 
equal population demands of the Supreme Court.

13. The variation/dispersion is, as expected, greater for all 16 counties than 
for either the Democratic or Republican ones.

We do note that both measures of variation (range and MAD) is higher 
for Democratic counties than Republican ones, indicating greater  
consistency in voting patterns for counties with more Republican than 
Democratic registrants. Here are the results of the Presidential Vote 
percentages.

 All Dem Rep

RANGE 29.3% 17.4% 9.3%
MAD  7.94%  5.86% 2.78%

14. Using the data in Question 13, compute the range and MAD for both 
the county vote for Obama and the county vote for Feinstein for ALL 16 
counties. Describe and interpret fully what each figure tells you in words.
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Chapter 5

1.  If a distribution is symmetrical, the mean will be equal to the median. The 
mean is therefore at the 50th percentile. A Z-score is a standardized devi-
ation score. The mean value does not deviate from the mean, standardized 
or not. The relevant Z-score is therefore 0.

3. Remember that the normal curve slopes out with a smaller proportion 
of cases from Z-point to Z-point. An income with a corresponding Z 
of, for example, 2.5 does not have an associated percentile twice as high 
as an income with a corresponding Z of 1. Check the values in the table 
for this.

5. Look at the table of areas under the normal curve: 34.13% of that area or 
proportion of cases in a normal distribution lie between a Z-score of −1 
and the mean (Z = 0), and. 45.82% lie between the mean and a Z-score 
of 1.73 (50 − 4.28). Adding these two figures gives us a total proportion 
of 79.95%.

−3 −2 −1 0 1 2 3

Z = −1.0 Z = 1.73

7. Let’s look at this logically. The calculations follow the standard Z-score 
formula.

Z = (xi − X )/sx

We have the mean ($42,000) and the standard deviation ($17,000) 
for every family. We need to calculate the family income (xi) that would 
correspond to the 15th percentile (bottom 15%).
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Step 1: find the Z-score that corresponds to the 15th percentile (.3500 on 
the chart); 1.04 is close. As this is on the bottom end of the distribu-
tion, the appropriate Z-score is −1.04.

Step 2: Solve for xi.
1.04 = (xi − $42,000)/$17,000
−1.04 ($17,000) = xi − $42,000
−1.04 ($17,000) + $42,000 = xi

−$17,680 + $42,000 = xi

xi = $24,320

−3 −2 −1 0 1 2 3

Cutoff = $24,320

The 15th percentile corresponds to a family income of $24,320. That 
($17,680 less than the mean) is the maximum that you could earn before 
becoming ineligible for the voucher program.

9. Yes, but only 5% of the time or a probability of .05.

Chapter 6

1. Answer—c: With a large enough sample size, the sampling distribution 
of means will be normal or approximately normal regardless of the shape 
of the original distribution (central limit theorem).

3. Remember that since the sampling distribution of means is normally dis-
tributed around the true population mean (μx), the mean of those sample 
means must also be 47.

5. Answer—False. It also applies to dichotomous proportions. See the next 
chapter for a fuller explanation.
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7. You could proceed as you did in Exercise 6 to produce a range of estimates 
of the true means of the population from which the sample of 600 was 
drawn. Is 30,000 euros within that range? If so, then we can’t confidently 
reject 30,000 euros as the true mean of the entire town’s households, and 
the town would not be disqualified. Because we are given an exact pop-
ulation value against which to compare, however, we can take a more 
straightforward approach. The question becomes rephrased as: could we 
have randomly drawn a sample of 600 households from a population and, 
just by the random luck of the draw, derive a sample with a mean that 
deviated 500 euros (30,500 − 30,000) from the true population mean 
(i.e., the mean we would expect if the sample exactly matched the pop-
ulation)? Is 500 euros within the margin of error that we have to allow 
just by the random luck of the draw? Stated differently—if we randomly 
drew samples of 600 from a population with a true mean of 30,000 euros, 
would 30,500 be within the 95% confidence interval of that sampling 
distribution?

−3 −2 −1

−1.96 +1.96

0 1 2 3

μx = 30,000 Euros

Using the Z-score formula for means, and substituting the standard 
deviation of the sample for the standard deviation of the population 
from which that sample was randomly drawn, compute the Z-score for 
our problem:
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X
x

x
Z  = 

X   
s
N

−
=

−
= =

µ 30 500 30 000
7 000

600

500
285 77

1 75, ,
, .

.‹
‹

‹
‹ ‹

We need to allow a margin of error of 560.1 euros (equivalent to a 
Z of ± 1.96). Because 1.75 is less than 1.96, we cannot confidently reject 
the possibility that this sample (with a mean 500 euros higher than the 
cutoff) could have been randomly drawn from a population with a true 
mean household income of 30,000 euros. Five hundred euros is within 
our calculated margin of error; 30,500 is not significantly different enough 
from 30,000 to reject 30,000 euros as a possibility.

However, what if we used a one-tailed test? The Z-score cutoff would 
then be 1.645, and we would be able to confidently 30,000 euros as a 
possibility. Ninety-five percent of a large number of random samples will 
produce a mean value associated with a Z-score of 1.645 or less. Because 
we are specifying an upper limit, we have what is called a directional 
test of significance. The town would thus qualify.

9. First, we need to calculate the standard error of the mean, substituting the 
sample standard deviation for the population standard deviation:

X

x x

N
s
N

σ = ≈ = =σ 21 902
5385

98 46. .2

Plugging this into our formulas:
+1.96 = (50.48° − μL)/298.46°  − 1.96 = (50.48° − μH)/298.46°
+.298° = 50.48° − μL   − .298° = 50.48° − μH

−μL = .298° − 50.48°   − μH = −.298° − 50.48°
−μL = −50.182°   − μH = −50.778°
 μL = 50.182°     μH = 50.778°

€
€€€

€

μL = 50.182° 50.48° μH = 50.778°



S A M P L E  S O L U T I O N S   G U I D E

314

Note: One problem with feeling thermometers is that, if one is not 
fully knowledgeable about the person or group in question, they may 
give a response of 50° or neutral. There is no way to adequately separate 
out those who wouldn’t they didn’t know and those who were genuinely 
neutral about Mormons. The percentage who gave this rating was a very 
large .2%. For other groups and, especially, presidential candidates, the 
“neutrals” tend to constitute a smaller percentage.

11. No, we can only give a range of estimates as shown previously.

Chapter 7

1. μ1 − μ2. Just as with individual means, the mean of the sample  differences 
will always be equal to the difference of the means of the individual values.

3. Answer—False. Just as with flipping 100 coins and getting 100 heads, 
0 is still a possibility, but it is highly improbable. “Confidently” does not 
mean “absolutely.”

5. This breaks down to a difference of means calculations, with the null 
hypothesis (the expectation against which we compare our sample differ-
ences) = 0, so the second half of the formula is 0. If the calculated Z-score 
of the differences is greater than 1.96 (or 1.645 if we are calculating with 
a one-tailed test), then we can confidently reject the possibility that the 
true differences between men and women in the population from which 
this ample was drawn is 0. Some difference > 0 probably exists. If the 
calculated Z-score is less than either of those scores, then we can’t reject 
that possibility. Again, remember that not rejecting is not the same as 
accepting. A difference of 0 is just one of many possibilities that we can-
not reject.

First calculate the combined standard error of the mean differences. 
We substitute the standard deviations of the sample as an estimate for 
the true population standard deviations (which, obviously, we don’t know).

George W. Bush thermometer ratings:

σ ( )X X

s
N

s
N1 2

1

1
2

2
2

2
− ≈ +

σ ( )

. .

. . . .

X X1 2

24 55
781

25 12
980

602 70
781

631 01
980

1 42 1 19

2 2

− ≈ + =

+ = =

Next, calculate the Z-score for the mean differences:

Z X XM F− =
− −

= =
( . . ) ( )

.
.
.

.56 65 55 74 0
1 19

91
1 19

0 76
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The value of .76 is well below either the one-tailed or two-tailed 
cutoffs. Therefore, based on mean differences in the sample, we can’t 
confidently reject the null hypothesis H0 of no difference in the popu-
lation from which these two samples were drawn. Based on this measure, 
we really can’t confidently claim that a gender gap existed in 2000 as far 
as it relates to feelings about George Bush. However, what about feelings 
toward Al Gore?

7. Both descriptively and inferentially, we have more evidence of a gender 
gap with the feeling thermometers for Al Gore than for George W. Bush.

9. As we went through similar calculations in Exercise  5, we will just present 
the answer here.

  N = 200 Z = 1.61
As we are not specifying direction (which country is greater), we 

would need the Z-score to be less than −1.96 or more than +1.96 if we 
are using a 95% confidence interval. In actuality, with a sample of only 
200, we would be using a lower/higher t-score cutoff (the combined 
degrees of freedom is about 396, a calculation we didn’t go through in 
this chapter but one that programs such as SPSS and Stata will 
provide).

The differences that we observe in these two countries (€25) is not 
large enough to confidently reject the null hypothesis that the true pop-
ulation means are the same (€0).

Chapter 8

1. If the sample were truly random, we could not confidently reject the 
possibility that this sample came from a population with a true level of 
support within 4.4% of the sample value. Thus, we would not be able to 
reject any true population proportion between 67.6% and 76.4%.

Although we can confidently reject the possibility that this sample 
came from a population with a true level of support of 66%, we cannot 
do so with certainty, just as we couldn’t absolutely reject the possibility 
that a coin can be flipped 100 times and produce 90 or more heads. It 
is, however, unlikely.

πL= 67.6% πH = 76.4%p = 72%
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3. We first need to compute the standard error of the proportions. Using 
our sample statistics as substitutes for the true population values, that is 
calculated as follows:

σ p
p p

N
=

× −
=

×
=

( ) . (. ) .
1 72 28

500
021

Next, place that value in the general equation:

Z
p

p
p

=
−

=
−π

σ
π.

.
72

021

and solve for both the lowest and highest populations proportions. That 
is, populations whose distribution of sample populations would include 
72% within its 95% confidence interval:

+1.96 = (.72 − πL)/.021 −1.96 = (.72 − πH)/.021
+.0412 = .72 − πL −.0412 = .72 − πH

−πL = .0412 − .72 −πH = −.0412 − .72
−πL = −.6788 −πH = −.7612
πL = .6788 πH = .7612

.6788 < π < .7612

5. df = K − 1. Thus we have 7 degrees of freedom. The critical cutoff (for a 
95% confidence interval) equals 14.0671. If we took a population with 
eight categories, took a large number of independent samples from that 
population, compared the observed sample frequencies with the expected 
population frequencies, and, using that comparison, computed the 
chi-square value for that eight-category table, then 95% of the time, the 
chi-square value would lie between 0 (the sample is proportionately iden-
tical to the population) and 14.0671. We could produce a sample with a 
chi-square greater than that, but it is highly unlikely (< .05).

7. The expected frequency for each ideological category would be 240/3 = 80.

Category fo fe fo − fe ( fo − fe )2 ( fo − fe)2/fe

Left 90 80 10 100 .125
Center 80 80  0   0 0
Right 70 80 −10 100 .125

∑ = .250 = χ2

Most anything is possible. However, with such a low chi-square value 
(.250), we cannot confidently reject the possibility that this sample came 
from a population where individuals are evenly distributed among the 
three categories. With three categories and 2 degrees of freedom, we could 
not confidently reject that possibility with any sample distribution that 
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Southern Non-Southern

Agree with Tea Party 
Positions 35% 35%
Disagree with Tea Party 
Positions 65% 65%

Southern Non-Southern

Agree with Tea Party 
Positions 35% 40%
Disagree with Tea Party 
Positions 65% 60%

produced a chi-square value below 5.9914. Of course, as with means, not 
being able to confidently reject an even population distribution does not 
mean that an equal distribution does exist—just that it is one possibility 
that cannot be confidently rejected.

9. The expected frequencies would be 144 (60%), 48 (20%), and 48.

Category fo fe fo − fe (fo − fe)2 (fo − fe)2/fe

Left 90 144 −54 2,916  2.056
Center 80 48  32 1,024 21.333
Right 70 48  22   484 10.083

∑ = 33.472 = χ2

The calculated chi-square value is much greater than our 95% cutoff 
of 5.9914. We can therefore confidently reject the possibility that this 
sample could have been randomly drawn from a population with a 
60%/20%/20% distribution. Impossible? No, but highly unlikely.

Chapter 9

1. Fill in the following to represent an example of statistical independence:
 For statistical independence to obtain, the proportional breakdown within 

each independent variable (region) category must be EXACTLY the same.

3. For accord to obtain, any values that maintain the same modal category 
(disagree) will work. Statistical independence (Exercise 1) is a subset of 
accord. Other examples include:
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 . . . or

Southern Non-Southern

Agree with Tea Party 
Positions 35% 50%
Disagree with Tea Party 
Positions 65% 50%

Southern Non-Southern

Agree with Tea Party 
Positions 35% 0%
Disagree with Tea Party 
Positions 65% 100%

 . . . or, as either category can be considered modal for non-Southerners

5. Knowing whether one is an American or European helps us to reduce 
our error in guessing one’s views about Afghanistan proportionately 
by 29.7%, but we can’t tell from that value which group is more 
supportive.

7. df = (2 − 1)( 5 − 1) = 4
9. We are positing a negative relationship (the more Republican, the less 

supportive).

Relevant percentage differences:

% Republicans who support = 0/178 = .0 or 0%
% Democrats who support = 219/253 = .866 or 86.6%

Republicans were 86.6% less likely to support the measure than were 
Democrats.

Hypothesis is confirmed.

Lambda
[215 − (34 + 0)]/215 = .721
Knowing party reduces our error in guessing the vote proportionately 

by 72.1%.

The observation is in the hypothesized direction (lambda would be 
the same if we switched the values for Democrats and Republicans).

Hypothesis is confirmed.
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Category
(Age/Support)

fo

(Observed)
fe

(Expected)
fo − fe (fo − fe)2 (fo − fe)2/fe

Male/Beneficial 324 322.9  1.1  1.21 0.00(4)
Male/Don’t Know  59  66.3 −7.3 53.29 0.80
Male/Not 
Beneficial 124 117.8  6.2 38.44 0.33
Female/Beneficial 334 335.1 −1.1  1.21 0.00(4)
Female/Don’t 
Know  76  68.7  7.3 53.29 0.78
Female/Not 
Beneficial 116 122.2 −6.2 38.44 0.31

 ∑ = 2.22 = χ2

Yule’s Q (gamma)
[(34 × 0) − (178 × 219)]/[(34 × 0) + (178 × 219)] = −38,948/+38,948 

= −1
We hypothesized a negative relationship (more Republican, less support).

Hypothesis is confirmed.

Somers’ D (vote dependent):
[(34 × 0) − (178 × 219)]/[(34 × 0) + (178 × 219) + (219 × 0)  

+ (34 × 178)] = −38,948/+45,000 = −.866

Hypothesis is confirmed.

Lambda tends to be lower as it can reach 0 under the condition of accord 
and is sensitive to marginal variations (more Democrats than Republicans).

Yule’s Q will reach it maximum absolute value even under the condition 
of weak perfect association.
Somers’ D counts ties against us by adding them to the denominator.

11. a. 324 of the 507 males considered immigration to be beneficial (61.5%)
334 of the 526 females did (63.4%)

Women were 1.9 percentage points more likely to consider immi-
gration to be beneficial than were men.

124 of the 527 males considered immigration not to be beneficial 
(23.5%)

116 of the 526 females did (22.1%)
Men were 1.4 percentage points more likely to consider immigration 

to be not beneficial than were women. Note that these two numbers 
would be reciprocals if only two categories of choice existed. The “Don’t 
Know” category causes the difference. It is possible, with a large enough 
number of “Don’t Knows” among females that males could be more likely 
to answer both “beneficial” and “not.”
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b. Lambda = (135 + 2) − [(59 + 124) + (76 + 116)]/(135 + 2) =  
(375 − 375)/375 = 0

 Knowing one’s gender does not reduce our error in guessing one’s 
views of immigration at all.

c. Chi-square (  fe rounded to one decimal place)—full calculation = 2.21

50 432 71 016 98

5.9912.21

With 2 degrees of freedom (2 − 1)(3 − 1), 95% of the time we 
would randomly sample a group on two variables and come up with 
observations that would produce a chi-square between 0 and 5.991. 
Our calculated value of 2.22 tells us that the differences between 
what we observed in the sample and what we would have expected 
if this sample came from a population where statistical independence 
obtained would not be different enough to reject the null hypothesis 
that no differences existed in that population. We therefore cannot 
confidently reject that null hypothesis. Differences might exist in 
the population, but we can’t confidently reject statistical indepen-
dence as a possibility.

d. You should find that the relevant percentage differences and lambda 
will not change. The chi-square value will, however, be significant 
(22.1). Numbers do matter when we deal with inference.

13. In order to answer this question, we must first calculate the number of 
concordant pairs (different in the same direction), discordant pairs (dif-
ferent in opposite directions), and pairs that are only tied on the outcome, 
support for improved U.S. relations.

In order to calculate concordant pairs (older, more supportive), mul-
tiply the frequencies of each cell by the sum of the frequencies of each 
cell above and to the right. These will constitute pairs where the second 
case is both older and more supportive. Add these.
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C = 180 (110 + 360) + 90 (360) = 117,000

In order to calculate discordant pairs (older, less supportive), multiply 
the frequency of each cell by the sum of the frequencies of each cell 
below and to the right. These will constitute pairs where the second case 
is both older and less supportive. Add these.

D = 120 (90 + 1) + 110 (1) = 43,000
 Gamma = (C − D)/(C + D) = (117,000 − 43,000)/(117,000 + 43,000) 
= 74,000/160,000 = .4625

When comparing an older to a younger individual we will be 
comparing a more supportive to a less supportive individual 46.25% 
more often than comparing an older individual to one who is more 
supportive. Or, as we increase age, we observe an increase in support 
46.25% more often than a decrease. Or, knowing the order of two 
individual’s age reduces our error in guessing the order of their level 
of support proportionately by 46.25% (over blind guessing 50/50). 
Hypothesis is confirmed, if not perfectly.

In order to calculate ties on the dependent variable (support) only 
multiply the frequencies of each cell by the sum of the frequencies to 
the right (as we have our table set up, these will constitute pairs that are 
different in age but similar in support). Add these.

 Ty = 120 (110 + 360) + 110 (360) + 180 (90 + 1) + 90 (1) = 150,000
Somers’ Dy = (C − D)/(C + D + Ty) = 117,000/310,000 = .239

The interpretation would be as previously given, but with ties on the 
dependent variable counting half as concordant, half as discordant.

                             Age

IMPROVED 
U.S. 
RELATIONS

1
Younger

2
Middle

3
Older

Total

Support 120
   .0%

110
 55.0%

360
 72.0%

590
 59.0%

Do Not Support 180
 60.0%

 90
 45.0%

  1
 28.0%

410
 41.0%

Total 300
 30.0%

200
 20.0%

500
 50.0%

N = 1,000
100.0%
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Chapter 10

1. Answer—c
3. Simpson’s Paradox
5. Answer—True: Changes in some third variable causes changes in our 

dependent variable. If spurious, it causes changes in both of our originally 
hypothesized variable.

7. For the entire sample, those who felt that their voice counted in the EU 
were 20.2 percentage points more likely to indicate an intention to vote in 
the upcoming EU parliamentary elections than those who felt their voice 
didn’t count. This sense of political efficacy seems to play a partial role in 
explaining turnout. The next question is to determine whether political effi-
cacy is specific to the EU or to electoral politics generally. One could easily 
assume that one’s sense of the impact of their own voice and opinions gener-
ally would alter their intention to vote in any election, including one for the 
European Parliament. If that is the case, then we would expect controlling 
for one’s sense of efficacy within their country would explain the differences 
in EU vote intentions. The results are not quite what this scenario would 
predict:

For all Italian citizens in this survey, those who felt that their vote 
counted in the EU were 20.2 percentage points more likely to express 
an intention to vote in the EU parliamentary election than those who 
did not. Among those who felt that their vote did not count in their 
own country’s politics, the difference drops to 8.1. However, among 
those who felt that their vote did count, the difference increases to 33 
percentage points. These results indicate a type of interactive or additive 
effect, with a sense of efficacy within country and within the EU having 
cumulative (if somewhat uneven) effects. To place this in perspective, 
look at the percentage of individuals who intend to vote in the EU 
Parliamentary elections within each two-variable category:

VOICE COUNTS

In neither In country only In EU only In both
66.9% 57.4% 75.0% 90.4%

The lambdas and chi-squares are as follows:

Lambda Chi-Square

All .00 23.04, p < .001
Voice Counts in Country .00 21.07, p < .001
Voice Does Not .00 .78, Not Significant
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Why do you think that the lowest intention to vote in the EU election 
comes from those with a country-specific sense of political efficacy rather 
than a lack of efficacy generally?

Why is the chi-square twice significant, yet lambda = 0?
9. For each variable separately, the percentage differences are minimal (and 

against our hypotheses’ direction). Gamma is also slightly negative (−.025, 
−.011). There does, however, seem to be an interaction effect. Where the 
tax burden is high, countries with relatively high government expenditures 
are 24.5 percentage points less likely to have relatively high unemployment. 
Where the tax burden is low, the comparable figure is +16 percentage points. 
We seem to have a classic case of countervailing influences. The gamma fig-
ures are, respectively, −.491 and .342. The partial order gamma, a statistic 
that we did not cover but is a controlled version of gamma is just .008.

Chapter 11

1. The arithmetic mean
3. Answer—d: Slopes are asymmetrical measures, Pearson’s r is symmetrical.
5. Answer—True. As seen in Figure 11.12, one extreme outlier can change 

the direction of the “best-fitting” line. Remember that the deviation scores 
from that line are squared.

7. We first need to make two sets of calculations. For each case, we need to 
calculate the deviation scores from the mean of both variable x and vari-
able y. We also need to calculate the covariances (reduced to the product 
of ) those deviation scores.

xi x Xi − (xi – X )2 yi yi
 y Yi − ( yi y Yi − )2 (xix Xi − )( yiy Yi − )

2 −5 25 24   4  16 −20
4 −3  9 20   0   0   0
6 −1  1 16  −4  16   4
8  1  1 12  −8  64  −8
10  3  9  8 −12 144 −36
12  5 25 40  20 400 100

slope b
x X y Y

x X
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40
70

0 571

For every one unit increase in X, we predict a .571 increase in y.

a Y b X= − = − =( ) . ( )20 0 571 7 16

When X = 0, we predict a Y of 16.
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The interval relationship between X and Y is .189. The relationship 
is positive, but not very strong.

r 2 0 036= .

The variance of X explains only 3.6% of the variance of Y.
9. Intercept = 152.25. If no one (0%) lives below the poverty line in a state, 

we would still expect 152.25 violent crimes per 100,000 inhabitants.
Slope = 16.601. For every 1% increase in the poverty rate, we would 

expect an increase of 16.601 violent crimes per 100,000 inhabitants.
R-square = .1526. The variance of the poverty rate explains 15.26% 

of the variance of crime.
Comparison: Every percent increase in the poverty rate predicts a 

greater increase in violent crimes than violent crimes. However, the linear 
fit is not as good.

We will touch on standardized slopes in the next chapter. They provide 
a relative, standardized way of comparing two scatterplots that reaffirms 
the greater effects of poverty on property crimes. The standardized slopes 
are .489 for property crimes and .391 for violent crimes.

11. Although we wouldn’t see anyone zero years old in our sample, the 
equation predicts that such a person would have a score of 8.033 on 
the ten-point global warming scale. For every one-year increase in 
age, we would expect a very slight decrease in one’s position on global 
warming of .004 on a ten-point scale. With this sample, we would 
estimate the true population slope to be somewhere between −.006 
and −.003.

There doesn’t seem to be much of a relationship, confirmed by the low 
R2 value of .001—the data hardly fit the “best-fitting” line at all. However, 
given the large sample size (more than 25,000), it is still enough to con-
fidently reject the null hypothesis that the true population slope is 0. 
Obviously, inferential significance in this situation does not equate to 
conceptual significance.
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Chapter 12

1. Slope:
For every one degree increase in feelings toward MORMONS, we would 

predict a .358 degree increase in feelings toward Mitt Romney (hold-
ing feelings toward RICH PEOPLE constant).

For every one degree increase in feelings toward RICH PEOPLE, we 
would predict a .185 degree increase in feelings toward Mitt Romney 
(holding feelings toward MORMONS constant).

Standardized slope:
For every one standard deviation increase in feelings toward MOR-

MONS, we would predict a .246 degree standard deviation increase 
in feelings toward Mitt Romney (holding feelings toward RICH 
PEOPLE constant).

For every one standard deviation increase in feelings toward RICH PEO-
PLE, we would predict a .135 standard deviation increase in feelings 
toward Mitt Romney (holding feelings toward MORMONS constant).

t-test:
Both are statistically significant (p < .000); that is, we can confidently 

reject the possibility that, in the population from which this sample 
was drawn, the slope for either independent variable is 0 degrees.

R-square:
Both independent variables combined explain 9.9% of the variance of 

feelings toward former Governor Romney.

The standardized betas indicate that one’s feelings toward Mormons 
were more important in estimating feelings toward Romney than were 
feelings toward rich people. A variation of the standard linear regression 
model stepwise regression (the use of which has come into question), 
also indicates the greater weight of Mormons (with a R2 of .083) with 
RICH PEOPLE independently adding .016 to that value.

3. The results here are rather interesting and will be developed both by look-
ing a multiple regression, and individual regressions by gender.
Slope:
Holding gender constant, for every category increase in family income, 

one would predict a .349% increase toward cuts. As men are coded as 
“1,” and women are coded as “2,” the regression model for each would 
be as follows:

Men: Cuts = − ( ) +65 333 5 146 1 349. . . ( )faminc

  = 60.187 + . ( )349 faminc

  = 55.041 + . ( )349 faminc
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The intercepts if the codes were 0 and 1 would be 60.187.
Standardized slope and t-test:
Gender has about three times the influence on variance of preferred 

deficit reduction allocations, and it is the only variable whose contribution 
is significant (p < .10). The negative beta (slopes) indicate a negative rela-
tionship between gender (male to female) and a preference for solving the 
budget deficit by cuts.

R-square:
Both independent variables combined explain only 1.1% of the vari-

ance of preferred deficit reduction allocations.
If we calculate a different linear regression model for men and women 

separately, our results are rather intriguing. I leave it to the student to interpret 
the results.

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.b
Std. 
Error β

(Constant) 61.077 2.718 22.472 .000
Family Income     −.777  .449 −.091 −1.732 .084

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.b Std. 
Error

β

(Constant) 52.880 3.437 15.385 .000
Family Income  1.669  .556 .166  3.004 .003

R

Gender = 1 Male R-Square Adjusted R-Square
Std. Error of the 
Estimate

.166 .028 .024 27.442

R

Gender = 2 Female R-Square Adjusted R-Square
Std. Error of the 
Estimate

.091 .008 .006 23.992
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5. The percentage of male employment, according to our data, when con-
trolling for urbanization, is hardly associated with male longevity. Urban-
ization, however, is positively associated and carries much greater weight in 
the outcome. Together, differences on those two variables explain 41.3% 
of the variance of longevity (almost all coming from  URBANPER). While 
a high employment rate may seem to be a measure of a country’s wealth 
and therefore one would assume that longevity would be greater, the fact 
that in some countries a greater proportion of employment comes from 
young men (15–21) may confound that assumption.

Compare this with the statistics for females:

Does either set of results prove that people living in cities live longer?

R R-Square Adjusted R-Square Std. Error of the 
Estimate

.653 .426 .419 11.797

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.b Std. 
Error

β

(Constant) 60.888 4.068 14.969 .000
URBANPER  .397  .040  .596  9.942 .000
EMP15F  −.145  .056 −.156 −2.599 .010
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Index

absolute frequencies (tally or count) 33 – 4
absolute or mean absolute deviation see 

mean absolute deviation (MAD)
abstractions 3
accord 200, 205; see also association for 

nominal and ordinal data
additive effects, multiple regression and 

281 – 2
adjusted R-square 278, 280
aggregate or ecological fallacy 279
alpha error 118
alternate explanations 14, 223 – 4, 

225 – 7; see also causation; control 
variables (third variables); hypotheses

American National Election Studies 
(ANES) surveys 37, 50, 138 – 9, 154

arithmetic mean 61
association: mathematical association 

147 – 8; see also association for 
nominal and ordinal data; hypothesis 
testing and association

association for nominal and ordinal data 
185 – 216; accord 200; age and support 
for improved U.S. relations 188 – 94, 
197 – 200; chi-square statistic with 

two variables 189 – 96; concordant 
and discordant pairs 208; contingency 
or crosstabulation tables 185 – 89; 
Cramer’s V, 211; dependent variables 
186 – 7; effects of different statistics, 
assumptions, calculations 201 – 11; 
gamma 201, 207 – 10, 247; gender gap 
voting example 186 – 8, 195 – 6, 201, 
207 – 10; implicit perfect association 
206; independent variables 186 – 7; 
Medicare spending bill and party 
affiliation 202; no association 204; 
Pearson’s r 211; phi 211; playing cards 
190; proportional reduction of error 
(PRE) and lambda 196 – 201, 202, 
209; relevant percentage differences 
187 – 9; sensitivity to marginal 
distributions 206 – 7; Somers’ D, 210; 
statistical independence 189 – 96, 204; 
steps in hypothesis testing 189; strict 
perfect association 205; symmetrical 
versus asymmetrical measures 203; 
weak perfect association 205 – 6; 
Yule’s Q 201 – 2; see also hypothesis 
testing and association

Note: For a listing of tables, figures, and sidebars, see pages xiii – xvii
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assumptions: conceptual (levels of 
measurement) 30 – 1; introduction/
discussion of xix – xxii

asymmetrical measures 203, 210
averages 55; see also central tendency

b see slope
bar charts 39, 41, 42, 46; California 

2010 gubernatorial vote 39; 
Latinobarómetro survey of views 
about democracy 46–7

Bayes Theorem 118
best-fitting line 252 – 5, 263 – 4; linear is 

not always the best fit 265 – 6; see also 
linear regression

beta see standardized slope
bias 125, 127, 164, 179
bimodal symmetrical distribution 68, 69
bivariate contingency or crosstabulation 

tables 185 – 9; see also association for 
nominal and ordinal data

bivariate statistics 31; see also association 
for nominal and ordinal data; 
ordinal data

Bradley effect 24 – 5

calculated margin of error 164 – 5
categories 3 – 4; category creation rules 

26; measuring properties and the 
importance of categorization 46 – 8; 
see also variables

causation (review) 12 – 16; alternate 
explanations 14; historical 
generalizations 13; “potential” 
design problems 15 – 16; “potential” 
measurement problems 15; real world 
example of 16; spurious relationship 
13; test 12; theory or theory sketch 
12 – 14; triangulization 14; see also 
hypotheses; theories

central limit theorem 127 – 36; in real 
time 129; see also hypothesis testing 
and association; hypothesis testing 
and inference

central tendency as summary 
observation 54 – 76; 2012 presidential 
election 68 – 70; bimodal symmetrical 
distribution 68, 69; California 2010 
gubernatorial vote 55 – 6; defining 
54 – 5; formula for the mean derived 
from a frequency distribution 69; 
formulas as shorthand devices 

65 – 9; mean 60 – 5, 69; mean versus 
median 61 – 5; median 58 – 60, 69; 
mode 55 – 8; real world examples 
56, 65; skewness 64 – 5; symmetrical 
distribution 63 – 4; understanding 
as games of change 57; unimodal 
symmetrical distribution 68, 69; 
weighted mean 68

Chicago effect 25
chi-square (χ2) statistic 80, 85, 171 – 80, 

189 – 96; capital crime jury pools and 
race 171 – 7; casinos and regulation 
decks of cards 178 – 9; observations 
and expectations and xix; two 
variables 191 – 6; see also association 
for nominal and ordinal data; 
inferential statistics for proportions

clarity, lack of 8
classic experimental design 218 – 23; 

defined 218; double-blind 
experimental condition 220; field 
experiments 221 – 2; laboratory 
experiments and field experiments 
(real world) 222; mapping 218; no 
cross-contamination/spillover effect 
experimental condition 220 – 1; 
random assignment experimental 
condition 220; voter turnout and 
age 221 – 3; X (independent variable) 
218 – 19; Y (dependent variable) 
218 – 19

coin flipping 124 – 6, 140, 165
comparison, lack of explicit 8
concepts: defining 3 – 4; see also 

properties
concordant pairs 208
confidence intervals 119, 192
constraining devices 26
context: broadening 11; see also frame of 

reference
contingency table or crosstabulation 

185 – 9, 225; see also association for 
nominal and ordinal data

continuous data (interval data) 29 – 30
control variables (third variables) 

223 – 40; 1. testing for an alternate 
explanation (spurious relationship/
internal validity problem) 223 – 4, 
225 – 30; 2. testing for an explanatory 
relationship 224, 231 – 5; 3. testing 
for a specification/interaction effect 
(generalizability/external validity) 
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224 – 5, 235 – 9; defined/background 
217 – 18; education by lifetime income 
and parents’ education level 226 – 30; 
European Union and acceptance of 
by age 231 – 4; gay marriage and the 
2008 presidential vote 234 – 5; “how to” 
guide for introducing 225; purposes for 
(summarized) 223 – 5; race, education, 
and Democratic vote 237 – 8; Simpson’s 
paradox (lurking or hidden effects: 
an example with means) 225, 238 – 9; 
tabular data 225; voter turnout by age 
235 – 7; welfare and crime 231; see also 
multiple regression

Cooperative Congressional Election 
Study (CCES, 2012) data study xx

count frequency (absolute or tally 
frequency) 33 – 4

covariance 253
Cramer’s V, 211
critical value 174 – 5
cross-contamination/spillover effect 

experimental condition 220 – 1
crosstabulation see association 

for nominal and ordinal data; 
contingency table

cumulative frequencies 37 – 8

data: category creation rules (mutual 
exclusiveness, exhaustiveness, 
parsimonious) 26; constraining 
devices 26; level 1: nominal data 
27 – 8; level 2: ordinal data 28 – 9; 
level 3: interval data 29 – 30; problems 
with collecting 26; summary example 
with aggregated data 97 – 8; see also 
association for nominal and ordinal 
data; hypothesis testing headings; 
measurement and observation; 
measures of diversity for nominal 
data; measures of diversity for ordinal 
and interval data

data sets used in book for examples xx
degrees of freedom (df) 140 – 2, 175 – 7, 

192 – 5; see also t-tests
dependent properties 10; see also 

causation
dependent samples tests 158
dependent variables 147, 218 – 19; see 

also variables
descriptive statistics xix, 31; see also 

central tendency

design problems 15 – 16
deviant case analysis 267
deviation scores 61, 91 – 3, 105 – 6; see 

also mean; measures of diversity for 
ordinal and interval data; standardized 
scores/normal distributions

dichotomous proportions 127, 165 – 71, 
181, 203, 207, 211, 277; see also 
association for nominal and ordinal 
data; dummy variables; inferential 
statistics for proportions; multiple 
regression; phi; Yule’s Q

dichotomous variable/dichotomies 165
direct confirmation 12
direction, lack of 8
discordant pairs 208
dispersion 55; see also central tendency; 

measures of diversity for nominal 
data; measures of diversity for 
ordinal data

diversity 78; ending affirmative action 
and 88; see also measures of diversity 
for nominal data; measures of 
diversity for ordinal and interval data

double blind experimental 
condition 220

dummy variables 277 – 8; see also 
multiple regression

DV (hypothesized dependent variable or 
Y) 15, 218 – 19, 223

ecological or aggregate fallacy see 
aggregate or ecological fallacy

equiprobable (random) samples 
124 – 5, 157

errors: aggregate or ecological 
fallacy 279; alpha errors 118; 
calculated margin of error 164 – 5; 
external validity problems 15, 
123 – 4, 224 – 5, 235 – 9; internal 
validity problems 15, 223 – 4, 
225 – 30; margin of error 165 – 71; 
proportional reduction of error 
(PRE) 196 – 201, 209 – 10, 256 – 9; 
standard error of paired differences 
158; standard error of proportions 
166 – 71; standard error of the mean 
131 – 2; standard error of the mean 
differences 149 – 54; see also control 
variables (third variables); inferential 
statistics for proportions

error term 92
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Eurobarometer survey sets 40 – 3, 
81 – 8, 139

exhaustive data 26
expectations 5, 57, 80, 92; chi-square 

and xix; observations and 125; 
preface/background xix – xxiii; see also 
hypothesis testing headings

expected frequency 172 – 4, 177 – 9, 
191 – 2

experience, theories and 5
experimental design see classic 

experimental design
explanations, alternate 14
explanatory relationship testing 224, 

231 – 5; multiple regression and 
278 – 81; see also control variables 
(third variables)

external validity of design 15, 218
external validity of measurement 15
external validity problems 15, 

123 – 4, 224 – 5, 235 – 9; see also 
control variables (third variables); 
specification/interaction effects testing 
(generalizability/external validity)

factual statements 4; see also hypotheses
falsifiability: factors that affect with 

examples 7 – 9; hypotheses and 7 – 9
field experiments 221 – 2
formulas: central tendency 65 – 9; chi-

square (χ2) 173, 190 – 1; dichotomous 
proportions as means 181; gamma 
256; lambda 256; linear equations 
248 – 52; mean derived from a 
frequency distribution 67 – 9; Pearson’s 
r 262; proportional reduction of error 
(PRE) 256 – 9; regression equation 
with dummy variable (multiple 
regression) 277; as shorthand devices 
65 – 9; slope 249; standard error of 
paired differences 158; standard error 
of proportions 166 – 8; standard error 
of the mean 131; standardized slopes 
281; uses for xxi; Z-scores 130 – 1, 
149 – 50

frame of reference: broadening 11; see 
also context

frequency distributions xxi, 32 – 8; 
absolute frequency/tally/count 
33 – 4; authenticity of the vote and 
32 – 5; cumulative frequencies 37 – 8; 
defining 32 – 3; expected 172 – 4, 

177 – 9, 191 – 2; formula for the mean 
derived from 67 – 9; observed 172 – 4; 
of political website visits 67 – 8; 
relative frequencies: percentages and 
proportions 34 – 5; standardization 
and 34 – 7; see also central tendency as 
summary observation; measurement 
and observation; standardization

frequency polygons 40 – 2, 43; 
Eurobarometer 2004 survey of age 
40 – 3

frequentists 157

Galderisi, Peter (author):example 
of properties 3; Introduction to 
Quantitative Research Methods 
(UCLA course, 1990s) xix

Galderisi, Peter and Ellen Moule 
Seljan: Understanding Political 
Science Statistics Using SPSS xx; 
Understanding Political Science 
Statistics Using STATA xx

games of change 57; see also central 
tendency

gamma (ordinal statistic) 201, 207 – 10, 
247; see also association for nominal 
and ordinal data

generalizability 123; see also control 
variables (third variables); 
specification/interaction effects testing 
(generalizability/external validity)

generalizations 3; historical 13
generational theories 6 – 7
goodness of fit measure xxi, 252 – 5; 

defining 78; variation ratio and 81; 
see also lambda; linear regression; 
measures of diversity for nominal 
data; measures of diversity for ordinal 
and interval data; multiple regression; 
R-square

graphs see measurement and observation
Great Depression 124

hidden effects (lurking variables or 
Simpson’s paradox) 225, 237 – 9

historical generalizations 13
Hoover, Herbert 124
hypotheses (structure of ): alternate 

explanations 14, 147; broadening 
the frame of reference or context 11; 
factual statements and 4; falsifiability 
and 7 – 9; increasing the number 
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and type of tests 10 – 11; laws and 
4; not immediately verifiable 9 – 10; 
guesses about laws 4; test implications 
9; triangulization and 14; uncovering 
theoretical relevance 11 – 12; value 
(normative) judgments and 9; see 
also causation; factual statements; 
hypothesis testing headings; laws; 
theories

hypotheses for research 10 – 12; 
broadening our frame of reference or 
context 11; increasing the number 
and types of tests 10 – 11; uncovering 
theoretical relevance 11 – 12

hypothesis testing: steps for 136 – 7, 
148 – 9, 155 – 6; see also hypothesis 
testing and association; hypothesis 
testing and inference

hypothesis testing and association 
146 – 63; comparison of two 
means 148 – 56; comparison of two 
variables, same or matched groups 
158; dependent samples test 158; 
employment discrimination 153; 
gender income differences 148 – 54; 
independent samples test 158; the 
marriage gap and party affiliation 
154 – 6; significance tests (special 
comment on) 157; standard error of 
the mean differences 149 – 54; steps 
for 148 – 9, 155 – 6; Z-scores 149 – 54, 
158; see also association for nominal 
and ordinal data; hypothesis testing 
and inference

hypothesis testing and inference 
122 – 45; central limit theorem in 
real time 129; coin flipping 124 – 6, 
140; computing heights and weights 
(sampling men in Brooklyn, NY) 
130; degrees of freedom (df  ) 140 – 2; 
elections (American National Election 
Studies data) 138 – 40; Eurobarometer 
and World Values Survey series 139; 
gender gap in wages 132 – 6; income 
examples 127 – 32, 136 – 7; inferential 
statistics 123 – 7; law of large numbers 
125 – 7; Literary Digest poll of 1936 
(incorrect presidential prediction, 
Alf Landon and FDR) 123 – 4, 138; 
one-sided (tailed) significance tests 
142; random samples (equiprobable) 
124 – 5; sampling and the U.S. 

census 126; sampling considerations 
137 – 40; sampling distribution of 
means and the central limit theorem 
127 – 36; standard error of the mean 
131 – 2; steps in hypothesis testing 
136 – 7, 149; t-tests (Student’s t) 
and statistical hypothesis testing 
140 – 2; Z-scores 122, 130 – 1; see also 
hypothesis testing and association; 
inferential statistics; inferential 
statistics for proportions

implicit perfect association 206
independent properties 10; see also 

causation
independent samples tests 158
independent variables 147, 218 – 19; see 

also variables
index of diversity 84, 166, 179; see also 

measures of diversity for nominal data
index of qualitative variation (IQV) xxii, 

81 – 9, 95, 103, 166, 177; California 
2010 gubernatorial election 89; 
Eurobarometer ten-point ideology 
scale 81 – 8; see also measures of 
diversity for nominal data

inference, with multiple regression 
282 – 3

inference and hypothesis testing see 
hypothesis testing and inference

inferential statistics xix, 31, 123 – 7; with 
regression 261 – 4; when using tabular 
controls (a warning about) 239; see 
also chi-square; hypothesis testing 
and inference; inferential statistics for 
proportions

inferential statistics for proportions 
164 – 84; 2000 presidential election 
164; capital crimes jury pools and 
race (chi-square example) 171 – 7; 
casinos and regulation decks of 
cards (chi-square example) 178 – 9; 
chi-square (χ2) 80, 171 – 80; critical 
value 174 – 5; degrees of freedom (df  ) 
175 – 7; dichotomous proportions 
165 – 71; dichotomous proportions 
as means gender example 181; 
discrimination in jury selection 
178; Latin American approval of 
U.S. foreign policy 167 – 71; margin 
of error 165 – 71; observed and 
expected frequencies 172 – 4, 177 – 9; 
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visualizing dichotomous proportions 
as means 181

interaction effect 285; see also 
control variables (third variables); 
specification/interaction effects testing 
(generalizability/external validity)

intercept 249; see also linear regression
internal validity of design 15, 218
internal validity of measurement 15, 

24 – 5; reliability versus internal 
invalidity 25 – 6

internal validity problems (spuriousness) 
223 – 4, 225 – 30; see also control 
variables (third variables); spurious 
relationships

interquartile range (IQR) 90 – 1, 97, 
116 – 18

interval data (continuous or 
quantitative) 29 – 30; from nominal 
data 38; versus ordinal relationship 
266 – 7; see also control variables 
(third variables); linear regression; 
mean; measurement and observation; 
measures of diversity for ordinal and 
interval data; multiple regression

Introduction to Quantitative Research 
Methods (1990s UCLA course by 
author Peter Galderisi) xix

invalidity, reliability versus internal 
invalidity 25 – 6

IQR see interquartile range
IQV see index of qualitative variation
IV (hypothesized independent variable 

or X) 15, 218 – 19, 223
IV/DV contingency table 225

laboratory experiments, versus field 
experiments 222

lambda (nominal statistic) xxi, 196 – 201, 
209, 247; see also association for 
nominal and ordinal data; goodness 
of fit; proportional reduction of error

Landon, Alf 123
language of science 2 – 7; laws and 

hypotheses 4; properties, concepts, 
and variables 3 – 4; theories 5 – 7; unit 
of analysis, case, or fact 2 – 3

law of large numbers 125 – 7, 265
laws: exist in nature 4; see also hypotheses
life-cycle theories 6
linear regression 247 – 71; best-fitting 

line (minimizing the sum of the 

squared deviation scores) 252 – 5; 
college education and voter turnout 
250 – 1; considerations for 266 – 7; 
covariance 253; defined 247; 
Democratic voter turnout 250 – 1; 
deviant case analysis 267; full circle: 
slopes, Pearson’s r, and back to R-
square 262 – 3; gamma 247, 256; 
health care expenditures and infant 
mortality 266; intercept 249, 255; 
lambda 247, 256, 260; law of large 
numbers 265; not always the best 
fit 265 – 6; ordinal versus interval 
relationship 266 – 7; poverty level and 
crime 261 – 2; PRE/PRV measures 
(R-square) 247, 256 – 66; reading a 
linear regression equation 248 – 52; 
scatterplots 250 – 5, 261, 263, 266; 
slope (b) 249, 253 – 5; slope versus 
mean: inference with regression 
263 – 4; t-test for slopes 264

line charts 42, 43
Literary Digest poll of 1936 123 – 4, 138
long run 125
lurking variable (hidden effects or 

Simpson’s paradox) 225, 237 – 9

MAD see mean absolute deviation
marginal sensitivity 206 – 7
margin of error 165 – 71
marriage gap and party affiliation 154 – 6
mathematical association 147 – 8; see 

also association for nominal and 
ordinal data; hypothesis testing and 
association

mean xxi, 60 – 5, 123; arithmetic 
mean 61; central limit theorem 
127 – 36; comparison of two means 
148 – 56; formula for derived from a 
frequency distribution 67 – 9; income 
example 60 – 6; sampling distribution 
of means 127 – 36; Simpson’s 
paradox (lurking or hidden effects: 
an example with means) 225, 
238 – 9; standard error of the mean 
131 – 2; standard error of the mean 
differences 149 – 54; variance (mean 
squared deviation) 94 – 5; versus 
median 61 – 5; versus slope (inference 
with regression) 263 – 4; visualizing 
dichotomous proportions as means 
181; weighted mean 68 – 9; see also 
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association for nominal and ordinal 
data; central tendency; deviation 
score; hypothesis testing and 
association; hypothesis testing and 
inference; inferential statistics for 
proportions; interval data; measures 
of diversity for ordinal and interval 
data; Simpson’s paradox

mean absolute deviation (MAD) 93 – 6, 
102; see also measures of diversity for 
ordinal and interval data

mean squared deviation (variance) 94 – 5
measurement and observation: 

background/introduction xix – xxiii, 
20 – 3; bar charts 39, 41, 42, 46; 
Bradley effect 24 – 5; Chicago 
effect 25; comparison base 36; 
conceptual assumptions 30 – 1; 
descriptive statistics 31; frequency 
distributions: absolute 33 – 4; 
frequency distributions: cumulative 
37 – 8; frequency distributions: relative 
(percentages and proportions) 34 – 5; 
frequency polygons and line charts 
40 – 2, 43; inferential statistics 31; 
internal validity of 24 – 5; level 1: 
nominal data (arbitrary category 
assignment) 27 – 8; level 2: ordinal 
data (rank ordering) 28 – 9; level 
3: interval data (continuous or 
quantitative) 29 – 30; mathematical 
assumptions 27 – 30; from nominal 
to interval data 38; overlooked fact 1: 
summarizing information causes lost 
information 21; overlooked fact 2: 
statistics don’t lie, individuals can/do 
23; pie charts 40, 41, 46 – 8; precision 
in 26 – 7; properties and categorization 
46 – 8; real world examples of 25, 
44; reliability of 23 – 4; reliability 
versus internal invalidity 25 – 6; 
standardization and 35 – 8; statistical 
measurement (introduction) 21 – 6; 
time series charts 42 – 6; univariate 
(one variable), bivariate (two 
variables), and multivariate (three or 
more variables) statistics 31; see also 
frequency distributions; interval data; 
nominal data; ordinal data

measurement problems 15; see also 
external validity; internal validity; 
measurement and observation

measures of dispersion/variation/
goodness of fit: overview 77 – 8; see 
also goodness of fit measure; measures 
of diversity for nominal data; 
measures of diversity for ordinal and 
interval data

measures of diversity for nominal data 
78 – 89; affirmative action 88; index 
of diversity 84; index of qualitative 
variation (IQV) 81 – 9; variation ratio 
(VR) 79 – 81; voter age in Florida and 
Utah 78 – 9

measures of diversity for ordinal and 
interval data 89 – 98; deviation scores 
91 – 3; European countries satisfied 
with the level of democracy 97 – 8; 
income examples 90 – 5; mean 
absolute deviation (MAD) 93 – 5; 
the polarization of Congress 95 – 6; 
range and interquartile range 90 – 1; 
standard deviation 94 – 5; summary 
example with aggregated data 97 – 8; 
variance (mean squared deviation) 
94 – 5

median xxi, 58 – 60; age groupings, 
Florida and Utah (2010) 59 – 60; 
ideology example 58; versus mean 
61 – 5; see also central tendency; 
measures of diversity for ordinal and 
interval data; ordinal data

mode 55 – 8; California 2010 
gubernatorial vote 55 – 6; index of 
qualitative variation (IQV) 81 – 9; 
variation ratio (VR) 79 – 81; see also 
lambda; measures of diversity for 
nominal data; nominal data

multinational data set xx
multiple regression 272 – 89; additive 

effects and 281 – 2; adjusted R-square 
280; aggregate or ecological fallacy 
279; black vote for segregationist 
George C. Wallace 279; defined 
275; dummy variables 277 – 8; 
education and turnout (former Soviet 
bloc and non-Soviet bloc) 283 – 5; 
explanatory effects and 278 – 81; 
inference with 282 – 3; interaction 
effect 285; presidential vote and 
presidential support by district 
273 – 6, 281 – 3; race and Obama 
278 – 81; redistricting in the U.S. and 
graphs 274 – 5; specification effects 
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and 283 – 5; spurious relationships 
and 273 – 8; standardized slopes 
281; see also control variables (third 
variables); interval data

multivariate statistics 31; see also control 
variables (third variables); interval 
data; multiple regression; ordinal data

mutual exclusiveness 26

negative skew 64
nominal data (arbitrary category 

assignments) xxi, 27 – 8; California 
2010 gubernatorial example 38; to 
interval data 38; see also association 
for nominal and ordinal data; chi-
square (χ2) statistic; inferential 
statistics for proportions; lambda; 
measurement and observation; 
measures of diversity for nominal 
data; mode

normal distributions: defining 
105; see also standardized scores/
normal distributions (for relative 
observations); Z-scores

normative (value) judgments 9
null hypothesis 156, 169, 194 – 6
number of cases 3

observations 5, 57, 80, 92; chi-square 
and xix; expectations and 125; preface/
background xix – xxiii; see also central 
tendency as summary observation; 
hypothesis testing and association; 
hypothesis testing and inference; 
measurement and observation; 
standardized scores/normal 
distributions (for relative observations)

observed frequency 172 – 4, 191 – 2
one-sided (tailed) significance test 

142; see also hypothesis testing and 
inference

ordinal data (rank ordering) 28 – 9; versus 
interval relationship 266 – 7; see also 
association for nominal and ordinal 
data; chi-square (χ2) statistic; gamma; 
linear regression; measurement and 
observation; measures of diversity for 
ordinal and interval data; median; 
multiple regression

paired comparisons 82 – 8
parsimonious data 26

Pearson’s r 211, 262
percentages, relative frequency and  

34 – 5
phi 211
pie charts 40, 41, 46 – 8; California 2010 

gubernatorial vote 40, 41; ideological 
preferences 46 – 8

political science, defining 1 – 2
positive skew 64, 122
PRE see proportional reduction of error
precision: in measurement 26 – 7; see also 

measurement and observation
PRE/PRV see proportional reduction of 

error and variance
properties: defining 3 – 4; example of 

author Peter Galderisi 3; measuring 
properties and the importance of 
categorization 46 – 8; theories and 
5; see also causation; concepts; 
hypotheses; measurement and 
observation; theories

proportional reduction of error (PRE) 
196 – 201, 209 – 10, 256 – 9; see 
also association for nominal and 
ordinal data

proportional reduction of error and 
variance (PRE/PRV) 247, 259 – 66; see 
also linear regression; R-square

proportions: dichotomous 165 – 71; 
relative frequencies and 34 – 5; see 
also association for nominal and 
ordinal data; inferential statistics for 
proportions

quantitative data (interval data) 29 – 30

random (equiprobable) samples 4, 
124 – 5, 157, 165; see also hypothesis 
testing

random assignment experimental 
condition 220

range 90 – 1, 97; interquartile range 
(IQR) 90 – 1, 97; see also measures of 
diversity for ordinal and interval data

rational choice theory 222
relative frequencies (percentages and 

proportions) 34 – 5
relative observation see standardized 

scores/normal distributions (for 
relative observations)

relevance, theoretical 11 – 12
relevant percentage differences 187 – 8
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reliability of measurement 15, 23 – 4; 
versus internal invalidity 25 – 6; see 
also external validity; internal validity; 
measurement and observation

research: continuous process of 21; 
hypotheses for 10 – 12; see also classic 
experimental design; hypotheses 
(structure of ); hypothesis testing 
and association; hypothesis testing 
and inference; measurement and 
observation; theories

research design see classic experimental 
design

Roosevelt, Franklin Delano 123, 124
R-square 256 – 66; adjusted 278, 280; 

slopes and Pearson’s r and 262 – 3; see 
also goodness of fit measure; linear 
regression; proportional reduction of 
error and variance (PRE/PRV)

sampling: considerations in 137 – 40; 
dependent samples tests 158, 159; 
independent samples tests 158; law of 
large numbers 125 – 7; random sample 
(equiprobable) 124 – 5; sampling 
distribution of means and the central 
limit theorem 127 – 36; U.S. census 
and 126; see also hypothesis testing 
and association; hypothesis testing 
and inference; inferential statistics for 
proportions

sampling distribution of means 127 – 36; 
see also hypothesis testing and 
inference

scaling techniques, for creating interval 
data from nominal data 38

scatterplots 250 – 5, 261, 263, 266; see 
also linear regression

scientific inquiry, defining 2
significance tests: one-sided 142; 

relevance and caveats of 157; see also 
hypothesis testing headings

Simpson’s paradox (lurking or hidden 
effects) 225, 237 – 9; see also control 
variables (third variables)

skewness 64 – 5; see also central tendency
slope (b) 265; difference from mean 

(inference with linear regression) 
263 – 4; formula for 249, 253 – 5; 
standardized slopes (beta) 281; tied 
into Pearson’s r and R-square 262 – 3; 
t-test for 264; see also linear regression

Somers’ D (ordinal association) 210
specification effects, multiple regression 

and 283 – 5
specification/interaction effects testing 

(generalizability/external validity) 
224 – 5, 235 – 9; see also control 
variables (third variables)

SPSS computer program 140, 267
spurious relationships 13, 156, 223 – 4, 

225 – 30; multiple regression and 
273 – 8; see also control variables (third 
variables); internal validity problem

squared deviation score 253
standard deviation 94 – 5, 102; formulas 

for 158; see also hypothesis testing and 
inference; measures of diversity for 
ordinal and interval data; standardized 
scores/normal distributions (for 
relative observations)

standard deviation of the mean 129
standard error of proportions 166 – 71
standard error of the mean 131 – 2
standard error of the mean differences 

149 – 54
standardization (base for comparison) 

65, 191, 253, 257, 264; cumulative 
frequency 37 – 8; election results 
and 35 – 7, 80; ideology and 37 – 8; 
importance of in statistical theory xxi, 
34 – 7; variation ratio and 80 – 1; Z-
scores and 106 – 19; see also frequency 
distribution; linear regression; 
measurement and observation; 
measures of diversity for nominal 
data; measures of diversity for ordinal 
and interval data

standardization, see also frequency 
distributions

standardized scores/normal distributions 
(for relative observations) xxi, 
102 – 21; alpha error 118; confidence 
intervals 119; deviation score 105 – 6; 
forced ranking and job discrimination 
114; income examples 106 – 12, 
116 – 19; national testing programs 
105; normal distribution defined 105; 
the prosecutor’s fallacy 118; relative 
placement: grade curves and Z-
scores 113 – 16; relative worth testing 
examples 102 – 6; standardization in 
surveys 104; Z-score policy example 
109 – 10; Z-scores 106 – 19



I n d e x

338

standardized slope (beta) 281
STATA computer program 140, 267
statistical independence 189 – 96, 204
statistical measurement see measurement 

and observation
statistical measurement (introduction) 

21 – 6; internal validity of 
measurement 24 – 5; measurement 
reliability 23 – 4; overlooked facts 
about 21 – 2; reliability versus internal 
validity 25 – 6; see also measurement 
and observation

statistics: defining 1 – 2; descriptive 31; 
as games of chance 57 – 65; inferential 
31; as summary tools 21 – 3, 26; see 
also variables

Statistics in the Real World: adjusted 
R-square 280; aggregate or ecological 
fallacy 279; causation 16; central 
limit theorem in real time 129; 
Chicago effect and crime statistics 
25; discrimination in jury selection 
178; does ending affirmative action 
reduce diversity? 88; dummy variables 
278; election law in the United States 
56; employment discrimination 
153; felony disenfranchisement and 
standardization 44; forced ranking 
and job discrimination (standardized 
scores) 114; gender gap in wages 134; 
inference when using tabular controls 
(a warning about) 239; laboratory 
experiments and field experiments 
222; law of large numbers 265; 
medians versus means in liability 
cases 65; polarization of Congress 
95 – 6; poverty level and crime (linear 
regression) 261 – 2; the prosecutor’s 
fallacy (use of probabilities in criminal 
trials) 118; redistricting in the U.S. 
and graphs 274 – 5; sampling and the 
U.S. census 126; Simpson’s paradox 
239; standardization in surveys 104

strict perfect association 205
Student’s t see t-tests
summary measures: statistics as tool for 

xxii, 21 – 3, 26; summary example with 
aggregated data 97 – 8; see also central 
tendency as summary observation

sum of the squared deviation scores: 
minimizing 252 – 5; see also linear 
regression

symmetrical distribution 63 – 4; bimodal 
68, 69; unimodal 68, 69; see also 
central tendency; mean; median

symmetrical measures 203

tabular data 225, 239
tally frequency (absolute or count 

frequency) 33 – 4
test implications 9; see also hypotheses
tests, increasing the number and type of 

10 – 11
theoretical links 5
theoretical relevance 11 – 12; see also 

hypotheses
theories: causation and 12 – 14; defining 

5; generational theories 6 – 7; historical 
generalizations 13; life-cycle theories 6; 
properties and 5; spurious relationships 
and 13; theory sketches 5 – 6, 12 – 14; 
see also hypotheses; hypothesis testing 
headings; language of science

theory sketches 5 – 6; causation and 
12 – 14

time series charts 42 – 6; presidential 
voter turnout in the U.S. 
(1952 – 2012) 42 – 5

triangulization 14, 16, 279
Truman, Harry 140
t-tests (Student’s t) 140 – 2; for slopes 

264; see also degrees of freedom (df)
t-values 281

Understanding Political Science Statistics 
Using SPSS (Galderisi and Seljan) xx

Understanding Political Science Statistics 
Using STATA (Galderisi and Seljan) xx

unimodal symmetrical distribution 
68, 69

units of analysis, case, or fact 2 – 3
univariate statistics 31; see also central 

tendency as summary observation; 
inferential statistics for proportions; 
linear regression; nominal data

unstandardized slopes (b) 281
unstandardized coefficients 264

validity: internal and external validity 
of design 15; internal and external 
validity of measurement 15, 24 – 5; 
reliability versus internal invalidity 
25 – 6; see also external validity 
problems; internal validity problems



I n d e x

339

value (normative) judgments 9
variables: bivariate statistics (two 

variables) 31; comparison of two 
variables, same or matched groups 
158; confusing with categories 
that don’t vary 4; defining 3 – 4; 
multivariate statistics (three or more 
variables) 31; univariate statistics (one 
variable) 31; see also categories; classic 
experimental design; control variables 
(third variables); dichotomous 
proportions; DV; interval data; IV; 
nominal data; ordinal data; X; Y

variance (mean squared deviation) 94 – 5
variation 55; see also central tendency 

as summary observation; measures 
of diversity for nominal data; 
measures of diversity for ordinal and 
interval data

variation ratio (VR) xxi, 79 – 81; 2010 
Congressional vote and age 80 – 1; 
California 2010 gubernatorial election 
79 – 80; goodness of fit (variation from 
the mode) 81; see also measures of 
diversity for nominal data

verifiability: defining 9 – 10; see also 
hypotheses; hypothesis testing 
headings

vote swings 140

voting age population (VAP) 44
voting eligible population (VEP) 44
VR see variation ratio

weak perfect association 205 – 6
weighted mean 68 – 9
World Values Survey series 139

X (independent variable or IV) 15, 
218 – 19

Y (dependent variable or DV) 218 – 19
Yule’s Q 201 – 2, 207; see also association 

for nominal and ordinal data; gamma

Z (third variable):introducing 223 – 5; see 
also control variables (third variables)

Z-scores 106 – 19, 122, 130 – 1, 
149 – 54, 158, 165 – 71, 173 – 80, 
281; confidence intervals and 119; 
curved grades 113 – 16; defining/
background 106 – 9; formulas 
for 130 – 1, 149, 158; further 
understanding of 110 – 12; income 
example 116 – 18; policy example 
109 – 10; standardization and 
106 – 19; see also standardized scores/
normal distributions (for relative 
observations)
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