
Mauro Naghettini    Editor 

Fundamentals 
of Statistical 
Hydrology



Fundamentals of Statistical Hydrology



Mauro Naghettini

Editor

Fundamentals of Statistical
Hydrology



Editor
Mauro Naghettini
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais
Brazil

ISBN 978-3-319-43560-2 ISBN 978-3-319-43561-9 (eBook)
DOI 10.1007/978-3-319-43561-9

Library of Congress Control Number: 2016948736

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



To
Ana Luisa and Sandra.



Preface

This book has been written for civil and environmental engineering students and

professionals. It covers the fundamentals of probability theory and the statistical

methods necessary for the reader to explore, interpret, model, and quantify the

uncertainties that are inherent to hydrologic phenomena and so be able to make

informed decisions related to planning, designing, operating, and managing com-

plex water resource systems.

Fundamentals of Statistical Hydrology is an introductory book and emphasizes

the applications of probability models and statistical methods to water resource

engineering problems. Rather than providing rigorous proofs for the numerous

mathematical statements that are given throughout the book, it provides essential

reading on the principles and foundations of probability and statistics, and a more

detailed account of the many applications of the theory in interpreting and modeling

the randomness of hydrologic variables.

After a brief introduction to the context of Statistical Hydrology in the first

chapter, Chap. 2 gives an overview of the graphical examination and the summary

statistics of hydrological data. The next chapter is devoted to describing the

concepts of probability theory that are essential to modeling hydrologic random

variables. Chapters 4 and 5 describe the probability models of discrete and contin-

uous random variables, respectively, with an emphasis on those that are currently

most commonly employed in Statistical Hydrology. Chapters 6 and 7 provide the

statistical background for estimating model parameters and quantiles and for testing

statistical hypotheses, respectively. Chapter 8 deals with the at-site frequency

analysis of hydrologic data, in which the knowledge acquired in previous chapters

is put together in choosing and fitting appropriate models and evaluating the

uncertainty in model predictions. In Chaps. 9 and 10, an account is given of how

to establish relationships between two or more variables, and of the way in which

such relationships are used for transferring information between sites by regional-

ization. The last two chapters provide an overview of Bayesian methods and of the

modeling tools for nonstationary hydrologic variables, as a gateway to the more

advanced methods of Statistical Hydrology that the interested reader should
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consider. Throughout the book a wide range of worked-out examples are discussed

as a means to illustrate the application of theoretical concepts to real-world prac-

tical cases. At the end of each chapter, a list of homework exercises, which both

illustrate and extend the material given in the chapter, is provided.

The book is primarily intended for teaching, but can also be useful for practi-

tioners as an essential text on the foundations of probability and statistics, and as a

summary of the probability distributions widely encountered in water resource

literature, and their application in the frequency analysis of hydrologic variables.

This book has evolved from the text “Hidrologia Estatı́stica,” written in Portuguese

and published in 2007 by the Brazilian Geological Survey CPRM (Serviço

Geológico do Brasil), which has been extensively used in Brazilian universities

as a reference text for teaching Statistical Hydrology. Fundamentals of Statistical
Hydrology incorporates new material, within a revised logical sequence, and pro-

vides new examples, with actual data retrieved from hydrologic data banks across

different geographical regions of the world. The worked-out examples offer solu-

tions based on MS-Excel functions, but also refer to solutions using the R software

environment and other free software, as applicable, with their respective Internet

links for downloading. The book also has 11 appendices containing a brief review

of basic mathematical concepts, statistical tables, the hydrological data used in the

examples and exercises, and a collection of solutions to a few exercises and

examples using R. As such, we believe this book is suitable for a one-semester

course for first-year graduate students.

I take this opportunity to acknowledge and thank Artur Tiago Silva, from the

Instituto Superior Técnico of the University of Lisbon, in Portugal, and my former

colleagues Eber José de Andrade Pinto, Veber Costa, and Wilson Fernandes, from

the Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, for their valu-

able contributions authoring or coauthoring some chapters of this book and

reviewing parts of the manuscript. I also wish to thank Paul Davis for his careful

revision of the English. Finally, I wish to thank my family, whose support, patience,

and tolerance were essential for the completion of this book.

Belo Horizonte, Brazil Mauro Naghettini

11th May 2016
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Chapter 1

Introduction to Statistical Hydrology

Mauro Naghettini

1.1 The Role of Probabilistic Reasoning in Science
and Engineering

Uncertainty is a word largely used to characterize a general condition where vague,

imperfect, imprecise, or incomplete knowledge of a reality prevents the exact

description of its actual and future states. As in everyday life, uncertainties are

inescapable in science and engineering problems. Scientists and engineers are

asked to comprehend complex phenomena, to ponder competing alternatives, and

to make rational decisions on the basis of uncertain quantities. Uncertainties can

arise from many sources (Morgan and Henrion 1990): (1) random and/or systematic

errors in measurements of a quantity; (2) linguistic imprecision derived from

qualitative reasoning; (3) quantity variability over time and space; (4) inherent

randomness; (5) unpredictability (chaotic behavior) of dynamical systems; (6) dis-

agreement or different opinions among experts about a particular quantity; and

(7) approximation uncertainty arising from a simplified model of the real-world

system. In such a context, quantity may refer either to an empirically measurable

variable or to a model parameter.

Another possible categorization of uncertainty sources groups them into the

aleatory and the epistemic types (Ang and Tang 2007). The former type includes

the sources of uncertainties associated with natural and inherent randomness, such

as sources (3), (4), (5) and part of (1) previously mentioned, and are said to be

irreducible. The epistemic type encompasses all other sources and the

corresponding uncertainties are said to be reducible, in the sense that the imperfect

knowledge we have about the real world, as materialized by our imprecise and/or

inaccurate measurement techniques and our simplified models (or statements), is
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subject to further improvement. Such a categorization is debatable since in real-

world applications, where both aleatory and epistemic uncertainties coexist, the

distinction between them is not straightforward and, in some cases, depends on the

modeling choices (Kiureghian and Ditlevsen 2009).

No matter what the sources of uncertainties are, they need to be assessed and

combined, in a systematic and logical way, within the framework of a sound

scientific approach. The best-known and most widely used mathematical formalism

to quantify and combine uncertainties is embodied in the probability theory

(Lindley 2000; Morgan and Henrion 1990). According to this theory, uncertainty

is quantified by a real number between 0 (impossibility) and 1 (certainty). This real

number is named probability. However, this role of probability in dealing with

scientific and technical problems, albeit logical and clear, has not remained

undisputed over the history of science and engineering (Yevjevich 1972;

Koutsoyiannis 2008).

Since early times, one of the main functions of Science has been to predict future

events from the knowledge acquired from the observation of past events. In the

realm of determinism, a philosophical idea that has deeply influenced scientific

thought, such predictions are made possible by inferring cause–effect relations

between events from observed regularities. These strictly deterministic causal

relations are then synthesized into “laws of nature,” which are utilized to make

predictions (Moyal 1949). This line of thought is demonstrated in the laws of

classical Newtonian mechanics, according to which, given the boundary and initial

conditions, and the differential equations that govern the evolution of a system, any

of its future states can, in principle, be precisely determined. As an intrinsically

time-symmetrical action, the specification of the state of the system at an instant

t determines also its states before t.
Adherence to the principles of strict determinism has led the eminent French

scientist Pierre Simon Laplace (1749–1827) to state in his Essai philosophique sur
les probabilités (Laplace 1814) that:

An intelligence which, for one given instant, would know all the forces by which nature is

animated and the respective situation of the entities which compose it, if besides it were

sufficiently vast to submit all these data to mathematical analysis, would encompass in the

same formula the movements of the largest bodies in the universe and those of the lightest

atom; for it, nothing would be uncertain and the future, as the past, would be present to its

eyes (Laplace 1814, pp. 3–4).

Such a hypothetical powerful entity, well equipped with the attributes of being

capable (1) of knowing the state of the whole universe, with perfect resolution and

accuracy; (2) of knowing all the governing equations of the universe; (3) of an

infinite instantaneous power of calculation; and (4) of not interfering with the

functioning of the universe, later became known as Laplace’s demon.
The counterpart of determinism, in mathematical logic, is expressed through

deduction, a systematic method of deriving conclusions (or theorems) from a set of

premises (or axioms), through the use of formal arguments (syllogisms): the

conclusions cannot be false when the premises are true. The principle implied by

deduction is that any mathematical statement can be proved from the given set of
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axioms. Besides deduction, another process of reasoning in mathematical logic is

induction, by which a conclusion does not follow necessarily from the premises and

actually goes beyond the information they contain. Instead of proving an argument

is true or false, induction offers a highly probable conclusion, being subject,

however, to occasional errors. When the use of deduction is not possible, as in

decision making with incomplete information, induction can be helpful.

Causal determinism dominated scientific thought until the late nineteenth cen-

tury. Random events, which occur in ways that are uncertain, were believed to be

the mere product of human ignorance or insufficient knowledge of the initial

conditions. As argued by Koutsoyiannis (2008), in the turn of the nineteenth

century and in the first half of the twentieth century, the deterministic view which

held that uncertainty could in principle be completely disregarded turned out to be

deceptive, as it suffered serious setbacks in four major scientific areas.

(a) Statistical physics: a branch of physics that uses methods of probability and

statistics to deal with large populations of elementary particles, where we

cannot keep track of causal relations, but only observe statistical regularities.

In particular, statistical mechanics has been very successful in explaining

phenomenological results of thermodynamics from a probability-based per-

spective of the underlying kinetic properties of atoms and molecules.

(b) Complex and chaotic nonlinear dynamics: a field of mathematics whose main

objects of study are dynamical systems, which are governed by complex

nonlinear equations that are very sensitive to the initial conditions. Examples

of such systems include the weather and climate system. Even in the case of a

completely deterministic model of a system, with no random components, very

small differences in the initial conditions can result in highly diverging out-

comes. This characteristic of nonlinear dynamical system models makes them

unpredictable in the long term, in spite of their deterministic nature.

(c) Quantum physics: an important field of physics dealing with the behavior of

particles, as packets of energy, at the atomic and subatomic scales. The serious

implications of quantum physics for determinism became clear in 1926, with

Heisenberg’s principle of uncertainty on the disturbances of states by observa-

tion. According to this principle, it is impossible to measure simultaneously the

position and the momentum of a particle, as the more precisely we measure one

variable the less precisely we can predict the other. Hence, in contrast with

determinism, quantum physics is inherently uncertain and thus probabilistic in

nature.

(d) Incompleteness theorems: two theorems in the domain of pure mathematical

logic, proven in 1931 by the mathematician Kurt G€odel. They are generally

interpreted as demonstrating that finding a complete and consistent set of

axioms for all mathematics is impossible, thus revealing the inherent limitations

of mathematical logic. An axiomatic set is complete if it does not contain a

contradiction, whereas it is consistent if, for every statement, either itself or its

denial can be derived from the system’s axioms (Enderton 2002).

Koutsoyiannis (2008) notes that G€odel’s theorems imply that deductive
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reasoning has limitations and uncertainty cannot be completely disregarded.

This conclusion strengthens the role of probabilistic reasoning, as extended

logic, and opens up space for induction.

These appear to be compelling arguments in favor of the systematic use of

probability and statistical methods instead of the pure deterministic rationale in

science and engineering. However, it is not too hard to perceive a somewhat

recalcitrant intellectual resistance to these arguments in some of today’s scientists,
engineers, and educators. This may be related to traditional science education,

which unfortunately keeps teaching many disciplines with the same old perspective

of depicting nature as fully explicable, in principle, by the laws of science, thus

reinforcing the obsolete ideas of causal determinism. This book is intended to

recognize from its very beginning that uncertainties are always present in natural

phenomena, with a particular focus on those of the water cycle, and are best

described and accounted for by the methods of probability and statistics.

1.2 Hydrologic Processes

Hydrology is a geoscience that deals with the natural phenomena that determine the

occurrence, circulation, and distribution of the waters of the Earth, their biological,

chemical, and physical properties, and their interaction with the environment,

including their relation to living beings (WMO and UNESCO 2012). Hydrologic

phenomena are at the origin of the different fluxes and storages of water throughout

the several stages that compose the hydrologic cycle (or water cycle), from the

atmosphere to the Earth and back to the atmosphere: evaporation from land or sea

or inland water, evapotranspiration by plants, condensation to form clouds, precip-

itation, interception, infiltration, percolation, runoff, storage in the soil or in bodies

of water, and back to evaporation. The continuous sequences of magnitudes of flow

rates and volumes associated with these natural phenomena are referred to as

hydrologic processes and can show great variability both in time and space.

Seasonal, inter-annual, and quasi-periodic fluctuations of the global and/or regional

climate contribute to such variability. Vegetation, topographic and geomorphic

features, geology, soil properties, land use, antecedent soil moisture, the temporal

and areal distribution of precipitation are among the factors that greatly increase the

variability of hydrologic processes.

Applied Hydrology (or Engineering Hydrology) utilizes the scientific principles

of Hydrology, together with the knowledge borrowed from other academic disci-

plines, to plan, design, operate and manage complex water resources systems.

These are systems designed to redistribute, in space and time, the water that is

available to a region in order to meet societal needs (Plate 1993), by considering

both the quantity and quality aspects. Fulfillment of these objectives requires the

reliable estimation of the time/space variability of hydrologic processes, including

precipitation, runoff, groundwater flows, evaporation and evapotranspiration rates,
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surface and subsurface water volumes, water-quality-related quantities, river sed-

iment loads, soil erosion losses, etc.

Hydrologic processes often relate flows (or concentrations or mass or volumes)

of water (or dissolved oxygen or soil or energy) to their chronological times of

occurrence, though, in general, such a correspondence can be done also in space, or

both in time and space. The geographical scales used to study hydrologic processes

are diverse and go from the global to the most frequently used scale of the

catchment. For instance, the continuous time evolution of the discharges flowing

through the outlet section of a drainage basin is an example of a hydrologic process,

which, in this case, represents the time-varying synthesis of a very complex and

dynamical interaction of the many hydrologic phenomena operating in, over, and

under the surface of that particular catchment. Hydrologic processes can be mon-

itored at discrete times, according to certain measurement standards, and then form

samples of hydrologic data. These are key elements for hydrologic analysis and

decision making concerning water resource projects.

In order to solve water-resource-related problems, hydrologists make use of

models, which are simplified representations of reality. Models can be generally

categorized as physical, analog, or mathematical. The former two are hardly used

by today’s hydrologists who most often choose mathematical models, given their

vast possibility of applications and the widespread use of computers. Chow

et al. (1988) introduce the concept of a hydrologic system as a structure or volume
in space, surrounded by a boundary, that accepts water and other inputs, operates
on them internally, and produces them as outputs. A mathematical model, in this

perspective of system analysis, may be viewed as a collection of mathematical

functions, organized in a logical structure, linking the input and the output. Inputs

can be, for example, precipitation data or flood flow data, whereas outputs can be a

sequence of simulated flows or a probability-based summary of flood flows. The

model (or the system in mathematical form) is composed of a set of equations

containing parameters.

Chow et al. (1988) used the concept of hydrologic system analysis to classify the

mathematical models with respect to randomness, spatial variation, and time

dependence. If randomness is of concern, models can be either deterministic or

stochastic. A model is deterministic if it does not consider randomness: as an

inherent principle, both its input and output do not contain uncertainties and,

being of a causative nature, a given input always produces the same output. In

contrast, a stochastic model has several outputs produced by the same input and it

allows the quantification of their respective likelihoods.

It is rather intuitive to realize that hydrologic processes are random in nature. For

instance, next Monday’s volume of rainfall at a specified location cannot be

forecast with absolute certainty. As being a pivotal process in the water cycle,

any other derived process, such as streamflow, for example, not only will inherit the

uncertainties from rainfall but also from other intervening processes. Another fact

that shows the ever-present randomness built in hydrologic processes refers to the

impossibility of establishing a functional cause–effect relation among variables

related to them. Let us take as an example one of the most relevant characteristics of

1 Introduction to Statistical Hydrology 5



a flood event, the peak discharge, in a given catchment. Hydrology textbooks teach

us that flood peak discharge can be conceivably affected by many factors: the

time-space distribution of rainfall, the storm duration and its pathway over the

catchment, the initial abstractions, the infiltration rates, and the antecedent soil

moisture, to name a few. These factors are also interdependent and highly variable

both in time and space. Any attempt to predict the next flood peak discharge from

its relation to a finite number of intervening factors will result in error as there will

always be a residual portion of the total dispersion of flood peak values that is left

unexplained.

Although random in nature, hydrologic processes do embed seasonal and peri-

odic regularities, and other identifiable deterministic signals and controls. Hydro-

logic processes are definitely susceptible to be studied by mass, energy and

momentum conservation laws, thermodynamic laws, and to be modeled by other

conceptual and/or empirical relations extensively used in modern physical hydrol-

ogy. Deterministic and stochastic modeling approaches should be combined and

wisely used to provide the most effective tools for decision making for water

resource system analysis. There are, however, other views on how deterministic

controlling factors should be included in the modeling of hydrologic processes. The

reader is referred to Koutsoyiannis (2008) for details on a different view of

stochastic modeling of hydrologic processes.

An example of a coordinated combination of deterministic and stochastic

models comes from the challenging undertaking of operational hydrologic fore-

casting. A promising setup for advancing solutions to such a complex problem is to

start from a probability-informed ensemble of numerical weather predictions,

accounting for possibly different physical parametrizations and initial conditions.

These probabilistic predictions of future meteorological states are then used as

inputs to a physically plausible deterministic hydrologic model to transform them

into sequences of streamflow. Then, probability theory can be used to account for

and combine uncertainties arising from the different possible sources, namely, from

meteorological elements, model structure, initial conditions, parameters, and states.

Seo et al. (2014) recognize the technical feasibility of similar setups and point out

the current and expected advances to fully operationalize them.

The combined use of deterministic and stochastic approaches to model hydro-

logic processes is not new but, unfortunately, has produced a philosophical

misconception in past times. Starting from the principle that a hydrologic process

is composed of a signal, the deterministic part, and a noise, the stochastic part, the

underlying idea is that the ratio of the signal, explained by physical laws, to

the unexplained noise will continuously increase with time (Yevjevich 1974). In

the limit, this means that the process will be entirely explained by a causal

deterministic relation at the end of the experience and that the probabilistic model-

ing approach was regarded only as temporary, thus reflecting an undesirable

property of the phenomenon being modeled. This is definitely a philosophical

journey back to the Laplacian view of nature. No matter how greatly our scientific

physical knowledge about hydrologic processes increases and our technological
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resources to measure and observe them advance, uncertainties will remain and will

need to be interpreted and accounted for by the theory of probability.

The theory of probability is the general branch of mathematics dealing with

random phenomena. The related area of statistics concerns the collection, organi-

zation, and description of a limited set of empirical data of an observable phenom-

enon, followed by the mathematical procedures for inferring probability statements

regarding its possible occurrences. Another area related to probability theory is

stochastics, which concerns the study and modeling of random processes, generally

referred to as stochastic processes, with particular emphasis on the statistical

(or correlative) dependence properties of their sequential occurrences in time

(this notion can also be extended to space). In analogy to the classification of

mathematical models, as in Chow et al. (1988), general stochastic processes are

categorized into purely random processes, when there is no statistical dependence

between their sequential occurrences in time, and (simply) stochastic processes

when there is. For purely random processes, the chronological order of their

occurrences is not important, only their values matter. For stochastic processes,

both order and values are important.

The set {theory of probability-statistics-stochastics} forms an ample theoretical

body of knowledge, sharing common principles and analytical tools, that has a

gamut of applications in hydrology and engineering hydrology. Notwithstanding

the common theoretical foundations among the components of this set, it is a

relatively frequent practice to group the hydrologic applications of the subset

{theory of probability-statistics} into the academic discipline of Statistical Hydrol-

ogy, concerning purely random processes and the possible association

(or covariation) among them, whereas the study of stochastic processes is left to

Stochastic Hydrology. This is an introductory text on Statistical Hydrology. Its

main objective is to present the foundations of probability theory and statistics, as

used (1) to describe, summarize and interpret randomness in variables associated

with hydrologic processes, and (2) to formulate or prescribe probabilistic

models (and estimate parameters and quantities related thereto) that concern

those variables. .

1.3 Hydrologic Variables

A hydrologic process at a given location evolves continuously in time t. Such a

continuous variation in time of a specific hydrologic process is referred to as a basic

hydrologic variable (Yevjevich 1972) and is denoted as x(t). Examples of basic

hydrologic variables are instantaneous river discharge, instantaneous sediment

concentration at a river cross section and instantaneous rainfall intensity at a site.

For varying t, the statistical dependence between pairs of x(t) and x(tþΔt) will
depend largely on the length of the time interval Δt. For short intervals, say 3 h or

1 day, the dependence will be very strong, but will tend to decrease as Δt increases.

1 Introduction to Statistical Hydrology 7



For a time interval of one full year, x(t) and x(tþΔt) will be, in most cases,

statistically independent (or time uncorrelated).

A basic hydrologic variable, representing the continuous time evolution of a

specific hydrologic process, is not a practical setup for most applications of

Statistical Hydrology. In fact, the so-called derived hydrologic variables, as

extracted from x(t), are more useful in practice (Yevjevich 1972). The derived

hydrologic variables are, in general, aggregated total, mean, maximum, and mini-

mum values of x(t) over a specific time period, such as 1 day, 1 month, one season,

or 1 year. Derived variables can also include highest/lowest values or volumes

above/below a given threshold, the annual number of days with zero values of x(t),
and so forth. Examples of derived hydrologic variables are the annual number of

consecutive days with no precipitation, the annual maximum rainfall intensity of

30-min duration at a site, the mean daily discharges of a catchment, and the daily

evaporation volume (or depth) from a lake. As with basic variables, the time period

used to single out the derived hydrologic variables, such as 1 day, 1 month, or

1 year, also affects the time interval separating their sequential values and, of

course, the statistical dependence between them. Similarly to basic hydrologic

variables, hourly or daily derived variables are strongly dependent, whereas yearly

derived variables are, in most cases, time uncorrelated.

Hydrologic variables are measured at instants of time (or at discrete instants of

time or still in discrete time intervals), through a number of specialized instruments

and techniques, at site-specific installations called gauging stations, according to

international standard procedures (WMO 1994). For instance, the mean daily water

level (or gauge height) at a river cross section is calculated by averaging the

instantaneous measurements throughout the day, as recorded by different types of

sensors (Sauer and Turnipseed 2010), or, in the case of a very large catchment, by

averaging staff gauge readings taken at fixed hours of the day. Analogously, the

variation of daily evaporation from a reservoir, throughout the year, can be esti-

mated from the daily records of pan evaporation, with readings taken at a fixed hour

of the day (WMO 1994).

Hydrologic variables are random and the likelihoods of specific events associ-

ated with them are usually summarized by a probability distribution function. A

sample is the set of empirical data of a derived hydrologic variable, recorded at

appropriate time intervals to make them time-uncorrelated. The sample contains a

finite number of independent observations recorded throughout the period of

record. Clearly, the sample will not contain all possible occurrences of that partic-

ular hydrologic variable. These will be contained in the notional set of the popu-

lation. The population of a hydrologic random variable would be a collection,

infinite in some cases, of all of its possible occurrences if we had the opportunity

to sample them. The main goal of Statistical Hydrology is to extract sufficient

elements from the data to conclude, for example, with which probability, between

the extremes of 0 and 1, the hydrologic variable of interest will exceed a given

reference value, which has not yet been observed or sampled, within a given time

horizon. In other words, the implicit idea is to draw conclusions on the population
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probabilistic behavior of the random variable, based on the information provided by

the available sample.

According to the characteristics of their outcomes, random variables can be

classified into qualitative (categorical) or quantitative (numerical) types. Quali-

tative random variables are those whose outcomes cannot be expressed by a

number but by an attribute or a quality. They can be further classified in either

ordinal or nominal, with respect to the respective possibility of their attributes

(or qualities) be ordered or not, in a single way. The storage level of a

reservoir, selected among the possible states of being {A: excessively high;

B: high; C: medium; D: low; and E: excessively low} is an example of a

categorical ordinal hydrologic random variable. On the other hand, the sky

condition singled out among the possibilities of {sunny; rainy; and cloudy}, as

reported in old-time weather reports, is an example of a categorical nominal

random variable, as its possible outcomes are neither numerical nor susceptible

to be ordered.

Quantitative random variables are those whose outcomes are expressed by

integer or real numbers, receiving the respective type name of discrete or contin-

uous. The number of consecutive dry days in a year at a given location is totally

comprised of the subset of integer numbers given by {0, 1, 2, 3, . . ., 366}. On the

other hand, the annual maximum daily rainfall depth at the same location is a

continuous numerical random variable because the set of its possible outcomes

belongs to the subset of nonnegative real numbers. Numerical random variables can

also be classified into the limited (bounded) or unlimited (unbounded) types.

The former type includes the variables whose outcomes are upper-bounded,

lower-bounded or double-bounded, either by some natural constraint or by the

way they are measured. The random variable dissolved oxygen concentration in a

lake is lower-bounded by zero and bounded from above by the oxygen dissolution

capacity of the water body, which depends strongly but not only on the water

temperature. In an analogous way, the wind direction at a site, measured by an

anemometer or a wind vane, is usually reported in azimuth angles from 0 to 360o.

The possible outcomes of unbounded continuous random variables are all real

numbers. Most hydrologic continuous random variables are nonnegative and thus

lower-bounded at 0.

Univariate and multivariate analyses are yet other possible types of formalisms

involving hydrologic random variables. The univariate type refers to the analysis of

a single random quantity or attribute, as in the previous examples, and the multi-

variate type involves more than one random quantity. In general terms, multivariate

analysis describes the joint (and conditional) covariation of two or more random

variables observed simultaneously. This and other topics briefly mentioned in this

introduction are detailed in later chapters. As it is the most frequent case in

applications of Statistical Hydrology, we intend to focus almost exclusively on

hydrologic numerical random variables throughout this text.
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1.4 Hydrologic Series

Hydrologic variables have their variation recorded by hydrologic time series, which

contains observations (or measurements) organized in a sequential chronological

order. It is again worthwhile noting that such a form of organization in time can also

be replaced by space (distance or length) or, in some other cases, even extended to

encompass time and space. Because of practical restrictions imposed by observa-

tional or data processing procedures, sequential records of hydrologic variables are

usually separated by intervals of time (or distance). In most cases, these time

intervals separating contiguous records, usually of 1-day but also of shorter dura-

tions, are equal throughout the series. In some other cases, particularly for water-

quality variables, there are records taken at irregular time intervals.

As a hypothetical example, consider a large catchment, with a drainage area of

some thousands square kilometers. In such a case, the time series formed by the

mean daily discharges is thought to be acceptably representative of streamflow

variability. However, for a much smaller catchment, with an area of some dozens

square kilometers and time of concentration of the order of some hours, the series of

mean daily discharges is insufficient to capture the streamflow variability, partic-

ularly in the course of a day and during a flood event. In this case, the time series

formed by consecutive records of mean hourly discharges would be more suitable.

A hydrologic time series is called a historical series if it includes all available

observations organized at regular time intervals, such as the series of mean daily

discharges or less often a series of mean hourly discharges, chronologically ordered

along the period of record. In a historical series, sequential values are time-

correlated and, therefore, unsuitable to be treated by conventional methods of

Statistical Hydrology. An exception is made for the statistical analysis through

flow-duration curves, described in Chap. 2, in which the data time dependence is

broken up by rearranging the records according to their magnitude values.

The reduced series, made of some characteristic values abstracted or derived

from the records of historical series, are of more general use in Statistical Hydrol-

ogy. Typical reduced series are composed of annual mean, maximum, and mini-

mum values as extracted from the historical series. If for instance, a reduced series

of annual maxima is extracted from a historical series of daily mean discharges, its

elements will be referred to as annual maximum daily mean discharges. A series of

monthly mean values, for the consecutive months of each year, may also be

considered a reduced series, but their sequential records can still exhibit time

dependence. In some cases, there may be interest in analyzing hydrologic data for

a particular season or month within a year, such as the summer mean flow or the

April rainfall depth. As they are selected on a year-to-year basis, the elements of

such series are generally considered to be independent.

The particular reduced series containing extreme hydrologic events, such as

maximum and minimum values that have occurred during a time period, is called an

extreme-value series. If the time period is a year, extreme-value series are annual;

otherwise, they are said to be non-annual, as extremes can be selected within a
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season or within a varying time interval (Chow 1964). An extreme-value series of

maxima is formed by selecting the maximum values directly from instantaneous

records, retained in archives of paper charts and files from electronic data loggers

and data collection platforms, when available. In some cases, maximum flow values

are derived from crest gauge heights or high-water marks (Sauer and Turnipseed

2010). When annual maxima are selected from instantaneous flow records they are

referred to as annual peak discharges. When instantaneous records are not avail-

able, the series of annual maxima selected from the historical series is a possible

acceptable option for flood analysis. In general, the water-year (or hydrological

year), spanning from the 1st day of the wet season (e.g.: October 1st of a given year)

to the last day of the dry season (e.g.: September 30th of the following year), is

generally used in place of the calendar year. Because dry-season low flows vary at a

much slower pace than high flows, extreme-value series for minima can be filled in

by values extracted from the historical series.

Among the non-annual extreme-value series, there is the partial-duration series

in which only the independent extreme values that are higher, in the case of

maxima, or lower, in the case of minima, than a specified reference threshold are

selected from the records. In a given year, there may be more than one extreme

value, say 3 or 4, whereas in another year there may be none. Attention must be paid

to the selection of consecutive elements in a partial duration series to ensure that

they are not dependent or do not refer to the same hydrologic episode. For maxima,

partial duration series are also referred to as peaks-over-threshold (POT) series,

whereas for minima and particularly for the statistical analysis of dry spells,

Pacheco et al. (2006) suggest the term pits-under-threshold (PUT). These concepts

are revisited in following chapters of this book.

Figure 1.1 depicts the time plot of the annual peak discharges series, from

October 1st, 1941 to September 30th, 2014, with a missing-data period from

October, 1st 1942 to September, 30th 1943, of the Lehigh River at Stoddartsville,

located in the American state of Pennsylvania, as summarized from the records

provided by the streamflow gauging station USGS 01447500, owned and operated

by the US Geological Survey. The Lehigh River is a tributary of the Delaware

River. Its catchment at Stoddartsville has a drainage area of 237.5 km2 and flow

data are reported to be not significantly affected by upstream diversions or by

reservoir regulation. In the USA, the water-year is a 12-month period starting in

October 1st of any given year through September 30th of the following year.

Available data at the gauging station USGS 01447500 can be retrieved by accessing

the URL http://waterdata.usgs.gov/pa/nwis/inventory/?site_no¼01447500 and

include: daily series of water temperature and mean discharges, daily, monthly,

and annual statistics for the daily series, annual peak streamflow series (Fig. 1.1),

field measurements, field and laboratory water-quality samples, water-year sum-

maries, and an archive of instantaneous data.

Figure 1.1 shows two extraordinary flood events: one in May 1942, with a peak

discharge of 445 m3/s, and the other, in August 1955, with an even bigger peak flow

of 903 m3/s. Note that both peak discharges are many times greater than the average

peak flow of 86.8 m3/s, as calculated for the remaining elements of the series. The
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first outstanding flood peak, on May 22nd, 1942, was the culmination of 3 weeks of

frequent heavy rain over the entire catchment of the Delaware River (Mangan

1942). However, the record-breaking flood peak discharge, on August 19th 1955,

is more than twice the previous flood peak record of 1942 and was due to a rare

combination of very heavy storms associated with the passing of two consecutive

hurricanes over the northeastern USA: hurricane Connie (August 12–13) and

hurricane Diane (August 18–19). The 1955 flood waters ravaged everything in

their path, with catastrophic effects, including loss of human lives and very heavy

damage to properties and to the regional infrastructure (USGS 1956). Figure 1.1

and related facts illustrate some fascinating and complex aspects of flood data

analysis.

Data in hydrologic reduced series may show an apparent gradual upward or

downward trend with time, or a sudden change (or shift or jump) at a specific point

in time, or even a quasi-periodical behavior with time. These time effects may be

due to climate change, or natural climate fluctuations, such as the effects of ENSO

(El Ni~no Southern Oscillation) and NAO (North Atlantic Oscillation), or natural

slow changes in the catchment and/or river channel characteristics, and/or human-

induced changes in the catchment, such as reservoir regulation, flow diversions,

land-use modification, urban development, and so forth. Each of these changes,

when properly and reliably detected and identified, can possibly introduce a

nonstationarity in the hydrologic reduced series as the serial statistical properties

and related probability distribution function will also change with time. For

instance, if a small catchment, in near-pristine natural condition, is subject to a

sudden and extensive process of urban development, the hydrologic series of mean

Fig. 1.1 Annual peak discharges in m3/s of the Lehigh River at Stoddartsville (PA, USA) for

water-years 1941/42 to 2013/14
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hourly discharges observed at its outlet river section will certainly behave differ-

ently from that time forth, as a result of significant changes in pervious area and

other factors controlling the rainfall-runoff transformation. For this hypothetical

example, it is likely that a reduced series extracted from the series of mean hourly

discharges will fall in the category of nonstationary. Had the catchment remained in

its natural condition, its reduced series would remain stationary. Conventional

methods of Statistical Hydrology require hydrologic series to be stationary. In

recent years, however, a number of statistical methods and models have been

developed for nonstationary series and processes. These methods and models are

reviewed in Chap. 12.

Conventional methods of Statistical Hydrology also require that a reduced

hydrologic time series must be homogeneous, which means that all of its data

must (1) refer to the same phenomenon in observation under identical conditions;

(2) be unaffected by eventual nonstationarities; and (3) originate from the same

population. Sources of heterogeneities in hydrologic series include: damming a

river at an upstream cross section; significant upstream flow diversions; extensive

land-use modification; climate change and natural climate oscillations; catastrophic

floods; earthquakes and other natural disasters (Haan 1977); man-made disasters,

such as dam failure; and occurrence of floods associated with distinct

flood-producing mechanisms, such as snowmelt and heavy rainfall (Bobée and

Ashkar 1991).

It is clear that the notion of heterogeneity, as applied particularly to time series,

encompasses that of nonstationarity: a nonstationary series is nonhomogeneous

with respect to time, although a nonhomogeneous (or heterogeneous) series is not

necessarily nonstationary. In the situation arising from upstream flow regulation by

a large reservoir, it is possible to transform regulated flows into naturalized flows,

by applying the water budget equation to inflows and outflows to the reservoir, with

the previous knowledge of its operating rules. This procedure can provide a single,

long and homogeneous series formed partly by true natural discharges and partly by

naturalized discharges. However, in other situations, such as in the case of an

apparent monotonic trend possibly due to gradual land-use change, it is very

difficult, in general, to make calculations to reconstruct a long homogeneous series

of discharges. In cases like this, it is usually a better choice to work with the most

recent homogeneous subseries, as it reflects approximately the current conditions

on which any future prediction must be based. Statistical tests concerning the

detection of nonstationarities and nonhomogeneities in reduced hydrologic series

are described in Chap. 7 of this book.

Finally, hydrologic series should be representative of the variability expected for

the hydrologic variable of interest. Representativeness is neither a statistical

requirement nor an objective index, but a desirable quality of a sample of empirical

data. To return to the annual peak discharges of the Lehigh River, observed at

Stoddartsville (Fig. 1.1), let us suppose we have to predict the flooding behavior at

this site for the next 50 years. In addition, let us suppose also that our available flood

data sample had started only in 1956/57 instead of 1941/42. Since the two largest

and outstanding flood peaks are no longer in our data sample, our predictions would
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result in a severe underestimation of peak values and, if they were eventually used

to design a dam spillway, they might have caused a major disaster. In brief, our

hypothetical data sample is not representative of the flooding behavior at

Stoddartsville. However, representativeness even of our actual flood peak data

sample, from 1941/42 to 2013/14, cannot be warranted by any objective statistical

criterion.

1.5 Population and Sample

The finite (or infinite) set of all possible outcomes (or realizations) of a random

variable is known as the population. In most situations, with particular emphasis on

hydrology, what is actually known is a subset of the population, containing a

limited number of observations (data points) of the random variable, which is

termed sample. Assuming the sample is representative and forms a homogeneous

(and, therefore, stationary) hydrologic series, one can say that the main goal of

Statistical Hydrology is to draw valid conclusions on the population’s probabilistic
behavior, from that finite set of empirical data. Usually, the population probabilistic

behavior is summarized by the probability distribution function of the random

variable of interest. In order to make such an inference, we need to resort to

mathematical models that adequately describe such probabilistic behavior. Other-

wise, our conclusions would be restricted by the range and empirical frequencies of

the data points contained in the available sample. For instance, if we consider the

sample of flood peaks depicted in Fig. 1.1, a further look at the data points reveals

that the minimum and maximum values are 14 and 903 m3/s, respectively. On the

sole basis of the sample, one would conclude that the probability of having flood

peaks smaller than 14 or greater than 903 m3/s, in any given year, is zero. If one is

asked about next year’s flood peak, a possible but insufficient answer would be that
it will probably be in the range of 14 and 903 m3/s which is clearly an unsatisfactory

statement.

The underlying reasoning of Statistical Hydrology begins with the proposal of a

plausible mathematical model for the probability distribution function of the pop-

ulation. This is a deductive way of reasoning, by which a general mathematical

synthesis is assumed to be valid for any case. Such a mathematical function

contains parameters, which are variable quantities that need to be estimated from

the sample data to fully specify the model and adjust it to that particular case. Once

the parameters have been estimated and the model has been found capable of fitting

the sample data, the now adjusted probability distribution function allows us to

make a variety of probabilistic statements on any future value of the random

variable, including on those not yet observed. This is an inductive way of reasoning

where the general mathematical synthesis of some phenomena is particularized to a

specific case. In summary, deduction and induction are needed to understand the

probabilistic behavior of the population.
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The easiest way of sampling from a population is termed simple random

sampling and is the one which is most often used in Statistical Hydrology. One

can think about simple random sampling in hydrology by devising an abstract plan

according to which the data points (sample elements) are drawn from the population

of the hydrologic variable, one by one, in a random and independent way. Each

drawn element, such as the 1955 flood peak discharge in the Lehigh River at

Stoddartsville, is the result of many causal, interdependent, and dynamic factors

at the origin of that particular event. Such a sampling plan means that for a sample

made of the elements {x1, x2, . . ., xN}, any one of them has been randomly drawn

from the population, among a large number of equally probable choices. Element

x1, for example, had the same chance of being drawn as x25 or any other xi had,
including one or more than one repeated occurrences of x1 itself. The latter

possibility, called sampling with replacement, logically implies the N sample

elements are statistically independent among themselves. The combination of the

attributes of equal probability and collective statistical independence defines a

simple random sample (SRS). A homogeneous and representative SRS is, in

general, the first step for a successful application of Statistical Hydrology.

1.6 Quality of Hydrologic Data

Quantifying hydrologic variables, their variability, and their possible statistical

association (covariation) requires the systematic collection of data, which develop

in time and space. Longer samples of accurate hydrologic data, collected at many

sites over a catchment or geographic area, are at the origin of effective solutions to

the diverse problems of water resource system analysis. The hydrologic series

comprehend rainfall, streamflow, groundwater flow, evaporation, sediment trans-

port, and water-quality data observed at site-specific installations, known as gaug-

ing stations, in appropriately defined time intervals, according to standard

procedures (WMO 1994). The group of gauging stations within a state

(a province, a region, or a country) is known as the hydrometric network (Mishra

and Coulibaly 2009), whose spatial density and maintenance are essential for the

quality and practical value of hydrologic data. Extensive hydrometric networks are

usually maintained and operated by national and/or provincial (federal and/or state)

agencies. In some countries, private companies, from the energy, mining, and water

industry sectors maintain and operate smaller hydrometric networks for meeting

specific demands.

Hydrologic data are not error-free. Errors can possibly arise from any of the four

phases of sensing, transmitting, recording and processing data (Yevjevich 1972).

Errors in hydrologic data may be either random or systematic. The former are

inherent to the act of measuring, carrying with them the unavoidable imprecision of

readings and measurements which will scatter around the true (and unknown)

value. For instance, if in a given day of a given dry season, 10 discharge measure-

ments were made, using the same reliable current meter, operated by the same team
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of skilled personnel, one would have 10 close but different results, thus showing the

essence of random errors in hydrologic data.

Systematic errors are the result of uncalibrated or defective instruments, repeat-

edly wrong readings, inappropriate measuring techniques, or any other inaccuracies

coming from (or conveyed by) any of the phases of sensing, transmitting, recording

and processing hydrologic data. A simple example of a systematic error refers to

eventual changes that may happen around a rainfall gauge, such as a tree growing or

the construction of a nearby building. They can possibly affect the prevalent wind

speed and direction, and thus the rain measurements, resulting in systematically

positive (or negative) differences as compared to previous readings and to other

rainfall gauges nearby. The incorrect extension of the upper end of a rating curve is

also a potential source of systematic errors in flow data.

Some methods of Statistical Hydrology can be used to detect and correct

hydrologic data errors. However, most methods of Statistical Hydrology to be

described in this book assume hydrologic data errors have been previously detected

and corrected. In order to detect and modify incorrect data one should have access

to the field, laboratory, and raw measurements, and proceed by scrutinizing them

through rigorous consistency analysis. Statistical Hydrology deals most of the time

with sampling variability or sampling uncertainty or even sampling errors, as
related to samples of hydrologic variables. The notion of sampling error is best

described by giving a hypothetical example. If five samples of a given hydrologic

variable, each one with the same number of elements, are used to estimate the true

mean value, they would yield five different estimates. The differences among them

are part of the sampling variability around the true and unknown population mean.

This, in principle, would be known only if all the population had been sampled.

Sampling the whole population, in the case of natural processes such as those

pertaining to the water cycle, is clearly impossible, thus disclosing the utility of

Statistical Hydrology. In fact, as already mentioned, the essence of Statistical

Hydrology is to draw valid conclusions on the population’s probabilistic behavior,
taking into account the uncertainty due to the presence and magnitude of sampling

errors. In this context, it should be clear now that the longer the hydrologic series

and the better the quality of their data, the more reliable will be our statistical

inferences on the population’s probabilistic behavior.

Exercises

1. List the main factors that make the hydrologic processes of rainfall and runoff

random.

2. Give an example of a controlled field experiment involving hydrologic pro-

cesses that can be successfully approximated by a deterministic model.

3. Give an example of a controlled laboratory experiment involving hydrologic

processes that can be successfully approximated by a deterministic model.
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4. Give three examples of discrete and three of continuous random variables,

associated with the rainfall phenomenon.

5. Tables 1.1 and 1.2 refer respectively to the annual maxima of daily rainfall

depth (mm) at the rainfall gauging station 19440004 and of mean daily dis-

charge of the Paraopeba river (m3/s) recorded at the gauging station 40800001,

Table 1.1 Annual maximum daily rainfall (mm) at gauge P. N. Paraopeba (Brazil)

Water

year

Max daily

rainfall

(mm)

Water

year

Max daily

rainfall

(mm)

Water

year

Max daily

rainfall

(mm)

Water

year

Max daily

rainfall

(mm)

41/42 68.8 56/57 69.3 71/72 70.3 86/87 109

42/43 Missing 57/58 54.3 72/73 81.3 87/88 88

43/44 Missing 58/59 36 73/74 85.3 88/89 99.6

44/45 67.3 59/60 64.2 74/75 58.4 89/90 74

45/46 Missing 60/61 83.4 75/76 66.3 90/91 94

46/47 70.2 61/62 64.2 77/77 91.3 91/92 99.2

47/48 113.2 62/63 76.4 78/78 72.8 92/93 101.6

48/49 79.2 63/64 159.4 79/79 100 93/94 76.6

49/50 61.2 64/65 62.1 79/80 78.4 94/95 84.8

50/51 66.4 65/66 78.3 80/81 61.8 95/96 114.4

51/52 65.1 66/67 74.3 81/82 83.4 96/97 Missing

52/53 115 67/68 41 82/83 93.4 97/98 95.8

53/54 67.3 68/69 101.6 83/84 99 98/99 65.4

54/55 102.2 69/70 85.6 84/85 133 99/00 114.8

55/56 54.4 70/71 51.4 85/86 101

Table 1.2 Annual maximum mean daily flow (m3/s) at gauge P. N. Paraopeba (Brazil)

Water

year

Max daily

flow (m3/s)

Water

year

Max daily

flow (m3/s)

Water

year

Max daily

flow (m3/s)

Water

year

Max daily

flow (m3/s)

38/39 576 53/54 295 68/69 478 86/87 549

39/40 414 54/55 498 69/70 340 87/88 601

40/41 472 55/56 470 70/71 246 88/89 288

41/42 458 56/57 774 71/72 568 89/90 481

42/43 684 57/58 388 72/73 520 90/91 927

43/44 408 58/59 408 73/74 449 91/92 827

44/45 371 59/60 448 74/75 357 92/93 424

45/46 333 60/61 822 75/76 276 93/94 603

46/47 570 61/62 414 77/78 736 94/95 633

47/48 502 62/63 515 78/79 822 95/96 695

48/49 810 63/64 748 79/80 550 97/98 296

49/50 366 64/65 570 82/83 698 98/99 427

50/51 690 65/66 726 83/84 585

51/52 570 66/67 580 84/85 1017

52/53 288 67/68 450 85/86 437

1 Introduction to Statistical Hydrology 17



both located in Ponte Nova do Paraopeba, in southcentral Brazil. The water-

year from October, 1st to September 30th has been used to select values for

both reduced series. The drainage area of the Paraopeba river catchment at

Ponte Nova do Paraopeba is 5680 km2. Make a scatter plot of concurrent data,

with rainfall maxima in abscissa and flow maxima in ordinate, using the

arithmetic scale, first, and, then, the logarithmic scale in both axes. Provide

hydrologic arguments to explain why the points show scatter in the charts? List

a number of unaccounted physical factors and hydrologic variables that can

possibly help to find further explanation of the variation of annual maximum

discharge, in addition to that provided by rainfall maxima. By adding as many

influential factors and variables as possible to a multivariate relation, do you

expect to fully explain the variation of annual maximum discharge?

6. Regarding the data in Tables 1.1 and 1.2, discuss their possible attributes of

randomness and independence as required by simple random sampling. What is

the best way to deal with missing data as in Table 1.1?

7. List and discuss possible random and systematic errors that may exist in flow

measurements.

8. List and discuss possible random and systematic errors that may exist in rainfall

gauging.

9. List and discuss possible sources of nonhomogeneities (heterogeneities) that

may exist in flow data.

10. List and discuss possible sources of nonhomogeneities (heterogeneities) that

may exist in rainfall data.

11. Access the URL http://waterdata.usgs.gov/pa/nwis/inventory/?site_

no¼01447500 and download the historical series of mean daily discharges

and the reduced series of annual peak discharges, of the Lehigh River at

Stoddartsville, both for the period of record. Extract from the downloaded

daily flows the reduced series of annual maximum mean daily discharges, on

the water-year basis. Plot on the same chart the two reduced series of annual

peak discharges and annual maximum mean daily discharges, against time.

Explain what causes their values to be different. Describe the possible disad-

vantages and drawbacks of using the reduced series of annual maximum mean

daily discharges for designing flood control hydraulic structures?

12. Using the historical series of mean daily discharges as downloaded in Exercise

11, make a time plot of daily flows from January 1st, 2010 to December 31st,

2014. Compare the different results you find in maximum, mean, and minimum

daily mean flows on the basis of water-year and calendar-year. Which time

period, between water-year and calendar-year, would be recommended for

selecting independent sequential data points in reduced series of annual max-

ima and annual minima?

13. Take the sample of 72 annual peak discharges as downloaded in Exercise

11 and separate it into 6 time-nonoverlapping sub-samples of 12 elements

each. Calculate the mean value for each sub-series and for the complete series.

Are all values estimates of the true mean annual flood peak discharge? Which

one is more reliable? Why?
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14. Consider the annual maximum mean daily discharges of the Shokotsu River at

Utsutsu Bridge, in Hokkaido, Japan, as listed in Table 1.3. This catchment, of

1198 km2 drainage area, has no significant flow regulation or diversions

upstream, which is a rare case in Japan. In the Japanese island of Hokkaido,

the water-year coincides with the calendar year. Make a time plot of these

annual maximum discharges and discuss their possible attributes of represen-

tativeness, independence, stationarity, and homogeneity.

15. Suppose a large dam reservoir is located downstream of the confluence of two

rivers. Each river catchment has a large drainage area and is monitored by

rainfall and flow gauging stations at its outlet and upstream. On the basis of this

hypothetical scenario, is it possible to conceive a multivariate model to predict

inflows to the reservoir? Which difficulties do you expect to face in conceiving

and implementing such a model?
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Chapter 2

Preliminary Analysis of Hydrologic Data

Mauro Naghettini

2.1 Graphical Representation of Hydrologic Data

Hydrologic data are usually presented in tabular form (as in Table 1.3), which does

not readily depict the essence of the empirical variability pattern that may exist

therein. Such a desirable depiction can be easily conveyed through the graphical

representation of hydrologic data. In this section, a non-exhaustive selection of

various types of charts for graphically displaying discrete and continuous hydro-

logic random variables is presented and exemplified. The reader interested in more

details on graphing empirical data is referred to Tufte (2007), Cleveland (1985) and

Helsel and Hirsch (1992).

2.1.1 Bar Chart

The varying number of occurrences of a discrete hydrologic variable can be well

summarized by a bar chart, which displays the possible integer values on the

abscissa axis, while the number of occurrences, as corresponding to each possibil-

ity, is drawn as a vertical bar and read on the ordinate axis. Figure 2.1 illustrates an

example of a bar chart representing the number of years in the record, from 0 to

34, for each one of which a corresponding annual number of flood occurrences,

from 0 to 9, has been observed for the Magra River at the Calamazza gauging

station, located in northwestern Italy. A single flood occurrence at this site is

counted for every time flow increases above and then decreases below the threshold

of 300 m3/s. This threshold corresponds to a specific water level, above which the
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river starts posing a threat to lives and properties along the reach’s flood plain

(Kottegoda and Rosso 1997). The flow data sample at Calamazza spans from 1939

to 1972. A further look at Fig. 2.1 suggests an approximately symmetrical distri-

bution of the number of years in the record with a specific count of floods per year,

centered around 4 floods every year.

2.1.2 Dot Diagram

Dot diagrams are useful tools for depicting the shape of the empirical frequency

distribution of a continuous random variable, when only small samples, with typical

sizes of 25–30, are available. This is a quite common situation in hydrological

analysis, due to the usually limited periods of records and data samples of short

lengths.

For creating dot diagrams, data are first ranked in ascending order of their values

and then plotted on a single horizontal axis. As an example, Table 2.1 lists the

annual mean daily discharges of the Paraopeba River at the Ponte Nova do

Paraopeba gauging station, located in southeastern Brazil, for calendar years

1938–1963. In the table’s second column, flows are listed according to the chro-

nological years of occurrence, whereas the third column gives the discharges as

ranked in ascending order. These ranked flow data were then plotted on the dot

diagram shown in Fig. 2.2, where one can readily see a distribution of the sample

points slightly skewed to the right of the discharge 85.7 m3/s, the midpoint value

Fig. 2.1 Example of a bar chart for the number of years in the record with a specific count of flood

occurrences per year, for the Magra River at Calamazza (adapted from Kottegoda and Rosso 1997)
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Table 2.1 Annual mean daily discharges of the Paraopeba River at the Ponte Nova do Paraopeba

gauging station (Brazil), from 1938 to 1963

Calendar year Annual mean daily flow (m3/s) Ranked flows (m3/s) Rank order

1938 104.3 43.6 1

1939 97.9 49.4 2

1940 89.2 50.1 3

1941 92.7 57 4

1942 98 59.9 5

1943 141.7 60.6 6

1944 81.1 68.2 7

1945 97.3 68.7 8

1946 72 72 9

1947 93.9 80.2 10

1948 83.8 81.1 11

1949 122.8 83.2 12

1950 87.6 83.8 13

1951 101 87.6 14

1952 97.8 89.2 15

1953 59.9 92.7 16

1954 49.4 93.9 17

1955 57 97.3 18

1956 68.2 97.8 19

1957 83.2 97.9 20

1958 60.6 98 21

1959 50.1 101 22

1960 68.7 104.3 23

1961 117.1 117.1 24

1962 80.2 122.8 25

1963 43.6 141.7 26

Fig. 2.2 Dot diagram of annual mean daily discharges of the Paraopeba River at the Ponte Nova

do Paraopeba gauging station (Brazil), from 1938 to 1963
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between the 13th and 14th ranked discharges, marked with a cross on the chart.

Another noticeable fact is the occurrence of the sample’s wettest year in 1943, with
an annual mean daily flow distinctly higher than those observed in other years,

which partially explains the distribution’s moderate asymmetry to the right.

Other examples of dot diagrams are shown in Fig. 2.3, for the annual mean,

minimum, and maximum daily discharges, as abstracted (or reduced) from the

historical series of mean daily flows of the Lehigh River recorded at the

Stoddartsville gauging station (http://waterdata.usgs.gov/pa/nwis/inventory/?site_

no¼01447500), for the water years 1943/44 to 1972/73. One can readily notice the

remarkable differences among these plots: annual maximum daily flows are

strongly skewed to the right, largely due to the record-breaking flood of 1955,

whereas mean flows are almost symmetrically distributed around their respective

midpoints, and minimum flows are slightly right-skewed. In the charts of Fig. 2.3,

only the first 30 annual flows from the entire 72-year period of available records

were utilized to illustrate the recommended application range of dot diagrams. Had

the entire record been utilized, the data points would appear unduly close to each

other and too concentrated around the center of the diagram.

2.1.3 Histogram

Histograms are graphical representations employed for displaying how data are

distributed along the range of values contained in a sample of medium to large size

when it becomes convenient to group data into classes or subsets in order to identify

the data’s patterns of variability in an easier fashion. For hydrologic variables,

usually extracted from hydrologic reduced series, samples may be arbitrarily

categorized as small, if N� 30, medium, if 30<N� 70 or large, if N> 70, where

N denotes the sample size. The reduced time series given in Table 2.2 are the mean

annual daily discharges abstracted from the historical series of mean daily dis-

charges of the Paraopeba River at Ponte Nova do Paraopeba, from January 1st, 1938

to December 31st, 1999. The sample formed by the annual mean flows {104.3, 97.9,

. . ., 57.3}, with N¼ 62, is considered as medium-sized and is used to exemplify

how to make a histogram. It is worth reminding ourselves that data in a hydrologic

Fig. 2.3 Dot diagrams of annual minimum, mean, and maximum daily discharges of the Lehigh

River at the Stoddartsville gauging station (PA, USA), from 1943/44 to 1972/73
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sample are extracted from a reduced series of uncorrelated elements that, in turn,

are abstracted from the instantaneous records or from the historical series of daily

values, often with one single value per year to warrant statistical independence.

In order to create a histogram, one first needs to group the sample data into

classes or bins, defined by numerical intervals of either fixed or variable width, and,

then, count the number of occurrences, or the absolute frequency, for each class.

The number of classes (or number of bins), here denoted by NC, depends on the

sample size N and is a key element to histogram plotting. In effect, too few classes

will not allow a detailed visual inspection of the sample characteristics, whereas too

Table 2.2 Annual mean daily flows of the Paraopeba River at Ponte Nova do Paraopeba, from

1938 to 1999

Calendar year Annual mean flow (m3/s) Calendar year Annual mean flow (m3/s)

1938 104.3 1969 62.6

1939 97.9 1970 61.2

1940 89.2 1971 46.8

1941 92.7 1972 79

1942 98 1973 96.3

1943 141.7 1974 77.6

1944 81.1 1975 69.3

1945 97.3 1976 67.2

1946 72 1977 72.4

1947 93.9 1978 78

1948 83.8 1979 141.8

1949 122.8 1980 100.7

1950 87.6 1981 87.4

1951 101 1982 100.2

1952 97.8 1983 166.9

1953 59.9 1984 74.8

1954 49.4 1985 133.4

1955 57 1986 85.1

1956 68.2 1987 78.9

1957 83.2 1988 76.4

1958 60.6 1989 64.2

1959 50.1 1990 53.1

1960 68.7 1991 112.2

1961 117.1 1992 110.8

1962 80.2 1993 82.2

1963 43.6 1994 88.1

1964 66.8 1995 80.9

1965 118.4 1996 89.8

1966 110.4 1997 114.9

1967 99.1 1998 63.6

1968 71.6 1999 57.3

2 Preliminary Analysis of Hydrologic Data 25



many will result in excessively large fluctuations of the corresponding frequencies.

Kottegoda and Rosso (1997) suggest that NC may be approximated by the nearest

integer to
ffiffiffiffi
N

p
, with a minimum value of 5 and a maximum of 25, positing that

histograms for sample sizes of less than 25 are not informative. An alternative is the

Sturges’ rule, proposed by Sturges (1926), who suggested that the number of bins

should be given by

NC ¼ 1þ 3:3 log10N ð2:1Þ

The Sturges’ rule was derived on the assumption of approximately symmetrical data

distribution, which is not the general case for hydrologic samples. For sample sizes

lower than 30 and/or asymmetrical data, the Eq. (2.1) does not usually provide the best

results. For a description of a more elaborate data-driven method for determining the

optimal bin-width and the corresponding number of bins, the reader is referred to

Shimazaki and Shinomoto (2007). Matlab, Excel, and R programs for optimizing

bin-width, through the Shimazaki–Shinomoto method, are available for downloading

from the URL http://176.32.89.45/~hideaki/res/histogram.html#Matlab.

To show how to calculate a frequency table, which is the first step of histogram

plotting, let us take the example of the flows listed in Table 2.2, which forms a

sample of N¼ 62. By applying the
ffiffiffiffi
N

p
and Sturges criteria, NC must be a number

between 7 and 8. Let us fix NC¼ 7 and remind ourselves that the lower limit for

the first class must be less than or equal to the sample minimum value which is

43.6 m3/s, whereas the upper limit of the seventh class must be greater than the

sample maximum of 166.9 m3/s. Since the range R, between the sample maximum

and minimum values, is R¼ 123.3, and NC¼ 7, the assumed fixed class-width

(or bin-width) may be taken as CW¼ 20 m3/s, which is the nearest multiple-of-

ten to 17.61, the ratio between R and NC. Table 2.3 summarizes the results for

(a) the absolute frequencies, given by the number of flows within each class; (b) the

relative frequencies, calculated by dividing the corresponding absolute frequencies

by N¼ 62; and (c) the cumulative relative frequencies.

Table 2.3 Frequency table of annual mean flows of the Paraopeba River at Ponte Nova do

Paraopeba—Records from 1938 to 1999

Class j Class interval (m3/s)

Absolute

frequency fj

Relative

frequency frj

Cumulative

frequency

F ¼
X
j

f rj

1 (30,50] 3 0.0484 0.0484

2 (50,70] 15 0.2419 0.2903

3 (70,90] 21 0.3387 0.6290

4 (90,110] 12 0.1935 0.8226

5 (110,130] 7 0.1129 0.9355

6 (130,150] 3 0.0484 0.9839

7 (150,170] 1 0.0161 1

Sum 62 1
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With the results of Table 2.3, making the histogram shown in Fig. 2.4 is a rather

straightforward operation. A histogram is actually a simple bar chart, with the class

intervals on the horizontal axis and the absolute (and relative) frequencies on the

vertical axis. The salient features of the histogram, shown in Fig. 2.4, are: (a) the

largest concentration of sample data on the third class interval, which probably

contains the central values around which data are spread out; (b) a moderately

asymmetric frequency distribution, as indicated by the larger distance from the 3rd

to the last bin, compared to that from the 3rd to the first bin; and (c) a single

occurrence of a large value in the 7th class interval. It is important to stress,

however, that the histogram is very sensitive to the number of bins, to bin-width,

and to the bin initial and ending points as well. To return to the example of Fig. 2.4,

note that the two last bins have absolute frequencies respectively equal to 3 and

1, which could be combined into a single class interval of width 40 m3/s, absolute

frequency of 4, and ending points of 130 and 170 m3/s. This would significantly

change the overall shape of the resulting histogram. As an aside, application of the

Shimazaki–Shinomoto method to data of Table 2.2 results in a histogram with an

optimized number of bins of only 4.

Histograms of annual mean, minimum, and maximum flows usually differ much

among themselves. The panels (a), (b), and (c) of Fig. 2.5 show histograms of

annual mean, minimum, and maximum daily discharges, respectively, of the

Lehigh River at Stoddartsville for the water years 1943/44 to 2014/15. The histo-

gram of annual mean flows shows a slight asymmetry to the right, which is a bit

more pronounced if one consider the annual minimum flows histogram. However,

in respect of the annual maximum discharges, the corresponding histogram, in

Fig. 2.4 Histogram of annual mean daily flows of the Paraopeba River at Ponte Nova do

Paraopeba—Records from 1938 to 1999
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panel (c) of Fig. 2.5, is much more skewed to the right, thus illustrating a prominent

characteristic of frequency distributions of extreme high flows. As a matter of fact,

ordinary floods occur more frequently and usually cluster around the center of the

histogram. On less frequent occasions, however, extraordinary floods, such as the

1955 extreme flood in the Lehigh River, add a couple of occurrences at bins far

distant from the central ones, giving the usual overall shape of a histogram of

maximum flows. This characteristic pattern of variability is used in later chapters to

formulate and prescribe mathematical models for the probability distributions of

hydrologic maxima.

2.1.4 Frequency Polygon

The frequency polygon is another chart based on the frequency table and is also

useful to diagnose the overall pattern of the empirical data variability. Such a

polygon is formed by joining the midpoints of the topsides of the histogram bars,

after adding one bin on both sides of the diagram. The frequency polygon, based on

the relative frequencies of the histogram of Fig. 2.5, is depicted in Fig. 2.6. Note

that, as the frequency polygon should start and end at zero frequency and have the

total area equal to that of the histogram, its initial and end points are respectively

located at the midpoints of its first and last bins. Thus, the frequency polygon of

Fig. 2.6 starts at the abscissa equal to 20 m3/s and ends at 180 m3/s, both with a

relative frequency equal to zero. For a single-peaked frequency polygon, the

abscissa that corresponds to the largest ordinate is termed mode and corresponds

to the most frequent value in that particular sample. In the case of Fig. 2.4, the

sample mode is 80 m3/s.

Frequency polygons are usually created on the basis of relative frequencies

instead of absolute frequencies. The relative frequencies, plotted on the vertical

axis, should certainly be bounded by 0 and 1. As the sample size increases, the

number of bins also increases and the bin-width decreases. This has the overall

effect of gradually smoothing the shape of the frequency polygon, turning it into a

frequency curve instead. In the limiting and hypothetical case of an infinite sample,

such a frequency curve would become the population’s probability density func-

tion, whose formal definition is one of the topics discussed in Chap. 3.

Fig. 2.5 Histograms of annual mean, minimum, and maximum daily flows of the Lehigh River at

Stoddartsville—Records from 1943/44 to 2014/15
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2.1.5 Cumulative Relative Frequency Diagram

The cumulative relative frequency diagram is made by joining, through straight

lines, the pairs formed by the upper limit of each bin interval and the cumulative

relative frequency up to that point, as read from a frequency table. On the vertical

axis, the diagram gives the frequency that a random variable is equal to or less than

a value read on the horizontal axis. As an alternative and more practical method of

drawing it, the cumulative relative frequency diagram can also be created without

previously making a frequency table. This can be carried out through the following

steps: (1) rank data in ascending order of values; (2) associate sorted data with their

respective ranking orders m, with 1�m�N; and (3) associate ranked data with

their corresponding non-exceedance frequencies, as calculated by the ratio m/N.
Besides being more expeditious and practical, this alternative method has the

additional advantage of not depending on the previous definition of the number of

class intervals, which always entails an element of subjectivity. Both methods have

been used in plotting the cumulative relative frequency diagrams shown in Fig. 2.7,

for the annual mean daily flows of the Paraopeba River at Ponte Nova do

Paraopeba. The diagram in dashed line corresponds to plotting cumulative frequen-

cies as calculated in the 5th column of Table 2.3, whereas the diagram in continuous

line results from ranking data the alternative way.

Fig. 2.6 Frequency polygon of annual mean daily flows of the Paraopeba River at Ponte Nova do

Paraopeba—Records from 1938 to 1999
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The cumulative frequency diagram allows the immediate identification of the

second quartile, denoted by Q2, which corresponds to the value associated with the

non-exceedance frequency of 0.5. The first quartile Q1 and the third quartile Q3

correspond respectively to the frequencies of 0.25 and 0.75. For the continuous-line

diagram of Fig. 2.7,Q2¼ 82.7,Q1¼ 67.95; andQ3¼ 99.38 m3/s. The Inter-Quartile

Range, or IQR, is given by the difference between Q3 and Q1 and is commonly

utilized as a criterion to identify outliers, which are defined as points (or elements)

that deviate substantially from the pattern of variation shown by the other elements

of the sample. According to this criterion, a high outlier is any sample element that

is larger than (Q3þ 1.5IQR) and, analogously, a low outlier is any sample element

that is smaller than (Q1� 1.5IQR). An outlier might be the result either of a gross

observational error or of an extraordinary single event. If, after a close look at data,

the former case is confirmed, the outlier must simply be removed from the sample.

However, in the case of a rare and extraordinary occurrence, removing the outlier

from the sample would be an incorrect decision since it would make the sample less

representative of the variation pattern of the random quantity in question. To return

to the example of Fig. 2.7, according to the IQR criterion, the 1983 annual mean

flow of 166.9 m3/s is a high outlier.

Analogously to quartiles, one can make reference to deciles, for cumulative

frequencies of 0.1, 0.2, 0.4, . . ., 0.9, to percentiles for frequencies of 0.01, 0.02,

Fig. 2.7 Cumulative relative frequency diagrams of the annual mean daily flows of the Paraopeba

River at Ponte Nova do Paraopeba—Records from 1938 to 1999. Dashed line: diagram with

frequencies from Table 2.3. Continuous line: diagram for ranked data
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0.03, . . ., 0.99, and more generically to quantiles. It is worth noting that by

transposing the horizontal and vertical axes of a cumulative frequency diagram,

one would get the quantile plot or Q-plot. Similarly to the frequency polygon, as the

sample size increases, the cumulative frequency diagram is smoothened and turns

itself into a cumulative frequency distribution curve. In the limiting and hypothet-

ical case of an infinite sample, such a frequency curve would become the

population’s cumulative probability distribution function. These concepts are fur-

ther discussed in Chap. 3.

2.1.6 Duration Curves

The duration curve is a variation of the cumulative relative frequency diagram,

obtained by replacing the non-exceedance frequency by the fraction of a specific

time period, during which a given value, now read on the horizontal axis, has been

equaled or exceeded. In engineering hydrology, duration curves, in general, and

flow duration curves (FDCs), in particular, are used with much success to graphi-

cally synthesize the variability of a hydrologic quantity, especially daily flows

ranked according to their values. FDCs are also very frequently used for water

resources planning and management, and, in some countries, as a means to calcu-

late maximum flow abstractions related to water users’ rights.
In general, for a flow gauging station with N days of records, a flow duration

curve can be created through the following sequential steps: (1) rank flows Q in

descending order of values; (2) assign to each sorted flow Qm its respective

ranking order m; (3) relate to each ranked flow Qm its respective empirical

frequency of being equaled or exceeded P(Q�Qm), which can be estimated by

the ratio (m/N ); and (4) plot the ranked flows on the vertical axis, as matched by

their respective percent frequencies 100(m/N ), on the horizontal axis. Flow

duration curves can be plotted on a yearly basis, with N¼ 365 (or 366), for any

given year, when it is termed an Annual Flow Duration Curve (AFDC). When it is

calculated over a larger-than-a-year period or over all daily flow records available

in the sample, it is referred to as just an FDC. In order to give an example of

AFDC and FDC charting, let us take the case of all daily flows of the Lehigh River

recorded at the gauging station of Stoddartsville (http://waterdata.usgs.gov/pa/

nwis/inventory/?site_no¼01447500). The annual hydrographs for all water-years

in the available records, from 1943/44 to 2014/2015, are plotted on the back-

ground of Fig. 2.8, whereas the hydrograph for the water-year 1982/83, consid-

ered as a typical one, is highlighted in the foreground. Note that the vertical axis in

Fig. 2.8 is displayed on a logarithmic scale so that to allow all flow data be plotted

on a single chart.

Figure 2.9 depicts AFDCs for four particular years and the FDC for the period-

of-record at the Stoddartsville gauging station. The 1964–1965 AFDC corresponds

to the year with the smallest annual mean daily flow and is representative of dry

conditions all year round. In contrast, the 2010–2011 AFDC reflects the year-round
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wettest conditions in the period-of-record. The AFDC for 1954–1955 depicts the

flow behavior for the year, throughout which discharges vary the most, while for

1989–1990 they vary the least. Finally, the FDC, comprehending all 26,298 daily

flows recorded from October 1st, 1943 to September 30th, 2015, synthesize all

possible variations of daily flows throughout the period-of-record. One might ask

why, in the case of AFDCs and FDCs, daily flows are employed with no concerns

regarding the unavoidable statistical dependence that exist among their time-

consecutive values. In fact, the chronological order of daily flows does not matter

for AFDCs and FDCs, since it is expected to be entirely disrupted by ranking data

according to their magnitudes, which are the only important attributes in this type of

analysis.

2.2 Numerical Summaries and Descriptive Statistics

The essential features of the histogram (or frequency polygon) shape can be

summarized through the sample descriptive statistics. These are simple and concise

numerical summaries of the empirical frequency distribution of the random vari-

able. They have the advantage, over the graphical representation of data, of

Fig. 2.8 Annual hydrographs of the Lehigh River at Stoddartsville for the period-of-record (1943/

44 to 2014/15)
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providing the sample numerical information to later infer the population probabi-

listic behavior. Descriptive statistics may be grouped into (1) measures of central

tendency; (2) measures of dispersion; and (3) measures of asymmetry and tail

weight.

2.2.1 Measures of Central Tendency

Hydrologic data usually cluster around a central value, as in the dot diagrams of

Figs. 2.2 and 2.3. The sample central value can be located by one of the measures of

central tendency, among which the most often used are the mean, the median, and

the mode. The right choice among the three depends on the intended use of the

central value location.

2.2.1.1 Mean

For a sample of size N consisting of the data points { x1, x2, . . . , xN}, the arithmetic

mean is estimated as

Fig. 2.9 AFDCs and FDC of the Lehigh River at Stoddartsville
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x ¼ x1 þ x2 þ . . .þ xN
N

¼ 1

N

XN
i¼1

xi ð2:2Þ

If from the N data points of variable X, N1 are equal to x1, N2 are equal to x2 and so
forth up to the kth sample value, then, the arithmetic mean is given by

x ¼ N1x1 þ N2x2 þ . . .þ Nkxk
N

¼ 1

N

Xk
i¼1

Nixi ð2:3Þ

Analogously, if fi denotes the relative frequency of a generic datum point xi,
Eq. (2.3) can be rewritten as

x ¼
Xk
i¼1

f ixi ð2:4Þ

The sample arithmetic mean is the most used measure of central tendency and

has an important significance as an estimate of the population mean μ. As men-

tioned in Sect. 2.1.4, in the limiting case of an infinite sample of a continuous

random variable X or, in other terms, in the case of a frequency polygon becoming a

probability density function, the population mean μ would be located on the

horizontal axis exactly at the coordinate of the centroid of the area enclosed by

the probability curve and the abscissa axis.

Alternatives to the sample arithmetic mean, but still using the same implied idea,

are two other measures of central tendency which can be useful in some special

cases. They are the harmonic mean, denoted by xh, and the geometric mean xg. The
harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of the

sample data points. It is formally defined as

xh ¼ 1

1=Nð Þ 1=x1ð Þ þ 1=x2ð Þ þ . . .þ 1=xNð Þ½ � ð2:5Þ

Typically, the harmonic mean gives a better notion of a mean, in situations

involving rates of variation. For example, if a floating device traverses the first

half of a river reach with the velocity of 0.4 m/s and the other half at 0.60 m/s, then

the arithmetic mean speed would be x ¼ 0:50m=s and the harmonic mean would be

xh ¼ 0:48 m=s. The latter is actually the true mean velocity at which the floating

device crosses the entire river reach.

On the other hand, the geometric mean xg is more meaningful for estimating the

mean of a variable whose sample points either can vary throughout orders of

magnitude and are best described by their logarithms, such as the fecal coliform

concentrations in a water body, or refer to proportional effects rather than additive,

such as the percentage growth of the human population. The geometric mean can be
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applied only to a variable of the same sign and it is consistently smaller than or

equal to the arithmetic mean. For a sample of size N, the geometric mean is given by

xg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1:x2: . . . :xNN

p ¼
YN
i¼1

xið Þ1=N ¼ exp
1

N

XN
i¼1

lnxi

 !
ð2:6Þ

and it can be easily proved that the geometric mean is equal to the antilogarithm of

the arithmetic mean of the logarithms of data elements xi.

2.2.1.2 Median

The arithmetic mean, by virtue of taking into account all sample elements, has the

disadvantage of being possibly affected by outliers. The median, denoted by xmd, is

another measure of central tendency that is considered resistant (or robust) to the

effects that eventual sample outliers can produce. The median is defined as the

value that separates the sample into two subsamples, each with 0.5 cumulative

frequency and, thus, is equivalent to the second quartile Q2. If sample data are

ranked in ascending order such that x 1ð Þ � x 2ð Þ � . . . � x Nð Þ
� �

, then the median

is given by

xmd ¼ x Nþ1
2ð Þ if N is an odd number or xmd ¼

x N
2ð Þ þ x N

2
þ1ð Þ

2
if N is even ð2:7Þ

2.2.1.3 Mode

The mode xmois the value that occurs most frequently and is usually taken from the

frequency polygon (in Fig. 2.6, xmo¼ 80 m3/s). In the limiting case of an infinite

sample of a continuous random variable and the frequency polygon turning into a

probability density function, the mode will be located at the abscissa value

corresponding to the point where the derivative of the function is zero, observing

however that, for multimodal density functions, more than one such point can

occur. For skewed frequency polygons, where the ranges of sample values to the

right and to the left of the mode greatly differ, the measures of central tendency

show peculiar characteristics. When the right range is much larger than the left one,

the polygon is positively asymmetric (or skewed), a case in which xmo < xmd < x.
For the opposite case, the polygon is said to be negatively asymmetric (or skewed)

and x < xmd < xmo. When both ranges are approximately equivalent, the polygon

is symmetric and the three measures of central tendency are equal or very close to

each other.
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2.2.2 Measures of Dispersion

The degree of variability of sample points, around their central value, is given by

the measures of dispersion. Among these, the simplest and most intuitive is the

range R, given by R ¼ x Nð Þ � x 1ð Þ, where x(N ) and x(1) denote, respectively, the Nth

and the 1st sample elements, ranked in ascending order of values. Note that the

range R depends only on the maximum and minimum sample points, which might

be strong outliers and thus make R an exaggerated measure of scatter. A measure

that is more resistant (or robust) to the presence of outliers is given by the Inter-

quartile Range (IQR) as defined by IQR¼Q3�Q1.

Both measures already mentioned, based on only two sample characteristic

values though easy to calculate, are not representative of the overall degree of

scatter because they actually ignore the remaining sample elements. Such problems

can be overcome through the use of other dispersion measures based on the mean

deviation of sample points to their central value. The main dispersion measures in

this category are the mean absolute deviation and the standard deviation.

2.2.2.1 Mean Absolute Deviation

The mean absolute deviation, denoted by d, is the arithmetic mean of the absolute

deviations from the sample mean. For a sample consisting of the elements {x1,
x2, . . . , xN}, d is defined as

d ¼ x1 � xj j þ x2 � xj j þ . . . xN � xj j
N

¼ 1

N

XN
i¼1

xi � xj j ð2:8Þ

The mean absolute deviation linearly weights both small and large deviations from

the sample mean, which is seen as simpler and more intuitive, as compared to other

measures of dispersion. However, in spite of being a rather natural measure of

dispersion, the mean absolute deviation of a sample leads to a biased estimation of

the population equivalent measure, which is an undesirable attribute which will be

explained in later chapters.

2.2.2.2 Standard Deviation

An alternative to replacing the mean absolute deviation as a dispersion measure is

to square the deviations from the sample mean, which would give more weight to

the large deviations. For a data set { x1, x2, . . . , xN}, the so-called uncorrected

variance, here denoted by s2u, is defined as the arithmetic mean of the squared

deviations from the sample mean. Formally,
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s2u ¼
xi � xð Þ2 þ x2 � xð Þ2 þ . . . þ xN � xð Þ2

N
¼ 1

N

XN
i¼1

xi � xð Þ2 ð2:9Þ

Analogously to the population mean μ, the population variance, represented by σ2,
can be unbiasedly estimated from a sample through the corrected variance equation,

given by

s2 ¼ 1

N � 1

XN
i¼1

xi � xð Þ2 ð2:10Þ

The term unbiasedness is freely used here to indicate that, by averaging the

estimates of a notional large set of samples, there will be no difference between the

population variance σ2 and the average sample variance s2. Equation (2.9) yields a

biased estimate of σ2, whereas Eq. (2.10) is unbiased; to adjust the uncorrected

variance s2u for bias, one needs to multiply it by the factor N= N � 1ð Þ. Another way
to interpret Eq. (2.10) is to state that there has been a reduction of 1 degree of

freedom, from the N original ones, as a result of the previous estimation of the

population mean μ by the sample mean x. The terms bias and degrees of freedom

will be formally defined and further explained in Chap. 6.

The variance is expressed in terms of the squared units of the original variable.

To preserve the variable’s original units, the sample standard deviation s is defined
as the positive square root of the sample unbiased variance s2, and given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xð Þ2 þ x2 � xð Þ2 þ . . . þ xN � xð Þ2

N � 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1ð Þ
XN
i¼1

xi � xð Þ2
vuut

ð2:11Þ

Unlike the mean absolute deviation, the standard deviation stresses the largest

(positive and negative) deviations from the sample mean and is the most used

measure of dispersion. Expansion of the right-hand side of Eq. (2.11) can facilitate

the calculations to obtain the standard deviation, as follows:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1ð Þ
XN
i¼1

x2i � 2x
XN
i¼1

xi þ Nx2

 !vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1ð Þ
XN
i¼1

x2i �
N

N � 1ð Þ x
2

vuut
ð2:12Þ

On comparing the degrees of variability or dispersion among two or more

different samples, one should employ the sample coefficient of variation CV,
given by the ratio between the standard deviation s and the mean x. The coefficient
CV is a dimensionless positive number and should be applied, as is, only to samples
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of positive numbers with non-zero means. If data are negative, CV must be

calculated with the absolute value of the sample mean.

2.2.3 Measures of Asymmetry and Tail Weight

Additional descriptive statistics are needed to fully characterize the shape of a

histogram or of a frequency polygon. These are given by the measures of asymme-

try and tail weight, among which the most important are the coefficients of

skewness and kurtosis, respectively.

2.2.3.1 Coefficient of Skewness

For a sample {x1, x2, . . . , xN}, the coefficient of skewness g is a dimensionless

number given by

g ¼ N

N � 1ð Þ N � 2ð Þ

XN
i¼1

xi � xð Þ 3

s 3
ð2:13Þ

In Eq. (2.13), the first ratio term of its right-hand side represents the necessary

correction to make g an unbiased estimate of the population coefficient of

skewness γ. The second ratio term is dimensionless and measures the cumulative

contributions of the cubic deviations from the sample mean, positive and negative,

as scaled by the standard deviation raised to the power 3.

Positive and negative deviations, after raised to the power 3, will keep their

signs, but will result in much larger numbers. The imbalance, or balance, of these

cubic deviations, as they are summed throughout the data set, will determine the

sign and magnitude of the coefficient of skewness g. If g is positive, the histogram

(or frequency polygon) is skewed to the right, as in Figs. 2.5 and 2.6. In this case,

one can notice, from the charts and previous calculations, that the sample mode is

smaller than the median, which, in turn, is smaller than the mean. The opposite

situation would arise if g is negative. When there is a balance between positive and

negative cubic deviations, the sample coefficient of skewness will be equal to zero

(or close to zero) and all three measures of central tendency will converge to a

single value. The coefficient of skewness is a bounded number since it can be

proved that gj j � ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

p
.

In general, samples of hydrologic maxima, such as annual peak discharges or

annual maximum daily rainfall depths, have positive coefficients of skewness. As

already mentioned in this chapter, such a general statement is particularly true for

flood data samples, for which ordinary frequent floods are usually clustered around

the mode of flood discharges, while extraordinary floods can show great deviations
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from it. Just a few occurrences of such large floods are needed to determine the

usual right-skewed shape of a frequency polygon of flood flows. It appears, then,

logical to prescribe positively skewed probability density functions to model flood

data samples. It should be recognized, however, that as the sample coefficient of

skewness is very sensitive to the presence of extreme-flood data in small-sized

samples, the pursuit of close matching the model and sample skewness cannot be

per se an unequivocal argument in favor of a specific probability density function.

2.2.3.2 Coefficient of Kurtosis

A measure of the tail weight (or heaviness of tails) of a frequency curve, in the case

of a sample, or of a probability density function, in the case of a mathematical

model of a continuous random variable, is given by the coefficient of kurtosis. For a

sample, this dimensionless coefficient is calculated by

k ¼ N N þ 1ð Þ
N � 1ð Þ N � 2ð Þ N � 3ð Þ

XN
i¼1

xi � xð Þ 4

s 4
� 3

N � 1ð Þ2
N � 2ð Þ N � 3ð Þ � 1

" #
ð2:14Þ

The interpretation of the coefficient of kurtosis, as a frequency distribution shape

descriptor, has been much debated by statisticians. The classical notion used to be

that the coefficient k measures both peakedness (or flatness) and tail weight.

Westfall (2014) contends that the interpretation of k as a measure of peakedness
is incorrect and asserts that it reflects only the notion of tail extremity, meaning the

presence of outliers, in the case of a sample, or the propensity to produce outliers, in

the case of a probability distribution. However, the classical interpretation of

kurtosis as a measure of peakedness and tail weight remains valid if applied to

unimodal symmetric distributions.

For being a coefficient based on the sum of deviations from the mean, raised to

the power 4, it is evident that to yield reliable estimates of kurtosis, the sample size

must be sufficiently large, of the order of N¼ 200 as suggested by Kottegoda and

Rosso (1997). The coefficient of kurtosis is more relevant if used to compare

symmetric unimodal distributions, as a relative index for the distribution tail

heaviness. In fact, as k indicates how clustered around the sample mean the data

points are, it also reflects the presence of infrequent points, located in the lower and

upper tails of the distribution.

It is common practice to subtract 3 from the right-hand side of Eq. (2.14) to

establish the coefficient of excess kurtosis ke, relative to a perfectly symmetric

unimodal distribution with k¼ 3. In this context, if ke¼ 0, the distribution is said

mesokurtic; if ke< 0, it is platykurtic; and if ke> 0, it is leptokurtic. Figure 2.10

illustrates the three cases. Note in Fig. 2.10 that the leptokurtic distribution is

sharply peaked at its center, but, for values much smaller or much larger than its

mode, the corresponding frequencies decrease at a lower rate when compared to
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that of the mesokurtic distribution, thus revealing its relative heavier tails. The

opposite line of reasoning applies to the platykurtic distribution.

In dealing with reduced hydrologic time series, which usually produce samples

of sizes smaller than 80, the most useful descriptive statistics to describe the shape

of a frequency distribution are (1) the mean, median, and mode, for central

tendency; (2) the inter-quartile range, variance, standard deviation, and coefficient

of variation, for dispersion; and (3) the coefficient of skewness for asymmetry.

Table 2.4 gives a summary of these and other descriptive statistics for the annual

mean flows of the Paraopeba River at Ponte Nova do Paraopeba, listed in Table 2.2.

Results from Table 2.4 show that the mode is lower than the median, which is lower

than the mean, thus indicating a positively skewed frequency distribution. This is

confirmed by the sample coefficient of skewness of 0.808. Although the sample has

only 62 elements, the sample coefficient of excess kurtosis of ke¼ 0,918 suggests a

leptokurtic distribution, relative to a perfectly symmetric and unimodal mesokurtic

distribution with ke¼ 0.

Fig. 2.10 Types of frequency distributions with respect to kurtosis
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2.3 Exploratory Methods

Tukey (1977) coined the term EDA—Exploratory Data Analysis—to identify an

approach which utilizes a vast collection of graphical and quantitative techniques to

describe and interpret a data set, without the previous concern of formulating

assumptions and mathematical models for the random quantity being studied.

EDA is based on the idea that data reveal by themselves their underlying structure

and model. Among the many techniques proposed in the EDA approach, we

highlight the two most commonly used: the box plot and the stem-and-leaf chart.

2.3.1 Box Plot

The box plot consists of a rectangle aligned with the sample’s first (Q1) and third

(Q3) quartiles, containing the median (Q2) on its inside, as illustrated in the example

chart of Fig. 2.11, for the annual mean daily flows of the Paraopeba River at Ponte

Nova do Paraopeba. From the rectangle’s upper side, aligned with Q1, a line is

extended up to the sample point whose magnitude does not exceed (Q3þ 1.5IQR),
the high-outlier detection bound. In the same way, another line is extended from the

rectangle’s lower side, aligned with Q3, down to the sample point whose magnitude

is not less than (Q1� 1.5IQR), the low-outlier detection bound. These extended

lines are called whiskers. Any sample element lying outside the whiskers is

Table 2.4 Descriptive statistics for the sample of annual mean daily flows of the Paraopeba River

at Ponte Nova do Paraopeba—Records from 1938 to 1999

Statistic Notation Estimate Unit Calculation

Mean x 86.105 m3/s Eq. (2.2)

Mode xmo 80 m3/s Frequency polygon

Median xmd 82.7 m3/s Eq. (2.7)

Harmonic mean xh 79.482 m3/s Eq. (2.5)

Geometric mean xg 82.726 m3/s Eq. (2.6)

Range R 123.3 m3/s (Maximum–minimum)

First quartile Q1 67.95 m3/s Eq. (2.7)! 1st half-sample

Third quartile Q3 99.38 m3/s Eq. (2.7)! 2nd half-sample

Inter-quartile range IQR 31.43 m3/s (Q3�Q1)

Mean absolute deviation d 19.380 m3/s Eq. (2.8)

Variance s2 623.008 (m3/s)2 Eq. (2.10)

Standard deviation s 24.960 m3/s Eq. (2.11)

Coefficient of variation CV 0.290 Dimensionless s=x

Coefficient of skewness g 0.808 Dimensionless Eq. (2.13)

Coefficient of kurtosis k 3.918 Dimensionless Eq. (2.14)

Excess kurtosis ke 0.918 Dimensionless (k�3)
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considered an outlier and pinpointed, as the 1983 mean flow of 166.9 m3/s marked

with an asterisk in the box plot of Fig. 2.11.

A box plot is very useful for data analysis as it allows a broad view of sample

data, showing on a single chart the measures of central tendency and dispersion, in

addition to pinpointing possible outliers and providing a graphical outline of

skewness. The central value is given by the median. Data dispersion is graphically

summarized in the box defined by Q1 and Q3. The whiskers provide the range of

non-outlier sample points. Possible outliers are directly identified in the plot. A clue

on the skewness is given by the asymmetry between the lengths of the lines

departing from the rectangle to the sample maximum and minimum values. Box

plots can also be drawn horizontally and are particularly helpful for comparing two

or more data samples in a single chart.

2.3.2 The Stem-and-Leaf Diagram

For samples of moderate to large sizes, the histogram and the frequency polygon are

effective for illustrating the shape of a frequency curve. For small tomoderate sample

sizes, an interesting alternative is given by the stem-and-leaf diagram. This simple

chart groups data in a singular and convenient way, so that all information contained

in the data set is graphically displayed. The stem-and-leaf diagram also allows the

Fig. 2.11 Box plot of annual mean daily discharges (in m3/s or cumecs) of the Paraopeba River at

Ponte Nova do Paraopeba—Records from 1938 to 1999
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location of extreme points and possible data gaps in the sample. To give an example

of a stem-and-leaf diagram consider again the sample of annual mean daily flows of

the Paraopeba River, listed in Table 2.2. First, the 62 flows in the sample are ranked

in ascending order, ranging from the minimum of 43.6 m3/s to the maximum of

166.9m3/s. There is no fixed rule in grouping data on a stem-and-leaf diagram since it

depends largely on the data set specifics. The key idea is to separate each sample

datum into two parts: the first, called stem, is placed on the left of a vertical line on the

chart, and the second, the leaf, stays on the right, as shown in Fig. 2.12.

The stem indicates the initial numerical digit (or digits) of each sample point

while the leaf gives its remaining digits. In the example of Fig. 2.12, the sample

minimum of 43.6 is shown in the fourth row from top to bottom, with a stem of

4 and a leaf of 36, whereas the maximum is located in the penultimate row, with a

stem of 16 and a leaf of 69. Note that, in the example of Fig. 2.12, the stems

Fig. 2.12 Stem-and-leaf diagram of annual mean daily flows of the Paraopeba River at Ponte

Nova do Paraopeba—Records from 1938 to 1999
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correspond to tens and/or hundreds, while the leaves are assigned to units multi-

plied by 10. A stem with many leaves corresponds to a large number of occurrences,

as in stems numbered 8 in Fig. 2.12. In addition, leaf absolute frequencies can be

cumulated, from the top down and from the bottom up to the row that contains the

median. Cumulative frequencies are annotated on the left of stems, except for the

median row, which shows only its respective absolute frequency. As a complement,

the rows containing the first and third quartiles may be highlighted as well.

The stem-and-leaf diagram, after being rotated 90� to the left around its center,

resembles a histogram but without any loss of information resulting from grouping

sample data. With the stem-and-leaf diagram, it is possible to visualize the location

of the median, the overall and inter-quartile ranges, the data scatter, the asymmetry

(symmetry) with which the sample points are distributed, the data gaps, and

possible outliers. In Fig. 2.12, for convenience, the stems were taken as double

digits to enhance the way the leaves are distributed. If desired, the first of a double-

digit stem can be marked with a minus sign (�) to identify the leaves that vary from

0 to 4, while the second digits are marked with a plus sign (þ) for leaves going from

5 to 9. Also, there may be cases where the leaves can possibly be rounded off to the

nearest integer, for more clarity.

2.4 Associating Data Samples of Different Variables

In the preceding sections, the main techniques for organizing, summarizing, and

charting data from a sample of a single hydrologic variable were presented. It is

relatively common, however, to be interested in analyzing the simultaneous behav-

ior of two (or more) variables, looking for possible statistical dependence between

them. In this section, we will look at the simplest case of two variables X and Y,
whose data are concurrent or abstracted over the same time interval, and organized

in pairs denoted by {(x1,y1), (x2,y2), . . ., (xN, yN)}, where the subscript refers to a

time index. What follows is a succinct introduction to the topics of correlation and

regression, which are detailed in Chap. 9. In this introduction, the focus is on

charting scatterplots and quantile–quantile plots for two variables X and Y.

2.4.1 Scatterplot

A scatterplot is a Cartesian-coordinate chart on which the pairs {(x1,y1), (x2,y2), . . .,
(xN, yN)}, of concurrent data from variables X and Y are plotted. To illustrate how to

create a scatterplot and explore its possibilities, let us take as an example the

variables: X¼ annual total rainfall depth, in mm, and Y¼ annual mean daily

discharges, in m3/s, for the Paraopeba River catchment, of 5680-km2 drainage

area. A sample of variable Y can be reduced from the historical time series of

mean daily discharges from the gauging station coded 40800001. Similarly, a
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sample of variable X can be extracted from the series of daily rainfall depths

observed at the gauging station 01944004, assuming these are good estimates of

the areal mean rainfall over the catchment. The samples of concurrent data on X and

Y, as abstracted on the water-year from October to September, are listed in

Table 2.5. Figs. 2.13 and 2.14 show different possibilities for the scatterplot

between X and Y: the first with marginal histograms and the second with marginal

box plots for both variables.

Looking at the scatterplots of Figs. 2.13 and 2.14, one can readily see that the

higher the annual rainfall depth, the higher the annual mean discharge, thus

indicating a positive association between X and Y. However, one can also note

Table 2.5 Annual mean flows and annual total rainfall depths for water-years 1941/42 to 1998/

99—Gauging stations: 4080001 for discharges and 01944004 for rainfall

Water

year

Annual rainfall

depth (mm)

Annual mean

daily flow (m3/s)

Water

year

Annual rainfall

depth (mm)

Annual mean

daily flow

(m3/s)

1941/42 1249 91.9 1970/71 1013 34.5

1942/43 1319 145 1971/72 1531 80.0

1943/44 1191 90.6 1972/73 1487 97.3

1944/45 1440 89.9 1973/74 1395 86.8

1945/46 1251 79.0 1974/75 1090 67.6

1946/47 1507 90.0 1975/76 1311 54.6

1947/48 1363 72.6 1976/77 1291 88.1

1948/49 1814 135 1977/78 1273 73.6

1949/50 1322 82.7 1978/79 2027 134

1950/51 1338 112 1979/80 1697 104

1951/52 1327 95.3 1980/81 1341 80.7

1952/53 1301 59.5 1981/82 1764 109

1953/54 1138 53.0 1982/83 1786 148

1954/55 1121 52.6 1983/84 1728 92.9

1955/56 1454 62.3 1984/85 1880 134

1956/57 1648 85.6 1985/86 1429 88.2

1957/58 1294 67.8 1986/87 1412 79.4

1958/59 883 52.5 1987/88 1606 79.5

1959/60 1601 64.6 1988/89 1290 58.3

1960/61 1487 122 1989/90 1451 64.7

1961/62 1347 64.8 1990/91 1447 105

1962/63 1250 63.5 1991/92 1581 99.5

1963/64 1298 54.2 1992/93 1642 95.7

1964/65 1673 113 1993/94 1341 86.1

1965/66 1452 110 1994/95 1359 71.8

1966/67 1169 102 1995/96 1503 86.2

1967/68 1189 74.2 1996/97 1927 127

1968/69 1220 56.4 1997/98 1236 66.3

1969/70 1306 72.6 1998/99 1163 59.0
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the pairs {(x1,y1), (x2,y2), . . ., (xN, yN)} are considerably scattered, thus showing that
the randomness carried by Y cannot be fully explained by the variation of X.
Additional concurrent observations of other relevant variables, such as, for

instance, pan evaporation data as an estimate of potential evapotranspiration,

Fig. 2.13 Example of a scatterplot with marginal histograms

Fig. 2.14 Example of a scatterplot with marginal box plots
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could certainly reduce the degree of scatter. However, for a large catchment of

5680 km2, with a substantial space-time variation of climate characteristics, soil

properties, vegetation, and rainfall, the inclusion of more and more additional

variables would never be enough to fully explain the variation of annual flows.

Furthermore, the marginal histograms and box plots show that annual rainfalls are

more scattered and more positively skewed than annual flows.

The degree of linear association of a set of N pairs {(x1,y1), (x2,y2), . . ., (xN, yN)}
of concurrent data from variables X and Y can be quantified by the sample

correlation coefficient, denoted by rX,Y, and given by

rX,Y ¼ sX,Y
sX sY

¼ 1

N � 1

XN
i¼1

xi � xð Þ yi � yð Þ

sX sY
ð2:15Þ

This dimensionless coefficient is the result of scaling the sample covariance, which

is represented in Eq. (2.15) by sX,Y, by the product sX sY of the standard deviations of
the variables. The correlation coefficient must satisfy the condition �1 � rX,Y � 1

and it reflects the degree of linear association between variables X and Y: in the

extreme cases, a value of 1 or –1 indicates perfectly linear positive or negative

association, respectively, and a value of 0 means no linear association.

Figure 2.15a illustrates the case of a positive partial association, when Y increases
as X increases, whereas Fig. 2.15b, c show, respectively, a negative partial associ-

ation and a no linear association. Figure 2.15c further shows that a zero correlation

coefficient does not necessarily imply there is no other form of association or

dependence between the variables. In the particular case depicted in Fig. 2.15c,

the dependence between X and Y indeed exists, but it is not of the linear form.

Finally, it is worth noting that an eventual strong association between two variables

does not imply a cause–effect relation. There are cases, such as the association

between annual flows and rainfall depths, when one variable causes the other to

vary. However, in other cases, even with a high correlation coefficient, such a

physical relation between variables may not be evident or even plausible, or may

not exist at all.

Fig. 2.15 Types of association between two variables
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2.4.2 Empirical Quantile–Quantile Diagram
(Empirical Q–Q Plot)

The original quantile–quantile diagram, or Q–Q plot, is a chart for comparing two

probability distributions through their corresponding quantiles. It can be easily

adapted to empirical data and turn into a useful chart for previewing a possible

association between variables X and Y, through the comparison of their quantiles.

Unlike the scatterplot of simultaneous or concurrent data from the variables, the

empirical Q–Q plot links ranked data, or ranked quantiles, from the set {x1, x2, . . . ,
xN} to ranked quantiles from { y1, y2, . . . , yN}, both samples being assumed to have

the same size N. To create a Q–Q plot, one needs: (1) rank data from X and then

from Y, both in ascending order of values; (2) assign to each sorted datum its

respective rank order m, with 1�m�N; (3) associate with each order m the pair of

ranked data [x(m), y(m)]; and (4) plot on a Cartesian-coordinate chart the X and

Y paired-data of equal rank orders. Figure 2.16 is an example of a Q–Q plot for the

data given in Table 2.5.

Contrasting it to the scatterplot, the singular feature of a Q–Q plot is that it

readily allows the comparison of high and low data points of X with their homol-

ogous points in the Y sample. As a hypothetical case, if the frequency distributions

of both samples, after being conveniently scaled by their respective means and

standard deviations, were identical, then all pairs on the Q–Q plot would be located

exactly on the straight line y¼ x. In actual cases, however, if the frequency

Fig. 2.16 Quantile–quantile diagram (Q–Q plot) for annual mean flows and annual total rainfalls

for the Paraopeba River catchment
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distributions of X and Y were very similar to each other, their respective quantiles

will nearly lie on a straight line, but not necessarily on y¼ x. The empirical Q–Q

plot is useful to see how X and Y paired-data deviate from a notional straight line

that would link both variables, had their frequency distributions be identical. That is

the idea behind empirical Q–Q plots.

Exercises

1. Table 2.6 gives the partial duration series of independent peak discharges over

the 17,000-CFS threshold of the Greenbrier River at Alderson (WV, USA),

recorded at the gauging station USGS 03183500 from 1896 to 1967. For

the years not listed in the table, no discharges greater than 17,000 CFS were

observed. Prepare a bar chart, similar to the one depicted in Fig. 2.1, for the

Table 2.6 Independent peak discharges of the Greenbrier River at Alderson (West Virginia,

USA) that exceeded the threshold 17,000 cubic feet per second (CFS)

Year Flow (CFS) Year Flow (CFS) Year Flow (CFS) Year Flow (CFS)

1896 28,800 1915 34,000 1935 20,800 1954 29,700

1897 27,600 40,800 1936 19,400 18,800

54,000 1916 27,200 20,800 1955 32,000

40,900 24,400 27,100 28,000

1898 17,100 1917 17,300 58,600 44,400

18,600 43,000 28,300 26,200

52,500 28,000 1937 21,200 1956 18,200

1899 25,300 1918 17,900 22,300 1957 23,900

20,000 77,500 36,600 28,900

23,800 24,000 26,400 22,000

48,900 1919 28,600 1938 21,200 1958 21,800

1900 17,100 24,800 32,800 23,900

1901 56,800 49,000 22,300 22,200

21,100 1920 38,000 1939 40,200 17,500

20,400 20,700 41,600 26,700

19,300 33,500 21,200 1959 17,200

20,000 1922 21,500 17,200 23,900

1902 36,700 20,100 19,400 1960 17,800

43,800 22,200 1940 29,900 35,500

1903 25,300 1923 19,500 21,500 32,500

29,600 1924 26,500 19,400 1961 25,000

33,500 20,400 18,700 21,800

34,400 36,200 1942 35,300 31,400

48,900 17,900 1943 33,600 17,200

(continued)
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number of years in the record with different annual frequencies of floods.

Consider a peak flow over 17,000 CFS as a flood.

2. Consider the flow data listed in Table 2.5. These are the annual mean flows of the

ParaopebaRiver at PonteNovadoParaopeba (Brazil), abstractedon thewater-year

basis, fromOctober to September. For the flow data in that table, useMS Excel, or

other similar software, tomake the following charts: (a) dotdiagram; (b)histogram;

(c) relative frequency polygon; and (d) cumulative frequency polygon.

3. Compare the graphs created with the solution to Exercise 2 with those shown in

Sect. 2.1 of this chapter. The former are abstracted on the water-year basis,

whereas the latter are on the calendar year, but both concern the mean annual

discharges. Discuss the relevance and the adequacy of using one or the other

time basis for abstracting mean annual flows.

Table 2.6 (continued)

Year Flow (CFS) Year Flow (CFS) Year Flow (CFS) Year Flow (CFS)

1904 25,700 1926 20,700 17,200 1962 34,700

25,700 17,600 36,200 20,100

1905 29,600 1927 17,900 21,200 21,500

37,600 24,000 1944 25,200 17,800

1906 18,200 40,200 17,200 23,200

26,000 18,800 1945 17,900 35,500

1907 17,500 19,500 19,000 1963 22,700

52,500 1928 18,000 1946 43,600 34,800

1908 17,800 1929 22,800 1947 20,000 47,200

23,000 32,700 24,400 26,100

31,500 23,800 1948 35,200 30,400

52,500 20,000 23,500 1964 19,100

26,800 1930 36,600 40,300 39,600

27,600 1932 50,100 1949 18,500 22,800

31,500 17,600 37,100 1965 22,000

1909 20,000 31,500 26,300 28,400

1910 45,900 27,500 23,200 19,800

1911 43,800 21,900 1950 31,500 18,600

20,000 1933 26,400 1951 25,600 1966 26,400

23,800 1934 32,300 27,800 1967 54,500

18,900 20,500 26,700 39,900

18,900 27,900 18,500 20,900

35,500 1935 19,400 19,800

27,200 49,600 29,300

20,000 22,300 1952 17,800

21,100 17,900 19,100

1913 21,800 24,800 27,600

64,000 20,100 1953 47,100

20,000 24,800 20,100
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4. The Australian Bureau of Meteorology selected a number of streamflow gaug-

ing stations throughout the Australian territory, which are considered hydro-
logic reference stations, given their high-quality data and being located in

unregulated catchments with minimal land use change, among other criteria.

Flow data and other information for those reference stations can be retrieved

from the URL http://www.bom.gov.au/water/hrs/index.shtml. In particular, the

2677-km2 Avoca River catchment at Coonooer, in the state of Victoria, has

been monitored since August 1966, through gauging station coded 408200. The

regional water-year extends from March to February, but the Avoca River is

intermittent and ceases to flow at an uncertain time of any given year. Retrieve

all daily flow data available for the gauging station 408200 and plot the annual

hydrographs and the AFDCs for water-years 1969/70 and 2009/10. Plot the

FDC for the period of record. Download data of the annual number of cease-to-

flow days and plot the corresponding histogram.

5. One of the longest time series of rainfall has been recorded since 1767, at the

Radcliffe Meteorological Station, in Oxford (England). Figure 2.17 depicts the

annual total rainfall depths, measured at the Radcliffe station, from 1767 to 2014.

The daily rainfall series has undergone a recent analysis aiming to correct

nonhomogeneities due mainly to changing instrumentation over the period of

records (Burt and Howden 2011). Retrieve the annual total rainfall data, from

1767 to the latest year, by accessing the URL http://www.geog.ox.ac.uk/research/

climate/rms/rain.html. Plot the histogram and the relative frequency polygon for

that data set. Comment on the asymmetry (or symmetry) shown by these graphs.

Fig. 2.17 Annual total rainfall at the Radcliffe Meteorological Station, in Oxford
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6. Use the rainfall data set, as retrieved in Exercise 5, and prepare a complete

numerical summary of it, calculating all pertinent measures of central ten-

dency, dispersion, asymmetry, and tail weight. Interpret your results consider-

ing the histogram and frequency polygon from Exercise 5.

7. The Dore River, located in the French Department of Puy-de-Dôme, has been

gauged at the station of Saint-Gervais-sous-Meymont (code K2871910/Hydro/

EauFrance), since 1919. The catchment area is 800 km2 and flows are not

severely affected by upstream regulation and diversions. The variable annual
minimum 7-day mean flow, denoted by Q7, is the lowest average discharge of

7 consecutive days in a given year and is commonly used for the statistical

analysis of low flows. The yearly values of Q7 from 1920 to 2014, abstracted

from the daily flows for the Dore River at Saint-Gervais-sous-Meymont, are

listed in Table 2.7. For the listed Q7 flow data, use MS Excel, or other similar

software, to make the following charts: (a) histogram; (b) relative frequency

polygon; and (c) cumulative frequency polygon. Calculate the sample mea-

sures of central tendency, dispersion and asymmetry. Interpret your graphs and

results.

8. The first one-third of a river reach is travelled by a floating device with the

velocity of 0.3 m/s, the second at 0.5 m/s, and the third at 0.60 m/s. Show the

harmonic mean is more meaningful of the true mean velocity, if compared to

the arithmetic mean. .

9. The population of a town increases geometrically with time. According to the

1980 demographic census, the town population was 150,000 inhabitants,

whereas the 2000 census counted 205,000 people. An engineer wants to

check the operative conditions of the local water supply system at an interme-

diate point in time. To do it he/she needs an estimate of the 1990 population to

calculate the per capita water consumption. Determine the central value

needed by the engineer. Justify your answer.

10. A random variable can pass through linear and nonlinear transformations. An

example of a linear transformation of X is to change it to the standard variable

Z by applying the relation zi ¼ xi � xð Þ=sx to its sample points. In such

transformation, X is centered, by subtracting the arithmetic mean, and scaled

by the standard deviation. Go back to the data of Exercise 2, transform X into Z,
calculate z, sZ, gZ and kZ, and compare these statistics to those of X. Which

conclusions can be drawn from such transformed variable? Can the conclusions

be extended to the untransformed variable? What are the potential uses of

variable transformation in data analysis?

11. An example of nonlinear transformations is given by the logarithmic conver-

sion of X to Z by means of zi ¼ log10xi or zi ¼ lnxi. Solve Exercise 10 using the
logarithmic transformation.

12. A family of possible transformation of variable X can be summarized by the

Box–Cox formula zi ¼ x λi � 1
� �

=λ , for λ 6¼ 0 or zi ¼ lnxi, for λ¼ 0 (Box and

Cox 1964). The right choice of λ can potentially transform asymmetric data

into symmetric. Employ the Box–Cox formula with λ¼�1,�0.5, 0,þ0.5,þ1,

and þ2 to transform the data listed in Table 2.2. Calculate the coefficients of
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skewness and kurtosis and check which value of λ makes data approximately

symmetric. Draw the frequency polygon for the transformed data and compare

it with that of Fig. 2.6.

13. To create a cumulative frequency diagram according to one of the procedures

outlined in Sect. 2.1.5, one needs to estimate the empirical non-exceedance

frequency, by sorting data and using the rank order m. In the example shown in

Sect. 2.1.5, we used the ratio m/N to estimate the non-exceedance frequency.

However, this is a poor estimate because it implies a zero chance of any future

occurrence being larger than the sample maximum. To overcome this

Table 2.7 Q7 flows for the Dore River at Saint-Gervais-sous-Meymont, 1920–2014

Calendar year Q7 (m
3/s) Calendar year Q7 (m

3/s) Calendar year Q7 (m
3/s)

1920 1.06 1952 0.32 1984 1.16

1921 0.74 1953 0.81 1985 0.45

1922 1.50 1954 1.79 1986 0.74

1923 0.50 1955 1.27 1987 1.38

1924 0.89 1956 4.87 1988 1.28

1925 1.77 1957 0.87 1989 0.97

1926 0.96 1958 2.34 1990 0.85

1927 3.31 1959 1.05 1991 1.00

1928 0.69 1960 1.12 1992 1.57

1929 1.07 1961 0.70 1993 1.46

1930 2.73 1962 0.32 1994 1.32

1931 1.79 1963 2.24 1995 Missing

1932 2.04 1964 0.86 1996 1.62

1933 0.73 1965 1.70 1997 0.97

1934 0.20 1966 1.05 1998 0.91

1935 0.97 1967 1.20 1999 1.24

1936 2.66 1968 1.86 2000 1.79

1937 0.83 1969 3.03 2001 1.68

1938 1.17 1970 1.09 2002 1.69

1939 1.47 1971 1.58 2003 Missing

1940 1.23 1972 1.77 2004 1.49

1941 2.01 1973 2.00 2005 Missing

1942 0.86 1974 0.74 2006 Missing

1943 0.63 1975 0.88 2007 Missing

1944 0.93 1976 0.82 2008 2.31

1945 0.72 1977 3.13 2009 0.81

1946 1.31 1978 0.75 2010 1.61

1947 0.79 1979 1.00 2011 0.88

1948 1.47 1980 1.86 2012 1.52

1949 0.08 1981 2.00 2013 2.54

1950 0.19 1982 1.61 2014 3.11

1951 2.31 1983 0.49
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drawback, a number of plotting-position formulas have been introduced in

statistical and hydrologic literature. One of these is the Weibull plotting-

position formula, which calculates the non-exceedance frequency of the m-
ranked sample point as m= N þ 1ð Þ. Redraw the diagram of Fig. 2.7 with the

Weibull formula.

14. Draw a box plot for the annual total rainfall data measured at the Radcliffe

Meteorological Station, in Oxford, as retrieved in Exercise 5.

15. Draw a stem-and-leaf diagram for the total annual rainfall listed in Table 2.5.

16. Interpret the Q–Q Plot of Fig. 2.16.

17. Table 2.8 lists data of Total Dissolved Solids (TDS) concentration and dis-

charge (Q) concurrently measured at the USGS/NASQAN stream quality

station 4208000, of the Cuyahoga River at Independence (Ohio, USA), as

compiled by Helsel and Hirsch (1992). In the table, ‘Mo’ indicates the month

when the measures were made and “T” the corresponding dates, as expressed in
“decimal time” and listed as (date-1000). Discharges are in CFS and TDS in

mg/l.

(a) Draw a simple scatterplot for Q and TDS;

(b) Draw scatterplots with marginal histograms and box plots for Q and TDS;

(c) Calculate the sample correlation coefficient for Q and TDS;

(d) Provide a physical explanation for the sign of the correlation coefficient

between Q and TDS; and

(e) Create and interpret the Q–Q plot for Q and TDS.
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Chapter 3

Elementary Probability Theory

Mauro Naghettini

3.1 Random Events

Probability theory deals with experiments, whose results or outcomes cannot be

predicted with certainty. They are referred to as random experiments. Even though

the outcomes of a random experiment cannot be anticipated, it is possible to

assemble the set of all of its possible results. This set is termed sample space, is

usually denoted by S (or Ω) and contains the collection of all possible sample

points, as related to distinguishable events and their outcomes. Suppose, for

instance, a random experiment is conducted to count the annual number of rainy

days, denoted by y, at some gauging station; a rainy day is any day with total rainfall

depth greater than 0.3 mm. For this example, the sample space is the finite set of

integer numbers, contained into S � SD ¼ fy ¼ 0, 1, 2, . . . , 366 g, with SD � N0.

In contrast, if the experiment concerned the streamflow monitoring at a gauging

station, with flows denoted by x, the corresponding sample space would be the set

S � SC ¼ x2Rþf g of non-negative real numbers.

Any subset of the sample space S is termed an event. In the sample space SC, of
flows X, we could distinguish the flows that lie below a given threshold x0 and group
them into the eventA ¼ x2Rþ 0 � x < x0jf g, such that A is contained in SC. In this
case, the complement event Ac of A, will consist of all elements of SC that are not

included in A. In other terms, AC ¼ x2Rþ x � x0jf g, whose occurrence implies the

denial of event A. Analogously to the sample space SD, of the annual number of

rainy days Y, it would be feasible to categorize as “dry years” those for which y< 30

days and group them into the event B ¼ y2N y < 30jf g. In this case, the comple-

ment of B will be given by the elements of the finite subset

Bc ¼ y2N 30 � y � 366jf g of “wet years.” For the preceding examples, events
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A and Ac (or B and Bc) are considered disjoint or mutually exclusive events, since

the occurrence of one of them determines the non-occurrence of the other. In other

words, none of the elements contained in one event will be in the other.

The events of a sample space can be related to each other through the operations

of intersection and union of sets. If two non-mutually exclusive events A1 and A2

have elements in common, the subset formed by those common sample points is

named intersection and is represented byA1 \ A2. Contrarily, if events A1 are A2 are

disjoint, then A1 \ A2 ¼ Ø, where Ø denotes the null set. The subset containing all

elements of A1 and A2, including those that are common to both, is the union, which

is represented byA1 [ A2. The intersection is linked to the Boolean logical operator

“AND,” or conjunction, implying the joint occurrence of A1 and A2, whereas the

union refers to “AND/OR” or conjunction/disjunction, relating the occurrences of

A1 or A2 or both. In respect of the sample space SC, from the example of flows X,

consider the hypothetical events, defined as A1 ¼ x2Rþ 0 � x � 60 m3=s
��� �

,

A2 ¼ x2Rþ 30m3=s � x � 80 m3=s
��� �

, and A3 ¼ x2Rþ x � 50 m3=s
��� �

. For

these, one can write the following statements:

• A1 \ A2 ¼ x2Rþ 30m3=s � x � 60 m3=s
��� �

• A2 \ A3 ¼ x2Rþ 50m3=s � x � 80 m3=s
��� �

• A1 \ A3 ¼ x2Rþ 50m3=s � x � 60 m3=s
��� �

• A1 [ A2 ¼ x2Rþ 0m3=s � x � 80 m3=s
��� �

• A2 [ A3 ¼ x2Rþ 30m3=s � x � 1��� �
• A1 [ A3 ¼ x2Rþ x � 0jf g � SC

The operations of intersection and union can be extended to more than two

events and have the associative and distributive properties of sets, which are,

respectively, analogous to the rules affecting addition and multiplication of num-

bers. The following compound events are examples of the associative property of

set algebra: A1 [ A2ð Þ [ A3 ¼ A1 [ A2 [ A3ð Þ and A1 \ A2ð Þ \ A3¼A1 \ A2 \ A3ð Þ.
The set operations A1 [ A2ð Þ \ A3 ¼ A1 \ A3ð Þ [ A2 \ A3ð Þ and A1 \ A2ð Þ [ A3 ¼
A1 [ A3ð Þ \ A2 [ A3ð Þ result from the distributive property. Referring to the sample

space SC, one can write:

• A1 \ A2 \ A3 ¼ x2Rþ 50m3=s � x � 60 m3=s
��� �

• A1 [ A2 [ A3 ¼ x2Rþ x � 0jf g � SC
• A1 [ A2ð Þ [ A3 ¼ A1 [ A2 [ A3ð Þ ¼ SC
• A1 \ A2ð Þ \ A3 ¼ A1 \ A2 \ A3ð Þ ¼ x2Rþ 50m3=s � x � 60m3=s

��� �
• A1 [ A2ð Þ \ A3 ¼ A1 \ A3ð Þ [ A2 \ A3ð Þ ¼ x2Rþ 50m3=s � x � 60m3=s

��� �
• A1 \ A2ð Þ [ A3 ¼ A1 [ A3ð Þ \ A2 [ A3ð Þ ¼ x2Rþ x � 30m3=s

��� �
Operations between simple and compound events, contained in a sample space,

can be more easily visualized through Venn diagrams, as illustrated in Fig. 3.1.

These diagrams, however, are not quite adequate to measure or interpret probability

relations among events.
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As derived from the basic operations, the sample space can also be expressed as

the union of an exhaustive set of mutually and collectively exclusive events.

Alluding to Fig. 3.1, as the mutually and collectively exclusive events

A \ Bcð Þ, A \ Bð Þ, Ac \ Bð Þ, and Ac \ Bcð Þ form such an exhaustive set, in the

sense it encompasses all possible outcomes, it is simple to conclude their union

results in the sample space S.
When the random experiment involves simultaneous observations of several

variables, the preceding notions have to be extended to a multidimensional sample

space. In hydrology, there are many examples of associations between concurrent

Fig. 3.1 Venn diagrams and basic operations among events in a sample space (adapted from

Kottegoda and Rosso 1997)
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observations from two (or more) variables, such as the number of rainy days and the

rainfall depths for a given duration, or the annual number of floods, the peak

discharges, and the flood hydrograph volumes, to name a few. Example 3.1

illustrates the two-dimensional sample space formed by the flows of two creeks

immediately upstream of their confluence.

Example 3.1 Stream R3 is formed by the confluence of tributary creeks R1 and R2.

During a dry season, the flows X from R1, immediately upstream of the confluence,

vary from 150 l/s to 750 l/s, whereas the flows Y from creek R2, also upstream of the

confluence, vary from 100 to 600 l/s. The two-dimensional sample space is given by

the set S ¼ x; yð Þ2Rþ 150 � x � 750, 100 � y � 600jf g, which is depicted in

Fig. 3.2 (adapted from Shahin et al. 1993).

The events A, B, and C, shown in Fig. 3.2, are defined as A¼ {R3 flows exceed

850 l/s}, B¼ {R1 flows exceed R2 flows}, and C¼ {R3 flows are less than 750 l/s}.

The intersection between A and B corresponds to the event A \ B ¼
x; yð Þ2S xþ y > 850 and x > yjf g and can be distinguished in Fig. 3.2 by the

polygon formed by points 3, 6, 9, and 10. The union A [ B ¼
x; yð Þ2S xþ y > 850 and=orx > yjf g corresponds to the polygon enclosed by

points 1, 4, 9, 10, and 3, whereas A \ C ¼ ∅. Take the opportunity given

by Example 3.1 to graphically identify the events A [ Cð Þc,
A [ Cð Þc \ B and Ac \ Cc.

Fig. 3.2 Two-dimensional sample space for events of Example 3.1
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3.2 Notion and Measure of Probability

Having defined the sample space and random events, the next step is to associate a

probability with each of these events, as a relative measure of its respective

likelihood to occur, between the extremes of 0 (or impossibility) and

1 (or certainty). In spite of being a rather intuitive notion, the mathematical concept

of probability had a slow historic evolution, incorporating gradual revisions that

were made necessary to reconcile its different views and interpretations.

The early definition of probability, named classic or a priori, had its origin in the

works of French mathematicians of the seventeenth century, like Blaise Pascal

(1623–1662) and Pierre de Fermat (1601–1665), within the context of games of

chance. According to this definition, if a finite sample space S contains nS equally
likely and mutually exclusive outcomes from a random experiment, from which nA
are related to an event A, the probability of A is given by

P Að Þ ¼ nA
nS

ð3:1Þ

This is an a priori definition because it assumes, before the facts, that the outcomes

are equally likely and mutually exclusive. For instance, in a coin tossing experi-

ment, in which it is known beforehand that the coin is fair, the probability of heads

or tails is clearly 0.5.

There are situations where the classical definition of probability is adequate,

while in others, two intrinsic limitations may arise. The first one refers to its

impossibility of accommodating the scenario of outcomes that are not equally

likely, whereas the second one concerns the absent notion of infinite sample spaces.

These limitations have led to a broader definition of probability, known as

frequentist (or objective or statistical), which is attributed to the Austrian mathe-

matician Richard von Mises (1883–1953), who early in the twentieth century used

it as a foundation for his theory of probability and statistics (Papoulis 1991).

According to this, if a random experiment is repeated a large number of times n,
under rigorously identical conditions, and an event A, contained into the sample

space S, has occurred nA times, then, the frequentist probability of A is given by

P Að Þ ¼ lim
n!1

nA
n

ð3:2Þ

The notion implied by this definition is illustrated in Fig. 3.3, as referring to the

probability of heads, in an actual coin tossing experiment, in which no assumption

regarding the coin fairness or unbiasedness is made in advance. In this figure,

Eq. (3.2) has been used to calculate the probability of heads, as the number of

coin tosses increases from 1 to 100.

The frequentist definition, although broader and more generic than the classical,

still has limitations. One is related to the natural question of how large the value of

n must be in order to converge to some constant value of P(A). For the example

3 Elementary Probability Theory 61



illustrated in Fig. 3.3, this limitation is made evident by the impossibility of finding

an indisputable value for the probability of heads at the end of the coin tossing

experiment. Furthermore, even if P(A) converges to some value, will we get the

same limiting value, if the entire experiment is repeated a second time? Defendants

of the frequentist concept usually respond to this objection by stating the conver-

gence of P(A) should be interpreted as an axiom. However, presuming beforehand

that the convergence will necessarily occur is a complex assumption to make (Ross

1988). Another limitation refers to the physical impossibility of repeating an

experiment over a large number of times under rigorously identical conditions.

Finally, an objection to both classical and frequentist definitions relates to their

common difficulty of accommodating the idea of subjective probability, as in the

case of a renowned expert in a particular field of knowledge expressing his/her

degree of belief in some possible occurrence.

These drawbacks have led the Russian mathematician Andrey Kolmogorov

(1903–1987) to propose that the theory of probability should be developed from

simple and self-evident axioms, very much like algebra and geometry. In 1933, he

published his book setting out the axiomatic foundations of probability, which are

used nowadays by mathematicians and statisticians (Kolmogorov 1933). This

modern axiomatic approach to probability is based on three simple axioms and

states that, given a sample space S, the probability function P(.) is a non-negative
number that must satisfy the following conditions:

1. 0�P(.)� 1

2. P(S)¼ 1

Fig. 3.3 Illustration of frequentist probability from a coin tossing experiment
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3. For any sequence of mutually exclusive events E1, E2, . . ., the probability of

their union is equal to the sum of their respective individual probabilities, or,

Ρ [1
i¼1

Ei

� �
¼ P1

i¼1

Ρ Eið Þ .

The three conditions listed above are, in fact, axioms from which all mathemat-

ical properties concerning the probability function P(.) must be deduced.

Kolmogorov’s axiomatic approach forms the logical essence of the modern theory

of probability and has the advantage of accommodating all previous definitions and

the notion of subjective probability as well. The reader interested in more details on

the many interpretations of probability is referred to Rowbottom (2015).

The following are immediate corollaries of the axioms:

• P(Ac)¼ 1�P(A).
• P(Ø)¼ 0.

• IfA andB are two events contained in sample space S andA � B, thenP(A)�P(B).

• If A1, A2, . . ., Ak are events in sample space S, then Ρ [k
i¼1

Ai

� �
� Pk

i¼1

Ρ Aið Þ.
This corollary is referred to as Boole’s inequality.

• If A and B are events in sample space S, then Ρ A [ Bð Þ ¼ Ρ Að Þþ
Ρ Bð Þ � Ρ A \ Bð Þ. This is termed the addition rule of probabilities.

Example 3.2 Two events can potentially induce the failure of a dam, located in an

earthquake-prone area: the occurrence of a flood larger than the spillway flow

capacity, which is referred to as event A, and/or the structural collapse resulting

from a destructive earthquake, event B. Suppose that, based on regional past data,

the annual probabilities of these events have been estimated as P(A)¼ 0.02 and

P(B)¼ 0.01. Knowing only these estimates, assess the dam failure probability in

any given year (adapted from Kottegoda and Rosso 1997).

Solution The failure of the dam can possibly result from the isolated action of

floods or earthquakes, or from the combined action of both. In other terms, a dam

failure is a compound event resulting from the union of A and B, whose probability
is given byΡ A [ Bð Þ ¼ Ρ Að Þ þ Ρ Bð Þ � Ρ A \ Bð Þ. AlthoughΡ A \ Bð Þ is unknown, it
can be anticipated that the probability of simultaneous occurrence of both inducing

dam-failure events has a very small value. Based on this and on Boole’s inequality,
a conservative estimate of the annual dam failure probability is given by Ρ A [ Bð Þ
ffi Ρ Að Þ þ Ρ Bð Þ ¼ 0:02 þ 0:01 ¼ 0:03.

3.3 Conditional Probability and Statistical Independence

The probability of an event A occurring can be modified by the previous or

concurrent occurrence of another event B. For instance, the probability that the

mean hourly flow of a given catchment will exceed 50 m3/s, in the next 6 h, is

certainly affected by the fact that it has already surpassed 20 m3/s. This is a simple

example of conditional probability, denoted by P(AjB), that A will occur given that
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B has already happened or is on the verge of happening. Provided P(B) exists and is
not zero, the probability P(AjB) is defined as

Ρ A Bjð Þ ¼ Ρ A \ Bð Þ
Ρ Bð Þ ð3:3Þ

The Venn diagram, depicted in Fig. 3.4, if interpreted in terms of areas

representing probabilities, depicts the concept behind Eq. (3.3). In fact, given that

event B has occurred or is certain to occur, the sample space must be reduced from

the original S to B. Thereafter, the probability of A, given B, needs to be updated by
means of Eq. (3.3).

The following corollaries can be derived from Kolmogorov’s axioms and from

the definition of conditional probability:

• If P(B) 6¼ 0, then, for any given event A, 0�P(AjB)� 1.

• If two events A1 and A2 are disjoint and if P(B) 6¼ 0, then Ρ A1 [ A2 Bjð Þ ¼
Ρ A1 Bjð Þ þ Ρ

�
A2 B

��� .

• As a particular case of previous proposition, it can be written that Ρ A Bjð Þþ
Ρ
�
A Bc

� ¼ 1
�� .

• If P(B) 6¼ 0, then Ρ A1 [ A2 Bjð Þ ¼ Ρ A1 Bjð Þ þ Ρ A2 Bjð Þ � Ρ A1 \ A2 Bjð Þ.
Equation (3.3) can be rewritten in the form of Ρ A \ Bð Þ ¼ Ρ Bð ÞΡ A Bjð Þ and,

since Ρ A \ Bð Þ ¼ Ρ B \ Að Þ, it follows that Ρ B \ Að Þ ¼ Ρ Að ÞΡ B Ajð Þ. This is the

multiplication rule of probabilities, which can be generalized to more than two

events. For instance, for exactly three events, the multiplication rule of probabilities

is given by

Fig. 3.4 Venn diagram depicting sample space reduction by conditioning
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Ρ A \ B \ Cð Þ ¼ Ρ Að ÞΡ B Ajð ÞΡ C A \ Bjð Þ ð3:4Þ

If the probability of A is not affected by the occurrence of B and vice-versa, or if

P(AjB)¼P(A) and P(BjA)¼P(B), then these two events are considered statistically
independent. For independent A and B, the rule of multiplication of probabilities

results in

Ρ A \ Bð Þ ¼ Ρ B \ Að Þ ¼ Ρ Bð ÞΡ Að Þ ¼ Ρ Að ÞΡ Bð Þ ð3:5Þ

By generalizing Eq. (3.5), one can state that for k mutually and collectively

independent events in a sample space, denoted by A1, A2, . . ., Ak, the probability

of their simultaneous or concurrent occurrence is Ρ A1 \ A2 \ . . . \ Akð Þ ¼
Ρ A1ð ÞΡ A2ð Þ . . .Ρ Akð Þ.
Example 3.3 Suppose a town is located downstream of the confluence of rivers R1

and R2 and can possibly be flooded by high waters from R1 (event A), or from R2

(event B), or from both. If P(A) is the triple of P(B), if P(A|B)¼ 0.6, and if the

probability of the town being flooded is 0.01, calculate (a) the probability of a flood

coming from the river R2 and (b) the probability of a flood coming only from river

R1, given the town has been flooded.

Solution (a) The probability of the town being flooded is given by the probability

of the union Ρ A [ Bð Þ ¼ Ρ Að Þ þ Ρ Bð Þ � Ρ A \ Bð Þ of events A and B. Substituting
the given data, then Ρ A [ Bð Þ ¼ 3Ρ Bð Þ þ Ρ Bð Þ � Ρ Bð ÞP A Bjð Þ and 0:01 ¼ 3Ρ Bð Þþ
Ρ Bð Þ � 0:6Ρ Bð Þ. Solving for P(B) and P(A), P(B)¼ 0.003 and P(A)¼ 0.009.

(b) The probability of a flood coming only from river R1, given the town has been

flooded, can be written as Ρ A \ Bcð Þ A [ Bð Þj½ � ¼ Ρ A\Bcð Þ\ A[Bð Þ½ �
Ρ A[Bð Þ . A simple Venn

diagram for the compound event in the numerator of the right-hand side of this

equation shows it is equivalent to Ρ A \ Bcð Þ½ �, which, in turn, is equal to

Ρ Að Þ 1� Ρ B Ajð Þ½ �. In the resulting equation, only P(BjA) is unknown. However,

this unknown probability can be derived from Ρ Að ÞΡ�B A
� ¼��

Ρ Bð ÞΡ�A B
� ) 3Ρ Bð ÞΡ�B A

� ¼ Ρ Bð ÞΡ�A B
� )������ Ρ

�
B A

� ¼ Ρ
�� �

A B
�
=3 ¼�� : 0:2.

By substituting the remaining values in the original equation, it results in

Ρ A \ Bcð Þ A [ Bð Þj½ � ¼ 0:009 1�0:2ð Þ
0:01 ¼ 0:72.

3.4 Law of Total Probability and Bayes’ Formula

Suppose the sample space S of some random experiment is the result of the union of

k mutually exclusive and exhaustive events B1, B2, . . ., Bk, whose respective

probabilities of occurrence are all different from zero. Also, consider some event

A, such as the one illustrated in Fig. 3.5, whose probability is given by

Ρ Að Þ ¼ Ρ B1 \ Að Þ þ Ρ B2 \ Að Þ þ . . .þ Ρ Bk \ Að Þ. By employing the definition
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of conditional probability for each term of the right-hand side of this equation, it

follows that

Ρ Að Þ ¼ Ρ B1ð ÞΡ A B1jð Þ þ Ρ B2ð Þ Ρ A B2jð Þ þ . . .þ Ρ Bkð ÞΡ A Bkjð Þ

¼
Xk
i¼1

Ρ Bið ÞΡ A Bijð Þ ð3:6Þ

Equation (3.6) is the formal expression of the law of total probability.

Example 3.4 The water supply system of a city uses two distinct and complemen-

tary reservoirs: number one, with the storage capacity of 150,000 l, and a proba-

bility of coming into operation of 0.7, and number two, with 187,500 l of storage,

with a probability of 0.3. The city’s daily water consumption is a random variable

whose probabilities of equaling or exceeding the volumes of 150,000 and 187,500 l

are respectively 0.3 and 0.1. Knowing that when one of the reservoirs is active, the

other is inactive, answer the following questions: (a) what is the probability of

failure of the water supply system on any given day? and (b) supposing the daily

water consumptions in consecutive days are statistically independent among them-

selves, what is the probability of failure of the system on any given week?

Solution (a) Consider the failure to fulfill the city daily water consumption is

represented by event A, while events B and Bc respectively denote the active

operation of reservoirs one and two. Application of Eq. (3.6), with k¼ 2, results

in Ρ Að Þ ¼ Ρ
�
A B

�
Ρ Bð Þþ�� Ρ A Bc

�
Ρ
�
Bc

��� � ¼ 0:3	 0:7þ 0:1	 0:3 ¼ 0:24 :

Fig. 3.5 Venn diagram for the law of total probability
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(b) The probability of not fulfilling the city’s water supply demand in a given week

is equivalent to the probability of having, at least, one failure in 7 days, which is

equal to the complement, with respect to 1, of the probability of no daily failure in a

week. Therefore, the answer is given by [1�(1�0.24)7]¼ [1�(0.76)7]¼ 0.8535.

Bayes’ formula, named after the English philosopher and Presbyterian minister

Thomas Bayes (1702–1761), results from a combination of the multiplication rule

of probabilities and the law of total probability. In effect, considering again the

situation depicted in Fig. 3.5, one can express the probability of any one of

the mutually exclusive and exhaustive events, say, for example, Bj, conditioned

on the occurrence of A, as

Ρ Bj Aj
� � ¼ Ρ Bj \ A

� �
Ρ Að Þ ð3:7Þ

From the rule of multiplication of probabilities, the numerator of the right-hand

side of Eq. (3.7) can be expressed as Ρ(AjBj) Ρ(Bj), whereas the denominator can be

put in terms of the law of total probability. The resulting equation is Bayes’
formula, or

Ρ Bj Aj
� � ¼ Ρ A Bj

��� �
Ρ Bj

� �
Xk
i¼1

Ρ A Bijð Þ Ρ Bið Þ
ð3:8Þ

Bayes’ formula creates an important logical framework to review or update prior

probabilities, as new information is added to the existing ones. Suppose, for

instance, the event Bj be a possible hypothesis about some subject matter and let

P(Bj) represent the degree of belief in Bj before the occurrence of experiment A. The
probability (or degree of belief) in a particular hypothesis Bj is assessed a priori, by

an expert opinion or by some other means, and is unconditional. After the occur-

rence of experiment A, new evidence is collected and will influence the prior

probability P(Bj) by conditioning. The result of conditioning Bj to A is the posterior

probability Ρ(BjjA), whose evaluation is enabled by Bayes’ formula. Today, Bayes-

ian Statistics represents an important and independent branch of Mathematical

Statistics, with a plethora of applications in many fields of knowledge. Bayes’
formula and its applications in Statistical Hydrology are the core topics of Chap. 11.

Example 3.5 A meteorological satellite sends a set of binary codes (“0” or “1”) to

describe the development of a storm. However, electrical interferences on the sent

signals can possibly lead to transmission errors. Suppose a sent message containing

80% of digits “0,” has been transmitted and also that there is a probability of 85%

of a given “0” or “1” has been correctly received by the earth station. If a “1” has

been received, what is the probability of a “0” had been transmitted? (adapted from

Larsen and Marx 1986).

Solution Let T0 or T1 respectively represent the events that digit “0” or “1” has

been transmitted. Analogously, let R0 or R1 denote the reception of a “0” or of a “1,”
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respectively. According to the given data, P(T0)¼ 0.8, P(T1)¼ 0.2, P(R0jT0)¼
0.85, P(R1jT1)¼ 0.85, P(R0jT1)¼ 0.15 and P(R1jT0)¼ 0.15. The sought probability

is P(T0|R1), which can be easily calculated by means of Bayes’ formula. Equation

(3.8), as particularized for the problem on focus, results in Ρ
�
T0 R1

� ¼ Ρ R1 T0jð Þ½��
Ρ T0ð Þ �= Ρ R1 T0jð Þ Ρ T0ð Þ þ Ρ R1 T1jð Þ Ρ T1ð Þ½ � : With the given data, Ρ

�
T0 R1

� ¼��
0:15	 0:8ð Þ= 0:15	 0:8þ 0:85	 0:2ð Þ ¼ 0:4138.

3.5 Random Variables

A random variable is a function X associating a numerical value with each outcome

of a random experiment. Although different outcomes can possibly share the same

value of X, there is only one single value of the random variable associated with

each outcome. In order to facilitate understanding of the concept of a random

variable, consider the experiment of simultaneously flipping two coins, distinguish-

able one from another. The sample space for this random experiment is

S¼ {hh, tt, ht, th}, where h designates “heads” and t “tails.” The mutually exclusive

and exhaustive events A¼ {hh}, B¼ {tt}, C¼ {ht}, and D¼ {th} are assumed

equally likely, and, hence, each one occurs with probability 0.25. Let X be defined

as the random variable “number of heads.” Mapping the sample space S for

X allows assigning to the variable X its possible numerical values: x¼ 2, x¼ 1, or

x¼ 0. The extreme values of X, 0 and 2, are respectively associated with the

occurrences of events A and B, whereas x¼ 1 corresponds to the union of events

C and D.
Beyond simply associating the possible outcomes to values of X, it is necessary

to assign a probability to each of its numerical values. Hence, P(X¼ 2)¼P(A)¼
0.25, P(X¼ 0)¼P(B)¼ 0.25, and P X ¼ 1ð Þ ¼ P C [ Dð Þ ¼ P Cð Þ þ P Dð Þ ¼ 0:50.
These probabilities are generically denoted by pX(x), which is equivalent to

P(X¼ x), and are illustrated in the charts of Fig. 3.6.

For the example illustrated in Fig. 3.6, the random variable X is viewed as

discrete since it can take on only integer values and also because it is associated

with a finite and countable sample space. The chart on the left of Fig. 3.6 refers to

pX(x), which is the Probability Mass Function (PMF) and gives the probability that

the random variable X takes on the argument x. The chart on the right of Fig. 3.6

represents PX(x), which denotes the Cumulative Distribution Function (CDF) and

indicates the probability that the random variable X be equal to or less than the

argument x, or in formal terms, PX xð Þ ¼ Ρ X � xð Þ ¼ P
all xi�x

pX xið Þ. For a discrete
random variable X, the probability mass function pX(x) exhibits the following

properties:

1. pX xð Þ � 0 for any value of x
2.

P
all x

pX xð Þ ¼ 1

Inversely, if a function pX(x) possesses properties (1) and (2), then it is a PMF.
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On the other hand, if the random variable X can take on any real number, then it

belongs to the continuous type and as such, the analogous function to the discrete-

case PMF, is termed the Probability Density Function (PDF). This non-negative

function, henceforth denoted by fX(x), is depicted in Fig. 3.7 and represents the

limiting case of a relative frequency histogram as the sample size goes to infinity

and the bin width tends to zero. The value taken by the PDF at the argument x0, or
fX(x0), does not give the probability of X at x0. Actually, it gives the rate at which the
probability that X does not exceed x0 changes in the vicinity of that argument. As

shown in Fig. 3.7, the area enclosed by the points a and b, located on the horizontal
axis of the domain of X, and their images, fX(a) and fX(b), read on the vertical axis of
the counter-domain, is the probability of X being comprised between a and b. Thus,
for a PDF fX(x), it is valid to write

Ρ a < X � bð Þ ¼
ðb
a

f X xð Þdx ð3:9Þ

Further, if the integration’s lower bound of Eq. (3.9) continually approaches

b and ultimately coincides with it, the result would be equivalent to the “area of a

line” on the real plane, which, by definition, is zero. Therefore, for any continuous

random variable X, P(X¼ x)¼ 0.

Similarly to the discrete case, the Cumulative Distribution Function (CDF) of a

continuous random variable X, denoted by FX(x), gives the probability that X does

not exceed the argument x, or Ρ X � xð Þ, or Ρ X < xð Þ. For the general domain

�1 < x < 1,

Fig. 3.6 Probability distribution functions of random variable X
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FX xð Þ ¼
ðx

�1
f X xð Þdx ð3:10Þ

Inversely, the corresponding PDF can be obtained by differentiation of FX(x), or

f X xð Þ ¼ dFX xð Þ
dx

ð3:11Þ

The CDF of a continuous random variable is a non-decreasing function, for which

FX(�1)¼ 0 and FX(þ1)¼ 1.

The PMF and PDF functions, and their corresponding cumulative distribution

functions, describe completely the probabilistic behavior of discrete and continuous

random variables, respectively. In particular, density functions of continuous ran-

dom variables X can possibly have a great variety of shapes; Fig. 3.8 depicts some

of them. As a general requisite, in order to be a PDF, a given function must be

non-negative and its integration over the whole domain of X must be equal to one.

Fig. 3.7 Density and cumulative distribution function of a continuous random variable
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Example 3.6 In Spring, the weekly mean dissolved-oxygen concentrations of a

river reach, located in the American state of Wisconsin, is supposed to be distrib-

uted according to the triangular PDF, as shown in Fig. 3.9. Dissolved-Oxygen

(DO) concentration is a bounded random variable. Answer the following questions:

(a) What is the probability of having a weekly DO level of less than 7 mg/l?

(b) Certain species of freshwater fish, such as carp, require a minimum DO level

of 8.5 mg/l. What is the probability this river reach will provide such an ideal DO

requirement for carp, during the spring months?

Solution (a) As with any density function, fX(x) must integrate to one, over the

domain of X, which, in this case, spans from 6 to 10 mg/l. This allows the

calculation of the unknown ordinate y, indicated in Fig. 3.9, giving

y 10� 6ð Þ½ �=2 ¼ 1 ) y ¼ 1=2. The sought probability P(X< 7 mg/l) is, then,

given by the area of the triangle formed by the points (6,0), (7,0), and (7,y),
which results in P X < 7ð Þ ¼ 1	 0:5ð Þ=2 ¼ 0:25: (b) What is asked is the proba-

bility P(X> 8.5 mg/l). One of the possibilities of calculating it is to find the area of

the triangle formed by the points (8.5,0), (8.5,z), and (10,0). However, ordinate z is
unknown, but can be calculated using the property of similar triangles, which in this

case gives y=z ¼ 3=1:5 and results in z¼ 0.25. Finally, P X > 8:5ð Þ ¼
1:5	 0:25ð Þ=2 ¼ 0:1875:

Fig. 3.8 Some of the possible shapes of a probability density function
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Example 3.7 The mathematical function defined by f X xð Þ ¼ 1
θ exp �x

θ

� �
, for x� 0

and θ> 0, is the parametric form of the exponential probability density function.

The numerical value of parameter θ specifies a particular PDF from the family of

functions with the exponential parametric form. (a) Prove that, regardless of the

numerical value of θ, the given function is indeed a PDF; (b) express the CDF

FX(x); (c) calculate P(X> 3), for the particular case where θ¼ 2; and (d) plot the

graphs of fX(x) and FX(x), versus x, for θ¼ 2.

Solution

(a) Because x� 0 and θ� 0, the function is non-negative, which is the first

requirement for a PDF. The second necessary and sufficient condition isð1
0

1

θ
exp �x

θ

	 

dx ¼ 1. Solving the integral equation

ð1
0

1

θ
exp � x

θ

	 

dx ¼

�exp �x
θ

� ��1
0

¼ 1, thus proving the exponential function is, in fact, a PDF.

(b) FX xð Þ ¼
ðx
0

1

θ
exp �x

θ

	 

dx ¼ �exp �x

θ

	 
i x

0
¼ 1� exp �x

θ

	 

.

(c) P X > 3ð Þ ¼ 1� P X < 3ð Þ ¼ 1� FX 3ð Þ ¼ 1� 1� exp �3
2

� �� � ¼ 0:2231.

(d) Graphs of fX(x) and FX(x), versus x, for θ¼ 2: Fig. 3.10.

Fig. 3.9 PDF of weekly mean DO concentration in Spring months
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3.6 Descriptive Measures of Random Variables

The population of a random variable X is entirely known, from a statistical point of

view, by the complete specification of its PMF pX(x), in the discrete case, or of its

PDF fX(x), in the continuous case. Analogously to the descriptive statistics of a

sample drawn from the population, covered in Chap. 2, the shape characteristics of

pX(x) or fX(x) can also be summarized by the population descriptive measures.

These are usually obtained by the mean values, as weighted by pX(x) or fX(x), of
functions of the random variables and include the expected value, the variance, and

the coefficients of skewness and kurtosis, among others.

3.6.1 Expected Value

The expected value of X is the result of weighting, by pX(x) or fX(x), all possible
values of the random variable. The expected value is denoted by E[X] and is

equivalent to the population mean value μX, thus indicating the abscissa of the

centroid of the functions pX(x) or fX(x). Formally, E[X] is defined by

E X½ � ¼ μX ¼
X
all xi

xi pX xið Þ ð3:12Þ

for discrete X; and

Fig. 3.10 PDF and CDF for the exponential distribution with parameter θ¼ 2
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E X½ � ¼ μX ¼
ðþ1

�1
x f X xð Þdx ð3:13Þ

for continuous X. In Eq. (3.13), in order to E[X] to exist and be finite, the integral

must be absolutely convergent, i.e.,

ðþ1

�1
xj j f X xð Þdx < 1. For some exceptional

distributions, such as the Cauchy density, the expected value is not defined (John-

son et al. 1994).

Example 3.8 Calculate the expected value for the PMF illustrated in Fig. 3.6.

Solution Application of Eq. (3.12) gives E
[X]¼ μX¼ 0	 0.25þ 1	 0.5þ 2	 0.25¼ 1 which is, in fact, the abscissa of the

PMF centroid.

Example 3.9 Consider an exponential random variable X, whose PDF is given by

f X xð Þ ¼ 1
θ exp �x

θ

� �
, for x� 0 and θ� 0, as in Example 3.7. (a) Calculate the

expected value of X; and (b) show the PDF is positively asymmetric distribution,

based only on the population measures of central tendency, namely, the mean, the

mode, and the median.

Solution (a) For the exponential distribution E X½ � ¼ μX ¼ðþ1

0

x f X xð Þdx ¼
ðþ1

0

x

θ
exp �x

θ

	 

dx. This integral equation can be solved by parts.

In fact, by making dv ¼ 1
θ exp �x

θ

� �
dx ) v ¼ �exp �x

θ

� �
and u ¼ x ) du ¼ dx.

Substituting these into the equation of the expected value, it follows thatð1
0

udv ¼ uv�10 �
ð1
0

vdu ¼ �xexp �x
θ

� ��1
0
� θexp �x

θ

� ��1
0

¼ θ. Thus, for the expo-

nential parametric form, the population mean is given by the parameter θ. For other
parametric forms, μX is, in general, a function of one or more parameters that fully

specify a particular distribution. For the specific case of θ¼ 2 (see graphs of

Example 3.7), the abscissa of the PDF’s centroid is x¼ 2. (b) The mean μX of an

exponential random variable is θ and, thus, a positive real number. The mode mX is

the x value that corresponds to the largest PDF ordinate; in this case, mX¼ 0.

The median uX corresponds to the abscissa for which FX(x)¼ 0.5. Since in this

case, FX xð Þ ¼ 1� exp �x
θ

� �
(see Example 3.7), the inverse of FX(x), also known as

the quantile curve, can be easily derived as x ¼ �θ ln 1� Fð Þ. For FX(x)¼ 0.5,

uX ¼ �θ ln 1� 0:5ð Þ ¼ 0:6932θ. Therefore, one concludes that mX< uX< μX,
which is a key feature of positively asymmetric distributions. In fact, as it will be

proved later on in this section, the skewness coefficient of an exponential distribu-

tion is γ ¼ þ2.

74 M. Naghettini



The concept of expected value can be generalized to compute the expectation

of any real-valued function of a random variable. Given a real-valued function g(X),
of the random variable X, the mathematical expectation E[g(X)] is formally defined

as

E g Xð Þ½ � ¼
X
all xi

g xið ÞpX xið Þ ð3:14Þ

for discrete X. In case of a continuous variable X, E[g(X)] is defined as

E g Xð Þ½ � ¼
ðþ1

�1
g xð Þ f X xð Þdx ð3:15Þ

Again, in Eq. (3.15), in order for E[g(X)] to exist, the integral must be absolutely

convergent. The mathematical expectation is an operator and has the following

properties:

1. E[c]¼ c, for a constant c.
2. E[cg(X)]¼ cE[g(X)], for a constant c.
3. E[c1g1(X)
 c2 g2(X)]¼ c1E[g1(X)]
 c2E[g2(X)], for constant c1 and c2, and

real-valued functions g1(X) and g2(X).
4. E[g1(X)]�E[g2(X)], if g1(X)� g2(X).

Example 3.10 The mathematical expectation E[X�μX] is named 1st-order central

moment and corresponds to the mean value of the deviations of x from the mean μX,
weighted by the PDF (or PMF) of X. Use the expected value properties to show that

the 1st-order central moment is null.

Solution E X� μX½ � ¼ E X½ � � E μX½ �. Since μX is constant, from property (1), it is

simple to conclude that E X� μX½ � ¼ μX � μX ¼ 0.

The application of the expectation operator to the deviations of x from a

reference abscissa location a, as raised to the kth power, i.e., E X � að Þk
h i

, is

generically referred to as the moment of order k. Two special cases are of most

interest: (a) if the reference location a is equal to zero, the moments are said to be

about the origin and are denoted by μX, if k ¼ 1 and μ
0
k, for k � 2 ; and (b) if

a¼ μX, the moments are named central and are represented by μk. The moments

about the origin are formally defined as

μX ¼ E X½ � e μ0
k ¼

X
allxi

xkpX xið Þ ð3:16Þ

for discrete X. For a continuous random variable X,
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μX ¼ E X½ � e μ0
k ¼

ðþ1

�1
xkf X xð Þdx ð3:17Þ

In a similar way, the central moments are given by

μ1 ¼ 0 e μk ¼
X
all xi

x� μXð ÞkpX xið Þ, if k � 2 ð3:18Þ

for discrete X. For a continuous random variable X,

μ1 ¼ 0 e μk ¼
ðþ1

�1
x� μXð Þ kf X xð Þdx, if k � 2 ð3:19Þ

These quantities are termed moments by analogy to moments from classical

mechanics. In particular, μX corresponds to the abscissa of the PDF centroid

(or PMF centroid), by analogy to the center of mass of a solid body, whereas

moment μ2 is mathematically equivalent to the moment of inertia with respect to a

vertical axis through the centroid.

3.6.2 Variance

The population variance of a random variable X, denoted by Var[X] or σ2X, is defined
as the central moment of order 2, or μ2. The variance is the descriptive measure

most used to characterize the dispersion of functions pX(x) and fX(x) around their

respective means. Formally, Var[X], or σ2X, is given by

Var X½ � ¼ σ2X ¼ μ2 ¼ E X � μXð Þ2
h i

¼ E X � E X½ �ð Þ2
h i

ð3:20Þ

By expanding the squared term on the right-hand side of Eq. (3.20) and using the

properties of mathematical expectation, one can rewrite it as

Var X½ � ¼ σ2X ¼ μ2 ¼ E X2
� �� E X½ �ð Þ2 ð3:21Þ

Thus, the population variance Var[X] is equal to the expected value of the square of
X minus the square of the expected value of X. It has the same units of X2 and the

following properties:

1. Var[c]¼ 0, for a constant c.
2. Var[cX]¼ c2Var[X], for a constant c.
3. Var[cXþ d]¼ c2Var[X], for constant c and d.
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Similarly to the sample descriptors, the standard-deviation σX is defined as the

positive square root of the variance and possesses the same units of X. As a relative
dimensionless measure of dispersion of pX(x) or fX(x), the coefficient of variation

CVX is given by the expression

CVX ¼ σX
μX

ð3:22Þ

Example 3.11 Calculate the variance, the standard-deviation, and the coefficient of

variation for the PMF shown in Fig. 3.6.

Solution Application of Eq. (3.21) requires previous knowledge of E[X2]. This is

calculated as E[X2]¼ 02	 0.25þ 12	 0.5þ 22	 0.25¼ 1.5. To return to

Eq. (3.21), Var[X]¼ σ2X¼ 1.5�12¼ 0.5. The standard-deviation is σX¼ 0.71 and

the coefficient of variation is CVX¼ 0.71/1¼ 0.71.

Example 3.12 Consider the exponential random variable X, as in Example 3.9.

Calculate the variance, the standard-deviation, and the coefficient of variation of X.

Solution The expected value of an exponential variable is θ (see the solution to

Example 3.9). Again, application of Eq. (3.21) requires the previous calculation of

E[X2]. By definition, E X2
� � ¼ ðþ1

0

x2 f X xð Þdx ¼
ðþ1

0

x2

θ
exp �x

θ

	 

dx, which can be

solved by integration by parts. Thus, by making dv ¼ x
θ exp �x

θ

� �
dx ) v ¼ �xexp

�x
θ

� �� θexp �x
θ

� �
, as in Example 3.9, and u ¼ x ) du ¼ dx, the resulting equation

is

ð1
0

udv ¼ uv�10 �
ð1
0

vdu. Solving it results in

ðþ1

0

x2

θ
exp �x

θ

	 

dx ¼

0�
ð1
0

�xexp �x

θ

	 

� θexp �x

θ

	 
h i
dx ¼ θE X½ � þ θ2 ¼ 2θ2. Now, to return to

Eq. (3.21), Var[X]¼ 2θ2�θ2¼ θ2. Finally, σ¼ θ and CVX¼ 1.

3.6.3 Coefficients of Skewness and Kurtosis

The coefficient of skewness γ of a random variable X is a dimensionless measure of

asymmetry, defined as

γ ¼ μ 3

σXð Þ 3 ¼
E X � μXð Þ 3
h i

σXð Þ 3 ð3:23Þ

The numerator of the right-hand side of Eq. (3.23) is the central moment of

order 3, which shall reflect the equivalence between the average summations of
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positive and negative cubic deviations of X from its mean μX, in case of a symmetric

distribution, or, otherwise, the numerical predominance of one over the other. The

average summation is then scaled by the standard-deviation raised to power 3, in

order to make γ a relative dimensionless index. In the case of equivalence, the

numerator and the coefficient of skewness will both be zero, thus indicating a

symmetric distribution. Contrarily, if the upper tail of the X density (or mass)

function is more elongated than its lower tail or, in other words, if there is more

dispersion among the values of X that are larger than the mode mX, as compared to

the ones that are smaller than it, then the positive cubic deviations will prevail over

the negative ones. This will result in a positive coefficient of skewness, whose

numerical value gives a relative dimensionless index of how right-skewed the

distribution is. A similar reasoning applies to negative coefficients of skewness

and left-skewed distributions. Figure 3.11 illustrates three distinct densities: one

with a null coefficient of skewness, one right-skewed with γ¼þ1.14, and one

left - skewed with γ¼�1.14.

According to a recent interpretation (Westfall 2014), the coefficient of kurtosis

of a random variable X, usually denoted by k, reflects the tail extremity of a density
(or mass) function, in the sense of how prone it is to produce outliers. The classical

notion refers to the coefficient of kurtosis k as measuring both peakedness
(or flatness) and tail weight of the distribution. This notion can still be applied as

a scaled dimensionless index for comparing unimodal symmetric distributions. The

coefficient k is formally defined by the following equation:

κ ¼ μ4
σXð Þ4 ¼

E X � μXð Þ 4
h i

σXð Þ4 ð3:24Þ

Fig. 3.11 Examples of symmetric and asymmetric density functions
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For symmetric distributions, the coefficient of excess kurtosis, given by (k�3),

can be used as a relative index with respect to a perfectly symmetric distribution of

reference, with coefficient of kurtosis k¼ 3.

Example 3.13 Consider the exponential random variable X, as in Example 3.9.

Calculate the distribution’s coefficients of skewness and kurtosis.

Solution Proceeding from the integrations by parts done for the calculations of

E[X] and E[X2], as in Examples 3.9 and 3.12, it is possible to generalize that, for any

integer k, the mathematical statement E Xk
� � ¼ ð1

0

xk

θ
exp �x

θ

	 

dx ¼ θkΓ k þ 1ð Þ is

valid, where Γ(.) denotes the Gamma function (see Appendix 1 for a brief review on

the Gamma function). If the argument of the Gamma function is an integer, the

result Γ k þ 1ð Þ ¼ k! holds. Applying it to the moments about the origin of orders

3 and 4, it follows that E X3
� � ¼ 6θ3 and E X4

� � ¼ 24θ4. For the calculation of the

coefficient of skewness, it is necessary first to expand the cube in the numerator of

Eq. (3.23) and then proceed by using the expectation properties, to obtain

γ ¼ E X3½ ��3E X2½ �E X½ �þ2 E X½ �ð Þ3
σXð Þ3 . Substituting the moments already calculated, the

resulting coefficient of skewness is γ¼ 2. In an analogous way, the coefficient of

kurtosis of the exponential distribution can be expressed as

κ ¼ E X4½ ��4E X3½ �E X½ �þ6E X2½ � E X½ �ð Þ2�3 E X½ �ð Þ4
σXð Þ4 . Finally, with the moments already calcu-

lated, k¼ 9.

3.6.4 Moment Generating Function

The probabilistic behavior of a random variable is completely specified by its

density (or mass) function. This, in turn, can be completely determined by all its

moments. A possible way to successfully find the moments of a density (or mass)

function is through the moment generating function (MGF). The MGF of a random

variable X is a function, usually designated by φ(t), of argument t, defined in the

interval (�ε,ε) around t¼ 0, that allows the successive calculation of the moments

about the origin of X, for any order k� 1. The function φ(t) is formally defined as

φ tð Þ ¼ E et X
� � ¼

X
all x

etxpX xð Þ, for discrete X

ð1
�1

etxf X xð Þdx, for continuous X

8>>>>><
>>>>>:

ð3:25Þ
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The function φ(t) is named moment generating because its kth derivative, with

respect to t and evaluated at t¼ 0, yields the moment μ
0
k of the density (or mass) on

focus. Supposing, for instance, that k¼ 1, it follows from differentiation that

φ
0
tð Þ ¼ d

dt
E etX
� � ¼ E

d etX

dt

 �
¼ E XetX

� � ) φ
0
t ¼ 0ð Þ ¼ E X½ � ¼ μX ð3:26Þ

In an analogous way, one can derive that φ
00
0ð Þ ¼ E X2

� � ¼ μ
0
2, φ

000
0ð Þ ¼ E X3

� �
¼ μ

0
3 and so forth, up to φk 0ð Þ ¼ E Xk

� � ¼ μ
0
k. In fact, as a summarizing statement,

expansion of the MGF φ(t), of a random variable X, into a Maclaurin series of

integer powers of t (see Appendix 1 for a brief review), yields

φ tð Þ ¼ E etX
� � ¼ E 1þ Xtþ 1

2!
Xtð Þ2 þ . . .

 �
¼ 1þ μ

0
1tþ

1

2!
μ

0
2tþ . . . ð3:27Þ

Example 3.14 The distribution with PMF pX xð Þ ¼ e�ν νx

x! , x ¼ 0, 1, . . ., is known

as the Poisson distribution, with parameter ν> 0. Use the MGF to calculate the

mean and the variance of the Poisson discrete random variable.

Solution Equation (3.25), as applied to the Poisson mass function, gives

φ tð Þ ¼ E etX½ � ¼ P1
x¼0

etxe�ν νx

x! ¼ e�ν
P1
x¼0

νetð Þx
x! . Using the identity

P1
k¼0

ak

k! ¼ ea, one

can write φ tð Þ ¼ e�νeν exp tð Þ ¼ exp ν et � 1ð Þ½ �, whose derivative with respect to

t is φ
0
tð Þ ¼ νetexp ν et � 1ð Þ½ � and φ

00
tð Þ ¼ νetð Þ2exp ν et � 1ð Þ½ �þ νetexp ν et � 1ð Þ½ �.

For t¼ 0, E X½ � ¼ φ
0
0ð Þ ¼ ν and E X2

� � ¼ φ
00
0ð Þ ¼ ν2 þ ν. Recalling that

Var Xð Þ ¼ E X2
� �� E X½ �ð Þ2, one concludes that μX ¼ Var Xð Þ ¼ ν.

Example 3.15 The Normal is the best-known probability distribution and is at the

origin of important theoretical results from statistics. The Normal PDF is given by

f X xð Þ ¼ 1ffiffiffiffi
2π

p
θ2
exp �1

2
x�θ1
θ2

	 
2
 �

, where θ1 and θ2 are parameters that respectively

define the central location and the scale of variation of X. The X domain

spans from �1 toþ1. Following substitution and algebraic manipulation,

the MGF for the Normal distribution is expressed as φ tð Þ ¼ E etX½ � ¼
1ffiffiffiffi
2π

p
θ2

ð1
�1

exp � x2�2θ1xþθ21�2θ22tx

2θ22

h i
dx. Use this expression of the MGF to calculate μX

and Var(X) for a Normal random variable.

Solution In the integrand of φ(t), the term x2 � 2θ1xþ θ21 � 2θ22tx can be rewritten

asx2 � 2 θ1 þ θ22t
� �

xþ θ21. This term will not be altered by introducing the algebraic

artifice x� θ1 þ θ22t
� �� �2 � θ1 þ θ22t

� �2 þ θ21 ¼ x� θ1 þ θ22t
� �� �2 � θ42t

2 � 2θ1θ
2
2t.

Replacing it back in the MGF equation and rewriting it with the constant terms
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outside the integrand, φ tð Þ ¼ exp
θ42t

2þ2θ1θ
2
2t

2θ22

h i
1ffiffiffiffi
2π

p
θ2

ð1
�1

exp � x� θ1 þ θ22t
� �� �2
2θ22

" #
dx.

Now, let us define a new variable, given by Y ¼ x� θ1þθ22tð Þ2
θ22

, which is also normally

distributed, but with parameters θ1 þ θ22t and θ2. As with any PDF, the integral

over the entire domain of the random variable must be equal to one, or

1ffiffiffiffi
2π

p
θ2

ð1
�1

exp � x� θ1 þ θ22t
� �� �2
2θ22

" #
dx ¼ 1, which makes the MGF φ tð Þ ¼

exp
θ42t

2þ2θ1θ
2
2t

2θ22

h i
. The derivatives of φ(t) are φ

0
tð Þ ¼ θ1 þ tθ22

� �
exp

θ22t
2

2
þ θ1t

h i
and

φ
00
tð Þ ¼ θ1 þ tθ22

� �2
exp

θ22t
2

2
þ θ1t

h i
þ θ22exp

θ22t
2

2
þ θ1t

h i
: At t¼ 0, φ

0
0ð Þ ¼ θ1 )

E X½ � ¼ θ1and φ
00
0ð Þ ¼ θ21 þ θ22 ) E X2

� � ¼ θ21 þ θ22. Recalling that Var Xð Þ ¼
E X2
� �� E X½ �ð Þ2, one finally concludes that μX ¼ θ1 and Var Xð Þ ¼ σ2X ¼ θ2. As a

result, the Normal PDF is most often written as f X xð Þ ¼ 1ffiffiffiffi
2π

p
σX
exp �1

2
x�μX
σX

	 
2
 �

.

3.7 Joint Probability Distributions of Random Variables

So far, the focus of this chapter has been kept on the main features of probability

distributions of a single random variable. There are occasions, though, when one is

interested in the joint probabilistic behavior of two or more random variables. In

this section, the definitions and arguments developed for one single random vari-

able are extended to the case of two variables. Denoting these by X and Y, their joint
cumulative probability distribution function is defined as

FX,Y x; yð Þ
PX,Y x; yð Þ

)
¼ Ρ X � x, Y � yð Þ ð3:28Þ

The probability distribution that describes the behavior of only variable X can be

derived from FX,Y(x,y) or from PX,Y(x,y). In effect, for the continuous case, the CDF
of X can be put in terms of the joint CDF as

FX xð Þ ¼ Ρ X � xð Þ ¼ Ρ X � x,Y � 1ð Þ ¼ FX,Y x;1ð Þ ð3:29Þ
Likewise for Y, one can write

FY xð Þ ¼ Ρ Y � yð Þ ¼ Ρ X � 1, Y � yð Þ ¼ FX,Y 1; xð Þ ð3:30Þ

FX(x) and FY(y) are named marginal distributions of X and Y, respectively.

3 Elementary Probability Theory 81



If X and Y are continuous, their joint probability density function is defined as

f X,Y x; yð Þ ¼ ∂2

∂x∂y
FX,Y x; yð Þ ð3:31Þ

Figure 3.12 depicts a 3-dimensional example chart of a joint probability density

distribution of two continuous random variables X and Y.
As for any density, the joint PDF fX,Y(x,y) must be a non-negative function. In

complete analogy to the univariate functions, the volume bounded by the surface

given by fX,Y(x,y) and the plane XY must be equal to one, or

ð1
�1

ð1
�1

f X,Y x; yð Þdxdy ¼ 1 ð3:32Þ

The marginal density of X can be graphically visualized by projecting the

joint density fX,Y(x,y) into the plane formed by the vertical and the X axes. In

mathematical terms,

f X xð Þ ¼
ð1

�1
f X,Y x; yð Þdy ð3:33Þ

Likewise, the marginal density of Y, describing only the probabilistic behavior of Y,
regardless of how X varies, can be derived from the joint PDF as

f
X,Y
(x,y)

f
X,Y
(x,y)

dy

y

x

0

dx

dy

dy

S

Y

Fig. 3.12 3D example chart of a joint PDF of two continuous random variables (adapted from

Beckmann 1968)
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f Y yð Þ ¼
ð1

�1
f X,Y x; yð Þdx ð3:34Þ

Thus, one can write the following mathematical statements:

FX 1ð Þ ¼
ð1

�1
f X xð Þdx ¼ 1 and FY 1ð Þ ¼

ð1
�1

f Y yð Þdy ¼ 1 ð3:35Þ

and

FX xð Þ ¼
ðx

�1
f X xð Þdx ¼ Ρ X � xð Þ and FY yð Þ ¼

ðy
�1

f Y yð Þdy ¼ Ρ Y � yð Þ ð3:36Þ

This logical framework can be extended to joint and marginal probability mass

functions of two discrete random variables X and Y. For these, the following are

valid relations:

PX,Y x; yð Þ ¼ Ρ X � x,Y � yð Þ ¼
X
xi�x

X
yj�y

pX,Y xi; yj

	 

ð3:37Þ

pX xið Þ ¼ Ρ X ¼ xið Þ ¼
X
j

pX,Y xi; yj

	 

ð3:38Þ

pY yj

	 

¼ Ρ Y ¼ yj

	 

¼

X
i

pX,Y xi; yj

	 

ð3:39Þ

PX xð Þ ¼ Ρ X � xið Þ ¼
X
xi�x

pX xið Þ ¼
X
xi�x

X
j

pX,Y xi; yj

	 

ð3:40Þ

PY yð Þ ¼ Ρ Y � yj

	 

¼

X
yj�y

pY yj

	 

¼

X
yj�y

X
i

pX,Y xi; yj

	 

ð3:41Þ

Example 3.16 Suppose that f X,Y x; yð Þ ¼ 2xexp �x2 � yð Þ for x � 0 and y � 0:

(a) Check whether fX,Y(x,y) is indeed a joint PDF. (b) Calculate P(X> 0.5, Y> 1).

Solution (a) As the joint PDF fX,Y(x,y) is a non-negative function, it suffices to

check whether the second necessary condition, given by Eq. (3.32), holds. Thus,ð1
�1

ð1
�1

f X,Y x; yð Þdxdy ¼ 2

ð1
0

xexp �x2
� �

dx

ð1
0

exp �yð Þdy ¼ �exp �x2
� ��1

0
�e�yð Þ�10 ¼ 1.
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Therefore, one concludes fX,Y(x,y) is actually a density. (b) P X > 0:5, Y > 1ð Þ

¼
ð1
0, 5

2x exp �x2
� �

dx

ð1
1

exp �yð Þdy ¼ exp �1:25ð Þ ¼ 0:2865:

The probability distribution of one of the two variables, under constraints

imposed on the other, is termed conditional distribution. For the simpler case of

discrete variables, the joint PMF of X, as conditioned on the occurrence Y¼ y0, is a
direct extension of Eq. (3.3), or

pX Y¼y0j ¼ pX,Y x; y0ð Þ
pY y0ð Þ ð3:42Þ

For continuous variables, however, the concept of conditional distribution

requires more attention. In order to better explain it, let us consider the events

x<X< xþ dx, denoted by A, and y< Y< yþ dy, represented by B. The conditional
probability density function fXjY(xjy), as multiplied by dx, is equivalent to the

conditional probability P(AjB), or

f X Yj x yjð Þdx ¼ Ρ x < X < xþ dx y < Y < yþ dyjð Þ ¼ Ρ A Bjð Þ ð3:43Þ

Note in this equation that X only is a random variable, since Y was kept fixed and

inside the interval (y, yþ dy), thus showing that fXjY(xjy) is indeed univariate. Now,
by virtue of applying Eq. (3.3), the probability of the joint occurrence of events

A and B is written as Ρ A \ Bð Þ ¼ Ρ A Bjð ÞΡ Bð Þ ¼ f X,Y x; yð Þdxdy and if

Ρ Bð Þ ¼ Ρ y < Y < yþ dyð Þ ¼ f Y yð Þdy, then, one can define the conditional density
fXjY(xjy) as

f X Yj x yjð Þ ¼ f X,Y x; yð Þ
f Y yð Þ ð3:44Þ

having the same properties that any probability density function should have.

Employing the same line of reasoning as before and the law of total probability,

it is simple to show that Bayes’ formula, as applied to two continuous random

variables, can be expressed as

f X Yj x yjð Þ ¼ f Y Xj y xjð Þ f X xð Þ
f Y yð Þ or f X Yj x yjð Þ ¼ f Y Xj y xjð Þ f X xð Þð1

�1
f Y Xj y xjð Þ f X xð Þdx

ð3:45Þ

Making reference to Fig. 3.12 and in the light of the new definitions, one can

interpret Eq. (3.44) as the ratio between the volume of the prism fX,Y(x,y)dxdy,
hatched in the figure, and the volume of the band S, enclosed by the surface fX,Y(x,y)
and the interval (y, yþ dy). Yet, there is the special case where X and Y are
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continuous random variables and one wishes to determine the PDF of X, condi-
tioned on Y¼ y0. In such a case, because Y is a fixed value, the band S becomes a flat

slice and must be referred to as an area instead of a volume. Under these conditions,

Eq. (3.44), for Y¼ y0, is rewritten as

f X Yj x Y ¼ y0jð Þ ¼ f X,Y x; y0ð Þ
f Y y0ð Þ ð3:46Þ

As a consequence of Eq. (3.5), the random variables X and Y are considered

statistically independent if the probability of any occurrence related to one of them

is not affected by the other. This is summarized by

Ρ X � x0,Y � y0ð Þ ¼ Ρ X � x0ð ÞΡ Y � y0ð Þ ð3:47Þ

In terms of the joint CDF, the variables X and Y are independent if

PX,Y x0; y0ð Þ ¼ PX x0ð ÞPY y0ð Þ or FX,Y x0; y0ð Þ ¼ FX x0ð ÞFY y0ð Þ ð3:48Þ

In the case of discrete variables, the independence condition is reduced to

pX,Y x; yð Þ ¼ pX xð ÞpY yð Þ ð3:49Þ

whereas for continuous variables,

f X,Y x; yð Þ ¼ f X xð Þ f Y yð Þ ð3:50Þ

Therefore, the necessary and sufficient condition for two random variables to be

considered statistically independent is that their joint density (or mass) function be

the product of their marginal density (or mass) functions.

Example 3.17 Consider the following non-negative functions of X and Y: f x; yð Þ
¼ 4xy, for 0 � x � 1, 0 � y � 1ð Þ and g x; yð Þ ¼ 8xy, for 0 � x � 1, 0 � y � 1ð Þ.
(a) For the first function, check whether or not it is a density, and check whether

X and Y are statistically independent. (b) Do the same for g(x,y).

Solution (a) In order for f x; yð Þ ¼ 4xy be a density, the necessary and sufficient

condition is

ð1
0

ð1
0

4xydxdy ¼ 1. Solving the integral,

ð1
0

ð1
0

4xydxdy ¼

4

ð1
0

xdx

ð1
0

ydy ¼ 1. This proves that f x; yð Þ ¼ 4xy is a joint density. In order to

check whether X and Y are independent, the necessary and sufficient condition is

given by Eq. (3.50), requiring, for its verification, the calculation of the marginal
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densities. Marginal density of X: f X xð Þ ¼
ð1
0

f X,Y x; yð Þdy ¼ 4

ð1
0

xydy ¼ 2x. Marginal

of Y: f Y yð Þ ¼ 4

ð1
0

xydx ¼ 2y. Therefore, because the joint PDF is the product of the

marginal densities, X and Y are statistically independent. (b) Proceeding in a similar

way for the function g x; yð Þ ¼ 8xy, it is verified that it is actually a joint density

function. The marginal densities are gX xð Þ ¼ 4x and gY yð Þ ¼ 4y3. In this case,

because gX,Y x; yð Þ 6¼ gX xð ÞgY yð Þ, the variables are not independent.
The definition and properties of the mathematical expectation can be extended to

joint probability distribution functions. In fact, Eqs. (3.14) and (3.15), which define

mathematical expectations in broad terms, can be applied to a generic real-valued

function g(X, Y) of two random variables X and Y, by means of

E g X; Yð Þ½ � ¼

X
x

X
y

g x; yð ÞpX,Y x; yð Þ for discrete X and Y

ð1
�1

ð1
�1

g x; yð Þ f X,Y x; yð Þdxdy for continuous X and Y

8>>>><
>>>>:

ð3:51Þ

By imposing g X; Yð Þ ¼ XrYs in Eq. (3.51), it is possible to expand, for the

bivariate case, the definition of moments μ
0
r;s, of orders r and s, about the origin.

Likewise, by substituting g X; Yð Þ ¼ X � μXð Þr Y � μYð Þs in Eq. (3.51), the central

moments μr,s of orders r and s are defined as well. The following particular cases are

easily recognized: (a) μ
0
1,0 ¼ μX ; (b) μ

0
0 ,1 ¼ μY ; (c) μ2 , 0 ¼ Var X½ � ¼ σ2X and (d)

μ0 , 2 ¼ Var Y½ � ¼ σ2Y .
The central moment μr¼1, s¼1 receives the special name of covariance of X and Y,

and gives a measure of how strong the linear association between these two vari-

ables is. Formally, the covariance of X and Y is defined as

Cov X; Y½ � ¼ σX,Y ¼ E X � μXð Þ Y � μYð Þ½ � ¼ E XY½ � � E X½ �E Y½ � ð3:52Þ

Note that when X and Y are statistically independent, it is clear that E[XY]¼
E[X]	E[Y] and, thus, application of Eq. (3.52) results in a covariance of zero.

Conversely, if Cov[X,Y]¼ 0, the variables X and Y are not necessarily independent.

In such a case, because Cov[X,Y]¼ 0, X and Y are linearly independent. However,

they might exhibit some form of nonlinear dependence.

As the covariance possesses the same units as the ones resulting from the product

of X and Y units, it is more practical to scale it by dividing it by σXσY. This scaled
measure of covariance is termed coefficient of correlation, is denoted by ρX,Y and

formally defined as
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ρX,Y ¼ Cov X; Y½ �
σX σY

¼ σX,Y
σX σY

ð3:53Þ

Just as with its sample estimate rX,Y, from Sect. 2.4.1 of Chap. 2, the coefficient of

correlation is bounded by the extreme values of �1 and þ1. Again, if variables

X and Y are independent, then ρX,Y ¼ 0. However, the converse is not necessarily

true since X and Y might be associated by some functional relation other than the

linear.

The following statements ensue from the plain application of the expectation

properties to two or more random variables:

1. E aX þ bY½ � ¼ aE X½ � þ bE Y½ �, where a and b are constants.

2. Var aX þ bY½ � ¼ a2Var X½ � þ b2Var Y½ � þ 2abCov X; Y½ �, for linearly dependent

X and Y.

3. Var aX þ bY½ � ¼ a2Var X½ � þ b2Var Y½ �, for linearly independent X and Y.
4. In the case of k random variables X1, X2, . . ., Xk,E a1X1 þ a2X2 þ . . .þ akXk½ � ¼

a1E X1½ � þ a2E X2½ � þ . . .þ akE Xk½ �, where a1, a2, . . ., ak are constants.
5. In the case of k random variables X1, X2, . . ., Xk,

Var a1X1 þ a2X2 þ . . .þ akXk½ � ¼
Xk
i¼1

a2iVar Xi½ � þ 2
X
i<j

aiajCov Xi;Xj

� �
.

6. For k independent variables, Var a1X1 þ a2X2 þ . . .þ akXk½ � ¼
Xk
i¼1

a2iVar Xi½ �

Example 3.18 Consider a simple random sample (SRS) of N points, drawn from a

population with mean μ and variance σ2. Define Y as the arithmetic mean value of

the N sample points. Calculate the mean and the variance of Y. Recall from Sect. 1.5

that the combination of the attributes of equally likely and statistically independent

sample points defines an SRS.

Solution The arithmetic mean is given by Y ¼ X1

N þ X2

N þ . . .þ XN

N , where X1, X2,

. . ., XN denote the sample elements (or sample points). As it is a simple random

sample, its elements can be viewed as realizations of N independent random vari-

ables, all drawn from the same population of mean μ and variance σ2. Using
properties (4) and (6), previously listed in this section, with a1¼ a2,. . .,aN¼ (1/N ),

E X1½ � ¼ E X2½ � ¼ . . . ¼ E XN½ � ¼ μ, and Var X1½ � ¼ Var X2½ � ¼ . . . ¼ Var XN½ � ¼ σ2,

it follows that E Y½ � ¼ Nμ
N ¼ μ and Var Y½ � ¼ Nσ2

N2 ¼ σ2

N or σY ¼ σffiffiffi
N

p .

Example 3.19 Show that the joint moment generating function of two statistically

independent random variables X and Y is equal to the product of their individual

moment generating functions.

Solution The joint MGF of the X and Y variables is given by φX,Y t1, t2ð Þ ¼
E exp t1X þ t2Yð Þ½ �. The moments about the origin, of orders r and s, can be

calculated from the joint MGF through the rth derivative with respect to t1 and
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the sth derivative with respect to t2, both evaluated at t1¼ t2¼ 0. However, if the

variables are statistically independent, one can write φX,Y t1, t2ð Þ ¼
E exp t1X þ t2Yð Þ½ � ¼ E exp t1Xð Þ½ �E exp t2Yð Þ½ � ¼ φX t1ð ÞφY t2ð Þ, which renders

the calculation much simpler. Therefore, if two random variables are statistically

independent, the joint MGF is the product of their individual MGFs. Conversely, if

the joint MGF is equal to the product of the individual MGFs, then the variables are

statistically independent.

The definition of expected value can also be extended to the random variable

X conditioned on Y and vice-versa. In fact, if two discrete random variables X and Y,
with joint PMF pX,Y(x, y) and marginal PMFs pX(x) and pY(y), then the following

conditional means are defined:

E X Y ¼ y0j½ � ¼
X
all xi

xi
pX,Y xi; y0ð Þ
pY y0ð Þ ¼

X
all xi

xi pX Yj xi y0jð Þ ð3:54Þ

E Y X ¼ x0j½ � ¼
X
all yj

yj

pX,Y x0; yj

	 

pX x0ð Þ ¼

X
all yj

yj pY Xj yj x0j
	 


ð3:55Þ

If X and Y are continuous with joint PDF fX,Y(x, y) and marginal densities

fX(x) and fY(y), in like manner, the conditional means are given by

E X Y ¼ y0j½ � ¼
ð1

�1
x
f X,Y x; y0ð Þ
f Y y0ð Þ ¼

ð1
�1

x f X Yj x Y ¼ y0jð Þ ð3:56Þ

E Y X ¼ x0j½ � ¼
ð1

�1
y
f X,Y x0; yð Þ
f X x0ð Þ ¼

ð1
�1

y f Y Xj y x ¼ x0jð Þ ð3:57Þ

3.8 Probability Distributions of Functions of Random
Variables

Suppose a given variable Y is linked to a random variable X, through a functional

monotonically increasing or decreasing relation Y¼ g(X), as in Y¼ ln(X) or

Y¼ exp(�X), respectively, for X> 0. As well as being a function of a random

variable, Y also is a random variable. If the probability distribution of X and the

function Y¼ g(X) are known, the distribution of Y can be derived.

If X is a discrete random variable, with mass function given by pX(x), the goal, in
this case, is to derive the PMF pY(y) of Y. For an increasing or decreasing

monotonic function Y¼ g(X), there exists a one-to-one correspondence (or a bijec-
tion) between Y and X, being valid to state that to each g(x)¼ y there corresponds a
unique x¼ g�1(y) and, thus, P(Y¼ y)¼ P[X¼ g�1(y)], or, generically,
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pY yð Þ ¼ pX g�1 yð Þ� � ð3:58Þ

If X is a continuous random variable, with density fX(x) and cumulative distri-

bution FX(x), further discussion is needed. As before, the aim is to calculate

P(Y� y) or P[g(X)� y]. If the function Y¼ g(X) is monotonically increasing,

there exists a one-to-one correspondence between Y and X, and it is right to assert

that to each g(x)� y corresponds a unique x� g�1(y) and, thus,

Ρ Y � yð Þ ¼ Ρ X � g�1 yð Þ� �
ou FY yð Þ ¼ FX g�1 yð Þ� � ð3:59Þ

Contrarily, if the function Y¼ g(X) decreases monotonically, to each g(x)� y there
is only one x� g�1(y) and, thus,

Ρ Y � yð Þ ¼ 1� Ρ X � g�1 yð Þ� �
ou FY yð Þ ¼ 1� FX g�1 yð Þ� � ð3:60Þ

In both cases, the density of Y can be derived through differentiation of the CDF

with respect to y. However, because densities are always non-negative and must

integrate to one over the entire domain of X, it is necessary to take the absolute

value of the derivative of g�1(y), with respect to y. In formal terms,

f Y yð Þ ¼ d

dy
FY yð Þ ¼ F 0

X g�1 yð Þ� � d g�1 yð Þ½ �
dy

����
���� ¼ f X g�1 yð Þ� � d g�1 yð Þ½ �

dy

����
���� ð3:61Þ

Example 3.20 A geometric discrete random variable X has a mass function

pX xð Þ ¼ p 1� pð Þx�1
, for x ¼ 1, 2, 3, . . . and 0 � p � 1. Suppose X represents the

occurrence in year x, and not before x, of a flood larger than the design flood of a

cofferdam, built to protect a dam’s construction site. In any given year, the

probability of this extraordinary flood occurring, as related to the cofferdam failure,

is p. Suppose further that the cofferdam has been recently heightened and that the

time to failure, in years, has increased to Y¼ 3X. Calculate the probability of the

time to failure, under the new scenario of the heightened cofferdam (adapted from

Kottegoda and Rosso 1997).

Solution With Y ¼ 3X ) g�1 Yð Þ ¼ Y=3 in Eq. (3.58), the resulting expression is

pY yð Þ ¼ p 1� pð Þ y=3ð Þ�1½ �
, for y ¼ 3, 6, 9, . . . e 0 � p � 1. Hence, the conclusion is

that the probabilities of having a failure after 1,2,3 . . . years, before the cofferdam
heightening, are equivalent to probabilities of failure after 3, 6, 9, . . . years, under
the new scenario.

Example 3.21 Suppose X is a Normal random variable with parameters μ and σ. Let
Y define a new variable through Y¼exp(X). Determine the PDF of Y.

Solution The Normal distribution (see Example 3.15) refers to an unbounded

random variable. As x varies from �1 toþ1, y varies from 0 toþ1. Therefore,

the density of Y must refer only to y� 0. With reference to Eq. (3.61), the inverse
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function is given by x ¼ g�1 yð Þ ¼ ln yð Þ and, thus, d g�1 yð Þ½ �=dy�� �� ¼ 1=y. Substitut-

ing these into Eq. (3.61), f Y yð Þ ¼ 1
yσ

ffiffiffiffi
2π

p exp � ln y�μð Þ2
2σ2

h i
, for y � 0. This is known

as the Lognormal distribution. It describes how Y¼exp(X) is distributed when X is

a Normal random variable.

The transformation given by Eq. (3.61) can be extended to the case of bivariate

density functions. For this, consider a transformation of fX,Y(x,y) into fU,V(u,v),
where U¼ u(X,Y) and V¼ v(X,Y) represent continuously differentiable bijective

functions. In this case, one can write

f U,V u; vð Þ ¼ f X,Y x u; vð Þ, y u; vð Þ½ � Jj j ð3:62Þ

where J denotes the Jacobian, as calculated by the following determinant:

J ¼
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

��������

��������
ð3:63Þ

The bounds ofU and V depend on their relations with X and Y, and must be carefully

determined for each particular case.

An important application of Eq. (3.62) refers to determining the distribution of

the sum of two random variables U¼Xþ Y, given the joint density fX,Y(x,y). To
make it simpler, an auxiliary variable V¼X is created, so as to obtain the following

inverse functions: x(u,v)¼ v and y(u,v)¼ u�v. For these, the Jacobian becomes

J ¼ 0 1

1 �1

����
���� ¼ �1 ð3:64Þ

Substituting these quantities into Eq. (3.62), it follows that:

f U,V u; vð Þ ¼ f X,Y v, u� v½ � ð3:65Þ

Note, however, that what is actually sought is the marginal distribution of U.
This can be determined by integrating the joint density, as in Eq. (3.65), over the

domain [A,B] of variable V. Thus,

f U uð Þ ¼
ðB
A

f X,Y v, u� vð Þdv ¼
ðB
A

f X,Y x, u� xð Þdx ð3:66Þ

For the particular situation in which X and Y are independent, fX,Y(x,y)¼ fX(x)fY(y)
and Eq. (3.66) becomes
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f U uð Þ ¼
ðB
A

f X xð Þf Y u� xð Þdx ð3:67Þ

The operation contained in the right-hand side of Eq. (3.67) is known as the

convolution of functions fX(x) and fY(y).

Example 3.22 The distribution of a random variable X is named uniform if its

density is given by fX(x)¼ 1/a, for 0� x� a. Suppose two independent uniform

random variables X and Y are both defined in the interval [0,a]. Determine the

density of U¼Xþ Y.

Solution Application of Eq. (3.67) to this specific case is simple, except for the

definition of the integration bounds A and B. The following conditions need to be

abided by: 0� u�x� a and 0� x� a. These inequalities can be algebraically

manipulated and transformed into u�a� x� u and 0� x� a. Thus, the integration
bounds become A¼Max(u�a,0) and B¼Min(u,a), which imply two possibilities:

u< a and u> a. For u< a, A¼ 0 and B¼ u, and Eq. (3.67) turns itself into f U uð Þ ¼
1

a2

ðu
0

dx ¼ u2

a2
, for 0 � u � a: For u> a, A¼ u�a and B¼ a, and Eq. (3.67)

becomes f U uð Þ ¼ 1

a2

ða
u�a

dx ¼ 2a� u

a2
, for a � u � 2a: Take the opportunity of

this example to plot the density fU(u) and see that the PDF of the sum of two

independent uniform random variables is given by an isosceles triangle.

3.9 Mixed Distributions

Consider a random variable X whose probabilistic behavior is described by the

composition of m distributions, denoted by fi(x) and respectively weighted by

parameters λi, for i ¼ 1, . . . ,m, such that
Xm
i¼1

λi ¼ 1:Within this context, the den-

sity function of X is of the mixed type and given by

f X xð Þ ¼
Xm
i¼1

λi f i xð Þ ð3:68Þ

The corresponding CDF is
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FX xð Þ ¼
ðx

�1

Xm
i¼1

λif i xð Þdx ð3:69Þ

In hydrology, the mixed distributions approach meets its application field in the

study of random variables whose outcomes may result from different causal

mechanisms. For instance, short-duration rain episodes can possibly be caused by

the passing of cold fronts over a region or from local convection, thus affecting the

lifting of humid air into the atmosphere and the storm characteristics, such as its

duration and intensity. Suppose X represents the annual maximum rainfall intensi-

ties, for some fixed sub-daily duration, at some site. If rains are related to frontal

systems, their intensities ought to be described by some density function f1(x),
whereas, if convection is their prevalent causal mechanism, they ought to be

described by f2(x). If the proportion of rains caused by frontal systems is given by

λ1 and the proportion of convective storms is λ2¼ (1�λ1), then the overall proba-

bilistic behavior of annual maxima of sub-daily rainfall intensities will be described

by the combination of densities f1(x) and f2(x), as respectively weighted by λ1 and
λ2, through Eq. (3.68). This same idea may be applied to other hydrologic phenom-

ena, such as floods produced by different mechanisms, like rainfall and snowmelt.

Exercises

1. The possible values of the water heights H, relative to the mean water level, at

each of two rivers A and B, are: H¼�3, �2, �1, 0, 1, 2, 3, 6 m.

(a) Consider the following events for river A: A1¼ {HA> 0}, A2¼ {HA¼ 0}

and A3¼ {HA� 0}. List all possible pairs of mutually exclusive events

among A1, A2 and A3.

(b) At each river, define the following events: normal water level N¼
{�1�H� 1}, drought water level D¼ {H< 1}and flood water level

F¼ {H> 1}. Use the ordered pair (hA,hB) to identify the sample points

that define the joint water levels in rivers A and B, respectively; e.g.: (3,�1)

defines the concurrent condition hA¼ 3 and hB¼�1. Determine the sample

points for the events NA\NB and FA [ DAð Þ \ NB (adapted from Ang and

Tang 1975).

2. Consider the cross-section of a gravity dam, as shown in Fig. 3.13. The

effective storage volume V of the reservoir created by the dam varies from

zero to full capacity c (0�V� c), depending on the time-varying inflows and

outflows. The effective storage volume V has been discretized into volumes

stored at levels between w1 and w2, w2 and w3, w3 and w4, w4 and c, and then

respectively identified as events A1, A2, A3, and A4, so that the annual

frequencies of average daily water levels can be accordingly counted and
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grouped into one of the four events. Identify the water levels w for each of the

following events: (a) (A4)
c\(A1)

c; (b) A3 [ A2ð Þc \ A1ð Þc; (c) A4 [ A1 [ A2ð Þc½ �c;
and A1 \ A2ð Þc (adapted from Kottegoda and Rosso 1997).

3. If the occurrence of a rainy day has probability of 0.25 and is statistically

independent of it raining in the previous and in the following days, calculate

(a) the probability of 4 rainy days in a week;

(b) the probability that the next 4 days will be rainy; and

(c) the probability of 4 rainy days in a row and 3 dry days in a week.

4. The river R is located close to the city C and, in any given year, reaches or

exceeds the flood stage with a probability of 0.2. Parts of the city are flooded

every year with a probability of 0.1. Past observations show that when river R is

at or above flood stage, the probability of C being inundated increases to 0.2.

Given that,

(a) calculate the annual probability of a flood in river R or inundations in city

C; and
(b) calculate the probability of a flood in river R and inundations in city C.

5. A gravity retaining wall can possibly fail either by sliding along its contact

surface with the foundations (event S) or by overturning (event O) or by both.

If P(S)¼ 3P(O), P(O|S)¼ 0.7, and the probability of failure of the wall is 10�3,

(a) determine the probability that sliding will occur; and (b) if the wall fails,

Fig. 3.13 Reservoir storage levels for Exercise 2
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what is the probability that only sliding has occurred? (adapted from Ang and

Tang 1975).

6. The Blackwater River, in central England, is regularly monitored for pollution

at 38 sites along its course. Table 3.1 lists concurrent measurements of

Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD), both in

mg/l, taken at the 38 sites of the Blackwater River. Owing to regional similar-

ities in water uses, one can assume data refer to the same population (adapted

from Kottegoda and Rosso 1997).

Knowing that the sample average values of DO and BOD measurements are

respectively 7.5 and 3.2 mg/l, one can define the following events:

B1¼ {DO� 7.5 and BOD> 3.2}; B2¼ {DO> 7.5 and BOD> 3.2};

B3¼ {DO> 7.5 and BOD� 3,2}; and B4¼ {DO� 7,5 and BOD� 3.2}.

Based on the DO and BOD data, consider the reference event defined by the

variation of both variables within the interval [average value – 1 standard-

deviation, average valueþ 1 standard-deviation]. The standard-deviations of

DO and BOD are respectively equal to 1.0 and 0.5 mg/l, which specifies the

reference event as A¼ {6.5<DO< 8.5 and 2.7<BOD< 3.7). Under this

setup,

(a) Make a scatterplot of DO versus BOD, and identify events B1, B2, B3, B4,

and A on your chart;

(b) Estimate the probabilities of events Bi, i¼ 1,...,4, by their respective rela-

tive frequencies;

(c) Employ the law of total probability to calculate the probability that DO and

BOD lie outside the boundaries of the reference event A; and
(d) Use Bayes’ formula to calculate the probability that DO and BOD lie inside

the boundaries defined by events B1 to B4, knowing that both are inside the

reference event A.

7. A river splits into branches A and B to form a river island. The river bifurcation

occurs downstream of the effluent discharge from a sewage treatment plant,

whose efficiency is under scrutiny by the river regulation agency. Dissolved

Table 3.1 DO and BOD measurements at 38 sites along the Blackwater River, in England

DO BOD DO BOD DO BOD DO BOD

8.15 2.27 6.74 3.83 7.28 3.22 8.46 2.82

5.45 4.41 6.9 3.74 7.44 3.17 8.54 2.79

6.05 4.03 7.05 3.66 7.59 3.13 8.62 2.76

6.49 3.75 7.19 3.58 7.73 3.08 8.69 2.73

6.11 3.37 7.55 3.16 7.85 3.04 8.76 2.7

6.46 3.23 6.92 3.43 7.97 3 9.26 2.51

6.22 3.18 7.11 3.36 8.09 2.96 9.31 2.49

6.05 4.08 7.28 3.3 8.19 2.93 9.35 2.46

6.3 4 7.44 3.24 8.29 2.89 Average Average

6.53 3.92 7.6 3.19 8.38 2.86 7.5 3.2
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oxygen (DO) concentrations in branches A and B are indicative of eventual

pollution caused by the effluent discharge. Experts estimate the probabilities

that river branches A and B have DO levels below regulatory standards are 2/5

and 3/4, respectively. They further estimate the probability of at least one of the

two river branches being polluted is 4/5.

(a) Determine the probability of branch A being polluted, given that branch

B is polluted;

(b) Determine the probability of branch B being polluted, knowing that branch

A is polluted.

8. The probabilities of monthly rainfall depths larger than 60 mm in January,

February, . . ., December are respectively 0.24; 0.31; 0.30; 0.45; 0.20; 0.10;

0.05; 0.05; 0.04; 0.06; 0.10; and 0.20. Suppose a record of monthly rainfall

depth, higher than 60 mm, is chosen at random. Calculate the probability this

record refers to the month of July.

9. If the PDF of a random variable X is f X xð Þ ¼ c 1� x2ð Þ, � 1 � x � 1, for

constant c,

(a) Calculate c;
(b) Determine the CDF of X; and
(c) Calculate P(X� 0.75).

10. In a small catchment, the probability of it raining on a given day is 0.60. If it

rains, precipitation depth is an exponential random variable with θ¼ 10 mm.

Depending on the antecedent soil moisture condition in the catchment, a

rainfall depth of less than 20 mm can possibly cause the creek to overflow.

The probability of such an event to occur is 0.10. If it rains more than 20 mm,

the probability that the creek overflows is 0.90. Knowing the creek has

overflowed, what is the probability a rainfall depth of more than 20 mm has

occurred?

11. Determine the mean and variance of a geometric random variable with mass

function given by pX xð Þ ¼ p 1� pð Þx�1
, for x ¼ 1, 2, 3, . . . and 0 � p � 1.

12. Under which conditions is the statement P(X�E[X])¼ 0.50 valid?

13. Show that E[X2]� (E[X])2.
14. If X and Z are random variables, show that

(a) E X�μX
σX

	 

¼ 0;

(b) Var
X�μX
σX

	 

¼ 1; and

(c) ρX , Z ¼ Cov
X�μX
σX

,
Z�μZ
σZ

	 

15. A simple random sample of 36 points has been drawn from a population of a

Normal variable X, with μX¼ 4 and σX¼ 3. Determine the expected value and

the variance of the sample arithmetic mean.
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16. The probability mass function of the binomial distribution is given by pX xð Þ

¼ N
x

� �
px 1� pð ÞN�x

, x ¼ 0, 1, 2, . . . ,N: Employ the moment generating

function to calculate the mean and variance of the binomial variable with

parameters N and p. Remember that, according to Newton’s binomial theorem,

aþ bð ÞN ¼
XN
k¼0

N
k

� �
ak bN�k.

17. X and Y are two independent random variables with densities respectively given

by λ1exp(�xλ1) and λ2exp(�yλ2), for x� 0 and y� 0. For these,

(a) determine the MGF of Z¼Xþ Y; and
(b) determine the mean and variance of Z from the MGF.

18. Suppose the joint PDF of X and Y is f X , Y x; yð Þ ¼
exp �x=yð Þ exp �yð Þ

y ; 0 < x < 1 , 0 < y < 1.

(a) Calculate P(X< 2|Y¼ 3);

(b) calculate P(Y> 3); and

(c) determine E[X|Y¼ 4].

19. Suppose that the rainfall’s duration and intensity are respectively denoted by

X and Y and that their joint probability density function is given by

f X,Y x; yð Þ ¼ aþ cyð Þ bþ cxð Þ � c½ �exp �ax� by� cxyð Þ, for x, y� 0 and

parameters a, b �0 and 0� c� 1. Suppose that a¼ 0.07 h�1, b¼ 1.1 h/mm

and c¼ 0.08 mm�1 for a specific site. What is the probability that the intensity

of rainfall that lasts for 6 h will exceed 3 mm/h?

20. Suppose, in Exercise 19, that c¼ 0. For this specific case, show X and Y are

statistically independent.

21. Consider the PDF f X xð Þ ¼ 0, 35, 0 � X � a. (a) Find the PDF of Y¼ ln(X)
and define the domain of Y. (b) Plot a graph of fY(y) versus y.

22. An earth dam must have a freeboard above the maximum pool level so that

waves, due to wind action, cannot wash over the crest of the dam and start

eroding the embankment. According to Linsley et al. (1992), wind setup is the
tilting of the reservoir water surface caused by the movement of the surface
toward the leeward shore under the action of wind. Wind setup may be

estimated by Z ¼ FV 2= 1500 dð Þ, where Z¼ rise above the still-water level

in cm; V¼wind speed in km/h; F¼ fetch or length of water surface over which

wind blows in m; and d¼ average depth of the reservoir along the fetch in

m. (a) If wind speed V is an exponential random variable with mean v0, for
v� 0, determine the PDF of Z. (b) If v0¼ 30 km/h, F¼ 300 m, and d¼ 10 m,

calculate P(Z> 30 cm).

23. The PDF of a Gamma distribution, with parameters α and λ, is given by

f X xð Þ ¼ λα xα�1 exp �λ xð Þ
Γ αð Þ , x , α , λ > 0, where Γ αð Þ ¼

ð1
0

t α�1 exp �tð Þdt
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denotes the Gamma function [see Appendix 1 for a brief review on the

properties of Γ(.)]. Suppose X and Y are independent Gamma random variables

with parameters (α1,λ1) and (α2,λ2), respectively. Determine the joint PDF and

the marginal densities of U¼Xþ Y and V¼X/(Xþ Y).
24. Suppose that from all 2-h duration rainfalls over a region, 55% of them are

produced by local convection, whereas 45% by the passing of frontal systems.

Let X denote the rainfall intensity for both types of rain-producing mechanisms.

Assume intensities of both rainfall types are exponentially distributed with

parameters θ¼ 15 mm/h, for convective storms, and θ¼ 8 mm/h, for frontal

rains. (a) Determine and plot the PDF of X. (b) Calculate P(X> 25 mm/h).
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Chapter 4

Discrete Random Variables: Probability
Distributions and Their Applications
in Hydrology

Mauro Naghettini

4.1 Bernoulli Processes

Consider a random experiment with only two possible and dichotomous outcomes:

“success,” designated by the symbol S, and “failure,” denoted by F. The related

sample space is given by the set {S,F}. Such a random experiment is known as a

Bernoulli trial. Suppose a random variable X is associated with a Bernoulli trial, so

that X¼ 1, if the outcome is S, or X¼ 0, in case it is F. Suppose further that the

probability of a success occurring is P(X¼ 1)¼ p, which inevitably implies that

P(X¼ 0)¼ 1�p. Under these assumptions, X defines a Bernoulli random variable,

whose probability mass function (PMF) is given by

pX xð Þ ¼ px 1� pð Þ1�x
, for x ¼ 0, 1 and 0 � p � 1 ð4:1Þ

with expected value and variance respectively given by E[X]¼ p and Var[X]¼
p(1�p).

Now, in a more general context, suppose the time scale in which a hypothetical

stochastic process evolves has been discretized into fixed-width time intervals, as,

for instance, into years, indexed by i¼ 1, 2, . . . Also, suppose that within each time

interval, either one “success” occurs, with probability p, or one “failure” occurs

with probability (1�p) and, in addition, that these probabilities are not affected by

previous occurrences and do not vary with time. Such a discrete-time stochastic

process, made of a sequence of independent Bernoulli trials, is referred to as a

Bernoulli process, named after the Swiss mathematician Jakob Bernoulli

(1654–1705), whose book Ars Conjectandi had great influence on the early devel-

opments of the calculus of probabilities and combinatorics.
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To better illustrate the application of Bernoulli processes in hydrology, consider

the river cross-section depicted in Fig. 4.1, where discharge Q0 corresponds to the

flood stage or to the riverbanks stage, above which the rising waters start to flow

onto the floodplains. For a given year, indexed by i, only the peak discharge Qmax
i ,

the largest among all instantaneous flows recorded in that particular time span, is

selected to make one of the N sample points from the reduced hydrologic time

series of annual peak discharges Qmax, shown in Fig. 4.1. For any given year

i, 1� i�N, one can define as a “success” the event S : Qmax
i > Q0

� �
and as a

“failure” its complement event F : Qmax
i � Q0

� �
. The term “success,” used in the

context of a flood, is clearly a misnomer because it is certainly an undesirable event.

Nonetheless, as it is conventionally and extensively employed in statistical litera-

ture, for the sake of clarity, hereinafter, we will continue referring to the occurrence

of a flood as a success, being one of the possible outcomes of a Bernoulli trial.

As regarding the premise of statistical independence among time-sequential

events, from the very nature of flood-producing mechanisms, it is fairly reasonable

to admit as true the hypothesis that the probability of a success or a failure occurring

in any given year is not affected by what has occurred in preceding years. Further-

more, to fulfill the requirements for such an independent sequence to be considered

a Bernoulli process, it suffices to admit the annual probability for the event

S : Qmax
i > Q0

� �
to occur is time-invariant and equal to p.

As associated with Bernoulli processes, one distinguishes the following discrete

random variables, generically designated by Y:

1. The variable is said to be binomial if Y refers to the number of “successes” in

N independent trials;

Fig. 4.1 Annual peak discharges as an illustration of a Bernoulli process
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2. The variable is geometric if Y refers to the number of independent trials

necessary for one single success to occur; and

3. The variable is negative binomial if Y refers to the number of independent trials

necessary for r successes to occur.

The probability distributions associated with these three discrete random vari-

ables are detailed in the sections that follow.

4.1.1 Binomial Distribution

Consider a random experiment consisting of a sequence of N independent Bernoulli

trials. For each trial, the probability of a success S occurring is constant and equal to

p, so that the probability of a failure F is (1�p). The sample space of such an

experiment consists of 2N points, each corresponding to one of all possible combi-

nations formed by grouping the S’s and F’s outcomes from the N trials (see

Appendix 1 for a brief review on elementary combinatorics). For a single trial,

the Bernoulli variable, denoted by X, will assume the value X¼ 1, if the outcome is

a success, or X¼ 0, if it is a failure. If N trials take place, a randomly selected

realization could possibly be made of the sequence {S, F, S, S, . . . , F, F}, for
instance, which would result in X1¼ 1, X2¼ 0, X3¼ 1, X4¼ 1, . . . , XN�1¼ 0,

XN¼ 0. This setup fully characterizes the Bernoulli process.

Based on the described Bernoulli process, consider the discrete random variable

Y representing the number of successes that have occurred among the N trials. It is

evident that Y can take on any values from 0, 1, . . . , N and also that Y ¼
XN
i¼1

Xi. As

resulting from the independence assumption among the Bernoulli trials, each point

with y successes and (N�y) failures, in the sample space, may occur with proba-

bility py 1� pð ÞN�y
. However, the y successes and the (N�y) failures can

possibly be combined from N!= y! N � yð Þ !½ � different ways, each with probability

py 1� pð ÞN�y
. Therefore, the PMF of Y can be written as

pY yð Þ ¼ N !

y ! N � yð Þ ! p
y 1� pð ÞN�y ¼

N

y

 !
py 1� pð ÞN�y

,

y ¼ 0, 1, . . . ,N and 0 < p < 1

ð4:2Þ

which is known as the binomial distribution, with parameters N and p. Note that the
Bernoulli distribution is a particular case of the binomial, with parameters N¼ 1

and p. The PMFs for the binomial distribution with parameters N¼ 8, p¼ 0.3,

p¼ 0.5, and p¼ 0.7 are depicted in the charts of Fig. 4.2. It is worth noting in this

figure that the central location and shape of the binomial PMF experience signif-

icant changes as parameter p is altered while N is kept constant.
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The binomial cumulative distribution function (CDF) gives the probability that

Y is equal to or less than the argument y. It is defined as

FY yð Þ ¼
Xy
i¼0

N
i

� �
pi 1� pð ÞN�i

, y ¼ 0, 1, 2, . . . ,N ð4:3Þ

The expected value, variance, and coefficient of skewness for a binomial variable

Y (see Exercise 16 of Chap. 3) are as follows:

E Y½ � ¼ Np ð4:4Þ

Var Y½ � ¼ Np 1� pð Þ ð4:5Þ

γ ¼ 1� 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np 1� pð Þp ð4:6Þ

The binomial PMF is symmetrical for p¼ 0.5, right-skewed for p< 0.5, and left-

skewed- for p> 0.5, as illustrated in Fig. 4.2.

Example 4.1 Counts of Escherichia Coli for 10 water samples collected from a

lake, as expressed in hundreds of organisms per 100 ml of water (102/100 ml), are

17, 21, 25, 23, 17, 26, 24, 19, 21, and 17. The arithmetic mean value and the

variance calculated for the 10 samples are respectively equal to 21 and 10.6.

Suppose N represents the number of all different organisms that are present in a

sample (in analogy to N¼ the number of Bernoulli trials) and let p denote the

fraction of N that corresponds to E. Coli (in analogy to p¼ the probability of

success). If X is the number of E. Coli, in (102/100 ml), estimate P(X¼ 20) (adapted

from Kottegoda and Rosso 1997).

Solution In this case, the true population values for the mean and the variance are

not known, but can be estimated by their corresponding sample values, or

Fig. 4.2 Examples of mass functions for the binomial distribution
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μ̂ Y ¼ y and σ̂ 2
Y ¼ S2y , where the symbol “^” indicates “estimate.” By making (1�p)

explicit in Eq. (4.5), it follows that 1� p ¼ Var Y½ �
Np ¼ Var Y½ �

E Y½ � ) 1� p̂
S2y
y

¼ 10:6
21

¼ 0:505) p̂ ¼ 0:495. As E[Y]¼Np, N can be estimated by (21/0.495)¼
43. Finally P y ¼ 20ð Þ ¼ pY 20ð Þ ¼ 43

20

� �
0:49520 0:50523 ¼ 0:1123. This exam-

ple shows that Bernoulli processes and the binomial distribution are not restricted to

a discretized time scale, but are also applicable to a space scale or to generic trials

that can possibly yield only one of two possible dichotomous outcomes.

Example 4.2 In the situation depicted in Fig. 4.1, suppose that N¼ 10 years and

that the probability of Q0 being exceeded by the annual peak flow, in any given

year, is p¼ 0.25. Answer the following questions: (a) what is the probability thatQ0

will be exceeded in exactly 2 of the next 10 years? and (b) what is the probability

that Q0 will be exceeded at least in 2 of the next 10 years?

Solution It is easy to see that the situation illustrated in Fig. 4.1 conforms perfectly

to a discrete-time Bernoulli process and also that the variable Y¼ number of
“successes” in N years is a binomial random variable. (a) The probability that Q0

will be exceeded in exactly 2 of the next 10 years can be calculated directly from

Eq. (4.2), or pY 2ð Þ ¼ 10 !
2 ! 8 ! 0:25

2 1� 0:25ð Þ8 ¼ 0:2816. (b) The probability that Q0

will be exceeded at least in 2 of the next 10 years can be calculated by adding up the

respective probabilities that Q0 will be exceeded in exactly 2, 3, 4, . . ., 10 of the

next 10 years. However, this is equivalent to the complement, with respect to 1, of

the summation of the respective probabilities of exactly 1 success and no success in

10 years. Therefore Ρ Y � 2ð Þ ¼ 1� Ρ Y < 2ð Þ ¼ 1� pY 0ð Þ � pY 1ð Þ ¼ 0:7560.
The binomial distribution exhibits the additive property, which means that if Y1

and Y2 are binomial variables, with parameters respectively equal to (N1, p) and
(N2, p), then the variable (Y1 + Y2) will be also binomial, with parameters

(N1 +N2, p). The additive property can be extended to three or more binomial

variates. The term variate applies to the case in which the probability distribution

of a random variable is known or specified, and is extensively used henceforth.

Haan (1977) points out that another important characteristic of Bernoulli processes,

in general, and of binomial variates, in particular, is that the probability of any

combination of successes and failures, for a sequence of N trials, does not depend

on the time scale origin, from which the outcomes are being counted. This is

derived from the assumption of independence among distinct trials and also from

the premise of a time-constant probability of success p.

4.1.2 Geometric Distribution

For a Bernoulli process, the geometric random variable Y is defined as the number

of trials necessary for one single success to occur. Hence, if the variable takes on the

value Y¼ y, that means that (y�1) failures took place before the occurrence of a
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success exactly in the yth trial. The mass and cumulative probability functions for

the geometric distribution are respectively defined as in the following equations:

pY yð Þ ¼ p 1� pð Þy�1
, y ¼ 1, 2, 3, . . . and 0 < p < 1 ð4:7Þ

PY yð Þ ¼
Xy
i¼1

p 1� pð Þ i�1
, y ¼ 1, 2, 3, . . . ð4:8Þ

where the probability of success p denotes its single parameter.

The expected value of a geometric variate can be derived as follows:

E Y½ � ¼
X1
y¼1

yp 1� pð Þ y�1 ¼ p
X1
y¼1

y 1� pð Þy�1

¼ p
X1
y¼1

d

d 1� pð Þ 1� pð Þy ¼ p
d

d 1� pð Þ
X1
y¼1

1� pð Þy ð4:9Þ

As for the previous equation, it can be shown that the sum of the infinite geometric

series
X1
y¼1

1� pð Þ y, for 0< p< 1, with both first term and multiplier equal to (1�p),

converges to 1� p=pð Þ. Thus, substituting this term back into Eq. (4.9) and taking

the derivative, with respect to (1�p), it follows that:

E Y½ � ¼ 1

p
ð4:10Þ

Therefore, the expected value of a geometric variate is the reciprocal of the

probability of success p of a Bernoulli trial. The variance of a geometric variate can

be derived by similar mathematical artifice and is given by

Var Y½ � ¼ 1� p

p 2
ð4:11Þ

The coefficient of skewness of a geometric distribution is

γ ¼ 2� pffiffiffiffiffiffiffiffiffiffiffi
1� p

p ð4:12Þ

The geometric PMFs with parameters p¼ 0.3, p¼ 0.5, and p¼ 0.7 are illustrated in

Fig. 4.3.

Taking advantage of the notional scenario depicted in Fig. 4.1, we shall now

introduce a concept of great importance in hydrology, which is the return period. In
Fig. 4.1, consider the number of years between consecutive successes, denoted by
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the variable τ and named herein as the recurrence time interval. Thus, with

reference to Fig. 4.1 and placing the time scale origin at the year with the first

success, τ1¼ 3 years are needed for the event S : Qmax
i¼4 > Q0

� �
to recur. Thereaf-

ter, from the year of the second success, τ2¼ 2 years are counted until the next

success, and so forth up to τk¼ 5 years of recurrence time interval. If we add the

supposition that, for instance, N¼ 50 years and that 5 successes have occurred

during this time span, the mean value for the recurrence time interval would be

τ ¼ 10 years, implying that, on average, the discharge Q0 is exceeded once at every

10-year period.

It is evident that the variable recurrence time interval perfectly fits the definition
of a geometric random variable and, as such, Eqs. (4.10) and (4.11) should apply. In

particular, for Eq. (4.10), the return period, denoted by T and given in years, is

defined as the expected value of the geometric variate τ, the recurrence time

interval. Formally,

T ¼ E τ½ � ¼ 1

p
ð4:13Þ

Thus, the return period T does not refer to a physical time. In fact, T is a measure of

central tendency of the physical times, which were termed in here as the recurrence

time intervals. In other words, the return period T, associated with a specific

reference event defining a success in a yearly indexed Bernoulli process, corre-

sponds to the mean time interval, in years, necessary for the event to occur, which

might take place in any given year, and is equal to the reciprocal of the annual

probability of success.

In hydrology, the return period concept is frequently employed in the probabi-

listic modeling of annual maxima, such as the annual maximum daily rainfalls, and

annual means, such as the annual mean flows. These are continuous random vari-

ables described by probability density functions (PDF), such as the one depicted in

Fig. 4.4. If, as referring to the X variable in Fig. 4.4, a reference quantile xT is

defined so that the “success” represents the exceedance of X over xT, then, the return
period T is the average number of years necessary for the event {X> xT} to occur

once, in any given year. From Eq. (4.13), the return period is the reciprocal of

P(X> xT), the hatched area in Fig. 4.4.

Fig. 4.3 Examples of mass functions for the geometric distribution

4 Discrete Random Variables: Probability Distributions. . . 105



Example 4.3 The annual maximum daily rainfalls, denoted by X, are exponentially
distributed with parameter θ¼ 20 mm (see Example 3.7). Determine (a) the return

period of xT¼ 60 mm; and (b) the maximum daily rainfall of return period T¼ 50

years.

Solution (a) The CDF of an exponential variate X is FX xð Þ ¼ 1� exp �x
θ

� �
, as

derived in Example 3.7. For θ¼ 20 mm, at X¼ xT¼ 60 mm, the corresponding CDF

value is FX xTð Þ ¼ 1� exp �60
20

� � ¼ 0:9502. FX(x) and T are related by T ¼ 1
1�FX xTð Þ

and thus, the return period of xT¼ 60 mm is T¼ 20 years. (b) For T¼ 50 years, the

corresponding CDF value is 0.98. The quantile function x(F) is the inverse of FX(x),

or x Fð Þ ¼ F�1
X xð Þ ¼ �θln 1� Fð Þ. Thus, for F¼ 0.98 and θ¼ 20 mm, the sought

maximum daily rainfall is xT¼50¼ 78.24 mm.

An important extension of the return period concept refers to the definition of

hydrologic risk of failure, as employed in the design of hydraulic structures for

flood mitigation. On the basis of a reference quantile xT, of return period T, the
hydrologic risk of failure is defined as the probability that xT be equaled or exceeded
at least once in an interval of N years. In general, the reference quantile xT
corresponds to the design flood of a given hydraulic structure, whereas the interval

of N years relates to the structure’s expected service life. One of the possible ways

to derive the expression for the hydrologic risk of failure, here denoted by R, makes

use of the binomial distribution. In effect, the probability that the event {X� xT}
will occur at least once in a period of N years and ultimately cause the structure to

fail, is equivalent to the complement, with respect to 1, of the probability that it will

Fig. 4.4 Graphical representation of the return period for annual maxima
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not occur during this time interval. Therefore, using the notation Y for the number of

times the event {X� xT} will occur in N years, from the Eq. (4.2), one can write

R ¼ Ρ Y � 1ð Þ ¼ 1� Ρ Y ¼ 0ð Þ ¼ 1� N
0

� �
p0 1� pð ÞN�0 ð4:14Þ

For the reference quantile xT, of return period T, the probability p that the event

{X� xT} will occur in any given year is, by definition, p ¼ 1=T. Substituting this

result into Eq. (4.14), then, it follows the formal definition for the hydrologic risk of

failure as

R ¼ 1� 1� 1

T

� �N

ð4:15Þ

If the hydrologic risk of failure is previously fixed, as a function of the

importance and dimensions of the hydraulic structure, as well as of the expected

consequences its eventual collapse would have for the populations, communities,

and properties located in the downstream valley, one can make use of Eq. (4.15)

to determine for which return period the design flood quantile should be esti-

mated. For instance, in the case of a dam, whose service life is expected to be

N years and that entails a hydrologic risk of failure R, the return period T of the

design flood of the dam spillway should be derived from the application of

Eq. (4.15). The graph of Fig. 4.5 facilitates and illustrates such a possible

application of Eq. (4.15).

Fig. 4.5 Return period of the design flood as a function of the hydrologic risk of failure and of the

expected service life of the hydraulic structure
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Example 4.4 Figure 4.6 shows a sketch of the diversion scheme of a river during

the projected construction of a dam. Two cofferdams, marked as A and B in this

figure, should protect the dam construction site against flooding, during the

projected construction schedule, as the river is diverted from its natural course

into tunnels C, carved through rocks along the right riverbank. Suppose the civil

engineering works will last 5 years and that the construction company has fixed as

10% the risk that the dam site will be flooded at least once during this time

schedule. Based on these elements, what should be the return period for the tunnels’

design flood?

Solution Inversion of Eq. (4.15), for T, results in T ¼ 1

1� 1�Rð Þ1=N. With R¼ 0.10

and N¼ 5 years, the inverted equation yields T¼ 47.95 years. Therefore, in this

case, the tunnels C must have a cross section capable of conveying a design-flood

discharge of return period equal to 50 years.

The return period concept is traditionally related to annual maxima, but it can

certainly be extended to the probabilistic modeling of annual minima and of annual

mean values as well. For the latter case, no substantial conceptual changes are

needed. However, in the case of annual minima, the success, as conceptualized in

the Bernoulli process, should be adapted to reflect the annual flows that are below

some low threshold zT. Thus, the return period for annual minima must be under-

stood as the average time interval, in years, necessary for the event {Z< zT}, a
drought even more severe than zT, to recur, in any given year. Supposing that

Z represents a continuous random variable, characteristic of the annual drought

flow, such as the annual minimum 7-day mean discharge (Q7), it is verified that the

return period T, associated with the reference quantile zT, must correspond to the

Fig. 4.6 River diversion scheme for a dam construction, as used in Example 4.4
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reciprocal value of P(Z< zT) or the reciprocal of FZ(zT). Figure 4.7 illustrates the

extension of the return period concept to the case of annual minima, by means of a

hypothetical density function fZ(z).
The geometric distribution has the special property ofmemorylessness. That is to

say that, ifm failures have already occurred afterm or more trials, the distribution of

the total number of trials (m + n) before the occurrence of the first success will not
be changed. In fact, by equating the conditional probability P(Y�m + njY�m) and
using the convergence properties of infinite geometric series, with both first term

and multiplier equal to (1�p), it immediately follows that P(Y�m + nj Y�m)¼
P(Y� n).

4.1.3 Negative Binomial Distribution

Still referring to a Bernoulli process, the random variable Y is defined as a negative

binomial (or a Pascal) if it counts the number of trials needed for the occurrence of

exactly r successes. Its mass function can be derived by thinking of the intersection

of two independent events: A, referring to the occurrence of the rth success at the

yth trial, with y� r, and B referring to (r�1) successes that have occurred in the

previous (y�1) trials. By definition of a Bernoulli process, event A may occur with

probability p, in any trial. As regards the event B, its probability is given by the

binomial distribution applied to (r�1) successes in (y�1) trials, or

Ρ Bð Þ ¼ y� 1

r � 1

� �
p r�1 1� pð Þ y�r

. Therefore, by calculating Ρ A \ Bð Þ ¼ Ρ Að Þ
Ρ Bð Þ, it follows that

Fig. 4.7 Extension of the return period concept to annual minima
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pY yð Þ ¼ y� 1

r � 1

� �
p r 1� pð Þ y�r

, with y ¼ r, r þ 1, . . . ð4:16Þ

Equation (4.16) gives the mass function of the negative binomial distribution, with

parameters r and p. Some examples of PMFs for a negative binomial variate are

shown in Fig. 4.8. As the negative binomial actually derives from the sum of

r independent geometric variables, it is straightforward to show, using the proper-

ties of mathematical expectation, that its expected value and variance are respec-

tively given by

E Y½ � ¼ r

p
ð4:17Þ

and

Var Yð Þ ¼ r 1� pð Þ
p2

ð4:18Þ

Example 4.5 To return to the river diversion scheme in Example 4.4, suppose

tunnels C have been designed for a flood of return period 10 years. Answer the

following questions: (a) what is the probability that the second flood onto the dam

site will occur in the 4th year after construction works have begun? (b) what is the

hydrologic risk of failure for this new situation?

Solution (a) The probability the dam site will be flooded for a second time in the

fourth year of construction can be calculated directly from Eq. (4.16), with r¼ 2,

y¼ 4, and p¼ 1/T¼ 0,10, or pY 4ð Þ ¼ 4� 1

2� 1

� �
0:12 0:94�2 ¼ 0:0243. (b) The

hydrologic risk of failure for the new situation, with N¼ 5 and T¼ 10, is R ¼ 1

� 1� 1
T

� �N ¼ 1� 0:905 ¼ 0:41 which is, therefore, unacceptably high.

Fig. 4.8 Examples of mass functions for the negative binomial distribution
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4.2 Poisson Processes

The Poisson processes are among the most important stochastic processes. They are

addressed in this section as a limiting case of a Bernoulli process that evolves over

time, although the arguments can be extended to a length, an area or a volume.

Following Shahin et al. (1993), consider a time span t, which is subdivided into

N nonoverlapping subintervals, each of length t/N. Suppose that each subinterval is
sufficiently short that a given event (or success) can occur at most once in the time

interval t/N and that the probability of more than one success occurring within it is

negligible. Consider further that the probability a success occurring in t/N is p,
which is then supposed constant for each subinterval and is not affected by the

occurrences in other nonoverlapping subintervals. Finally, suppose that the mean

number of successes that have occurred in a time span t, are proportional to the

length of the time span, the proportionality constant being equal to λ. Under these
conditions, one can write p¼ λt/N.

The number of occurrences (or successes) Y in the time span t is equal to the

number of subintervals within which successes have occurred. If these subintervals

are seen as a sequence of N independent Bernoulli trials, then

pY yð Þ ¼ N
y

� �
λt

N

� �y

1� λt

N

� �N�y

ð4:19Þ

In this equation, if p¼ λt/N is sufficiently small and N sufficiently large, so that

Np¼ λt, then it can be shown that

limN!1
N

y

� �
λt

N

� �y

1� λt

N

� �N�y

¼ λtð Þy
y!

e�λt, for y ¼ 0, 1, . . . and λt > 0

ð4:20Þ
Making ν¼ λt in Eq. (4.20), one finally gets the Poisson PMF as given by

pY yð Þ ¼ νy

y!
e�ν, for y ¼ 0, 1, . . . and ν > 0 ð4:21Þ

where parameter ν denotes the mean number of occurrences in the time span t. The
Poisson distribution is named after the French mathematician and physicist Siméon

Denis Poisson (1781–1840). The Poisson occurrences are often referred to as

arrivals.
The Poisson CDF is written as

PY yð Þ ¼
Xy
i¼0

νi

i!
e�ν, for y ¼ 0, 1, . . . ð4:22Þ

As shown in Example 3.14 of Chap. 3, the mean and variance of a Poisson variate

are respectively given by
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E Y½ � ¼ ν or E Y½ � ¼ λt ð4:23Þ

Var Y½ � ¼ ν or Var Y½ � ¼ λt ð4:24Þ

Similarly to the mathematical derivation of E[Y] and Var[Y], it can be shown that

the coefficient of skewness of a Poisson distribution is

γ ¼ 1ffiffiffi
ν

p or γ ¼ 1ffiffiffiffi
λt

p ð4:25Þ

Figure 4.9 gives some examples of Poisson mass functions.

The parameter ν represents both the mean number and the variance of Poisson

arrivals in the time span t. The proportionality constant λ is usually referred to as the
intensity of the Poisson process and represents the mean arrival rate per unit time.

Although described as a limiting case of a discrete-time Bernoulli process, the

Poisson process is more general and evolves over a continuous-time scale. If its

parameters ν and λ are constant in time, the Poisson process is said to be homoge-

neous or stationary. Otherwise, for the nonhomogeneous Poisson processes, λ(t) is a

Fig. 4.9 Some examples of Poisson mass functions
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function of time and the mean number of arrivals ν, in the time interval [t1,t2], will
be given by the integral of λ(t) from t1 to t2.

It follows from the previous derivation of the Poisson distribution that it can be

employed as an approximation to the binomial, provided N is sufficiently large and

p sufficiently small. In practice, it is possible to approximate the binomial by the

Poisson distribution, with parameter ν¼Np, from values as large as 20 for N and as

small as 0.1 for p. In fact, provided the probability of success p is small enough

( p< 0.1), it suffices to prescribe an average number of occurrences in a given time

span. In analogy to the binomial, the Poisson distribution also has the additive

property, meaning that if variables Y1 and Y2 are Poisson-distributed, with respec-

tive arrival rates λ1 and λ2, then (Y1 + Y2) is also a Poisson variate, with parameter

(λ1 + λ2). Poisson processes are much more general and complex than the brief

description given here, which was limited to introducing the Poisson discrete

random variable. Readers interested in a broader description of Poisson processes

may consult Ross (1989).

Example 4.6 Water transportation in rivers and canals make use of dam-and-lock

systems for raising and lowering boats, ships, and barges between stretches of water

that are not leveled. A lock is a concrete chamber, equipped with gates and valves

for filling or emptying it with water, inside which a number of vessels are allowed to

enter to complete the raising/lowering operation in an organized and timely man-

ner. This operation is called locking through. Suppose that barges arrive at a lock at

an average rate of 4 per hour. If the arrival of barges is a Poisson process,

(a) calculate the probability that 6 barges will arrive in the next 2 h; and (b) if the

lock master has just locked through all of the barges at the lock, calculate the

probability she/he can take a 15-min break without another barge arriving (adapted

from Haan 1977).

Solution (a) At the average rate (or intensity) of λ ¼ 4 h�1 and for t¼ 2 h

) λt ¼ ν ¼ 8. Substituting values in Eq. (4.21), P Y ¼ 6ð Þ ¼ pY 6ð Þ
¼ 8ð Þ6 e�8

6! ¼ 0:1221. (b) The lock master can take her/his 15-min break if no

barge arrives in this time interval. The probability of no arrival in 0.25 h, at the

rate of λ ¼ 4 h�1, for t¼ 0.25 h, so that λt ¼ ν ¼ 1, is given by

P Y ¼ 0ð Þ ¼ pY 0ð Þ ¼ 1ð Þ0 e�1

0! ¼ 0:3679.

4.3 Other Distributions of Discrete Random Variables

Other distributions of discrete random variables, that are useful for solving some

hydrologic problems, are not directly related to Bernoulli and Poisson processes.

These include the hypergeometric and the multinomial distributions, which are

described in the subsections that follow.
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4.3.1 Hypergeometric Distribution

Suppose a set of N items, from which A possess a given attribute a (for instance, of

red color, or of positive sign, or of high quality, etc.) and (N�A) possess the attribute
b (for instance, of blue color, or of negative sign, or of low quality, etc.). Consider a

sample of n items is drawn, without replacement, from the set of N items. Finally,

consider that the discrete random variable Y refers to the number of items possessing

attribute a, contained in the drawn sample of n items. The probability that Y will be

equal to y items of the a type, is given by the hypergeometric distribution, whose

mass function, with parameters N, A, and n, is expressed as

pY yð Þ ¼
A
y

� �
N � A
n� y

� �
N
n

� � , with 0 � y � A; y � n; y � A� N þ n ð4:26Þ

The CDF for the hypergeometric distribution is

PY yð Þ ¼
Xy
i¼0

A
i

� �
N � A
n� i

� �
N
n

� � ð4:27Þ

The denominator of Eq. (4.26) gives the total number of possibilities of drawing

a sample of size n, from the set of N items. The numerator, in turn, gives the number

of possibilities of drawing samples of y items, of the a type, forcing the remaining

(n�y) items to be of the b type. It can be shown that the expected value and variance
of a hypergeometric variate are respectively given by

E Y½ � ¼ nA

N
ð4:28Þ

and

Var Y½ � ¼ nA N � Að Þ N � nð Þ
N2 N � 1ð Þ ð4:29Þ

If n< 0.1N, the hypergeometric distribution can successfully approximate a bino-

mial distribution with parameters n and p¼A/N.

Example 4.7 In February, 1935, 18 rainy days were counted among the daily

records of a rainfall gauging station. Suppose the occurrence of a rainy day does

not change the probability of it raining on the next day. If a sample of 10 days is

selected at random, from the records of February 1935, (a) what is the probability
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that 7 out of the 10-day sample were rainy? (b) what is the probability that at least

6 were rainy days?

Solution

(a) Using Eq. (4.28), for the mass function of the hypergeometric distribution, with

N¼ 28, A¼ 18, and n¼ 10 gives

pY 7ð Þ ¼
18

7

� �
28� 18

10� 7

� �
28

10

� � ¼ 0:2910

(b) The probability that at least 6 from the 10-day sample were rainy can be written

as P(Y� 6)¼ 1�P(Y< 6)¼ 1�PY (5), or P(Y� 6)¼ 1�pY (0) + pY (1)�pY (2)�
pY (3)�pY (4)�pY (5)¼ 0.7785.

4.3.2 Multinomial Distribution

The multinomial distribution is a generalization of the binomial, for the case where

a random experiment can yield r distinct mutually exclusive and collectively

exhaustive events a1, a2, . . . , ar, with respective probabilities of occurrence

given by p1, p2, . . . , pr, such that
X

pi ¼ 1. The multinomial discrete variables

are denoted by Y1, Y2, . . . , Yr, where Yi represents the number of occurrences of the

outcome related to ai, in a sequence of N independent trials. The joint mass function

of the multinomial distribution is given by

Ρ Y1 ¼ y1, Y2 ¼ y2, . . . , Yr ¼ yrð Þ ¼ pY1,Y2, ... ,Yr
y1, y2, . . . , yrð Þ

¼ N!

y1!y2! . . . yr!
p
y1
1 p

y2
2 . . . pyrr ð4:30Þ

where
X

yi ¼ N and N, p1, p2, . . . , pr are parameters. The marginal mass function

of each variable Yi is a binomial with parameters N and pi.

Example 4.8 At a given location, years are considered below normal (a1) if their
respective annual total rainfall depths are lower than 300 mm and normal (a2) if the
annual total rainfall depths lie between 300 and 1000 mm. Frequency analysis of

annual rainfall records shows that the probabilities of outcomes a1 and a2 are,

respectively, 0.4 and 0.5. Considering a randomly selected period of 15 years,

calculate the probability that 3 below normal and 9 normal years will occur.

Solution In order to complete the sample space, it is necessary to define the third

event, denoted by a3, as corresponding to the above normal years, with annual total

rainfall depths larger than 1000 mm. As events are collectively exhaustive, the
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probability of a3 is 1–0.4–0.5¼ 0.1. Out of the 15 years, 3 should correspond to a1
and 9 to a2, thus only 3 remaining to event a3. The sought probability is then

given by

P Y1 ¼ 3;Y2 ¼ 9; Y3 ¼ 3ð Þ ¼ pY1,Y2,Y3
3; 9; 3ð Þ ¼ 15!

3!9!3!
0:430:590:13 ¼ 0:0125:

4.4 Summary for Probability Distributions of Discrete
Random Variables

What follows is a summary of the main characteristics of the six probability

distributions of discrete random variables introduced in this chapter. Not all char-

acteristics listed in the summary have been formally derived in the previous

sections of this chapter, as one can use the mathematical principles that are common

to all distribution to make the desired proofs. This summary is intended to serve as a

brief reference item for the main probability distributions of discrete random

variables.

4.4.1 Binomial Distribution

Notation: Y � B N; pð Þ
Parameters: N (positive integer) and p (0< p< 1)

PMF: pY yð Þ ¼ N
y

� �
py 1� pð ÞN�y

, y ¼ 0, 1, . . . ,N

Mean: E Y½ � ¼ Np
Variance: Var Y½ � ¼ Np 1� pð Þ
Coefficient of skewness: γ ¼ 1�2pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N p 1�pð Þ
p

Coefficient of Kurtosis: κ ¼ 3þ 1�6 p 1�pð Þ
N p 1�pð Þ

Moment Generating Function: ϕ tð Þ ¼ pet þ 1� pð ÞN

4.4.2 Geometric Distribution

Notation: Y � Ge pð Þ
Parameters: p (0< p< 1)

PMF: pY yð Þ ¼ p 1� pð Þy�1
, y ¼ 1, 2, 3, . . .

Mean: E Y½ � ¼ 1
p

Variance: Var Y½ � ¼ 1�p
p 2
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Coefficient of Skewness: γ ¼ 2�pffiffiffiffiffiffi
1�p

p

Coefficient of Kurtosis: κ ¼ 3þ p2�6pþ6
1�p

Moment Generating Function: ϕ tð Þ ¼ p e t

1� 1�pð Þet

4.4.3 Negative Binomial Distribution

Notation: Y � NB r, pð Þ
Parameters: r (positive integer) and p (0< p< 1)

PMF: pY yð Þ ¼ y� 1

r � 1

� �
p r 1� pð Þ y�r

, y ¼ r, r þ 1, . . .

Mean: E Y½ � ¼ r
p

Variance: Var Yð Þ ¼ r 1�pð Þ
p2

Coefficient of Skewness: γ ¼ 2�pffiffiffiffiffiffiffiffiffiffiffiffi
r 1�pð Þ

p

Coefficient of Kurtosis: κ ¼ 3þ p2�6pþ6
r 1�pð Þ

Moment Generating Function: ϕ tð Þ ¼ p e t

1� 1�pð Þ e t

h ir

4.4.4 Poisson Distribution

Notation: Y � P νð Þ
Parameters: ν (ν> 0)

PMF: pY yð Þ ¼ νy

y! e
�ν, y ¼ 0, 1, . . .

Mean: E X½ � ¼ ν
Variance: Var X½ � ¼ ν

Coefficient of Skewness: γ ¼
ffiffi
1
ν

q
Coefficient of Kurtosis: κ ¼ 3þ 1

ν

Moment Generating Function: ϕ tð Þ ¼ exp ν e t � 1ð Þ½ �

4.4.5 Hypergeometric Distribution

Notation: Y � H N;A; nð Þ
Parameters: N, A, and n (all positive integers)

PMF: pY yð Þ ¼
A
y

� �
N � A
n� y

� �
N
n

� � , with 0 � y � A; y � n; y � A� N þ n
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Mean: E Y½ � ¼ n A
N

Variance: Var Y½ � ¼ nA N�Að Þ N�nð Þ
N2 N�1ð Þ

Coefficient of Skewness: γ ¼ N�2Að Þ N�2nð Þ ffiffiffiffiffiffiffiN�1
p

N�2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nA N�Að Þ N�nð Þ

p

Kurtosis: κ ¼ N2 N�1ð Þ
n N�2ð Þ N�3ð Þ N�nð Þ
h i

N Nþ1ð Þ�6N N�nð Þ
A N�Að Þ þ 3n N�nð Þ Nþ6ð Þ

N 2 � 6
h i

Moment Generating Function: no analytic form

4.4.6 Multinomial Distribution

Notation: Y1, Y2, . . . ,Yr � M N, p1, p2, . . . , prð Þ
Parameters: N, y1, y2, . . . , yr (all positive integers) and p1, p2, . . . , pr ( pi> 0 andX

pi ¼ 1)

PMF: pY1,Y2, ... ,Yr
y1, y2, . . . , yrð Þ ¼ N!

y1! y2! ... yr !
p
y1
1 p

y2
2 . . . p

yr
r

Mean (of marginal PMF): E Yi½ � ¼ Npi
Variance (of marginal PMF): Var Yi½ � ¼ Npi 1� pið Þ
Coefficient of Skewness (of marginal PMF): γ Yið Þ ¼ 1�2piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N pi 1�pið Þ
p

Coefficient of Kurtosis (of marginal PMF): κ Yið Þ ¼ 3þ 1�6pi
i 1�pið Þ

Npi 1�pið Þ

Moment Generating Function: φ tð Þ ¼
Xr
i¼1

pi e
ti

" #N

Exercises

1. Consider a binomial distribution, with N¼ 20 and p¼ 0.1, and its approxima-

tion by a Poisson distribution with ν¼ 2. Plot the two mass functions and

comment on the differences between them.

2. Solve Exercise 1 with (a) N¼ 20 and p¼ 0.6; and (b) with N¼ 8 and p¼ 0.1.

3. Suppose the daily concentrations of a pollutant, in a river reach, are statistically

independent. If 0.15 is the probability that the concentration exceeds 6 mg/m3

on any given day, calculate (a) the probability the concentration will exceed

6 mg/m3 in exactly two of the next 3 days; and (b) the probability the

concentration will exceed 6 mg/m3 for a maximum of two of the next

three days.

4. If a marginal embankment has been designed to withstand the 20-year return

period flood, calculate (a) the probability that the area protected by the

embankment will be flooded at least once in the next 10 years; (b) the proba-

bility the protected area will be flooded at least three times in the next 10 years;
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and (c) the probability the protected area will be flooded no more than three

times in the next 10 years.

5. Suppose the expected service life of a detention pond is 25 years. (a) What

should be the return period for the design flood such that there is a 0.9

probability it will not be exceeded during the detention-pond expected service

life? (b) What should be the return period for the design flood such that there is

a 0.75 probability it will be exceeded at most once during the detention-pond

expected service life?

6. The locations of three levees built along the banks of rivers A and B, to control

floods in the plains between rivers, are shown in the sketch of Fig. 4.10. The

levees have been designed according to the following: the design flood for

levee 1 has a return period of 10 years; for levee 2, 20 years, and for levee 3, 25

years. Supposing that flood events in the two rivers and the occurrence of

failures in levees 1 and 2 are statistically independent, (a) calculate the annual

probability the plains between rivers will be flooded, due exclusively to floods

from river A; (b) calculate the annual probability the plains between rivers will

be flooded; (c) calculate the annual probability the plains between rivers will

not be flooded in 5 consecutive years; and (d) considering a period of 5 con-

secutive years, calculate the probability that the third inundation of the plains

will occur in the 5th year (adapted from Ang and Tang 1975).

7. Consider that a water treatment plant takes raw water directly from a river

through a simply screened intake installed at a low water level. Suppose the

discrete random variable X refers to the annual number of days the river water

level is below the intake’s level. Table 4.1 shows the empirical frequency

distribution of X, based on 20 years of observations. (a) Assuming the expected

value of X can be well approximated by the sample arithmetic average, estimate

the parameter ν of a Poisson distribution for X. (b) Plot on the same chart the

empirical and the Poisson mass functions for X and comment on the differences

Fig. 4.10 Sketch of levees to protect against floods in between-rivers plains
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between them. (c) Employ the Poisson distribution to calculate P(3�X� 6).

(d) Employ the Poisson distribution to calculate P(X� 8).

8. Flood hydrographs are characterized by a quick rising of discharges up to the

flood peak, followed by a relatively slower flow recession, until the occurrence

of a new flood, and so forth, as depicted in the graph of Fig. 4.11. In this figure,

suppose a high threshold Q0 is defined and that the differences qi¼Qi-Q0,

between the flood hydrograph peaks Qi and Q0, are referred to as exceedances

over the threshold. Under some conditions, it is possible to show that the

exceedances over a high threshold follow a Poisson process (Todorovic and

Zelenhasic 1970). This is actually the most frequent representation for

constructing flood models for partial duration series, or peaks-over-threshold

(POT) models, to be detailed in Chap. 8. In this representation, the number of

exceedances over Q0, during a time Δt, is a discrete random variable and

Poisson-distributed with constant arrival rate λ. However, the variable t,
denoting the time elapsed between two consecutive Poisson arrivals, as exem-

plified by the realization t1 in Fig. 4.11, is continuous and non-negative. Show

that the probability distribution of t is exponential, with density function

fT (t)¼ λexp(�λt).

Table 4.1 Empirical frequencies for the annual number of days the intake remains dry

x! 0 1 2 3 4 5 6 7 8 >8

f(X¼ x) 0.0 0.06 0.18 0.2 0.26 0.12 0.09 0.06 0.03 0.0

Fig. 4.11 Representation of floods as a Poisson process
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9. With reference to Fig. 4.11 and the solution to Exercise 8, it is also possible to

derive the probability distribution for the continuous time t necessary to the

arrival of the nth Poisson occurrence. This can be done by noting that t ¼ t1
þt2 þ . . .þ tn is the sum of an integer number n of exponential variates ti, i¼ 1,

2, . . . , n. Show that the distribution of t has as its density the function

f T tð Þ ¼ λntn�1e�λt= n� 1ð Þ!, which is the Gamma density, for integer values

of n. Hint: use the result of Exercise 8 and the methods described in Sect. 3.7 of

Chap. 3 to derive the time required for two Poisson arrivals. From the previous

result, extend your derivation to three Poisson arrivals. Proceed up until a point

where a repetition pattern can be recognized and induction can be used to draw

the desired conclusion.

10. A manufacturing company has bid to deliver compact standardized water

treatment units for rural water supply. Based on previous experiences, it is

estimated that 10% of units are defective. If the bid consists of delivering

5 units, determine the minimum number of units to be manufactured so that

there is a 95% certainty that no defective units are delivered. It is assumed that

the delivery of a unit is an independent trial and that the existence of possible

defects in a unit is not affected by eventual defects in other units (adapted from

Kottegoda and Rosso 1997).

11. A regional study of low flows for 25 catchments is being planned. The

hydrologist in charge of the study does not know that 12 of the 25 catchments

have inconsistent data. Suppose that in a first phase of the regional study,

10 catchments have been selected. Calculate (a) the probability that 3 out of

the 10 selected catchments have inconsistent data; (b) the probability that at

least 3 out of the 10 selected catchments have inconsistent data; and (c) the

probability that all 10 selected catchments have inconsistent data.

12. At a given location, the probability that any of days in the first fortnight of

January will be rainy is 0.20. Assuming rainy or dry days as independent trials,

calculate (a) the probability that, in January of the next year, only the 2nd and

the 3rd days will be rainy; (b) the probability of a sequence of at least two

consecutive rainy days occurring, only in the period from the 4th to the 7th of

January of next year; (c) denoting by Z the number of rainy days within the

4-day period of item (b), calculate the probability mass function for the variable

Z; (d) calculate P(Z> 2) and P(Z� 2); and (e) the first three central moments of

Z (adapted from Shahin et al. 1993).
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Chapter 5

Continuous Random Variables: Probability
Distributions and Their Applications
in Hydrology

Mauro Naghettini and Artur Tiago Silva

5.1 Uniform Distribution

A continuous random variable X, defined in the subdomain x 2 ℜja � x < bf g, is
uniformly distributed if the probability of it being comprised in some interval

[m, n], contained in [a, b], is directly proportional to the length (m�n). Denoting
the proportionality constant by ρ, then,

Ρ m � X � nð Þ ¼ ρ m� nð Þ if a � m � n � b ð5:1Þ

Since P(a�X� b)¼ 1, it is clear that ρ ¼ 1= b� að Þ. Therefore, for any interval

a � x � b, the uniform cumulative distribution function (CDF) is given by

FX xð Þ ¼ x� a

b� a
ð5:2Þ

If x< a,FX xð Þ ¼ 0 and, if x> b,FX xð Þ ¼ 1. The probability density function (PDF)

for the uniform variate is obtained by differentiating Eq. (5.2), with respect to x.
Thus,

f X xð Þ ¼ 1

b� a
if a � x � b ð5:3Þ
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The uniform distribution is also known as rectangular. Figure 5.1 depicts both the

PDF and the CDF for a uniform variate.

The mean and the variance of a uniform distribution are respectively given by

E X½ � ¼ aþ b

2
ð5:4Þ

and

Var X½ � ¼ b� að Þ2
12

ð5:5Þ

When the subdomain of the random variable X is defined as [0,1], the resulting

uniform distribution, designated as the unit uniform distribution or unit rectangular

distribution, encounters its main application, which is that of representing the

distribution of X ¼ FY yð Þ, where FY( y ) denotes any cumulative distribution func-

tion for a continuous random variable Y. In effect, since 0 � FY yð Þ ¼ Ρ Y � yð Þ
� 1 for any probability distribution, then the unit uniform distribution can be used

for generating uniform random numbers x, which, in turn, may be interpreted as the

non-exceedance probability FY( y ) and thus employed to obtain the quantities

y ¼ F�1
Y¼X yð Þ, distributed according to FY( y ), provided that FY( y ) be explicitly

invertible and can be expressed in analytical form.

Random number generation is essential to simulating a large number of reali-

zations of a given random variable, distributed according to a specified probability

distribution function, with the purpose of analyzing numerous outcomes that are

statistically similar to those observed. In Sect. 5.13, which contains a summary of

the probability distributions described in this chapter, the most common approaches

to generate random numbers for some distributions are included. Usually, the

Fig. 5.1 PDF and CDF of a uniform distribution
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techniques used to generate a large number of realizations of a random variable

(or of a stochastic process) are grouped under the general designation of Monte
Carlo simulation methods. The reader interested in details on random number

generation and on Monte Carlo methods, as applied to the solution of engineering

problems, should consult Ang and Tang (1990) and Kottegoda and Rosso (1997).

Example 5.1 Denote by X the minimum daily temperature at a given location and

suppose that X is uniformly distributed in the range from 16 to 22 �C. (a) Calculate
the mean and variance of X. (b) Calculate the daily probability that X will exceed

18 �C. (c) Given that the minimum temperature on a sunny day has been persis-

tently higher than 18 �C, calculate the probability that X will exceed 20 �C during

the rest of the day?

Solution (a) The mean and the variance are obtained from the direct

application of Eqs. (5.4) and (5.5), with a¼ 16 and b¼ 22 �C. Thus, E[X]¼
19 �C and Var[X]¼ 3 (�C)2. (b) P(X> 18 �C)¼ 1�P(X< 18 �C)¼ 1�FX(18)¼ 2/

3. (c) The density of X is f X xð Þ ¼ 1=6 for the subdomain 16�X� 22. However,

according to the wording of the question, the minimum temperature on that

particular day has remained persistently above 18 �C. As the sample space has

been reduced from any real number in the range 16–22 �C to any real number

within [18, 22], the probability density function must reflect such

particular conditions and needs to be altered to f RX xð Þ ¼ 1= 22� 18ð Þ ¼ 1=4,
valid for the subdomain 18�X� 22. Thus, for the latter conditions,

P X >20
��X >18

� � ¼ 1� FR
X 20ð Þ ¼1� 20� 18ð Þ= 22� 18ð Þ ¼1=2.

5.2 Normal Distribution

The normal or Gaussian distribution was formally derived by the German mathe-

matician Carl Friedrich Gauss (1777–1855), following earlier developments by

astronomers and other mathematicians in their search for an error curve for the

systematic treatment of discrepant astronomical measurements of the same phe-

nomenon (Stahl 2006). The normal distribution is utilized to describe the behavior

of a continuous random variable that fluctuates in a symmetrical manner around a

central value. Some of its mathematical properties, which are discussed throughout

this section, make the normal distribution appropriate for modeling the sum of a

large number of independent random variables. Furthermore, the normal distribu-

tion is at the foundations of the construction of confidence intervals, statistical

hypotheses testing, and correlation and regression analysis, which are topics cov-

ered in later chapters.

The normal distribution is a two-parameter model, whose PDF and CDF are

respectively given by
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f X xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πθ22

q exp �1

2

x� θ1
θ2

� �2
" #

for �1 < x < 1 ð5:6Þ

and

FX xð Þ ¼
ðx

�1

1ffiffiffiffiffiffiffiffiffiffi
2πθ22

q exp �1

2

x� θ1
θ2

� �2
" #

dx ð5:7Þ

where θ1 and θ2 are, respectively, location and scale parameters. Figure 5.2 illus-

trates the PDF and CDF for the normal distribution, with parameters θ1¼ 8 and

θ2¼ 1.

The expected value, variance, and coefficient of skewness for the normal

distribution of X (see solution to Example 3.15 of Chap. 3), with parameters θ1
and θ2, are respectively given by

E X½ � ¼ μ ¼ θ1 ð5:8Þ
Var X½ � ¼ σ2 ¼ θ22 ð5:9Þ

and

γ ¼ 0 ð5:10Þ

As a result of Eqs. (5.8) and (5.9), the normal density function is usually

expressed as

Fig. 5.2 PDF and CDF for the normal distribution, with θ1¼ 8 and θ2¼ 1
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f X xð Þ ¼ 1ffiffiffiffiffi
2π

p
σ
exp �1

2

x� μ

σ

� 	2
 �
for �1 < x < 1 ð5:11Þ

and X is said to be normally distributed with mean μ and standard deviation σ, or,
synthetically, that X ~N (μ,σ). Therefore, the mean μ of a normal variate X is equal

to its location parameter, around which the values of X are symmetrically scattered.

The degree of scatter around μ is given by the scale parameter, which is equal to the

standard deviation σ of X. Figure 5.3 exemplifies the effects that marginal variations

of the location and scale parameters have on the normal distribution.

By employing the methods described in Sect. 3.7 of Chap. 3, it can be shown

that, if X ~N (μX,σX), then the random variable Y¼ aXþ b, resulting from a linear

combination of X, is also normally distributed with mean μY ¼ aμX þ b and

standard deviation σY ¼ aσX, or, Y � N μY ¼ aμX þ b, σY ¼ aσXð Þ. This is

termed the reproductive property of the normal distribution and can be extended

to any linear combination of N independent and normally distributed random

variables Xi, i ¼ 1, 2, . . . ,N; each with its own respective parameters μi and σi.

Fig. 5.3 Effects of marginal variations of the location and scale parameters on the normal density,

for X ~N (μ,σ)
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In fact, by extending the result given in the solution to Example 3.19 of Chap. 3, it

can be shown that Y ¼
XN
i¼1

aiXi þ b follows a normal distribution with parameters

μY ¼
XN
i¼1

aiμi þ b and σY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

a2i σ
2
i

s
. As a particular case, (see the solution to

Example 3.18 of Chap. 3), if Y denotes the arithmetic mean value of N normal

variates Xi, all with common mean μX and standard deviation σX, then

Y � N μX, σX=
ffiffiffiffi
N

p� �
.

The CDF of the normal distribution, given by the integral Eq. (5.7), does not

have an analytical solution. In effect, in order to calculate the function FX(x) for a
particular pair of parameter values θ1 ¼ μ and θ2 ¼ σ, it is necessary to numeri-

cally integrate the function FX(x) over the desired subdomain of X; for a different
pair of parameter values, another numerical integration would be required. Such an

inconvenience can be overcome by linearly transforming the normal variable

X, with parameters μ and σ, into Z ¼ X � μð Þ=σ. In fact, using the reproductive

property of the normal distribution, for the particular case where the linear

combination coefficients are a ¼ 1=σ and b ¼ �μ=σ, it is clear that

Z � N μZ ¼ 0, σZ ¼ 1ð Þ. The transformed variable Z receives the name of stan-

dard normal variate and its distribution is termed the standard (or unit) normal

distribution. Note that as deviations of X from its mean μ are scaled by its standard

deviation σ, the standard variate Z is always dimensionless. The standard normal

PDF and CDF are respectively given by

f Z zð Þ ¼ 1ffiffiffiffiffi
2π

p exp � z2

2

� �
, �1 < z < 1 ð5:12Þ

and

FZ zð Þ ¼ Φ zð Þ ¼
ðz

�1

1ffiffiffiffiffi
2π

p exp � z2

2

� �
dz ð5:13Þ

The standard normal CDF FZ(z) receives the special notation Φ(z) and is

calculated through numerical integration of Eq. (5.13). In general, the results of

the numerical integration for different nonnegative values of argument z are orga-
nized in tables, such as that shown in Table 5.1. This a double-entry table in which

the value of z0 is found by crossing the first-column entry with the first-row entry,

whereas the corresponding reading inside the table refers to Φ(z0). For negative
values of z0, the areas Φ(z0) are derived from the readings of Table 5.1 by using the

symmetry properties of the normal distribution. In order to evaluate the probability

P(X� x0), for a nonstandard normal variate X ~N(μX,σX), the corresponding value

of z0¼ (x0�μX)/σX is first calculated. Then, with the value of Φ(z0), obtained from

Table 5.1, it suffices to make P X � x0ð Þ ¼ Φ z0ð Þ. This operation is facilitated in
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MS Excel through the function NORM.DIST(.). In the statistical software R, the

equivalent function is pnorm(.). Inversely, if the goal is to calculate the quantile x0,
for the non-exceedance probability P, one should first read (or interpolate), in

Table 5.1, the value of z0 that matches Φ zð Þ ¼ P and, then, find the quantile

x¼ μXþ zσX. This operation is performed in MS Excel by the function NORM.

INV(.), and in R by the function qnorm(.).

Example 5.2 Suppose the annual mean flows Q of a main tributary of the Amazon

river are normally distributed with mean value 10,000 m3/s and standard deviation

5000 m3/s. Calculate (a) the probability that next year’s mean flow will be less than

5000 m3/s; and (b) the annual mean flow of return period T¼ 50 years.

Solution (a) The sought probability P(Q< 5000) is equal to P{z<
[(5000–10,000)/5000]}, or Φ �1ð Þ. Readings in Table 5.1 give Φ(z) only for

nonnegative entries z. Since the normal distribution is symmetric, one can write Φ
�1ð Þ ¼ 1� Φ þ1ð Þ ¼ 1� 0:8413 ¼ 0:1587; (b) The definition of return period

applies to annual mean values in the same way described for annual maxima, or, in

other terms, T¼ 1/P(Q> q). With T¼ 50 years, P(Q> q)¼ 1/50¼ 0.02 and, thus,

Φ zð Þ ¼ 1� 0:02 ¼ 0:98. This reading in Table 5.1 corresponds to the entry value

z¼ 2.054. Finally, the annual mean flow q, of return period T¼ 50 years, corre-

sponds to the quantile q¼ 10,000þ 2.054� 5000¼ 20,269 m3/s. Now, solve this

example using the MS Excel functions.

The Φ z0 ¼ 1ð Þ reading from Table 5.1, of 0.8413, shows that 68.26% of the

whole area below the normal density is comprised between one standard deviation

below and above the mean. Proceeding in the same way, one can notice that

95.44% of the area below the density lies between two standard deviations from

each side of the mean, whereas 99.74% of the area is contained between the bounds

μ-3σ and μþ3σ. Although the normal variate can vary from �1 toþ1, the tiny

probability of 0.0013, of having a value below (μ�3σ), discloses the range of the

distribution applicability to nonnegative hydrologic variables. In fact, as long as

μX> 3σX, the likelihood of a negative value of X is negligible. Both Φ(z) and its

inverse can be approximated by functions of easy implementation in computer

codes. According to Abramowitz and Stegun (1972), an accurate approximation to

Φ(z), for z� 0, is given by

Φ zð Þ ffi 1� b1tþ b2t
2 þ b3t

3 þ b4t
4 þ b5t

5
� �

f Z zð Þ ð5:14Þ

where fZ(z) denotes the normal density function and t is an auxiliary variable given

by

t ¼ 1

1þ rz
ð5:15Þ

in which r¼ 0.2316419. The coefficients bi are
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b1 ¼ 0:31938153

b2 ¼ �0:356563782

b3 ¼ 1:781477937

b4 ¼ �1:821255978

b5 ¼ 1:330274429

ð5:16Þ

According to Abramowitz and Stegun (1972), the inverse of Φ(z), here denoted
by z(Φ), for Φ� 0,5, can be approximated by

z Φð Þ ffi m� c0 þ c1mþ c2m
2

1þ d1mþ d2m2 þ d3m3
ð5:17Þ

where m is an auxiliary variable given by:

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

1� Φð Þ2
" #vuut ð5:18Þ

and the coefficients ci and di are the following:

c0 ¼ 2:515517

c1 ¼ 0:802853

c2 ¼ 0:010328

d1 ¼ 1:432788

d2 ¼ 0:189269

d3 ¼ 0:001308

ð5:19Þ

An important application of the normal distribution stems from the central limit
theorem (CLT). According to the classical or strict variant of this theorem, if SN
denotes the sum of N independent and identically distributed random variables

X1, X2, . . ., XN, all with the same mean μ and the same standard deviation σ, then,
the variable

ZN ¼ SN � Nμ

σ
ffiffiffiffi
N

p ð5:20Þ

tends asymptotically to be distributed according to a standard normal distribution,

i. e., for sufficiently large values of N, ZN�N (0,1). For practical purposes, if

X1, X2, . . ., XN are independent, with identical and symmetrical (or moderately

skewed) distributions, values of N close to 30, or even lesser, are sufficient to allow

convergence of ZN to a standard normal variate.
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As stated earlier, a particular result stemming from the reproductive property of

the normal distribution is that, if Y represents the arithmetic mean of N normally

distributed variables Xi, all with mean μX and standard deviation σX, then

Y � N μX, σX=
ffiffiffiffi
N

p� �
. Application of Eq. (5.20) to the variable Y (see Example

5.3) shows that the same result could be achieved with the use of the central limit

theorem, although, in this case, the variables Xi are not required to be normally

distributed. The only condition to be observed is that the number N of summands Xi

must be sufficiently large to allow convergence to a normal distribution. Kottegoda

and Rosso (1997) suggest that if the common distribution of the Xi summands

departs moderately from the normal, the convergence is relatively fast. However, if

the departure from a bell-shaped density is pronounced, then values of N larger than

30 may be required to guarantee convergence.

The CLT in its classical or strict version has little applicability in hydrology. In

fact, the very idea that a given hydrologic variable be the result of the sum of a large

number of independent and identically distributed random variables, in most cases,

contradicts the reality of hydrologic phenomena. Take as an example the annual

total rainfall depth, obtained from the summation of daily rainfalls over the year. To

assume that the daily rainfalls are independent and identically distributed, with the

same mean and the same standard deviation for all days of the year is clearly not

realistic, from a hydrological point of view. This fact hinders the application of the

strict version of the CLT to annual total rainfall. In contrast, the generalized variant
of the CLT is general enough to be used with some hydrologic variables. According

to this variant of the CLT, if Xi (i¼ 1,2,. . .,N ) denote independent variables, each

one with its respective mean and variance, given by μi and σi
2, then, the variable

ZN ¼
SN �PN

i¼1

μiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

σ2i

s ð5:21Þ

tends to be a standard normal variate, as N increases to infinity, under the condition

that none of the summands Xi has a dominant effect on the sum SN. The rigorous

mathematical proof of the generalized variant of the CLT was undertaken by the

Russian mathematician Aleksandr Lyapunov (1857–1918).

The premise of independence is still required in the generalized version of the

CLT. However, Benjamin and Cornell (1970) point out that, when N ! 1, ZN
tends to be normally distributed even if the summands Xi are not strictly and

collectively independent. The only condition for this to hold is that the summands

be jointly distributed in such a manner that the correlation coefficient between any

given summand and the vast majority of the others is null. The practical importance

of this generalized variant of the CLT lies in the fact that, once general conditions

are set out, the convergence of the sum of a large number of random summands, or,

by extension, of the arithmetic mean, to a normal distribution can be established

5 Continuous Random Variables: Probability Distributions. . . 133



without the exact knowledge of the marginal distributions of Xi or of their joint

distribution.

The extended generalized version of the CLT, with a few additional consider-

ations of a practical nature, is applicable to some hydrologic variables. To return to

the example of the annual total rainfall depth, it is quite plausible to assume that,

within a climatic region where the rain episodes are not too clustered in a few days

(or weeks) of the year, there should not be a dominant effect of one or more daily

rainfalls, over the annual total rainfall. Furthermore, if one disregards the persistent

multiday rainfall episodes that may occur as large-scale atmospheric systems move

over a region, then the hypothesis of independence among most of Xi variables may

well be true. Therefore, under these particular conditions, and supposing that

N¼ 365 (or 366) be large enough to allow convergence, which will largely depend

on the shapes of the marginal distributions of Xi, one can assume that, in many

cases, annual total rainfalls can be suitably described by the normal distribution.

Such a situation is depicted in Fig. 5.4, which shows the normal density

superimposed over the histogram of the annual total rainfalls recorded from 1767

to 2014, at the Radcliffe Meteorological Station, in Oxford, England. On the other

hand, employing similar arguments to justify fitting the normal distribution to

annual mean flows seems more complicated, probably due to the stronger statistical

dependence among consecutive summands Xi and to the effects of other hydrologic

phenomena on the annual mean discharges.

Fig. 5.4 Histogram and normal density for the annual total rainfall depths (mm), recorded at

Oxford (England). The normal distribution was calculated using the sample mean and standard

deviation. Note that relative frequencies have been divided by the bin width to be expressed in

density units
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Example 5.3 A plan for monitoring dissolved oxygen (DO) concentrations is being

prepared for a river reach downstream of a large reservoir. The monitoring plan will

consist of a systematic program of regular weekly measurements of DO concen-

tration at a specific river section. The random variable DO concentration, here

denoted by X, is physically bounded from below by zero and from above by the

maximum DO concentration at saturation, which depends mainly on the water

temperature. Suppose that eight preliminary weekly measurements of DO concen-

tration have yielded x ¼ 4 mg=l and sX ¼ 2 mg=l: Based only on the available

information, how many weekly measurements will be necessary so that the differ-

ence between the sample mean and the true population mean of X be at most 0.5 mg/

l, with a confidence of 95%?

Solution As opposed to the normal random variable, X, in this case, is double-

bounded and, as a result of its strong dependence on the streamflows, its PDF will

probably be asymmetric. Suppose that Xi denotes the DO concentration measured at

the ith week of the planned N-week monitoring program. Given that the monitoring

cross-section is located in a river reach with highly regulated flows and that the time

interval between measurements is the week, it is plausible to assume that Xi and Xj,

for i 6¼ j and i,j�N, are statistically independent and identically distributed, with

common mean μ and standard deviation σ, even if their marginal and joint distri-

butions are not known. Thus, it is also plausible to admit that the arithmetic average

of N terms Xi, deemed as independent and identically distributed (IID) random

variables, will tend to be normally distributed, as N grows sufficiently to allow

convergence. In other terms, it is possible to apply the strict version of the CLT.

Accordingly, by making the sum over N IID variables as SN ¼ Nx, where x denotes
the arithmetic average of Xi, and substituting it into Eq. (5.20), one can write

ZN ¼ Nx�Nμ
σ
ffiffiffi
N

p ¼ x�μ
σ=
ffiffiffi
N

p � N 0; 1ð Þ. In order to guarantee the 95% confidence level,

the following probability statement is needed: Ρ z2:5% � x�μ
σ=
ffiffiffi
N

p � z97:5%

� 	
¼ 0:95.

Readings from Table 5.1 give z0.975¼ 1.96 and, by symmetry, z0.025¼�1.96.

Substituting these into the equation for P(.) and algebraically manipulating the

inequality so that the term of the difference between the mean values be explicit,

then Ρ x� μj j � 1:96σ=
ffiffiffiffi
N

p� � ¼ 0:95. Assuming that σ can be estimated by

sX¼ 2 mg/l and recalling that x� μj j ¼ 0:5mg=l, the resulting inequality is

1:96� 2ð Þ= ffiffiffiffi
N

p � 0:5 or N� 61.47. Therefore, a period of at least 62 weeks of

DO monitoring program is necessary to keep the difference, between the sample

mean and the true population mean of X, below 0.5 mg/l, with a 95% confidence

level.

In Chap. 4, the binomial discrete random variable X, with parameter p, is
introduced as the sum of N independent Bernoulli variables. As a result of the

CLT, if N is large enough, one can approximate the binomial by the normal

distribution. Recalling that the mean and the variance of a binomial variate are

Np and Np(1�p), respectively, then the variable defined by
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Z ¼ X � Npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np 1� pð Þp ð5:22Þ

tends to be distributed according to a standard normal N(0,1), as N increases. The

convergence is faster for p values around 0.5. For p close to 0 or 1, larger values of

N are required.

In an analogous way, one can approximate the Poisson variate X, with mean and

variance equal to ν, by the standard normal distribution, through the variable

Z ¼ X � νffiffiffi
ν

p ð5:23Þ

when ν> 5. Note, however, that, in both cases, since the probability mass function

is approximated by the density of a continuous random variable, the so-called

continuity correction must be performed. In fact, for the discrete case, when

X¼ x, the ordinate of the mass function is a line or a point, which, in the continuous

case, must be approximated by the area below the density function between the

abscissae (x�0.5) and (xþ 0.5), for integer values of x.

5.3 Lognormal Distribution

Consider a random variable X that results from the multiplicative action of a

great number of independent random components Xi (i¼ 1,2,. . .,N ), or

X ¼ X1:X2 . . . XN . In such a case, from the CLT, the variable Y¼ ln(X), such
that Y¼ ln(X1)þ ln(X2)þ . . .þ ln(XN), will tend to be normally distributed, with

parameters μY and σY, as N becomes large enough to allow convergence. Under

these conditions, the variable X is said to follow a lognormal distribution, with

parameters μln(X) and σln(X), denoted by X � LN μln Xð Þ, σln Xð Þ
� 	

or

X � LNO2 μln Xð Þ, σln Xð Þ
� 	

. By applying Eq. (3.61) to Y¼ ln(X), it is easy to

determine that the probability density function of the lognormal variate X is

given by

f X xð Þ ¼ 1

xσln Xð Þ
ffiffiffiffiffi
2π

p exp �1

2

ln Xð Þ � μln Xð Þ
σln Xð Þ


 �2( )
para x � 0 ð5:24Þ

The calculations of probabilities and quantiles for the lognormal distribution,

considering Y¼ ln(X) for the function argument and, inversely, X¼ exp(Y ) for the
corresponding quantile, are similar to those described for the normal distribution.

Note that, as log10 Xð Þ ¼ 0:4343 ln Xð Þ, common or decimal logarithms can also be

used to derive the lognormal density. In such a case, Eq. (5.24) must be multiplied
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by 0.4343 and the quantiles are calculated with x ¼ 10y instead of x ¼ exp yð Þ.
The lognormal distribution is sometimes referred to as Galton’s law of probabilities

after British scientist Francis Galton (1822–1911). Figure 5.5 shows examples of

lognormal densities, for some specific values of parameters.

The expected value and the variance of a lognormal variate are respectively

given by

E X½ � ¼ μX ¼ exp μln Xð Þ þ
σ2ln Xð Þ
2

" #
ð5:25Þ

and

Var X½ � ¼ σ2X ¼ μ2X exp σ2ln Xð Þ
� 	

� 1
h i

ð5:26Þ

By dividing both sides of Eq. (5.26) by μ2X and extracting the square root of the

resulting terms, one gets the expression for the coefficient of variation of a lognor-

mal variate

CVX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp σ2

ln Xð Þ
h i

� 1

r
ð5:27Þ

The coefficient of skewness of the lognormal distribution is

γ ¼ 3CVX þ CVXð Þ3 ð5:28Þ

Fig. 5.5 Examples of lognormal densities
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Since CVX > 0, Eq. (5.28) implies that the lognormal distribution is always

positively asymmetric or right skewed. The relationship between the coefficients

of variation and skewness, expressed by Eq. (5.28), is useful for calculating the

parameters of the lognormal distribution without previously taking the logarithms

of the original variable X.

Example 5.4 Suppose that, from the long record of rainfall data at a given site, it is

reasonable to assume that the wettest 3-month total rainfalls be distributed

according to a lognormal distribution. The mean and the standard deviation for

the wettest 3-month total rainfall depths are 600 and 150 mm. Supposing

X denotes the wettest 3-month total rainfall variable, calculate (a) the probability

P(400 mm<X< 700 mm); (b) the probability P(X> 300 mm); and (c) the

median of X.

Solution (a) The coefficient of variation of X is CV¼ 150/600¼ 0.25. Substituting

this value in Eq. (5.27), one obtains σln Xð Þ ¼ 0:246221. With this result and

μX¼ 600, Eq. (5.25) gives μln(X)¼ 6.366617. Thus, X � LN
�
μln Xð Þ ¼ 6:366617,

σln Xð Þ ¼ 0:246221
�
. The sought probability is then given by Ρ 400 < X < 700ð Þ ¼

Φ ln 700�6:366617
0:246221

� �� Φ ln 400�6:366617
0:246221

� � ¼ 0:7093, where the Φ(.) values have been

linearly interpolated through the readings from Table 5.1. (b) The sought probabil-

ity is P X > 300ð Þ ¼ 1� P X < 300ð Þ ¼ 1�Φ ln 300�6:366617
0:246221

� � ¼ 0:9965. (c) The

transformed variable Y¼ ln(X) is distributed according to a normal distribution,

which is symmetric, with all its central tendency measures coinciding at a single

abscissa. As a result, the median of Y is equal to its mean value, or ymd¼ 6.366617.

It should be noted, however, that, as the median corresponds to the central point that

partitions the sample into 50% of values above and below it, then, the logarithmic

transformation, as a strictly increasing function, will not change the relative posi-

tion (or the rank) of the median, with respect to the other points. Hence, the median

of ln(X) is equal to the natural logarithm of the median of X, or ymd¼ ln(xmd), and,

inversely, xmd¼ exp(ymd). It is worth noting, however, that this is not valid for the

mean and other mathematical expectations. Therefore, for the given data, the

median for the 3-month total rainfall depths is xmd¼ exp(ymd)¼ exp(6.366617)¼
582.086 mm.

The three-parameter lognormal distribution (LN3 or LNO3) is similar to the

two-parameter model, except by a lower-bound, denoted by a, which is subtracted

from X. In other words, the random variable Y¼ ln(X�a) is distributed according

to a normal distribution with mean μY and standard-deviation σY. The corresponding
PDF is

f X xð Þ ¼ 1

x� að ÞσY
ffiffiffiffiffi
2π

p exp �1

2

ln x� að Þ � μY
σY


 �2( )
ð5:29Þ
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The mean and standard deviation of an LN3 variate are respectively given by

E X½ � ¼ aþ exp μY þ
σ2Y
2

� �
ð5:30Þ

and

Var X½ � ¼ σ2X ¼ exp σ2Y
� �� 1

� 
exp 2μY þ σ2Y

� � ð5:31Þ

According to Kite (1988), the coefficient of variation of the auxiliary random

variable (X�a) can be written as

CV X�að Þ ¼
1�

ffiffiffiffiffiffi
w23

p
ffiffiffiffi
w3

p ð5:32Þ

where w is defined by the following function of the coefficient of skewness, γX, of
the original variable X:

w ¼ �γX þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2X þ 4

p
2

ð5:33Þ

Kite (1988) also showed that the lower bound a can be obtained from CV(X�a), E[X],
and σX, by means of the following equation:

a ¼ E X½ � � σX
CV X�að Þ

ð5:34Þ

The procedure suggested by Kite (1988) for the calculation of the LN3 param-

eters follows the sequence: (1) with E[X], σX, and γX, calculate w and CV(X�a),

using Eqs. (5.33) and (5.32), respectively; (2) calculate a with Eq. (5.34); and

(3) the two remaining parameters, μY and σY, are the solutions to the system formed

by Eqs. (5.30) and (5.31).

The proposition of the lognormal distribution as a probabilistic model relies on

the extension of the CLT to a variable that results from the multiplicative action of

independent random components. There is evidence that hydraulic conductivity in

porous media (Freeze 1975), raindrop sizes in a storm (Ajayi and Olsen 1985), and

other geophysical variables (see Benjamin and Cornell 1970, Kottegoda and Rosso

1997, and Yevjevich 1972) may result from this kind of process. However, relying

solely on this argument to endorse the favored use of the lognormal distribution for

modeling the most common hydrologic variables, such as those related to floods

and droughts, is rather controversial. The controversy arises from the difficulty of

understanding and clearly pointing out such a multiplicative action of multiple

components. Besides, the requirements of independence among multiplicands and

convergence to the normal distribution, inherent to the CLT, are often difficult to be

verified and met. Nonetheless, these are not arguments to rule out the lognormal

distribution from Statistical Hydrology. On the contrary, since its variate is always

5 Continuous Random Variables: Probability Distributions. . . 139



positive and its coefficient of skewness a non-fixed positive quantity, the lognormal

distribution is potentially a reasonable candidate for modeling annual maximum

(or mean) flows, annual maximum daily rainfalls, and annual, monthly or 3-month

total rainfall depths, among other hydrologic variables.

5.4 Exponential Distribution

The solution to Exercise 8 of Chap. 4 shows that the continuous time, between two

consecutive Poisson arrivals, is an exponentially distributed random variable. In

addition to this mathematical fact, the exponential distribution, also known as the

negative exponential distribution, has many possible applications in distinct fields

of knowledge, and, particularly, in hydrology. The probability density function of

the one-parameter exponential distribution is given by

f X xð Þ ¼ 1

θ
exp �x

θ

� 	
or f X xð Þ ¼ λ exp �λxð Þ, for x � 0 ð5:35Þ

where θ (or λ ¼ 1=θ ) denotes its single parameter. If X�E(θ) or X�E(λ), the
corresponding CDF is

FX xð Þ ¼ 1� exp �x

θ

� 	
or FX xð Þ ¼ 1� exp �λxð Þ ð5:36Þ

The expected value, variance, and coefficient of skewness of an exponential

variate (see Examples 3.12 and 3.13 of Chap. 3) are respectively given by

E X½ � ¼ θ or E X½ � ¼ 1

λ
ð5:37Þ

Var X½ � ¼ θ2 or Var X½ � ¼ 1

λ2
ð5:38Þ

and

γ ¼ 2 ð5:39Þ

Note that the coefficient of skewness for the exponential distribution is a

positive constant. Figure 5.6 depicts examples of exponential PDFs and CDFs,

for θ¼ 2 and θ¼ 4.

Since the exponential shape arises from the distribution of the continuous time

interval until some specific event happens, it has been used in practice as a model

for lifetimes of machine components and the waiting time, starting from now, until

a flood or an earthquake occurs, among others applications. The main justification

for the use of the exponential distribution in this context is that it is the only model,

among the distributions of continuous random variables, with the memorylessness
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property. Such a property states that, if an exponential variate X is used for

modeling the lifetime of some electronic component, for example, X is character-

ized by a lack of memory if the conditional probability that the component survives

for at least vþ t hours, given it has survived t hours, is the same as the initial

probability that it survives for at least v hours. Since, from Eq. (5.36),

exp �λ vþ tð Þ½ � ¼ exp �λvð Þexp �λtð Þ, it is apparent that the exponential distribu-

tion exhibits the property of memorylessness, as P X > vþ t X > tjð Þ ¼ P X > vð Þ.
Example 5.5 With reference to the representation of flood events as a Poisson

process, as described in Exercise 8 of Chap. 4, consider that, on average, 2 floods

over the threshold Q0¼ 60 m3/s, occur every year. Suppose that the exceedances

(Q�Q0) are exponentially distributed with mean 50 m3/s. Calculate the annual

maximum flow of return period T¼ 100 years.

Solution This is a Poisson process with constant ν ¼ Ð1
0

λ tð Þdt ¼ 2, where the limits

of integration 0 and 1 denote, respectively, the beginning and the end of the water

year, λ(t) the Poisson arrival rate, and ν the annual mean number of arrivals. When

they occur, the exceedances X¼ (Q�Q0) are exponentially distributed, with CDF

GX xð Þ ¼ 1� exp �x=θð Þ and θ¼ 50 m3/s. In order to calculate the annual maxi-

mum flows associated with a given return period, it is necessary, first, to derive the

CDF of the annual maximum exceedances, as denoted by FXmax(x), since

T ¼ 1= 1� FXmaxð Þ. Then, if the goal is to determine the distribution of the annual

maximum exceedances x, one has to consider that each one of the 1, 2, 3, . . . 1
independent exceedances, which may occur in a year, must be less than or equal to

x, as x represents the annual maximum value. Thus, FXmax(x) can be determined by

weighting the probability of having N independent exceedances within a year, given

by [GX(x)]
N, by the mass function of the annual number of exceedances N, which

has been supposed to be Poisson-distributed with parameter ν. Therefore, FXmax xð Þ
¼ P1

N¼0

GX xð Þ½ � N νNe�ν

N! ¼ P1
N¼0

νGX xð Þ½ � N e�ν

N! . By multiplying and dividing the right-

Fig. 5.6 PDFs and CDFs for the Exponential distribution, with θ¼ 2 and θ¼ 4
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hand side of this equation by e�νG xð Þ, one gets FXmax xð Þ ¼ exp �ν 1� GX xð Þ½ �f gP1
N¼0

νGX xð Þ½ � Nexp �νGX xð Þ½ �
N! . The summation, on the right-hand side of this equation, is

equal to 1, as it refers to the sum over the entire domain of a Poisson mass function,

with parameter νGX(x). After algebraic manipulation, one gets FXmax xð Þ ¼
exp �ν 1� GX xð Þ½ �f g, which is the fundamental equation for calculating annual

probabilities for partial duration series, with Poisson arrivals (see Sect. 1.4 of

Chap. 1). For the specific problem focused on this example, the CDF for the

exceedances is supposed to be exponential, or GX xð Þ ¼ 1� exp �x=θð Þ, whose
substitution in the fundamental equation results in the Poisson-Exponential model

for partial duration series. Formally, FQmax
qð Þ ¼ exp �νexp � q�Q0

θ

� 	n o
, where

Qmax¼Q0þX represents the annual maximum flow. Recalling that

a ¼ bec , ln að Þ ¼ ln bð Þ þ c , a ¼ exp ln bð Þ þ c½ �, one finally gets FQmax
qð Þ ¼

exp �exp �1
θ q� Q0 � θ lnνð Þ� � �

, which is the expression of the CDF for the

Gumbel distribution, with parameters θ and [Q0þ θ ln (ν)], to be further detailed

in Sect. 5.7 of this chapter. In summary, the modeling of partial duration series, with

Poisson arrivals and exponentially distributed exceedances over a given threshold,

leads to the Gumbel distribution for the annual maxima. The quantile function or

the inverse of the CDF for the Gumbel distribution is

q Fð Þ ¼ Q0 þ θln νð Þ � θln �ln Fð Þ½ �. For the quantities previously given, T ¼ 100

) FQmax
¼ 1� 1=100 ¼ 0:99; θ¼ 50; ν¼ 2, and Q0¼ 60 m3/s, one finally obtains

q F ¼ 0:99ð Þ ¼ 289:8m3=s, which is the 100-year flood discharge.

5.5 Gamma Distribution

The solution to Exercise 9 of Chap. 4 has shown that the probability distribution

of the time t for the Nth Poisson occurrence is given by the density

f T tð Þ ¼ λNtN�1e�λt= N � 1ð Þ!, which is the gamma PDF for integer values of the

parameter N. Under these conditions, the gamma distribution results from the sum

of N independent exponential variates, with common parameter λ or θ¼ 1/λ.
The gamma distribution, for integer N, is also known as Erlang’s distribution,

after the Danish mathematician Agner Krarup Erlang (1878–1929). In more general

terms, parameter N does not need to be an integer and, without this restriction, the

two-parameter gamma PDF is given by

f X xð Þ ¼ 1

θΓ ηð Þ
x

θ

� 	η�1

exp �x

θ

� 	
for x � 0; θ and η > 0 ð5:40Þ

where the real numbers θ and η denote, respectively, the scale and shape

parameters. Synthetically, for a gamma variate, X ~Ga(θ,η). In Eq. (5.40), Γ(η)
represents the normalizing factor that ensures the density integrate to one as
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x ! 1. This normalizing factor is given by the complete gamma function Γ(.), for
the argument η, or

Γ ηð Þ ¼
ð1
0

xη�1e�xdx ð5:41Þ

If η is an integer number, the complete gamma function Γ(η) is equivalent to (η�1)!.

The reader is referred to Appendix 1 for a brief review of the properties of the

gamma function. Appendix 2 contains tabulated values for the gamma function, for

1� η� 2. The recurrence relation Γ(ηþ 1)¼ ηΓ(η) allows extending the calcula-

tion for other values of η. The gamma CDF is expressed as

FX xð Þ ¼
ðx
0

1

θΓ ηð Þ
x

θ

� 	η�1

exp �x

θ

� 	
dx ð5:42Þ

Similarly to the normal CDF, the integral in Eq. (5.42) cannot be calculated

analytically. As a result, calculating probabilities for the gamma distribution

requires numerical approximations. A simple approximation, generally efficient

for values of η higher than 5, makes use of the gamma variate scaled by θ. In effect,
due to the scaling property of the gamma distribution, if X ~Ga(θ,η), it can be

shown that ξ ¼ x=θ is also gamma distributed, with scale parameter θξ¼ 1 and

shape parameter η. As such, the CDF of X can be written as the ratio

FX xð Þ ¼

Ðξ
0

ξη�1e�ξdξ

Ð1
0

ξη�1e�ξdξ
¼ Γi ξ, ηð Þ

Γ ηð Þ ð5:43Þ

between the incomplete gamma function, denoted by Γi( ξ, η), and the complete

gamma function Γ( η). Kendall and Stuart (1963) show that, for η� 5, this ratio is

well approximated by the standard normal CDF, Φ(u), calculated at the point u,
which is defined by

u ¼ 3
ffiffiffi
η

p
ffiffiffi
ξ

η
3

s
� 1þ 1

9η

 !
ð5:44Þ

Example 5.6 applies this approximation procedure for calculating FX(x).
The expected value, variance and the coefficient of skewness for the gamma

distribution are respectively given by

E X½ � ¼ ηθ ð5:45Þ
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Var X½ � ¼ ηθ2 ð5:46Þ

and

γ ¼ 2ffiffiffi
η

p ð5:47Þ

Figure 5.7 depicts some examples of gamma densities, for selected values of θ
and η. Note in this figure that the effect of changing parameter θ, which possesses

the same dimension as that of the gamma variate, is that of compressing or

expanding the density, through the scaling of X. In turn, the great diversity of

shapes, as shown by the gamma densities, is granted by the dimensionless param-

eter η. As illustrated in Fig. 5.7, for decreasing values of η, the gamma density

becomes more skewed to the right, as one would expect from Eq. (5.47). For η¼ 1,

the density intersects the vertical axis at ordinate 1/θ and configures the particular

case in which the gamma becomes the exponential distribution with parameter θ.
As the shape parameter η grows, the gamma density becomes less skewed and its

mode is increasingly shifted to the right. For very large values of η, as a direct result
of Eq. (5.47), the gamma distribution tends to be symmetric. In fact, when η ! 1,

the gamma variate tends to be normally distributed. This is an expected result since,

as η ! 1, the gamma distribution would be the sum of an infinite number of

independent exponential variables, which, by virtue of the CLT, tends to follow a

normal distribution.

Given that it is defined only for nonnegative real-valued numbers, has non-fixed

positive coefficients of skewness, and may exhibit a great diversity of shapes, the

Fig. 5.7 Examples of gamma density functions
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gamma distribution is a potentially strong candidate to model hydrological and

hydrometeorological variables. In particular, Haan (1977) lists a number of

successful applications of the gamma distribution to rainfall-related quantities,

considering daily, monthly, and annual durations. Haan (1977) also gives an

example of modeling annual mean flows with the use of the gamma distribution.

On the other hand, Vlcek and Huth (2009), based on fittings of the gamma

distribution to 90 samples of annual maximum daily rainfall depths, recorded

at several locations across Europe, are skeptical and contend its use as a favored

probabilistic model for extreme daily precipitations.

The exponential and gamma probability distributions are related to the discrete

Poisson processes evolving in continuous time. The exponential distribution

models the continuous time interval between two successive Poisson arrivals,

whereas the gamma distribution refers to the continuous waiting time for the nth
Poisson happening. Remember that in Chap. 4 the geometric and negative binomial

discrete random variables have definitions that are conceptually similar to those

attributed to the exponential and the gamma variates, respectively, with the caveat

that their evolution takes place at discrete times. As such, the geometric and

negative binomial models can be thought as the respective discrete analogues to

the exponential and gamma distributions.

Example 5.6 Recalculate the probabilities sought in items (a) and (b) of

Example 5.4, using the gamma distribution.

Solution First, the numerical values for parameters η and θ must be calculated. By

combining Eqs. (5.45) and (5.46), the scale parameter θ can be directly calculated

usingVar X½ � ¼ E X½ �θ ) θ ¼ Var X½ �=E X½ � ¼ 150ð Þ2=600 ¼ 37:5mm. Substitut-

ing this value into one of the two equations, it follows that η¼ 16. (a) P(400<X
< 700)¼ FX (700)�FX(400). To calculate probabilities for the gamma distribution,

one needs first to scale the variable by the parameter θ, or, for x¼ 700,

ξ ¼ x=θ ¼ 700=37:5 ¼ 18:67. This quantity in Eq. (5.44), with η¼ 16, results in

u¼ 0.7168. Table 5.1 gives Φ(0.7168)¼ 0.7633, and thus P(X< 700)¼ 0.7633.

Proceeding in the same way for x¼ 400, P(X< 400)¼ 0.0758. Therefore,

P(400<X< 700)¼ 0.7633-0.0758¼ 0.6875. (b) P X > 300ð Þ ¼ 1� P X <ð
300Þ ¼ 1� FX 300ð Þ. For x¼ 300, ξ ¼ x=θ ¼ 300=37:5 ¼ 8. Equation (5.44),

with η¼ 16, results in u¼�2.3926 and, finally, Φ(�2.3926)¼ 0.008365. Hence,

P(X> 300)¼ 1–0.008365¼ 0.9916. Note that these results are not very different

from those obtained in the solution to Example 5.4. The software MS Excel has

the built-in function GAMMA.DIST(.) which returns the non-exceedance

probability for a quantile, given the parameters. In R, the appropriate function is

pgamma(.). Repeat the solution to this example, using the MS Excel resources.
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5.6 Beta Distribution

The beta distribution models the probabilities of a double-bounded continuous

random variable X. For the standard beta distribution, X is defined in the domain

interval [0,1]. As such, the beta density is expressed as

f X xð Þ ¼ 1

B α; βð Þ x
α�1 1� xð Þβ�1

for 0 � x � 1, α > 0, β > 0 ð5:48Þ

where α and β are parameters, and B(α, β) denotes the complete beta function

given by

B α; βð Þ ¼
ð1
0

tα�1 1� tð Þβ�1dt ¼Γ αð ÞΓ βð Þ
Γ αþ βð Þ ð5:49Þ

The short notation is X�Be(α,β). The beta CDF is written as

FX xð Þ ¼ 1

B α; βð Þ
ðx
0

xα�1 1� xð Þβ�1dx ¼ Bi x; α; βð Þ
B α; βð Þ ð5:50Þ

where Bi(x, α, β) denotes the incomplete beta function. When α¼ 1, Eq. (5.50) can

be solved analytically. However, for α 6¼ 1, calculating probabilities for the beta

distribution requires numerical approximations for the function Bi(x, α, β), such as

the ones described in Press et al. (1986). Figure 5.8 depicts some possible shapes for

the beta density.

Fig. 5.8 Examples of densities for the beta distribution
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The mean and variance of a beta variate are respectively given by

E X½ � ¼ α

αþ β
ð5:51Þ

and

Var X½ � ¼ αβ

αþ βð Þ 2 αþ β þ 1ð Þ ð5:52Þ

In Fig. 5.8, one can notice that the uniform distribution is a particular case of the

beta distribution, for α¼ 1 and β¼ 1. Parameter α controls the beta density values

as it approaches the variate lower bound: if α< 1, f X xð Þ ! 1 as x ! 0; if α¼ 1,

f X 0ð Þ ¼ 1=B 1; βð Þ; and if α> 1, f X 0ð Þ ¼ 0. Analogously, parameter β controls the

beta density values as it approaches the variate upper bound. For equal values of

both parameters, the beta density is symmetric. If both parameters are larger than

1, the beta density is unimodal. The great variety of shapes of the beta distribution

makes it useful for modeling double-bounded continuous random variables.

Example 5.7 refers to the modeling of dissolved oxygen concentrations with the

beta distribution.

Example 5.7 Dissolved oxygen (DO) concentrations, measured in weekly intervals

at a river cross section and denoted by X, are lower-bounded by 0 and upper-

bounded by the concentration at saturation, which depends on many factors,

especially, on the water temperature. Suppose the upper bound is 9 mg/l and that

the DO concentration mean and variance are respectively equal to 4 mg/l and

4 (mg/l)2. If the DO concentrations are scaled by the upper bound, or Y¼X/9,
one can model the transformed variable Y using the standard beta distribution. Use

such a model to calculate the probability that the DO concentration be less than or

equal to 2 mg/l.

Solution Recalling the properties of mathematical expectation, from Sects. 3.6.1

and 3.6.2 of Chap. 3, the mean and variance of the transformed variable Y are

respectively equal to 4/9 and 4/81. Solving the system formed by Eqs. (5.51) and

(5.52), one obtains α¼ 1.7778 and β¼ 2.2222. Note that the beta density, for these

specific values of α and β, is also plotted in Fig. 5.8. The probability that X is lower

than 2 mg/l is equal to the probability that Y is lower than 2/9. To calculate P[Y�
(2/9)], by means of Eq. (5.50), it is necessary to perform a numerical approximation

for the incomplete beta function, with the specified arguments

Bi 2=9ð Þ, α ¼ 1:7778, β ¼ 2:2222½ �. Besides the algorithm given in Press et al.

(1986), the software MS Excel has the built-in function BETA.DIST(.), which

implements the calculation as in Eq. (5.50). The equivalent function in R is pbeta

(). Using one of these functions to calculate the sought probability, one obtains P

[Y� (2/9)]¼ 0.1870. Thus, the probability that X is lower than or equal to 2 mg/l is

0.1870.
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5.7 Extreme Value Distributions

A special category of probability distributions arise from the classical theory of

extreme values, whose early developments are due to the pioneering works of the

French mathematician Maurice Fréchet (1878–1973) and the British statisticians

Ronald Fisher (1890–1962) and Leonard Tippet (1902–1985), followed by contri-

butions made by the Russian mathematician Boris Gnedenko (1912–1995) and

further consolidation by the German mathematician Emil Gumbel (1891–1966).

The extreme-value theory is currently a very important and active branch of

Mathematical Statistics, with developments of great relevance and applicability

in the fields of actuarial sciences, economics, and engineering. The goal of this

section is to introduce the principles of the extreme-value theory and present its

main applications to hydrologic random variables. The reader interested in the

mathematical foundations of classical extreme-value theory should consult Gumbel

(1958). For an updated introduction to the topic, Coles (2001) is recommended

reading. For general applications of the extreme-value theory to engineering,

Castillo (1988) and Ang and Tang (1990) are very useful references.

5.7.1 Exact Distributions of Extreme Values

The maximum and minimum values of a sample of size N, from the random

variable X, which is distributed according to a fully specified distribution FX(x),
are also random variables and have their own probability distributions. These are

generally related to the distribution FX(x), designated parent distribution, of the

initial variate X. For the simple random sample {x1, x2, . . ., xN}, xi denotes the ith
record from the N available records for the variable X. Since it is not possible to

predict the value of xi before its occurrence, one can assume that xi represents the
realization of the random variable Xi, as corresponding to the ith random drawn

from the population X. By generalizing this notion, one can interpret the sample

{x1, x2, . . ., xN} as the joint realization of N independent and identically distributed

random variables {X1, X2, . . ., XN}. Based on this rationale, the theory of extreme

values has the main goal of determining the probability distributions of the maxi-

mum Y ¼ max X1,X2, . . . ,XNf g and of the minimum Z ¼ min X1,X2, . . . ,XNf g
of X.

If the parent distribution FX(x) is completely known, the distribution of Y can be

derived from the fact that, if Y ¼ max X1,X2, . . . ,XNf g is equal to or less than y,
then all random variables Xi must also be equal to or less than y. As all variables Xi

are assumed independent and identically distributed, according to the function

FX(x) of the initial variate X, the cumulative probability distribution of Y can be

derived by equating
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FY yð Þ ¼ Ρ Y � yð Þ ¼ Ρ X1 � yð Þ \ X2 � yð Þ \ . . . \ XN � yð Þ½ �
¼ FX yð Þ½ �N ð5:53Þ

Thus, the density function of Y is

f Y yð Þ ¼ dFY yð Þ
dy

¼ N FX yð Þ½ �N�1f X yð Þ ð5:54Þ

Equation (5.53) indicates that, since FX(y)< 1 for any given y, FY( y) decreases
with N and, thus, both the cumulative and the density functions of Y are shifted to

the right, along the X axis, as N increases. This is illustrated in Fig. 5.9 for

the particular case where the parent probability density function is f X xð Þ ¼ 0:25
exp �0:25xð Þ. Notice in this figure that the mode of Y shifts to the right as

N increases, and that, even for moderate values of N, the probability that the

maximum Y comes from the upper-tail of the parent density function fX(x) is high.
By employing similar arguments, one can derive the cumulative probability and

density functions for the sample minimum Z ¼ min X1,X2, . . . ,XNf g.
Accordingly, the CDF of Z is given by

FZ zð Þ ¼ 1� 1� FX zð Þ½ �N ð5:55Þ

whereas its density is

f z zð Þ ¼ N 1� FX zð Þ½ �N�1f X zð Þ ð5:56Þ

Contrary to the sample maximum distributions, the functions FZ(z) and fZ (z) are
shifted to the left along the X axis as N increases.

Equations (5.53)–(5.56) provide the exact distributions for the extreme values of

a sample of size N, drawn from the population of the initial variate X, for which the

Fig. 5.9 Exact distributions for the maximum of a sample from an exponential parent
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parent distribution FX(x) is completely known. These equations show that the exact

extreme-value distributions depend not only on the parent distribution FX(x) but
also on the sample size N. In general, with an exception made for some simple

parent distributions, such as the exponential used in Fig. 5.9, it is not always

straightforward to derive the analytical expressions for FY( y ) and FZ( z ).

Example 5.8 Assume that, in a given region, during the spring months, the time

intervals between rain episodes are independent and exponentially distributed with

a mean of 4 days. With the purpose of managing irrigation during the spring

months, farmers need to know the maximum time between rain episodes.

If 16 rain episodes are expected for the spring months, calculate the probability

that the maximum time between successive episodes will exceed 10 days (adapted

from Haan 1977).

Solution The prediction of 16 rain episodes for the spring months implies that

15 time intervals, separating successive rains, are expected, making N¼ 15 in

Eq. (5.53). Denoting the maximum time interval between rains by Tmax, the sought

probability is P(Tmax> 10)¼ 1�P(Tmax< 10)¼ 1�FTmax(10). For the exponential

parent distribution, with θ¼ 4, Eq. (5.53) gives FTmax
10ð Þ ¼ FT 10ð Þ½ �15 ¼

1� exp �10=4ð Þ½ �15 ¼ 0:277. Thus, P(Tmax> 10)¼ 1�0.277¼ 0.723. The proba-

bility density function for Tmax is derived by direct application of Eq. (5.54), or,

f Tmax
tmaxð Þ ¼ 15 1� exp �tmax

4

� ��  15�1 1
4
exp �tmax

4

� �� 
. The cumulative and density

functions, for N¼ 15, are highlighted in the plots of Fig. 5.9.

5.7.2 Asymptotic Distributions of Extreme Values

The practical usefulness of the statistical analysis of extremes is greatly enhanced

by the asymptotic extreme-value theory, which focuses on determining the limiting

forms of FY( y ) and FZ( z ) as N tends to infinity, without previous knowledge of the

exact shape of the parent distribution FX(x). In many practical situations, FX(x) is
not completely known or cannot be determined from the available information,

which prevents the application of Eqs. (5.53) and (5.56) and, thus, the derivation of

the exact distributions of extreme values. The major contribution of the asymptotic

extreme-value theory was to demonstrate that the limits lim
N!1

FY yð Þ and lim
N!1

FZ zð Þ
converge to some functional forms, despite the incomplete knowledge of the parent

distribution FX(x). The convergence to the limiting forms actually depends on the

tail characteristics of the parent distribution FX(x) in the direction of the desired

extreme, i.e., it depends on the upper tail of FX(x), if the interest is on the maximum

Y, or on the lower tail of FX(x), if the interest is on the minimum Z. The central

portion of FX(x) does not have a significant influence on the convergence of

lim
N!1

FY yð Þ and lim
N!1

FZ zð Þ.
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Assume that {X1, X2, . . ., XN} represents a collection of N independent random

variables, with common parent distribution FX(x). For Y ¼ max X1,X2, . . . ,XNf g
and Z ¼ min X1,X2, . . . ,XNf g, let the linearly transformed variables YN and ZN
be defined as YN ¼ Y � bNð Þ=aN and ZN ¼ Z � bNð Þ=aN , where aN> 0 and

real-valued bN are N-dependent sequences of normalizing constants intended to

avoid degeneration of the limit distributions lim
N!1

FY yð Þ and lim
N!1

FZ zð Þ, or, in other
words, to prevent the limits to take only values 0 and 1, as N ! 1. The Fisher-

Tippett theorem (Fisher and Tippett 1928), following the pioneering work by

Fréchet (1927), and later complemented by Gnedenko (1943), establishes that, for

a wide class of distributions FX(x), the limits lim
N!1

FYN
yð Þ and lim

N!1
FZN

zð Þ converge
to only three types of functional forms, depending on the tail shape of the parent

distribution FX(x) in the direction of the desired extreme. The three limiting forms

are generally referred to and formally expressed as

• Extreme-Value type I or EV1 or the double exponential form

(a) for maxima: exp �e�y½ �, for �1 < y < 1; or

(b) for minima: 1� exp �ezð Þ, for �1 < y < 1,

if the initial variate X is unbounded in the direction of the desired extreme

and if its probability density function decays as an exponential tail in the

direction of the desired extreme;

• Extreme-Value type II or EV2 or the simple exponential form

(a) for maxima: exp �y�γð Þ, for y> 0, and 0, for y� 0; or

(b) for minima: 1� exp � �zð Þ�γ½ �, for z< 0, and 1, for z� 0,

if the initial variate X is unbounded in the direction of the desired extreme

and if its probability density function decays as a polynomial (or Cauchy-

Pareto or heavy) tail in the direction of the desired extreme; and

• Extreme-Value type III or EV3 or the exponential form, with an upper bound for
maxima or a lower bound for minima

(a) for maxima: exp � �yð Þ γ½ �, for y< 0, and 1, for y� 0; or

(b) for minima: 1� exp �z γð Þ, for z> 0, and 0, for z� 0,

when X is bounded in the direction of the desired extreme.

In the reduced expressions given for the three asymptotic forms, the exponent γ
denotes a positive constant.

Taking only the case for maxima as an example, the parent distribution of the

initial variate X has an exponential upper tail if it has no upper bound and if, for

large values of x, the ordinates of fX (x) and of 1�FX (x) are small and the derivative

f
0
X(x) is also small and negative, in such a way that the relation f X xð Þ= 1� FX xð Þ½ � ¼
�f

0
X xð Þ=f X xð Þ holds (Ang and Tang 1990). In other words, the parent distribution is

exponentially tailed if FX(x), in addition to being unbounded, approaches 1 at least

as fast as the exponential distribution does as x!1. In turn, FX(x) has a
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polynomial (or Cauchy-Pareto or heavy) upper tail if it is unbounded to the right

and if lim
x!1 xk 1� FX xð Þ½ � ¼ a, where a and k are positive numbers. In other words,

the parent distribution has a polynomial (Cauchy-Pareto, subexponential or heavy)

upper tail if FX(x), in addition to being unbounded from above, approaches 1 less

fast than the exponential distribution does, as x!1. Finally, if X is bounded from

above by the value w, such that FX(w)¼ 1, the limiting distribution of its maximum

converges to the Extreme-Value type III. Figure 5.10 illustrates the three types of

upper tails, by contrasting three parent density functions. Analogous explanations,

concerning the lower tails of the parent distribution, can be made for the minima

(Ang and Tang 1990).

The tail shape of the parent distribution, in the direction of the desired extreme,

determines to which of the three asymptotic forms the distribution of the maximum

(or the minimum) will converge. For maxima, the convergence to the EV type I

takes place if FX(x) is, for instance, exponential, gamma, normal, lognormal or the

EV1 itself; to the EV type II if FX(x) is log-gamma (the gamma distribution for the

logarithms of X), Student’s t distribution (a sampling distribution to be described

later in this chapter) or the EV2 itself; and to the EV type III if FX(x) is uniform,

beta or the EV3 itself. For minima, the convergence to the EV type I takes place if

FX(x) is, for instance, normal or the EV1 itself; to the EV type II if FX(x) is Student’s
t distribution or the EV2 itself; and to the EV type III if FX(x) is uniform,

exponential, beta, lognormal, gamma or the EV3 itself.

The three asymptotic forms from the classical extreme-value theory encounter

numerous applications in hydrology, despite its fundamental assumption, that of

independent and identically distributed (IID) initial variables, not fully conforming

to the hydrological reality. In order to provide a practical context, let Y and

Z respectively refer to the annual maximum and the annual minimum of the mean

daily discharges represented in the set {X1, X2, . . . , X365}, which, for rigorous

observance of the assumption of IID variables, must be independent among them-

selves and have a common and identical probability distribution. Independence

among daily flows is an unreasonable assumption, since the correlation between

Fig. 5.10 Examples of

upper-tail types for density

functions
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successive daily discharges is usually very high. In turn, admitting, for instance,

that, in a region of pronounced seasonality, the daily flows on January 16th have the

same distribution, with the same mean and variance, as have the August 19th flows

is clearly unrealistic. In addition to these departures from the basic assumption of

IID variables, it is uncertain whether or not N¼ 365 (or 366) is large enough to

allow convergence to the maximum or to the minimum.

Analogously to relaxing the basic premises required to apply the central limit

theorem for the sum of a great number of random variables, further developments

from the asymptotic theory of extreme values have attempted to accommodate

eventual departures from the original assumption of IID variables. Juncosa (1949)

proved that more general classes of limiting distribution exist if one drops the

restriction that original random variables are identically distributed. Later on,

Leadbetter (1974, 1983) demonstrated that for dependent initial variables, with

some restrictions imposed on the long-range dependence structure of stationary

sequences of exceedances over a high threshold, the asymptotic forms from the

extreme-value theory remain valid. Thus, under somewhat weak regularity condi-

tions, the assumption of independence among the original variables may be dropped

(Leadbetter et al. 1983; Coles 2001).

In most applications of extremal distributions in hydrology, the determination of

the appropriate asymptotic type is generally made on the basis of small samples of

annual extreme data, without any information concerning the parent distribution of

the original variables. However, according to Papalexiou et al. (2013), in such cases

the actual behavior of the upper tail of the parent distribution might not be captured

by the available data. To demonstrate this, the authors studied the tail behavior of

non-zero daily rainfall depths, recorded at 15,029 rainfall gauging stations, spread

over distinct geographic and climatic regions of the world, with samples of large

sizes, ranging from 50 to 172 years of records. They concluded that, despite the

widespread use of light-tailed distributions for modeling daily rainfall, 72.6% of

gauging stations showed upper tails of the polynomial or subexponential type,

whereas only 27.4% of them exhibited exponential or upper-bounded

(or hyperexponential) upper tails. On the basis of these arguments and by relaxing

the fundamental assumptions of the classical extreme-value theory, Papalexiou and

Koutsoyiannis (2013) investigated the distributions of annual maxima of daily

rainfall records from 15,135 gauging stations across the world. The authors’
conclusion is categorically favorable to the use of the limiting distribution

Extreme-Value type II, also known as the Fréchet distribution.

Although these recent studies present strong arguments in favor of using the

Extreme-Value type II asymptotic distribution as a model for the annual maximum

daily rainfalls, it seems that further research is needed in the pursuit of general

conclusions on the extreme behavior of other hydrologic variables. As far as rainfall

is concerned, the extension of the conclusions to extremes of sub-daily durations,

generally more skewed than daily rainfall extremes, or to less-skewed extremes of

m-day durations (m> 1), is certainly not warranted without previous verification.

As far as discharges are concerned, additional difficulties for applying asymptotic

extreme-value results may arise since the usual stronger correlation among
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successive daily flows can possibly affect the regularity conditions, under which the

independence assumption can be disregarded (Perichi and Rodrı́guez-Iturbe 1985).

There are other issues of concern in respect of the application of extremal asymp-

totic distributions in hydrology, such as the slow convergence to the maximum

(or minimum), as noted by Gumbel (1958) and, more recently, by Papalexiou and

Koutsoyiannis (2013), and the fact that the three asymptotic forms are not exhaus-

tive (see Juncosa 1949, Benjamin and Cornell 1970, and Kottegoda and Rosso

1997). Nevertheless, the extremal distributions are the only group of probability

distributions that offers theoretical arguments that justify their use in the modeling

of hydrologic maxima and minima, although such arguments might be somewhat

debatable for a wide variety of applications.

The Extreme-Value type I for maxima, also known as the Gumbelmax distribu-

tion for maxima, has been, and still is a popular model for the hydrologic frequency

analysis of annual maxima. The Extreme-Value type II for maxima, also known as

the Fréchetmax distribution for maxima, had a considerably limited use in hydro-

logic frequency analysis, as compared to the first asymptotic type, until recent

years. However, it is expected that its use as a model for hydrologic annual maxima

will increase in the future, following the results published by Papalexiou and

Koutsoyiannis (2013). The Extreme-Value type III for maxima, also known as

the Weibullmax distribution for maxima, is often disregarded as a model for the

hydrologic frequency analysis of annual maxima, since one of its parameters is, in

fact, the variate’s upper-bound, which is always very difficult to estimate from

small samples of extreme data. Thus, as for the models for maxima to be described

in the subsections that follow, focus will initially be on the Gumbelmax and

Fréchetmax distributions, and posteriorly on the Generalized Extreme-Value

(GEV) distribution, which condenses in a single parametric form all three extremal

types. Regarding the minima, the most frequently used models in hydrology

practice, namely, the EV1min or the Gumbel distribution for minima, and the

EV3min or the Weibull distribution for minima, are highlighted.

5.7.2.1 Gumbel Distribution for Maxima

The Extreme-Value type I for maxima, also referred to as Gumbelmax, Fisher-

Tippet I or double exponential for maxima, arises from the classical extreme-

value theory, as the asymptotic form for the maximum of a set of IID initial variates,

with an exponential upper tail. Over the years, it has probably been the most used

probability distribution in frequency analysis of hydrologic variables, with partic-

ular emphasis on its application for estimating IDF (Intensity-Duration-Frequency)

relations for storm rainfalls at a given location.

The CDF of the Gumbelmax is given by
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FY yð Þ ¼ exp �exp � y� β

α

� �
 �
for �1 < y < 1, �1 < β < 1, α > 0

ð5:57Þ

where α denotes the scale parameter and β the location parameter. This latter

parameter actually corresponds to the mode of Y. The distribution’s density

function is

f Y yð Þ ¼ 1

α
exp � y� β

α
� exp � y� β

α

� �
 �
ð5:58Þ

The expected value, variance, and coefficient of skewness are respectively

given by

E Y½ � ¼ β þ 0:5772α ð5:59Þ

Var Y½ � ¼ σ2Y ¼ π2α2

6
ð5:60Þ

and

γ ¼ 1:1396 ð5:61Þ

It is worth noting that the Gumbelmax distribution has a constant and positive

coefficient of skewness. Figure 5.11 depicts some examples of Gumbelmaxdensities,

for selected values of parameters α and β.
The inverse function, or quantile function, for the Gumbelmax distribution is

y Fð Þ ¼ β � α ln �ln Fð Þ½ � or y Tð Þ ¼ β � α ln �ln 1� 1

T

� �
 �
ð5:62Þ

where T denotes the return period, in years, and F represents the annual

non-exceedance probability. By replacing y for the expected value E[Y] in

Eq. (5.62), it follows that the Gumbelmax mean has a return period of T¼ 2.33

years. In early developments of regional flood frequency analysis, the quantile y
(T¼ 2.33) was termed mean annual flood (Dalrymple 1960).

Example 5.9 Denote by X the random variable annual maximum daily discharge.
Assume that, at a given location, E[X]¼ 500 m3/s and E[X2]¼ 297025 (m3/s)2.

Employ the Gumbelmax model to calculate: (a) the annual maximum daily dis-

charge of return period T¼ 100 years; and (b) given that the annual maximum daily

discharge is larger than 600 m3/s, the probability that X exceeds 800 m3/s in any

given year.
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Solution (a) Recalling that Var[X]¼E[X2]�(E[X])2, it follows that Var[X]¼
47025 (m3/s)2. Solving the system formed by Eqs. (5.59) and (5.60), the parameter

values are α¼ 169.08 m3/s and β¼ 402.41 m3/s. Substituting these values in

Eq. (5.62), the annual maximum daily discharge of return period T¼ 100 years,

according to the Gumbelmax model, is x(100)¼ 1180 m3/s. (b) Let the events A and

B represent the outcomes {X> 600 m3/s} and {X> 800 m3/s}, respectively. Thus,

the sought probability is P(B|A), which is the same as Ρ B Ajð Þ ¼ Ρ B \ Að Þ=Ρ Að Þ.
Since Ρ B \ Að Þ ¼ P Bð Þ, the numerator of the previous equation corresponds to

P(B)¼ 1�FX(800)¼ 0.091, whereas the denominator, in turn, to P(A)¼
1�FX(600)¼ 0.267. Thus, P(B|A)¼ 0.34.

5.7.2.2 Fréchet Distribution for Maxima

The Fréchetmax distribution arises, from the classical extreme-value theory, as the

asymptotic form for the maximum of a set of IID initial variates, with polynomial

(or heavy) tail. It is also known as log-Gumbelmax due to the fact that, if

Z ~Gumbelmx(α,β), then Y¼ ln(Z ) ~ Fréchetmax[1/α, exp(β)]. The distribution is

named after the French mathematician Maurice Fréchet (1878–1973), one of the

pioneers of classical extreme-value theory. In recent years, heavy-tailed distribu-

tions, such as the Fréchet model, are being increasingly recommended as extremal

distributions for hydrologic maxima (Papalexiou and Koutsoyiannis 2013).

The standard two-parameter Fréchetmax CDF is expressed as

Fig. 5.11 Examples of Gumbelmax density functions
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FY yð Þ ¼ exp � τ

y

� �λ
" #

for y > 0, τ, λ > 0 ð5:63Þ

where τ represents the scale parameter and λ is the shape parameter. The Fréchetmax

density function is given by

f Y yð Þ ¼ θ

τ

τ

y

� �λþ1

exp � τ

y

� �λ
" #

ð5:64Þ

The expected value, variance, and coefficient of variation of Y are respectively

given by

E Y½ � ¼ τΓ 1� 1

λ

� �
for λ > 1 ð5:65Þ

Var Y½ � ¼ σ2Y ¼ τ2 Γ 1� 2

λ

� �
� Γ2 1� 1

λ

� �
 �
for λ > 2 ð5:66Þ

and

CVY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1� 2=λð Þ
Γ2 1� 1=λð Þ � 1

s
for λ > 2 ð5:67Þ

It is worth noting that the shape parameter λ depends only on the coefficient of

variation of Y, a fact that makes the calculation of Fréchetmax parameters a lot

easier. In effect, if CVY is known, Eq. (5.67) can be solved for λ, by using numerical

iterations. Eq. (5.65) is then solved for τ. Figure 5.12 shows examples of the

Fréchetmax density function, for some specific values of τ and λ.
The Fréchetmax quantile function, for the annual non-exceedance probability

F, is

y Fð Þ ¼ τ �ln Fð Þ½ �1=λ ð5:68Þ

or, in terms of the return period T,

y Tð Þ ¼ τ ln
T

T � 1

� �
 ��1=λ

ð5:69Þ

As mentioned earlier, the Gumbelmax and Fréchetmax distributions are related by

the logarithmic transformation of variables. In effect, if Y is a Fréchetmax variate,

with parameters τ and λ, the transformed variable ln(Y) follows a Gumbelmax

distribution, with parameters α ¼ 1=λ and β¼ ln(τ). This mathematical fact implies

that, for a given return period, the corresponding quantile, as calculated with
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Fréchetmax, is much larger than that calculated with Gumbelmax. The three-

parameter Fréchet distribution, with an added location parameter, is a particular

case of the GEV model, which is described in the next subsection.

5.7.2.3 Generalized Extreme-Value (GEV) Distribution for Maxima

The Generalized Extreme-Value (GEV) distribution for maxima was introduced by

Jenkinson (1955) as the condensed parametric form for the three limiting distribu-

tions for maxima. The CDF of the GEV distribution is given by

FY yð Þ ¼ exp � 1� κ
y� β

α

� �
 �1=κ( )
ð5:70Þ

where κ, α, and β denote, respectively, the parameters of shape, scale, and location.

The value and sign of κ determine the asymptotic extremal type: if κ< 0, the GEV

becomes the Extreme-Value type II, with the domain in y > β þ α=κ, whereas if
κ> 0, the GEV corresponds to the Extreme-Value type III, with the domain in

y < β þ α=κ. If κ¼ 0, The GEV becomes the Gumbelmax, with scale parameter α
and shape parameter β. The GEV probability density function is expressed as

f Y yð Þ ¼ 1

α
1� κ

y� β

α

� �
 �1=κ�1

exp � 1� κ
y� β

α

� �
 �1=κ( )
ð5:71Þ

Figure 5.13 illustrates the three possible shapes for the GEV distribution, as

functions of the value and sign of κ.

Fig. 5.12 Examples of Fréchetmax density functions
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The moments of order r for the GEV distribution only exist for κ > �1=r. As a
result, the mean of a GEV variate is not defined for κ < �1, the variance does not

exist forκ < �1=2, and the coefficient of skewness exists only for κ > �1=3. Under
these restrictions, the mean, variance, and coefficient of skewness for a GEV

variate are respectively defined as

E Y½ � ¼ β þ α

κ
1� Γ 1þ κð Þ½ � ð5:72Þ

Var Y½ � ¼ α

κ

� 	2
Γ 1þ 2κð Þ � Γ2 1þ κð Þ�  ð5:73Þ

and

γ ¼ κ

κj j
�Γ 1þ 3κð Þ þ 3Γ 1þ κð ÞΓ 1þ 2κð Þ � 2Γ3 1þ κð Þ

Γ 1þ 2κð Þ � Γ2 1þ κð Þ� 3=2
( )

ð5:74Þ

Equation (5.74) shows that the GEV shape parameter κ depends only on the

coefficient of skewness γ of Y. This is a one-to-one dependence relation, which is

depicted in the graph of Fig. 5.14, for κ > �1=3. It is worth noting in this figure that
the point marked with the cross corresponds to the Gumbelmax distribution, for

which κ¼ 0 and γ¼ 1.1396.

The calculation of the GEV parameters should start from Eq. (5.74), which needs

to be solved for κ, given that the value of the coefficient of skewness γ is known.

The solution is performed through numerical iterations, starting from suitable initial

Fig. 5.13 Examples of GEV density functions
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values, which may be obtained from the graph in Fig. 5.14. Calculations then

proceed for α, by making it explicit in Eq. (5.73), or

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2Var Y½ �
Γ 1þ 2κð Þ � Γ2 1þ κð Þ

s
ð5:75Þ

and, finally, by rearranging Eq. (5.72), β is calculated with

β ¼ E Y½ � � α

κ
1� Γ 1þ κð Þ½ � ð5:76Þ

With the numerical values for the GEVparameters, the quantiles are given by

x Fð Þ ¼ β þ α

κ
1� �lnFð Þκ½ � ð5:77Þ

or, in terms of the return period T,

x Tð Þ ¼ β þ α

κ
1� �ln 1� 1

T

� �
 �κ� �
ð5:78Þ

Example 5.10 Employ the GEV model to solve Example 5.9, supposing the

coefficient of skewness of X is γ¼ 1.40.

Fig. 5.14 Relation between the shape parameter κ and the coefficient of skewness γ of a GEV

variate, valid for κ > �1=3
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Solution (a) With γ¼ 1.40 in Fig. 5.14, one can notice that the value of κ that

satisfies Eq. (5.74) lies somewhere between –0.10 and 0. The solution to this

example is achieved by using the MS Excel software. First, choose an Excel cell,

which is termed cell M, to contain the value of the shape parameter κ and assign to it
an initial value between –0.10 and 0, say �0.08. MS Excel has the built-in function

GAMMALN(w) which returns the natural logarithm of the gamma function for the

argument w, such that EXP((GAMMALN(w)) be equal to Γ(w). Choose another

Excel cell, here called cell N, and assign to it the resulting subtraction of both sides

of Eq. (5.74), making use of the GAMMALN(.) function. Note that, if the result of

this subtraction is zero, one has the value of κ that satisfies Eq. (5.74). Then,

indicate to the Solver Excel component that the goal is to make the result, assigned

to cell N, which contains the rearranged Eq. (5.74), as close as possible to zero, by

changing the content of cell M, which is assigned to κ. Proceeding in this way, one

obtains κ¼�0.04. With this result and knowing that Var[X]¼ 47025 (m3/s)2 in

Eq. (5.75), the solution for the scale parameter is α¼ 159.97. Finally, for the

location parameter, Eq. (5.76) gives β¼ 401.09. Then, by making use of

Eq. (5.78), one obtains x(100)¼ 1209 m3/s. (b) Using the same representations

for events A and B, as in the solution to Example 5.9, P(B|A)¼ 0.345.

Example 5.11 Solve Example 5.5 for the case where the exceedances (Q�Q0) have

the mean and standard deviation respectively equal to 50 and 60 m3/s and are

distributed according to a Generalized Pareto (GPA) distribution.

Solution This is a Poisson process with ν¼ 2 as the annual mean number of

arrivals. When they occur, the exceedances X¼ (Q�Q0) follow a Generalized

Pareto (GPA) distribution, with CDF GX xð Þ ¼ 1� 1� κ x
α

� �� 1=κ
, where κ and α

denote, respectively, the shape and scale parameters. For κ> 0, the variate is upper-

bounded by α/κ and, for κ< 0 it is unbounded to the right, with a polynomial upper

tail. If κ¼ 0, the GPA becomes the exponential distribution, in the form of

GX xð Þ ¼ 1� exp �x=αð Þ, for which case the solution is given in Example 5.5.

The GPA distribution is named after Vilfredo Pareto (1848–1923), an Italian civil

engineer and economist who first used the GPA, in the field of economics, as the

income distribution. An important theorem related to the GPA parametric form,

introduced by Pickands (1975), states that if we consider only the values of a

generic random variable W that exceed a sufficiently high threshold w0, then, the

conditional exceedances distributionF W � w0 W � w0jð Þ converges to a GPA as w0

increases. This result has been used to characterize the upper tails of probability

distributions, in connection with the extreme-value limiting forms. The density

upper tails depicted in Fig. 5.10 are, in fact, GPA densities for positive, negative,

and null values of the shape parameter κ. For a GPA variate X, the following

equations must hold: α ¼ E X½ �
2

E X½ �ð Þ2
Var X½ � þ 1
h i

and κ ¼ 1
2

E X½ �ð Þ2
Var X½ � � 1
h i

. Solving these

equations, with E[X]¼ 50 and Var[X]¼ 3600, one obtains α¼ 42.36 and

κ¼�0.153. Thus, for this case, the conditional exceedance distribution is

unbounded to the right and has a polynomial upper tail. Similarly to Example 5.5,
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in order to calculate flood flow quantiles associated with a specific return period, it

is necessary to derive the CDF of the annual maximum exceedances, denoted by

FXmax(x), which, in terms of the partial results from Example 5.5, is given by

FXmax
xð Þ ¼ exp �ν 1� GX xð Þ½ �f g. If GX (x) is a GPA, then the Poisson-Pareto

model for partial duration series, formally expressed as

FQmax
qð Þ ¼ exp �ν 1� κ q�Q0

α

� 	h i1=κ� �
, where Qmax¼Q0þX represents the

annual maximum discharge. After algebraic simplifications, similar to those from

Example 5.5, one obtains FQmax
qð Þ ¼ exp � 1� κ q�β

α*

� �� � �
, which is the GEV

cumulative distribution function, with scale parameter α* ¼ α νð Þ�κ
and location

parameter β ¼ Q0 þ α� α*
� �

=κ. The GEV shape parameter κ is identical to that of
the GPA distribution. In conclusion, modeling partial duration series with the

number of flood occurrences following a Poisson law and exceedances distributed

as a GPA leads to a GEV as the probability distribution of annual maxima.

The specific quantities for this example are: FQmax
¼ 1� 1=100 ¼ 0:99 ; ν¼ 2,

Q0¼ 60 m3/s, α¼ 42.36, κ¼�0.153, α*¼ 47.1, and β¼ 90.96. Inverting the GEV

cumulative function, it follows that q Fð Þ ¼ β þ α*

κ 1� �ln Fð Þ½ �κf g. Substituting
the numerical values in the equation, one obtains the 100-year flood as

q F ¼ 0:99ð Þ ¼ 342:4m3=s.

5.7.2.4 Gumbel Distribution for Minima

The Gumbelmin arises from the classical extreme-value theory as the asymptotic

form for the minimum of a set of IID initial variates, with an exponential lower tail.

The distribution has been used, although not frequently, as an extremal distribution

for modeling annual minima of drought-related variables, such as the Q7, the lowest

average discharge of 7 consecutive days in a given year.

The cumulative distribution function for the Gumbelmin is

FZðzÞ ¼ 1� exp �exp
z� β

α

� �
 �
for�1 < z < 1, �1 < β < 1, α > 0

ð5:79Þ

where α represents the scale parameter and β the location parameter. Analogously

to the Gumbelmax, β is, in fact, the mode of Z. The probability density function of

the Gumbelmin distribution is given by

f Z zð Þ ¼ 1

α
exp

z� β

α
� exp

z� β

α

� �
 �
ð5:80Þ

The mean, variance, and coefficient of skewness of a Gumbelmin variate are

respectively expressed as
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E Z½ � ¼ β � 0:5772α ð5:81Þ

Var Z½ � ¼ σ2Z ¼ π2α2

6
ð5:82Þ

and

γ ¼ �1:1396 ð5:83Þ

It is worth noting that the Gumbelmin distribution is skewed to the left with a

fixed coefficient of γ ¼ �1:1396. The Gumbelmin and Gumbelmax probability

density functions, both with identical parameters, are symmetrical with respect to

a vertical line crossing the abscissa axis at the common mode β. Figure 5.15

shows examples of the Gumbelmin distribution, for some specific values of param-

eters α and β.
The Gumbelmin quantile function is written as

z Fð Þ ¼ β þ α ln �ln 1� Fð Þ½ � or y Tð Þ ¼ β þ α ln �ln 1� 1

T

� �
 �
ð5:84Þ

where T denotes the return period, in years, and F represents the annual

non-exceedance probability. Remember that, for annual minima, the return period

is the reciprocal of F, or T ¼ 1=Ρ Z � zð Þ ¼ 1=FZ zð Þ. It is worth noting that,

depending on the numerical values of the distribution parameters and on the target

return period, calculation of Gumbelmin quantiles can possibly yield negative

numbers, as in the examples depicted in Fig. 5.15. This is one major disadvantage

Fig. 5.15 Examples of Gumbelmin density functions
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of the Gumbelmin distribution, which has prevented its spread use as a model for

low-flow frequency analysis. The other is related to the fixed negative coefficient of

skewness. This fact seems to be in disagreement with low-flow data samples, which

may exhibit, in many cases, histograms moderately skewed to the right.

Example 5.12 The variable annual minimum 7-day mean flow, denoted by Q7, is

the lowest average discharge of 7 consecutive days in a given year and is commonly

used for the statistical analysis of low flows. The yearly values of Q7 from 1920 to

2014, as reduced from the daily flows for the Dore River at Saint-Gervais-sous-

Meymont, in France, are listed in Table 2.7 of Chap. 2. The sample mean and

standard deviation are z ¼ 1:37 m3=s and sZ¼ 0.787 m3/s, and these are assumed as

good estimates for E[Z] and σ[Z], respectively. Q7,10 denotes the minimum 7-day

mean flow of 10-year return period and has been used as a drought characteristic

flow in water resources engineering. Employ the Gumbelmin model to estimate

Q7,10 for the Dore River at Saint-Gervais-sous-Meymont.

Solution With E[Z]¼ 1.37 m3/s and σ[Z]¼ 0.787 m3/s, solutions to the system

formed by Eqs. (5.81) and (5.82) give α¼ 0.614 and β¼ 1.721. With these results

and by making T¼ 10 years in Eq. (5.84), the estimate of Q7,10 obtained with the

Gumbelmin model is z(T¼ 10)¼ 0.339 m3/s.

5.7.2.5 Weibull Distribution for Minima

The Extreme-Value type III distribution arises from the classical extreme-value

theory as the asymptotic form for the minimum of a set of IID initial variates with a

lower-bounded tail. The Extreme-Value type III distribution for minima is also

known as Weibullmin, after being first applied for the analysis of the strength of

materials to fatigue, by the Swedish engineer Waloddi Weibull (1887–1979). Since

low flows are inevitably bounded by zero in the most severe cases, the Weibullmin

distribution is a natural candidate to model hydrologic minima. If low-flows are

lower-bounded by zero, the EV3 distribution is referred to as the two-parameter

Weibullmin. On the other hand, if low-flows are lower-bounded by some value ξ, the
EV3 distribution is referred to as the three-parameter Weibullmin.

The cumulative distribution function for the two-parameter Weibullmin is

given by

FZ zð Þ ¼ 1� exp � z

β

� �α
 �
para z � 0, β � 0 e α > 0 ð5:85Þ

where β and α are, respectively, scale and shape parameters. If α¼ 1, the

Weibullmin becomes the one-parameter exponential distribution with scale

parameter β. The probability density function of the two-parameter Weibullmin

distribution is expressed as
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f Z zð Þ ¼ α

β

z

β

� �α�1

exp � z

β

� �α
 �
ð5:86Þ

The mean and variance of a two-parameter Weibullmin variate are, respectively,

given by

E Z½ � ¼ βΓ 1þ 1

α

� �
ð5:87Þ

and

Var Z½ � ¼ β2 Γ 1þ 2

α

� �
� Γ2 1þ 1

α

� �
 �
ð5:88Þ

The coefficients of variation and skewness of a two-parameter Weibullmin

variate are, respectively,

CVZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1þ 2

α

� �� Γ2 1þ 1
α

� �q
Γ 1þ 1

α

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B αð Þ � A2 αð Þ

q
A αð Þ ð5:89Þ

and

γ ¼ Γ 1þ 3
α

� �� 3Γ 1þ 2
α

� �
Γ 1þ 1

α

� �þ 2Γ3 1þ 1
α

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1þ 2

α

� �� Γ2 1þ 1
α

� �� 3q ð5:90Þ

Figure 5.16 illustrates examples of two-parameter Weibullmin density functions.

Calculation of parameters and probabilities for the two-parameter Weibullmin

distribution is performed by first solving Eq. (5.89) for α, either through a numerical

iterations procedure, similar to the one used to calculate the GEV shape parameter

(see solution to Example 5.10), or by tabulating (or regressing) possible values of α
and the auxiliary function A αð Þ ¼ Γ 1þ 1=αð Þ against CVZ. Analysis of the depen-

dence of α and A(α) on the coefficient of variation CVZ leads to the following

correlative relations:

α ¼ 1:0079 CVð Þ�1:084
, for 0:08 � CVZ � 2 ð5:91Þ

and

A αð Þ ¼ �0:0607 CVZð Þ3 þ 0:5502 CVZð Þ2 � 0:4937 CVZð Þ
þ 1:003, for 0:08 � CVZ � 2

ð5:92Þ
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which provide good approximations to the numerical solution of Eq. (5.89).

Once α and A(α) have been determined, parameter β can be calculated from

Eq. (5.87), or

β ¼ E Z½ �
A αð Þ ð5:93Þ

With both parameters known, the two-parameter Weibullmin quantiles are deter-

mined by

z Fð Þ ¼ β �ln 1� Fð Þ½ �1α or z Tð Þ ¼ β �ln 1� 1

T

� �
 �1
α

ð5:94Þ

Example 5.13 Employ the Weibullmin model to estimate Q7,10 for the Dore River

at Saint-Gervais-sous-Meymont, with E[Z]¼ 1.37 m3/s and σ[Z]¼ 0.787 m3/s.

Solution For E[Z]¼ 1.37 m3/s and σ[Z]¼ 0.787 m3/s, it follows that

CVZ¼ 0.5753. Eqs. (5.91) and (5.92) yield, respectively, α¼ 1.8352 and

A αð Þ ¼ 0:9126. Equation (5.93) gives β¼ 1.5012. Finally, with α¼ 1.8352,

β¼ 1.5012, and by making T¼ 10 years in Eq. (5.94), the estimate ofQ7,10 obtained

with the Weibullmin model is z(T¼ 10)¼ 0.44 m3/s.

For the three-parameter Weibullmin, the density and cumulative distribution

functions become

Fig. 5.16 Examples of density functions for the two-parameter Weibullmin distribution
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f Z zð Þ ¼ α
z� ξ

β � ξ

� �α�1

exp � z� ξ

β � ξ

� �α
 �
for z > ξ, β � 0 e α > 0 ð5:95Þ

and

FZ zð Þ ¼ 1� exp � z� ξ

β � ξ

� �α
 �
ð5:96Þ

The mean and variance of a three-parameter Weibullmin variate are, respectively,

E Z½ � ¼ ξþ β � ξð ÞΓ 1þ 1

α

� �
ð5:97Þ

and

Var Z½ � ¼ β � ξð Þ2 Γ 1þ 2

α

� �
� Γ2 1þ 1

α

� �
 �
ð5:98Þ

According to Haan (1977), the following relations hold for a three-parameter

Weibullmin distribution:

β ¼ E Z½ � þ σZC αð Þ ð5:99Þ

and

ξ ¼ β � σZD αð Þ ð5:100Þ

where

C αð Þ ¼ D αð Þ 1� Γ 1þ 1

α

� �
 �
ð5:101Þ

and

D αð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1þ 2

α

� �� Γ2 1þ 1
α

� �q ð5:102Þ

The expression for the coefficient of skewness, given by Eq. (5.90) for the

two-parameter Weibullmin, still holds for the three-parameter variant of this distri-

bution. It is worth noting that the coefficient of skewness is a function of α only, and

this fact greatly facilitates the procedures for calculating the parameters of the

distribution. These are: (1) first, with the coefficient of skewness γ, α is determined

by solving Eq. (5.90), through numerical iterations; (2) then, C(α) and D(α) are
calculated with Eqs. (5.101) and (5.102), respectively; and, finally, (3) β and ξ are
determined from Eqs. (5.99) and (5.100).
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5.8 Pearson Distributions

The influential English mathematician Karl Pearson (1857–1936) devised a system

of continuous probability distributions, whose generic density functions can be

written in the form

f X xð Þ ¼ exp �
ðx

�1

aþ x

c0 þ c1xþ c2x2
dx

2
4

3
5 ð5:103Þ

where specific values of coefficients c0, c1, and c2, for the quadratic function in the

integrand’s denominator, define eight distinct types of probability distributions,

with different levels of skewness and kurtosis, including the normal, gamma, beta,

and Student’s t distributions. The distribution types are commonly referred to as

Pearson’s type 0, type I and so forth, up to type VII (Pollard 1977). From this

system of distributions, the one belonging to the gamma family, referred to as

Pearson type III, is among the most used in hydrology, particularly for the fre-

quency analysis of annual maximum rainfall and runoff. In this section, the Pearson

type III and its related log-Pearson type III distributions are described along with

comments on their applications for hydrologic variables.

5.8.1 Pearson Type III Distribution

A random variable X is distributed according to a Pearson type III (P-III or

sometimes P3) if the deviations (X�ξ) follows a gamma distribution with scale

parameter α and shape parameter β. If the P-III location parameter ξ is null, it

reduces to a two-parameter gamma distribution, as described in Sect. 5.5. As a

result, the P-III distribution is also referred to as the three-parameter gamma. The

P-III density function is given by

f X xð Þ ¼ 1

αΓ βð Þ
x� ξ

α

� �β�1

exp � x� ξ

α

� �
ð5:104Þ

The variable X is defined in the range ξ < x < 1. In general, the scale parameter

α can take negative or positive values. However, if α< 0, the P-III variate is upper-

bounded. The cumulative distribution function for the P-III distribution is written as

FX xð Þ ¼ 1

αΓ βð Þ
ðx
ξ

x� ξ

α

� �β�1

exp � x� ξ

α

� �
dx ð5:105Þ

The P-III cumulative distribution function can be evaluated by the same proce-

dure used for the two-parameter gamma distribution of X, described in Sect. 5.5,
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except that, for the P-III, the variable to consider must refer to the deviations (X�ξ).
Figure 5.17 illustrates different shapes the P-III distribution can exhibit, for three

distinct sets of parameters. One can notice in Fig. 5.17 that even slight variations of

the shape parameter β can cause substantial changes in the skewness of the

distribution. Furthermore, it is possible to conclude that increasing the scale

parameter α increases the scatter of X, whereas changing the location parameter ξ
causes the origin of X to be shifted.

The mean, variance and coefficient of skewness of a P-III variate are respec-

tively written as

E X½ � ¼ αβ þ ξ ð5:106Þ

Var X½ � ¼ α2β ð5:107Þ

and

γ ¼ 2ffiffiffi
β

p ð5:108Þ

5.8.2 Log-Pearson Type III Distribution

If the variable ln(X) follows a Pearson type III model, then X is distributed

according to the log-Pearson type III (LP-III). The probability density function of

an LP-III distribution is

Fig. 5.17 Examples of Pearson type III density functions
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f X xð Þ ¼ 1

αxΓ βð Þ
ln xð Þ � ξ

α


 �β�1

exp � ln xð Þ � ξ

α


 �
ð5:109Þ

where ξ, α, and β are, respectively, location, scale, and shape parameters. The

LP-III distribution can display a great variety of shapes. According to Rao and

Hamed (2000), in order to be used in the frequency analysis of hydrologic maxima,

only the LP-III distributions with β> 1 and α> 0 are of interest. In effect, a

negative coefficient of skewness implies that α< 0 and, therefore, that an

LP-III-distributed X is upper-bounded. Such a condition is considered by many

hydrologists as inadequate for modeling hydrologic maxima (see Rao and Hamed

2000, Papalexiou and Koutsoyiannis 2013). The cumulative distribution function

for the log-Pearson type III is given by

FX xð Þ ¼ 1

αΓ βð Þ
ðx
0

1

x

ln xð Þ � ξ

α


 �β�1

exp � ln xð Þ � ξ

α


 �
dx ð5:110Þ

By making y ¼ ln xð Þ � ξ½ �=α in Eq. (5.110), the CDF for the LP-III becomes

FY yð Þ ¼ 1

Γ βð Þ
ðy
0

y β�1exp �yð Þdy ð5:111Þ

which can be solved by using Eq. (5.42), with θ¼ α¼ 1 and η¼ β, along with the

method described in Sect. 5.5. The mean of a log-Pearson type III variate is

E X½ � ¼ eξ

1� αð Þβ ð5:112Þ

The higher-order moments for the LP-III are complex. Bobée and Ashkar (1991)

derived the following expression for the LP-III moments about the origin

μ
0
r ¼

erξ

1� rαð Þβ ð5:113Þ

where r denotes the moment order. It should be noted, however, that moments of

order r do not exist for α> 1/r. Calculations of the parameters of the LP-III

distribution can be performed using the indirect or direct methods. The former is

considerably easier and consists of calculating the parameters of the Pearson type

III distribution, as applied to the logarithms of X, or, in other terms, applying

Eqs. (5.106)–(5.108) to the transformed variable Z¼ ln(X). The direct method,

which does not involve the logarithmic transformation of X, is more complex and

is not covered here. The reader interested in such a specific topic should consult the

references Bobée and Ashkar (1991), Kite (1988), and Rao and Hamed (2000).
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The LP-III distribution has an interesting peculiarity, as derived from the long

history of its use as a recommended model for flood frequency analysis in the

United States of America. Early applications of the LP-III distribution date back to

1960s, when Beard (1962) employed it, with the logarithmic transformation of

flood discharges. Later, the United States Water Resources Committee performed a

comprehensive comparison of different probability distributions and recommended

the LP-III distribution as a model to be systematically employed by the US federal

agencies for flood frequency analysis (WRC 1967, Benson 1968). Since the publi-

cation of the first comparison results by WRC (1967), four comprehensive revisions

on the procedures for using the LP-III model were carried out by the United States

Water Resources Committee and published as bulletins (WRC 1975, 1976, 1977,

and 1981). The latest complete revision was published in 1981 under the title

Guidelines for Determining Flood Flow Frequency—Bulletin 17B, which can be

downloaded from the URL http://water.usgs.gov/osw/bulletin17b/dl_flow.pdf

[accessed: 8th January 2016]. The Hydrologic Engineering Center of the United

States Army Corps of Engineers developed the HEC-SSP software to implement

hydrologic frequency analysis using the Bulletin 17B guidelines. Both the SSP

software and user’s manual are available from http://www.hec.usace.army.mil/

software/hec-ssp/ [accessed: 3rd March 2016]. At the time this book is being

written, the Hydrologic Frequency Analysis Work Group (http://acwi.gov/hydrol

ogy/Frequency/), of the Subcommittee on Hydrology of the United States Advisory

Committee on Water Information, is preparing significant changes and improve-

ments to Bulletin 17B that may lead to the publication of a new Bulletin 17C soon.

Since the recommendation of the LP-III by WRC, the distribution has been an

object of great interest and a source of some controversy among statistical hydrol-

ogists and the core theme of many research projects. These generally have covered

a wide range of specific subjects, from comparative studies of methods for estimat-

ing parameters, quantiles, and confidence intervals, to the reliable estimation of the

coefficient of skewness, which is a main issue related to the LP-III distribution.

A full discussion of these LP-III specificities, given the diversity and amount of past

research, is clearly beyond the scope of this introductory text. The reader interested

in details on the LP-III distribution and its current status as a model for flood

frequency analysis in the United States should start by reading updated critical

reviews on the topic as given in Stedinger and Griffis (2008, 2011) and England

(2011).

5.9 Special Probability Distributions Used in Statistical
Hydrology

The list of probability distributions used in hydrology is long and diverse. The

descriptions given in the preceding sections have covered the main probability

distributions, with one to three parameters, that hydrologists have traditionally

employed in frequency analysis of hydrologic random variables. As seen in
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Chaps. 8 and 10, frequency analysis of hydrologic variables can be performed either

at a single site or at many sites within a hydrologically homogenous region. In the

latter case, a common regional probability distribution, in most cases with three

parameters, is fitted to scaled data from multiple sites. The choice of the best-fitting

regional three-parameter model is generally made on the basis of differences

between statistical descriptors of fitted and theoretical models, taking into account

the dispersion and bias introduced by multisite sampling fluctuations and cross-

correlation. To account for bias and dispersion, a large number of homogenous

regions are simulated, with data randomly generated from a hypothetical popula-

tion, whose probability distribution is assumed to be a generic four-parameter

function, from which any candidate three-parameter model is a particular case.

The four-parameter Kappa distribution encompasses some widely used

two-parameter and three-parameter distributions as special cases and serves the

purpose of deciding on the best-fitting regional model. In this same context of

regional frequency analysis, the five-parameter Wakeby distribution is also very

useful, as it is considered a robust model with respect to misspecification of the

regional probability distribution. Both distributions are briefly described in the

subsections that follow.

Another type of special probability distributions used in Statistical Hydrology

refers to those arising from mixed-populations of the hydrologic variable of inter-

est. Examples of mixed-populations in hydrology may include (1) floods caused by

different mechanisms such as tropical cyclones or thunderstorms, as reported by

Murphy (2001), or generated by different processes, such as rainfall or snowmelt, as

in Waylen and Woo (1984); and (2) heavy storm rainfalls as associated with

convective cells or frontal systems. Modeling random variables, which are suppos-

edly drawn from mixed-populations, generally results in compound or mixed-

distributions. One compound distribution that has received much attention from

researchers over the years is the TCEV (two-component extreme value) distribu-

tion. The TCEV model is also briefly described as an example of compound

distributions used in Statistical Hydrology.

5.9.1 Kappa Distribution

The four-parameter Kappa distribution was introduced by Hosking (1988). Its CDF,

PDF, and quantile function are respectively given by

FX xð Þ ¼ 1� h 1� k
x� ξð Þ
α


 �1
k

( )1
h

ð5:114Þ

f X xð Þ ¼ 1

α
1� k

x� ξð Þ
α


 �1
k�1

FX xð Þ½ �1�h ð5:115Þ
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and

x Fð Þ ¼ ξþ α

k
1� 1� Fh

h

� �k
" #

ð5:116Þ

where ξ and α denote location and scale parameters, respectively, and k and h are

shape parameters. The Kappa variate is upper-bounded at ξþ α=k if k> 0

or unbounded from above if k� 0. Furthermore, it is lower-bounded at

ξþ α 1� h�k
� �

=k if h> 0, or at ξþ α=k if h� 0 and k< 0, or unbounded from

below if h� 0 and k� 0. Figure 5.18 depicts some examples of Kappa density

functions.

As shown in Fig. 5.18, the four-parameter Kappa distribution can exhibit a

variety of shapes and includes, as special cases, the exponential distribution,

when h¼ 1 and k¼ 0, the Gumbelmax distribution, when h¼ 0 and k¼ 0, the

uniform distribution, when h¼ 1 and k¼ 1, the Generalized Pareto distribution,

when h¼ 1, the GEV distribution, when h¼ 1, and, the three-parameter

Fig. 5.18 Examples of Kappa density functions
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Generalized Logistic distribution, which is one of the graphs depicted in Fig. 5.18,

when h¼�1.

According to Hosking (1988), for h 6¼ 0 and k 6¼ 0, moments of order r from the

four-parameter Kappa distribution can be calculated from the following equation:

E 1� k
x� ξ

α

� �r
 �
¼ h

� 1þrkð Þ Γ 1þrkð ÞΓ 1=hð Þ
Γ 1þrkþ1=hð Þ for h > 0

�hð Þ� 1þrkð Þ Γ 1þrkð ÞΓ �rk�1=hð Þ
Γ 1�1=hð Þ for h < 0

8><
>: ð5:117Þ

where Γ(.) denotes the gamma function. The first four moments of the Kappa

distribution are not always sufficient to calculate its four parameters, as some

combinations of the coefficients of skewness and kurtosis may correspond to

distinct pairs of parameters h and k. Because the four-parameter Kappa distribution

encompasses many two-parameter and three-parameter distributions as special

cases, it is very useful as a general model to generate artificial data in order to

compare the fit of less-complex distributions to actual data. In Chap. 10, on regional

frequency analysis, the four-parameter Kappa distribution is revisited and its

usefulness to regional hydrologic frequency analysis is demonstrated.

5.9.2 Wakeby Distribution

The five-parameter Wakeby distribution was proposed for flood frequency analysis

by Houghton (1978). According to reparametrization by Hosking and Wallis

(1997), its quantile function is given by

x Fð Þ ¼ ξþ α

β
1� 1� Fð Þβ
h i

� γ

δ
1� 1� Fð Þ�δ
h i

ð5:118Þ

where ξ is the location parameter, and α, β, γ, and δ denote the other parameters.

The Wakeby distribution is analytically defined only by its quantile function, given

in Eq. (5.118), as its PDF and CDF cannot be expressed in explicit form. For details

on moments and parameters of the Wakeby distribution, the reader is referred to

Houghton (1978), Hosking and Wallis (1997), and Rao and Hamed (2000).

By virtue of its five parameters, the Wakeby distribution has a great variety of

shapes and properties that make it particularly suitable for regional hydrologic

frequency analysis. Hosking and Wallis (1997) points out the following attributes

of the Wakeby distribution:

• For particular sets of parameters, it can emulate the shapes of many right-skewed

distributions, such as Gumbelmax, lognormal, and Pearson type III;

• Analogously to the Kappa distribution, the diversity of shapes the Wakeby

distribution can attain makes it particularly useful in regional frequency
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analysis, as a robust model, with respect to misspecification of the regional

probability distribution;

• For δ> 0, the Wakeby distribution is heavy tailed, thus agreeing with recent

findings in the frequency analysis of maximum daily rainfall;

• The distribution has a finite lower bound which is physically reasonable for most

hydrologic variables; and

• The explicit form of the quantile function facilitates its use for generating

Wakeby-distributed random samples.

The use of the Wakeby distribution as a general model, from which other less-

complex are particular cases of, is addressed in Chap. 10 in the context of assessing

the accuracy of regional frequency estimates.

5.9.3 TCEV (Two-Component Extreme Value) Distribution

The solution to Example 5.5 showed that the annual probabilities of flood dis-

charges, under the Poisson-Exponential representation for flood exceedances over a

high threshold Q0, is given by FQmax qð Þ ¼ exp �exp �1
θ q� Q0 � θ lnνð Þ� � �

,

which is the expression of the CDF for the Gumbel distribution, with parameters

θ and [Q0þ θln(ν)]. Assume now that a generic random variable X results from two

independent Poisson processes, with parameters given by ν1 and ν2, as

corresponding to exponentially distributed exceedances over the thresholds x1 and
x2, respectively, with mean values θ1 and θ2. As the Poisson-Exponential processes
are assumed independent, the annual probabilities of X are given by the product of

two Gumbel cumulative distribution functions, each with its own parameters. The

resulting compound CDF is

FX xð Þ ¼ exp �e
�x�x1�θ1ln ν1ð Þ

θ1 � e
�x�x2�θ2ln ν2ð Þ

θ2


 �
¼ exp �ν1e

�x�x1
θ1 � ν2e

�x�x2
θ2

h i
ð5:119Þ

The TCEV (two-component extreme value) distribution was introduced for

flood frequency analysis by Rossi et al. (1984) to model the compound process

resulting from two Poisson-Exponential processes: one for the more frequent

floods, referred to as ordinary floods, and the other for the rare or extraordinary
floods. The TCEV cumulative distribution function arises from the extension of

Eq. (5.119) to lower values of X, by imposing x1¼ x2¼ 0 (Rossi et al. 1984), thus

resulting in

FX xð Þ ¼ exp �ν1e
� x

θ1 � ν2e
� x

θ2

h i
ð5:120Þ
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where the annual mean number of ordinary and extraordinary floods are respec-

tively given by ν1 and ν2, with ν1 > ν2, and corresponding mean exceedances

equal to θ1 and θ2, with θ1 < θ2. The density function for the TCEV distribution is

f X xð Þ ¼ ν1
θ1
e
� x

θ1 � ν2
θ2
e
� x

θ2

� �
exp �ν1e

� x
θ1 � ν2e

� x
θ2

h i
ð5:121Þ

Figure 5.19 depicts some examples of the TCEV density function, for some sets of

parameter values.

The moments for the TCEV distribution are complex and given by sums of the

gamma function and its derivatives. Beran et al. (1986) derived expressions for the

mean and higher-order noncentral moments of a TCEV variate. The most interest-

ing application of the TCEV distribution relates to its use as a regional model for

flood frequency analysis. The regional approach for flood frequency analysis with

the TCEV model has been widely used in Europe, as reported by Fiorentino et al.

(1987) and Cannarozzo et al. (1995).

Example 5.14 At a given location, sea wave heights depend on the prevalent

direction of coming storms. For eastern storms, the annual maximum wave heights

are Gumbel-distributed with scale and location parameters equal to 0.5 and 3 m,

respectively. For northern storms, the annual maximum wave heights are also

distributed as a Gumbel variate with scale parameter 0.30 m and location parameter

Fig. 5.19 Examples of TCEV density functions
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2.70 m. Determine the annual maximum sea wave height that will occur in any

given year with 10% exceedance-probability independently of storm direction

(adapted from Kottegoda and Rosso 1997).

Solution Let X denote the annual maximum sea wave height, independently of

storm direction. For the given data, Eq. (5.119) yields

FX xð Þ ¼ exp �e�
x�3
0:5 � e�

x�2:70
0:30

h i
, for x� 3. For a 10% exceedance-probability,

FX(x0)¼ 0.90. However, as the compound CDF does not have an explicit inverse

function, an approximate iterative solution for x0 is required. Using the MS Excel

Solver component, as in Example 5.10, the approximate solution is found at

x0¼ 4.163 m. Take the opportunity to compare the probability distributions by

plotting on the same chart the Gumbel CDFs for eastern and northern storms, and

the compound CDF.

5.10 Sampling Distributions

Up to this point, most of the probability distributions described here, by virtue of

their attributes of shape and/or theoretical justification, serve the purpose of model-

ing hydrologic random variables. Other statistical problems, such as, for instance,

the construction of hypotheses tests and confidence intervals for population descrip-

tors, require other specific probability distributions. These are generally termed

sampling distributions as they refer to the distribution of a given statistic, deemed as

a random variable, when it is derived from a finite-sample. In this context, a

sampling distribution is thought of as the distribution of a particular statistic for

all possible samples of size N drawn from the population. In general, it depends on

the underlying distribution of the population being sampled and on the sample size.

In this section, the following important sampling distributions are described:

chi-square χ2, Student’s t, and Snedecor’s F. They are related to normal

populations.

5.10.1 Chi-Square (χ2) Distribution

Suppose that, for Xi�N(μ,σ), Zi ¼ Xi�μ
σ , i¼ 1, 2, . . ., N, denotes a set of

N independent random variables, distributed as a standard normal N(0,1). Under

these conditions, it can be shown that the random variable Y, as defined by

Y ¼
XN
i¼1

Z2
i ð5:122Þ

follows a χ2 distribution, whose density function is given by
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f χ2 yð Þ ¼ 1

2Γ ν=2ð Þ
y

2

� 	ν
2
�1

exp �y

2

� 	
for y and ν > 0 ð5:123Þ

where ν denotes a parameter.

The parameter ν is known as the number of degrees of freedom as an allusion to

the same concept from mechanics, referring to the possible number of independent

parameters that define the position and orientation of a rigid body in space. By

comparing Eqs. (5.40) and (5.123), one can determine that the χ2 distribution is a

special case of the gamma distribution, with η¼ ν/2 and θ¼ 2. As a result, the χ2

cumulative distribution function can be written in terms of the gamma CDF

[Eq. (5.43)] as

Fχ2 yð Þ ¼ Γi u ¼ y=2, η ¼ ν=2ð Þ
Γ η ¼ ν=2ð Þ ð5:124Þ

and also be calculated as the ratio between the incomplete and complete gamma

functions, as described in Sect. 5.5. Appendix 3 presents a table of the χ2 cumula-

tive distribution function, for different numbers of degrees of freedom.

The mean, variance and coefficient of skewness of the χ2 distribution are

respectively given by

E χ2
�  ¼ ν ð5:125Þ

Var χ2
�  ¼ 2ν ð5:126Þ

and

γ ¼ 2ffiffiffiffiffiffiffiffi
ν=2

p ð5:127Þ

Figure 5.20 illustrates some possible shapes of the χ2 density function, for selected

values of parameter ν.
If, differently from the previous formulation, the variables Zi are defined as

Zi ¼ Xi�x
σ , i¼ 1, 2, . . ., N, where Xi denote the elements from a simple random

sample from a normal population with sample mean x, then, it can be shown that the

variable Y ¼PN
i¼1

Z2
i is distributed according to a χ2 distribution, with ν¼ (N�1)

degrees of freedom. In such a case, one degree of freedom is said to be lost

from having the population mean μ been previously estimated by the sample

mean x. Furthermore, recalling that the sample variance is given by

s2X ¼PN
i¼1

Xi � xð Þ= N � 1ð Þ and also that Y ¼PN
i¼1

Xi � xð Þ2=σ2, it is clear that
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Y ¼ N � 1ð Þ s
2
X

σ2X
ð5:128Þ

follows a χ2 distribution with ν¼ (N�1) degrees of freedom. This result is exten-

sively used in Chap. 7, in formulating hypotheses tests and constructing confidence

intervals for the variance of normal populations.

5.10.2 Student’s t Distribution

If U�N(0,1) and V� χ 2(ν) are two independent random variables, then, it can be

shown that the variable T, defined as T ¼ U
ffiffiffi
ν

p
=
ffiffiffiffi
V

p
, is distributed according to the

density function given by

f T tð Þ ¼ Γ νþ 1ð Þ=2½ � 1þ t2=νð Þ� νþ1ð Þ=2ffiffiffiffiffi
πν

p
Γ ν=2ð Þ for �1 < t < 1 and ν > 0 ð5:129Þ

which is known as Student’s t distribution, due to the English chemist and statis-

tician William Gosset (1876–1937), who used to sign his papers under the pen name

of Student. The distribution parameter is denoted by ν, which is also referred to as

the number of degrees of freedom. The cumulative distribution function, given by

the integral of the density, from �1 to t, can only be evaluated through numerical

Fig. 5.20 Examples of χ2 density functions
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integration techniques. Appendix 4 presents a table for Student’s t cumulative

distribution function, under the form of FT(t)¼ α, for different values of ν and α.
The mean and variance of a Student’s t variate are respectively given by

E T½ � ¼ 0 ð5:130Þ

and

Var T½ � ¼ ν

ν� 2
ð5:131Þ

The Student’s t is a symmetrical distribution with respect to the origin of variable

t and, as parameter ν grows, it approaches very closely the standard normal

distribution, to the point of being indistinguishable from it (for ν> 30). Figure 5.21

depicts examples of Student’s t density functions for selected values of parameter ν.
The Student’s t is usually employed as the sampling distribution for the mean of

a random sample of size N drawn from a normal population with unknown variance.

In fact, if the T variable is expressed as

T ¼ x� μXffiffiffiffiffiffiffiffiffiffiffi
s2X=N

p ð5:132Þ

being, in the sequence, multiplied and divided by σX, one obtains

Fig. 5.21 Examples of Student’s t density functions
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T ¼
x�μX
σX=

ffiffiffi
N

pffiffiffiffiffiffiffiffiffiffiffiffi
s2X=σ

2
X

p ¼ U
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ffiffiffiffi
V

p ð5:133Þ

which corresponds to the given definition of T. Remember that U ¼ x� μXð Þ=
σ
ffiffiffiffi
N

p� �
is distributed as a standard normal (see Example 5.3) and also that

V ¼ N � 1ð Þ s2x=σ2X follows a χ2 distribution with (N-1) degrees of freedom, as

formally expressed in Eq. (5.128). By comparing Eq. (5.133) with the definition of a

Student’s t variate, one thus determines that the sampling distribution of the mean

of a random sample of size N, drawn from a normal population with unknown

variance, is indeed the Student’s t distribution with (N�1) degrees of freedom. In

this case, one degree of freedom is said lost from having the population variance σ2X
been previously estimated by s2X.

Example 5.15 To return to the solution to Example 5.3, after determining that, in

fact, the population variance of the variable dissolved oxygen concentration was

estimated by the sample variance, calculate the probability that the 8-week moni-

toring program yields a sample mean that will differ from the population mean by at

least 0.5 mg/l.

Solution The arguments used to solve Example 5.3 are still valid, except for the

fact that, now, the variable T ¼ x�μX
sX=

ffiffiffi
N

p � Student0s t, with N-1¼ 7 degrees of

freedom. The sought probability corresponds to the inequality Ρ x� μXj j > 0:5ð Þ.
Dividing both sides of this inequality by sX=

ffiffiffiffi
N

p
, one gets

Ρ Tj j > 0, 5
sX=

ffiffiffi
N

p
� 	

or Ρ Tj j > 0:707ð Þ, or still 1� Ρ Tj j < 0:707ð Þ. To calculate prob-

abilities or quantiles for the Student’s t distribution, one can make use of the table

given in Appendix 4 or respectively employ the MS Excel built-in functions

T.DIST.2T(.) or T.INV.2T(.), for two-tailed t, or T.DIST(.) or T.INV(.), for left-
tailed t. In R, the appropriate functions are pt(.) and qt(.). In particular, for ν¼ 7 and

t¼ 0.707, the function T.DIST.2 T(0.707;7) returns 0.502. Hence, the probability

that the 8-week monitoring program yields a sample mean that will differ from the

population mean by at least 0.5 mg/l is (1�0.502)¼ 0.498, which is a rather high

probability, thus suggesting the need of a longer monitoring program.

5.10.3 Snedecor’s F Distribution

If U� χ2, with m degrees of freedom, and V� χ2, with n degrees of freedom, are

two independent random variables, then, it can be shown that the variable defined as

Y ¼ U=m

V=n
ð5:134Þ
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follows an F distribution, with parameters γ1¼m and γ2¼ n, and density function

given by

f Fð f Þ ¼
Γ½ðγ1 þ γ2Þ=2�
Γðγ1=2Þ Γðγ2=2Þ

γγ1=21 γγ2=22 f ðγ1�2Þ=2ðγ2 þ γ1f Þ�ðγ1þγ2Þ=2 for γ1, γ2, f > 0

ð5:135Þ

The cumulative distribution function, given by the integral of Eq. (5.135), from

0 to f, can be evaluated only by numerical methods. Appendix 5 presents a table for

the Snedecor’s F cumulative distribution function, for different values of γ1 and γ2,
which are also termed degrees of freedom of the numerator and denominator,

respectively. The mean and variance of a Snedecor’s F variate are respectively

given by

E F½ � ¼ γ1
γ2 � 2

ð5:136Þ

and

Var X½ � ¼ γ22 γ1 þ 2ð Þ
γ1 γ2 � 2ð Þ γ2 � 4ð Þ ð5:137Þ

Figure 5.22 shows some examples of Snedecor’s F densities, for particular para-

metric sets.

Fig. 5.22 Examples of Snedecor’s F density functions
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This distribution was introduced by the American statistician George Snedecor

(1881–1974) as the sampling distribution for the ratio between variances from two

distinct normal populations. The term F, used for the Snedecor’s variate, is to honor
the famous British statistician Ronald Fisher (1890–1962). The Snedecor’s
F distribution has been used in conventional statistics for testing hypotheses

concerning sample variances from normal populations, particularly for the analysis

of variance (ANOVA) and of residuals from regression. In the MS Excel software,

the built-in functions that correspond to Snedecor’s F distribution are F.DIST(.) and

F.INV(.), for left-tailed F, and F.DIST.RT(.) and F.INV.RT(.), for right-tailed F.
In R, the appropriate functions are pf(.) and qf(.).

5.11 Bivariate Normal Distribution

The joint distribution of two normal random variables is known as the bivariate

normal. Formally, if X and Y are normally distributed, with respective parameters

μX, σX, μY, and σY, and the correlation coefficient between the two is denoted as ρ,
then, the bivariate normal joint density function is given by

f X,Y x; yð Þ ¼ 1

2πσXσY
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
� exp � 1

2 1� ρ2ð Þ
x� μX
σX

� �2

� 2ρ
x� μXð Þ y� μYð Þ

σXσY
þ y� μY

σY

� �2
" #( )

ð5:138Þ
for 1< x<1 and 1< y<1. The joint probability P(X< x, Y< y) is given by

the double integration of the bivariate normal density, for the appropriate integra-

tion limits, and its calculation requires numerical methods. Some computer

programs designed to implement calculations for the bivariate normal are available

on the Internet. The URL http://stat-athens.aueb.gr/~karlis/morematerial.html

[accessed: 13th January 2016] offers a list of topics related to the bivariate normal

distribution. In addition, this URL makes available the software bivar1b.exe, which
calculates the joint CDF for variables X and Y.

The panels of Fig. 5.23 illustrate different shapes that the bivariate normal joint

density function can assume, for four sets of parameters. Note that, when X and

Y are independent, the volume of the joint density is symmetrically distributed over

the plane defined by the variables’ domains. As the linear dependence between the

variables grows, the pairs (x,y) and their respective non-exceedance probabilities,

as given by the volumes below the bivariate joint density surface, concentrate along

the projections of the straight lines on the plane xy. These straight lines set out the
dependence of X on Y, and, inversely, of Y on X. In R, the mvtnorm package (Genz

et al. 2009), which implements the multivariate normal distribution, has a specific

function for the bivariate normal distribution.
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By applying Eqs. (3.33) and (3.34) to the bivariate normal density one can

determine that the marginal distributions of X and Y are indeed their respective

univariate normal densities. Conditional probabilities for the bivariate normal

distribution can be calculated from Eq. (3.44).

5.12 Bivariate Distributions Using Copulas

What follows is a brief presentation of the main aspects of bivariate analysis using

copulas. A thorough introduction to copulas is beyond the scope of this chapter,

since there are entire books devoted to that subject such as Nelsen (2006) and

Salvadori et al. (2007). The interested reader is referred to those texts.

In engineering practice it is often necessary to conduct statistical analyses of

hydrological events which are characterized by more than one variable. For exam-

ple, river floods may be characterized by the joint distribution of peak flows and

flood volumes, and extreme rainfall events are often characterized by the combined

effects of the event’s duration and mean rainfall intensity. The bivariate normal

distribution, presented in Sect. 5.11 is rarely adequate for hydrological applications,

particularly when dealing with extreme phenomena, since the underlying random

variables can hardly be considered symmetrically distributed. While there are other

Fig. 5.23 Examples of bivariate normal joint density functions
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multivariate probability distributions available in the technical literature, which are

usually straightforward extensions of well-known univariate distributions such as

the exponential or the gamma distributions, they usually suffer from several formal

limitations, such as the need of prescribing the marginal distributions and of

describing the dependence structure between variables (e.g., Nelsen 2006).

A convenient way to overcome these difficulties is through the use of copulas.

Accordingly, the use of copulas in hydrological applications has increased very

rapidly in recent years (Salvadori and De Michele 2010).

A bivariate copula, also termed 2-copula, is a bivariate distribution function

C u; vð Þ ¼ P U � u,V � vð Þ with support on the unit square space [0, 1]2 and with

standard uniform marginals, such that C u; 0ð Þ ¼ 0, C u; 1ð Þ ¼ u, C 0; vð Þ ¼ 0,

C 1; vð Þ ¼ v, and C u2; v2ð Þ � C u2; v1ð Þ � C u1; v2ð Þ þ C u1; v1ð Þ � 0 for all

0 � u1 � u2 � 1 and 0 � v1 � v2 � 1.

Consider the random variables X and Y with respective continuous CDFs FX(x)
and FY(y), for x and y real, and joint CDF denoted asFX,Y x; yð Þ ¼ P X � x, Y � yð Þ.
Since FX(x) and FY(y) are standard uniform distributions (see Sect. 5.1), it follows

that U ¼ FX xð Þ and V ¼ FY yð Þ. Sklar’s theorem (Sklar 1959) states that there must

exist a bivariate copula, C such that

FX,Y x; yð Þ ¼ C FX xð Þ,FY yð Þð Þ ð5:139Þ

and

C u; vð Þ ¼ FX,Y FX
�1 xð Þ,FY

�1 yð Þ� � ð5:140Þ

An important and practical result from Sklar’s theorem is that marginal distri-

butions and copula can be considered separately. Therefore, by using a copula, one

can obtain the joint distribution of two variables whose marginal distributions are

from different families, which, in hydrologic practice, can occur very often.

Copula notation is particularly useful for defining and calculating several types

of joint and conditional probabilities of X and Y. Under the conditions stated earlier,
one is able to write (Serinaldi 2015)

P U > u \ V > vð Þ ¼ 1� u� vþ C u; vð Þ ð5:141Þ

P U > u [ V > vð Þ ¼ 1� C u; vð Þ ð5:142Þ

P U > u
��V > v

� � ¼ 1� uð Þ 1� u� vþ C u; vð Þð Þ ð5:143Þ

P U > u
��V � v

� � ¼ 1� C u; vð Þ
u

ð5:144Þ
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P U > u
��V ¼ v

� � ¼ 1� ∂C u; vð Þ
∂u

ð5:145Þ

Further definitions of conditional probabilities using copula notation are given by

Salvadori et al. (2007).

There are several types of copula functions in the technical literature. Archime-

dean copulas are widely used in hydrological applications due to their convenient

properties. An Archimedean copula is constructed using a generator φ such that

C u; vð Þ ¼ φ�1 φ uð Þ þ φ vð Þ½ � ð5:146Þ

Table 5.2 shows the generator and generator inverse for some common

one-parameter Archimedean copulas Cα(u, v). For details on how to fit copulas to

data, the interested reader is referred to the works by Nelsen (2006) and Salvadori

et al. (2007).

Example 5.16 In order to exemplify the construction of a bivariate distribution

using a copula, we revisit the case study of the Lehigh River at Stoddartsville (see

Sect. 1.4). Figure 5.24 shows the scatterplot of the annual maximum peak dis-

charges (variable Y ) and the corresponding 5-day flood volumes (variable X). It
should be noted that, as systematic streamflow records only started in the 1944

water year, the 5-day flood volume value, that would correspond to the flood peak

445 m3/s on May 22nd, 1942, is not available and thus is not plotted on the chart of

Fig. 5.24. Obtain the joint PDF and CDF of (X,Y ) using a copula.

Solution Consider thatX � GEV α ¼ 10:5777, β ¼ 4:8896, κ � 0:1799ð Þ and
Y follows a lognormal distribution, that is Y � LN μY ¼ 4:2703, σY ¼ 0:8553ð Þ. By
calculating the non-exceedance probabilities of the observations on the scatterplot

of Fig. 5.24, they can be transformed into the [0, 1]2 space, as shown in Fig. 5.25.

The copula is fitted to the (U,V) pairs of points. In this example we used the

Gumbel–Hougaard copula (Table 5.2). Estimation of the copula parameter α
used the method of maximum likelihood, which is formally described in Sect. 6.4

of the next chapter, and was carried out in R using the function fitCopula of the

copula package (Yan 2007). Figure 5.26 shows the copula density and the distribu-

tion functions (α̂ ¼ 3:2251). Finally, using Sklar’s theorem (Eq. 5.139), the joint

distribution of (X,Y ) is obtained and plotted in Fig. 5.27.

Table 5.2 Summary characteristics of three one-parameter Archimedean copulas

Family Parameter space φ(t) φ�1 sð Þ
Clayton α 2 �1, 0 [½ �0, þ1½ � 1

α
t�α � 1ð Þ 1þ αsð Þ�1=α

Frank α 2 �1, 0 [½ �0, þ1½ � �ln
e�αt � 1

e�α � 1

� �
�1

α
ln 1þ e�s e�α � 1ð Þð Þ

Gumbel–Hougaard α 2 ½1, þ1½ �ln tð Þð Þα exp �s1=α
� �
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Fig. 5.24 Scatterplot of annual peak discharges and corresponding 5-day flood volumes of the

Lehigh River at Stoddartsville from 1943/44 to 2013/14

Fig. 5.25 Scatterplot of non-exceedance probabilities of annual peak discharges Y and

corresponding flood volumes X, of the Lehigh River at Stoddartsville (1943/44-2013/14)
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5.13 Summary for Probability Distributions of Continuous
Random Variables

What follows is a summary of the main characteristics of some probability distri-

butions of continuous random variables introduced in this chapter. Not all charac-

teristics listed in the summary have been formally derived in the previous sections

of this chapter, as one can use the mathematical principles that are common to all

distributions to make the desired proofs. This summary is intended to serve as a

brief reference for the main probability distributions of continuous random

variables.

Fig. 5.27 Joint PDF and CDF of the variables shown in Fig. 5.24

Fig. 5.26 Copula density and distribution functions
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5.13.1 Uniform Distribution

Notation: X � U a; bð Þ
Parameters: a and b

PDF: f X xð Þ ¼ 1
b�a for a � x � b

Mean: E X½ � ¼ aþb
2

Variance: Var X½ � ¼ b�að Þ2
12

Coefficient of Skewness: γ¼ 0

Coefficient of Kurtosis: k¼ 1.8

Moment Generating Function: φ tð Þ ¼ ebt�eat

t b�að Þ
Random Number Generation: algorithms to generate independent unit uniform

random numbers U � U 0; 1ð Þ are standard in statistical software (e.g., MS Excel

built-in function RAND).

5.13.2 Normal Distribution

Notation: X � N μ; σð Þ
Parameters: μ and σ

PDF: f X xð Þ ¼ 1ffiffiffiffi
2π

p
σ
exp �1

2
x�μ
σ

� �2h i
for �1 < x < 1

Mean: E X½ � ¼ μ
Variance: Var X½ � ¼ σ2

Coefficient of Skewness: γ¼ 0

Coefficient of Kurtosis: k¼ 3

Moment Generating Function: φ tð Þ ¼ exp μtþ σ2t2

2

� 	
Random Number Generation: If U1 � U 0; 1ð Þ and U2 � U 0; 1ð Þ are independent,
then sin 2πU2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2ln U1ð Þp

and cos 2πU2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2ln U1ð Þp
are also independent and

follow N(0,1).

5.13.3 Lognormal Distribution (2 Parameters)

Notation: X � LN μY , σYð Þ or X � LN2 μY , σYð Þ or X � LNO2 μY , σYð Þ
Parameters: μY and σY, with Y¼ ln(X)

PDF: f X xð Þ ¼ 1
x σln Xð Þ

ffiffiffiffi
2π

p exp �1
2

ln Xð Þ�μln Xð Þ
σln Xð Þ

h i2� �
para x > 0

Mean: E X½ � ¼ μX ¼ exp μln Xð Þ þ
σ2
ln Xð Þ
2


 �
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Variance: Var X½ � ¼ σ2X ¼ μ2X exp σ2ln Xð Þ
� 	

� 1
h i

Coefficient of Variation: CVX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp σ2

ln Xð Þ
h i

� 1

r
Coefficient of Skewness: γ ¼ 3CVX þ CVXð Þ3
Coefficient of Kurtosis: κ ¼ 3þ e

σ2
ln Xð Þ � 1

� 	
e
3σ2

ln Xð Þ þ 3e
2σ2

ln Xð Þ þ 6e
σ2
ln Xð Þ þ 6

� 	
Random Number Generation: exp μþ σ N 0; 1ð Þ½ �f g � LN μ; σð Þ

5.13.4 Exponential Distribution (1 Parameter)

Notation: X�E(θ)
Parameter: θ
PDF: f X xð Þ ¼ 1

θ exp �x
θ

� �
, x � 0

Quantile Function: x Fð Þ ¼ �θ ln 1� Fð Þ
Mean: E X½ � ¼ θ
Variance: Var X½ � ¼ θ2

Coefficient of Skewness: γ ¼ 2

Coefficient of Kurtosis: κ ¼ 9

Moment Generating Function: φ tð Þ ¼ 1
1�θt para t <

1
θ

Random Number Generation: �θ ln U 0; 1ð Þ½ � � E θð Þ

5.13.5 Gamma Distribution (2 Parameters)

Notation: X�Ga(θ,η)
Parameters: θ and η

PDF: f X xð Þ ¼ 1
θ Γ ηð Þ

x
θ

� �η�1
exp �x

θ

� �
para x, θ e η > 0

Mean: E X½ � ¼ ηθ
Variance: Var X½ � ¼ ηθ2

Coefficient of Skewness: γ ¼ 2ffiffi
η

p

Coefficient of Kurtosis: κ ¼ 3þ 6
η

Moment Generating Function: φ tð Þ ¼ 1
1�θt

� �η
para t < 1

θ

Random Number Generation: for integer η: �θ ln
Yη
i¼1

Ui

" #
� Ga θ; ηð Þ where

Ui � U 0; 1ð Þ
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5.13.6 Beta Distribution

Notation: X ~Be(α,β)
Parameters: α and β

PDF: f X xð Þ ¼ 1
B α;βð Þ x

α�1 1� xð Þβ�1
for 0 � x � 1, α > 0, β > 0 and B α; βð Þ ¼ð1

0

tα�1 1� tð Þβ�1dt

Mean: E X½ � ¼ α
αþβ

Variance: Var X½ � ¼ αβ
αþβð Þ 2 αþβþ1ð Þ

Coefficient of Skewness: γ ¼ 2 β�αð Þ
ffiffiffiffiffiffiffiffiffiffiffi
αþβþ1

pffiffiffiffi
αβ

p
αþβþ2ð Þ

Coefficient of Kurtosis: κ ¼ 3 αþβþ1ð Þ 2 αþβð Þ2þαβ αþβ�6ð Þ½ �
αβ αþβþ2ð Þ αþβþ3ð Þ

Random Number Generation: if g1 ¼ �ln
Yν
i¼1

Ui

" #
� Ga 1; νð Þ, g2 � Ga 1;ωð Þ and

Ui � U 0; 1ð Þ, then w ¼ g1
g1þg2

� Be ν;ωð Þ

5.13.7 Gumbelmax Distribution

Notation: Y ~Gumax(α,β)
Parameters: α and β

PDF: f Y yð Þ ¼ 1
α exp � y�β

α � exp � y�β
α

� �� 
Quantile Function: y Fð Þ ¼ β � α ln �ln Fð Þ½ �
Mean: E Y½ � ¼ β þ 0:5772α

Variance: Var Y½ � ¼ σ2Y ¼ π2α2

6

Coefficient of Skewness: γ ¼ 1:1396
Coefficient of Kurtosis: κ ¼ 5:4
Random Number Generation: β � α ln �lnU 0; 1ð Þ½ �f g � Gumax α; βð Þ

5.13.8 GEV Distribution (Maxima)

Notation: Y ~GEV(α,β,κ)
Parameters: α, β, and κ

PDF: f Y yð Þ ¼ 1
α 1� κ y�β

α

� �� 1=κ�1
exp � 1� κ y�β

α

� �� 1=κn o
if κ 6¼ 0 or

f Y yð Þ ¼ 1
α exp � y�β

α � exp � y�β
α

� �� 
if κ¼ 0

Quantile Function: x Fð Þ ¼ β þ α
κ 1� �lnFð Þκ½ �
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Mean: E Y½ � ¼ β þ α
κ 1� Γ 1þ κð Þ½ �

Variance: Var Y½ � ¼ α
κ

� �2 Γ 1þ 2κð Þ � Γ2 1þ κð Þ� 
Coefficient of Skewness: γ ¼ κ

κj j
�Γ 1þ3κð Þþ3Γ 1þκð ÞΓ 1þ2κð Þ�2Γ3 1þκð Þ

Γ 1þ2κð Þ�Γ2 1þκð Þ½ �3=2
� �

Random Number Generation: use quantile functions with F coming from U(0,1).

5.13.9 Gumbelmin Distribution

Notation: Z�Gumin(α,β)
Parameters: α and β

PDF: f Z zð Þ ¼ 1
α exp

z�β
α � exp z�β

α

� �� 
Quantile Function: z Fð Þ ¼ β þ α ln �ln 1� Fð Þ½ �
Mean: E Z½ � ¼ β � 0:5772α

Variance: Var Z½ � ¼ σ2Z ¼ π2α2

6

Coefficient of Skewness: γ ¼ �1:1396
Coefficient of Kurtosis: κ ¼ 5:4
Random Number Generation: use quantile functions with F coming from U(0,1).

5.13.10 Weibullmin Distribution (2 Parameters)

Notation: Z�Wmin(α,β)
Parameters: α and β

PDF: f Z zð Þ ¼ α
β

z
β

� 	α�1

exp � z
β

� 	αh i
Quantile Function: z Fð Þ ¼ β �ln 1� Fð Þ½ �1α
Mean: E Z½ � ¼ βΓ 1þ 1

α

� �
Variance: Var Z½ � ¼ β2 Γ 1þ 2

α

� �� Γ2 1þ 1
α

� �� 
Coefficient of Skewness: γ ¼ Γ 1þ3

αð Þ�3Γ 1þ2
αð ÞΓ 1þ1

αð Þþ2Γ3 1þ1
αð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ 1þ2
αð Þ�Γ2 1þ1

αð Þ½ �3
q

Random Number Generation: use quantile functions with F coming from U(0,1).

5.13.11 Pearson Type III Distribution

Notation: X�PIII(α,β,ξ) or X�P-III(α,β,ξ) or X�P3(α,β,ξ)
Parameters: α, β, and ξ

PDF: f X xð Þ ¼ 1
αΓ βð Þ

x�ξ
α

� �β�1
exp � x�ξ

α

� �
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Mean: E X½ � ¼ αβ þ ξ
Variance: Var X½ � ¼ α2β
Coefficient of Skewness: γ ¼ 2ffiffi

β
p

Coefficient of Kurtosis: κ ¼ 3þ 6ffiffi
β

p

5.13.12 Chi-Square (χ2) Distribution

Notation: Y� χ 2 (ν)
Parameter: ν

PDF: f χ2 yð Þ ¼ 1
2Γ ν=2ð Þ

y
2

� �ν2�1

exp �y
2

� �
para y e ν > 0

Mean: E χ2½ � ¼ ν
Variance: Var χ2½ � ¼ 2ν
Coefficient of Skewness: γ ¼ 2ffiffiffiffiffi

ν=2
p

5.13.13 Student’s t Distribution

Notation: T� t(ν)
Parameter: ν

PDF: f T tð Þ ¼ Γ νþ1ð Þ=2½ � 1þt2=νð Þ� νþ1ð Þ=2ffiffiffiffi
πν

p
Γ ν=2ð Þ for �1 < t < 1 and ν > 0

Mean: E T½ � ¼ 0

Variance: Var T½ � ¼ ν
ν�2

Coefficient of Skewness: γ ¼ 0

5.13.14 Snedecor’s F Distribution

Notation: F�F(γ1, γ2)
Parameters: γ1 and γ2
PDF: f F fð Þ ¼ Γ γ1þγ2ð Þ=2½ �

Γ γ1=2ð ÞΓ γ2=2ð Þ γ
γ1=2
1 γγ2=22 f γ1�2ð Þ=2 γ2 þ γ1fð Þ� γ1þγ2ð Þ=2

for γ1, γ2, f > 0

Mean: E F½ � ¼ γ1
γ2�2

Variance: Var X½ � ¼ γ2
2
γ1þ2ð Þ

γ1 γ2�2ð Þ γ2�4ð Þ
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Exercises

1. Suppose the daily mean concentration of iron in a river reach, denoted by X,
varies uniformly between 2 and 4 mg/l. Questions: (a) calculate the mean and

variance of X; (b) calculate the daily probability that X exceeds 3.5 mg/l; and

(c) given that the iron concentration has exceeded 3 mg/l on a given day,

calculate P(X� 3.5 mg/l).

2. In addition to the approximation equations given in Sect. 5.2, the numerical

integration of the standard normal density function can be done through any

numerical integration method, such as for instance, the trapezoidal and

Simpson’s rules. However, the numerical calculation of improper integrals

requires variable transformation, such that the limits of integration are finite.

To do this, one can employ the following identity, under the condition that the

function to be integrated decreases to zero as fast as 1/x2 does, as x tends to (
)

infinity:

ðb
a

f xð Þdx ¼
ð1=a
1=b

1

t2
f

1

t

� �
dt, for ab > 0 ð5:147Þ

For the case in which definite integration is done from�1 up to a positive real

number, two steps are needed. Consider, for instance, the following integration:

ðb
�1

f xð Þdx ¼
ð�A

�1
f xð Þdxþ

ðb
�A

f xð Þdx ð5:148Þ

where -A denotes a negative real number large enough to fulfill the condition

required for the function decreasing to zero. The first integral on the right-hand

side of Eq. (5.148) can be calculated through the mathematical artifice given in

Eq. (5.147); for the second integral, Simpson’s rule, for instance, can be used.

What follows is a computer code, written in FORTRAN, to do the numerical

integration of the standard normal density function, according to Eqs. (5.147)

and (5.148). Compile this program (in FORTRAN or in any other computer

programming language you are used to) to implement the numerical integration

of the standard normal density for any valid argument.

C NUMERICAL INTEGRATION OF THE STANDARD NORMAL DENSITY FUNCTION

C

C THIS PROGRAM CALCULATES P(X<X), GIVEN X, WHERE X IS A STANDARD

C NORMAL VARIATE [X~N(0,1)]. THE CALCULATION IS DONE THROUGH THE

C NUMERICAL EVALUATION OF TWO INTEGRALS: I1, FROM -1 TO -4, USING

C VARIABLE TRANSFORMATION AND I2, FROM -4 TO X, USING SIMPSON’S

C RULE, WITH A FIXED NUMBER OF 500 SEGMENTS. THE FINAL RESULT IS
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C GIVEN BY THE SUM (I1þI2), MULTIPLIED BY THE SQUARE ROOT OF 1/2Π.
C

PROGRAM NORMAL

EXTERNAL FUNC,TRANSF

WRITE(*,*)

WRITE(*,*) ’INPUT ARGUMENT X OF THE STANDARD NORMAL VARIATE’

WRITE(*,*)

XL¼-1./4.

B¼-4.

C DEFINING THE LOWER LIMIT OF -1/4 FOR I1 AND -4 TO I2

XH¼0.0

C DEFINING THE UPPER LIMIT OF 0 FOR INTEGRAL I1

WRITE(*,*) ’STANDARD NORMAL CUMULATIVE DISTRIBUTION FUNC-

TION’

WRITE(*,*) ’-----------------------------------------’

WRITE(*,*)

WRITE(*,*) ’ RESULTS FOR THE NUMERICAL INTEGRATION’

WRITE(*,*)

WRITE(*,*) ’ X P(X<X)’

WRITE(*,*) ’------- ------------------’

WRITE(*,*)

CALL LEFTI(TRANSF,XL,XH,RES1)

CALL RIGHTI(FUNC,B,C,RES2)

RES¼(RES1þRES2)/SQRT(2.*3.14592654)

WRITE(*,’(2X,F8.3,11X,F7.3)’) C,RES

WRITE(*,*)

WRITE(*,*)

WRITE(*,*) ’DO YOU WISH TO RUN THE PROGRAM FOR ANOTHER X? YES¼1,

NO¼0’

READ(*,*) IQ

IF(IQ.EQ.1) GOTO 99

END

C SUBROUTINE TO CALCULATE THE LEFT TAIL I1

SUBROUTINE LEFTI(TRANSF,XL,XH,RES1)

NN¼49

XHL¼(XH-XL)/(FLOAT(NN)þ1)

SUM¼TRANSF(XLþXHL/2.)

DO 12 I¼1,NN

SUM¼SUMþTRANSF(XLþXHL/2.þFLOAT(I)*XHL)

12 CONTINUE

RES1¼SUM*XHL

RETURN

END

C SUBROUTINE TO CALCULATE THE RIGHT TAIL I2

SUBROUTINE RIGHTI(FUNC,B,C,RES2)
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N¼500

XHR¼ABS(C-B)/FLOAT(N)

SUME¼0.

SUMO¼0.

DO 14 J¼1,N-1,2

SUMO¼SUMOþFUNC(BþFLOAT(J)*XHR)

14 CONTINUE

DO 16 K¼2,N-2,2

SUME¼SUMEþFUNC(BþFLOAT(K)*XHR)

16 CONTINUE

RES2¼(C-B)*(FUNC(B)þ4.*SUMOþ2.*SUMEþFUNC(C))/(3*FLOAT(N))

RETURN

END

C NORMAL DENSITY FUNCTION

FUNCTION FUNC(X)

FUNC¼EXP(-X*X/2.)

RETURN

END

C TRANSFORMED DENSITY FUNCTION

FUNCTION TRANSF(X)

TRANSF¼EXP(-1./(2.*X*X))/(X*X)

RETURN

END

3. With reference to the computer code described in Exercise 2,

(a) test it, by calculating Φ(�3.5), Φ(�1), Φ(0), Φ(1), and Φ(3.5), and com-

paring your results to the values given in Table 5.1;

(b) if X~N(300,180), use the program to calculate P(220�X� 390);

(c) if X~N(300,180), use the program to calculate P(X< 450|X> 390); and

(d) repeat the solutions to items (a), (b), and (c), using Eq. (5.14).

4. Solve Exercise 7 of Chap. 4, employing the normal approximation to the

Poisson distribution.

5. Download the annual mean flow data of the Lehigh River at Stoddartsville

(USGS 01447500) from http://waterdata.usgs.gov/pa/nwis/inventory/?site_

no¼01447500, for the entire period of record. Fit a normal distribution to the

flow data, by estimating its parameters from the sample mean and standard

deviation. Plot on a single chart the histogram and the normal density, similarly

to what has been done in Fig. 5.4. Comment on the possible application of the

central limit theorem to annual mean flows.

6. Solve items (a) and (b) of Example 5.4, using the normal distribution. Plot the

resulting density function. Calculate the 100-year return-period quantile.

7. Solve Exercise 5 for the two-parameter lognormal distribution.
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8. In Example 5.4, assume the coefficient of skewness is equal to 1.5. Solve items

(a) and (b), for the three-parameter lognormal distribution. Plot the resulting

density function. Calculate the 100-year return-period quantile.

9. Solve items (a) and (b) of Example 5.4, using the Exponential distribution. Plot

the resulting density function. Calculate the 100-year return-period quantile.

10. Solve items (a) and (b) of Example 5.4, using the gamma distribution. Plot the

resulting density function. Calculate the 100-year return-period quantile.

11. The wind direction, at a given location, is a random variable X, measured in

angles from the north direction, with mean and standard deviation respectively

equal to 200� and 100�. Discuss the convenience of using the beta distribution

as a model for X. Calculate the parameters for the beta distribution and the

probability that X be comprised between 90� and 150�. Plot the resulting

density function.

12. Solve Example 5.8 assuming the time between rains is normally distributed

with a mean of 4 days and standard deviation of 2 days. Plot on the same chart

the parent density and the maximum time density.

13. Solve items (a) and (b) of Example 5.4, using the Gumbelmax distribution. Plot

the resulting density function. Calculate the 100-year return-period quantile.

14. The annual maximum flows at a given river section are well described by the

Gumbelmax distribution with location and scale parameters respectively given

by β¼ 173 m3/s and α¼ 47 m3/s. At this river cross-section, the riverbank stage

corresponds to discharge Qt¼ 250 m3/s. Knowing that river plains have been

flooded, what is the probability the exceedance over the discharge Qt will be

less than or equal to 100 m3/s?

15. The Alva River at Ponte de Mucela, in Portugal, has on average 3 exceedances

over the reference discharge 65 m3/s, per year. Statistical tests support the

plausibility of the hypotheses (1) that the number of exceedances follows a

Poisson distribution; (2) that the maximum exceedances are independent; and

(3) that the exceedances are exponentially distributed. If the mean and standard

deviation of exceedances are respectively equal to 72.9 and 76.7 m3/s, calculate

the 100-year return-period flood discharge.

16. Solve Example 5.9, for the Fréchet distribution of maxima. Plot the resulting

density function. Compare your results with those given in the solution to

Example 5.9.

17. Solve Exercise 15, assuming that hypothesis (3) is rejected.

18. Plot on the same chart the cumulative distribution function for the GEV, for the

sets of parameters shown in Fig. 5.13. Discuss the GEV modeling of annual

maximum discharges, when κ> 0 and κ� 0.

19. The mean, variance, and coefficient of skewness for the annual minimum daily

flows for a large tributary of the Amazon River, in Brazil, are 694.6 m3/s,

26186.62 (m3/s)2, and 1.1, respectively. Use the Gumbelmin distribution to find

the 25-year return-period minimum daily flow.

20. Solve Exercise 19 using the two-parameter Weibullmin distribution.
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21. Organize the relations given by Eqs. (5.101) and (5.102) in the form of tables of

α, C(α), and D(α), and set up a practical scheme to calculate the parameters for

the three-parameter Weibullmin distribution.

22. Solve Exercise 19 using the three-parameter Weibullmin distribution.

23. Solve items (a) and (b) of Example 5.4, using the Pearson type III distribution.

Plot the resulting density function. Calculate the 100-year return-period

quantile.

24. Solve items (a) and (b) of Example 5.4, using the Log-Pearson type III

distribution. Plot the resulting density function. Calculate the 100-year

return-period quantile.

25. Consider a chi-square distribution with ν¼ 4. Calculate P(χ2> 5).

26. The daily concentrations of dissolved oxygen have been measured for 30 con-

secutive days. The sample yielded a mean of 4.52 mg/l and the standard

deviation of 2.05 mg/l. Assuming the DO concentrations are normally distrib-

uted, determine the absolute value of the maximum error of estimate of the

population mean μ, with 95% probability. In other terms, determine d such that

P X � μ
�� �� � d
� � ¼ 0:95:

27. Consider a Snedecor’s F distribution, with γ1¼ 10 and γ2¼ 5. Calculate

P(F> 2).

28. Consider the bivariate normal distribution with parameters μX¼ 2, σX¼ 2,

μY¼ 1, σY¼ 0.5, and ρ¼ 0.7. Determine the conditional density

f Y Xj y x ¼ 3jð Þ:. Calculate the probability P(Y< 3|X¼ 3).

29. Buffon’s needle problem (adapted from Rozanov 1969). Suppose a needle is

randomly tossed onto a plane, which has been ruled with parallel lines sepa-

rated by a fixed distance L. The needle is a line segment of length l� L. The
problem posed by the French naturalist and mathematician Georges-Louis

Leclerc, Compte de Buffon (1707–1788), was to calculate the probability that

the needle intersects one of the lines. In order to solve it, let X1 denote the angle

between the needle and the direction of the parallel lines and X2 represent the

distance between the bottom extremity of the needle and the nearest line above

it, as shown in Fig. 5.28. The conditions of the needle tossing experiment are

such that the random variable X1 is uniformly distributed in the interval [0,π]
and X2 is also a uniform variate in [0,L]. Assuming these two variables

are independent, their joint density function is given by f X1,X2
x1 , x2ð Þ ¼

1=πL , 0 � x1 � π , 0 � x2 � L. Assume that event A refers to the

needle intersecting one of the parallel lines, which will occur only if

X2� lsin(X1), or if the point (x1, x2) falls in region B, the shaded area in

Fig. 5.28. Thus, P X1 , X2ð Þ 2 Bf g ¼
ðð
B

dx1 dx2
πL

¼ 2 l

πL
, where l

ðπ
0

sin x1

dx1 ¼ 2l is the area of region B. The assumption of independence between the

two variables can be tested experimentally. In fact, if the needle is repeatedly

tossed n times onto the plane and if event A has occurred nA times, then nA
n � 2 l

π L,

for a large number of needle tosses n. In this case, the quantity 2 l
L

n
nA
must be a
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good approximation to the number π¼ 3.415. . . It is possible to simulate the

Buffon’s needle tossing experiment by mean of the software Buffon available

from the URL http://www.efg2.com/Lab/Mathematics/Buffon.htm [accessed:

13th January 2016]. Download and run the Buffon software, for increasing

values of n, and determine the respective approximations to π. Plot your results
on a chart with n on the horizontal axis and the π estimates on the vertical axis.
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Stahl S (2006) The evolution of the normal distribution. Math Mag 79(2):96–113

Stedinger JR, Griffis VW (2008) Flood frequency analysis in the United States: time to update. J

Hydrol Eng 13(4):199–204

Stedinger JR, Griffis VW (2011) Getting from here to where? Flood frequency analysis and

climate. J Am Water Resour Assoc 47(3):506–513

Vlcek O, Huth R (2009) Is daily precipitation gamma-distributed? Adverse effects of an incorrect

use of the Kolmogorov-Smirnov test. Atmos Res 93:759–766

Waylen PR, Woo MK (1984) Regionalization and prediction of floods in the Fraser river

catchment. Water Resour Bull 20(6):941–949

WRC (1967, 1975, 1976, 1977, 1981) Guidelines for determining flood flow frequency, Bulletin

15 (1975), Bulletin 17 (1976), Bulletin 17A (1977), Bulletin 17B (1981). United States Water

Resources Council-Hydrology Committee, Washington

Yan J (2007) Enjoy the joy of copulas: with a package copula. J Stat Software 21(4):1–21

Yevjevich VM (1972) Probability and statistics in hydrology. Water Resources Publications, Fort

Collins, CO

5 Continuous Random Variables: Probability Distributions. . . 201



Chapter 6

Parameter and Quantile Estimation

Mauro Naghettini

6.1 Introduction

In contrast to descriptive statistics, which is related only to a data sample, statistical

inference seeks the underlying properties of the population from which data have

been drawn. Statistical inference includes the validation of an assumed model for

the population underlying distribution, the estimation of its parameters, the con-

struction of confidence intervals, and the testing of hypotheses concerning popula-

tion descriptors. The methods of statistical inference make the association between

the physical reality of a sample of observed data and the abstract concept of a

probabilistic model of a given random variable. In fact, population is a notional

term as it would consist of an infinite (or a large finite) number of possibly

observable outcomes of a random experiment, which actually have not yet occurred

and, thus, do not exist, in the physical sense. In reality, the sample consists of a

much smaller number of actually observed data, of size N, and denoted by

{ x1, x2, . . . , xN}, which are supposed to have been drawn from the population.

The sample { x1, x2, . . . , xN} does indeed represent the real facts from which are

inferred the estimates of population descriptors, such as the mean, variance, and

coefficient of skewness, the characteristics of the underlying probability distribu-

tion, and the estimates of its respective parameters. Figure 6.1 depicts a scheme

illustrating the reasoning behind the methods of statistical inference. In this figure,

the population, as associated with the sample space of a random experiment, is

mapped by a continuous random variable X, whose density function fX(x) is defined
by its parameters θ1, θ2, . . . , θk.

Neither fX(x) nor its set of parameters θ1, θ2, . . . , θk is actually known and must

be assumed, for the former, or estimated, for the latter. Assume that fX(x) could be
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correctly prescribed from the application of some deductive law, such as the central

limit theorem, or from the characteristics of the physical phenomenon being

modeled, or even from the data sample descriptors, and, thus, no doubt concerning

Fig. 6.1 Sample and population: the reasoning behind statistical inference
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the analytical form of the population underlying distribution remains. However,

even for this idealized situation, the estimates θ̂ 1, θ̂ 2, . . . , θ̂ k, of the parameters

θ1, θ2, . . . , θk, of fX(x), must be obtained from the only source of information that

is available, which is the data sample.

The problem, as previously described, is termed parameter estimation and is

freely used here to signify the act of obtaining estimates of the parameters and

descriptors of the population underlying distribution. Among the classical methods

of statistical inference, two possible pathways are envisaged for estimating param-

eters: point estimation and interval estimation. Point estimation refers to assigning

one single numeric value to a given population parameter, from the analysis of a

data sample. Interval estimation, in turn, utilizes the information contained in a data

sample to make a broader statement concerning the probability, or the degree of

confidence, with which an interval of numeric values will contain the true value of

the population parameter or descriptor. In the sections that follow, the principles

related to both pathways are described, with an enlarged focus on the parameter

point estimation, as resulting from its more extended and frequent use in Statistical

Hydrology.

6.2 Preliminaries on Parameter Point Estimation

As already mentioned, the starting point of parameter estimation is a data sample of

size N, given by the elements {x1, x2, . . . , xN}. These denote the realizations of the
random variables {X1,X2, . . . ,XN}. In order to consider the sample as simple

and random, or an SRS (Simple Random Sample), it is necessary that the variables

{X1,X2, . . . ,XN} be independent and identically distributed, or IID variables,

for short. More formally, if the common density of the independent variables

{X1,X2, . . . ,XN} is fX(x), then the joint density function of the SRS is given by

f X1, X2, ... ,XN
x1, x2, . . . , xNð Þ ¼ f X x1ð Þ f X x2ð Þ . . . f X xNð Þ. Thus, once the form of the

density fX(x) is assumed or specified, the parameters θ1, θ2, . . . , θk that fully

describe it need to be estimated from the SRS { x1, x2, . . . , xN}, whose likelihood

is given by the joint density f X1, X2, ... ,XN
x1, x2, . . . , xNð Þ.

Assume, for simplicity, that there is only one parameter θ to be estimated from

the SRS { x1, x2, . . . , xN}. If all the available information is contained in the SRS,

the estimate of θ must necessarily be a function g(x1, x2, . . . , xN) of the observed

data. As the sample elements { x1, x2, . . . , xN} are the realizations of the random

variables {X1,X2, . . . ,XN}, one can interpret the function g(x1, x2, . . . , xN) as a

particular realization of the random variable g(X1,X2, . . . ,XN). If this function is

utilized to estimate the parameter θ of fX(x), then, it is inevitable to distinguish the θ

estimator, as denoted by Θ or θ̂ , from the θ estimate, represented by θ̂ . In fact, an

estimate θ̂ ¼ g x1, x2, . . . , xNð Þ is just a number or, in other terms, the realization of

the estimator Θ ¼ θ̂ ¼ g X1,X2, . . . ,XNð Þ. For instance, the estimates x and s2X, of
the mean and variance, respectively calculated for a sample { x1, x2, . . . , xN}, are the
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realizations of the estimators X and S2X of the IID variables {X1,X2, . . . ,XN}. The

generic estimatorΘ ¼ θ̂ ¼ g X1,X2, . . . ,XNð Þ is, in fact, a random variable, whose

properties should be studied under the light of the probability theory. In this

context, it is clearly inappropriate to raise the question whether a given θ estimate

is better or worse than another estimate of θ, as, in such a case, one would be

comparing two different numbers. However, it is absolutely legitimate and relevant

to ask how the estimator Θ1 ¼ θ̂
1
¼ g1 X1,X2, . . . ,XNð Þ compares with its com-

petitor estimator Θ2 ¼ θ̂
2
¼ g2 X1,X2, . . . ,XNð Þ. The answer to this question is

related to the properties of estimators.

Firstly, it is undesirable that an estimation procedure, as materialized by a given

estimator from a sample of size N, yield estimates which, on their ensemble, are

systematically larger or smaller than the true value of the parameter being esti-

mated. In effect, what is desirable is that the mean of the estimates be equal to the

parameter true value. Formally, a point estimator θ̂ is said to be an unbiased

estimator of the population parameter θ if

E θ̂
h i

¼ θ ð6:1Þ

From Eq. (6.1), it is clear that the property of unbiasedness does not depend on

the sample size N. If the estimator is biased, then the bias is given by the difference

E θ̂
h i

� θ. Example 6.1 illustrates the unbiasedness property for the sample

arithmetic mean and the sample variance.

Example 6.1 Show that the sample mean and variance are unbiased estimators for

the population μ and σ2, respectively.

Solution Consider a simple random sample { x1, x2, . . . , xN} of size N. The point

estimator for the population mean, μ, is θ̂ ¼ X ¼ 1
N X1 þ X2 þ . . .þ XNð Þ. In this

case, Eq. (6.1) yields E X
� � ¼ 1

N E X1½ � þ E X2½ � þ . . .þ E XN½ �f g, or

E X
� � ¼ 1

N Nμ ¼ μ. For the population variance, the estimator is

θ̂ ¼ S2 ¼ 1
N�1ð Þ

PN
i¼1

Xi � X
� �2

. Application of Eq. (6.1), in this case, gives

E S2
� � ¼ 1

N�1
E
PN
i¼1

Xi � X
� �2� �

¼ 1
N�1

E
PN
i¼1

Xi � μð Þ2 � N X � μ
� �2� �

. Recalling

that the expected value of a sum is the sum of the expected values of the summands,

then E S2
� � ¼ 1

N�1

PN
i¼1

E Xi � μð Þ2
h i

� NE X � μ
� �2h i� 	

. In this equation, the

expected value in the first term, between braces, corresponds to the variance of X,

or σ2, whereas the second term is equal to the variance of X, or σ2/N. Thus,

E S2
� � ¼ 1

N�1
Nσ2 � N σ2

N


 �
¼ σ2. Therefore, the sample arithmetic mean and sam-

ple variance are indeed unbiased estimators for μ and σ2, for any value of N.
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Note, however, that the sample standard deviation S ¼
ffiffiffiffiffi
S2

p
is biased and its bias for

normal populations is approximately equal to σ/4N (Yevjevich 1972).

The second desirable property of an estimator is consistency. An estimator θ̂ is

consistent if, asN ! 1, it converges in probability to θ. Formally, an estimator θ̂ is

consistent if, for any positive number ε,

limN!1Ρ θ̂ � θ
  � ε
� � ¼ 1

or

limN!1Ρ θ̂ � θ
  > ε
� � ¼ 0

ð6:2Þ

In simple terms, the estimator θ̂ is consistent if it converges to θ as the sample

size becomes very large. As opposed to unbiasedness, consistency depends on the

sample size and is an asymptotic property of the sampling distribution of θ̂ . Loosely

speaking, if an estimator θ̂ is consistent, it is asymptotically unbiased and its

variance Var θ̂
� �

converges to zero, as N approaches infinity.

To establish consistency for an estimator, in formal terms, the general result

provided by Chebyshev’s inequality, named after the Russian mathematician

Pafnuty Chebyshev (1821–1894), is usually required. According to this, the prob-

ability that any randomly selected value of X, from any probability distribution with

mean μ and variance σ2, will deviate more than ε from μ, must obey the following

inequality:

P X � μj j � εð Þ � σ2

ε2

or

P X � μj j < εð Þ > 1� σ2

ε2

ð6:3Þ

Assuming θ̂ is an unbiased estimator for θ, application of Chebyshev’s inequal-

ity to θ̂ yields

Ρ θ̂ � θ
  � ε
� � � E θ̂ � θ

� �2h i
ε2

ð6:4Þ

If E θ̂ � θ
� �2h i

is assumed to converge to zero, as N approaches infinity, the

right-hand side of Eq. (6.4) will tend to zero and the condition

limN!1Ρ θ̂ � θ
  > ε
� � ¼ 0 for consistency is satisfied.

If θ̂ is a biased estimator for θ, it can be shown that E θ̂ � θ
� �2h i

¼ Var θ̂
� �þ

B θ̂
� �� �2

(see Exercise 4 in this chapter), where B θ̂
� �

denotes the bias of θ̂ .

6 Parameter and Quantile Estimation 207



In general, E θ̂ � θ
� �2h i

is referred to as the Mean Square Error (MSE), being

equivalent to the variance, when there is no bias, or to the sum of the variance and

the squared bias, when there is bias. With this change, Eq. (6.4) still holds and a

general procedure for testing for consistency of a biased or an unbiased estimator

can be outlined. First, Eq. (6.1) must be employed to check whether θ̂ is unbiased or

not. If unbiased, calculateVar θ̂
� �

and check limN!1Var θ̂
� �

: if the limit is zero, θ̂ is

consistent; otherwise, it is not. If θ̂ is biased, calculate bias B θ̂
� �

and check the

limits of Var θ̂
� �

and B θ̂
� �

, as N ! 1. If both converge to zero, the biased θ̂ is

consistent. This general procedure is illustrated in the worked out examples that

follow.

Example 6.2 Show that the sample arithmetic mean is a consistent estimator for the

population mean μ.

Solution In Example 6.1, it was shown that the sample arithmetic mean θ̂ ¼ X is

an unbiased estimator for μ. According to the general procedure for testing for

consistency, previously outlined, as θ̂ ¼ X is unbiased, it suffices to calculate Var

X
� �

and check its limit as N ! 1. In Example 3.18, the variance of X was proved

to be σ2/N. Assuming σ is finite, as N ! 1, the limit of σ2/N tends to zero. As a

conclusion θ̂ ¼ X is a consistent estimator for μ.

Example 6.3 Consider θ̂
1
¼ 1

N

PN
i¼1

Xi � X
� �2

and θ̂
2
¼ 1

N�1ð Þ
PN
i¼1

Xi � X
� �2

as

estimators for the population variance σ2. In Example 6.1 it was shown that θ̂
2
is

an unbiased estimator for σ2. Likewise, it can be shown that E θ̂
1

� � ¼ N�1
N σ2 6¼ σ2

and, thus, that θ̂
1
is a biased estimator for σ2. Are θ̂

1
and θ̂

2
consistent?

Solution As θ̂ 2 is unbiased, to be consistent, it suffices to check whether

limN!1Var θ̂
2

� � ! 0. It can be shown thatVar θ̂
1

� � ¼ μ4 N � 1ð Þ2=N3 � σ4 N � 1ð Þ
N � 3ð Þ= N3, where μ4 denotes the population central moment of order 4 (Weisstein

2016). As θ̂ 2 ¼ N= N � 1ð Þ½ �θ̂ 1, then Var θ̂ 2

� � ¼ N= N � 1ð Þ½ �2Var θ̂ 1

� � ¼ μ4=

N � σ4 N � 3ð Þ= N N � 1ð Þ½ �. Assuming that μ4 and σ are finite, it immediately follows

that limN!1Var θ̂
2

� � ! 0 and that θ̂
2
is indeed a consistent estimator for σ2. The same

line of reasoning can be applied for estimator θ̂
1
but the bias B θ̂

1

� �
must be taken into

account. First, forVar θ̂
1

� �
, as in the previously given expression, repeated applications

of l’Hôpital’s rule for limits lead convergence to zero of Var θ̂
1

� �
as N ! 1. The bias

B θ̂
1

� �
is equal to the difference B θ̂

1

� � ¼ E θ̂
1

� �� σ2, which gives B θ̂
1

� � ¼ �σ2=N,

whose limit as N ! 1 is also zero, thus showing that θ̂ 1, although biased for finite N,

becomes a consistent estimator for σ2, asN ! 1. For this particular case, as far as finite

samples are concerned, the usual practice is to opt for the unbiased and consistent
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estimator θ̂
2
, in detriment of thebiasedyet consistent estimator θ̂

1
.A simpler alternative

way to show theconsistencypropertyof estimators is to start directly fromEq. (6.2),with

the aidof theLawofLargeNumbers (LLN).Theweak lawof largenumbers is a theorem

fromprobability theory stating that for a sequence of IID randomvariables {X1,X2, . . . ,
XN}, with a common mean μ and finite variance σ2, the arithmetic average

X1 þ X2 þ . . .þ XNð Þ=N converges in probability to μ, as N ! 1. The weak law of

largenumbers isusuallyprovedon thebasisofChebyshev’s inequality.Thestrong lawof

large numbers is, in fact, a rigorous generalization of the weak law, as it is based on

asymptotic analysis and is stricter than convergence in probability (Mood et al. 1974).

Theconsistencypropertyof thesamplemean, forexample, followsimmediatelyfromthe

weak law of large numbers, as bothmethods lead to convergence in probability to μ. As

regards theestimatorsθ̂ 1 andθ̂ 2, applying theLLNto test forconsistencyrequires further

arguments. The unbiased estimator θ̂
2
can be rewritten as θ̂

2
¼ N

N�1ð Þ
PN
i¼1

1
N X2

i � X
2


 �
.

From the LLN, since variables Xi are supposed IID, the first term in the summation

1=N
P

X2
i ! E X2

i

� �
, as N ! 1, whereas the second term X

2 ¼ X1þð½
X2 þ . . .þ XNÞ=N�2 ! E2 X½ �. Therefore, the consistency of θ̂ 2 is warranted by

limN!1θ̂ 2 ¼ N= N � 1ð Þ E X2
� �� E2 X½ �� � ¼ σ2. Making the same algebraic manip-

ulations for the biased estimator θ̂
1
, it follows that the limit limN!1θ̂

1
¼

E X2
� �� E2 X½ �� � ¼ σ2, and as such, Eq. (6.2) is satisfied, thus proving that the biased

θ̂
1
is a consistent estimator for σ2.
The solution to Example 6.3 shows that one can possibly have estimators that are

unbiased and consistent, biased and consistent, in addition to (un) biased and

inconsistent. In fact, these two desirable properties of estimators are not always

fulfilled by the same estimator and, on occasion, one has to decide which attribute is

preferable in detriment of the other. In hydrology, as the sample sizes are usually

finite and small, unbiasedness is certainly more important than consistency. Nev-

ertheless, unbiased estimators are not always obtainable or easily obtainable, which

leaves no choice but the use of biased estimators.

The third desirable property of an estimator is efficiency. Since there may be

more than one unbiased estimator for a parameter θ, the one with the least variance

is more desirable than its competitor(s). The efficiency of θ̂
1
relative to θ̂

2
, where

θ̂
1
and θ̂

2
are two unbiased estimators, is given by

Eff θ̂
1
; θ̂

2

� � ¼ Var θ̂
2

� �
Var θ̂

1

� � ð6:5Þ

If Eff θ̂
1
; θ̂

2

� �
> 1, then θ̂

1
is more efficient than θ̂

2
or, otherwise, the opposite. The

most efficient unbiased estimator is the one with the least variance, among all

unbiased estimators for the parameter θ. The notion of relative efficiency and
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Eq. (6.5) can be extended to biased estimators by replacing the variances, in the

right-hand side of the equation, for the corresponding mean square errors

E θ̂ i � θ
� �2h i

. Example 6.4 illustrates such a possibility.

Example 6.4 Considering the estimators θ̂
1
¼ 1

N

XN
i¼1

Xi � X
� �2

and

θ̂
2
¼ 1

N�1ð Þ
XN
i¼1

Xi � X
� �2

for the variance σ2 of a normal population with a true

mean μ, find the relative efficiency Eff θ̂
1
; θ̂

2

� �
.

Solution As θ̂
2
is unbiased and θ̂

1
is biased (see solutions to Examples 6.1 and

6.3), Eq. (6.5) needs to be rewritten in terms of the MSEs:

Eff θ̂
1
; θ̂

2

� � ¼ MSE θ̂
2

� �
=MSE θ̂

1

� �
. Because θ̂

2
is an unbiased estimator,

MSE θ̂ 2

� � ¼ Var θ̂ 2

� �
. However, the expression given in the solution to Example

6.3 for Var θ̂
2

� �
is valid for any distribution with a generic fourth central moment

μ4. In this present case, for which a normal distribution is assumed, μ4 ¼ 3σ4.

Replacing this particular value of μ4 in the equation, the result is Var θ̂
2

� � ¼
MSE θ̂

2

� � ¼ 2σ4= N � 1ð Þ. The solution to Example 6.3 has also shown that

B θ̂
1

� � ¼ �σ2=N. For μ4 ¼ 3σ4, Var θ̂
1

� � ¼ 2 N � 1ð Þσ4=N2 and the MSE θ̂
1

� � ¼
2N � 1ð Þσ4=N2. Therefore, the relative efficiency is Eff θ̂

1
; θ̂

2

� � ¼ 2N2=

N � 1ð Þ 2N � 1ð Þ½ �. For N� 2, it yields Eff θ̂1; θ̂2
� �

> 1 and shows that θ̂ 1 is

relatively more efficient than θ̂
2
.

The properties of unbiasedness, consistency and efficiency should guide the

selection of the adequate estimators. However, the property of sufficiency is also

a desirable property that an estimator should have and deserves a brief explanation.

In other words, an estimator θ̂ is considered a sufficient estimator for θ, if it extracts
as much information as possible about θ from the sample { x1, x2, . . . , xN}, so that no
additional information can be conveyed by any other estimator (Kottegoda and

Rosso 1997). In formal terms, an estimator θ̂ ¼ g X1;X2; . . . ;XNð Þ is sufficient for θ,
if, for all θ and for any sample point, the joint density function of (X1,X2, . . .,XN),

conditioned on θ̂ , does not depend on θ (see Exercise 7 in this chapter). A practical

example of a sufficient estimator, for the measure of central tendency of a density

function, is the sample mean, whereas other measures, such as the median, for

example, are not: if one single sample point changes, the mean changes accord-

ingly, while the median does not. For the reader interested in a rigorous treatment

on the properties of statistical estimators, the following are excellent references on

the subject: Cramér (1946), Rao (1973), and Casella and Berger (1990).

In applications of statistics to engineering and hydrologic problems, population

moments of order higher than 3 are generally not used, as unbiased estimators for

them are hard to find and also because their variances are too large since the

samples sizes are typically small. Table 6.1 summarizes the common estimators
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for the mean, variance, standard deviation, and coefficient of variation of X from a

generic population, along with their respective biases and variances. Table 6.2 does

the same for a normal population.

As already mentioned, once the probability distribution is assumed to describe

the data sample, the estimates of its parameters are found by some statistical

method and, then, used to calculate the desired probabilities and quantiles.

Among the many statistical methods for parameter estimation, the following are

important: (1) the method of moments; (2) the method of maximum likelihood;

(3) the method of L-moments; (4) the graphical method; (5) the least-squares

estimation method; and (6) the method of maximum entropy. The former three

are the most frequently used in Statistical Hydrology and are formally described in

this chapter’s sections that follow.
The graphical estimation method is an old-fashioned one, but is still useful and

helpful in Statistical Hydrology; it is described later, in Chap. 8, as hydrologic

Table 6.1 Estimators for the population mean, variance, standard-deviation, and coefficient of

variation, irrespectively of of the parent distribution of the original variable X

Population Estimator Bias Variance of estimator

μ

X ¼
PN
i¼1

Xi

N

0 σ2

N

σ2
S2X ¼ 1

N � 1ð Þ
PN
i¼1

Xi � X
� �2 0 μ4=N � σ4 N � 3ð Þ= N N � 1ð Þ½ �,

where μ4¼ 4th order central

moment

σ
SX ¼

ffiffiffiffiffi
S2X

q
O

1

N

� �
for N < 20

0 for N� 20a

μ4�σ4

4σ2N þ O 1
N2ÞforN < 20



0 for N� 20a

CVX Ĉ VX
¼ 1þ 1

4N

� �
SX

X

0 –

aO(1/N ) and O(1/N2) are small quantities proportional to 1/N and 1/N2 (Yevjevich 1972)

Table 6.2 Estimators for the population mean, variance, standard-deviation, and coefficient of

variation of a random variable X from a normal population

Population Estimator Bias Variance of estimator

μ

X ¼
PN
i¼1

Xi

N

0 σ2

N

σ2

S2X ¼ 1

N � 1ð Þ
XN
i¼1

Xi � X
� �2 0 2σ4

N � 1

σ
SX ¼

ffiffiffiffiffi
S2X

q � σ
4N � σ2

2 N � 1ð Þ
CVX Ĉ VX

¼ 1þ 1

4N

� �
SX
X

0 � CVX

2

2N
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frequency analysis with probability charts is introduced. The least-squares estima-

tion method aims to estimate the parameters of any theoretical function by mini-

mizing the sum of its squared differences, with respect to a given empirical curve or

sample data. In this book, the least-squares method is not used for estimating

parameters of a probability distribution function, in spite of estimation being totally

feasible in practice. In effect, the least-squares method is more suitable for regres-

sion analysis and is formally described in Chap. 9.

The concept of entropy as a measure of information was introduced in the late

1940s by the distinguished American mathematician and electrical engineer Claude

Shannon (1916–2001). Since then, the entropy theory has encountered many

applications in science and engineering and, more recently, as a result of its

particular ability to enable the estimation of probability distributions from limited

data, it has found a fertile ground in Statistical Hydrology. However, as entropy-

based applications in Statistical Hydrology are a sort of specialized subject and

would require specific chapters to be suitably explained, they are not going to be

covered in this introductory textbook. The reader will find in Singh (1997) an

excellent review on the entropy concept and its applications in hydrology and

water resources engineering.

The Maximum Likelihood Estimation (MLE) method is the most efficient

among the methods currently used in Statistical Hydrology, as it generally yields

parameters and quantiles with the smallest sampling variances. However, in many

cases, the MLE’s highest efficiency is only asymptotic and estimation from a small

sample may result in estimators of relatively inferior quality (Rao and Hamed

2000). MLE estimators show the desirable properties of consistency, sufficiency,

and are asymptotically unbiased. For finite samples, however, MLE estimators may

be biased and, for small sample sizes, may be difficult to find. MLE estimation

generally requires computer numerical solutions to systems of equations which are,

in most cases, implicit and nonlinear.

The method of moments (MOM) is the simplest and perhaps the most intuitive.

MOM estimators are consistent, but are often biased and less efficient than MLE

estimators, especially for distributions with more than two parameters, which

require estimation of higher order moments. As hydrologic samples are, in many

cases, of small sizes, estimators of higher order moments are expected to be

significantly biased. In this regard, Yevjevich (1972) comments that when MOM

estimation is used for symmetrical distributions, the efficiencies of its estimators are

comparable to those of MLE. However, for skewed distributions, as it is often the

case for hydrologic variables, the efficiency of MOM estimators usually declines

and they should be considered only as first approximations.

The L-moments method (L-MOM) yields parameter estimators of quality com-

parable to that of MLE estimators, with the advantage of requiring less computa-

tional effort to solve its systems of equations, which are usually much simpler than

those involved in MLE. For small samples, L-MOM estimators are sometimes more

accurate than MLE estimators (Rao and Hamed 2000). In the subsections that

follow, the principles behind each of the three estimation methods are described,

along with examples of their respective applications in hydrology.
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6.3 Method of Moments (MOM)

The method of moments was introduced by the British statistician Karl Pearson

(1857–1936). It consists of making the population moments equal to the sample

moments. The result from this operation yields the MOM estimators for the

distribution parameters. Formally, let y1, y2, y3, . . . , yN be the observed data from

an SRS drawn from the population of a random variable Y, distributed according

to the density f Y ( y ; θ1 , θ 2, . . . , θ k ) of k parameters. If μj and mj respectively

denote the population and sample moments, then the fundamental system of

equations of the MOM estimation method is given by

μj ð θ1, θ 2, . . . , θ kÞ ¼ m j for j ¼ 1, 2, . . . , k ð6:6Þ

The solutions θ̂ 1 , θ̂ 2 , . . . , θ̂ k to this system of k equations and k unknowns are

the MOM estimators for parameters θj. The next four worked out examples

illustrate applications of the MOM estimation method.

Example 6.5 Let y1, y2, y3, . . . , yn be an SRS sampled from the population of the

random variable Y, with density given by f Yðy; θÞ ¼ ðθ þ 1Þyθ for 0 � y � 1,

described by a single parameter θ. (a) Determine the MOM estimator for θ.
(b) Assuming that an SRS from Y consists of the elements {0.2; 0.9; 0.05; 0.47;

0.56; 0.8; 0.35}, determine the MOM estimate for θ and the probability that Y is

larger than 0.8.

Solution

(a) MOM fundamental equation: μ1¼m1, just a single equation because there is

only one parameter to estimate. Population moment: μ1 ¼ E Yð Þ ¼ð1
0

y θ þ 1ð Þy θ dy ¼ θþ1
θþ2

. Sample moment: m 1 ¼ 1
n

Pn
i¼1

Y i ¼ Y. Thus,
θ̂þ1

θ̂þ2

¼ Y ) θ̂ ¼ 2 Y�1

1�Y
. This is the MOM estimator for θ.

(b) The SRS {0.2; 0.9; 0.05; 0.47; 0.56; 0.8; 0.35} yields y ¼ 0:4757. Using the

MOM estimator equation, it follows that θ̂ ¼ 2�0:4757�1
1�0:4757 ¼ �0:0926, which is

the estimate for θ. The CDF is FY yð Þ ¼
ðy
0

θ þ 1ð Þyθdy ¼ yθþ1. With the esti-

mate θ̂ ¼ �0:0926, P(Y> 0.8)¼ 1�FY(0.8)¼ 1�0.8167¼ 0.1833.

Example 6.6 Use the MOM estimation method to fit a binomial distribution, with

N¼ 4, to the data given in Table 6.3. Also, calculate P(X� 1). Recall that for a

binomial discrete variable E(X)¼Np, where p¼ probability of success and

N¼ number of independent Bernoulli trials.
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Solution The binomial distribution is defined by the parameters N and p. In this

case, the parameter N was specified as 4, thus leaving p to be estimated. MOM

equation gives μ1¼m1, which, in this case, yields Np̂ ¼ X or p̂ ¼ X=4. This is the

MOM estimator for p. The MOM estimate for p demands the calculation of

the sample mean x, which for the given SRS, yields x ¼ 0� 10þ 1� 40þ 2�ð
60þ 3� 50þ 4� 16Þ=176 ¼ 2:12 and, thus, p̂ ¼ 0:5313. Finally, P X � 1ð Þ ¼
1� P X ¼ 0ð Þ ¼ 1� 4

0

� �
� 0:53130 � 1� 0:5313ð Þ4 ¼ 0:9517.

Example 6.7 Table 1.1 of Chap. 1 lists the annual maximum rainfall depths

recorded at the rainfall gauging station of Ponte Nova do Paraopeba, in

Brazil, for the water years 1940/41 to 1999/2000, with some missing data.

For this sample, the following descriptive statistics have been calculated:

x ¼ 82:267 mm, sX ¼ 22:759 mm, s2X ¼ 517:988 mm2; and the sample coefficient

of skewness gX ¼ g ¼ 0:7623: (a) Determine the MOM estimators for the param-

eters of the Gumbelmax distribution. (b) Calculate the MOM estimates for the

parameters of the Gumbelmax distribution. (c) Calculate the probability that the

annual maximum rainfall at this location exceeds 150 mm, in any given year.

(d) Calculate the annual maximum rainfall of return period T¼ 100 years.

Solution

(a) Assume X�Gumax(α,β). In this case, there are two parameters to be estimated

and, thus, the first two central moments are needed: the mean and the variance

of X, which are E X½ � ¼ β þ 0:5772α and Var X½ � ¼ σ2X ¼ π2α2

6
. Replacing the

population moments for the sample moments and solving for α and β, one gets
the MOM estimators for the Gumbelmax distribution: α̂ ¼ SX=1:283 and

β̂ ¼ X � 0:45SX.

(b) The MOM estimates for α and β result from the substitution ofX and SX by their
respective sample estimates x ¼ 82:267 and sX ¼ 22:759. Results: α̂ ¼ 17:739

and β̂ ¼ 72:025.

(c) The sought probability is 1� FX 150ð Þ ¼ 1� exp �exp �150�β̂
α̂


 �h i
¼ 0:0123.

(d) The estimate of the 100-year quantile is given by x̂ T ¼ 100ð Þ ¼
β̂ � α̂ ln �ln 1� 1

100

� �� � ¼ 153:63mm.

Example 6.8 Solve Example 6.7 for the GEV distribution.

Solution

(a) Assume X�GEV(α,β,κ). Now, there are three parameters to be estimated and,

thus, the three first central moments are needed: the mean, the variance, and the

Table 6.3 Data for Example 6.6

X (number of successes) 0 1 2 3 4

Observed data for the specified X value 10 40 60 50 16
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coefficient of skewness of X, respectively given by Eqs. (5.72), (5.73), and

(5.74) of Chap. 5. As mentioned in Chap. 5, calculation of GEV parameters

should start from Eq. (5.74), which needs to be solved for κ, by means of

numerical iterations from an estimated value of the coefficient of skewness. An

alternative way to solve Eq. (5.74) for κ is through regression equations of

κ� γ, as in the following examples, suggested by Rao and Hamed (2000):

for 1.1396< γ< 10 (Extreme-Value Type II or Fréchet):

κ ¼ 0:2858221� 0:357983γ þ 0:116659γ2

� 0:022725γ3 þ 0:002604γ4 � 0:000161γ5 þ 0000004γ6

for �2< γ< 1.1396 (Extreme-Value Type III or Weibull):

κ ¼ 0:277648� 0:322016γ þ 0:060278γ2

þ0:016759γ3 � 0:005873γ4 � 0:00244γ5 � 0:00005γ6

and

for �10< γ< 0 (Extreme-Value Type III or Weibull):

κ ¼ �0:50405� 0:00861γ þ 0:015497γ2

þ0:005613γ3 þ 0:00087γ4 þ 0:000065γ5:

Since γ̂ ¼ g ¼ 0:7623, the second equation is suitable for the present case and

produces the first piece of MOM estimators, the shape parameter estimator κ̂ .

Following it, the other two MOM estimators are: α̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ̂ 2S2X
Γ 1þ2κ̂ð Þ�Γ2 1þκ̂ð Þ

r
and

β̂ ¼ X � α̂ κ̂ 1� Γ 1þ κ̂
� �� �

.

(b) The MOM estimates for α, β, and κ follow from the substitution of X, SX, and γ̂
by their respective sample estimates x ¼ 82:267, sX ¼ 22:759, and g ¼ 0:7623,
in the sequence outlined in (a). Results: κ̂ ¼ 0:072, α̂ ¼ 19:323, and

β̂ ¼ 72:405.

(c) 1� FX 150ð Þ ¼ 1� exp � 1� κ̂ 150�β̂
α̂


 �h i1=κ̂� 	
¼ 0:0087.

(d) 100-year quantile:
x Tð Þ¼β̂þα̂

κ̂ 1� �ln 1�1
Tð Þ½ �κ̂

� �
¼148:07mm

.

6.4 Maximum Likelihood Estimation (MLE) Method

The maximum likelihood estimation (MLE) method was introduced by the eminent

British statistician Ronald Fisher (1890–1962). It basically involves maximizing a

function of the distribution parameters, known as the likelihood function. By

equating this function to the condition it reaches its maximum value, it results in
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a system of an identical number of equations and unknowns, whose solutions yield

the MLE estimators for the distribution parameters.

Let y1, y2, y3,. . ., yN represent the observed data from an SRS drawn from a

population of the random variable Y, with the density function f Y ( y ; θ1 , θ 2, . . . , θ k )

of k parameters. The joint density function of the SRS, which is supposedly made of

the IID variables Y1, Y2, Y3, . . . , YN, is given by f Y1, Y2, ... ,YN
y1, y2, . . . , yNð Þ ¼

f Y y1ð Þ f Y y2ð Þ . . . f Y yNð Þ. In fact, this joint density is proportional to the probability

that a particular SRS had been drawn from the population of density

f Y ( y ; θ1 , θ 2, . . . , θ k ) and it is the likelihood function itself. For discrete Y, the
likelihood function is the probability of the joint occurrence of y1, y2, y3,. . ., yN.
Formally, the likelihood function is written as

L θ1 , θ 2 , . . . , θ kð Þ ¼
YN
i¼1

f Y yi ; θ1 , θ 2 , . . . , θ kð Þ ð6:7Þ

This is a function of the parameters θj only, as the arguments yi represent the data
from the SRS. The values of θj that maximize the likelihood function can be

interpreted as the ones that also maximize the probability that the specific SRS in

question, as a particular realization of Y1, Y2, Y3, . . . , YN, had been drawn from the

population of Y, with density f Y ( y ; θ1 , θ 2, . . . , θ k ).

The search for the condition of maximum value for L ( θ1 , θ 2 , . . . , θ k ) implies

the following system of k equations and k unknowns:

∂L θ 1 , θ 2 , . . . , θ kð Þ
∂ θ j

¼ 0 ; j ¼ 1, 2, . . . , k ð6:8Þ

The solutions to this system of equations yield the MLE estimators θ̂ j. Usually,

maximizing the log-likelihood function ln[L(θ)], instead of L ( θ1 , θ 2 , . . . , θ k ),

facilitates finding the solutions to the system given by Eq. (6.8). This is justified by

the fact that the logarithm is a continuous and monotonic increasing function and,

as such, maximizing the logarithm of a function is the same as maximizing the

function itself. The next two worked out examples illustrate applications of the

MLE method.

Example 6.9 Let y1, y2, y3, . . . , yN be an SRS drawn from the population of a

Poisson-distributed random variable Y, with parameter ν. Determine the MLE

estimator for ν.

Solution The Poisson mass function is pY yð Þ ¼ νy

y! e
�ν, for y ¼ 0, 1, . . . and ν >

0 and its respective likelihood functions is L ν ; Y1 , Y 2 , . . . , Y Nð Þ ¼

QN
i¼1

ν Y i exp �νð Þ
Y i !

¼ ν

PN
i¼1

Yi

exp �N νð ÞQN
i¼1

Y i !

. The search for the value of ν that maximizes
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L ( ν ) is greatly facilitated by the log-likelihood function, as in

ln L ν ; Y1, Y2, . . . , YNð Þ½ � ¼ �N νþ ln νð ÞPN
i¼1

Yi � ln
QN
i¼1

Yi !

� �
. Taking the

derivative of this function, with respect to ν, yields
d ln L ν ; Y1 , Y2 , ... , YNð Þ½ �

d ν ¼
�N þ 1

ν

PN
i¼1

Yi. Equating this derivative to zero, it results in the MLE estimator

for ν: ν̂ ¼ 1
N

Pn
i¼1

Yi or ν̂ ¼ Y:

Example 6.10 Solve Example 6.7 with the MLE method.

Solution

(a) The likelihood function of an SRS of size N, drawn from a Gumbelmax popu-

lation is given by L α; βð Þ ¼ 1
αN exp �PN

i¼1

Yi�β
α

� ��PN
i¼1

exp � Yi�β
α

� �� �
. Analo-

gously to the solution of Example 6.9, finding the MLE estimators is greatly

expedited by employing the log-likelihood function as in

ln L α; βð Þ½ � ¼ �N ln αð Þ � 1
α

PN
i¼1

Yi � βð Þ �PN
i¼1

exp � Yi�β
α

� �
. Taking the deriva-

tives of this function, with respect to α and β, and equating both to zero, one gets
the following system of equations:

∂
∂α

ln L α;βð Þ½ � ¼�N

α
þ 1

α2

XN
i¼1

Yi�βð Þ� 1

α2

XN
i¼1

Yi�βð Þexp �Yi�β

α

� �
¼ 0 Ið Þ

∂
∂β

ln L α;βð Þ½ � ¼N

α
� 1

α

XN
i¼1

exp �Yi�β

α

� �
¼ 0 IIð Þ

Rao and Hamed (2000) suggest solving this system of equations as follows.

First, by working with equation II, it follows that exp β
α

� � ¼ NPN
i¼1

exp �Yi=αð Þ
, which

is then substituted into equation I. After simplification,

F αð Þ ¼PN
i¼1

Yiexp �Yi

α

� �� 1
N

PN
i¼1

Yi � α

� � PN
i¼1

exp �Yi

α

� � ¼ 0. This is a function

of α only, but still cannot be solved analytically. To solve it, one has to employ

Newton’s method, by starting iterations from an initial value for α, so that the

value for the next iteration be given by α jþ1 ¼ αj � F αj
� �

=F
0
αj
� �

. In this

equation, F’ represents the derivative of F, with respect to α, or, in formal terms,

F
0
αð Þ ¼ 1

α2
PN
i¼1

Y2
i exp �Yi

α

� �þPN
i¼1

exp �Yi

α

� �þ 1
α

PN
i¼1

Yiexp �Yi

α

� �
. The iterations

end when F(α) is sufficiently close to zero, thus yielding the MLE estimator
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α̂ . Then, the MLE estimator β̂ results from β̂ ¼ α̂ ln NPN
i¼1

exp �Yi=αð Þ

2
64

3
75. These are

the MLE estimators for the parameters of the Gumbelmax distribution.

(b) The MLE estimates for α and β result from the substitution of the summations

involved in the estimators equations by their respective values calculated from

the sample data, but, as seen in (a), it requires iterations by Newton’s method.

The free software ALEA, developed by the Department of Hydraulic and Water

Resources Engineering, of the Brazilian Federal University of Minas Gerais,

includes a routine that implements not only the described procedure for finding

MLE estimates for Gumbelmax parameters, but also many other routines for

calculating parameters for the probability distributions most currently used in

hydrology, using the MOM, MLE, and L-MOM methods. The ALEA software

can be downloaded from the URL http://www.ehr.ufmg.br/downloads. For the

data given in Table 1.1, the annual maximum rainfalls at the gauging station of

Ponte Nova do Paraopeba, the MLE estimates, as calculated by the ALEA

software, are α̂ ¼ 19:4 and β̂ ¼ 71:7.

(c) The sought probability is 1� FX 150ð Þ ¼ 1� exp �exp �150�β̂
α̂


 �h i
¼ 0:0175.

(d) 100-year quantile: x̂ T ¼ 100ð Þ ¼ β̂ � α̂ ln �ln 1� 1
100

� �� � ¼ 160:94mm.

6.5 Method of L-Moments (L-MOM)

Greenwood et al. (1979) introduced the probability weighted moments (PWM) as

defined by the following general expression:

Mp, r, s ¼ E Xp FX xð Þ½ �r 1� FX xð Þ½ �s½ � ¼
ð1
0

x Fð Þ½ �pFr 1� Fð ÞsdF ð6:9Þ

where x(F) denotes the quantile function and p, r, and s are real numbers. When

r and s are null and p is a non-negative number, the PWMs Mp,0,0 are equivalent to

the conventional moments about the origin μ0p of order p. In particular, the PWMs

M1,0,s and M1,r,0 are the most useful for characterizing probability distributions.

They are defined as

M1,0, s ¼ αs ¼
ð1
0

x Fð Þ 1� Fð ÞsdF ð6:10Þ
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M1, r, 0 ¼ βr ¼
ð1
0

x Fð ÞFrdF ð6:11Þ

Hosking (1986) showed that αs and βr, when expressed as linear functions of x,
are sufficiently general to serve the purpose of estimating parameters of probability

distributions, in addition to being less subject to sampling fluctuations and, thus,

being more robust than the corresponding conventional moments. For an ordered

set of IID random variables X1 � X2 � . . . � XN , unbiased estimators of αs and βr
can be obtained through the following expressions:

as ¼ α̂ s ¼
1

N

XN
i¼1

N � i
s

� �
N � 1

s

� � Xi ð6:12Þ

and

br ¼ β̂
r
¼ 1

N

XN
i¼1

i� 1

r

� �
N � 1

r

� � Xi ð6:13Þ

The PWMs αs and βr, as well as their corresponding sample estimators as and br, are
related by

αs ¼
Xs
i¼1

s
i

� �
�1ð Þiβi orβr ¼

Xr
i¼1

r
i

� �
�1ð Þiαi ð6:14Þ

Example 6.11 Given the annual mean discharges (m3/s) for the Paraopeba River at

Ponte Nova do Paraopeba (Brazil), listed in Table 6.4, for the calendar years

1990–1999, calculate the estimates of αs and βr , for r,s� 3.

Solution Table 6.4 also shows some partial calculations necessary to apply

Eq. (6.12), for s¼ 0,1,2, and 3. The value of a0 is obtained by dividing the sum

of the 10 items in column 5 by N
N � 1

0

� �
¼ 10, thus resulting in a0¼ 85.29; one

can notice that a0 is equivalent to the sample arithmetic mean. Similar calculations

for the values in columns 6–8, lead to the results a1¼ 35.923, a2¼ 21.655, and

a3¼ 15.211. The values for br can be calculated either by Eq. (6.13) or derived from
as, using Eq. (6.14). For the latter and for r,s� 3, it is clear that
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α0 ¼ β0 or β0 ¼ α0

α1 ¼ β0 � β1 or β1 ¼ α0 � α1

α2 ¼ β0 � 2β1 þ β2 or β2 ¼ α0 � 2α1 þ α2

α3 ¼ β0 � 3β1 þ 3β2 � β3 or β3 ¼ α0 � 3α1 þ 3α2 � α3

In the above equations, by replacing the PWMs for their estimated quantities, one

obtains b0¼ 85.29, b1¼ 49.362, b2¼ 35.090, and b3¼ 27.261.

The PWMs αs and βr, although likely to being used in parameter estimation, are

not easy to interpret as shape descriptors of probability distributions. Given that,

Hosking (1990) introduced the concept of L-moments, which are quantities that can

be directly interpreted as scale and shape descriptors of probability distributions.

The L-moments of order r, denoted by λr, are linear combinations of the PWMs αs
and βr and formally defined as

λr ¼ �1ð Þr�1
Xr�1

k¼0

pr�1, k αk ¼
Xr�1

k¼0

pr�1 ,k βk ð6:15Þ

where pr�1 , k ¼ �1ð Þr�k�1 r � 1

k

� �
r þ k � 1

k

� �
. Application of Eq. (6.15) for

the L-moments of order less than 5 results in

λ1 ¼ α0 ¼ β0 ð6:16Þ

λ2 ¼ α0 � 2α1 ¼ 2β1 � β0 ð6:17Þ

λ3 ¼ α0 � 6α1 þ 6α2 ¼ 6β2 � 6β1 þ β0 ð6:18Þ

λ4 ¼ α0 � 12α1 þ 30α2 � 20α3 ¼ 20β3 � 30β2 þ 12β1 � β0 ð6:19Þ

The sample L-moments are denoted by lr and are calculated by replacing αs and βr,
as in Eqs. (6.16)–(6.19), for their respective estimates as and br.

The L-moment λ1 is equivalent to the mean μ and, thus, is a population location

measure. For orders higher than 1, the L-moment ratios are particularly useful in

describing the scale and shape of probability distributions. As an analogue to the

conventional coefficient of variation, one defines the coefficient τ as

τ ¼ λ2
λ1

ð6:20Þ

which is interpreted as a population measure of dispersion or scale. Also as

analogues to the conventional coefficients of skewness and kurtosis, one defines

the coefficients τ3 and τ4 as

τ3 ¼ λ3
λ2

ð6:21Þ
and
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τ4 ¼ λ4
λ2

ð6:22Þ

The sample L-moment ratios, denoted by t, t3, and t4, are calculated by replacing
λr, as in Eqs. (6.20)–(6.22), for their estimates lr. As compared to conventional

moments, L-moments feature a number of advantages, among which the most

important is the existence of variation bounds for τ, τ3, and τ4. In fact, if X is a

non-negative continuous random variable, it can be shown that 0< τ< 1. As for τ3
and τ4, it is a mathematical fact that these coefficients are bounded by [�1,þ1], as

opposed to their corresponding conventional homologous, which can assume arbi-

trarily higher values. Other advantages of L-moments, as compared to conventional

moments, are discussed by Hosking and Wallis (1997) and Vogel and

Fennessey (1993).

The L-moments method (L-MOM) for estimating the parameters of probability

distributions is similar to the conventional MOM method. In fact, as exemplified in

Table 6.5, the L-moments and the L-moment ratios, namely λ1, λ2, τ, τ3, and τ4, can
be related to the parameters of probability distributions, and vice-versa. The

L-MOM method for parameter estimation consists of setting equal the population

L-moments to the sample L-moments estimators. The results from this operation

yield the estimators for the parameters of the probability distribution. Formally, let

y1, y2, y3,. . ., yN be the sample data from an SRS drawn from the population of a

random variable Y with density f Y ( y ; θ1 , θ 2, . . . , θ k ), of k parameters. If [λ1, λ2, τj]
and [l1, l2, tj] respectively denote the population L-moments (and their L-moment

ratios) and homologous estimators, then the fundamental system of equations for

the L-MOM estimation method is given by

λi θ1, θ2, . . . , θkð Þ ¼ li with i ¼ 1, 2

τj θ1, θ2, . . . , θkð Þ ¼ tj with j ¼ 3, k � 2
ð6:23Þ

The solutions θ̂ 1 , θ̂ 2 , . . . , θ̂ k to this system, of k equations and k unknowns, are
the L-MOM estimators for parameters θj.

Example 6.12 Find the L-MOM estimates for the Gumbelmax distribution param-

eters, using the data given in Example 6.11.

Solution The solution to Example 6.11 showed that the PWM βr estimates are

b0¼ 85.290, b1¼ 49.362, b2¼ 35.090, and b3¼ 27.261. Here, there are two param-

eters to estimate and, thus, the first two L-moments, namely λ1 and λ2, are needed.
These are given by Eqs. (6.16) and (6.17), and their estimates are l1¼ b0¼ 85.29 and

l2 ¼ 2b1 � b0 ¼ 2� 49:362� 85:29 ¼ 13:434. From the relations of Table 6.5, for

the Gumbelmax distribution, it follows that α̂ ¼ l2=ln 2ð Þ ) α̂ ¼ 19:381 and β̂ ¼
l1 � 0:5772α̂ ) β̂ ¼ 74:103.
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6.6 Interval Estimation

A point estimate of a parameter of a probability distribution, as shown in the

preceding sections, is a number that will differ from the true unknown population

value by a variable quantity, depending on the sample size and on the estimation

method. The point estimation process, however, does not provide any measure of

the estimation error. The issue of the estimate’s reliability is addressed by the

interval estimator, whose purpose is to assess the degree of confidence with

which it will contain the true parameter value. In fact, a point estimator for a

parameter θ is a function θ̂ , which, as dependent on the random variable X, is also a
random variable and, as such, should be described by its own probability density

f θ̂ θ̂
� �

. It is true that, if θ̂ is a continuous random variable, then P
�
θ̂ ¼ θ

� ¼ 0,

which would make such an equation worthless, as expressed in terms of an equality

sign. However, by constructing the random variables L, corresponding to a lower

bound, and U, as corresponding to an upper bound, and both as functions of the

random variable θ̂ , the point estimator for θ, it is possible to write the following

probability statement:

Ρ L � θ � Uð Þ ¼ 1� α ð6:24Þ

where θ denotes the true population value and (1�α) represents the degree of

confidence.

Since θ is the true parameter and not a random variable, one should exercise care

to interpret Eq. (6.24). It would be misleading to interpret it as if (1�α) were the

probability that parameter θ is contained between the limits of the interval. Pre-

cisely because θ is not a random variable, Eq. (6.24) must be correctly interpreted as

being (1�α) the probability that the interval [L,U] will contain the true population

value of a parameter θ.
To make clear the probability statement given by Eq. (6.24), suppose one wants

to estimate the mean μ of a population of X, with known standard deviation σ, and
the arithmetic mean X, of a sample of size N, is going to be used to this end. From

the solution to Example 5.3 and, in general, from the central limit theorem applied

to large samples, it is known that X�μ
σ=
ffiffiffi
N

p

 �

� N 0; 1ð Þ. Thus, for the scenario

Table 6.5 L-moments and L-moment ratios for some probability distributions

Distribution Parameters λ1 λ2 τ3 τ4
Uniform a,b aþ b

2

b� a

6

0 0

Exponential θ θ θ

2

1

3

1

6
Normal μ,σ μ σffiffiffi

π
p 0 0.1226

Gumbelmax αβ β þ 0:5772α α ln(2) 0.1699 0.1504
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described in Example 5.3, one can write Ρ �1:96 < X�μ
σ=
ffiffiffi
N

p < þ1:96

 �

¼ 0:95. In

order to put such inequality in terms similar to those of Eq. (6.24), it is necessary to

enclose parameter μ apart, in the center of the inequality, as in Ρ X � 1:96 σffiffiffi
N

p <



μ < X þ 1:96 σffiffiffi
N

p Þ ¼ 0:95. This expression can be interpreted as follows: if samples

of the same size N are repeatedly drawn from a population and a confidence

interval, such as X � 1:96σ=
ffiffiffiffi
N

p
,X þ 1:96σ=

ffiffiffiffi
N

p� �
, is constructed for each sample,

then 95% of these intervals would contain the true parameter μ and 5% would not.

Figure 6.2 illustrates this interpretation, which is essential to interval estimation.

Note in Fig. 6.2 that all k intervals, constructed from the k samples of size N, have
the same width, but are centered at different points, with respect to parameter μ. If a
specific sample yields the bounds [l,u], these would be realizations of the random

variables L and U, and, from this interpretation, would have a 95% chance of

containing μ.
The line of reasoning described in the preceding paragraphs can be generalized

for constructing confidence intervals for a generic parameter θ, of a probability

distribution, as estimated from a random sample y1, y2, y3, . . . , yN, drawn from the

population of Y. This general procedure, usually referred to as the pivotal method,

can be outlined in the following steps:

Fig. 6.2 Illustration for interpreting confidence intervals (1�α)¼ 0.95 for μ, for a population with
known σ
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• Select a pivot function V ¼ v θ; Y1; Y2; . . . ; YNð Þ, of the parameter θ and of IID

variables Y1, Y2, . . . ,YN, whose density function gV(v) has θ as the only unknown
parameter;

• Determine the constants v1 and v2, such that Ρ v1 < V < v2ð Þ ¼ 1� α or that

Ρ V < v1ð Þ ¼ α=2 and Ρ V > v2ð Þ ¼ α=2;
• Using algebra, rewrite v1 < V < v2, so that the parameter θ be enclosed apart,

into its center, by the inequality signs, and rewrite it as Ρ L < θ < Uð Þ ¼ 1� α;
• Considering the sample itself, replace the random variables Y1, Y2, . . ., YN for the

observed data y1, y2, y3, . . . , yN, and calculate the realizations l and u of variables
L and U; and

• The 100(1�α)% confidence for the parameter θ is given by [l,u].

The greatest difficulty in applying the pivotal method relates to the selection of a

suitable pivot function, which is not always possible. Nevertheless, in some impor-

tant practical cases, the pivot function and its respective density can be obtained.

Some of these practical cases are listed in Table 6.6.

Example 6.13 Assume the daily water consumption of a community to be a normal

variate X and that a sample of size 30 yielded x ¼ 50 m3 and s2X ¼ 256 m6.

(a) Construct a 100(1�α)¼ 95% CI for the population mean μ. (b) Construct a
100(1�α)¼ 95% CI for the population variance σ2.

Solution

(a) From Table 6.6, the pivot function for this case is V ¼ X�μ
S=
ffiffiffi
N

p , which follows

the Student’s t distribution, with ν¼ 30�1¼ 29 degrees of freedom. In order to

set out the probability statement Ρ v1 < V < v2ð Þ ¼ 0:95, one determines from

Student’s t table of Appendix 4 that �v1 ¼ v2 ¼ t0,025, 29j j ¼ 2:045. As

Student’s t distribution is symmetrical, the quantiles corresponding to α=2 ¼
0:025 and 1� α=2 ¼ 0:975 are identical in absolute value and thus one can

Table 6.6 Some pivot functions used to construct confidence intervals (CI) from samples of

size N

Population of Y CI for parameter

Attribute for the

second parameter Pivot function V Distribution of V

Normal μ σ2 Known Y � μ

σ=
ffiffiffiffi
N

p N(0,1)

Normal μ σ2 Unknown Y � μ

S=
ffiffiffiffi
N

p Student’s tn�1

Normal σ2 μ Known PN
i¼1

Yi � μ

σ

� �2 χ2N

Normal σ2 μ Unknown
N � 1ð Þ S

2

σ2
χ2N�1

Exponential θ – 2NY

θ

χ22N
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write Ρ �2:045 < X�μ
S=
ffiffiffiffi
30

p < 2:045

 �

¼ 0:95. Rearranging this so that the popu-

lation mean μ stands alone in the center of the inequality, Ρ X��
2:045 Sffiffiffiffi

30
p < μ < X þ 2:045 Sffiffiffiffi

30
p Þ ¼ 0:95. Replacing X and S for their respective

realizations x ¼ 50 m3 and s ¼ ffiffiffiffiffiffiffiffi
256

p ¼ 16 m6, the 95% CI for μ is [44.03,

55.97].

(b) From Table 6.6, the pivot function for this case is N � 1ð Þ S2

σ2, whose distribution

is χ2N�1¼29. To establish Ρ v1 < V < v2ð Þ ¼ 0:95, one determines from the

Chi-Square table of Appendix 3 that v1¼ 16.047, for α=2 ¼ 0:025 and

29 degrees of freedom, and that v2¼ 45.722, for 1� α=2 ¼ 0:975 and

29 degrees of freedom. Note that for the χ2 distribution, the quantiles are not

symmetrical, with respect to its center. Thus, one can write Ρ 16:047 <ð
30� 1ð Þ S2

σ2 < 45:722Þ ¼ 0:95. Rearranging this so that the population variance

σ2 stands alone in the center of the inequality, Ρ 29S2

45:722 < σ2 < 29S2

16:047


 �
¼ 0:95.

Replacing S2 by its realization s2¼ 256, it follows that the 95% CI for σ2 is

[162.37,462.64]. If 100(1�α) had changed to 90%, the CI for σ2 would be

[174.45; 419.24] and, thus, narrower but with a lesser degree of confidence.

The construction of confidence intervals for the mean and variance of a normal

population is greatly facilitated by the possibility of deriving their respective exact

sampling distribution functions, as are the cases of Student’s t and χ2 distributions.
In general, an exact sampling distribution function can be determined in explicit

form when the parent distribution of X exhibits the additive property. Examples of

distributions of this kind include the normal, gamma, binomial, and Poisson. For

other random variables, it is almost invariably impossible to determine, in explicit

form, the exact sampling distributions of many of their moment functions, such as

their coefficients of skewness and kurtosis, or their parameter point estimators θ̂ .
For these cases, which unfortunately are manifold in hydrology, two alternatives

are possible: the methods that involve Monte Carlo simulation and the asymptotic

methods. For both, the results are only approximate but are in fact the only available

options for this kind of statistical inference problems.

The asymptotic methods, usually of more frequent use, yield results that are

valid as the sample size tends to infinity. These methods arise as attempts to apply

the central limit theorem to operations concerning a large number of sample-

derived quantities. Obviously, in practice, the sample is finite, but is natural to

raise the question of how large it must be such that the approximations are

reasonable. Although no concise and totally satisfying answer to this question

exists in statistical inference books, it can be frequently found suggested that

samples of sufficiently large sizes, of the order of N> 50, are acceptable for this

purpose.

Cramér (1946) showed that, under general conditions and for large samples, the

sampling distributions of moment functions and moment-based characteristics

asymptotically converge to a normal distribution with mean equal to the population

226 M. Naghettini

http://dx.doi.org/10.1007/978-3-319-43561-9_BM1


quantity being estimated and variance that can be written as c/N, where c depends
on what is being estimated and on the estimation method. Mood, Graybill and Boes

(1974) argue that any sequences of estimators of θ in a density fX(x;θ) are approx-
imately normally distributed with mean θ and variance that is a function of θ itself

and of 1/N. Hosking (1986) extended the results alike to both PWM and L-moment

estimators, provided the parent variate has finite variance. Thus, once the normal

distribution mean and variance of θ̂ have been estimated, one can determine

approximate confidence intervals for the population parameter θ, with the same

interpretation given to the ones calculated from the exact sampling distributions.

The results referred to in the preceding paragraph show that as approximate

confidence intervals for a generic estimator θ̂ are constructed, the variance of the

asymptotic normal distribution will depend on the reciprocal of the sample size, on

θ itself, and also on the estimation method. For instance, if θ̂ is an MLE estimator of

a single-parameter density fX(x;θ), Mood et al. (1974) show that the variance of the

asymptotic normal distribution is given by NE ∂ln f X x; θð Þ½ �=∂θf g2
h in o�1

.

However, if the distribution has more than one parameter, determining the variance

of the asymptotic normal distribution becomes more complex as it is necessary to

include the statistical dependence among the parameters. The reader interested in

details on these issues should consult the references Cramér (1946), Rao (1973),

and Casella and Berger (1990), for theoretical considerations, and Kaczmarek

(1977), Kite (1988), and Rao and Hamed (2000), for examples and applications

in hydrology and hydrometeorology. The next section, on constructing confidence

intervals for quantiles, shows results that are also related to the reliability of point

estimators θ̂ .

6.7 Confidence Intervals for Quantiles

After having estimated the parameters of a probability distribution FX(x), another
important objective of Statistical Hydrology is to estimate the quantile XF,

corresponding to the non-exceedance probability F, or, equivalently, the quantile

XT, corresponding to the return period T. The quantile XF can be estimated by the

inverse function F�1(x), which is denoted here by φ(F), with the formal meaning of

xF ¼ φ Fð Þ or xT ¼ φ Tð Þ. It is clear that a point estimator, such as X̂ T , contains

errors that are inherent to the uncertainties resulting from the estimation of popu-

lation characteristics and parameters from finite samples of size N. A measure

frequently used to quantify the uncertainties of X̂ T and the reliability of quantile

estimators is the standard error of estimate, denoted by ST and formally defined as

ST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E X̂ T � E X̂ T

h in o 2
� �s

ð6:25Þ

6 Parameter and Quantile Estimation 227



At this point, it is worth noting that the standard error of estimate takes into

account only the errors that result from the estimation process from finite samples

and do not include the errors that may originate from an incorrect choice of the

probability distribution model. Hence, assuming that the probability distribution

FX(x) has been correctly prescribed, the standard error of estimate should encom-

pass the errors made during the estimation of FX(x) parameters. As a consequence,

the three different estimation methods described here, namely, MOM, MLE, and

L-MOM, will yield different standard errors. The most efficient estimation method,

from a statistical point of view, is the one with the smallest value of ST.
The asymptotic methods for sampling distributions show that, for large samples,

the distribution of X̂ T is approximately normal, with mean value X̂ T and standard

deviation ST. As a result, the 100(1�α)% confidence intervals for the true popula-

tion quantile XT can be estimated by

X̂ T 	 zα=2
 Ŝ T ð6:26Þ

where zα/2 denotes the standard normal variate, for the non-exceedance probability

of α/2. Applying the properties of mathematical expectation to Eq. (6.25), it can be

shown that, for any probability distribution FX(x;α,β), of two parameters, generi-

cally denoted by α and β, the square of the standard error of estimate can be

expressed as

S2T ¼ ∂x
∂α

� �2

Var α̂
� �þ ∂x

∂β

� �2

Var β̂

 �

þ 2
∂x
∂α

� �
∂x
∂β

� �
Cov α̂; β̂


 �
ð6:27Þ

Likewise, for a probability distribution FX(x;α,β,γ), defined by three parameters,

generically denoted by α, β, and γ, it can be shown that

S2T ¼ ∂x
∂α

� �2

Var α̂
� �þ ∂x

∂β

� �2

Var β̂

 �

þ ∂x
∂γ

� �2

Var γ̂

 �

þ 2
∂x
∂α

� �
∂x
∂β

� �
Cov α̂; β̂


 �
þ 2

∂x
∂α

� �
∂x
∂γ

� �
Cov α̂; γ̂


 �

þ 2
∂x
∂β

� �
∂x
∂γ

� �
Cov β̂; γ̂


 �
ð6:28Þ

In Eqs. (6.27) and (6.28), the partial derivatives are calculated from the relation

xT ¼ φ Tð Þ and, thus, depend on the analytical expression of the inverse function for
the probability distribution FX(x). On the other hand, the variances and covariances
of the parameter estimators will depend on which of the three estimation methods,

among MOM, MLE, and L-MOM, has been used for parameter estimation. In the

subsections that follow, the more general case, for a three-parameter distribution, is

fully described for each of the three estimation methods.
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6.7.1 Confidence Intervals for Quantiles (Estimation
Method: MOM)

If the method of moments has been used to estimate parameters α, β, and γ, of
FX(x; α,β,γ), their corresponding variances and covariances must be calculated from

the relations between the parameters and the population moments μ
0
1 (or μX),

μ2 (or σ2X), and μ3 (or γXσ3X), which should be estimated by the sample moments

m
0
1 or X
� �

, m2 or S2X
� �

, and m3 (or gXS
3
X), with γX and gX respectively denoting the

population and sample coefficients of skewness of X. Thus, by the method of

moments, the quantile estimator X̂ T is a function of the sample moments m
0
1, m2,

and m3, or X̂ T ¼ f (m
0
1, m2 and m3), for a given return period T. Due to this

peculiarity of the method of moments, Kite (1988) rewrites Eq. (6.28) as

S2T ¼ ∂X̂ T

∂m
0
1

 !2

Var m
0
1

� �þ ∂X̂ T

∂m2

 !2

Var m2ð Þ þ ∂X̂ T

∂m3

 !2

Var m3ð Þþ

þ 2
∂X̂ T

∂m
0
1

 !
∂X̂ T

∂m2

 !
Cov m

0
1;m2

� �þ 2
∂X̂ T

∂m
0
1

 !
∂X̂ T

∂m3

 !
Cov m

0
1;m3

� �þ
þ 2

∂X̂ T

∂m3

 !
∂X̂ T

∂m2

 !
Cov m3;m2ð Þ

ð6:29Þ

where the partial derivatives can be obtained by the analytical relations linking X̂ T

and m
0
1, m2, and m3. Kite (1988) points out that the variances and covariances of m

0
1,

m2, and m3 are given by expressions that depend on the population moments μ2 to
μ5. These are:

Var m
0
1


 �
¼ μ2

N
ð6:30Þ

Var m2ð Þ ¼ μ4 � μ22
N

ð6:31Þ

Var m3ð Þ ¼ μ6 � μ23 � 6μ4μ2 þ 9μ32
N

ð6:32Þ

Cov m
0
1,m2


 �
¼ μ3

N
ð6:33Þ

Cov m
0
1,m3


 �
¼ μ4 � 3μ22

N
ð6:34Þ
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Cov m2,m3ð Þ ¼ μ5 � 4μ3μ2
N

ð6:35Þ

Kite (1988) suggests the solution to Eq. (6.29) be facilitated by expressing XT as

a function of the first two population moments and of the frequency factor, denoted

by KT, which is dependent upon the return period T and the FX(x) parameters.

Formally, the frequency factor is defined as

KT ¼ XT � μ
0
1ffiffiffiffiffi

μ2
p ð6:36Þ

By rearranging Eqs. (6.29)–(6.36), Kite (1988) finally proposes the following

equation to calculate S2T for MOM quantile estimators:

S2T ¼ μ2
N

1þ KTγ1þ
K2

T

4
γ2 � 1ð Þ þ ∂KT

∂γ1
2γ2� 3γ21� 6þ KT γ3� 6γ1

γ2
4
� 10

γ1
4


 �h i� 	

þ μ2
N

∂KT

∂γ1

� �2

γ4 � 3γ3γ1 � 6γ2 � 9γ21
γ2
4
þ 35

γ21
4
þ 9

� �" #

ð6:37Þ
where,

γ1 ¼ γX ¼ μ3

μ3=22

population’s coefficient of skewnessð Þ ð6:38Þ

γ2 ¼ κ ¼ μ4
μ22

population’s coefficient of kurtosisð Þ ð6:39Þ

γ3 ¼
μ5

μ5=22

ð6:40Þ

and

γ4 ¼
μ6
μ32

ð6:41Þ

Note that for a two-parameter distribution, the frequency factor no longer

depends on the moment of order 3 and, thus, the partial derivatives in Eq. (6.37)

are null, and it then reduces to

S2T ¼ μ2
N

1þ KTγ1 þ
K2

T

4
γ2 � 1ð Þ

� 	
ð6:42Þ

Finally, the estimation of the confidence intervals for the quantile XT, with

parameters estimated by the method of moments from a sample of size N,
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is performed by initially replacing γ1, γ2, γ3, γ4,KT , and ∂KT=∂γ1, as in

Equation 6.37, for the population values (or expressions) that are valid for the

probability distribution being studied, and, then, μ2, for its respective sample

estimate. Following that, one extracts the square root of S2T and, then, applies

Eq. (6.26), for a previously specified confidence level of 100(1�α)%. Example

6.14 illustrates the calculations for the two-parameter Gumbelmax distribution.

Other examples and applications can be found in Kite (1988) and Rao and

Hamed (2000). The software ALEA ( http://www.ehr.ufmg.br/downloads) imple-

ments the calculations of confidence intervals for quantiles, estimated by the

method of moments, for the most used probability distributions in current Statistical

Hydrology.

Example 6.14 With the results and MOM estimates found in the solution to

Example 6.7, estimate the 95% confidence interval for the 100-year quantile.

Solution From the solution to Example 6.7, X ~Gumax(α̂ ¼ 17:739, β̂ ¼ 72:025)
and N¼ 55. The Gumbelmax distribution, with population coefficients of skewness

and kurtosis fixed and respectively equal to γ1¼ 1.1396 and γ2¼ 5.4, is a

two-parameter distribution, for which is valid Eq. (6.42). Replacing the expressions

valid for this distribution, first, those of moments μ
0
1 ¼ β þ 0:5772α and μ2 ¼ π2α2

6
,

and, then, that of quantiles XT ¼ β � α ln �ln 1� 1
T

� �� �
, into Eq. (6.36), it is easy to

see that KT ¼ �0:45� 0:7797 ln �ln 1� 1=Tð Þ½ � and that, for T¼ 100 years,

KT¼ 3.1367. Returning to Eq. (6.42), substituting the values for KT, γ1¼ 1.1396,

γ2¼ 5.4, and μ̂ 2 ¼ π2α̂ 2

6
¼ 517:6173, the result is Ŝ

2

T¼100 ¼ 144:908 and, thus,

Ŝ T¼100 ¼ 12:038. With this result, the quantile estimate xT¼100¼ 153.160, and

z0.025¼�1.96 in Eq. (6.26), the 95% confidence interval is [130.036, 177.224].

The correct interpretation of this CI is that the probability that these bounds,

estimated with the method of moments, will contain the true population 100-year

quantile is 0.95.

6.7.2 Confidence Intervals for Quantiles (Estimation
Method: MLE)

If the parameters α, β, and γ, of FX(x;α,β,γ), have been estimated by the maximum

likelihood method, the partial derivatives, as in Eqs. (6.27) and (6.28), should

be calculated from the relation xT ¼ φ Tð Þ and, thus, will depend on the analytical

expression for the inverse of FX(x). In turn, according to Kite (1988) and Rao

and Hamed (2000), the variances and covariances of the parameter estimators

are the elements of the following symmetric matrix, known as the covariance

matrix:
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I ¼

Var α̂
� �

Cov α̂ ; β̂

 �

Cov α̂ ; γ̂

 �

Var β̂

 �

Cov β̂ ; γ̂

 �

Var γ̂

 �

2
666664

3
777775 ð6:43Þ

which is calculated by the inverse of the following square matrix, the Hessian

matrix,

M ¼

�∂2
lnL

∂α2
�∂2

lnL

∂α∂β
�∂2

lnL

∂α∂γ

�∂2
lnL

∂β2
�∂2

lnL

∂β∂γ

�∂2
lnL

∂γ2

2
6666666664

3
7777777775

ð6:44Þ

where L denotes the likelihood function. Letting D represent the determinant of

matrix M, then, the variance of α̂ , for example, will be given by the determinant of

the matrix that will remain after having eliminated the first line and the first column

of M, divided by D. In other terms, the variance of α̂ is calculated as

Var α̂
� � ¼ ∂2

ln L
∂β2

� ∂2
ln L

∂γ2 � ∂2
ln L

∂β∂γ


 �2
D

ð6:45Þ

After all elements of the covariance matrix I are calculated, one goes back to

Eq. (6.28) and estimates S2T . After that, the square root of S2T is extracted and

Eq. (6.26) should be applied to a previously specified confidence level 100

(1�α)%. Example 6.15, next, shows the calculation procedure for the Gumbelmax

distribution. Other examples and applications can be found in Kite (1988) and Rao

and Hamed (2000). The software ALEA (http://www.ehr.ufmg.br/downloads)

implements the calculations of confidence intervals for quantiles, estimated by

the method of maximum likelihood, for the most used probability distributions in

current Statistical Hydrology.

Example 6.15 With the results and MLE estimates found in the solution to Exam-

ple 6.10, estimate the 95% confidence interval for the 100-year quantile.

Solution The log-likelihood function ln(L) for the Gumbelmax probability

distribution is written as ln L α; βð Þ½ �¼�N ln αð Þ � 1
α

PN
i¼1

Yi � βð Þ�PN
i¼1

exp � Yi�β
α

� �
.

Kimball (1949), cited by Kite (1988), developed the following approximate

expressions for the second-order partial derivatives: ∂2
lnL

∂α2 ¼ � 1:8237N
α2 ; ∂2

lnL
∂β2

¼ �N
α2
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and ∂2
lnL

∂α∂β ¼ 0:4228N
α2 , which are the elements of matrix M, having, in this case, 2� 2

dimensions. By inverting matrix M, as described before, one gets the following

elements of the covariance matrix: Var α̂
� � ¼ 0:6079 α2

N , Var β̂

 �

¼ 1:1087 α2

N , and

Cov α̂; β̂

 �

¼ 0:2570 α2

N . As the quantile function for the Gumbelmax is YT ¼ β�
α ln �ln 1� 1

T

� �� �
, the partial derivatives in Eq. (6.27) are∂YT

∂α ¼ �ln �ln 1� 1
T

� �� � ¼
W and ∂YT

∂β ¼ 1. Returning to Eq. (6.27), with the calculated variances, covariances,

and partial derivatives, one obtains the variance for the MLE quantiles for

Gumbelmax as S2T ¼ α2

N 1:1087þ 0:5140W þ 0:6079W2
� �

. With the results α̂ ¼
19:4 and β̂ ¼ 71:7, from the solution to Example 6.10, and W¼ 4.60, for T¼ 100

years, one obtains S2T ¼ 130:787 and, ST ¼ 11:436. By comparing these with the

results from the solution to Example 6.14, it is clear that the MLE estimators have

smaller variance and, thus, are deemed more reliable than MOM estimators. With

the calculated value for ST, the quantile estimate xT¼100¼ 160.940, and

z0.025¼�1.96 in Eq. (6.26), the 95% confidence interval for the 100-year MLE

quantile is [138.530, 183.350]. The correct interpretation of this CI is that the

probability that these bounds, estimated with the method of maximum likelihood,

will contain the true population 100-year quantile is 0.95.

6.7.3 Confidence Intervals for Quantiles (Estimation
Method: L-MOM)

Similarly to the previous case, if the parameters α, β, and γ, of FX(x;α,β,γ), have
been estimated by the method of L-moments, the partial derivatives, as in

Eqs. (6.27) and (6.28), should be calculated from the relation xT ¼ φ Tð Þ and,

thus, depend on the analytical expression for the inverse of FX(x). In turn, the

variances and covariances are the elements of the covariance matrix, exactly as in

Eq. (6.43). Its elements, however, must be calculated from the covariance matrix

for the PWMs αr and βr, for r¼ 1, 2, and 3. Hosking (1986) showed that the vector

b ¼ b1,b2,b3ð Þ T is asymptotically distributed as a multivariate normal, with means

β ¼ β1,β2,β3ð Þ T and covariance matrix given by V/N. The expressions for evalu-

ating matrix V and, then, the standard error ST, are quite complex and can be found

in Hosking (1986) and Rao and Hamed (2000), for some probability distributions.

The software ALEA (http://www.ehr.ufmg.br/downloads) implements the calcula-

tions of confidence intervals for quantiles, estimated by the method of L-moments,

for some probability distributions.

Example 6.16 With the results and L-MOM estimates found in the solution to

Example 6.12, estimate the 95% confidence interval for the 100-year quantile.
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Solution Hosking (1986) presents the following expressions for the variances and

covariances of the L-MOM estimators for parameters α and β of the Gumbelmax

distribution: Var α̂
� � ¼ 0:8046 α2

N , Var β̂

 �

¼ 1:1128 α2

N , and Cov α̂; β̂

 �

¼
0:2287 α2

N . The partial derivatives in Eq. (6.27) are ∂YT

∂α ¼ �ln �ln 1� 1
T

� �� � ¼ W

and ∂YT

∂β ¼ 1. With the calculated variances, covariances, and partial derivatives in

Eq. (6.27), one gets S2T ¼ α2

N 1:1128þ 0:4574W þ 0:8046W2
� �

. With the results

α̂ ¼ 19:381 and β̂ ¼ 74:103, from the solution to Example 6.12, andW¼ 4.60, for

T¼ 100 years, one obtains S2T ¼ 760:39 and ST ¼ 27:58. Note that, in this case, the

sample size is only 10 and because of that S2T is much larger than its homologous in

Examples 6.14 and 6.15. The 100-year L-MOM quantile is ŷ T ¼ 100ð Þ ¼
β̂ � α̂ ln �ln 1� 1

100

� �� � ¼ 163:26. With the calculated value for ST, the quantile

estimate ŷ T ¼ 100ð Þ ¼ 163:26 and z0.025¼�1.96 in Eq. (6.26), the 95%

confidence interval for the 100-year MLE quantile is [109,21; 217,31]. The correct

interpretation of this CI is that the probability that these bounds, estimated with the

method of L-moments, will contain the true population 100-year quantile is 0.95.

The confidence intervals as calculated by the normal distribution are approxi-

mate because they are derived from asymptotic methods. Meylan et al. (2008)

present some arguments in favor of using the normal approximation for the

sampling distribution of XT. They are summarized as follows: (1) as resulting

from the central limit theorem, the normal distribution is the asymptotic form of

a large number of sampling distributions; (2) an error of second order is made in

case the true sampling distribution departs significantly from the normal distribu-

tion; and (3) the eventual differences between the true sampling distribution and the

normal distribution will be significant only for high values of the confidence level

100(1�α)%.

6.8 Confidence Intervals for Quantiles by Monte
Carlo Simulation

For the two-parameter distributions and for the most used estimation methods, the

determination of ST, in spite of requiring a number of calculation steps, is not too

demanding. However, for three-parameter distributions, the determination of ST, in
addition to being burdensome and complex, requires the calculation of covariances

among the mean, the variance and the coefficient of skewness. The software ALEA

(www.ehr.ufmg.br/downloads) implements the calculations of confidence intervals

for quantiles from the probability distributions most commonly used in Statistical

Hydrology, as estimated by MOM and MLE, under the hypothesis of asymptotic

approximation by the normal distribution. For quantiles estimated by L-MOM, the

software ALEA calculates confidence intervals only for some probability

distributions.
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Hall et al. (2004) warn, however, that for three-parameter distributions, the

nonlinear dependence of the quantiles and the third-order central moment can

make the quantile sampling distribution depart from the normal and, thus, yield

underestimated or overestimated quantile confidence intervals, especially for large

return periods. In addition to this difficulty, the fact that there are no simple

expressions for the terms that are necessary to calculate ST should be considered,

taking into account the whole set of probability distributions and estimation

methods used in the frequency analysis of hydrologic random variables.

An alternative to the normal approximation is given by the Monte Carlo simu-

lation method. Especially for three-parameter distributions, it is less arduous than

the normal approximation procedures, but it requires computer intensive methods.

In fact, it makes use of Monte Carlo simulation of a large number of synthetic

samples, of the same size N as the original sample. For each synthetic sample, the

target quantile is estimated by the desired estimation method and, then, the empir-

ical probability distribution of all quantile estimates serves the purpose of yielding

100(1�α)% confidence intervals. This simulation procedure is detailed in the next

paragraphs.

Assume that a generic probability distribution FX(x|θ1, θ2, . . ., θk) has been fitted
to the sample { x1, x2, . . . , xN}, such that its parameters θ1 , θ 2, . . . , θ k were esti-

mated by some estimation method designated as EM (EM may be MOM, MLE,

L-MOM, or any other estimation method not described in here). The application of

the Monte Carlo simulation method for constructing confidence intervals about the

estimate of the quantile X̂ F, as corresponding to the non-exceedance probability

F or the return period T¼ 1/(1�F), requires the following sequential steps:

1. Generate a unit uniform number from U(0,1), and denote it by ui;

2. Estimate the quantile X̂ F, corresponding to ui, by means of the inverse function

X̂ Fi ¼ F�1 uið Þ ¼ φ uið Þ, using the estimates for parameters θ1 , θ 2, . . . , θ k as

yielded by the method EM for the original sample { x1, x2, . . . , xN};
3. Repeat steps (1) and (2) up to i¼N, thus making up one of the W synthetic

samples of variable X;
4. Every time a new synthetic sample with size N is produced, apply the EM

method to it in order to estimate parameters θ1 , θ 2, . . . , θ k, and use the estimates

to calculate the quantile X̂ F ¼ F�1 xð Þ ¼ φ Fð Þ, corresponding to a previously

specified non-exceedance probability (e.g., F¼ 0.99 or T¼ 100 years);

5. Repeat steps (1) to (4) for the second, third, and so forth up to the Wth synthetic

sample, where W should be a large number, for instance, W¼ 5000;

6. For the specified non-exceedance probability F, after the W distinct quantile

estimates X̂ F, j, j ¼ 1, . . . W are gathered, rank them in ascending order;

7. The interval bounded by the ranked quantiles the closest to rank positionsW(α/2)
and W(1�α/2) gives the 100(1�α)% confidence interval for quantile XF; and

8. Repeat steps (4) to (7) for other values of the non-exceedance probability F, as
desired.
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Besides being a simple and easy-to-implement alternative, given the vast com-

puting resources available nowadays, the construction of confidence intervals

through Monte Carlo simulation does not assume the sampling distribution of X̂ F

must necessarily be normal. In fact, the computer intensive technique allows the

empirical distribution of quantiles to be shaped by a large number of synthetic series,

all with statistical descriptors similar to the ones observed from the original. For

example, a three-parameter lognormal (LNO3) distribution has been fitted to the

sample of 73 annual peak discharges of the Lehigh River at Stoddartsville,

listed in Table 7.1 of Chap. 7, using the L-MOM estimation method (see

Sect. 6.9.11). The L-MOM parameters estimates for the LNO3 are â ¼ 21:5190,
μ̂ Y ¼ 3:7689, and σ̂ Y ¼ 1:1204. Assuming the LNO3 distribution, with the

L-MOM-estimated parameters, represents the true parent distribution, 1000 samples

of size 73 were generated from such a hypothesized population. For each sample, the

L-MOMmethod was employed to estimate the LNO3 parameters, producing a total

of 1000 sets of estimates, which were then used to calculate 1000 different quantiles

for each return period of interest. The panels (a), (b), (c), and (d) of Fig. 6.3 depict the

histograms of the 1000 quantiles estimates (m3/s) for the return periods 10, 20,

50, and 100 years, respectively. For each return period, these quantile estimates

should be ranked and then used to calculate the respective confidence intervals,

according to step (7) previously referred to in this section. If more precision is

required, a larger number of synthetic samples are needed.

Fig. 6.3 Histograms of quantiles for the return periods 10, 20, 50, and 100 years, as estimated with

the L-MOM methods, 1000 samples drawn from an assumed LNO3 â , μ̂ Y , σ̂ Yð Þ parent for the

annual peak flows of the Lehigh River at Stoddartsville
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6.9 Summary of Parameter Point Estimators

The following is a summary of equations for estimating parameters, by the MOM

and MLE methods, for some probability distributions, of discrete and continuous

random variables, organized in alphabetical order. In all cases, equations are based

on a generic simple random sample {X1, X2, . . . , XN} of size N. For a few cases,

equations for estimating parameters by the L-MOM method are also provided. For

distributions and estimation methods not listed in this summary and for equations

for the standard errors of estimate (for calculating confidence intervals for quantiles

from three-parameter distributions), the following references are suggested: Kite

(1988), Rao and Hamed (2000), and Hosking and Wallis (1997). Good sources for

algorithms and computer codes for parameter estimation are Hosking (1991) and

the R archive at https://cran.r-project.org/web/packages/.

6.9.1 Bernoulli Distribution

MOM: p̂ ¼ X

MLE: p̂ ¼ X

L-MOM: p̂ ¼ l1

6.9.2 Beta Distribution

MOM:

α̂ and β̂ are the solutions to the system:

X ¼ α

αþ β
and

S2X ¼ αβ

αþ βð Þ 2 αþ β þ 1ð Þ
MLE:

α̂ and β̂ are the solutions to the system:

∂
∂α

lnΓ αð Þ � lnΓ αþ βð Þ½ � ¼ 1

N

XN
i¼1

ln Xið Þ

∂
∂β

lnΓ βð Þ � lnΓ αþ βð Þ½ � ¼ 1

N

XN
i¼1

ln 1� Xið Þ
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6.9.3 Binomial Distribution

For a known number m of independent Bernoulli trials:

MOM: p̂ ¼ X=m

MLE: p̂ ¼ X=m

L-MOM: p̂ ¼ l1=m

6.9.4 Exponential Distribution

MOM: θ̂ ¼ X

MLE: θ̂ ¼ X

L-MOM: θ̂ ¼ l1

6.9.5 Gamma Distribution

MOM:

θ̂ ¼ S2X
X

η̂ ¼ X
2

S2X

MLE:

η̂ is the solution to equation

ln η� ∂
∂η

lnΓ ηð Þ ¼ lnX � 1

N

XN
i¼1

lnXi ð6:46Þ

After solving (6.46), θ̂ ¼ X=η̂ .
Solution to Eq. (6.46) can be approximated by (Rao and Hamed 2000):

η̂ ¼ 0:5000876þ 0:1648852y� 0:054427y2

y
if 0 � y � 0:5772, or

η̂ ¼ 8:898919þ 9:059950yþ 0:9775373y2

y 17:7928þ 11:968477yþ y2ð Þ if 0:5772 < y � 17

wherey ¼ lnX � 1

N

XN
i¼1

lnXi
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L-MOM:

η̂ is the solution (Newton’ method) to equation

t ¼ l2

l1
¼ Γ ηþ 0, 5ð Þffiffiffi

π
p

Γ ηþ 1ð Þ ð6:47Þ

After solving (6.47), θ̂ ¼ l1=η̂ .

Hosking (1990) propose the solution to η, as in Eqn. (6.47), be obtained as

follows.

η̂ ¼ 1� 0:3080z

z� 0:05812z2 þ 0:01765z3
if 0 < t < 0:5 and z ¼ πt2, or

η̂ ¼ 0:7213z� 0:5947z2

1� 2:1817zþ 1:2113z2
if 0:5 � t < 1 and z ¼ 1� t

6.9.6 Geometric Distribution

MOM: p̂ ¼ 1=X

MLE: p̂ ¼ 1=X

L-MOM: p̂ ¼ 1=l1

6.9.7 GEV Distribution

MOM:

Alternative 1: solve Eq. (5.74) for κ, by replacing γ for the sample coefficient of

skewness gX. The solution is iterative, by Newton’s method, or as suggested in the

solution to Example 5.10.

Alternative 2 (Rao and Hamed 2000):

For the sample coefficient of skewness in the range 1.1396< gX< 10 (g¼ gX):

κ̂ ¼ 0:2858221� 0:357983gþ 0:116659g2 � 0:022725g3

þ0:002604g4 � 0:000161g5 þ 0:000004g6

For the sample coefficient of skewness in the range �2< gX< 1.1396 (g¼ gX):

κ̂ ¼ 0:277648� 0:322016gþ 0:060278g2 þ 0:016759g3

�0:005873g4 � 0:00244g5 � 0:00005g6
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For the sample coefficient of skewness in the range �10< gX< 0 (g¼ gX):

κ̂ ¼ �0:50405� 0:00861gþ 0:015497g2 þ 0:005613g3

þ0:00087g4 þ 0:000065g5

Then, α̂ ¼ SXκ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1þ 2κ̂ð Þ � Γ2 1þ κ̂ð Þ

p and β̂ ¼ X � α̂
κ̂ 1� Γ 1þ κ̂ð Þ½ �

MLE:

α̂ , β̂ , and κ̂ are the solutions, by Newton’s method, to the system:

1

α

XN
i¼1

exp �Yi � κYið Þ � 1� κð Þ
XN
i¼1

exp κYið Þ
" #

¼ 0 ð6:48Þ

1

κα

XN
i¼1

exp �Yi � κYið Þ � 1� κð Þ
XN
i¼1

exp κYið Þ þ N �
XN
i¼1

exp �Yið Þ
" #

¼ 0

ð6:49Þ
1

κ2

XN
i¼1

exp �Yi � κYið Þ � 1� κð Þ
XN
i¼1

exp κYið Þ þ N �
XN
i¼1

exp �Yið Þ
" #

þ1

κ
�
XN
i¼1

Yi þ
XN
i¼1

Yiexp Yið Þ þ N

" #
¼ 0

ð6:50Þ

where Yi ¼ 1
κ ln 1� κ Xi�β

α

� �� �
. The solution to this system of equations is compli-

cated. The reader should consult the references Prescott and Walden (1980) and

Hosking (1985), respectively, for the algorithm of the solution and the

corresponding FORTRAN programming code.

L-MOM (Hosking et al. 1985):

κ̂ ¼ 7:8590Cþ 2:9554C2, where C ¼ 2= 3þ t3


 �
� ln 2=ln 3

α̂ ¼ l2 κ̂

Γ 1þ κ̂ð Þ 1� 2�κ̂
� �

β̂ ¼ l1 � α̂

κ̂ 1� Γ 1þ κ̂ð Þ½ �
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6.9.8 Gumbelmax Distribution

MOM:

α̂ ¼ 0:7797SX

β̂ ¼ X � 0, 45SX

MLE (Rao and Hamed 2000):

α̂ and β̂ are the solutions to the system of equations:

∂
∂α

ln L α; βð Þ½ � ¼ �N

α
þ 1

α2

XN
i¼1

Xi � βð Þ � 1

α2

XN
i¼1

Xi � βð Þexp �Xi � β

α

� �
¼ 0

ð6:51Þ

L α; βð Þ½ � ¼ N

α
� 1

α

XN
i¼1

exp �Xi � β

α

� �
¼ 0 ð6:52Þ

Combining both equations, it follows that

F αð Þ ¼
XN
i¼1

Xiexp �Xi

α

� �
� 1

N

XN
i¼1

Xi � α

 !XN
i¼1

exp �Xi

α

� �
¼ 0 ð6:53Þ

Solution to (6.53), by Newton’s method, yields α̂ .

Then, β̂ ¼ α̂ ln NPN
i¼1

exp �Xi=α̂ð Þ

2
64

3
75.

L-MOM:

α̂ ¼ l2

ln 2

β̂ ¼ l1 � 0:5772 α̂

6.9.9 Gumbelmin distribution

MOM:

α̂ ¼ 0:7797SX

β̂ ¼ X þ 0:45SX
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L-MOM:

α̂ ¼ l2

ln 2

β̂ ¼ l1 þ 0:5772α̂

6.9.10 Lognormal Distribution (2 parameters, with Y¼ lnX)

MOM:

σ̂ Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln CV2

X þ 1

 �r

μ̂ Y ¼ lnX � σ̂ 2
Y

2

MLE:

μ̂ Y ¼ Y

σ̂ Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

N

r
SY

L-MOM (Rao and Hamed 2000):

σ̂ Y ¼ 2erf�1 tð Þ

μ̂ Y ¼ ln l1 � σ̂ 2
Y

2

where erf wð Þ ¼ 2ffiffi
π

p
ðw
0

e�u2du. The inverse erf�1 tð Þ is equal to u=
ffiffiffi
2

p
, being u the

standard normal variate corresponding to Φ tþ 1ð Þ=2½ �.

6.9.11 Lognormal distribution [3 parameters,
with Y¼ ln(X� a)]

MOM:

σ̂ Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln CV2

X�a þ 1
� �q

where CVX�a ¼ 1� w2=3ffiffiffiffi
w3

p and w ¼ �γX þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γX2 þ 4

p
2
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μ̂ Y ¼ ln
SX

CVX�a

� �
� 1

2
ln CV2

X�a þ 1
� �

MLE: see Rao and Hamed (2000)

L-MOM (Hosking 1990):

σ̂ Y ¼ 0:999281z� 0:006118z3 þ 0:000127z5 where z ¼
ffiffiffi
8

3

r
Φ�1 1þ t3

2

� �

μ̂ Y ¼ ln
l2

erf σ̂ Y=2ð Þ
� �

� σ̂ 2
Y

2
where erf wð Þ ¼ 2ffiffiffi

π
p
ðw
0

e�u2du

â ¼ l1 � exp μ̂ Y þ σ̂ 2
Y=2

� �

6.9.12 Log-Pearson Type III Distribution

MOM (Kite 1988, Rao and Hamed 2000):

If μ
0
r ¼ exp ξrð Þ

1�rαð Þβ are estimated by m
0
r ¼

PN
i¼1

X r
i

N , α̂ , β̂ , and ξ̂ are the solutions to:

ln m
0
1 ¼ ξ� β ln 1� αð Þ

ln m
0
2 ¼ 2ξ� β ln 1� 2αð Þ

ln m
0
3 ¼ 3ξ� β ln 1� 3αð Þ

To find the solutions, Kite (1988) suggests:

• Define B ¼ ln m
0
3 � 3 lnm

0
1

ln m
0
2 � 2 lnm

0
1

, A ¼ 1
α � 3 and C ¼ 1

B� 3

• For 3.5<B< 6, A ¼ �0:23019þ 1:65262Cþ 0:20911C2 � 0:04557C3

• For 3.0<B� 3.5, A ¼ �0:47157þ 1:99955C

• α̂ ¼ 1

Aþ 3

• β̂ ¼ ln m
0
2 � 2 lnm

0
1

ln 1� α̂ð Þ2 � ln 1� 2α̂ð Þ
• ξ̂ ¼ ln m

0
1 þ β̂ ln 1� α̂ð Þ

MLE:

α̂ , β̂ and ξ̂ are the solutions, by Newton’s method, to the system of equations:

XN
i¼1

lnXi � ξð Þ ¼ Nαβ
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NΨ βð Þ ¼
XN
i¼1

ln lnXi � ξð Þ =α½ �

N ¼ α β � 1ð Þ
XN
i¼1

1

lnXi � ξ

where Ψ βð Þ ¼ Γ0
βð Þ

Γ βð Þ , which, according to Abramowitz and Stegun (1972), can be

approximated by Ψ βð Þ ffi lnβ � 1

2β
� 1

12β2
þ 1

120β4
� 1

252β6
þ 1

240β8
� 1

132β10
.

L-MOM:

Estimates for the L-MOM can be obtained by using the same estimation proce-

dure described for the Pearson Type III, with the transformation Zi¼ ln(Xi).

6.9.13 Normal Distribution

MOM:

μ̂ X ¼ X

σ̂ X ¼ SX

MLE:

μ̂ X ¼ X

σ̂ X ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

N

r
SX

L-MOM:

μ̂ X ¼ l1

σ̂ X ¼ ffiffiffi
π

p
l2

6.9.14 Pearson Type III Distribution

MOM:

β̂ ¼ 2

gX

 ! 2
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α̂ ¼
ffiffiffiffiffi
S2X
β̂

s

ξ̂ ¼ X �
ffiffiffiffiffiffiffiffiffi
S2Xβ̂

q

MLE:

α̂ , β̂ , and ξ̂ are the solutions, by Newton’s method, to the system of equations:

XN
i¼1

Xi � ξð Þ ¼ Nαβ

NΨ βð Þ ¼
XN
i¼1

ln Xi � ξð Þ =α½ �

N ¼ α β � 1ð Þ
XN
i¼1

1

Xi � ξ

where Ψ βð Þ ¼ Γ0
βð Þ

Γ βð Þ (see log-Pearson Type III in Sect. 6.9.12).

L-MOM:

For t3� 1/3 and tm ¼ 1� t3 , β̂ ¼ 0:36067tm � 0:5967t2m þ 0:25361t3m
1� 2:78861tm þ 2:56096t2m � 0:77045t3m

.

Para t3< 1/3 and tm ¼ 3πt23 , β̂ ¼ 1þ 0:2906tm
tm þ 0:1882t2m þ 0:0442t3m

.

α̂ ¼ ffiffiffi
π

p
l2

Γ β̂
� �

Γ β̂ þ 0:5
� �

ξ̂ ¼ l1 � α̂ β̂

6.9.15 Poisson Distribution

MOM:

ν̂ ¼ X

MLE:

ν̂ ¼ X

6 Parameter and Quantile Estimation 245



6.9.16 Uniform Distribution

MOM:

â ¼ X �
ffiffiffi
3

p
Sx

b̂ ¼ X þ
ffiffiffi
3

p
Sx

MLE:

â ¼ Min Xið Þ

b̂ ¼ Max Xið Þ

L-MOM:

â and b̂ are the solutions to l1 ¼ aþ bð Þ=2 and l2 ¼ b� að Þ=6.

6.9.17 WeibullminDistribution

MOM:

α̂ and β̂ are the solutions to the system of equations:

X ¼ βΓ 1þ 1

α

� �

S2X ¼ β2 Γ 1þ 2

α

� �
� Γ2 1þ 1

α

� �� �

(See Sect. 5.7.2.5 of Chap. 5).

MLE:

α̂ and β̂ are the solutions, by Newton’s method, to the system of equations:

β�α ¼ NPN
i¼1

X α
i

α ¼ N

β�αPN
i¼1

X α
i ln Xið Þ �PN

i¼1

ln Xið Þ
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Exercises

1. Given the density f X xð Þ ¼ xθ�1 exp �xð Þ=Γ θð Þ , x > 0, θ > 0; determine

the value of c, such that cX is an unbiased estimator for θ. Remember the

following property of the Gamma function: Γ θ þ 1ð Þ ¼ θΓ θð Þ.
2. Assume {Y1,Y2, . . . ,YN} is an SRS from the variable Y with mean μ. Under

which conditions W ¼PN
i¼1

aiYi is an unbiased estimator for μ? (adapted from

Larsen and Marx 1986).

3. Assume X1 and X2 make up an SRS of size 2 from an exponential distribution

with density f X xð Þ ¼ 1=θð Þexp �x=θð Þ , x � 0. If Y ¼ ffiffiffiffiffiffiffiffiffiffi
X1X2

p
is the geometric

mean of X1 and X2, show thatW ¼ 4Y=π is an unbiased estimator for θ (adapted
from Larsen and Marx 1986).

4. Show that the mean square error is given by E θ̂ � θ
� �2h i

¼
Var θ̂
� �þ B θ̂

� �� �2
.

5. Suppose W1 and W2 are two unbiased estimators for a parameter θ, with
respective variances Var(W1) and Var(W2). Assume X1, X2, and X3 represent

an SRS of size 3, from an exponential distribution with parameter θ. Calculate
the relative efficiency of W1 ¼ X1 þ 2X2 þ X3ð Þ=4 with respect to W2 ¼ X
(adapted from Larsen and Marx 1986).

6. Suppose {X1, X2, . . . ,XN} is an SRS from f X x; θð Þ ¼ 1=θ , for 0 < x < θ; and
that WN ¼ Xmax. Show that WN is a biased but consistent estimator for θ. To
solve this exercise remember that the exact distribution for the maximum of a

SRS can be obtained using the methods described in Sect. 5.7.1 of Chap. 5

(adapted from Larsen and Marx 1986).

7. Recall that an estimator W ¼ h X1;X2; . . . ;XNð Þ is deemed sufficient for θ, if,
for all θ and for any sample values, the joint density of (X1,X2, . . .,XN),

conditioned to w, does not depend on θ. More precisely, W is sufficient if

f X1
x1ð Þf X2

x2ð Þ . . . f XN
xNð Þ=f W wð Þ does not depend on θ. Consider the esti-

mator WN, described in Exercise 6, and show it is sufficient (adapted from

Larsen and Marx 1986).

8. The two-parameter exponential distribution has density function given by

f X xð Þ ¼ 1=θð Þexp � x� ξð Þ=θ½ � , x � ξ, where ξ denotes a location parameter.

Determine the MOM and MLE estimators for ξ and θ.
9. Table 1.3 of Chap. 1 lists the annual maximum mean daily discharges (m3/s) of

the Shokotsu River recorded at Utsutsu Bridge (ID # 301131281108030-

www1.river.go/jp), in Hokkaido, Japan. Employ the methods described in

this chapter to calculate (a) the estimates for the parameters of the gamma

distribution, by the MOM, MLE, and L-MOMmethods; (b) the probability that

the annual maximum daily flow will exceed 1500 m3/s, in any given year, using

the MOM, MLE, and L-MOM parameter estimates; (c) the flow quantile for the

return period of 100 years, using the MOM, MLE, and L-MOM parameter
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estimates; and (d) make a comparative analysis of the results obtained in (b),

(c), and (d).

10. Solve Exercise 9 for the one-parameter exponential distribution.

11. Solve Exercise 9 for the two-parameter lognormal distribution.

12. Solve Exercise 9 for the Gumbelmax distribution.

13. Solve Exercise 9 for the GEV distribution.

14. Solve Exercise 9 for the Pearson type III distribution.

15. Solve Exercise 9 for the log-Pearson type III distribution.

16. Data given in Table 6.7 refer to the Manning coefficients for plastic tubes,

determined experimentally by Haan (1965). Assume this sample has been

drawn from a normal population with parameters μ and σ. (a) Construct a

95% confidence interval for the mean μ. (b) Construct a 95% confidence

interval for the variance σ2.
17. Solve Exercise 16 for the 90% confidence level. Interpret the differences

between results for 95 and 90% confidence levels.

18. Assume the true variance in Exercise 16 is known and equal to the value

estimated from the sample. Under this assumption, solve item (a) of Exercise

16 and interpret the new results.

19. Assume the true mean in Exercise 16 is known and equal to the value estimated

from the sample. Under this assumption, solve item (b) of Exercise 16 and

interpret the new results.

20. Table 1.3 of Chap. 1 lists the annual maximum mean daily discharges (m3/s) of

the Shokotsu River recorded at Utsutsu Bridge, in Japan. Construct the 95%

confidence intervals for the Gumbelmax quantiles of return periods 2, 50,

100, and 500 years, estimated by the MOM, MLE, and L-MOM. Decide on

which estimation method is more efficient. Interpret the results from the point

of view of varying return periods.

21. The reliability of the MOM, MLE, and L-MOM estimators for parameters and

quantiles has been the object of many studies. These generally take into

account the main properties of estimators and allow comparative studies

among them. The references Rao and Hamed (2000), Kite (1988), and Hosking

(1986) make syntheses of the many studies on this subject. The reader is asked

to read these syntheses and make her/his own on the main characteristics of

MOM, MLE, and L-MOM estimators for parameters and quantiles, for the

distributions exponential, Gumbelmax, GEV, Gamma, Pearson type III,

log-Pearson type III, and lognormal, as applied to the frequency analysis of

annual maxima of hydrologic events.

Table 6.7 Experimental

Manning coefficients for

plastic tubes (from Haan

1965)

0.0092 0.0085 0.0083 0.0091

0.0078 0.0084 0.0091 0.0088

0.0086 0.0090 0.0089 0.0093

0.0081 0.0092 0.0085 0.0090

0.0085 0.0088 0.0088 0.0093
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22. Table 2.7 of Chap. 2 lists the Q7 flows, in m3/s, for the Dore River at Saint-

Gervais-sous-Meymont, in France, from 1920 to 2014. Fit a Weibullmin distri-

bution for these data, employing the MOM and MLE methods, and use their

respective estimates to calculate the reference flow Q7,10. Use MS Excel and

the method described in Sect. 6.8 to construct a 95% confidence interval for

Q7,10, for both MOM and MLE, on the basis of 100 synthetic samples.

23. Write and compile a computer program to calculate the 95% confidence

intervals for quantiles, through Monte Carlo simulation, as described in

Sect. 6.8, for the Gumbelmax distribution, considering the MOM, MLE, and

L-MOM estimation methods. Run the program for the data of Table 1.3 of

Chap. 1, for return periods T¼ 2, 10, 50, 100, 500, and 1000 years. Plot your

results, with the return periods in abscissa, in log-scale, and the estimated

quantiles and respective confidence intervals, in ordinates.

24. Solve Exercise 23 for the GEV distribution.
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Chapter 7

Statistical Hypothesis Testing

Mauro Naghettini

7.1 Introduction

Together with parameter estimation and confidence interval construction, the

hypotheses testing techniques are among the most relevant and useful methods of

inferential statistics, for making decisions concerning the value of some population

parameter or the shape of the probability distribution, from a data sample. In

general, these tests start by setting out a hypothesis, in the form of a conjectural

statement on the statistical properties of the random variable population. This

hypothesis can be established, for instance, as a prior premise concerning the

value of some population parameter, such as the population mean or variance.

The decision of rejecting or not rejecting the hypothesis will depend on confronting

the conjectural statement with the physical reality imposed by the data sample.

Rejecting the hypothesis implies the need for revising the initial conjecture, as

resulting from its discordance with the reality. Contrarily, not rejecting the hypoth-

esis means that the sample data do not reveal sufficient evidence to discard the

plausibility of the conjectural statement. It is worth noting that not rejecting does

not mean accepting as true the hypothesis being tested. Once again, the truth would

only be known if the entire population could be suitably sampled.

For being an inference concerning a random variable, the decision of rejecting or

not rejecting a hypothesis is made on the probabilistic terms of a significance level
α. For instance, by collating the appropriate data, one can possibly reject the

hypothesis that the mean flow over the last 30 years, observed at a given gauging

station, has decreased. By rejecting it, one is not stating that flows have remained

stable or have increased, but that the variation of flows, over the considered period,

stems merely from the natural fluctuations of data, without important effects on the
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value of the population mean. In this case, such a variation of flows is said

nonsignificant. However, by examining the same data, another person, perhaps

more concerned with the consequences of his/her decision, might reach to a

different conclusion, that the differences between the data and the conjectural

statement, as implied by the hypothesis, are indeed significant. Hypothesis tests

are sometimes termed significance tests.

In order to remove the subjectivity that may be embedded in decision making in

hypotheses testing, in relation to how significant the differences are, the signifi-

cance level α is usually specified beforehand, so that the uncertainties inherent to

hypotheses testing can be taken into account, in an equal manner, by two different

analysts. Accordingly, based on the same significance level α, both analysts would

have made the same decision for the same test, with the same data. The significance

level α, of a hypothesis test, is complementary to the probability (1�α) that a

confidence interval [L,U] contains the true value of the population parameter θ.
Actually, the confidence interval [L,U] establishes the bounds for the so-called test

statistic, within which the hypothesis on θ cannot be rejected. Contrarily, if the

calculated values for the test statistic fall outside the bounds imposed by [L,U], then
the hypothesis on θ must be rejected, at the significance level α. Thus, according to
this interpretation, the construction of a (1�α) confidence interval represents

the inverse operation of testing a hypothesis on the parameter θ, at the significance
level α.

In essence, testing a hypothesis is to collect and interpret empirical evidence that

justify the decision of rejecting or not rejecting some conjecture (1) on the true

value of a population parameter or (2) on the shape of the underlying probability

distribution, taking into account the probabilities that wrong decisions can possibly

be made, as a result of the uncertainties that are inherent in the random variable

under analysis. Hypothesis tests can be categorized either as parametric or non-

parametric. They are said to be parametric if the sample data are assumed to have

been drawn from a normal population or from another population, whose parent

probability distribution is known or specified. On the other hand, nonparametric

tests do not assume a prior probability distribution function for describing the

population, from which the data have been drawn. In fact, nonparametric tests are

not formulated on the basis of the sample data themselves, but on the basis of

selected attributes or characteristics associated with them, such as, for instance,

their ranking orders or the counts of positive and negative differences between each

sample element and the sample median. In relation to the nature of the hypothesis

being tested, significance tests on a true value of a population parameter are useful

in many areas of applied statistics, whereas tests on the shape of the underlying

probability distribution are often required in Statistical Hydrology. The latter are

commonly referred to as goodness-of-fit tests.
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7.2 The Elements of a Hypothesis Test

In general, the sequential steps to test a hypothesis are:

• Develop the hypothesis to be tested, denoting it as H0 and designating it as the

null hypothesis. This can possibly be, for example, a conjecture stating that the

mean annual total rainfall μ0, over the last 30 years, did not deviate significantly
from the mean annual total rainfall μ1, over the previous period of 30 years. If the
null hypothesis is not false, any observed difference between the mean annual

rainfall depths is due to fluctuations of the data sampled from the same popula-

tion. For this example, the null hypothesis can be stated as H0:{μ0�μ1¼ 0}.

• Develop the alternative hypothesis and denote it as H1. For the example given in

the previous step, the alternative hypothesis, which is opposed to H0, is

expressed as H1: μ0�μ1 6¼ 0.

• Specify a test statistic T, suitable for the null and alternative hypotheses formu-

lated in previous steps. For the example given in the first step, the test statistic

should be based on the difference T ¼ X0 � X1, between the sample means for

the corresponding time periods of the population means being tested.

• Specify the probability distribution of the test statistic, which is an action that

must take into consideration not only the null hypothesis but also the underlying

probability distribution of the population from which the sample has been

drawn. For the example given in the first step, annual total rainfall depths, as

stemming from the Central Limit Theorem, can possibly be assumed as normally

distributed. As seen in Chap. 5, for normal populations, sampling distributions

for means and variances are known and explicit, and, thus, it is possible to infer

the probability distribution for the test statistic T.
• Specify the region of rejection R, or critical region R, for the test statistic.

Specifying R depends on the previous definition of the significance level α,
which, as mentioned earlier, plays the role of removing the degree of subjectivity

associated with decision making under uncertainty. For the example being

discussed, if the significance level is arbitrarily fixed as 100α¼ 5%, this

would define the bounds [T0.025, T0.975], below and above which, respectively,

begins the region of rejection R.

• Check if the test statistic T̂ , estimated from the data sample, falls inside or

outside the region of rejection R. For the example being discussed, if T̂ < T0:025

or T̂ > T0:975, the null hypothesis H0 must be rejected in favor of the alternative

hypothesis H1. In such a case, one can interpret that the difference μ1�μ0 is

significant at the 100α¼ 5% level. On the contrary, if T̂ is contained in the

interval bounded by [T0.025, T0.975], the correct decision would be not rejecting

the null hypothesis H0, thus implying that no empirical evidence of significant

differences between the two means, μ1 and μ0, was found.

For the general sequential steps, listed before, the example makes reference to

the differences between μ0 and μ1, which can be positive or negative, which implies
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that the critical region R extends through both tails of the probability distribution of

the test statistic. In such a case, the test is considered two-sided or bilateral or

two-tailed. Had both hypotheses been formulated in a different manner, such as

H0:{μ0¼ 760} against H1:{μ1¼ 800}, the test would be termed one-sided or uni-

lateral or one-tailed, as the critical region would extend through only one tail of the

probability distribution of the test statistic, in this case, the upper tail. Had

the hypotheses been H0:{μ0¼ 760} against H1:{μ1¼ 720}, the test would be also

one-sided, but the critical region would extend through the lower tail of the

probability distribution of the test statistic. Thus, besides being more specific than

bilateral tests, the one-sided tests are further categorized as lower-tail or upper-tail

tests.

From the general steps for setting up a hypothesis test, one can deduce that, in fact,

there is a close relationship between the actions of testing a hypothesis and of

constructing a confidence interval. To make it clear, let the null hypothesis be H0:

{μ¼ μ0}, on the mean of a normal population with known variance σ2. Under these
conditions, it is known that, for a sample of size N, the test statistic should be

T ¼ X � μ0
� �

=σ=
ffiffiffiffi
N

p
, which follows a standard normal distribution. In such a case,

if the significance level is fixed as α¼ 0.05, the two sided-test would be defined for the

critical region R, extending through values of T smaller than

Tα=2¼0:025 ¼ spi2;z0:025 ¼ �1:96 and larger than T1�α=2¼0:975 ¼ z0:975 ¼ þ1:96. If,

at this significance level, H0 is not rejected, such a decision would be justified by the

fact that either T̂ > T0:025 or T̂ < T0:975, or equivalently by the respective circum-

stance that either X > μ0 � 1:96σ=
ffiffiffiffi
N

p
or X < μ0 þ 1:96σ=

ffiffiffiffi
N

p
. Rearranging these

inequalities, one can write them under the form

X � 1:96σ=
ffiffiffiffi
N

p
< μ0 < X þ 1:96σ=

ffiffiffiffi
N

p
, which is the expression of the 100

(1�α)¼ 95% confidence interval for the mean μ0. By means of this example, one

can see that, in mathematical terms, testing a hypothesis and constructing a confidence

interval are closely related procedures. In spite of this mathematical relationship, they

are intended for distinct purposes: while the confidence interval sets out how accurate

the current knowledge on μ is, the test of hypothesis indicates whether or not is

plausible to assume the value μ0 for μ.
According to what has been outlined so far, the rejection of the null hypothesis

happens when the estimate of the test statistic falls within the critical region. The

decision of rejecting the null hypothesis is equivalent to stating that the test statistic

is significant. In other terms, in the context of testing H0:{μ¼ μ0} at α¼ 0.05, if the

difference between the hypothesized and empirical means is large and occurs

randomly with probability of less than 5% (or in less than 5 out of 100 identical

tests that could be devised), then this result would be considered significant and the

hypothesis must be rejected. Nonetheless, the lack of evidence to reject the null

hypothesis does not imply acceptance ofH0 as being true, as the actual truth may lie

elsewhere. In fact, the decision to not reject H0, in some cases, may indicate the

eventual need for its reformulation, to make it stricter or narrower, followed by

additional testing procedures.
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Consider now that the null hypothesis is actually true and, as such, its probability

of being rejected is given by

Ρ T2R H0j is trueð Þ ¼ Ρ T2R H0jð Þ ¼ α ð7:1Þ

It is clear that if one has rejected a true hypothesis, an incorrect decision would have

been made. The error resulting from such a decision is termed Type I Error. From
Eq. (7.1), the probability that a type I error occurs is expressed as

Ρ Type I Errorð Þ ¼ Ρ T2R H0jð Þ ¼ α ð7:2Þ

In the absence of this type of error, or, if a true hypothesis H0 is not rejected, the

probability that a correct decision has been made is complementary to the type I

error. Formally,

Ρ T=2R H0jð Þ ¼ 1� α ð7:3Þ

As opposed to that, the action of not rejecting the null hypothesis when it is

actually false, since it is known that H1 is true, is another possible incorrect

decision. The error resulting from such a decision is termed Type II Error. The
probability that a type II error occurs is expressed as

Ρ Type II Errorð Þ ¼ Ρ T=2R H1jð Þ ¼ β ð7:4Þ

In the absence of this type of error, or, if a false hypothesis H0 is rejected, the

probability that such a correct decision has been made is complementary to the type

I error. Formally,

Ρ T2R H1jð Þ ¼ 1� β ð7:5Þ

The probability, complementary to β, as given by Eq. (7.5), is designated the Power
of the Test and, as seen later on in this section, is an important criterion to compare

different hypothesis tests.

The type I and type II errors are strongly related. In order to demonstrate this,

consider the graph of Fig. 7.1, which depicts a one-sided test of the null hypothesis

H0:{μ¼ μ0} against the alternative hypothesis H1:{μ¼ μ1}, where μ denotes the

mean of a normal population and μ1> μ0.

If the estimated test statistic T̂ is larger than Tcritical, the null hypothesis must be

rejected, at the significance level α. In such a case, assuming that H0 is actually true,

the decision to reject it is incorrect and the probability of committing such an error

is α. On the other hand, if the estimated test statistic T̂ is smaller than Tcritical, the
null hypothesis must not be rejected, at the significance level α. Now, assuming that

H1 is actually true, the decision to not reject H0 is also incorrect and the probability

of committing such an error is β. In the graph of Fig. 7.1, it is clear that decreasing α
makes the value of Tcritical shift to the right of its initial location, thus causing β to
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increase. Thus, it is clear that decreasing the probability of committing a type I error

has the adverse effect of increasing the probability of committing a type II error.

The opposite situation is equally true.

It is certain that, by setting up a hypothesis test, no one is willing to make a

wrong decision of any kind. However, as uncertainties are present and wrong

decisions might be made, the desirable and logical solution is that of minimizing

the probabilities of committing both types of errors. Such an attempt unfolds the

additional difficulties brought in by the strong dependence between α and β, and by
the distinct characteristics of type I and type II errors, thus forcing a compromise

solution in the planning of the decision-making process related to a hypothesis test.

In general, such a compromise solution starts with the prior prescription of a

sufficiently low significance level α, such that β falls in acceptable values. Such a

strategy is justified by the fact that it is possible to previously specify the signifi-

cance level α, whereas, for the probability β, such a possibility does not exist. In

fact, the alternative hypothesis is more generic and broader than the null hypothesis.

For example, the alternative hypothesis H1:{μ0�μ1 6¼ 0} is ill-defined as it encom-

passes the union of many hypotheses (e.g.: H1:μ0�μ1< 0, H1: μ0�μ1< 2,

H1: μ0�μ1> 2, or H1: μ0�μ1> 0, among others), whereas the null hypothesis

H0:{μ�μ1¼ 0} is completely defined. In other terms, while α will depend only on

the null hypothesis, β will depend on which of the alternative hypotheses is actually
true, which is obviously not known a priori. In general, it is a frequent practice to

prescribe a prior significance level α of 5%, which seems reasonable and accept-

able as it is equivalent to state that at most 5 wrong decisions, out of 100 possible

decisions, are made. If the consequences of a type I error are too severe, one can

Fig. 7.1 Illustration of type I and type II errors for a one-sided test of a hypothesis
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choose an even smaller significance level, such as α¼ 0.01, to the detriment of an

increased unknown value of β.
Although the probability β depends on which alternative hypothesis, among

those encompassed by H1, is actually true and, thus, cannot be anticipated, it is

instructive to investigate the behavior of β, under different true hypotheses. Such an
investigation is performed by means of the quantity (1� β), which, as previously
mentioned, is termed the power of the test. In Fig. 7.1, the power of the test, for the

specific alternative hypothesis H1:{μ¼ μ1}, can be visualized by the area below

the density function of the test statistic, under H1, to the right of abscissa Tcritical.
For another alternative hypothesis, for example, H1:{μ¼ μ2}, it is clear that the

power of the test would have a different value. The relationships between β, or
(1�β), and a sequence of alternative hypotheses, define, respectively, the operating
characteristic curve, and the power curve, which serve the purposes of

distinguishing and comparing different tests.

In order to exemplify the construction of an operating characteristic curve and a

power curve, consider the two-sided test for the mean of a sample of varying size

N, taken from a normal population of parameters μ and σ, or, let H0:{μ¼ μ0} be

tested against a set of alternative hypotheses H1:{μ 6¼ μ0}. Once more, the test

statistic is T ¼ X � μ0
� �

=σ=
ffiffiffiffi
N

p
, which follows the normal distribution N(0,1).

The numerator of the test statistic can be altered to express deviations μ0þ k from

μ0, where k denotes a real number. As such, with T ¼ k
ffiffiffiffi
N

p
=σ, the test actually

refers to H0:{μ¼ μ0}, when k¼ 0, against a number of standardized shifts k
ffiffiffiffi
N

p
=σ,

with respect to zero, or equivalently, against a set of deviations μ0� k, with respect
to μ0. For this example, while the probability distribution associated with the null

hypothesis isN μ0, σ=
ffiffiffiffi
N

p� �
, such that the variable X � μ0

� � ffiffiffiffi
N

p
=σ is distributed asN

(0,1), the distributions associated with the alternative hypotheses H1 are given by

Nðμ0 þ k, σ=
ffiffiffiffi
N

p Þ, such that X � μ0 þ kð Þ� � ffiffiffiffi
N

p
=σ follow N k

ffiffiffiffi
N

p
=σ, 1

� �
. These

distributions are depicted in Fig. 7.2, with deviations of �3 standardized units,

with respect to the standard normal distributionN(0,1). In Fig. 7.2, one sees the type

I error (α¼ 0.05), as shaded areas for the two-sided test against H1:{μ 6¼ 0], and the

type II errors, if the true hypothesis were H1:{μ¼þ3} or H1:{μ¼�3}.

The type II error corresponds to the nonrejection of H0, when H1 is true, which

will happen when the test statistic satisfies the condition zα=2 � T � þz1�α=2, where

zα/2 and z1�α=2 represent the bounds of the critical region. The probability β of

committing a type II error should be calculated on the basis of the test statistic

distribution when H1 is true, or, in formal terms, as β ¼ Φ z1�α=2 � k
ffiffiffiffi
N

p
=σ

� ��
Φ zα=2 � k

ffiffiffiffi
N

p
=σ

� �
, where Φ(.) denotes the standard normal CDF and k

ffiffiffiffi
N

p
=σ

represents the mean, under H1. Thus, one can notice that β depends on α and N,
and on the different alternative hypotheses as given by k/σ. Such a dependence on

multiple factors can be depicted graphically by means of the operating character-

istic curve, illustrated in Fig. 7.3, for α¼ 0.05 (z0.025¼�1.96), sample sizes

N varying from 1 to 50, and k=σ ¼ 0:25, 0:50, 0:75, and 1.
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By looking at the operating characteristic curve of Fig. 7.3, one can notice that

for samples of a fixed size N, the probability of committing a type II error decreases

as k/σ increases. This is equivalent to saying that small deviations from the

hypothesized mean are hard to detect, which leads to higher probabilities of making

Fig. 7.2 Probabilities α and β for a two-sided test for the sample mean from a normal population

Fig. 7.3 Examples of operating characteristic curves for hypotheses tests
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the incorrect decision of not rejecting a false null hypothesis. One can also note that

β decreases with increasing N, thus showing the relatively lower probabilities of

committing a type II error, when tests are based on samples of larger sizes.

The power curve (or power function) is given by the complement of the

probability β, with respect to 1, and is depicted in Fig. 7.4, for the example being

discussed. The power of the test, as previously defined, represents the probability of

making the correct decision of rejecting a false null hypothesis, in favor of the true

alternative hypothesis. Figure 7.4 shows that, for samples of the same size, the

probability of not committing a type II error increases, as k/σ increases. Likewise,

the power of the test increases, with increasing sample sizes.

Figures 7.3 and 7.4 show that if, for example, the respective probabilities of

committing type I and type II errors were both kept fixed at 100α¼ 5% and

100β¼ 10%, and if the null hypothesis H0:{μ¼ μ0} were being tested against the

alternative hypothesis H1:{μ¼ μ0þ 0.5σ}, then a sample of size 42 would be

required. If a sample with at least 42 elements were not currently available or if

gathering additional data were too onerous, then one could search for a trade-off

solution between the reliability of the test, imposed by α and β, and the cost and

willingness to wait for additional sampling. In hydrology practice, the decisions

concerning the population characteristics of a random variable are usually made on

the basis of samples of fixed sizes and, usually, post hoc power analysis for the

hypothesis test being used is not carried out, an exception being made for assessing

and comparing the power of different tests or in highly sensitive cases. Thus, the

remaning sections of this chapter will keep the focus on hypotheses tests based on

samples of fixed size, with the previous specification of low significance levels,

such as 100α¼ 5% or 10%, implicitly accepting the resulting probabilities β. The
reader interested in power analysis and more elaborate tests and methods, should

Fig. 7.4 Examples of power curves for hypotheses tests
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consult Hoel et al. (1971), Mood et al. (1974), and Ramachandran and Tsokos

(2009), for books of intermediate level of complexity, or Bickel and Doksum

(1977) and Casella and Berger (1990) for more in-depth texts.

Instead of previously choosing the value of the significance level α, an alterna-

tive manner to perform a statistical hypothesis test is to compute the so-called

p-value, based on the estimated test statistic T̂ , and make the decision of rejecting or

not rejecting H0 by comparing the p-value with current-practice significance levels.
The p-value is defined as the lowest level of significance at which the null

hypothesis would have been rejected and is very useful for making decisions on

H0, without resorting to reading tables of specific probability distributions. For

example, if, for a one-sided lower tail test, the p-value of an estimated test statistic

T̂ is calculated as the non-exceedance probability p ¼ P T < T̂ H0j� � ¼ 0:02, then

H0 would be rejected at α¼ 0.05, because p< α and the estimated test statistic

would lie in the critical region, but would not be rejected at α¼ 0.01, for the

opposite reason. For a one-sided upper tail test, the p-value is given by the

exceedance probability p ¼ P T > T̂ H0j� �
and should be compared to an assumed

value of α; if p< α, H0 would be rejected at the significance level α and, otherwise,

not rejected. For a two-sided test, if the T distribution is symmetric,

p ¼ 2P T > T̂
�� �� H0j� �

should be compared to α and, if p< α, H0 would be rejected

at the significance level α and, otherwise, not rejected. If the T distribution is not

symmetric, the calculation of p should be performed for both tails, by making

p ¼ 2s, where s ¼ min P T < T̂ H0j� �
,P T > T̂ H0j� �� �

, and then compared to α; if
p< α, H0 would be rejected at the level α and, otherwise, not rejected.

Ramachandran and Tsokos (2009) note that the p-value can be interpreted as a

measure of support for H0: the lower its value, the lower the support. In a typical

decision making, if the p-value drops below the significance level of the test, the

support for the null hypothesis is not sufficient. The p-value approach to decision

making in statistical hypothesis testing is employed in the vast majority of statis-

tical software.

7.3 Some Parametric Tests for Normal Populations

Most of the statistical methods that concern parametric hypotheses tests refer to

normal populations. This assessment can be justified, first, by the possibility of

deducing the exact sampling distributions for normally distributed variables, and,

second, by the power and extension of the central limit theorem. In the subsections

that follow, the descriptions of the main parametric tests for the testing of hypoth-

eses for normal populations, along with their assumptions and test statistics, are

provided. For these tests to yield rigorous results, their underlying assumptions

must hold true. In some special cases, as resulting from the application of the

central limit theorem to large samples, one may consider extending parametric tests

for nonnormal populations. It must be pointed out, however, that the results, from
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such extensions, will only be approximate and the degree of approximation will be

given by the difference between the true significance level, as evaluated by the rate

of rejections of a true hypothesis from Monte Carlo simulations, and the nominal

specified value for α.

7.3.1 Parametric Tests for the Mean of a Single Normal
Population

The underlying assumption for the hypotheses tests described in this subsection is

that the simple random sample {x1, x2, . . ., xN}, has been drawn from a normal

population with unknown mean μ. The normal variance σ2, as the distribution

second parameter, plays an important role in testing hypotheses on the mean μ. In
fact, whether or not the population variance σ2 is known determines the test statistic

to be used in the test.

• H0: μ¼ μ1 against H1: μ¼ μ2. Population variance σ2: known.

Test statistic: Z ¼ x�μ1
σ=

ffiffiffi
N

p

Probability distribution of the test statistic: standard normal N(0,1)

Test type: one-sided at significance level α
Decision:

If μ1> μ2, reject H0 if
x�μ1
σ=

ffiffiffi
N

p < �z1�α

If μ1< μ2, reject H0 if
x�μ1
σ=

ffiffiffi
N

p > þz1�α

• H0: μ¼ μ1 against H1: μ¼ μ2. Population variance σ2: unknown and estimated

by s2X.

Test statistic: T ¼ x�μ1
sX=

ffiffiffi
N

p

Probability distribution of the test statistic: Student’s t with ν¼N�1

Test type: one-sided at significance level α
Decision:

If μ1> μ2, reject H0 if
x�μ1
sX=

ffiffiffi
N

p < �t1�α,ν¼N�1

If μ1< μ2, reject H0 if
x�μ1
sX=

ffiffiffi
N

p > þt1�α,ν¼N�1

• H0: μ¼ μ0 against H1: μ 6¼ μ0. Population variance σ2: known.

Test statistic: Z ¼ x�μ0
σ=

ffiffiffi
N

p

Probability distribution of the test statistic: standard normal N(0,1)
Test type: two-sided at significance level α
Decision:

Reject H0 if
x�μ0
σ=

ffiffiffi
N

p
��� ��� > z1�α=2

• H0: μ¼ μ0 against H1: μ 6¼ μ0. Population variance σ2: unknown and estimated

by s2X.

7 Statistical Hypothesis Testing 261



Test statistic: T ¼ x�μ0
sX=

ffiffiffi
N

p

Probability distribution of the test statistic: Student’s t with ν¼N�1

Test type: two-sided at significance level α
Decision:

Reject H0 if
X�μ0
sX=

ffiffiffi
N

p
��� ��� > t1�α=2,ν¼N�1

Example 7.1 Consider the time series of annual total rainfalls recorded since 1767,

at the Radcliffe Meteorological Station, in Oxford (England), retrievable from the

URL http://www.geog.ox.ac.uk/research/climate/rms/rain.html. Figure 5.4 shows

that the normal distribution fitted to the sample data closely matches the empirical

histogram, thus it being plausible to assume data have been drawn from a normal

population. For this example, assume that the available sample begins in the year

1950 and ends in 2014. Test the hypothesis that the population mean is 646 mm, at

100α¼ 5%.

Solution The sample of size N¼ 65 yields x ¼ 667:21 mm and

s2X ¼ 13108:22 mm2, with no other information regarding the population variance,

which is, then, deemed unknown and, as such, must be estimated by the sample

variance. The null hypothesis H0:{μ¼ 646} should be tested against the alternative

hypothesis H1:{μ 6¼ 646}, thus setting up for a two-sided hypothesis test. The test

statistic is T ¼ X � 646
� �

=sX=
ffiffiffiffi
N

p
and follows a Student’s t distribution with

ν ¼ 65� 1 ¼ 64 degrees of freedom. Substituting the sample mean and variance

in the given equation, the estimate of the test statistic is T̂ ¼ 1:4936. Either the table
of Student’s t quantiles of Appendix 4 or the MS Excel built-in function T.INV

(0.975;64) returns the critical value Tcritical¼ 1.9977. Since T̂ < Tcritical, the esti-

mate of the test statistic does not fall in the critical region and, thus, the decision is

for the nonrejection of the null hypothesis. Alternatively, using the p-value
approach, since the Student’s t distribution is symmetric, one needs first to calculate

the probability p ¼ 2P T > T̂
�� �� H0j� �

and then compare it to α ¼ 0:05. For

P T > 1:4936 H0jð Þ, the MS Excel built-in function T.DIST.RT(1.4936;64), for

the right tail of Student’s t distribution, returns the value 0.07. Then,

p ¼ 2� 0:07 ¼ 0:14, which is larger than α ¼ 0:05, thus confirming the decision

of not rejecting the null hypothesis. This decision should be interpreted as follows:

based on the available sample, there is no empirical evidence that the population

mean differs from 646 mm and, if 100 such tests had been performed in identical

conditions, no more than 5 would have led to a different conclusion.

Example 7.2 Solve the Example 7.1, assuming the population variance σ2 is known
and equal to 13045.89 mm2.

Solution The added information concerning the population variance has the

important effect of changing the test statistic and, therefore, its probability distri-

bution and the decision rules for the test. For this example, it is still a two-sided test

at the significance level of 100α¼ 5%, but the test statistic changes to Z ¼ X�646
σ=

ffiffiffi
N

p ,
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which follows a standard normal distribution. Substituting the sample mean and the

population variance in the given equation, the estimate of the test statistic is

Ẑ ¼ 1:4971. Table 5.1 of Chap. 5 gives Zcritical ¼ z0:975 ¼ 1:96. As Ẑ < Zcritical,

the null hypothesis H0 should not be rejected in favor of H1. Because in both cases

N is a relatively large number, the decision and the values for the test statistics do

not differ much for Examples 7.1 and 7.2. However, for sample sizes of less than

30, the differences might begin to increase considerably due to the distinct

probability distributions of the test statistic, namely the Student’s t and the standard
normal.

7.3.2 Parametric Tests for the Means of Two Normal
Populations

The underlying assumption for the hypotheses tests described in this subsection is

that the simple random samples {x1, x2, . . ., xN} and {y1, y2, . . ., yM}, of sizes N and

M, have been drawn from normal populations with unknown means μX and μY,
respectively. The distributions’ other parameters, namely, the variances σ2X and σ2Y ,
play an important role in testing hypotheses on the means. Whether or not the

populations’ variances are known and/or equal determine the test statistic to be used

in the test. Tests described in this subsection are two-sided, but they can be easily

modified to one-sided, by altering the alternative hypothesisH1 and the significance

level α.

• H0: μX � μY ¼ δ against H1: μX � μY 6¼ δ.
Populations’ variances σ2X and σ2Y : known

Test statistic: Z ¼ X�Yð Þ�δffiffiffiffiffiffiffiffiffi
σ2
X
N þ

σ2
Y
M

q
Probability distribution of the test statistic: standard normal N(0,1)

Test type: two-sided at significance level α
Decision:

Reject H0 if
X�Yð Þ�δffiffiffiffi

σ2
X
N

q
þσ2

Y
M

������
������ > z1�α

2

• H0: μX � μY ¼ δ against H1: μX � μY 6¼ δ.
Populations’ variances σ2X and σ2Y : equal, unknown, and estimated by s2X and s2Y .

Test statistic: T ¼ X�Yð Þ�δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1ð Þs2Xþ M�1ð Þs2Y

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NM NþM�2ð Þ

NþM

q
Probability distribution of the test statistic: Student’s t with ν¼NþM�2

Test type: two-sided at significance level α
Decision:

Reject H0 if
X�Yð Þ�δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�1ð Þs2
X
þ M�1ð Þs2

Y

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NM NþM�2ð Þ

NþM

q����
���� > t1�α

2
,ν¼NþM�2
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• H0: μX � μY ¼ δ against H1: μX � μY 6¼ δ.
Populations’ variances σ2X and σ2Y : unequal, unknown, and estimated by

s2X and s2Y .

Test statistic: T ¼ X�Yð Þ�δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2X=Nð Þþ s2Y=Mð Þp

Probability distribution of the test statistic: according to Casella and Berger

(1990) the test statistic distribution is approximated by the Student’s t, with ν
given by

ν ¼ s2X=Nð Þþ s2Y=Mð Þ½ �2
s2
X
=Nð Þ2

N�1
þ

s2
Y
=Mð Þ2

M�1

� 	 degrees of freedom.

Test type: two-sided at significance level α
Decision:

Reject H0 if
X�Yð Þ�δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
X
=Nð Þþ s2

Y
=Mð Þp����

���� > t1�α
2
,ν

Example 7.3 Consider the annual total rainfalls recorded since 1767, at the Rad-

cliffe Meteorological Station, in Oxford (England), retrievable from the URL http://

www.geog.ox.ac.uk/research/climate/rms/rain.html. Split the sample into two sub-

samples of equal sizes: one, denoted by X, for the period 1767 to 1890, and the

other, denoted by Y, from 1891 to 2014. Test the hypothesis, at 100α¼ 5%, that the

mean annual rainfall depths, for the time periods 1767–1892 and 1893–2014, do not

differ significantly.

Solution Assume that, for the time periods 1767–1890 and 1891–2014, annual

total rainfalls are normally distributed, with respective means μX and μY, and
unequal and unknown variances σ2X and σ2Y . The subsamples X and Y, each with

124 elements, yield respectively x ¼ 637:17 mm and s2X ¼ 13336:46 mm2, and

y ¼ 654:75 mm and s2Y ¼ 12705:63 mm2. For this example, the null hypothesis is

H0:{μX � μY ¼ δ ¼ 0}, which is to be tested against the alternative hypothesis H1:

μX � μY ¼ δ 6¼ 0. As the variances are assumed unequal and unknown, the test

statistic should be T ¼ x�yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
X
=124ð Þð Þþ s2

Y
=124ð Þp , whose probability distribution can be

approximated by the Student’s t, with ν ¼ 123 s2X=124ð Þþ s2Y=124ð Þ½ �
s2
X
=124ð Þ2þ s2

Y
=124ð Þ2

2

¼ 246 degrees of

freedom. Substituting the sample values into the test statistic equation, the result is

Tj j ¼ 1:213. The MS Excel function T.INV(0.975; 246) returns t0:975,ν¼246 ¼ 1:97.
As 1.213< 1.97, the null hypothesis H0 cannot be rejected in favor of H1. Now,

solve this example, by assuming (1) the populations’ variances are known; (2) the
population’s variances are equal yet unknown; (3) the sample has been split into

subsamples V, from 1767 to 1899, and U, from 1900 to 2014; and (4) only the last

80 years of records are available. Comment on the differences found in testing these

hypotheses.
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7.3.3 Parametric Tests for the Variance of a Single Normal
Population

The underlying assumption for the hypotheses tests described in this subsection is

that the simple random sample {x1, x2, . . ., xN}, has been drawn from a normal

population with unknown variance σ2. Whether or not the population’s mean μ is

known determines the test statistic to be used. Tests described in this subsection are

two-sided, but can be easily modified to one-sided, by altering the alternative

hypothesis H1 and the significance level α.

• H0: σ2 ¼ σ20 against H1: σ2 6¼ σ20. Population mean μ: known.

Test statistic: Q ¼
PN
i¼1

Xi�μð Þ2

σ2
0

¼ N
s2x
σ2
0

Probability distribution of the test statistic: χ2 with ν ¼ N
Test type: two-sided at significance level α
Decision:

Reject H0 if N
s2x
σ2
0

< χ2α
2
,N or if N

s2x
σ2
0

> χ21�α
2
,N

• H0: σ2 ¼ σ20 against H1: σ2 6¼ σ20. Population mean μ: unknown. Estimated by X.

Test statistic: K ¼
PN
i¼1

Xi�Xð Þ2
σ2
0

¼ N � 1ð Þ s2x
σ2
0

Probability distribution of the test statistic: χ2 with ν ¼ N � 1

Test type: two-sided at significance level α
Decision:

Reject H0 if N � 1ð Þ s2x
σ2
0

< χ2α
2
,N�1 or if N � 1ð Þ s2x

σ2
0

> χ21�α
2
,N�1

Example 7.4 Consider again the annual rainfall data observed at the Radcliffe

Meteorological Station, in Oxford (England). Assume that the available sample

begins in the year 1950 and ends in 2014. Test the null hypothesis that

the population variance σ20 is 13,000 mm2 against the alternative

H1 : σ21 < 13, 000mm2

 �

, at 100α¼ 5%.

Solution Again, the basic assumption is that the annual total rainfall depths are

normally distributed. The sample of size N¼ 65 yields x ¼ 667:21 mm and

s2X ¼ 13108:22 mm2, with no other information regarding the population mean,

which must then be estimated by the sample mean. For this example, the null

hypothesis H0:{σ20 ¼ 13000} should be tested against H1 : σ21 < 13, 000

 �

, which

is a one-sided lower tail test, with the test statistic K ¼ N � 1ð Þs2x=σ20 following a

chi-square distribution with 64 degrees of freedom. Substituting the sample esti-

mates into the test statistic equation, it follows that K¼ 64.53. The MS Excel built-

in function CHISQ.INV(0.05;64) returns χ20:05,64 ¼ 44:59. As 64.53> 44.59, the

null hypothesis H0 should not be rejected in favor of H1, at 100α¼ 5%. Now, solve

this example, by assuming (1) the population mean is known and equal to 646 mm;
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(2) the alternative hypothesis has changed to σ21 > 13, 000mm2 ; and (3) the

alternative hypothesis has changed to σ21 6¼ 13, 000 mm2. Use the p-value approach
to make your decisions.

7.3.4 Parametric Tests for the Variances of Two Normal
Populations

The underlying assumption for the hypotheses tests described in this subsection is

that the simple random samples {x1, x2, . . ., xN} and {y1, y2, . . ., yM}, of sizes N and

M, have been drawn from normal populations with unknown variances σ2X and σ2Y ,
respectively. Whether or not the populations’ means μX and μY are known deter-

mines the number of degrees of freedom for the test statistic to be used in the test.

Tests described in this subsection are two-sided, but can be easily modified to

one-sided, by altering the alternative hypothesis H1 and the significance level α.

• H0:
σ2X
σ2Y

¼ 1 against H1 :
σ2X
σ2Y

6¼ 1

Populations’ means μX and μY: known

Test statistic: φ ¼ s2X=σ
2
X

s2Y=σ
2
Y

Probability distribution of the test statistic: Snedecor’s F, with ν1 ¼ N and

ν2 ¼ M
Test type: two-sided at significance level α
Decision:

Reject H0 if φ < FN ,M,α=2 or if φ > FN ,M, 1�α=2

• H0 :
σ2X
σ2
Y

¼ 1 against H1 :
σ2X
σ2
Y

6¼ 1

Populations’ means μX and μY: unknown and estimated by x and y

Test statistic: f ¼ s2X=σ
2
X

s2Y=σ
2
Y

Probability distribution of the test statistic: Snedecor’s F, with ν1 ¼ N � 1 and

ν2 ¼ M � 1

Test type: two-sided at significance level α
Decision:

Reject H0 if f < FN�1,M�1,α=2 or if f > FN�1,M�1,1�α=2

Example 7.5 A constituent dissolved in the outflow from a sewage system has been

analyzed 7 and 9 times through procedures X and Y, respectively. Test results for
procedures X and Y yielded standard deviations sX ¼ 1:9 and sY ¼ 0:8mg=l, respec-
tively. Test the null hypothesis that procedure Y is more precise than procedure X, at
100α¼ 5% (adapted from Kottegoda and Rosso 1997)

Solution Assuming data have been drawn from two normal populations, the null

hypothesis to be tested is H0 :
σ2X
σ2
Y

¼ 1 against the alternative H1 :
σ2X
σ2
Y

>
n
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1 or σ2X > σ2Yg. Therefore, this is a one-sided upper tail test at α¼ 0.05. The test

statistic is f ¼ s2X=σ
2
X

s2
Y
=σ2

Y

, following the Snedecor’s F distribution with γ1 ¼ 7� 1 ¼ 6

and γ2 ¼ 9� 1 ¼ 8 degrees of freedom for the numerator and the denominator,

respectively. Substituting the sample values into the test statistic equation, it results

in f¼ 5.64. The table of F quantiles, in Appendix 5, reads F6,8,0.95¼ 3.58. As

5.64> 3.58, the decision is for rejecting the null hypothesis in favor of the alterna-

tive hypothesis, at α¼ 005. In other words, the empirical evidence has shown that

procedure Y is more precise, as the variance associated with its results is smaller

than that of the results from the competing procedure X.

7.4 Some Nonparametric Tests Useful in Hydrology

The previously described parametric tests require that the underlying probability

distributions of the populations of variables X and Y be normal. In fact, as long as a

random variable is normally distributed, it is possible to derive its exact sampling

distributions and, therefore, the probability distributions for the most common test

statistics. However, as one attempts to apply parametric tests for nonnormal

populations, the main consequence will fall upon the significance level, with the

violation of its nominal specified value α. For instance, if T denotes the test statistic

T ¼ X � μ0
� �

=sX=
ffiffiffiffi
N

p
for a random variable X, whose probabilistic behavior

departs from normality, the true probability of committing a type I error will not

be necessarily equal to the nominal value α. If such a situation arises, one could

write

ð�tα=2

�1
f T t H0jð Þdtþ

ð1
tα=2

f T t H0jð Þdt 6¼ α ð7:6Þ

where fT(t) represents the true yet unknown probability distribution of the test

statistic T ¼ X � μ0
� �

=sX=
ffiffiffiffi
N

p
, for non-Gaussian X.

The science of Mathematical Statistics presents two possible solutions for the

problem posed by Eq. (7.6). The first refers to demonstrating, through Monte Carlo

simulations, that even if a random variable X departs from normality, the true

density fT(t|H0), of the test statistic, might behave similarly to the assumed density

under normality. For instance, Larsen and Marx (1986) give some examples

showing that if the actual probability distribution of X is not too skewed or if the

sample size is not too small, the Student’s t distribution can reasonably approximate

the true density fT(t|H0), for testing hypotheses on the population mean of X. In such
cases, one is able to state that Student’s t is robust, with respect to moderate

departures from normality. Given the usually highly skewed probability
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distributions associated with hydrologic variables and the usual small size samples,

such a possible solution to the problem posed by Eq. (7.6) seems to be of limited

application in Statistical Hydrology.

The second possible solution to the problem posed by Eq. (7.6), is given by the

possibility of substituting the conventional test statistics by others, whose proba-

bility distributions remain invariant, under H0, to the diverse shapes the underlying

population distribution can take. The inferential statistical procedures that exhibit

such characteristics, with particular emphasis on hypotheses tests, are termed

nonparametric. The general elements of setting up a hypothesis test, described in

Sects. 7.1 and 7.2, remain the same for the nonparametric tests. The specific feature

that differentiates nonparametric from parametric tests lies in conceiving the test

statistic as invariant to the probability distribution of the original random variable.

In fact, the test statistics for most nonparametric tests are based on characteristics

that can be derived from the original data but do not directly include the data values

in the calculations. These characteristics can be, for instance, the number of positive

and negative differences between the hypothesized median and the sample values,

or the correlation coefficient between the ranking orders of data from two samples,

or the number of turning points along a sequence of time indices, among many

others.

The number and variety of nonparametric tests have increased substantially

since their introduction in the early 1940s. This section does not have the objective

of advancing through the mathematical foundations of nonparametric statistics and

nonparametric tests. The reader interested in those details should consult special-

ized references, such as Siegel (1956), Gibbons (1971), and Hollander and Wolfe

(1973). The subsections that follow contain descriptions, followed by worked out

examples, of the main nonparametric tests employed in Statistical Hydrology.

These tests are intended to check on whether or not the fundamental assumptions

that are necessary for hydrologic frequency analysis hold for a given sample. Recall

that the basic premise that allows the application of statistical methods to a

collection of data, reduced from a hydrologic time series, is that it is a simple

random sample, drawn from a single population, whose probability distribution is

not known. This basic premise reveals the implicit assumptions of randomness,

independence, homogeneity, and stationarity that a hydrologic sample must hold.

For the usually short samples of skewed hydrologic data, these implicit assumptions

can be tested through the use of nonparametric tests.

7.4.1 Testing the Randomness Hypothesis

In the context of Statistical Hydrology, the essential assumption is that a sample is

drawn at random from the population, with an equal chance of independently

drawing each of its elements. The sample values are thought of as realizations of

random variables, representing the 1st draw, the 2nd draw, and so forth up to the

Nth draw. A sample such as this is being referred to throughout this book as simple
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random and the related stochastic process as purely random. Nonrandomness in a

sample of a hydrologic variable can arise from statistical dependence among its

elements, nonhomogeneities, and nonstationarities. Causes can be either natural or

man-made. Natural causes are mostly related to climate fluctuations, earthquakes,

and other disasters, whereas anthropogenic causes are associated with land-use

changes, construction of large-reservoir dams upstream, and human-induced cli-

mate change. There are a number of tests specifically designed for detecting serial

dependence, nonhomogeneities and nonstationarities. In this subsection, a general

test for randomness is described.

The general assumption of randomness for a sample of a hydrologic variable

cannot be unequivocally demonstrated, but it can be checked through a nonpara-

metric hypothesis test. NERC (1975) suggests that the hypothesis that data have

been sampled at random can be tested by counting the number of turning points they

make throughout time. A turning point is either a peak or a trough in a time plot of

the concerned hydrologic variable. The heuristics of the test is that too many or too

few turning points are indicative of possible nonrandomness.

For a purely random stochastic process, as realized by a time series of

N observed values, it can be shown that the expected number of turning points,

denoted by p, is given by

E p½ � ¼ 2 N � 2ð Þ
3

ð7:7Þ

with variance approximated as

Var p½ � ¼ 16N � 29

90
ð7:8Þ

For large samples, Yule and Kendall (1950) proved that the distribution of p can
be approximated by a normal distribution. Thus, for a large sample and under the

null hypothesis H0:{the sample data are random}, the standardized test statistic

T ¼ p� E p½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var p½ �p ð7:9Þ

follows a standard normal distribution. For a relatively large sample of a hydrologic

variable, say N> 30, the number of peaks or troughs p is counted on a graph of the

sample values against their respective occurrence times or time indices. The sample

estimate for the standardized test statistic is designated by T̂ . As a two-sided test at

the significance level α, the decision would be to reject the null hypothesis, if

T̂
�� �� > z1�α=2. See Example 7.6 for an application of this test.
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7.4.2 Testing the Independence Hypothesis

The term independence essentially means that no observed value in a sample can

affect the occurrence or the non-occurrence of any other sample element. In the

context of hydrologic variables, the natural water storages in the catchment, for

example, can possibly determine the occurrence of high flows, following a

sequence of high flows, or, contrarily, persistent low flows, following a sequence

of low flows. The statistical dependence between time-contiguous flows in a

sample, for the given example, will highly depend on the time interval that

separates the consecutive data: strong dependence is expected for daily intervals,

whereas weak or no dependence is expected for seasonal or annual intervals. As

frequently mentioned throughout this book, Statistical Hydrology deals mostly with

yearly values, abstracted as annual means, totals, maxima, or minima, from the

historical series of hydrologic data. Samples abstracted for monthly, seasonal and

other time intervals, as well as non-annual extreme data samples, such as in partial

duration series, can also be employed in Statistical Hydrology. In any case, how-

ever, the assumption of statistical independence among the sample data must be

previously checked. A simple nonparametric test that is frequently used for such a

purpose is the one proposed by Wald and Wolfowitz (1943), to be described next in

this subsection.

Let {x1, x2, . . ., xN} represent a sample of size N from X, and {x01, x02, . . ., x0N}
denote the sequence of differences between the ith sample value xi and the sample

mean x. The test statistic for the Wald–Wolfowitz nonparametric test is calculated

as

R ¼
XN�1

i¼1

x
0
ix

0
iþ1 þ x

0
1x

0
N ð7:10Þ

Notice that the statistic R is a quantity that is proportional to the serial correlation

coefficient between the successive elements of the sample.

For large N and under the null hypothesis H0, that sample data are independent,

Wald and Wolfowitz (1943) proved that R follows a normal distribution with mean

E R½ � ¼ � s2
N � 1

ð7:11Þ

and variance given by

Var R½ � ¼ s22 � s4
N � 1

þ s22 � 2s4
N � 1ð Þ N � 2ð Þ �

s22
N � 1ð Þ2 ð7:12Þ

where the sample estimate of sr is ŝ r ¼
PN
i¼1

x
0
i

� �r
.
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Hence, under the null hypothesis H0:{sample data are independent], the stan-

dardized test statistic for the Wald–Wolfowitz test is

T ¼ R� E R½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var R½ �p ð7:13Þ

which follows a standard normal distribution. The sample estimate for the stan-

dardized test statistic is designated by T̂ . As a two-sided test at the significance level

α, the decision would be to reject the null hypothesis, if T̂
�� �� > z1�α=2. As a test

based on the serial correlation coefficient, the Wald–Wolfowitz test can also be

used to check for non-stationarity, as introduced by linear trends throughout time

(see Bobée and Ashkar 1991, WMO 2009). See Example 7.6 for an application of

this test.

7.4.3 Testing the Homogeneity Hypothesis

In essence, the term homogeneity refers to the attribute that all elements of a sample

come from a single population. A flood data sample, for instance, may eventually

consist of floods produced by ordinary rainfalls, of moderate intensities and vol-

umes, and by floods produced by extraordinary rainfalls, of high intensities and

volumes, associated with particularly extreme hydrometeorological conditions,

such as the passage of hurricanes or typhoons over the catchment. For such a

case, there are certainly two different populations, as distinguished by the flood

producing mechanism, and one would end up with a nonhomogeneous (heteroge-

neous) flood data sample. Bobée and Ashkar (1991) point out, however, that the

variability usually present in extreme data samples, such as flood and maximum

rainfall data, is, in some cases, so high that can make the task of deciding on its

homogeneity difficult. In general, it is much easier to detect heterogeneities in

samples of annual totals or annual mean values than in extreme data samples.

Heterogeneities may also be associated with flow data, observed at some gaug-

ing station, before and after the construction of a large-reservoir dam upstream,

since highly regulated flows, as compared to natural flows, will necessarily have a

larger mean with a smaller variance. The decision on whether or not a data sample

can be considered homogenous is often made with the help of a nonparametric test

proposed by Mann and Whitney (1947), to be described next in this subsection.

Given a data sample {x1, x2, . . ., xN}, of size N, one first needs to split it into two
subsamples: x1; x2; . . . ; xN1

f g of size N1 and xN1þ1; xN1þ2; . . . ; xNf g of size N2, such

that N1þN2¼N and that N1 and N2 are approximately equal, with N1�N2 . The

next step is to rank the complete sample, of size N, in ascending order, noting each

sample element’s ranking order m and whether it comes from the first or the second

subsample. The intuitive idea behind the Mann–Whitney test is that, if the sample is
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not homogeneous, the ranking orders of the elements coming from the first sub-

sample will be consistently higher (or lower) than those of the second subsample.

The Mann–Whitney test statistic is given by the lowest value V between the

quantities

V1 ¼ N1N2 þ N1 N1 þ 1ð Þ
2

� R1 ð7:14Þ

and

V2 ¼ N1N2 � V1 ð7:15Þ
where R1 denotes the sum of the ranking orders of all elements from the first

subsample.

For N1 and N2 both larger than 20 and under the null hypothesis H0:{sample is

homogeneous}, Mann and Whitney (1947) proved that V follows a normal distri-

bution with mean

E V½ � ¼ N1N2

2
ð7:16Þ

and variance given by

Var V½ � ¼ N1N2 N1 þ N2 þ 1ð Þ
12

ð7:17Þ

Hence, under the null hypothesis H0:{sample is homogeneous}, the standardized

test statistic for the Mann–Whitney test is

T ¼ V � E V½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var V½ �p ð7:18Þ

which follows a standard normal distribution. The sample estimate for the stan-

dardized test statistic is designated by T̂ . As a two-sided test at the significance

level α, the decision must be to reject the null hypothesis, if T̂
�� �� > z1�α=2. See

Example 7.6 for an application of this test.

A possible shortcoming of applying the Mann–Whitney test in identifying

heterogeneities in a hydrologic sample relates to choosing the point at which the

complete sample is split into two subsamples, determining not only the hypothetical

breakpoint but also the subsamples sizes. These and the breakpoint may not

coincide with the actual duration and onset of heterogeneities that may exist in

the sample. An interesting modification of the Mann–Whitney test, introduced as an

algorithm by Mauget (2011), samples data rankings over running time windows, of

different widths, thus allowing the identification of heterogeneities of arbitrary

onset and duration. The approach was successfully applied to annual area-averaged

temperature data for the continental USA and seems to be a promising alternative

for identifying heterogeneities in large samples of hydrologic variables.
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7.4.4 Testing the Stationarity Hypothesis

The term stationarity refers to the notion that the essential statistical properties of

the sample data, including their probability distribution and related parameters, are

invariant with respect to time. Nonstationarities include monotonic and

nonmonotonic trends in time or an abrupt change (or a jump) at some point in

time. The flow regulation by a large human-made reservoir can drastically change

the statistical properties of natural flows and, thus, introduce an abrupt change into

the time series of the wet-season mean flows, in particular, at the time the reservoir

initiated its operation. An example of such a jump in flow series is given in

Chap. 12, along with the description of the hypothesis test proposed by Pettitt

(1979), specifically designed to detect and identify abrupt changes in time series.

Nonmonotonic trends in hydrologic time series are generally related to climate

fluctuations operating at interannual, decadal, or multidecadal scales. Climate

fluctuations can occur in cycles, such as the solar activity cycle of approximately

11 years, with changes in total solar irradiance and sunspots. Other climate oscil-

lations occur with a quasi-periodic frequency, such as ENSO, the El Ni~no Southern
Oscillation, which recurs every 2–7 years, causing substantial changes in heat

fluxes over the continents, oceans, and atmosphere. Detecting and modeling the

influence of quasi-periodic climate oscillations on hydrologic variables are com-

plex endeavors and require appropriate specific methods. Chapter 12 presents some

methods for modeling nonstationary hydrologic variables, under the influence of

quasi-periodic climate oscillations.

Monotonic trends in hydrologic time series are associated with gradual changes

taking place in the catchment. A monotonic trend can possibly appear in the flow

time series of a small catchment that has experienced, over the years, a slow time-

evolving urbanization process. Gradual changes in temperature or precipitation

over an area, natural or human-induced, can also unfold a monotonic trend in

hydrologic time series. As mentioned in Chap. 1, the notion of heterogeneity, as

applied particularly to time series, encompass that of nonstationarity: a

nonstationary series is nonhomogeneous with respect to time, although a

nonhomogeneous (or heterogeneous) series is not necessarily nonstationary. The

decision on whether or not a data sample can be considered stationary, with respect

to monotonic linear or nonlinear trends, can be made with the help of a nonpara-

metric test based on Spearman’s rank order correlation coefficient.

The Spearman’s rank order correlation coefficient, denoted by ρ and named after

the British psychologist Charles Spearman (1863–1945), is a nonparametric mea-

sure of the statistical dependence between two random variables. In the context of

Spearman’s ρ, statistical dependence is not restricted to linear dependence, as in

conventional Pearson’s linear correlation coefficient. The essential idea of the test

based on Spearman’s ρ is that a monotonic trend, linear or nonlinear, hidden in a

hydrologic time series Xt, evolving in time t, can be detected by measuring the

degree of correlation between the rank orders mt, for the sequence Xt, and the

corresponding time indices Tt, for Tt¼ 1, 2, . . ., N. The Spearman’s rank order

correlation coefficient is formally given by
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rS ¼ 1�
6
PN
t¼1

mt � Ttð Þ2

N3 � N
ð7:19Þ

The test statistic for monotonic trend, based on the Spearman’s ρ, is calculated as

T ¼ rS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

1� r2S

s
ð7:20Þ

According to Siegel (1956), for N> 10 and under the null hypothesis of no

correlation between mt and Tt, the probability distribution of T can be approximated

by the Student’s t distribution, with (N�2) degrees of freedom.

Before computing rS for a given sample, it is necessary to check whether or not it

contains ties, or two or more equal values of Xt, for different rank orders. A simple

correction that can be made is to assign the average rank to each of tied values, prior

to the calculation of rS. For example, if, for a sample of size 20, the 19th and the

20th ranked values of Xt are equal, both must be assigned to their average rank order

of 19.5. The sample estimate for the test statistic is designated by T̂ . As a two-sided

test at the significance level α, the decision would be to reject the null hypothesis, if

T̂
�� �� > t1�α=2,N�2. See Example 7.6 for an application of this test.

In recent years, a growing interest in climate change has led to a profusion of

papers on the topic of detecting nonstationarities in hydrologic time series, includ-

ing a number of different tests and computer programs to perform the calculations.

One nice example of these is the software TREND, available from http://www.

toolkit.net.au/tools/TREND [Accessed: 10th February 2016], and developed under

the eWater initiative of the University of Canberra, in Australia.

Example 7.6 Consider the flood peak data sample of the Lehigh River at

Stoddartsville (USGS gauging station 01447500) for the water-years 1941/42 to

2013/2014, listed in Table 7.1. For this sample, test the following hypotheses:

(a) randomness; (b) independence; (c) homogeneity; and (d) stationarity (for the

absence of a linear or a nonlinear monotonic trend), at the significance level

α¼ 0.05.

Solution

(a) Test of the randomness hypothesis. The plot of annual peak discharges versus

time is depicted in Fig. 7.5.

By looking at the graph of Fig. 7.5, one can count the number of turning points

as p¼ 53, with 27 troughs and 26 peaks. For N¼ 73, Eqs. (7.7) and (7.8) give

the estimates of E[p] and Var[p] respectively equal to 47.33 and 12.66. With

these values in Eq. (7.9), the estimate of the standardized test statistic is

T̂ ¼ 1:593. At the significance level α¼ 0.05, the critical value of the test

statistic is z0.975¼ 1.96. Therefore, as T̂
�� �� < z0:975, the decision is not to reject
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Table 7.1 Annual peak discharges of the Lehigh River at Stoddartsville (m3/s) and auxiliary

quantities for performing the nonparametric tests of Wald–Wolfowitz, Mann–Whitney, and

Spearman’s ρ

Water year Tt Xt mt Subsample x
0
i ¼ Xt � x Ranked Xt

1941/42 1 445 72 1 341.9 14.0

1942/43 2 70.0

(estimated)

36 1 �32.7 15.9

1943/44 3 79.3 43.5 1 �23.4 27.2

1944/45 4 87.5 47 1 �15.2 27.6

1945/46 5 74.8 42 1 �27.9 28.1

1946/47 6 159 63 1 55.8 28.3

1947/48 7 55.2 26 1 �47.5 29.5

1948/49 8 70.5 37 1 �32.2 29.5

1949/50 9 53.0 25 1 �49.7 31.7

1950/51 10 205 66 1 102.6 32.3

1951/52 11 65.4 31 1 �37.3 33.1

1952/53 12 103 56 1 0.38 33.4

1953/54 13 34.0 13 1 �68.7 34.0

1954/55 14 903 73 1 800.6 38.2

1955/56 15 132 61 1 28.9 38.2

1956/57 16 38.5 16 1 �64.2 38.5

1957/58 17 101 55 1 �2.17 41.1

1958/59 18 52.4 24 1 �50.3 42.8

1959/60 19 97.4 53.5 1 �5.28 45.6

1960/61 20 46.4 21 1 �56.3 45.6

1961/62 21 31.7 9 1 �71.0 46.4

1962/63 22 62.9 29 1 �39.8 47.0

1963/64 23 64.3 30 1 �38.4 51.8

1964/65 24 14.0 1 1 �88.7 52.4

1965/66 25 15.9 2 1 �86.8 53.0

1966/67 26 28.3 6 1 �74.4 55.2

1967/68 27 27.2 3 1 �75.5 56.4

1968/69 28 47.0 22 1 �55.7 60.9

1969/70 29 51.8 23 1 �50.9 62.9

1970/71 30 33.4 12 1 �69.3 64.3

1971/72 31 90.9 49 1 �11.8 65.4

1972/73 32 218 67 1 115.4 66.0

1973/74 33 80.4 45 1 �22.3 68.5

1974/75 34 60.9 28 1 �41.8 68.5

1975/76 35 68.5 33.5 1 �34.2 69.9

1976/77 36 56.4 27 Sum¼
1247.5

1 �46.3 70.0

1977/78 37 84.7 46 2 �18.0 70.5

1978/79 38 69.9 35 2 �32.8 72.5

1979/80 39 66.0 32 2 �36.7 73.1

(continued)
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the null hypothesis H0 that observed data have been sampled at random from

the population.

(b) Test of the independence hypothesis. The sixth column of Table 7.1 lists the

differences between each flood peak Xt and the complete-sample mean

x ¼ 102:69 m3=s. These are the main values to calculate the Wald–Wolfowitz

test statistic by means of Eq. (7.10). The result is R¼ 14645.00. The differences

Table 7.1 (continued)

Water year Tt Xt mt Subsample x
0
i ¼ Xt � x Ranked Xt

1980/81 40 38.2 14.5 2 �64.5 73.1

1981/82 41 32.3 10 2 �70.4 74.2

1982/83 42 119 60 2 16.0 74.8

1983/84 43 105 58 2 2.08 79.3

1984/85 44 237 68 2 134.6 79.3

1985/86 45 117 59 2 14.0 80.4

1986/87 46 95.7 51 2 �6.98 84.7

1987/88 47 41.1 17 2 �61.0 87.5

1988/89 48 88.6 48 2 �14.1 88.6

1989/90 49 29.5 7.5 2 �73.2 90.9

1990/91 50 45.6 19.5 2 �57.1 95.4

1991/92 51 28.1 5 2 �74.6 95.7

1992/93 52 104 57 2 1.52 96.6

1993/94 53 68.5 33.5 2 �34.2 97.4

1994/95 54 29.5 7.5 2 �73.2 97.4

1995/96 55 204 65 2 100.9 101

1996/97 56 97.4 53.5 2 �5.28 103

1997/98 57 38.2 14.5 2 �64.5 104

1998/99 58 72.5 38 2 �30.2 105

1999/2000 59 33.1 11 2 �69.6 117

2000/01 60 45.6 19.5 2 �57.1 119

2001/02 61 154 62 2 51.4 132

2002/03 62 79.3 43.5 2 �23.4 154

2003/04 63 289 69 2 186.1 159

2004/05 64 184 64 2 81.4 184

2005/06 65 297 70.5 2 194.6 204

2006/07 66 73.1 39.5 2 �29.6 205

2007/08 67 96.6 52 2 �6.13 218

2008/09 68 73.1 39.5 2 �29.6 237

2009/10 69 74.2 41 2 �28.5 289

2010/11 70 297 70.5 2 194.6 297

2011/12 71 27.6 4 2 �75.1 297

2012/13 72 42.8 18 2 �60.0 445

2013/14 73 95.4 50 Sum¼
1453.5

2 �7.26 903
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x
0
i ¼ Xt � x in Table 7.1 also give s2¼ 1188516.11 and s4¼ 443633284532.78,

which, when substituted into Eqs. (7.11) and (7.12), yield the estimates of E[R]
and Var[R] equal to �16507.17 and 13287734392, respectively. With these

inserted in Eq. (7.13), the estimated standardized test statistic is T̂ ¼ 0:270. At
the significance level α¼ 0.05, the critical value of the test statistic is

z0.975¼ 1.96. Therefore, as T̂
�� �� < z0:975, the decision is not to reject the null

hypothesis H0 that observed sample data are independent.

(c) Test of the homogeneity hypothesis. The fourth column of Table 7.1 lists the

ranking ordersmt, which are the basic values for calculating the Mann–Whitney

test statistics through Eqs. (7.14) and (7.15), alongside the sum of the ranking

orders for the 36 points from subsample 1, which is R1¼ 1247.5. The test

statistic is the smallest value between V1 and V2, which, in this case, is

V¼V2¼ 608.5. Substitution of R1 and V into Eqs. (7.16) and (7.17) give the

estimates of E[V] and Var[V] respectively equal to 666 and 8214. With these in

Eq. (7.18), the estimated standardized test statistic is T̂ ¼ �0:634. At the
significance level α¼ 0.05, the critical value of the test statistic is

z0.975¼ 1.96. Therefore, as T̂
�� �� < z0:975, the decision is not to reject the null

hypothesis H0 that observed sample data are homogeneous.

(d) Test of the stationarity hypothesis, for the absence of a monotonic trend. The

fourth column of Table 7.1 lists the ranking orders mt and the second column,

the time indices Tt. Both are necessary to calculate the test statistics for the

Spearman’s ρ test, through Eqs. (7.19) and (7.20). The estimated Spearman’s

Fig. 7.5 Graph of annual peak discharges versus water-year for the Lehigh River at Stoddartsville

(USGS gauging station 01447500)
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correlation coefficient is rS¼ 0.0367. With this in Eq. (7.20), the estimated test

statistics is T̂ ¼ 0:310. At the significance level α¼ 0.05, the critical value of

the test statistic is t0:975,71 ¼ 1:994. Therefore, as T̂
�� �� < t0:975,71, the decision is

not to reject the null hypothesis H0 that observed sample data are stationary,

with respect to a monotonic trend in time.

7.5 Some Goodness-of-Fit Tests Useful in Hydrology

The previous sections have described procedures to test hypotheses on population

parameters and on attributes a simple random sample must have. Another important

class of hypothesis tests refers to checking the suitability of a conjectured shape for

the probability distribution of the population against the reality imposed by the

sample points. This class of hypotheses test is generally referred to as Goodness-of-

Fit (GoF) tests. As with any hypothesis test, a GoF test begins by setting up a

conjectural statement under the null hypothesis, such as H0:{X follows a Poisson

distribution with parameter ν}, which is then tested against the opposite alternative

hypothesis H1. GoF test statistics are generally based on differences between

empirical and hypothesized (or expected) frequencies or between empirical and

hypothesized (or expected) quantiles.

In the context of Statistical Hydrology, the ubiquitous situation is that the

probability distribution of the population is not known from prior knowledge and

that inference should be supported mostly by the information contained in the data

sample, which is usually of small size. As opposed to other fields of application of

statistical inference, in hydrology, the available samples are of fixed sizes and

increasing them, by intensifying monitoring programs, might be very expensive,

time-demanding, and, sometimes, ineffective. In order to make inferences on the

population probability distribution, one can also have some additional help from

observing the physical characteristics of the phenomenon being modeled, such as

lower and upper bounds, and from deductive arguments, stemming from the central

limit theorem and the asymptotic extreme-value theory, as seen in Chap. 5. Dis-

cussion of these specific topics is left to the next chapter, which deals with

hydrologic frequency analysis. In this section, the focus is on describing the most

useful GoF tests.

As seen previously in this chapter, the decision to not reject the null hypothesis

does not mean accepting it as true. In fact, such a decision signifies that no sufficient

evidence was found in the data sample to disprove the null hypothesis and the

probabilities of making incorrect decisions are α and β. In GoF tests, by not

rejecting the null hypothesis, one cannot claim the true probability distribution of

the population is that under H0. Furthermore, by applying the same GoF test to

different probability distributions under H0, one cannot discriminate or categorize

the candidate distributions by comparing the values of their respective test statistics
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or p-values, since such a comparison cannot be carried out on an equal basis. The

main reasons for that are: (1) the candidate distributions have different number of

parameters, possibly estimated by different methods; (2) critical values for the test

statistic usually depend on the hypothesized distribution under H0; (3) the number

and extension of partitions of the sample space, as required by some GoF tests,

might differ one test from another; (4) type I and type II errors for GoF tests under

distinct null hypotheses are of a different nature and not directly comparable to each

other; and (5) finally, and perhaps the most important reason, GoF tests have not

been conceived for such a comparative analysis.

GoF tests are techniques from inferential statistics that can prove very helpful in

deciding on the fit of a single hypothesized probability distribution model to a

sample and should be used as such. The main GoF tests that are currently employed

in Statistical Hydrology are the chi-square (or chi-squared), Kolmogorov–Smirnov,

Anderson–Darling, and the Probability Plot Correlation Coefficient (PPCC). Their

descriptions and respective worked out examples are the subject of the subsections

that follow.

7.5.1 The Chi-Square (χ2) GoF Test

Assume A1, A2, . . ., Ar represents a collection of mutually and collectively exhaus-

tive disjoint events, such that their union defines the entire sample space. Assume

also the null hypothesis H0:{P(Ai)¼ pi, for i¼ 1, 2, . . ., r}, such that
Pr
i¼1

pi ¼ 1.

Under these conditions, suppose that, from a number N of random experiments, the

absolute frequencies pertaining to events A1, A2, . . ., Ar be given by the quantities

ρ1, ρ2, . . . , ρr, respectively. If the null hypothesis is true, then the joint probability

distribution of the variables ρ1, ρ2, . . . , ρr is the multinomial (see Sect. 4.3.2, of

Chap. 4), with mass function given by

Ρ ρ1 ¼ O1, ρ2 ¼ O2, . . . , ρr ¼ Or H0jð Þ ¼ N!

O1!O2! . . . Or!
pO1

1 pO2

2 . . . pOr
r ð7:21Þ

where
Pr
i¼1

Oi ¼ N.

Consider, then, the following statistic:

χ2 ¼
Xr

i¼1

Oi � Npið Þ2
Ei

¼
Xr

i¼1

Oi � Eið Þ2
Ei

ð7:22Þ

defined by the realizations Oi, of variables ρi, and by their respective expected

values Ei ¼ E ρi½ �, which, under the null hypothesis, are equal to Npi. Hence, the
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statistic χ2 expresses the sum of the squared differences between the realizations of

the random variables ρi and their respective expected values.

In Sect. 5.10.1, of Chap. 5, it is posited that the sum of the squared differences

between N independent and normally distributed variables, and their common mean

value μ, follows the χ2 with ν¼N degrees of freedom. Although the similarity

between the chi-square variate and the statistic given in Eq. (7.22) may appear

evident, the latter contains the sum of r variables that are not necessarily indepen-

dent and normally distributed. However, the asymptotic theory of statistics and

probability comes to our assistance, once again, showing that, as N tends to infinity,

the statistic defined by Eq. (7.22) tends to follow the chi-square distribution, with

ν¼ (r�1) degrees of freedom. In formal terms,

lim
N!1

Ρ χ2 < x H0j� � ¼ ðx
0

x r�3ð Þ=2e�x=2

2 r�1ð Þ=2Γ r � 1ð Þ=2½ �dx ð7:23Þ

Thus, for large N, one can employ such a result to test the null hypothesis H0, under

which the expected relative frequencies of variables ρi be given by Npi, with pi
calculated by the hypothesized probability distribution. A high value of the χ2

statistic would reveal large differences between observed and expected frequencies,

and a poor fit by the distribution hypothesized under H0. Otherwise, a low value of

χ2 would be indicative of a good fit.

It is instructive to note that the limiting distribution, as given in Eq. (7.23), does

not depend on pi. In fact, it depends only on the number of partitions r of the sample

space. This is a positive feature of the chi-square test as the generic probability

distribution of the test statistic remains unchanged for distinct null hypotheses,

provided the number of partitions r had been correctly specified. In practice, the

chi-square GoF test usually provides good results for N> 50 and for Npi� 5,

with i¼ 1, 2, . . ., r. If the probabilities pi are calculated from a distribution with

k estimated parameters, it is said that k degrees of freedom have been lost. In other

terms, in such a case, parameter ν, of the probability distribution of the test statistic
χ2, would be ν¼ (r�k�1). The chi-square GoF test is a one-sided upper tail test and

the decision would be for rejecting H0:{X follows a hypothesized probability

distribution} if χ̂ 2 > χ21�α, ν. Examples 7.7 and 7.8 illustrate applications of the

chi-square GoF test for discrete and continuous random variables, respectively.

Example 7.7 A water treatment plant withdraws raw water directly from a river

through a simply screened intake installed at a low water level. Assume the discrete

random variable X refers to the annual number of days the river water level is below

the intake’s level. Table 7.2 shows the empirical frequency distribution of X, based

Table 7.2 Empirical frequencies for the annual number of days the intake remains dry

x! 0 1 2 3 4 5 6 7 8 >8

f(xi) 0.0 0.06 0.18 0.2 0.26 0.12 0.09 0.06 0.03 0.0
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on 50 years of observations. Employ the method of moments for parameter esti-

mation to fit a Poisson distribution to the sample, then calculate the expected

frequencies according to this model, and test its goodness-of-fit, at α¼ 0.05.

Solution The Poisson mass function is pX xð Þ¼e�λλx=x!, for x ¼ 0, 1, . . .
and λ > 0, with expected value E X½ � ¼ λ. The sample mean can be calculated by

weighting the x values by their respective empirical frequencies f(xi), yielding
x ¼ 3:86. Thus, the estimate of parameter λ, by the method of moments, is

λ̂ ¼ 3:86: The expected absolute frequencies Ei, for xi, shown in Table 7.3, were

calculated bymultiplying the Poisson probabilities pX( xi) by the sample sizeN¼ 50.

Similar calculations were made for the empirical absolute frequencies Oi.

Table 7.3 presents additional results that are required to calculate the test statistic

χ2. These are the simple differences and the scaled squared differences between

empirical and expected absolute frequencies. The total sum of the last column of

Table 7.3 gives the estimated value of the test statistic as χ̂ 2 ¼ 3:8733. For this
example, the total number of partitions of the sample space is taken as r¼ 10

(xi¼ 0, 1, . . ., >8). With only one parameter estimated from the sample, k¼ 1,

which defines the number of degrees of freedom for the probability distribution of

the test statistic as ν¼ (r�k�1)¼ 8. The chi-square GoF test is a one-sided upper

tail test, for which the critical region, at α¼ 0.05 and ν¼ 8, begins at χ20:95,8 ¼
15:51 [Appendix 3 or MS Excel function CHISQ.INV(0.95;8)]. As χ̂ 2 < χ20:95, ν¼8,

the decision is not to reject the null hypothesis H0 that the random variable

X follows a Poisson probability distribution. For this example, even with N¼ 50,

some empirical and expected absolute frequencies, for some partitions, are lower

than the recommended minimum of 5. This is a possible shortcoming of the

chi-square GoF test as very low frequencies, particularly in the distribution tails,

can affect the overall results and even the decision making. In some cases, including

this example, such an undesired situation can be corrected by merging some

partitions. For instance, expected frequencies for x¼ 0 and x¼ 1 can be aggregated

into the total frequency of 5.1195, if both partitions are merged into a new one

Table 7.3 Empirical and expected absolute frequencies for the chi-square GoF test

xi Oi ¼ 50f xið Þ Ei ¼ 50p xið Þ Oi�Ei Oi � Eið Þ2=Ei

0 0 1.0534 �1.0534 1.0534

1 3 4.0661 �1.0661 0.2795

2 9 7.8476 1.1524 0.1692

3 10 10.097 �0.0973 0.0009

4 13 9.7439 3.2561 1.0880

5 6 7.5223 �1.5223 0.3080

6 4.5 4.8393 �0.3393 0.0238

7 3 2.6685 0.3315 0.0412

8 1.5 1.2876 0.2124 0.0350

>8 0 0.8740 �0.8740 0.8740

Total 50 50 – 3.8733
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defined by x� 1. Likewise, the upper-tail partitions can also be merged into a new

one defined by x� 6. Of course, changing partitions will lead to new values of r and
ν, and a new estimate for the test statistic. It is suggested that the reader solve this

example, with the recommended partition changes.

Example 7.8 Refer to Fig. 5.4 in which the normal density fitted to the 248 annual

total rainfalls, observed at the Radcliffe Meteorological Station, in Oxford

(England) since 1767, has been superimposed over the empirical histogram. Use

the chi-square GoF procedure to test the null hypothesis that data are normally

distributed, at the significance level α¼ 0.05.

Solution In the case of a continuous random variable, the mutually and collec-

tively exhaustive disjoint partitions of the sample space are generally defined

through bin intervals, inside which the empirical and expected absolute frequencies

are counted and calculated. For this particular sample, as shown in Fig. 5.4, the

number of bins had already been defined as r¼ 15, most of which with width

50 mm. Table 7.4 summarizes the calculations for the chi-square GoF test.

With r¼ 15, empirical frequencies Oi vary around acceptable values, except for

the first and four of the last five bins, which count less than 5 occurrences each.

However, for the sake of clarity, partitions are kept as such in the solution to this

example. In order to calculate the frequencies, as expected from the normal

distribution, its parameters μ and σ need to be estimated. The sample gives x ¼
645:956 and s2X ¼ 13045:89, which, by the method of moments, yield the estimates

μ̂ ¼ 645:956 and σ̂ ¼ 114:219. Therefore, the expected relative frequency for the

ith bin can be calculated aspi ¼ Φ UB� μ̂ð Þ=σ̂½ � � Φ LB� μ̂ð Þ=σ̂½ �, where UB and

Table 7.4 Empirical and expected absolute frequencies for the chi-square GoF test of normally

distributed annual total rainfalls, as measured at the Radcliffe Station (England)

Bin interval (mm) Oi Ei Oi�Ei Oi � Eið Þ2=Ei

<375 1 2.1923 �1.1923 0.6485

(375,425) 6 4.3862 1.6138 0.5938

(425,475) 7 10.0947 �3.0947 0.9487

(475,525) 17 19.2381 �2.2381 0.2604

(525,575) 36 30.3605 5.5695 1.0476

(575,625) 37 39.6772 �2.6772 0.1806

(625,675) 48 42.9407 5.0593 0.5961

(675,725) 37 38.4851 �1.4851 0.0573

(725,775) 26 28.5634 �2.5634 0.2301

(775,825) 21 17.5555 3.4445 0.6758

(825,875) 4 8.9349 �4.9349 2.7256

(875,925) 5 3.7655 1.2345 0.4047

(925,975) 1 1.3140 �0.3140 0.0750

(975,1025) 1 0.3796 0.6204 1.0137

>1075 1 0.1122 0.8878 7.0253

Total 248 248 – 16.4833
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LB represent the bin’s upper and lower bounds, respectively, and Ф(.) denotes the

CDF of the standard normal distribution. The absolute frequency Ei, for bin i, is
given by the product of pi by the sample size N¼ 248. Then, the simple and scaled

squared differences between empirical and expected frequencies are calculated.

The summation through the last column of Table 7.4 yields the estimated value for

the test statistics as χ̂ 2 ¼ 16:48. As the total number of partitions is r¼ 15 and two

parameters have been estimated from the sample (k¼ 2), then ν¼ (r�k�1)¼ 12

degrees of freedom for the distribution of the test statistic. The chi-square GoF test

is a one-sided upper tail test, for which, the critical region, at α¼ 0.05 and ν¼ 12,

begins at χ20:95,12 ¼ 21:03 [from Appendix 3 or MS Excel function CHISQ.INV

(0.95;12)]. As χ̂ 2 < χ20:95, ν¼12, the decision is not to reject the null hypothesis H0

that the annual total rainfalls at the Radcliffe Station follow a normal probability

distribution. Once again, very low frequencies, in both tails of the distribution, have

affected the estimation of the test statistic, this time severely. Note that the fraction

of the test statistic that corresponds to the last bin is almost half of the total sum,

which, if a bit larger, would lead to the decision of rejecting the null hypothesis. As

in the previous example, this shortcoming of the chi-square GoF test can be

overcome by merging some partitions. For instance, the first bin can be merged

into the second, whereas the last five bins can be rearranged into two new bins, of

different widths so that at least 5 occurrences are counted within each. It is

suggested that the reader solve this example, with the recommended partition

changes.

7.5.2 The Kolmogorov–Smirnov (KS) GoF Test

The Kolmogorov–Smirnov (KS) nonparametric GoF test is based on the maximum

difference between the values of the empirical and expected cumulative distribu-

tions, as calculated for all points in a sample of a continuous random variable. As

originally proposed by Kolmogorov (1933), the test is not applicable to discrete

random variables.

Assume X represent a random variable, from whose population the sample data

{X1, X2, . . ., XN} have been drawn. The null hypothesis to be tested is H0:{P
(X< x)¼FX(x)}, where FX(x) denotes a probability distribution function with

known parameters. In order to implement the KS test, one needs first to rank the

sample data in ascending order to obtain the sequence {x(1), x(2), . . ., x(m), . . . x(N )},

where 1�m�N designates the ranking orders. For each sample point x(m), the
empirical CDF is calculated as the proportion of data that does not exceed x(m). Its
calculation is made in two different ways: first, as

F1
N xmð Þ ¼ m

N
ð7:24Þ

and second as
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F2
N xmð Þ ¼ m� 1

N
ð7:25Þ

The next step in the KS GoF test is to calculate the expected CDF FX(x), as
hypothesized under H0, for every x(m), 1�m�N. The KS test statistic is given by

DN ¼ max Dþ
N ;D

�
N


 � ð7:26Þ

where

Dþ
N ¼ max F1

N x mð Þ
� �� FX x mð Þ

� ��� �� ; m ¼ 1, 2, . . . ,N ð7:27Þ

and

D�
N ¼ max FX x mð Þ

� �� F2
N x mð Þ
� ��� �� ; m ¼ 1, 2, . . . ,N ð7:28Þ

and corresponds to the largest absolute difference between the empirical and

expected cumulative probabilities.

If H0 is true, as N!1, the statistic DN would tend to zero. On the other hand, if

N is finite, the statistic DN would be of the order of 1=
ffiffiffiffi
N

p
and, thus, the quantityffiffiffiffi

N
p

DN would not tend to zero, even for high values of N. Smirnov (1948)

determined the limiting distribution of the random variable
ffiffiffiffi
N

p
DN, which, under

H0, is expressed as

lim
N!1

Ρ
ffiffiffiffi
N

p
DN � z

� 
¼

ffiffiffiffiffi
2π

p

z

X1
k¼1

exp � 2k � 1ð Þ2π2
8z2

" #
ð7:29Þ

Therefore, for samples of sizes larger than 40, the critical values for the test statistic

DN are 1:3581=
ffiffiffiffi
N

p
, at the significance level α¼ 0.05, and 1:6276=

ffiffiffiffi
N

p
, at α¼ 0.01.

These results are from the sum of the first five terms in the summation of Eq. (7.29)

and remain unaltered from the sixth term on. For samples of sizes smaller than

40, the critical values of DN should be taken from Table 7.5. Critical values for the

KS test do not change with the hypothesized distribution FX(x) under H0, provided

the FX(x) parameters are known, i.e., not estimated from the sample.

As parameters estimates are obtained from the sample, Monte Carlo simulations

show that critical values for the KS GoF test statistic are too conservative, with

respect to the magnitude of type I error, and may lead to incorrect nonrejections of

the null hypothesis (Lilliefors 1967, Vlcek and Huth 2009). Lilliefors (1967)

published a new table of critical values for the KS test statistic, which is valid to

test specifically the null hypothesis of normal data, under H0, with parameters

estimated from the sample. The most frequently used values are reproduced in

Table 7.6. Taking α¼ 0.05 and N¼ 30 as an example, the original table (Table 7.5)

would give the critical value of 0.242 for the test statistic, whereas the corrected
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value from Lilliefors’ table (Table 7.6) would be 0.161, which, depending on the

sample estimate of DN, say 0.18, for instance, would lead to the wrong decision

of not rejecting H0. Example 7.9 illustrates an application of the KS GoF test

for the null hypothesis of normally distributed annual mean flows of the Lehigh

River at Stoddartsville.

Example 7.9 The first two columns of Table 7.11 list the annual mean flows of

the Lehigh River at Stoddartsville (USGS gauging station 01447500) for the

water-years 1943/44 to 2014/2015. Test the null hypothesis that these data have

been sampled from a normal population, at the significance level α¼ 0.05.

Solution The third and fourth columns of Table 7.11 list the ranking orders and the

flows sorted in ascending order, respectively. The empirical frequencies are

obtained by direct application of Eqs. (7.24) and (7.25). For example, for the

tenth-ranked flow, F1
Nð3:54Þ ¼ 10=72 ¼ 0:1389 and F2

N 3:54ð Þ ¼ 10� 1ð Þ=72 ¼
0:1250. The sample of size N¼ 72 yields x ¼ 5:4333m3=s and sX ¼ 1:3509 m3=s,
which are the MOM estimates for parameters μ and σ, respectively. The sixth

column of Table 7.11 gives the expected frequencies, under the null hypothesis

H0:{data have been sampled from a normal population}, calculated as

FX xmð Þ ¼ Φ xm � μ̂ð Þ=σ̂½ �. Figure 7.6 depicts the empirical and expected

frequencies plotted against the ranked annual mean flows. In Fig. 7.6, it is also

highlighted the absolute maximum value of the differences between the expected

and empirical frequencies, these calculated with Eqs. (7.24) and (7.25). The abso-

lute maximum difference D̂ N ¼ 0:0863 is the estimated KS test statistic. At

α¼ 0.05 and for N¼ 72, Table 7.6 yields the critical value DN, 0:05 ¼
0:886=

ffiffiffiffi
N

p ¼ 0:886=
ffiffiffiffiffi
72

p ¼ 0:1044. The KS GoF test is a one-sided upper tail

test, for which, the critical region, at α¼ 0.05, begins at DN, 0:05 ¼ 0:1044. As

D̂ N < DN, 0:05, the decision is not to reject the null hypothesis H0, that data have

been sampled from a normal population.

Table 7.6 Critical values for the KS GoF test statistic DN,α, specific for the normal distribution

under H0, with parameters estimated from the sample (Lilliefors 1967)

N DN, 0.10 DN, 0.05 DN, 0.01 N DN, 0.10 DN, 0.05 DN, 0.01

4 0.352 0.381 0.417 14 0.207 0.227 0.261

5 0.315 0.337 0.405 15 0.201 0.220 0.257

6 0.294 0.319 0.364 16 0.195 0.213 0.250

7 0.276 0.300 0.348 17 0.189 0.206 0.245

8 0.261 0.285 0.331 18 0.184 0.200 0.239

9 0.249 0.271 0.311 19 0.179 0.195 0.235

10 0.239 0.258 0.294 20 0.174 0.190 0.231

11 0.230 0.249 0.284 25 0.165 0.180 0.203

12 0.223 0.242 0.275 30 0.144 0.161 0.187

13 0.214 0.234 0.268 >30 0.805=
ffiffiffiffi
N

p
0.886=

ffiffiffiffi
N

p
1.031=

ffiffiffiffi
N

p
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In order to test H0:{data have been drawn from a normal distribution, with

parameters estimated from the sample} without the use of tables, Stephens (1974)

proposes the following equation for the critical values of DN,α:

DN,α ¼ k αð Þffiffiffiffi
N

p � 0:01þ 0:85=
ffiffiffiffi
N

p ð7:30Þ

where k(0.10)¼ 0.819, k(0.05)¼ 0.895, k(0.025)¼ 0.955, and k(0.01)¼ 1.035.

With the exponential distribution hypothesized under H0, Stephens (1974)

proposes

DN,α ¼ k αð Þffiffiffiffi
N

p þ 0:26þ 0:50=
ffiffiffiffi
N

p þ 0:2

N
ð7:31Þ

where k(0.10)¼ 0.990, k(0.05)¼ 1.094, k(0.025)¼ 1.190, and k(0.01)¼ 1.308.

As for H0:{data have been drawn from a Gumbelmax distribution, with param-

eters estimated from the sample}, Chandra et al. (1981) provide Table 7.7 for the

critical values of
ffiffiffiffi
N

p
DN,α. Notice that the estimated test statistic D̂ N must be

multiplied by
ffiffiffiffi
N

p
before being compared to the values given in Table 7.7. If it

exceeds the tabulated value, H0 must be rejected, at the level α.

Fig. 7.6 Empirical and normal frequencies for the KS GoF test for annual mean flows
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If Z is a Weibullmin variate, with scale and shape parameters ω and ψ , respec-
tively, such thatFZ zð Þ ¼ 1� exp � z=ωð Þψ½ �, the critical values of Table 7.7 can also
be used for the purpose of testing if the sample data come from a Weibullmin

population. However, before doing so, one needs to transform the Weibullmin

variate into Y ¼ �ln Zð Þ and take into account the mathematical fact that

Y ~Gumbelmax with location �ln ωð Þ and scale 1/ω. Then, the KS GoF test is

performed for the transformed variable Y.
Critical values for the GEV distribution under H0 are hard to obtain. Wang

(1998) comments on this and provides critical values for the case where the GEV

parameters are estimated through LH-moments, a generalization of the L-moments

described in Sect. 6.5 of Chap. 6.

Crutcher (1975) presents tables of critical values of the KS test statistic DN,α for

sample sizes N¼ 25, 30, and 1, for exponential, normal, Gumbelmax, or

two-parameter gamma, under H0. The tabulated critical values for the gamma

distribution under H0, with estimated parameters θ, of scale, and η, of shape, are
reproduced in Table 7.8.

Table 7.8 Critical values

for the test statistic DN,α,

specifically for the

two-parameter gamma

hypothesized distribution

under H0, with parameters

estimated from a sample of

size 25, or 30, or asymptotic

Gamma shape η

Upper significance level α

N0.10 0.05 0.01

¼2 0.176 0.190 0.222 25

0.161 0.175 0.203 30

0.910 0.970 1.160 N

¼3 0.166 0.180 0.208 25

0.151 0.165 0.191 30

0.860 0.940 1.080 N

¼4 0.164 0.178 0.209 25

0.148 0.163 0.191 30

0.830 0.910 1.060 N

�8 0.159 0.173 0.203 25

0.146 0.161 0.187 30

0.810 0.890 1.040 N

Asymptotic values are to be multiplied by 1=
ffiffiffiffi
N

p
(from

Crutcher 1975)

Table 7.7 Critical values for the test statistic
ffiffiffiffi
N

p
DN,α, specific for the Gumbelmax hypothesized

distribution under H0, with parameters estimated from the sample (Chandra, Singpurwalla and

Stephens, 1981)

N

Upper significance level α

0.10 0.05 0.025 0.01

10 0.760 0.819 0.880 0.994

20 0.779 0.843 0.907 0.973

50 0.790 0.856 0.922 0.988

1 0.803 0.0874 0.939 1.007
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7.5.3 The Anderson–Darling (AD) GoF Test

The capabilities of the chi-square and KS GoF tests to discern false hypotheses are

particularly diminished in the distribution tails, as a result of both the small number

of observations and the relatively larger estimation errors that are usually found in

these partitions of the sample space. Alternatively, the Anderson–Darling

(AD) GoF nonparametric test, introduced by Anderson and Darling (1954), is

designed to give more weight to the distribution tails, where the largest and smallest

data points can have a strong impact on the quality of curve fitting. Analogously to

the KS procedure, the AD GoF test is based on the differences between the

empirical [FN(x)] and expected [FX(x)] cumulative probability distributions of a

continuous random variable. In contrast to the KS procedure, the AD GoF gives

more weight to the tails by dividing the squared differences between FN(x) and

FX(x) by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FX xð Þ 1� FX xð Þ½ �p

. As such, the AD test statistic is written as

A2 ¼
ð1

�1

FN xð Þ � FX xð Þ½ �2
FX xð Þ 1� FX xð Þ½ � f X xð Þdx ð7:32Þ

where fX(x) denotes the density function under the null hypothesis. Anderson and

Darling (1954) demonstrated that A2 can be estimated as

A2
N ¼ �N �

XN
m¼1

2m� 1ð Þ lnFX xmð Þ þ ln 1� FX xN�mþ1ð Þ½ �f g
N

ð7:33Þ

where {x1, x2, . . ., xm, . . . xN} represents the set of data ranked in ascending order.

The larger the A2
N statistic, the more dissimilar the empirical [FN(x)] and

expected [FX(x)] distributions, and the higher the support to reject the null

hypothesis. The probability distribution of the AD test statistic depends on the

distribution FX(x) that is hypothesized under H0. If FX(x) is the normal distribution,

the critical values of A2 are given in Table 7.9.

According to D’Agostino and Stephens (1986), in the context of using the

critical values of Table 7.9, the test statistic, as calculated with Eq. (7.33), must be

multiplied by the correction factor 1þ 0:75=N þ 2:25=N2
� �

and is valid for N> 8.

If the probability distribution, hypothesized under H0, is Gumbelmax, the critical

values of A2 are those listed in Table 7.10.

In this case, D’Agostino and Stephens (1986) point out that the test statistic, as

calculated with Eq. (7.33), must be multiplied by the correction factor

Table 7.9 Critical values of AD test statistic A2
α if the probability distribution, hypothesized

under H0, is normal or lognormal (from D’Agostino and Stephens 1986)

α 0.1 0.05 0.025 0.01

A2
crit;α 0.631 0.752 0.873 1.035
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1þ 0:2=
ffiffiffiffi
N

p� �
. Table 7.10 can also be employed for testing the exponential and the

two-parameter Weibullmin under H0. For the latter, the Weibullmin variate transfor-

mation into Gumbelmax, as described in the previous subsection, is needed.

Example 7.10 Solve Example 7.9 with the AD GoF test.

Solution Table 7.11 shows the partial calculations necessary to estimate the A2

statistic.

In Table 7.11, the hypothesized FX(x) under H0 is the normal distribution and

the expected frequencies are calculated asΦ x� 5:4333ð Þ=1:3509½ �. The uncorrected
test statistic A2

N can be calculated as A2
N ¼ �N �PN

i¼1

Si=N ¼ �72� �5220:23ð Þ=
72 ¼ 0:5032. For this example, the correction factor is 1þ 0:75=Nþð
2:25=N2Þ ¼ 1:0109. Therefore, the corrected test statistic is A2

N ¼ 0:5087. The

Table 7.9 reading, for α¼ 0.05, is A2
crit, 0:05 ¼ 0:752, which defines the lower bound

of the critical region for the AD one-sided upper tail test. As A2
N < A2

crit, 0:05, the

decision is not to reject the null hypothesis H0, that data have been sampled from a

normal population.

Özmen (1993) provides polynomial functions for calculating A2
crit;α for the

Pearson III distribution under H0, assuming that the shape parameter β is known

or specified, and the location and scale parameters are estimated by the method of

maximum likelihood. The general polynomial equation is of the form

A2
crit,α ¼ Aþ BN þ Cαþ DαN þ EN2 þ Fα2 ð7:34Þ

where the polynomial coefficients are given in Table 7.12, for different assumed

values of the shape parameter β, 0.01� α� 0.20, and 5�N� 40.

Ahmad et al. (1998) modified the AD GoF test statistic to give more weight to

the differences between FN(x) and FX(x) at the upper tail, compared to those at

the lower tail. The authors justify their proposed modification in the context of the

greater interest hydrologists usually have in estimating quantiles of high return

periods. The Modified Anderson–Darling (MAD) test statistic is given by

AU2
N ¼ N

2
� 2

XN
m¼1

FX xmð Þ½ � �
XN
m¼1

2� 2m� 1

N

� �
ln 1� FX xmð Þ½ � ð7:35Þ

for the upper tail, whereas

AL2N ¼ � 3N

2
� 2

XN
m¼1

FX xmð Þ½ � �
XN
m¼1

2m� 1

N

� �
ln FX xmð Þ½ � ð7:36Þ

Table 7.10 Critical values of AD test statistic A2
α if the probability distribution, hypothesized

under H0, is Gumbelmax (from D’Agostino and Stephens 1986)

α 0.1 0.05 0.025 0.01

A2
crit;α 0.637 0.757 0.877 1.038
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is valid for the lower tail, such thatA2
N ¼ AU2

N þ AL2N , where A
2
N is the conventional

AD statistic, as given by Eq. (7.33).

Based on a large number of Monte Carlo simulations, Heo et al. (2013) derived

regression equations for the critical values of the MAD upper-tail test statistic,

assuming GEV, GLO (Generalized Logistic, as described in Sect. 5.9.1, as a special

case of Kappa distribution), and GPA (Generalized Pareto) as hypothesized distri-

butions under H0. The shape parameters of the three distributions were specified

within the range of possible values, whereas the other parameters were estimated

from synthetically generated samples of different sizes. The parameter estimation

method used in the experiment was not mentioned in the paper. For GEV and GLO

under H0, the regression equation has the general form of

AU2
crit,α ¼ aþ b

N
þ c

N2
þ dκ þ eκ2 ð7:37Þ

whereas for GPA, it is given by

AU2
crit,α ¼

1

aþ b=N þ c=N2 þ dκ þ eκ2
ð7:38Þ

where κ denotes the specified (assumed) value for the shape parameter, N is the

sample size (10�N� 100), and a, b, c, d, and e are regression coefficients given in
Table 7.13, for the significance levels 0.05 and 0.10.

7.5.4 The Probability Plot Correlation Coefficient
(PPCC) GoF Test

The PPCC GoF test was introduced by Filliben (1975), as a testing procedure for

normally distributed data under the null hypothesis. Later on, Filliben’s test has

been adapted to accommodate other theoretical distributions under H0. Modified as

such, the test is generally referred to as the Probability Plot Correlation Coefficient

Table 7.12 Polynomial coefficients of Eq. (7.34) (from Özmen 1993)

Shape β A B C D E F

0.5 0.88971 0.16412 �9.86652 �0.20142 0 30.0303

1.0 1.01518 0.07580 �9.16860 �0.13433 �0.0004447 32.0377

1.5 1.00672 0.02154 �7.93372 �0.08029 0 27.9847

2.0 0.98379 0.01225 �6.27139 �0.01974 �0.0001560 19.0327

2.5 0.96959 0.01292 �6.14333 �0.01919 �0.0001650 18.4079

3.0 0.96296 0.01366 �6.28657 �0.03032 �0.0001237 19.6629

3.5 0 0.08490 0 �0.11941 �0.0013400 0

4.0 1.05828 0.01003 �6.95325 �0.03406 0 21.8651
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(PPCC) GoF test. Given the data sample {x1, x2, . . ., xn} of the random variable

X and assuming the null hypothesis that such a sample has been drawn from a

population whose probability distribution is FX(x), the PPCC GoF test statistic is

formulated on the basis of the linear correlation coefficient r, between the data

ranked in ascending order, as denoted by the sequence {x1, x2, . . ., xm, . . . xN}, and
the theoretical quantiles {w1, w2, . . ., wm, . . . wN}, which are calculated as

wm ¼ F�1
X 1� qmð Þ, where qm denotes the empirical probability corresponding to

the ranking order m. Formally, the PPCC test statistic is calculated as

r ¼
PN
m¼1

xm � xð Þ wm � wð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
m¼1

xm � xð Þ 2 PN
m¼1

wm � wð Þ2
s ð7:39Þ

where x ¼ 1
N

PN
i¼1

xi and w ¼ 1
N

PN
i¼1

wi. According to Filliben (1975), GoF tests based

on the correlation coefficient are invariant to the method used to estimate the loca-

tion and scale parameters.

The intuitive idea behind the PPCC GoF test is that an eventual strong linear

association between xm and wm is supportive to the assumption that FX(x) is a

plausible model for the X population. The null hypothesis H0:{r¼ 1, as implicit by

X ~FX(x)}, should be tested against the alternative H1:{r< 1, 6¼FX(x)}, thus mak-

ing the PPCC GoF test a one-sided lower tail test. The critical region for H0, at the

significance level α, begins at rcrit,α, below which, if r< rcrit,α, the null hypothesis
must be rejected in favor of H1.

In the PPCC test statistic formulation, as in Eq. (7.39), the specification of FX(x),

in the form of wm ¼ F�1
X 1� qmð Þ is implicit. The empirical probabilities qm, as

corresponding to the ranking orders m, are usually termed plotting positions and
vary according to the specification of FX(x). In general, the different formulae for

calculating plotting positions aim to obtain unbiased quantiles or unbiased proba-

bilities, with respect to a target distribution FX(x). These formulae can be written in

the following general form:

Table 7.13 Regression coefficients for Eqs. (7.37) and (7.38) (from Heo et al. 2013)

Distribution α

Regression coefficients

a b c d e

GEV 0.05 0.2776 �0.2441 1.8927 �0.0267 0.1586

0.10 0.2325 �0.1810 1.8160 �0.0212 0.1315

GLO 0.05 0.3052 �0.6428 1.1345 0.0662 0.2745

0.10 0.2545 �0.5823 1.6324 0.0415 0.2096

GPA 0.05 4.4863 24.6003 �142.5599 �2.6223 0.3976

0.10 5.3332 28.5881 �157.7515 �3.1744 0.4888
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qm ¼ m� a

N þ 1� 2a
ð7:40Þ

where a varies with the specification of FX(x). Table 7.14 summarizes the different

formulae for calculating plotting positions, with the indication of the particular

value of a, in Eq. (7.40), to be used with the specified target distribution FX(x).
As quantiles wm vary with FX(x), it is clear that the probability distribution of the

test statistic will also vary with the specification of FX(x), under H0. Table 7.15 lists

the critical values rcrit,α, for the case where FX(x) is specified as the normal

distribution, with plotting positions qm calculated with Blom’s formula. For a

lognormal variate, the critical values in Table 7.15 remain valid for the logarithms

of the original variable. Example 7.11 illustrates the application of the PPCC GoF

test for the normal distribution under H0, or the original Filliben’s test.

Example 7.11 Solve Example 7.9 with Filliben’s GoF test.

Solution Table 7.11 lists the empirical quantiles xm, as ranked in ascending order.

The theoretical quantiles wm are calculated by the inverse function Φ�1 qmð Þ of the

Table 7.14 Formulae for plotting positions qm

Name Plotting position formula a Statistical justification

Weibull qm ¼ m

N þ 1
0 Unbiased exceedance probabilities

for all distributions

Blom
qm ¼ m� 0:375

N þ 0:25

0.375 Unbiased normal quantiles

Cunnane
qm ¼ m� 0:40

N þ 0:2

0.40 Approximately quantile-unbiased

Gringorten
qm ¼ m� 0:44

N þ 0:12

0.44 Optimized for Gumbel

Median
qm ¼ m� 0:3175

N þ 0:365

0.3175 Median exceedance probabilities

for all distributions

Hazen
qm ¼ m� 0:50

N

0.5 None

Source: adapted from an original table published in Stedinger et al. (1993)

Table 7.15 Critical values

rcrit,α for the normal

distribution, with a¼ 0.375

in Eq. (7.40)

N α¼ 0.10 α¼ 0.05 α¼ 0.01

10 0.9347 0.9180 0.8804

15 0.9506 0.9383 0.9110

20 0.9600 0.9503 0.9290

30 0.9707 0.9639 0.9490

40 0.9767 0.9715 0.9597

50 0.9807 0.9764 0.9664

60 0.9835 0.9799 0.9710

75 0.9865 0.9835 0.9757

100 0.9893 0.9870 0.9812

Source: adapted from an original table published in

Stedinger et al. (1993)
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normal distribution, with estimated mean 5.4333 and standard deviation 1.3509,

and argument qm given by Blom’s formula for plotting positions. In order to

exemplify such a calculation, consider the ranking order m¼ 10, which in Blom’s
formula yields qm¼10 ¼ 0:1332, with a¼ 0.375 and N¼ 72. The inverse function

Φ�1 0:1332ð Þ can be easily calculated through the MS Excel built-in function

NORM.INV(0.1332; 5.4333; 1.3509; TRUE) which returns w10¼ 3.9319. Such

calculations must proceed for all ranking orders up tom¼ 72. The linear correlation

coefficient between empirical (xm) and theoretical (wm) quantiles can be calculated

with Eq. (7.39) or through MS Excel function CORREL(.). Figure 7.7 depicts the

plot of theoretical versus empirical quantiles, the linear regression, and the

corresponding value of the correlation coefficient r¼ 0.9853, which is the esti-

mated value of Filliben’s test statistic. From Table 7.15, with α¼ 0.05, and using

linear interpolation for critical values between N¼ 60 and N¼ 75, the result is

rcrit,0.05¼ 0.9828. As r is slightly higher than rcrit,0.05, the decision is not to reject the
null hypothesis H0, that data have been sampled from a normal population, at the

significance level of 5%.

Table 7.16 lists the critical values rcrit,α, for the case where the parent FX(x) is
specified as the Gumbelmax distribution, with plotting positions qm calculated with

Gringorten’s formula. Table 7.16 can also be employed for testing the exponential

and the two-parameter Weibullmin under H0. For the latter, the Weibullmin variate

transformation into Gumbelmax, as described in the Sect. 7.5.2, is needed.

Fig. 7.7 Linear association between empirical and theoretical quantiles for Filliben’s test
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Table 7.17 lists the critical values rcrit,α, for the case where the parent FX(x) is
specified as the GEV distribution, with plotting positions qm calculated with

Cunnane’s formula. The critical values of Table 7.17 were obtained by Chowdhury

et al. (1991) through a large number of Monte Carlo simulations, of samples of

different sizes drawn from GEV populations, with specified (assumed) values for

the shape parameter κ.
Heo et al. (2008) proposed regression equations to approximate the critical

values of PPCC GoF tests with the normal, Gumbelmax, Pearson type III, GEV,

and three-parameter Weibullmin as hypothesized distributions under H0.

Table 7.16 Critical values

rcrit,α for the Gumbelmax

distribution, with a¼ 0.44

in Eq. (7.40)

N α¼ 0.10 α¼ 0.05 α¼ 0.01

10 0.9260 0.9084 0.8630

20 0.9517 0.9390 0.9060

30 0.9622 0.9526 0.9191

40 0.9689 0.9594 0.9286

50 0.9729 0.9646 0.9389

60 0.9760 0.9685 0.9467

70 0.9787 0.9720 0.9506

80 0.9804 0.9747 0.9525

100 0.9831 0.9779 0.9596

Source: adapted from an original table published in

Stedinger et al. (1993)

Table 7.17 Critical values rcrit,α for the GEV distribution, with a¼ 0.40 in Eq. (7.40)

α N κ ¼ �0:30 κ ¼ �0:20 κ ¼ �0:10 κ ¼ 0 κ ¼ 0:10 κ ¼ 0:20

0.01 5 0.777 0.791 0.805 0.817 0.823 0.825

0.01 10 0.836 0.845 0.856 0.866 0.876 0.882

0.01 20 0.839 0.855 0.878 0.903 0.923 0.932

0.01 30 0.834 0.858 0.890 0.92 0.942 0.953

0.01 50 0.825 0.859 0.902 0.939 0.961 0.970

0.01 100 0.815 0.866 0.92 0.959 0.978 0.985

0.05 5 0.853 0.863 0.869 0.874 0.877 0.880

0.05 10 0.881 0.890 0.900 0.909 0.916 0.920

0.05 20 0.898 0.912 0.926 0.938 0.948 0.953

0.05 30 0.903 0.920 0.937 0.952 0.961 0.967

0.05 50 0.908 0.929 0.950 0.965 0.974 0.979

0.05 100 0.914 0.940 0.963 0.978 0.985 0.989

0.10 5 0.888 0.892 0.896 0.899 0.901 0.903

0.10 10 0.904 0.912 0.920 0.927 0.932 0.936

0.10 20 0.920 0.932 0.943 0.952 0.958 0.962

0.10 30 0.928 0.941 0.953 0.962 0.969 0.973

0.10 50 0.935 0.950 0.963 0.973 0.979 0.982

0.10 100 0.944 0.961 0.974 0.983 0.988 0.991
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The equations facilitate the application of PPCC GoF tests, without the use of

extensive tables. Some of these regression equations are reproduced next.

• Distribution hypothesized under H0: normal (Blom’s formula for plotting

position)

ln
1

1� rcrit,α

� �
¼ 1:29þ 0:283 lnα

þ 0:887� 0:751αþ 3:21α2
� �

lnN for 0:005 � α < 0:1

ð7:41Þ

• Distribution hypothesized under H0: Gumbelmax (Gringorten’s formula for plot-

ting position)

ln
1

1� rcrit,α

� �
¼ 2:54α0:146N0:152�0:00993 lnα for 0:005 � α < 0:1 ð7:42Þ

• Distribution hypothesized under H0: Pearson type III (Blom’s formula for

plotting position)

ln
1

1� rcrit,α

� �
¼ aþ bγð ÞNcþdγþeγ2 for 0:5 � γ < 5:0 ð7:43Þ

where γ denotes the specified coefficient of skewness. The regression coeffi-

cients a to e are given in Table 7.18, for α¼ 0.01, 0.05, and 0.10.

• Distribution hypothesized under H0: GEV (Cunnane’s formula for plotting

position)

ln
1

1� rcrit,α

� �
¼ 1:527� 0:7656κ þ 2:2284κ2 � 3:824κ3ð ÞN0:1986þ0:3858κ�0:5985κ2

for α ¼ 0:05, � 0:20 � κ < 0:25 or 3:5351 � γ > 0:0872

ð7:44Þ

and

Table 7.18 Regression

coefficients for Eq. (7.43)
Regression

coefficient

Significance level α

0.01 0.05 0.10

a 1.37000 1.73000 1.92000

b �0.05080 �0.08270 �0.08640

c 0.23700 0.20700 0.19400

d �0.03400 �0.02000 �0.01580

e 0.00356 0.00223 0.00166
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ln
1

1� rcrit,α

� �
¼ 1:695� 0:5205κ þ 1:229κ2 � 2:809κ3ð ÞN 0:1912þ0:2838κ�0:3765κ2

for α ¼ 0:10, � 0:25 � κ < 0:25 or 5:6051 � γ > 0:0872

ð7:45Þ

where κ is the GEV assumed shape parameter and γ denotes the specified

coefficient of skewness.

Vogel and Kroll (1989) developed critical values for the PPCC GoF test for the

two-parameter Weibullmin parent distribution, under H0, and plotting positions

calculated with Gringorten’s formula. Part of these critical values are given in

Table 7.19, for significance levels α¼ 0.01, 0.05, and 0.10.

Kim et al. (2008) provide charts of the critical statistics versus sample sizes, at

1 and 5% significance levels, for the PPCC testing of the GLO and GPA parent

distributions.

7.5.5 Some Comments on GoF Tests

In general, goodness-of-fit tests are ineffective in discerning differences between

empirical and theoretical probabilities (or quantiles) in the distribution tails. Such a

drawback is critical in hydrologic frequency analysis, since the usual short samples

might contain only a few extreme data points, if any, and further because its main

interest is exactly to infer the characteristics of distribution tails. For instance, the

chi-square GoF test, as applied to continuous random variables, needs the previous

specification of the number of bins and the bin widths, which might severely affect

the test statistic estimation, especially in the distribution tails, as seen in Example

7.8, and even change the decision making.

In addition, GoF tests have other shortcomings. In the case of the KS GoF test,

the mere observation of its critical values, as in Tables 7.5 and 7.6, reveals that the

Table 7.19 Critical values rcrit,α for the 2-p Weibullmin, with a¼ 0.44 in Eq. (7.40)

N α¼ 0.01 α¼ 0.05 α¼ 0.10 N α¼ 0.01 α¼ 0.05 α¼ 0.10

10 0.8680 0.9091 0.9262 50 0.9399 0.9647 0.9728

15 0.8930 0.9274 0.9420 55 0.9445 0.9669 0.9745

20 0.9028 0.9384 0.9511 60 0.9468 0.9693 0.9762

25 0.9140 0.9460 0.9577 65 0.9489 0.9709 0.9775

30 0.9229 0.9525 0.9625 70 0.9518 0.9722 0.9786

35 0.9281 0.9559 0.9656 80 0.9552 0.9742 0.9803

40 0.9334 0.9599 0.9687 90 0.9579 0.9766 0.9821

45 0.9374 0.9630 0.9713 100 0.9606 0.9777 0.9831

Adapted from Vogel and Kroll (1989)
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differences allowed between the empirical and theoretical distributions are too

great before a false null hypothesis is rejected. For instance, for a relatively large

sample, say N¼ 80, at α¼ 0.05, the corresponding critical value in Table 7.6 would

read0:886=
ffiffiffiffi
N

p � 0:10, which means that a 10% difference, between empirical and

theoretical probabilities, would be admissible before rejecting H0. A 10% differ-

ence is certainly highly permissible when a decision concerning a costly and

potentially impacting water resources project is at stake. Another potential disad-

vantage of the KS GoF test is not having tables of critical values for all parent

probability distributions of current use in Statistical Hydrology.

The AD GoF test is an interesting alternative to previous tests, especially for

giving more weight to the distribution tails and for having a competitive advantage

in power analysis, as compared to conventional GoF tests, such as the chi-square

and KS (Heo et al. 2013). It exhibits the potential disadvantage of not being

invariant to the estimation method of location and scale parameters. For a three-

parameter distribution, calculation of the AD GoF test, requires the specification of

an assumed true value of the shape parameter. The Modified AD or MAD GoF test

seems to be a promising alternative as far as frequency analysis of hydrologic

maxima is concerned.

The PPCC GoF test, as the remaining alternative, has good qualities such as the

intuitiveness and simple formulation of its test statistic and its favorable power

analysis, when compared to other GoF tests, as reported in Chowdhury et al. (1991),

Vogel and McMartin (1991), and Heo et al. (2008). Unlike the AD test, PPCC GoF

tests are invariant to the estimation method of location and scale parameters, which

is seen as another potential advantage. In spite of the favorable comparative

analysis, the power of GoF tests, here including the PPCC, is considerably lowered

for samples of reduced sizes, as usually encountered in at-site hydrologic frequency

analysis (Heo et al. 2008). Tables of critical values for the PPCC test are currently

available for many parent probability distributions of use in Hydrology. It is worth

noting, however, that the tables or regression equations for the critical values of

three-parameter distributions were based on an assumed or specified value for the

shape parameter (or coefficient of skewness).

GoF tests, as any other hypothesis test, aim to check whether or not the

differences between empirical and theoretical realizations are significant, assuming

that they arise from the parent distribution hypothesized under H0. Therefore, the

eventual decision to not reject the null hypothesis, at a given significance level, does

not imply that data have been indeed sampled from the hypothesized parent

distribution. This, in principle, is unknown and might be any of the many distribu-

tions that are contained in the alternative hypothesis. In addition, test statistics for

GoF tests have probability distributions that change with the hypothesized parent

distribution under H0, thus yielding critical and p-values that are not comparable

with each other. As such, GoF tests cannot be used to choose the best-fit distribution

for a given sample. Other alternatives, such as conventional moment diagrams and

L-moment diagrams, to be discussed in the next chapter, seem more useful in

choosing the best-fit model.
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7.6 Test for Detecting and Identifying Outliers

For a given sample, a data point is considered an outlier if it departs significantly

from the overall tendency shown by the other data points. Such a departure might

have an origin in measurement or data processing errors but might also arise from

indeterminate causes. In any case, the presence of outliers in a sample may

drastically affect parameter and quantile estimation and the fitting of a candidate

probability distribution. In Sect. 2.1.5, an ad hoc procedure to identify outliers is

described, by means of the Interquartile Range (IQR). This, although practical and

useful, is merely of an exploratory nature and does not constitute itself a formal

hypothesis test, with a prescribed significance level.

Among the available formal procedures to detect and identify outliers, the

Grubbs–Beck (GB) test, introduced by Grubbs (1950, 1969) and complemented

by Grubbs and Beck (1972), is one of the most frequently utilized in Statistical

Hydrology. Since the original test was developed for outliers of samples drawn

from a normal population, in order to use the GB tables of critical values, it is an

accepted practice to assume that the natural logarithms of the variable being

studied, including annual maxima and minima, are normally distributed (WRC

1981). As such, the quantities xU and xL, given in Eqs. (7.46) and (7.47), respec-

tively define the upper and lower bounds, above and below which a possible outlier

would lie in a ranked data sample. Formally,

xU ¼ exp yþ kN,αsYð Þ ð7:46Þ

and

xL ¼ exp y� kN,αsYð Þ ð7:47Þ

where y and sY denote the mean and standard deviation of the natural logarithms of

the data points xi from a sample of size N of the random variable X, and kN,α denotes
the critical value of the GB test statistic.

The critical values of the GB test statistic, for 100α¼ 5% and 100α¼ 10%, and

sample sizes within the interval 10�N� 120, are respectively approximated by the

following equations:

kN,α¼0:05 ¼ �5:2269þ 8:768N1=4 � 3:8063N1=2 þ 0:8011N3=4 � 0:0656N

ð7:48Þ

and

kN,α¼0:10 ¼ �3:8921þ 6:7287N1=4 � 2:7691N1=2 þ 0:5639N3=4 � 0:0451N

ð7:49Þ
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According to the GB test, at α¼ 0.05 or 0.10, and kN,α approximated by Eqs. (7.48)

or (7.49), the data points higher than xU or lower than xL deviate significantly from

the overall tendency of the remaining data points in the sample. Following the

criticism that the GB test rarely identifies more than one low outlier in a flood data

sample, when more than one does indeed exist (Lamontagne et al. 2012), research is

under way to develop and evaluate new tests to detect multiple low outliers in flood

data samples (see Spencer and McCuen 1996, Lamontagne and Stedinger 2016).

Once an outlier is detected and identified, the decision of keeping it or removing

it from the sample is a matter of further investigation. If the careful scrutiny of an

outlier data point is conclusive and characterizes it as an incorrect measurement or

observation, it certainly must be expunged from the sample. The action of removing

low outliers from a sample is also justified in frequency analysis of hydrologic

maxima when the focus is on estimating the upper-tail quantiles, as unusually small

floods can possibly affect the estimation of large floods. However, if a high outlier

is identified in a sample of hydrologic maxima, it certainly should not be removed,

since it can possibly result from natural causes, such as the occurrence of extraor-

dinary hydrometeorological conditions, as compared to the ordinary data points,

and be decisive in defining the distribution upper tail. The same reasoning, in the

opposite direction, can be applied to hydrologic minima.

Exercises

1. Consider the test of the null hypothesis H0: p¼ 0.5, against H1: p> 0.5, where

p denotes the probability of success in 18 independent trials of a Bernoulli

process. Assume the decision is to reject the null hypothesis, if the discrete

random variable Y, denoting the number of successes in 18 trials, is equal to or

larger than 13. Calculate the power of the test, given by [1�β( p)], for different
values of p> 0.5, and make a plot of [1�β( p)] against p.

2. Solve Exercise 1 for H1: p 6¼ 0.5.

3. Table 7.20 lists the annual total rainfall depths, in mm, measured at the gauging

station of Tokyo, Japan, from 1876 to 2015 (in Japan, the water year coincides

with the calendar year). Assume this sample has been drawn from a normal

population, with known variance equal to 65,500 mm2. Test H0:μ0¼ 1500 mm

against H1:μ1¼ 1550 mm, at α¼ 0.05.

4. Solve Exercise 3, assuming the normal variance is not known.

5. Solve Exercise 3 for H1:μ1 6¼1550 mm.

6. Solve Exercise 5, assuming the normal variance is not known.

7. Considering the data sample given in Table 7.20, split it into two subsamples of

equal sizes. Test the null hypothesis that the population means for both sub-

samples do not differ from each other by 15 mm, at α¼ 0.05.

8. Considering the data sample given in Table 7.20, assume the normal mean is

known and equal to 1540 mm. Test H0: σ0¼ 260 mm against H1: σ1<260 mm,

at α¼ 0.05.
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9. Solve Exercise 8 assuming the normal mean is not known.

10. Considering the data sample given in Table 7.20, split it into two subsamples of

equal sizes. Test the null hypothesis that the population variances for both

subsamples do not differ from each other, at α¼ 0.05.

11. Table 7.21 lists the annual maximum daily rainfall depths, in mm, measured at

the gauging station of Kochi, in southern Japan, from 1886 to 2015. Kochi is

located on Shikoku Island, one of four main islands that form the Japanese

archipelago, and directly faces the Pacific Ocean, with frequent and intense

rainfalls, some triggered by the passing of typhoons over the region. Test the

null hypothesis that the Kochi observed rainfall are random, at α¼ 0.05.

12. Test the null hypothesis that Kochi observed rainfall data, as listed in

Table 7.21, are independent, at α¼ 0.05.

Table 7.20 Annual total rainfall (mm) observed at the gauging station of Tokyo by Japan

Meteorological Agency (Courtesy: Dr. S Oya, Swing Corporation, for data retrieval)

Year Rainfall Year Rainfall Year Rainfall Year Rainfall Year Rainfall

1876 1756 1904 1382 1932 1690 1960 1282 1988 1516

1877 1317 1905 1330 1933 1011 1961 1260 1989 1938

1878 1764 1906 1520 1934 1247 1962 1256 1990 1513

1879 1493 1907 1640 1935 1657 1963 1575 1991 2042

1880 1686 1908 1692 1936 1628 1964 1140 1992 1620

1881 1444 1909 1512 1937 1359 1965 1392 1993 1873

1882 1478 1910 1751 1938 2230 1966 1644 1994 1132

1883 1553 1911 1867 1939 1750 1967 1023 1995 1220

1884 1315 1912 1734 1940 1094 1968 1491 1996 1334

1885 1532 1913 1597 1941 2155 1969 1343 1997 1302

1886 1290 1914 1694 1942 1470 1970 1122 1998 1547

1887 1250 1915 1927 1943 1391 1971 1439 1999 1622

1888 1379 1916 1931 1944 1329 1972 1628 2000 1603

1889 1319 1917 1308 1945 1616 1973 1150 2001 1491

1890 1958 1918 1337 1946 1236 1974 1581 2002 1295

1891 1221 1919 1534 1947 1038 1975 1541 2003 1854

1892 1715 1920 2194 1948 1757 1976 1558 2004 1750

1893 1161 1921 2025 1949 1782 1977 1454 2005 1482

1894 1321 1922 1411 1950 1952 1978 1030 2006 1740

1895 1398 1923 1697 1951 1590 1979 1454 2007 1332

1896 1374 1924 1475 1952 1641 1980 1578 2008 1858

1897 1497 1925 1713 1953 1519 1981 1464 2009 1802

1898 1712 1926 1177 1954 1771 1982 1576 2010 1680

1899 1649 1927 1445 1955 1554 1983 1341 2011 1480

1900 1188 1928 1750 1956 1657 1984 880 2012 1570

1901 1589 1929 1909 1957 1500 1985 1517 2013 1614

1902 1754 1930 1476 1958 1805 1986 1458 2014 1808

1903 1912 1931 1565 1959 1626 1987 1089 2015 1782
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13. Test the null hypothesis that Kochi observed rainfall data, as listed in

Table 7.21, are homogeneous, at α¼ 0.05.

14. Test the null hypothesis that Kochi observed rainfall data, as listed in

Table 7.21, are stationary, at α¼ 0.05.

15. Use the chi-square, KS, AD, and Filliben GoF tests, at α¼ 0.05, to test the null

hypothesis that Tokyo annual total rainfall depths (mm), as listed in Table 7.20,

are normally distributed. Estimate parameters by the method of moments.

16. Counts of Escherichia Coli for 10 water samples collected from a lake, as

expressed in hundreds of organisms per 100 ml of water (102/100 ml), are

17, 21, 25, 23, 17, 26, 24, 19, 21, and 17. The arithmetic mean value and the

variance calculated for the 10 samples are respectively equal to 21 and 10.6.

Assume N represents the number of all different organisms that are present in a

Table 7.21 Annual maximum daily rainfall (mm) observed at the gauging station of Kochi,

located on Shikoku Island, by Japan Meteorological Agency (courtesy: Dr. S Oya, Swing

Corporation, for data retrieval)

Year

Max 1

day Year

Max 1

day Year

Max 1

day Year

Max 1

day Year

Max 1

day

1886 117 1912 246 1938 239 1964 76 1990 197

1887 212 1913 157 1939 254 1965 194 1991 115

1888 161 1914 239 1940 112 1966 260 1992 180

1889 160 1915 156 1941 149 1967 156 1993 194

1890 293 1916 231 1942 136 1968 175 1994 158

1891 172 1917 171 1943 205 1969 163 1995 210

1892 187 1918 195 1944 149 1970 177 1996 121

1893 180 1919 184 1945 173 1971 291 1997 214

1894 129 1920 364 1946 291 1972 337 1998 629

1895 128 1921 101 1947 218 1973 122 1999 217

1896 172 1922 260 1948 226 1974 155 2000 211

1897 240 1923 139 1949 237 1975 295 2001 230

1898 200 1924 114 1950 212 1976 525 2002 106

1899 255 1925 344 1951 166 1977 126 2003 154

1900 242 1926 166 1952 152 1978 250 2004 244

1901 160 1927 162 1953 218 1979 136 2005 173

1902 170 1928 200 1954 263 1980 221 2006 188

1903 184 1929 130 1955 195 1981 136 2007 315

1904 139 1930 126 1956 371 1982 192 2008 231

1905 115 1931 162 1957 174 1983 145 2009 142

1906 200 1932 210 1958 130 1984 216 2010 236

1907 179 1933 169 1959 162 1985 176 2011 160

1908 169 1934 124 1960 158 1986 111 2012 223

1909 127 1935 184 1961 191 1987 158 2013 196

1910 120 1936 159 1962 176 1988 265 2014 372

1911 232 1937 173 1963 203 1989 163 2015 211
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sample (in analogy to N¼ the number of Bernoulli trials) and let p denote the

fraction of N that corresponds to E. Coli (in analogy to p¼ the probability of

success). Fit a binomial distribution to Y¼ hundreds of E. Coli organisms per

100 ml of water. Use the chi-square GoF test, at α¼ 0.10, to check the binomial

fit to the data sample.

17. Use the chi-square GoF procedure, at α¼ 0.05, to test the annual maximum

daily rainfall (mm), at the Kochi gauging station, given in Table 7.21, for the

two-parameter lognormal, one-parameter exponential, Gumbelmax, GEV, Pear-

son type III, and log-Pearson type III models. Use the method of moments to

estimate the distributions’ parameters.

18. Use the KS GoF procedure, at α¼ 0.05, to test the annual maximum daily

rainfall (mm), at the Kochi gauging station, given in Table 7.21, for the

two-parameter lognormal, one-parameter exponential, Gumbelmax, Pearson

type III, and log-Pearson type III models. Use the method of moments to

estimate the distributions’ parameters.

19. Use the AD or MAD procedure, as appropriate, at α¼ 0.05, to test the annual

maximum daily rainfall (mm), at the Kochi gauging station, given in

Table 7.21, for the two-parameter lognormal, one-parameter exponential,

Gumbelmax, GEV, Pearson type III, and log-Pearson type III models. Use the

method of moments to estimate the distributions’ parameters.

20. Use the PPCC GoF procedure, at α¼ 0.05, to test the annual maximum daily

rainfall (mm), at the Kochi gauging station, given in Table 7.21, for the

two-parameter lognormal, one-parameter exponential, Gumbelmax, GEV, Pear-

son type III, and log-Pearson type III models. Use the method of moments to

estimate the distributions’ parameters.

21. Use the chi-square GoF procedure, at α¼ 0.05, to test the annual peak dis-

charges of the Lehigh River at Stoddartsville (m3/s), given in Table 7.1, for the

two-parameter lognormal, one-parameter exponential, Gumbelmax, GEV, Pear-

son type III, and log-Pearson type III models. Use the method of moments to

estimate the distributions’ parameters.

22. Use the KS GoF procedure, at α¼ 0.05, to test the annual peak discharges of the

Lehigh River at Stoddartsville (m3/s), given in Table 7.1, for the two-parameter

lognormal, one-parameter exponential, Gumbelmax, Pearson type III, and

log-Pearson type III models. Use the method of moments to estimate the

distributions’ parameters.

23. Use the AD and MAD GoF procedure, as appropriate, at α¼ 0.05, to test the

annual peak discharges of the Lehigh River at Stoddartsville (m3/s), given in

Table 7.1, for the two-parameter lognormal, one-parameter exponential,

Gumbelmax, GEV, Pearson type III, and log-Pearson type III models. Use the

method of moments to estimate the distributions’ parameters.

24. Use the PPCC GoF procedure, at α¼ 0.05, to test the annual peak discharges of

the Lehigh River at Stoddartsville (m3/s), given in Table 7.1, for the

two-parameter lognormal, one-parameter exponential, Gumbelmax, GEV, Pear-

son type III, and log-Pearson type III models. Use the method of moments to

estimate the distributions’ parameters.
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25. Table 2.7 of Chap. 2 lists the Q7 flows, in m3/s, for the Dore River at Saint-

Gervais-sous-Meymont, in France, from 1920 to 2014. Fit a Weibullmin distri-

bution to these data, employing the MOM estimation method. Use the PPCC

GoF test, at α¼ 0.05, to determine whether or not the Q7 flow data can be

modeled by a Weibullmin distribution.

26. Table 2.6 of Chap. 2 lists the independent peak discharges of the Greenbrier

River at Alderson (West Virginia, USA) that exceeded the threshold 17000 cfs.

Fit a Generalized Pareto Distribution (GPA) to these data, employing the MOM

estimation method (see Example 5.11). Use the MAD GoF test, at α¼ 0.05, to

determine whether or not the peaks-over-threshold flood data can be modeled

by a GPA distribution.

27. For the data listed in Table 7.21, use both the Interquartile Range (IQR)

exploratory procedure and the Grubbs–Beck test, at α¼ 0.05 and α¼ 0.10, to

detect and identify possible outliers. Compare and comment on your results.

28. Use the GB test, at α¼ 0.05, to detect possible outliers in the sample of annual

peak discharges of the Lehigh River at Stoddartsville (m3/s), given in Table 7.1.

Read about the Spencer-McCuen test, as described in Spencer and McCuen

(1996) and commented on Lamontagne and Stedinger (2016), and apply it to

the data in Table 7.1. Compare with the GB test and comment on your results.
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Chapter 8

At-Site Frequency Analysis of Hydrologic
Variables

Mauro Naghettini and Eber José de Andrade Pinto

8.1 Introduction

Analysis and estimation of flood flows and related rainfall intensities and depths

have always been ubiquitous problems in the domain of water resources engineer-

ing. Throughout history, the natural attraction that floodplains and river valleys

have exerted on human societies, due to the favorable conditions to develop and

maintain activities, such as agriculture, fishing, transportation, and convenient

access to local water resources, has induced humans to occupy and use them.

However, the economic and social benefits resulting from the occupation and use

of river valleys and floodplains are frequently offset by the negative effects of

flood-induced disasters, such as the loss of lives and the material damage to riverine

communities and properties. In fact, it should not be a surprise that rivers occa-

sionally reclaim their own dynamic constructions which are their valleys and plains.

However, it is an unfortunate surprise to acknowledge that human societies occa-

sionally disregard the fact that occupying the floodplains means to coexist with risk.

Flood-risk reduction and mitigation of flood-induced damages can be achieved

by human actions on the fluvial system, such as the construction of reservoirs and

levees, regulations controlling land use in flood hazard areas, and the implementa-

tion of alert systems and protection measures for riverine structures and properties.

Estimation of flood flows is essential not only for planning these interventions but

also for designing and operating the engineering structures to control and manage
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water since their structural safety depends much on reliable estimates of flood

characteristics. Engineers and hydrologists are often asked to estimate relevant

characteristics of flood flows, such as the peak discharges, the volume and duration

of flood hydrographs, the flooded areas, the associated precipitation depths and

intensities, as well as their corresponding critical values for design and/or operation

purposes (ASCE 1996), and further relate them to exceedance probabilities or

return periods. Equally important is the estimation of low-flow quantiles and

associated probabilities, as necessary to develop and manage water resources

during prolonged droughts and periods of water scarcity.

Frequency analysis of hydrologic variables, broadly defined here as the quanti-

fication of the expected number of occurrences of an event of a given magnitude, is

perhaps the earliest and most frequent application of probability and statistics in the

field of water resources engineering. In brief, the methods of frequency analysis, as

applied to maxima, aim to estimate the probability with which a random variable

will be equal to or greater than a given quantile, from a sample of observed data

(Kidson and Richards 2005). Frequency analysis of minima is similar, but

non-exceedance probabilities are of concern. If only data recorded at a single

streamflow (or rainfall) gauging station are available, an at-site frequency analysis

is being carried out. Otherwise, if other observations of the variable, as recorded at

distinct gauging stations within a specified region, are jointly employed for statis-

tical inference, then the frequency analysis is said to be regional.

At-site frequency analysis of hydrologic random variables has received much

attention from hydrologists over the years. New probability distribution models and

improved techniques of statistical inference have been proposed, in the pursuit of

more reliable estimates of rare quantiles. However, the relatively short samples of

hydrologic maxima seem to impose a limit to the degree of statistical sophistication

that can be employed in at-site frequency analysis. Given this, the regional fre-

quency analysis is certainly an alternative that seeks to balance the limited temporal

distribution of hydrologic data, as recorded at a single site, with a more detailed

characterization of the variable with data from multiple locations. Potter (1987),

Bobée and Rasmussen (1995), and Hosking andWallis (1997) are among those who

presented the many advantages and arguments in favor of regional methods, as

compared to at-site frequency analysis. Despite these arguments, it is plausible to

expect that a number of decisions on the occurrence of rare hydrologic events will

be made still on the basis of a single sample of hydrologic data. This expectation

may be justified either by (1) the scarcity or even the absence of adequate hydro-

logic data within a given region; or (2) the expedite way with which engineering

solutions are occasionally proposed to problems involving hydrologic rare events. It

appears then that at-site frequency analysis will stay as a current engineering

method for some time and thus deserves a full description of its methods and

limitations.

Hydrologic frequency analysis, either at a site or concurrently at multiple sites, is

generally performed with the reduced extreme-value series, which are collections

of maximum or minimum values that have occurred during a time period. If the

time period is a year, extreme-value series are annual; otherwise, they are said to be
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non-annual, as extremes can be abstracted within a season or within a varying time

interval (Chow 1964). As seen in previous chapters, the frequency analyses of

annual total values (or annual mean values) are, in most cases, applications of fitting

the normal distribution to sample data and are not the main focus of this chapter.

Amongst the non-annual extreme-value series, the partial-duration series are those

in which only the independent extreme values that are higher, in the case of

maxima, or lower, in the case of minima, than a specified reference threshold are

selected from the records. Sections 8.2 and 8.3 of this chapter deal mostly with the

frequency analysis of annual extreme values, with a particular focus on annual

maxima, whereas Sect. 8.4 is devoted to the partial duration series. The mathemat-

ical relations between the two types of frequency analyses are also given in

Sect. 8.4.

The sample of extreme data to be considered for frequency analysis should be

representative of the variation expected for the random quantity of interest, be

previously screened for occasional or systematic measurement errors (observa-

tional, and/or processing), and be large enough to allow some reliable extrapolation.

In addition, as seen in previous chapters, data must have been drawn at random

from a single population, such that it constitutes a simple random sample. In this

regard, the nonparametric tests of randomness, independence, homogeneity, and

stationarity, as seen in Chap. 7, play the important role of checking the statistical

attributes data must exhibit so that a frequency analysis can be performed

afterwards.

Hydrologic frequency analyses can also be categorized as graphical or analyti-

cal. The former type consists of graphing the ranked data against a conveniently

distorted scale of probabilities, and of extending the resulting linearized relation,

limited by how reliable the analyst judges the data to be. This rather subjective

approach used to be current practice in the early days of Statistical Hydrology and,

of course, has been totally superseded by analytical frequency analysis, in which a

theoretical probability model, as fitted to the data sample, completely defines the

random variable behavior throughout its entire domain of variation. However, some

elements of graphical frequency analysis, such as the construction of probability

charts (or probability papers), are still useful if used together with analytical

frequency analysis. That is the main justification for including Sect. 8.2, on

graphical frequency analysis, in this chapter.

In carrying out a full analytical frequency analysis of a hydrologic variable,

beyond the usual problems of inferring parameters and quantiles from short sam-

ples, lies the nontrivial task of identifying the most adequate and robust probability

model for a case in particular. No consensual and unequivocal set of rules exists to

respond to such a task. In fact, the true probability distribution from which a

particular sample has been drawn is most likely a complicated mixture of many

other probability distributions and will never be entirely known. As remarked by

Stedinger et al. (1993), even if the functional representation of such a mixture of

distributions were known, it would likely have too many parameters to be of

practical use. The issue is then to choose the most parsimonious and robust

distribution, among a set of candidate models, capable of yielding reasonably
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reliable quantile estimates for the engineering problem at hand. Some general

guidelines for making such a choice, together with a few objective aiding tools

are provided in Sect. 8.3.

In summary the steps necessary to complete an at-site frequency analysis of a

hydrologic variable are as follows:

• Have an option to work with the annual extreme-value series or with the partial

duration series;

• Screen data for measurement, observational, or processing errors;

• Test data for randomness, independence, homogeneity, and stationarity;

• Detect and identify possible outliers in the sample, and assess actions relating

thereto;

• Define a set of candidate probability distribution functions, estimate their

parameters, quantiles, and confidence intervals, and assess their respective

goodness-of-fit indicators;

• Make use of the general guidelines and objective aiding tools to select the most

parsimonious and robust model among the set of fitting candidate probability

distribution functions;

• Extend the selected model up to a credible limit of extrapolation, compatible

with the sample size and estimated uncertainties; and

• If a further extension is necessary, consider improving the at-site study by

resorting to regional frequency analysis, described in Chap. 10.

Some of these steps are detailed and discussed in the sections that follow. Prior

to that, however, it is instructive to describe previously used techniques pertaining

to graphical frequency analysis that can be helpful in successfully completing some

of the steps previously outlined. These techniques are described next, in Sect. 8.2.

8.2 Graphical Frequency Analysis

In brief, the graphical frequency analysis consists of plotting the ranked data, on the

vertical axis, against their respective empirical probabilities, on the horizontal axis.

Associating each data point to its respective exceedance probability, or equivalently

to its return period, is uncertain as it depends on the sample size and also on the

existence of possible outliers in the sample. For instance, if the true 500-year flood

peak is found amidst the 80 data points that make a given sample, it would be

impossible to assign the correct probability or return period to that particular

observation, based only on the data recorded at that location. On the other hand,

no one would have the prior knowledge about the true return period associated with

that particular point, based only on the data observed at that site. Sampling is thus a

definite source of uncertainty in probability plotting.

Early applications of graphical frequency analysis were likely motivated by the

idea of extrapolating the overall tendency shown by the plot of data against

empirical probabilities to rarer events. One issue of concern here is how far the
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extrapolation should go before unreliable results are obtained or before a new

tendency, beyond the range of past observations, is produced. The uncertainties,

arising either from extrapolation or from sampling issues, can be partially reduced

by (a) the construction of the so-called probability papers on which linearized

probability plots can be drawn; and (b) the development of improved plotting-

position formulae to assign empirical probabilities to ranked data. These are the

topics to be covered in the next subsections.

8.2.1 Probability Paper

Except for the uniform distribution, when a cumulative distribution function FX(x)
is plotted against x on an arithmetic scale, a curved line will result, such as that

highlighted in Fig. 8.1, valid for the standard normal distribution Φ(z) versus z.
However, any probability distribution that is fully described by location and scale

parameters would plot as a straight line if the arithmetic scale is conveniently

transformed into a probability scale. In order to perform such a graphical lineari-

zation, one should first draw a straight line between two points of the curved line,

covering the desired range, as depicted in Fig. 8.1 (Haan 1977). Then, the

Fig. 8.1 Graphical construction of a normal probability paper (adapted from Haan 1977)
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probability scale is constructed on the upper secondary horizontal axis, by shifting

the probabilities, as read on the original arithmetic scale on the lower primary axis,

to the left or to the right, as exemplified by the dashed arrowhead lines shown in

Fig. 8.1 for the normal distribution. Also shown in this figure is the linearized

normal plot that would have been obtained, should the generic normal variate X, on
the right secondary vertical axis, have mean μX¼ 50 and standard deviation

σX¼ 15. If all labels are removed from Fig. 8.1, except the probability scale on

the upper horizontal axis, one would have a normal probability paper.

The mathematical formalism for constructing probability papers can be set up by

starting from the analytic equation of a straight line relating the variable X, on the

vertical axis, to its cumulative distribution function FX(x), on the horizontal axis.

Formally,

X ¼ ag FX xð Þ½ � þ b ð8:1Þ

where a is the angular coefficient, b denotes the value of X when g FX xð Þ½ � ¼ 0, and

g[FX(x)] represents the linearizing function for the CDF FX(x). Notice that for FX(x)
being linear, it must be completely definable by the parameters β and α, of location
and scale, respectively. For any CDF as such, the corresponding standard variate

Z can be written as

Z ¼ X � β

α
ð8:2Þ

such that

X ¼ αZ þ β ð8:3Þ

By comparing Eqs. (8.1) and (8.3), one immediately sees they are of identical forms

and that a¼ α, b¼ β, and g FX xð Þ½ � ¼ Z. As Z ¼ F�1
Z zð Þ, the function g[FX(x)] that

linearizes the relation between X and FX(x) can be written in the general form

g FX xð Þ½ � ¼ F�1
Z zð Þ ð8:4Þ

Taking as an example the normal distribution defined by the parameters μX and

σX, then a¼ σX, b¼ μX, and g FX xð Þ½ � ¼ Φ�1 zð Þ, where Φ�1 zð Þ denotes the inverse
function of the standard normal distribution. Such a mathematical construction of

the normal probability paper is illustrated in Fig. 8.2.

In Fig. 8.2, one notices that the auxiliary secondary horizontal axis depicting the

variation of the standard normal variate Z, which is the only horizontal axis that is

actually on arithmetic scale, serves the purpose of linearizing the relation between

X and FX(x), through the function g FX xð Þ½ � ¼ Φ�1 zð Þ. The other horizontal axes, the
lower with the CDF FX(x) itself and the upper with the complement [1�FX(x)],
have their respective scales distorted, in correspondence to the values of Z, so that

the relation of X either with FX(x) or [1�FX(x)] plots as a straight line, with
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coefficients a¼ μX and b¼ σX. Now, if the auxiliary horizontal axis of the standard

variate Z and all labels are removed from Fig. 8.2, except the probability scale on

the lower horizontal axis, the resulting chart would be a generic normal probability

paper, as depicted in Fig. 8.3. On such a paper one could easily plot the N ranked

observations of an assumed normally distributed variable X, according to a conve-

niently chosen scale on the vertical axis, against their corresponding empirical

non-exceedance probabilities. These can be calculated through an appropriate

plotting position formula selected among those listed in Table 7.14.

As previously mentioned, probability papers can be constructed for any

probability distribution that can be completely defined by location and scale

parameters. Besides the normal probability paper, the others that are most

frequently used in Statistical Hydrology are the two-parameter lognormal, expo-

nential, and Gumbelmax papers. The lognormal is identical to the normal paper,

except for the scale of variable X, on the vertical axis, which is transformed into a

logarithmic scale. A generic lognormal probability paper is shown in Fig. 8.4,

where the non-exceedance probabilities FX(x) appear on the lower horizontal axis
and the return periods T, obtained as T ¼ 1= 1� FX xð Þ½ �, on the auxiliary upper

horizontal axis.

Fig. 8.2 Mathematical construction of a normal probability paper
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Fig. 8.3 A generic normal probability paper

Fig. 8.4 A generic lognormal probability paper
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Table 8.1 summarizes the coefficients a and b, the transformation of X, if
applicable, and the linearizing function g[FX(x)] that are necessary to construct

the probability papers most frequently used in Statistical Hydrology. The steps that

should be followed to construct these papers are similar to those described for the

normal probability paper. Figures 8.5 and 8.6 show the Exponential and Gumbelmax

probability papers, respectively. All these papers have been drawn using a few

resources of MS Excel, such as white fonts and white colors to hide labels and axes,
manual labeling of markers to define probability and return period scales, and

“Error Bars” (from “Layout” within the “Chart Tools” menu) to extend vertical

lines starting from the markers on the horizontal axis.

Table 8.1 Elements necessary for constructing probability papers

Distribution Variable Location Scale a b g[FX(x)]

Normal X μX σX σX μX Φ�1 zð Þ
Lognormal Y¼ lnX μY σY σY μY Φ�1 zð Þ
Exponential X 0 θ θ 0 �ln 1� Fð Þ
Gumbelmax X β α α β �ln �ln Fð Þ½ �

Fig. 8.5 A generic exponential probability paper
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8.2.2 Empirical Distribution

A probability plot is a graph that associates the magnitudes of ranked data, on the

vertical axis, with their respective empirical probabilities, or plotting positions, on

the horizontal axis. The resulting curve is referred to as the empirical distribution. If

the population were known, the plotting position associated with a given data point

would be a mere fraction between the number of data that have not exceeded it and

the total number of data points. Thus, in such a case, the plotting position of the

largest data point would be 1 and the plotting position of the lowest would be

0. However, for actual samples, as the smallest and largest data are always waiting

to happen, plotting positions with extreme values, such as 0 and 1, should be

avoided.

Gumbel (1958) postulated the following attributes a formula for calculating

plotting positions should exhibit:

• The plotting position must be such that all observed data can be plotted.

• The plotting position should be bounded by m� 1ð Þ=Nandm/N, wherem denotes

the ranking order of a given data point and N the total number of observations.

It is customary to rank maximum (or total or mean) data in descending order,

such that m¼ 1 for the largest observation and plotting positions refer to

exceedance probabilities, and rank minimum data in ascending order, such that

Fig. 8.6 A generic Gumbelmax probability paper
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m¼ 1 for the smallest observation and plotting positions refer to non-exceedance

probabilities.

• In the case of annual extreme-value series, the return period associated with the

largest observation, for maxima, or with the smallest observation, for minima,

should converge to N.
• The observations should be equally spaced on the empirical probability scale.

• The plotting position formula should be intuitive, analytically simple, and easy

to use.

As previously outlined in Sect. 7.5.4, within the context of PPCC GoF test, many

plotting position formulae have been proposed for use in hydrologic frequency

analysis. Some are summarized in Table 7.14, according to their respective statis-

tical justifications, and are all particular cases of Cunnane’s general formula given

by Eq. (7.40). The different plotting position formulae yield similar values for the

central portion of the empirical distribution but they can diverge by a great amount

in the tails. As noted by Stedinger et al. (1993), all plotting position formulae give

crude estimates of the unknown probabilities associated with the largest and, by

symmetry, with the smallest observations. These authors suggest that the actual

exceedance probability for the largest observed datum in a sample of size N lies

between 0.29/N and 1:38= N þ 2ð Þ nearly 50% of the time. To give an example, in

such conditions, the true return period of the largest observation in an annual-

maxima sample of size 50 would be somewhere between 38 and 172 years, in half

of the time. The reader interested in plotting position formulae should consult

Cunnane (1978), for a full review, and Stedinger et al. (1993), for an elucidative

discussion.

The plotting of an empirical distribution can be made on one of the probability

papers previously described. It consists of the following sequential steps:

(a) Rank data in descending order, if maxima (or total or mean values), or in

ascending order, if minima, and denote each data point as

xm, m ¼ 1, 2, . . . ,N, where m represents the ranking order.

(b) Calculate the respective plotting position for each ranked data point, according

to an appropriately selected formula, among those of Table 7.14, and to the

choice made for the probability paper. Notice that if data refer to maxima

(or total or mean values), the resulting plotting position would result in an

exceedance probability; otherwise, in a non-exceedance probability. For both

cases, plotting positions are represented as qm.
(c) Set an adequate scale on the vertical axis of the probability paper and plot all

pairs [qm, xm] for m¼ 1, 2,. . ., N.

Example 8.1 Table 8.2 lists part of the 248 annual total rainfall depths

(mm) observed at the Radcliffe Meteorological Station, in Oxford, England, from

1767 to 2014, retrievable from http://www.geog.ox.ac.uk/research/climate/rms/

rain.html. Table 8.2 also lists part of the data, as ranked in descending order, and

some partial calculations necessary to plot the empirical distribution. Among these

are the plotting positions in the last column, as calculated by Blom’s formula, which
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appears adequate since Example 7.8 has not discarded the null hypothesis of

normally distributed data. Plot the corresponding empirical distribution.

Solution Figure 8.7 depicts the empirical distribution graph for the annual total

rainfall depths, in mm, observed at the Radcliffe Meteorological Station, in Oxford,

Table 8.2 Elements for plotting the empirical distribution of the annual total rainfall depths

observed at the Radcliffe Meteorological Station, in Oxford, England, 1767–2014

Year Rainfall x (mm) Ranked data (xm) Rank order (m) Blom’s qmP(X� xm)

1767 777.1 1034.7 1 0.0025

1768 861.3 978.9 2 0.0065

1769 595.8 962.8 3 0.0106

1770 636.1 913.1 4 0.0146

1771 411.8 895.9 5 0.0186

. . . . . . . . . m qm ¼ m�0:375
Nþ0:25

2010 624.7 417.7 244 0.9814

2011 476.6 411.8 245 0.9854

2012 978.9 408.7 246 0.9894

2013 642.4 379.5 247 0.9935

2014 797.1 353.4 248 0.9975

Fig. 8.7 Empirical and theoretical distributions of the annual total rainfalls at the Radcliffe

Station, in Oxford, England, on normal probability paper
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England, from 1767 to 2014, resulting from plotting the pairs [qm, xm], in black

circles, on the normal probability paper. Superimposed over the empirical distri-

bution, lies the theoretical normal distribution fitted to the sample, with parameters

estimated by the method of moments. Notice that, as expected, the fitted normal

distribution plots as a straight line on the normal probability paper. However, even

for such a huge sample, relative to the usual sample sizes found in hydrology,

prudence must be exercised in extending the normal straight line much beyond the

range of observed data. On one side, the plotting positions calculated for the largest

observations would shift to the right of their current positions, should these same

data remain the largest for the next, say 50 years, thus reinforcing the hypothesis of

normally distributed data; the opposite could also possibly be true. On the other

side, based on the argument about plotting positions raised by Stedinger et al.

(1993), the true exceedance probability associated with the largest annual rainfall

over the 248 years of measurements at the Radcliffe Meteorological Station lies

between 0.0012 (or T¼ 855 years) and 0.0055 (or T¼ 181 years) nearly 50% of the

time. This example illustrates the main uncertainties related to graphical frequency

analysis, arising either from extrapolation or from sampling issues.

Sometimes it is helpful to plot different theoretical distributions, as fitted to the

same sample, on a single probability paper, overlaid on the empirical distribution.

Such a practical approach to visually compare how different distributions fit the

data is an example of the joint use of graphical and analytical frequency analyses

and is used as an aiding tool in later sections of this chapter. It is worth noting,

however, that two-parameter distributions, other than the one used to construct the

probability paper, and three-parameter distributions will plot as curves on the

graph. Once more, in performing such a useful comparative analysis, one should

not disregard the inescapable uncertainties arising from extrapolation or sampling

issues. For plotting several distributions of annual maxima on a single chart, the

exponential probability paper is a convenient choice since, as the linearizing

function is g Fð Þ ¼ �ln 1� Fð Þ ¼ ln Tð Þ, it suffices to log-transform the return

period scale. Furthermore, with respect to the exponential straight line, as plotted

on an exponential paper, distributions with heavy upper tails will slope upwards,

whereas distributions with light (hyperexponential) upper tails will slope

downwards.

8.2.3 Plotting of Historic Events

Measuring rainfall depths is usually less demanding than gauging river flows since

it does not require the previous definition of rating curves and in-river measurement

of flow velocities. As a result, rainfall gauging networks are usually denser and have

longer periods of records than flow gauging networks, on a worldwide scale.

Bayliss and Reed (2001) report that, up until 1999, the mean length of annual

flood peak records, available for regional flood studies in the UK, was just 23.4

years, which is probably much less than the rainfall homologous statistic.
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However, as large floods usually leave marks on river reaches, on river cross

sections, and on human-made constructions, informal records on past events can

be retrieved from several sources and then incorporated into flood frequency

analysis.

Possible sources of informal (or non-systematic) records of past floods include

peak levels marked on plaques, bridges, and buildings; church and local authorities

archives; drawings and blueprints of past engineering works; and newspapers.

These are termed historical floods and should be distinguished from the so-called

paleofloods. Paleoflood reconstruction, by tracing and interpreting geological and

botanical evidences that remained preserved long after the passage of floods, is

another possible source of informal records of extreme floods that have occurred in

the past. A new science, named Paleoflood Hydrology, has emerged from the

development of new techniques and methods, over recent decades, to reconstruct

ancient floods and incorporate them into frequency analysis. The reader is referred

to House et al. (2002) and to Benito and Thorndycraft (2004) for a full account on

the developments of Paleoflood Hydrology. In Chap. 11 an example of Bayesian

flood frequency analysis, with the incorporation of paleofloods, illustrates such an

interesting topic. This subsection focuses on how to assign empirical probabilities

(or plotting positions) to historical floods.

Historic flood marks indicate the water levels that have risen above a fixed

threshold during some historic period. For some, occurrences of floods greater than

such a reference threshold are known but the magnitudes of flood peaks are usually

unknown or poorly defined. Flood series that contain such a type of data are said to

be censored and the threshold is the censoring value (NERC 1975, Bayliss and Reed

2001). Stedinger and Cohn (1986) refer to such a flood series as a binomially

censored series since each flood should belong to one of the two possible states:

either above or below the threshold. For some other historic floods, both their

occurrences and magnitudes above the threshold are known or can be determined.

In both cases, censored historic series should be analyzed alongside systematic

series. Assigning empirical probabilities or plotting positions to such a combined

series requires an attentive interpretation of flood records.

Following Hirsch (1987), assume that, in a period of N years, there are g known

flood occurrences, of which, the k largest are singled out. Of these N years, s years
correspond to the systematic period of records, such that s<N. Of the k largest

floods in N years, e have occurred within the systematic period of records, with

e< k and e< s, such that g¼ kþ s�e. The intrinsic assumption here is that a

threshold Q0 has been defined such that the k largest floods are larger than or

equal to it and the remainder are smaller than it. Figure 8.8 illustrates such a scheme

for considering both systematic and historic flood records.

Hirsch (1987) analyzed and compared plotting-position formulae for flood

records of combined systematic and historic information. These are termed exceed-

ance formulae and are generalizations of the plotting-position formula introduced

by Hirsch and Stedinger (1986). The generalized exceedance formula can be

written as
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qm ¼ m� a

k þ 1� 2a

k

N

� �
for m ¼ 1, � � �, k að Þ

qi ¼
k

N
þ m� k � a

s� eþ 1� 2a

N � k

N

� �
for m ¼ k þ 1, � � �, k þ s� e bð Þ

8>><
>>: ð8:5Þ

where a denotes the constant in Cunnane’s general plotting position formula, as in

Eq. (7.40) and according to recommendations given in Table 7.14, N is the total

number of years resulting from the union of systematic and historic flood records,

such thatN ¼ hþ s, and k represents the total number of floods that have exceeded

the threshold Q0.

The system of Eq. (8.5) allows the plotting of empirical probabilities associated

with both systematic and historical floods. Equation (8.5a) should be applied to all

floods above the threshold, from the systematic and historical records, whereas

Eq. (8.5b) should be applied to the systematic floods below the threshold. As for the

specific value of a that should be used in the system of Eq. (8.5), Hirsch (1987)

points out that a¼ 0, as related to Weibull plotting-position formula, appears to be

more robust as regards probability unbiasedness, whereas a¼ 0.44 and a¼ 0.5, as

respectively related to Gringorten and Hazen formulae, appear to be preferable, as

quantile unbiasedness is concerned. Example 8.2 illustrates the use of the system of

Eq. (8.5).

Example 8.2 Bayliss and Reed (2001) compiled 15 floods, from 1822 to 1998, that

have exceeded the reference threshold Q0¼ 265 m3/s, for the River Avon at

Evesham Worcestershire, in England. Their sources of information were

Fig. 8.8 Scheme for considering systematic and historic flood records
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newspapers, engineering and scientific journals, and archives from the Severn River

Authority. The systematic flow records span from 1937 to 1938. They were ranked

in descending order and are listed in Table 8.3, alongside the compiled historic

floods. Use the system of Eq. (8.5), with a¼ 0.44 as related to Gringorten’s plotting
position formula, to plot on the same chart the systematic floods only, and the

combined records of systematic and historic floods.

Solution The fourth column of Table 8.3 lists the plotting positions qm as calcu-

lated with the Gringorten formula (see Table 7.14); the fifth column of Table 8.3

gives the corresponding empirical return periods, in years, calculated as

Tm ¼ 1=qm. The combined historic and systematic records, already ranked in

descending order, are listed in the eighth column of Table 8.3. The plotting

positions, in the ninth column, were calculated with the system of Eq. (8.5):

Eq. (8.5a) for all floods that have exceeded the threshold Q0¼ 265 m3/s, as defined

by Bayliss and Reed (2001), and Eq. (8.5b) for all systematic floods below the

threshold. The parameters used in the equations are: N¼ 177 years (1998 –

1882þ 1); h¼ 115 years; s¼ 62 years; k¼ 19 floods above 265 m3/s; e¼ 4 floods

in the systematic period of records above 265 m3/s; k-e¼ 15 historic floods above

265 m3/s; and a¼ 0.44. Figure 8.9 depicts the empirical distribution for the

systematic floods only, and the combined records of systematic and historic floods,

on exponential probability paper.

8.3 Analytical Frequency Analysis

Conventional frequency analysis of sample data of a random variable, whose

analytical form of its probability distribution is known or can reliably be assumed,

consists of estimating the distribution parameters, using the estimation method that

best combines the attributes of efficiency and accuracy, and of estimating the

desired quantiles and their respective confidence intervals. In the case of hydrologic

maxima (and minima and means, with respectively lesser emphasis), the analytical

form of the parent distribution is not known or cannot be unequivocally assumed,

thus making the data sample the only piece of objective information that is actually

known, except for the cases where historical and paleoflood evidences are avail-

able. Such a complicating factor has led hydrologists to work with a range of

candidate probability distributions, as described in Chap. 5, to model hydrologic

random variables. These distributions vary in shape, skewness, kurtosis, number of

parameters, and variable domain, and no reliable objective criterion has been

established to select the “best” model among them. Some distributions are moti-

vated by the central limit theorem, a few by the extreme-value theory, and others

have no theoretical justifications. Since, in most cases, theoretical justifications are

rather debatable and estimation uncertainties are high, no consensus has been built

among hydrologists as far as recommended models are concerned. Therefore, on a

typical hydrologic frequency analysis, in addition to screening data, estimating
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Table 8.3 Systematic and historic floods of the River Avon at Evesham Worcestershire

Systematic flood records (1937–1998)

Combined systematic and historic flood records

(1822–1998)

Rank

order Year

Q (m3/

s) Gringorten

T
(years)

Rank

order Year Q (m3/s) Eq. (8.5)

T
(years)

1 1997 427 0.0090148 110.93 1 1997 427 0.003144 318.07

2 1967 362 0.0251127 39.82 2 1900a 410 0.008758 114.18

3 1946 356 0.0412106 24.27 3 1848a 392 0.014373 69.58

4 1939 316 0.0573084 17.45 4 1852a 370 0.019987 50.03

5 1981 264 0.0734063 13.62 5 1829a 370 0.025601 39.06

6 1959 246 0.0895042 11.17 6 1882a 364 0.031215 32.04

7 1958 244 0.1056021 9.47 7 1967 362 0.03683 27.15

8 1938 240 0.1216999 8.22 8 1946 356 0.042444 23.56

9 1979 231 0.1377978 7.26 9 1923a 350 0.048058 20.81

10 1980 216 0.1538957 6.50 10 1875a 345 0.053672 18.63

11 1960 215 0.1699936 5.88 11 1931a 340 0.059287 16.87

12 1978 214 0.1860914 5.37 12 1888a 336 0.064901 15.41

13 1992 213 0.2021893 4.95 13 1874a 325 0.070515 14.18

14 1942 201 0.2182872 4.58 14 1939 316 0.076129 13.14

15 1968 199 0.2343851 4.27 15 1935a 306 0.081744 12.23

16 1987 192 0.2504829 3.99 16 1932a 298 0.087358 11.45

17 1954 191 0.2665808 3.75 17 1878a 296 0.092972 10.76

18 1971 189 0.2826787 3.54 18 1885a 293 0.098586 10.14

19 1940 187 0.2987766 3.35 19 1895a 290 0.104201 9.60

20 1941 184 0.3148744 3.18 20 1981 264 0.115946 8.62

21 1950 182 0.3309723 3.02 21 1959 246 0.131304 7.62

22 1976 177 0.3470702 2.88 22 1958 244 0.146663 6.82

23 1984 175 0.3631681 2.75 23 1938 240 0.162022 6.17

24 1974 173 0.3792659 2.64 24 1979 231 0.177381 5.64

25 1989 163 0.3953638 2.53 25 1980 216 0.19274 5.19

26 1970 157 0.4114617 2.43 26 1960 215 0.208099 4.81

27 1982 155 0.4275596 2.34 27 1978 214 0.223457 4.48

28 1998 150 0.4436574 2.25 28 1992 213 0.238816 4.19

29 1949 149 0.4597553 2.18 29 1942 201 0.254175 3.93

30 1965 148 0.4758532 2.10 30 1968 199 0.269534 3.71

31 1985 145 0.4919511 2.03 31 1987 192 0.284893 3.51

32 1993 143 0.5080489 1.97 32 1954 191 0.300252 3.33

33 1991 139 0.5241468 1.91 33 1971 189 0.31561 3.17

34 1956 139 0.5402447 1.85 34 1940 187 0.330969 3.02

35 1957 138 0.5563426 1.80 35 1941 184 0.346328 2.89

36 1973 136 0.5724404 1.75 36 1950 182 0.361687 2.76

37 1990 134 0.5885383 1.70 37 1976 177 0.377046 2.65

38 1966 131 0.6046362 1.65 38 1984 175 0.392405 2.55

39 1952 130 0.6207341 1.61 39 1974 173 0.407763 2.45

40 1951 130 0.6368319 1.57 40 1989 163 0.423122 2.36

(continued)
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Table 8.3 (continued)

Systematic flood records (1937–1998)

Combined systematic and historic flood records

(1822–1998)

Rank

order Year

Q (m3/

s) Gringorten

T
(years)

Rank

order Year Q (m3/s) Eq. (8.5)

T
(years)

41 1986 129 0.6529298 1.53 41 1970 157 0.438481 2.28

42 1994 124 0.6690277 1.49 42 1982 155 0.45384 2.20

43 1977 124 0.6851256 1.46 43 1998 150 0.469199 2.13

44 1963 117 0.7012234 1.43 44 1949 149 0.484558 2.06

45 1988 116 0.7173213 1.39 45 1965 148 0.499916 2.00

46 1995 114 0.7334192 1.36 46 1985 145 0.515275 1.94

47 1972 113 0.7495171 1.33 47 1993 143 0.530634 1.88

48 1944 103 0.7656149 1.31 48 1991 139 0.545993 1.83

49 1983 103 0.7817128 1.28 49 1956 139 0.561352 1.78

50 1969 94.9 0.7978107 1.25 50 1957 138 0.576711 1.73

51 1955 93.9 0.8139086 1.23 51 1973 136 0.592069 1.69

52 1961 92.3 0.8300064 1.20 52 1990 134 0.607428 1.65

53 1948 91.4 0.8461043 1.18 53 1966 131 0.622787 1.61

54 1953 86.3 0.8622022 1.16 54 1952 130 0.638146 1.57

55 1945 86.3 0.8783001 1.14 55 1951 130 0.653505 1.53

56 1962 67.9 0.8943979 1.12 56 1986 129 0.668864 1.50

57 1947 67.1 0.9104958 1.10 57 1994 124 0.684222 1.46

58 1937 47.0 0.9265937 1.08 58 1977 124 0.699581 1.43

59 1964 41.0 0.9426916 1.06 59 1963 117 0.71494 1.40

60 1975 35.9 0.9587894 1.04 60 1988 116 0.730299 1.37

61 1996 31.9 0.9748873 1.03 61 1995 114 0.745658 1.34

62 1943 7.57 0.9909852 1.01 62 1972 113 0.761017 1.31

63 1944 103 0.776375 1.29

64 1983 103 0.791734 1.26

65 1969 94.9 0.807093 1.24

66 1955 93.9 0.822452 1.22

67 1961 92.3 0.837811 1.19

68 1948 91.4 0.85317 1.17

69 1953 86.3 0.868528 1.15

70 1945 86.3 0.883887 1.13

71 1962 67.9 0.899246 1.11

72 1947 67.1 0.914605 1.09

73 1937 47.0 0.929964 1.08

74 1964 41.0 0.945323 1.06

75 1975 35.9 0.960681 1.04

76 1996 31.9 0.97604 1.02

77 1943 7.57 0.991399 1.01
aHistoric flood
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parameters, quantiles and confidence intervals, and testing hypotheses, hydrologists

must choose the probability distribution, amongst some candidates, that most

adequately models the random variable being studied. This configures a type of

ad hoc analysis. The guidelines for such an ad hoc analysis are outlined in the

subsections that follow.

8.3.1 Data Screening

The results from frequency analysis strongly depend on the amount, type, and

quality of data, which are used as a pivotal source of information in the statistical

procedures that follow. In this context, no matter how good and sophisticated a

stochastic model is, it will never improve the eventual poor-quality data used to

estimate its parameters. The hydrologist should assess the quality of the available

hydrologic data, before going to further steps of hydrologic frequency analysis.

In some countries, where hydrometric services have not reached full maturity

and regularity, prior consistency analysis of hydrologic data is regarded as a basic

requirement that must precede hydrologic frequency analysis. Under the risk of

possibly undermining and biasing parameter and quantile estimation, statistical

inference assumes that gross and/or systematic errors in collected observations

are not admissible and, as such, incorrect data must be corrected prior to the

Fig. 8.9 Empirical distribution of systematic and historic flood records
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analysis. Whenever applicable, hydrologists should look for inconsistencies in raw

data, by comparing observations collected at neighboring gauging stations, or by

checking the criteria used to define and extend rating curves, or by assessing the

overall quality of collected data. Errors can occur also in data coding, storage, and

retrieval. General guidelines for consistency analysis of hydrologic data can be

found in WMO (1994).

It has been a fundamental assumption throughout this textbook that the sample

of hydrologic data, to be considered for frequency analysis, must be one of an

infinite number of possible samples of random and independent data drawn from

the same population. In essence, sample data must be realizations of IID random

variables and hold the assumptions of randomness, independence, homogeneity,

and stationarity, as discussed in Sect. 7.4 of Chap. 7. Because hydrologic data are

generally skewed, non-parametric methods should be used to test these fundamental

assumptions. In fact, non-parametric tests should be used in the first place, as

routine procedures before frequency analysis is carried out. Among the tests

designed to check the plausibility of these fundamental assumptions, the ones

described in Sect. 7.4 are widely accepted and utilized very often in hydrologic

practice. However, if a sample does not pass a specific test, it should be further

scrutinized in search of strong hydrologic evidences that may justify discarding it

from subsequent analysis.

The reliability of parameter and quantile estimates is intrinsically related to the

sample size and representativeness. As mentioned in Sect. 1.4, for the sample of

annual peak flows of the Lehigh River at Stoddartsville, sample representativeness

cannot be assessed through an objective measure or tested by a specific procedure,

since one would have to know beforehand what to expect from the population

variability. In some cases, by comparing data from a specific sample with data from

other larger samples, collected at nearby gauging stations, one should be able to

conclude whether or not the time span covered by the records possibly refers to a

predominantly wet (or dry) period, as opposed to a period from which natural

variability is expected. However, to return to the case study of the Lehigh River,

had the regional flow records started only in 1956/57 instead of 1941/42, it would be

hard for someone, in charge of analyzing in 2014 such a shortened sample, to think

it plausible that a flood peak three times greater than the largest peak discharge

observed in almost 60 years, from 1956/57 to 2013/14, could have happened on

August, 19th 1955. As noted in Sect. 1.4, frequency analysis based on such an

unrepresentative shortened-sample would severely lower the variance and bias the

results.

Benson (1960) used a paradigm 1000-year record of annual maximum peak

flows, whose probabilities were, by construction, exactly determinable, to demon-

strate that in order to estimate the 10-year return-period flood, within 25% of the

true value, in 95% of the time, a sample of at least 18 annual records would be

necessary. For estimating the 50-year and 100-year return-period floods, under the

same conditions, the minimum sample sizes would increase to 39 and 48 annual

records, respectively.
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Bearing in mind Benson’s experiment, consider again the example of generating

synthetic samples for the annual flood discharges of the LehighRiver at Stoddartsville,

described in Sect. 6.8 of Chap. 6. Recall that 1000 samples of size 73 have been drawn

from a population distributed according to a three-parameter lognormal distribution

with parameter values â ¼ 21:5190, μ̂ Y ¼ 3:7689, and σ̂ Y ¼ 1:1204. For each sam-

ple, the L-MOM method was employed to estimate the LNO3 parameters, thus

resulting in 1000 sets of estimates, which were then used to calculate a group of

1000 different quantiles, for each of the return periods 10, 20, 50, and 100 years, as

shown in the histograms of Fig. 6.3. A different look at this same issue is provided by

the chart of Fig. 8.10, where a broader perspective of the uncertainties entailed by

quantile estimation is put into evidence. The LNO3 parent is superimposed over the

1000 estimated T-year quantiles, which exhibit an increasing scatter as the return

period augments, to the extent of tripling the assumedly true value of the 100-year

return period quantile.

Benson’s experiment and Fig. 8.10 illustrate that the reliability of quantile

estimates strongly depends on the sample size and on the target return period.

The total uncertainties associated with the T-year quantile arise either from a

possibly incorrect selection of the parent probability distribution or from the effects

of sampling errors on parameter estimation. Those arising from the former source

Fig. 8.10 Uncertainties of quantiles, as estimated for samples drawn from a hypothesized LNO3

population of annual peak discharges
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are hard to objectively quantify and, in general, are not accounted for. Those arising

from estimation, assuming a correct choice was made for the underlying probability

distribution, can be evaluated by the methods described in Sect. 6.7. Equations

(6.27) and (6.28) imply that the variance S2T associated with the T-year quantile XT

depends on the reciprocal of the sample size N, on the method used to estimate the

distribution parameters, on the target return period T, and on the number of

parameters to be estimated. The smaller the sample size, or the larger the target

return period or the number of parameters to be estimated, the larger the quantile

variance. An adverse combination of all these factors can make a quantile estimate

so unreliable that it becomes useless for engineering decision making. The issue of

quantile reliability assessment is further discussed in later subsections.

Extending a frequency curve beyond the range of sample data is a potential

benefit of hydrologic frequency analysis. However, since the variance of the T-year
quantile varies with the reciprocal of the sample size N and dramatically increases

with increasing T, the question that arises is how far should one extend a frequency

curve, as resulting from at-site frequency analysis, before obtaining unreliable

estimates of quantiles? The book Hydrology of Floods in Canada—A Guide to
Planning and Design, edited for the Associate Committee on Hydrology of the

National Research Council Canada, by Watt et al. (1988), provides empirical

guidance for such a complex question, that is of relying only on data of a single

flow gauging station for the purpose of estimating the T-year return-period design

flood. According to this guidance, the frequency analysis of annual maximum flood

discharges observed at a single station should be performed only for samples of

sizes at least equal to 10 and be extrapolated up to a maximum return period of

T¼ 4N, where N denotes the sample size. The referenced book also recognizes the

difficulty of providing general guidance on such an issue, given the uncertainties

arising from both parameter estimation and the choice of the parent probability

distribution.

The presence of outliers in a data sample can seriously affect the estimation of

parameters and quantiles of a theoretical probability distribution. The detection and

identification of low and high outliers in a data sample can be performed by the

method described in Sect. 7.6. If a low outlier is detected in records of maximum

values, the usual recommendation is to delete it from the sample and recalculate

the statistics, since the low outlier can possibly bias the estimation of the probability

distribution upper tail, which is of major interest in a frequency analysis of maxima.

In some cases, the distribution should be truncated below a certain low threshold

level and be adjusted accordingly (WRC 1981). If a high outlier is detected in a

record of maximum values, it should be compared to historic information at nearby

sites and, if the high outlier is confirmed to be the maximum value over an extended

period of time, it should be retained in the sample and treated by the methods

described in Sect. 8.2.3. Otherwise, the high outlier should also be retained in the

sample and two actions are possible. The first is to look for an appropriate

probabilistic model capable of better fitting the empirical distribution upper tail.

The second is to resort to the methods of regional frequency analysis, described in
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Chap. 10. The same line of reasoning, in the opposite direction, can possibly be

applied to minima.

8.3.2 Choosing the Probability Model

8.3.2.1 Theoretical Aspects

As seen in previous chapters, there exists a nonextensive set of candidate

probability distributions that are usually employed to model maxima of hydrologic

variables. In this set are the extremal distributions, as referring to those derived

from the asymptotic extreme-value theory, here including the Generalized

Extreme-Value and generalized Pareto models, and the non-extremal distributions

encompassing the lognormal (with 2 or 3 parameters), exponential, Gamma, Pear-

son Type III, and LogPearson Type III models. Other models described in Chap. 5,

such as those with more than three parameters, like the Kappa and Wakeby

distributions, and compound models, such as the TCEV, are not usually employed

in the context of at-site frequency analysis, given the uncertainties added by the

increased number of parameters. No one distribution from the set of candidates can

be seen as an analytical form that is universally accepted or consensually prefera-

ble, as far as the modeling of hydrologic maxima at a site is concerned. In general,

the choice of one model rather than another follows some general, however

debatable, theoretical criteria and a few objective analytical tools. The former are

discussed in this subsection.

As regards the upper-bounded probability distributions, it is a physical fact that

some random quantities have limits that are intrinsically and simply defined, such as

the concentration of dissolved oxygen in a water body, whose variation is limited by

the concentration at saturation, which depends on many factors, the most important

of which is the water temperature. Other quantities also have an upper bound, which

may not be known or knowable a priori, as resulting from insufficient information on

the many factors that may influence the physical phenomenon of interest. The very

existence of upper bounds for extreme rainfall and flood magnitudes, and the ability

to determine them in a given region or catchment are sources of long-standing

controversies in flood hydrology (Horton 1936, Yevjevich 1968, Klemeš 1987,

Yevjevich and Harmancioglu 1987). These controversies have split flood analysis

into two separate approaches: the one in which mostly unbounded distributions are

fitted to data with the implicit assumption of a nonzero probability for any future

larger flood, regardless of how large it might be, and the opposing one, which is best

represented by PMP/PMF-based analysis. PMP stands for probable maximum

precipitation, whereas PMF stands for probable maximum flood.

In short, the PMF is regarded as a potential upper bound for floods at a river cross

section, resulting from a hypothetical storm of critical duration and depth named

PMP (probable maximum precipitation), led by the most severe but plausible

hydrologic conditions. WMO (1986) defines the PMP as the potential highest
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depth of rainfall, of a specified duration, that is meteorologically possible to occur

over a given area, located in a certain geographic region, during a given season of

the year. The prevailing method for determining the PMP over an area makes use of

local meteorological maximization of historic events, with or without storm trans-

position from one geographic area to another (WMO 1986). The PMF’s implicit

assumption is the existence of physical limits to both the supply of precipitation and

the basin hydrologic response. However, neither the very concept of PMP-PMF nor

that their estimates are unequivocal is universally accepted. Actually, PMP-PMF

estimates depend greatly on the quantity and the quality of hydrological and

hydrometeorological observations, a fact that makes them highly susceptible to

the uncertainties imposed by the available data and the modeling tools. In spite of

these complicating issues, the PMP-PMF approach is extensively used worldwide

for designing large hydraulic structures, such as spillways of large dams. As with

any deterministic method, the major drawback of the PMP-PMF-based approach is

that it does not provide probability estimates for risk assessment and risk-informed

decisions.

Assuming that upper–bounds for maximum rainfalls and floods do exist, it

appears widely accepted that their estimation is uncertain or at least hampered by

the limited human knowledge of extreme-flood-producing mechanisms and by the

difficulty of adequately quantifying the variation, in time and space, of influential

variables. On the other hand, one can possibly hypothesize that a flood discharge of

100,000 m3/s would never occur in a catchment of drainage area of a few square

kilometers. Such a notion of physical implausibility has led some hydrologists, such

as Boughton (1980) and Laursen (1983), to recommend only upper-bounded prob-

ability distributions as models for extreme rainfalls and related floods. Hosking and

Wallis (1997) oppose such a recommendation and argue that if the goal of flood

frequency analysis is to estimate the 100-year return-period quantile in a catchment

of a few square kilometers, it would be irrelevant to consider as physically impos-

sible the occurrence of a flood-peak flow of 100,000 m3/s. They add that imposing

an upper bound to the probability distribution of floods and maximum rainfalls can

possibly compromise the estimation of the quantiles that are actually relevant for

frequency analysis. Hosking and Wallis (1997) conclude that, by choosing an

unbounded probability distribution for hydrologic maxima, the implicit assump-

tions are: (1) the upper bound of a competing upper-bound model is not known or

cannot be accurately determined; and (2) within the range of return periods of

practical interest, an unbounded model better approximates the true parent distri-

bution than an upper-bounded model would do.

The discussion and controversies related to the existence of hydrologic upper

bounds and the ability to estimate them, as well as their inclusion in extreme rainfall

and flood frequency analyses are far from being exhausted. However, some recent

works (see Botero and Francés 2010, Fernandes et al. 2010) seem to point towards a

theoretical reconciliation between the two opposing views of PMP-PMF estimates

and extreme flood frequency analysis. In particular, Fernandes et al. (2010)

employed the Bayesian paradigm to account for the uncertainties on flood upper-

bound estimates by eliciting a prior probability distribution, using PMF estimates
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transposed to the site of interest. Such an approach is fully described as an example

in Chap. 11, in the context of an introduction of Bayesian analysis and its applica-

tions to hydrologic variables.

Another source of controversy in frequency analysis of hydrologic maxima

relates to the weight or heaviness of the distribution’s upper tail, which controls

the intensity with which probability increases as quantile augments, for large return

periods. As seen in Sect. 5.7.2, the upper-tail weight reflects the rate at which the

density function fX(x) decreases as x tends to infinity, relative to the rate with which
the exponential density does. The upper-tail is said to be heavy if the density

approaches 0 less fast than the exponential does as x ! 1, and, it is said to be

light, otherwise. In fact, in more general terms, the upper-tail weights of distinct

densities can be graded by relativizing their respective densities’ decreasing rates as
x ! 1. Table 8.4 shows such a relative scale of upper-tail weights for the distri-

butions most frequently used in Statistical Hydrology.

For many applications of frequency analysis of hydrologic maxima, estimation

of the distribution upper tail is of paramount importance, since curve extrapolation

for large return periods is the primary motivation. However, as commented previ-

ously, the usual sizes of hydrologic samples are invariably too small to allow a

reliable estimation of the distribution upper tail. Hosking and Wallis (1997) argue

that, if no sufficient reasons, both from the theoretical or empirical sides, exist to

recommend only one kind of tail weight, for frequency analysis of hydrologic

maxima, it is advisable to use a set of candidate distributions that covers the full

spectrum of tail weights. On the other hand, Papalexiou and Koutsoyiannis (2013)

categorically recommend the use of heavy-tailed probability distributions in the

frequency analysis of annual maximum daily rainfalls. In particular, Papalexiou and

Koutsoyiannis (2013) favor the GEV distribution, with negative shape parameter,

for modeling annual maximum daily rainfalls. Serinaldi and Kilsby (2014)

attempted to reconcile some opposing views concerning the tail behavior of

extreme daily rainfalls, under the framework of high exceedances over a high

Table 8.4 Relative scale of upper-tail weights for some distributions

Upper tail Form of fX(x) for large x Distributions

Heavy x�A Generalized extreme value, generalized Pareto, and

generalized Logistic with shape parameter κ< 0

" x�A lnx Lognormal

exp �xAð Þ
0 < A < 1

Weibull with shape parameter α< 1

xAexp �Bxð Þ Pearson Type III with positive skewness

exp �xð Þ Exponential, Gumbelmax

# exp �xAð Þ, A > 1 Weibull with shape parameter α� 1

Light Finite upper bound Generalized extreme value, generalized Pareto, and

generalized logistic with shape parameter κ> 0; Pearson

type III with negative skewness

A and B are arbitrary positive constants (adapted from Hosking and Wallis 1997)
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threshold and the generalized Pareto distribution. They concluded that the heavi-

ness of extreme daily rainfalls distributions, for varying thresholds and record

lengths, may be ascribed to a complex blend of extreme and nonextreme values,

and fluctuations of the parent distributions. In such a context, it seems the previous

advice by Hosking and Wallis (1997), of using a broad range of candidate distri-

butions, should still prevail.

As far as probability models for hydrologic maxima are of concern, the issue of a

possible lower bound is sometimes raised. However, as opposed to the upper bound,

the lower bound of maxima is easier to be estimated and, in the most extreme case,

it may be fixed at zero. Hosking and Wallis (1997) point out that if the quantiles of

interest are close to zero, it may be worth requiring that the probability distribution

be bounded from below by zero; when such a requirement is imposed, models, such

as the generalized Pareto and Pearson Type III, retain a convenient form. For other

cases, where a variable can assume values that are usually much larger than zero,

more realistic results are obtained by fitting a distribution that has a lower bound

greater than zero.

In some rare cases, in arid regions, a sample of annual mean (or even maximum)

values may contain zero values. For these cases, Hosking andWallis (1997) suggest

that a possible alternative to model such a sample is to resort to a mixed distribu-

tion, as defined by

FX xð Þ ¼ 0 if x < 0

pþ 1� pð ÞGX xð Þ if x � 0

�
ð8:6Þ

where p denotes the proportion of zero values in the sample and GX(x) denotes the
cumulative probability distribution function of the nonzero values. This same

approach can possibly be adapted to model annual mean (or maximum) values

below and above a greater-than-zero lower bound, as would be the situation of a

sample with low outliers (see, for example, WRC 1981).

The Gumbelmax, Fréchet, and Weibull extremal distributions, or their condensed

analytical form given by the GEV, arise from the classical asymptotic extreme-

value theory and are the only ones, among the usual candidate models of hydrologic

maxima, for which theoretical justifications can be provided (see Sect. 5.7.2).

Recall, however, that the convergence to the limiting forms of asymptotic

extreme-value theory requires a large collection of initial IID variables. The

major objections to the strict application of classical asymptotic extreme-value

theory to hydrologic maxima are: (1) the need for framing the initial variables as

IID (see Sect. 5.7.2 and Perichi and Rodrı́guez-Iturbe 1985); (2) the slow conver-

gence to the limiting forms (Papalexiou and Koutsoyiannis 2013); and (3) the

assumed exhaustiveness of the three asymptotic forms (see Benjamin and Cornell

1970, Kottegoda and Rosso 1997, Juncosa 1949).

As detailed in Sect. 5.7.2, the works of Juncosa (1949) and Leadbetter (1974, 1983)

allowed the relaxation, under some conditions, of the basic premise at the origin of

classical extreme-value theory, namely the assumption of IID initial variables.
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Although relaxing the basic assumptionmakes the results of asymptotic extreme-value

theory conceivably applicable to some hydrologic variables, it is worth noting that the

sequence of nonzero daily values of the initial variables will certainly be a large

number, but not a guarantee of convergence to one of the three limiting forms

(Papalexiou and Koutsoyiannis 2013), neither are the asymptotes exhaustive, as the

extreme-value distributions of some initial variables donot necessarily converge toone

of the three limiting forms. In spite of these difficulties, extremal distributions seem the

only ones that find some theoretical grounds, though not definitive, that justify their

application to modeling hydrologic maxima (and minima).

As seen in Sect. 5.2, the extended version of the central limit theorem (CLT),

with a few additional considerations of a practical nature, is applicable to some

hydrologic variables, such as the annual total rainfall depths and, in some cases, to

annual mean flows. The extension of the CLT to the logarithm of a strictly positive

random variable, which is conceptualized as resulting from the multiplicative

action of a large number of variables, has led Chow (1954) to propose the lognor-

mal distribution as a model for hydrologic extremes. Stedinger et al. (1993)

comment that some processes, such as the dilution of a solute in a solution and

other processes (see Sect. 5.3), result from the multiplicative action of intervening

variables. However, in the case of floods and extreme rainfalls, such a multiplica-

tive action is not evident. These objections, however, do not provide arguments to

discard the lognormal distribution from the set of candidate models for hydrologic

maxima. Since its variate is always positive, with a non-fixed positive coefficient of

skewness, the lognormal distribution is potentially a good candidate for modeling

annual maximum (or mean) flows, annual maximum daily rainfalls, and annual,

monthly, or 3-month total rainfall depths.

As regards the number of parameters of a candidate probability distribution, the

principle of parsimony should apply. This general principle states that, from two

competing statistical models with equivalent capacity of explaining a given phe-

nomenon, one should always prefer the one with fewer parameters, as additional

parameters add estimation uncertainties. For instance, if both Gumbelmax and GEV

models are employed to estimate the 100-year flood at a given site and if their

respective estimates are not too different from each other, the Gumbelmax should be

preferred. Adding a third parameter to a general probability distribution certainly

grants shape flexibility to it and improves its ability to fit empirical data. However,

estimation of the third parameter usually requires the estimation of the coefficient

of skewness, which is very sensitive to sample fluctuations, since its calculation

involves deviations from the sample mean raised to the third power. In this context,

parameter estimation through robust methods, such as L-MOM, and regional

frequency analysis gain importance and usefulness in Statistical Hydrology.

It is worth mentioning that, in some particular cases, there might be valid

arguments for choosing a less parsimonious model. In the case of Gumbel vs

GEV, for example, Coles et al. (2003) argue that the lack of data makes statistical

modeling and the accounting of uncertainty particularly important. They warn

against the risks of adopting a Gumbel model without continuing to take account

of the uncertainties such a choice involved, including those related to model
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extrapolation. Finally, they advise that it is always a best choice to work with the

GEV model in place of the Gumbel, unless there is additional information

supporting the Gumbel selection.

The previous considerations reveal there is not a complete and consensual set of

rules to select a single probability distribution, or even a family of distributions,

from a list of candidates to model hydrologic maxima. For at-site frequency

analysis, the lack of such a set of rules refers the analyst to a variety of criteria

that basically aim to assess the adequacy of a theoretical distribution to the data

sample. These criteria include: (1) goodness-of-fit (GoF) tests, as the ones described

in Sect. 7.5, with special emphasis on PPCC tests; (2) comparison of theoretical and

empirical moment-ratio diagrams, and of some information measures, to be

discussed in the next subsections; and (3) graphical assessment of goodness-of-fit

by plotting theoretical and empirical distributions on appropriate probability

papers, as described in Sect. 8.2.

Similar arguments may also apply to the frequency analysis of hydrologic

minima. However, the range of candidate distributions for modeling minima is

narrower and may include no more than the Gumbelmin and Weibullmin, and, for

some, the lognormal and Log-Pearson Type III models. In addition to that, the

extrapolation of probabilistic models of hydrologic minima is less demanding,

since decision-making for drought-related water-resources projects requires return

periods of the order of 10 years. Arguments from the asymptotic extreme value

theory, as outlined in Sect. 5.7.2, seem to favor the Weibullmin as a limiting form for

left-bounded parent distributions. When compared to Gumbelmin, which has a

constant negative coefficient of skewness of -1.1396 and can possibly yield nega-

tive quantiles, the two and three-parameter Weibullmin appear as featured candi-

dates for modeling hydrologic minima.

8.3.2.2 Moment-Ratio Diagrams

As seen in Chap. 3, the moments of a given distribution can be written as functions

of its parameters. Moreover, higher order moments can be expressed as functions of

lower order moments. For instance, the coefficient of skewness of the

two-parameter lognormal distribution is written as γ ¼ 3CVX þ CVXð Þ3 and is,

thus, a unique function of the coefficient of variation CV, which in turn is a function
of the first and second order moments. In general, for any distribution, the coeffi-

cients of skewness and kurtosis are respectively written as γ ¼ μ3=σ3=2 and

κ ¼ μ4=σ2, and they represent characteristic quantities of a particular distribution.

For distributions of fixed shape, such as most two-parameter distributions, the

coefficients of skewness and kurtosis are constant and given in Table 8.5 for

some well-known distributions.

For distributions of variable shape, such as three-parameter distributions and the

lognormal, the coefficients of skewness and kurtosis can be related to each other

through unique functions and a chart depicting these functions can be drawn. Such a
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chart is termed a moment-ratio diagram and is illustrated in Fig. 8.11 for the

distributions most-frequently used in frequency analysis of hydrologic maxima.

In such a diagram, notice that variable-shape distributions such as the lognormal

(LNO), generalized logistic (GLO), generalized extreme value (GEV), Pearson

Type III (PIII), and generalized Pareto (GPA) plot as curves, whereas fixed-shape

distributions such as the normal (N), exponential (E), and Gumbelmax (G) plot as

points.

The γ� κ relationships plotted in the diagram of Fig. 8.11 can be derived from

the summary of distributions’ properties, given in Sect. 5.13 of Chap. 5, or,

alternatively, approximated by the following polynomial functions:

(a) for LNO

κ ¼ 3þ 0:025653γ þ 1:720551γ2 þ 0:041755γ3þ
þ 0:046052γ4 � 0:00478γ5 þ 0:000196γ6

ð8:7Þ

(b) for GLO

κ ¼ 4:2þ 2:400505γ2 þ 0:244133γ4 � 0:00933γ6 þ 0:002322γ8 ð8:8Þ
(c) for GEV

Fig. 8.11 Conventional moment-ratio diagram for some distributions

Table 8.5 Coefficients of

skewness (γ) and kurtosis (κ)
for two-parameter

distributions

Distribution Skewness γ Kurtosis κ

Normal 0 3

Exponential 2 9

Gumbelmax 1.1396 5.4002
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κ ¼ 2:695079þ 0:185768γ þ 1:753401γ2 þ 0:110735γ3þ
þ 0:037691γ4 þ 0:0036γ5 þ 0:00219γ6 þ 0:000663γ7 þ 0:000056γ8

ð8:9Þ

(d) for PIII

κ ¼ 3þ 1:5γ2 ð8:10Þ
(e) for GPA

κ ¼ 1:8þ 0:292003γ þ 1:34141γ2 þ 0:090727γ3 þ 0:022421γ4þ
þ 0:004γ5 þ 0:000681γ6 þ 0:000089γ7 þ 0:000005γ8

ð8:11Þ

The idea of using the moment-ratio diagram to choose a probability distribution

that best fits a data sample is graphical and consists of plotting the sample estimates

of the coefficients of skewness and kurtosis, as calculated by Eqs. (2.13) and (2.14),

respectively, and then locate which distribution is the closest to the sample point.

However, results are misleading since the estimators for γ and κ are biased and their
sampling errors, given the short samples of hydrologic data, are excessively high.

This is exemplified in the moment-ratio diagram of Fig. 8.11 by pinpointing the

γ� κ estimates for the sample of 73 annual peak flows of the Lehigh River at

Stoddartsville (USGS 01447500), listed in Table 7.1. The corresponding point lies

outside the range of commonly used distributions and no valid conclusions can be

drawn from such a rather futile exercise.

On the other hand, as the sample size becomes larger to the extent of yielding

reliable estimates of γ and κ, such as the 248 annual total rainfalls, recorded at the

Radcliffe Meteorological Station, in Oxford, England, the moment-ratio diagram

can be useful. Notice that by pinpointing the Radcliffe γ� κ estimates on the

diagram of Fig. 8.11, one can easily notice that the normal, lognormal, and GEV

are featured candidates to model such a sample. Unfortunately, the Radcliffe

sample is one of a kind among hydrologic samples. An alternative to make the

moment-ratio diagram useful to select a parent distribution is to employ it in the

context of a hydrologically homogeneous region, by plotting (or averaging) the

γ� κ pairs, estimated for a large number of sites located within the region, and

checking if they cluster around one of the depicted theoretical curves (for an

example of such a procedure, see Rao and Hamed 2000).

Analogous to the idea of conventional moment-ratio diagram, the L-moment-

ratio diagram is constructed on the basis of the L-moment homologous measures of

skewness and kurtosis. These are the L-moment-ratio τ3 (sometimes termed

L-Skewness), given by Eq. (6.21), and τ4 (or L-Kurtosis), given by Eq. (6.22).

Recall from Sect. 6.5 that, unlike conventional moments, the more robust estima-

tors of the rth-order L-moments do not require deviations from the sample mean to

be raised to the power r. Like conventional moments, the L-moment ratios τ3 and τ4
are constant for fixed-shape distributions and are given in Table 8.6 for the normal,

exponential, and Gumbelmax models. Figure 8.12 depicts the L-moment-ratio
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diagram with the theoretical curves for the variable-shape lognormal (LNO),

Generalized Logistic (GLO), generalized extreme value (GEV), Pearson Type III

(PIII), and generalized Pareto (GPA) distributions, and the points for the fixed-

shape normal (N), exponential (E), and Gumbelmax (G) distributions. Also plotted

in Fig. 8.12 is the theoretical lower-bound (LB) for the τ3 � τ4 relationship.
The τ3 � τ4 relationships plotted on the diagram of Fig. 8.12 can be approxi-

mated by the following polynomial functions:

(a) for LNO (two and three parameters)

τ4 ¼ 0:12282þ 0:77518τ23 þ 0:12279τ43 � 0:13638τ63 þ 0:11368τ83 ð8:12Þ

(b) for GLO

Table 8.6 Coefficients of

L-Skewness τ3 and
L-Kurtosis τ4 for
two-parameter distributions

Distribution L-Skewness τ3 L-Kurtosis τ4
Normal 0 0.1226

Exponential 1/3 1/6

Gumbelmax 0.1699 0.1504

Fig. 8.12 L-moment-ratio diagram for some distributions
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τ4 ¼ 0:16667þ 0:83333τ23 ð8:13Þ

(c) for GEV

τ4 ¼ 0:10701þ 0:11090τ3 þ 0:84838τ23 � 0:06669τ33þ
þ 0:00567τ43 � 0:04208τ53 þ 0:03763τ63

ð8:14Þ

(d) for PIII

τ4 ¼ 0:1224þ 0:30115τ23 þ 0:95812τ43 � 0:57488τ63 þ 0:19383τ83 ð8:15Þ

(e) for GPA

τ4 ¼ 0:20196τ3 þ 0:95924τ23 � 0:20096τ33 þ 0:04061τ43 ð8:16Þ

(f) for LB

τ4 ¼ �0:25þ 1:25τ23 ð8:17Þ

In a comprehensive comparative study of the two types of moment-ratio dia-

grams, Vogel and Fennessey (1993) advocate replacing the conventional moment-

ratio diagram with the L-moment-ratio diagram, for most applications of goodness

of fit in hydrology. The authors highlight the following outperforming qualities of

L-moment-ratio diagram: (1) estimators of τ3 and τ4 are nearly unbiased for all

sample sizes and for all parent distributions; (2) sample estimates of τ3 and τ4,
denoted by t3 and t4, and calculated as described in Sect. 6.5, are far less sensitive to
the eventual presence of outliers in the samples; and (3) the L-moment-ratio

diagram allows a better graphical discrimination among the distributions, making

easier the identification of the parent distribution.

The exercise of pinpointing the τ3 � τ4 estimates, for the sample of 73 annual

peak flows of the Lehigh River at Stoddartsville (USGS 01447500) and the

248 annual total rainfalls, recorded at the Radcliffe Meteorological Station, on

the L-moment-ratio diagram of Fig. 8.12 was also performed. For the Lehigh River

flood peaks, the GLO, GEV, LNO, and GPA distributions appear as plausible parent

distributions, whereas for the rainfalls at Radcliffe, the previous result, from the

conventional moment-ratio diagram, seems to be confirmed, with a stronger ten-

dency towards the LNO. As with its predecessor, the moment-ratio diagram is more

useful for selecting a parent distribution if employed in the context of regional

frequency analysis of a hydrologically homogeneous region, by plotting

(or averaging) the τ3 � τ4 pairs, estimated for a large number of sites located within

the region. In this regard, Hosking and Wallis (1997) propose a unified method for

regional frequency analysis with L-moments, including a formal goodness-of-fit
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measure for choosing the regional parent distribution. Such a unified method will be

described in Chap. 10.

8.3.2.3 Information Measures

As mentioned earlier, increasing the number of parameters in order to achieve

model flexibility and greater accuracy also increases the estimation uncertainty.

Some information measures seek to summarize into a single metric these two

opposing objectives of model selection, namely, greater accuracy and less estima-

tion uncertainty. The first information measure is the Akaike Information Criterion

(AIC), introduced by Akaike (1974) and given by the following expression:

AIC ¼ �2ln
YN
i¼1

f X xi;Θð Þ
" #

þ 2p ð8:18Þ

where p is the number of parameters of the model and ln
YN
i¼1

f X xi;Θð Þ
" #

denotes the

log-likelihood function of the density fX(xi;Θ), evaluated at the point of maximum

likelihood, for a sample of size N, defined by the MLE estimates of the p parameters

contained in vector Θ. The first term in the right-hand side of Eq. (8.18) measures

the estimation accuracy, whereas the second term measures the estimation uncer-

tainty due to the number of estimated parameters. The lower the AIC value the

better the model given by fX(xi;Θ). As a result, the AIC score can be used to

compare how different models fit the same data sample, if their respective param-

eters are estimated by the MLE method.

Calenda et al. (2009) remark that the AIC, as a measure based on the likelihood

function, an asymptotically unbiased quantity, provides accurate results for samples

of at least 30 records. When the sample size N, divided by the number of

MLE-estimated parameters p, is smaller than 40, or N/p< 40, Calenda et al.

(2009) suggest correcting Eq. (8.18) to

AICc ¼ �2ln
YN
i¼1

f X xi;Θð Þ
" #

þ 2p
N

N � p� 1

� �
ð8:19Þ

The second information measure is the Bayesian Information Criterion (BIC),

which is very similar to AIC, but has been developed in the context of Bayesian

statistical analysis, to be introduced in Chap. 11. It is formally defined as
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BIC ¼ �2ln
YN
i¼1

f X xi;Θð Þ
" #

þ pln Nð Þ ð8:20Þ

The second term of the right-hand side of Eq. (8.20) shows that BIC, as compared to

AIC, puts more weight on the estimation uncertainty, especially for models with a

high number of parameters and/or small sample sizes. As with the AIC, the lower

the BIC score the better the model given by fX(xi;Θ). It is worth noting, however,

that both scores can be applied only in the context of maximum-likelihood

estimation. Calculations of AIC and BIC scores are illustrated in Example 8.3.

Laio et al. (2009) compared model selection techniques for the frequency

analysis of hydrologic extremes. In addition to AIC and BIC scores, they used a

third measure denoted by ADC, which is based on the Anderson-Darling test

statistic, described in Sect. 7.5.3. Their main conclusions are: (a) no criterion

performs consistently better than its competitors; (b) all criteria are effective at

identifying from a sample a true two-parameter parent distribution and less effec-

tive when the parent is a three-parameter distribution; (c) BIC is more inclined than

AIC and ADC towards selecting the more parsimonious models; and (d) AIC and

BIC usually select the same model, whereas ADC, in many cases, selects a different

model. As a final remark, they note that the obtained results do not ensure a

definitive conclusion, as it remains unclear which criterion or combination of

criteria should be adopted in practical applications.

8.3.3 Estimating Quantiles with Frequency Factors

Once the parent distribution has been chosen and its parameters estimated by an

efficient and accurate estimation method, selected among MOM, MLE, and

L-MOM, the quantile estimates xT, for different return periods T, can be computed.

The most efficient estimation method is the one that returns the narrowest confi-

dence interval (or the smallest standard error of estimate ST) for xT, for a fixed

confidence level (1�α). Estimation of confidence intervals for quantiles can be

performed by the methods described in Sect. 6.7. As stemming from its mathemat-

ical properties, the method of maximum likelihood is, in most cases, the most

efficient estimation method. Albeit the MLE estimates are asymptotically unbiased,

for small samples, they can possibly be biased and, thus, yield inaccurate quantile

estimates, especially in the distribution tails. Therefore, the most adequate estima-

tion method is the one that combines efficiency and accuracy, since concession to

one attribute in the detriment of the other would be equivalent to seeking precisely-

estimated inaccurate quantiles.

According to Chow (1964), the quantile XT of a random variable X, for the return
period T, can be written as a deviation ΔX added to the mean μ. Formally,
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XT ¼ μþ ΔX ð8:21Þ

The deviation ΔX depends on the analytical form and shape characteristics of the

probability distribution FX(x), on its parameters, and on the return period T. Still
according to Chow (1964), the deviation ΔX can be written as a function of the

distribution’s standard deviation σ, asΔX ¼ KD
T σ, where K

D
T denotes the frequency

factor, whose variation with T is specific for a given distribution identified as D. As
such, Eq. (8.21) can be rewritten as

XD
T ¼ μþ KD

T σ ð8:22Þ

Equation (8.22) is valid for the population’s mean and standard deviation, which

must be estimated from the data sample. However, instead of using the sample

estimates x and sX, which would apply only to MOM parameter estimates, the

correct use of Eq. (8.22) requires one to estimate μ and σ from their relations to the

distribution parameters, which, in turn, are estimated by the MOM, or MLE, or

L-MOM methods. For instance, for the Gumbelmax distribution with parameters α

and β, one knows that μ ¼ β þ 0:5772α and σ ¼ πα=
ffiffiffi
6

p
. The parameters α and β

can be estimated either by the MOM, or MLE, or L-MOM methods, yielding three

pairs of different estimates, which then should be employed to provide distinct

estimates of μ and σ. This is also valid for a three-parameter distribution, as the

population coefficient of skewness is related to the parameter estimates. Therefore,

Eq. (8.22), as applied to the estimator xDT , of the quantile X
D
T , becomes

xDT ¼ μ̂ D
EM þ KD

T σ̂
D
EM ð8:23Þ

where μ̂ D
EM and μ̂ D

EM respectively denote the mean and the standard deviation, as

estimated from the relations of these quantities to the D distribution parameters,

which in turn are estimated by the estimation method EM. Equation (8.23) is the

essence of quantile estimation with frequency factors. The variation of these with

the return period is detailed in the next subsections, for each of the probability

distributions most-often used in Statistical Hydrology.

8.3.3.1 Normal Distribution

If X is normally distributed [X ~N(μ,σ)], so that D¼N, the frequency factor KN
T is

given by the standard normal variate zT as corresponding to the return period

T ¼ 1= 1� Φ zTð Þ½ �. The standard normal variate is obtained either from the read-

ings of Table 5.1, or from Eq. (5.17), or from the Excel built-in function NORM.S.

INV(.).
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8.3.3.2 Lognormal Distribution (Two-Parameter)

The lognormal distribution of [X ~LN(μY,σY)] corresponds to the normal distribu-

tion of Y ¼ ln Xð Þ. As such, in the logarithmic space, the frequency factor KN
T is

given by the standard normal variate zT that corresponds to the return period

T ¼ 1= 1� Φ zTð Þ½ �. Thus, the quantiles xLNT can be calculated as

xLNT ¼ exp μ̂ LN
Y,EM þ KN

T σ̂
LN
Y,EM

� � ð8:24Þ

If decimal (or common) logarithms are used, such that Y ¼ log10 Xð Þ, then

Eq. (8.24) must be rewritten as

xLNT ¼ 10μ̂
LN
Y,EMþK N

T σ̂ LN
Y,EM ð8:25Þ

The frequency factor for the lognormal distribution can also be computed

without prior logarithmic transformation of X. In such a case, Kite (1988) proved

that the frequency factor KLN
T is given by

KLN
T ¼

exp zT σ̂
LN
Y,EM � σ̂ LN

Y,EM

� �2
=2

h i
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp σ̂ LN
Y,EM

� �2h i
� 1

r ð8:26Þ

The quantiles xLNT are then calculated as

xLNT ¼ μ̂ LN
X,EM þ KLN

T σ̂ LN
X,EM ð8:27Þ

where μ̂ LN
X,EM and σ̂ LN

X,EM are the estimated mean and standard deviation of the

original variable X.

8.3.3.3 Lognormal Distribution (Three-Parameter)

Recall from Sect. 5.3 that the three-parameter lognormal (LN3 or LNO3) distribu-

tion corresponds to the normal distribution of Y ¼ ln X � að Þ where a denotes the

lower bound of X. Thus, in the logarithmic space, the frequency factor KN
T is given

by the standard normal variate zT that corresponds to the return period

T ¼ 1= 1� Φ zTð Þ½ �. Then, the quantiles xLN3T can be calculated as

xLN3T ¼ aþ exp μ̂ LN3
Y,EM þ KN

T σ̂
LN3
Y,EM

� � ð8:28Þ

Equations (8.26) and (8.27) remain valid for the LN3, recalling that in such a case

Y ¼ ln X � að Þ.
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8.3.3.4 Pearson Type III Distribution

The frequency factor for the Pearson type III distribution of [X ~ P-III(α,β,ξ)] can be
approximated by the following expression (Wilson and Hilferty 1931):

KP-III
T ¼ 2

γ̂ EM

γ̂ EM

6
zT � γ̂ EM

6

� �
þ 1

� 	3
� 1

( )
for 0 � γ̂ EM � 1 ð8:29Þ

where γ̂ EM denotes the estimated coefficient of skewness and zT is the standard

normal variate that corresponds to the return period T ¼ 1= 1� Φ zTð Þ½ �.
For positive values of γ̂ EM larger than 1, the modified Wilson-Hilferty approx-

imation, as proposed by Kirby (1972) and given by Eq. (8.30), should be used.

KP-III
T ¼ A Max H, 1� G

6

� �2

þ zT
G

6

" #3

� B

8<
:

9=
; for 0:25 � γ̂ EM � 9:75 ð8:30Þ

where A, B, G, and H are functions of γ̂ EM. Hoshi and Burges (1981) provide

polynomial approximations for 1/A, B, G, and H 3, which have the general form

Z � a0 þ a1γ̂ EM þ a2γ̂
2
EM þ a3γ̂

3
EM þ a4γ̂

4
EM þ a5γ̂

5
EM ð8:31Þ

where Z is either 1/A, or B, or G, or H3, and ai, i¼ 0,. . ., 5, are coefficients given in
Table 8.7.

Then, the quantiles fromP-III(α,β,ξ) are computed through the following equation:

xP-IIIT ¼ ξ̂ EM þ α̂ EMβ̂ EM þ KP-III
T α̂ EM

ffiffiffiffiffiffiffiffiffi
β̂ EM

q
ð8:32Þ

Table 8.7 Coefficients of Eq. (8.28), as given in Hoshi and Burges (1981)

Coefficient

Z

G 1/A B H 3

a0 �0.003852050 0.001994470 0.990562000 �0.003651640

a1 1.004260000 0.484890000 0.031964700 0.017592400

a2 0.006512070 0.023093500 �0.027423100 �0.012183500

a3 �0.014916600 �0.015243500 0.007774050 0.007826000

a4 0.001639450 0.001605970 �0.000571184 �0.000777686

a5 �0.0000583804 �0.000055869 0.0000142077 0.0000257310
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8.3.3.5 Log-Pearson Type III Distribution

The Log-Pearson type III distribution of [X ~LP-III(αY,βY,ξY)] corresponds to the

Pearson type III distribution of Y ¼ ln Xð Þ. As such, in the logarithmic space, the

frequency factor KP - III
T is given by the same methods described in Sect. 8.3.3.4.

Thus, the quantiles xLP - IIIT can be calculated as

xLP-IIIT ¼ exp ξ̂ Y,EM þ α̂ Y,EMβ̂ ,EM þ KP-III
T α̂ Y,EM

ffiffiffiffiffiffiffiffiffiffiffiffi
β̂ Y,EM

q� �
ð8:33Þ

8.3.3.6 Exponential Distribution

The frequency factor for the exponential distribution of [X	E(θ)] is given by

K E
T ¼ ln Tð Þ � 1 ð8:34Þ

The quantiles from E(θ) are computed through the following equation:

xET ¼ θ̂ EM þ K E
T θ̂ EM ð8:35Þ

8.3.3.7 Gamma Distribution

The frequency factor for the Gamma distribution of [X ~Ga(θ,η)] can be calculated
with the methods described for the Pearson type III, since KGa

T ¼ KP�III
T . Then, the

quantiles from Ga(θ,η) are given by

xGaT ¼ η̂ EMθ̂ EM þ KGa
T θ̂ EM

ffiffiffiffiffiffiffiffiffi
η̂ EM

p
ð8:36Þ

8.3.3.8 GEV Distribution

The frequency factor for the GEV distribution of [X ~GEV(β,α,κ)] is

KGEV
T ¼ κ̂ EΓ 1þ κ̂ EMð Þ � �ln 1� 1=Tð Þ½ �κ̂ EM

κ̂ EMj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1þ 2κ̂ EMð Þ � Γ2 1þ κ̂ EMð Þ

p ð8:37Þ

Then, the quantiles from GEV(β,α,κ) are calculated as
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xGEVT ¼ β̂ EM þ α̂ EM

κ̂ EM

1� Γ 1þ κ̂ EMð Þ½ � þ KGEV
T

α̂ EM

κ̂ EM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1þ 2κ̂ EMð Þ � Γ2 1þ κ̂ EMð Þ

q
ð8:38Þ

8.3.3.9 Gumbelmax Distribution

Many hydrology textbooks, following Gumbel (1958), recommend a method to

calculate the frequency factors for the Gumbelmax distribution, as dependent on the

sample size. Using the results from a Monte Carlo experiment, Lettenmaier and

Burges (1982) showed that the frequency factors, calculated as a function of the

sample size, are misleading and should be avoided. They recommend that fre-

quency factors for the Gumbelmax distribution should be calculated on the basis of

an infinite sample size. As such, it can be shown that the frequency factor for the

Gumbelmax distribution of [X ~G(β,α) or X ~Gumax(β,α)] is

KG
T ¼ � 0:45þ 0:7797ln �ln 1� 1

T

� �� 	� 

ð8:39Þ

Then, the quantiles from Gumax(β,α) are calculated as

xGT ¼ β̂ EM þ 0:5772α̂ EM þ KG
T

πα̂ EMffiffiffi
6

p ð8:40Þ

8.3.3.10 GLO (Generalized Logistic) Distribution

The generalized logistic (GLO) distribution was introduced in Sect. 5.9.1 of

Chap. 5, as a particular case of the four-parameter Kappa distribution. More

specifically, the GLO distribution is defined by the parameters ξ, of location, α,
of scale, and κ, of shape, with density function given by

f X xð Þ ¼ 1

α

1� κ x�ξ
α

� �� � 1
κ�1ð Þ

1þ 1� κ x�ξ
α

� �� �1
κ

n o2
ð8:41Þ

The GLO variate is defined in the range ξþ α=κ � x < 1 for κ < 0 and �1 � x
< ξþ α=κ for k> 0. The GLO CDF is given by
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FX xð Þ ¼ 1þ 1� κ
x� ξ

α

� �� 	1
κ

( )�1

ð8:42Þ

The mean and variance of a GLO variate are respectively given by

E X½ � ¼ ξþ α

κ
1� Γ 1þ κð ÞΓ 1� κð Þ½ � ð8:43Þ

and

Var X½ � ¼ α2

κ2
Γ 1þ 2κð ÞΓ 1� 2κð Þ � Γ2 1þ κð ÞΓ2 1� κð Þ� � ð8:44Þ

Analogous to the GEV, the coefficient of skewness of the GLO distribution depends

only on the shape parameter κ (see Rao and Hamed 2000). The function for

calculating the quantile XT, of return period T, for the GLO distribution is given by

XT ¼ ξþ α

κ
1� T � 1ð Þ�κ½ � ð8:45Þ

Following the publication of the Flood Estimation Handbook (IH 1999), the

GLO distribution, with parameters fitted by L-MOM, became standard for flood

frequency analysis in the UK. Estimating the GLO parameters using the MOM and

MLE methods is complicated and the interested reader should consult Rao and

Hamed (2000) for details. The L-MOM estimates for the GLO parameters are

calculated as

κ̂ ¼ �t3 ð8:46Þ

α̂ ¼ l2
Γ 1þ κ̂ð ÞΓ 1� κ̂ð Þ ð8:47Þ

ξ̂ ¼ l1 þ l2 � α̂

κ̂
ð8:48Þ

where l1 and l2 are the sample L-moments and t3 is the sample L-skewness.

The frequency factor for the GLO distribution of [X ~GLO(ξ,α,k)] is given by

KGLO
T ¼ κ̂ EMΓ 1þ κ̂ EMð ÞΓ 1� κ̂ EMð Þ � T � 1ð Þκ̂ EM

κ̂ EMj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1þ 2κ̂ EMð ÞΓ 1� 2κ̂ EMð Þ � Γ2 1þ κ̂ EMð ÞΓ2 1� κ̂ EMð Þ

p ð8:49Þ

The sampling variance of quantiles from GLO(ξ,α,κ), with parameters estimated

with the L-MOM method, was studied by Kjeldsen and Jones (2004). Rao and

Hamed (2000) provide procedures to calculate the standard errors of quantiles for

MOM and MLE estimation methods. The reader interested in details on confidence

intervals for quantiles from GLO should consult the referred publications.
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8.3.4 Assessing the Uncertainties of Quantile Estimates

As previously mentioned in this chapter, the uncertainties of the T-year quantile can
be ascribed part to an incorrect choice of the parent distribution, which cannot be

objectively assessed, and part to parameter estimation errors. If one assumes no

error has been made in choosing the parent distribution, the uncertainties of quantile

estimates can be partly evaluated by the asymptotic method described in Sect. 6.7.

The assumption of asymptotically normal quantiles, implied by Eq. (6.26), together

with Eqs. (6.27) and (6.28), respectively valid for two-parameter and three-

parameter distributions, yields approximate confidence intervals for the T-year
quantile. As the partial derivatives and the covariances, in Eqs. (6.27) and (6.28),

respectively depend on the specific quantile function and on the method used to

estimate the distribution parameters, calculations of approximate confidence inter-

vals for quantiles are tedious and are usually performed with the aid of computer

software. The reader interested in evaluating the terms of Eqs. (6.27) and (6.28), as

applied to the distributions and estimation methods most-currently used in Statis-

tical Hydrology, is referred to Kite (1988), Rao and Hamed (2000), and Kjeldsen

and Jones (2004). Table 8.8 summarizes the results for frequency factors and

standard errors for some distributions used in Statistical Hydrology. Alternatively,

one can employ the computer-intensive method outlined in Sect. 6.8 or the

resampling techniques described in Hall et al. (2004), for assessing standard errors

and confidence intervals for quantiles. Also, Stedinger et al. (1993) provide equa-

tions to calculate exact and approximate confidence intervals for quantiles from

some popular distributions used in Statistical Hydrology. The interval for the T-year
quantile at a fixed confidence level (1�α), regardless of the method employed to

estimate it, is expected to grow wider as the sample size decreases, and/or as

T increases, and/or as the number of estimated parameters increases. It is worth

noting, however, that as the eventual errors associated with the incorrect choice of

the parent distribution are not objectively accounted for, confidence intervals for

quantiles, as estimated for distinct distributions, are not directly comparable. For a

given distribution, assuming it adequately describes the parent distribution, the

calculated intervals for the T-year quantile at a fixed confidence level (1�α) are
usually narrower for MLE estimates, as compared to L-MOM and MOM estimates.

Example 8.3 illustrates a complete frequency analysis of flood flow records of the

Lehigh River at Stoddartsville.

Example 8.3 Perform a complete frequency analysis of the annual peak discharges

of the Lehigh River at Stoddartsville (USGS gauging station 01447500) recorded

from the water year 1941/42 to 2013/14, listed in Table 7.1. Consider the following

distributions as possible candidate models: one-parameter exponential (E),

two-parameter lognormal (LNO2), Gamma (Ga), Gumbelmax (Gu), three-parameter

lognormal (LNO3), generalized extreme value (GEV), Pearson type III (P III),

log-Pearson type III (LP-III), and generalized logistic (GLO).
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Solution Let X denote the flood peak discharges. Table 8.9 lists the descriptive

statistics, L-moments, and L-moment ratios of the sample of X and of ln(X). When

compared to the usual descriptive statistics of flood flow samples, the coefficients of

variation and skewness of X are relatively high.

The next step is to detect and identify possible outliers in the sample, for which

the test of Grubbs and Beck, described in Sect. 7.6, is employed. At the 5%

significance level, the lower bound for detecting low outliers, as calculated with

Eq. (7.47), is 6.88 m3/s, whereas the upper bound for high outliers, as calculated

with Eq. (7.46), is 785 m3/s. As a result, no low outliers are detected and one high

outlier is identified: the flood peak discharge 903 m3/s, which occurred in the 1954/

55 water year. According to USGS (1956), the 1955 flood was due to a rare

combination of very heavy storms associated with the passing of hurricanes Connie

(August 12–13) and Diane (August 18–19) over the northeastern USA, with record-

breaking peak discharges consistently recorded at other gauging stations located in

the region. Therefore, despite being a high outlier, the discharge 903 m3/s is

consistent and should be retained in the sample, since, as a record-breaking

flood-peak flow it will certainly affect model choice and parameter estimation.

Unfortunately, no historical information, that could possibly extend the period of

time over which the 1955 flood would remain as a maximum, was available for the

present analysis.

The third step is to test sample data for randomness, independence, homogene-

ity, and stationarity. The solution to Example 7.6 has applied the nonparametric

tests of the turning points, Wald–Wolfowitz, Mann–Whitney, and Spearman’s Rho,
and no empirical evidence was found to rule out the hypotheses of randomness,

independence, homogeneity, and stationarity (for monotonic trends), respectively.

Table 8.10 lists the estimates for the parameters of all candidate distribution, as

resulting from the application of MOM, L-MOM, and MLE estimation methods. In

some cases, no results for parameter estimates are provided, either because the

employed algorithm did not converge to a satisfactory solution or values were out

of bounds.

For the fourth step of goodness-of-fit tests, a common estimation method should

be selected, such that the decisions of rejecting (or not rejecting) the null hypoth-

eses, as corresponding to the nine candidate distributions, can be made on a

Table 8.9 Sample statistics of the annual peak flows of the Lehigh River at Stoddartsville

X ln(X) L-moments

Sample size 73 73 lr or tr X ln(X)

Maximum 903 6.8061 l1 102.69 4.297

Minimum 14.0 2.6403 l2 46.41 0.415

Mean 102.69 4.2970 l3 23.71 0.041

Standard deviation 121.99 0.7536 l4 18.20 0.075

Coefficient of variation 1.1881 0.1754 t2 0.452 0.097

Coefficient of skewness 4.5030 0.6437 t3 0.511 0.098

Coefficient of kurtosis 28.905 4.1346 t4 0.392 0.181
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reasonably even basis. From Table 8.10, the MOM and L-MOM estimation

methods are the ones that provide results for all candidate distributions, since the

algorithm for solving the MLE equations failed to find solutions for the P III and

GLO models. The qualities of nearly unbiased and robust estimates of higher order

moments and moment-ratios, that are characteristics of L-MOM estimation, appear

as appealing to select it as a common basis to perform the GoF tests. Among these

and, again, for the sake of evenness, the PPCC Gof test, following comments in

Sect. 7.5.5, is an adequate option. Table 8.11 presents the PPCC test statistics and

the related decisions, at the 5% significance level, concerning the different parent

distributions. Critical values of the tests statistics were obtained either from tables,

or from approximating equations, or from charts, as appropriate (see Sect. 7.5.4).

From Table 8.11, the decisions concerning the two-parameter distributions seem

unquestionable as the calculated test statistics are well below their respective

critical values, at the 5% significance level. However, the decisions to reject the

LNO3 and LP-III distributions are not particularly compelling, as the calculated test

statistics are very close to their respective critical values. Since the critical test

statistics are approximate values, a second chance is given for the LNO3 and LP-III

distributions, by lowering the significance level to 1%. Table 8.12 summarizes the

PPCC test statistics and the related decisions, at the 1% significance level. The

Table 8.11 PPCC test statistics and related decisions, at the 5% significance level

Parent distribution

under H0

Calculated test statistic

rcalc

Calculated test statistic rcrit,
α¼0.05

Decision on

H0

E 0.9039 0.9720 (equation) Reject

LNO2 0.9481 0.9833 (equation) Reject

Ga 0.8876 0.9343 (equation) Reject

Gu 0.8463 0.9720 (equation) Reject

LNO3 0.9774 0.9833 (table) Reject

GEV 0.9871 <0.910 (inferred from table) Not reject

P III 0.9425 0.9343 (equation) Not reject

LP-III 0.9759 0.9792 (equation) Reject

GLO 0.9901 <0.910 (inferred from

chart)

Not reject

Table 8.12 PPCC test statistics and the related decisions, at the 1% significance level

Parent distribution

under H0

Calculated test statistic

rcalc

Calculated test statistic rcrit,
α¼0.05

Decision on

H0

LNO3 0.9774 0.9755 (table) Not reject

GEV 0.9871 <0.817 (inferred from table) Not reject

P III 0.9425 0.8924 (equation) Not reject

LP-III 0.9759 0.9662 (equation) Not reject

GLO 0.9901 <0.910 (inferred from

chart)

Not reject
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decision, at the 1% significance level, is that all three-parameter candidate models

should be retained for the next steps of analysis.

The empirical and candidate distributions, as plotted on exponential probability

paper, are depicted in the chart of Fig. 8.13. The plotting positions used in this chart

were calculated with the Cunnane formula, for the empirical distribution, whereas,

for the theoretical distributions, the appropriate formulae were used, following the

recommendations given in Table 7.14. From the chart of Fig. 8.13, with the

exception of the P III model which should be dismissed from the analysis, all

three-parameter distributions fit the lower and middle portions of the empirical

distributions reasonably well. However, the upper tail of the empirical distribution,

as shaped by the tendency imposed by the record-breaking flood discharge 903 m3/

s, is only approximated by some of the candidate models being analyzed. On the

other hand, it is worthwhile remembering, from the discussions in Sect. 8.2.2, that

the sampling uncertainties of the plotting position associated with this record-

breaking flood discharge, do not warrant the dismissal of any of the fitting models,

namely, the LNO3, GEV, LP-III, and GLO. These models should be retained for the

next step of the analysis.

The fifth step concerns choosing the model that most adequately represents the

parent distribution. As seen in Sect. 8.3.2, the plotting of the γ� κ estimates for the

sample of 73 annual peak flows of the Lehigh River at Stoddartsville onto the

Fig. 8.13 Empirical and theoretical distributions of the annual peak flows of the Lehigh River at

Stoddartsville. Parameters estimated by L-MOM
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conventional moment-ratio diagram of Fig. 8.11 has not led to any conclusion as

regards the shape of the parent distribution. The same exercise on the L-moment-

ratio diagram of Fig. 8.12 offers some help by delimiting a region on the τ3 � τ4
plane in which the lines that correspond to candidate distributions GLO, GEV,

LNO, and GPA are located. Of these, the GPA model is more frequently used in the

context of the peaks-over-threshold (POT) representation for floods, and, as such,

shall not be included among the candidates for modeling the annual maximum

floods of the Lehigh River. The reason for this will be made clear in Sect. 8.4, where

the POT approach is described. The τ3 � τ4 sample estimates for ln(X) are also

pinpointed on the diagram of Fig. 8.12 and the point location seems not to rule out

the plausibility of the P III model in the logarithmic space, which is equivalent to

accepting the LP–III as a credible model for X. Thus, analysis of the L-moment-

ratio diagram, in spite of not offering an effective tool for discriminating among the

candidate models, has been useful in confirming the LNO3, GEV, LP–III, and GLO

as promising candidate distributions.

Application of AIC and BIC scores are restricted to the distributions for which

MLE parameter estimates are available, namely, the LNO3, GEV, and LP–III.

Their respective AIC and BIC scores are displayed in Table 8.13. These scores

are congruent in pointing out the GEV, LP–III, and LNO3 distributions as first,

second, and third choices, respectively. However, model selection through AIC and

BIC scores is limited to MLE-estimated parameters, a fact that has excluded not

only the GLO distribution from the comparative analysis but all other distributions

with parameters estimated through MOM and L-MOM methods.

The lack of an overall objective criterion leaves the model selection open to

some degree of subjectivity. In fact, when a common method of parameter estima-

tion, such as the L-MOM, is adopted for the LNO3, GEV, LP–III, and GLO

candidate distributions, a look at the chart of Fig. 8.13 shows that any of the four

models fits the sample data accurately and would be a perfect choice for estimating,

for instance, the 100-year flood, with relatively small differences among estimates.

Figure 8.14a, for parameters estimated with MOM, leads to about the same con-

clusion; note that the LP–III distribution was not plotted on the chart of Fig. 8.14a

because the MOM estimate for parameter α is negative (see Sect. 5.8.2).

Figure 8.14b, however, leads to a different conclusion, as the GEV distribution,

for parameters estimated with MLE, yields relatively higher flood quantiles for

large return periods and appears to better fit the upper tail of the empirical

distribution. Overall, taking into account the fittings of the center and upper tail

of the empirical distribution, the location of τ3 � τ4 estimates on the L-moment ratio

diagram, the AIC and BIC scores, and the consistency of parameter and quantile

estimates, it seems coherent to proceed with the analysis by defining the LNO3,

Table 8.13 AIC and BIC

scores for the candidate

distributions

Candidate distribution AIC BIC Choice

LNO3 795.89 802.76 3rd

GEV 793.73 800.60 1st

LP-III 794.56 801.43 2nd
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with L-MOM estimates, and the GEV and the LP-III, both with MLE estimates, as

the set of models to choose from.

The sixth step relates to deciding on the most adequate combination of model

and estimation method, on the basis of a trade-off solution between accuracy and

quantile estimation uncertainty. Table 8.14 displays the estimates of the GEV,

LP-III, and LNO3 parameters and quantiles for the 50-year, 100-year, and

200-year return periods, and their respective standard-errors of estimates, as

obtained through the indicated estimation method. The standard errors of estimates

(ST) for MLE were obtained by using the asymptotic method, described in Sect. 6.7,

whereas the Monte Carlo simulation method of Sect. 6.8, with 1000 synthetic

samples, was employed to provide the estimates of ST for L-MOM. As expected,

the standard errors of MLE estimates are smaller and, thus, reflect the superiority of

maximum-likelihood estimates, as far as the quantile estimation uncertainty is

Table 8.14 Estimates of GEV, LP-III and LNO3 parameters, quantiles, and standard errors

Distribution/estimation method ! GEV/MLE LP-III/MLE LNO3/L-MOM

Location parameter 54.8271 1.1112 3.7689

Scale parameter 34.9678 0.1735 1.1204

Shape �0.4542 18.3625 21.5190

50-year quantile 431 405 454

100-year quantile 600 532 609

200-year quantile 831 689 798

50-year std. error 118.90 98.09 141.8

100-year std. error 202.39 154.72 234.8

100-year std. error 334.02 235.18 371.6

Fig. 8.14 Empirical and theoretical distributions of the annual peak flows of the Lehigh River at

Stoddartsville. Parameters estimated by (a) MOM and (b) MLE
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concerned. However, the trade-off requires a further examination in terms of

accuracy.

Figure 8.15 depicts the GEV/MLE, LP-III/MLE, and LNO3/L-MOM fitted

distributions, superimposed over the empirical distribution of the annual peak

discharges of the Lehigh River at Stoddartsville. In this chart, the plotting positions

used to define the empirical distribution were calculated with the Cunnane formula.

A look at the graph of Fig. 8.15 shows that the LNO3 curve, as estimated with

L-MOM parameters, is the distribution that best fits the empirical quantiles up to the

return period of 50 years. The fit of the LP-III/MLE distribution is slightly inferior,

in spite of yielding the smaller standard errors of estimates. As compared to LNO3/

L-MOM, the GEV curve, estimated with MLE parameters, provides a worse fit in

the middle portion of the empirical distribution. As regards the upper-tail, the

LP-III/MLE distribution fails to capture the tendency imposed by the two largest

sample records and starts biasing its quantile estimates toward smaller values from

the 40-year return period on. In this domain, as compared to the LP-III, the LNO3/

L-MOM and GEV/MLE distributions perform better with a slight superiority of the

latter, as it approaches the record-breaking flood discharge 903 m3/s more closely

than the LNO3/-MOM does. However, taking into account the uncertainty on the

true return period associated with the 903 m3/s flood discharge, both the GEV/MLE

and LNO3/L-MOMwould be equally sensible choices, particularly if one considers

their respective standard errors of estimates which are roughly equivalent figures.

Fig. 8.15 GEV/MLE, LP-III/MLE, and LNO3/L-MOM fitted distributions
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However, in order to be coherent with the more precise quantiles and the best fit

over the empirical upper tail, the GEV distribution, with MLE parameter estimates,

is selected as the adopted model for the annual peak discharges of the Lehigh River

at Stoddartsville. Figure 8.16 depicts the MLE-estimated GEV distribution, with the

95% confidence bands calculated with the method described in Sect. 6.7.2.

8.4 Peaks-Over-Threshold (POT) Approach
for the Analysis of Partial Duration Series

8.4.1 Theoretical Background

Many hydrological and hydrometeorological variables fluctuate in time such that

they constitute alternating sequences of large and small (or even null) values. The

large values are usually much above the mean and are clustered in short periods of

time, followed by spells of relatively smaller and/or null values. Such a temporal

pattern confers to these variables the characteristic configuration of a succession of

exceedances over a specified threshold. The number and magnitude of such

exceedances can be modeled by a bivariate stochastic process. For the sake of

Fig. 8.16 LNO3 adopted distribution with 95% confidence bands
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clarity, consider the chart of Fig. 8.17 as depicting part of the time evolution of a

hydrologic variable denoted by X, where the exceedances over a threshold u are

marked and identified. In such a scheme, for the ith cluster of values of X that have

exceeded u, the corresponding maximum value is denoted as Xi, such that

Xi ¼ uþWi, where Wi represents the ith exceedance that occurred at time Ti.
Such a representation shapes the bivariate stochastic process

Ti , Xi ; i ¼ 1, 2, . . .f g, the modeling of which, in the context of floods and other

hydrologic phenomena, has been pioneered by the works of Todorovic and

Zelenhasic (1970), Gupta et al. (1976), Todorovic (1978), and North (1980).

Other important references in this topic area are Taesombut and Yevjevich

(1978), Smith (1984), Rosbjerg (1984), and Van Montfort and Witter (1986).

Under general conditions, the events Ti , Xi ; i ¼ 1, 2, . . .f g can be represented

as an ample class of nonhomogeneous compound Poisson stochastic processes. For

that, two premises are needed:

1. The number of exceedances over the threshold u, denoted as Nαβ, that have

occurred in the time interval [α,β] is a discrete random variable, whose mass

function is assumed as a Poisson distribution with time-dependent intensity λ(t).
As such, the probability that n exceedances have occurred in [α,β] is given by

Fig. 8.17 Representation of a bivariate stochastic process
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P Nαβ ¼ n
� � ¼

ðβ
α

λ tð Þdt
2
4

3
5
n

exp �
ðβ
α

λ tð Þdt
2
4

3
5

n !
ð8:50Þ

2. {Xi} denotes a sequence of mutually independent random variables, whose

probability distributions depend on the occurrence time Ti.

Assume that the time interval [α,β] can be partitioned into k0 subintervals, within
which the distribution of {Xi} does not depend on the time. Denoting the number of

occurrences within the jth subinterval as Nj and the corresponding maximum value

of X as Mj, one can write

P Mj � x
� � ¼ P Nj ¼ 0

� �þX1
n¼1

P \n
i¼1

Xi, j � x
� �\ Nj ¼ n

� �� 	
ð8:51Þ

where Xi,j represents the i
th occurrence that has exceeded u within the jth subinter-

val, and \ indicates the joint occurrence or intersection of indicated events. From

the condition of mutual independence of events, it follows that

P Mj � x
� � ¼ P Nj ¼ 0

� �þX1
n¼1

P Nj ¼ n
� �

Hu, j xð Þ� � n ð8:52Þ

In Eq. (8.52), Hu,j is the probability distribution function of the exceedances of

X over the threshold u, inside the jth subinterval. Substituting the appropriate terms

of Eq. (8.52) by the Poisson mass function given in Eq. (8.50), it follows that

P Mj � x
� � ¼ exp � 1� Hu, j xð Þ� � ð

j

λ tð Þdt

8><
>:

9>=
>; ð8:53Þ

According to North (1980), the probability distribution of the maximum of X,
over the time interval [α,β], denoted by Mαβ, can be derived by equating

P Mαβ � x
� � ¼ P \k0

j¼1
Mj � x

� �
ð8:54Þ

or, from the condition given by premise 2,

P Mαβ � x
� � ¼ Yk0

j¼1

P Mj � x
� � ð8:55Þ
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where Π indicates the product of individual terms. Combining Eqs. (8.55) and

(8.53), it follows that

P Mαβ � x
� � ¼ exp �

Xk0
j¼1

1� Hu, j xð Þ� � ð
j

λ tð Þdt

8><
>:

9>=
>; ð8:56Þ

As k0 ! 1, Eq. (8.56) becomes

P Mαβ � x
� � ¼ exp �

ðβ
α

1� Hu x=tð Þ½ � λ tð Þdt
8<
:

9=
; ð8:57Þ

Equation (8.57) allows the calculation of the probability of the maximum Mαβ

within any time interval [α,β] to be done. In general, the interest is focused on

obtaining the probability distribution of the annual maxima, denoted by Fa (x), by
fixing the time interval bounds as α¼ 0 and β¼ 1, such that they respectively

represent the beginning and the end of the year. As such, Eq. (8.57) becomes

Fa xð Þ ¼ exp �
ð1
0

λ tð Þ 1� Hu x=tð Þ½ �dt
8<
:

9=
; ð8:58Þ

In Eq. (8.58), the probability distribution of the exceedances of X over the

threshold u, denoted by Hu(x/t), depends on time. In instances, however, when

empirical evidence indicates that Hu(x/t) does not depend on time, Eq. (8.58) can be

substantially simplified and becomes

Fa xð Þ ¼ exp � 1� Hu xð Þ½ �
ð1
0

λ tð Þdt
8<
:

9=
; ¼ exp �ν 1� Hu xð Þ½ �f g ð8:59Þ

where ν denotes the mean annual number of exceedances. Equation (8.59) repre-

sents the general mathematical formalism for the frequency analysis of the

so-called partial duration series, under the POT representation. In order to be

solved, Eq. (8.59) requires the estimation of ν and Hu(x). For a given sample of

flood records, for instance, ν is usually estimated by the mean annual number of

flow exceedances over u. The distribution Hu(x) refers to the magnitudes of the

exceedancesW ¼ X � u and can be estimated by an appropriate model fitted to the

sample exceedances (see solutions to Examples 8.7 and 8.8).
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8.4.2 Constraints in Applying the POT Approach

In the theoretical foundations of POT modeling approach, given in the previous

subsection, Eq. (8.59) is built upon the assumptions that exceedances over the

threshold u are mutually independent and that the number of occurrences is a

Poisson variate. These are fundamental assumptions that need to be verified prior

to the application of the POT modeling approach to practical situations. A brief

discussion on these issues is addressed in the subsections that follow.

8.4.2.1 Mutual (or Serial) Independence of Exceedances

The mutual (or serial) independence of the exceedances over u is a basic assump-

tion and its empirical verification should precede applications of the POT modeling

approach. For X being a continuous stochastic process, it is expected that the serial

dependence between successive exceedances decreases as the threshold u is raised

or, equivalently, decreases as the mean annual number of exceedances ν decreases.
In fact, a high threshold would make the mean annual number of exceedances

decrease, as the time span between successive events becomes larger. As a result,

successive exceedances tend to be phenomenologically more disconnected to each

other and, thus, statistically independent. Taesombut and Yevjevich (1978)

analyzed the variation of the correlation coefficient between exceedances, as lagged

by a unit time interval, in correspondence with the mean annual number of

exceedances, over 17 flow gauging stations in the USA. They concluded that the

serial correlation coefficient grows with ν̂ and is kept inside the 95% confidence

bands as long as ν̂ � 4, 5. Similar conclusions were obtained by Madsen et al.

(1993) for partial duration series of rainfall, recorded at a number of gauging

stations in Denmark.

Notwithstanding the difficulties of setting general rules for selecting the thresh-

old u for the POT modeling approach, the inherent physical characteristics of

hydrologic phenomena together with empirical studies may suggest conditions

under which the mutual independence assumption can hold. As regards the selec-

tion of mutually independent rainfall events, for instance, in general, successive

occurrences should be separated in time by a significant period with no rainfall

within it. For daily rainfall, such a period should be of one or two dry days, whereas

for subdaily rainfall, a period of 6 h is usually prescribed.

In regard to flows, setting general rules becomes more difficult, since the

catchment actions of retaining or releasing runoff, at time-variable rates, depend

on the catchment size, shape, soil, antecedent soil moisture condition, and topo-

graphic features, and on the characteristics of the rainfall episode as well. In this

regard, analysis of past rainfall-runoff events, as summarized into hyetographs and

hydrographs, can prove useful. In general, for flood hydrographs, the flow

exceedances should be selected in such a manner that two successive occurrences

be separated in time by a long interval of receding flows. This time interval should
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be sufficiently long to successfully pick up consecutive independent flood

exceedances that have been produced by distinct rainfall episodes. WRC (1981)

suggests that, in order to select flow exceedances, the flood-peak discharges of two

successive hydrographs must be separated by a time interval, in days, equal to or

larger than the sum of 5 and the natural logarithm of the catchment drainage area in

square miles. Cunnane (1979) suggests that flows within two successive indepen-

dent flood peaks should recede to at least 2/3 of the first peak discharge. Similarly,

WRC (1981) changes the proportion to 75% of the smallest of the peak discharges

pertaining to two successive hydrographs, in addition to the previous criterion

based on the catchment drainage area. The reader interested in more details on

threshold selection for POT modeling should consult Lang et al. (1999) and

Bernardara et al. (2014).

8.4.2.2 Distribution of the Number of Mutually
Independent Exceedances

For hydrological variables, the assumption that the number of exceedances over a

sufficiently threshold is distributed as a Poisson variate encounters justifications

from both the empirical and theoretical viewpoints. From the empirical standpoint,

there are many results that confirm such an assumption for high thresholds

(e.g., Todorovic 1978, Taesombut and Yevjevich 1978, Correia 1983, Rosbjerg

and Madsen 1992, and Madsen et al. 1993). The theoretical justifications are given

in Cramér and Leadbetter (1967), Kirby (1969), and Leadbetter et al. (1983). In

particular, Cramér and Leadbetter (1967, p. 256) demonstrate that if a stochastic

process is Gaussian, then, under general conditions, it can be stated that the number

of exceedances over a high threshold u converges to a Poisson process asu ! 1. In

this regard, Todorovic (1978) argues that there is no reason to believe that the

Cramér-Leadbetter results would not hold if the process is not Gaussian. Later on,

Leadbetter et al. (1983, p. 282) extended the previous results for non–Gaussian

processes.

Following the theoretical justifications already given, from the standpoint of

practical applications, the question of how high the threshold should be such that

the number of mutually independent exceedances can be treated as a Poisson

variate remains unanswered. Langbein (1949) suggests the practical criterion of

setting the threshold u such that no more than 2 or 3 annual exceedances are

selected ( ν̂ � 3). Taesombut and Yevjevich (1978) argue that, in order for the

number of exceedances be a Poisson variate, the ratio between the mean and the

variance of the annual number of exceedances should be approximately equal to

1. In this context, recall from Sect. 4.2, that the mean and the variance of a Poisson

variate are equal. Additional results by Taesombut and Yevjevich (1978) show that,

as compared to the analysis of annual maximum series, the frequency analysis of

partial duration series provides smaller errors of estimate for Gumbel quantiles only

when ν � 1:65. They conclude by recommending the use of partial duration series

8 At-Site Frequency Analysis of Hydrologic Variables 365

http://dx.doi.org/10.1007/978-3-319-43561-9_4


for ν � 1:95. Cunnane (1973), in turn, has no reservations in recommending the use

of partial duration series for samples with less than 10 years of records.

In spite of the difficulty of proposing a general criterion, experience suggests that

specifying a value of ν comprised between 2 and 3 seems to be sufficient to benefit

from the advantages of the POT modeling approach, and, at the same time, warrant

the serial independence among exceedances and, in many cases, the assumption of

Poisson-distributed number of occurrences. However, such a recommendation

should be subjected to an appropriate statistical test, in order to check for its

adequacy. The test proposed by Cunnane (1979) is very often used in such a context

and is based on the approximation of a Poisson variate by a normal variate. If the

number of exceedances that occurred in the kth year, denoted as mk, follows a

normal distribution with mean ν̂ and standard deviation ν̂ , then the statistics

R ¼
XN
k¼1

mk � ν̂ð Þ2
ν̂

ð8:60Þ

follows a Chi-Square distribution with η ¼ N � 1 degrees of freedom, where

N denotes the number of years of records. This is a two-sided test and is valid for

N > 5. As such, the null hypothesis that the number of independent exceedances

follows a Poisson distribution should be rejected, at the significance level α, if

R ¼
XN
k¼1

mk � ν̂ð Þ2
ν̂

< χ2α
2
,ηor if R ¼

XN
k¼1

mk � ν̂ð Þ2
ν̂

> χ21�α
2
,η ð8:61Þ

Example 8.8, later on in this chapter, illustrates the application of the

Cunnane test.

8.4.3 Distribution of the Magnitudes of Mutually
Independent Exceedances

Let {X1, X2, . . .} be a sequence of IID variables, with a common distribution FX(x).
One is most interested in comprehending the probabilistic behavior of the values of

X(i), from the occurrences X(1),X(2), . . .,X(i) that have exceeded the threshold u, as
referred to in Fig. 8.17. Such a probabilistic behavior can be described by the

following conditional distribution:

P X > uþ w
X > u

� � ¼ 1� FX uþ wð Þ
1� FX uð Þ ð8:62Þ

where w denotes the magnitudes of the exceedances of X over u. Application of the
asymptotic extreme-value theory to the distribution FX(x) states that, for large
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values of N (see Sect. 5.7.2), the distribution of the maximum Y¼max{X1, X2, . . .}
tends to one of the three limiting forms, which can be condensed into the general

equation

limN!1FX
N yð Þ ¼ exp � 1� κ

y� β

α

� �� 	1=κ( )
ð8:63Þ

The resulting limit of Eq. (8.63) is the expression of the CDF of the GEV

distribution with parameters α, β, and κ, of location, scale, and shape, respectively.

Taking the natural logarithms of both sides of Eq. (8.63) leads to

N ln FX yð Þ½ � ¼ � 1� κ
y� β

α

� �� 	1=κ
ð8:64Þ

Following Coles (2001), for large values of y, the expansion of ln [FX(y)] into a

Taylor series results in the following approximate relation:

ln FX yð Þ½ � � � 1� FX yð Þ½ � ð8:65Þ

Replacing the above approximate relation into Eq. (8.64) it follows that, for

positive large values of y¼ uþw,

1� FX uþ wð Þ½ � � 1

N
1� κ

uþ w� β

α

� �� 	1=κ
ð8:66Þ

At the point y¼ u,

1� FX uð Þ½ � � 1

N
1� κ

u� β

α

� �� 	1=κ
ð8:67Þ

Replacing both Eqs. (8.66) and (8.67) into Eq. (8.62), it follows that

P X > uþ w
X > u

� � ¼ 1� FX uþ wð Þ
1� FX uð Þ ¼ 1� κ uþw�β

α

� �
1� κ u�β

α

� �
" #1=κ

ð8:68Þ

By adding and subtracting κ u� βð Þ=α to the numerator of the right-hand side of

Eq. (8.68), it can be rewritten as

8 At-Site Frequency Analysis of Hydrologic Variables 367

http://dx.doi.org/10.1007/978-3-319-43561-9_5


P X > uþ w
X > u

� � ¼ 1�κ u�β
αð Þþκ u�β

αð Þ�κ uþw�β
αð Þ

1�κ u�β
αð Þ

� 	1=κ

P X > uþ w
X > u

� � ¼ 1� κ uþw�β�uþβ
αð Þ

1�κ u�β
αð Þ

� 	1=κ
¼ 1� κw

α�κ u�βð Þ
h i1=κ ð8:69Þ

Now, if α0 ¼ α� κ u� βð Þ denotes a parameter, the result expressed by

Eq. (8.69) signifies that the exceedances, as denoted by w and conditioned

to X> u, follow a generalized Pareto (GPA) distribution, with location

parameter equal to zero, and shape and scale parameters respectively given by κ
and α0 ¼ α� κ u� βð Þ (see solutions to Examples 5.11, 5.5, and 8.8). Designating

the conditional CDF of w by HW(w| X> u), it follows that

HW w
X > u

� � ¼ 1� 1� κw

α0
h i1=κ

for w > 0, κ 6¼ 0 and 1� κw

α0
> 0 ð8:70Þ

When κ ! 0, the limit of HW(w|X> u) will tend to

HW w
X > u

� � ¼ 1� exp �w

α0
� �

for w > 0 ð8:71Þ

which is the CDF of an exponential variate with scale parameter α ’.
The results given by Eqs. (8.70) and (8.71), as expressed in a more formal

manner, by contextualizing the GPA as the limiting distribution of the exceedances

asu ! 1, are due to Pickands (1975). In less formal terms, these results state that if

the distribution of annual maxima is the GEV, then the exceedances over a high

threshold u are distributed as a GPA. Further, the GPA parameters can be uniquely

determined by the GEV parameters and vice-versa. In particular, the shape param-

eter κ is identical for both distributions and the GPA scale parameter α ’ depends on
the threshold value u and is related to the GEV parameters, β of location and α of

scale, through α0 ¼ α� κ u� βð Þ.
Example 8.4 [adapted from Coles (2001)]—Assume the parent distribution of the

initial variables X is the exponential with parameters of location β¼ 0 and of scale

α¼ 1, with CDFFX xð Þ ¼ 1� exp �xð Þ, for x> 0. If w¼ x-u denote the exceedances
of X over a high threshold u, determine the conditional probability

P X > uþ w
X > u

� �
.

Solution From Eq. (8.62), P X > uþ w
X > u

� � ¼ 1�FX uþwð Þ
1�FX uð Þ ¼ exp � uþwð Þ½ �

exp �uð Þ ¼
exp �wð Þ, for w> 0. From the asymptotic extreme-value theory, it is known that

the maxima of IID exponential variables X are distributed according to a Gumbel

distribution, which is one of the three limiting forms. According to Eq. (8.71), the

distribution of the exceedances is the particular form of the GPA given by

HW w
X > u

� � ¼ 1� exp �wð Þ for w > 0, with scale parameter

α0 ¼ α� κ u� βð Þ ¼ 1� 0� u� 0ð Þ ¼ 1, which coincides with the complement,

with respect to 1, of the conditional probability P X > uþ w
X > u

� �
.
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Example 8.5 [adapted from Coles (2001)]—Solve Example 8.4 for the case where

X follows a Fréchet distribution with parameters κ¼�1, of shape, α¼ 1, of scale,

and β¼ 1, of location, such that FX xð Þ ¼ exp �1=xð Þ.
Solution Equation (8.62) givesP X > uþ w

X > u
� � ¼ 1�FX uþwð Þ

1�FX uð Þ ¼ 1�exp � 1=uþwð Þ½ �
1�exp �1=uð Þ

� 1þ w
u

� �
, for w> 0. From the asymptotic extreme-value theory, it is known that

the maxima of IID Fréchet variables X are distributed according to a Fréchet, which

is one of the three limiting forms (GEV with κ< 0). According to Eq. (8.70), the

distribution of the exceedances is given by the GPA

HW w
X > u

� � ¼ 1� 1� κw
α0

� �1=κ ¼ 1� 1þ w
u

� �-1
for w> 0, with scale parameter

α0 ¼ α� κ u� βð Þ ¼ 1þ 1� u� 1ð Þ ¼ u, which coincides with the complement,

with respect to 1, of the conditional probability P X > uþ w
X > u

� �
.

Example 8.6 [adapted from Coles (2001)]—Solve Example 8.4 for the case where

X follows a Uniform distribution, for 0 � X � 1, with parameters α¼ 1, of scale,

and β¼ 0, of location, such that FX xð Þ ¼ x.

Solution Equation (8.62) gives P X > uþ w
X > u

� � ¼ 1�FX uþwð Þ
1�FX uð Þ ¼ 1� uþwð Þ

1�u ¼
1� w

1�u, for w> 0 and w � 1� u. From the asymptotic extreme-value theory, it is

known that the maxima of IID variables X with an upper bound are distributed

according to a Weibull, which is one of the three limiting forms (GEV with κ> 0).

According to Eq. (8.70), the distribution of the exceedances is given by the GPA

HW w
X > u

� � ¼ 1� 1� κw
α0

� �1=κ ¼ 1� 1� w
1�u

� �
for w> 0, with scale parameter

α0 ¼ α� κ u� βð Þ ¼ 1� 1� u� 0ð Þ ¼ 1� u, which coincides with the comple-

ment, with respect to 1, of the conditional probability P X > uþ w
X > u

� �
.

8.4.4 Selecting the Threshold u Within the Framework
of GPA-Distributed Exceedances

Coles (2001), based on the results of Eqs. (8.70) and (8.71), suggests the following

logical framework for modeling the exceedances above a threshold:

• Data are realizations of the sequence of IID variables X1, X2, . . ., with common

parent CDF FX(x), which pertains to a domain of attraction for maxima or, in

other words, the limit of [FX(x)]
N converges to one of the three asymptotic forms

of extreme values, as N ! 1;

• The extreme events are identified by defining a sufficiently high threshold u and
are grouped into the sequence X(1),X(2), . . .,X(k) of independent peak values of

X that have exceeded u;
• The exceedances X( j) over u are designated asWj ¼ X jð Þ � u for j ¼ 1, 2, . . . , k;
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• From Eqs. (8.70) and (8.71), the exceedances Wj are viewed as independent

realizations of the random variable W, whose probability distribution is the

generalized Pareto (GPA); and

• When enough data on Wj exist, the inference consists of fitting the GPA to the

sample, followed by the conventional steps of goodness-of-fit checking and

model extrapolation.

Coles (2001) points out that modeling the exceedancesWj differs from modeling

annual maxima as the former requires the specification of an appropriate threshold

u that should guide the characterization of which data are extreme, in addition to

fulfill the requirements for applying Eqs. (8.70) and (8.71). However, at this point,

the usual difficulty of making inferences from short samples emerges, which

requires the trade-off between biasing estimates and inflating their respective

variances. In fact, if a too low threshold is chosen, there will be a large number

of exceedances Wj available for inference, but they would likely violate the

asymptotic underlying assumptions on which Eqs. (8.70) and (8.71) are based.

On the other hand, if a too high threshold is prescribed, there will be too few

exceedances Wj available for inference, which will certainly increase the variance

of estimates. The usual solution is to choose the smallest threshold such that the

GPA is a plausible approximation of the empirical distribution of exceedances.

One of such methods to implement the adequate choice of the threshold is of an

exploratory nature and makes use of the property α0 ¼ α� κ u� βð Þ, of linearity
between the GPA scale parameter and the threshold u. In fact, the expected value of
the exceedances, conditioned on a threshold u0 and distributed as a GPA with

parameters κ and αu0 , provided that κ>�1, is given by

E X � u0
X > u0

� � ¼ αu0
1þ κ

ð8:72Þ

In fact, when κ��1, the expected value of the exceedances either will tend to

infinity or will result in a negative value, making Eq. (8.72) useless. On the other

hand, for κ>�1, assume now the threshold is raised from u0 to u> u0. If Eq. (8.72)
holds for u0, it should also hold for u> u0, provided the scale parameter is adjusted

by using the relation αu ¼ αu0 � κu, with β¼ 0. In such a case, Eq. (8.72) becomes

E X � u
X > u

� � ¼ αu0 � κu

1þ κ
ð8:73Þ

Therefore, assuming the exceedances follow a GPA for u> u0, the expected

value E X � u
X > u

� �
must be a linear function of u, with slope coefficient

�κ= 1þ κð Þ. When κ¼ 0, the mean exceedances are constant for increasing values

of u. When κ> 0, the mean exceedances decrease with increasing u, with negative

slope coefficient equal to �κ= 1þ κð Þ. Finally, when �1< κ< 0, the mean

exceedances increase with increasing u, with a positive slope coefficient equal to

�κ= 1þ κð Þ. Such a property of the expected value of exceedances can be employed

to build an exploratory method to investigate (1) the correct choice of the threshold
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u above which the GPA distributional hypothesis holds; and (2) the nullity or the

sign of the shape parameter κ and, thus, the weight and shape of the upper tail of

FX(x), among the exponential, polynomial or upper-bounded types.

The described exploratory method is referred to as the mean residual life plot
and consists of graphing on abscissae the varying values of the threshold u and on

ordinates the respective mean exceedances. Figure 8.18 depicts a hypothetical

example of the mean residual life plot, where the first point to note is the location

of u*, the apparently correct choice for the threshold above which the exceedances

seem to have an approximately stable linear tendency. After choosing the threshold,

one should note the slope of the linear tendency: if a relatively constant mean

exceedance evolves over the varying values of u, then κ¼ 0; if the slope is negative,

then κ> 0, and the angular coefficient is �κ= 1þ κð Þ; and if otherwise, then κ< 0,

and the slope coefficient is �κ= 1þ κð Þ.
In practical situations, however, the use and interpretation of mean residual life

plots are not that simple. Coles (2001), Silva et al. (2014), and Bernardara et al.

(2014) show examples of how difficult interpreting the information contained in

mean residual life plots is. The main issue is related to the few data points that are

made available for inference as the threshold is raised to a level where a stable

tendency can be discernible. There are cases where inference is very unreliable or

meaningless. The practical solution is to gradually lower the threshold to a level

such that the mean residual life plot can be employed for inference, with some

degree of confidence (Coles 2001, Ghosh and Resnick 2010). In this context, by

assuming the mean exceedances estimators as normally distributed, their

corresponding (100�α) % confidence intervals can be approximated as ½wu � z1�α=2

Fig. 8.18 Hypothetical examples of mean residual life plots
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swu
=

ffiffiffiffiffi
nu

p
;wu þ z1�α=2swu

=
ffiffiffiffiffi
nu

p
], where wu and swu

respectively denote the mean and

standard deviation of the nu exceedances over u. Example 8.7, adapted from a case

study reported in Silva et al. (2012), illustrates an application of the mean residual

life plot for choosing the threshold level u to be employed in the modeling of a

partial duration series of the extreme daily rainfall depths recorded at the gauging

station of Carvalho, located in the Douro River catchment, in Portugal.

Example 8.7 The rainfall gauging station of Carvalho is located at the town of

Celorico de Basto, in the district of Braga, in northern Portugal, and has records of

daily rainfall depths for 27 water years (Oct 1st–Sep 30th), from 1960/1961 to

1986/87, available from http://snirh.apambiente.pt. Silva et al. (2012) employed the

referred data to perform a frequency analysis of the related partial duration series.

Initially, they identified all non-zero daily rainfall depths whose successive

occurrences were separated by at least 1 day of no rainfall. Following that, the

estimates of wu, swu
, nu and respective 95% confidence intervals were calculated

for threshold values u varying from 0 to 94. The mean residual life plot alongside

the 95% confidence bands are shown in Fig. 8.19a, whereas Fig. 8.19b depicts

the number of exceedances as the threshold increases. Note in Fig. 8.19b that the

number of exceedances drops to less than 5 points as u rises above 50 mm.

The mean residual life plot of Fig. 8.19a shows that the mean exceedances develop

as a concave downward curve up to the threshold u¼ 25mm, and from that point on up

to u¼ 75 mm, it shows an approximately linear and constant development. For larger

values of u, the mean exceedances seem erratic, as resulting from the small number of

occurrences. For such example, it seem reasonable to admit a constant linear devel-

opment from the threshold u¼ 25 mm on, which leads to the conclusion of an

exponential upper tail (κ¼ 0), with CDF given by Eq. (8.71). The second requirement

for threshold selection, that is the Poisson-distributed annual number of exceedances

Fig. 8.19 Mean residual life plot and number of daily rainfall exceedances at the gauging station

of Carvalho, in Portugal
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(see Sect. 8.4.2), led to u¼ 47mm, with 123 exceedances above that threshold, so that

ν̂ ¼ 123=27 ¼ 4:56. The mean magnitude of the exceedances over 47 mm is esti-

mated as 23.394 mm, which yields α̂ 0 ¼ 23:394. With these estimates in Eq. (8.59),

the exponential distribution of exceedances is given by

HW w
X > u

� � ¼ 1� exp � x� 47ð Þ=23:394½ �, which leads to a Gumbel model for

the annual maximum daily rainfall depths with CDF expressed as

Fa xð Þ ¼ exp �ν 1� HW wð Þ½ �f g ¼ exp �4:56exp � x� 47ð Þ=23:394½ �f g.

8.4.5 The Poisson–Pareto Model

The Poisson–Pareto model combines two distributional assumptions: the annual

number of exceedances is a discrete variable that follows a Poisson distribution,

whereas the magnitude of exceedances follows a generalized Pareto. The derivation

of the Poisson–Pareto models starts from Eq. (8.59) by replacing Hu(x) by the CDF
of the GPA, which, in its general form, is given by

Hu xð Þ ¼ 1� exp �yð Þ
where

y ¼ �1

κ
ln 1� κ x� ξð Þ

α

� 	
for κ 6¼ 0

y ¼ x� ξ

α
for κ ¼ 0

ð8:74Þ

and ξ, α, and κ are parameters of location, scale, and shape, respectively. The

domains of X are ξ � x � ξþ α
κ, for κ > 0, and ξ � x < 1, for κ � 0. For

simplicity, the notations Fa(x) and Hu(x) are hereafter replaced by F(x) and H(x),
respectively, and Eq. (8.59) is rewritten as

F xð Þ ¼ exp �ν 1� H xð Þ½ �f g ð8:75Þ

Taking the logarithms of both sides of Eq. (8.75), one can write

ln F xð Þð Þ ¼ �ν 1� H x
�� �� � ð8:76Þ

Then,

H xð Þ ¼ 1þ 1

ν
ln F xð Þð Þ ð8:77Þ

By equating the expressions of H(x), as in Eqs. (8.74) and (8.77), one obtains
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y ¼ �ln �ln F xð Þ½ �1=ν
n o

ð8:78Þ

For κ ¼ 0, the GPA standard variate is y ¼ x� ξð Þ=α, which in Eq. (8.78) yields

x ¼ ξ� αln �ln F xð Þ½ �1=ν
n o

ð8:79Þ

Equation (8.79) is the general quantile function of the Poisson–Pareto model in

terms of F(x), for κ ¼ 0. In terms of the return period T in years, it is expressed as

x ¼ ξ� α ln
1

ν

� �
þ ln �ln 1� 1

T

� 	� 
� 

ð8:80Þ

For κ 6¼ 0, the GPA standard variate is y ¼ �ln 1� κ x� ξð Þ=α½ �=κ, which in

Eq. (8.78), after algebraic manipulation, yields

x ¼ ξþ α

κ
1� �1

ν
ln F xð Þ½ �

� 	κ� 

¼ ξþ α

κ
1� �1

ν
ln 1� 1

T

� 	� 	κ� 

ð8:81Þ

Equation (8.81) is the general quantile function of the Poisson–Pareto model, for

κ 6¼ 0. Example 8.8 illustrates a simple application of the Poisson–Pareto model.

Example 8.8 Fit the Poisson–Pareto model to the partial duration series of rainfall

depths of 2-h duration, recorded at the gauging station of Entre Rios de Minas (code

02044007), located in the state of Minas Gerais, in southeastern Brazil, as listed in

Table 8.15. The period of available records spans for 13 water years, from 1973/74

to 1985/86. The 26 rainfall depths listed in Table 8.15 are those which have

exceeded the threshold of 39 mm over the 13 years of records.

Table 8.15 Partial duration series of 2-h duration rainfall depths (mm) over 39 mm reduced from

the records at the gauging station of Entre Rios de Minas, in Brazil

Water

year

Yi¼ rainfall

(mm)

Water

year

Yi¼ rainfall

(mm)

Water

year

Yi¼ rainfall

(mm)

1973/74 51.1 1978/79 40.2 1981/82 48.3

1974/75 39.6 1978/79 41.0 1981/82 57.2

1974/75 40.0 1978/79 61.1 1982/83 43.3

1974/75 40.5 1979/80 39.2 1982/83 53.1

1975/76 47.4 1979/80 48.4 1984/85 48.6

1976/77 39.4 1980/81 40.8 1984/85 63.1

1976/77 44.5 1980/81 43.6 1984/85 73.4

1977/78 55.6 1980/81 44.3 1985/86 41.2

1977/78 80.0 1980/81 64.1 – –
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Solution For the threshold u¼ 39 mm, 26 data points were selected from the

13 years of records, which gives the estimate ν̂ ¼ 2 for the annual mean number

of exceedances. In order to test the null hypothesis that the annual number of

exceedances follows a Poisson distribution, the Cunnane test should be used. The

elements for calculating the test statistic R, as in Eq. (8.60), are given in Table 8.16.

As a two-sided test, the calculated test statistic R should be compared to χ2α=2;η and

χ21�α=2,η with 12 degrees of freedom (η ¼ N � 1 ¼ 12), at the significance level

100α¼ 5%. Readings from the table of Appendix 3 yield χ20:025,12 ¼ 4:404 and

χ20:975,12 ¼ 23:337. As the calculated statistic R¼ 7 is comprised between the

critical values of the test statistic, the null hypothesis that the annual number of

exceedances follows a Poisson distribution should not be rejected.

In order to estimate the parameters of the generalized Pareto distribution,

recall from the solution to Example 5.11, that the equations for MOM estimates

are α̂ ¼ X=2 X
2
=S2X þ 1

� �
and κ̂ ¼ 1=2 X

2
=s2X � 1

� �
, withXi ¼ Yi � ξ denoting the

exceedances of the 2-h rainfall depths (Yi) over ξ ¼ 39 mm. With X ¼ 10:577 and

SX ¼ 11:063, the parameter estimates are α̂ ¼ 10:122 and κ̂ ¼ �0:04299. Equation
(8.81), with parameters estimated by the MOMmethods, should be used to estimate

the quantiles as x Fð Þ ¼ 39� 10:122=0:04299 1� �ln F xð Þ½ �=2½ ��0:04299
n o

. The

annual maximum 2-h duration rainfall depths for different return periods, as

estimated with the Poisson–Pareto model, are given in Table 8.17.

8.5 Derived Flood Frequency Analysis
and the GRADEX Method

The perception that rainfall excess is in most cases the dominating process at the

origin of large floods and that rainfall data are usually more abundant and more

readily regionalized than streamflow data, has long motivated the development of

methods to derive flood probability distributions from rainfall distributions or, at

Table 8.16 Elements for calculating the test statistic of the Cunnane test for the partial duration

series of 2-h duration rainfall depths at the station of Entre Rios de Minas

Water

year /74 /75 /76 /77 /78 /79 /80 /81 /82 /83 /84 /85 /86 Total

mk 1 3 1 2 2 3 2 4 2 2 0 3 1 26

R 0.5 0.5 0.5 0 0 0.5 0 2 0 0 2 0.5 0.5 7

Table 8.17 Annual maximum 2-h duration rainfall depths (Poisson–Pareto model)

T (years) 2 5 10 20 30 50 75 100

Quantile estimates (mm) 50.0 62.3 70.8 79.2 84.1 90.4 95.5 99.2
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least, to incorporate the hydrometeorological information into flood frequency

analyses. Eagleson (1972) pioneered the so-called derived distribution approach,

by deducing the theoretical peak discharge probability distribution from a given

rainfall distribution, through a kinematic wave model. This general approach has

been followed by many researchers (e.g., Musik 1993, Raines and Valdes 1993,

Iacobellis and Fiorentino 2000, De Michele and Salvadori 2002, among others). In

this context, Gaume (2006) presents some theoretical results concerning the asymp-

totic properties of flood peak distributions and provides a general framework for the

analysis of the different procedures based on the derived distribution approach.

According to Gaume (2006), despite the numerous developments since Eagleson’s
original work, the procedures based on the derived distribution approach are still

not frequently used in an operational context. Gaume (2006) explains that such a

fact may be due either to the more complex mathematics many of these procedures

require or by their oversimplified conceptualization of the rainfall-runoff

transformation.

Probably with the same motivations that inspired the derived distribution

approach and with the empirical support given by the results from the station-

year sampling experiment performed by Hershfield and Kohler (1960), Guillot and

Duband (1967) introduced the so-called GRADEX (GRADient of EXtreme values)
method for flood frequency analysis, which has since been widely used in France

and other countries, as the reference procedure to construct design floods for dam

spillways and other engineering works. The GRADEX method requires simple

assumptions on the relationship between rainfall and flood volumes under extreme

conditions, as well as on the probability distribution of rainfall volumes, which

should exhibit, at least asymptotically, an exponential-like upper tail. Further

developments brought forth similar methods, such as those described by Cayla

(1993), Margoum et al. (1994), and Naghettini et al. (1996). These are termed

GRADEX-type methods since they all share the same basic assumptions introduced

by Guillot and Duband (1967). The principles of the GRADEX method are

presented next.

The GRADEX method was developed by engineers of the French power com-

pany EDF (Electricité de France) and was first described by Guillot and Duband

(1967). The method’s main goal is to provide estimates of low frequency flood

volumes, as derived from the upper tail of the probability distribution of rainfall

volumes, estimated from local and/or regional rainfall data. In order to accomplish

it, the GRADEX method makes use of two fundamental assumptions. The first

refers to the relationship between rainfall and flood volumes, of a given duration, as

rainfall equals or exceeds the prevailing catchment capacity of storing surface and

subsurface water. Under these conditions, it is assumed that any rainfall volume

increment tends to yield equal increment in flood volume. The second assumption

concerns the upper tail of the probability distribution of the random variable P (the

rainfall volume over a given duration), which is supposed to be an exponentially

decreasing function of the form
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1� F pð Þ ¼ exp � p� K

a

� �
ð8:82Þ

where p represents a large quantile, and the positive constants K and a denote the

location and scale parameters, respectively. As shown later in this section, the

combination of these assumptions leads to the conclusion that the upper tail of the

probability distribution of flood volumes, for the same duration as that specified for

rainfall volumes, is also of the exponential-type with the same scale parameter a,
the GRADEX parameter, previously fitted to rainfall data. The next paragraphs

contain a review of the GRADEX method and the mathematical proofs for its main

assertions.

Denote by pi the average rainfall volume, of duration d, over a given catchment,

associated to the ith hypothetical event abstracted from the sample of rainfall data.

Duration d is specified as an integer number of days (or hours) large enough to

characterize the rising and recession limbs of the catchment flood hydrograph, and

may be fixed, for instance, as the average time base (or in some cases as the average

time of concentration), estimated from flow data. Suppose xi represents the flood

volume accumulated over the same duration d, associated with the pi event.

Suppose further that the generic pairs pi, xi;8ið Þ are expressed in the same measur-

ing units, for instance, mm or (m3/s).day. Under these conditions, the variable R, the
i-th occurrence of it being calculated as ri¼ ( pi�xi), represents the remaining

volume to attain the catchment total saturation or the catchment water retention

volume. Figure 8.20 depicts a schematic diagram of hypothetical realizations of

variables X and P: the pairs ( pi,xi) should all lie below the bisecting line x¼ p, with
the exception of some occasional events, which have been supposedly affected by

snowmelt or by relatively high baseflow volumes.

The variable R depends upon many related factors, such as the antecedent soil

moisture conditions, the subsurface water storage, and the rainfall distribution over

time and space. From the GRADEX method standpoint, R is considered a random

variable with cumulative probability distribution function, conditioned on P,
denoted by HR/P(r/p). Figure 8.20 illustrates the curves that describe the relation-

ship between X and P as corresponding to some hypothetical R quantiles. The first

assumption of the GRADEX method states that all curves relating X and P tend to

be asymptotically parallel to the bisecting line x¼ p, as the rainfall volume, over the

duration d, approaches a value p0, large enough to exceed the current maximum

capacities of absorbing and storing water, in the catchment. The quantity p0 will
depend mainly on the catchment’s soil and relief characteristics.

According to Guillot and Duband (1967), the typical p0 values are associated

with return periods of the order of 10 to 25 years, in relatively impermeable and

steep catchments, or to return periods of 50 years, in more permeable catchments

with moderate reliefs. The relative position of each asymptote depends on the initial

conditions prevailing in the catchment. Accordingly, depending on the value taken

by the variable R, the curves will be parallel to x¼ pmore rapidly in wet soil than in

dry soil. Likewise, the probability distribution function of R, conditioned on P, will
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tend to have a stable shape, constant variance, and a decreasing dependence on

rainfall volumes, as P approaches the high threshold value p0.
In Fig. 8.20, the plane PX may be divided into two domains:

• D1, containing the points p< p0 and x� p, in which the probability distribution

of R is conditioned on P; and
• D2, containing the points p� p0 and x� p, where the curves relating X to P are

parallel to the bisecting line x¼ p.

Assume that fP( p), gX(x) and hR(r) denote the marginal probability density

functions of variables P, X, and R, respectively, whereas hR= XþRð Þ r= xþ rð Þ½ �
represents the density of R, conditioned on P, as expressed as P¼XþR. From
the definition of conditional density function, the joint density of (XþR) and Rmay

be written in the form f XþR xþ rð ÞhR= XþRð Þ r= xþ rð Þ½ �, the integration of which, over
the domain of R, results in the marginal density of X. Formally,

gX xð Þ ¼
ð1
0

f XþR xþ rð ÞhR= XþRð Þ r= xþ rð Þ½ �dr ð8:83Þ

In the domain D2, or for xþ r> p0, once admitted as true the hypothesis that R no

longer depends on P, the conditional density hR/XþR[r/(xþ r)] becomes the mar-

ginal hR(r) and Eq. (8.83) may be rewritten as

Fig. 8.20 Schematic chart of the relationship between hypothetical rainfall volumes ( pi) and
flood volumes (xi), under the assumptions of the GRADEX method
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gX xð Þ ¼
ð1
0

f XþR xþ rð Þ hR rð Þdr ð8:84Þ

The second assumption of the GRADEX method refers to the upper tail of the

cumulative distribution function FP( p), or FXþR(xþ r), which is assumed to tend

asymptotically to an exponential tail. Formally,

1� FXþR xþ rð Þ �� ����!
xþr!1 exp � xþ r � K

a

� �
with a > 0 and xþ r > K

ð8:85Þ

where the location parameter K is positive and the scale parameter a is referred to as
the GRADEX rainfall parameter. In these terms, the density fP( p) becomes

f XþR xþ rð Þ ¼ 1

a
exp � xþ r � K

a

� �
¼ f P xð Þexp �r

a

� �
ð8:86Þ

In order to be true, Eq. (8.86) requires the additional condition that x>K, which, in
practical terms, is easily fulfilled in domain D2. Replacing Eqs. (8.84) into (8.86), it

follows that, in domain D2 (xþ r> p0) and for x>K,

gX xð Þ ¼ f P xð Þ
ð1
0

exp �r

a

� �
hR rð Þ dr ð8:87Þ

In Eq. (8.87), because r and a are both positive, the definite integral is also a

positive constant less than 1. Assuming, for mathematical simplicity, this constant

as equal to exp(�r0/a), it follows that, for a sufficiently large value x*, is valid to

write

gX x*
� � ¼ f P x* þ r0

� � ð8:88Þ

Therefore, in domain D2, the density gX(x*) can be deduced from fP( p*) by a simple

translation of the quantity r0, along the variate axis, which is also valid for the

cumulative distributions GX(x*) and FP( p*). In other terms, it is valid to state that

for both x* and p*¼ x*þ r0, the same exceedance probability (or the same return

period) can be assigned. Still in this context, it is worth noting that the definite

integral, as in Eq. (8.87), represents the expected value of exp(�r/a), or E[exp
(�r/a)]. As a result, the translation distance r0 may be formally written as
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r0 ¼ �a ln E exp �r

a

� �h in o
ð8:89Þ

which, to be evaluated, one would need to fully specify hR/P(r) and hR(r) distribu-
tions (see Naghettini et al. 2012).

In practical applications of the GRADEX method for flood frequency analysis,

Guillot and Duband (1967) recommend using the empirical distribution of flood

volumes up to a return period within the interval 10–25 years, for relatively

impermeable watersheds, and up to 50 years for those with higher infiltration

capacity. From that point on, the cumulative distributions of rainfall and flood

volumes will be separated by a constant distance r0, along the variate axis. Equiv-

alently, in domain D2, the two distributions will plot as straight lines on Gumbel or

exponential probability papers, both with slope equal to a (the rainfall GRADEX

parameter) and separated by the translation distance r0, for a given return period.

Example 8.9 shows an application of the GRADEX method.

Example 8.9 Table 8.18 displays the annual maximum 5-day total rainfall depths

(mm) and annual maximum 5-day mean discharges (m3/s), observed in a catchment

of drainage area 950 km2, with moderate relief and soils of low permeability.

The 5-day duration corresponds to the average time base of observed flood

Table 8.18 Annual maximum 5-day total rainfall depths (mm), denoted as P5,i, and 5-day mean

flood flows (m3/s), denoted as X5,i, for Example 8.9

Year P5,i X5,i Year P5,i X5,i Year P5,i X5,i Year P5,i X5,i

1939 188 1959 167 1979 136 1999 205 257

1940 96.2 1960 114 1980 213 2000 125 152

1941 147 1961 101 1981 112 120 2001 203 257

1942 83.4 1962 136 1982 98.8 103 2002 141 171

1943 189 1963 146 1983 138 166 2003 183 226

1944 127 1964 198 1984 168 204 2004 93.1 109

1945 142 1965 153 1985 176 215 2005 116 123

1946 238 1966 294 1986 157 187 2006 102 105

1947 164 1967 182 1987 114 122 2007 137 165

1948 179 1968 179 1988 114 122 2008 127 153

1949 110 1969 120 1989 163 196 2009 96.4 104

1950 172 1970 133 1990 265 391 2010 142 171

1951 178 1971 135 1991 150 181 2011 155 187

1952 159 1972 158 1992 148 180 2012 101 103

1953 148 1973 133 1993 244 351 2013 150 179

1954 161 1974 132 1994 149 182 2014 127 152

1955 149 1975 226 1995 216 271 2015 105 108

1956 180 1976 159 1996 118 140 – – –

1957 143 1977 146 1997 228 307 – – –

1958 96.0 1978 131 1998 192 240 – – –
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hydrographs in the catchment. The 5-day total rainfall depths are average quantities

over the catchment area. Employ the GRADEX method to estimate the frequency

curve of annual maximum 5-day mean discharges up to the 200-year return period.

Plot on the same chart the frequency curves of annual maximum 5-day total rainfall

depths (mm) and annual maximum 5-day mean discharges (m3/s).

Solution The sizes of the samples of rainfall and flow data are 77 and 35 respec-

tively. In order to apply the GRADEX method, the upper-tail of the maximum

rainfall distribution must be of the exponential type. Examples of distributions that

exhibit such a type of upper tail are exponential, Gamma, normal, and the

Gumbelmax. Figure 8.21 depicts the empirical distribution of the annual maximum

5-day total rainfall depths (mm) and the Gumbelmax distribution with parameters

estimated by the maximum-likelihood method, on exponential probability paper,

and plotting positions calculated with the Gringorten plotting positions. The param-

eters estimates are α̂ ¼ 33:39 and β̂ ¼ 134:00 and it is clear from Fig. 8.21 that the

Gumbelmax fits the sample of rainfall data well, showing plausible exponential

upper-tail behavior. The rainfall GRADEX parameter is thus a ¼ α̂ ¼ 33:39 mm.

The 5-day mean flood flows (m3/s) have been transformed into 5-day flood vol-

umes, expressed in mm, and are also plotted on the chart of Fig. 8.21. The

transformation factor is given by F ¼ 5 days� 86, 400 s� X5, ið Þ= DA� 103
� �

where X5,i denotes the 5-day mean flood flows, in m3/s, and DA¼ 950, the drainage

area in km2.

Fig. 8.21 Frequency distributions of 5-day rainfall and flood volumes, in mm, for the data given

in Table 8.18
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On the chart of Fig. 8.21, the GEV distribution, with L-MOM parameter

estimates α̂ ¼ 22:39, β̂ ¼ 67:11, and κ̂ ¼ �0:115, is plotted up to the 50-year

return period, showing a good fit to the sample of 5-day flood volumes. It is worth

noting that any good-fitting distribution could be employed for this purpose, since

the GRADEX goal is to extrapolate the 5-day flood volumes frequency curve,

guided by the exponential upper tail of 5-day rainfall depths as fitted to the larger

sample of rainfall data.

In order to perform such an extrapolation, one needs to know where it should

start. According to the recommendations for applying the GRADEX method, for

relatively impermeable catchments, the extrapolation should start at a point x0 with
a return period between 10 and 25 years. Let the return period associated with x0 be
T¼ 25 years such that G x0ð Þ ¼ 0:96. In order for the upper tail of 5-day flood

volumes to have the same shape of its 5-day rainfall homologous, from the x0 point
on, the location parameter K, in Eq. (8.82), must be known. This can be established

by working on Eq. (8.82), where the location parameter K can be written in explicit

form as K ¼ x0 þ aln 1� G x0ð Þ½ �, where a is the GRADEX parameter (a ¼ 33:39
mm), and x0 is the 5-day flood volume quantile of return period T¼ 25 years [or

G x0ð Þ ¼ 0:96)], which, according to the fitted GEV, is x0 ¼ 153:8 mm. As such, the

location parameter is K¼ 46.32. Then, from the point x0 ¼ 153:8 mm on, the

x quantiles are calculated with xT ¼ K � aln Tð Þ ¼ 46:32� 33:39ln Tð Þ and are

given in Table 8.19. Figure 8.22 shows the frequency distribution of 5-day flood

volumes extrapolated with the GRADEX method, together with the distribution of

the 5-day rainfall depths.

Exercises

1. Construct a Fréchet (Log-Gumbel) probability paper and plot the empirical

distribution of the annual flood peaks of the Lehigh River at Stoddartsville

given in Table 7.1 and the theoretical distribution found in the solution to

Example 8.3.

2. Download the annual total rainfall depths observed at the Radcliffe

Meteorological Station, from http://www.geog.ox.ac.uk/research/climate/rms/,

and plot the corresponding empirical distribution on lognormal probability

paper. Compare the plot with the chart of Fig. 8.7 and decide on the distribution

that best fits the sample data.

Table 8.19 Maximum 5-day flood volumes (mm) and 5-day mean discharges (m3/s), for return

periods 25–200 years, as estimated with the GRADEX method

Return period (years) 5-day flood volume (mm) 5-day mean discharge (m3/s)

25 153.8 338.2

50 176.9 389.1

100 200.0 440.0

200 223.2 490.9
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3. Perform a complete frequency analysis of the annual maximum mean daily

discharges (m3/s) of the Shokotsu River at Utsutsu Bridge, in Hokkaido, Japan,

listed in Table 1.3. Use similar procedures as those employed in Example 8.3.

4. Perform a complete frequency analysis of the annual maximum daily rainfall

(mm) observed at the gauging station of Kochi, Shikoku, Japan, listed in

Table 7.21. Use similar procedures as those employed in Example 8.3.

5. Considering the solution to Example 8.3, what is the probability that the high

outlier discharge 903 m3/s (a) will occur at least once in the next 200 years?

(b) exactly twice in the next 200 years?

6. Table 2.7 lists the Q7 flows for the Dore River at Saint-Gervais-sous-Meymont,

in France, for the period 1920–2014. Fit a two-parameter Weibullmin distribu-

tion to these data, using the method of L-moments. Remember that if X follows

a two-parameter Weibullmin, then Y¼�ln(X) is distributed as a Gumbelmax

distribution, making the Gumbelmax estimation procedures and GoF tests also

valid for the two-parameter Weibullmin. As such, if Y¼þln(X) has L-moments

λ1,lnX and λ2,lnX, then the parameters of the corresponding two-parameter

Weibullmin distribution, parameterized as in Eq. (5.85), are α ¼ ln 2ð Þ=λ2, ln Xð Þ
andβ ¼ exp λ1, ln Xð Þ þ 0:5772=α

� �
. Perform a frequency analysis of the Q7 flows

for the Dore River at Saint-Gervais-sous-Meymont, using the two-parameter

Weibullmin, and compare the empirical and theoretical distributions on Gumbel

probability paper. Use the Gringorten plotting position formula.

Fig. 8.22 Frequency distributions of 5-day rainfall and flood volumes, with GRADEX extrapo-

lation, for the data given in Table 8.18
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7. Derive the frequency factors for the two-parameter Weibullmin distribution, as a

function of the skewness coefficient and the return period.

8. Fit the Poisson–Pareto model to the partial duration series of rainfall depths, of

3-h duration, observed at the gauging station of Pium-ı́, code 02045012, listed

in Table 8.20. This station is located in the state of Minas Gerais, in southeast-

ern Brazil. The 3-h rainfall depths listed in Table 8.20 refer to the 22 largest

values that have occurred from 1975/76 to 1985/86.

9. Table 2.6 lists the 205 independent peak discharges of the Greenbrier River

at Alderson (West Virginia, USA) that exceeded the threshold 17,000 cubic

feet per second (CFS), in 72 years of continuous flow records, from 1896 to

1967.

(a) Select the highest possible value of the annual mean number of flood peak

discharges such that they can be modeled as a Poisson variate. Check your

choices through the Cunnane test;

(b) After choosing the highest possible value of the annual mean number of

flood peak discharges, fit the GPA distribution to the exceedances over the

corresponding threshold; and

(c) Estimate the annual flood quantiles for return periods from 2 to 500 years

through the Poisson–Pareto model.

10. Tables 8.21 and 8.22 refer respectively to the maximum rainfall depths and

maximum mean discharges, both of 2-day duration, that have been abstracted

from the rainfall and flow records of a catchment of 6,520 km2 of drainage

area. This is a steep mountainous catchment with a low average infiltration

capacity and time of concentration on the order of 2 days. Employ the

GRADEX method to estimate the frequency curve of flood volumes of

2-day duration. Assume a flood wall is being designed to protect this site

against flooding and further that the design-flood should have a return period

of 500 years. Indicate how the previous results obtained with the GRADEX

method can possibly be used to size the flood wall such that to protect this site

against the 500-year flood.

Table 8.20 3-h rainfall depths larger than 44.5 mm (P) at Pium-ı́, in Brazil

Water year P(mm) Water year P(mm) Water year P(mm) Water year P(mm)

75/76 70.2 78/79 47.6 81/82 53 83/84 46.6

75/76 50 79/80 49.8 82/83 47.9 84/85 72.2

76/77 47.2 79/80 46 82/83 59.4 84/85 46.4

77/78 52 79/80 46.8 82/83 50.2 85/86 48.4

77/78 47.6 80/81 50.6 82/83 53.4

77/78 47.4 81/82 44.1 82/83 59.4
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Chapter 9

Correlation and Regression

Veber Costa

9.1 Correlation

Correlation analysis comprises statistical methods used to evaluate whether two or

more random variables are related through some functional form and the degree of

association between them. Correlation analysis is one of the most utilized tech-

niques for assessing the statistical dependence among variables or their covariation,

and can be a useful tool for indicating the kind and the strength of association

between random quantities. Qualitative indications on the association of two vari-

ables are readily visualized on a scatterplot. Multiple patterns or no pattern at all

may arise from these plots, and, in the former case, can provide evidence of the

most appropriate functional form, as given by measures of correlation. If on a given

scatterplot, a variable Y systematically increases or decreases as the second variable

X increases, the two variables are associated through a monotonic correlation.

Otherwise, the correlation is said to be non-monotonic. Figure 9.1 illustrates both

types of correlation.

The strength of the association between two variables is usually expressed by

correlation coefficients. Such coefficients, hereafter denoted generally as ρ, are
dimensionless quantities, which lie in the range �1 � ρ � 1. If the two variables

have the same trend of variation or, in other words, if one increases as the other

increases, then ρ will be positive. On the other hand, if one of the variables

decreases as the other increases then ρ will be negative. Finally, if ρ ¼ 0, then

either the two variables are independent, in a statistical sense, or the functional form
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of the association is not correctly described by the correlation coefficient in use. It is

then intuitive to conclude that the measure of the correlation must also take into

account the form of the relationship between the variables being studied.

Correlation in a data set may be either linear or nonlinear. Nonlinear associations

can be represented by exponential, piecewise linear or power functional forms

(Helsel and Hirsch 2002). As such, correlation coefficients used for expressing

these kinds of association must be able to measure these particular monotonic

relationships. Examples of such coefficients are the Kendall’s τ and the Spearman’s
ρ (see Sect. 7.4.4). These are rank-based statistics, which evaluate the presence of

discordant points, as specified by opposite tendencies of variation, in the sample.

These coefficients are not discussed here, even though they may be important in

some hydrological studies (see Sect. 7.4.4). The interested reader should consult

Helsel and Hirsch (2002) for details on rank-based coefficients. If the association

between variables is linear, the most common correlation coefficient is the

Pearson’s r. This coefficient is presented with details in Sect. 9.1.1.

It has to be noted that highly correlated variables do not necessarily have a

cause–effect relationship. In fact, correlation only measures the joint tendency of

variation of two variables. Obviously, there will be cases in which theoretical

evidence of causal associations hold. A typical example in hydrological sciences

is the relationship between precipitation and runoff. In these cases, the correlation

coefficients may be used as indicators of such a cause–effect situation. However,

there are many cases where, even if an underlying cause is present, the description

of the phenomenon cannot be addressed as a causal process. These are evident, for

instance, for strongly correlated mean monthly discharges in nearby catchments. In

this case, a discharge change in one of the catchments is not the cause of a discharge

alteration in the other. Concurrent changes may be rather related to common

physical or climatological factors at both catchments (Naghettini and Pinto 2007).

Fig. 9.1 Monotonic and non-monotonic correlations
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9.1.1 Pearson’s r Correlation Coefficient

If two random variables,X and Y, are linearly related, the degree of linear association
may be expressed through the Pearson correlation coefficient, which is given by

ρX,Y ¼ σX,Y
σXσY

ð9:1Þ

where σX,Y denotes the covariance between X and Y, whereas σX and σY correspond
respectively to the standard deviations of X and Y. It is worth noting that ρX,Y, as any
other correlation measure, is a dimensionless quantity, which can range from �1,

when correlation is negative, to þ1, when correlation is positive. If ρX,Y ¼ �1, the

relationship between X and Y is perfectly linear. On the other hand, if ρX,Y ¼ 0, two

possibilities may arise: either (1) X and Y are statistically independent; or (2) the

functional form that expresses the dependence of these two random variables is not

linear. Figure 9.2 depicts positive and negative linear associations.

The most usual estimator for ρX,Y is the sample correlation coefficient, which is

given by

sX,Y ¼
PN
i¼1

xi � xð Þ yi � yð Þ
N � 1

ð9:2Þ

in which xi and yi denote the concurrent observations of X and Y, x and y correspond
to their sample means, and N is the sample size.

The Pearson correlation coefficient can thus be estimated as

r ¼ sX,Y
sXsY

ð9:3Þ

Fig. 9.2 Positive and negative linear correlations
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where

sX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

xi � xð Þ2

N � 1

vuuut
ð9:4Þ

and

sY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi � yð Þ2

N � 1

vuuut
ð9:5Þ

Figure 9.3 depicts some forms of association between X and Y with the respec-

tive estimates of the Pearson correlation coefficient. One may notice that even for

an evident nonlinear plot, such as in Fig. 9.3d, a relative high value of the Pearson

coefficient is obtained. This fact stresses the importance of visually examining the

association between the variables, by means of scatterplots.

It is worth stressing that one must be cautious about the occurrence of spurious

correlations. Figure 9.4 provides an interesting example of such a situation.

Fig. 9.3 Association between X and Y and the estimate of the Pearson correlation coefficient
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In effect, although a high value of r is obtained for the complete sample, one

observes that a linear relationship does not hold for the clustered pairs (X, Y )
themselves. Thus, the value of r may be attributed to the unbalanced distribution

of X along its subdomain instead of an actual linear correlation. Another situation

where a spurious correlation may occur is that when the random variables have

common denominators. In fact, even when no linear relationship appears to exist

when X and Y alone are considered, a linear plot may result if both of them are

divided by some variable Z. Finally, if one of the variables is multiplied by the

other, a linear relationship may appear despite a nonlinear association being

observed between X and Y.
As far as hypothesis testing is concerned, it is often useful to evaluate whether

the Pearson’s correlation coefficient is null. In this case, the null and alternative

hypotheses to test are H0 : ρ ¼ 0 and H1 : ρ 6¼ 0, respectively. The related test

statistic is expressed as

t0 ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ð9:6Þ

for which the null distribution is a Student’s t, with ν ¼ N � 2 degrees of freedom.

The null hypothesis is rejected if tj j > tα=2,N�2, where α corresponds to the level of

significance of the test.

Fig. 9.4 Spurious correlation due to unbalanced distribution of X along its subdomain (adapted

from Haan 2002)
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Another possible test is whether the Pearson’s correlation coefficient equals

some constant value ρ0. In this case, H0 : ρ ¼ ρ0 and H1 : ρ 6¼ ρ0. According to

Montgomery and Peck (1992), for N � 25, the statistic

Z ¼ a tanh rð Þ ¼ 1

2
ln

1þ r

1� r

� �
ð9:7Þ

follows a Normal distribution with mean given by

μZ ¼ a tanh ρð Þ ¼ 1

2
ln

1þ ρ

1� ρ

� �
ð9:8Þ

and variance expressed as

σ2Z ¼ N � 3ð Þ�1 ð9:9Þ

For testing the null hypothesis, one has to calculate the following statistic

Z0 ¼ a tanh rð Þ � a tanh ρ0ð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
ð9:10Þ

which follows a standard Normal distribution. The null hypothesis should be

rejected if Z0j j > Zα=2, where α corresponds to the level of significance of the test.

It is also possible to construct 100 1� αð Þ% confidence intervals for ρ using the

transformation given by Eq. (9.7). Such an interval is

tanh a tanh rð Þ � zα=2ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3

p
� �

� ρ � tanh a tanh rð Þ þ zα=2ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3

p
� �

ð9:11Þ

where tanh uð Þ ¼ eu�e�uð Þ
euþe�uð Þ, r is the sample Pearson correlation coefficient, zα/2

corresponds to the standard Normal variate associated with the confidence level

1� αð Þ and N is the sample size.

9.1.2 Serial Correlation

In many hydrologic applications, correlation may also exist between successive

observations of the same random variable in a time series. If inference procedures

are required when such a condition holds, the effects of the serial correlation

(or autocorrelation) must be taken into account, since a correlated series of size

N provides less information than an independent series of the same size. According

to Haan (2002), this results from the fact that part of the information contained in a

given observation is actually already known from the previous observation, through

serial correlation.

396 V. Costa



If the observations of a series are equally spaced in time and the underlying

stochastic process is stationary, an estimator of the population serial correlation

coefficient is given by

r kð Þ ¼
PN�k

i¼1

xixiþk �
PN�k

i¼1

xi
PN�k

i¼1

xiþk

N�kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN�k

i¼1

xi2 �
PN�k

i¼1

xi

� �2

N�kð Þ

vuuut
0BBB@

1CCCA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN�k

i¼1

xiþk
2 �

PN�k

i¼1

xiþk

� �2

N�kð Þ

vuuut
0BBB@

1CCCA
ð9:12Þ

where k denotes the lag or the number of time intervals that set apart successive

observations. From Eq. (9.12), it is clear that r 0ð Þ ¼ 1.

A test of significance for the serial correlation coefficient r(k), for stationary and
normally distributed time series, was proposed by Anderson (1942). If these

assumptions hold, then

r kð Þ ¼
PN�k

i¼1

xixiþk � Nx

N � 1ð Þ sX2
ð9:13Þ

is normally distributed, with mean �1
N�1ð Þ and variance

N�2ð Þ
N�1ð Þ2 if ρ kð Þ ¼ 0. Confidence

bounds at (1�α) can be estimated as

lb ¼
�1� z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

p

N � 1ð Þ ð9:14Þ

and

ub ¼
�1þ z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

p

N � 1ð Þ ð9:15Þ

where zα/2 denotes the standard Normal variate, lb and ub denote the lower and

upper bounds, respectively. If r(k) is located outside the range given by lb and ub,
then the null hypothesisH0 : ρ kð Þ ¼ 0 should be rejected, at the significance level α.

Matalas and Langbein (1962) suggest that, for inferential procedures with

autocorrelated series, a number of effective observations, lesser than the actual

sample size, must be used. Such a number is given by

Ne ¼ N
1þρ 1ð Þ
1�ρ 1ð Þ � 2ρ 1ð Þ 1�ρN 1ð Þ

n 1�ρ 1ð Þ½ �2
ð9:16Þ

in which ρ(1) denotes the autocorrelation of lag 1 and N is the sample size. If

r 1ð Þ ¼ 0, Ne ¼ N, whereas if r 1ð Þ > 0, Ne < N.
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9.2 Regression Analysis

Regression analysis refers to a collection of statistical techniques commonly used

for modeling the association between one or more independent variables, hereafter

denoted explanatory variables X, and a dependent variable, which is expressed as a

functional form of X and a set of parameters or coefficients, and is referred to as the

response variable Y. Regression analysis has become a widespread used tool for

data description, estimation and prediction in many fields of science, such as

physics, economics, engineering, and, of special interest for this book, hydrology,

due to the simplicity of its application framework and the appeal of its rigorous

theoretical foundation. The term “regression” is attributed to the English statistician

Francis Galton (1822–1911), who, in studies concerning changes in human heights

between consecutive generations, notice that such quantities were moving back or

“regressing” towards the population mean value.

Regression models are denoted simple when a single explanatory variable is

utilized for describing the behavior of the response variable. If two or more

explanatory variables take part in the analysis, a multiple regression model is

being constructed. As for the parameters, regression models may be grouped into

two categories: if the response variable is expressed as a linear combination of the

regression coefficients, the model is termed linear; otherwise, the model is

nonlinear. In some situations, the term “linear” may be applied even when the (X,
Y ) plot is not a straight line. For instance, Wadsworth (1990) notes that polynomial

regression models, although expressing a nonlinear relationship between X and Y,
may still be defined as linear, in a statistical estimation sense, as long as the

response variable remains a linear function of the regression coefficients.

Regression analysis usually comprises a two-step procedure. The first one refers

to the construction of the regression model. In short, it involves prescribing a

functional form between the response and the explanatory variables and estimating

the numerical values of the regression coefficients such that an adequate fit to the

data is obtained. Several techniques for fitting a regression model are available,

from simple (and almost always subjective) visual adjustments, to analytical pro-

cedures with formal mathematical background, such as the least squares and the

maximum likelihood estimation methods. Once the model is specified and the

parameters are estimated, an adequacy check must be performed on the regression

equation in order to ascertain the suitability of the fit. This is the basis for the second

step: in the light of the intended use of the regression model, a full evaluation must

be carried out on whether the assumptions from which the model was derived hold

after inference. In this sense, one must assess if the prescribed functional form is

appropriate for modeling the processes being studied, if the explanatory variables

are, in fact, able to explain some of the variability of the response counterpart, and

also if the regression residuals behave as assumed a priori.

In relation to the hydrological sciences, regression analysis finds interesting

applications in regionalization studies and in estimating rating curves for a given

gauging station. In the first case, the main objective is to derive relationships
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between hydrologic random variables, such as the mean annual discharges or the

mean annual total rainfalls, as observed in different catchments located in a given

geographic region, and the physical and/or climatological attributes of the catch-

ments, in order to estimate related quantiles at ungauged sites within this region.

The application of regression methods to the regional analysis of hydrologic vari-

ables is detailed in Chap. 10. As for the second case, one is asked to identify an

adequate model that expresses the relation between discharges and stages at a river

cross section. Since discharge measurements are costly and time demanding, such a

relation is sought as a means to provide flow estimates from stage measurements.

It is worth mentioning that, although intended to express the association between

explanatory and response variables, regression models do not necessarily imply a

cause–effect relation. In fact, even when a strong empirical association exists, as

evidenced, for instance, by a high value of the Pearson correlation coefficient for

linear relationships, it is incorrect to assume from such an evidence alone that a

given explanatory variable is the cause of a given observed response. Take as an

example the association of the seasonal mean temperatures in New York City and

the seasonal number of basketball points scored by the NY Knicks in home games,

over the years. These variables are expected to show a significant negative corre-

lation coefficient, but they obviously do not exhibit a cause–effect relation. In fact,

both are ruled by the seasons: the temperatures, as naturally governed by the

weather fluctuations, and the basketball season schedule, as set out by the American

National Basketball Association.

In the subsections that follow, methods for estimating parameters and evaluation

of goodness-of-fit are addressed for linear regression models, encompassing both

simple and multiple variants of analysis. In addition, a discussion on the practical

problems associated to limitations, misconceptions, and/or misuse of regression

analysis is presented.

9.2.1 Simple Linear Regression

A simple linear regression model relates the response variable Y to a given

explanatory variable X through a straight-line equation, such as

Y ¼ β0 þ β1X ð9:17Þ

where β0 is the intercept and β1 is the slope of the unknown population regression

line. It has to be noted, however, that deviations between data points and the

theoretical straight line are likely to occur. Such deviations may be the result of

the natural variability associated to the process in study, which might be interpreted

as a noise component, or may arise from measurement errors or from the require-

ment of additional explanatory variables for describing the response counterpart.

An alternative for accounting for these differences is adding an error term ε to the

model given by Eq. (9.17). The errors ε are unobserved random variables,
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independent from X, which are intended to express the inability of the regression

equation to fit the data in a perfect fashion. The simple linear regression model can,

thus, be expressed as

Y ¼ β0 þ β1X þ ε ð9:18Þ

in which the regression coefficients have the same meaning as in Eq. (9.17).

Due to the error term, the response variable Y is necessarily a random variable,

whose behavior is described by a probability distribution. This distribution is

conditioned on X, or, in other words, on each particular value of the explanatory

variable. For a fixed value of X, the possible values of Y should follow a probability

distribution. Assuming that the mean value of the error term is null and resorting to

the mathematical properties of the expected value discussed in Chap. 3, it is clear

that the mean value of the conditional distribution of Y is a linear function of X, and
lies on the regression line. In formal terms,

E YjXð Þ ¼ β0 þ β1X ð9:19Þ

Based on a similar rationale, and noting that X is a nonrandom quantity as it

is fixed at a point, the conditional variance of the response variable can be

expressed as

Var YjXð Þ ¼ Var β0 þ β1X þ εð Þ ¼ σ2 ð9:20Þ

Equation (9.20) encompasses the idea that the conditional variance of Y is not

dependent on the explanatory variable, i.e., the variance of the given response yi, as
related to the explanatory sample point xi, is the same as the variance of a response

yj, associated to xj, for every i 6¼ j. This situation is termed homoscedasticity and is

illustrated in Fig. 9.5. For this particular figure, the error model is assumed to be the

Normal distribution, with μ εð Þ ¼ 0 and Var εð Þ ¼ σε2. Such a prescription is not

required, a priori, for constructing the regression model. However, as seen through-

out this chapter, the assumption of normally distributed errors is at the foundations

of inference procedures regarding interval estimation and hypothesis tests on the

regression coefficients. Also depicted in Fig. 9.5, is the conditional mean values of

Y, as given by the regression line.

Parameters β0 and β1, however, are unknown quantities and have to be estimated

on the basis of the information gathered by the sample of concurrent pairs

{(x1, y1), . . ., (xN, yN)}. One of the most common techniques for this purpose is the

least squares method, which consists of estimating the regression line, as expressed

by its coefficients, for which the sum of squared deviations between each observa-

tion and its predicted value attains a minimum value. Such a criterion is a geometry-

based procedure, which, as opposed to maximum likelihood estimation methods,

does not involve prior assumptions on the behavior of the errors, and has become a

standard approach for fitting regression models since it is sign independent and,

according to Haan (2002), circumvents the modeling difficulties that may arise
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from applying absolute values in optimization problems. The least squares method

is frequently attributed to Legendre (1805) and Gauss (1809), although the latter

dates the first developments of the technique to as early as 1795.

To derive the least squares estimators β̂
0

and β̂
1
, let the linear model in

Eq. (9.18) express the regression line for the response variable Y with respect to

X. The target function of the least squares criterion is written as

M β0; β1ð Þ ¼
XN
i¼1

εi
2 ¼
XN
i¼1

yi � β0 � β1xið Þ
2

ð9:21Þ

In order to minimize the function above, the partial derivatives ofM(β0, β1), with
respect to the regression parameters, as estimated by the least square coefficients,

β̂
0
and β̂

1
, must be null. Thus

∂M
∂β0

���
β̂

0

, β̂
1
¼ �2

XN
i¼1

ðyi � β̂
0
�β̂

1
xiÞ ¼ 0

∂M
∂β1

���
β̂

0

, β̂
1
¼ �2

XN
i¼1

ðyi � β̂
0
� β̂

1
xiÞxi ¼ 0

ð9:22Þ

This system of equations, after algebraic manipulations, results in

Fig. 9.5 Regression line and the conditional density function fY|X(y|x)
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XN
i¼1

yi ¼ Nβ̂
0
þ β̂

1

XN
i¼1

xi

XN
i¼1

yixi ¼ β̂
0

XN
i¼1

xi þ β̂
1

XN
i¼1

xi
2

ð9:23Þ

The system of Eq. (9.23) is referred to as the least-squares normal equations.
The solutions to the system of normal equations are

β̂
0
¼ y� β̂

1
x ð9:24Þ

and

β̂
1
¼
PN
i¼1

yixi �
PN
i¼1

yi

� � PN
i¼1

xi

� �
N

PN
i¼1

xi2 �
PN
i¼1

xi

� �2

N

ð9:25Þ

where y and x denote, respectively, the sample mean of the observations of Y and the

sample mean of the explanatory variable X, and N is the sample size. Estimates of

the intercept β̂ 0 and the slope β̂ 1 may be obtained by applying Eqs. (9.24) and (9.25)

to the sample points. Thus, the fitted simple linear model can be expressed as

ŷ ¼ β̂ 0 þ β̂ 1x ð9:26Þ

where ŷ is the point estimate of the mean of Y for a particular value x of the

explanatory variable X. One can notice from Eq. (9.24) that the regression line

always contains the point x; yð Þ, which corresponds to the centroid of the data. For

each response sample point yi, the regression error or regression residual is given by

ei ¼ yi � ŷ i ð9:27Þ

The system of Eq. (9.22) warrants that the sum of the regression residuals must be

zero, and the same holds for the sum of the residuals weighted by the explanatory

variable. In practical applications, rounding errors might entail small non-null

values. Finally, it is possible to demonstrate that the sum of the observed sample

points of Y always equals the sum of the fitted ones.

The regression line obtained from the least squares method is, for practical

purposes, a mere estimate of the true population relationship between the response

and the explanatory variables. In this sense, no particular set of regression

coefficients, as estimated from finite samples, will match the population parameters

exactly, and, thus, at most only one point of the two regression lines,
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the intersection point between the sample-based line estimate and the population

true line, will be actually coincident. This situation is depicted in Fig. 9.6. As a

limiting case, the sample and population regression lines will be parallel if β̂ 1 ¼ β1
and β̂ 0 6¼ β0.

Example 9.1 Table 9.1 presents concurrent observations of annual total rainfall

(mm) and annual mean daily discharges (m3/s) in the Paraopeba River catchment,

for the water years 1941/42 to 1998/99. Assuming that a linear functional form

holds, (a) estimate the regression coefficients using the least squares method for the

annual rainfall depth as explanatory variable; and (b) compute the regression

residuals and check if their sum is null.

Solution
(a) Figure 9.7 displays the scatterplot of the two variables: the annual rainfall

depth, as the explanatory variable, and the annual mean daily flow, as the

response variable. One can notice that some linear association between these

variables may be assumed. Thus, for estimating the regression coefficients, one

must calculate the sample mean of both variables and apply Eqs. (9.24) and

(9.25). The results are summarized in Table 9.2.

The regression coefficients estimates are β̂ 1 ¼ 7251946:9�4966:4�81953=58

118823051�819532=58
¼

0:07753 and β̂0 ¼ 85:6� 0:07753� 1413 ¼ �23:917. Then, the estimated

equation for the regression line is Y ¼ 0:0775X � 23:917.

Fig. 9.6 Population and estimated regression lines

9 Correlation and Regression 403



(b) The sum of the residuals equals 1.4. This value is close to zero and the

difference may be attributed to rounding errors.

As mentioned earlier, a noteworthy aspect of the least squares method is that no

assumptions regarding the probabilistic behavior of the errors is required for

deriving the estimators of the regression coefficients. In fact, if the objective is

merely a prediction of a value of Y, it suffices that the linear form of the model

be correct (Helsel and Hirsch 2002). However, as interest lies in other inference

problems, additional assumptions become necessary. For instance, it can be

easily shown that the least squares estimators are unbiased (Montgomery and

Peck 1992). If the assumption of uncorrelated errors, with E εð Þ ¼ 0 and

Table 9.1 Annual mean flows and annual total rainfall depths (Gauging stations: 4080001 for

discharges and 01944004 for rainfall, in the Paraopeba river catchment, in Brazil)

Water

year

Annual rainfall

depth (mm)

Annual mean

daily flow (m3/s)

Water

year

Annual rainfall

depth (mm)

Annual mean

daily flow (m3/s)

1941/42 1249 91.9 1970/71 1013 34.5

1942/43 1319 145 1971/72 1531 80.0

1943/44 1191 90.6 1972/73 1487 97.3

1944/45 1440 89.9 1973/74 1395 86.8

1945/46 1251 79.0 1974/75 1090 67.6

1946/47 1507 90.0 1975/76 1311 54.6

1947/48 1363 72.6 1976/77 1291 88.1

1948/49 1814 135 1977/78 1273 73.6

1949/50 1322 82.7 1978/79 2027 134

1950/51 1338 112 1979/80 1697 104

1951/52 1327 95.3 1980/81 1341 80.7

1952/53 1301 59.5 1981/82 1764 109

1953/54 1138 53.0 1982/83 1786 148

1954/55 1121 52.6 1983/84 1728 92.9

1955/56 1454 62.3 1984/85 1880 134

1956/57 1648 85.6 1985/86 1429 88.2

1957/58 1294 67.8 1986/87 1412 79.4

1958/59 883 52.5 1987/88 1606 79.5

1959/60 1601 64.6 1988/89 1290 58.3

1960/61 1487 122 1989/90 1451 64.7

1961/62 1347 64.8 1990/91 1447 105

1962/63 1250 63.5 1991/92 1581 99.5

1963/64 1298 54.2 1992/93 1642 95.7

1964/65 1673 113 1993/94 1341 86.1

1965/66 1452 110 1994/95 1359 71.8

1966/67 1169 102 1995/96 1503 86.2

1967/68 1189 74.2 1996/97 1927 127

1968/69 1220 56.4 1997/98 1236 66.3

1969/70 1306 72.6 1998/99 1163 59.0
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constant variance Var εð Þ ¼ σε2, holds, such estimators also have the least

variance, as compared to other unbiased estimators which may be obtained

from linear combinations of yi. This result is known as the Gauss-Markov
theorem. In addition, if the residuals follow a Normal distribution, with

μ εð Þ ¼ 0 and Var εð Þ ¼ σε2, one is able to extend the statistical inference to

interval estimation and hypothesis testing through standard parametric

approaches, as well as performing a thorough checking on the adequacy of

the regression model, on the basis of the behavior of the residuals after the fit.

This assumption also enables one to derive an unbiased (yet model-dependent)

estimator for σε
2, given in Graybill (1961) as

σ̂ ε
2 ¼ se

2 ¼
PN
i¼1

yi � ŷ ið Þ2

N � 2
ð9:28Þ

The quantity se
2 in Eq. (9.28) is referred to as residual mean square, whereas its

square root is usually denoted standard error of regression or standard error of
the estimate. The latter accounts for the uncertainties associated with the

inference of the regression model from a finite sample. In addition of being

an accuracy measure, providing an estimate to σε
2, the statistic se

2 enables one

to obtain estimates of the variances of the regression coefficients, which are

required for constructing confidence intervals and testing hypotheses on these

Fig. 9.7 Scatterplot of annual mean daily flow and annual total depth
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Table 9.2 Calculations for the regression coefficients of Example 9.1

Annual rainfall

depth (X)
Annual mean

daily flow (Y ) X� Y X2
Estimated annual

mean daily flow Residuals

1249 91.9 114,783.1 1,560,001 72.9 19.0

1319 145 191,255 1,739,761 78.3 66.7

1191 90.6 107,904.6 1,418,481 68.4 22.2

1440 89.9 129,456 2,073,600 87.7 2.2

1251 79 98,829 1,565,001 73.0 6.0

1507 90 135,630 2,271,049 92.9 �2.9

1363 72.6 98,953.8 1,857,769 81.7 �9.1

1814 135 244,890 3,290,596 116.7 18.3

1322 82.7 109,329.4 1,747,684 78.5 4.2

1338 112 149,856 1,790,244 79.8 32.2

1327 95.3 126,463.1 1,760,929 78.9 16.4

1301 59.5 77,409.5 1,692,601 76.9 �17.4

1138 53 60,314 1,295,044 64.3 �11.3

1121 52.6 58,964.6 1,256,641 63.0 �10.4

1454 62.3 90,584.2 2,114,116 88.8 �26.5

1648 85.6 141,068.8 2,715,904 103.8 �18.2

1294 67.8 87,733.2 1,674,436 76.4 �8.6

883 52.5 46,357.5 779,689 44.5 8.0

1601 64.6 103,424.6 2,563,201 100.2 �35.6

1487 122 181,414 2,211,169 91.3 30.7

1347 64.8 87,285.6 1,814,409 80.5 �15.7

1250 63.5 79,375 1,562,500 73.0 �9.5

1298 54.2 70,351.6 1,684,804 76.7 �22.5

1673 113 189,049 2,798,929 105.8 7.2

1452 110 159,720 2,108,304 88.6 21.4

1169 102 119,238 1,366,561 66.7 35.3

1189 74.2 88,223.8 1,413,721 68.2 6.0

1220 56.4 68,808 1,488,400 70.6 �14.2

1306 72.6 94,815.6 1,705,636 77.3 �4.7

1013 34.5 34,948.5 1,026,169 54.6 �20.1

1531 80 122,480 2,343,961 94.8 �14.8

1487 97.3 144,685.1 2,211,169 91.3 6.0

1395 86.8 121,086 1,946,025 84.2 2.6

1090 67.6 73,684 1,188,100 60.6 7.0

1311 54.6 71,580.6 1,718,721 77.7 �23.1

1291 88.1 113,737.1 1,666,681 76.1 12.0

1273 73.6 93,692.8 1,620,529 74.8 �1.2

2027 134 271,618 4,108,729 133.2 0.8

1697 104 176,488 2,879,809 107.6 �3.6

1341 80.7 108,218.7 1,798,281 80.0 0.7

1764 109 192,276 3,111,696 112.8 �3.8

(continued)
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quantities. The estimators of the variances of the least squares coefficients are

respectively (Montgomery and Peck 1992):

dVar β0ð Þ ¼ se
2 1

N
þ x2PN

i¼1

xi � xð Þ2

0BBB@
1CCCA ð9:29Þ

and

dVar β1ð Þ ¼ se
2PN

i¼1

xi � xð Þ2
ð9:30Þ

9.2.2 Coefficient of Determination in Simple Linear
Regression

After estimating the regression coefficients, it is necessary to evaluate how well the

regression model describes the observed sample points. In other words, one has to

resort to an objective goodness-of-fit measure in order to assess the ability of the

Table 9.2 (continued)

Annual rainfall

depth (X)
Annual mean

daily flow (Y ) X� Y X2
Estimated annual

mean daily flow Residuals

1786 148 264,328 3,189,796 114.5 33.5

1728 92.9 160,531.2 2,985,984 110.0 �17.1

1880 134 251,920 3,534,400 121.8 12.2

1429 88.2 126,037.8 2,042,041 86.8 1.4

1412 79.4 112,112.8 1,993,744 85.5 �6.1

1606 79.5 127,677 2,579,236 100.6 �21.1

1290 58.3 75,207 1,664,100 76.1 �17.8

1451 64.7 93,879.7 2,105,401 88.6 �23.9

1447 105 151,935 2,093,809 88.2 16.8

1581 99.5 157,309.5 2,499,561 98.6 0.9

1642 95.7 157,139.4 2,696,164 103.4 �7.7

1341 86.1 115,460.1 1,798,281 80.0 6.1

1359 71.8 97,576.2 1,846,881 81.4 �9.6

1503 86.2 129,558.6 2,259,009 92.6 �6.4

1927 127 244,729 3,713,329 125.5 1.5

1236 66.3 81,946.8 1,527,696 71.9 �5.6

1163 59 68,617 1,352,569 66.2 �7.2

Mean

1413 85.6 85.6 0.0

Sum

81,953 4966.4 7,251,946.9 118,823,051 4965.0 1.4
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regression model in simulating the response variable. One of the most common

statistics utilized for this purpose is the coefficient of determination r2. Such a

quantity expresses the proportion of the total variance of the response variable

Y which is accounted for by the regression linear equation, without relying on any

assumption regarding the probabilistic behavior of the error term.

In general terms, the variability of the response variable may be quantified as a

sum of squares. In order to derive such a sum, one may express a given observation

yi as

yi ¼ yþ ŷ i � yþ yi � ŷ i ð9:31Þ

By rearranging the terms, one obtains

yi � ŷ ið Þ ¼ yi � yð Þ � ŷ i � yð Þ

which, after algebraic manipulation, yields

Xn
i¼1

yi � yð Þ2 ¼
Xn
i¼1

yi � ŷ ið Þ2 þ
Xn
i¼1

ŷ i � yð Þ2 ð9:32Þ

The term on the left side of Eq. (9.32) accounts for total sum of squares of the

response variable Y. The terms on the right side correspond to the sum of squares of

the residuals of regression and the sum of squares due to the regression model itself,

respectively. On the basis of the referred equation, the estimate of the coefficient of

determination, as expressed as the ratio of the sum of squares due to the regression

to the total sum of squares, is given by

r2 ¼
PN
i¼1

ŷ i � yð Þ2

PN
i¼1

yi � yð Þ2
ð9:33Þ

The coefficient of determination ranges from 0 to 1. One can notice from

Eqs. (9.32) and (9.33) that the larger the spread of the observations yi around the

regression line, the less the total variance is explained by the model and, thus, the

smaller is the coefficient of determination. In a limiting case, if the regression line

does not account for any of the variability of Y, the coefficient of determination will

be zero. On the other hand, if the regression model fits the data in a perfect fashion,

the sum of residuals squares becomes null and the coefficient of determination

equals 1. It has to be noted, however, that large values of r2 do not imply that the

linear functional form prescribed by the model is correct, since such a quantity

merely express a geometric description of the scatter of the residuals around the

regression model.
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9.2.3 Interval Estimation in Simple Linear Regression

The regression line, as estimated from a particular sample, is not necessarily

coincident with the population line and expresses one of the infinite possibilities

of regression equations that may be obtained from samples of the same size

extracted from the population. Due to this fact, it becomes important to provide a

measure of accuracy of the estimates of the regression coefficients, by constructing

confidence intervals on β0 and β1. It is also desirable to evaluate the overall

performance of the regression model, by constructing confidence intervals for the

regression line itself. These intervals are intended to describe the behavior of the

mean response E(yjx) of a given regression model, for observed and unobserved

values of the explanatory variable, along its entire domain. Finally, if interest lies in

predicting future values of Y, as related to a given value of X through the regression

model, a prediction interval must be considered. Here, the term prediction is

utilized because a future value of the response variable is itself a random variable,

associated to a probability distribution, as opposed to unknown yet fixed parameters

of the population under study, such as the mean response of Y. The differences

between these two approaches are addressed later in this subsection.

Regarding the regression parameters, it can be shown that, if the errors are

IID and follow a Normal distribution, the sampling distributions of the pivot

functions
β̂ 0�β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se2 1=Nþx2
.PN

i¼1

xi�xð Þ2
� �s and

β̂ 1�β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2

.PN
i¼1

xi�xð Þ2
r , are, both, Student’s t variates,

with ν ¼ N � 2 degrees of freedom. Thus, the 100 1� αð Þ% confidence intervals for

β0 and β1 are, respectively

β̂ 0 � tα=2,N�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2

1

N
þ x2PN

i¼1

xi � xð Þ2

0BBB@
1CCCA

vuuuuuut � β0

� β̂ 0 þ tα=2,N�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2

1

N
þ x2PN

i¼1

xi � xð Þ2

0BBB@
1CCCA

vuuuuuut ð9:34Þ

and

β̂ 1 � tα=2,N�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2PN

i¼1

xi � xð Þ2

vuuut � β1 � β̂ 1 þ tα=2,N�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2PN

i¼1

xi � xð Þ2

vuuut ð9:35Þ
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As for σε
2, if the assumption of uncorrelated normal errors holds, it can be shown

that the sampling distribution of the pivot function N � 2ð Þ se
2

σε2
follows a Chi-Square

distribution, with ν ¼ N � 2 degrees of freedom. Thus, the 100 1� αð Þ% confidence

interval of σε
2 is

N � 2ð Þse2
χ2α=2,N�2

� σε
2 � N � 2ð Þse2

χ2
1�α=2,N�2

ð9:36Þ

It is worth noting that the confidence intervals for the regression coefficients and

the variance of the errors do not depend on any particular value of the explanatory

variable and, as a result, their widths are constant throughout the subdomain

comprised by its bounds. However, if the inference is to be performed on the

mean response of Y, further discussion is required, since E(YjX) is a linear function
of X and, thus, the variance of a given estimate of the mean response ŷ0 will depend
on the particular point x0 for which the mean response is sought. In this sense, one

may intuitively expect that the width of the confidence interval on the mean

response will vary within the observation range of X.
By expressing ŷ0 through the estimated regression line, one may estimate the

variance of E ŷ
��x� 	

as

Var ŷ 0ð Þ ¼ Var β̂ 0 þ β̂ 1x0

 � ð9:37Þ

However, from Eq. (9.24), β̂ 0 ¼ yþ β̂ 1x. Thus,

Var ŷ 0ð Þ ¼ Var yþ β̂ 1 x0 � xð Þ
 � ð9:38Þ

which, after algebraic manipulations, results in

Var ŷ 0ð Þ ¼ se
2 1

N
þ x0 � xð Þ2PN

i¼1

xi � xð Þ2

0BBB@
1CCCA ð9:39Þ

It is possible to demonstrate that the sampling distribution of the pivot function

y0 � E yjx0ð Þð Þ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se2 1=N þ x0 � xð Þ2
.PN

i¼1

xi � xð Þ2
� �s

is a Student’s t variate, with

ν ¼ N � 2 degrees of freedom. Thus, the 100 1� αð Þ% confidence interval on the

mean response of Y is
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ŷ 0 � tα=2,N�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2

1

N
þ x0 � xð Þ2PN

i¼1

xi � xð Þ2

0BBB@
1CCCA

vuuuuuut � y0 � ŷ 0

þ tα=2,N�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2

1

N
þ x0 � xð Þ2PN

i¼1

xi � xð Þ2

0BBB@
1CCCA

vuuuuuut
ð9:40Þ

From Eq. 9.40, it is possible to conclude that the closer x0 is from the sample

mean value x , the narrower is the confidence interval, with a minimum value

attained at x0 ¼ x, and the distance between the two lines increases as x0 goes

farther from x. This situation is illustrated in Fig. 9.8.

As for the prediction of a future value of Y, one must consider an additional

source of uncertainty, since, unlike the mean response, which is a fixed parameter, a

future value of Y is a random variable. In this sense, if a future value for the

response variable is to be predicted, a new random component, which arises from

estimating Y by means of the regression model, has to be included in the analysis.

Thus, the definitions of confidence and prediction intervals comprise a major

distinction: while the former provides a range for E(YjX), the latter provides a

range for Y itself, and, thus, the unexplained variability of the observations has to be

considered in order to account for the total uncertainty. Since a given future

observation is independent of the regression model, the variance of Y may be

Fig. 9.8 Confidence intervals for the mean response
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estimated by se
2 and the variance of the predicted error may be expressed as

(Montgomery and Peck 1992),

Var ŷð Þ ¼ se
2 1þ 1

N
þ x� xð Þ2PN

i¼1

xi � xð Þ2

0BBB@
1CCCA ð9:41Þ

and the 100 1� αð Þ% confidence interval for the predicted value of Y is given by

ŷ � tα=2,N�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2 1þ 1

N
þ x� xð Þ2PN

i¼1

xi � xð Þ2

0BBB@
1CCCA

vuuuuuut � Y � ŷ

þ tα=2,N�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2 1þ 1

N
þ x� xð Þ2PN

i¼1

xi � xð Þ2

0BBB@
1CCCA

vuuuuuut
ð9:42Þ

where t denotes the Student’s t variate with ν ¼ N � 2 degrees of freedom.

Equation 9.41 shows that the predicted intervals are wider than the confidence

intervals on the regression line due to the additional term in the variance of ŷ. This is
illustrated in Fig. 9.9.

Fig. 9.9 Prediction intervals for a given y
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9.2.4 Hypothesis Testing in Simple Linear Regression

Hypothesis testing, as related to simple linear regression models, usually have two

different points to be emphasized: (1) testing the significance of the regression; and

(2) testing particular values of the regression coefficients. Insights on the linear

functional form of the regression equation might be provided by the scatterplot of

concurrent observations of sample values of variables X and Y, or through the

assessment of the Pearson correlation coefficient estimate. These are, however,

indicative procedures, since the former does not provide an objective measure of

the linear dependence between the variables whereas the latter may be strongly

affected by the particular characteristics of the sample, such as the ones described in

Sect. 9.1.1, and, thus, might entail misleading conclusions regarding the linear

association of X and Y. A more rigorous approach for checking the assumption of

linearity requires the assessment of the significance of the regression equation by

testing the hypothesis of a null value of the slope β1. In this case, the hypotheses are
H0 : β1 ¼ 0 and H1 : β1 6¼ 0.

The test statistic t is constructed by comparing the slope of the estimated and the

true regression line, as normalized by the standard error on the estimate of β1, given
by Eq. (9.30). If the null hypothesis holds, then β1 ¼ 0 and it follows that

t ¼ β̂ 1

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2
.XN

i¼1

xi � xð Þ2
vuut ð9:43Þ

From Sect. 9.2.3, if the errors are IID normally distributed variates, the sampling

distribution of t, as in Eq. (9.43), is a Student’s t, with ν ¼ N � 2 degrees of

freedom. Thus, the null hypothesis should be rejected if tj j > tα=2,N�2, where α
denotes the significance level of the test. If H0 is not rejected, two lines of reasoning

might arise: (1) no linear relationship between the variables holds; or (2) although

some kind of linear relationship might exist, the explanatory variable X has little

value in explaining the variation of Y, and, thus, from a statistical point of view, the

mean value of the observations y provides a better estimate for the response

variable, as compared to the linear model, for all possible values of X. On the

other hand, if H0 is to be rejected, one might infer that: (1) the straight line is a

suitable regression model; or (2) the explanatory variable X is useful in explaining

the variation of Y, albeit other functional forms, distinct from the linear model,

might provide better fits to the data.

An alternative approach for testing the significance of regression is based on

Eq. (9.32), which expresses the regression sum of squares. The rationale behind this

approach is testing a ratio of the mean squares due to regression to the ones due to

residuals. For simplicity, let Eq. (9.32) be expressed as

SST ¼ SSR þ SSE ð9:44Þ
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where SST refers to the total sum of squares
PN
i¼1

yi � yð Þ2, whereas SSR and SSE

denote, respectively, the sum of squares due to regression,
PN
i¼1

ŷ i � yð Þ2, and the

residual sum of squares,
PN
i¼1

yi � ŷ ið Þ2. The quantity SST has N�1 degrees of

freedom, since one is lost in the estimation of y. As SSR is fully specified by a

single parameter, β̂ 1 (see Montgomery and Peck 1992), such a quantity has one

degree of freedom. Finally, as two degrees of freedom have been lost in estimating

β̂ 0 and β̂ 1, the quantity SSE has N�2 of them. These considerations are summarized

in Table 9.3. The procedure for testing the significance of regression on the basis of

the sum of squares is termed ANOVA, which is an acronym for analysis-of-

variance.

By calculating the ratio of the sum of squares due to regression and residual sum

of squares, both divided by their respective degrees of freedom, one may construct

the following test statistic

F0 ¼ SSR

SSE= N � 2ð Þ ð9:45Þ

which follows a Snedecor’s F distribution with v1 ¼ 1 and v2 ¼ N � 2 degrees of

freedom. The null hypothesis is rejected if F0 > Fα, 1,N�2. This test is sometimes

referred to as the F test for regression.

Hypothesis testing may be extended for particular values of the regression

coefficients. The procedure follows the same reasoning utilized on the test for

null slope: the test statistic is obtained on the basis of a comparison between the

regression coefficient estimate and the constant value of interest, as normalized by

the correspondent estimate of the standard error, which are given by Eqs. (9.29) and

(9.30). Thus, for testing the hypothesis that the estimate β̂ 0 equals a given value β01,

one has H0 : β̂ 0 ¼ β01 and H1 : β̂ 0 6¼ β01. The test statistic is given by

t ¼ β̂ 0 � β01

 �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se2 1=N þ x2
.Xn

i¼1

xi � xð Þ2
" #vuut ð9:46Þ

Table 9.3 Analysis of

variance for regression

of Y on X

Source of variation Sum of squares Degrees of freedom

Regression PN
i¼1

ŷ i � yð Þ2 1

Residual PN
i¼1

yi � ŷ ið Þ2 N � 2

Total PN
i¼1

yi � yð Þ2 N � 1
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The null hypothesis should be rejected if tj j > tα=2,N�2, where t refers to the value

of the Student’s variate t, with v ¼ N � 2 degrees of freedom, and α denotes the

level of significance of the test.

As for the slope of the straight-line model, the hypotheses to be tested are H0 :

β̂ 1 ¼ β11 against H1 : β̂ 1 6¼ β11. The test statistic, which derives from a generali-

zation of Eq. (9.43) for non-null values of β1, is expressed as

t ¼ β̂ 1 � β11

 �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se2
.XN

i¼1

xi � xð Þ2
vuut ð9:47Þ

Again, the null hypothesis should be rejected if tj j > tα=2,N�2, where t refers to the

value of the Student’s t variate, with degrees of freedom, and α denotes the level of

significance of the test.

9.2.5 Regression Diagnostics with Residual Plots

After estimating the regression line equation, it becomes necessary to assess if the

regression model is appropriate for describing the behavior of the response variable

Y. In this context, one must ensure that the linear functional form prescribed to the

model is the correct one. This can be achieved by evaluating the significance of

regression by means of t and F tests. In addition, it is important to evaluate the

ability of the regression model in describing the behavior of the response variable,

in terms of explaining its variation. A standard choice for this is the coefficient of

determination r2. Although these statistics provide useful information regarding

regression results, they alone are not sufficient to ascertain the model adequacy.

Anscombe (1973) provides examples of four graphs with the same values of

statistically significant regression coefficients, standard errors of regression, and

coefficients of determination. These graphs have been redrawn and are displayed in

Fig. 9.10.

Figure 9.10a depicts a reasonable model, for which a linear relationship between

explanatory and response variables seems to exist and all points are approximately

evenly scattered around the regression line. This is a case of an adequate regression

model. Figure 9.10b, on the other hand, shows that X and Y are related through a

clearly nonlinear functional form, albeit hypothesis tests on the model slope have

resulted in not rejecting the null hypothesis, H0 : β1 ¼ 0. This situation highlights

the inadequacy of the proposed linear model despite the fact that the estimated slope

is not deemed a result of chance, by an objective test. Figure 9.10c illustrates the

effect of a single outlier in the slope of the regression line. In effect, the regression

equation is strongly affected by this atypical point, which moves the regression line

towards the outlier, reducing the predictive ability of the model. Finally, Fig. 9.10d

shows the influence of a single value of the explanatory variable located well
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beyond the range of the remaining data. Although no apparent relation between

X and Y is verified in the cluster of points, the extreme value of X entails the

estimation of a misleading regression line. These charts make it clear that evaluat-

ing a regression model’s adequacy solely on the basis of summary statistics is an

inappropriate and unsafe expedient.

Residuals plots are a commonly utilized technique for addressing this problem.

In effect, as the regression model is constructed under specific assumptions, the

behavior of the residuals provides a full picture on whether or not such assumptions

are violated after the fit. In general, three types of plots are of interest: (1) residuals

versus fitted values, for linearity, independence and homoscedasticity; (2) residuals

versus time, if regression is performed on time series; and (3) normality of

residuals.

Regarding the first type, a plot of residuals versus fitted values (or the explan-

atory variable), such as the one depicted in Fig. 9.11, can provide useful informa-

tion on the assumed (or assessed) linear function form of the regression model. If

such a plot is contained in a horizontal band and the residuals are randomly

scattered (Fig. 9.11a), then, no obvious inadequacies on the linear association

Fig. 9.10 Graphs for regression diagnostics with residual plots (adapted from Anscombe 1973)
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assumption are detected. However, if the plot appears to follow some pattern

(Fig. 9.11b), it is likely that, although a linear association between X and Y might

exist, it does not provide the best fit. In this case, a transformation on X might be a

convenient alternative for achieving a linear relationship. In fact, as the errors are

assumed to be independent of the explanatory variable X, stretching or shrinking the
X axis will not affect the behavior of the residuals regarding the homoscedasticity

and normality assumptions and, thus, the only change in the model will be the

functional form of the association between explanatory and response variables. As a

reference, if the residuals are U-shaped and the association between X and Y is

positive, the transformation X0 ¼ X2 will yield a linear model. Conversely, if the

residuals look like an inverted U and the association between X and Y is still

positive, one may use the transformations X0 ¼ ffiffiffiffi
X

p
or X0 ¼ ln Xð Þ.

The plot residuals versus fitted values is also an adequate tool for checking the

assumption of independence of the residuals. In effect, if such a plot appears to

assume some functional form, then strong evidence exists that the residuals are

correlated. This is particularly clear if regression models are applied to

autocorrelated time series and may be easily visualized in a plot of the second

type, residuals versus time. Correlated errors do not affect the unbiasedness prop-

erty of the least squares estimators. However, if a dependence relationship between

the residuals exists, the sampling variance of the estimators of β0 and β1 will be
larger, sometimes at excessive levels, than the ones estimated with Eqs. (9.29) and

(9.30), and, as a result, the actual significance of all hypothesis tests previously

discussed will be unknown (Haan 2002).

As for the constant variance assumption, the behavior of the residuals may be

evaluated by plotting the residuals versus fitted values or the residuals versus

explanatory variable X, as exemplified in Fig. 9.12. If these plots show increasing

or decreasing variance, then the homoscedasticity assumption is violated. In gen-

eral, increasing variance is related to right-skewed distribution of the residuals,

whereas the opposite skewness property is associated to decreasing variance. Due

to this fact, the usual approach for dealing with heteroscedastic residuals is to apply

transformations to the response variable Y or to both X and Y. It has to be stressed

Fig. 9.11 Plot of residuals versus fitted values
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that, when using transformations of variables, the transformed values must be used

if interval estimation is to be performed, and, only after obtaining the confidence or

prediction bounds in the transformed space, are the endpoints of intervals to be

computed for the original units. Table 9.4 presents a collection of transformations

for linearizing functions of frequent use in Statistical Hydrology.

The last assumption to be checked is the normal distribution of the residuals.

One of the simplest alternatives for this purpose is to plot the residuals, after

Fig. 9.12 Plot residuals versus explanatory variables

Table 9.4 Transformations for linearization of functions (adapted from Yevjevich 1964)

Type of function Abscissa Ordinate Equation in linear form

Y ¼ β0 þ β1X X Y Y ¼ β0 þ β1X

Y ¼ β0e
β1X X ln(Y) ln Yð Þ ¼ ln β0ð Þ þ β1X

Y ¼ β0X
β1 ln(X) ln(Y ) ln Yð Þ ¼ ln β0ð Þ þ β1ln Xð Þ

Y ¼ β0 þ β1X þ β2X
2 X � x0 Y � y0

X � x0

Y � y0
X � x0

� �
¼ β1 þ 2β1x0 þ β2 X � x0ð Þ

Y ¼ β0 þ
β1
X

1

X

Y Y ¼ β0 þ β1
1
X


 �
Y ¼ β0

β1 þ β2X
X 1

Y

1

Y
¼ β1

β0
þ β2
β0

X

Y ¼ X

β0 þ β1X
X X

Y

X
Y ¼ β0 þ β1X
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ranking them in ascending order, against the theoretical expected normal values, on

a normal probability paper (see Sect. 8.2.1). If the referred assumption holds, the

points will plot as a straight line. In checking the functional form of the plot,

emphasis should be given to its central portion, since, even for approximately

normally distributed residuals, departures from the straight line are expected on

the extremes due to the observation of outliers (see Sect. 8.2.2 and Montgomery and

Peck 1992). The construction of probability papers was described in Sect. 8.2.1.

The interested reader is also referred Chambers et al. (1983) for further details on

this topic. Figure 9.13 presents a typical normal probability plot.

Another framework for evaluating the normality of the errors is based on the

construction of box-plots and frequency histograms. These descriptive tools are

useful in demonstrating the conditions of symmetry and spread of the empirical

distribution of the errors. As a practical reference, for the Normal distribution, 95%

of the values of the residuals must lie in the range of 2 standard deviations around

the mean. If such a condition holds and the histogram is approximately symmetric,

then one should be able to assume that the errors are Normal variates.

Wadsworth (1990) states that violating the normality assumption is not as

critical as violating the other ones, and may be relaxed up to some limit, since the

Student’s t distribution, extensively employed for inference procedures in regres-

sion models, is robust with respect to moderate departures from a Normal distribu-

tion. However, if the distribution of the residuals is too skewed, then the procedures

Fig. 9.13 Normal probability plot
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of interval estimation and hypothesis testing previously discussed are clearly

inappropriate. According to Helsel and Hirsch (2002), the main consequences of

a pronounced non-normality of regression residuals are that confidence and predic-

tion intervals will be excessively wide and may erroneously be considered as

symmetric, and the power of the tests will be too reduced, resulting in explanatory

variables and regression slopes which may be falsely deemed as statistically

insignificant.

Example 9.2 Table 9.5 presents a collection of values of annual maximum dis-

charges and drainage areas for 22 gauging stations in a hydrologically homoge-

neous region of the S~ao Francisco River catchment, in southeastern Brazil.

(a) Estimate a linear regression model using the drainage areas as the explanatory

variable. Consider that the annual maximum discharges and drainage areas are

related through a model such as Q ¼ β0A
β1 . (b) Calculate the coefficient of

determination. (c) Estimate the confidence intervals for the regression coefficients

considering a confidence level of 95%. (d) Test the significance of regression at the

significance level 5%. (e) Using residuals plots, evaluate the adequacy of the

regression model (adapted from Naghettini and Pinto 2007).

Solution

(a) From Table 9.4, one may infer that the linear form of a function Q ¼ β0A
β1 is

ln Qð Þ ¼ ln β0ð Þ þ β1ln Að Þ. The fourth and fifth columns of Table 9.5 present,

respectively, the natural logarithms of the explanatory variable A and the

response variable Q, whereas the sixth column contains the product of these

two variables in logarithmic space. With Eqs. (9.24) and (9.25), one obtains

β̂ 1 ¼ 22�1098:0773�182:6197�128:8740
22�1548:2565� 182:6197ð Þ2 , which gives β̂ 1 ¼ 0:8751, and

ln β0ð Þ ¼ 5:8579� 0:8751� 8:3009 ¼ �1:4062. Thus, the linear regression

model, as estimated from the samples of ln(A) and ln(Q), may be expressed

as ln Qð Þ ¼ �1:4062þ 0:8751ln Að Þ. The estimates ln

̂
Q
�
and the regression

residuals are given in the eighth and ninth columns of Table 9.5, respectively.

Figure 9.14 depicts the scatter of the sample points, in logarithmic space,

around the regression line. The regression model in arithmetic space is given

as Q̂ ¼ 0:2451A0:8751.

(b) After estimating the regression line, one is able to calculate the fraction of the

variance that is explained by the regression model, i.e., estimate the coefficient

of determination r2. Table 9.6 presents the sum of squares due to regression and

the residual sum of squares. By using the values given in the table,

r2 ¼ 24:7726=25:0529 ¼ 0:989, or, in other words, 98.9% of the total variance

of the response variable is explained by the regression model.

(c) The standard error of regression is se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi�ŷ ið Þ
N�2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2803
20

¼ 0:1184
q

. The

variances of the regression coefficients are respectively given as

Var β̂ 0


 � ¼ se
2 1

N þ x2PN
i¼1

xi�xð Þ2

0B@
1CA ¼ 0:11842 1

22
þ 8:30092

32:3488

� 
¼ 0:0305 and
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Var β̂ 1


 � ¼ se
2PN

i¼1

xi�xð Þ2
¼ 0:11842

32:3488 ¼ 0:0004. The value of the Student’s t, for the

95% confidence level and 21 degrees of freedom is t0:975,21 ¼ 2:086. Then, the
confidence intervals for β0 and β1 are, respectively, �1:7705 � β0 � �0:0420
and 0:8317 � β1 � 0:9185.

(d) The test statistic is t ¼ 0:8751ffiffiffiffiffiffiffiffiffiffi
0:0004

p ¼ 42:0373. As tj j > tα=2,N�2 ¼ 2:086, the null

hypothesis should be rejected. Thus, a linear relationship exists between ln(A)
and ln(Q) or, in other terms, ln(A) has value in explaining ln(Q).

(e) Figure 9.15a shows that the residuals are approximately contained in a hori-

zontal band throughout the fitted values and are randomly scattered, with no

apparent pattern of variation. In turn, Fig. 9.15b shows that the residuals plot as

a straight-line on Normal probability paper. It is possible to conclude that the

model is adequate since it does not violate any of the assumptions assumed a

priori.

Table 9.6 Analysis of

variance for regression

of ln(Q) on ln(A)

Source of variation Sum of squares Degrees of freedom

Regression 24.7726 1

Residuals 0.2803 20

Total 25.0529 21

Fig. 9.14 Regression line for ln(Q) in logarithm space
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9.2.6 Some Remarks on Simple Linear Regression Models

Simple linear regression models are widely employed in hydrological sciences as

they provide a convenient framework for estimating or predicting the behavior of a

given variable on the basis of a simple straight-line equation. There are some

situations in which most or even all the information regarding a hydrological

variable, at a particular cross-section of a stream, is obtained from a regression

model. Therefore, such models play an important role in providing the hydrologist

or the engineer with objective indications and guidelines for the design of hydraulic

structures, when little or no measured data are available. However, because the

method is quick and easy to apply, the technique has been misused, frequently

resulting in unreliable results in the statistical modeling of response hydrologic

variables. This subsection deals with some problems associated with misusing

simple linear regression models.

As a first indication, one must evaluate if the estimates of β0 and β1 are

reasonable, both in sign and magnitude, and if, for any reasonable value of X, the
model responds with unrealistic or physically impossible values of Y, such as, for

instance, negative discharges for a given water level, from a rating curve (Helsel

and Hirsch 2002). In addition, regression models are constructed for a given range

of the subdomain of the explanatory variable. The behavior of the response variable

for values of X which are not contained in that subdomain is not known and might

not be linear. Furthermore, confidence intervals for values of the explanatory

variable beyond the available sample may become too large and lose their physical

meaning. Therefore, extrapolation in regression models is not a reliable procedure

and must be avoided.

The presence of outliers is also a concern in constructing regression models

since these values may greatly disturb the least squares fit. Outliers might be the

result of measurement errors, and, if these points are used with no proper correc-

tions, the estimate of the intercept may result in values with no physical meaning

and the residual mean square will overestimate the variance of the errors σε
2. On the

other hand, the measured value of the hydrologic variable deemed as an outlier may

Fig. 9.15 Residuals plots: (a) residuals versus fitted values; (b) normal probability plot
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be correct and, thus, it will represent useful information on the behavior of the

response variable. In such a case, no correcting action is necessary and robust

methods for estimating the regression coefficients, such as the weighted or gener-

alized least squares (Stedinger and Tasker 1985), may be required.

Finally, points of the explanatory variable that are located well beyond the

remaining x sample points significantly affect the behavior of the slope coefficient.

In such situations, deleting unusual points is recommended when a least squares

model is constructed (Montgomery and Peck 1992). Other approaches for

addressing this problem are estimating the regression coefficient by means of less

sensitive methods as compared to the least squares fitting or introducing additional

explanatory variables in order to explain a broader spectrum of the variation of the

response variable. The use of multiple explanatory variables is discussed in the next

section.

9.3 Multiple Linear Regression

As opposed to simple linear regression models, which describe the linear functional

relationship between a single explanatory variable X and the response variable Y,
multiple linear regression models comprise the use of a collection of explanatory

variables for describing the behavior of Y. In formal terms

Y ¼ β0 þ β1X1 þ . . .þ βkXk þ ε ð9:48Þ

where the vector X1, . . .,Xk denotes the k explanatory variables, β0, . . ., βk are the

regression coefficients and ε is a random error term which accounts for the

differences between the regression model and the response sample points. Each

of the regression coefficients, with the exception of the intercept β0, expresses the
change in Y due to a unit change in a given Xi when the other Xj, i 6¼ j, are held

constant.

In analogy to the simple linear regression model, it is possible to conclude that,

due to the random nature of the error term, the response variable Y is also a random

variable distributed according to a model f YjX1, ...Xk
ðy j x1, . . . , xkÞ, conditioned on

x1, . . ., xk, whose expected value is expressed as a linear function of the xi ‘s and
may be written as

y ¼ β0 þ
Xk
j¼1

βjxij ð9:49Þ

whereas the variance is held constant and equal to σ2, if all xi are nonrandom

constant quantities.

Parameter estimation in multiple linear regression may also be based on the least

squares methods, provided that the number of response sample points yi is larger
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than the number of regression coefficients k to be estimated. If such a condition

holds, the least square function, which has to be minimized, may be expressed as

M β0; . . . ; βkð Þ ¼
XN
i¼1

εi
2 ¼
XN
i¼1

yi � β0 �
Xk
j¼1

βjxij

 !2

ð9:50Þ

By taking the first partial derivatives of M with respect to the regression

coefficients β0, . . ., βk, as evaluated by the least squares estimators β̂
j
, and setting

their values to zero, one obtains

∂M
∂β0

����
β̂

0
, ..., β̂

k

¼ �2
XN
i¼1

yi � β̂
0
�
Xk
j¼1

β̂
j
xij

 !
¼ 0

∂M
∂βj

�����
β̂

0
, ..., β̂

k

¼ �2
XN
i¼1

yi � β̂
0
�
Xk
j¼1

β̂
j
xij

 !
xij ¼ 0

ð9:51Þ

which, after algebraic manipulations, yield the least squares normal equations

nβ̂
0
þ β̂

1

XN
i¼1

xi1 þ . . .þβ̂
k

XN
i¼1

xik ¼
XN
i¼1

yi

β̂
0

XN
i¼1

xi1 þ β̂
1

XN
i¼1

xi1
2 þ . . .þ β̂

k

XN
i¼1

xik
2 ¼

XN
i¼1

yixi1

⋮ ⋮ ⋮ ⋮

β̂
0

XN
i¼1

xi1 þ β̂
1

XN
i¼1

xi1
2 þ . . .þβ̂

k

XN
i¼1

xik
2 ¼

XN
i¼1

yixik

ð9:52Þ

The least squares estimates of the regression coefficient, β̂ 0, . . . , β̂ k, are

obtained by solving the normal equations system with sample points composed of

concurrent observations of the explanatory variables Xi, i¼ 1,. . .,k, and the

response variable Y. As with the simple linear regression model, these are

sample-based estimates of the unknown population regression coefficients and,

due to this fact, as long as one is dealing with finite samples, no particular collection

of estimates is expected to match exactly the population’s true values.
For mathematical convenience, it is usual to express multiple regression models

in matrix notation. Thus, a given model may be written as

y¼Xβþε ð9:53Þ
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where y is the N � 1 vector of observations of the response variable, y ¼
y1
⋮
yN

24 35,
X is an N � k matrix of explanatory variables, X ¼

1 x11 . . . x1k
⋮ ⋮ ⋱ ⋮
1 xN1 . . . xNk

24 35, β is the

N � 1vector of regression coefficients,β¼
β1
⋮
βk

24 35, and ε is anN � 1vector of errors,

ε ¼
ε1
⋮
εN

24 35. The notation in bold for the matrix model is intended to make a

distinction between vector or matrices, and scalar quantities.

Expressing the least squares criterion in matrix notation yields

M βð Þ ¼
XN
i¼1

ε2 ¼ε0ε ¼ y� Xβð ÞT y� Xβð Þ ð9:54Þ

where the superscript T denotes transposed vector/matrix. Algebraic manipulations

allow one to write M(β) as follows

MðβÞ ¼ yTy� 2βTXTyþ βTXTXβ ð9:55Þ

By taking the first partial derivative of Eq. (9.55) with respect to the vector β, as
evaluated by the least squares estimators vector β̂ , setting its value to zero and

simplifying the remainder terms, one obtains

XTXβ̂ ¼ XTy ð9:56Þ

The vector of regression coefficients estimates β̂ is then obtained by multiplying

both sides of Eq. (9.56) by XTX

 ��1

. Thus,

β̂ ¼ XTX

 ��1

XTy ð9:57Þ

A solution to β̂ exists if and only if XTX

 ��1

exists. A requirement for this

condition to hold is that the explanatory variables be linearly independent. If so, it

can be easily shown that the least squares estimators, as summarized by the vector

β̂ , are unbiased (Montgomery and Peck 1992). In addition, if the errors are

independent, it follows from the Gauss-Markov theorem that such estimators also

have the minimum variance, as compared to other possible estimators obtained by

linear combinations of yi. As for the variance of the regression coefficient estimates
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β̂ , one may express the covariance matrix as

Covðβ̂ Þ ¼ σε
2ðXTXÞ�1 ð9:58Þ

which is a p� p, p ¼ k þ 1, symmetric matrix in which the diagonal elements

express the variance of β̂ i and the off-diagonal elements correspond to the

covariance between β̂ i and β̂ j, i 6¼ j. An unbiased (yet model-dependent) estimator

for σε
2 is given by

se
2 ¼ SSE

n� k � 1
ð9:59Þ

where SSE corresponds to the residual sum of squares, and N�k�1 provides the

number of degrees of freedom. Similarly to simple regression models, the quantity

se
2 is usually referred to as residual mean square. The positive square root of se

2 is

often denoted standard error of multiple linear regression.

Analogously to simple regression models, a goodness-of-fit measure on how

much of the variance in Y is explained by the multiple-regression model can be

derived. This statistic is termed multiple coefficient of determination R2 and may be

estimated from the ratio of the sum of squares due to regression SSR to the total sum

of squares SSy. The sum of squares and the degrees of freedom for a linear multiple-

regression model are presented in Table 9.7.

The multiple coefficient of determination may be expressed as

R2 ¼ SSR

SSy
ð9:60Þ

Although still expressing a goodness-of-fit measure, such as in the simple linear

regression case, the interpretation of the multiple coefficient of determination

requires caution. First, it has to be stressed that large values of R2 do not mean

that the most suitable collection of explanatory variables has been used for

constructing the regression model. In effect, the contribution of two strictly oppo-

site variables, as evaluated in the physical description of the phenomenon, might be

the same in the regression model. In addition, no indication on the dependence

between explanatory variables is provided by the value of the multiple coefficient

of determination alone. Such a dependence relationship, which is usually termed

Table 9.7 Analysis of variance in linear multiple regression

Source

of variation Sum of squares

Degrees

of freedom Mean square

Regression SSR ¼ β̂ T
XTy� ny2 k MSR ¼ SSR=k

Residual SSE ¼ yTy� β̂ T
XTy n� k � 1 MSE ¼ se

2 ¼ SSE=n� k � 1

Total SSy ¼ yTy� ny2 n� 1
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multicollinearity, is discussed in Sect. 9.3.3. Multicollinearity might entail an

increase in R2 whilst no additional information is provided by the inclusion of a

new explanatory variable that is correlated to another one already considered in the

regression model.

Finally, comparing different models, with a distinct number of explanatory

variables, is an inappropriate procedure, since the addition of explanatory variables

always leads to an increase of the sum of squares due to regression. In this case, the

adjusted multiple coefficient of determination, R2
adjusted, which can be expressed as

R2
adjusted ¼ 1� 1� R2


 � N � 1

N � k � 1

� �
ð9:61Þ

is usually preferred to R2, as it accounts not only for the change in the sum of

squares due to regression, but also for the change in the number of explanatory

variables.

In addition to measuring the goodness-of-fit of a regression model by means of

the coefficient of determination, one may be interested in evaluating the contribu-

tion that each of the explanatory variables adds to explaining the variance of Y.
Such a quantity is expressed by the coefficient of partial determination, which is

given by

R2
partial ¼ SSEðXjÞ � SSEðX1, . . . ,Xj, . . . ,XkÞ

SSEðXjÞ ð9:62Þ

where Xj refers to the a given explanatory variable to be included in the model,

SSE(X1, . . .,Xj, . . .,Xk) is the residuals sum of squares with all explanatory variables

and SSE(Xj) is the residuals sum of squares due to alone Xj. It is worth noting that

the calculations of the coefficient of partial determination may be performed

directly from an ANOVA table, by comparing the residuals sum of squares before

and after the inclusion of Xj.

9.3.1 Interval Estimation in Multiple Linear Regression

As with simple linear regression models, the construction of confidence intervals on

the regression coefficients and on the regression line itself might be required for the

multiple regression homologous. If the errors εi are uncorrelated and follow a

Normal distribution, with μ εð Þ ¼ 0 and Var εð Þ ¼ σε2, then the response variable

Y is also normally distributed, with μi ¼ β0 þ
X
j¼1

βjxij and Var ¼ σ2 and standard

parametric inference procedures, such as the ones described in Chap. 6, are appli-

cable for this purpose.
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As for the regression coefficients, it is easy to demonstrate that, since each yi
follow a Normal distribution and each regression coefficient estimator is a linear

combination of the response variable sample points, the marginal distributions of all

β̂ j’s are also Normal, with μ ¼ βj and Var ¼ σε2Cjj, where Cjj is the j-th diagonal

element of the matrix X0Xð Þ�1
(Montgomery and Peck 1992). Given this, it is

possible to show that the sampling distribution of the pivot function
β̂ j�βj
se βjð Þ, where

se βj

 � ¼ ffiffiffiffiffiffiffiffiffiffiffi

se2Cjj

p
is usually referred to as the standard error of the regression

coefficient βj, is a Student’s t, with ν ¼ N � p degrees of freedom. Thus, the 100

1� αð Þ% confidence intervals of each βj are given by

β̂ j � tα=2,N�pse βj

 � � βj � β̂ j þ tα=2,N�pse βj


 � ð9:63Þ

In addition to constructing confidence intervals on the regression coefficients, it

is also desirable to evaluate the accuracy of the regression model, in terms of the

confidence interval on its mean response ym, at a given point xm. An estimate ŷm for

the mean response, as related to xm, may be obtained by

ŷ m ¼ xm
T β̂ ð9:64Þ

where xm¼
1

xm1
⋮
xmk

2664
3775 is a 1� P vector which encompasses the explanatory variables,

and β̂ is the vector composed by the regression coefficient estimates. The variance

of ŷm is estimated with the following expression:

Var ŷ mð Þ ¼ se
2xm

T XTX

 ��1

xm ð9:65Þ

As with the simple linear regression models, it is possible to show that the

sampling distribution of the pivot function
ŷ m�E ymjxmð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2xmT XTXð Þ�1

xm

q is a Student’s t variate,

with ν ¼ N � p degrees of freedom. Thus, the 100 1� αð Þ% confidence interval of

the mean response ym, at the point xm, is given by

ŷ m � tα=2,N�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2xmT XTX


 ��1
xm

q
� ym � ŷ m þ tα=2,N�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2xmT XTX


 ��1
xm

q
ð9:66Þ

Finally, if interest lies on constructing the interval for a predicted value of the

response variable, as evaluated in a particular point xm, one must account for the

uncertainties arising from both response variable and the regression model by

adding the estimate of the variance of the errors se
2 to the estimate of the variance
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resulting from the fitted model, se
2xm

T XTX

 ��1

xm. Thus, the 100 1� αð Þ% confi-

dence interval predicted value for the response ym, at the point xm, is given by

ŷ m � tα=2,N�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2 1þ xmT XTX


 ��1
xm

� r
� ym � ŷ m

þ tα=2,N�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2 1þ xmT XTX


 ��1
xm

� r ð9:67Þ

9.3.2 Hypothesis Testing in Multiple Linear Regression

An important hypothesis test in the context of multiple linear regression models is

that of evaluating if a linear relationship between the response variable and any of

the explanatory counterparts exists. In this case, the test assesses the significance of

regression and the hypotheses to test are H0 : β1 ¼ :::: ¼ βk ¼ 0 and H1 : βj 6¼ 0,

for, at least, one j. This test is known as the overall F-test for regression and is based
on evaluating the ratio between two measures of variance, namely, the mean square

due to regression, SSR, and the residual sum of squares, SSE, which, as discussed in

Chaps. 5 and 7, follows a Snedecor’s F distribution, with ν1 ¼ k, where k denotes
the number of explanatory variables, and ν2 ¼ N � k � 1 degrees of freedom. In

fact, if H0 is true, it is possible to demonstrate that SSR=σ2 � χ2k and

SSE=σ2 � χ2N�k�1, yield the referred null distribution. The test statistic may be

then expressed as

F0 ¼ SSR=k

SSE= N � k � 1ð Þ ð9:68Þ

The null hypothesis is rejected if F0 > F α, k,N � k � 1ð Þ, where F refers to the

value of the Snedecor’s F, with k and N�k�1 degrees of freedom, at the signifi-

cance level α. It is worth noting that rejecting the null hypothesis implies that at

least one of the explanatory variables has value in explaining the response variable.

Not rejecting H0, on the other hand, might be associated to one of the following

lines of reasoning: (1) the relationship between any of the explanatory variables and

response counterpart is not linear; or (2) even that some kind of linear relationship

exists, none of the explanatory variables has value in explaining the variation of

Y on the basis of this functional form.

Hypothesis testing in multiple linear regression may also be performed on

individual explanatory variables of the regression model in order to assess their

significance in explaining Y. The main objective of such tests is to assess if the

inclusion or dismissal of a given explanatory variables entails a significantly better

fit to the regression model. In effect, the inclusion of a new explanatory variable

always comprises an increase in the sum of squares due to regression, with a

concurrent decrease in the residual sum of squares. However, the addition of a
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variable xi might imply an increase in the residual mean square due to the loss of

one degree of freedom and, as a result, the variance of the fitted values also

increases. Thus, one has to assess if the benefits of increasing the regression sum

of squares due to the inclusion of Xj outweigh the loss of accuracy in estimating Y.
The hypotheses for testing the significance of an individual response variable are

H0 : βj ¼ 0 against H1 : βj 6¼ 0. The test statistic is expressed as

t0 ¼
β̂ j

se β̂ j


 � ð9:69Þ

The null hypothesis should be rejected if tj j > tα=2,N�k�1, where t refers to the value

of the Student’s t, with N�k�1 degrees of freedom, at the significance level α. Not
rejecting H0 implies that Xj must not be included into the model. According to

Montgomery and Peck (1992), this is a marginal test since β̂ j is dependent on all

k explanatory variables employed in the construction of the regression model.

An alternative approach to the previous test is to evaluate the contribution of a

given explanatory variable with respect to the change in the sum of squares due to

regression, provided that all the other explanatory variables have been included in

the model. This method is termed extra-sum-of-squares. The value of SSR, as

resulting from a given explanatory variable Xj to be included the model, can be

calculated as

SSR xj
��x1, . . . , xj�1, xjþ1, . . . , xk


 � ¼ SSR x1; . . . ; xj; . . . ; xk

 �

� SSR x1; . . . ; xj�1; xjþ1; . . . ; xk

 � ð9:70Þ

where the first term on the right side corresponds to the sum of squares with all

k explanatory variables included in the model and the second term is the sum of

squares computed when Xj is excluded from the model. Equation (9.70) encom-

passes the idea that SSR xj
��x1, . . . , xj�1, xjþ1, . . . , xk


 �
expresses the contribution of

each possible Xj with respect to the full model, which includes all k variables.

Again, the hypotheses to test are H0 : βj ¼ 0 and H1 : βj 6¼ 0. The test statistic is

given by

FP ¼ SSR xj
��x1, . . . , xj�1, xjþ1, . . . , xk


 �
SSE= N � k � 1ð Þ ð9:71Þ

The null hypothesis should be rejected if FP > F α, 1,N � k � 1ð Þ, where

F refers to the value of the Snedecor’s F, with ν1 ¼ 1 and ν2 ¼ N � k � 1 degrees

of freedom, at the significance level α. Not rejecting H0 implies that Xj does not

contribute significantly to the regression model and, thus, must not be included in

the analysis. The test described by Eq. (9.71) is termed the partial F-test. Partial F-
tests are useful for model building since they allow the assessment of the signifi-

cance of including or dismissing an explanatory variable to the regression model,
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one at a time. By constructing a regression model based on this rationale, only the

explanatory variables that provide a significant increase in R2 (or R2
adjusted) are

retained and, as a result, the models obtained are parsimonious and present less

uncertainty.

Two different approaches may be utilized for model building through partial F-
tests. In the first approach, termed forward stepwise multiple regression, the

independent explanatory variable with the highest partial correlation, with respect

to the response counterpart, is initially included in the regression model. After that,

the remaining independent variables are included, one by one, on the basis of the

highest partial correlations with Y, and the procedure is repeated up to the point

when all significant variables have been included. At each step, the increment in the

value of R2 due to a new explanatory variable is tested through

Fc ¼
1� R2

k�1


 �
N � k � 1ð Þ

1� R2
k


 �
N � k � 2ð Þ ð9:72Þ

in which N is the number of observations and k is the number of explanatory

variables included in the model. If Fc > Fα,N�k�1,N�k�2, where F is the value of

the Snedecor’s Fwithν1 ¼ N � k � 1andν2 ¼ N � k � 2degrees of freedom and α
denotes the level of significance of the test, then the inclusion of the Xk is

statistically significant.

In the second approach, denoted by backward stepwise multiple regression, all

independent explanatory variables are initially considered in the model. Then, one

by one, explanatory variables are eliminated until a significant difference in the

value of R2 is obtained.

The extra-sum-of-squares method may be extended to test whether a subset of

explanatory variables is statistically significant for the regression model by

partitioning the regression coefficients vector into two groups: β1, a

p� 1, p ¼ k þ 1, vector with the variables already included in the model, and β2,
an r � 1, r ¼ N � p, vector which encompasses the subset to be tested. Thus,

the hypotheses to be tested are H0 : β2 ¼ 0 and H1 : β2 6¼ 0. The test statistic is

given by

FP ¼ SSR xr; . . . ; xkjx1, . . . , xr�1ð Þ=r
SSE= N � pð Þ ð9:73Þ

The null hypothesis should be rejected if FP > F α, r,N � pð Þ, where F refers to the

value of the Snedecor’s F, with ν1 ¼ r and ν2 ¼ N � p degrees of freedom and α
denotes the level of significance of the test. Not rejectingH0 implies that β2 does not
contribute significantly to the regression model and, thus, must not be included in

the analysis.

The R software environment for statistical computing provides a comprehensive

support for multiple regression analysis and testing. Details can be found in

https://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf. [Accessed 13th

April 2016].
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9.3.3 Multicollinearity

In many multiple regression models, situations arise when two explanatory vari-

ables are correlated. Particularly for hydrological studies, some level of correlation

is almost always detected for the most frequently employed explanatory variables,

such as the drainage area of the catchment and the length of its main river. The

correlations between explanatory variables or linear combinations of these vari-

ables are usually termed multicollinearity, although, for practical purposes, the term

should strictly apply for the highest levels of correlation in a collection of Xj’s.
When two explanatory variables are highly correlated, they are expected to bring

very similar information in explaining the variation of the response variable. Thus,

if these two variables are simultaneously included in a regression model, the effects

on the response variable will be partitioned between them. The immediate conse-

quence of this fact is that the regression coefficients might not make physical sense,

in terms of sign or magnitude. This can induce erroneous interpretations regarding

the contributions of individual explanatory variables in explaining Y. Furthermore,

when two highly correlated X’s are used in the model, the variance of the regression

coefficients might be extremely increased and, as a result, they might test statisti-

cally insignificant even when the overall regression points to a significant linear

relationship between Y and the X’s.
In addition to providing improper estimates of the regression coefficients, one

must note that, given that both explanatory variables provide approximately the

same information to the regression model, their concurrent use will entail only a

small decrease in the residuals sum of squares and, therefore, the increase in the

coefficient of multiple determination is marginal. This indicates to the analyst that a

more complex model will not necessarily perform better in explaining the variation

of Y than a more parsimonious one.

According to Haan (2002), evidences of multicollinearity may be identified by:

• High values of correlations between variables in the correlation matrix X;
• Regression coefficients with no physical sense;

• Regression coefficients of important explanatory variables tested as statistically

insignificant; and

• Expressive changes in the values of regression coefficients as a result of the

inclusion or deletion of an explanatory variable from the model.

An objective index for detecting multicollinearity is the Variance Inflation

Factor (VIF), which is formally expressed as

VIF ¼ 1

1� Ri
2

ð9:74Þ

where Ri
2 corresponds to the multiple coefficient of determination between the

explanatory variable Xi and all the others Xj ’ s in the regression equation. If Ri
2 is

zero, then Xi is linearly independent of the remaining explanatory variables in the
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model. On the other hand, if Ri
2 is equal to 1, then VIF is not defined. It is clear then

that large values of VIF imply multicollinearity.

As a practical reference for dealing with multicollinearity, one must not include

a given explanatory variable in a regression model if the index VIF is larger than

5, which corresponds to Ri
2 ¼ 0:80. When this situation holds, one of the variables

must be discarded from the regression model. Another approach, suggested by

Naghettini and Pinto (2007), is to construct a correlation matrix between the

explanatory variables and, provided that a given Xj is selected for estimating the

regression equation, all other explanatory variables with Pearson correlation coef-

ficient higher than 0.85, as related to the one initially selected, should be eliminated

from the analysis.

Example 9.3 Table 9.8 presents a set of explanatory variables from which one

intends to develop a multiple regression model for explaining the variation of the

mean annual runoff in 13 small catchments in the American State of Kentucky.

Estimate a regression equation using a forward stepwise multiple regression

(adapted from Haan 2002).

Solution The first step for constructing the multiple-regression model refers to

estimating the correlation matrix for the collection of explanatory variables. Such a

matrix is presented in Table 9.9.

From Table 9.9, one may infer that the explanatory variable with the largest

linear correlation with the mean annual runoff is the catchment drainage area. Using

only this variable in the regression model, one obtains the ANOVA figures given in

Table 9.10.

Table 9.8 Explanatory variables for estimating a multiple regression model

Catchment Runoff Pr A S L P di Rs SF Rr

1 441.45 1127.00 5.66 50 3.81 12.69 1.46 0.38 3.48 63.25

2 371.35 1119.89 6.48 7 4.08 12.24 1.97 0.48 6.07 10.48

3 393.19 1047.75 14.41 19 4.98 18.58 3.38 0.57 5.91 14.67

4 373.89 1155.70 3.97 6 2.94 8.50 1.50 0.49 9.91 12.95

5 466.60 1170.69 13.18 16 6.62 18.16 2.61 0.39 8.45 12.95

6 432.05 1247.65 5.48 26 3.07 9.42 2.26 0.71 4.79 43.82

7 462.28 1118.36 13.67 7 7.57 20.14 2.08 0.27 2.41 8.38

8 481.33 1237.23 19.12 11 6.78 19.73 3.76 0.52 3.07 13.72

9 354.08 1128.52 5.38 5 3.20 10.90 1.90 0.53 12.19 7.62

10 473.46 1212.09 9.96 18 3.36 15.79 2.64 0.6 7.88 21.91

11 438.15 1228.85 1.72 21 1.84 6.29 0.99 0.48 7.65 67.06

12 443.99 1244.60 2.18 23 2.03 6.06 1.33 0.61 9.04 57.15

13 334.26 1194.56 4.40 5 3.09 8.30 1.58 0.52 5.96 7.43

where Runoff—mean annual runoff (mm), Pr—mean annual precipitation (mm), A—drainage

area (km2), S—average land slope (%), L—axial length (km), P—perimeter (km), di—diameter of

the largest circle that can be drawn within the catchment (km), Rs—shape factor (dimensionless),

SF—stream frequency—ratio of number of streams in the catchment to total drainage area (km2),

Rr—relief ratio—ratio of the total relief to the largest dimension of the catchment (m/km)
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The drainage area explains 22.2% of the runoff total variance. The overall F-test
also indicates that the regression model is not significant at the 5% level of

significance, since F ¼ 3:130 < F0 0:05; 1; 11ð Þ ¼ 4:84. When adding a new

explanatory variable to model, one must be cautious of the occurrence of

multicollinearity. By resorting to the criterion proposed by Naghettini and Pinto

(2007), all remaining explanatory variables with values of correlation higher than

0.85 with respect to the drainage area are eliminated from the analysis. Thus, by

returning to Table 9.9, the variables L, P and di must not be included in the model.

The explanatory variable with the highest correlation to runoff, after the previous

elimination, is S. By including it in the multiple regression model, one obtains the

following the ANOVA table presented in Table 9.11:

Again the overall F-test pointed to significant regression model, since

F ¼ 4:415 > F0 0:05; 2; 10ð Þ ¼ 4:10. The partial F-test also shows that including

S in the regression entails a significant improvement to the model, as

Fp ¼ 5:121 > F0 0:05; 1; 10ð Þ ¼ 4:96. By adding the explanatory variable S to the

model, the explained variance corresponds to 46.9% of the total variance of A. The
next explanatory variable to be included is Pr. The corresponding ANOVA is

presented in Table 9.12.

Table 9.9 Correlation matrix for runoff and the explanatory variables

Runoff Pr A S L P di Rs SF Rr

Runoff 1.00

Pr 0.40 1.00

A 0.47 �0.25 1.00

S 0.41 0.08 �0.17 1.00

L 0.42 �0.34 0.90 �0.21 1.00

P 0.46 �0.41 0.96 �0.10 0.92 1.00

di 0.33 �0.15 0.91 �0.16 0.67 0.81 1.00

Rs �0.15 0.45 �0.25 0.05 �0.58 �0.41 0.15 1.00

SF �0.40 0.04 �0.48 �0.30 �0.53 �0.48 �0.32 0.29 1.00

Rr 0.35 0.42 �0.52 0.80 �0.54 �0.51 �0.50 0.18 �0.08 1.00

Table 9.10 ANOVA table for explanatory variable A

Source of variation Sum of squares Degrees of freedom R2 R2
adjusted F

Regression 6428.10 1 0.222 0.151 3.130

Residual 22,566.10 11

Total 28,994.21 12

Table 9.11 ANOVA table for explanatory variables A and S

Source of variation Sum of squares Degrees of freedom R2 R2
adjusted F

Regression 13,596.20 2 0.469 0.363 4.415

Residual 15,398.01 10

Total 28,994.21 12
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The overall F-test pointed to a significant regression model because

F ¼ 7:648 > F0 0:05; 3; 9ð Þ ¼ 3:863. The partial F-test also shows that including

Pr in the regression significantly improves the model, since Fp ¼ 9:733 >

F0 0:05; 1; 9ð Þ ¼ 5:117. The model is now able to explain 71.8% of the runoff

total variance. From this point on, no further explanatory variable is deemed

significant for the regression model. Then, the final regression equation can be

written as RUNOFF ¼ �141:984þ 6:190Aþ 1:907Sþ 0:410Pr.

Exercises

1. Referring to the data of annual rainfall depth and annual mean daily flow given

in Table 9.1, estimate the Pearson’s r correlation coefficient. Test the hypoth-

esis that r is null at the significance level 5%.

2. From the data given in Table 9.1, test the null hypothesis that ρ ¼ 0:85 at the

significance level 5%. Construct the 95% confidence interval for ρ.
3. Table 9.13 displays 45 observations of the mean annual discharge of the Spray

River, near Banff, in Canada. Calculate the serial correlation coefficient for

lags 1 and 2. Test the hypothesis that the lag-one serial correlation is null

(adapted from Haan 2002).

4. Assuming that the data of mean annual runoff given in Table 9.13 are normally

distributed, calculate the number of independent observations that are required

for providing the same amount of information as the one given by the 45 cor-

related observations.

5. Prove that, if the errors are independent, the least squares estimators are

unbiased and have the minimum variance.

6. Prove that the correlation coefficient in a simple linear regression model, as

expressed by the square root of the coefficient of determination, equals the

correlation coefficient between Y and Ŷ.

7. Derive the normal equations for the regression model Y ¼ β0 þ β1X þ β2X
2.

8. Derive the normal equation for a linear model with null intercept. Construct the

confidence interval at point x ¼ 0. Comment on the obtained results.

9. Table 9.14 provides the values of drainage area A and long-term mean flow

Q for a collection of gauging stations in the S~ao Francisco River catchment, in

southeastern Brazil. (a) Estimate a simple linear regression model using the

drainage area as the explanatory variable. (b) Estimate the coefficient of

determination r2. (c) Estimate the confidence intervals on the mean response

of Q (adapted from Naghettini and Pinto 2007).

Table 9.12 ANOVA table for explanatory variables A, S, and Pr

Source of variation Sum of squares Degrees of freedom R2 R2
adjusted F

Regression 20,824.909 3 0.718 0.624 7.648

Residual 8169.2961 9

Total 28,994.205 12
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10. Solve Exercise 9 using the model Q ¼ β0A
β1 . Discuss the results of both

models.

11. Table 9.15 displays concurrent measurements of stage H and discharge Q for

the Cumberland River at Cumberland Falls, Kentucky, in USA. Derive the

rating curve for this river cross section employing the regression models

Q ¼ β0 þ β1H and Q ¼ β0H
β1 . Which of the two models best fits the data?

(adapted from Haan 2002).

12. Concurrent measurements of stage H and discharge Q, at a given river cross

section, are displayed in Table 9.16. Figure 9.16 provides a scheme illustrating

the reference marks (RM) and the staff gauges, as referenced to the gauge

Table 9.14 Drainage areas A and long-term mean flow Q for 22 gauging stations of the S~ao
Francisco River catchment, for Exercise 9

Gauging station # A (km2) Q (m3/s) Gauging station # A (km2) Q (m3/s)

1 83.9 1.3 12 3727.4 65.3

2 188.3 2.3 13 4142.9 75.0

3 279.4 4.2 14 4874.2 77.2

4 481.3 7.3 15 5235.0 77.5

5 675.7 8.2 16 5414.2 86.8

6 769.7 8.5 17 5680.4 85.7

7 875.8 18.9 18 8734.0 128

8 964.2 18.3 19 10,191.5 152

9 1206.9 19.3 20 13,881.8 224

10 1743.5 34.2 21 14,180.1 241

11 2242.4 40.9 22 29,366.2 455

Table 9.15 Concurrent

measurements of stage

H (m) and discharge Q (m3/s)

for the Cumberland River

at Cumberland Falls,

for Exercise 11

H Q H Q H Q H Q H Q

4.7 1.7 4.1 1.4 3.8 1.2 3.6 1.1 3.3 0.9

4.3 1.5 4.4 1.6 3.8 1.2 3.5 1.1 3.1 0.8

4.5 1.6 4.0 1.3 3.9 1.3 3.4 1.0 2.9 0.7

4.3 1.5 3.8 1.2 2.7 0.6 3.1 0.9 2.7 0.6

4.3 1.5 3.7 1.2 2.5 0.6 3.3 1.0 2.4 0.5

Table 9.16 Concurrent

stages H and discharges Q at a

river cross section for

Exercise 12

H (m) Q (m3/s) H (m) Q (m3/s) H (m) Q (m3/s)

0.00 20 2.70 300 5.84 1260

0.80 40 4.07 680 7.19 1920

1.19 90 4.73 990 8.21 2540

1.56 120 4.87 990 8.84 2840

1.91 170 5.84 1260 9.64 3320

2.36 240 7.19 1920 – –
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datum, at this particular cross section. (a) Estimate the rating curve with the

regression modelsQ ¼ β0 H � h0ð Þβ1 andQ ¼ β0 þ β1H þ β2H
2. (b) Determine

the best-fit model by means of the residual variance, which is given by

Eq. (9.28). (c) A bridge will be built at this site, which is located about

500 m downstream of a reservoir. A design guideline imposes that a peak

discharge of 5200 m3/s must flow under the bridge deck. What is the minimum

elevation of the bridge deck, as referenced to an establish datum, provided that

the RM-2 is at the elevation 731.229 m above sea level (adapted from

Naghettini and Pinto 2007).

13. Table 9.17 provides the values of the annual minimum 7-day mean flow

(Q7) recorded at a number of gauging stations in the Paraopeba River basin,

in the State of Minas Gerais, Brazil, alongside the respective values of

potential explanatory variables for a regression model, namely, the catch-

ment drainage area A, the main stream equivalent slope S and the drainage

density DD. Estimate a multiple linear regression model using the for-

ward stepwise regression. At each step, calculate the values of R2 and R2

adjusted, and perform the overall and partial F-tests (adapted from Naghettini

and Pinto 2007).

Fig. 9.16 River control section at the gauging station for Exercise 12
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3 1.43 244 7.20 0.119
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10 30.26 5414 1.08 0.018

11 28.53 5680 1.00 0.141

12 1.33 273 4.52 0.064
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Chapter 10

Regional Frequency Analysis of Hydrologic
Variables

Mauro Naghettini and Eber José de Andrade Pinto

10.1 Introduction

As mentioned in Chap. 8 of this book, at-site frequency analysis of hydrologic

variables, in spite of having developed a vast number of models and inference

methods in the pursuit of reliable estimates of parameters and quantiles, comes up

against practical difficulties imposed by the usually short samples of hydrologic

records. In this context, the use of regional frequency analysis has emerged as an

attempt to overcome the insufficient description of how a random quantity varies

over the period of records with its broader characterization in space, by pooling data

from samples of different sizes, collected at distinct sites across a geographic

region. In one important variant of regional frequency analysis, the frequency

distributions of all gauging stations located inside a hydrologically homogeneous
region are assumed identical to all sites apart from a site-specific scaling factor, the

so-called index-flood. Other variants, in turn, use multiple regression methods to

represent the relationships between the quantiles or the distribution parameters and

the so-called catchment attributes, such as the basin physiographic and soil char-

acteristics alongside climate variables and other inputs. The methods of regional

frequency analysis of hydrologic variables can be used either to provide quantile

estimates at ungauged sites or to improve quantile estimates at poorly gauged sites.

The general principles that guide regional frequency analysis based on the index-

flood approach were formally introduced by Dalrymple (1960). The term
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index-flood, as referring to the scaling factor, was originally used by Dalrymple

(1960) in the context of indexing the annual flood series at each site by its respective

mean annual flood, as a means of pooling scaled data from multiple sites. As other

applications of regional frequency analysis continued using it to designate the

scaling factor, the term index–flood became standard use in applying regional

techniques to any kind of data and not only to flood data These include rainfall

data, such as those used in deriving regional IDF (Intensity–Duration–Frequency)

relations for heavy storms of sub-daily durations over an area, and low flow data.

The basic idea of index-flood-based approaches, hereinafter referred to as IFB, is

to define a regional frequency curve (or a regional growth curve) that is common to

all scaled data recorded at all sites within a homogeneous region. Then, the scaled

quantile x̂ T of return period T, as estimated with the regional growth curve, is

multiplied by the at-site index-flood μ̂ j to obtain the estimate of the T-year quantile

X̂ T, j ¼ μ̂ jx̂ T for site j. The underlying assumption is that within a homogeneous

region, data at different sites follow the same parent distribution with a common

shape parameter, but the scale parameter is site-specific and depends on the

catchment attributes. For an ungauged site, located in the homogeneous region, it

is assumed that the at-site probability distribution can be fully estimated by

borrowing its shape from the regional growth curve, while its scale parameter is

regressed against the catchment attributes.

A comprehensive application of an IFB approach led to the publication in 1975

of the Flood Studies Report, which is a set of five volumes describing the methods

for estimating flood-related quantities over nine geographical regions of Great

Britain and Ireland (NERC 1975). As regarding the estimation of annual maximum

flood flows in those countries, the report recommended the adoption of the GEV

(generalized extreme value) distribution, with an index-flood procedure. Later, in

1999, this publication was superseded by the Flood Estimation Handbook
(IH 1999), which recommends a different model, the GLO (Generalized Logistic)

distribution, with estimation based on a unified index-flood-based method for

regional frequency analysis that makes use of L-moments, as introduced by

Hosking and Wallis (1997). This unified method is described in detail in Sect. 10.4.

The early methods of regional frequency analysis based on the index-flood

approach have faced conceptual difficulties in objectively defining a homogeneous

region, in which the frequency curves at all sites can be approximated by a regional

curve. Such difficulties have led to the development of multiple regression equa-

tions for relating quantiles to the catchment attributes (Riggs 1973). As such, the

T-year quantile XT,j for site j is directly related to the catchment attributes through a

multiple regression equation, using either the method of Ordinary Least Squares

(OLS), described in Chap. 9, or variants of it. This regression-based method for

quantiles is referred hereinafter as RBQ.

A concurrent application of regression-based methods for regional frequency

analysis of hydrologic variables employs regression equations to represent the

relationship between the set of parameters Θj that describe the probability distribu-

tion at site j and the catchment attributes. For this application of regression-based
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methods, in order to ensure consistency of parameter estimates, the geographic area

should be divided into a convenient number of homogeneous regions, inside which

data recorded at different sites share the same analytical form of the probability

distribution with site-specific parameters. This regression-based method for distri-

bution parameters is referred hereinafter as RBP.

Advanced applications of the multiple regression methods for regional fre-

quency analysis employ the Generalized Least Squares (GLS), introduced by

Stedinger and Tasker (1985). GLS regression is an extension of OLS that takes

into account the sample size at each gauging station, and the variances and cross

correlations of the data records collected at different sites. A full description of

advanced regional frequency analysis using GLS is beyond the scope of this

introductory textbook; the reader interested in the topic should consult Stedinger

and Tasker (1985), Kroll and Stedinger (1998), Reis et al. (2005), and Griffis and

Stedinger (2007).

The catchment attributes that have been used in regional frequency analysis of

hydrologic variables include (a) physiographic catchment characteristics, such as

drainage area, length and slope of the main stream, average basin slope, drainage

density, stream order and shape indexes; (b) soil properties, such as the average

infiltration capacity and soil moisture deficit; (c) land use patterns as fractions of the

total basin area occupied by pastures, forests, agricultural and urban lands;

(d) geographical coordinates and elevation of the gauging station and coordinates

of the catchment’s centroid; and (e) meteorological and climatic inputs, such as the

prevailing direction of incoming storms over the basin, the mean annual number of

days below a threshold temperature and the mean annual rainfall depth over the

catchment.

The catchment attributes are the K potential explanatory variables, denoted as

Mj,k, j ¼ 1, . . . ,N; k ¼ 1, . . . ,K, that can be used to explain the variation of either
the index-flood scaling factors μj or the T-year quantiles XT,j or the sets of param-

eters Θj, for sites j¼ 1, 2, . . ., N across a homogeneous region, in the cases of μj and
Θj, or across a geographic area, in the case of XT,j. The regression models that have

been used in regional frequency analysis of hydrologic variables are usually of

the linear-log type, such as the regression equation

Zj ¼ αþ β1ln Mj, 1

� �þ β2ln Mj, 2

� �þ . . .þ βKln Mj,K

� �þ ε, for a fixed site j,

where Zj can be either μj or XT,j or Θj, α and βk are regression coefficients, and ε
denotes the residuals. The log–log type of regression can also be used for such a

purpose.

One notion that seems to permeate all methods of regional frequency analysis is

that the catchment attributes, such as the physiographic characteristics and other

inputs, as aggregated at the basin scale, are assumed sufficient to characterize the

dominant processes that govern the probability distributions of the variable of

interest, at different sites. For the IFB method this notion is oriented towards the

delineation of a homogeneous region, in the sense that it should exhibit a growth

curve common to all sites within it. RBP is also oriented towards the definition of a

homogeneous region, within which the site-specific probability distributions should
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have a common analytical form, whereas for the RBQ method the notion is related

to finding the appropriate sets of gauging stations and explanatory variables that

account for distinguishable hydrologic responses. Referring to the RBQ method,

Riggs (1973) points out that the extent of a region encompassed by a regional
analysis should be limited to that in which the same (explanatory) variables are
considered effective throughout. The next section discusses the concept of hydro-

logically homogeneous regions, as fundamentally required by the IFB and RBP

methods of regional frequency analysis, but which is also relevant to the RBQ

method.

10.2 Hydrologically Homogeneous Regions

An important step in regional frequency analysis is the definition of hydrologically

homogeneous regions, which is a fundamental assumption of IFB and RBP

methods. For the IFB method, a homogeneous region is formed by a group of

gauging stations whose standardized frequency distributions of the hydrologic

variable of interest are similar. The same applies to the RBP method, by considering

that the non-standardized distributions can be represented by a common analytical

form with site-specific parameters. Notwithstanding its importance, the delineation

of hydrologically homogeneous regions involves subjectivity and is still a matter of

debate and a topic of current research (e.g., Ilorme and Griffis 2013, Gado and

Nguyen 2016).

Several techniques have been proposed to delineate homogeneous regions but

none has established an absolutely objective criterion or a consensual solution to the

problem. In this context, Bobée and Rasmussen (1995) argue that the methods of

regional frequency analysis, in general, and the techniques of delineating homoge-

neous regions, in particular, are built upon assumptions that are difficult to check

with mathematical rigor. The very notion that catchment attributes are capable of

summarizing the processes that govern the probability distributions of the variable

of interest, at different sites, is an example of such an assumption. However,

acknowledging its shortcomings does not diminish the value of regional frequency

analysis, since building models of practical usefulness for water resources engi-

neering is the very essence of Statistical Hydrology.

The first source of controversy concerning the delineation of homogeneous

regions is related to the type of information that should support it. A distinction is

made between site statistics and site characteristics. The former may refer, for

instance, to measures of dispersion and skewness, as estimated from the data

samples, which, in turn, are the object themselves of the regional frequency

analysis. On the other hand, the site characteristics are, in principle, deterministic

quantities and are not estimated from the data samples. Clear examples of such

quantities are the latitude, longitude, and elevation of a gauging station. It is also

thought to be reasonable to include variable quantities that are not highly correlated

to sample data, such as the month with the highest frequency of flood peaks over
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some threshold, or the mean annual total rainfall depth over the catchment area, or

the average base-flow index (BFI) at a given site.

Hosking and Wallis (1997) recommend that the identification of homogeneous

regions should be made in two consecutive steps: the first, consisting of a prelim-

inary grouping of gauging stations, based only on site characteristics, followed by

the second step, of validation, based on site statistics. Hosking and Wallis (1997)

proposed a test based on at-site statistics, to be formally described in Sect. 10.4.2,

that serves the purpose of validating (or not) the preliminarily defined regions.

Furthermore, they point out that using the same data, to form and test regions,

compromises the integrity of the test. The main techniques that have been used for

delineating homogeneous regions are categorized and briefly described in the next

subsection.

10.2.1 Categories of Techniques for Delineating
Homogeneous Regions

The following are the main categories of techniques for delineating homogeneous

regions, as viewed by Hosking and Wallis (1997) and complemented by a

non-exhaustive list of recent works.

10.2.1.1 Geographic Convenience

In the category of geographic convenience, one can find the many attempts to

identify homogeneous regions by forming groups of gauging stations according to

subjective criteria and/or convenience arguments, such as site proximity, or the

boundaries of state or provincial administration, or other similar arbitrary princi-

ples. Amongst the many studies that made use of the geographic convenience

criteria are the regional flood frequency analyses of Great Britain and Ireland

(NERC 1975) and of Australia (IEA 1987).

10.2.1.2 Subjective Grouping

In this category lie all techniques that group gauging stations according to similar-

ities found in local attributes, such as climate classification, topographic features,

and the conformation of isohyetal maps. As these attributes are only approximate in

nature, grouping sites using such a criterion certainly entails an amount of subjec-

tivity. As an example, Schaefer (1990) employed comparable depths of annual total

rainfall to define homogeneous regions for annual maximum daily rainfall depths in

the American State of Washington. Analogously, Pinto and Naghettini (1999)

combined contour, K€oppen climate classification, and isohyetal maps to identify
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homogeneous regions for annual maximum daily rainfall depths over the 90,000-

km2 area of the upper S~ao Francisco River catchment, in southeastern Brazil. The

results from subjective grouping experiences can be used as preliminary ones and

be (or not be) validated later on by an objective criterion such as the heterogeneity

measure to be described in Sect. 10.4.2.

10.2.1.3 Objective Grouping

In this case, the regions are formed by assigning sites to one of two groups such that

a prescribed site characteristic (or statistic) does or does not exceed a previously

specified threshold value. Such a threshold should be specified in such a manner as

to minimize some within-group heterogeneity criterion. For instance, Wiltshire

(1986) prescribed the within-group variation of the sample coefficient of variation,

while Pearson (1991) proposed the within-group variation of the sample L-moment

ratios t2 and t3, of dispersion and skewness. In the sequence, the groups are further

subdivided, in an iterative way, until the desired criterion of homogeneity is met.

Hosking and Wallis (1997) note that regrouping sites in such a dichotomous

iterative process does not always reach an optimal final solution. They also point

out that the within-group heterogeneity statistics can possibly be affected by the

eventual cross-correlation among sites.

10.2.1.4 Grouping with Cluster Analysis

Cluster analysis is a method from multivariate statistics designed to find classifi-

cations within a large collection of data. After assigning to each gauging station a

vector of at-site attributes or characteristics, cluster analysis groups sites based on a

statistical distance measuring the dissimilarity among their respective vector of

attributes. Cluster analysis has been successfully used to delineate homogeneous

regions for regional frequency analysis (e.g., Burn 1989, 1997, Hosking and Wallis

1997, Castellarin et al. 2001, Rao and Srinivas 2006). Hosking and Wallis (1997)

consider cluster analysis as the most practical method and recommend its use for

grouping sites and delineating preliminary homogeneous regions for regional

frequency analysis. As a recommended method, a more detailed description of

cluster analysis is provided in Sect. 10.2.2.

10.2.1.5 Other Approaches

In addition to the mentioned techniques, other approaches have been employed for

delineating homogeneous regions for regional frequency analysis of hydrologic

variables. The following are examples of these approaches, as identified by their

core subjects, with related references for further reading: (a) analysis of regression

residuals (Tasker 1982); (b) principal components analysis (Nathan and McMahon
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1990); (c) factorial analysis (White 1975); (d) canonical correlation (Cavadias

1990, Ribeiro Correa et al. 1995, Ouarda et al. 2001); (e) the ROI (Region Of

Influence) approach (Burn 1990); (f) analysis of the shapes of probability density

functions (Gingras and Adamowski 1993); and (g) the combined approach intro-

duced by Ilorme and Griffis (2013).

10.2.2 Notions on Cluster Analysis

The term cluster analysis was introduced by Tryon (1939) in the context of

behavioral psychology and, nowadays, refers to a large number of different algo-

rithms designed to group similar objects or individuals into homogeneous clusters

based on multivariate data. According to Rao and Srinivas (2008), clustering

algorithms can be classified into hierarchical and partitional. The former type

provides a nested sequence of partitions, which can be done in an agglomerative

manner or in a divisive manner. Partitional clustering algorithms, in turn, are

developed to recover the natural grouping embedded in the data through a single

partition, usually considering the prototype, such as the cluster centroid, as repre-

sentative of the cluster. The reader is referred to Rao and Srinivas (2008) for an

in-depth treatment of clustering algorithms as applied to the regional analysis of

hydrologic variables.

Essentially, hierarchical clustering refers to the sequential agglomeration

(or division) of individuals or clusters into increasingly larger (or smaller) groups

or partitions of individuals according to some criterion, distance, or measure of

dissimilarity. An individual or a site may have several influential attributes or char-

acteristics, which can be organized into a vector of attributes [A1,A2, . . .,
AL]. The measures or distances of dissimilarity between two individuals should be

representative of their reciprocal variation in an L-dimensional space. The most

frequently used measure of dissimilarity is the generalized Euclidean distance,
which is nothing more than the geometric distance in L dimensions. For instance,

the Euclidean distance between two individuals i and j, in an L-dimensional space, is

given by

di j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

Ai l � Aj l

� �2
vuut ð10:1Þ

To facilitate the understanding of cluster analysis, consider the simplest method

of agglomerating individuals into clusters, which is known as the nearest neighbor
method. For a given set of N attribute vectors, the agglomerative hierarchical

clustering begins with the calculation of the Euclidean distances between an

individual and all other individuals, one by one. Initially, there are as many clusters

as there are individuals, which are referred to as singleton clusters. The first cluster
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is formed by the pair of the nearest neighbors or, in other terms, the pair of

individuals (or singleton clusters) that have the shortest Euclidean distance. This

provides (N�2) singleton clusters and 1 cluster with two attribute vectors. In the

nearest neighbor approach, the distance between two clusters is taken as the

distance between the closest pair of attribute vectors, each of which is contained

in one of the two clusters. Then, the two closest clusters are identified and merged,

and such a process of clustering continues until the desired number of partitions is

reached.

The divisive hierarchical clustering, in turn, begins with a single cluster

containing all the N attribute vectors. The vector with the greatest dissimilarity to

the other vectors of the cluster is identified and placed into a splinter group. The

original cluster is now divided into two clusters and the same divisive process is

applied to the largest cluster. The algorithm terminates when the desired number of

partitions is reached (Rao and Srinivas 2008). For example, consider the Euclidean

distances displayed in Table 10.1, calculated on the basis of two site-specific

attributes that are influential on water quality data measured at 10 monitoring

stations along the Blackwater River, in England, as originally published in

Kottegoda and Rosso (1997).

The hierarchical agglomerative nearest neighbor algorithm begins by grouping

stations 8 and 9, which have the shortest Euclidean distance (0.24), into the first

cluster. The second cluster is formed by the first cluster (8-9) and station 10, as

indicated by the Euclidean distance (0.27) of the closest pair of attribute vectors,

one in the first cluster (9) and the other in singleton cluster 10. The next clusters

successively group stations 5 and 6, cluster (5-6) and station 7, station 4 and cluster

(5-6-7), station 3 and cluster (4-5-6-7), station 2 and cluster (3-4-5-6-7), clusters

(2-3-4-5-6-7) and (8-9-10), and, finally, station 1 and cluster (2-3-4-5-6-7-8-9-10).

The hierarchical clustering process, both agglomerative and divisive, can be

graphically represented as a tree diagram, referred to as dendrogram, illustrating
the similar structure of the attribute vectors and how the clusters are formed in

the sequential steps of the process. Figure 10.1 depicts the dendrogram of the

Table 10.1 Euclidean distances of site-specific attributes at 10 water-quality monitoring stations

along the Blackwater River, in England (from data of Kottegoda and Rosso 1997)

Station 1 2 3 4 5 6 7 8 9 10

1 0.00 8.33 6.95 5.95 5.53 4.95 4.70 7.44 7.20 6.93

2 8.33 0.00 1.37 2.38 2.94 3.47 3.93 3.53 3.55 3.56

3 6.95 1.37 0.00 1.01 1.64 2.13 2.64 3.16 3.09 2.99

4 5.95 2.38 1.01 0.00 0.87 1.20 1.79 3.26 3.12 2.95

5 5.53 2.94 1.64 0.87 0.00 0.58 1.00 2.74 2.55 2.34

6 4.95 3.47 2.13 1.20 0.58 0.00 0.63 3.14 2.94 2.69

7 4.70 3.93 2.64 1.79 1.00 0.63 0.00 2.98 2.75 2.49

8 7.44 3.53 3.16 3.26 2.74 3.14 2.98 0.00 0.24 0.51

9 7.20 3.55 3.09 3.12 2.55 2.94 2.75 0.24 0.00 0.27

10 6.93 3.56 2.99 2.95 2.34 2.69 2.49 0.51 0.27 0.00
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hierarchical clustering of the 10 water-quality monitoring stations of the Blackwa-

ter River, according to the Euclidean distances shown in Table 10.1. The monitor-

ing stations are identified on the horizontal axis and their respective Euclidean

distances, as corresponding to the linkages of the clustering process, are plotted on

the vertical axis.

In the dendrogram of Fig. 10.1, if only two clusters are to be considered, then the

first would be formed by station number 1 and the second by all other nine stations.

If three clusters are considered, the previous second cluster would be partitioned

into two new clusters: one with stations 8, 9, and 10, and the other with the

remaining stations. Now, if six clusters are considered, then stations 1 to 4 would

form four different clusters, while the six other stations would form two distinct

clusters, one with stations 5,6, and 7, and the other with stations 8,9, and 10, as

shown in Fig. 10.1.

As mentioned earlier in this subsection, initially, there are as many clusters as

there are individuals and there are no ambiguities in calculating the Euclidean

distances d between individuals. However, as one or more clusters are formed, there

arises the question as to how the Euclidean distance between clusters should be

calculated. In other words, it is necessary to define the linkage criterion that

determines the distance between clusters as a function of the pairwise distances

between individuals. In the example of the water-quality monitoring stations, where

the single linkage criterion (or nearest neighbor) was employed, the distance

between two clusters is taken as the distance between the closest pair of individuals,

each of which is contained in one of the two clusters. According to Hosking and

Wallis (1997), the single-linkage criterion is prone to form a small number of large

Fig. 10.1 Dendrogram for the example of water-quality monitoring stations along the Blackwater

River, in England, from data published in Kottegoda and Rosso (1997)
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clusters, with a few small outlying clusters, and is less likely to yield adequate

regions for regional frequency analysis.

Hosking and Wallis (1997) highlight that, for achieving success in regional

frequency analysis, the linkage criterion should be such that clusters of approximate

equal size are formed. Amongst the agglomerative hierarchical clustering algo-

rithms, Ward’s method, introduced by Ward (1963), tends to form clusters of

roughly equal number of individuals. Ward’s method is an iterative process that

employs the analysis of variance to determine the distances between clusters. It

begins with singleton clusters and at each step it attempts to unite every possible

pair of clusters. The union that results in the smallest increase of the sum of the

squared deviations of the attribute vectors from the centroid of their respective

clusters defines the actual merging of clusters. The mathematical details on Ward’s
method can be found in Rao and Srinivas (2008).

From the class of non-hierarchical or partitional clustering algorithms, the

method, known as k-means clustering, stands out as a useful tool for regional

frequency analysis (Rao and Srinivas 2008). The motivation behind this method

is that the analyst may have prior indications of the suitable number of clusters to be

considered in some geographic region. Then, the k-means method provides the

k most distinctive clusters among the possible grouping alternatives. The first step

of the method initiates with the formation of k clusters by picking individuals and

forming groups. Then the individuals are iteratively moved from one to other

clusters (1) to minimize the within-cluster variability, as given by the sum of the

squared deviations of the individual distances to the cluster centroid; and (2) to

maximize the variability of the k clusters’ centroids. This logic is analogous to

performing a reverse analysis of variance, in the sense that, by testing the null

hypothesis that the group means are different from each other, the ANOVA

confronts the within-group variability with the between-group variability. In gen-

eral, the results from the k-means method should be examined from the perspective

of how distinct are the means of the k clusters. Details on the k-means method can

be found in Hartigan (1975) and a Fortran computer code for its implementation is

described in Hartigan and Wong (1979).

Rao and Srinivas (2008) provide a performance assessment of a number of

clustering algorithms and an in-depth account of their main features and applica-

tions in regional frequency analysis of hydrologic variables. Computer software for

clustering methods can be found at http://bonsai.hgc.jp/~mdehoon/software/clus

ter/software.htm, as open source, or in R through https://cran.r-project.org/web/

views/Cluster.html. Both URLs were accessed on April 8th, 2016.

As applied to the delineation of preliminary homogeneous regions for regional

frequency analysis of hydrologic variables, cluster analysis requires some specific

considerations. Hosking and Wallis (1997) recommend paying attention to the

following points:

(a) Many algorithms for agglomerative hierarchical clustering employ the recip-

rocal of the Euclidean distance as a measure of similarity. In such a case, it is a

good practice to standardize the elements of the attribute vectors, by dividing
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them by their respective ranges or standard deviations, such that they have

comparable magnitudes. However, such a standardization procedure tends to

assign equal weights to the different attributes, which has the undesirable effect

of hiding the relative greater or lesser influence a given attribute might have on

the regional frequency curve.

(b) Some clustering methods, as typified by the k-means algorithm, require the

prior specification of the number of clusters, the correct figure of which no one

knows a priori. In practical cases, a balance must be pursued between too large

and too small regions, respectively, with too many or too few gauging stations.

For the index-flood-based methods of regional frequency analysis, there is little

advantage in employing too large regions, as little gain in accuracy is obtained

with 20 or more gauging stations within a region (Hosking and Wallis 1997). In

their words, there is no compelling reason to amalgamate large regions whose
estimated regional frequency distributions are similar.

(c) The results from cluster analysis should be considered as preliminary. In

general, some subjective adjustments are needed to improve the regions’
physical integrity and coherence, as well as to reduce the heterogeneity measure

H, to be described in Sect. 10.4.2. Examples of these adjustments are: (1) mov-

ing one or more gauging stations from one region to another; (2) deleting a

gauging stations or a few gauging stations from the data set; (3) subdividing the

region; (4) dismissing the region and moving its gauging stations to other

regions; (5) merging regions and redefining clusters; and (6) obtaining more

data and redefining regions.

10.3 Example Applications of the Methods of Regional
Frequency Analysis

10.3.1 RBQ: A Regression Method for Estimating
the T-year Quantile

The Regression-Based Quantile (RBQ) method does not fundamentally require the

partition of the geographic area into homogenous regions. Its first step consists of

performing an at-site frequency analysis of the records available at each gauging

station, according to the procedures outlined in Chap. 8, leading to site-specific

quantile estimates for selected values of the return period. It is worthwhile men-

tioning that, although the method does not require a common probabilistic model be

chosen for all sites, consistency and coherence should be exercised in selecting the

site-specific distributions. The second step is to fix the target return period T, for
which regional quantile estimates are needed, and organize a vector containing the

estimated quantiles X̂ T, j, j ¼ 1, 2, . . . ,N for the N existing gauging stations across

the geographic region of interest, and a N � K matrix M containing the K physio-

graphic catchment characteristics and other inputs for each of the N sites. The third
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step is to use the methods described in Chap. 9 to fit and evaluate a multiple

regression model between the estimated quantiles and the catchment physiographic

characteristics and other inputs. Example 10.1 illustrates an application of the RBQ

method.

Example 10.1 The Paraopeba river basin, located in the State of Minas Gerais

(MG), in southeastern Brazil, is an important source of water supply for the state’s
capital city of Belo Horizonte and its metropolitan area (BHMA), with approxi-

mately 5.76 million inhabitants. The total drainage area of the catchment is

13643 km2, which is located between parallels 18�450 and 21� South, and meridians

43�300 and 45�000 West. Elevation varies in the range of 620 and 1600 m above sea

level. The mean annual rainfall depth varies between 1700 mm, at high elevations,

and 1250 mm at the catchment outlet. For this part of Brazil, there is a clearly

defined wet season from October to March, followed by a dry season from April to

September. On average, 55–60% of annual rainfall is concentrated in the months of

November to January. On the other hand, the months of June, July and August

account for less than 5% of the annual rainfall. Figure 10.2 depicts the location,

isohyetal, and hypsometric maps for the Paraopeba river basin. Appendix 6 contains

a table with the annual minimum 7-day mean flows, in m3/s, denoted herein as Q7,

at 11 gauging stations in the Paraopeba river basin. The code, name, river, and

associated catchment attributes for each gauging station are listed in Table 10.2. In

Table 10.2, Area¼ drainage area (km2); Pmean¼mean annual rainfall over the

Fig. 10.2 Location, isohyetal, and hypsometric maps of the Paraopeba river basin, in Brazil.

Locations of gauging stations are indicated as triangles next to their codes

452 M. Naghettini and E.J.d.A. Pinto

http://dx.doi.org/10.1007/978-3-319-43561-9_9
http://dx.doi.org/10.1007/978-3-319-43561-9_BM1


catchment (m); Sequiv¼ equivalent stream slope (m/km); L¼ length of main stream

channel (km); and J¼ number of stream junctions per km2. The gauging stations

are also located on the map of Fig. 10.2. On the basis of these data, perform a

regional frequency analysis of the Q7 flows for the return period T¼ 10 years, using

the RBQ method.

Solution The candidate distributions used to model the Q7 low flows, listed in the

table of Appendix 6, were the two-parameter Gumbelmin and the three-parameter

Weibullmin, which were fitted to the samples using the MOM method. As previ-

ously mentioned, the RBQ method does not require that a common probabilistic

model be chosen for all sites within a region. However, by examining the 11 plots

(not shown here) of the empirical, Gumbelmin, and 3-p Weibullmin distributions, on

an exponential probability paper with Gringorten plotting positions, the best-fit

model over all gauging stations was the 3-p Weibullmin. As an opportunity to

describe a procedure to fit the 3-p Weibullmin to a sample, by the MOM estimation

method, other than that outlined in Sect. 5.7.2, remember that the Weibullmin CDF

can be written as

FY yð Þ ¼ 1� exp � y� ξ

β � ξ

� �α� �
, for y > ξ; β � 0 and α > 0 ð10:2Þ

The quantile, as a function of the return period T, is given by

x Tð Þ ¼ ξþ β � ξð Þ � �ln 1� 1

T

� �� �1
α

( )
ð10:3Þ

Table 10.2 Catchment attributes for the gauging stations of Example 10.1

Code Name of station River A (km2)

P mean

(m)

S equiv

(m/km) L (km) J (km2)

40549998 S~ao Brás do

Suaçui Montante

Paraopeba 461.4 1.400 2.69 52 0.098

40573000 Joaquim

Murtinho

Bananeiras 291.1 1.462 3.94 32.7 0.079

40577000 Ponte Jubileu Soledade 244 1.466 7.20 18.3 0.119

40579995 Congonhas

Linigrafo

Maranh~ao 578.5 1.464 3.18 41.6 0.102

40680000 Entre Rios de

Minas

Brumado 486 1.369 1.25 47.3 0.136

40710000 Belo Vale Paraopeba 2760 1.408 1.59 118.9 0.137

40740000 Alberto Flores Paraopeba 3939 1.422 1.21 187.4 0.134

40800001 Ponte Nova do

Paraopeba

Paraopeba 5680 1.449 1.00 236.33 0.141

40818000 Juatuba Serra Azul 273 1.531 4.52 40 0.066

40850000 Ponte da Taquara Paraopeba 8734 1.434 0.66 346.3 0.143

40865001 Porto do Mesquita

(CEMIG)

Paraopeba 10192 1.414 0.60 419.83 0.133
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According to Kite (1988), parameter α can be estimated as

α̂ ¼ 1

C0 þ C1γ þ C2γ2 þ C3γ3 þ C4γ4
ð10:4Þ

where γ, the population coefficient of skewness, should be estimated by the

sample coefficient of skewness g, as calculated with Eq. (2.13), for �1.02� g� 2,

and the polynomial coefficients are C0¼ 0.2777757913, C1¼ 0.3132617714,

C2¼ 0.0575670910, C3¼�0.0013038566, and C4¼�0.0081523408. In the

sequence, parameter β is estimated as β̂ ¼ xþ sXA α̂ð Þ, where the functions

A α̂ð Þ and B α̂ð Þ are given by

A α̂ð Þ ¼ 1� Γ 1þ 1

α̂

� �� �
� B α̂ð Þ ð10:5Þ

and

B α̂ð Þ ¼ Γ 1þ 2

α̂

� �
� Γ2 1þ 1

α̂

� �� ��1=2
ð10:6Þ

Finally, the location parameter ξ is estimated as ε̂ ¼ β̂ � sXB α̂ð Þ. The MOM

estimates of the three-parameter Weibullmin distribution, alongside the estimated

annual minimum 7-day flow of return period T¼ 10 years, denoted as Q7,10, for

each of the 11 gauging stations, are displayed in Table 10.3.

The next step in the RBQ method is to define, for a fixed return period (T¼ 10

years, in this case), the regression equation between the quantiles Q7,10, as in

Table 10.3, and the catchment attributes, listed in Table 10.2. The matrix of

correlation coefficients among the response and explanatory variables are given

in Table 10.4. From the values listed in Table 10.4, it is clear that the variables

A and L are highly correlated and should not be considered in possible regression

models, in order to reduce the risk of eventual collinearity.

The regression models used to solve this example are of the log–log type. Thus,

following the logarithmic transformation of the concerned variables, various

regression models were tested, by combining the predictor variables shown in

Table 10.2. The significances of predictor variables and of regression equations

were evaluated through F-tests. Remember that the partial F-test checks the

significance of predictor variables that are added or deleted from the regression

equation, whereas the overall F-test checks the significance of the entire regression
model. The overall quality of each regression model was further assessed by the

sequential examination of the residuals, the standard error of estimates and the

coefficient of determination, followed by the consistency analyses of signs and

magnitudes of the regression coefficients and the relative importance of the pre-

dictors, as assessed by the standardized partial regression coefficients. After all

these analyses, the final regression model is given by Q7,10, j ¼ 0:0047Aj
0:9629,

which is valid in the interval 244 kṁ � Aj � 10192 kṁ. The coefficient of
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determination is 0.9917 and the estimated standard deviation of the transformed

variables is 0.138. Figure 10.3 depicts a chart, in logarithmic space, with the

scatterplot, the fitted regression equation, and the 95% confidence bands on the

regression line and on the predicted values.

10.3.2 RBP: A Regression Method for Estimating
the Distribution Parameters

In order for the Regression-Based Parameter (RBP) method to be applied, a single

parametric form should be selected as to represent the probability distributions of

Table 10.4 Matrix of correlation coefficients for Example 10.1

A (km2) Pmean (m)

Sequiv
(m/km) L (km)

J (junctions/
km2)

Q7,10

(m3/s)

A (km2) 1

Pmean (m) �0.22716 1

Sequiv (m/km) �0.675 0.600687 1

L (km) 0.997753 �0.24112 �0.69617 1

J (junctions/km2) 0.624234 �0.65707 �0.61808 0.609301 1

Q7,10 (m
3/s) 0.993399 �0.25256 �0.69904 0.992116 0.65669 1

Fig. 10.3 Log–log regression model of Q7,10 and drainage area (A) for Example 10.1
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the variable of interest at a number of gauging stations inside a homogeneous

region. In addition to the methods for delineating homogeneous regions, outlined

in Sect. 10.2, an expedite way of grouping gauging stations with a common

parametric form consists of plotting the empirical distributions of the data recorded

at all stations, as standardized by their respective mean, onto a single probability

paper, looking for similarities among them. Then, gauging stations can be moved

from one region to another, regions can be merged or dismissed, and new plots are

prepared to help make the decision about grouping of sites into homogeneous

regions.

Once this step is completed, a number of probability models are fitted to the data

of each station and the methods of selecting a distribution function, outlined in

Chap. 8, are employed to choose the models that fit the data. The model which

seemingly fits data at all sites or in most of them, should be adopted for the entire

region. At this point, for a site j within the region, one would have

Θ̂ j ¼ θ̂1; θ̂2; . . . ; θ̂P
� �

parameters, estimated with a common estimation method,

for a P-parameter distribution. Now, for each set of parameter estimates

θ̂ p, p ¼ 1, 2, . . . ,P, the next step is to organize a vector containing the estimated

parameters θ̂ p, j, j ¼ 1, 2, . . . ,N for the N existing gauging stations across the

homogeneous region, and a N � K matrix M containing the K catchment attributes

for the N sites. The final step is to use the methods described in Chap. 9 in order to

fit and evaluate Pmultiple regression models between the estimated parameters and

the catchment attributes. Example 10.2 illustrates an application of the RBP

method.

Example 10.2 Appendix 7 lists the annual maximum flows of 7 gauging stations

located in the upper Paraopeba River basin, in southeastern Brazil. These stations

are located on the map of Fig. 10.2 and their respective catchment attributes are

given in Table 10.5. On the basis of these data, perform a preliminary regional

frequency analysis of the annual maximum flows, using the RBP method. In

Table 10.5, Area¼ drainage area (km2); Pmean¼mean annual rainfall over the

Table 10.5 Catchment attributes for the gauging stations of Example 10.2

Code Name of station River A (km2)

P mean

(m)

S equiv

(m/km)

L
(km) J (km2)

40549998 S~ao Brás do Suaçui
Montante

Paraopeba 461.4 1.400 2.69 52 0.098

40573000 Joaquim Murtinho Bananeiras 291.1 1.462 3.94 32.7 0.079

40577000 Ponte Jubileu Soledade 244 1.466 7.2 18.3 0.119

40579995 Congonhas

Linigrafo

Maranh~ao 578.5 1.464 3.18 41.6 0.102

40665000 Usina Jo~ao Ribeiro Camapu~a 293.3 1.373 2.44 45.7 0.123

40710000 Belo Vale Paraopeba 2760 1.408 1.59 118.9 0.137

40740000 Alberto Flores Paraopeba 3939 1.422 1.21 187.4 0.134
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catchment (m); Sequiv¼ equivalent stream slope (m/km); L¼ length of main stream

channel (km); and J¼ number of stream junctions per km2.

Solution The first step in the RBP method consists of checking whether or not the

group of gauging stations forms a homogenous region, inside which a common

parametric form can be adopted as a model for the annual maximum flows, with

site-specific parameters. Table 10.6 displays some site statistics for the data

recorded at the gauging stations, where the sample coefficients of variation show

a slight variation across the region, which can be interpreted as a first indication of

homogeneity. The coefficients of skewness were not used to compare the site

statistics, as some samples are too short to yield meaningful estimates.

In cases of grouping sites with short samples, such as this, a useful tool to

analyze homogeneity is to plot the empirical distributions of scaled data onto a

single probability paper. These are shown in the chart of Fig. 10.4, on Gumbel

probability paper, where the Gringorten plotting positions were used to graph the

Table 10.6 Estimates of site statistics for the data samples of Example 10.2

Stations 40549998 40573000 40577000 40579995 40665000 40710000 40740000

Mean (m3/s) 60.9 31.5 29.7 78.2 30.0 351.6 437.1

SD (m3/s) 24.0 10.6 9.2 35.7 10.3 149.0 202.8

CV 0.39 0.34 0.31 0.46 0.34 0.42 0.46

Fig. 10.4 Dimensionless empirical distributions for Example 10.2
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data recorded at the seven gauging stations, as scaled by their respective average

flood flows. The dimensionless flood flows of the upper Paraopeba River basin

seem to align in a common tendency, thus indicating the plausibility of a single

homogeneous region.

Assuming a single homogenous region for the seven gauging stations, the next

step is to select a common parametric form as a model for the regional annual

maximum flows. However, given the limited number of samples available for this

case study, an option was made to restrict model selection to distributions with no

more than two parameters, namely, the exponential, Gumbelmax, two-parameter

lognormal, and Gamma. After performing GoF tests and plotting the empirical

distributions (not shown here), under different distributional hypotheses, the model

that seems to best fit the regional data is the Gumbelmax. Table 10.7 lists the MOM

estimates of the location (̂α) and scale (̂β ) parameters of the Gumbelmax distribution,

for each gauging station.

The next step in the RBP method consists of modeling the spatial variability of

parameters α and β through a regression equation with the catchment attributes as

explanatory variables. Table 10.8 displays the matrix of the simple correlation

coefficients between the parameters and the predictor variables. Since variables

A and L are highly correlated, they were not considered into the regression models,

so as to reduce the risk of collinearity.

Table 10.7 MOM estimates of the parameters of the Gumbelmax distribution

Code Gauging station name River α̂ β̂

40549998 S~ao Brás do Suaçui Montante Paraopeba 18.69 50.07

40573000 Joaquim Murtinho Bananeiras 8.24 26.71

40577000 Ponte Jubileu Soledade 7.21 25.53

40579995 Congonhas Linigrafo Maranh~ao 27.83 62.13

40665000 Usina Jo~ao Ribeiro Camapu~a 8.05 25.31

40710000 Belo Vale Paraopeba 116.15 284.61

40740000 Alberto Flores Paraopeba 158.13 345.81

Table 10.8 Matrix of correlation coefficients for Example 10.2

A (km2) Pmean (m)

Sequiv
(m/km)

L
(km)

J
(junctions/

km2) α β

A (km2) 1.000

Pmean (m) �0.202 1.000

Sequiv (m/km) �0.635 0.627 1.000

L (km) 0.984 �0.306 �0.715 1.000

J (junctions/km2) 0.688 �0.437 �0.323 0.651 1.000

α 0.999 �0.193 �0.643 0.978 0.687 1.000

β 0.995 �0.209 �0.641 0.967 0.699 0.997 1.000
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The regression models used to solve this example were of the linear and log–log

types. Thus, following the logarithmic transformation of the concerned variables,

when applicable, various regression models were tested, by combining the predictor

variables shown in Table 10.5. The significances of predictor variables and of the

total regression equation were evaluated through F-tests. The overall quality of

each regression model was further assessed by the sequential examination of the

residuals, the standard error of estimates and the coefficient of determination,

followed by the consistency analyses of signs and magnitudes of the regression

coefficients and the relative importance of the predictors, as assessed by the

standardized partial regression coefficients. After these analyses, the following

regression equations were estimated: α̂ j ¼ 0:0408Aj and β̂ j ¼ 0:1050Aj
0:9896, for

Aj in km2. Panels a and b of Fig. 10.5 depict charts with the scatterplots, the fitted

regression equations, and the 95% confidence bands on the regression lines and on

the predicted values, for parameters α and β, respectively. Substituting the regres-

sion equations for α and β into the quantile function of the Gumbelmax distribution,

it follows that

X̂ T, j ¼ β̂ j � α̂ j ln �ln 1� 1

T

� �� �	 

¼ 0:1050Aj

0:9896

� 0:0408Aj ln �ln 1� 1

T

� �� �	 
 ð10:7Þ

which is valid for 244 km2 � Aj � 3940 km2 and can be used estimate the annual

maximum flows, associated with the T-year return period, for an ungauged site

j within the region.

Fig. 10.5 Regression lines and confidence intervals for Example 10.2
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10.3.3 IFB: An Index-Flood-Based Method for Regional
Frequency Analysis

The term index-flood was introduced by Dalrymple (1960) in the context of

regional frequency analysis of flood flows. It refers to a scaling factor to make

dimensionless the data gathered at distinct locations within a homogeneous region,

such that they can be jointly analyzed as a sample of regional data. Despite the

reference to floods, the term index-flood is in widespread use in regional frequency

analysis of any type of data.

Consider the case in which one seeks to regionalize the frequencies of a generic

random quantity X, whose variability in time and space has been sampled at

N gauging stations across a geographical area. The observations indexed in time

by i, recorded at the gauging station j, form a sample of size nj and are denoted as

Xi, j, i ¼ 1, . . . , nj; j ¼ 1, . . . ,N. If F, for 0 < F < 1, denotes the frequency distri-

butions of X at gauging station j, then, the quantile function at this site is written as

Xj(F). The basic assumption of the IFB approach is that the group of gauging

stations determines a homogeneous region, inside which the frequency distributions

at all N sites are identical apart from a site-specific scaling factor, termed index-

flood. Formally,

Xj Fð Þ ¼ μj x Fð Þ, j ¼ 1, . . . ,N ð10:8Þ

where μj is the index-flood or the scaling factor for site j and x(F) is the dimen-

sionless quantile function or the regional growth curve (Hosking and Wallis 1997),

which is common to all sites within the region.

The index-flood μj for site j is usually estimated by the corresponding

sample mean Xj, but other central tendency measures of the sample data

X 1, j,X 2, j, . . . , Xnj, j

� �
, such as the median, can also be used for such a purpose.

The dimensionless or scaled data xi, j ¼ Xi, j=Xj, i ¼ 1, . . . , nj; j ¼ 1, . . . , N
form the empirical basis for estimating the regional growth curve x(F). Analo-
gously to the at-site frequency analysis (see Sect. 8.1), estimation of x(F) can be

analytical or graphical. In the former case, the regional growth curve results from

fitting a parametric form to empirical scaled data. In the latter case, the empirical

regional growth curve can be estimated by finding the median curve, among the

empirical distributions of scaled data, as plotted onto a single probability paper.

The inherent assumptions of the IFB approach are

(a) The data observed at any site within the region are identically distributed;

(b) The data observed at any site within the region are not serially correlated;

(c) The data observed at distinct sites within the region are statistically

independent;

(d) The frequency distributions at all N sites are identical apart from the scaling

factor; and

(e) The analytical form of the regional growth curve has been correctly specified.
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Hosking and Wallis (1997) argue that assumptions (a) and (b) are plausible for

many kinds of hydrological variables, especially those related to annual maxima.

However, they argue that it appears implausible that assumptions (c), (d) and

(e) hold for hydrological, meteorological, and environmental data. For example,

it is known that frontal systems and severe droughts are events that can extend over

large geographic areas and, as such, related data collected at distinct gauging

stations located in these areas are likely to show high cross-correlation coefficients.

Finally, Hosking and Wallis (1997) point out that the last two assumptions will

never be exactly valid in practice and, at best, they may be only approximated in

some favorable cases. Despite these shortcomings, the careful grouping of gauging

stations into a homogeneous region and the wise choice of a robust probability

model for the regional growth curve are factors that can compensate the departures

from the assumptions inherent to IFB approaches found in practical cases.

The IFB approach for regional frequency analysis can be summarized into the

following sequential steps:

(a) Screening the data for inconsistencies.

As with at-site frequency analysis, screening the data for gross errors and

inconsistencies, followed by performing statistical tests for randomness,

independence, homogeneity, and stationarity of data are requirements for

achieving a successful regional frequency analysis. The overall directions

given in Sect. 8.3.1, in the context of at-site frequency analysis, remain valid

for regional frequency analysis. Then, the data samples of the variable to be

regionalized are organized and no more than a little missing data can eventually

be filled in using appropriate methods, such as regression equations between

data of neighboring gauging stations.

(b) Scaling the data.

This step consists of scaling the elements Xi, j, i ¼ 1, . . . , nj; j ¼ 1, . . . , N

by their respective sample index-flood factors Xj, thus forming the dimension-

less elements xi, j ¼ Xi, j=Xj, i ¼ 1, . . . , nj; j ¼ 1, . . . , N. In early applica-

tions of the IFB approach, such as in Dalrymple (1960), the samples were

required to have a common period of records. However, Hosking and Wallis

(1997) argue that if the samples are homogeneous and representative (see Sect.

7.4), such a requirement of a common period of record is no longer necessary,

provided that inference procedures take into account the different sample sizes

recorded at the distinct gauging stations.

(c) Defining the at-site empirical distributions.

The site-specific empirical distribution is defined using the same methods of

graphical frequency analysis outlined in Sect. 8.2. However, for regional

frequency analysis, empirical distributions are based on scaled data. In the

original work of Dalrymple (1960) and in the British Flood Studies Report
(NERC 1975) empirical distributions were defined on Gumbel probability

paper.
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(d) Delineating the homogenous regions.

The concept of a homogeneous region was given in Sect. 10.2, where a

distinction was made between site statistics and site characteristics, with refer-

ence to the site-specific information that should guide the appropriate grouping

of gauging stations. When site statistics are employed, a useful graphical

procedure consists of searching for similar tendencies eventually shown by

the site-specific empirical distributions of scaled data on a single probability

paper. A group of gauging stations with similar empirical distributions curves is

likely to form a homogeneous region. When site characteristics are employed,

the methods of cluster analysis described in Sect. 10.2.2 should be used to

delineate homogeneous regions.

(e) Estimating the regional growth curve.

When an empirical regional curve is sought, the median of the at-site empirical

distributions may be a reasonable estimate. When an analyticaly defined

regional growth curve is sought, the dimensionless data xi, j ¼ Xi, j=Xj, i ¼ 1,

. . . , nj; j ¼ 1, . . . , N should be used to estimate the function x(F). Assum-

ing the analytical form of x(F) is known, then, the parameters θ1, θ2, . . ., θP, that
define F, are dependent upon the population measures of location, dispersion,

skewness, and kurtosis, and should be estimated from the scaled data. One

possible manner to perform such an estimation is to fit F to each of the

N samples, thus obtaining a vector of parameter estimates, denoted as

θ̂ p, j, p ¼ 1, . . . ,P, for each site j, with sample size nj, using one of the

estimation method chosen from MOM, LMOM, or MLE. The regional estimate

of the pth parameter, denoted as θ̂
R

p can be found by weighting the site-specific

parameter estimates by their respective sample sizes. Formally,

θ̂
R

p ¼

PN
j¼1

nj θ̂
jð Þ
p

PN
j¼1

nj

ð10:9Þ

The P regional parameter estimates for the homogeneous region allow the

estimation of the regional growth x̂ Fð Þ ¼ x F; θ̂
R

1 , . . . , θ̂
R

P

 �
. The choice of

the probability model F should be oriented by the same general guidelines

given in Sect. 8.3.2.

(f) Regression analysis.

Analogously to the RBQ and RBP methods of regional frequency analysis,

in the IFB approach, regression methods aim to explain the spatial variation

of the index-flood factors μ̂ j ¼ Xj, j ¼ 1, . . . ,N from the K potential explana-

tory variables, as given by the catchment attributes Mj,k, j ¼
1, . . . ,N; k ¼ 1, . . . ,K. The methods for selecting explanatory variables and

testing regression models, covered in Sect. 9.4, are then used to fit a parsimo-

nious regression equation, which is usually of the linear-log or log–log types.
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(g) Estimating quantiles.

The quantiles of return period T at a site j is estimated as X̂ T, i ¼ μ̂ jx̂ T , where μ̂ j

is the index-flood or the scaling factor for site j and x̂ T is the dimensionless

quantile function from the regional growth curve. The index-flood μ̂ j, at the site

j, inside the homogeneous region, is given by Xj, in the case of a gauging

station, or estimated from the regression model of μ̂ j against the catchment

attributes, in the case of an ungauged site.

Example 10.3 illustrates an application of an IFB method.

Example 10.3 Solve Example 10.2, using the IFB method.

Solution After screening data for inconsistencies and testing them for randomness,

independence, homogeneity, and stationarity, they were scaled by their respective

sample averages. Figure 10.4 depicts the empirical distributions for the seven

gauging stations, plotted on Gumbel probability paper, with plotting positions

calculated through the Gringorten formula. The same arguments given in the

solution of Example 10.4 apply, first, for grouping the stations into a single

homogeneous region, and, second, for choosing the Gumbelmax distribution as the

regional model for the annual maximum flows of the upper Paraopeba River

catchment. As for estimating the regional growth curve, graphical and analytical

methods can be used, either by drawing the median line through the empirical

distributions or by weighting the at-site distribution parameters by their respective

sample sizes, as in Eq. (10.9), to estimate the parameters of the regional growth

curve. The latter approach was selected for the solution of this example. The MOM

estimates for the Gumbelmax distributions, valid for the scaled data of each gauging

station, are given in Table 10.9. The regional parameter estimates are listed in the

last row of Table 10.9.

The inverse function of the Gumbelmax distribution gives the regional growth

curve as

x Tð Þ ¼ XT, j

Xj

¼ 0:819� 0:314 ln �ln 1� 1

T

� �� �	 

ð10:10Þ

Table 10.9 MOM estimates of Gumbelmax distribution for each gauging station

Station code Mean of scaled data Standard deviation Sample size α̂ β̂

40549998 1 0.498 32 0.307 0.823

40573000 1 0.336 15 0.262 0.849

40577000 1 0.311 20 0.243 0.860

40579995 1 0.456 47 0.356 0.795

40665000 1 0.345 30 0.269 0.845

40710000 1 0.424 25 0.330 0.809

40740000 1 0.464 28 0.362 0.791

Regional parameter estimates 0.314 0.819
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where XT,j denotes the X quantile of return period T at a site j inside the homoge-

neous region and Xj represents the corresponding index-flood. Table 10.10 presents

the regional dimensionless quantiles as calculated with Eq. (10.10). Figure 10.6

depicts a plot of the regional growth curve superimposed over the site-specific

empirical distributions.

A regression study aimed to explain the spatial variation of the index-flood

factors Xj, j ¼ 1, . . . , 7, as given in Table 10.6, from the 5 potential explanatory

variables, as given by the catchment attributes Mj,k, j ¼ 1, . . . , 7; k ¼ 1, . . . , 5 of

Table 10.5, was performed in an analogous way to Examples 10.1 and 10.2. At the

end of the analyses, the final regression equation is written as Xj ¼ 0:1167Aj, for

244 km2�Aj� 3940 km2. Thus, by combining Eq. (10.10) with the regression

equation for the index-flood, the T-year return period flood discharge for an

ungauged site indexed by j, inside the homogeneous region, can be estimated as

XT, j ¼ 0:1167Aj 0:819� 0:314 ln �ln 1� 1
T

� �� �� �� �
.

Table 10.10 Regional dimensionless quantile estimates for Example 10.3

T (years) 1.01 2 5 10 20 25 50 75 100

Regional

quantile

estimate

0.339 0.934 1.289 1.525 1.751 1.822 2.043 2.171 2.262

Fig. 10.6 Dimensionless quantiles and regional growth curve for Example 10.3
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10.4 A Unified IFB Method for Regional Frequency
Analysis with L-Moments

The entailed subjectivities at the various stages of regional frequency analysis

together with the emergence of more robust inference methods, such as the Prob-

ability Weighted Moments (see Sect. 6.5), introduced by Greenwood et al. (1979),

have led researcher J. R. M. Hosking, from the IBM Thomas J. Watson Research

Center, and Professor J. R. Wallis, from Yale University, to propose a unified

index-flood-based method, with inference by L-moments, for the regional fre-

quency analysis of random variables, with special emphasis on hydrological,

meteorological, and environmental variables. In their review of the 1991–1994

advances in flood frequency analysis, Bobée and Rasmussen (1995) considered the

Hosking–Wallis method as the most relevant contribution for obtaining more

reliable estimates of rare floods. In this section, a summary of the Hosking–Wallis

method is given, followed by some worked out examples. A full description of the

method can be found in Hosking and Wallis (1997).

The Hosking–Wallis method for regional frequency analysis combines the

index-flood approach with the L-moment estimation method (see Sect. 6.5).

Estimation with L-moments is extended not only to regional parameter and

quantiles but is also intended to build regional statistics capable of reducing the

subjectivities entailed at critical stages of regional frequency analysis, such as the

delineation of homogeneous regions and the selection of the regional probability

distribution. As such, the Hosking–Wallis method is viewed as a unified approach

for regional frequency analysis. Its sequential steps are summarized in the next

paragraphs.

• Step 1: Screening of the Data

As a necessary step that should precede any statistical analysis, data collected

at different gauging stations across a geographic area need to be examined in

order to detect and correct gross and systematic errors that may eventually be

found in data samples, and further tested for randomness, independence, homo-

geneity, and stationarity, according to the guidelines given in Sect. 8.3.1. In

addition to these guidelines for consistency analysis, Hosking and Wallis (1997)

suggest the use of an auxiliary L-moment-based statistic, termed discordancy
measure, to be described in Sect. 10.4.1, which is based on comparing the

statistical descriptors of data from a group of gauging stations with the data

descriptors of each specific site.

• Step 2: Identification of Homogeneous Regions

As with any index-flood-based approach, the Hosking–Wallis method

assumes that gauging stations should be grouped into homogeneous regions

inside which the probability distributions of the variable being regionalized are

identical apart from a site-specific scaling factor. As mentioned earlier in this

chapter, in order to group gauging stations into homogenous regions, Hosking

and Wallis (1997) suggest a two-step approach. First, they recommend using
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cluster analysis, based on site characteristics only and preferably on Ward’s
linkage algorithm, to group gauging stations into preliminary regions (see

Sect. 10.2.2). Then, Hosking and Wallis (1997) suggest the use of an auxiliary

L-moment-based statistic, termed heterogeneity measure, to test whether or not

the preliminary regions, defined by cluster analysis, are homogeneous. The

heterogeneity measure is based on the difference between the within-group

variability of site statistics and the variability expected from similar data as

simulated from a hypothetical homogeneous group. The heterogeneity measure

will be formally described in Sect. 10.4.2.

• Step 3: Choosing the Appropriate Regional Frequency Distribution

After having screened regional data for discordancy and grouped gauging

stations into a homogenous region, the next step is to choose an appropriate

probability distribution to model the frequencies of the variable being regional-

ized. In order to do so, Hosking andWallis (1997) suggest the use of an auxiliary

L-moment-based statistic, termed goodness-of-fit measure, which is formally

described in Sect. 10.4.3. The goodness-of-fit measure is built upon the com-

parison of observed regional descriptors with those that would have been yielded

by random samples simulated from a hypothetical regional parent distribution.

• Step 4: Estimating the Regional Frequency Distribution

Having identified the regional model Fx(xjθ1, θ2, . . ., θP) that best fits data, the
next step is to calculate the estimates of its regional parameters θ̂

R

1 , . . . , θ̂
R

P

 �
and of its dimensionless quantiles x̂ Fð Þ ¼ x F; θ̂

R

1 , . . . , θ̂
R

P

 �
. The parameter

estimates θ̂
jð Þ
p , p ¼ 1, . . . ,P for site j are weighted by its respective sample

size, as in Eq. (10.9), in order to estimate the regional parameters. With these,

calculations of the regional growth curve x̂ Fð Þ ¼ x F; θ̂
R

1 , . . . , θ̂
R

P

 �
and the

site-specific frequency distributions, as given by X̂ j Fð Þ ¼ μjx̂ Fð Þ, are easy and

direct.

Hosking (1996) presents a number of computer routines, coded in Fortran

77, designed to implement the four steps of the Hosking–Wallis unified method

for regional frequency analysis. The source codes for these routines are publi-

cally available from the Statlib repository for statistical computing at http://lib.

stat.cmu.edu/general/lmoments [accessed Dec., 18th 2014] or at ftp://rcom.

univie.ac.at/mirrors/lib.stat.cmu.edu/general/lmoments [accessed April, 15th

2016]. Versions of these routines in R are available. One is the lmom package

at https://cran.r-project.org/web/packages/lmom/index.html and another is the

nsRFA package at https://cran.r-project.org/web/packages/nsRFA/index.html.
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10.4.1 Screening of the Data

In addition to the traditional techniques of consistency analysis of hydrologic data,

Hosking and Wallis (1997) suggest the comparison of the sample L-moment ratios

of different gauging stations as a criterion to identify discordant data. They posit

that the L-moment ratios are capable of conveying errors, outliers and heterogene-

ities that may eventually be present in a data sample, and propose a summary

statistic, the discordancy measure, for the purpose of comparing L-moment ratios

for a given site with the average L-moment ratios for a group of sites.

For a group of gauging stations, the discordancy measure aims to identify the

samples that show statistical descriptors too discrepant from the group average

descriptors. The discordancy measure is expressed as a summary statistic of three

L-moment ratios, namely, the L-CV (or τ), the L-Skewness (or τ3), and the

L-Kurtosis (or τ4). In the three-dimensional space of variation of these L-moment

ratios, the idea is to label as discordant the samples whose estimates

τ̂ ¼ t, τ̂ 3 ¼ t3, τ̂ 4 ¼ t4f g, represented as points in space, depart too much from

the center where most points are concentrated in. In order to visualize what the

discordancy measure means, consider the plane defined by the domains of variation

of L-CV and L-Skewness for the data from a group of gauging stations, as depicted

in the schematic chart of Fig. 10.7. The point marked with a cross indicates the

location of the group average L-ratios, around which concentrical ellipses are

drawn. The semi-major and semi-minor axes of the ellipses are chosen to give the

best fit to the data, as determined by the sample covariance matrix of the L-moment

ratios. The discordant points or discordant data samples are those located outside

the perimeter of the outermost ellipse.

The sample L-moment ratios for a site indexed as j, denoted as (tj t3
j t4

j), are the

L-moment analogues to the conventional coefficients of variation, skewness, and

kurtosis, respectively (see Sect. 6.5). Consider (tj t3
j t4

j) as a point in a 3-dimension

space and let uj denote a 3� 1 vector given as

Fig. 10.7 Definition sketch

for the measure of

discordancy
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uj ¼ tj t3
j t4

j
� �T ð10:11Þ

where the superscript T represents vector transposition. Further, let �u be a 3� 1

vector containing the group mean L-moment ratios, calculated as

u ¼

PN
j¼1

uj

N
¼ tR tR3 tR4

� �T ð10:12Þ

where N is the number of gauging stations across the region R.
Given the sample covariance matrix S, calculated as

S ¼ N � 1ð Þ�1
XN
j¼1

uj � u
� �

uj � u
� �T ð10:13Þ

Hosking and Wallis (1997) define the measure of discordancy for site j, denoted as

Dj, by the expression

Dj ¼ N

3 N � 1ð Þ uj � u
� �T

S�1 uj � u
� � ð10:14Þ

The data for a site j are discordant from the regional data if Dj exceeds a critical

value Dcrit, which depends on N, the number of sites within region R.
In a previous work, Hosking and Wallis (1993) suggestedDcrit ¼ 3 as a criterion

to decide whether a site is discordant from a group of sites. In such a case, if a

sample yields Dj � 3, then it might contain gross and/or systematic errors, and/or

outliers that make it discordant from the other samples in the region. Later on,

Hosking and Wallis (1997) presented a table for the critical values Dcrit as a

function of the number of sites N within a region. These are listed in Table 10.11.

Hosking and Wallis (1997) point out that, for very small groups of sites, the

measure of discordancy is not very informative. In effect, for N< 3, the covariance

matrix S is singular and Dj cannot be calculated. For N¼ 4, Dj¼ 1 and, for N¼ 5 or

N¼ 6, the values of Dj, as indicated in Table 10.11, are close to the statistic

algebraic bound, as defined by Dj � N � 1ð Þ=3. As a result, the authors suggest

the use of the discordancy measure Dj only for N� 7.

Table 10.11 Critical values

Dcrit for the measure of

discordancy Dj

N Dcrit N Dcrit

5 1.333 11 2.632

6 1.648 12 2.757

7 1.917 13 2.869

8 2.140 14 2.971

9 2.329 >15 3

10 2.491

Adapted from Hosking and Wallis (1997)
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As regards the correct use of the discordancy measure, Hosking and Wallis

(1997) make the following recommendations:

(a) The regional consistency analysis should begin with the calculation of the

values of Dj for all sites, regardless of any consideration of regional homoge-

neity. Sites flagged as discordant should, then, be subjected to a thorough

examination, using statistical tests, double-mass curves and comparison with

neighbor sites, looking for eventual errors and inconsistencies.

(b) Later on, when the homogeneous regions have been at least preliminarily

identified, the discordancy measure should be recalculated for each gauging

station within the regions. If a site is flagged as discordant, the possibility of

moving it to another homogenous region should be considered.

(c) Throughout the regional consistency analysis, it should be kept in mind that the

L-moment ratios are quantities that may differ by chance from one site to a

group of sites with similar hydrological characteristics. A past extreme event,

for instance, might have affected only part of the gauging stations within a

homogeneous region, but it would be likely to affect any of the sites in the

future. In such a hypothetical case, the wise decision would be to treat the whole

group of gauging stations as a homogeneous region, even if some sites are

flagged as discordant.

10.4.2 Identification of Homogeneous Regions

The identification of homogenous regions can be performed either based on site

characteristics or on site statistics. Hosking and Wallis (1997) recommend that

procedures based on site statistics be used to confirm the preliminary grouping

based on site characteristics. In particular, they propose the use of the measure of

heterogeneity, based on sample L-moment ratios, whose description is given in this

subsection.

As implied by the definition of a homogeneous region, all sites within it should

have the same population L-moment ratios. However, the sample estimates of these

ratios will show variability as a result of sampling. Hosking and Wallis (1997)

argue that it is natural to ask the question whether the between-site variability of the

sample L-moment ratios for the group of sites being analyzed is compatible with the

one that would be expected from a homogeneous region. This is the essence of the

rationale employed to conceive the heterogeneity measure.

The meaning of the heterogeneity measure can be visualized in the L–moment

ratio plots of Fig. 10.8. Although other statistics could be employed, in the

hypothetical diagrams of Fig. 10.8, the L-CV�L-Skewness plot of panel (a) depicts

the sample estimates of these quantities from observed data, whereas panel

(b) shows these same quantities as calculated from repeated simulation of a

homogeneous region with sites having the same sample sizes as the observed

ones. In a diagram such as the ones depicted in Fig. 10.8, a possibly heterogeneous

region is expected to show a larger dispersion for the sample L-CVs, for instance,
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than a homogeneous region would do. The heterogeneity measure seeks to put in

quantitative terms the relative difference between the observed and simulated

dispersions, as scaled by the standard deviation of the results from simulations.

In order to simulate samples and estimate the L-moment ratios of a homoge-

neous region, it is necessary to specify a parent probability distribution from which

the samples are drawn. Hosking and Wallis (1997) recommend the use of the four-

parameter Kappa distribution (see Sect. 5.9.1) for such a purpose arguing that a

prior commitment to any two- or three-parameter distribution should be avoided, in

order not to bias the results from simulation. Recall that the GEV, GPA, and GLO

three-parameter distributions are all special cases of the Kappa distribution. Its

L-moments can be set to match the group average L-CV, L-Skewness, and

L-Kurtosis, and, thus, it can represent homogeneous regions from many distribu-

tions of hydrologic variables.

Consider a region with N gauging stations, each one of which is indexed as j,

with sample size nj, and sample L-moment ratios designated as t j, t j3 and t j4. In

addition, consider that t R, t R3 and t R4 represent the regional average L-moment ratios,

as estimated by weighting the site specific estimates by their respective sample

sizes, as in Eq. (10.9). Hosking and Wallis (1997) propose that the measure of
heterogeneity, denoted as H, should be preferably based on the dispersions of the

L-CV estimates for actual and simulated samples. First, the weighted standard

deviation of the L-CV estimates for the actual samples is calculated as

V ¼
PN
i¼1

ni ti � tRð Þ2

PN
i¼1

ni

2
6664

3
7775

1
2

ð10:15Þ

As mentioned earlier, Hosking and Wallis (1997) suggest that the Kappa distri-

bution should be used to simulate homogeneous regions. Remember that this

Fig. 10.8 Definition sketch for the measure of heterogeneity
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distribution is defined by the parameters ξ, α, k, and h, with density, cumulative

distribution, and quantile functions respectively given by

f X xð Þ ¼ 1

α
i� κ x� ξð Þ

α

� � 1
κ�1

F xð Þ½ �1�h ð10:16Þ

FX xð Þ ¼ 1� h 1� κ x� ξð Þ
α

� �1
κ

( )1
h

ð10:17Þ

x Fð Þ ¼ ξþ α

κ
1� 1� Fh

h

� �κ� �
ð10:18Þ

If κ > 0, x has an upper bound at ξþ α=κ; if κ � 0, x has no upper bound; if

h > 0, x has a lower bound at ξþ α 1� h�κð Þ=κ; if h � 0 and κ < 0, the x lower

bound is at ξþ α=κ ; and, finally, x has no lower bound if h � 0 and κ � 0. The

L-moments and L-moment ratios of the Kappa distribution are defined forh � 0and

κ > �1, and for h < 0 and �1 < κ < �1=h, and given by the following

expressions:

λ1 ¼ ξþ α 1� g1ð Þ
κ

ð10:19Þ

λ2 ¼ α g1 � g2ð Þ
κ

ð10:20Þ

τ3 ¼ �g1 þ 3g2 � 2g3ð Þ
g1 � g2

ð10:21Þ

τ4 ¼ �g1 þ 6g2 � 10g3 þ 5g4ð Þ
g1 � g2

ð10:22Þ

where

gr ¼

rΓ 1þ κð ÞΓ r

h

 �
h1þκΓ 1þ κ þ r

h

 � for h > 0

rΓ 1þ κð ÞΓ �κ � r

h

 �
�hð Þ1þκΓ 1� r

h

 � for h < 0

8>>>>>>>><
>>>>>>>>:

ð10:23Þ

and Γ(.) denotes the Gamma function.

The population parameter values of the Kappa distribution are determined to

replicate the regional L-moment ratios (1, t R, t R3 , t
R
4 ). Then, a large number NSIM of
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homogeneous regions, say NSIM¼ 500, are simulated, assuming no serial correla-

tion or cross-correlation, with samples having the same sizes as the actual samples.

Suppose now that the statistics Vl for l ¼ 1, 2, . . . ,NSIM are calculated for all

homogeneous regions through Eq. (10.15). The mean of V yields the value to be

expected from a large number of homogeneous regions and can be estimated as

μ̂ V ¼
PNSIM

l¼1

Vl

NSIM

ð10:24Þ

The measure of heterogeneity H establishes a relative number for comparing the

observed dispersion V and the average dispersion that would be expected from a

large number of homogeneous regions. Formally, it is given as

H ¼ V � μ̂ Vð Þ
σ̂ V

ð10:25Þ

where σ̂ V is the estimated standard deviation of the NSIM values of Vl, as in

σ̂ V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNSIM

l¼1

Vl � μ̂ Vð Þ 2

NSIM � 1

vuuuut ð10:26Þ

If H is too large, relatively to what would be expected, the region is probably

heterogeneous. According to the significance test proposed by Hosking and Wallis

(1997), if H < 1, the regions is regarded as “acceptably homogeneous”; if

1 � H < 2, as “possibly heterogeneous”; and, finally, if H � 2, as “definitely

heterogeneous”.

As mentioned earlier in this chapter, some ad hoc adjustments, such as breaking

up a region or regrouping sites into different regions, may be necessary to make the

heterogeneity measure conform to the suggested bounds. In some cases, the appar-

ent heterogeneity may be due to a small number of atypical sites, which can be

assigned to another region where they appear to have a more typical behavior.

However, Hosking and Wallis (1997) advise that, in those cases, data should be

carefully examined and hydrologic arguments should take precedence over the

statistical ones. If no physical reason is found to redefine the regions, the wise

decision would be that of retaining the sites in the originally proposed regions. They

exemplify such a situation by hypothesizing a combination of extreme meteoro-

logical events that are plausible to occur at any point inside a region, but that

actually has been observed only at some gauging stations, over the period of

records. The potential benefits of regional analysis can be attained if, in such a

situation, physical arguments allow grouping all sites within the homogeneous

region, such that the regional growth curve, as a summary of data observed at
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multiple sites, can provide better estimates of the likelihood of future extreme

events.

The measure of heterogeneity is built as a significance test of the null hypothesis

that the region is homogeneous. However, Hosking and Wallis (1997) argue that

one should not interpret the H criterion strictly as a hypothesis tests, since the

assumptions of Kappa-distributed variables and lack of serial correlation and cross-

correlation would have to hold. In fact, even if a test of exact homogeneity could be

devised, it would be of little practical interest since even a moderately heteroge-

neous region would be capable of yielding quantile estimates of sufficient accuracy.

The criteria H¼ 1 and H¼ 2, although arbitrary, are useful indicators of hetero-

geneity. If these bounds could be interpreted in the context of a true significance test

and assuming that V is normally distributed, the criterion to reject the null hypoth-

esis of homogeneity, at a significance level α¼ 10%, would be a value of the test

statistic larger than H¼ 1.28. In such a context, the arbitrary criterion of H¼ 1

would appear as too rigorous. However, as previously argued, the idea is not to

interpret the criteria as a formal significance test. Hosking and Wallis (1997) report

simulation results that show a sufficiently heterogeneous region, where quantile

estimates are 20–40% less accurate than for a homogeneous region, will on average

yield a value of H close to 1, which is then seen as a threshold value of whether a

worthwhile increase in the accuracy of quantile estimates could be attained by

redefining the regions. In an analogous way, H¼ 2 is seen as the point at which

redefining the regions is regarded as beneficial.

In some case, H might take negative values. These indicate that there is less

dispersion among the sample L-CV estimates than would be expected from a

homogeneous region with independent at-site distributions (Hosking and Wallis

1997). The most frequent cause of such negative values of H is the existence of a

positive cross-correlation between data at distinct sites. If highly negative values,

such as H<�2, are observed, then a probable cause would be either high cross-

correlation among the at-site frequency distributions or an unusually low dispersion

of the sample L-CV estimates. In such cases, Hosking and Wallis (1997) recom-

mend further examination of the data.

10.4.3 Choosing the Regional Frequency Distribution

As seen in previous chapters, there are many parametric probability distributions

that can be used to model hydrologic data. The fitting of a particular distribution to

empirical data depends on its ability to approximate the most relevant sample

descriptors. However, a successful frequency analysis does not depend only on

choosing the distribution that fits the data well, but also on obtaining quantile

estimates from a probability model that are likely to occur in the future. In other

words, what is being sought is a robust probability model that has both the abilities

of describing the observed data and predicting future occurrences of the variable,

even if it the true probability distribution may differ from the originally proposed

model.
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The guidelines given in Chap. 8 for at-site frequency analysis remain valid for

regional frequency analysis. However, in the context of regional analysis, the

potential benefit comes from the relative more reliable estimation of distributions

with more than two parameters, resulting from the principle of substituting space

for time. In this regard, Hosking and Wallis (1997) posit that regional parameters

can be estimated more reliably than would be possible using only data at a single

site and recommend the use of distributions with more than two parameters as a

regional model because they can yield less biased quantile estimates in the tails.

Goodness-of-fit tests and other statistical tools, such as those described in

Chap. 8, are amenable to be adapted for regional frequency analysis. Plots on

probability paper, quantile–quantile plots, GoF tests, and moment-ratio diagrams

are useful tools that can be used also in the context of regional frequency analysis.

However, for the purpose of choosing an appropriate regional probability distribu-

tion, Hosking and Wallis (1997) proposed using a goodness-of-fit measure, denoted
as Z, which is based on comparing the theoretical L-moment ratios τ3 and τ4 of the
candidate distribution with the regional sample estimates of these same quantities.

The goodness-of-fit measure is described next.

Within a homogeneous region, the site L-moment ratios fluctuate around their

regional average values, thus accounting for sampling variability. In most cases, the

probability distributions fitted to the data replicate the regional average mean and

L-CV. Therefore, the goodness-of-fit of a given candidate distribution to the

regional data should necessarily be assessed by how well the distribution’s L-Skew-
ness and L-Kurtosis match their homologous regional average ratios, as estimated

from observed data. For instance, suppose the three-parameter GEV is a candidate

to model the regional data of a number of sites within a homogeneous region and

that the fitted distribution yields exactly unbiased estimates for the L-Skewness and

L-Kurtosis. When fitted to the regional data, the distribution will match the regional

average L-Skewness. Therefore, one can judge the goodness-of-fit of such a

candidate distribution by measuring the distance between the L-Kurtosis of the

fitted GEV, or τGEV4 , and the regional average L-Kurtosis, or tR4 , as illustrated in the

diagram of Fig. 10.9.

In order to assess the significance of the difference between τGEV4 and tR4 , one

should take into account the sampling variability of tR4 . Analogous to what has been

done for the heterogeneity measure, the standard deviation of tR4 , denoted as σ4, can
be evaluated through simulation of a large number of homogeneous regions, with

the same number of sites and record lengths as those of the observed data, all

distributed as a GEV. In such a situation, the goodness-of-fit measure of the GEV

model would be written as

ZGEV ¼ tR4 � τGEV4

� �
σ4

ð10:27Þ

As regards the general calculation of Z, to obtain correct values of σ4, it is
necessary to simulate a separate set of regions specifically for each candidate
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distribution. However, in practice, Hosking and Wallis (1997) argue that it should

be sufficient to assume that σ4 is the same for each candidate three-parameter

distribution. They justify such an assumption by positing that, as each fitted

distribution has the same L-Skewness, the candidate models are likely to resemble

each other to a large extent. As such, Hosking andWallis (1997) argue that it is then

reasonable to assume that a regional Kappa distribution also has a σ4 close to those
of the candidate models. Therefore, σ4 can be determined by repeated simulation of

a large number of homogeneous regions from a Kappa population, similarly to what

has been used to calculate the heterogeneity measure.

The statistics used to calculate Z, as described, assume there is no bias in the

estimation of L-moment ratios from the samples. Hosking and Wallis (1997) note

that such an assumption is valid for t3 but it is not for t4, when sample sizes are

smaller than 20 or when the population L-Skewness is equal to or larger than 0.4.

They advance a solution to such a problem by introducing the term B4 to correct the

bias of t4. In the example illustrated in Fig. 10.9, the distribution τGEV4 should be

compared to tR4 � B4 and not to tR4 as before. The bias correction term B4 can be

determined using the same simulations used to calculate σ4.
The goodness-of-fit measure Z, as previously described, refers to three-

parameter distributions only. Although it is theoretically possible to build similar

procedures to two-parameter distributions, they have fixed values for the population

τ3 and τ4 and, thus, a different and complicated approach would need to be used to

estimate σ4. Despite suggesting some plausible methods to tackle such an issue,

Hosking andWallis (1997) conclude by not recommending the use of the goodness-

of-fit measure for two-parameter distributions.

In order to formally define the goodness-of-fit measure Z, consider a homoge-

neous region with N gauging stations, each one of which is indexed as j, with

sample size nj, and sample L-moment ratios designated as tj, tj3 and tj4. In addition,

consider that tR, tR3 and tR4 represent the regional average L-moment ratios, as

estimated by weighting the site specific estimates by their respective sample sizes,

as in Eq. (10.9). Finally, consider the following set of candidate three-parameter

Fig. 10.9 Definition sketch

for the goodness-of-fit

measure Z
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distributions: generalized logistic (GLO), generalized extreme value (GEV),

generalized Pareto (GPA), lognormal (LNO), and Pearson type III (PIII).

Each of these distributions is then fitted to the regional average L-moment ratios

(1, tR, tR3 , tR4 ). Let τ
DIST
4 denote the L-Kurtosis of the fitted candidate distribution,

where DIST is any model from the set {GLO,GEV,GPA, LNO, PIII}.

In the sequence, a four-parameter Kappa distribution is fitted to the regional

average L-moment ratios (1, tR, tR3 , tR4 ). The next step is to proceed with the

simulation of a large number NSIM of homogeneous regions, with the same number

of sites and record lengths as those of the observed data, all distributed as the fitted

Kappa model. The simulation of these regions should follow exactly the same

sequence as that employed to enable the calculation of the heterogeneity measure

(see Sect. 10.4.2).

Next, the regional average L-moment ratios tm3 and tm4 for the mth simulated

region, with m¼ 1,2,. . .,NSIM, are calculated. With these, the bias of tR4 is

estimated as

B4 ¼
PNSIM

m¼1

tm4 � tR4
� �
NSIM

ð10:28Þ

whereas the standard deviation of tR4 is given by

σ4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNSIM

m¼1

tm4 � tR4
� �2 � NSIMB

2
4

NSIM � 1

vuuut ð10:29Þ

Finally, the goodness-of-fit measure Z for each candidate distribution is given by

the expression

ZDIST ¼ τDIST4 � tR4 þ B4

σ4
ð10:30Þ

The closer to zero the ZDIST, the better DIST fits the regional data. Hosking and

Wallis (1997) suggest the criterion ZDIST
�� �� � 1:64 as reasonable to accept DIST as a

fitting regional model.

The goodness-of-fit measure Z is specified as a significance test, under the

premises that the region is homogeneous and no cross-correlation between sites is

observed. In such conditions, Z has approximately a standard normal distribution.

The criterion ZDIST
�� �� � 1:64 corresponds to not rejecting the null hypothesis that

regional data were drawn from the hypothesized candidate model, at a significance

level of 10%. However, the necessary premises to approximate the distribution of

Z as a standard normal are unlikely to hold in practical cases, which is particularly

true if serial correlation or cross-correlation is present. In such cases, the variability

of tR4 tends to increase and, as the Kappa region is simulated assuming no correla-

tion, the estimate of σ4 results in being too small and Z too large, thus leading to a
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false indication of poor fitting. Hence, the criterion ZDIST
�� �� � 1:64 is seen as an

indicator of good fit and not as a formal significance test (Hosking and

Wallis 1997).

In cases in which the criterion ZDIST
�� �� � 1:64 leads to more than one fitting

regional model, Hosking and Wallis (1997) recommend comparing the resulting

dimensionless quantile curves (or regional growth curves). If these yield quantile

estimates of comparable magnitudes, any of the fitting models can be chosen.

Otherwise, the search for a more robust model should continue. In such cases,

models with more than three parameters, such as the Kappa and the Wakeby

distributions, may be chosen, since they are more robust to misspecification of

the regional growth curve. The same recommendation may be applied to cases in

which no three-parameter candidate satisfies the criterion ZDIST
�� �� � 1:64 or in cases

of “possibly heterogeneous” or “definitely heterogenous” regions.

Analogous to what has been done in Chap. 8, the goodness-of-fit analysis should

be complemented by plotting the regional average values (tR3 , t
R
4 ) on an L–moment

ratio diagram, such as the one depicted in Fig. 10.10. The expressions used to define

the τ3 � τ4 relations on the L-moment ratio diagram are given by Eqs. (8.12)–(8.17).

Hosking and Wallis (1997) suggest that in case where the point defined by the

regional estimates (tR3 , t
R
4 ) falls above the curve of the GLO distribution, no two- or

three-parameter distribution will fit the data, and one should resort to a more

general candidate, such as the Kappa or the Wakeby distribution.

Fig. 10.10 L-Skewness�L-Kurtosis Diagram. (N normal, G Gumbel, E exponential)
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The final recommendation relates to the analysis of a large geographic area,

which can be subdivided into several homogeneous regions. Hosking and

Wallis (1997) argue that if a given candidate distribution fits the data for all

or most of the regions, then it would be reasonable to employ it for all regions,

even though it may not be selected as the regional model for each region

individually.

10.4.4 Estimating the Regional Frequency Distribution
by the Method of L-Moments

The goal is to fit a probability distribution function to the data, as scaled by the site

specific index-flood factor, recorded at a number of gauging stations inside an

approximately homogeneous region. The distribution fitting is performed by the

method of regional L-moments which consists of equating the population

L-moment ratios to their corresponding regional sample estimates. These are

calculated by averaging the L-moment ratios for all sites, as weighted by their

respective sample sizes, as in Eq. (10.9). If the index-flood at each site is given by

the mean sample value of the data, the regional weighted mean value of scaled data

(or the regional L-moment of order 1) must be ‘R1 ¼ 1. As a result, the sample

L-moment ratios t, t3, and t4 should be identical, regardless of whether they refer to

the original data Xi, j, i ¼ 1, . . . , nj; j ¼ 1, . . . ,N
� �

or to the scaled data

xi, j ¼ xi, j=‘
j
1, i ¼ 1, . . . , nj; j ¼ 1, . . . ,N

 �
.

To fit a probability model F to the regional data, the distribution’s L-moment

quantities λ1, τ, τ3, τ4, . . . are set equal to the regional estimates 1, tR, tR3 , t
R
4 , . . .. If

the F distribution is described by P parameters θp, p ¼ 1, . . . ,P, then equating

the appropriate population and sample L-moment quantities would result in a

system of P equations and P unknowns, whose solutions are the regional parameter

estimates θ̂ p, p ¼ 1, . . . ,P. With these, the regional growth curve can be

estimated by the inverse function of F, as x̂ Fð Þ ¼ x F; θ̂ 1, . . . , θ̂ p

� �
. In turn, the

quantiles at a given site j, located inside the homogeneous region, can be estimated

by multiplying the regional quantile estimate x̂ Fð Þ by the site index-flood μ̂ j, or

formally, through X̂ j Fð Þ ¼ ‘ j1 x̂ Fð Þ.
The estimators of τr for samples of moderate to large sizes exhibit very small

biases. Hosking (1990) employed the asymptotic theory to calculate biases for large

samples: for the Gumbel distribution, the asymptotic bias of t3 is 0.19n
�1, whereas

for the Normal distribution, the asymptotic bias of t4 is 0.03n�1, where n is the

sample size. For small sample sizes, the biases of L-moment ratio estimators can be

evaluated through simulation. Hosking and Wallis (1997) note that, for a gamut of

distributions and n� 20, the bias of t can be considered as negligible and, for

n ffi 20, the biases related to t3 and t4 are relatively small and definitely much

smaller than the conventional estimators of skewness and kurtosis.
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As with any statistical procedure, the results yielded by regional frequency

analysis are inherently uncertain. The uncertainties of parameters and quantiles

are usually quantified by the construction of confidence intervals, as outlined in

Sects. 6.6 and 6.7 of Chap. 6, assuming that all assumptions related to the statistical

model hold. Such a rationale can equally be employed to construct confidence

intervals for parameters and quantiles yielded by regional frequency analysis with

L-moments, provided that the required assumptions hold. In addition to the large-

sample approximation by the Normal distribution, building conventional confi-

dence intervals for regional frequency analysis would require that (a) the region

is rigorously homogeneous; (b) the regional probability model is correctly speci-

fied; (c) no serial correlation and cross-correlation are present in the regional data.

Hosking and Wallis (1997) argue that such confidence intervals would be of limited

utility because no one could ascertain that all these assumptions hold in real-world

cases. As an alternative to assess the uncertainties of regional estimates, Hosking

and Wallis (1997) propose an approach, based on Monte Carlo simulations, which

allows for possible regional heterogeneity, cross-correlation, misspecification of

the regional model, or some combination thereof. The description of such a Monte

Carlo-based approach is beyond the scope of this chapter and the interested reader

is referred to Hosking and Wallis (1997) for details.

10.4.5 General Comments on the Hosking–Wallis Method
for Regional Analysis

Based on the many applications of the unified method for regional frequency

analysis using L-moments, Hosking and Wallis (1997) draw the following general

conclusions:

• Even in regions with a moderate degree of heterogeneity, presence of cross-

correlation in data, and misspecification of the regional probability model,

the results from regional frequency analysis are more reliable than those from

at-site frequency analysis.

• Regional frequency analysis is particularly valuable for the estimation of very

small or very large quantiles.

• In regions with a large number N of gauging stations, errors in quantile estimates

decrease fairly slowly as a function of N. Thus, there is little gain in accuracy

from enlarging regions to encompass more than 20 gauging stations.

• As compared to at-site estimation, regional frequency analysis is less valuable

when longer records are available. On the other hand, heterogeneity is easier to

detect when record lengths are large. As such, regions should contain fewer sites

when their record lengths are large.

• The use of two-parameter distributions is not recommended in the Hosking–

Wallis method of regional frequency analysis. Use of such distributions is

beneficial only in the cases where there is sufficient confidence that the sample
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regional L-Skewness and L-Kurtosis are close to those of the distribution.

Otherwise, large biases in quantile estimates may result.

• The errors of quantile estimates resulting from the misspecification of the

regional frequency model are important only far into the tails of the distribution

(F< 0.1 or F> 0.99).

• Robust distributions, such as the Kappa and Wakeby, yield quantile estimates

that are reasonably accurate over a wide range of at-site frequency distributions

within a region.

• Heterogeneity introduces bias into estimates for sites that are not typical of the

region.

• Cross-correlation between sites of a region increases the variability of estimates

but has little effect on their bias. A small degree of cross-correlation should not

be a concern in regional frequency analysis.

• For extreme quantiles (F� 0.999), the advantage of using regional frequency

analysis over at-site frequency analysis is greater. For extreme quantiles, het-

erogeneity is less important as a source of errors, whereas misspecification of the

regional probability model becomes more important.

Example 10.4 Solve Example 10.2, using the Hosking–Wallis method.

Solution To solve this example, the Fortran 77 routines written by Hosking (1996)

and available from ftp://rcom.univie.ac.at/mirrors/lib.stat.cmu.edu/general/

lmoments [accessed April, 15th 2016] were compiled and run for the data set of

annual maximum flows of the 7 gauging stations (Appendix 7), as scaled by their

respective average flood flows. Considering the group of stations as a single one, the

first step of the Hosking–Wallis method consists of calculating the discordancy

measureDj; j ¼ 1, . . . , 7, with Eq. (10.14), for each gauging station. The results are
listed in Table 10.12. For N¼ 7, Table 10.11 returns the critical valueDcrit ¼ 1:917,
which is greater than the calculated Dj; j ¼ 1, . . . , 7, thus allowing the conclusion

that no discordant data sample was found among the group of gauging stations.

The second step refers to the identification of homogeneous regions. In the

solutions to Examples 10.2 and 10.3, grouping the gauging stations into a single

homogeneous region was supported by the comparison of site characteristics, site

statistics and the empirical probability distributions of scaled data. Considering the

group of stations as a single preliminary homogenous region, the measure of

heterogeneity H was calculated as H¼�0.42, using the procedures described in

Sect. 10.4.2 and the mentioned Fortran 77 computer program. The measure

H resulted in a slightly negative value, possibly indicating a small degree of

positive correlation among sites, which, according to the general conclusions of

Sect. 10.4.5, should not be a serious concern for the continuation of the regional

Table 10.12 Discordancy measures for Example 10.4

Station 40549998 40573000 40577000 40579995 40665000 40710000 40740000

Discordancy

measure

0.59 0.64 1.45 1.67 0.75 0.8 1.11
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frequency analysis. The selection of the regional probability distribution is then

performed with the calculation of the goodness-of-fit measures ZDIST, for each of

the following three-parameter models: generalized logistic (GLO), generalized

extreme value (GEV), generalized Pareto (GPA), lognormal (LNO), and Pearson

type III (PIII). The results are listed in Table 10.13. The criterion ZDIST
�� �� � 1:64

allows the selection of the GEV, LNO, and PIII as plausible regional models, whose

measures of goodness-of-fit are highlighted in bold typeface in Table 10.13.

In addition to the measures of goodness-of-fit, plotting the regional average

L-moment ratios (tR3 , t
R
4 ) on the L-moment ratio diagram can prove useful in

selecting the regional model. For the scaled data of each gauging station, the

unbiased sample estimates of the PWM βr are calculated with Eq. (6.13) and the

results are then used in Eqs. (6.16)–(6.22) to yield the estimates of the first four

L-moments and of the L-moment ratios t, t3, and t4. These are given in Table 10.14,
together with the corresponding regional averages, calculated by weighting the site

estimates by their respective sample size, as in Eq. (10.9). Figure 10.11 depicts the

L-moment ratio diagram with the regional average estimates (tR3 , t
R
4 ) marked with a

cross. The relative location of (tR3 , t
R
4 ) on the diagram appears to confirm the

selection of the GEV, LNO, and PIII as plausible regional models.

The L-moment ratios of Table 10.14 were, then, employed to estimate the

parameters of the candidate models GEV, LNO, and PIII. These estimates are

given in Table 10.15.

With the parameter estimates for the three candidate models, the dimensionless

quantiles can be estimated through their respective inverse functions, when appli-

cable, or, otherwise, through the method of frequency factors, as outlined in

Sect. 8.3.3. The dimensionless quantile estimates for the three candidate regional

models, for selected values of the return period, are given in Table 10.16. All three

candidate models yield relatively congruent quantile estimates, with moderately

larger values of GEV estimates, for large return periods. In comparing the large

Table 10.14 Sample mean and L-moment ratios of scaled data for Example 10.4

Gauging station Mean (l1) L-CV (t2) L-Skewness (t3) L-Kurtosis (t4)

40549998 1 0.2147 0.2680 0.1297

40573000 1 0.1952 0.1389 �0.0006

40577000 1 0.1823 0.0134 0.0222

40579995 1 0.2489 0.1752 0.1479

40665000 1 0.1926 0.2268 0.0843

40710000 1 0.2284 0.1414 0.2304

40740000 1 0.2352 0.2706 0.3001

Regional average 1 0.2194 0.1882 0.1433

Table 10.13 Goodness-of-fit

measures for Example 10.4
DIST GLO GEV LNO PIII GPA

ZDIST 1.69 0.44 0.21 �0.31 �2.36
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quantile estimates from the three candidate models, the more conservative esti-

mates favor the GEV, which is then selected as the regional model.

The general equation to estimate the regional T-year GEV dimensionless

quantiles can be written as x̂ Tð Þ ¼ ξ̂ þ α̂
κ̂ 1� �ln 1� 1

T

� �� �κ̂n o
¼ 0:813�

0:308
0:028 1� �ln 1� 1

T

� �� ��0:028
n o

. For an ungauged site, indexed as j, located inside

the homogeneous region, it is necessary to estimate the site-specific index-flood μ̂ j

Fig. 10.11 L-moment ratio diagram for Example 10.4

Table 10.15 Parameter estimates of the candidate regional models for Example 10.4

Candidate regional distribution Location Scale Shape

Generalized extreme value (GEV) 0.813 0.308 �0.028

Lognormal (LNO) 0.926 0.365 �0.388

Pearson type III (PIII 1 0.405 1.14

Table 10.16 Dimensionless quantile estimates for Example 10.4

Return period (years)

Candidate regional distribution 1.01 2.00 10 20 100 1000

Generalized extreme value (GEV) 0.353 0.927 1.529 1.768 2.327 3.163

Lognormal (LNO) 0.367 0.926 1.533 1.767 2.307 3.108

Pearson type III (PIII 0.397 0.925 1.543 1.769 2.260 2.915
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to obtain the quantiles X̂ j Tð Þ ¼ μ̂ jx̂ Tð Þ at that particular location. The same

regression model obtained in the solution to Example 10.3 can be used to such an

end. Therefore, the general equation for estimating the quantiles for an ungauged

site j, inside the homogeneous region, can be written as X̂ T, j ¼ 0:1167Aj

0:813� 0:308
0:028 1� �ln 1� 1

T

� �� ��0:028
h in o

.

Example 10.5 The intensity–duration–frequency (IDF) relationship of heavy rain-

falls is certainly among the hydrologic tools most utilized by engineers to design

storm sewers, culverts, retention/detention basins, and other structures of storm

water management systems. An IDF relationship is a statistical summary of rainfall

events, estimated on the basis of records of intensities abstracted from rainfall

depths of sub-daily durations, observed at a recording rainfall gauging station.

An IDF relationship is, in fact, a family of curves which can be expressed in the

general form id,T ¼ a Tð Þ=b dð Þ, where id,T denotes the rainfall intensity (or rate), in

mm/h or in/h, d the rainfall duration, in h, T the return period, in years, a(T ) is a
nonlinear function of T, defined by the probability distribution function of the

maximum rainfall intensities, and b(d ) is a function of the duration d only. In

general, the functions a(T ) and b(d) may be respectively written as a Tð Þ ¼ cþ λ
ln Tð Þ [or as a Tð Þ ¼ αTβ] and as b dð Þ ¼ d þ θð Þη, where c, λ, α, β, θ, and η represent
parameters, with θ� 0 and 0< η< 1 (Koutsoyiannis et al. 1998). As an example,

the hypothetical IDF equation id,T ¼ 33:4� 7:56 ln �ln 1� 1=Tð Þ½ �f g= d0:40
� �

is

depicted in Fig. 10.12 as a family of curves. In general, the shorter the duration,

the more intense the rainfall, whereas the rarer the rainfall, the higher its rate.

Fig. 10.12 Hypothetical example of an IDF relationship
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To derive the IDF equation for a given gauging station, it is necessary to estimate

the parameters c, λ, α, β, θ, and η, as appropriate, for the functions a(T ) and b(d).

The conventional approach consists of four steps and assumes that a Tð Þ ¼ αTβ

(Raudkivi 1979). The first step refers to the frequency analysis of the rainfall

intensities for each duration d, with d¼ 5 and 10 min, 0.5, 1, 2, 4, 8, 12 and 24 h,

following the general guidelines outlined in Chap. 8. The second step relates to

the estimation of the rainfall intensities for each duration d and return periods T¼ 2,

5, 10, 25, 50, and 100 years, with the probability distribution fitted in the

first step. In the third step, the general IDF equation id,T ¼ a Tð Þ=b dð Þ is written

as ln id,Tð Þ ¼ ln αð Þ þ βln Tð Þ½ � � ηln d þ θð Þ which is a linear relation between the

transformed variables ln id,Tð Þ and ln d þ θð Þ, with η representing the slope of the

line, β the spacing of the lines for the various return periods, and α the vertical

position of the lines as a set (Raudkivi 1979). The fourth and final step consists of

estimating the values of parameters c, λ, α, β, θ, and η, either graphically or through
a two-stage least squares approach, first θ and η, and then α and β, using the

regression methods covered in Chap. 9. Koutsoyiannis et al. (1998) present a

comprehensive framework for the mathematical derivation of IDF relationships

and propose additional methods for the robust estimation of parameters c, λ, α, β, θ,
and η. The reader interested in this general framework and related estimation

methods should consult the cited reference.

For a site of interest, a recording rainfall gauging station operating for a

sufficiently long time period is generally capable of yielding a reliable estimate

of the IDF relationship. In other locations, however, these recording stations may

either not exist or have too few records to allow a reliable estimation of the IDF

relationship. In parallel, as the interest expands over large areas, short-duration

rainfalls may show significant geographical variability, particularly in mountainous

regions, as precipitation usually undergoes orographic intensification. These two

aspects of short-duration rainfall, the usually scarce records and their spatial

variability, seem to have motivated some applications of regional frequency anal-

ysis to IDF estimation. Two examples of these are reported in Davis and Naghettini

(2000) and Gerold and Watkins (2005), where the Hosking–Wallis method was

used to estimate the regional IDF relationships for the Brazilian State of Rio de

Janeiro and for the American State of Michigan, respectively. The implicit idea in

both applications was that of deriving a relationship of the type ij,d,T ¼ μj,dxd Tð Þ,
where ij,d,T denotes the rainfall intensity at a site indexed as j, located within a

homogeneous region, μj, d represents the index-flood, which depends on the dura-

tion d and on site-specific attributes, and xd(T ) is the regional growth curve for the

duration d.
Table 10.17 displays a list of six recording rainfall gauging stations in the Serra

dos Órg~aos region, in the Brazilian State of Rio de Janeiro, as shown in the location
map of Fig. 10.13, together with the hypsometric and isohyetal maps. The region

has a sharp relief, with steep slopes and elevations between 650 and 2200 m above

sea level. The mean annual rainfall depth varies between 2900 mm, at high

elevations, and 1300 mm, at low elevations. The annual maximum rainfall
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intensities (mm/h) of sub-daily durations, abstracted from the data recorded at the

six gauging stations, are given in part (a) of the table in Appendix 8; the annual

maximum quantities were abstracted on the basis of the region’s water year, from
October to September. Apply the Hosking–Wallis method to these data and esti-

mate the regional IDF relationship for the durations 1, 2, 3, 4, 8, 14, and 24 h.

Solution As mentioned earlier, the regional estimation of rainfall IDF relation-

ships, through an index-flood-based approach, such as the Hosking–Wallis method,

implies the use of an equation of the type ij,d,T ¼ μj,dxd Tð Þ, relating the rainfall

Table 10.17 Recording rainfall gauging stations in the Serra dos Órg~aos region, Brazil

Code Gauging station Operator N (years)

Mean rainfall

depth (mm) Elevation (m)

02243235 Andorinhas SERLA 20 2462 79.97

02242092 Apolinário SERLA 19 2869 719.20

02242096 Faz. Sto. Amaro SERLA 20 2619 211.89

02242070 Nova Friburgo INMET 18 1390 842.38

02242098 Posto Garraf~ao SERLA 20 2953 641.54

02242093 Quizanga SERLA 21 1839 13.96

Source: Davis and Naghettini (2000)

Fig. 10.13 Location, hypsometric, and isohyetal maps of the Serra dos Órg~aos region, in Brazil,

for the solution of Example 10.5
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intensity at the site j, to the index-flood μj,d and the regional growth curve xj,d(T ),
for the duration d. As with any index-flood-based approach, the implicit assumption

is that of a homogeneous region with respect to the shape of xj,d(T ), which is

assumed identical to all sites within the region apart from a site-specific scaling

factor μj, d. As such, the first step refers to checking the homogeneity requirement

for the region formed by the six gauging stations. This was first performed by

plotting the site-specific dimensionless empirical curves on probability paper, for

each duration d, as depicted in the panels of Fig. 10.14. The sample mean of each

series was used as the scaling factor and the Weibull plotting position formula was

employed to calculate the empirical frequencies. In addition to the graphical

analysis, the heterogeneity measures were calculated, using the procedures outlined

in Sect. 10.4.2. The heterogeneity measures were calculated on the basis of the

L-CV, are denoted as H and given in Table 10.18. The results show that the

heterogeneity measures are close to 1, which indicate an “acceptably homoge-

neous” region. The graphs of Fig. 10.14 seem to corroborate such an indication.

After grouping the six sites into an acceptably homogeneous region, the next

step consists of choosing a regional growth curve from the set of three-parameter

candidate models, through the use of the goodness-of-fit measure Z, as outlined in

Sect. 10.4.3. The L-moments and the sample L-moments ratios for the dimension-

less rainfall data of each site, for the various durations d, are given in part (b) of the
table in Appendix 8. The regional L-moments and L-moment ratios, as estimated

with Eq. (10.9), are shown in Table 10.19, and allow the estimation of the param-

eters of the fitted distributions.

Table 10.20 presents the goodness-of-fit measures Z for the candidate models

GLO, LNO, GEV, P III, and GPA, estimated for the various durations d, according
to the procedures given in Sect. 10.4.3. The criterion jZj � 1.64 is met by the LNO,

GEV, P III, and GPA distributions, all durations considered. Among these, the GPA

distribution is most often used in the peaks-over-threshold (POT) representation for

hydrological extremes, as mentioned and justified in Sect. 8.4.3, and shall not be

included among the candidates for modeling the regional IDF relationship, thus

leaving the LNO, GEV, and P-III as candidate models. Figure 10.15 depicts the

regional (tR3 , t
R
4 ), estimated for the various durations d, pinpointed on the L-moment-

ratio diagram of the candidate distributions. Although the adoption of a single

candidate model for all durations considered is not a requirement, the chart of

Fig. 10.15 seems to indicate an overall superior fit by the P III distribution, which is

thus chosen as a common regional parametric form, with varying parameters for

d¼ 1, 2, 3, 4, 8, 14, and 24 h. The regional estimates of the Pearson type III

parameters, for the durations considered, are displayed in Table 10.21.

The dimensionless quantiles of the rainfall rates, for durations d¼ 1, 2, 3, 4, 8,

14, and 24 h, as estimated with the corresponding regional Pearson type III

parameters can be estimated using the frequency factors, as described in Sect.

8.3.3, with the Eq. (8.32). The calculated quantiles are displayed in Table 10.22

and the corresponding quantile curves xd(T ) are plotted on the charts of Fig. 10.14.
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Fig. 10.14 Dimensionless empirical distributions for the rainfall data of Example 10.5

Table 10.18 Heterogeneity measures for the rainfall data of Example 10.5

Duration ! 1 h 2 h 3 h 4 h 8 h 14 h 24 h

H �1.08 �1.34 �1.15 �0.32 �0.13 �0.44 �1.05

488 M. Naghettini and E.J.d.A. Pinto



The final step refers to the regression analysis between the scaling factor μj, d,
taken as the mean rainfall intensity of duration d at site j, and the site-specific

physical and climatic characteristics, which are the possible explanatory variables

taken, in this example, as the site’s mean annual rainfall (MAR) depth and

Table 10.19 Regional

L-moments and L-moment

ratios for the data of

Example 10.5

Duration l1 L-CV(t) L-Skewness (t3) L-Kurtosis (t4)

1 h 1 0.1253 0.2459 0.1371

2 h 1 0.1293 0.2336 0.1367

3 h 1 0.1564 0.2148 0.1100

4 h 1 0.1707 0.2536 0.1365

8 h 1 0.1911 0.2636 0.1757

14 h 1 0.2038 0.2511 0.1522

24 h 1 0.1885 0.1852 0.1256

Table 10.20 Goodness-of-fit measures (Z ) for the data of Example 10.5

Candidate distribution 1 h 2 h 3 h 4 h 8 h 14 h 24 h

Generalized logistic (GLO) 1.95 1.85 2.59 2.03 0.94a 1.52a 1.86

Lognormal (LNO) 0.80a 0.70a 1.36a 0.88a �0.11a 0.41a 0.66a

Generalized extreme value

(GEV)

1.15a 1.02a 1.64a 1.26a 0.26a 0.77a 0.83a

Pearson type III (P III) 0.16a 0.11a 0.81a 0.21a �0.76a �0.23a 0.25a

Generalized Pareto (GPA) �0.80a �0.99a �0.58a �0.66a �1.45a �1.10a �1.45a

a Zj j � 1:64

Fig. 10.15 L-moment-ratio diagram of candidate models, with the (tR3 , t
R
4 ) estimates for the

durations d¼ 1, 2, 3, 4, 8, 14, and 24 h, for the rainfall data of Example 10.5
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respective elevation above sea level. These site-specific quantities are given in

Table 10.23 for all six gauging stations in the region.

The models tested in the regression analysis were of the log–log type, which has

required the logarithmic transformation of the values given in Table 10.23. The

significances of including predictor variables and of the complete regression equa-

tion were evaluated through the partial F and total F tests, respectively. The overall

quality of the regression models was further examined through the analyses of the

residuals, the standard errors of estimates, the adjusted coefficients of determina-

tion, the signs and magnitudes of the regression coefficients, and the standardized

partial regression coefficients. The final regression model is given by

μ̂ j,d ¼ 29:5d�0:7238MARj
0:0868, for 1 h � d � 24h, where MARj denotes the

mean annual rainfall at site j, in mm, and μ̂ j,d is the index-flood in mm/h. For an

ungauged site j within the region, MARj can be estimated from the isohyetal map

shown in Fig. 10.13 and then used with the regression model to yield the estimate of

μ̂ j,d for the desired duration d. Finally, the product î j,d,T ¼ μ̂ j,dx̂ d Tð Þ, with x̂ d Tð Þ
taken from Table 10.22, yields the rainfall intensity ı̂j,d,T of duration d, for the
desired return period T.

Table 10.21 Regional

estimates of Pearson

type III parameters
Duration

P III regional parameters

Shape (β) Scale (α) Location (ξ)

1 h 1.824 0.176 0.679

2 h 2.018 0.172 0.653

3 h 2.374 0.190 0.550

4 h 1.718 0.248 0.574

8 h 1.592 0.152 0.538

14 h 1.750 0.293 0.487

24 h 3.177 0.195 0.381

Table 10.22 Regional estimates of Pearson type III dimensionless quantiles xd(T )

Return period T (years)

Duration d

1 h 2 h 3 h 4 h 8 h 14 h 24 h

2 0.944 0.945 0.939 0.921 0.908 0.906 0.936

5 1.165 1.172 1.210 1.223 1.248 1.267 1.258

10 1.317 1.326 1.391 1.433 1.487 1.517 1.465

20 1.464 1.473 1.562 1.635 1.718 1.757 1.658

25 1.510 1.520 1.615 1.699 1.791 1.833 1.719

50 1.651 1.661 1.778 1.895 2.015 2.066 1.900

75 1.733 1.742 1.872 2.008 2.145 2.200 2.004

100 1.790 1.799 1.937 2.087 2.237 2.295 2.076

125 1.834 1.843 1.988 2.149 2.308 2.368 2.131

150 1.870 1.879 2.029 2.199 2.365 2.427 2.177

200 1.927 1.936 2.093 2.277 2.456 2.521 2.247
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Exercises

1. Solve Example 10.1 using an IFB approach with estimation by the method of

moments.

2. Solve Example 10.1 using an IFB approach with estimation by the method of

regional L-moments, considering as candidate models the Gumbelmin and

two-parameter Weibullmin distributions. The Fortran routines written by

Hosking (1996) cannot be used in such a context because they do not encompass

candidate models for low flows. As for the L-moment estimation of the

Weibullmin parameters α and β, recall from Exercise 6 of Chap. 8 that α ¼ ln 2ð Þ
=λ2, ln Xð Þ and β ¼ exp λ1, ln Xð Þ þ 0:5772=α

� �
.

3. Solve Example 10.2 using the RBQ method, for T¼ 5, 25, and 100 years.

4. On January 11th and 12th, 2011 heavy rains fell over the mountainous areas of

the Brazilian State of Rio de Janeiro, known as Serra dos Órg~aos (see its

location on the map in Fig. 10.13), triggering one of the most catastrophic

natural disasters in the history of Brazil. Important towns such as Nova Friburgo,

Teresópolis, and Petrópolis were hit by heavy rains, which fell on the already

saturated steep slopes causing floods, landslides, and massive rock avalanches.

More than 900 people were killed, thousands were made homeless and there was

huge damage to property as a result of this natural disaster. Figure 10.16 depicts

the chart of the cumulative rainfall depths recorded at the gauging station located

in the town of Nova Friburgo, during the 24 h, from 7 a.m. Jan 11th to 7 a.m. Jan

Fig. 10.16 Cumulative rainfall depths recorded at the gauging station of Nova Friburgo, Brazil,

on 11th and 12th January 2011

492 M. Naghettini and E.J.d.A. Pinto

http://dx.doi.org/10.1007/978-3-319-43561-9_8


12th, 2011. Based on the results given in the solution to Example 10.5, estimate

the return periods associated with the maximum rainfall intensities for the

durations d¼ 1, 2, 3, 4, 8, and 24 h, as abstracted from the chart of Fig. 10.16.

5. Extend the solution to Example 10.5 to the subhourly durations d¼ 5, 10, 15,

30, and 45 min. The rainfall data and the estimates of related L-moment ratios

are given in the tables of Appendix 8.

6. Appendix 9 presents maps, catchment attributes and low flow data for five

gauging stations located in the upper Velhas river basin, in southeastern Brazil.

Low flow data refer to annual minimum mean flows for the durations D¼ 1 day,

3 days, 5 days, and 7 days. Employ an index–flood-based approach, with

estimation through L-moments, to propose a regional model to estimate the

T-year annual minimum mean flow of duration D at an ungauged site within the

region. The Fortran routines written by Hosking (1996) cannot be used in such a

context because they do not encompass candidate models for low flows.

Consider the two-parameter Gumbelmin and Weibullmin as candidate distribu-

tions. As for the L-moment estimation of the Weibullmin parameters α and β,
recall from Exercise 6 of Chap. 8 that α ¼ ln 2ð Þ=λ2, ln Xð Þ and β ¼ exp λ1, ln Xð Þþ

�
0:5772=α�.

7. Table A10.1 of Appendix 10 lists the geographic coordinates and elevations of

92 rainfall gauging stations in the upper S~ao Francisco river basin, located in

southeastern Brazil, whereas Figs. A10.1 and A10.2 depict the location and

isohyetal maps, respectively. The annual maximum daily rainfall depths

recorded at the 92 gauging stations are given in Table A10.2. Use the Hosking–

Wallis method to perform a complete regional frequency analysis of annual

maximum daily rainfall depths over the region.
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Chapter 11

Introduction to Bayesian Analysis
of Hydrologic Variables

Wilson Fernandes and Artur Tiago Silva

11.1 Historical Background and Basic Concepts

According to Brooks (2003) and McGrayne (2011), Bayesian methods date back to

1763, when Welsh amateur mathematician Richard Price (1723–1791) presented

the theorem developed by the English philosopher, statistician, and Presbyterian

minister Thomas Bayes (1702–1761) at a session of the Royal Society in London.

The underlying mathematical concepts of Bayes’ theorem were further developed

during the nineteenth century as they stirred the interest of renowned mathemati-

cians such as Pierre-Simon Laplace (1749–1827) and Carl Friedrich Gauss

(1777–1855), and of important statisticians such as Karl Pearson (1857–1936).

By the early twentieth century, use of Bayesian methods declined due, in part, to

the opposition of prestigious statisticians Ronald Fisher (1890–1962) and Jerzy

Neyman (1894–1981), who had philosophical objections to the degree of subjec-

tivity that they attributed to the Bayesian approach. Nevertheless, prominent stat-

isticians such as Harold Jeffreys (1891–1989), Leonard Savage (1917–1971),

Dennis Lindley (1923–2013) and Bruno de Finetti (1906–1985), and others, con-

tinued to advocate in favor of Bayesian methods by developing them and prescrib-

ing them as a valid alternative to overcome the shortcomings of the frequentist

approach.

In the late 1980s, there was a resurgence of Bayesian methods in the research

landscape of statistics, due mainly to the fast computational developments of that

decade and the increasing need of describing complex phenomena, for which
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conventional frequentist methods did not offer satisfactory solutions (Brooks 2003).

With increased scientific acceptance of the Bayesian approach, further computa-

tional developments and more flexible means of inferences followed. Nowadays it

is undisputable that the Bayesian approach is a powerful logical framework for the

statistical analysis of random variables, with potential usefulness for solving prob-

lems of great complexity in various fields of knowledge, including hydrology and

water resources engineering.

The main difference between the Bayesian and frequentist paradigms relates to

how they view the parameters of a given probabilistic model. Frequentists believe

that parameters have fixed, albeit unknown, true values, which can be estimated by

maximizing the likelihood function, for example, as described in Sect. 6.4 of

Chap. 6. Bayesian statisticians, on the other hand, believe that parameters have

their own probability distribution, which summarize their knowledge, or ignorance,

about those parameters. It should be noted that Bayesians also defend that there is a

real value (a point) for a parameter, but since it is not possible to determine that

value with certainty, they prefer to use a probability distribution to reflect the lack

of knowledge about the true value of the parameter. Therefore, as the knowledge of

the parameter increases, the variance of the distribution of the parameter decreases.

Ultimately, at least in theory, the total knowledge about that parameter would result

in a distribution supported on a single point, with a probability equal to one.

Therefore, from the Bayesian perspective, a random quantity can be an unknown

quantity that can vary and take different values (e.g., a random variable), or it can

simply be a fixed quantity about which there is little or no available information

(e.g., a parameter). Uncertainty about those random quantities are described by

probability distributions, which reflect the subjective knowledge acquired by the

expert when evaluating the probabilities of occurrence of certain events related to

the problem at hand.

In addition to the information provided by observed data, which is also consid-

ered by the classical school of statistics, Bayesian analysis considers other sources

of information to solve inference problems. Formally, suppose that θ is the param-

eter of interest, and can take values within the parameter space ϴ. Let Ω be the

available prior information about that parameter. Based on Ω, the uncertainty of θ
can be summarized by a probability distribution with PDF π θ

��Ω� �
, which is called

the prior density function or the prior distribution, and describes the state of

knowledge about the random quantity, prior to looking at the observed data. If ϴ
is a finite set, then, it is an inference, in itself, as it represents the possible values

taken by θ. At this point, it is worth noting that the prior distribution does not

describe the random variability of the parameter but rather the degree of knowledge

about its true value.

In general, Ω does not contain all the relevant information about the parameter.

In fact, the prior distribution is not a complete inference about θ, unless, of course,
the analyst has full knowledge about the parameter, which does not occur in most

real situations. If the information contained in Ω is not sufficient, further informa-

tion about the parameter should be collected. Suppose that the random variable X,
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which is related to θ, can be observed or sampled; prior to sampling X and assuming

that the current value of θ is known, the uncertainty about the amount X can be

summarized by the likelihood function f x
��θ, Ω� �

. It should be noted that the

likelihood function provides the probability of a particular sample value x of

X occurring, assuming that θ is the true value of the parameter. After performing

the experiment, the prior knowledge about θ should be updated using the new

information x. The usual mathematical tool for performing this update is Bayes’
theorem. Looking back at Eq. (3.8) and taking as reference the definition of a

probability distribution, the posterior PDF, which summarizes the updated knowl-

edge about θ is given by

π θ
��x, Ω� � ¼ f x

��θ, Ω� �
π θ

��Ω� �
f x

��Ω� � ; ð11:1Þ

where the prior predictive density, f x
��Ω� �

, is given by

f x
��Ω� � ¼ ð

Θ

f x
��θ, Ω� �

π θ
��Ω� �

dθ; ð11:2Þ

The posterior density, calculated through Eq. (11.1), describes the uncertainty about

θ after taking the data into account, that is,π θ
��x, Ω� �

is the posterior inference about

θ, according to which it is possible to appraise the variability of θ.
As implied by Eqs. (11.1) and (11.2), the set Ω is present in every step of

calculation. Therefore, for the sake of simplicity, this symbol will be suppressed

in forthcoming equations. Another relevant fact in this context concerns the

denominator of Eq. (11.1), which is expanded in Eq. (11.2): since the integration

of Eq. (11.2) is carried out over the whole parameter space, the prior predictive

distribution is actually a constant, and as such, it has the role of normalizing the

right-hand side of Eq. (11.1). Therein arises another fairly common way of

representing Bayes’ theorem, as written as

π θ
��x� � / f x

��θ� �
π θð Þ; ð11:3Þ

or, alternatively,

posterior density / likelihood� prior density: ð11:4Þ

According to Ang and Tang (2007), Bayesian analysis is particularly suited for

engineering problems, in which the available information is limited and often a

subjective decision is required. In the case of parameter estimation, the engineer

has, in some cases, some prior knowledge about the quantity on which inference is

carried out. In general, it is possible to establish, with some degree of belief, which

outcomes are more probable than others, even in the absence of any observational

experiment concerning the variable of interest.
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A hydrologist, for example, supported by his/her professional experience or

having knowledge on the variation of past flood stages in river reaches neighboring

a study site, even without direct monitoring, can make subjective preliminary

evaluations (or elicitations) of the probability of the water level exceeding some

threshold value. This can be a rather vague assessment, such as “not very likely” or

“very likely,” or a more informative and quantified assessment derived from data

observed at nearby gauging stations. Even such rather subjective information can

provide important elements for the analysis and be considered as part of a logical

and systematic analysis framework through Bayes’ theorem.

A simple demonstration of how Bayes’ theorem can be employed to update

current expert knowledge makes use of discrete random variables. Assume that a

given variable θ can only take values from the discrete set θi, i¼ 1,2, . . ., k, with
respective probabilities pi ¼ P θ ¼ θið Þ. Assume further that after inferring

the values of pi, new information ɛ is gathered by some data collecting

experiment. In such a case, the values of pi should be updated in the light of the

new information ɛ.
The values of pi, prior to obtaining the new information ɛ, provide the prior

distribution of θ, which is assumed to have already been elicited and summarized in

the form of the mass function depicted in Fig. 11.1.

Equation (11.1), as applied to a discrete variable, may be rewritten as

P Θ ¼ θi
��ε� � ¼ P ε

��θ ¼ θi
� �

P θ ¼ θið ÞX k

i¼1 P ε
��θ ¼ θi

� �
P θ ¼ θið Þ

, i ¼ 1, 2, � � �, k; ð11:5Þ

where,

• P ε
��θ ¼ θi

� �
denotes the likelihood or conditional probability of observing ɛ,

given that θi is true;

Fig. 11.1 Prior probability

mass function of variable θ
(adapt. Ang and Tang,

2007)
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• P θ ¼ θið Þ represents the prior mass of θ, that is, the knowledge about θ before ɛ
is observed; and

• P Θ ¼ θi
��ε� �

is the posterior mass of θ, that is, the knowledge about θ after taking
ɛ into account.

The denominator of Eq. (11.5) is the normalizing or proportionality constant,

likewise to the previously mentioned general case.

The expected value of Θ can be a Bayesian estimator of θ, defined as

θ̂ ¼ E Θ
��ε� � ¼X k

i¼1 θiP Θ ¼ θi
��ε� �

i ¼ 1, 2, � � �, k ð11:6Þ

Equation (11.6) shows that, unlike classical parameter estimation, both the

observed data, taken into account via the likelihood function, and the prior infor-

mation, be it subjective or not, are taken into account by the logical structure of

Bayes’ theorem. Example 11.1 illustrates these concepts.

Example 11.1 A large number of extreme events in a certain region may indicate

the need for developing a warning system for floods and emergency plans against

flooding. With the purpose of evaluating the severity of rainfall events over that

region, suppose a meteorologist has classified the sub-hourly rainfall events with

intensities of over 10 mm/h as extreme. Those with intensities lower than 1 mm/h

were discarded. Assume that the annual proportion of extreme rainfall events as

related to the total number of events can only take the discrete values θ¼ {0.0, 0.25,

0.50, 0.75, and 1.0}. This is, of course, a gross simplification, since a proportion can

vary continuously between 0 and 1. Based on his/her knowledge of the regional

climate, the meteorologist has evaluated the probabilities respectively associated

with the proportions θi, i¼ 1, . . . ,5, which are summarized in the chart of Fig. 11.2.

Fig. 11.2 Prior knowledge of the meteorologist on the probability mass function of the annual

proportions of extreme rainfall events
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Solution In the chart of Fig. 11.2, θ is the annual proportion of extreme rainfall

events as related to the total number of events. For instance, the annual probability

that none of the rainfall events is extreme is 0.40. Thus, based exclusively on the

meteorologist’s previous knowledge, the average ratio of events is given by

θ̂
0 ¼E Θ

��ε� � ¼ 0:0� 0:40þ 0:25� 0:30þ 0:50� 0:15þ 0:75� 0:10þ 1:0� 0:05

¼ 0:275

Suppose a rainfall gauging station has been installed at the site and that, 1 year after

the start of rainfall monitoring, none of observed events could be classified as

extreme. Then, the meteorologist can use the new information to update his/her

prior belief using Bayes’ theorem in the form of Eq. (11.5), or

P θ ¼ 0:0
��ε ¼ 0:0

� � ¼ P ε¼0:0
��θ¼0:0� �

P θ¼0:0ð ÞP k

i¼1 P ε¼0:0
��θ¼θi� �

P θ¼θið Þ
, which, with the new data, yields

P θ¼0:0
��ε ¼ 0:0

� �¼ 1:0� 0:40

1:0� 0:40þ 0:75� 0:30þ 0:50� 0:15þ 0:25� 0:10þ 0:0� 0:05

¼ 0:552

In the previous calculations, P ε ¼ 0:0
��θ ¼ θi

� �
refers to the probability that no

extreme events happen, within a universe where 100θi% of events are extreme.

Thus, P ε ¼ 0:0
��θ ¼ 0

� �
refers to the probability of no extreme events happening,

within a universe where 0% of the events are extreme, which, of course, is 100%.

The remaining posterior probabilities are obtained in a likewise manner, as follows:

P θ¼0:25
��ε¼0:0

� �¼ 0:75� 0:30

1:0� 0:40þ 0:75� 0:30þ 0:50� 0:15þ 0:25� 0:10þ 0:0� 0:05

¼ 0:310

P θ ¼0:50
��ε¼ 0:0

� �¼ 0:50� 0:15

1:0� 0:40þ 0:75� 0:30þ 0:50� 0:15þ 0:25� 0:10þ 0:0� 0:05

¼ 0:103

P θ ¼ 0:75
��ε¼0:0

� �¼ 0:25� 0:10

1:0� 0:40þ 0:75� 0:30þ 0:50� 0:15þ 0:25� 0:10þ 0:0� 0:05

¼ 0:034

P θ ¼ 1:00
��ε ¼ 0:0

� �¼ 0:00� 0:05

1:0� 0:40þ 0:75� 0:30þ 0:50� 0:15þ 0:25� 0:10þ 0:0� 0:05

¼ 0:000

Figure 11.3 shows the comparison between the prior and the posterior mass

functions. It is evident how the data, of 1 year of records among which no extreme
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event was observed, adjust the prior belief since the new evidence suggests that the

expected proportion of extreme events is lower than initially thought.

The annual mean proportion of extreme events is given by:

θ̂
00 ¼ E Θ

��ε� �¼ 0:0�0:552þ 0:25�0:310þ 0:50� 0:103þ 0:75�0:034þ 1:0� 0:00

¼ 0:155

It should be noted that classical inference could hardly be used in this case, since the

sample size is 1, which would result in θ̂ ¼ 0. Bayesian analysis, on the other hand,

can be applied even when information is scarce. Suppose, now, that after a second

year of rainfall gauging, the same behavior as the first year took place, that is, no

extreme rainfall event was observed. This additional information can then be used

to update the knowledge about θ through the same procedure described earlier. In

such a case, the prior information for the year 2 is now the posterior mass function

of year 1. Bayes’ theorem can thus be used to progressively update estimates in

light of newly acquired information. Figure 11.4 illustrates such a process of

updating estimates, by hypothesizing the recurrence of the observed data, as in

year 1 with ε ¼ 0, over the next 1, 5, and 10 years.

As shown in Fig. 11.4, after a few years of not a single occurrence of an extreme

event, the evidence of no extreme events becomes stronger. As n!1, the Bayes-

ian estimation will converge to the frequentist one P ε ¼ 0:0
��θ ¼ 0

� � ¼ 1
� �

.

Example 11.1 illustrates the advantages of Bayesian inference. Nevertheless, it

also reveals one of its major drawbacks: the subjectivity involved in eliciting prior

Fig. 11.3 Comparison between prior and posterior mass functions
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information. If another meteorologist had been consulted, there might have been a

different prior probability proposal for Fig. 11.2, thus leading to different results.

Therefore the decision will inevitably depend on how skilled or insightful is the

source of previous knowledge elicited in the form of the prior distribution.

Bayesian inference does not necessarily entail subjectivity. Prior information

may have sources other than expert judgement. Looking back at Example 11.1, the

prior distribution of the ratio of extreme events can be objectively obtained through

analysis of data from a rain gauging station. However, when the analyzed data are

the basis for eliciting the prior distribution, they may not be used to calculate the

likelihood function, i.e., each piece of information should contribute to only one of

the terms of Bayes’ theorem.

In Example 11.1 there was no mention of the parametric distribution of the

variable under analysis. Nevertheless, in many practical situations it is possible to

elicit a mathematical model to characterize the probability distribution of the

quantity of interest. Such is the case in the recurrence time intervals of floods

which are modeled by the geometric distribution (see Sect. 4.1.2), or the probability

of occurrence of y floods with exceedance probability θ in N years, which is

modeled by the binomial distribution (see Sect. 4.1.1). Bayes’ theorem may be

applied directly, although that requires other steps and different calculations than

those presented so far, which depend on the chosen model. In the next paragraphs,

Fig. 11.4 Updating the prior mass functions after 1, 5, and 10 years in which no extreme rainfall

event was observed

504 W. Fernandes and A.T. Silva

http://dx.doi.org/10.1007/978-3-319-43561-9_4
http://dx.doi.org/10.1007/978-3-319-43561-9_4


some of the steps required for a general application of Bayes’ theorem are

presented, taking the binomial distribution as a reference.

Assume Y is a binomial variate or, for short, Y � BðN, θÞ. Unlike the classical
statistical analysis, the parameter θ is not considered as a fixed value but rather as a
random variable that can be modeled by a probability distribution. Since θ can take
values in the continuous range [0, 1], it is plausible to assume that its distribution

should be left- and right-bounded, and, as such, the Beta distribution is an appro-

priate candidate to model θ, i.e., θ � Beða, bÞ. Assuming that the prior distribution

of θ is fully established (e.g., that the a and b values are given) and, having observed
the event Y¼ y, Bayes’ theorem provides the solution for the posterior distribution

of θ as follows

π θ
��y� � ¼ p y

��θ� �
π θð Þð1

0

p y
��θ� �

π θð Þdθ
ð11:7Þ

where

• π θ
��y� �

is the posterior density of θ after taking y into consideration;

• p y
��θ� �

is the likelihood of y for a given θ, that is,
N
y

� �
θy 1� θð ÞN�y;

• π(θ) is the prior density of θ, that is, the Be(a, b) probability density function;

•

ð1
0

p y
��θ� �

π θð Þdθ is the normalizing or proportionality constant, hitherto

represented by p(y). It should be noted that p(y) depends only upon y and is,

thereby, a constant with respect to the parameter θ.

Under this setting, one can write

π θ
��y� � ¼

N
y

� �
θy 1� θð ÞN�y Γ aþbð Þ

Γ að ÞΓ bð Þ θ
a�1 1� θð Þb�1

p yð Þ ð11:8Þ

After algebraic manipulation and grouping common terms, one obtains

π θ
��y� � ¼ 1

p yð Þ
N
y

� �
Γ aþ bð Þ
Γ að ÞΓ bð Þ θ

aþy�1 1� θð ÞbþN�y�1 ð11:9Þ

or

π θ
��y� � ¼ c N; y; a; bð Þθaþy�1 1� θð ÞbþN�y�1 ð11:10Þ

Note, in Eq. (11.10), that the term θaþy�1 1� θð ÞbþN�y�1 is the kernel of the

Be aþ y, bþ N � yð Þ density function. Since the posterior density must integrate

to 1 over its domain, the independent function c(N, y, a, b) must be
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c N; y; a; bð Þ ¼ Γ aþ bþ Nð Þ
Γ aþ yð ÞΓ bþ N � yð Þ ð11:11Þ

As opposed to Example 11.1, here it is possible to evaluate the posterior

distribution analytically. Furthermore, any inference about θ, after taking the data

point into account, can be carried out usingπ θ
��y� �

. For example, the posterior mean

is given by

E θ
��y� � ¼ aþ y

aþ bþ N
ð11:12Þ

which can be rearranged as

E θ
��y� � ¼ aþ b

aþ bþ N

a

aþ b

� �
þ N

aþ bþ N

y

N

	 

ð11:13Þ

For the sake of clarity, Eq. (11.12) can be rewritten as

E θ
��y� � ¼ aþ b

aþ bþ N
� priormean of θf g þ n

aþ bþ N
� data averagef g ð11:14Þ

Equation (11.13) shows that the posterior distribution is a balance between prior

and observed information. As in Example 11.1, as the sample increases, prior

information or prior knowledge becomes less relevant when estimating θ and

inference results should converge to those obtained through the frequentist

approach. In this case,

limN!1E θ
��y� � ¼ y

N
ð11:15Þ

Example 11.2 Consider a situation similar to that shown in Example 4.2. Suppose,

then, that the probability p that the discharge Q0 will be exceeded in any given year

is uncertain. An engineer believes that p has mean 0.25 and variance 0.01. Note

that, in Example 4.2, p was not considered to be a random variable. Furthermore, it

is believed that p follows a Beta distribution, i.e., p ~Be(a, b). Parameters a and

b may be estimated by the method of moments as â ¼ p p
S2p
� 1

	 

¼ 4:4375 and

b̂ ¼ 1� pð Þ p
S2p
� 1

	 

¼ 13:3125, where p ¼ 0:25 and S2p ¼ 0:01. In a sense, the

variance of p, as denoted by S2p, measures the degree of belief of the engineer as to

the value of p. Assume that after 10 years of observations, no flow exceeding Q0

was recorded. (a) What is the updated estimate of p in light of the new information?

(b) What is the posterior probability that Q0 will be exceeded twice in the next

5 years?
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Solution

(a) As previously shown, π p
��y� � ¼ Be aþ y, bþ N � yð Þ ¼ Be A;Bð Þ, with

a¼ 4.4375, b¼ 13.3125, N¼ 10 and y¼ 0. Equation (11.11) provides the

posterior mean of p as E p
��y� � ¼ 4:4375þ0

4:4375þ13:3125þ10 ¼ 0:1599. Since no

exceedances were observed in the 10 years of records, the posterior probability

of flows in excess of Q0 occurring is expected to decrease, or, in other words,

there is empirical evidence that such events are more exceptional than initially

thought. Figure 11.5 illustrates how the data update the distribution of p.
Example 4.2 may be revisited using the posterior distribution for inference

about the expected probability and the posterior credibility intervals, which are

formally presented in Sect. 11.3.

(b) The question here concerns what happens in the 5 next years, thus departing

from the problem posed in Example 4.2. Recall that: (1) the engineer has a prior

knowledge about p, which is formulated as π( p); (2) no exceedance was

recorded over a 10-year period, i.e., y¼ 0; (3) the information about p was

updated to π p
��y� �

; and (4) he/she needs to evaluate the probability that a certain

event ey will occur in the next 5 years. Formally,

PðY� ¼ y
� j Y ¼ yÞ ¼

ð
PðY� ¼ y

�
, Y ¼ yÞ dp

¼
ð
PðY� ¼ y

�
, p j Y ¼ yÞ dp

¼
ð
PðY� ¼ y

� j p, YÞ πðp j YÞ dp

¼
ð

N
y
�

� �
py
� ð1� pÞN�y

�
f BetaðA,BÞðpÞ dp

Fig. 11.5 Prior and posterior densities of p
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where N¼ 5, ey ¼ 2, A¼ 4.4375, and B¼ 23.3125. After algebraic manipula-

tion one obtains

P eY ¼ ey��Y ¼ y
	 


¼ Ney
� �

Γ AþBð Þ
Γ Að ÞΓ Bð Þ

ð
pey 1� pð ÞN�eypAþ1 1� pð ÞB�1dp. Note that

the integrand in this equation is the numerator of the PDF of the

Be ey þ A,N � ey þ Bð Þ distribution. Since a density function must integrate to

1, over the domain of the variable, one must obtain

P eY ¼ ey��Y ¼ y
	 


¼ Ney
� �

Γ AþBð Þ
Γ Að ÞΓ Bð Þ

Γ eyþAð ÞΓ N�eyþBð Þ
Γ NþAþBð Þ ¼ 0:1494. This is the

posterior predictive estimate of P ey ¼ 2ð Þ, since it results from the integration

over all possible realizations of p. One could further define the probabilities

associated with events ey ¼ 0, 1, 2, 3, 4, � � �, nf g over the next N years.

Figure 11.6 illustrates the results for N¼ 5.

11.2 Prior Distributions

11.2.1 Conjugate Priors

In the examples discussed in the previous section, the product likelihood� prior
density benefited from an important characteristic: its mathematical form was such

that, after some algebraic manipulation, a posterior density was obtained which

belongs to the same family as the prior density (e.g., Binomial�Beta!Beta).
Furthermore, in those cases, the proportionality constant (the denominator of

Bayes’ theorem) was obtained in an indirect way, without requiring integration.

Fig. 11.6 Posterior predictive mass function of the number of events over 5 years
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This is the algebraic convenience of using conjugate priors, i.e., priors whose

combination with a particular likelihood results in a posterior from the same family.

Having a posterior distribution with a known mathematical form facilitates

statistical analysis and allows for a complete definition of the posterior behavior

of the variable under analysis. However, as several authors point out (e.g., Paulino

et al. 2003; Migon and Gamerman 1999) this property is limited to only a few

particular combinations of models. As such, conjugate priors are not usually useful

in most practical situations. Following is a non-exhaustive list of conjugate priors.

• Normal distribution (known standard deviation σ)

Notation: X � N μ; σð Þ
Prior: μ � N ς; τð Þ
Posterior: μ

��x � N υ σ2ςþ τ2xð Þ, τσ ffiffiffi
υ
pð Þ with υ ¼ 1

σ2þτ2

• Normal distribution (known mean μ)

Notation: X � N μ; σð Þ
Prior: σ � Ga α; βð Þ
Posterior: σ

��x � Ga αþ 1
2
, β þ μ�xð Þ2

2

	 

• Gamma distribution

Notation: X ~Ga(θ,η)
Prior: η � Ga α; βð Þ
Posterior: η

��x � Ga αþ θ, β þ xð Þ
• Poisson distribution

Notation: Y � P νð Þ
Prior: ν � Ga α; βð Þ
Posterior: ν

��y � Ga αþ y, β þ 1ð Þ
• Binomial distribution

Notation: Y � B N; pð Þ
Prior: p � Be α; βð Þ
Posterior: p

��y � Be αþ y, β þ N � yð Þ

11.2.2 Non-informative Priors

In some situations there is a complete lack of prior knowledge about a given

parameter. It is not straightforward to elicit a prior distribution that reflects total

ignorance about such a parameter. In these cases, the so-called non-informative

priors or vague priors can be used.
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A natural impulse for modelers to convey non-information, in the Bayesian

sense, is to attribute the same prior density to every possible value of the parameter.

In that case, the prior must be a uniform distribution, that is π θð Þ ¼ k. The problem
with that formulation is that when θ has an unbounded domain, the prior distribu-

tion is improper, that is,

ð
π θð Þdθ ¼ 1. Although the use of proper distributions is

not mandatory, it is considered to be a good practice in Bayesian analysis. Robert

(2007) provides an in-depth discussion about the advantages of using proper prior

distributions. A possible alternative to guarantee that

ð
π θð Þdθ ¼ 1 is to use the

so-called vague priors, which are parametric distributions with large variances such

that they are, at least locally, nearly flat. Figure 11.7 illustrates this rationale for a

hypothetical parameter λ, which is Gamma-distributed. Note how the Gamma

density, with a very small scale parameter, is almost flat. Another option is to use

a normal density with a large variance.

Another useful option is to use a Jeffreys prior. A Jeffreys prior distribution has a

density defined as

π θð Þ / I θð Þ½ �1=2 ð11:16Þ

where I(θ) denotes the so-called Fisher information about the parameter θ, as
given by

Fig. 11.7 Gamma densities for some values of the scale parameter
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I θð Þ ¼ E �∂2
ln L x

��θ� �
∂θ2

" #
ð11:17Þ

andL x
��θ� �

represents the likelihood of x, conditioned on θ. Following is an example

of application of a Jeffreys prior.

Example 11.3 Let X � P θð Þ. Specify the non-informative Jeffreys prior distribu-

tion for θ (adapted from Ehlers 2016).

Solution The log-likelihood function of the Poisson distribution can be written as

ln L x
��θ� � ¼ �Nθ þ ln θð ÞPN

i¼1
xi � ln

QN
i¼1

xi!

� �
of which, the second-order deriv-

ative is

∂2
ln L x

��θ� �
∂θ2

¼ ∂
∂θ
�N þ

PN
i¼1 xi
θ

" #
¼�

PN
i¼1 xi
θ2

: Then,

I θð Þ¼ 1

θ2
E

XN

i¼1 xi
h i

¼ N

θ
/ θ�1:

Incidentally, that is the same prior density as the conjugate density of the Poisson

model Ga(α, β), with α¼ 0.5 and β! 0. In general, with a correct specification of

parameters, the conjugate prior holds the characteristics of a Jeffreys prior

distribution.

11.2.3 Expert Knowledge

Although it is analytically convenient to use conjugate priors or non-informative

priors, these solutions do not necessarily assist the modeler in incorporating any

existing prior knowledge or belief into the analysis. In most cases, knowledge about

a certain quantity does not exist in the form of a particular probabilistic model.

Hence the expert must build a prior distribution from whatever input, be it partial or

complete, that he/she has. This issue is crucial in Bayesian analysis and while there

is no unique way of choosing a prior distribution, the procedures implemented in

practice generally involve approximations and subjective determination. Robert

(2007) explores in detail the theoretical and practical implications of the choice of

prior distributions. In Sect. 11.5, a real-world application is described in detail,

which includes some ideas about how to convert prior information into a prior

distribution.

In the hydrological literature there are some examples of prior parameter

distributions based on expert knowledge. Martins and Stedinger (2000) established

the so-called “geophysical prior” for the shape parameter of the GEV distribution,

based on past experience gained in previous frequency analyses of hydrologic

maxima. The geophysical prior is given by a Beta density in the range [�0.5, 0.5]
and defined as
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π κð Þ ¼ 0:5þ κð Þ5 0:5� κð Þ8
B 6; 9ð Þ ð11:18Þ

where B(.) is the Beta function. Another example is provided by Coles and

Powell (1996) who proposed a method for eliciting a prior distribution for all

GEV parameters based on a few “rough” quantile estimates made by expert

hydrologists.

11.2.4 Priors Derived from Regional Information

While their “geophysical prior” was elicited based on their expert opinion about a

statistically reasonable range of values taken by the GEV shape parameter, Martins

and Stedinger (2000) advocate the pursuit of regional information from nearby sites

to build a more informative prior for κ. In fact, as regional hydrologic information

exists and, in cases, can be abundant, the Bayesian analysis framework provides a

theoretically sound setup to formally include it in the statistical inference. There are

many examples in the technical literature of prior distributions derived from

regional information for frequency analysis of hydrological extremes (see Viglione

et al. 2013 and references therein).

A recent example of such an approach is given in Silva et al. (2015). These

authors used the Poisson-Pareto model (see Sect. 8.4.5), under a peaks-over-thresh-

old approach, to analyze the frequency of floods in the Itajaı́-açu River, in Southern

Brazil, at the location of Apiúna. Since POT analysis is difficult to automate, given

the subjectivity involved in the selection of the threshold and independent flood

peaks, Silva et al. (2015) exploited the duality of the shape parameter of the

Generalized Pareto (GPA) distribution for exceedance magnitudes and of the

GEV distribution of annual maxima by extensively fitting the GEV distribution to

138 annual maximum flood samples in the region (the 3 southernmost states of

Brazil), using maximum likelihood estimation and the resulting estimates of the

shape parameter to construct a prior distribution for that parameter. Figure 11.8

shows the location of the 138 gauging stations and the spatial distribution of the

estimated values of the GEV shape parameter.

A Normal distribution was fitted to the obtained estimates of κ. Figure 11.9

shows the histogram of the estimates of the GEV shape parameter and the PDF of

the fitted Normal distribution. Figure 11.9 also shows, as a reference, the PDF of the

geophysical prior elicited by Martins and Stedinger (2000). Silva et al. (2015) found

that, while using the geophysical prior is worthwhile in cases where no other prior

information about κ is available, in that particular region it did not adequately fit the
data.
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11.3 Bayesian Estimation and Credibility Intervals

Bayesian estimation has its roots in Decision Theory. Bernardo and Smith (1994)

argue that Bayesian estimation is fundamentally a decision problem. This section

briefly explores some essential aspects of statistical estimation under a Bayesian

approach. A more detailed description of such aspects can be found in Bernardo and

Smith (1994) and Robert (2007).

Under the decision-oriented rationale for Bayesian estimation of a given param-

eter θ, one has a choice of a loss function, ‘(δ, θ), which represents the loss or

penalty due to accepting δ as an estimate of θ. The aim is to choose the estimator

that minimizes the Bayes risk, denoted as BR and given by

BR ¼
ðð
‘ δ; θð Þf x

��θ� �
π θð Þdx dθ ð11:19Þ

Fig. 11.8 Map of the south of Brazil with the location of the flow gauging stations used to elicit a

prior distribution for the GEVshape parameter κ and spatial distribution of κ values (adapted from
Silva et al. 2015)

11 Introduction to Bayesian Analysis of Hydrologic Variables 513



The inversion of the order of integration in Eq. (11.19), by virtue of Fubini’s
theorem (see details in Robert 2007, p. 63), leads to the choice of the estimator δ
which minimizes the posterior loss, that is the estimator δB of θ such that

δB ¼ minδE ‘ δ; θð Þ��x� � ¼ minδ

ð
Θ

‘ δ; θð Þπ θ
��x� �

dx ð11:20Þ

The choice of the loss function is subjective and reflects the decision-maker’s
judgment on the fair penalization for his/her decisions. According to Bernardo and

Smith (1994), the main loss functions used in parameter estimation are:

• Quadratic loss, in which ‘ δ; θð Þ ¼ δ� θð Þ2 and the corresponding Bayesian

estimator is the posterior expectation E π θ
��x� �� �

, provided that it exists;

• Absolute error loss, in which ‘ δ; θð Þ ¼ δ� θj j and the Bayesian estimator is the

posterior median, provided that it exists;

• Zero-one loss, in which ‘ðδ, θÞ¼1δ6¼θ in which 1(a) is the indicator function and

the corresponding Bayesian estimator of θ is the posterior mode.

Robert and Casella (2004) point out two difficulties related to the calculation of

δ. The first one is that, in general, the posterior density of θ, π θ
��x� �

, does not have a

closed analytical form. The second is that, in most cases, the integration of

Eq. (11.20) cannot be done analytically.

Parameter estimation highlights an important distinction between the Bayesian

and the frequentist approach to statistical inference: the way in which those two

Fig. 11.9 Histogram and normal PDF fitted to the GEV shape parameter estimates, and the PDF

of the geophysical prior as elicited by Martins and Stedinger (2000)
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approaches deal with uncertainties regarding the choice of the estimator. In

frequentist analysis, this issue is addressed via the repeated sampling principle,

and estimator performance based on a single sample is evaluated by the expected

behavior of a hypothetical set of replicated samples collected under identical

conditions, assuming that such replications are possible. The repeated sampling

principle supports, for example, the construction of frequentist confidence intervals,

CI (see Sect. 6.6). Under the repeated sampling principle, the confidence level

1� αð Þ of a CI is seen as the proportion of intervals, constructed on the basis of

replicated samples under the exact same conditions as the available one, that

contain the true value of the parameter.

The Bayesian paradigm, on the other hand, offers a more natural framework for

uncertainty analysis by focusing on the probabilistic problem. In the Bayesian

setting, the posterior variance of the parameter provides a direct measure of the

uncertainty associated with its estimation. Credibility intervals (or posterior prob-

ability intervals) are the Bayesian analogues to the frequentist confidence intervals.

The parameter θ, which is considered to be a random object, has (1�α) posterior
probability of being within the bounds of the 100(1�α)% credibility interval. Thus

the interpretation of the interval is more direct in the Bayesian case: there is a (1�α)
probability that the parameter lies within the bounds of the credibility interval. The

bounds of credibility intervals are fixed and the parameter estimates are random,

whereas in the frequentist approach the bounds of confidence intervals are random

and the parameter is a fixed unknown value.

Credibility intervals can be built not only for a parameter but also for any scalar

function of the parameters or any other random quantity. Let ω be any random

quantity and p(ω) its probability density function. The (1�α) credibility interval for
ω is defined by the bounds (L,U ) such that

ðU
L

p ωð Þdω ¼ 1� α ð11:21Þ

Clearly, there is no unique solution for the credibility interval, even if p(ω) is
unimodal. It is a common practice to adopt the highest probability density (HPD)

interval, i.e., the interval I � Ω, Ω being the domain of ω such that P ω2 Ið Þ ¼ 1

�α and p ω1ð Þ � p ω2ð Þ for every ω12 I and ω2=2I (Bernardo and Smith 1994).

Hence the HPD interval is the narrowest interval such that P L 	 ω 	 Uð Þ ¼ 1� α
and certainly provides a more natural and precise interpretation of probability

statements concerning interval estimation of a random quantity.

11.4 Bayesian Calculations

The main difficulty in applying Bayesian methods is the calculation of the propor-

tionality constant, or the prior predictive distribution, given by Eq. (11.2). To make

inferences about probabilities, moments, quantiles, or credibility intervals, it is
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necessary to calculate the expected value of any function of the parameter h(θ), as
weighted by the posterior distribution of the parameter. Formally, one writes

E h θð Þ��x� � ¼ ð
Θ

h θð Þπ θ
��x� �

dθ ð11:22Þ

The function h depends on the intended inference. For point estimation, h can be
one of the loss functions presented in Sect. 11.3. In most hydrological applications,

however, the object of inference is the prediction itself. If the intention is to

formulate probability statements on the future values of the variable X, h can be

the distribution of xnþ1 given θ. In this case, one would have the posterior predictive
distribution given by

Fðxnþ1jxÞ ¼ E½Fðxnþ1jθÞjx� ¼
ð
Θ

Fðxnþ1jθÞ πðθjxÞ dθ ð11:23Þ

The posterior predictive distribution is, therefore, a convenient and direct way of

integrating sampling uncertainties in quantile estimation.

The analytical calculation of integrals as in Eq. (11.22) is impossible in most

practical situations, especially when the parameter space is multidimensional.

However, numerical integration can be carried out using the Markov Chain

Monte Carlo (MCMC) algorithms. According to Gilks et al. (1996), such algo-

rithms allow for generating samples with a given probability distribution, such as

π θ
��x� �

, through a Markov chain whose limiting distribution is the target distribu-

tion. If one can generate a large sample from the posterior distribution of θ, say θ1,
θ2, . . ., θm, then the expectation given by Eq. (11.22) may be approximated by

Monte Carlo integration. As such,

E h θð Þ��x� � 
 1

m

Xm
i¼1

h θið Þ ð11:24Þ

In other terms, the population mean of h is estimated by the sample mean of the

generated posterior sample.

When the sample {θi} is of IID variables, then, by the law of large numbers (see

solution to Example 6.3), the approximation of the population mean can be as

accurate as possible, requiring that the generated sample size m be increased (Gilks

et al. 1996). However, obtaining samples of IID variables with density π θ
��x� �

is not

a trivial task, as pointed out by Gilks et al. (1996), especially when π θ
��x� �

has a

complex shape. In any case, the elements of {θi} need not be independent amongst

themselves for the approximations to hold. In fact it is required only that the

elements of {θi} be generated by a process which proportionally explores the

whole support of π θ
��x� �

.

To proceed, some definitions are needed. A Markov chain is a stochastic process

θt, t2T, θt2Sf g, where T¼ {1, 2, . . .} and S represents the set of possible states of
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θ, for which, the conditional distribution of θt at any t, given θt�1, θt�2, � � �, θ0, is the
same as the distribution of θt, given θt�1, that is

P θtþ12A
��θt, θt�1, � � �, θ0� � ¼ P θtþ12A

��θt� �
, A � S ð11:25Þ

In other terms, a Markov chain is a stochastic process in which the next state is

dependent only upon the previous one. The Markov chains involved in MCMC

calculations should generally have the following properties:

• Irreducibility, meaning that, regardless of its initial state, the chain is capable of

reaching any other state in a finite number of iterations with a nonzero

probability;

• Aperiodicity, meaning that the chain does not keep oscillating between a set of

states in regular cycles; and

• Recurrence, meaning that, for every state I, the process beginning in Iwill return
to that state with probability 1 in a finite number of iterations.

A Markov chain with the aforementioned characteristics is termed ergodic. The
basic idea of the MCMC sampling algorithm is to obtain a sample with density

π θ
��x� �

by building an ergodic Markov chain with: (1) the same set of states as θ;

(2) straightforward simulation; and, (3) the limiting density π θ
��x� �

.

The Metropolis algorithm (Metropolis et al. 1953) is well-suited to generate

chains with those requirements. That algorithm was developed in the Los Alamos

National Laboratory, in the USA, with the objective of solving problems related to

the energetic states of nuclear materials using the calculation capacity of early

programmable computers, such as the MANIAC (Mathematical Analyzer, Numer-

ical Integrator and Computer). Although the method gained notoriety in 1953

through the work of physicist Nicholas Metropolis (1915–1999) and his collabora-

tors, the algorithm development had contributions from several other researchers,

such as Stanislaw Ulam (1909–1984), John Von Neumann (1903–1957), Enrico

Fermi (1901–1954), and Richard Feynman (1918–1988), among others. Metropolis

himself admitted that the original ideas were due to Enrico Fermi and dated from

15 years before the date it was first published (Metropolis, 1987). Further details on

the history of the development of the Metropolis algorithm can be found in

Anderson (1986), Metropolis (1987) and Hitchcock (2003).

The Metropolis algorithm was further generalized by Hastings (1970) into the

version widely known and used today. The algorithm uses a reference or jump

distribution g θ*
��θt, x� �

, from which it is easy to obtain samples of θ through the

following steps:

The Metropolis–Hastings algorithm for generating a sample with density

π θ
��x� �

:

Initialize θ0; t 0

Repeat {

Generate θ* � g θ*
��θt, x� �

Generate u�Uniform(0,1)

11 Introduction to Bayesian Analysis of Hydrologic Variables 517



Calculate αMH θ*
��θt, x� � ¼ min 1,

π θ*
��x� �

π θt

��x� � g θt

��θ*, x� �
g θ*

��θt, x� �� 
If u 	 αMH θ*

��θt, x� �
θtþ1  θ*

Else

θtþ1  θt
t (tþ 1)

}

An important aspect of the algorithm is that the acceptance rules are calculated

using the ratios of posterior densities π θ*
��x� �

=π θt
��x� �

, thus dismissing the calcu-

lation of the normalizing constant. The generalization proposed by Hastings (1970)

concerns the properties of the jump distribution g ����� �
: the original algorithm,

named random-walk Metropolis, required a symmetrical jump distribution, such

that g θi
��θj� � ¼ g θj

��θi� �
. In this case the simpler acceptance rule is

αRWM θ*
��θt, x� � ¼ min 1,

π θ*
��x� �

π θt
��x� �( )

ð11:26Þ

Robert and Casella (2004) point out that after a large number of iterations, the

resulting Markov chain may eventually reach equilibrium, after a sufficiently large

number of iterations, i.e., its distribution converges to the target distribution. After

convergence, all the resulting samples have the posterior density, and the expecta-

tions expressed by Eq. (11.22) may be approximated by Monte Carlo integration,

with the desired precision.

As in most numerical methods, the MCMC samplers require some fine tuning.

The choice of the jump distribution, in particular, is a key element for an efficient

application of the algorithm. As Gilks et al. (1996) argue, in theory, the Markov

chain will converge to its limiting distribution regardless of which jump distribution

is specified. However, the numerical efficiency of the algorithm, as conveyed by its

convergence rate, is greatly determined by how the jump density g relates to the

target density π: convergence will be faster if g and π are similar. Moreover, even

when the chain reaches equilibrium, the way it explores the support of the target

distribution might be slow, thus requiring a large number of iterations. From the

computational perspective, g should be a density that proves to be practical to

evaluate at any point and to sample from. Furthermore, it is a good practice to

choose a jump distribution with heavier tails than the target, in order to insure an

adequate exploration of the support of π θ
��x� �

. Further details on how to choose an

adequate jump distribution are given by Gilks et al. (1996).

Another important aspect of adequate MCMC sampling is the choice of starting

values: poorly chosen starting values might hinder the convergence of the chains for

the first several hundreds or thousands of iterations. This can be controlled by

discarding a sufficient number of iterations from the beginning of the chain, which

is referred to as the burn-in period.
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Currently, there are a large number of MCMC algorithms in the technical

literature, all of them being special cases of the Metropolis–Hastings algorithm.

One of the most popular algorithms is the Gibbs sampler, which is useful for

multivariate analyses, and uses the complete conditional posterior distributions as

the jump distribution. As a comprehensive exploration of MCMC algorithms is

beyond the scope of this chapter, the following references are recommended for

further reading: Gilks et al. (1996), Liu (2001), Robert and Casella (2004), and

Gamerman and Lopes (2006).

Example 11.4 In order to demonstrate the use of the numerical methods discussed

in this section, Example 11.2 is revisited with the random-walk Metropolis algo-

rithm (acceptance rule given by Eq. 11.26). The following R code was used to

generate a large sample from the posterior distribution of parameter p:

# prior density

pr<- function(theta) dbeta(theta, shape1¼4.4375, shape2¼13.3125)

# Likelihood function

ll<- function(theta) dbinom(0,10,theta)

# Unnormalized posterior density (defined for theta between 0 and 1)

unp<-function(theta) ifelse(theta>¼0 && theta<¼1, pr(theta)*ll

(theta),0)

theta_chain<- rep(NA,100000)

theta_chain[1]<- 0.15 #Initialize

# Random-walk Metropolis algorithm

set.seed(123)

for (i in 1:99999) {

# Jump or proposal density is Normal with standard deviation 0.05

proposal<- rnorm(1,mean¼theta_chain[i],sd¼0.05)

# Acceptance rule

U<- runif(1)

AR<- min(c(1,(unp(proposal)/unp(theta_chain[i]))))

if (U<¼ AR) {

theta_chain[iþ1] <- proposal

} else {

theta_chain[iþ1] <- theta_chain[i]

}

}

The generated sample values are stored in the vector theta_chain. These
values can be used for inferring any scalar function of the parameter. Figure 11.10

depicts the trace plot of the chain generated with the given code. A trace plot is a

11 Introduction to Bayesian Analysis of Hydrologic Variables 519



basic graphical tool used to detect clear signs of deviant or nonstationary behavior

of generated chains, which may indicate a failure of convergence. It can also be

used to determine the burn-in period when the starting values are poorly chosen.

Visual inspection of a trace plot of a chain with good properties should not detect

upward or downward trends or other nonstationary behavior, such as the chain

getting stuck in certain regions of the parameter space. It should appear that each

element of the plot is randomly sampled from the same target distribution. Fig-

ure 11.10, therefore, exemplifies a “good” traceplot.

The sample mean of the chain provides a point estimate for p, E p
��y� � ¼

1
N

PN
i¼1

pi ¼ 0:1581. This estimate is very close to the exact value of p, obtained in

Example 11.2, E p
��y� � ¼ 0:1599. Figure 11.11 compares the exact solution of the

posterior PDF of Example 11.2 with the histogram of the MCMC chain. It is clear

that two solutions are very similar.

Even in the absence of a thorough monitoring of the MCMC chain convergence

(see related procedures in Gilks et al. 1996; Liu 2001), Example 11.4 illustrates the

capabilities of MCMC algorithms. In this case, it should be stressed that the

posterior sample of the parameter was generated using the un-normalized posterior

density, thereby dismissing the calculation of the constant of proportionality in the

denominator of Bayes’ rule, which, in most practical situations, would reveal

impossible to be made.

Fig. 11.10 Posterior sample of parameter p generated by the random-walk Metropolis algorithm
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11.5 Example Application

This section presents an application of the principles of Bayesian analysis to a

hydrology-related case study. The research was carried out by Fernandes et al.

(2010). Readers interested in details of the case study are referred to this reference.

The object of the study is related to the estimation of very rare extreme flood

quantiles, with exceedance probabilities ranging from 10�6 to 2� 10�3, usually
required for designing critical hydraulic structures, such as spillways of large dams

with high potential flood hazards. The uncertainties associated with such estimates

are admittedly very large and are not precisely quantifiable by standard procedures

of statistical inference as the available samples of annual maximum floods have

typical lengths ranging from 25 to 80 years. To tackle this problem, hydrologists

often choose to estimate an upper bound for annual maximum floods, based on

current knowledge of hydrological processes under extreme conditions. In this

context, the concept of Probable Maximum Flood (PMF) is commonly used in

connection to the design of major hydraulic structures (USNRC 1977; ICOLD

1987; FEMA 2004).

In short, the PMF is the upper bound of potential flooding in a given river

section, resulting from a hypothetical rain storm with a critical depth and duration,

deemed probable maximum precipitation (PMP), which should be preceded by very

severe, but physically plausible hydrological and hydrometeorological conditions

(see Sect. 8.3.2). The PMP, in turn, is formally defined by theWorld Meteorological

Organization (WMO 1986) as “the greatest depth of precipitation for a given

Fig. 11.11 Posterior density of parameter p. Exact solution (continuous line) and MCMC chain

histogram

11 Introduction to Bayesian Analysis of Hydrologic Variables 521

http://dx.doi.org/10.1007/978-3-319-43561-9_8


duration meteorologically possible for a given size storm area at a particular

location at a particular time of year, with no allowance made for long-time climatic

trends.”

Although dam safety guidelines consider “quasi-deterministic” floods, such as

the PMF, as a standard design criterion for large hydraulic structures, the estimation

of a credible exceedance probability associated with such an extreme flood, in a

way that risk-based decisions can be made, is not a trivial task (Dawdy and

Lettenmaier 1987; Dubler and Grigg 1996; USBR 2004). Some conceptual changes

on how frequency analysis is usually conducted are required, before associating an

exceedance probability with the PMF estimate for a given catchment.

There are two major obstacles for merging the concepts of PMF and flood

frequency analysis. Firstly, the available information of flow extremes is usually

scarce since the available annual maximum samples usually span a few decades and

very rarely over more than a century. As such, extrapolation of frequency curves for

very rare quantiles, well beyond a credible range of extrapolation, is required, with

all the uncertainty it entails (see Sect. 8.3). The second obstacle is related to the fact

that many probability distributions used in flood frequency analysis have no upper

bound and, therefore, do not accommodate the inherent concept of the PMF.

Fernandes et al. (2010) propose the following steps of a workaround procedure:

• Adopting an upper-bounded probability distribution: although the use of such

distributions is uncommon and even controversial among hydrologists, their

structure is concurrent with limited extreme flood generating physical condi-

tions, that is, they accommodate the notion of an upper bound for a flood in a

given catchment.

• Analysis of paleohydrologic proxy data: as discussed in Sect. 8.2.3 and later on

in this section, paleoflood data allow for a more comprehensive characterization

of rare floods.

• Using the PMF for estimating the upper bound: in the application example

described herein, the PMF is not used as a deterministic upper bound but rather

informs the elicitation of a prior distribution for that upper bound.

• Using Bayesian inference methods: the Bayesian framework of analysis offers

the means to aggregate the information from various sources.

The application example itself is presented in Sect. 11.5.3. The preceding

Sect. 11.5.1 and 11.5.2 are necessary for presenting essential concepts and the

formalism required to grasp Sect. 11.5.3.

11.5.1 Nonsystematic Flood Data

In recent decades there have been attempts to overcome the lack of data on extreme

floods in streamflow records by including proxy information, deemed

nonsystematic data, in flood frequency analysis (Stedinger and Cohn 1986; Francés

et al. 1994; Francés 2001; Naulet 2002; Viglione et al. 2013). There are two main
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sources of nonsystematic flood information: historical information, which refers to

flood events directly observed or otherwise recorded by humans; and the so-called

paleofloods, which correspond to floods that have occurred sometime in the Holo-

cene epoch (approximately in the last 10,000 years) and can be reconstructed using

remaining geological and/or botanical physical evidence.

Historical and paleohydrological information generally correspond to censored

data which can be either upper-bounded (UB), or lower-bounded (LB), or double-

bounded (DB). The type of censoring is determined by detectable limits of water

levels of a particular flood during a given span of time. In any case, the exact

maximum water level (or discharge) is not known with precision. For UB infor-

mation, it is known that no flood has ever exceeded a certain level during the

considered time span. For LB information, it is known that the flood has exceeded a

given level. Finally for DB information, it is known that the maximum flood level is

contained within an interval defined by two known bounds (LB,UB). Given some

hypotheses, nonsystematic flood data can be incorporated into flood frequency

analysis using appropriate statistical methods, thus potentially increasing the reli-

ability of estimated extreme flood quantiles (Francés 2001).

11.5.2 Upper-Bounded Distributions

In the set of probability distributions that are commonly used by hydrologists in

flood frequency analysis, some may be upper-bounded, depending on the particular

combinations of the numerical values of their parameters. Some of those distribu-

tions may have up to 4 or 5 parameters (see Sect. 5.9). Others, such as the

generalized extreme value (GEV) distribution is upper-bounded if its shape param-

eter is positive, which occurs when its skewness coefficient is less than 1.1396.

Likewise, the log-Pearson type III (LP3) distribution has an upper limit if its

skewness coefficient is negative.

Other upper-bounded probability models that should be mentioned are the

Kappa (Hosking and Wallis 1997) and Wakeby distributions. The four-parameter

Kappa model may be upper- or lower-bounded for a particular set of values of both

its parameters (see Sect. 5.9.1). Analogously, the five-parameter Wakeby model

may be upper-bounded for a particular combination of its three shape parameters

(see Sect. 5.9.2). These are general distributional forms which can accommodate a

number of bounded or unbounded models. For the application described herein,

there is the additional requirement that the upper-bound should have an explicit

parametric form. Fernandes et al. (2010) proposed the use of the four-parameter

lognormal model (LN4) to explicitly incorporate the information provided by PMF

estimates into frequency analysis.

The LN4 model branches from the following transformation
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Y ¼ ln
X � ε

α� X

� �
ð11:27Þ

where ε2ℜþ denotes the lower bound of X, α2ℜþ denotes the upper bound of X,
and Y � N μY ; σYð Þ. Takara and Tosa (1999) point out that the LN4 model is not

strongly affected by assuming its lower bound is zero. Taking advantage of that

observation, the lower bound here is considered as ε¼ 0, thus rendering the model

more parsimonious (one less parameter to estimate and one less prior distribution to

elicit).

If ε¼ 0, the PDF of the variate X � LN4 μY ; σY ; αð Þ is given by

f X x
��Θ� � ¼ α

x α� xð ÞσY
ffiffiffiffiffi
2π
p exp � 1

2σ2Y
ln

x

α� X

	 

� μY

h i2� 
ð11:28Þ

with 0 	 x 	 α, and the corresponding CDF is given by

FX x
��Θ� � ¼ Φ

1

σY
ln

x

α� x

	 

� μY
σY

� �
ð11:29Þ

where Φ denotes the CDF of the standard Normal distribution.

Finally, considering the PDF given by Eq. (11.28) and a set of systematic and

nonsystematic data, the likelihood function can be constructed in the manner

described as follows. Let X1, . . ., XNex be the sample, of size Nex, of annual

maximum floods (systematic data). Upper-bounded censored data are denoted as

UB1, . . ., UBNub, lower-bounded censored data as LB1, . . ., LBNlb, whereas DB1,

. . ., DBNdb denote the censored data which is double-bounded within the interval

(LB, UB). If the data are IID, then, the likelihood function is give by

L x
��θ� � ¼ YNex

i
f X EXi

��Θ� ��YNub

i
FX UBi

��Θ� ��YNlb

i
1� FX LBi

��Θ� �� ��YNdb

i
FX URi

��Θ� �� FX LRi

��Θ� �� �
ð11:30Þ

11.5.3 Study Site and Data

The application example described here refers to the American River at Folsom

Lake, located in the American State of California. This dam site was chosen

particularly due to the availability of systematic and nonsystematic flood data.

Figure 11.12 shows the schematic location of the study site.
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According to USBR (2002), the catchment of the American River at Folsom

Lake has a drainage area of 4820 km2 and its flows have been monitored by the US

Geological Service since 1905. There are 52 years of systematic data. The annual

maximum series passed the tests for randomness, independence and homogeneity

and stationarity at the significance level of 5%, according to the nonparametric

hypothesis tests presented in Sect. 7.4.

Regarding the nonsystematic data, studies conducted by USBR (2002) identified

the occurrence of 4 distinct paleoflood levels dating back 2000 years before present

(BP), all of them being UB censored. Furthermore, there are 5 DB censored floods.

The chart in Fig. 11.13 illustrates the data sets used in the case study.

11.5.4 Prior Distribution of Parameters of the LN4 Model

In the Bayesian paradigm, the prior distribution is the mathematical synthesis of the

degree of knowledge or belief that some expert has about the quantity of interest.

The specification of the distribution is based on personal belief gathered through

observation, or experience gained from similar situations, literature review, etc. The

prior distribution is elicited before the data are observed.

Amongst the parameters of the LN4, the upper-bound α is perhaps the only one

that shows a clear connection to climate and hydrological characteristics of the

watershed under extreme hydrometeorological conditions. The hydrological
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interpretation of parameters μY and σY (respectively, the mean and standard devi-

ation of the transformed LN4 variate Y ) is more complex since it is not straight-

forward to identify any clear relationship between those parameters and physical

characteristics of the catchment. Therefore, eliciting a prior distribution for these

parameters is not simple, at least using this approach. A Normal distribution with a

large variance was elicited for μY, since it can take any real value, that is

μY � N 1:0, 10�6
� �

. Analogously, since σY can only take positive values, the

Gamma distribution σY � N 1:0, 10�8
� �

was adopted as a prior for this parameter.

Since these priors are proper, than the posterior parameter distributions should also

be proper. Furthermore, it should be mentioned that the parametrization of the

Normal and Gamma densities used in this example differ slightly from the param-

etrizations used elsewhere in this book. As such,

fNormal z
��a, b� � ¼ ffiffiffiffiffi

b

2π

r
exp �b

2
z� að Þ2

� �
and fGamma z

��a, b� � ¼ baza�1

Γ að Þ exp �bzð Þ

Unlike the location and scale parameters, the upper bound parameter is directly

related to hydrometeorological phenomena in the catchment, thus allowing for a

more informative elicitation of a prior distribution. In theory, if there were a set of

PMF estimates for the catchment, acquired using the same methodology applied at

different points in time, such data might have been used for eliciting a prior

distribution for the upper bound parameter. Since that notional data set cannot

exist, prior elicitation for that parameter must take a different approach based on

Fig. 11.13 Systematic and nonsystematic data of the American River near Folsom
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available information. Fernandes et al. (2010) propose two methods based on a

large set of PMF estimates for different North American catchments. The following

is the detailed presentation of one of such methods.

The proposed method is based on the transposition of PMF estimates from other

catchments to the catchment of interest. A data set of 561 PMF estimates compiled

by the US Nuclear Regulatory Commission (USNRC 1977) was used, referring to

catchments of varying sizes and characteristics scattered throughout the territory of

the USA. Figure 11.14 shows the applied procedure: rather than transposing the

PMF estimates directly to the study site, the envelope PMF curve was used, as

proposed by USNRC (1977), where A0 is the drainage area of the American River at

Folsom Lake, resulting in transposing 561 PMF estimates to the catchment area of

the study site, whose frequency analysis can inform a prior distribution for the

upper bound of the LN4 distribution.

Fernandes (2009) showed that the Gamma distribution is a good candidate for

modeling uncertainties related to the upper bound. Therefore, taking as reference

the 561 PMF estimates transposed to the American River at Folsom Lake, and using

the conventional method of moments, the prior distribution α � Ga 5:2, 0:00043ð Þ
was elicited for the upper bound.

11.5.5 Posterior Distributions and Further Results

The posterior density of parameters is given by Eq. (11.1). Clearly there is no

analytical solution for such a case, since it would require integration of the product

Fig. 11.14 Schematic of the PMF transposition procedure
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of the likelihood by the priors over the whole parametric space. For that reason,

MCMC algorithms are applied, as discussed in Sect. 11.4. The following questions

are posed before an MCMC algorithm is applied:

• What jump distribution should be used?

• Which sampling algorithm should be applied (Metropolis–Hastings, Gibbs sam-

pler, slice sampler. . .)?
• How does one check whether the Markov chain has converged to the target

distribution?

There are no straightforward answers to these questions. It is up to the practi-

tioner to fine-tune the samplers, try different algorithms and jump distributions until

a method is found that produces well-converged chains so that usual convergence

theorems from Markov theory apply. Fortunately, there are several freely available

software packages that provide useful tools for tuning and evaluating MCMC

samplers. A thorough presentation of such packages is beyond the scope of this

chapter. Gilks et al. (1996) and Albert (2009) are useful references on MCMC

software.

In the application described herein, the WinBUGS software was used (Lunn

et al. 2000). WinBUGS is a free user-friendly tool that requires minimal program-

ming skills and is available from http://www.mrc-bsu.cam.ac.uk/software/bugs/

the-bugs-project-winbugs/ (accessed: 21st February 2016). The following code

was used at different stages of analysis of the presented case study:

# model with systematic and nonsystematic data

model { # Likelihood of the LN4 distribution

#SYSTEMATIC DATA

for (i in 1:NEX) {

Z[i]<- abs(x[i]/(alpha-x[i]))

index[i] <- step(alpha-x[i])þ1

L[i,1]<- 0

L[i,2]<- (0.3989*alpha/sigma)*(1/ (x[i]*(alpha-x[i])))

*exp(-0.5*pow((1/sigma)*log(Z[i])-mi/sigma,2))

}

#DB DATA

for (i in NEXþ1:NDBþNEX) {

index[i] <- step(alpha-DBU[i-NEX])þ1

L[i,1]<- 0

Zu[i-NEX]<- abs(DBU[i-NEX]/(alpha-DBU[i-NEX]))

Zl[i-NEX]<- abs(DBL[i-NEX]/(alpha-DBL[i-NEX]))

L[i,2]<- phi((1/sigma)*log(Zu[i-NEX])-mi/sigma)-phi

((1/sigma)*log(Zl[i-NEX])-mi/sigma)

}

#UB DATA - Level 1

for (i in NDBþNEXþ1:NDBþNEXþNYH[1]) {

index[i] <- step(alpha-YH[1])þ1

L[i,1]<- 0
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Zub1[i-NDB-NEX]<- abs(YH[1]/(alpha-YH[1]))

L[i,2]<- phi((1/sigma)*log(Zub1[i-NDB-NEX])-mi/sigma)

}

#UB DATA - Level 2

for (i in NDBþNEXþNYH[1]þ1:NDBþNEXþNYH[1]þNYH[2]) {

index[i] <- step(alpha-YH[2])þ1

L[i,1]<- 0

Zub2[i-NDB-NEX-NYH[1]]<- abs(YH[2]/(alpha-YH[2]))

L[i,2]<- phi((1/sigma)*log(Zub2[i-NDB-NEX-NYH[1]])-mi/

sigma)

}

#UB DATA- Level 3

for (i in NDBþNEXþNYH[1]þNYH[2]þ1:NDBþNEXþNYH[1]þNYH

[2]þNYH[3]) {

index[i] <- step(alpha-YH[3])þ1

L[i,1]<- 0

Zub3[i-NDB-NEX-NYH[1]-NYH[2]]<- abs(YH[3]/(alpha-YH

[3]))

L[i,2]<- phi((1/sigma)*log(Zub3[i-NDB-NEX-NYH[1]-NYH

[2]])-mi/sigma)

}

#UB DATA- Level 4

for (i in NDBþNEXþNYH[1]þNYH[2]þNYH[3]þ1:NDBþNEXþNYH

[1]þNYH[2]þNYH[3]þNYH[4])

{

index[i] <- step(alpha-YH[4])þ1

L[i,1]<- 0

Zub4[i-NDB-NEX-NYH[1]-NYH[2]-NYH[3]]<- abs(YH

[4]/(alpha-YH[4]))

L[i,2]<- phi((1/sigma)*log(Zub4[i-NDB-NEX-NYH[1]-NYH

[2]-NYH[3]])-mi/sigma)

}

for (i in 1:NDBþNEXþNYH[1]þNYH[2]þNYH[3]þNYH[4]) {

dummy[i]<- 0

dummy[i]�dgeneric(phi[i])

phi[i]<- log(L[i,index[i]])

}

# PRIOR DENSITIES

sigma�dgamma(1.0,1.0E-8)

mi�dnorm(1.0,1.0E-6)

alpha�dgamma(5.2,0.00043)

}
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#Systematic and nonsystematic data

list(x¼c(685,1691,4417,292,3370,2302,2098,1356,1152,1198,

1911,569,1110,895,1104,396,2818,776,1917,4616,

691,280,597,467,640,1724,1651,934,3228,309,

2526,1099,2356,4304,569,2673,1195,790,595,1062,

974,5097,1053,1407,1206,6201,6796,7362,4955,4304,

7334,8438),

NEX¼52,

DBL¼c(7419,11327,11327,11327,16990),

DBU¼c(8495,15574,15574,15574,24069),

NDB¼5,

YH¼c(4248,7447,13451,20530),

NYH¼c(44,56,544,1299)

)

#Initial values

list( alpha¼25000,

sigma¼2,

mi¼2)

By applying the WinBUGS code above, a chain of length 600,000 was gener-

ated. After a visual analysis of the trace plots of the chain, it was verified that it

became stationary after the burn-in period of 100,000 realizations, which were

discarded before proceeding with the analysis. Furthermore, the chains were

thinned by retaining every 10th value, in order to remove autocorrelation. These

actions resulted in a sample of 50,000 posterior parameters. Figure 11.15 shows the

prior and posterior densities of the upper bound.

Figure 11.15 shows a clear disparity regarding the lower tails of the prior and

posterior distributions. Prior to looking at the data there is no evidence regarding

how low the upper bound could possibly be, which provides support for a prior

distribution developing throughout the set of all positive real numbers. On the other

hand, after taking the data into account, it does not seem logical to say that the upper

bound can be lower than the maximum observed flood, so the support was modified

for the posterior distribution. Table 11.1 shows some statistics for the prior and

posterior distributions, illustrating how the systematic and nonsystematic data

significantly reduced the uncertainty about the upper bound, since the posterior

coefficient of variation CV is much lower than the prior one.

Several additional analyses can be made using posterior statistics, as shown in

Fernandes et al. (2010). Assessment of the quantile curve uses the previously

discussed concepts of the Monte Carlo method, particularly Eq. (11.23). The

quantile curve together with its respective 95% HPD credibility intervals are

shown in Fig. 11.16.

Concerning the method proposed by Fernandes et al. (2010), some consider-

ations are important to understand the context of the described application. The

authors analyzed a wide range of models and approaches, including the following:
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• The likelihood function of the LN4 distribution and of two other upper bounded

distributions;

• The likelihood function with and without nonsystematic data;

• Different prior distributions, including non-informative distribution; and

• Parameter estimation under the Bayesian and the classical approaches.

To summarize, results show that the incorporation of nonsystematic data signif-

icantly improves estimation of extreme quantiles. They also show that the elicita-

tion of an informative prior distribution is essential when analyzing very rare

floods. Furthermore, it was shown that the Bayesian framework is able to combine

the objective and subjective aspects of flood frequency analysis.

11.6 Further Reading and Software

This is an entry-level chapter on Bayesian methods, with a particular focus on

hydrological applications. For a deeper grasp of Bayesian statistics, interested

readers are referred to Bernardo and Smith (1994), Migon and Gamerman (1999),

Table 11.1 Prior and posterior summaries for the upper-bound α

Model Mean CV 95% HPD

Posterior using all data 28,104 0.12 (24,070; 34,980)

Posterior using only systematic data 14,628 0.29 (8609; 22,960)

Prior information 12,018 0.40

Fig. 11.15 Prior and posterior densities of the upper bound
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Gelman et al. (2004), Paulino et al. (2003) and Robert (2007). In Chap. 11 of his

textbook, entitled “A defense of the Bayesian choice,” Robert (2007) makes a

point-by-point justification of the Bayesian approach including rebuttals of the

most common criticisms of the Bayesian paradigm, which makes for a particularly

interesting reading. Renard et al. (2013) provide an up-to-date overview of Bayes-

ian methods for frequency analysis of hydrological extremes with an emphasis on

nonstationarity analysis.

There are many software packages available for MCMC. In R, there are the

mcmc (http://www.stat.umn.edu/geyer/mcmc/, accessed: 26th March 2016),

MCMCpack (Martin et al. 2011) and LaplacesDemon (currently available on

https://github.com/ecbrown/LaplacesDemon, accessed: 26th March 2016) pack-

ages. Alternatively there are the WinBUGS (Lunn et al. 2000) and JAGS (http://

mcmc-jags.sourceforge.net/, accessed: 26th March 2016) software packages.

Exercises

1. Solve Example 11.1 considering that 1 year after the factory operation started,

it was verified that all the floods lasted for more than 5 days, that is, ɛ¼ 1.

Calculate the posterior distribution.

Fig. 11.16 Predictive posterior distribution of flood quantiles (continuous line); 95% credibility

intervals (dashed line). Circles represent systematic data and circles within bars represent

nonsystematic data
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2. Solve Example 11.2 considering, (a) s2p ¼ 0:1 and (b) s2p ¼ 0:001. Plot the

posterior distribution and comment on the uncertainty of the parameter in

each case.

3. The daily number of ships docking at a harbor is Poisson-distributed with mean

θ, whose prior distribution is Exponential with mean 1. Knowing that in a 5-day

stretch the number of arrivals was 3, 5, 4, 3, and 4: (a) determine the posterior

distribution of θ; and, (b), obtain the 90 and 05% credibility intervals for θ
(Adapted from Paulino et al. 2003).

4. Show that, for a Normal distribution with known σ, if μprior � N μμ; σμ
� �

then

μposterior � N
μμ σ2=nð Þþxσ2μ

σ2=nþσ2μ ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2μ σ2=nð Þ
σ2μþ σ2=nð Þ

r� �
.

5. Two meteorologists, A and B, wish to determine the annual rainfall depth (θ in
mm) over an ungauged region. Meteorologist A has the prior belief θ � N

1850; 302
� �

while meteorologist B believes that θ � N 1850; 702
� �

. A rain

gauge is installed in a region. After 1 year, the rain gauge registered the

cumulative rainfall of x¼ 1910. Find the meteorologists’ posterior distribu-
tions, considering that the standard error of the annual cumulative rainfall

depth is 40 mm and that annual rainfalls are normally distributed, i.e.,

X
��θ � N θ; 402

� �
.

6. Consider a normally distributed variate with mean θ and standard deviation

2. A normal prior for θ, with variance 1, was elicited. What is the minimum size

of the sample in order for the posterior standard deviation to be 0.1?

7. Consider that X�Ge(θ). Obtain the Jeffreys prior for θ.
8. Consider the elicitation of the prior distribution for the upper bound as

described in Sect. 11.5.4. Suppose further that the upper bound CV¼ 0.3 and

that the local PMF is 25,655 m3/s. Elicit the prior distribution of the upper

bound based on the gamma distribution and in the following settings: (a) there

is very strong evidence that the PMF will be exceeded in the future; (b) there is

a very strong evidence that the PMF will not be exceeded in the future; and (c),

there is no evidence regarding the probability of the PMF.

Hint: for the Gamma distribution with parameters ρα and βα, the combination of

equations of the method of moments results in ρα ¼ CV�2. Parameter βα can be
estimated by attributing a non-exceedance probability p to the current PMF

estimate, that is, P α 	 PMF
��ρα, βα� � ¼ p.

9. Using the WinBUGS algorithm shown in Sect. 11.5.5, and the prior distribu-

tions elicited in Exercise 8, find the posterior distributions of the upper bound,

considering that the remaining parameters of the LN4 distribution have

non-informative priors.

10. Solve Exercises 8 and 9 for CV¼ 0.7.

11. Consider the sample of annual maximum flows of the Lehigh River at

Stoddartsville, listed in Table 7.1. Fit the GEV distribution to the data, with

the geophysical prior for the shape parameter, using the following WinBUGS

code:

11 Introduction to Bayesian Analysis of Hydrologic Variables 533

http://dx.doi.org/10.1007/978-3-319-43561-9_7


# GEV distribution

model {

for (i in 1:NEX) {

index[i]<-1-equals(step(x[i]-mi-sigma/(p-0.5)),step((p-0.5)))

index2[i]<-equals(index[i],1)þ1
L[i,1]<-0

Z[i]<-index[i]*((p-0.5)/sigma)*(x[i]-mi)

L[i,2] <- index[i]*(1/sigma)*pow(1-Z[i],1/(p-0.5)-1)*exp(-pow(1-Z

[i],1/(p-0.5)))

}

for(iin1:NEX){

dummy[i]<-0

dummy[i]� dgeneric(phi[i])

#phi(i)¼ log(likelihood)

phi[i]<-log(L[i,index2[i]])

}

# priors

sigma � dgamma(1.0,1.0E-8)

mi � dnorm(1.0,1.0E-6)

p � dbeta(6.0,9.0)

}

12. Solve Exercise 11 for the Gumbel distribution, using non-informative priors for

both parameters.
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superiormente. PhD Thesis. Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Fernandes W, Naghettini M, Loschi R (2010) A Bayesian approach for estimating extreme flood

probabilities with upper-bounded distribution functions. Stoch Environ Res Risk Assess 24

(8):1127–1143

Francés F (2001) Incorporating Non-Systematic Information to Flood Frequency Analysis Using

the Maximum Likelihood Estimation Method. In: Glade T, Albini P, Francés F (eds) The use of

historical data in natural hazard assessments, 1st edn. Springer, Dordrecht, pp 89–99

Frances F, Salas J, Boes D (1994) Flood frequency analysis with systematic and historical or

paleoflood data based on the two-parameter general extreme value models. Water Resour Res

30(6):1653–1664

Gamerman D, Lopes H (2006) Markov chain Monte Carlo, 2nd edn. Chapman and Hall/CRC,

Boca Raton

Gelman A, Carlin J, Stern H, Rubin D (2004) Bayesian data analysis, 2nd edn. Chapman and Hall/

CRC, Boca Raton

Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain Monte Carlo in practice. Chapman

& Hall, London

Hastings W (1970) Monte Carlo sampling methods using Markov chains and their applications.

Biometrika 57(1):97–109

Hitchcock D (2003) A history of the Metropolis-Hastings algorithm. Am Stat 57(4):254–257

Hosking J, Wallis J (1997) Regional frequency analysis. Cambridge University Press, Cambridge

ICOLD—International Commission of Large Dams (1987) Dam safety guidelines. Bulletin 59.

ICOLD (International Congress of Large Dams), Paris

Liu J (2001) Monte Carlo strategies in scientific computing. Springer, New York

Lunn D, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling frame-

work: concepts, structure, and extensibility. Statist Comput 10:325–337

Martin A, Quinn K, Park J (2011) MCMCpack: Markov Chain Monte Carlo in R. J Stat Software

42(9)

Martins E, Stedinger J (2000) Generalized maximum-likelihood generalized extreme-value

quantile estimators for hydrologic data. Water Resour Res 36(3):737–744

McGrayne S (2011) The theory that would not die: how Bayes’ rule cracked the enigma code,

hunted down Russian submarines, and emerged triumphant from two centuries of controversy.

Yale University Press, New Haven, CT

Metropolis N (1987) The beginning of the Monte Carlo Method. Los Alamos Science.

U.S. Government Printing Office, Special Issue, 1986-676-104/40022

Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calcula-

tions by fast computing machines. J Chem Phys 21(6):1087–1092

Migon H, Gamerman D (1999) Statistical inference: an integrated approach. Arnold, London

Naulet R (2002) Utilisation de l’information des crues historiques pour une meilleure prédéter-
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Chapter 12

Introduction to Nonstationary Analysis
and Modeling of Hydrologic Variables

Artur Tiago Silva

12.1 Some Methods for Detecting Changes

The detection of changes in hydrological series plays an important role in the

modern management and planning of water resources systems, since it enables a

better understanding of the temporal behavior of the underlying hydrological

phenomenon. The detection of trends, periodicities, change points or other deter-

ministic components of the hydrological series weakens the assumption of

stationarity of the random variable to which the series refers, which in turn, affects

the applicability of the standard technical procedures most commonly used in

Statistical Hydrology.

There are several kinds of tests and other methods for change detection, each

having its own advantages and limitations. These methods should not be applied

without considering the specific characteristics of the hydrological variable under

analysis or without taking into account their underlying theoretical assumptions. It

should be noted that some techniques presented elsewhere in this book are com-

monly used for the detection of change, such as the Spearman nonparametric test

presented in Sect. 7.4.4. Another technique presented in a different chapter is

simple linear regression: the methods introduced in Chap. 9, when applied to a

hydrological random variable, using time as an independent variable, provide

insight into the linear behavior of this variable over time, and thereby detect linear

trends.

In this section, two methods for detecting changes are presented: the Mann–

Kendall test for monotonic trend and the Pettitt test for change points.
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These methods, in addition to the above mentioned techniques which are presented

elsewhere in this book, cover most of the common situations faced by researchers

and practitioners in water resources engineering in cases related to the

nonstationary behavior of hydrological variables.

12.1.1 Hypothesis Test for a Monotonic Trend

Originally proposed by Mann (1945) and further studied by Kendall (1975), the

nonparametric Mann–Kendall test for trend constitutes a widely used approach for

detecting monotonic trends in hydrologic time series. This test has the advantage of

not assuming a particular form for the distribution of the observed data, while its

performance is comparable to that of the hypothesis test of the linear regression

slope parameter, presented in Sect. 9.2.4.

Consider the hydrologic series Xt with t ¼ 1, 2, . . . ,N. The Mann–Kendall test

statistic is given by

S ¼
XN�1

i¼1

XN
j¼iþ1

sgnðXj � XiÞ ð12:1Þ

where the sign function sgn yð Þ ¼ 1 if y > 0, sgn yð Þ ¼ �1 if y < 0, and sgn yð Þ ¼ 0 if

y ¼ 0. S has a null expected value E S½ � ¼ 0 and its variance is given by

Var S½ � ¼ 1

18
N N � 1ð Þ 2N þ 5ð Þ �

XM
m¼1

tm tm � 1ð Þ 2tm þ 5ð Þ
" #

ð12:2Þ

whereM is the number of sets of tied groups and tm is the size of the mth tied group.
The standardized test statistic Z, which follows a standard Normal distribution, is

computed as

Z ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var S½ �p , S > 0

0 , S ¼ 0

Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var S½ �p , S < 0

8>>>>>><>>>>>>:
ð12:3Þ

The Mann–Kendall test has the null hypothesis H0: {no trend in hydrologic

series Xt}. The region of rejection of the standardized test statistic, Z, is

dependent on the specification of the significance level α, as well as on the

formulation of the alternative hypothesis H1. If H1 is {increasing monotonic

trend in Xt}, it is a right-tailed hypothesis test, with H0 being rejected if
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Z > z1�α. If H1 is {decreasing monotonic trend in Xt}, it is a left-tailed hypoth-

esis test, with H0 being rejected if Z < zα. Alternatively, if H1 is {monotonic

trend in Xt} without specification of the sign of the trend, the hypothesis test is

two-tailed and the decision is to reject H0 if Zj j > z1�α=2.

12.1.2 Hypothesis Test for a Change Point

The Pettitt test (Pettitt 1979) considers that a time series of a random variable Xt

with t ¼ 1, 2, . . . ,N, has a change point at time step τ if the values of Xt for t ¼ 1,

2, . . . , τ have the CDF F1(x), and the values of Xt for t ¼ τ þ 1, τ þ 2, . . . ,N have the

CDF F2(x) and F1 xð Þ 6¼ F2 xð Þ. The application of the Pettitt test does not require the
prior specification of the time step at which the change is supposed to have occurred.

The Pettitt test has the null hypothesis H0: {no change point in hydrologic series

Xt}. The procedures to test the hypothesis are as follows. First, consider the matrix

elements

Di, j ¼ sgn Xi � Xj

� � ð12:4Þ

where sgn �ð Þ is the sign function. The sum of specific submatrices of the matrix

D results in the following statistic:

Ut,N ¼
Xt
i¼1

XN
j¼tþ1

Di, j ð12:5Þ

The Ut,N statistic should be computed for values of t ranging from 1 to N, which can
be done using the following iterative formula (Rybski and Neumann 2011):

Ut,N ¼ Ut�1,N þ
XN
j¼1

sgn Xt � Xj

� � ð12:6Þ

In order to test H0 against alternative hypothesis H1: {change point in Xt}, the

test is two-tailed and the Pettitt test statistic is given by

KN ¼ max
1�t<N

Ut,Nj j ð12:7Þ

It is also possible to make one-tailed tests of H0 against alternative hypotheses H1:

{upward change in Xt} and H1: {downward change in Xt},
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K�
N ¼ � min

1�t<N
Ut,N ð12:8Þ

Kþ
N ¼ max

1�t<N
Ut,N ð12:9Þ

such that KN ¼ max K�
N ;K

þ
N

� �
. Under H0, E Di, j

� � ¼ 0 and the distribution of Ut,N

for each t is symmetrical with mean at zero. On one-tailed tests, a high value of Kþ
N

is expected when the series exhibits a downward change. In such a situation, the

inequalityF1 xð Þ � F2 xð Þ is verified for at least some values of x. Analogously, high
values ofK�

N are expected if the series shows an upward change, i.e.,F1 xð Þ � F2 xð Þ.
P-values of the Pettit test can be approximated by

p � exp � 6Kþ
N2

N3 þ N2

� �
ð12:10Þ

for Kþ
N or for K�

N , and

p � 2exp � 6KN
2

N3 þ N2

� �
ð12:11Þ

for KN. These approximations hold for p � 0:5.
The null hypothesis H0 should be rejected if p < α, at the test significance level

α. The supposed change to which the statistical test is applied occurs at the time step

corresponding to the maximum (or minimum, depending on which test statistic is

used) of Ut,N.

Example 12.1 Consider the series of annual peak flows of the Lehigh River at

Stoddartsville (Table 7.1). (a) Test the hypothesis of that series exhibiting a

monotonic trend using the Mann–Kendall test. (b) Use the two-tailed Pettitt test

to assess if that series shows any evidence of a change point. Consider the

significance level α ¼ 0:05.

Solution

(a) The series has length N ¼ 73. Equations (12.1), (12.2) and (12.3), provide the

following results, respectively, S ¼ 64, V S½ � ¼ 44084, and Z ¼ 0:300. At the
significance level α ¼ 0:05, z1�α=2 ¼ 1:96. Since Zj j < z1�α=2, the null hypoth-

esis (no trend) is not rejected.

(b) The test is two-tailed, so the test statistic is given by Eq. (12.7). Hence

KN ¼ 285, which corresponds to the value of Ut,N at t ¼ 60. To calculate the

p-value, Eq. (12.11) is used, thus resulting in p ¼ 0:581. Since p > α, the null
hypothesis (no change point) is not rejected.

Example 12.2 The Três Marias reservoir on the S~ao Francisco upper river catch-

ment, with a drainage area of 50,600 km2, in southeastern Brazil, has a total storage

volume of 21 hm3 21� 109m3
� �

and started operation in 1961. Downstream of the

dam, at the location of Pirapora, a study is carried out on whether the operation of

the reservoir casts a significant regulation on the streamflow. Consider the
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hydrological series of July mean monthly flows observed at the gauging station of

Pirapora, from 1938 to 1992, displayed in Table 12.1. The S~ao Francisco River

catchment at Pirapora has a drainage area of 114,000 km2 and is located circa 90 km

to the north, downstream of the Três Marias dam. July is usually the driest month in

this region of Brazil and the July monthly discharges are supposed to be strongly

affected by reservoir flow regulation. (a) Apply the nonparametric Mann–Whitney

test (see Sect. 7.4.3) to assess whether the subsamples from 1931 to 1961 and from

1962 to 1992 are homogeneous at the 5% significance level. (b) Apply the

two-tailed Pettitt test at the 5% significance level. Comment on the result of the

Pettitt test, particularly in relation to the time position of the change point.

Solution

(a) Homogeneity hypothesis test. The fourth column of Table 12.1 shows the order

ranks of the mean monthly flows in July. So N1 ¼ 24, N2 ¼ 31, and R1 ¼ 346.

Equations (7.14) and (7.15) give V1 ¼ 674 and V2 ¼ 70, thus, V ¼ 70.

Equations (7.16) to (7.18) give E V½ � ¼ 372, Var V½ � ¼ 3472 and T ¼ �5:12.
At the significance level α ¼ 0:05, z1�α=2 ¼ 1:96. Since Tj j > z1�α=2, the null

hypothesis is rejected and, as a conclusion, the two subsamples are not

homogeneous.

Table 12.1 July mean monthly flows of the S~ao Francisco River at Pirapora, in Brazil, and

auxiliary measures for implementing the Mann–Whitney and Pettitt change-point tests

Year t Xt mt Subsample Ut,N

1938 1 325.00 14 1 �28

1939 2 359.00 18 1 �48

1940 3 248.00 8 1 �88

1941 4 344.00 17 1 �110

1942 5 270.00 9 1 �148

1943 6 478.00 24 1 �156

1944 7 311.00 13 1 �186

1945 8 558.00 34 1 �174

1946 9 422.00 20 1 �190

1947 10 456.00 22 1 �202

1948 11 241.00 7 1 �244

1949 12 517.00 29 1 �241

1950 13 338.00 16 1 �265

1951 14 450.00 21 1 �279

1952 15 487.00 26 1 �282

1953 16 227.00 5 1 �327

1954 17 167.00 3 1 �377

1955 18 153.00 2 1 �429

1956 19 282.00 12 1 �461

1957 20 400.00 19 1 �479

(continued)
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(b) Pettitt change-point test. The fifth column of Table 12.1 shows the Ut,N series

(Eq. 12.5). From Eq. (12.7) the test statistic is KN ¼ 658, which occurs at

t ¼ 27, that is, in 1964. This is a two-tailed test, so the p-value is determined by

Eq. (12.11) as p ¼ 4:38� 10�7. Since p < α, the null hypothesis is rejected,

which suggests that the series exhibits a significant upward change-point in

1964. Figure 12.1 shows the time series Xt and the change-point detected

through the Pettitt test.

Table 12.1 (continued)

Year t Xt mt Subsample Ut,N

1958 21 273.00 10 1 �515

1959 22 152.00 1 1 �569

1960 23 227.00 5 1 �614

1961 24 278.00 11 1 �648

1962 25 573.00 36 2 -632

1963 26 507.00 28 2 �632

1964 27 337.00 15 2 �658

1965 28 684.00 47 2 �620

1966 29 733.00 51 2 �574

1967 30 622.00 40 2 �550

1968 31 655.00 43 2 �519

1969 32 595.00 37 2 �500

1970 33 525.00 31 2 �493

1971 34 218.00 4 2 �541

1972 35 479.00 25 2 �547

1973 36 487.00 26 2 �550

1974 37 611.00 39 2 �528

1975 38 525.00 31 2 �521

1976 39 853.00 55 2 �467

1977 40 517.00 29 2 �464

1978 41 753.00 53 2 �414

1979 42 678.00 46 2 �378

1980 43 813.00 54 2 �326

1981 44 595.00 37 2 �307

1982 45 750.00 52 2 �259

1983 46 655.00 43 2 �228

1984 47 637.00 42 2 �200

1985 48 666.00 45 2 �166

1986 49 712.00 50 2 �122

1987 50 692.00 49 2 �80

1988 51 623.00 41 2 �54

1989 52 565.00 35 2 �40

1990 53 468.00 23 2 �50

1991 54 547.16 33 2 �40

1992 55 685.39 48 2

542 A.T. Silva



Note that the Pettitt change-point does not occur when the upstream reservoir

begins operation but 3 years after that, in 1964. In fact, the Pettitt change-point

signals a sudden change from the statistical viewpoint, and it is not guaranteed to

occur in tandem with the real underlying cause of change. It is also noteworthy that

due to the great storage capacity of the reservoir (21 billion m3), the time of filling

the reservoir should be taken into account until regular operation begins. However,

this period cannot be determined with precision from the available data.

12.2 Kernel Occurrence Rate Estimation

Poisson processes are among the most important stochastic processes, as mentioned

in Sect. 4.2. Under the stationarity assumption, the Poisson intensity λ is a constant
when the process is homogeneous. If the stationarity assumption is not valid, the

Poisson process is nonhomogeneous and λ(t) is a non-constant function of time.

The nonparametric kernel estimator was developed by Rosenblatt (1956) and

Parzen (1962) as an estimation technique of probability density functions of

random variables. Diggle (1985) adapted the technique for smoothing Poisson

process data over time.

Fig. 12.1 July mean monthly flows of the S~ao Francisco River at Pirapora: change point identified
by the Pettitt test

12 Introduction to Nonstationary Analysis and Modeling of Hydrologic Variables 543

http://dx.doi.org/10.1007/978-3-319-43561-9_4


12.2.1 Formulation

Consider t as ranging from t0 to tn, such that, at any instant t, either a “success” or a
“failure” occurs and that there wereM successes in all. If the times of occurrence of

theM successes can be denoted by Ti, with i ¼ 1, . . . ,M, the Poisson intensity, as a

function of time λ(t) can be estimated by

λ̂ tð Þ ¼ h�1
XM
i¼1

K
t� Ti

h

� �
ð12:12Þ

where K �ð Þ is a kernel function and h is the bandwidth. The units of λ̂ tð Þ are the

inverse of the discretization units of t. There are many kernel functions available in

the technical literature. One of the most widely used is the Gaussian kernel,

expressed as

K yð Þ ¼ 1ffiffiffiffiffi
2π

p exp
�y2

2

� �
ð12:13Þ

12.2.2 Bandwidth Selection

The selection of the bandwidth h determines the bias and variance properties of the

estimator: a too small h results in fewer data points that effectively contribute to

kernel estimation, which leads to a reduced bias and a high variance, as contrasted

to a too large h which leads to an over-smoothing of the estimator, resulting in a

small variance and increased bias. In practical terms, the selection of the bandwidth

can be seen as a compromise between those two cases. The technical literature lists

many optimization procedures and empirical formulae for selecting the optimal

bandwidth. One of the most well-known procedures, which is present in

many statistical packages, is Silverman’s rule of thumb (Silverman 1986, p. 48)

defined by

h ¼ 0:9min s;
IQR

1:34

	 

M�1

5 ð12:14Þ

Where s, IQR and M are, respectively, the standard deviation, interquartile range

and length of the sample Ti. Equation (12.14) provides values of h that are

considered suitable for a wide range of applications.
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12.2.3 Pseudodata generation

A direct application of Eq. (12.12) to the series Ti may lead to a boundary bias near

the observation limits t0 and tn consisting of an underestimation of λ(t) due to the

nonexistence of data outside the interval [t0, tn]. This boundary effect may be

reduced by generating pseudodata, denoted as pT, outside the range of observed

data. A straightforward method to generate pseudotada consists of “reflecting” the

observed data near the boundaries: for t < t0, pTi ¼ t0 � Ti � t0ð Þ, covering a range
of 3 times h before t0 and likewise to the right side, for t > t0. Pseudodata generation
is equivalent to the extrapolation of the empirical distribution of events near the

boundaries (Cowling and Hall 1996). For this reason, the estimation of λ(t) near the
boundaries should be interpreted with caution. Considering T{i as the original point

data augmented by the pseudodata and M{ the length of T{i , Eq. (12.12) can be

rewritten as

λ̂ tð Þ ¼ h�1
XM{

i¼1

K
t� T{

i

h

 !
ð12:15Þ

Example 12.3 Consider the Poisson process characterized by the occurrence of

over-threshold daily rainfalls at S~ao Juli~ao do Tojal, in Portugal. The available data
series has a length of 39 water years; the water year in Portugal starts on October

1st. The selected threshold for the peaks-over-threshold sampling is 36 mm.

Table 12.2 shows the dates of the occurrences as well as the peak rainfalls. The

times of occurrence Ti are relative to t0 ¼ 1, that is the beginning of the time series

under analysis. Using the kernel occurrence rate estimator, as formulated in

Eq. (12.12), estimate the temporal variation of the Poisson intensity of over-

threshold rainfall occurrences (a) with, and (b) without pseudodata generation

using the method described in Sect. 12.2.3

Solution The estimator’s bandwidth, according to Silverman’s rule of thumb

(Eq. 12.14) is h ¼ 1; 566d. Pseudodata generation uses the method of reflection,

which consists of covering a range of 3h for t < t0 and t > tn, with the reflection of the
occurrences nearing the boundaries t0 and tn, respectively. Table 12.3 shows the gener-
ated pseudodata points. The kernel occurrence rate estimate without pseudodata uses

Eq. (12.12) directly, whereas the estimationwith pseudodata uses Eq. (12.15), where T{i
is obtained by concatenating the Ti values of Table 12.1 with those of Table 12.3.

Figure 12.2 shows the kernel estimates obtained with and without pseudodata.

To facilitate the interpretation of the results, λ̂ tð Þ was multiplied by 365.25, such

that, for a given instant, t, the λ̂ tð Þ indicates the estimated number of occurrences

above threshold per year. In Fig. 12.2, t takes 512 equidistant values between

October 1st, 1955 ( t0 ¼ 1) and September 30th, 1994 tn ¼ 14, 245ð Þ. The chart

exemplifies the correction of the boundary bias via the pseudodata generation.

The results show that the occurrence rate of over-threshold rainfall events peaked

in the mid-1960s, followed by a few decades of lower intensity rainfalls.
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12.2.4 Estimation uncertainty: bootstrap confidence band

Point estimates given by Eq. (12.15) may be difficult to interpret without some

measure of uncertainty associated with those estimates. For the purpose of quanti-

fying that uncertainty, a pointwise confidence band around λ̂ tð Þ can be constructed

using a bootstrap simulation technique. The bootstrap was originally proposed by

Efron (1979) as a nonparametric approach for estimating parameter confidence

intervals. This technique was later generalized for a wide range of statistical

applications, particularly for problems whose solutions by analytical methods

were cumbersome. Readers interested in bootstrap techniques are referred to

Davison and Hinkley (1997).

Table 12.3 Pseudodata

obtained with the reflection

method

t< t0 t> tn

�4524 �2965 �1518 14,459 16,058 17,871

�4440 �2962 �1442 14,578 16,245 18,213

�4167 �2951 �1256 14,594 16,422 18,589

�4120 �2696 �1175 14,597 16,657 18,855

�3795 �2645 �851 14,623 17,019 18,902

�3759 �2629 �539 15,571 17,065

�3679 �2350 �378 15,684 17,496

�3659 �2243 �175 15,692 17,691

�3648 �1647 �75 16,006 17,788

�2997 �1579 �35 16,021 17,800

Fig. 12.2 Kernel intensity estimator applied to the occurrence of daily rainfalls exceeding the

threshold of 36 mm at S~ao Juli~ao do Tojal
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For the specific problem of estimating the sampling uncertainty associated with

λ(t), the procedure, outlined as follows, can be applied.

1. Generate a simulated sample T* of lengthM{, by random sampling with replace-

ment from the sample M{.

2. Calculate λ̂
*
tð Þ, with Eq. (12.15), using the resampled data and the same

bandwidth h.
3. Repeat the resampling-and-estimation procedure until a sufficiently large num-

ber of replicates of λ̂
*
tð Þ is reached (for example, 2000 replicates).

4. For each time step t the 100 1� αð Þ% confidence interval is defined by the

empirical quantiles with a non-exceedance probability F ¼ α=2 and

F ¼ 1� α=2. For example, supposing 2000 replicates are used, for a confidence

level of 90%, the confidence interval is given by the 50th and 1950th order

statistics of λ̂
*
tð Þ.

5. The confidence band is given by such confidence intervals for t2 t0; tn½ �.
The describedmethodology leads to the estimation of an empirical percentile type

confidence band. Other types of bootstrap confidence bands are proposed by Cowling

et al. (1996). Figure 12.3 shows the limits of the 90% bootstrap confidence band

applied to the case study of Example 12.3, based on 2000 replicates of λ̂
*
tð Þ. The

confidence bands allow the sampling uncertainty to be accounted for in interpreting

the results. Figure 12.3 suggests that the increase in extreme rainfall occurrence in

the mid-1960s may not be very significant since the confidence band is wide enough

to accommodate a constant Poisson intensity during the observation period.

Fig. 12.3 Kernel intensity estimator and respective 90% confidence band applied to the occur-

rence of daily rainfalls exceeding the threshold of 36 mm at S~ao Juli~ao do Tojal
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12.3 Introduction to Generalized Linear Models (GLM)

Regression models are widely applied in statistics to analyze dependent structures

between a response or dependent variable and one or more independent variables.

Simple and multiple linear regression models are presented in Chap. 9. Those

models, as well as other regression models, can find applications in the domain of

analysis of nonstationary hydrologic series. In fact, the main question tackled by

simple linear regression models is “how does variable Y behave as variable

X changes?”. This is a central question in nonstationary analysis and modeling of

hydrological time series as well.

Nonstationary hydrologic series analysis using regression models considers that

there is a relationship between the variable under analysis (dependent variable) and

independent variables, such as time and/or covariates (e.g., series of climate indices

that evolve over time). In this kind of analysis, the regression residuals should be

seen not as an error or imprecision, but as a realization of an independent (but not

necessarily) identically distributed random variable. This understanding is illus-

trated in Fig. 9.5, where the mean of variable Y varies linearly with the dependent

variable X and Y conditioned on X follows a Normal distribution.

The application of regression models to the analysis of nonstationary hydrologic

series requires the same due attention and careful consideration, as recalled in

Chap. 9. For instance, the identification of a linear relationship with time requires

special consideration if extrapolation into the far future is needed (see Sect. 9.2.6).

The normal linear regression model is one of the most widely used statistical

analysis tools and it is applied in many fields of knowledge and science. Neverthe-

less, it has its limitations. In many hydrological applications, the variable under

analysis is discrete and cannot be modeled by a normal linear model. There are also

cases in which the relationship between dependent and independent variables is

nonlinear (this subject was addressed in Sect. 9.2.5). Since the 1970s there has been

a profusion of generalizations of the normal linear model, driven by two important

developments that are addressed here: the systematic use of exponential family

distributions and the numerical capability of optimizing likelihood functions,

through iterative weighted least squares algorithms.

This section summarizes the mathematical formalism of the generalized linear

model in view of the advantages of its use in the context of analysis of nonstationary

hydrological variables. For a more formal and comprehensive treatment of gener-

alized linear models, the reader is referred to McCullagh and Nelder (1989),

Dobson (2001) and Davison (2003).

12.3.1 Density and Link Functions

In Chap. 9, the three basic aspects of the normal linear model are covered.

These are:
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1. The mean of the response variable μ
y
��x ¼ E Y½ � is related to the independent

variable x through a linear predictor η ¼ β0 þ β1X;
2. The density function of the response variable Y, for each value of X, is Normal

with mean μ
y
��x and a constant variance σ2; and

3. The mean of Y, for each X, is equal to the linear predictor,.

The generalized linear model (GLM) sustains the first definition, and relaxes the

second and third. Regarding the density of the response variable, for a GLM, the

response Y may be continuous or discrete, as long as its distribution belongs to the

exponential family of distributions (not to be confused with the exponential distri-

bution). A distribution belongs to the exponential family if its PDF, or PMF, can be

written in the form

f Y yð Þ ¼ exp
yθ � b θð Þ

a ϕð Þ þ c y;ϕð Þ
	 


ð12:16Þ

where θ is the canonical form of the location parameter, ϕ is the parameter of

dispersion, and a �ð Þ, b �ð Þ and c �; �ð Þ are known real functions. This family comprises

many well-known distributions such as the normal, gamma, binomial, and Poisson

distributions.

In a GLM, the linear predictor and the mean of Y are related through a monotonic

link function g

η ¼ g μ
y
��x

� �
ð12:17Þ

Therefore, the normal linear model is a special case of the generalized linear model

in which Y has a normal density and g is the identity function. Other examples of

well-known regression models which are special cases of the GLM are the logistic

regression and the Poisson regression. Furthermore, the GLM setup extends the

applicability of linear models to nonlinear cases, without the need for the trans-

formations presented in Sect. 9.2.5.

From Eq. (12.16) it follows (McCullagh and Nelder 1989; Davison 2003) that

the response variable has mean

E Y½ � ¼ b
0
θð Þ ¼ μ ð12:18Þ

and variance

Var Y½ � ¼ a φð Þb00
θð Þ ¼ a ϕð ÞV μð Þ ð12:19Þ

where 0denotes differentiation with respect to θ. Hence, the variance of Y is a

product of two functions, being that b00 (θ) is called the variance function and is

usually represented by V(μ). The variance function depends only on the location
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parameter θ (and, thus, on the mean μ) and describes the variation of the variance as
a function of the mean. The function a(φ) depends only on the dispersion parameter

φ. It should be noted that, in most practical cases, a φð Þ ¼ φ=ω, where ω is a known

constant.

Example 12.4 Consider the discrete random variable Y 	 P λð Þ which follows the

Poisson distribution. Characterize the probability mass function of the Poisson

distribution, in the form of Eq. (12.16) and find the parameters of location and

dispersion, θ and φ, the mean and variance of Y and the variance function V(μ).

Solution The Poisson PMF is given by pY yð Þ ¼ yλ

y! exp �λð Þ. After algebraic

manipulation it is possible to rewrite the Poisson PMF as pY yð Þ ¼
exp y ln λð Þ � λ� ln y!ð Þf g which is the form of Eq. (12.16) with θ ¼ ln λð Þ, b θð Þ ¼
eθ, a φð Þ ¼ 1 (with ϕ and ω both equal to 1), and c y;ϕð Þ ¼ �ln y!ð Þ. In conclusion,

E Y½ � ¼ b
0
θð Þ ¼ eθ ¼ λ and Var Y½ � ¼ a ϕð Þb00

θð Þ ¼ eθ ¼ λ. The variance function is

V μð Þ ¼ b
00
θð Þ ¼ eθ ¼ λ. Table 12.4 summarizes the previous results and extends

them to the normal and binomial distributions.

The link function of a GLM as in Eq. (12.17) defines the relationship between

the linear predictor η and the mean of Y, given by μ. The choice of this function

should consider the specificities of the case under study. One of the possible choices

is the canonical link function, which consists of having the linear predictor equal to

the location parameter, i.e., η ¼ θ ¼ b
0�1 μð Þ. For instance, if Y is Poisson-

distributed, it is known that the mean of Y is always positive. Hence, a logical

choice for a link function is the log function, since g μð Þ ¼ ln μð Þ ensures that μ can

only take positive values. Furthermore, because θ ¼ ln μð Þ, the log link is the

canonical link. Choosing the canonical link function has some theoretical advan-

tages as laid out by McCullagh and Nelder (1989, p. 32). However, it is more

Table 12.4 Characterization of some distributions of the exponential family

Distribution Normal Binomial Poisson

Notation N(μ, σ) B(N, p) P(λ)

Support R {0, 1, . . .,N} N0

θ μ
ln

p

1� p

� �
ln(λ)

a(φ) σ2 1/N 1

φ σ2 1 1

ω 1 N 1

c(y,φ) �1

2

y2

φ
þ ln 2πφð Þ

� �
ln

N
Ny

� � �ln y!ð Þ

b(θ) θ2/2 ln 1þ eθ
� �

eθ

μ ¼ E Y½ � θ
p ¼ eθ

1þ eθ
λ ¼ eθ

V(μ) 1 p 1� pð Þ λ

Var[Y] σ2 p 1� pð Þ=N λ
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important for the choice of the link function to be guided by substantial consider-

ations specific to the problem at hand. Table 12.5 shows some of the more common

link functions.

The PDF or PMF of Y is the random component of a GLM, while the link

function is the structural or systematic component of a GLM. One can interpret the

simple linear regression model as a particular GLM: Y has a Normal density and an

identity link function. In Chap. 9, the Normal distribution is presented as the

distribution of the “residuals.” In the GLM framework, the residuals are the

realizations of the random variable around its mean. Notwithstanding the different

terminologies applied to the simple linear model and the GLM with Normal density

and identity link function, they are mathematically equivalent.

12.3.2 Estimation and Inference

GLM parameters are estimated using the maximum likelihood method. The likeli-

hood function is given by

L βjjyi, xi
� � ¼YN

i¼1

f Y yi
��θi,φi,ωi

� �
¼
YN
i¼1

exp
yiθi � b θið Þ

a φið Þ þ c yi;φið Þ
	 
 ð12:20Þ

One can further define the log-likelihood function ‘ðβÞ ¼ ln
�
LðβÞ


as

‘ βjjyi, xi
� � ¼XN

i¼1

yiθi � b θið Þ
a φið Þ þ c yi;φið Þ

	 

ð12:21Þ

where θi ¼ ηi, when the link function is canonical, and ηi ¼ β0 þ β1xi. The

maximum likelihood estimators of the regression parameters β̂ i are obtained by

solving the following system of equations.

Table 12.5 Some link

functions for generalized

linear models

Identity g μð Þ ¼ μ

Reciprocal
g μð Þ ¼ 1

μ

Log g μð Þ ¼ ln μð Þ
Inverse quadratic

g μð Þ ¼ 1

μ2

Logit
g μð Þ ¼ ln

μ

1� μ

� �
Probit g μð Þ ¼ Φ�1 μð Þ
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∂
∂βk

‘ βjjyi, xi
� � ¼ 0 ð12:22Þ

The dispersion parameter φ may also be estimated by maximum likelihood,

however such an estimation procedure has some practical difficulties (Davison

2003, p. 483). Alternatively, one can expand Eq. (12.19) to

Var Yi½ � ¼ a ϕð Þb00 θið Þ
¼ ϕ

ωi
V μið Þ ð12:23Þ

Then, one has

ϕ ¼ E
ωi Yi � μið Þ2

V μið Þ

" #
, i ¼ 1, . . . ,N ð12:24Þ

From the previous equation and according to some asymptotic results from

mathematical statistics outlined by Turkman and Silva (2000), it is possible to

define the following estimator for ϕ

ϕ̂ ¼ 1

N � q

XN
i¼1

ωi Yi � μ̂ ið Þ2
V μ̂ ið Þ ð12:25Þ

where q is the number of regression parameters. If there is only one dependent

variable, q ¼ 2.

It is very difficult to solve the system of equations given by Eq. (12.22). To

tackle that optimization, the iterative weighted least squares (IWLS) method, which

is a variant of the Newton–Raphson algorithm, is recommended in the scientific

literature on GLMs. To grasp the IWLS formalism, the works by Dobson (2001)

and Davison (2003) are recommended. Furthermore, it should be noted that the

IWLS method is implemented in the glm() function in the free statistical software

package R (R Core Team 2013).

The regression parameter estimates β̂ k benefit from an asymptotic property of

maximum likelihood estimators: they are asymptotically Normal with means βk and
variances σ2βk , given by the diagonal of the variance-covariance matrix, which was

introduced in Sect. 6.7.2. If there is only one dependent variable, one has

I ¼
Var β̂ 0

� �
Cov β̂ 0; β̂ 1

� �
Cov β̂ 1; β̂ 0

� �
Var β̂ 1

� �
" #

ð12:26Þ
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which is given by the inverse of the negated Hessian matrix, H, i.e., the matrix of

second-order partial derivatives of the log-likelihood function at the point of

maximum likelihood

I ¼ �Hð Þ�1 ¼ �
∂2

‘ β0;β1ð Þ
∂β20

∂2
‘ β0;β1ð Þ
∂β0∂β1

∂2
‘ β0;β1ð Þ
∂β1∂β0

∂2
‘ β0;β1ð Þ
∂β21

264
375
�������
βk¼β̂ k

0BB@
1CCA

�1

ð12:27Þ

The calculation of the covariance matrix is very complex and is seldom done

analytically. However, such a calculation is made numerically within the IWLS

method. The numerical solution of the matrix can be obtained through the glm()

function in R.

After the regression parameter estimates and corresponding covariance matrix

are known, it is possible to construct confidence intervals for those parameters.

Furthermore, with such intervals as a basis, one can construct a hypothesis test for

the existence of a linear relationship between the link function and the linear

predictor. This subject matter is covered in Sect. 12.3.3.1.

Example 12.5 The North Atlantic Oscillation (NAO) is a prominent pattern in

climate variability over the northern hemisphere and refers to the redistribution of

atmospheric masses between the Arctic and subtropical Atlantic. There are many

studies in the technical literature that establish links between the NAO phase and

rainfall in Western Europe, particularly during winter in the northern hemisphere.

There are also a number of studies on the influence of the NAO on rainfall and river

flows in the western Iberian Peninsula during winter months: when the winter NAO

is in the negative phase, rainfall and river flows tend to be above normal, and vice

versa (e.g. Lorenzo-Lacruz et al. 2011). The NAO is usually characterized by a

standardized climatic index which is computed and made available by several

organizations, such as the University of East Anglia’s Climate Research Unit

(Jones et al. 1997, http://www.cru.uea.ac.uk/cru/data/nao/). Consider the case of

Example 12.3. Consider the variable Y: “annual number of daily rainfalls exceeding

the threshold u ¼ 36mm.” Y is a discrete random variable and admittedly follows a

Poisson distribution. Using a GLM, analyze the relationship between the dependent

variable Y and the independent variable X : “winter NAO index” (the annual

November-to-March mean). Both variables are presented in Table 12.6. Estimate

GLM regression parameters and the respective covariance matrix, considering the

canonical link function of the appropriate model.

Solution The R code for solving this problem is presented in Appendix 11. Y is a

Poisson-distributed variable and as such the GLM will have a Poisson probability

mass function. In this case, one can write (from Table 12.4) b θð Þ ¼ eθ. Since the

canonical link function is given by b
0�1 μð Þ, g μð Þ ¼ ln μð Þ. This link function

suggests that the model is nonlinear. The GLM can then be expressed as

ln μ
Y
��NAO

� �
¼ β0 þ β1NAO, or, identically as μ

Y
��NAO ¼ exp β0 þ β1NAOð Þ.
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By applying the function glm(), of the statistical software R, one obtains the results

β̂ 0 ¼ 0:770334 and β̂ 1 ¼ �0:286583, thus suggesting that the mean of Y decreases

as the winter NAO index increases, that is, there tends to be more over-threshold

events during the negative phase of the winter NAO. This result is concurrent with

the previously mentioned studies. Figure 12.4 shows the resulting curve as well as

the scatterplot of the observed data (Table 12.5).

Finally one can obtain the covariance matrix with the command vcov(),

I ¼ 1:234574� 10�2 2:876015� 10�5

2:876015� 10�5 1:294348� 10�2

" #

12.3.3 Model Selection and Evaluation

Generalized linear models constitute a powerful and versatile modeling framework

since: (1) they allow for several independent variables; (2) the dependent variable

may be described by any probability density function that can be written as in

Eq. (12.16); and (3) several link functions can be postulated. The versatility of this

modeling methodology requires careful consideration in its application and in

selecting the appropriate model for each analysis. Following are three basic and

Table 12.6 Annual number

of threshold exceedances

Y and corresponding winter

NAO index

HY Y NAO HY Y NAO

1955/56 3 �1.068 1975/76 3 0.64

1956/57 2 1.598 1976/77 2 �0.576

1957/58 1 �0.53 1977/78 4 0.338

1958/59 3 0.372 1978/79 4 �0.294

1959/60 3 �0.126 1979/80 1 0.448

1960/61 0 1.892 1980/81 0 0.308

1961/62 2 �0.888 1981/82 2 0.53

1962/63 3 �1.218 1982/83 1 1.942

1963/64 4 �0.642 1983/84 1 0.138

1964/65 1 �0.54 1984/85 4 �0.536

1965/66 4 �0.176 1985/86 1 �0.596

1966/67 2 1.27 1986/87 2 0.952

1967/68 2 �0.196 1987/88 1 �0.056

1968/69 5 �2.068 1988/89 2 1.994

1969/70 3 �0.676 1989/90 3 1.304

1970/71 1 �0.36 1990/91 3 �0.132

1971/72 2 �0.232 1991/92 0 1.68

1972/73 0 1.276 1992/93 1 2.044

1973/74 1 0.342 1993/94 4 1.594

1974/75 0 1.18
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useful tools for statistical modeling using generalized linear models. For a deeper

understanding of the selection and evaluation of generalized linear models, the

textbook by Davison (2003) is recommended.

12.3.3.1 Hypothesis Tests for Regression Coefficients

As previously mentioned, in Sect. 12.3.2, GLM parameters are estimated by

maximum likelihood, since MLE estimates are asymptotically Normal. This result

can be used to design a hypothesis test for the regression coefficients β1, which
defines the slope of the linear predictor.

Given the asymptotic normality of the estimator of the regression coefficient β1,
one can define a test with the following hypotheses:

• H0: {there is no significant linear relationship (β1 ¼ 0)}.

• H1: {there is a significant linear relationship” β1 6¼ 0ð Þ}.
The null hypothesis H0 can be rejected at a 100α% significance level if

β̂ 1

�� �� > z1�α=2σβ̂ 1
ð12:28Þ

where σβ̂ 1
is the standard error of the estimate and z1�α=2 is the 1� α=2 quantile of

the standard Normal distribution.

Fig. 12.4 Relation of winter NAO index and annual exceedance counts for Example 12.5
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Example 12.6 Analyze the results of Example 12.5. Apply the hypothesis test for

regression coefficients to verify whether or not the linear relationship between

variables Y and X is significant.

Solution From the results of Example 12.5, β̂ 1 ¼ �0:28658 and σ2β̂ 1

¼ 0:01294

(second value from the diagonal of the covariance matrix). The standard error of the

estimate is σβ̂ 1
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:01294
p ¼ 0:1138. The limit of the region of rejection is

calculated as z1�α=2σβ̂ 1
¼ 1:96� 0:1138 ¼ 0:2230. Since β̂ 1

�� �� > z1�α=2σβ̂ 1
, the

decision should be to reject the null hypothesis (β1 ¼ 0 ). Therefore, it can be

concluded that the linear relationship modeled in Example 12.5 is significant.

12.3.3.2 Likelihood Ratio Tests

Likelihood ratio tests (LRT) are based on asymptotic results from mathematical

statistics (see Casella and Berger 2002; Davison 2003). An LRT is a method for

comparing the performance of two competing models fitted to the same sample of

the dependent variable: a null model M0 and a more complex (with more param-

eters) alternative modelM1, being thatM0 is nested inM1. By nested it is meant that

M1 reduces to M0 if one or more of its parameters are fixed.

A k-parameter alternative model M1, with parameter vector θM1
, can be com-

pared with the null model with k � q parameters, by calculating the test statistic D,
also named deviance statistic. It is given by

D ¼ 2 ‘ θ̂ M1

� �� ‘ θ̂ M0

� �� � ð12:29Þ

where ‘ θ̂ M1

� �
and ‘ θ̂ M0

� �
are the maxima of the log-likelihood function of the

alternative and null models, respectively. The deviance statistic follows a

chi-square distribution with q degrees of freedom:

D 	 χ2q ð12:30Þ

where q is the difference in number of parameters between the two models.

The null hypothesis of an LRT H0 : M ¼ M0f g can be rejected in favor of the

alternative hypothesis H1 : M ¼ M1f g, at the 100α% significance level, if

D > χ21�α,q ð12:31Þ

where χ21�α,q is the 1� α quantile of the chi-square distribution with q degrees of

freedom.

The LRT result should be interpreted from the viewpoint of the concept of

parsimony: if the deviance statistic D takes a value outside the region of rejection

(i.e., D < χ21�α,q ), the underlying implication is that, notwithstanding the null
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model’s simplicity relative to the alternative model, it is sufficiently adequate to

describe the variable under analysis, or, in other words, the “gain” in likelihood

achieved by increasing the complexity of M1 relative to M0, does not bring about a

significant improvement of its capability of modeling the variable.

Example 12.7 Consider Example 12.5. Use an LRT at the 5% significance level to

test whether the fitted model is significantly better than that in which variable Y is

considered to be stationary (base model).

Solution (The R code for solving this problem is presented in Appendix 11) The

base model M0 is stationary: Y follows a Poisson distribution with a single param-

eter which is estimated by the mean. The model fitted in Example 12.5 is the

alternative model M1. M0 is nested in M1 because the parameter β1 is fixed and

equal to zero, then the two models are mathematically equal.

The log-likelihood function of the Poisson distribution is

‘ λð Þ ¼ �λN þ ln λð ÞPN
i¼1

yi � ln
QN
i¼1

yi!

� �
. The point of maximum likelihood is

defined by λ ¼ λ̂ ¼ y ¼ 2:076923. Then, the maximum of the log-likelihood of

model M0 is ‘ θ̂ M0

� � ¼ �yN þ ln yð ÞPN
i¼1

yi � ln
QN
i¼1

yi!

� �
¼ �66:23.

Using the logLik() function in R, one gets ‘ θ̂ M1

� � ¼ �62:98. From Eq. (12.29),

the result D ¼ 6:49 is attained. M1 has one parameter more than M0, so D 	 χ21.
From Appendix 3, χ20:95,1 ¼ 3:84. SinceD > χ20:95,1, the decision is to reject the null

hypothesis, that is, the performance of the more complex alternative model M1

improves significantly on that of model M0, hence it can be concluded that the

winter NAO index casts a significant influence on variable Y.

12.3.3.3 Akaike Information Criterion (AIC)

The Akaike information criterion (AIC) was introduced by Akaike (1974). It is a

widely use method for evaluating statistical models. Founded in information theory,

this method does not involve defining hypothesis tests, since there are no null and

alternate hypotheses. Rather, it is simply a measure of model performance of a

series of candidate models, based on the parsimony viewpoint.

In more general terms than those applied in Sect. 8.3.2, for a given statistical

model, the AIC score is given by

AIC ¼ 2k � 2‘ θ̂
� � ð12:32Þ

where k is the number of parameters and ‘ θ̂
� �

is the maximum of the log-likelihood

of the model. The AIC score may be computed for a series of candidate models for

the same random sample. According to this criterion, the best model is the one that
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minimizes the AIC score. AIC rewards the goodness-of-fit of the models but

penalizes the increase in complexity (number of parameters).

Example 12.8 Apply AIC to corroborate the results of Example 12.7.

Solution From Example 12.7: modelM0 has one parameter and ‘ θ̂ M0

� � ¼ �66:23;

and model M1 has 2 parameters and ‘ θ̂ M1

� � ¼ �62:98. Equation (12.32) yields

AICM0
¼ 134:45 and AICM1

¼ 129:96. Since AICM1
< AICM0

, M1 is the better

model, which corroborates the results of Example 12.7.

12.4 Nonstationary Extreme Value Distribution Models

12.4.1 Theoretical Justification

Extreme-value theory (EVT), which was introduced in Sect. 5.7, provides 3 limiting

probability distributions for maximum (or minimum) extreme values, namely the

Gumbel, Fréchet, and Weibull distributions. These distributions can be integrated

into a single distribution—the generalized extreme value (GEV) distribution

(Eq. 5.70). As mentioned in Sect. 5.7.2.3, the GEV distribution has many applica-

tions in Statistical Hydrology, such as the statistical modeling of floods or extreme

rainfalls, even though the theoretical assumptions that support EVT do not always

hold for hydrological variables. In practice, although the theoretical basis of the

extremal asymptotic distributions has been specifically developed to analyze

extreme value data, frequency analysis using such distributions is carried out

analogously as with non-extremal distributions.

As observed by Katz (2013), when confronted with trends in extreme value data,

hydrologists tend to abandon analysis frameworks based on EVT, in favor of

nonparametric techniques such as the Mann–Kendall test, which is a powerful

tool with no distributive restrictions. Nevertheless, it was not developed specifically

for extreme values. Another common approach is to conduct inference about trends

in extreme value data using a simple linear regression model, which has as one of its

central premises that the data is normally distributed. Clarke (2002) points out the

inherent methodological inconsistency underlying the application of these

approaches to extreme value data: it seems that practitioners of hydrology accept

one theory (even if approximate) under stationarity but move away from it under

nonstationarity.

In his textbook on EVT, Coles (2001) introduced (based on previous develop-

ments by Davison and Smith 1990) nonstationary GEV distribution models, includ-

ing the particular case of the Gumbel distribution. Coles (2001) argues that it is not

possible to deduce a general asymptotic theory of extreme values under

nonstationarity, except in a few very specialized forms which are too restrictive

to describe nonstationary behavior in real-world applications. However, it is pos-

sible to take a pragmatic approach by using existing limiting models for extremes
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with enhanced estimation procedures, namely regression techniques, which allow

modeling the parameters of the GEV or GPA distributions as functions of time. The

idea is similar to generalized linear models: the nonstationary GEV model uses link

functions applied to the location scale and shape parameters. These link functions

are related to linear (or, e.g., polynomial) predictors. Under this approach, at any

given time step, the variable is still described by an extreme value distribution, but

its parameters are allowed to change over time. Therefore, the statistical model can

still be interpreted, although in a contrived manner, in the scope of extreme value

theory.

In this subsection, nonstationary models based on limiting distributions for

extreme values are presented, namely the GEV and Gumbel (as a special case)

distributions, and the generalized Pareto distribution, whose applicability falls in

the domain of peaks-over-threshold analysis. It should be noted that the GEV and

Gumbel distributions considered here are for maxima. The methodologies

described are equally applicable to minima, provided that the negated samples

are used.

The presentation of the models is complemented with application examples

using the ismev package (Heffernan et al. 2013) in R. That package considers the

parametrization of the GEV and GPA distributions used by Coles (2001), which

differs from the one adopted in this textbook: the shape parameter of the distribu-

tions is, in Coles’ parametrization, the symmetrical of the shape parameter used in

this textbook.

12.4.2 Nonstationary Model Based on the GEV Distribution

The nonstationary GEV model for frequency analysis consists of fitting that distri-

bution to an observed sample and of estimating one or more of its parameters as a

function of time or of a covariate. A covariate is a variable that can admittedly exert

a time dependence on the hydrological variable under study (e.g. annual maximum

flows). Examples of covariates are climate indices (see North Atlantic Oscillation in

Example 12.5) and indicators of anthropogenic influence on the catchments.

Consider a series of annual maximum flows Xt that show some signs of changing

behavior with time. In order to describe the changing behavior of this extreme

variable, it is possible to contemplate the following nonstationary flood frequency

model based on the GEV distribution with time-varying parameters β, α, and κ:

Xt 	 GEV β tð Þ, α tð Þ, κ tð Þð Þ ð12:33Þ

where functions β(t), α(t), and κ(t) define the dependence structure between the

model parameters and time.

As shown by Eq. (5.72), the mean of a GEV-distributed variable has a linear

dependence on the location parameter β. Then, in order to model a linear temporal
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trend of a GEV-distributed variable, one can use a nonstationary GEV model with

location parameter

β tð Þ ¼ β0 þ β1t ð12:34Þ
where β1 determines the rate of change (slope) of the variable. There can be other

more convoluted parametric dependence structures for the GEV such as, for

example, a 2nd degree polynomial, that is,

β tð Þ ¼ β0 þ β1tþ β2t
2 ð12:35Þ

or a change point at time t0

β tð Þ ¼
β1, for t < t0

β2, for t > t0

(
ð12:36Þ

Nonstationarities may also be introduced in the scale parameter α. This is

particularly useful when analyzing changes in variance. A convenient parametri-

zation for a time-changing scale parameter uses the exponential function so as to

guarantee that α(t) can only take positive values, that is,

α tð Þ ¼ exp α0 þ α1tð Þ ð12:37Þ

This link is log-linear since it equates to applying a linear relationship to the

logarithm of α(t).
For samples of only a few dozen values, as is generally the case in Statistical

Hydrology, it is difficult to make a proper estimation of the GEV shape parameter κ
even under the stationarity assumption. For that reason, the shape parameter is

usually fixed in nonstationary models. Furthermore, to consider a trend in the shape

parameter frequently leads to numerical convergence issues when estimating the

model parameters. Then, in practice, one should consider κ tð Þ ¼ κ.
The parameters of the nonstationary GEV model are estimated by maximum

likelihood, thus allowing more flexibility for changes in the model structure. The

nonstationary GEV model with changing parameters, according to link function of

the type of Eqs. (12.34) to (12.37), has the likelihood function

L θð Þ ¼
YN
t¼1

f X xt
��β tð Þ, α tð Þ, κ tð Þ� � ð12:38Þ

where fX(xt) is the probability density function of the GEV, given by Eq. (5.71).

Then, the log-likelihood function of the model is obtained as

‘ θð Þ¼�
XN
t¼1

ln α tð Þð Þþ 1� 1

κ tð Þ
� �

ln 1� κ tð Þ xt � β tð Þ
α tð Þ

� �� �
þ 1� κ tð Þ xt � β tð Þ

α tð Þ
� �� � 1

κ tð Þ
( )

ð12:39Þ
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subject to

1� κ tð Þ xt � β tð Þ
α tð Þ

� �
> 0 ð12:40Þ

for t ¼ 1, . . . ,N.
Parameter estimates are obtained by maximizing Eq. (12.39), which is a com-

plex numerical procedure for which the IWLS method is usually employed. There-

fore it is somewhat similar to the GLM, but specifically developed for extreme

value data. The function gev.fit() of the package ismev, in R, is one of the free

available tools for building and fitting this kind of model.

As in the case of the GLM, parameter estimates of the nonstationary GEV model

benefit from the asymptotic properties of maximum likelihood estimators, which

enable approximations of the sampling distribution of parameter estimates to the

Normal distribution, with mean given by the maximum likelihood estimate and

variance given by the diagonal of the covariance matrix I. Take as an example the

nonstationary GEV model with a linear trend in the location parameter (Eq. 12.34),

for which the parameter vector is θ ¼ β0; β1; α; κð ÞT, the covariance matrix I is

I ¼

Var β̂ 0

� �
Cov β̂0; β̂1

� �
Cov β̂0; α̂

� �
Cov β̂0; κ̂

� �
Cov β̂1; β̂0

� �
Var β̂1

� �
Cov β̂1; α̂

� �
Cov β̂1; κ̂

� �
Cov α̂ ; β̂0

� �
Cov α̂ ; β̂1

� �
Var α̂ð Þ Cov α̂ ; κ̂ð Þ

Cov κ̂ ; β̂0
� �

Cov κ̂ ; β̂1
� �

Cov κ̂ ; α̂ð Þ Var κ̂ð Þ

26666664

37777775 ð12:41Þ

and is given by the inverse of the symmetrical of the respective Hessian matrix of

the log likelihood function at the point of maximum likelihood. The Hessian matrix,

or matrix of second-order derivatives, is usually obtained by numerical differenti-

ation of the log-likelihood function.

Example 12.9 Consider the series of annual maximum daily rainfalls, at the Pavia

rain gauging station, in Portugal (organized by hydrologic year which, in Portugal

starts on October 1st), presented in Table 12.7 and in Fig. 12.5. The records

range from 1912/13 to 2009/10 with no gaps, adding up to 98 hydrologic years.

Fit the following GEV models to the data: (a) a stationary model GEV0; (b) a linear

trend in the location parameter GEV1; (c) Determine the quantile with a

non-exceedance probability F ¼ 0:9 of both models relative to the year 2010/2011.

Solution It is important to recall that the shape parameter returned by the

functions of the ismev package is the symmetrical of the shape parameter in the

GEV parametrization adopted in this book. Data can be imported from a file using

the read.table function, or typed directly on the R console with the following

command.
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> pavia<-c(24.2, 31.3, 32.5, 33.5, 20.2, 38.2, 36.7, 35.2, 35.2,

25.3, 92.3, 30, 25.2, 50.4, 35.7, 40.5, 10.3, 40.2, 8.1, 10.2, 14.2,

15.3, 40.2, 20.4, 20.2, 32.8, 43.2, 29.8, 42.8, 45, 34.2, 32.8,

46.3, 31.9, 34.2, 24.3, 24.3, 24.3, 71.4, 37.4, 31.4, 24.3, 43.8,

58.2, 34.6, 40.2, 20.8, 69, 44, 27.2, 37.2, 36.7, 49, 38.9, 59.6,

63.3, 41.2, 46.6, 84.2, 29.5, 70.2, 43.7, 36.2, 29.8, 60.2, 28,

31.4, 38.4, 29.4, 34, 47, 57, 36.5, 84.2, 45, 95.5, 48.5, 38,

38.6, 26, 27, 58, 27.8, 37.5, 35.2, 27.5, 28.5, 52, 56.8, 80,

29, 55.2, 48.4, 33.2, 27.4, 27.4, 18.2, 34.2)

(a) The function used to fit GEV models is gev.fit. Fit the stationary GEV model,

GEV0, with the command

> GEV0<-gev.fit(pavia)

Object GEV0 contains all the information regarding the fitted model including

parameter estimates, covariance matrix, maximum log-likelihood, and more.

For details on R functions, the help file documentation can be looked up using

the command

> ?gev.fit

Fig. 12.5 Series of annual maximum daily rainfalls at Pavia
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Maximum likelihood estimates are stored in component $mle. The console

returns a vector with the estimated of the location, scale and shape parameters,

in the following order β, α, � κð Þ:
> GEV0$mle

[1] 31.521385926 13.156409604 -0.007569892

(b) In order to fit the nonstationary model GEV1, with a linear temporal trend on

the location parameter β tð Þ ¼ β0 þ β1tð Þ, it is necessary to create a single

column matrix with the variable time, t, taking unit incremental values from

1 to 98 (the length of the sample), being that t ¼ 1 corresponds to hydrologic

year 1912/13.

> time<-matrix(1:98,ncol¼1)

Subsequently, the function gev.fit is applied with the following arguments

> GEV1<-gev.fit(pavia,ydat¼t,mul¼1)

Table 12.7 Annual maximum daily rainfalls at Pavia, Portugal (HY hydrologic year)

HY P (mm) HY P (mm) HY P (mm) HY P (mm)

1912/13 24.2 1937/38 32.8 1962/63 37.2 1987/88 95.5

1913/14 31.3 1938/39 43.2 1963/64 36.7 1988/89 48.5

1914/15 32.5 1939/40 29.8 1964/65 49.0 1989/90 38.0

1915/16 33.5 1940/41 42.8 1965/66 38.9 1990/91 38.6

1916/17 20.2 1941/42 45.0 1966/67 59.6 1991/92 26.0

1917/18 38.2 1942/43 34.2 1967/68 63.3 1992/93 27.0

1918/19 36.7 1943/44 32.8 1968/69 41.2 1993/94 58.0

1919/20 35.2 1944/45 46.3 1969/70 46.6 1994/95 27.8

1920/21 35.2 1945/46 31.9 1970/71 84.2 1995/96 37.5

1921/22 25.3 1946/47 34.2 1971/72 29.5 1996/97 35.2

1922/23 92.3 1947/48 24.3 1972/73 70.2 1997/98 27.5

1923/24 30.0 1948/49 24.3 1973/74 43.7 1998/99 28.5

1924/25 25.2 1949/50 24.3 1974/75 36.2 1999/00 52.0

1925/26 50.4 1950/51 71.4 1975/76 29.8 2000/01 56.8

1926/27 35.7 1951/52 37.4 1976/77 60.2 2001/02 80.0

1927/28 40.5 1952/53 31.4 1977/78 28.0 2002/03 29.0

1928/29 10.3 1953/54 24.3 1978/79 31.4 2003/04 55.2

1929/30 40.2 1954/55 43.8 1979/80 38.4 2004/05 48.4

1930/31 8.1 1955/56 58.2 1980/81 29.4 2005/06 33.2

1931/32 10.2 1956/57 34.6 1981/82 34.0 2006/07 27.4

1932/33 14.2 1957/58 40.2 1982/83 47.0 2007/08 27.4

1933/34 15.3 1958/59 20.8 1983/84 57.0 2008/09 18.2

1934/35 40.2 1959/60 69.0 1984/85 36.5 2009/10 34.2

1935/36 20.4 1960/61 44.0 1985/86 84.2

1936/37 20.2 1961/62 27.2 1986/87 45.0
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The component $mle contains the parameter estimates in order β0, β1, α, � κð Þ.
> GEV1$mle

[1] 25.57537923 0.12052674 12.37868560 0.02447634

(c) In order to estimate the quantile with non-exceedance probability F ¼ 0:9, for
the hydrologic year 2010/11 (t ¼ 99), the GEV quantile function may be applied

directly, using Eq. (5.77). Regarding model GEV0, since it is stationary, the

quantile function may be applied directly resulting in x0:9,GEV0
¼ 60:88mm.

Regarding model GEV1, the location parameter for year 2010/11 is determined

as β t ¼ 99ð Þ ¼ β0 þ β1 � 99 ¼ 37:5075. From the application of Eq. (5.77),

results x0:9,GEV1
¼ 64:61 mm:

12.4.3 Nonstationary Model Based on the Gumbelmax

Distribution

The Gumbelmax (or simply Gumbel) distribution is a limiting case of the GEV

distribution when κ ! 0. Likewise to the GEV, it is possible to specify a

nonstationary model for a hydrological variable based on the Gumbel distribution

with time-varying parameters β and α, that is,

Xt 	 Gum β tð Þ, α tð Þð Þ ð12:42Þ

where β(t) and α(t) define the dependence structure between the location and scale

parameters and time.

The log-likelihood function of the nonstationary Gumbel model is given by

‘ θð Þ ¼ �
XN
t¼1

ln α tð Þð Þ þ xt � β tð Þ
α tð Þ

� �
þ exp � xt � β tð Þ

α tð Þ
� �� �	 


ð12:43Þ

The function gum.fit, of the R package ismev, can be used to fit this model by the

IWLS method. This is covered in Example 12.10

Example 12.10 Consider the series of annual maximum daily rainfall at Pavia, in

Portugal, shown in Example 12.9. Using the R package “ismev,” estimate the

parameters of the following Gumbel models: (a) stationary model GUM0;

(b) linear trend in the location parameter GUM1; (c) linear trend in the location

parameter and log-linear trend in the scale parameter GUM2.

Solution After loading the ismev package and importing the data into R, create a

single-column matrix with time t between 1 and 98 (see Example 12.9a).

(a) The stationary model GUM0 is fitted using the function gum.fit, as in

> GUM0<-gum.fit(pavia)
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The parameter estimates in the order (β, α) are given by

> GUM0$mle

[1] 31.46559 13.13585

(b) The same commands are applied to estimate parameters of the nonstationary

model GUM1, with a linear trend on the location parameter β tð Þ ¼ β0 þ β1t½ �
and parameters in order (β0, β1, α), as in

> GUM1<-gum.fit(pavia,ydat¼t,mul¼1)

> GUM1$mle

[1] 25.7563638 0.1201053 12.4740537

(c) The same for model GUM2 with a log-linear trend in the scale parameter α tð Þ
¼ exp α0 þ α1tð Þ and parameter vector (β0, β1, α0, α1), as in

> GUM2<-gum.fit(pavia,ydat¼t,mul¼1,sigl¼1,siglink¼exp)

> GUM2$mle

[1] 2.544135eþ01 1.262875e-01 2.485020eþ00 7.661304e-04

12.4.4 Nonstationary Model Based on the Generalized
Pareto Distribution

The generalized Pareto (GPA) distribution has its origins in results from EVT,

namely in the research by Balkema and de Haan (1974) and Pickands (1975). The

GPA distribution is not usually used in frequency analysis of annual maxima, but it

is widely applied to peaks-over-threshold data, frequently in combination with the

Poisson distribution (see Example 8.8).

Consider a peaks-over-threshold series Xt that shows some signs of changing

behavior with time. It is possible to define a nonstationary flood frequency model

based on the GPA distribution with scale parameter α and shape parameter κ, both
changing with time, as denoted by

Xt 	 GPA α tð Þ, κ tð Þð Þ ð12:44Þ

As in the case of the GEV model, the shape parameter of the GPA κ defines the
shape of the upper tail of the distribution and the precise estimation of this

parameter is complex. Likewise, regarding the nonstationary GPA model, it is not

usual to allow the shape parameter to vary as a function of time. Therefore, as a rule,

the only GPA parameter to be expressed as a function of time is the scale parameter

α. Since that parameter can only take positive values, a convenient parametrization

for α(t) is

α tð Þ ¼ exp α0 þ α1tð Þ ð12:45Þ
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The log-likelihood function of the nonstationary GPA is given by

‘ θð Þ ¼ �
XN
t¼1

ln α tð Þð Þ � 1

κ tð Þ � 1
ln 1� κ tð Þ xt

α tð Þ
� �	 


ð12:46Þ

In the R package ismev, the appropriate function for fitting nonstationary

GPA models is gpd.fit. The procedures are very similar to the ones described in

Examples 12.9 and 12.10.

12.4.5 Model Selection and Diagnostics

The models presented in this subsection are highly versatile since they allow for:

(1) having one or two nonstationary parameters; (2) the parameters being dependent

on time directly or through a covariate (e.g., climate index); (3) many possible

dependence structures between the parameters and time/covariate, i.e., linear, log

linear, polynomial, change point, and other dependencies. Therefore, there are

several candidate models to each problem in which a nonstationary extreme

hydrological variable is present. Model selection under nonstationarity is an impor-

tant issue, as the consideration of several covariates and possibly convoluted

dependence structures can often result in very complex models which fit nicely to

the data but may not be parsimonious. The basic aim here is to select a simple model

with the capability of explaining much of the data variation.

The logic of model selection for nonstationary extremes is analogous to that of

the GLM, whose main tools were presented in Sect. 12.3.3. Relative performances

of nested candidate models may be assessed using asymptotic likelihood ratio tests

and AIC can be used to select the best model from a list of candidates. The models

which postulate a linear or log-linear dependence may be evaluated using hypoth-

esis tests of the slope parameter.

The recommended practice for this kind of analysis is to start with a stationary

model as a baseline model, with the lowest possible number of parameters, and

gradually postulate incrementally complex models, that is, progressively add

parameters, and check whether each alternate model has a significantly better

performance than the previous one. It is important to be mindful than an LRT is

only valid when the 2 models are nested.

Consider the hypothetical scenario in which a trend in the location parameter of

a GEV-distributed variable is under analysis, but the parametric dependence struc-

ture of the trend is not obvious. One possible approach is to postulate the following

models:

• GEV0—“no trend”, baseline model, β tð Þ ¼ β;
• GEV1—“linear trend,” β tð Þ ¼ β0 þ β1t;
• GEV2—“log-linear trend”, β tð Þ ¼ exp β0 þ β1tð Þ;
• GEV3—“second degree polynomial trend”, β tð Þ ¼ β0 þ β1tþ β2t

2.
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In this scenario, the GEV0 model is nested in any of the other 3 models, since, in

any case, it is mathematically equal to having every parameter other than β0 equal
to zero. Obviously, GEV1 is nested in GEV3, so those two models can be compared

by means of an LRT. GEV1 is not nested in GEV2 nor is GEV2 in GEV3, hence an

LRT may not be used to compare those models. In this kind of situation, it is

preferable to compute the AIC scores for all models and determine the “best” one,

according to that criterion.

Regarding models GEV1 and GEV2, it is also possible to set up a hypothesis test

for regression parameters using the same rationale as described in Sect. 12.2.3. For

these models, an estimation of the standard error of the slope parameter σβ1 may be

obtained by numerical differentiation of the log-likelihood function (see

Sect. 12.3.2). One defines the null hypothesis H0:{there is no trend in the location

parameter} (or β1 ¼ 0 ) and alternative hypothesis H1:{there is a trend in the

location parameter} (or β1 6¼ 0). At the significance level of 100α%, H0 may be

rejected if

β̂ 1

�� �� > z1�α=2σβ1 ð12:47Þ

Example 12.11 Consider the models GUM1 and GUM2 from Example 12.10.

Determine the significance of the log-linear temporal trend of the scale parameter

α(t) of model GUM2. (a) Use an LRT in which GUM1 is the null model; (b) use a

hypothesis test for regression parameter α1 of model GUM2. Consider the signif-

icance level of 5% in both tests.

Solution The R code for solving this problem is presented in Appendix 11. (a) An

LRT is employed in which the null modelM0 is GUM1, with 3 parameters, and the

alternative model M1 is GUM2 with 4 parameters. The negated maximum

log-likelihood can be obtained on the R console (see Examples 12.9 and 12.10),

by calling the component $nllh of the objects generated by the functions gev.fit and

gum.fit. As such, ‘ θ̂M0

� � ¼ �402:5473 and ‘ θ̂M1

� � ¼ �402:5087. From

Eq. (12.29), the test statistic D ¼ 0:0772 is obtained through Eq. (12.29). The

difference in number of parameters of both models is 1, such that D 	 χ21. Since
D < χ20:95,1 ¼ 3:84 (Appendix 3), the null model is not rejected in favor of the

alternative one, at the 5% significance level. (b) Standard errors of parameters

estimates of models fitted using the R functions gev.fit and gum.fit, may be

consulted by calling the component $se of the fitted model objects, which returns

σβ0 ¼ 2:683484, σβ1 ¼ 0:048396, σα0 ¼ 0:156172, σα1 ¼ 0:002834
� �

. The rejec-

tion region of the test is z1�α=2σα1 ¼ 0:005554. It is worth remembering that

α̂ 1 ¼ 0:0007661 (Example 12.10). Since α̂ 1j j < z1�α=2σα1 , the null hypothesis

is not rejected, thereby corroborating the results of (a).

The graphical analysis tools presented in Chap. 8 are no longer valid under

nonstationarity. Those tools require that the data be identically distributed, but in

the nonstationary case, the observations are not homogeneous, since their distribu-

tion changes with time. In order to deal with this issue, Coles (2001) suggests the
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use of modified Q�Q (quantile-quantile) plots to visualize the model fits of

nonstationary extreme value models. When the fit is adequate, the scatter of points

on the plot should be close to the 1-1 line. In order to apply this technique to a

nonstationary model it is first necessary to transform the theoretical quantiles into a

standardized and stationary variable.

In case the variable is GEV-distributed, Xt 	 GEV β tð Þ, α tð Þ, κ tð Þð Þ, the stan-

dardized variable eXt is defined by

eXt ¼ �1

κ̂ tð Þ ln 1� κ̂ tð Þ Xt � β̂ tð Þ
α̂ tð Þ

" #( )
ð12:48Þ

and when it’s Gumbel-distributed, Xt 	 GUM β tð Þ, α tð Þ½ �,

eXt ¼ Xt � β̂ tð Þ
α̂ tð Þ ð12:49Þ

The variable resulting from those transformations follows a standardized

Gumbel distribution (Gumbel with β ¼ 0 and α ¼ 1), with CDF

FeXt

xð Þ ¼ exp �e�xð Þ ð12:50Þ

The previous result enables the making of a standardized Gumbel Q�Q plot.

By denoting the order statistics of ext as ex 1ð Þ, . . . ,ex Nð Þ, the Q�Q plot is comprised

of the pairs of points

�ln �ln qið Þ½ �,ex ið Þ, i ¼ 1, . . . ,N
� � ð12:51Þ

where qi is the adopted plotting position (the Gringorten plotting position is

recommended in the case of Gumbel and GEV models; see Sect. 8.1.2)

A similar technique may be applied when using a nonstationary GPA model.

Considering the variable Xt 	 GPA α tð Þ, κ tð Þð Þ, the distribution used to standardize

the variable is the exponential distribution (see Sect. 5.11.4);

eXt ¼ � 1

κ̂ tð Þ ln 1� κ̂ tð Þ Xt

α̂ tð Þ
� �	 


ð12:52Þ

The resulting variable eXt follows a standardized exponential distribution (exponen-

tial with θ ¼ 1), with CDF

FeXt

xð Þ ¼ 1� exp �xð Þ ð12:53Þ

Then, the corresponding Q�Q plot consists of the following pairs of points:
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�ln 1� qið Þ,ex ið Þ, i ¼ 1, . . . ,N
� � ð12:54Þ

where qi is the adopted plotting position.

Example 12.12 Consider the 5 stationary and nonstationary models fitted through

Examples 12.9 and 12.10. (a) Using AIC, select the best of those 5 models.

(b) Check the fit of that model using a Q�Q plot.

Solution

(a) In R, the component $nllh of the objects fitted in Examples 12.9 and 12.10

returns the negated maximum log likelihood of those models, which are shown

in Table 12.8, together with the AIC results.

The best of the 5 models, according to the AIC scores, is GUM1 (nonstationary

Gumbel with a linear trend on the location parameter).

(b) Since Xt 	 Gum β tð Þ, α tð Þð Þ, the transformation of the theoretical quantiles to

the standardized Gumbel distribution uses Eq. (12.49), in which the location

parameter has a linear temporal trend β tð Þ ¼ β0 þ β1t and the scale parameter is

fixed α tð Þ ¼ α. The Q�Q plot consists of the pairs of points indicated in

Eq. (12.51). Table 12.9 shows the necessary calculations to graph the Q�Q
plot, which, in turn, is shown in Fig. 12.6.

Table 12.8 Computation of

AIC
Model k (no. parameters) ‘ θ̂

� �
AIC

GEV0 3 �406.470 818.940

GEV1 4 �402.485 812.970

GUM0 2 �406.477 816.955

GUM1 3 �402.547 811.095

GUM2 4 �402.509 813.017

Table 12.9 Construction of a Q�Q plot of a nonstationary Gumbel model based on the transfor-

mation to the standard Gumbel distribution

t Xt βðtÞ αðtÞ qi (Gringorten) eX tð Þ �ln �ln qið Þ½ � ex tð Þ
1 24.2 25.87647 12.47405 0.005707 �0.1344 �1.6421 �1.59839

2 31.3 25.99657 12.47405 0.015899 0.425157 �1.42106 �1.53972

3 32.5 26.11668 12.47405 0.026091 0.511728 �1.29368 �1.43967

4 33.5 26.23679 12.47405 0.036282 0.582266 �1.19889 �1.40276

5 20.2 26.35689 12.47405 0.046474 �0.49358 �1.12131 �1.12863

6 38.2 26.47700 12.47405 0.056665 0.939791 �1.05452 �1.05007

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
94 33.2 37.04626 12.47405 0.953526 �0.30834 3.045169 3.48196

95 27.4 37.16637 12.47405 0.963718 �0.78293 3.298009 3.972714

96 27.4 37.28647 12.47405 0.973909 �0.79256 3.632995 4.11714

97 18.2 37.40658 12.47405 0.984101 �1.53972 4.133503 4.859337

98 34.2 37.52668 12.47405 0.994293 �0.26669 5.163149 5.228651
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12.5 Return Period and Hydrologic Risk
in a Nonstationary Context

The concept of return period T of a quantile of a hydrological variable, defined by

the inverse of the annual probability of exceedance of that variable, is an important

and standard tool for hydrologists, with formal roots in the geometric distribution

(see Sect. 4.1.2). Cooley (2013) contends that return periods are created to facilitate

interpretation of the rarity of events: the expression “T-year flood” may be more

easily interpreted by the general public than “a flood with an annual exceedance

probability of 1/T”. The former definition leads to two interpretations of the T-year
event:

• The expected waiting times between two events is T years; or

• The expected number of events in a T-year interval is one.

Under the stationarity assumption, both interpretations are correct.

Another notion closely related to return period is the hydrologic risk, defined by

the probability that a reference quantile qT will be exceeded in N years, or, in other

words, the probability of occurrence of at least one event larger than qT in N years.

Under the independence and stationarity assumptions, hydrologic risk is given by

Eq. (4.15).

Fig. 12.6 Q�Q plot of nonstationary model GUM1 based on the transformation to the standard

Gumbel distribution
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The concepts of return period and hydrologic risk are commonly applied in

engineering practice and are present in several textbooks on hydrology. However,

these concepts do not hold under nonstationarity since the exceedance probabilities

of hydrological extremes change from year to year. In any given year, there still

exists a one-to-one correspondence between an exceedance probability and a

particular quantile of the variable, but the idea of an annual return period is illogical

and defeats its purpose as a concept for communicating hydrological hazard under

nonstationarity.

As a result of a growing interest in nonstationary flood frequency analysis, some

important developments for extending the concept of return period to

nonstationarity have appeared in the technical literature. Some of these develop-

ments are presented in this section.

12.5.1 Return Period Under Nonstationarity

The first advances in extending the concept of return period to a nonstationary

context are due to the work of Wigley (1988, 2009), who showed, in a simplified

manner, how to consider nonstationarity when dealing with risk and

uncertainty. Olsen et al. (1998) consolidated these original ideas with a rigorous

mathematical treatment and defined the return period as the expected waiting time.

Formally,

T qTð Þ ¼ 1þ
X1
t¼1

Yt
i¼1

Fi qTð Þ ð12:55Þ

where Fi �ð Þ is the CDF of the variable in year i. Equation (12.55) cannot be written

as a geometric series and solving it for qT is not straightforward. Cooley (2013)

shows that, in case Fi(qT) is monotonically decreasing as i ! 1, it is possible to

obtain a bounded estimate of T(qT) as

1þ
XL
t¼1

Yt
i¼1

Fi qTð Þ < T qTð Þ � 1þ
XL
t¼1

Yt
i¼1

Fi qTð Þ þ
YL
i¼1

Fi qTð Þ FLþ1 qTð Þ
1� FLþ1 qTð Þ

ð12:56Þ

with the bounds being of a desired width by choosing a sufficiently large natural

number L. Nevertheless, numerical methods must be employed in order to solve the

bounds in Eq. (12.56) for qT. Salas and Obeysekera (2014) built upon the develop-

ments of Wigley (1988, 2009) and Olsen et al. (1998), and presented a unified

framework for estimating return period and hydrologic risk under nonstationarity.

Parey et al. (2007) and Parey et al. (2010) focused on the interpretation of the

return period as the expected number of events in T years being 1 and extended that
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concept to nonstationarity. Under this interpretation, a T-year flood qT can be

estimated by solving the equation

XT
i¼1

1� Fi qTð Þð Þ ¼ 1 ð12:57Þ

where Fi �ð Þ has the same meaning as in Eq. (12.55). Solving Eq. (12.57) also

requires numerical methods.

12.5.2 Design Life Level (DLL)

Rootzén and Katz (2013) argue that, for quantifying risk in engineering design, the

basic required information consists of (1) the design life period of the hydraulic

structure and (2) the probability of occurrence of a hazardous event during that

period. These authors propose a new measure of hydrological hazard under

nonstationarity: the Design Life Level, denoted as DLL, which is the quantile with

a probability p of being exceeded during the design life period.

To compute the DLL it is necessary to derive the CDF FT1:T2
of the maximum

over the design life period, in which T1 and T2 represent the first and the last year of
the period, respectively. Formally,

FT1:T2
xð Þ ¼ P max Xt, t2 T1; T2½ �f g � xð Þ ð12:58Þ

Another way to put it is the probability that every value of Xt must simultaneously

be lower than x, or

FT1:T2
xð Þ ¼ P \T2

t¼T1

Xt � xð Þ
� �

ð12:59Þ

Under the stationarity assumption (see Sect. 3.3) one would have

FT1:T2
xð Þ ¼

YT2

t¼T1

Ft xð Þ ð12:60Þ

The DLL is obtained by numerically inverting Eq. (12.60) for the desired

non-exceedance probability 1� p. The design life level has a straightforward

interpretation and does not imply extrapolations beyond the design life. Obviously,

the design life level can also be estimated under stationarity. In that case,

Eq. (12.60) is the complementary of the hydrologic risk (Eq. 4.15), with

N ¼ T2 � T1 þ 1.
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12.6 Further reading

Kundzewicz and Robson (2000, 2004) and Yue et al. (2012) review further methods

for the detection of changes in hydrologic series and discuss at length the underly-

ing assumptions and the adequate interpretation of the results of such methods. The

presence of serial correlation in hydrologic time series, which is not uncommon in

practice, may hinder the detection of trends or change points using the Mann–

Kendall and Pettit tests, respectively. Serinaldi and Kilsby (2015b), and references

therein, explore the limitations of these tests and suggest pre-whitening procedures

designed to remove serial correlation from the data.

Mudelsee (2010) provides an in-depth characterization of the kernel occurrence

rate estimation technique, including boundary bias reduction, bandwidth selection

and uncertainty analysis via bootstrap techniques. Some examples of application of

this technique are Mudelsee et al. (2003, 2004) and Silva et al. (2012).

Finally, it is important to stress that nonstationarity is a property of models and

not of the hydrological/hydrometeorological phenomena underlying the time series

used in statistical hydrologic analyses. In fact, there is an ongoing debate in the

hydrological community on whether the use of nonstationary models is an adequate

or even justifiable approach when tackling perceived changes in the statistical

properties of hydrologic time series. A review of that debate is beyond the scope

of this chapter since it is lengthy and comprises a number of different positions and

proposed methodological approaches. Readers interested in such a debate are

referred to the following sequence of papers: Milly et al. (2008, 2015),

Koutsoyiannis (2011), Lins and Cohn (2011), Stedinger and Griffis (2011), Matalas

(2012), Montanari and Koutsoyiannis (2014), Koutsoyiannis and Montanari (2015),

Serinaldi and Kilsby (2015a). These works also tend to be very rich in references to

up-to-date nonstationary hydrological analyses.

Exercises

1. Solve Example 12.3 (a) with bandwidth values h ¼ 500, h ¼ 1000 and

h ¼ 2000. Comment on the results in light of the compromise between variance

and bias in estimation.

2. Construct 90% bootstrap confidence bands for each of the curves obtained in

Exercise 2.

3. Show that the probability density function of the Gamma distribution can be

written in the form of Eq. (12.16).

4. Solve Example 12.5 considering that Y 	 Binomial N; pð Þ and use the AIC to

compare the performances of the Poisson and Binomial models.

5. Consider the peaks-over-threshold data of Table 12.2. Fit a nonstationary GPA

model with a log-linear dependence between the scale parameter and the winter

(November-to-March) NAO index of the corresponding hydrologic year (NAO

data shown in Table 12.6).

6. Using a likelihood ratio test, compare the performance of the model estimated

in Exercise 5 with that of the corresponding stationary baseline model.
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7. Using a hypothesis test for regression coefficients, check the significance of the

log-linear relationship of the GPA scale parameter and the winter NAO index

of the model estimated in Exercise 5.

8. Consider the series of annual maximum rainfalls at Pavia as listed in Table 12.6.

Fit a nonstationary GEVmodel with a linear trend in the location parameter and

a log-linear trend in the scale parameter.

9. Consider the model GUM1 from Example 12.10. Compute the expected

waiting time for the exceedance of qT ¼ 100mm, taking the year 2010/11 as

reference.

10. Consider the model GUM1 from Example 12.10. Compute the design life level

with a non-exceedance probability of F ¼ 0:9 and a design life of 50 years,

taking the year 2010/11 as reference.
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Appendix 1
Mathematics: A Brief Review of Some
Important Topics

A1.1 Counting Problems

In some situations, the calculation of probabilities requires counting the number of

possible ways of drawing a sample of size k from a set of n elements. The number of

sampling possibilities can be easily calculated through the definitions and formulae

of combinatorics.

The sampling of the k items may be performed with replacement, when it is

possible to draw a specific item more than once, or without replacement, otherwise.
Furthermore, the sequence or order in which the different items are sampled may be

an important factor. As a result, the following ways of sampling are possible: with

order and with replacement, with order and without replacement, without order and

with replacement, without order and without replacement.

In the case of sampling with order and with replacement, the first item should be

drawn from the n elements (or possibilities) that constitute the population. Next,

this first sampled item is reintegrated to the population and, as previously, the

second draw is performed from a set of n items. Based on this rationale, as each

drawing is made from n items, the number of possibilities of drawing a sample of

k items from a set of size n, with order and with replacement, is nk.
If the first sampled item is not returned to the population for the next drawing,

the number of possibilities for the second item is n� 1ð Þ. The third item will then be

drawn from n� 2ð Þ possibilities, the fourth from n� 3ð Þ, and so forth, until the kth

item is sampled. Therefore, the number of possibilities of drawing a sample of size

k from a set of n elements is n n� 1ð Þ n� 2ð Þ . . . n� k þ 1ð Þ. This expression is

equivalent to the definition of permutation in combinatorics. Thus,

Pn,k ¼ n!

n� kð Þ! ðA1:1Þ

When the order of drawing is not important, sampling without replacement is

similar to the previous case, except that the drawn items can be arranged in k!
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different ways. In other words, the number of ordered samples, given by Eq. (A1.1),

includes k! draws that contain the same elements. Thus, as order is no longer

important, the number of possibilities of drawing k items from a sample of size n,
without order and without replacement, is Pn,k/k !. This expression is equivalent to

the definition of combination in combinatorics. Thus,

Cn,k ¼ n
k

� �
¼ n!

n� kð Þ! k!
ðA1:2Þ

Finally, when the order of drawing is not important and sampling is performed with

replacement, the number of possibilities corresponds to sampling, without order

and without replacement, of k items from a set of (n+k�1) possibilities. In other

words, one can reason that the population has been increased by (k�1) items. Thus,

the number of possibilities of drawing k items from a set of n elements, without

order and with replacement, is given by

Cnþk�1,k ¼ nþ k � 1

k

� �
¼ nþ k � 1ð Þ!

n� 1ð Þ! k!
ðA1:3Þ

The factorial operator, present in many combinatorics equations, can be approxi-

mated by Stirling’s formula, which is given by

n! ffi
ffiffiffiffiffi
2π

p
nnþ1=2

en
ðA1:4Þ

Haan (1977) remarks that, for n¼10, the approximation error with Stirling’s
formula is less than 1% and decreases as n increases.

A1.2 MacLaurin Series

If a function f(x) has continuous derivatives up to the order (n+1), then it can be

expanded as follows

f xð Þ ¼ f að Þ þ f
0
að Þ x� að Þ þ f

00
að Þ x� að Þ2

2!
þ � � � f

nð Þ að Þ x� að Þn
n!

þ Rn ðA1:5Þ

where Rn denotes the remainder, after the expansion of (n+1) terms, and is

expressed by

Rn ¼ f nþ1ð Þ τð Þ x� að Þnþ1

nþ 1ð Þ! a < τ < x ðA1:6Þ
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If the expansion given by Eq. (A1.5) converges within a subdomain of x, or, in other
words, if lim

n!1 Rn ¼ 0, then the series expansion is termed Taylor series of f(x)

around a. If a¼0, then the expansion is termed MacLaurin series and is formally

given by

f xð Þ ¼ f 0ð Þ þ f
0
0ð Þxþ f

00
0ð Þ

2!
x2 þ � � � ðA1:7Þ

The MacLaurin series is, therefore, a series expansion in which all terms are

non-negative integer powers of the variable being considered. Examples of function

expansions by means of MacLaurin series are

cos xð Þ ¼ 1� x2

2
þ x4

24
� x6

720
� � � � �1 < x < 1 ðA1:8Þ

ex ¼ 1þ xþ x2

2
þ x3

6
þ x4

24
þ � � � �1 < x < 1 ðA1:9Þ

ln 1þ xð Þ ¼ x� x2

2
þ x3

3
� x4

4
þ � � � � 1 < x < 1 ðA1:10Þ

1

1� x
¼ 1þ xþ x2 þ x3 þ x4 þ � � � � 1 < x < 1 ðA1:11Þ

A1.3 Gamma Function

The Gamma function Γ(z) is an extension of the concept of factorial for non-integer
numbers. Γ(z) is defined, for any real number z>0, by the following integral

Γ zð Þ ¼
ð1
0

xz�1e�xdx ðA1:12Þ

The Gamma function is a continuous function and has continuous derivatives for all

orders. When z approaches 0 or +1, Γ(z) tends to +1. By using integration by

parts, it is possible to demonstrate the following property of the Gamma function

Γ zþ 1ð Þ ¼ z Γ zð Þ ðA1:13Þ

If z equals a positive integer number n and noting that Γ 1ð Þ ¼ 1, the repeated

application of the property given by Eq. (A1.13) leads to
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Γ nþ 1ð Þ ¼ n! ðA1:14Þ

Noteworthy values of the Gamma function are: Γ 2ð Þ ¼ Γ 1ð Þ ¼ 1 and Γ 0:5ð Þ ¼ ffiffiffi
π

p
.

The Gamma function may be approximated by several expressions. One of the

most efficient, with errors in the range of 2� 10�10, is the Lanczos approximation

(Lanczoz 1964), which is given by

Γ zð Þ ¼
ffiffiffiffiffi
2π

p

z
p0 þ

X8
i¼1

pi
zþ i

 !" #
zþ 7,5ð Þzþ0,5e� zþ7,5ð Þ ðA1:15Þ

with

p0 ¼ 0:99999999999980993 p1 ¼ 676:5203681218851

p2 ¼ �1259:1392167224028 p3 ¼ 771:32342877765313

p4 ¼ �176:61502916214059 p5 ¼ 12:507343278686905

p6 ¼ �0:13857109526572012 p7 ¼ 9:9843695780195716� 10�6

p8 ¼ 1:5056327351493116 � 10�7

A1.4 Beta Function

The Beta function, denoted by B(z,w), is defined, for any positive real number, by

the following integral

B z;wð Þ ¼
ð1
0

xz�1 1� xð Þw�1dx ðA1:16Þ

Cramér (1946) derived the following relationship between the Beta and the Gamma

functions

B z;wð Þ ¼ Γ zð ÞΓ wð Þ
Γ zþ wð Þ ðA1:17Þ

Based on this relationship and using the Lanczos approximation, expressed by

Eq. (A1.15), it is possible to evaluate the Beta function for any real numbers

z and w.
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A1.5 Differentiation Rules and Derivatives for Some
Basic Functions

In this section, a list of basic differentiation rules is provided. For all cases,

u ¼ f xð Þ and v ¼ g xð Þ are differentiable functions of x and c is a constant.

Derivative of a constant: dc
dx ¼ 0

Derivative of a constant multiple:
d cuð Þ
dx ¼ c du

dx

Derivative of a sum or a difference:
d u�vð Þ

dx ¼ du
dx � dv

dx

Product rule:
d uvð Þ
dx ¼ v du

dx þ u dv
dx

Quotient rule: d
dx

u
v

� � ¼ vdudx�udvdx
v2

Chain rule: dy
dx ¼ dy

du
du
dx

A1.6 Integration Rules and Indefinite Integrals
for Some Basic Functions

Integral of a constant multiple:

ð
cf xð Þdx ¼ c

ð
f xð Þdx

Integration of a sum or a difference:

ð
f xð Þ � g xð Þ½ �dx ¼

ð
f xð Þdx�

ð
g xð Þdx

Integral of a chain rule derivative:

ð
d

dx
f g xð Þ½ �f g d

dx
g xð Þ½ �dx ¼ f g xð Þ½ � þ C

Table A1.1 Derivatives for

some basic functions
Function Derivative

un dun

dx
¼ nun�1 du

dx
au dau

dx
¼ ln að Þau du

dx
eu deu

dx
¼ eu

du

dx
logau d

dx
logauð Þ ¼ 1

lnað Þu
du

dx

ln u d

dx
lnuð Þ ¼ 1

u

du

dx
sin u d

dx
sin uð Þ ¼ cos u

du

dx
cos u d

dx
cos uð Þ ¼ � sin u

du

dx
tan u d

dx
tan uð Þ ¼ sec 2u

du

dx

Appendix 1 Mathematics: A Brief Review of Some Important Topics 583



Integral by parts:

ð
f xð Þ d

dx
g xð Þ½ �dx ¼ f xð Þg xð Þ �

ð
d

dx
f xð Þ½ �g xð Þdx

Integral by substitution:

ðφ bð Þ

φ að Þ

f xð Þdx ¼
ðb
a

f φ tð Þ½ �d
dt

φ tð Þ½ �dt

References

Cramér H (1946) Mathematical Methods of Statistics. Princeton University Press, Princeton.

Haan CT (1977) Statistical Methods in Hydrology. The Iowa University Press, Ames, IA.

Lanczos C (1964) A precision approximation of the Gamma function. J Soc Ind Appl Math

Series B Numer Anal 1:86–96.

Table A1.2 Indefinite integrals for some basic functions

Function Indefinite integral

xn, f or n 6¼ �1
ð
xndx ¼ xnþ1

nþ1
þ C

ax or exln að Þ, f or a 6¼ 1, a > 0
ð
axdx ¼ ax

lna þ C

eax
ð
eax ¼1

a e
ax þ C

1

x
, f or x 6¼ 0

ð
1

x
dx ¼ln xj j þ C

sin(ax)
ð
sin axð Þdx ¼� 1

a
cos axð Þ þ C

cos(ax)
ð
cos axð Þdx ¼1

a
sin axð Þ þ C

tan(ax)
ð
tan axð Þx ¼� 1

a
ln cos axð Þð Þ þ C
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Appendix 2
Values for the Gamma Function Γ(t)

Γ tð Þ ¼
ð1
0

e�xxt�1dx

t Γ(t) t Γ(t) t Γ(t) t Γ(t)
1.00 1.00000 1.25 0.90640 1.50 0.88623 1.75 0.91906

1.01 0.99433 1.26 0.90440 1.51 0.88659 1.76 0.92137

1.02 0.98884 1.27 0.90250 1.52 0.88704 1.77 0.92376

1.03 0.98355 1.28 0.90072 1.53 0.88757 1.78 0.92623

1.04 0.97844 1.29 0.89904 1.54 0.88818 1.79 0.92877

1.05 0.97350 1.30 0.89747 1.55 0.88887 1.80 0.93138

1.06 0.96874 1.31 0.89600 1.56 0.88964 1.81 0.93408

1.07 0.96415 1.32 0.89464 1.57 0.89049 1.82 0.93685

1.08 0.95973 1.33 0.89338 1.58 0.89142 1.83 0.93969

1.09 0.95546 1.34 0.89222 1.59 0.89243 1.84 0.94261

1.10 0.95135 1.35 0.89115 1.60 0.89352 1.85 0.94561

1.11 0.94739 1.36 0.89018 1.61 0.89468 1.86 0.94869

1.12 0.94359 1.37 0.89931 1.62 0.89592 1.87 0.95184

1.13 0.93993 1.38 0.88854 1.63 0.89724 1.88 0.95507

1.14 0.93642 1.39 0.88785 1.64 0.89864 1.89 0.95838

1.15 0.93304 1.40 0.88726 1.65 0.90012 1.90 0.96177

1.16 0.92980 1.41 0.88676 1.66 0.90167 1.91 0.96523

1.17 0.92670 1.42 0.88636 1.67 0.90330 1.92 0.96878

1.18 0.92373 1.43 0.88604 1.68 0.90500 1.93 0.97240
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t Γ(t) t Γ(t) t Γ(t) t Γ(t)
1.19 0.92088 1.44 0.88580 1.69 0.90678 1.94 0.97610

1.20 0.91817 1.45 0.88565 1.70 0.90864 1.95 0.97988

1.21 0.91558 1.46 0.88560 1.71 0.91057 1.96 0.98374

1.22 0.91311 1.47 0.88563 1.72 0.91258 1.97 0.98768

1.23 0.91075 1.48 0.88575 1.73 0.91466 1.98 0.99171

1.24 0.90852 1.49 0.88595 1.74 0.91683 1.99 0.99581

• For other t values, employ the recurrence relation Γ tþ 1ð Þ ¼ tΓ tð Þ.
• For high values of t, one can also use Stirling’s approximation:

Γ tð Þ � tte�t

ffiffiffiffiffiffiffi
2π

t

r
1þ 1

12t
þ 1

288t2
� 139

51840t3
� 571

2488320t4
þ . . .

� �

586 Appendix 2 Values for the Gamma Function Γ(t)



Appendix 3

χ 21�α,ν Quantiles from Chi-Square

Distribution, with ν Degrees of Freedom

© Springer International Publishing Switzerland 2017

M. Naghettini (ed.), Fundamentals of Statistical Hydrology,
DOI 10.1007/978-3-319-43561-9

587



ν
χ2 0

:9
9
5
;ν

χ2 0
:9
9
;ν

χ2 0
:9
7
5
;ν

χ2 0
:9
5
;ν

χ2 0
:9
0
;ν

χ2 0
:1
0
;ν

χ2 0
:0
5
;ν

χ2 0
:0
2
5
;ν

χ2 0
:0
1
;ν

χ2 0
:0
0
5
;ν

1
7
.8
8

6
.6
3

5
.0
2

3
.8
4

2
.7
1

0
.0
1
5
8

0
.0
0
3
9

0
.0
0
1
0

0
.0
0
0
2

0
.0
0
0
0

2
1
0
.6

9
.2
1

7
.3
8

5
.9
9

4
.6
1

0
.2
1
1

0
.1
0
3

0
.0
5
0
6

0
.0
2
0
1

0
.0
1
0
0

3
1
2
.8

1
1
.3

9
.3
5

7
.8
1

6
.2
5

0
.5
8
4

0
.3
5
2

0
.2
1
6

0
.1
1
5

0
.0
7
2

4
1
4
.9

1
3
.3

1
1
.1

9
.4
9

7
.7
8

1
.0
6

0
.7
1
1

0
.4
8
4

0
.2
9
7

0
.2
0
7

5
1
6
.7

1
5
.1

1
2
.8

1
1
.1

9
.2
4

1
.6
1

1
.1
5

0
.8
3
1

0
.5
5
4

0
.4
1
2

6
1
8
.5

1
6
.8

1
4
.4

1
2
.6

1
0
.6

2
.2
0

1
.6
4

1
.2
4

0
.8
7
2

0
.6
7
6

7
2
0
.3

1
8
.5

1
6
.0

1
4
.1

1
2
.0

2
.8
3

2
.1
7

1
.6
9

1
.2
4

0
.9
8
9

8
2
2
.0

2
0
.1

1
7
.5

1
5
.5

1
3
.4

3
.4
9

2
.7
3

2
.1
8

1
.6
5

1
.3
4

9
2
3
.6

2
1
.7

1
9
.0

1
6
.9

1
4
.7

4
.1
7

3
.3
3

2
.7
0

2
.0
9

1
.7
3

1
0

2
5
.2

2
3
.2

2
0
.5

1
8
.3

1
6
.0

4
.8
7

3
.9
4

3
.2
5

2
.5
6

2
.1
6

1
1

2
6
.8

2
4
.7

2
1
.9

1
9
.7

1
7
.3

5
.5
8

4
.5
7

3
.8
2

3
.0
5

2
.6
0

1
2

2
8
.3

2
6
.2

2
3
.3

2
1
.0

1
8
.5

6
.3
0

5
.2
3

4
.4
0

3
.5
7

3
.0
7

1
3

2
9
.8

2
7
.7

2
4
.7

2
2
.4

1
9
.8

7
.0
4

5
.8
9

5
.0
1

4
.1
1

3
.5
7

1
4

3
1
.3

2
9
.1

2
6
.1

2
3
.7

2
1
.1

7
.7
9

6
.5
7

5
.6
3

4
.6
6

4
.0
7

1
5

3
2
.8

3
0
.6

2
7
.5

2
5
.0

2
2
.3

8
.5
5

7
.2
6

6
.2
6

5
.2
3

4
.6
0

1
6

3
4
.3

3
2
.0

2
8
.8

2
6
.3

2
3
.5

9
.3
1

7
.9
6

6
.9
1

5
.8
1

5
.1
4

1
7

3
5
.7

3
3
.4

3
0
.2

2
7
.6

2
4
.8

1
0
.1

8
.6
7

7
.5
6

6
.4
1

5
.7
0

1
8

3
7
.2

3
4
.8

3
1
.5

2
8
.9

2
6
.0

1
0
.9

9
.3
9

8
.2
3

7
.0
1

6
.2
6

1
9

3
8
.6

3
6
.2

3
2
.9

3
0
.1

2
7
.2

1
1
.7

1
0
.1

8
.9
1

7
.6
3

6
.8
4

2
0

4
0
.0

3
7
.6

3
4
.2

3
1
.4

2
8
.4

1
2
.4

1
0
.9

9
.5
9

8
.2
6

7
.4
3

2
1

4
1
.4

3
8
.9

3
5
.5

3
2
.7

2
9
.6

1
3
.2

1
1
.6

1
0
.3

8
.9
0

8
.0
3

2
2

4
2
.8

4
0
.3

3
6
.8

3
3
.9

3
0
.8

1
4
.0

1
2
.3

1
1
.0

9
.5
4

8
.6
4

2
3

4
4
.2

4
1
.6

3
8
.1

3
5
.2

3
2
.0

1
4
.8

1
3
.1

1
1
.7

1
0
.2

9
.2
6

2
4

4
5
.6

4
3
.0

3
9
.4

3
6
.4

3
3
.2

1
5
.7

1
3
.8

1
2
.4

1
0
.9

9
.8
9

2
5

4
6
.9

4
4
.3

4
0
.6

3
7
.7

3
4
.4

1
6
.5

1
4
.6

1
3
.1

1
1
.5

1
0
.5

2
6

4
8
.3

4
5
.6

4
1
.9

3
8
.9

3
5
.6

1
7
.3

1
5
.4

1
3
.8

1
2
.2

1
1
.2

588 Appendix 3 χ
1�α,ν
2 Quantiles from Chi-Square Distribution, with ν Degrees of Freedom



2
7

4
9
.6

4
7
.0

4
3
.2

4
0
.1

3
6
.7

1
8
.1

1
6
.2

1
4
.6

1
2
.9

1
1
.8

2
8

5
1
.0

4
8
.3

4
4
.5

4
1
.3

3
7
.9

1
8
.9

1
6
.9

1
5
.3

1
3
.6

1
2
.5

2
9

5
2
.3

4
9
.6

4
5
.7

4
2
.6

3
9
.1

1
9
.8

1
7
.7

1
6
.0

1
4
.3

1
3
.1

3
0

5
3
.7

5
0
.9

4
7
.0

4
3
.8

4
0
.3

2
0
.6

1
8
.5

1
6
.8

1
5
.0

1
3
.8

4
0

6
6
.8

6
3
.7

5
9
.3

5
5
.8

5
1
.8

2
9
.1

2
6
.5

2
4
.4

2
2
.2

2
0
.7

5
0

7
9
.5

7
6
.2

7
1
.4

6
7
.5

6
3
.2

3
7
.7

3
4
.8

3
2
.4

2
9
.7

2
8
.0

6
0

9
2
.0

8
8
.4

8
3
.3

7
9
.1

7
4
.4

4
6
.5

4
3
.2

4
0
.5

3
7
.5

3
5
.5

7
0

1
0
4
.2

1
0
0
.4

9
5
.0

9
0
.5

8
5
.5

5
5
.3

5
1
.7

4
8
.8

4
5
.4

4
3
.3

8
0

1
1
6
.3

1
1
2
.3

1
0
6
.6

1
0
1
.9

9
6
.6

6
4
.3

6
0
.4

5
7
.2

5
3
.5

5
1
.2

9
0

1
2
8
.3

1
2
4
.1

1
1
8
.1

1
1
3
.1

1
0
7
.6

7
3
.3

6
9
.1

6
5
.6

6
1
.8

5
9
.2

1
0
0

1
4
0
.2

1
3
5
.8

1
2
9
.6

1
2
4
.3

1
1
8
.5

8
2
.4

7
7
.9

7
4
.2

7
0
.1

6
7
.3

Appendix 3 χ
1�α,ν
2 Quantiles from Chi-Square Distribution, with ν Degrees of Freedom 589



Appendix 4
t1�α,ν Quantiles from Student’s t Distribution,
with ν Degrees of Freedom

© Springer International Publishing Switzerland 2017

M. Naghettini (ed.), Fundamentals of Statistical Hydrology,
DOI 10.1007/978-3-319-43561-9

591



ν
t 0
.9
9
5
,ν

t 0
.9
9
,ν

t 0
.9
7
5
,ν

t 0
.9
5
,ν

t 0
.9
0
,ν

t 0
.8
0
,ν

t 0
.7
5
,ν

t 0
.7
0
,ν

t 0
.6
0
,ν

t 0
.5
5
,ν

1
6
3
.6
6

3
1
.8
2

1
2
.7
1

6
.3
1

3
.0
8

1
.3
7
6

1
.0
0
0

0
.7
2
7

0
.3
2
5

0
.1
5
8

2
9
.9
2

6
.9
6

4
.3
0

2
.9
2

1
.8
9

1
.0
6
1

0
.8
1
6

0
.6
1
7

0
.2
8
9

0
.1
4
2

3
5
.8
4

4
.5
4

3
.1
8

2
.3
5

1
.6
4

0
.9
7
8

0
.7
6
5

0
.5
8
4

0
.2
7
7

0
.1
3
7

4
4
.6
0

3
.7
5

2
.7
8

2
.1
3

1
.5
3

0
.9
4
1

0
.7
4
1

0
.5
6
9

0
.2
7
1

0
.1
3
4

5
4
.0
3

3
.3
6

2
.5
7

2
.0
2

1
.4
8

0
.9
2
0

0
.7
2
7

0
.5
5
9

0
.2
6
7

0
.1
3
2

6
3
.7
1

3
.1
4

2
.4
5

1
.9
4

1
.4
4

0
.9
0
6

0
.7
1
8

0
.5
5
3

0
.2
6
5

0
.1
3
1

7
3
.5
0

3
.0
0

2
.3
6

1
.9
0

1
.4
2

0
.8
9
6

0
.7
1
1

0
.5
4
9

0
.2
6
3

0
.1
3
0

8
3
.3
6

2
.9
0

2
.3
1

1
.8
6

1
.4
0

0
.8
8
9

0
.7
0
6

0
.5
4
6

0
.2
6
2

0
.1
3
0

9
3
.2
5

2
.8
2

2
.2
6

1
.8
3

1
.3
8

0
.8
8
3

0
.7
0
3

0
.5
4
3

0
.2
6
1

0
.1
2
9

1
0

3
.1
7

2
.7
6

2
.2
3

1
.8
1

1
.3
7

0
.8
7
9

0
.7
0
0

0
.5
4
2

0
.2
6
0

0
.1
2
9

1
1

3
.1
1

2
.7
2

2
.2
0

1
.8
0

1
.3
6

0
.8
7
6

0
.6
9
7

0
.5
4
0

0
.2
6
0

0
.1
2
9

1
2

3
.0
6

2
.6
8

2
.1
8

1
.7
8

1
.3
6

0
.8
7
3

0
.6
9
5

0
.5
3
9

0
.2
5
9

0
.1
2
8

1
3

3
.0
1

2
.6
5

2
.1
6

1
.7
7

1
.3
5

0
.8
7
0

0
.6
9
4

0
.5
3
8

0
.2
5
9

0
.1
2
8

1
4

2
.9
8

2
.6
2

2
.1
4

1
.7
6

1
.3
4

0
.8
6
8

0
.6
9
2

0
.5
3
7

0
.2
5
8

0
.1
2
8

1
5

2
.9
5

2
.6
0

2
.1
3

1
.7
5

1
.3
4

0
.8
6
6

0
.6
9
1

0
.5
3
6

0
.2
5
8

0
.1
2
8

1
6

2
.9
2

2
.5
8

2
.1
2

1
.7
5

1
.3
4

0
.8
6
5

0
.6
9
0

0
.5
3
5

0
.2
5
8

0
.1
2
8

1
7

2
.9
0

2
.5
7

2
.1
1

1
.7
4

1
.3
3

0
.8
6
3

0
.6
8
9

0
.5
3
4

0
.2
5
7

0
.1
2
8

1
8

2
.8
8

2
.5
5

2
.1
0

1
.7
3

1
.3
3

0
.8
6
2

0
.6
8
8

0
.5
3
4

0
.2
5
7

0
.1
2
7

1
9

2
.8
6

2
.5
4

2
.0
9

1
.7
3

1
.3
3

0
.8
6
1

0
.6
8
8

0
.5
3
3

0
.2
5
7

0
.1
2
7

2
0

2
.8
4

2
.5
3

2
.0
9

1
.7
2

1
.3
2

0
.8
6
0

0
.6
8
7

0
.5
3
3

0
.2
5
7

0
.1
2
7

2
1

2
.8
3

2
.5
2

2
.0
8

1
.7
2

1
.3
2

0
.8
5
9

0
.6
8
6

0
.5
3
2

0
.2
5
7

0
.1
2
7

2
2

2
.8
2

2
.5
1

2
.0
7

1
.7
2

1
.3
2

0
.8
5
8

0
.6
8
6

0
.5
3
2

0
.2
5
6

0
.1
2
7

2
3

2
.8
1

2
.5
0

2
.0
7

1
.7
1

1
.3
2

0
.8
5
8

0
.6
8
5

0
.5
3
2

0
.2
5
6

0
.1
2
7

2
4

2
.8
0

2
.4
9

2
.0
6

1
.7
1

1
.3
2

0
.8
5
7

0
.6
8
5

0
.5
3
1

0
.2
5
6

0
.1
2
7

2
5

2
.7
9

2
.4
8

2
.0
6

1
.7
1

1
.3
2

0
.8
5
6

0
.6
8
4

0
.5
3
1

0
.2
5
6

0
.1
2
7

2
6

2
.7
8

2
.4
8

2
.0
6

1
.7
1

1
.3
2

0
.8
5
6

0
.6
8
4

0
.5
3
1

0
.2
5
6

0
.1
2
7

592 Appendix 4 t1�α,ν Quantiles from Student’s t Distribution, with ν Degrees of Freedom



2
7

2
.7
7

2
.4
7

2
.0
5

1
.7
0

1
.3
1

0
.8
5
5

0
.6
8
4

0
.5
3
1

0
.2
5
6

0
.1
2
7

2
8

2
.7
6

2
.4
7

2
.0
5

1
.7
0

1
.3
1

0
.8
5
5

0
.6
8
3

0
.5
3
0

0
.2
5
6

0
.1
2
7

2
9

2
.7
6

2
.4
6

2
.0
4

1
.7
0

1
.3
1

0
.8
5
4

0
.6
8
3

0
.5
3
0

0
.2
5
6

0
.1
2
7

3
0

2
.7
5

2
.4
6

2
.0
4

1
.7
0

1
.3
1

0
.8
5
4

0
.6
8
3

0
.5
3
0

0
.2
5
6

0
.1
2
7

4
0

2
.7
0

2
.4
2

2
.0
2

1
.6
8

1
.3
0

0
.8
5
1

0
.6
8
1

0
.5
2
9

0
.2
5
5

0
.1
2
6

6
0

2
.6
6

2
.3
9

2
.0
0

1
.6
7

1
.3
0

0
.8
4
8

0
.6
7
9

0
.5
2
7

0
.2
5
4

0
.1
2
6

1
2
0

2
.6
2

2
.3
6

1
.9
8

1
.6
6

1
.2
9

0
.8
4
5

0
.6
7
7

0
.5
2
6

0
.2
5
4

0
.1
2
6

1
2
.5
8

2
.3
3

1
.9
6

1
.6
4
5

1
.2
8

0
.8
4
2

0
.6
7
4

0
.5
2
4

0
.2
5
3

0
.1
2
6

Appendix 4 t1�α,ν Quantiles from Student’s t Distribution, with ν Degrees of Freedom 593



Appendix 5
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Appendix 6
Annual Minimum 7-Day Mean Flows, in m3/s,
(Q7) at 11 Gauging Stations in the Paraopeba
River Basin, in Brazil
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Appendix 7
Annual Maximum Flows for 7 Gauging
Stations in the Upper Paraopeba River Basin
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L-Moments and L-Moment Ratios of Rainfall
Rates (mm/h) Recorded at Rainfall Gauging
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Appendix 9
Regional Data for Exercise 6 of Chapter 10

Figure A9.1 shows the location, isohyetal, and hypsometric maps of the upper

Velhas River basin, located in the State of Minas Gerais, in southeastern Brazil.

This 5000-km2 river catchment is the major source of water supply for the state’s
capital city of Belo Horizonte and its metropolitan area (BHMA), with approxi-

mately 5.76 million inhabitants. The mean annual rainfall depths decreases from

1600 mm, at high elevations, to 1400 mm at the outlet, with a well-defined wet

season from October to March and a dry season from April to September. Near the

source of the Velhas River, at an average elevation of 1500 m, the terrain is hilly to

mountainous, with narrow valleys and streams of low sinuosity.

Table A9.1 lists the code, name, river, and associated catchment attributes of

each of five gauging stations in the river basin. In Table A9.1, Area¼drainage area

(km2); Pmean¼mean annual rainfall over the catchment (m); L¼length of main

stream channel (km); and J¼number of stream junctions per km2, and

Sequiv¼equivalent stream slope (m/km). The gauging stations are also located on

the map of Fig. A9.1. Table A9.2 lists the annual minimum mean flows for the

durations 1 day, 3 days, 5 days, and 7 days, recorded at the five gauging stations in

the river basin.

© Springer International Publishing Switzerland 2017
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Fig. A9.1 Location, isohyetal, and hypsometric maps of the upper Velhas River basin, in Brazil.

Locations of gauging stations are indicated as triangles next to their codes

Table A9.1 Gauging stations attributes for regional analysis of low flows

Code Gauging station River

Area

(km²)
Pmean

(m)

L
(km)

J (Junctions/
Km²)

Sequiv
(m/km)

41151000 Faz. Água Limpa Velhas 174.6 1.498 26.15 0.115 8.59

41180000 Itabirito-

Linı́grafo

Itabirito 330 1.518 47.7 0.252 5.25

41199998 Honório

Bicalho—Mont.

Velhas 1698 1.535 90.3 0.212 2.56

41260000 Pinhões Velhas 3727 1.475 156.8 0.204 1.42

41340000 Ponte Raul Soares Velhas 4874 1.458 200.3 0.209 1.13
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Table A9.2 Annual minimum mean flows (m3/s) of five gauging stations in the upper Velhas

river basin, in Brazil, for durations 1 day, 3 days, 5 days, and 7 days

Station 41151000—Faz Água Limpa Station 41180000—Itabirito Linı́grafo

Year 1 Day 3 Days 5 Days 7 Days Year 1 Day 3 Days 5 Days 7 Days

1957 1.330 1.363 1.390 1.409 1967 3.700 3.700 3.740 3.797

1958 1.600 1.600 1.612 1.626 1968 4.650 4.650 4.694 4.713

1959 1.230 1.230 1.230 1.230 1969 3.600 3.600 3.640 3.657

1960 1.180 1.180 1.190 1.201 1970 3.750 3.750 3.750 3.750

1961 1.380 1.413 1.420 1.423 1972 2.700 2.700 2.712 2.717

1962 1.180 1.197 1.210 1.230 1973 4.480 4.480 4.480 4.480

1964 0.978 0.995 1.009 1.015 1974 4.390 4.390 4.390 4.390

1965 1.220 1.220 1.240 1.249 1975 4.640 4.640 4.640 4.640

1966 1.450 1.490 1.486 1.510 1976 3.830 3.830 3.830 3.830

1969 1.120 1.153 1.160 1.163 1977 3.860 3.860 3.886 3.916

1970 1.390 1.410 1.426 1.441 1978 4.080 4.130 4.170 4.187

1971 1.220 1.220 1.264 1.270 1979 5.800 5.800 5.800 5.824

1973 1.760 1.760 1.760 1.760 1980 3.680 3.760 3.850 3.944

1974 1.520 1.520 1.520 1.520 1981 4.440 4.487 4.524 4.560

1975 1.310 1.310 1.340 1.386 1982 3.200 3.273 3.310 3.310

1976 1.040 1.057 1.070 1.083 1983 5.520 5.520 5.618 5.684

1977 1.350 1.350 1.350 1.390 1984 4.010 4.010 4.010 4.010

1978 1.320 1.320 1.340 1.349 1985 5.940 5.940 5.940 5.989

1979 1.980 1.980 1.994 2.010 1986 3.020 3.020 3.206 3.230

1980 1.790 1.877 1.994 2.010 1987 4.230 4.280 4.308 4.340

1981 1.730 1.730 1.754 1.764 1988 4.500 4.593 4.668 4.660

1982 2.110 2.180 2.180 2.200 1989 3.600 3.600 3.600 3.600

1983 2.110 2.110 2.110 2.110 1990 2.880 2.913 2.962 2.954

1984 1.610 1.630 1.646 1.670 1991 3.530 3.530 3.530 3.530

1985 2.180 2.227 2.236 2.240 1992 4.380 4.380 4.482 4.500

1986 1.790 1.790 1.790 1.790 1993 4.810 4.810 4.810 4.830

1987 1.440 1.440 1.474 1.496 1994 4.060 4.083 4.102 4.110

1988 1.730 1.813 1.860 1.877 1995 4.350 4.350 4.396 4.426

1989 1.380 1.380 1.380 1.380 1996 3.810 3.810 3.810 3.810

1990 1.280 1.280 1.280 1.294 1997 3.630 3.690 3.794 3.810

1991 1.730 1.750 1.766 1.801 1998 3.520 3.520 3.520 3.520

1992 1.610 1.730 1.754 1.764 1999 2.420 2.703 2.760 2.760

1993 1.670 1.710 1.718 1.721

1994 1.360 1.470 1.470 1.470

1995 1.290 1.290 1.290 1.290

1996 1.420 1.420 1.420 1.430

1997 1.650 1.650 1.650 1.661

1998 1.350 1.350 1.350 1.350

1999 0.898 0.939 0.960 0.977
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Station 41199998—Honório Bicalho Station 41260000—Pinhões

Year 1 Day 3 Days 5 Days 7 Days Year 1 Day 3 Days 5 Days 7 Days

1971 7.500 7.950 8.860 8.979 1980 27.80 27.97 28.12 29.43

1972 13.100 13.800 14.260 14.529 1981 24.50 24.67 24.70 24.80

1973 10.100 11.700 12.240 12.771 1982 30.50 31.30 31.68 31.76

1974 9.620 10.240 10.468 10.491 1983 33.40 33.80 34.24 34.60

1975 8.280 9.183 9.554 9.981 1984 24.50 25.37 25.98 26.56

1976 8.280 9.963 10.654 10.710 1985 33.90 34.87 36.02 36.83

1977 10.600 10.867 10.840 10.900 1986 22.00 22.83 23.84 24.03

1978 11.300 12.467 12.520 12.671 1987 16.70 17.60 19.56 19.83

1979 14.700 15.467 16.160 16.686 1988 24.00 24.33 25.04 25.64

1980 14.200 16.567 17.040 17.086 1989 19.80 20.90 21.62 22.14

1981 12.700 14.533 14.720 14.714 1990 21.70 22.37 23.90 24.64

1982 15.800 16.200 16.380 16.457 1991 32.20 32.93 32.96 33.06

1983 14.600 14.933 15.120 15.200 1992 31.70 31.87 32.10 32.36

1984 12.500 13.500 13.740 13.743 1993 25.40 26.77 27.40 27.47

1985 19.700 19.900 20.060 20.743 1994 16.90 17.47 20.14 21.39

1986 18.000 18.400 18.480 18.429 1995 16.00 16.57 16.94 17.17

1987 11.500 11.833 12.100 12.357 1996 23.20 24.03 24.40 24.74

1988 16.800 17.700 17.980 18.100 1997 32.90 33.03 33.54 34.04

1989 12.500 12.667 12.900 12.929 1998 23.70 23.87 24.08 24.34

1990 13.500 13.900 14.180 14.457 1999 19.40 19.53 19.74 19.83

1991 16.200 17.300 17.420 17.629

1992 16.200 16.600 16.780 16.929

1993 16.800 17.333 17.760 17.871

1994 15.400 16.100 16.580 16.700

1995 10.800 12.133 12.400 12.586

1996 13.700 14.367 14.500 14.714

1997 17.500 17.667 18.500 19.100

1998 10.100 11.033 11.320 11.643

1999 9.620 9.780 10.008 10.106

Station 41340000—Ponte Raul Soares

Year 1 Day 3 Days 5 Days 7 Days Year 1 Day 3 Days 5 Days 7 Days

1938 33.70 35.20 36.52 36.70 1990 30.80 30.97 31.42 31.77

1939 28.30 29.87 31.04 31.60 1991 34.50 34.87 35.16 35.76

1940 22.10 25.00 26.18 26.93 1992 41.10 41.50 41.70 41.77

1941 28.30 31.87 33.62 34.91 1993 32.90 33.63 34.20 34.46

1942 24.20 29.87 31.28 32.74 1994 31.90 32.93 34.10 34.61

1944 30.60 33.10 34.08 34.90 1995 23.80 24.73 24.92 25.21

1947 32.50 36.97 38.38 39.27 1996 27.70 28.93 29.58 30.07

1950 27.10 30.47 31.02 32.97 1997 34.00 35.43 36.58 37.24

1951 18.00 19.13 19.36 20.23 1998 28.00 28.33 28.80 29.14

1952 29.40 31.43 32.84 34.19 1999 20.90 21.57 22.36 23.14

(continued)
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Table A9.2 (continued)

Station 41340000—Ponte Raul Soares

Year 1 Day 3 Days 5 Days 7 Days Year 1 Day 3 Days 5 Days 7 Days

1953 25.40 28.53 29.12 30.07

1954 17.10 20.60 22.16 22.59

1955 14.80 16.97 17.94 18.43

1956 17.50 19.03 20.78 20.81

1957 31.50 31.50 31.78 31.87

1958 31.90 33.10 35.00 36.47

1959 17.50 18.17 18.58 18.86

1960 21.00 21.93 22.32 23.03

1961 25.40 28.47 29.08 29.51

1962 18.00 19.23 20.60 21.31

1963 17.10 18.83 19.18 19.70

1964 19.40 21.03 21.04 21.19

1965 34.90 35.17 35.26 35.23

1967 22.40 22.67 22.98 23.26

1968 22.00 23.13 23.54 23.59

1969 19.10 19.23 19.58 19.80

1970 24.60 24.73 24.94 25.03

1971 16.30 16.83 16.94 17.04

1972 21.30 21.53 21.76 21.80

1973 19.90 22.97 23.30 23.60

1974 21.80 21.97 22.50 22.80

1975 24.40 24.57 24.60 24.97

1976 16.90 18.73 19.26 19.44

1977 24.00 24.83 25.20 25.64

1978 22.00 22.67 24.40 25.43

1979 33.40 34.13 35.40 36.69

1981 31.20 31.37 31.84 32.20

1984 26.90 29.57 31.64 32.37

1985 40.20 41.40 41.88 42.36

1986 25.70 26.70 27.00 27.00

1987 22.30 23.13 23.48 23.43

1988 25.70 26.20 26.70 27.30

1989 25.70 26.20 27.00 27.73
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Appendix 10
Data of 92 Rainfall Gauging Stations
in the Upper S~ao Francisco River Basin,
in Southeastern Brazil, for Regional
Frequency Analysis of Annual Maximum
Daily Rainfall Depths

© Springer International Publishing Switzerland 2017
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Table A10.1 Geographic coordinates and elevations (m) of rainfall gauging stations

Code

Gauging station

name Location Latitude Longitude Elevation

1 01844000 CURVELO Curvelo 18	4505800 S 44	2503400 W 608

2 01844001 SANTO

HIPÓLITO

Santo

Hipólito

18	1800000 S 44	1302200 W 510

3 01844010 PONTE DO

LICÍNIO

(JUSANTE)

Presidente

Juscelino

18	4002200 S 44	1102800 W 560

4 01845002 FAZENDA S ~AO
FÉLIX

S~ao Gonçalo

do Abaeté

18	2705200 S 45	3804800 W 760

5 01845004 LAGOA DO

GOUVEIA

Tiros 18	5002900 S 45	5100500 W 1035

6 01845008 MORAVANIA Morada

Nova de

Minas

18	400 S 45	210 W 600

7 01845009 TRÊS MARIAS Três Marias 18	100 S 45	180 W 570

8 01845010 VILA

CANASTR ~AO

Tiros 18	340 S 45	430 W 835

9 01845011 S ~AO GONÇALO

DO ABAETÉ

S~ao Gonçalo

do Abaeté

18	210 S 45	500 W 800

10 01845012 ANDREQUICÉ Três Marias 18	170 S 45	000 W 830

11 01845013 S. GONÇALO DO

ABAETÉ

S~ao Gonçalo

do Abaeté

18	2003700 S 45	5001200 W 836

12 01845014 TIROS Tiros 18	5905900 S 45	5705800 W 1030

13 01845026 FAZENDA DAS

PEDRAS

Três Marias 18	000 S 45	060 W 600

14 01846003 MAJOR PORTO Patos de

Minas

18	4202500 S 46	0201300 W 672

15 01943000 MIN. MORRO

VELHO

Nova Lima 19	5804500 S 43	5100000 W 770

16 01943006 SABARÁ Sabará 19	5303500 S 43	4805400 W 720

17 01943009 VESPASIANO Vespasiano 19	4101400 S 43	5501500 W 676

18 01943010 CAETÉ Caeté 19	5400000 S 43	4000300 W 840

19 01943011 INSTITUTO

AGRONÔMICO

Belo

Horizonte

19	550 S 43	540 W 850

20 01943012 LAGOA SANTA Lagoa Santa 19	380 S 43	540 W 777

21 01943013 CARLOS

PRATES

Belo

Horizonte

19	5404300 S 43	5702800 W 915

22 01943022 CAIXA DE

AREIA

Belo

Horizonte

19	5604200 S 43	5404500 W 950

23 01943053 AVENIDA DO

CONTORNO

Belo

Horizonte

19	5600400 S 43	5700700 W 915

24 01944000 PRUDENTE DE

MORAIS - A

Prudente de

Morais

19	2900100 S 44	1001400 W 732

25 01944003 MATEUS LEME Mateus

Leme

19	5901800 S 44	2504800 W 836

(continued)
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Table A10.1 (continued)

Code

Gauging station

name Location Latitude Longitude Elevation

26 01944004 PONTE NOVA

DO

PARAOPEBA

Juatuba 19	5702000 S 44	1802400 W 721

27 01944005 BETIM Betim 19	5801700 S 44	1200600 W 832

28 01944007 FAZENDA

ESCOLA

FLORESTAL

Florestal 19	5204700 S 44	2501800 W 745

29 01944009 PEDRO

LEOPOLDO

Pedro

Leopoldo

19	3800400 S 44	0301200 W 698

30 01944010 HORTO

FLORESTAL

(Paraopeba)

Paraopeba 19	1600500 S 44	2400600 W 733

31 01944011 JAGUARUNA

(Onça do Pitangui)

Onça de

Pitangui

19	4303700 S 44	4802400 W 685

32 01944016 SETE LAGOAS Sete Lagoas 19	2800100 S 44	1500200 W 780

33 01944018 CAETANÓPOLIS Caetanópolis 19	1703300 S 44	2404000 W 738

34 01944019 FÁBRICA

TECIDOS

S. ANTÔNIO

Sete Lagoas 19	2800300 S 44	1401400 W 751

35 01944021 VELHO DA

TAIPA

Conceiç~ao
do Pará

19	4104600 S 44	5504600 W 585

36 01944023 COMPANHIA

INDUSTRIAL

B.H..

Pedro

Leopoldo

19	3605300 S 44	0203100 W 720

37 01944024 FAZENDA

VARGEM

BONITA

Jequitibá 19	1401400 S 44	0702300 W 636

38 01944027 JUATUBA Mateus

Leme

19	5702000 S 44	2000400 W 728

39 01944031 PONTE DA

TAQUARA

Paraopeba 19	2502300 S 44	3205400 W 624

40 01944032 PITANGUI Pitangui 19	4100400 S 44	5204400 W 696

41 01944040 POMPÉU

VELHO

Pompéu 19	160 S 44	490 W 650

42 01944049 PAPAGAIOS Papagaios 19	2504200 S 44	4301100 W 703

43 01944060 PORTO

MESQUITA

Pompéu 19	100 S 44	400 W 670

44 01945000 ARAÚJOS Araújos 19	5605400 S 45	1000100 W 813

45 01945002 BARRA DO

FUNCHAL

Serra da

Saudade

19	2304100 S 45	5300400 W 720

46 01945004 ESTAÇ ~AO
ÁLVARO DA

SILVEIRA

Bom

Despacho

19	4500600 S 45	0700100 W 648

47 01945008 BOM

DESPACHO

Bom

Despacho

19	4403300 S 45	1501800 W 750

(continued)
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Table A10.1 (continued)

Code

Gauging station

name Location Latitude Longitude Elevation

48 01945013 MATUTINA Matutina 19	140 S 45	580 W 1100

49 01945014 ENGENHO

RIBEIRO

Bom

Despacho

19	410 S 45	230 W 650

50 01945015 FAZENDA

NOVO

HORIZONTE

Córrego

Danta

19	430 S 45	560 W 1050

51 01945016 FAZENDA DA

CURVA

Luz 19	580 S 45	350 W 650

52 01945017 PORTO PARÁ Pompéu 19	180 S 45	050 W 600

53 01945019 DORES DO

INDAIÁ

Dores do

Indaiá

19	2800700 S 45	3600600 W 692

54 01945035 ABAETÉ Abaeté 19	0904700 S 45	2603300 W 565

55 01946000 TAPIRAÍ Tapiraı́ 19	5204600 S 46	0105800 W 670

56 01946004 IBIÁ Ibiá 19	2803200 S 46	3203300 W 855

57 01946007 FAZENDA S ~AO
MATEUS

Ibiá 19	3100300 S 46	3402200 W 870

58 01946009 S ~AO GOTARDO S~ao Gotardo 19	1805500 S 46	0204000 W 1100

59 01946010 PRATINHA Pratinha 19	4500500 S 46	2204300 W 1150

60 01946011 TAPIRA Tapira 19	5503700 S 46	4903100 W 1120

61 02043002 LAGOA

GRANDE

Nova Lima 20	1004500 S 43	5603400 W 1350

62 02043004 RIO DO PEIXE Nova Lima 20	0801600 S 43	5303300 W 1097

63 02043013 CONGONHAS Congonhas 20	3101900 S 43	4904800 W 871

64 02043016 RIO ACIMA Rio Acima 20	0501500 S 43	4701600 W 730

65 02043018 CARANDAÍ Carandaı́ 20	5702100 S 43	4800300 W 1056

66 02043042 REPRESA DAS

CODORNAS

Nova Lima 20	0905300 S 43	5303100 W 1200

67 02044002 ITAÚNA Itaúna 20	0401700 S 44	3401300 W 859

68 02044003 CARMO

CAJURU

Carmo do

Cajuru

20	1103200 S 44	4703700 W 746

69 02044005 CARMO DA

MATA

Carmo da

Mata

20	3302800 S 44	5200300 W 846

70 02044006 DIVINÓPOLIS Divinópolis 20	0801300 S 44	5303100 W 672

71 02044007 ENTRE RIOS DE

MINAS

Entre Rios

de Minas

20	3904000 S 44	0401400 W 885

72 02044008 MELO FRANCO Brumadinho 20	1105200 S 44	0701500 W 761

73 02044009 FAZENDA

CAMPO

GRANDE

Passa

Tempo

20	3703100 S 44	2600000 W 915

74 02044012 IBIRITÉ Ibirité 20	0203400 S 44	0203600 W 1073

75 02044016 FAZENDA

BENEDITO

CHAVES

Itatiaiuçu 20	1000900 S 44	3005400 W 944

(continued)
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Table A10.1 (continued)

Code

Gauging station

name Location Latitude Longitude Elevation

76 02044019 FAZENDA

VISTA ALEGRE

Mateus

Leme

20	0300500 S 44	2700600 W 913

77 02044021 ALTO DA BOA

VISTA

Mateus

Leme

20	0602000 S 44	2400400 W 905

78 02044024 FAZENDA

CURRALINHO

Igarapé 20	0002700 S 44	1905200 W 754

79 02044026 FAZENDA

COQUEIROS

Itaúna 20	0704700 S 44	2802800 W 975

80 02044036 ITAGUARA Itaguara 20	240 S 44	280 W 840

81 02044040 USINA JO ~AO
RIBEIRO

Entre Rios

de Minas

20	3800700 S 44	0205600 W 850

82 02044046 BONFIM Bonfim 20	200 S 44	150 W 952

83 02045001 BAMBUÍ Bambuı́ 20	0101600 S 45	5705800 W 654

84 02045002 IGUATAMA Iguatama 20	1004400 S 45	4200100 W 606

85 02045005 LAMOUNIER Itapecerica 20	2802000 S 45	0201000 W 738

86 02045010 ARCOS

(COPASA)

Arcos 20	1704100 S 45	3203400 W 791

87 02045011 LAGOA DA

PRATA

Lagoa da

Prata

20	0201200 S 45	3200700 W 658

88 02045012 PIUMHI Piumhi 20	2703100 S 45	5603800 W 806

89 02045013 ST	 ANTONIO
DO MONTE

S. Antonio

do Monte

20	0500400 S 45	1704800 W 950

90 02045015 FAZENDA OLOS

D0ÁGUA
Pimenta 20	260 S 45	500 W 810

91 02046007 FAZENDA

AJUDAS

Bambuı́ 20	0600600 S 46	0301800 W 705

92 02046009 DELFINÓPOLIS Delfinópolis 20	2005000 S 46	5004600 W 680
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Fig. A10.2 Maps of elevation and isohyets of mean annual rainfall (mm)

Fig. A10.1 Location map of rainfall gauging stations
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Appendix 11
Solutions to Selected Examples in R

A11.1. Introduction

R (R Core Team 2013) is simultaneously an open source software, a programming

language, and a powerful environment for statistical analysis. The R software is

available for downloading from https://www.r-project.org/ and is easy to install on

Windows, MacOS and UNIX platforms.

This appendix contains a collection of guidelines and suggested approaches to

tackle some of the statistical hydrology methodologies covered throughout this

textbook, by providing the solutions to some of the exercises and worked out

examples.

Newcomers to R are invited to complement the reading of this appendix with

further exploration of the R environment. A good starting point is to type help.
start() in the R console which opens an internet browser page with an extensive

introductory material. Other helpful resources are the books by Matloff (2009) and

Crawley (2012).

One of the main strengths of R is the collaborative nature with which users create

and maintain packages of new R functions and other features. There are hundreds of

packages available on the Web in several repositories. One of these repositories is

CRAN (Comprehensive R Archive Network), which stores packages that have been

validated by the R Core Team. A list of CRAN packages is available at https://cran.

r-project.org/web/packages/available_packages_by_name.html. CRAN packages

can be installed directly from the R console with the command install.pack-
ages(). For example to install the package lmomco (Asquith 2007) containing

function for estimating the parameters of several distributions by the L-moments

method, type the command

>install.packages(‘lmomco’)
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This needs to be done only once. However, to use that particular function in any

R session, the package must be called by typing the following library command:

>library(lmomco)

R has many distribution functions in the base packages (basic packages that

come installed with R) and many more are defined in user-created packages in

CRAN and other repositories. As a rule, the distribution functions, as prefixed by

the letters d, p, q, and r, are used to calculate their respective PDF, CDF, quantiles,
and random number generation; e.g., for the Normal distribution, dnorm, pnorm,
qnorm, and rnorm. A list of distributions in the base stats packages can be seen at

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Distributions.html. One

should always check which parametrization of the distribution considered by

these functions is being used, prior to call them. For example, the dispersion

parameter used in the normal distribution is the standard deviation and not the

variance. This can be checked by typing ?dnorm in the console, which opens a

web browser page with a help file for the Normal distribution function.

A11.2 Solutions

The examples were selected so as to provide a broad overview of R resources for

Statistical Hydrology. The solutions presented here are not unique as there are

many ways to tackle the same problem and there are many alternative functions for

the same purpose. Some comments were added (comment character: #) to explain

some of the choices. The code files are available online at https://github.com/

fshydrology/fsh.

Chapter 2, Exercise 7 The solution to this example uses the package psych

(Revelle 2014).

x <- c(1.06, 0.74, 1.5, 0.5, 0.89, 1.77, 0.96, 3.31, 0.69, 1.07, 2.73,

1.79, 2.04, 0.73, 0.2, 0.97, 2.66, 0.83, 1.17, 1.47, 1.23, 2.01,

0.86, 0.63, 0.93, 0.72, 1.31, 0.79, 1.47, 0.08, 0.19, 2.31, 0.32,

0.81, 1.79, 1.27, 4.87, 0.87, 2.34, 1.05, 1.12, 0.7, 0.32, 2.24,

0.86, 1.7, 1.05, 1.2, 1.86, 3.03, 1.09, 1.58, 1.77, 2, 0.74,

0.88, 0.82, 3.13, 0.75, 1, 1.86, 2, 1.61, 0.49, 1.16, 0.45, 0.74,

1.38, 1.28, 0.97, 0.85, 1, 1.57, 1.46, 1.32, 1.62, 0.97, 0.91,

1.24, 1.79, 1.68, 1.69, 1.49, 2.31, 0.81, 1.61, 0.88, 1.52, 2.54,

3.11)

# a) Histogram

hx <- hist(x,freq¼FALSE)

# b) Frequency polygon

plot(c(hx$breaks[1],hx$mids,tail(hx$breaks,1),0),
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c(0,hx$density,0,hx$breaks[1]),type¼’l’,

xlab¼’x’, ylab¼’Relative frequency’)

# c) summary statistics

library(psych) # contains the useful function describe()

describe(x)

Example 5.16 The solution to this example uses the packages copula (Yan 2007)

and VGAM (Yee 2010).

library(copula) # fitting the copula

library(VGAM) # GEV distribution functions

# Data Input

vol<- c(12.42, 13.77, 14.96, 17.66, 14.56, 12.28, 14.92, 21.12, 10.72,

15.79, 7.75, 62.61, 24.47, 12.43, 13.61, 6.43, 9.16, 10.28, 5.6, 14.99,

14.16, 4.89, 3.93, 9.59, 9.24, 10.74, 11.98, 9.48, 19.88, 21.21, 13.83,

13.23, 13.13, 9.47, 12.7, 13.34, 11.03, 15.17, 6.74, 18.16, 18.9,

24.33, 19.26, 15.39, 10.54, 16.15, 6.36, 8.22, 5.08, 16.01, 10.87,

6.54, 22.6, 14.14, 9.06, 12.8, 8.81, 8.35, 11.75, 18.76, 27.03, 26.08,

40.51, 11.45, 18.24, 11.82, 14.69, 26.09, 14.58, 7.94, 6.02) #10^6 m^3

peak <- c(79.29, 87.5, 74.76, 158.57, 55.22, 70.51, 52.95, 205.3,

65.41, 103.07, 33.98, 903.31, 131.67, 38.51, 100.52, 52.39, 97.41,

46.44, 31.71, 62.86, 64.28, 14.02, 15.86, 28.32, 27.18, 47.01, 51.82,

33.41, 90.9, 218.04, 80.42, 60.88, 68.53, 56.35, 84.67, 69.94, 65.98,

38.23, 32.28, 118.65, 104.77, 237.3, 116.67, 95.71, 41.06, 88.63,

29.45, 45.59, 28.06, 104.21, 68.53, 29.45, 203.6, 97.41, 38.23,

72.49, 33.13, 45.59, 154.04, 79.29, 288.83, 184.06, 297.33, 73.06,

96.56, 73.06, 74.19, 297.33, 27.55, 42.76, 95.43) #m3/s

# Distribution parameters

par.vol <- c(10.5777,4.8896,-0.1799)

par.peak <- c(4.2703,0.8553)

# Plot of Figure 5.24

plot(vol,peak)

U <- as.vector(pgev(vol,par.vol[1],par.vol[2],-par.vol[3]))

V <- plnorm(peak,meanlog¼par.peak[1],sdlog¼par.peak[2])

# Plot of Figure 5.25

plot(U,V)

fcop¼fitCopula(copula¼gumbelCopula(),cbind(U,V))
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# Figure 5.26

layout(t(1:2))

persp(gumbelCopula(fcop@estimate),dCopula,xlim¼c(0,1),

ylim¼c(0,1), xlab¼’u’, ylab¼’\nv’,zlab¼’\nJoint density’)

title(’(a)’)

persp(gumbelCopula(fcop@estimate),pCopula,xlim¼c(0,1),ylim¼c(0,1),

xlab¼’u’, ylab¼’\nv’,zlab¼’\nC(u,v)’)

title(’(b)’)

mymvdist <- mvdc(copula¼gumbelCopula(fcop@estimate),

margins¼c(’gev’,’lnorm’),

paramMargins¼list(list(location¼par.vol[1],scale¼par.vol[2],

shape¼(-par.vol[3])),

list(meanlog¼par.peak[1],sdlog¼par.peak[2])))

# Figure 5.27

layout(t(1:2))

persp(mymvdist,dMvdc,xlim¼c(0,40),ylim¼c(0,300)

, xlab¼’x’, ylab¼’y’,zlab¼’\n\n Joint PDF’)

title(’(a)’)

persp(mymvdist,pMvdc,xlim¼c(0,40),ylim¼c(0,300)

, xlab¼’x’, ylab¼’y’,zlab¼’\n Joint CDF’)

title(’(b)’)

Example 6.10 The solution to this example uses the packages lmomco (Asquith

2007), ismev (Heffernan, Stephenson and Gilleland 2013), and VGAM (Yee 2010).

x <- c(68.8, 67.3, 70.2, 113.2, 79.2, 61.2, 66.4, 65.1, 115, 67.3,

102.2, 54.4, 69.3, 54.3, 36, 64.2, 83.4, 64.2, 76.4, 159.4, 62.1,

78.3, 74.3, 41, 101.6, 85.6, 51.4, 70.3, 81.3, 85.3, 58.4, 66.3,

91.3, 72.8, 100, 78.4, 61.8, 83.4, 93.4, 99, 133, 101, 109, 88,

99.6, 74, 94, 99.2, 101.6, 76.6, 84.8, 114.4, 95.8, 65.4, 114.8)

library(lmomco) # sample moments and LMOM estimators

library(ismev) # GEV ML estimators

library(VGAM) # GEV functions

# MOM estimators of the GEV

gevMOM¼function (mom) {

m <- mom$moments[1] # mean

s <- mom$sd # standard deviation

g <- mom$skew # skewness coefficient
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if (g ¼¼ 1.1396) {# subroutine to solve Equation (5.74)

} else {

if (g > 1.1396) {

domain <- c(-0.333,-0.00001)

} else {

domain <- c(0.00001,2)

}

Kappa <- uniroot(function (x)(g - sign(x)*

(-gamma(1+3*x)+3*gamma(1+x)*gamma(1+2*x)-2*gamma(1+x)^3)

/(gamma(1+2*x)-gamma(1+x)^2)^(3/2)),

interval¼domain, tol¼1e-10)$root

}

Alpha<- s*abs(Kappa)/(sqrt(gamma(1+2*Kappa)-gamma(1+Kappa)

^2))

Beta<- m-(Alpha/Kappa)*(1-gamma(1+Kappa))

res<-c(Beta,Alpha,Kappa)

return(res)

}

# Parameter estimation

parMOM <- gevMOM(pmoms(x)) # MOM

parLMOM <- as.numeric(pargev(lmoms(x))$para) # LMOM

parML <- gev.fit(x,quiet¼TRUE)$mle # ML

# Exceedance probabilities of quantile x¼150

1-pgev(q¼150,location¼parMOM[1],scale¼parMOM[2],shape¼-parMOM[3])

1-pgev(q¼150,location¼parLMOM[1],scale¼parLMOM[2],shape¼-parLMOM

[3])

1-pgev(q¼150,location¼parML[1],scale¼parML[2],shape¼parML[3])

# Quantile with F¼0.99 (T¼100)

qgev(p¼0.99,location¼parMOM[1],scale¼parMOM[2],shape¼-parMOM[3])

qgev(p¼0.99,location¼parLMOM[1],scale¼parLMOM[2],shape¼-parLMOM

[3])

qgev(p¼0.99,location¼parML[1],scale¼parML[2],shape¼parML[3])

Example 6.15 The solution to this example uses the packages ismev (Heffernan,

Stephenson and Gilleland 2013) and VGAM (Yee 2010).

x <- c(68.8, 67.3, 70.2, 113.2, 79.2, 61.2, 66.4, 65.1, 115, 67.3,

102.2, 54.4, 69.3, 54.3, 36, 64.2, 83.4, 64.2, 76.4, 159.4, 62.1,

78.3, 74.3, 41, 101.6, 85.6, 51.4, 70.3, 81.3, 85.3, 58.4, 66.3,
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91.3, 72.8, 100, 78.4, 61.8, 83.4, 93.4, 99, 133, 101, 109, 88,

99.6, 74, 94, 99.2, 101.6, 76.6, 84.8, 114.4, 95.8, 65.4, 114.8)

library(ismev)

library(VGAM)

gumfit <- gum.fit(x) # fit Gumbel distribution

parML <- gumfit$mle

vcov <- gumfit$cov # covariance matrix

# gradient of quantile function at F¼0.99

h <- c(1,-log(-log(0.99)))

# standard quantile error at F¼0.99

SF <- sqrt(t(h)%*%vcov%*%h) #

#bounds of the confidence interval for quantile F¼0.99 (T¼100)

LB <- qgumbel(0.99,parML[1],parML[2])+qnorm(0.025)*SF

UB <- qgumbel(0.99,parML[1],parML[2])+qnorm(0.975)*SF

Example 8.3 The solution of this example focused only on the GEV distribution. In

this example maximum likelihood estimation of the GEV could have used functions

from the ismev package. Instead, the presented code shows how to construct the

log-likelihood function of the GEV using its density function. The same principle

can be applied to any distribution in R.

library(lmomco)

library(VGAM)

x <- c(444.57, 79.29, 70, 87.5, 74.76, 158.57, 55.22, 70.51, 52.95,

205.3, 65.41, 103.07, 33.98, 903.31, 131.67, 38.51, 100.52, 52.39,

97.41,

46.44, 31.71, 62.86, 64.28, 14.02, 15.86, 28.32, 27.18, 47.01, 51.82,

33.41, 90.9, 218.04, 80.42, 60.88, 68.53, 56.35, 84.67, 69.94, 65.98,

38.23, 32.28, 118.65, 104.77, 237.3, 116.67, 95.71, 41.06, 88.63,

29.45, 45.59, 28.06, 104.21, 68.53, 29.45, 203.6, 97.41, 38.23,

72.49, 33.13, 45.59, 154.04, 79.29, 288.83, 184.06, 297.33, 73.06,

96.56, 73.06, 74.19, 297.33, 27.55, 42.76, 95.43)

# Parameter estimation

gevMOM <- function (mom) {

m <- mom$moments[1] # mean

s <- mom$sd # standard deviation

g <- mom$skew # skewness coefficient
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if (g ¼¼ 1.1396) {# subroutine to solve Equation (5.74)

} else {

if (g > 1.1396) {

domain <- c(-0.333,-0.00001)

} else {

domain <- c(0.00001,2)

}

Kappa <- uniroot(function (x)(g - sign(x)*

(-gamma(1+3*x)+3*gamma(1+x)*gamma(1+2*x)-2*gamma(1+x)^3)

/(gamma(1+2*x)-gamma(1+x)^2)^(3/2)),

interval¼domain, tol¼1e-10)$root

}

Alpha <- s*abs(Kappa)/(sqrt(gamma(1+2*Kappa)-gamma(1+Kappa)

^2))

Beta <- m-(Alpha/Kappa)*(1-gamma(1+Kappa))

res <- c(Beta,Alpha,Kappa)

return(res)

}

parMOM <- gevMOM(pmoms(x)) #MOM

parLMOM <- as.numeric(pargev(lmoms(x))$para) #LMOM

max.ll <- optim(par¼parMOM,

fn ¼ function(pars) -sum(dgev(x,pars[1],pars[2],-pars[3],

log¼TRUE))

,hessian¼TRUE)

parML <- max.ll$par #ML

# PPCC test statistic

cunnanePP <- ppoints(x,a¼0.4)

cor(qgev(cunnanePP,parLMOM[1],parLMOM[2],-parLMOM[3]),sort(x))

# AIC and BIC

aic <- max.ll$value*2+6

bic <- 2*max.ll$value+log(length(x))*3

# Quantile estimates

T <- c(1.0001,1.2,1.5,2,5,10,20,50,100,200,300,400,500,1000)

F <- 1-1/T

quantile <- qgev(F,parML[1],parML[2],-parML[3])
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# quantile standard errors

Beta <- parML[1]

Alpha <- parML[2]

Kappa <- parML[3]

r <- rep(0,length(F))

h <- attr(numericDeriv(quote(qgev(F,Beta,Alpha,-Kappa)),

theta¼c("Beta","Alpha","Kappa")),’gradient’)

vcov <- solve(max.ll$hessian)

for (k in 1:length(F)) r[k]¼t(h[k,])%*%vcov%*%h[k,]

SF <- sqrt(r)

Example 9.3
mydata <- read.csv(url

(’https://github.com/fshydrology/fsh/raw/master/data9.3.csv’),

row.names¼1)

cor(mydata) # correlation matrix

step1 <- lm(Runoff ~ A, data¼mydata)

summary(step1)

anova(step1)

step2 <- lm(Runoff ~ A + S, data¼mydata)

summary(step2)

anova(step2)

step3 <- lm(Runoff ~ A + S + Pr, data¼mydata)

summary(step3)

anova(step3)

Examples 12.5 and 12.7
data12.5 <- data.frame(

Y¼c(3, 2, 1, 3, 3, 0, 2, 3, 4, 1, 4, 2, 2, 5, 3, 1, 2, 0, 1, 0,

3, 2, 4, 4, 1, 0, 2, 1, 1, 4, 1, 2, 1, 2, 3, 3, 0, 1, 4),

NAO¼c(-1.068, 1.598, -0.53, 0.372, -0.126, 1.892, -0.888, -1.218,

-0.642, -0.54, -0.176, 1.27, -0.196, -2.068, -0.676, -0.36, -0.232,

1.276, 0.342, 1.18, 0.64, -0.576, 0.338, -0.294, 0.448, 0.308,

0.53, 1.942, 0.138, -0.536, -0.596, 0.952, -0.056, 1.994, 1.304,

-0.132, 1.68, 2.044, 1.594))

glm1 <- glm(Y ~ NAO,data¼data12.5,family¼poisson(link¼’log’))

coef(glm1) # regression parameters

vcov(glm1) # covariance matrix

glm0 <- glm(Y ~ 1,data¼data12.5,family¼poisson(link¼’log’))
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D <- 2*(logLik(glm1)-logLik(glm0)) #likelihood ratio test statistic

qchisq(0.95,1) #critical region

AIC(glm1)

AIC(glm0)

Example 12.11 The solution to this example uses the package ismev (Heffernan,

Stephenson and Gilleland 2013).

library(ismev)

pavia <-c(24.2, 31.3, 32.5, 33.5, 20.2, 38.2, 36.7, 35.2, 35.2, 25.3,

92.3, 30, 25.2, 50.4, 35.7, 40.5, 10.3, 40.2, 8.1, 10.2, 14.2,

15.3, 40.2, 20.4, 20.2, 32.8, 43.2, 29.8, 42.8, 45, 34.2, 32.8,

46.3, 31.9, 34.2, 24.3, 24.3, 24.3, 71.4, 37.4, 31.4, 24.3, 43.8,

58.2, 34.6, 40.2, 20.8, 69, 44, 27.2, 37.2, 36.7, 49, 38.9, 59.6,

63.3, 41.2, 46.6, 84.2, 29.5, 70.2, 43.7, 36.2, 29.8, 60.2, 28,

31.4, 38.4, 29.4, 34, 47, 57, 36.5, 84.2, 45, 95.5, 48.5, 38,

38.6, 26, 27, 58, 27.8, 37.5, 35.2, 27.5, 28.5, 52, 56.8, 80,

29, 55.2, 48.4, 33.2, 27.4, 27.4, 18.2, 34.2)

# time covariate in a single column matrix

t <- matrix(1:length(pavia),ncol¼1)

# fitting GEV and Gumbel models

GEV0 <- gev.fit(pavia)

GEV1 <- gev.fit(pavia,ydat¼t,mul¼1)

GUM0 <- gum.fit(pavia)

GUM1 <- gum.fit(pavia,ydat¼t,mul¼1)

GUM2 <- gum.fit(pavia,ydat¼t,mul¼1,sigl¼1,siglink¼exp)

# maximum log-likelihood of each model

-GEV0$nllh

-GEV1$nllh

-GUM0$nllh

-GUM1$nllh

-GUM2$nllh

# likelihood ratio test statistic

2*(GUM1$nllh-GUM2$nllh)

# standard errors of GUM2 parameters

GUM2$se
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# Rejection region of test

qnorm(0.975)*GUM2$se[4]
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light-tailed distribution, 153

parent distribution, 150–152

sub-daily duration, 153

Weibullmin, 164–167

At-site frequency analysis

analytical frequency

annual mean values, 336

annual peak discharges, 351, 353,

355–357, 359

application, 336

candidate distribution, 338

CLT, 337

confidence intervals, 344

data sample, 338

data screening, 329–332

exponential distribution, 348

extreme-value theory, 333, 337

GLO distribution, 349, 350

Gumbel model, 337, 349

hydrologic maxima, 326

information measures, 343, 344

lognormal distribution, 346

log-Pearson type III distribution, 348

lower bound of maxima, 336

moment-ratio diagram, 338–342

normal distribution, 345

parameters, 337, 345

parent distribution, 351

Pearson type III distribution, 347

standard deviation, 345

T-year quantile, 351

upper-bounded probability distribution,

333, 334

upper-tail weights, 335

annual extreme-value/partial duration

series, 314

derived flood frequency

asymptote, 377, 379

cumulative distribution, 379

derived distribution approach, 376

factors, 377

5-day duration, 380–384
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At-site frequency analysis (cont.)
GRADEX method, 380

rainfall and flood volumes, 376, 377

graphical frequency

empirical distribution, 320–323

Gringorten formula, 326

historical floods, 324

intrinsic assumption, 324

paleoflood reconstruction, 324

plotting-position formulae, 324, 325

probability distribution, 315, 316, 319

rainfall gauging networks, 323

reference threshold, 325

systematic floods, 325

uncertainties, 315

hydrologic frequency analysis, 312, 313

parameters and quantiles, 313

Axioms, corollaries of, 63

B
Bar chart, 21–22

Bayes’ formula, 67–68

Bayesian analysis

algebraic manipulation, 505

annual maximum floods, 521

Bayesian estimation, 513–515

beta distribution, 505

calculation

function h, 516
Gibbs sampler, 519

IID variables, 516

jump density, 518

Markov chain, 516

MCMC, 516, 517

Metropolis algorithm, 517–519

posterior distribution, 516

target density, 518

trace plot, 519

un-normalized posterior density, 520

conjugate priors, 508, 509

credibility intervals, 515

denominator, 501

density function, 508

discrete random variables, 500

expert knowledge, 511, 512

flood frequency analysis, 522

vs. frequentist paradigms, 498

GEV, 512

history, 497

inference methods, 522

LN4 model, 525–527

non-informative priors, 509–511

nonsystematic flood data, 522, 523

parametric distribution, 504

PMF, 521, 522

Poisson-Pareto model, 512

posterior density, 499

posterior distribution, 507, 527, 528,

530, 531

prior and observed information, 506

prior and posterior mass functions,

502–504, 507

probability mass function, 500–502

quasi-deterministic floods, 522

software, 531–533

study site and data, 524

upper-bounded distributions, 523, 524

Bernoulli process, 99–101

binomial distribution, 101–103

geometric distribution, 103–109

negative binomial distribution, 109–110

Bernoulli trial, 99

Beta distribution, 146, 147

Binomial distribution, 101–103

coefficient of kurtosis, 116

coefficient of skewness, 116

mass function, 102

mean, 116

moment generating function, 116

notation, 116

PMF, 116

variance, 116

Blackwater River, 94

Box plot, 41–42

Box–Cox formula, 52

C
Central limit theorem (CLT), 132–134, 337

Chi-Square (χ2) GoF Test, 279–283, 306

Climate fluctuation, 273

Coefficient of correlation, 86

Coefficient of kurtosis, 39–40, 77–79

Coefficient of skewness, 38–39

geometric distribution, 104

Poisson distribution, 112

probability theory, 77–79

Compound events, 58

Conditional distribution, 84

Conditional probability, 63–65

Confidence intervals. See Quantiles estimation

Continuous random variable

beta distribution, 146, 147

bivariate normal distribution, 183, 184

copula, 184–186, 188
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exponential distribution, 140–142

extreme value distribution, 150

asymptotic distributions (see
Asymptotic distributions)

classical theory, 148

exact distributions, 148–150

gamma distribution, 142–145

lognormal distribution, 137

mean and standard deviation, 138, 139

multiplicative action, 136

PDF, 136

probabilities and quantiles, 136

skewness, coefficient of, 137

value and variance, 137

normal distribution

annual mean flows, 131

auxiliary variable, 132

CDF, 125, 126, 128

central limit theorem, 133, 134

CLT, 132

dissolved oxygen concentrations,

135, 136

error curve, 125

identical and symmetrical

distributions, 132

location and scale parameters, 127

mean and standard deviation, 134

numerical integration, 128, 129

PDF, 125, 126, 128

reproductive property, 127, 128

transformed variable, 128

Pearson distribution

Log-Pearson type III, 170, 171

Pearson type III, 168

sampling distributions

chi-square (χ2) distribution, 177–179
Snedecor’s F distribution, 181–183

student’s t distribution, 179–181
statistical hydrology

best-fitting regional, 172

bias and dispersion, 172

Kappa distribution, 172–174

mixed-populations, 172

TCEV distribution, 175–177

Wakeby distribution, 174, 175

uniform distribution

CDF, 124

definition, 123

minimum daily temperature, 125

Monte Carlo simulation methods, 125

PDF, 124

Correlation

description, 391

monotonic, 391, 392

non-monotonic, 391, 392

Pearson’s r correlation coefficient,

393–396

positive and negative linear, 393

serial correlation, 396–397

Cumulative distribution function (CDF), 68–70

Cumulative relative frequency diagram, 29–31

D
Data processing error, 302

Decision theory, 513

Dendrogram, 448, 449

Density functions, 78

Descriptive statistics, 41

Design life level (DLL), 573

Discordancy measure, 468, 469

Discrete random variables. See also Bernoulli

process

binomial distribution, 116

geometric distribution, 116–117

hypergeometric distribution, 114–115,

117–118

multinomial distribution, 115–116, 118

negative binomial distribution, 117

Poisson distribution, 111–113, 117

Dot diagram, 22–24

Dry years, 57

Duration curve, 31–32

E
Empirical and theoretical distribution, 301

Empirical frequencies, 119, 120

Escherichia Coli, 305
Essai philosophique sur les probabilités, 2
Event, 57

compound, 58

exclusive, 59

hypothetical, 58

two-dimensional sample space, 60

Exploratory Data Analysis (EDA), 41

Exponential distribution, 348

Extreme-value series, 10

Extreme-value theory (EVT), 559–560

F
Flood Estimation Handbook, 442
Flood Studies Report, 442
Flow duration curves (FDCs), 31, 33

Frequency polygon, 28, 29

Frequency table, 26

Frequentist probability, 61, 62
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G
Gauging station, 15

Gauss-Markov theorem, 405, 426

Generalized extreme-value (GEV) distribution,

158, 160, 161

Generalized linear models (GLM)

AIC, 558–559

density and link functions, 549–552

estimation and inference, 552–555

LRT, 557–558

regression coefficients, hypothesis test for,

556–557

Generalized logistic (GLO) distribution,

349, 350

Generalized Pareto (GPA) distribution, 161,

162, 566–567

Generic trials, 103

Geometric distribution

coefficient of kurtosis, 117

coefficient of skewness, 104, 117

cumulative probability function, 103

expected value, 104, 105

mass probability function, 103, 105

mean, 116

memorylessness, 109

moment generating function, 117

notation, 116

PMF, 116

recurrence time interval, 105

return period, 105

variance, 116

Geometric mean, 34, 35

Goodness-of-fit (GoF) tests, 278, 279, 475

Grubbs–Beck test, 307

Gumbelmax distribution, 298, 570

H
Harmonic mean, 34

Histograms, 24–28

Homogeneity, 271, 272

Homoscedasticity, 400

Hosking–Wallis method, 466

data screening, 466

goodness-of-fit measure, 467

heterogeneity measure, 467

regional analysis, 480–490

Hydrologically homogeneous regions

cluster analysis, 446

divisive hierarchical clustering, 448

Euclidean distance, 447

geographic convenience, 445

hierarchical clustering, 447, 448, 450

IFB method, 444

k-means clustering, 450

nearest neighbor method, 447

objective grouping, 446

partitional clustering algorithms, 447

RBP method, 444

subjective grouping, 446

Hydrological year, 11

Hydrologic data

bar chart, 21–22

box plot, 41–42

coefficient of kurtosis, 39–40

coefficient of skewness, 38–39

cumulative relative frequency diagram,

29–31

descriptive statistics, 41

dot diagram, 22–24

duration curve, 31–32

frequency polygon, 28

histogram, 24–27

measures of central tendency, 33–35

measures of dispersion, 36–38

numerical summaries, 32

Q–Q plot, 48–49

scatterplot, 44–47

stem-and-leaf diagram, 42–44

systematic errors, 16

tabular form, 21

total dissolved solids, 54, 55

Hydrologic processes, 4, 5

Hydrologic reference stations, 51

Hydrologic system, 5

Hydrologic time series, 10–14

Hydrologic variables, 7–9

Hydrology, 4

Hydrometric network, 15

Hypergeometric distribution

CDF, 114

coefficient of skewness, 118

expected value and variance, 114

kurtosis, 118

mass function, 114

mean, 118

notation, 117

PMF, 117

variance, 118

Hypothesis test, 251, 253

alternative hypothesis, 253

multiple linear regression, 430–432

null hypothesis, 253, 254

probability distribution, 253

region of rejection, 253

simple linear regression,

413–415

Hypothetical events, 58
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I
Independence hypothesis, 270, 271

Independent peak discharges, 49

Index-flood-based (IFB) method, 461–466

Inter-quartile range (IQR), 36, 302

Intersection, 58

Irreducible uncertainty, 1

Iterative weighted least squares (IWLS)

method, 553

K
Kappa distribution, 172–174, 472

Kolmogorov–Smirnov (KS), 283–288

L
Laplace’s demon, 2
Laws of classical Newtonian mechanics, 2

Laws of nature, 2

Leptokurtic distribution, 39

Levees design, 119

Likelihood function, 499

Likelihood ratio tests (LRT), 557–558

L-kurtosis, 468, 475

L-moments method (L-MOM)

annual mean discharges, 219, 221, 222

data screening, 468–470

goodness-of-fit measure, 467

Gumbelmax distribution, 222

homogeneous regions identification,

466–467, 470–474

linear functions, 219

PWM, 218, 219

rations, 468

regional frequency distribution, 479–480

Locking through, 113

Lognormal distribution, 346

Log-Pearson type III, 170, 171

L-Skewness, 468, 475

M
Mann–Kendall test, 537–540

Mann–Whitney test statistic, 272

Markov Chain Monte Carlo (MCMC)

algorithms, 516

Mass function

binomial distribution, 102

geometric distribution, 105

multinomial distribution, 115

Maximum likelihood estimation (MLE)

method, 212, 215–218

Mean absolute deviation, 36

Mean square error (MSE), 208

Measures of central tendency, 33–35

Measures of dispersion, 36–38

Mesokurtic distribution, 40

Method of moments (MOM)

binomial distribution, 213, 214

GEV distribution, 214, 215

Gumbelmax distribution, 214

SRS, 213

Metropolis algorithm, 517, 518

Mixed distributions, 91–92

Moment generating function (MGF), 79–81

Monotonic trend, 538–539

Multicollinearity, 433–436

Multinomial distribution, 115–116

coefficient of kurtosis, 118

coefficient of skewness, 118

mean, 118

moment generating function, 118

notation, 118

PMF, 118

variance, 118

Multiple linear regression, 424

confidence intervals, 428–430

explanatory variables, 434

extra-sum-of-squares method, 432

hypothesis testing, 430–432

least squares estimates, 425

matrix notation, 425

multicollinearity, 433–436

normal distribution, 429

parameter estimation, 424

potential explanatory variables, 440

residual mean square, 427

Multiplication rule, 64

N
Negative binomial distribution

coefficient of kurtosis, 117

coefficient of skewness, 117

expected value and variance, 110

mass function, 110

mean, 117

moment generating function, 117

notation, 117

PMF, 117

variance, 117

Nonparametric tests, 267, 268, 275

Nonrandomness, 269

Nonstationary analysis

change detection, 537
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Nonstationary analysis (cont.)
advantages, 537

limitations, 537

Mann–Kendall test, 537–540

Pettitt test (see Pettitt test)
water resources systems, 537

design life level, 573

EVT, 559–560

generalized Pareto distribution, 566–567

geometric distribution, 571

GEV model, 560

GLM

AIC, 558–559

density and link functions, 549–552

estimation and inference, 552–555

LRT, 557–558

regression coefficients, hypothesis test

for, 556–557

Gumbelmax distribution, 565–566, 570

Kernel occurrence rate estimation, 544–545

bandwidth selection, 544

bootstrap confidence band, 547–548

formulation, 544–545

Poisson processes, 543

pseudodata generation, 545, 547

model selection, 567–568

regression models, 549

return period, 572–573

NORM.DIST(.) function, 131

NORM.INV(.) function, 131

Normal distribution, 296, 345

Null hypothesis, 259, 303

Numerical random variables, 9

O
Operating characteristic curve, 257

P
Paleoflood reconstruction, 324

Parameter estimation

asymptotic property, 207

binomial distribution, 238, 239

Chebyshev’s inequality, 207

descriptors, 203

GEV distribution, 239, 240

interval estimation

asymptotic methods, 226

generic estimator, 227

moment functions, 226

pivot function, 225, 226

Student’s t and χ2 distributions, 226

L-MOM (see L-moments method

(L-MOM))

log-Pearson Type III distribution, 243

MLE, 215–218

MOM (see Method of moments (MOM))

MSE, 208

normal distribution, 244

Pearson type III distribution, 244, 245

Poisson distribution, 245

population mean, 206

population variance, 208–210

sample arithmetic mean, 208

SRS, 205

unbiased estimator, 206

uniform distribution, 246

variance σ2, 210–212
Weibullmin distribution, 246–249

Parametric tests

mean, 263

normal population, 260, 261

variance, 265

Partial duration series, 363

Peaks-over-threshold (POT) approach, 357

bivariate stochastic process, 360

chi-square distribution, 366

GPA-distributed exceedances, 369–372

magnitudes, 366–369

mutual/serial independence, exceedances,

364, 365

nonhomogeneous compound Poisson

stochastic process, 361–363

Poisson–Pareto model, 373–375

thresholds, 365, 366

Pearson distribution

coefficients, 168

log-Pearson type III, 169–171

Pearson type III, 168, 169

Pearson’s r correlation coefficient, 393–396

Pettitt test, 543

alternative hypothesis, 539

null hypothesis, 539, 540

one-tailed tests, 539

P-values, 540
two-tailed test, 540

Pits-under-threshold (PUT), 11

Platykurtic distribution, 40

Poisson discrete random variable, 113

Poisson distribution, 111

CDF, 111

coefficient of kurtosis, 117

coefficient of skewness, 112, 117

flood hydrographs, 120

mean, 111, 117
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moment generating function, 117

notation, 117

PMF, 111, 117

variance, 111, 117

Poisson mass function, 112

Poisson-Pareto model, 512

Population, 14, 266, 267, 303

Power curve, 257, 258

Probability density function (PDF), 69, 71

exponential distribution, 73

possible shapes, 71

weekly mean DO concentration, 72

Probability mass function (PMF), 68, 69

Probability plot correlation coefficient (PPCC),

294–300

Probability theory

Bayes’ formula, 67–68

conditional probability, 63–65

law of total probability, 65–67

mixed distributions, 91–92

notion and measure, 61–63

random experiments, 57–60

random variables, 68–73

coefficients of kurtosis, 77–79

coefficients of skewness, 77–79

distributions of functions, 88–91

expected value, 73–76

joint probability distributions, 81–88

moment generating function, 79–81

variance, 76–77

statistical independence, 63–65

two-dimensional sample space, 60

Probability weighted moments (PWM),

218, 466

Probable maximum precipitation (PMP),

521, 522

Q
Q7 flows, 53

Qualitative random variables, 9

Quantile curve, 74

Quantile–quantile diagram (Q–Q plot), 48–49

Quantiles estimation

asymptotic methods, 228

inverse function, 227

L-MOM, 233, 234

MLE, 231–233

MOM, 229–231

Monte Carlo simulation, 234–236

standard error, 227, 228

Quantitative random variables, 9

Quantum physics, 3

R
Rainy day, 57

Random experiments, 57–60

Random variables, 68–73

distributions of functions, 88–91

expected value, 73–76

joint probability distributions, 81–88

moment generating function, 79–81

numerical, 9

qualitative, 9

quantitative, 9

univariate and multivariate analyses, 9

variance, 76–77

Reducible uncertainty, 1

Regional frequency analysis, hydrologic

variables

catchment attributes, 441, 443

generalized logistic distribution, 442

homogeneous region, 442

hydrologically homogeneous regions (see
Hydrologically homogeneous

regions)

IFB method, 461–465

index-flood approach, 441, 442

multiple regression methods, 443

permeation, 443

RBQ method

distribution parameter estimation,

456–460

T-year quantile estimation, 451–456

regression-based methods, 442

Regression analysis

analysis of variance, 414, 422, 427

calculations, 406, 421

cause–effect relation, 399

description, 398

multiple linear regression, 424

confidence intervals, 428–430

hypothesis testing, 430–432

least squares estimates, 425

matrix notation, 425

multicollinearity, 433–436

normal distribution, 429

parameter estimation, 424

residual mean square, 427

residuals plots, 415–422

simple linear regression

coefficient of determination, 407–408

confidence intervals, 409–412

hydrologic variables, 423–424

hypothesis testing, 413–415

least squares method, 402

standard error, 405
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Regression analysis (cont.)
two-step procedure, 398

Regression coefficients, 295, 299

Regression-Based Quantile (RBQ) method

distribution parameter estimation, 456–460

T-year quantile estimation, 451–456

Return period, 105

design flood, 107

extension of, 109

graphical representation, 106

River diversion scheme, 108

S
Sample correlation coefficient, 47

Sample space, 59

Sampling errors, 16

Scatterplot, 44–47

Serial correlation, 396–397

Simple linear regression

coefficient of determination, 407–408

confidence intervals, 409–412

hydrologic variables, 423–424

hypothesis testing, 413–415

least squares method, 402

standard error, 405

Simple random sampling (SRS), 15

Spurious correlation, 395

Standard deviation, 36–38

Standardized units, 257

Stationarity, 273, 274, 277

Statistical hydrology, 302

data, 15–16

hydrologic series, 10–14

hydrologic variables, 7–9

induction, 3

population, 14

processes, 4–7

role probability, 1–4

sample, 14

Statistical physics, 3

Statistic distribution, 264

Stem-and-leaf diagram, 42–44

Stochastic hydrology, 7

Stochastic process, 7

Sturges’ rule, 26

T
Total dissolved solids (TDS), 54, 55

Two-component extreme value (TCEV),

175–177

Two-dimensional sample space, 60

Type I and type II errors, 255, 256

U
Uncertainty

irreducible, 1

laws of nature, 2

mathematical formalism, 2

reducible, 1

setbacks in

complex and chaotic nonlinear

dynamics, 3

incompleteness theorems, 3

quantum physics, 3

statistical physics, 3

sources of, 1

Union, 58

V
Variance, 76–77, 550

Venn diagram

sample space reduction, 59, 64

simple vs.compound events, 58

total probability, 66

W
Wakeby distribution, 174, 175

Weibullmin distribution, 164–167

Wet years, 57

Whiskers, 41

WinBUGS software, 528

660 Index


	Preface
	Contents
	List of Contributors
	Chapter 1: Introduction to Statistical Hydrology
	1.1 The Role of Probabilistic Reasoning in Science and Engineering
	1.2 Hydrologic Processes
	1.3 Hydrologic Variables
	1.4 Hydrologic Series
	1.5 Population and Sample
	1.6 Quality of Hydrologic Data
	References

	Chapter 2: Preliminary Analysis of Hydrologic Data
	2.1 Graphical Representation of Hydrologic Data
	2.1.1 Bar Chart
	2.1.2 Dot Diagram
	2.1.3 Histogram
	2.1.4 Frequency Polygon
	2.1.5 Cumulative Relative Frequency Diagram
	2.1.6 Duration Curves

	2.2 Numerical Summaries and Descriptive Statistics
	2.2.1 Measures of Central Tendency
	2.2.1.1 Mean
	2.2.1.2 Median
	2.2.1.3 Mode

	2.2.2 Measures of Dispersion
	2.2.2.1 Mean Absolute Deviation
	2.2.2.2 Standard Deviation

	2.2.3 Measures of Asymmetry and Tail Weight
	2.2.3.1 Coefficient of Skewness
	2.2.3.2 Coefficient of Kurtosis


	2.3 Exploratory Methods
	2.3.1 Box Plot
	2.3.2 The Stem-and-Leaf Diagram

	2.4 Associating Data Samples of Different Variables
	2.4.1 Scatterplot
	2.4.2 Empirical Quantile-Quantile Diagram (Empirical Q-Q Plot)

	References

	Chapter 3: Elementary Probability Theory
	3.1 Random Events
	3.2 Notion and Measure of Probability
	3.3 Conditional Probability and Statistical Independence
	3.4 Law of Total Probability and Bayes´ Formula
	3.5 Random Variables
	3.6 Descriptive Measures of Random Variables
	3.6.1 Expected Value
	3.6.2 Variance
	3.6.3 Coefficients of Skewness and Kurtosis
	3.6.4 Moment Generating Function

	3.7 Joint Probability Distributions of Random Variables
	3.8 Probability Distributions of Functions of Random Variables
	3.9 Mixed Distributions
	References

	Chapter 4: Discrete Random Variables: Probability Distributions and Their Applications in Hydrology
	4.1 Bernoulli Processes
	4.1.1 Binomial Distribution
	4.1.2 Geometric Distribution
	4.1.3 Negative Binomial Distribution

	4.2 Poisson Processes
	4.3 Other Distributions of Discrete Random Variables
	4.3.1 Hypergeometric Distribution
	4.3.2 Multinomial Distribution

	4.4 Summary for Probability Distributions of Discrete Random Variables
	4.4.1 Binomial Distribution
	4.4.2 Geometric Distribution
	4.4.3 Negative Binomial Distribution
	4.4.4 Poisson Distribution
	4.4.5 Hypergeometric Distribution
	4.4.6 Multinomial Distribution

	References

	Chapter 5: Continuous Random Variables: Probability Distributions and Their Applications in Hydrology
	5.1 Uniform Distribution
	5.2 Normal Distribution
	5.3 Lognormal Distribution
	5.4 Exponential Distribution
	5.5 Gamma Distribution
	5.6 Beta Distribution
	5.7 Extreme Value Distributions
	5.7.1 Exact Distributions of Extreme Values
	5.7.2 Asymptotic Distributions of Extreme Values
	5.7.2.1 Gumbel Distribution for Maxima
	5.7.2.2 Fréchet Distribution for Maxima
	5.7.2.3 Generalized Extreme-Value (GEV) Distribution for Maxima
	5.7.2.4 Gumbel Distribution for Minima
	5.7.2.5 Weibull Distribution for Minima


	5.8 Pearson Distributions
	5.8.1 Pearson Type III Distribution
	5.8.2 Log-Pearson Type III Distribution

	5.9 Special Probability Distributions Used in Statistical Hydrology
	5.9.1 Kappa Distribution
	5.9.2 Wakeby Distribution
	5.9.3 TCEV (Two-Component Extreme Value) Distribution

	5.10 Sampling Distributions
	5.10.1 Chi-Square (chi2) Distribution
	5.10.2 Student´s t Distribution
	5.10.3 Snedecor´s F Distribution

	5.11 Bivariate Normal Distribution
	5.12 Bivariate Distributions Using Copulas
	5.13 Summary for Probability Distributions of Continuous Random Variables
	5.13.1 Uniform Distribution
	5.13.2 Normal Distribution
	5.13.3 Lognormal Distribution (2 Parameters)
	5.13.4 Exponential Distribution (1 Parameter)
	5.13.5 Gamma Distribution (2 Parameters)
	5.13.6 Beta Distribution
	5.13.7 Gumbelmax Distribution
	5.13.8 GEV Distribution (Maxima)
	5.13.9 Gumbelmin Distribution
	5.13.10 Weibullmin Distribution (2 Parameters)
	5.13.11 Pearson Type III Distribution
	5.13.12 Chi-Square (chi2) Distribution
	5.13.13 Student´s t Distribution
	5.13.14 Snedecor´s F Distribution

	References

	Chapter 6: Parameter and Quantile Estimation
	6.1 Introduction
	6.2 Preliminaries on Parameter Point Estimation
	6.3 Method of Moments (MOM)
	6.4 Maximum Likelihood Estimation (MLE) Method
	6.5 Method of L-Moments (L-MOM)
	6.6 Interval Estimation
	6.7 Confidence Intervals for Quantiles
	6.7.1 Confidence Intervals for Quantiles (Estimation Method: MOM)
	6.7.2 Confidence Intervals for Quantiles (Estimation Method: MLE)
	6.7.3 Confidence Intervals for Quantiles (Estimation Method: L-MOM)

	6.8 Confidence Intervals for Quantiles by Monte Carlo Simulation
	6.9 Summary of Parameter Point Estimators
	6.9.1 Bernoulli Distribution
	6.9.2 Beta Distribution
	6.9.3 Binomial Distribution
	6.9.4 Exponential Distribution
	6.9.5 Gamma Distribution
	6.9.6 Geometric Distribution
	6.9.7 GEV Distribution
	6.9.8 Gumbelmax Distribution
	6.9.9 Gumbelmin distribution
	6.9.10 Lognormal Distribution (2 parameters, with Y=lnX)
	6.9.11 Lognormal distribution [3 parameters, with Y=ln(X-a)]
	6.9.12 Log-Pearson Type III Distribution
	6.9.13 Normal Distribution
	6.9.14 Pearson Type III Distribution
	6.9.15 Poisson Distribution
	6.9.16 Uniform Distribution
	6.9.17 WeibullminDistribution

	References

	Chapter 7: Statistical Hypothesis Testing
	7.1 Introduction
	7.2 The Elements of a Hypothesis Test
	7.3 Some Parametric Tests for Normal Populations
	7.3.1 Parametric Tests for the Mean of a Single Normal Population
	7.3.2 Parametric Tests for the Means of Two Normal Populations
	7.3.3 Parametric Tests for the Variance of a Single Normal Population
	7.3.4 Parametric Tests for the Variances of Two Normal Populations

	7.4 Some Nonparametric Tests Useful in Hydrology
	7.4.1 Testing the Randomness Hypothesis
	7.4.2 Testing the Independence Hypothesis
	7.4.3 Testing the Homogeneity Hypothesis
	7.4.4 Testing the Stationarity Hypothesis

	7.5 Some Goodness-of-Fit Tests Useful in Hydrology
	7.5.1 The Chi-Square (chi2) GoF Test
	7.5.2 The Kolmogorov-Smirnov (KS) GoF Test
	7.5.3 The Anderson-Darling (AD) GoF Test
	7.5.4 The Probability Plot Correlation Coefficient (PPCC) GoF Test
	7.5.5 Some Comments on GoF Tests

	7.6 Test for Detecting and Identifying Outliers
	References

	Chapter 8: At-Site Frequency Analysis of Hydrologic Variables
	8.1 Introduction
	8.2 Graphical Frequency Analysis
	8.2.1 Probability Paper
	8.2.2 Empirical Distribution
	8.2.3 Plotting of Historic Events

	8.3 Analytical Frequency Analysis
	8.3.1 Data Screening
	8.3.2 Choosing the Probability Model
	8.3.2.1 Theoretical Aspects
	8.3.2.2 Moment-Ratio Diagrams
	8.3.2.3 Information Measures

	8.3.3 Estimating Quantiles with Frequency Factors
	8.3.3.1 Normal Distribution
	8.3.3.2 Lognormal Distribution (Two-Parameter)
	8.3.3.3 Lognormal Distribution (Three-Parameter)
	8.3.3.4 Pearson Type III Distribution
	8.3.3.5 Log-Pearson Type III Distribution
	8.3.3.6 Exponential Distribution
	8.3.3.7 Gamma Distribution
	8.3.3.8 GEV Distribution
	8.3.3.9 Gumbelmax Distribution
	8.3.3.10 GLO (Generalized Logistic) Distribution

	8.3.4 Assessing the Uncertainties of Quantile Estimates

	8.4 Peaks-Over-Threshold (POT) Approach for the Analysis of Partial Duration Series
	8.4.1 Theoretical Background
	8.4.2 Constraints in Applying the POT Approach
	8.4.2.1 Mutual (or Serial) Independence of Exceedances
	8.4.2.2 Distribution of the Number of Mutually Independent Exceedances

	8.4.3 Distribution of the Magnitudes of Mutually Independent Exceedances
	8.4.4 Selecting the Threshold u Within the Framework of GPA-Distributed Exceedances
	8.4.5 The Poisson-Pareto Model

	8.5 Derived Flood Frequency Analysis and the GRADEX Method
	Exercises
	References

	Chapter 9: Correlation and Regression
	9.1 Correlation
	9.1.1 Pearson´s r Correlation Coefficient
	9.1.2 Serial Correlation

	9.2 Regression Analysis
	9.2.1 Simple Linear Regression
	9.2.2 Coefficient of Determination in Simple Linear Regression
	9.2.3 Interval Estimation in Simple Linear Regression
	9.2.4 Hypothesis Testing in Simple Linear Regression
	9.2.5 Regression Diagnostics with Residual Plots
	9.2.6 Some Remarks on Simple Linear Regression Models

	9.3 Multiple Linear Regression
	9.3.1 Interval Estimation in Multiple Linear Regression
	9.3.2 Hypothesis Testing in Multiple Linear Regression
	9.3.3 Multicollinearity

	References

	Chapter 10: Regional Frequency Analysis of Hydrologic Variables
	10.1 Introduction
	10.2 Hydrologically Homogeneous Regions
	10.2.1 Categories of Techniques for Delineating Homogeneous Regions
	10.2.1.1 Geographic Convenience
	10.2.1.2 Subjective Grouping
	10.2.1.3 Objective Grouping
	10.2.1.4 Grouping with Cluster Analysis
	10.2.1.5 Other Approaches

	10.2.2 Notions on Cluster Analysis

	10.3 Example Applications of the Methods of Regional Frequency Analysis
	10.3.1 RBQ: A Regression Method for Estimating the T-year Quantile
	10.3.2 RBP: A Regression Method for Estimating the Distribution Parameters
	10.3.3 IFB: An Index-Flood-Based Method for Regional Frequency Analysis

	10.4 A Unified IFB Method for Regional Frequency Analysis with L-Moments
	10.4.1 Screening of the Data
	10.4.2 Identification of Homogeneous Regions
	10.4.3 Choosing the Regional Frequency Distribution
	10.4.4 Estimating the Regional Frequency Distribution by the Method of L-Moments
	10.4.5 General Comments on the Hosking-Wallis Method for Regional Analysis

	References

	Chapter 11: Introduction to Bayesian Analysis of Hydrologic Variables
	11.1 Historical Background and Basic Concepts
	11.2 Prior Distributions
	11.2.1 Conjugate Priors
	11.2.2 Non-informative Priors
	11.2.3 Expert Knowledge
	11.2.4 Priors Derived from Regional Information

	11.3 Bayesian Estimation and Credibility Intervals
	11.4 Bayesian Calculations
	11.5 Example Application
	11.5.1 Nonsystematic Flood Data
	11.5.2 Upper-Bounded Distributions
	11.5.3 Study Site and Data
	11.5.4 Prior Distribution of Parameters of the LN4 Model
	11.5.5 Posterior Distributions and Further Results

	11.6 Further Reading and Software
	References

	Chapter 12: Introduction to Nonstationary Analysis and Modeling of Hydrologic Variables
	12.1 Some Methods for Detecting Changes
	12.1.1 Hypothesis Test for a Monotonic Trend
	12.1.2 Hypothesis Test for a Change Point

	12.2 Kernel Occurrence Rate Estimation
	12.2.1 Formulation
	12.2.2 Bandwidth Selection
	12.2.3 Pseudodata generation
	12.2.4 Estimation uncertainty: bootstrap confidence band

	12.3 Introduction to Generalized Linear Models (GLM)
	12.3.1 Density and Link Functions
	12.3.2 Estimation and Inference
	12.3.3 Model Selection and Evaluation
	12.3.3.1 Hypothesis Tests for Regression Coefficients
	12.3.3.2 Likelihood Ratio Tests
	12.3.3.3 Akaike Information Criterion (AIC)


	12.4 Nonstationary Extreme Value Distribution Models
	12.4.1 Theoretical Justification
	12.4.2 Nonstationary Model Based on the GEV Distribution
	12.4.3 Nonstationary Model Based on the Gumbelmax Distribution
	12.4.4 Nonstationary Model Based on the Generalized Pareto Distribution
	12.4.5 Model Selection and Diagnostics

	12.5 Return Period and Hydrologic Risk in a Nonstationary Context
	12.5.1 Return Period Under Nonstationarity
	12.5.2 Design Life Level (DLL)

	12.6 Further reading
	References

	Appendix 1Mathematics: A Brief Review of Some Important Topics
	A1.1 Counting Problems
	A1.2 MacLaurin Series
	A1.3 Gamma Function
	A1.4 Beta Function
	A1.5 Differentiation Rules and Derivatives for Some Basic Functions
	A1.6 Integration Rules and Indefinite Integrals for Some Basic Functions

	Appendix 2Values for the Gamma FunctionGamma function Gamma(t)
	Appendix 3chi1-α,nu2 Quantiles from Chi-Square DistributionChi-Square distribution, with nu Degrees of Freedom
	Appendix 4t1-α,nu Quantiles from Student´s t DistributionStudent´s t distribution, with nu Degrees of Freedom
	Appendix 5Snedecor´s F QuantilesSnedecor´s F quantiles, with gamma1=m (Degrees of Freedom of the Numerator) and gamma2=n (Degr...
	Appendix 6Annual Minimum 7-Day Mean Flows, in m3/s, (Q7) at 11 Gauging Stations in the Paraopeba River BasinParaopeba River Ba...
	Appendix 7Annual Maximum Flows for 7 Gauging Stations in the Upper ParaopebaParaopeba River Basin River Basin
	Appendix 8aRainfall RatesSerra dos Órgãos Region (mm/h) Recorded at Rainfall Gauging Stations in the Serra dos Órgãos Region
	Appendix 8bL-Moments and L-Moment Ratios of Rainfall Rates (mm/h) Recorded at Rainfall Gauging Stations in the Serra dos Órgão...
	Appendix 9Regional Data for Exercise 6 of Chapter 10
	Appendix 10Data of 92 Rainfall Gauging Stations in the Upper São Francisco River BasinUpper São Francisco River Basin, in Sout...
	Appendix 11Solutions to Selected Examples in R
	Appendix 11Solutions to Selected Examples in R
	A11.1. Introduction
	A11.2 Solutions

	Index



