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P r e f a c e  

T h e s e  L e c t u r e  N o t e s  w e r e  p r e p a r e d  f r o m  n o t e s  t a k e n  by  M. R a t l i f f  

a n d  K. S p a c k m a n  o f  l e c t u r e s  g i v e n  a t  t h e  U n i v e r s i t y  o f  C o l o r a d o .  

I h a v e  t r i e d  t o  p r e s e n t  a p r o o f  a s  s i m p l e  a s  p o s s i b l e  o f  W e i l ' s  

t h e o r e m  on  c u r v e s  o v e r  f i n i t e  f i e l d s .  The  n o t i o n s  o f  " s i m p l e "  o r  

"elementary" have different interpretations, but I believe that 

for a reader who is unfamiliar with algebraic geometry, perhaps 

even with algebraic functions in one variable, the simplest method 

is the one which originated with Stepanov. Hence it is this method 

which I follow. 

The length of these Notes is perhaps shocking. However, it should 

be noted that only Chapters I and III deal with Weil's theorem. 

Furthermore, the style is (I believe) leisurely, and several results 

are proved in more than one way. I start in Chapter I with the 

d 
simplest case, i.e., with curves y = f(x) At first I do the 

simplest subcase, i.e., the case when the field is the prime field and 

when d is coprime to the degree o~ f . This special case is now so 

easy that it could be presented to undergraduates. The general equation 

f(x,y) = 0 is taken up only in Chapter Ill, but a reader in a hurry 

could start there. The second chapter, on character sums and expo- 

nential sums, is included at such an early stage because os the 

many applications in number theory. Chapters IV, V and Vl deal with 

equations in an arbitrary number of variables. 

Possible sequences are chapters 

I by itself, or 

I, Ill for Well's theorem, or 



fV 

I.i,III for a reader who is in a hurry, or 

I, II for character sums and exponential sums, or 

I, If, IV, or 

I, III, IV.3 and V ~ 

Originally I had planned to include Bombieri's version of the 

Stepanov method. I did include it in my lectures at the University of 

Colorado, but I first had to prove the Riemann-Roch Theorem and basic 

properties of the zeta function of a curve. A proof of these basic 

properties in the Lecture Notes would have made these unduly long, 

while their omission would have made the Bombieri version not self com- 

plete. Hence I decided after some hesitation to exclude this version 

from the Notes. 

Recently Deligne proved far reaching generalizations of Weil's 

theorem to non-singular equations in several variables, thereby con- 

firming conjectures of Well. It is to be noted, however, that Deligne's 

proof rests on an assertion of Grothendieck concerning a certain fixed 

point theorem. To the best of my knowledge, a proof of this fixed 

point theorem has not appeared in print yet. It is perhaps needless 

to say that at present there is no elementary approach to such a 

generalization of Well's theorem. But it is to be hoped that some day 

such an approach will become available, at least for those cases which 

are used most often in analytic number theory. 

November, 1975 W.M. Schmidt 



Notation 

F is the multiplicative group of a field F . 

is the algebraic closure of a field F . 

F n is the product F X ... X F , i.e., the set of n-tuples 

with x i E F (i = l,...,n) . 

I F  1 : F 2 ]  d e n o t e s  t h e  d e g r e e  o f  a f i e l d  e x t e n s i o n  F 1 ~ F 2 . 

denotes the trace and ~ the norm. 

F will denote the finite field with q elements. 
q 

p will be the characteristic~ 

is the field of rational numbers, 

R the field of reals, 

C the field of complex numbers, 

Z the ring of (rational) integers. 

denotes isomorphism of fields or groups. 

(Xl,..-,x n) 

Quite often, x,y,z.., will be elements which lie in a ground 

field or are algebraic over a ground field, X,Y,Z,... will be 

variables, i.e., will be algebraically independent over a ground field, 

and ~ , ~,... will be algebraic functions, i.e., they will be 

algebraically dependent on some of X,Y,... Thus f(XI,...,X n) 

is a polynomial, and f(xl,...,x n) is the ~value of this polynomial at 

(Xl,...,x n) �9 

F(x) or F(X) or F(X,Y) or F(X,~), or similar, will be the 

field obtained by adjoining x or X or X,Y or X,~ to a ground 

field F . Thus F(X) is the field of rational functions in a variable 

X with coefficients in F . R[X] denotes the ring of polynomials in X 

with coefficients in the ring R . 



V~ 

I f  a , b  a r e  i n  Z , we w r i t e  a l b  ( o r  a + b )  i f  a d o e s  ( o r  d o e s  

n o t )  d i v i d e  b . O c c a s i o n a l l y  we s h a l l  w r i t e  d l q - 1  i n s t e a d  o f  t h e  

m o r e  p r o p e r  n o t a t i o n  d l ( q - 1 )  . A g a i n ,  we s h a l l  w r i t e  f ( X )  l g ( X )  i f  

t h e  p o l y n o m i a l  f ( X )  d i v i d e s  g (X)  . F u r t h e r  ( f ( X ) )  ( o r  ( f ( X ) , g ( X ) )  ) 

w i l l  b e  t h e  i d e a l  g e n e r a t e d  by  f ( X )  ( o r  b y  f ( X )  a n d  g ( X ) )  

!e I denotes the number of elements of a finite set ~ Given 

sets A ~ B , the set theoretic difference is denoted by B ~ A . 
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Introduction 

Gauss (1801) made an extensive study of quadratic congruences 

p . He als0 obtained the number of solutions of the modulo a prime 

cubic congruence 

for primes 

for primes 

3 
ax - by 3 =_ 1 (mod p ) 

p = 3n+ i , and of the quartic congruence 

4 
ax - by 4 ~ 1 (mod p ) 

p = 4n + 1 . He studied the congruence 

4 
ax - by 2 ~ 1 (mod p ) 

for arbitrary primes p . 

2 
Artin (1924) considered the congruence y _= f(x) (mod p ) 

where f(X) is a polynomial whose leading coefficient is not divisible 

by p and which has no multiple factors modulo p , and made the 

following conjecture: The number N of solutions satisfies 

!N - Pl ~ 2~/~ if deg f = 3 , 

I N+I - Pl ~ 2~ if deg f = 4 �9 

This conjecture was proved by Hasse (1936 b,c.). In fact, let F 
q 

be the finite field with q elements, and let N be the number of 

2 2 
solutions (x,y) E F of the equation y = f(x) , where f(X) is 

q 

a polynomial with coefficients in F and with distinct roots~ Then 
q 

IN - q! ~ 2~/~ if deg f = 3 , 

IN+I - ql ~ 2~ if deg f = 4 �9 

Suppose f(X,Y) is a polynomial of total degree d , with 

coefficients in F and with N zeros (x,y) with coordinates in 
q 

F Suppose f(X,Y) is absolutely irreducible, i.e., irreducible 
q 

not only over Fq , but also over every algebraic extension thereof. 



Well (1940,1948a) t 

for Curves over Finite Fields") that 

(i) I N - ql ~ 2g~/q + Cl(d) 

where g is the "genus" of the curve f(x,y) = 0 

constant depending on d It can be shown that 

proved the famous theorem (the "Riemann Hypothesis 

and where Cl(d) is a 

g ~ ~(d-l)(d-2) , hence that 

I N - q l ~ (d-l)(d-2)~/q + Cl(d) 

Well's proof depends on algebraic geometry, in particular on Castelnuovo's 

inequality. A somewhat simpler proof was given by Roquette (1953); see 

also Lang (1961), Eichler (1963). 

More recently, Stepanov (1969, 1970, 1971, 1972a, 1972b, 1974) 

gave a new proof of special cases of Well's result which does not 

depend on algebraic geometry, but which is related to Thue's (1908) 

method in diophantine approximation. This method consists in the 

construction of a polynomial in one variable with rather many zeros. 

The construction is by the method of undetermined coefficients. 

In particular, Stepanov proved that 

( 2 )  I N - q l ~ c2(d) ~/~ 

if f(X,Y) is of some special type, for instance if 

f(X,Y) = yd _ f(X) 

where d and the degree of f are coprime. Later Bombieri (1973) 

and Schmidt proved (2) for absolutely irreducible f(X,Y) by the 

Thue - Stepanov method. It follows from the theory of the zeta function 

that (2) implies (i). 

In these Lectures we shall prove (2) by the Stepanov method. 

~The 1940 paper is only an announcement. 



d 
~. Equations y = f(x) 

3 

a n d  y q  - y = f ( x )  

References: Stepanov (1969, 1970, 1971, 1972a), Mitkin (1972), 

Stark (1973). 

w i. Finite Fields (Galois fields). 

Let F be any field. There is a smallest subfield k g F (the 

intersection of all subfields of F), called the prime subfield 

of F , and either k = ~ or k = Fp , the integers modulo a prime 

In the first case F is of characteristic 0 , in the second 

case of characteristic p . In the case when F is finite, 

k = Fp , a n d  [F : Fp] is f i n i t e .  I f ,  say, [F : Fp] = N 

K 
t h e n  IF1 = p q 

then q = p , p prime. 

Let F be a finite field and let F 
q q 

eative group of Fq Then I F:I~ = q - 1 . 

x q - 1  we  h a v e  = i ; hence, for x ~ Fq 

fore, X q - X = U (X - x) . 

xs 
q 

of X q - X over F , and F 
P q 

Moreover, as a splitting field, 

isomorphisms. 

Hence if F is a field with q elements, 

he the multipli- 

If x ~ F then q' 

x q - x = 0 . There- 

So F is the splitting field 
q 

is a normal extension of 

F is unique up to 
q 

F 
P 

Conversely, let F 

over Fp , where q = p 

this polynomial in F. 

be the splitting field of X q - X 

Let Xl,...,x q be the roots of 

These roots are distinct since the 

derivative D(X q - X) = - 1 I 0. 

X q - X , since, 

Now x. + x. is a root of 
i j 

P �9 



(x i + xj) q - (X i + xj.) = x qi + x qJ - x i - xj = 0 

and similarly for x. - x. . Also x.x. is a root, since 
i J i J  

(x  x . )  q = x q x  q. = x i x j  
i J i J ' 

and similarly xi/x j is a root if xj ~ 0 . These roots clearly 

form a field, so, in fact, F = (Xl,X2,.,.,Xq) �9 Thus a field 

with q elements does exist. 

Considering the above, we have: 

THEOREM IA~ If F is a finite field of order q , then 
- -  q 

K 
q = p , p prime. For every such q , there exists exactly 

one field F This field is the splitting field of X q-X 
q 

Fp , and all of its elements are roots of X q-X o v e r  o 

THEOREM IB. The multiplicative group 

For the proof of this theorem we need 

F is cyclic. 
q 

LEMMA IC. Let G be a finite group of order d . Suppose 

for every divisor e of d , there are at most e elements 

x E G with x e = 1 . Then G is cyclic. 

e 
The theorem follows immediately, since X - 1 has at most 

e roots in F 
q 

I t  o n l y  r e m a i n s  t o  g i v e  a 

Proof of Lemma IC. Every element of G is of some order 

e, where e Id . Let ~ (e) be the number of elements of G 

whose order is e . Either ~ (e) = 0 or ~(e) ~ 0 . Suppose 

( e )  ~ 0 , a n d  l e t  y E G h a v e  o r d e r  e . T h e n  t h e  e l e m e n t s  

2 e e 
y , y  , . . . , y  = 1 a r e  d i s t i n c t  a n d  a l l  s a t i s f y  x = 1 .  S i n c e  

there are e of these elements, by hypothesis there can be 

e 
no other elements x E G satisfying x = 1. 



i 
Now let z6G be any element of order e ; then z = y 

i 
(i ~ i g e). Notice that z = y has order e precisely if 

(i,e) = I. Hence ~ (e) = ~(e) , where ~ is the Euler r 

function. So, in general, $ (e) ~ ~(e) , taking into account 

the possibility that ~(e) = 0 . But 

d = ~ * (e)~ ~ ~D(e)= d 

eld eld 

Hence, for every divisor e of d , ~ (e) = ~(e) ; in particular, 

(d) = ~ (d) ~ 0 . That is, there exists an element of order d ; 

hence, G is cyclic. 

COROLLARY ID. Let q = p Then F = F (x) for some x. 
q P 

Proof. 

Let F 
q 

0):F ~F 
r r 

For suppose 

Let x be a generator of F 
q 

F be finite fields; then r = q~. Consider the mapping 
r 

such t h a t  ~ ( x )  = x q . T h i s  m a p p i n g  i s  o n e - o n e .  

x q = yq , then 

0 = x q - y q  = ( x  - y ) q  

whence x - y = 0 and x = yo The mapping ~ is then one-one 

of a finite set to itself, hence is onto. Moreover, ~ is an 

automorphism of F , since 
r 

O~(x + y )  = ( x  + y )  q = x q + y q  = ~ ( x )  + ~ ( y )  

and ~0(xy) = (xy) q = x q yq = ~0(x) ~0(y) 

In fact, u0 is an automorpbism of "F over F " (leaving 
r q 

fixed), since if x E F , ~(x) = x q = x . In other words, 
q 

F 
q 



is a member of the Galois group of F over F The map 
r q 

�9 TT 

~ i s  c a l i e d  t h e  " F r o b e n i u s  a u t o m o r p h i s m  . 

K 2 K- I  
If r = q , then l,w,w ,...,~ a r e  automorphisms 

over F , of F r q and they are distinct because if 

~0 i = ~J (0 ~ i, j ~ K - i), 

t h e n  i ( x )  = ~ J ( x )  f o r  a l l  x E F , 
r 

i q j  

x q = x for all x s  , 
r 

qi qj 

so x - x = 0 for all x E F 
r 

i x q j  
But the degree of the polynomial X q is less than 

qK = r, 

unless 

so the above cannot hold identically for all x E F 
r ~ 

i x q j  
X q - is identically zero and i = j . Since 

the order of the Galois group is K , these are the only auto- 

morphisms of F over F We have shown: 
r q 

THEOREM IE. Every automorphism of F over F is of 
r q 

the form i (0 ~ i ~ K - i) , where w(x) = x q That is, 

t h e  G a l o i s  g r o u p  o f  F r o v e r  Fq i s  c y c l i c  w i t h  g e n e r a t o r  ~ . 

Recall that the trace of an element is the sum of its 

conjugates. For the case F _c F , the trace o f  an element 
q r 

xEF is 
r 

2 ~ - i  

~ ( x )  = x + x q  + x q + . . .  + x q 



_c F LEMMA IF. Let x E F r , with Fq 
r 

ing three conditions are equivalent: 

Then the follow- 

( l )  ~x) = o .  

(ii) There exists y E F r with x = yq - y . 

(iii) There exist precisely q elements y E F with 
r 

x = y q -  y . 

Proof: Exercise. 

Now let K be any field of characteristic 

mapping to : x ~ x p is an endomorphism of K . 

case, W need not be onto. 

p. Then the 

However, in this 

Example: Let K = F (X) , p prime. Then 
P 

to(a 0 + alX + .o. + at xt) = a 0 + alXP + ... + atxtP . 

Here 

It is clear, however, that 

algebraically closed. 

tO(Fp(X)) = Fp(X p) . 

to is onto whenever K is 

Let k[X] denote the ring of polynomials over k �9 

be the differentiation operator defined as usual: 

a t X t )  t - 1  
D(a 0+alX+ ... + =a l+2a2X+ ... +tatX 

Le t  

let 

s ome 

THEOREM 1G. Let k be a field of characteristic 

M be an integer, M ~ p o Suppose a(X) ~ k[X] 

xEk 

0 = a(x) = Da(x) = D2a(x) ..... DM-la(x) 

p , and  

and for 



w . 

T h e n  a ( X )  h a s  a z e r o  a t  x o f  o r d e r  M ;  

a (X) , o r  i n  s y m b o l s j  (X - x )  M I a (X) . 

i.e., (X - x) M 

Proof: Write 

a(X) = c o + el(X-x) + c2(X-x)2 + ... + ct(X-x) t . 

+ (~+l) c~+l(X-x) + + (~)ct(X-x) t-~] Then, D~a (X) =~'. p. ~ . . . .  

Substituting x , for 0 ~ ~ < M - i, we have 

0 = ~'c~ 

But ~ ~ M - 1 < p, so ~: ~ 0 in 

0 < ~ ~ M- 1 . It now follows that 

theorem. 

vanish at 

x = 0 . 

k �9 Hence cZ = 0 , 

(X - x) M divides a(X) 

Remark: The condition M ~ p is essential in the above 

For example, consider a(X) = X p . All derivatives 

x = 0 , yet a(X) has a zero only of order p at 

divides 

d 
Equations y = f(x) . 

Special cases of these equations are equations 

2 
y = f (x) , 

where f(X) has distinct roots and is of degree 3 or 4. 

Such equations are called elliptic equations. Equations of the 

type 

2 
y = f (x) , 

with an arbitrary polynomial f(X) are called hyperelliptic 

equations. We now are going to make some heuristic arguments 

on hyperelliptie equations. 



= 2 K ~y2 If q , the mapping y is the Frobenius auto- 

morphism of F , so as y takes on all values in F , so does 
q q 

2 
y , and conversely. It is then clear that the number of solu- 

tions of y2 = f(x) is equal to the number of solutions of 

y = f(x) , which is q. On the other hand if 

* q- 1 
number of squares in F is because q ~ , 

q is odd, the 

* g , g 2  3 , g q - 1  
if F = ~ ,g ,... = I), 

q 

4 q q-i then (F*)2 = {g2,g ,... ,gq-l} and I(F )21 =- 
q 2 

0~e might, therefore, expect that for about half of the elements 

f(x) will be in (F*) 2 For such an x , there x 6 Fq, q 

are two values, namely y and - y , with y2 = f(x) . So 

again we might expect roughly 2 .~q = q solutions (x,y) 

of our equation. 

Let us now refine our intuitions by way of two examples. 

Example i. Consider the solutions (x,y) E F ~ F of 
q q 

the equation 

or 

2 4 2x 2 y =x + + i 

(y -(x 2 + i))(y + (x 2 + i)) = 0 . 

2 
Then either y = x + i 

o r  y = - ( x  2 + 1 )  . 

So there are approximately 2q solutions to this equation. 

The problem appears to arise because ~ - f~) is reducible 

o v e r  F 
q 
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2 
Example 2. Consider y = 2x 4 + 4x 2 + 2 over F 3 . Then 

(y  - ~/2 (x  2 + 1 ) )  (y + 4r2  (x  2 + 1 ) )  = 0 . 

This factorization, of course, cannot occur in F 3 , since 2 

is not a square in F 3 However, after adjoining a root of 

2 
X - 2 to F 3 (extending to F 9) , the above factorization can 

be made. That is, the polynomial y2 _ 2X 4 _ 4X 2 _ 2 is 

irreducible over F 3 , but not absolutely irreducible. Now if 

either 

or 

y - $2- (x 2 + i) = 0 

y + j{-(x 2 + l) = 0 , 
(x,y E F3) 

then since {i, ~} is linearly independent over F 3 , we have 

y =0 

2 
and x + 1 = 0 

Thus there are no solutions at all. The same conclusion holds over 

F , where p is a prime ~3(mod 8). 
P 

These examples should give an indication of why it seems 

d 
reasonable that we should impose the condition that Y - f(X) 

be absolutely irreducible, i.e. irreducible over F and every q 

algebraic extension of Fq, in order to draw the conclusion that 

the number of solutions be approximately equal to q 

THEOREM 2A. Suppose that yd _ f(X) is absolutely irreducible 

2 
and that q > lOOdm where m = deg f o If N is the number 

of zeros of the polynomial, then 

/ N - q/ ~ 4 d 3 / 2 m J  q ~  
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Note. No particular importance is attached to the specific values 100 dm 2 

and 4d3/2m. This theorem was proved but with different values of the con- 

stants) in an elementary way b Stepanov in (1969) for d = 2 , m odd and q 

a prime, then in (1970) for (m,d) = 1 and q a prime, finally in (1972a) for 

d = 2 , m odd and q an arbitrary prime power. 

A somewhat sharper estimate will be derived in w of Ch. II. The elliptic 

case of the theorem was first proved by Hasse ~936b,c). The theorem is a special 

case of Well's famous theorem (1940, 1948~on equations f(x,y) =0 , which will 

be proved in Chapter III. 

The proof of Theorem 2A will be carried out in the next sectiong. 

LEMMA 2B. Suppose  

X '  = aX + b Y  + c 

Y~ = dX + eY + f 

I a ~1 
is a non-singular linear substitution; ioe., d I 0 , with 

coefficients, a, b, c, d, e, f in some field k �9 Let f(X,~ 

be a polynomial with coefficients in k . Then f(X,Y) is 

irreducible over k if and only if f(aX + bY + c, dX+eY+ f) 

is irreducible over k o 

Proof: Exercise. 

LEMMA 2C. Suppose the polynomial d _ f(X) has coefficients 

in a field k �9 Then the following three conditions are equiva- 

lent: 

(i) yd _ f(X) is absolutely irreducible. 

(ii) yd - cf(X) is absolutely irreducible for every 

c ~ O ,  C E k  . 

d I d s 
(iii) If f(X) = a(X - x I) ... (X - x s) is the factori- 

zation of f in k , with x. ~ x. (i ~ j), then 

( d , d l , d 2 , ~  = 1 o 
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Proof: Each part of the proof will be by contrapositiono 

(i) ~ (ii)~ Suppose (ii) is not true. Then yd - cf(X) is 

reducible over ~ for some c ~ 0 , whence 

Y d (X)) 

i s  r e d u c i b l e  o v e r  k . By Lemma 2B, yd - f ( X )  i s  r e d u c i b l e  

o v e r  k , c o n t r a d i c t i n g  ( i ) .  

(ii) ~ (iii). Suppose (iii) is not true. Let t = (d,dl,..~ s) > i. 

dl/t ds/t 
Put g(X) = (X - x I) ... (X - x s) 

Then yd_l f(X) =Yd _ g(X) t 
a 

y •  (t-l) d(t-2) 
= (yd/t_g(X))( +Y g(x) +...+g(x) t-1). 

1 yd 
So with c = ~ ~ 0 , - cf(X) is reducible in k , con- 

tradicting (ii). 

(iii) ~ (i). Consider yd _ f(X) as a polynomial in the ring 

L[Y] , with coefficients in the field L = k(X) . We then have 

a factorization over L : 

yd - f(X) = (Y - ~i ) ... (Y - ~d ) , 

w h e r e  ~ i , . ~  d a r e  " a l g e b r a i c  f u n c t i o n s " ;  J o e . ,  e l e m e n t s  o f  

. I n  f a c t ,  we may s e t  

~ i  = ~ l  ~ ' ' ' ' ' ~ d  = Ca ~ ' 

where ~ is any root of yd _ f(X) in ~, and where ~I .... '~d 

are elements of k defined by 
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d 
Y - 1 = (Y - ~i ) ... (Y - ~d ) �9 

Suppose that yd _ f(X) is reducible over k ~ Then there 

exists a product 

(y- ~il~) .~ (Y- ~ih~) s k[X,Y] 

where h < d o The constant term of this product, 

Cil~i2 ..o ~ih ~h ~ k[x] , whence ~h ~ k[X] . Let ~ be 

the smallest positive integer with ~ ~ ~[X] . Then any 

integer m with ~m E k[X] is a multiple of ~ ~ Since 

~d ~ ~[x], it follows that ~Id, and sines ~h E ~[X], 

< d �9 Say ~ = h(X) . We have ~d = f(X) , so 

h(x) d/~ = f(X) 

d 
Take t = ~ ; then tld i (i = l,...,s) , t > 1 . So 

t I (d,dl,...,ds) , t > 1 , and the lemma is established. 

COROLLARY. Suppose deg f = m . Then yd _ f(X) is 

absolutely irreducible if (m,d) = i. 

Note: Rather than the more general condition of absolute 

irreducibility adopted here, Stepanov always assumed (m,d) = 1 . 

LEMMA 2Do Let C be a cyclic group of order h . For 

any integer d > 0 , let C d be the subgroup of d th 

d' 
powers of elements of C . Let d ' = (h,d). Then C d = C_ , 

and consists precisely of those x E C with 
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(2.1) x h/d' = i . 

For any x s C d, there are exactly d' elements y s C with 

d 
y = x . 

2 h i} Suppose x 6 C d Proof: Write C = {g,g ,...,g = . 

id 
hence is of the form x = g , for some i . Then since d'Id , 

�9 id.h 

Conversely, suppose x h/d* = i �9 

d i 
y E___C with y = x . Let x = g 

i 
follows that ~-. is an integer, say, 

We musti~how_ there is a 

d l 
Then g = 1 ; it 

i = d'i . If y = gJ , 
o 

we need 

jd iod' 
g = x = g 

J 

or jd 5 i d' (modh) 
o 

This congruence has a solution j since (d,h) = d' divides i d' 
e 

Moreover, the number of solutions j (modh) equals 

Since (2 i) depends only on d' d d' �9 , we have C__ = CC_ , 

lemma is proved �9 

d 
Given an equation y = f(x) in 

in the number N = N(d) of solutions 

(d,h) = d'. 

and the 

Fq , we are interested 

(x,y) with components 

in F Let N O be the number of solutions with y = 0 �9 then 
q 

N O is the number of x 6 F with f(x) = e . 
q 

Now consider the number of solutions with y ~ 0 . For 

such a solution, f(x) E (F*) d , so by Lemma 2D, 
q 
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q-I 

f(x) -~v- = 1 2 where d' = (q - l,d) . 

q-I 

d' 
Let N 1 be the number of x E F with f(x) = 1 . 

q 

such an x , there are d' elements y with yd = f(x) 

For 

Henc e 

N = N O + din I I 

This expression depends only upon d I , so N = N(d ~) 

out loss of generality, we may therefore assume that 

with- 

d I (q- i) ; 

then 

N = N O + dN 1 , 

where N 1 is the number of x such that 

Finally, let N 2 be the number of x E F with 
q 

I q-lld-1 / q-lld-2 
+ ... + f(x) d 

But we have 

q-i 

d 
f (x) = 1 ~ 

+ i = 0 . 

Z q Z = Z(Z --~ 1 Z- ~ (d-l) (d-2) d 
- - +Z + . . . + Z  +i . 

Now, since every z ~ F satisfies z q - z = 0 , and 
q 

Z q - Z is a separable polynomial, every element of F is a 
q 

root of one and only one of the factors of Z q -Z , whence 

q = N O + N 1 + N 2 �9 

For future reference, we summarize: 

LEMMA 2E: Let 

of yd = f(x), where 

N be the number of solutions (x,y) E F X F q q 

d I (q- I) Then N = N O + dN I, where 
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N O is the number of x E Fq 

the number of x E F with 
q 

N O + N 1 + N 2 = q , w h e r e  N 
2 

(2 ~ 

wi.th f(x) = 0 , and N 1 is 

q-i 

d 
f(x) = 1 . Further, 

is the number of x satisfying 

w 3. Construction of certain polynomials. 

In order to prove Theorem 2A, we may clearly suppose 

(3.1) m > i, d > 1 �9 

We a s s u m e  d I ( q -  1 ) ,  a n d ,  f o r  t h e  m o m e n t ,  t h a t  ( d , m )  = 1 ,  

2 
w h e r e  m = d e g  f . A l s o  a s s u m e  t e m p o r a r i l y  t h a t  q = p o r  p , 

p prime. For convenience let 

(3.2) 

q-I 

d 
g(x) = f(x) 

LEMMA 3A: Suppose h0(X),hl(X),...,hd_l(X) are poly- 

nomials of the type 

h. (X) = kio(X) _ + Xqk (X) + ... + xqKkiK(X) 
i il 

for 0 ~ i K d - i, and where deg kij -< q - m . If 
d 

ho(X) + g(X)hl(X) + ..o + g(x)d-lhd_l(X) = 0 , 

then each polynomial kij(X) = 0 (0 ~ i ~ d - i, 0 ~ j ~ K). 

Proof: A typical summand is of the form 

~ij(X) = g(X) i xqj ki j (X) 

It suffices to show that the degrees of the non-zero summands 

are all distinct. We have 
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whence 

deg Zij = qj + i m + deg kij 

=~q (dj + im) + deg kij -~m,i 

q q 
d (dj + ira) - m < deg ~ij ~ ~ (dj + ira) + ~ - m . 

Hence we need only show that for pairs (i,j) # (i',j'), we 

have dj + im i dj' + ilm . 

So suppose dj + im = dj' + i'm . 

Then im m i'm (mod d) , 

SO since (m,~:lj i ~ i' (modd) . 

But 0 ~ i, i' ~ d - i, so i = i' and j = j' 

LEMMA 3B;  ( F u n d a m e n t a l  l e m m a ) .  L e t  s b e  a n  i n t e g e r ,  

1 ~ s g d - 1 , and let a(Z) be a polynomial of degree s �9 

Let ~ be the set of x ~ F with either a(g(x)) = 0 or q n 

f(x) = 0 . Let M ~ m + 1 he an integer with 

(M + 3) 2 2q  
d 

Then there exists a polynomial r(X) ~ 0 , which has a zero 

of order ~ M for every x s ~ and has 

s 
deg r g ~ qM + 4mq . 

Proof: Let us try 

r(X) = f(x) M 

d-i K 

2 2 
i = 0  j = 0  

i x q j  
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where the kij(X ) are polynomials with coefficients to be 

determined and deg kij ~ q - m , and where 

(3.3) K : (~+ m + 1)] , 

"[ ]" denoting the integer part~ If D is the differentiation 

operator, then one finds by induction on ~ for 0 ~ ~ g M - 1 

that 

d-I K 

m~r(X) = f(x) M-~' ~ ~ k(~)ij (X) g(X) ixqJ 

i =0 j =0 

where 

�9 k (~) k (~+I) (X) = f(X) (D ij (X)) + (D f(X)) (M - ~ + i ) k (~) (X) 
13 ij 

Hence k -g+l'.(). is a polynomial and ij 

�9 . k (~) deg k(~+l)ij (X) ~ deg ij (X) + m - 1 

I n  particular, 

deg k (~) ij (X) < deg kij (X) + ~(m - l) 

~ q - m + ~ ( m  - i) 
d 

q 
< - r  + g ( m  - i )  - 1 

C1 

by (3. I). 

Now, by hypothesis, we have (M + 3) 2 ~ ~ , so M < ~  , 

and since we are dealing with the special case where q = p 

2 
or p , we have M < p . Theorem 1 ~is now applicable ~nd for 

x E ~ , we want that 

D ~ r ( x )  = 0 ( 0  < ~ g M - i )  
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For any z s F satisfying a(z) = 0 , we have 
q 

z = c_o + c_zl + "~ + cE-i z 

since a(Z) is of degree s . Hence for i >- 0 , 

i (i) (i) z (i) s 
z = c 0 + c I + .o. + ce_iz 

In particular, for 

x q = x and 

x E F satisfying 
q 

a ( g ( x ) )  = O, we  h a v e  

i ( i )  
g (x )  = 71 c t g ( x )  

t = O  

Then for such an x , 

D ~ r ( x )  = f ( x )  M-~ 

t = O  

(~) (x)  g (x)  t 
s t 

where 

d-i K 
(~) 

st (x)= 2 2 
i = o  j = 0  

c(i)k (~) (X) X j 
t ij 

So certainly D~r(x) = 0 

provided the polynomials 

f o r  x 6 F , a ( g ( x ) )  = 0 , 
q 

st(L) (x)  (o < t ~ ~ - x) 

are all identically zero~ 

Notice that 

(~) < q 
deg s t ~ + ~(m - i) - 1 + K . 

(4) 
Now, if we denote by B the number of coefficients of s t 
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for 0 < t ~ s - 1 , 0 ~ s % M - 1 , then 

B < ~M + + ~- (m - i) 

~q 2 / m -  1 d )  < -~- M + eM [---~ + __ + eM(m + l) 

< eq M + E l  m 2 1  -~- -- + sM(m + i) 

by (3.3) . 

If we denote by A the number of possible coefficients 

of all the kij , then 

>_ (q - md) d(M + m + 1) 

~q gq 
7 M + -~- (m + i) - ms(2M) , 

since M >- m + 1 . If it is the case that B < A , then the 

number of conditions on the coefficients of k . is less than 
13 

the number of available coefficients of k. Since the condi- 
id 

tions are homogeneous linear equations, we can then obtain a 

non-trivial solution for these coefficients. In order that 

B < A , if suffices that 

~ + 3M(m + 1) <- - r  

or that 

2 2q 
M + 6M < - ~ -  �9 

2q 
T h i s  i s  g u a r a n t e e d  by  o u r  h y p o t h e s i s  t h a t  (M + 3) 2" ~ ~ -  . 

We c o n s t r u c t e d  r ( X )  s u c h  t h a t  i t  h a s  a z e r o  o f  o r d e r  

M f o r  x E F w i t h  a ( g ( x ) )  = 0 . S i n c e  r ( X )  h a s  a 
q 
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factor f(X) M, it is clear that r(X) has a zero of order 

at least M for each x E ~ . By Lemma 3A, r(X) M O . 

Finally, 

q- - - +  qK deg r(X) ~mM + ~ m + (d - l) m (q -d l) 

qM+ q ( 1  & ~ ~ + m + m + i)  + mM 

E 
~ qM + 4 mq , 

and the lemma i s  proved. 

Proof of the Main Theorem. 

In Lemma 3B, the polynomial r(X) was cons t ruc ted  with a 

zero of order a t  l e a s t  M for  every x E ~ . But obviously 

the number of zeros of r(X) , counted wi th  m u l t i p l i c i t i e s ,  

cannot exceed i t s  degree; hence, 

or 

Now choose 

s 
�9 M < deg r K w qM + 4qm 

(I 

E m /~/ ~ ~ q + 4 q  ~ 

M = I ~ l -  3 �9 

By the assumption of Theorem 2A that q > I00 dm 2 , 

M > - ~ - 4  >_ ~--~ ~ m + 1 

Therefore 

l l s 
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First choose a(Z) = Z - I; here s = 1 . Observe that 

is the set of x E F with either g(x) = 1 or f(x) = Oo 
q 

:1_ 3_ 
q q2 , I~I = N 1 + N O < ~ + 4md  2 

w h e n c e  

( 4 o l )  N = dN 1 +  N O ~ d / ~  1 ~ q + 4md 3 / 2  q l / 2  

d-I 
Secondly, choose a(Z) =Z + ... +Z+ i. Here a =d- i. 

= {x E F : g(x) d-I + ... + g(x) + 1 = 0 or f(x) = O} . 
q 

Therefore, 

But 

i~ 1 = N2 + NO ~ d - 1 z l q + 4rod ~ q2 

whence 

1 l 
q 4 rndV q~ 

N 1 = q - N O - N 2 >- ~ - 

(4.2) N ~ dN 1 a q - 4md 3/2 ql/2 

Finally, combining (4.1) and (4.2), 

/ N - ql  ~ 4m d  3 / 2  q l / 2  

This does not, however, complete the proof of Theorem 2A 

in its generality. It has only been proved under the two 

2 
assumptions that (m,d) = 1 and q = p or p We shall 

proceed to remove these conditions. 

w 5. Removal of the condition (re,d) = i. 

The condition that (m,d) = 1 was only required in the 

N o w ,  
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proof of Lemma 3Ao The task before us is to prove this lemma 

under the condition that yd - f(X) is absolutely irreducible. 

R e m a r k :  R e c a l l  t h a t  h.  (X) w a s  a p o l y n o m i a l  o f  t h e  t y p e  
1 

h.z(X) = k i 0 ( X )  + X q k z l ( X ) .  + . . .  + Xq Kk iK(X ) 

w h e r e  

d e g  k i j  K q - m o 

It is easy to see that for c E Fq , hi(X - c) is a polynomial 

of the same type. Hence, we may make a substitution X ~ X - c , 

and replace the polynomial f(X) by f(X - c) o If q > m, 

we may choose c 6 F such that f(- c) f 0 . Therefore 
q 

without loss of generality, we assume f(O) f 0 . 

First, we consider the case d = 2. Assume that ~- f(X) 

i s  a b s o l u t e l y  i r r e d u c i b l e  a n d  s u p p o s e  

( 5 . 1 )  h 0 ( X )  + h I ( X )  g ( X )  = 0 

q - 1  
2 

o r  h 0 ( X )  = - h l ( x )  f ( X )  

S q u a r i n g ,  we o b t a i n  

h 2(X) f(X) = h I(X) f(X) q 

Then, for some polynomial ~(X) , 

2 2 2 (X) f ( 0 )  + x q z ( x )  ko0(X) f(X) = k 0(X) f(O) q + xq~(x) = klo 

H e r e  

d e g  k 2 0 ( X )  f ( X )  ~- q - 2m + m = q - m < q , 

2 
d e g  k l 0 ( X )  f ( 0 )  ~_ q - 2m < q . 
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It follows that 

k~0(X) f(X) = k 2 10(X) f(0) 

I f  koo(X) ~ 0 , 
2 

f(X) = (~-(-0) klo(X)~ 
k ( -~ / '  OO 

2 
which is impossible, since Y - f(X) is absolutely irreducible. 

Therefore, k00(X) = 0 and klo(X) = 0 , since f(0) ~ 0 o 

Then dividing (5.1) by X q and repeating the argument, we 

conclude that k01 = kll = 0 . Continuing in this way we see 

that all the k. are 0 . 
iJ 

For consideration of the general case d > 2 , we state, 

without proof, the fundamental theorem on symmetric polynomials. 

LEMMA 5A: Suppose a(Xl,...,X d) is a symmetric polynomial 

(i.e., invariant under any permutation of the variables) with 

coefficients in any field. Then there exists a polynomial 

b(Ul,.o.,Ud) , with coefficients in the same field, such that 

where 

a ( X I , . . . , X  d) = b(Sl(X 1 , .oo ,X d ) , . . . , s d ( X  1 , . . . , X d ) )  , 

s I = - (X 1 + X 2 + ... + X d) , 

s 2 = XIX 2 + ... + Xd_iXd , 

o 

s d = (-i) dXlx 2 ... x d 

Moreover, 

(a) 

then b 

If a(Xl,...,X d) is of degree 5 in each X i , 

is of total degree 8 �9 
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(b) If a(Xl,~ d) is of total degree s , then each 
i i 

U11 d monomial ..o U d of h with non-zero coefficients has 

the property that 

i I + 2i 2 + ~ + did = E 

Form a polynomial 

d-i 
a(Y; H O,~176 I) = H 0 + HIY + .~ + Hd_IY 

Let __CI,...,~ d be elements of F-- with 
q 

d 
X - 1 : (X - _.<1 ) . . .  (X - ~ d  ) 

a n d  p u t  

d 

b(Y ; H0,...,Hd_I) = --~ 
i=l 

a ( ~ i  Y ; H0, ..~ I) 

Then b is a polynomial symmetric in ~iY,...,~d Y . By Lemma 

5A, b must be a polynomial in the elementary symmetric 

functions sl,o.~ d of ~iY,...,~d Y . But in our case, 

d 
s I = ..~ = Sd_ 1 = 0 and s d = -y so that 

b(Y ; H0,...,Hd_ I) = c(Y d �9 H 0 Hd_ I) 

Here c(W;H0,...,Hd_ I) is a polynomial of degree d - 1 

W , and of degree d in H0~...,Hd_ 1 . Now set 

T h e n  

d 

in 

d(U)VjH0)..o,Hd_ I) = v d - l c ( u / V ; H o , . . . , H d _  I) 

is a form of degree d - 1 in U, V ; and of degree 

in H0,...,Hd_ 1 . 
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We now assume yd - f(X) to be absolutely irreducible. 

S u p p o s e  

( 5 . 2 )  h0(X)  + h l ( X ) g ( X )  + ~  + h d _ l ( X ) g ( X )  d - 1  = 0 . 

With the above notation, 

a ( g ( X )  ; h 0(X)  , . , . , h d _ l ( X ) )  = 0 , 

a n d  we obtain 

Recalling that 

c ( g ( X )  d �9 h0 (X  ) , h d _ l ( X )  ) 0 

q - 1  

g (X) f (X) d g (X) d = , we o b t a i n  = f (x)  q / f  (X) 

a n d  

d(f(X) q f(X) ;ho(X) ,hd_l(X) ) 0 

Collecting all terms with no factor of X q , 

(X)) + X q Z ( X )  = 0 , ( 5 . 3 )  d ( f  (0) , f (X)) ko0  (X) , . . . ,  k d _ l , 0  

for some polynomial ~ . Now, 

( 5 . 4 )  d ( f ( 0 ) , f ( X ) j k 0 0 ( X ) , . . . , k d _ l , 0 ( X ) )  

is of degree d - 1 in f(0) , f(X), and of degree d in 

kd_l, 0 kij q m so the polynomial (5.4) k00,..., But deg ~ ~ - , 

is of degree ~_ (d-l)m+ dlq-ml < q �9 Hence by (5.3), 
\d/ 

d ( f ( 0 ) , f ( X ) $ k 0 0 ( X ) , . . . , k d _ l , o ( X ) )  = 0 . 

Let ~ be the algebraic function with 

~d  f (X) 
=f--~7 

is of degree d over F--(X)q , since yd - f (0---~I f (X) is 

a b s o l u t e l y  i r r e d u c i b l e .  R e t r a c i n g  o u r  s t e p s ,  we m u s t  h a v e  
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[f (0) (x) (x)) = o 
c k f  ( - - - ~  ; k00  , . . .  , k d _ l ,  0 

) or ~d ; ko0 (X) '~ 'kd-l,O (X) = 0 , 

a n d  b ( ~ ;  k 0 0 ( X ) , . . . , k d _ l ,  0 ( X ) )  = 0 

Therefore, some factor 

o r  

Bu t  

a(~; koo(X),...,kd_l,o(X) ) = 0 , 

k00(X)  + ~ k l 0 ( X )  + . . .  + k d _ l ,  0 

i s  a l g e b r a i c  o f  d e g r e e  d o v e r  F (X) , 
q 

k00 

Now divide (5.2) by 

k01 

(X) = 0 

so that 

(X) . . . . .  k d _ l , 0 ( X )  = 0 . 

X q a n d  p r o c e e d  s i m i l a r l y  t o  c o n c l u d e  t h a t  

(X) . . . . .  k d _ l , l ( X )  = 0 . 

L e t  k b e  a f i e l d .  The  p o l y n o m i a l  r i n g  k [ X ]  i s  a v e c t o r  

s p a c e  o v e r  k . L e t  E (g) (~ = O , 1 , . . . )  b e  t h e  l i n e a r  o p e r a t o r  

on k[X] with 

= ( : ~ x  t-~ (t = 0 , 1 , . . . ,  E(~)  (X t ) 

w  H y p e r d e r i v a t i v e s .  

C o n t i n u i n g  i n  t h i s  way we s e e  t h a t  a l l  t h e  k i j ( X )  a r e  z e r o .  

We h a v e  s h o w n  t h a t  Lemma 3A h o l d s  u n d e r  t h e  c o n d i t i o n  t h a t  

d 
Y - f ( X )  i s  a b s o l u t e l y  i r r e d u c i b l e .  
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If D is the differentiation operator, then D Z(X t) = Z'.(21X t-~ 

and hence D Z = ~ E (~) Thus if k is of characteristic 0, 

then 

E(~) 1 D ~ =~-[ 

(4) 
we call the operators E hyperderivatives. They are also 

c a l l e d  H a s s e  d e r i v a t i v e s .  See  t h e  p a p e r s  H a s s e  ( 1 9 3 6 a ) ,  

TeichmHller (1936). 

LEMMA 6A. 

(i 1 ) 
E (s (fl(X) ... ft(X)) = ~, E (fl(X)) ... E 

il> >0 ----0~...,it~- 

i I + o �9 + i t =2 

(i t ) 
(ft (x)) . 

Proof. It will suffice to prove the case t = 2 , since 

the general case follows by an obvious induction on t . Thus 

we have to show that 

(6.1) E (~) (f(X)g(X)) = 

By the linearity of 

are monomials; say 

equivalent to 

i=O 

(i) (L-i) 
E (f (X)) E (g (X)) 

E (j) , we may suppose that f(X), g(X) 

f(X) = X a g(X) X b Then (6 l) is 

---- ~ i ~-i 
i=O 
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But this identity is an immediate consequence of the definition 

o f  a s  t h e  n u m b e r  o f  s u b s e t s  w i t h  ~ e l e m e n t s  c o n t a i n e d  

i n  a s e t  o f  a + b e l e m e n t s .  

COROLLARY 6B. E(~)(X - c) t = (~l(X - c) t-s 

(i 1 ) (i t ) (~) t 
P r o o f .  E ( X - c )  = ~ (E ( X - c ) )  . . .  (E 

i I " >0 >O,.oo,lt--= 

il+ ~ 

(i) (i) 
Now E (X - c) = 1 and E (X - e) = 0 if i >= 2 . 

Hence in the above sum, we need only consider summands with 

each i. either 0 or i. The number of such summands is 
J 

;) , and each summand is (X - c) t-~ 

( x  - c ) ) .  

COROLLARY 6C. S u p p o s e  0 ~ ~ ~ t . Then  

( 6 . 2 )  E (~) ( a ( X ) f ( X )  t )  = b ( X ) f ( X )  t - ~  , 

w h e r e  b (X)  i s  a p o l y n o m i a l  w i t h  

deg  b = deg  a + ~ ( ( d e g  f )  - l )  

P r o o f .  In 

( i o )  a 
E (~) (a (X) f (X) t) = ~, (E (X)) (E 

io>0,= ...,itS0 

io+ -.. +it=~ 

( i  1) ( i  t ) 
f ( X ) )  . . .  (E 

every summand is divisible by f(X) t-~ . Hence a formula such 

as  ( 6 . 2 )  h o l d s .  F u r t h e r m o r e ,  

(f  (x)) 
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deg  b = d e g ( E  (~) ( a f  t ) )  - ( t  - s  d e g f  

= deg  a + t deg  f - s - ( t - ~ )  deg  f 

= deg  a + ~ ( d e g  f - 1) . 

THEOREM 6D. S u p p o s e  E ( ~ ) ( f ( x ) )  = 0 f o r  ~ = O , 1 , . . . , M - 1 .  

(X - x)  M d i v i d e s  f ( X )  o 

Proof. We may write f(X) = a 0 + al(X - x) + ..~ + ad(X-x)d. 

By Corollary 6B, 

E ( s  = a~ + a~+ l ( x - x )  + . . ,  + a d ( x -  

The h y p o t h e s i s  o f  t h e  lemma i m p l i e s  t h a t  a~ = 0 f o r  % = O , 1 , . ~  

and  t h e  c o n c l u s i o n  f o l l o w s .  

LEMMA 6E. S u p p o s e  k i s  o f  c h a r a c t e r i s t i c  p > 0 ~ Le t  

r ( X )  = h (X,X ) 

f o r  some p o l y n o m i a l  h (X ,Y)  . Then  f o r  ~ < ~ , 

E ( ~ ) r ( X )  = E ( ~ ) h ( X , X  p~) 
X 

- ( ~ )  i s  t h e  " p a r t i a l "  h y p e r d e r i v a t i v e  w i t h  r e s p e c t  t o  where ~X 

X of h (X, Y) �9 

Proof. By linearity, it suffices to take the case when 

h(X,Y) = x a y  b . 

O<s ~ , 

Then by Lemma 6A it suffices to show that for 

E (~)(x p~) = o . 
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This in turn follows from the fact that 

is 0 in a field of characteristic p o 

2 
w Removal of the condition that q = p or p 

with 

We just have to prove Lemma 3B in general. We set up 

r(X) = h(X,X q) 

h(X,Y) = f(X) M 

d-l K 

k i " 2 2 i cx)gcx) 
i=0 j=O 

We now simply have to use Theorem 6D instead of Theorem IG, 

hence have to compute E(~)r(X) instead of D~r(X) o By 

Corollary 6C, and since g(X) is a power of f(X) , 

E (~) (f (x)Mkij (X) g (X) i) 

w h e r e  

d . (~)  e g  ~ . .  ~ d e g  
13 - kij 

In view of Lemma 6E we have, for 

d- 1 

E ( ~ ) r ( x )  = f ( x )  M-~ 

M-~ k (~) i 
= f (X) i j (X) g (X) 

+ %(m - 1)  

K: 
0 <_- ~, < M ~_ q = p 

i = 0  j = 0  

T h e  r e s t  o f  t h e  a r g u m e n t  i s  a s  i n  w  . 

K 

(~) ixqj klj (x)g(x) 
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Now s u p p o s e  d = 2 
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and consider again the hyperelliptic equation 

2 
y = f ( x )  , 

where f(X) is a polynomial of degree m , and where Y- - f(X) is 

absolutely irreducible. We proved that the number N of solutions 

satisfies 

I N - ql < 4md3/2 ql/2 , 

if q > dm 2 

Ho M. Stark (1973) obtained the sharper bounds 

1/2 
I N -  q/ <= ( m - 1 ) q  , 

i f  q = p a n d  i f  f ( X )  h a s  m d i s t i n c t  r o o t s .  S e t  

i f  m is d, 

g 

I m p 2  i f  m i s  even 

T h e  n u m b e r  g i s  c a l l e d  t h e  " g e n u s "  o f  t h e  e q u a t i o n , ,  T h u s  S t a r k  o b t a i n s  

I N - ql -< 2gql/2 ' if m is odd , 

( s . 1 )  
< l)q I/2 = (2g+ , if m is even. 

l 
In fact it follows from Well's theorem that I N- ql -<2gq~ if m 

1 
is odd, and IN-q+l I -<-2gq ~ if m is even. Moreover, the constant 

2g cannot be replaced by a smaller constant independent of q . 

H o w e v e r ,  S t a r k  i n  h i s  p a p e r  d i d  i n  s o m e  c a s e s  i m p r o v e  o n  ( 8 . 1 )  i f  

m i s  o d d .  F o r  e x a m p l e ,  h e  s h o w e d  t h a t  i f  m = 5 ( s o  t h a t  g = 2 )  a n d  

i f  q i s  a p r i m e  p o f  t h e  t y p e  p = 4 r  2 + 1 ( r ~ 2 ) ,  t h e n  
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IN- pl ~ 2g[J~] - 1 

He achieved this improvement by permitting polynomials kij (X) in Lamina 3B 

q 
whose degree is larger than ~ - m . In fact their degrees may exceed 

q 
But then it is much more difficult to prove that the polynomial 

r(X) of Lemma 3B is not 0 . 
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w Equations y-q - y = f(x) 

The first elementary treatment of such equations is due to Stepanov 

(1971), with a less complicated treatment provided by Mitkin (1972). 

K 
THEOREM 9 A :  S u p p o s e  r = q L e t  f ( X )  E F [ X ]  , w i t h  ( q ,  d e g  f )  = 1 

a n d  d e g  f < q .  I f  N i s  t h e  n u m b e r  o f  s o l u t i o n s  ( x , y )  E F 2 o s  

Yq - Y = f ( x )  , t h e n  

[~]+4 
IN - r I < q 

Note: This inequality is only significant when 

example, the theorem yields no information when E = 2: 

2 5 tN-q l < q  , 

but obviously 

Recall that if 

0 % N ~ /F2r l  = q 4  

x E F , then the trace 
r 

E-I 

%(f(x)) = f(x) + f(x) q + ... + f(x) q 

For w E F , let 
q 

N be the n u m b e r  of x E F with 
w r 

%(f(x)) = w . 

i s  l a r g e .  

w e  g e t  

E F 
q 

For 

LE ~gIA 9 B .  

P r o o f :  

wEF 
q 

Nw = r a n d  N = qN 0 . 

The first statement is obvious. The fact that N = qN 0 

follows from Lemma IF. 
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K 
= [ ~  ] . We may  a s s u m e  ~ >_ 3 ;  h e n c e  ~ >- 1 . L e t  

'~ ~ + I  K - I  

g ( X )  = f ( X )  q + f ( X )  q + . . o  + f ( X )  q , 

h ( X )  = f ( X )  + f ( X )  q + . . .  + f ( X )  q 

LEMMA 9C: Let w ~ F be fixed. Let M be divisible by q , 
q 

E-%)- I  
a n d  0 < M < q 

a zero of order ~ M 

Then there is a polynomial u(X) ~ 0 g which has 

for every x 6 F with 
r 

: Z ( f ( x ) )  = w , 

a n d  d e g  u (X)  ~ M ~ + q 
q 

~+i 

Proof: We try 

q - 1  K 

u ( X )  = ~,  ~ k i j ( X )  g ( X )  i X r 3 ,  

i =0 j =0 

M 
where K =- , 

q 

and coefficients to be determined. 

Thus for ~ < M ~ qM 

yields 

and the polynomials kij (X) have degki j < r__ =q , 
q 

Since ~ ~ 2~) + i, M ~ q ~ q 

M 

and ~(X) = a(X,X q ) , Lemma 6E (with ~ = ~:~ if q = p(~) 

E (~)  u(X) = E ( s  q ) 
X 

K 
Therefore, since xr = X q and since 

"~ K - I  

g ( X )  = f ( X  q ) + ... + f ( X  q ) , 

it follows that 

q -i K 

E ( ~ ) . ( x )  = ~, ~, k ( ~  ' " ij (X) g (X) ZxrJ 

i =0 j =0 

with k.(~. ) (X) = E ( Z ) k . . ( X )  . 
iJ 13 
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We proceed just as in the proof of Lemma 3B. Let A be the total 

number of available coefficients of the polynomials 

K-I K-I 
A = q q(K + i) = q M + q 

k..(X) Then 
iJ 

For x s F r with ~(f(x)) = w , 

So, E (~)u(x) = s (s (x), where 

r 
we have x = x and w = h(x) + g(x) . 

q-i K 

s (4) (x) : 2 2 h(x) ) ix  
z j  

i =0 j =0 

In view of Theorem6D, in order that u(X) has a zero of order M for 

our elements x E F r with ~ (f(x)) = w , it is certainly sufficient that 

(4) ~ - i  
the polynomials s (X) vanish identically. Since K ~ q , 

d e g  s (~) (X) ~ 4 -1 + (q- l)2q ~-I + K 

K-i v+l 
<q + q -2. 

Let B denote the total number of conditions (clearly in the form of 

linear homogeneous equations) on the coefficients of the 

(4) 
each 4 , 0 ~ 4 ~ M - 1 , we try to make s (X) = 0 , 

k.. If, for 

then the number 

s(~) ~-l of conditions for this fixed 4 is at most deg (X) + 1 ~ q + 

v+l 
q - 1 . Hence 

B< M(qE-i + qv+l) -<_ Mq~-i + qK-V-lqv+l = MqE -I + qE 

Thus B < A, and we may choose the coefficients of kij(X) , not all 

zero, so that u(X) as a zero of order at least M for the elements x 

in question. Moreover, 

2 ~-i K-I 
deg u(X) ~ ~,K + (~- i) q + q 

K+I 
~ M ~  + q  

q 
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Finally, 

summands 

have degrees 

u(X) does not vanish identically, because the non-zero 

~ij(X) = kij(X) g(X) ixrJ 

K-I 
deg•ij(X ) = rj +iq degf + degkij 

E-I 
= q (qj + i deg f) + degkij , 

which are distinct by the same argument as in Lemma 3A. 

observe that q and deg f are eoprime. 

We only have to 

o r  

Proof of Theorem 9A: For fixed w E F , 
q 

N 
W 

K+I 
�9 M ~ degr ~ M r- +q 

q 

E+I 
Nw ~ r q - + 

q T �9 

Choose M = qE-V-I 1 ; then for ~ ~ 3 , q M . 

~+2 N ~r_ + q  
w q 

a n d  b y  L e m m a  9 B ,  

We obtain 

> r_: _ ~ + 3  
N w = r  - N v q q 

v S w  

~+3 

and, in particular, 

B y  L e m m a  9 B  a g a i n ,  

~+3 r < 

/N o - CI q 

K 
~+4 [ ~ ] + 4  / / l ~ - r l  < q = q  
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II. Character Sums and Exponential Sums. 

Literature: Weil (1948b), Carlitz and Uchiyama (1957), Perelmuter 

(1963), Postnikov (1967~ , Carlitz (1969). 

to deal with character sums and exponential sums. 

applications in analytic number theory. 

Given an abelian (multiplicative) group G , a character on 

G is a map X from O to the complex numbers with IX(x) l = 1 for 

all x and with 

Characters ol Finite ~belian~roups. 

We now interrupt our investigation of equations over finite fields 

These sums have many 

X(xy) = X ( x ) x ( Y )  

for x,y E G �9 Since X(1) = X(1)X(1) , we have X(1) = 1 . 

If X 1 , X 2 are characters on G , then so is the map XIX 2 

defined by ~iX2)(x) = X~(x)x2(x) �9 If X is a character, then 

so is the map X -I defined by x-l(x) = i/X(x) = X(-~ (i.e., the 

complex conjugate of X(X)) . It is now clear that the characters on 

G form a group G ~ under multiplication, whose identity element is 

the character X o having Xo(x) = 1 for x E G �9 The group G ~ 

is called the dual group to G . 

2~ix 
e ( x )  = e 

Write 

LEMMA IA. Let C be the cyclic group of order n , and let 
=n 

g be a fixed generator. Given a residue class a (modulo n ) , 

m a p  M. a with 

t h e  
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( t 
(l.1) Xa g ) = e(at/n) (t = 0,• ... ) 

is a character of C Every character of C is of this type. 
:n ~n 

The dual group to C is again cyclic of order n . 
~n 

Proof. It is readily verified that Xa , as given by (i.I), is 

well defined and is a character. It clearly depends only on the 

residue class of a (modulo n ) . For distinct residue classes, one 

gets distinct characters Xa . Since XaXb = Xa+b , the characters 

Xa form a group which is isomorphic to the integers modulo n , and 

hence it is cyclic of order n . It remains to be shown that every character 

X is a Xa for some a . Now x(g) n = x(g n) = X(1) = 1 , so that 

th 
X(g) is an n root of unity, or x(g) = e(a/n) for some a . 

But then x(g t) = e(at/n) , and X = X a 

LEMMA lB. Let G = G 1 ~ G 2 be the direct product of the abelian 

groups G 1 , G 2 ~ Then the dual groups G', G I' , G 2' satisfy 

G l , ~ l 
G 1 G 2 �9 

G consists of pairs (Xl,X 2) with 

X 1 

Proof. x I E G 1 , x 2 E G 2 �9 

l we associate the map X: G ~ C l and X 2 E G 2 With every E G 1 

with X(Xl,X 2) = Xl(xl)X2(x 2) �9 It is easily seen that X is a 

character of G , and in fact that the map 

(XI,X 2) ~ X 

l l into G t is an isomorphism of G l~ G 2 

isomorphism onto, for if X E G t , then 

In fact, it is an 

X(Xl,X 2) = X(Xl,l)X(l,x 2) = 3~l(Xl)X2(x2) 
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! 

with XI(X I) = X(xI,I) and X2(X 2) = x(l,x 2) ; clearly X 1 E G 1 

g 

a n d  X 2 E G 2 �9 

THEOREM 1 C .  G i v e n  a f i n i t e  a b e l i a n  g r o u p  G , i t s  g r o u p  G ~ 

o f  c h a r a c t e r s  i s  i s o m o r p h i c  t o  G �9 

Proof. It is well known that every finite abelian group G is 

of the type G = _--nC ~ ----n2C ~ "''~ ----nC k for cyclic groups ----nlC , ... ,Cnk 

The theorem now follows from Lemma IA and repeated application of 

L e m m a  l B .  

THEOREM ID. Let G be a finite abelian group of order I GI 

( a )  G i v e n  a c h a r a c t e r  X , 

/ 

• I • 
xEo 0 ij • ~ Xo 

(b) Given an x E G , 

f 

X(x) =I IGI i~f x = 1 

X G' 0 i__f x ~ 1 . 

Proof. The assertion (a) is obvious if X = Xo �9 Is X ~ Xo , 

there exists an x I E G with X(x l) i 1 . As x runs through G , 

so does xx I ; therefore 

= •  (xx? = (Xl S 
xEG xEG 

The desired conclusion S = 0 follows from X(X l) / 1 . 

Part (b) may be proved in an entirely analogous manner. Or, 

One may observe that for given x , the map X "* X(x) is a map 
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from G I into the complex numbers, which is in fact a character 

on G I In conjunction with Theorem IC, one sees that every character 

of G ~ is obtained in this way, and that G is therefore the group 

of characters of G ~ The relation between G , G j is thus completely 

symmetric. Hence (b) follows from (a) if we interchange the roles 

o f  G , G ~ 

w Characters and Character Sums associated with Finite Fields. 

The non-zero elements of the finite field F form a cyclic group 
q 

F of q- 1 elements. Hence the characters X of F also form 
q q 

a cyclic group of q- 1 elements. Thus every character X will 

have X q-1 = Xo , where X o is the character with Xo(x) = 1 for 

all x . We call ko the principal character. We say that X 

d 
is of order d if X = ~o , and if d is the smallest positive 

integer with this property. It is easily seen that dlq- 1 . We say 

e 
that X is of exponent e if X = Xo ; clearly this is equivalent 

to d I e , where d is the order of X �9 

S u p p o s e  d l q -  1 . F o r  e v e r y  X o f  e x p o n e n t  d a n d  e v e r y  

* (x d) (X) d xd(x) x E F , we have X = X = = 1 . Thus X(Y) = 1 if 
q 

~ , d t h  Y E (F)d the group of non-zero powers. Conversely, if 

* d X d X(y) = 1 for every Y E (F) , .~hen = X o . Thus if X is 
q 

a character of exponent d , then X(x) depends only on the coset 

o f  x m o d u l o  t h e  s u b g r o u p  (F*)  d . T h u s  a c h a r a c t e r  o f  e x p o n e n t  
q 

(F*) d d may be interpreted as a character on the factor group F / q 

There are precisely d such characters. 

It w i l l  be convenient to extend the definition of characters 

X on F by putting 
q 
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Ii if X = X o 

if X /X o 

We still write X = XIX 2 if X(x) = Xl(X)X2(x) for 

but not necessarily for x = 0 . For instance, X q-I = )% 

X(O) = 0 for X / Xo and Xo(0) = 1 . 

x E F  , 
q 

, a l t h o u g h  

LEMMA 2A.  S u p p o s e  d I q - 1 . T h e n  

"K(X) = i f  x ~ ( F ) d  

X of exponent d if x = 0 . 

, x / O  , 

Proof. The characters of exponent d are characters of 

Hence the first two cases of the lemma follow from Theorem ID. 

If x = 0 , then ~ X(x) = xo(O) + ~ X(0) = 1 + 0 = 1 . 

X X / X o  

The characters ~ studied so far will henceforth be call 

* * d 
F / ( F  ) 
q q 

X so called the 

multiplicative characters of F 
q 

In w we shall take the "low road", and we shall easily prove 

THEOREM 2B.  S u p p o s e  d t q -  1 a n d  s u p p o s e  X d Xo i s  a c h a r a c t e r  

o f  e x p o n e n t  d . S u p p o s e  f ( X )  i s  a p o l y n o m i a l  o f  d e g r e e  m w i t h  

c o e f f i c i e n t s  i n  F a n d  w i t h  yd  _ f ( X )  a b s o l u t e l y  i r r e d u c i b l e .  
q 

T h e n  i f  q > 100  dm 2 , we h a v e  

( 2 . 1 )  1 ~ ")( ( f ( x ) ) t  < 5m d 3 / 2  q l / 2  

x E F  
q 

This result will turn out to be a consequence of Theorem 2A of 

Ch.  I .  We s h a l l  a l s o  p r o v e  
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THEOREM 2B~ S u p p o s e  X i s  a c h a r a c t e r  o f  o r d e r  d > 1 . 

d t h  S u p p o s e  f (X)  E F IX] i s  o f  d e g r e e  m and i s  n o t  a p o w e r ,  
q 

i . e .  n o t  o f  t h e  t y p e  f (X)  = c ~ ( X ) )  d w i t h  c E F and  ~(X) E F IX] �9 
q q 

2 
Then  i f  q > 100 d m , we h a v e  a g a i n  ( 2 . 1 )  

Later on we shall take the "high road" and prove the following 

sharper results. 

THEOREM 2C. Suppose X ~ Xo is a multiplicative character of 

exponent d . Suppose f(X) E F [X] has precisely m distinct ones 
q 

among its zeros, and suppose that ya _ f(X) is absolutely irreducible. 

Then 

( 2 . 2 )  I ~ x ( f ( x ) ) l  < ( m -  1 ) q l / 2  

x E F  
q 

THEOREM 2C I . Le t  X be  o f  o r d e r  d > 1 . S u p p o s e  f (X)  h a s  

d th m distinct ones among its zeros, and it is not a power. 

Then  a g a i n  ( 2 . 2 )  h o l d s .  

We now turn to additive characters of F Such an additive 
q 

character is simply a character of the additive group of F 
q 

If q = p where p is the characteristic, then this additive group 

is the direct sum of ~ copies of C 
=P 

from F to F 
q P 

Write ~ for the trace 

LEMMA 2D. For every a E Fq , the function ~a with 

a(X) = e ~ ( a x ) / p )  

is an additive character of 

is of this type. 

F 
q 

Every additive character of F 
q 
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Proof. We have ~(a(x l+x 2)) = ~(ax I) + ~(ax 2) , whence 

~a(Xl+X 2) = ~a(Xl)~a(x 2) �9 

Thus ~a is an additive character. By Theorem 1C, the number of 

additive characters is q ; but so is the number of elements a E F 
q 

Since, as is easily seen, ~a I ~a' ' if a ~ a ~ , it follows that 

as a runs through F , then ~a runs through all additive characters. 
q 

Additive characters will always he denoted by the letter ~ . 

The character 4o with ~o(x) = 1 for all x is the identity 

element of the group of additive characters. 

g (x) 

THEOREM 2E. Suppose ~ d ~o is an additive character. Let 

be a polynomial in F [X] of degree n . Suppose that either 
q 

(i) n < q and g.c.d. (n,q) = 1 , or, more generally, that 

(ii) Z q - Z - g(X) is absolutely irreducible. 

Then 

I ~, ~(g(x))l ~ (n-i)ql/2 
xEF 

q 

It will be proved in Theorem 1B of Ch. Ill that hypothesis (i) 

implies hypothesis (ii). Strictly speaking, only the case (i) will 

be proved in this chapter. It will follow from Theorem 9A os Ch. I. 

The case (ii) depends on results which will be proved in Ch. III. 

The case (i) is used most often in analytic number theory. In view 

of Lemma 2D,~g ~ ~ may be reformulated as follows. 
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n 
COROLLARY 2F. Suppose p is a prime. Suppose g(X) = anX +...+a 0 

is a polynomial with integer coefficients having 0 ~ n < p and 

p ~ a n Then 

I p~l e(g(x)/p)l K (n- 1) p l / 2  

x=0 

Next, we study "hybrid sums" involving a multiplicative character 

and additive character ~ . 

THEOREM 2G. Let X , ~ be, respectively, a multiplicative 

character f Xo of order d with dlq- 1 , and an additive character 

4o , of F Let f(X) E F [X] have precisely m distinct ones 
q q 

among this roots, and let g(X) E F [X] have degree n . Suppose 
q 

that either 

( i )  (d,  deg  f )  = ( n , q )  = 1 , o r ,  more  g e n e r a l l y ,  t h a t  

( i i )  t h e  p o l y n o m i a l s  yd f (X)  and Z q - Z - g(X) a r e  

absolutely irreducible. 

Then 

I ~ x(f(x))~(g(x))l ~ (m+n-1)ql/2 
xEF 

q 

Again, strictly speaking, the proof of the theorem in this 

chapter will be not quite complete. We shall need certain results 

proved only in Ch. VI. It will follow from Theorem IB in Ch. III that 

hypothesis (i) implies (ii). 

The polynomials f(X),g(X) of our theorems may sometimes be 

replaced by rational functions. (Perelmuter (1963)) Here we will 

prove only the following result of this kind. 
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THEOREM 2H. S u p p o s e  ~ ~ 4o i s  an  a d d i t i v e  c h a r a c t e r  o f  F 
q 

S u p p o s e  a , b  E F a r e  n o t  b o t h  z e r o .  Then  
q 

( 2 . 3 )  I ~ @(ax + b x  - 1 )  1 K 2 q l / 2  

F* X E q 

Sums o f  t h e  t y p e  o f  t h i s  t h e o r e m  a r e  c a l l e d  K l o o s t e r m a n  s u m s .  

A l l  t h e  r e s u l t s  e n u n c i a t e d  i n  t h i s  s e c t i o n  a r e  d u e  t o  A. W e i l  

( 1 9 4 8 b ) .  The p r o o f s  o f  t h e  a u t h o r s  l i s t e d  a t  t h e  b e g i n n i n g  a l l  f o l l o w  

more  o r  l e s s  t h e  same  m e t h o d ,  b u t  t h e y  a r e  g i v e n  i n  a m o r e  e l e m e n t a r y  

s t y l e .  I n  p a r t i c u l a r ,  t h e  r e f e r e n c e  t o  c l a s s  f i e l d  t h e o r y  i s  a v o i d e d .  

We s h a l l  a l s o  p r e s e n t  t h i s  s ame  m e t h o d .  

V e r y  e a s y  s p e c i a l  c a s e s  w i l l  b e  g i v e n  i n  w . I n  w we w i l l  

f o l l o w  t h e  " l o w  r o a d "  t o  p r o v e  T h e o r e m s  2B, 2 B ' .  I n  w we w i l l  g i v e  

an  a p p l i c a t i o n  o f  T h e o r e m  2 B ' .  F i n a l l y ,  i n  w  we s h a l l  d e a l  w i t h  

t h e  m a i n  t h e o r e m s .  I n  w we s h a l l  show t h a t  T h e o r e m  2E i s  i n  a 

t) 
s e n s e  b e s t  p o s s i b l e .  

w  G a u s s i a n  Sums.  

B e f o r e  e m b a r k i n g  on t h e  more  c o m p l i c a t e d  p r o o f s  o f  t h e  t h e o r e m s  

a n n o u n c e d  i n  t h e  l a s t  s e c t i o n ,  we now p a u s e  t o  p r o v e  r e s u l t s  o f  a v e r y  

s i m p l e  n a t u r e .  

The s i m p l e s t  o f  t h e  h y b r i d  sums  i n t r o d u c e d  i n  t h e  l a s t  s e c t i o n  

a r e  when  f ~ )  = g(X)  = X �9 They  a r e  t h u s  o f  t h e  t y p e  

G(X,~) = ~ X(x)~ (x) , 
x E F  

q 

w h e r e  X , ~ a r e  a m u l t i p l i c a t i v e  a nd  an  a d d i t i v e  c h a r a c t e r ,  T h e s e  

sums  a r e  c a l l e d  G a u s s i a n  s u m s .  I n  v i e w  o f  T h e o r e m  1D, i t  i s  c l e a r  

t h a t  

0We s h a l l  n o t  t r e a t  e x p o n e n t i a l  sums a l o n g  c u r v e s  ( B o m b i e r i  ( 1 9 6 6 )  o r  
C h a l k  a n d  S m i t h ( 1 9 7 1 ) )  o r  m u l t i p l e  e x p o n e n t i a l  sums ( B o m b i e r i ( 1 9 6 6 )  
and  D e l i g n e ( 1 9 7 3 ) ) .  
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G(Xo,~)  = 0 i f  ~ d ~o , 

G(X,~o)  = 0 i f  X i Xo , 

G ~ o , ~ o )  = q �9 

THEOREM 3A. I f  X t Xo and ~ ~ $o , t h e n  

t GC~,~)I = q l / 2  , 

Compare with the case m = n = 1 of Theorem 2G' 

P r o o f .  

x y 

S i n c e  X(O) = 0 , we may r e s t r i c t  o u r s e l v e s  t o  summsnds  w i t h  y ~ 0 

Then  X ( y )  = ( X ( y ) )  - 1  = X ( 1 / y )  and ~'(Y) = (4 ( y ) ) - i  = ~ C-Y) 

Putting x = ty , we obtain 

tG( ' ) ( ,~) I  2 = ~ ~ X(ty)~(tY)X(I/Y)~(-Y) 

y ~ O  t 

t y ~ O  

= ~ X(t) ~ ~((t-l)y) - (~ X(t)) 
t y t 

~ u  

= ~ X ( t )  ~ ~ ( ( t -  1) y) , 

t y 

by Theorem 1D. Again by Theorem ID, the inner sum here is q if 

t = 1 , and it is 0 if t i 1 . Thus 

2 
} G ~ , ~ )  I = X(1 )  q = q �9 
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LEMMA 3B. Suppose ~ ~ 9o is an additive character. Suppose 

d[q- I and suppose a f 0 lies in F Then 
q 

~ (ay d) = ~ ~ ( a ) G ( x , ~ )  �9 

Y E F X of exponent d 
q 

d 
Proof. For given x 6 F , the number of y s F with y = x 

q q 

equals d if x s (F*) d , it equals 0 if x ~ (F*) d , x ~ 0 , 
q q 

and it is 1 if x = 0 . Hence by Lemma 2A, 

~ ( a y  d) = ~ ~ (ax) ~ X(x) . 

y x X of  exp .  d 

R e p l a c i n g  x by x / a  and n o t i n g  t h a t  X ( x / a )  = X ( x ) x ( a )  , we g e t  

~ (x) ~ X (x)X (a) 
x X of  exp .  d 

X of exp. d x 

X of  exp .  d 

THEOREM 3C. Suppose q is odd, ~ ~ ~o is an additive character, 

and a I 0 , b , c lie in F Then 
q 

xEF 
q 

(ax 2 + bx + c) I = q l / 2  

Compare w i t h  t h e  c a s e  n = 2 of  Theorem 2E~ 
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Proof. 

(3 .4)  

2 b__)2 b 
, ( a x  2 + bx + c) : ~ , ( a ( x  + 2a + c - ~-~ ) 

X X 

= $ (c - (b2/4a) )  ~ $ (ay  2) 

Y 

By the case d = 2 of Lemma 3B (2 lq - 1 since q is odd), we have 

(3.5) $ (ay 2) = ~ x ( a )  G(X,~) 
Y X of  exp .  2 

There are two characters X of exponent 2 . One of them is Xo ; then 

G~,~) = G~o, $) = 0 by (3.1) . The other is J Xo ; then 

1/2 
I G0(,~)I = ql/2 by Theorem 3A. Thus the sum (3.5) is q in 

absolute value, and the theorem is an immediate consequence of (3.4). 

THEOREM 3D. For an additive character ~ ~ 4o , a d 0 in F -- q 

a~d for d ~ 1 , 

1 ~ ~ (axd) l g (d- 1) ql/2 
xEF 

q 

Our theorem is a special case of Theorem 2E. 

Proof. 

d ! ~(axd)  = ~ $ ( a x  ) 
X X 

where  d t = g . c . d .  ( d , q -  1) Hence we may suppose  t h a t  

Now from Lemma 3B, 

~(ax d) = ~ x(a) G(X,~) �9 
x X of exp. d 

dlq- I . 
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There are precisely d characters of exponent d . One of them is 

Xo and has G(Xo,~) = 0 . The other d- i characters have 

1/2 
G0(,~) of modulus q The theorem follows. 

w The low r o a d .  

As p r o m i s e d  i n  w we s h a l l  g i v e  an  e a s y  p r o o f  o f  T h e o r e m s  2B, 

2B ~, u s i n g  Theorem 2A o f  Ch. I .  

LEMMA 4A. Suppose g is a generator of (the cyclic group) 

F , and X ~ Xo is a multiplicative character of exponent d . 
q 

Then 

d-i 
X (gk) = 0 �9 

k=0 

Proof. X is a character (but not the principal character) of 

F*/-F*)d( 0 1 d-1 the factor group On the other hand, g ,g , ..~ ,g 
q q 

run through the cosets of this factor group. The lemma thus follows 

from Theorem ID. 

Proof of Theorem 2B. Again let g be a generator of F 
q 

Let Z k be the number of x with f(x) in the coset gk(F~)d 

Then 

(4.1) 

Now let N k 

d - 1  
•  = ~ Zk• 

x E  F k=0 
q 

be  t h e  number  o f  ( x , y )  E F 2 w i t h  
q 

d -k 
( 4 . 2 )  y = f ( x )  g 

d g-k 
Since Y - f(X) is again absolutely irreducible by Lemma 2C 

of Ch. I, it follows that Theorem 2A of Ch. I is applicable and that 
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1 INk - ql < 4md3/2ql/2 Let N k be the number of solutions of (4.2) 

! _ with Y I 0 �9 Then INk Nkl ~ m , so that IN'k - ql < 5md3/2ql/2 

If we write Z k = (q/d) + R k and observe that Z k = N(/dK ' we obtain 

I Rkl < 5mdl/2q I/2 

Now (4.1) in conjunction with Lemma 4A yields 

xs 
q 

Y, (f (x ) )  = d ~ l  (q  + R k ) X ( g  k) 

k=O d_l I = k~__ 0 R k X (gk) 

d-I 
~ I Rkl < 5md3/2q 1/2 

k=O 

LEMMA 4B. Le t  f(X) be  a p o l y n o m i a l  i n  F [X] , and l e t  d 
q 

be a divisor of q-1 . The following three conditions are equivalent. 

( i )  f (X)  = ck(X) d w i t h  c s F , k(X) 6 F [X] . 
q q 

(ii) f(X) = h(X) d w i t h  h(X) E F [X] �9 
q 

e I e 
(iii) f(X) = c(X-x I) ... (X-x) s with x E 

s i q 

d I e i (i -- i, . .. ,s) 

and  

Proof. If (i) holds, then (ii) is true with h(X) = cl/dk(x) . 

Clearly (ii) implies (iii). If (iii) holds, set k(X) = 

ei/d e /d 
s 

(X- x I) ... (X- x s) Then f(X) = ck(x) d and we have 

to show that k(X) 6 F IX] Write k(X) X u u-I = + el x + . . . +c q u 

We know that k(X) d 6 Fq[X] . The coefficient of X du-I in k(X) d 

is dc I Since d $ 0 in Fq , it follows that c I s Fq Suppose 

we know that c I, ... ,ci_ 1 E F The coefficient of X du-i in k(X) d 
q 



52 

is dc. plus a polynomial in 
1 

Hence c also is in F 
i q 

Cl, ... ,ci_ I with coefficients in Fq 

Proof of Theorem 2B'. Write 

where Xl, ... ,x s are distinct elements of 
q 

e = g.c.d.(el, ..~ ,es,d) is a proper divisor of 

e e 

f(X) = c(X- x I) 1 ... (X-x s) s 

By our hypothesis, 

d . We have 

f(X) = ck(x) e , 

el/e es/e 
where k(X) = (X-x I) ... (X-x ) By Lemma 4B, applied 

S 

with e in place of d , we see that k(X) ~ F [X] �9 Since g.c.d. 
q 

(el/e, ... ,es/e,d/e) = i , it follows from Lemma 2C of Ch. I that 

yd/e _ k (X) 

e 
is absolutely irreducible. The character X is of exponent d/e 

and is not the principal character since e I d . By Theorem 2B , 

I i x 
d 1 d n 

w  S y s t e m s  o f  e q u a t i o n s  Yl = f l  (x) " ' "  'Yn = f (x) 
' n 

5md3/2q  1 /2  

Throughout, fl(X), ... ,f (X) 
n 

in F and of degree g m . Put 
q 

will be polynomials with coefficients 

(5.1) 6 = l.c.m.(d I, ... ,d n) and d = dld 2 ... d n 

THEOREM 5A. Let X be a variable and let ~i' "'" '~n be 

algebraic quantities with 

(5.2) 
d d 

~)i I n = fl (x)' "'" '9)n = fn(X) 
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S u p p o s e  

( 5 . 3 )  [ F q ( X , ~ l  . . . .  , ~ n  ) : F (X) ] = d . q 

Then if q > i00 63m2n 2 , the number N of solutions 

F n+l of the equations in the title satisfies 
q 

( x , y  1, - . .  , y n  ) s 

I N- ql < 5mnd 65/2q I/2 

P r o o f .  W r i t e  d !  = g . c . d . ( d . , q -  1) . By a n  a r g u m e n t  u s e d  i n  
1 1 

Ch. I, w , the number of solutions of the equations in the title is 

the same as the number of solutions of 

d t d / 
1 n 

( 5 . 4 )  Yl  = f l ( X )  " ' "  'Yn  = f (x)  
' n 

d I 

M o r e o v e r ,  w r i t e  d i = dZi e i  a n d  l e t  ~ . . . .  , ~  s a t i s f y  ~ i  i = f .  ( X ) I  

e 

i ' (i = i, ... ,n) (i = i, ... ,n), and let ~I' ''" '~n have ~i = ~i 

Then (5.2) and hence (5.3) holds. We have 

[>q(X,m~,  . . . ,  re'n): ~ (x) ] ~ d'  . . .  d '  q i n ' 

I / 
[Fq(X,~l, ... ,~]n ): F (X,~I, "'" '~-n ) ] g el "'" en q 

H e n c e  i n  v i e w  o f  ( 5 . 3 )  , 

[ > q ( x , < ~ ,  . . .  , ~ ) :  ~q (X)  ] = % . '  . .  d'n : d '  , 

say. Therefore the system of equations (5.4) also satisfies the 

hypothesis of the theorem. We may therefore suppose without loss of 

generality that 

(5.5) dil (q- i) (i = i, ... ,n) 
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Let X be a character of order 

5 / d .  
1 

X . = X  
1 

5 , and let Xi be the character 

(i = i .... , n) . 

Then X i is of order d. 
I 

The characters of exponent d are 
i 

d -i 
0 2 i 

X i = Xo,X i,X i, "'" ,X i 

d 
i 

with y = w equals By Lemma 2A, the number of Y E F 
q 

di-i 

X of  exp .  d j=O 
i 

Hence 

N = 

dl-i dn-i Jl 

xEF Jl=0 q On=0 

J 1 =0 J n=O x Fq 
X (fl (x) 

�9 " " XOn n(fn(x)) 

J 16/d I "'" fn(x)JnS/dn)) 

The main term is for Jl ..... Jn = 0 , and it equals q . The 

other summands are character sums 

~, X (g (x))  
x E F  q 

with 

JlS/d I Jn6/d n Jl 5 Jn 5 
g(X) : fl(X) ''" fn(X) = ~l "''~n 

�9 . 6 th having Jl' " '.Jn ~ O, ... ,0 . If g(X) were a power in 

Jl Jn 
[x] then ~I "''~n ~ ~ [x] . But in view of (~.S), the q ' q 
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Jl 3n 
�9 < d (i = I, .. ,n) are a elements ~i "'~n with 0 ~ Ji i 

field basis o f  Fq(X,~ 1 .... ,~n ) over F (X) , and hence 
q 

J Jn - 
1 ...~ ~ Fq[X] if some j. is not 0 . Thus g(X) is not a 

1 n i 

5 th power, i.e., it is not of the type of Lemma 4B with 8 in place 

of d By Theorem 2B r , and since q ~ I00 63 m 2 2 (Smn)2 �9 n = i00 5 , 

we get 

X(g(x)) I < 5(mrS) 53/2q I/2 
xEF 

q 

In view of (5.6), we obtain 

N-ql < 5mn 65/2 dq I/2 

Recall that the "big 0" notation O(g(n)) always stands for 

a function f(n) with I f(n) l ~ c g(n) for some fixed c > 0 . 

COROLLARY 5B. Let t be a fixed positive integer�9 For a 

prime p , let L = Lt(P) be the number of x (mod p) such that 

x+l,x+2, ... x+t 

are (non-zero) quadratic residues mod p . Then for large p , 

L =--%Pt + o(pl/2) 

2 

Deduction of the Corollary. 

system of equations 

In the field F , consider the 
P 

2 2 
(5.7) Yl = x+l, ... 'Yt = x+t . 
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In the notation of Theorem 5A, m = 1 and, since d = 2 for 
l 

1 g i K t , we have d = 2 t . Let ~l' "'" '~]t be quantities with 

2 2 
~i = x+l ..... ~t = x+t . 

In order to apply Theorem 5A to this ease, we need that 

[ F p ( X , ~ I ,  . . .  , ~ t  ) :  F p ( X )  ] = 2 t 

T h i s  i s  t r u e  i f  p ~ t , P I 2 , a s  may b e  s h o w n  a s  a n  e x e r c i s e .  

I n  f a c t ,  t h e  r e a d e r  m i g h t  w a n t  t o  d o  t h e  f o l l o w i n g  

E x e r c i s e .  L e t  D b e  a u n i q u e  f a c t o r i z a t i o n  d o m a i n  o f  c h a r a c t e r i s t i c  

2 w i t h  q u o t i e n t  f i e l d  K . L e t  P l '  " ' "  ' P t  b e  d i s t i n c t  p r i m e s  

i n  D �9 T h e n  

. . . .  E l  : 2 t 

( S e e  a l s o  B e s i c o v i t c h  ( 1 9 4 0 ) ) .  

i s  t h e  n u m b e r  o f  s o l u t i o n s  o f  t h e  s y s t e m  ( 5 . 7 ) ,  t h e n  b y  If N 

Theorem 5A, 

If N t 

then IN- NIl = O(i) , so that 

I '-pl 

t 
Since N' = 2 L , the Corollary follows. 

I N -  Pl = O ( p l / 2 )  

is the number of solutions with x+l, ... ,x+t 

: O(p  1 / 2 )  . 

all non-zero 
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w Auxiliary lemmas on ~i+ ...+t0Z 

Given a complex valued function f(~) 

g(~) > 0 , the Vinogradov notation 

and a real valued function 

f ( v )  <<  g ( ~ )  

means that I f(9)l < c g(~) for some positive constant c and 

for ~ = 1,2, ... . Thus it means that f(v) = O(g(v)) 

LEMMA 6A. 

If 

(6.1) 

then ,~l~jl ~ B 

Let ~i' "'" ,w% be complex numbers, and let 

0~ + ... + W_ << B for ~ = 1,2, ... , 
I % 

( j  = l ,  . . .  , ~  ) . 

P r o o f .  F o r  s m a l l  v a l u e s  o f  / z l  , we h a v e  

i 22 i 33 
-- log(l-uoz) = OJZ + ~ OJ Z + ~ ~0 Z + . . . . 

B > O  �9 

Thus 

(6 .2)  i ~) ~) z ~) 
-log((l-~OlZ ) ... (l-t~%z)) = ~(~i + "'" + ~0~) 

9=i 

-i 
v i e w  o f  ( 6 . 1 ) ,  t h e  sum o n  t h e  r i g h t  i s  c o n v e r g e n t  f o r  I z l  < B I n  

Hence the function (6.2) is analytic for I zl < B -I Thus 

I - u0.z f 0 if I zl < B -l and therefore l~jl < B (j = l, ... ,~) 
D 

@ 

In our proof we used facts about analytic functions. We now shall 

prove a stronger result without using analytic functions. Write 

~z for the real part of z . 

LEMMA 6B.  L e t  w l ,  . . .  ,w~ b e  c o m p l e x  n u m b e r s ,  a n d  l e t  B > 0 , 
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... B ~ 

then l wjl < B (j = 1 . . . .  , ~ )  

(~ = 1,2, ... ) 

This is an immediate consequence of the even stronger 

LEMMA 6C. Let Wl, ... ,$ be non-zero complex numbers. 

are infinitely many positive integers ~ with 

~.4~ ~ +...+ ~ ~ ~l- 2~-~/~q~ll~+...+l~l~ , 

hence with 

~+ ... ~ > ~l- ~ q| % "" +;~I ~ , 

for given e > 0 . 

For the proof we shall need Dirichlet' 

~pproximations: 

LEMMA 6D. Le__~t e I, ... ,9s he real. 

of integers 

There 

s Theorem on Simultaneous 

There exist ~+l)-tuples 

v,ml, ... ,m with arbitrarily large V > 0 and with 

m 
i l- (1/~) 

( e . 5 )  l e i - %- I < ~- 

P r o o f .  W r i t e  c~ = [ ~ ]  + { ~ }  , w h e r e  

o f  c~ , i . e .  t h e  i n t e g e r  w i t h  ~ - 1 < [oL] g ff , a n d  w h e r e  {o~} 

t h e  f r a c t i o n a l  p a r t  o f  oz , i . e . ,  t h e  n u m b e r  w i t h  0 g { ~ } <  1 

such that ~ - {~} is an integer. 

(i = i, ... ,~) �9 

[~] is the integer part 

is 
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(6.6) 

Now suppose N > 0 is an integer. The points 

with u = 0,i, ... ,~ 

0 ~ x I < i, ... ,0 ~ x 

({u@ I }) 
1 . . . .  , ~uo~ 

are ~ + 1 points in the half open unit cube 

< 1 . This unit cube may be decomposed in an 

-1 0, 
obvious way onto N ~ half open small cubes of side N Two of 

the points (6.6) will lie in the same small cube. If these points 

belong to the parameters u t , u with u ~ < u , then 

l{u@ . }  - { u ' g j }  1 < N-1 (J = I ,  . . .  ,~) , 
J 

or 

l u@j - u ' @ j  - mj ]  < N - 1  

f o r  c e r t a i n  i n t e g e r s  m l ,  . . .  , m  . 

( 6 . 7 )  1 , @ j  - m j !  < N - 1  ( j  = 1 ,  . . .  ,~1  , 

w h e n c e  ( 6 . 5 )  i n  v i e w  o f  ~ ~ ~ . 

I f  a t  l e a s t  o n e  o f  t h e  @. i s  i r r a t i o n a l ,  t h e n  a s  N ~ 
J 

i n e q u a l i t i e s  ( 6 . 7 )  c a n n o t  b e  s a t i s f i e d  w i t h  b o u n d e d  v a l u e s  o f  

H e n c e  t h e r e  w i l l  b e  

l a r g e  v a l u e s  o f  ~ . 

(j = i, ... ,s with 

( j  = 1 ,  . . .  ,%) 

P u t t i n g  ~ = u - u '  , w e  h a v e  

, the 

. 

~+l)-tuples with (6.5) and with arbitrarily 

If all the @. are rational, say if @. = a /b 
J J J 

b > 0 , we may set 

with t = 1,2, .... 

= t b  , m 1 = t a l ,  . . .  , m  = t a  



60 

Proof of Lemma 6C. Observe that for real @ , 

Write ~j = IWjl e(ej) with real @j 

many ~ , and integers ml, ... ,ms , having 

There will be infinitely 

v-l/# l~@j  - mj l  < ( j  = i . . . .  ,Z )  

For such ~ , 

l e ( v B j )  - i I = le (v@j . )  - e(m') I3 < 21rl'#@J - mJ 1 < 2 ~ v - i / ' ~  

whence 

~ < ~ . >  = l ~ j l "  ~ < e ~ , ~ ? >  > <l - ~ 1/~l~jl~ <j = 1 . . . .  ,~> , 

w h e n c e  ( 6 . 4 )  . 

w Further auxiliary lemmas. 

LEMMA 7A.. Let ~ , m be positive integers. Writing (~,m) = 

g.c.d.(~,m) , we have the polynomial identity 

(7. l )  v X T ~ - j ~  ) ( . ,  m) ( 1 -  e ( m u / ~ ) X )  = ( 1 -  
u = l  

Proof. In the case (~,m) = 1 , the identity reduces to 

(1  - e ( m u / ~ ) X )  = 1 - X v 

u- -1  

It is correct in this case, since both sides are polynomials of 

degree ~ with constant term i and with roots e(-mu/v) (u = I, .... v) 

I n  g e n e r a l ,  p u t  ~ = V l ( ~ , m )  , m = m l ( ~ , m )  As  u r u n s  

t h r o u g h  a r e s i d u e  s y s t e m  m o d u l o  ~ , i t  r u n s  ~ , m )  t i m e s  t h r o u g h  a 

residue system modulo ~i Thus (7.1) is obtained by raising 
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(7.2) (i - e(mlU/~l)X) = 1 - X 1 
u=l 

to the (~,m) th power. But (7.2) is correct by the special case 

already considered, since (~l,ml) = 1 . 

d d-i 
LEMMA 7B. Let h(X) = X + alX + ... +a d be an irreducible 

polynomial in F [X] . Then in F [• it splits into r : (,,d) 
. . . .  q v 

q 

irreducible polynomials of degree d/r : 

(7.3) h(X) = hl(X ) ... hr(X) 

If we normalize h. (X) such that its leading coefficient is 1 , 
1 

then h (X) E F [X] (i = I, .. r) The elements ~ of the 
- i r " ' 

q ,7 
G a l o i s  g r o u p  o f  F r / F q  p e r m u t e  t h e  p o l y n o m i a l s  h l ,  . . .  h 

' r q 

G i v e n  h i , h j  , t h e r e  i s  a e i n  t h e  G a l o i s  g r o u p  w i t h  o~h = h 
1 j 

Proof. Consider the fields 

F F 
d 

q q \ /  
F 

r 
q 

1 
F 

q 

The roots of h(X) are algebraic of degree d over F , hence 
q 

lie in F d They are algebraic of degree d/r over F r Hence 

q q 

in F r ' the polynomial h(X) has the factorization (7.3) , where 
q 

each h. is of degree d/r and is irreducible over F Since 
1 r 

q 

t)we let ~ operate on the coefficients of the polynomials. 
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(d/r,~/r) = 1 , the roots are still of degree d/r over F , 
q 

and hence the polynomials h. (X) are still irreducible over 
1 

F ~) The elements (5 of the Galois group G = G(F r/Fq) leave 
q q 

h invariant; hence they permute hl, ... ,hr Given i in 

1 ~ i ~ r , the polynomial 

~h 
i 

is invariant under G , hence lies in 

common with the irreducible polynomial 

So as (y runs through G , then uh. 
1 

F I X ]  . I t  h a s  r o o t s  i n  
q 

h , h e n c e  e q u a l s  h = h 1 

r u n s  t h r o u g h  h l ,  ~  , h  r . 

w Zeta Function a n d  L-Functions. 

Throughout, h = h(X) will denote a monic (i.e. with leading 

coefficient l) polynomial with coefficients in 

of degree d , put 

F If h(X) is 
q 

d 
(h) = q 

For complex 

.~ h 
r 

s =~ + it , 

put 

C (s) = ~ 1 
h ~l(h) s 

Here the sum is over monic polynomials h 6 F [X] . 
q 
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for 

THEOREM 8A. (i) The sum for ~ (s) is absolutely convergent 

> 1 , in fact uniformly convergent for q > qo > i . 

(ii) For ~ > 1 , 

~ ( s )  = ~ (1 - ~ ( h ) - S )  - 1  
h i r r e d .  

where the product is over irreducible monic polynomials in 

(iii) ~ ( s )  = - -  
1 - s  

1 - q  

F [X] 
q 

Proof. (i) 

N ( d )  q 
( 8 . 1 )  ~ ( s )  = d s  = ~ ' 

d---O q d=O q 

w h e r e  N ( d )  i s  t h e  n u m b e r  o f  m o n i c  p o l y n o m i a l s  o f  d e g r e e  d . 

T h e  s u m  o n  t h e  r i g h t  i s  c l e a r l y  a b s o l u t e l y  c o n v e r g e n t  i f  ~ > 1 , a n d  

uniformly so if ~ > (~o > i . 

(ii) Since every polynomial may uniquely be written as a product 

of powers of irreducible polynomials, we have, for (~ > 1 , 

(iii) 

1 1 
C(s) = ~- (i + - -  +--+...) 

h irred. ~ (h) s 9~ (h 2) s 

-s -1 
(1  - ~ (h )  ) g 

h irred. = 

follows immediately from (8.1). 

R e m a r k .  We c a l l  ~ ( s )  a Z e t a  F u n c t i o n .  I t  i s  a l m o s t  ( b u t  n o t  

q u i t e )  t h e  Z e t a  F u n c t i o n  o f  t h e  " f u n c t i o n  f i e l d "  F (X) F o r  a 
q 

r e a d e r  f a m i l i a r  w i t h  Z e t a  F u n c t i o n s  o f  f u n c t i o n  f i e l d s ,  w e  r e m a r k  t h e  
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following. The prime divisors of the rational function field Fq(X) 

consist of prime divisors which correspond to irreducible monic 

polynomials, plus the "infinite" prime divisor. Our Zeta Function 

differs from the Zeta Function of the field Fq(X) in that in the product 

(ii) the factor corresponding to the infinite prime divisor is missing. 

This is why we have ~(s) = (i- ql-s)-i , while the Zeta Function of 

the function field is (i- q-S)-l(l- ql-S)-i 

Let G be the group of rational functions hl(X)/h2(X) , where 

hi, h 2 are monic in F [X] . Let G be a subgroup of G such that 
q 

(8.2) if hlh 2 6 G , then h I , h 2 E 

for polynomials h I , h 2 . Let ~ be a character on G We 

extend the definition of S by setting ~(h) = 0 if h is a 

polynomial not in G o Then still l(h lh 2) = ~(h I) ~(h 2) 

for monic polynomials h I , h 2 . For s = ~ + it , put 

L(s,I) = ~ ~(h) ~(h) -s , 

h = 

where the sum is over monic polynomials h E F [X] . 
q 

THEOREM 8B. (i) The sum for L(S,~) is absolutely convergent 

for ~ > 1 , in fact uniformly convergent for ~ > ~o > 1 . 

(ii) For ~ > i , 

= = h -S -i L(sl) 
h irred. 

Proof. Everything works almost the same as in parts (i), 

of Theorem 8A. The details are left as an exercise. 

Remark. The experts will see that our functions L(s~I) 

L-Functions associated with the function field F (X) . 
q 

(ii) 

a r e  
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w  Special L-Functions. 

Let f(X) be a fixed monic polynomial in F [X] �9 In F [X] q q 

a I a m 
it factors into (X + ~i ) ..~ (X + ~m ) , say. Let G be the 

subgroup of G consisting of rational functions 

r(X) = hl(X)/h2(X ) having hl(%{i)h2(~i) ~ 0 (i = 1 ..... m) 

t) Then G satisfies (8.2). For r(X) E G, put 

a a 

(9.1) {r} = r(~l) 1 ... r(~m ) m 

1 )-l ~v )-I If r(X) = (X + ~i ) ... (X + O~u ) (X + 8 ... (X + 

{r} = f(~l ) ... f((~u) f(~l )-I ... f(~v ) 

then 

-i 

Always {r} E F and {rlr2} = {rl}{r2} . Thus if X is a multiplicative 
q 

character of F , then 
q 

X({rlr 2}) = X({r 1})X({r 2}) 

Therefore X({r}) is a character on the group G . 

Let H be the subgroup of G consisting of r(X) = hl(X)/h2(X) 

with hl(Ti) = h2(~ i) % 0 (i = l, ... ,m) . 

LEMMA 9A .  X ( { r } )  = 1 f o r  r 6 H �9 

Proof. Obvious. 

Let g(X) be a fixed polynomial in Fq[X] , of degree n and 

with constant term zero. Given r = r(X) E G , put [r] = 0 if 

r(X) = 1 , and 

T) Put (r} = 1 if f(X) = 1 . 

*)We allow n = O, g(X) = 0 . 
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(9.2) [ r ]  = g ( o ~ l ) +  . . .  + g ( ~ u  ) - g ( S 1  ) . . . .  - g ( S v  ) 

-i )-l 
if r(X) = (X + al ) ... (X + ~u ) (X + ~i ) ... (X + ~v with 

~i'"''%' B1 ..... ~v in } Then [r] e F and [rlr2] = q q 

[ r l ]  + [ r 2 ]  T h u s  i f  * i s  a n  a d d i t i v e  c h a r a c t e r  o f  F , t h e n  
q 

([rlr2]) = 9 ( [ r l ] ) ~  ( [ r 2 ] )  �9 

T h u s  $ ( [ r ] )  i s  a c h a r a c t e r  o n  t h e  g r o u p  G . 

L e t  H b e  t h e  s u b s e t  o f  G c o n s i s t i n g  o f  r a t i o n a l  f u n c t i o n s  

r (X) = h 1 ( X ) / h  2 (X) h a v i n g  

(9.3) h I (X) X u a Ix u-I X v X v-I = + + ... +a h 2(X) = + b I + ... +b u ' v 

with 

( 9 . 4 )  a 1 = b I , a 2 = b 2 ,  . . .  , a  = b n n 

For example, polynomials X u lie in H , and so do polynomials 

u u-n-i 
X + an+iX +...+a with u > n . It is easily seen that H is a 

u 

subgroup of G . 

LEMMA 9B. ~([r]) = 1 if r E H �9 

Proof. In (9.2), g(~l)+ ... +g~u ) is a symmetric polynomial 

of degree n in ~i' "'" '~u Hence it is a polynomial in the 

first n elementary symmetric polynomials in ~i' "'" '~u ' i.e., 

in the coefficients al, ... ,a in (9.3): 
n 

g(~l)+ ... +g(~u ) = ~l(al, ... ,an ) 

with a polynomial %1 " Similarly, 
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g(~l )+ "'" +g(~v ) = ~2(bl' "'" 'bn) 

Since the two symmetric functions g~l)+ ... +g(~u ) and g(~l)+ ... +g(~v ) 

have constant term zero, and since they are "the same", except perhaps 

for the number of variables, the two polynomials ~i and 22 

are the same. Thus (9.4) implies that [r] = 0 , whence ~([r]) = 1 . 

Now put 

X ( r )  = • ( { r} )~ ( [ r ] )  

Then ~will be a character on the group G . Let H be the 

intersection H = H N ~ �9 Then H is a subgroup of G , and we 

have the 

COROLLARY 9C. I(r) = 1 if r E H �9 

LEMMA 9D. Suppose ~ ~ 0 . Then every coset of H in 

contains precisely q polynomials of degree n + m + Z . 

Proof. It will suffice to show that if r(X) is in G , 

are precisely q~ polynomials k(X) = X n+m+~ + bl Xn+m+~-I then there 

+ ... +b with k(X)/r(X) E H �9 If r(X) has the expansion 
n+m+~ 

r(X) X u al xu-I xU-2+ = + + a 2 ... , then this condition means that 

(9.5) b I = al, ... ,b n -- a n 

and that 

(9.6) k(~i) = r(Ti) (i = I, ... ,m) 

bl, ... ,b n are determined by (9.5). The coefficients Pick 
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bn+l, .;, ,bn+ ~ arbitrary. Then the relations (9.6) are m (non- 

homogeneous) linear equations in the m remaining coefficients 

bn+~+l, ... ,bn+~+ m �9 The matrix of this system of equations is (y~) 

(1K i % m , 0 g j g m-l) . The determinant is a Van der Monde determinant. 

Since Yl' "'" 'Ym are distinct, the determinant is non-zero. Thus 

we can solve the system (9.6) uniquely. 

Hence our freedom consists precisely in picking bn+l, ... ,bn+ ~ 

This gives q possibilities. 

LEMMA 9E. Suppose that 

either X ~ Xo is of exponent d and yd _ f(X) is absolutely 

(9.7) irreducible, 

or ~ ~ ~o and either (i) (n,q) = 1 or, more generally, (ii) 

Z q - Z - g(X) is absolutely irreducible. 

Then the character X 

kE~. 

is not principal, i.e., ~(k) ~ 1 for some 

P r o o f .  S u p p o s e  X ( k )  = i . T h e n  X ( { k } ) ~ ( [ k ] )  = I . S i n c e  

dth th 
X({k}) is a root of unity and ~ ([k]) is a p root of 

unity with (d,p) = 1 , it is easily seen that 

X ( { k } )  = , ( [ k ] )  = 1 . 

Hence in the first case of the lemma it will suffice to find a k 

with X({k}) ~ 1 , and in the second case it will suffice to find 

a k with ~([k]) i 1 . 

If X ~ Xo , suppose it to be of order e with el d . Since 

d 
Y - f(X) is absolutely irreducible, not all the exponents in 



69 

a I a m 
f(X) = (X + ~i ) ...(X + ~m ) are multiples of e . (See Lemma 2C 

of Ch. I )  Say e f a 1 G i v e n  c 2 ,  . . , e  m i n  F , we c a n  t h e r e f o r e  �9 �9 q 

�9 a I a ~ a l  .c~m) 
pick c I E F with c I ...cmm ff (F)e , whence with ~(c I .. / 1. 

q 

By the argument of Lemma 9D, there is a polynomial k(X) E G with 

k(~i) : c i (i = l, ... ,m) 

a I a m 
Then {k} = c I ... Cm and X({k}) j 1 . 

If ~ J ~o , suppose first~(i)~ that (n,q) = 1 and f(X)= I. say, 

�9 4- V = g(X) = aX n + gl(X) where gl is of degree < n If k(X) = X n 

(X + ~i ) ... (X + a n) , then gl(~l)+ ... +gl(~n ) = 0 , since it is 

a polynomial with constant term zero in the first n-1 elementary 
n 

n 
. On the other hand, ~l+...+~n = symmetric polynomials in ~I' "''~n 

(-I) n+l (l) n+l nv , so that [k] = - any and 

(9. s) 
n+l _ ([k]) =~([X n+v]) :~((-i) a n ~ ,  

For a proper choice of v , ~([k]) J 1 , since n is not divisible 

by the characteristic. 

More generally, (ii), let ~ ~ ~o , and let Z q - Z - g(X) be 

* bZ q - bZ - g(X) = absolutely irreducible �9 For every b E Fq , 

~Z) q (bZ) - g(X) is absolutely irreducible. So for a E F* , 
q 

also Z q - Z - ag(X) is absolutely irreducible, and hence 

(9.9) Z p - Z - ag(X) 

~) 
is absolutely irreducible, where p is the characteristic �9 

Write ~ , ~ , ~ , respectively, for the trace F -* F , 
~ q P 

F -~ F , F -* F The character ~ is of the type ~ (z)-~ 
q M P 

q q 

r 
For if q = P~ , then Z q - Z = u(Z) p - u(Z) with u(Z) = 

~-i 

Z p +...+Z p + Z 
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- ~a(Z) = e~(az)/p) for some a E F If N is the number of 
q v 

zeros ( x , z )  o f  ( 9 . 9 )  i n  F , t h e n  b y  T h e o r e m  1A o f  Ch .  I I I ,  

( q ~ / 2 )  q 
N = q~ + 0 H e n c e  i f  ~ i s  l a r g e ,  N < pq  Now ~) 

for given x E Fq~) , either ~t~(ag(x)) = 0 , in which case by 

Lemma IF of Ch. I there are p values of z E F with 
M 

q 

z - z - a g ( x )  = 0 . Or ~ / ( a g ( x ) )  ~ 0 , i n  w h i c h  c a s e  t h e r e  i s  n o  

s u c h  z . S i n c e  N < pqV t h e r e  w i l l  b e  a n  x E F w i t h  

q 

% '  ( a g ( x ) )  / 0 . P u t  R(X)  = (X + x 1)  . . .  (X + x ) E F [X]  , w h e r e  
q 

x 1 = x ,  . . .  , x  a r e  t h ' e  c o n j u g a t e s  o f  x o v e r  F T h e n  
q 

[k] = g(xl)+ ... +g(x ) = ~ (g(x)) and 
M 

( [ k ] )  = e ~ ( a ~  g ( x ) ) ) / p )  = e ~  ( a g ( x ) ) / p )  

i 
= e~v(ag(x))/p) i 1 . 

By the freedom in the choice of x we may ensure that k 6 G. 

LEMMA 9F. Suppose the hypothesis (9.7) of Lemma 9E holds. 

Suppose ~ ~ 0 . Then 

~_ X(h) = 0 
h E G 

h monic pol. 

deg h = n+m+~ 

Proof. By Corollary 9C and by Lemma 9E , X induces a non-principal 

character on the finite factor group G/H . On the other hand, as 

h runs through polynomials of G of degree n+m+~ , then by 

Lemma 9D, it will lie precisely q times in every given coset of 

G/H �9 The lemma is therefore a consequence of Theorem ID. 

As in w extend the definition of ~ by putting ~(h) = 0 

if h is a polynomial ~ G . As in w form the L-Function 

L(S,~) 
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THEOREM 9G. Again s u p p o s e  ( 9 . 7 ) .  Putting 
- s  

U = q  we have 

(9 .9)  

If X / Xo 

Proof. 

L(s,~) = 1 + elU+ ... +en+m_Iun+m-i 

or if X = X o , f(X) = 1 , then 

c I = ~ X(f(x))~ ( g (x ) )  
xEF 

q 

L(s,~) = 1 + elU + c2~+ ... with 

Here e t = 0 if 

polynomial in U 

c t = _ X (h) 
h E G  

p o l .  o f  deg .  t 

t > n + m , by Lemma 9F. Hence 

of degree < n + m . Now 

L(s  ,X) is a 

c I = X(h): X(x+x) 
h E G  x 

deg h=l  x + Y i / 0  

x 

x+Yi/0 

•  + x} ) ,  ([x + x]) 

a 1 a 
X((Yl+X) . . .  (Ym+x)m) ~ ( g ( x ) )  

x 

x+Yi/0 

X (f  (x))~ (g (x))  
x 

f (x) / 0 

)< (f (x)) ~ (g (x)) 

x 
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w Field extensions. The Hasse-Davenport relations. 

Given an overfield F of F , write 
q 

q 

F to F and ~ for the trace from F 
q ~ 

q q 

a multiplicative character of F , then X 
q 

for the norm from 

to F If X is 
q 

defined by 

X (x) = X 0 l  (x)) 

is a multiplicative character of F 

q 
of F , then ~ defined by 

q 

If is an additive character 

~(x) = ~ t ~  (x)) 

is an additive character of F 

q 

As in w let f(X) E F [X] he monic, with a factorization 
q 

a 1 a 
(X + ~i ) ... (X + ~m ) m in F [X] . Let G be the group 

q v 

of rational functions r(X) = hl(X)/h2(X) with monic h (X) E F [X] 
I M 

q 

( i  = 1 , 2 )  , a n d  l e t  G b e  t h e  s u b g r o u p  c o n s i s t i n g  o f  r a t i o n a l  

f u n c t i o n s  h a v i n g  h l ( 5 , i ) h 2 ( ' , ( i )  N 0 ( i  = l ,  . . .  ,m)  F o r  r ( X )  E G , 

define {r} by (9.1). Then ~(({r}) will be a character on 

definition of H is now obvious, and the obvious analog of The 

Lemma 9A holds. 

Again, let g(X) E F [X] be of degree n and with constant term 
q 

zero. For r = r(X) E G , define [r] by (9.2). Then ~ ([r]) will 

be a character on G ; the analog of Lemma 9B holds, if H is 
M 

defined in the obvious way. 

It is now clear that 

(10. l) ~ (r) = • ({r})~ ([r]) 
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is a character on G , which is 1 for r(X) E H = H n 

The sum we are interested in is 

( 1 0 . 2 )  

we now put 

(10.3) 

s = ~ x(f(x))r ; 
x E F  

q 

S = ~ X v ( f ( x ) ) ~ ,  ( g ( x ) )  �9 
v x E F  

q 

We put 

where 

X~ (h)~ (h)-s 
) : 2 i x ]  = v h E  v 

q 

~d 
~ (h) = q if d = deg h . The main result of this section is 

THEOREM IOA. 

u=l v log q ' 

Before proving this theorem, we note the following supplement 

to Lemma 7B: 

LEMMA 10B. Make the same assumptions as in Lemma 7B, and let 

(7.3) be the factorization of h(X) i__nn F v[X] . Then 
q 

(i) ~ (h) = ~(h) ~/r 

(ii) ~ (h i ) = ~(h) ~/r 
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Proof. (i) ~ (hi) = q~(d/r) = ~(h)~/r 

(ii) We have {h} = {hi} ... {hr} �9 Here by Lemma 7B , {hi} , ... ,{hr} 

are in F r and are conjugates over F Hence if ~r is the 
q 

q 

norm from F r to F , then {h} = ~r({hi- }) (i = i, . .. ,r). 
q 

q 

Thus t) 

( 1 0 . 4 )  ~ % ) ( { h i } )  = ( ~ r ( { h i } ) ) ~ / r  = { h }  %)/r ( i  = 1,  . . .  , r )  . 

On the other hand, [h] = [hi]+... +[hr] �9 Therefore [h] = %r([hi]) 

, to F Thus (i = i, ... ,r) where ~r is the trace from F 
r q 

q 

(io.5) %([hi] ) - !~r([hi] ) = ~[h] (i -- 1 ,r) r ) . . . .  

hr 
In view of the definition of i~ as given in (I0.i), the desired 

conclusion follows from (10.4), (10.5). 

Proof of Theorem 10A. By the product formula of Theorem 8B, 

L%) (s'X) = Z~ (i -X%)(%)~_ (g)-s)-i 

irred, monic 
in F [X] 

q 

An irreducible monie polynomial h(X) E F IX] of degree d splits 
q 

over F according to Lemmas 7B, IOC into h(X) = %I(X) ... ~r(X) 
q 

with r : g.c.d.(d,%)) and with ~ (~.)01 (~.)-s = (X(h)~(h)-S)%)/r 

On the other hand, every monic irreducible %(X) 6 F [X] is the 
%) 

q 

t) Observe that 9~ is defined on polynomials with coefficients 
=%) 

in F , and is quite distinct from 9~ , the norm from F to F %) %) "~ q 
q q 



75 

factor of a unique monic irreducible h(x) E Fq[X] . Therefore 

h irred, monicj 
in F [X] 

q 

(I - (l(h)~l(h)-S)V/(~)~, deg h))-(~, deg h) 

Applying Lemma 7A with m = deg h and X=X(h)~(h) -s , we obtain 

h irred, mon. u=l 
in Fq[X] 

(i - e(u deg h/v)X(h)~(h)-S) -I 

~ (1 -~(h)~(h) -(s-(2~iu/(~ log q)))) 

u=l h irred, mon. = 
i n  F [ X ]  

q 

7T L(s ~iu ,]~ ) 
v log q 

u=l 

in 

Recall that under the condition (9.7), L(s,X) 

-s 
U = q with constant term 1 (see Theorem 9G). 

was a polynomial 

Thus it is of 

the form (I - WlU) ... (I - U0kU) with complex ~i' "'" '~k " We 

now have the 

COROLIARY IOC. If L(S,~) is given by 

L(s,X) = (1 - ~iu) ... (1 - ~k U) 

-a 
with U = q , then 



with 
-~s 

U = q 
v 

Proof. 
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-(s- (2niu/(v log q))) 
q = e (u/v) U , 

s o  t h a t  

L(s- (2~iu/(v log q)),~) = (I - ~le(u/v) U) ... (i - mke(u/v)U) 

Thus by Theorem 10A, 

- ~ ~ ~ u ' )  
(i WlU ) ... (i - 

(i (1 - . . . .  

(i - ~k e (u/v) U)) 

COROLLARY 10D. Suppose that (9.7) holds. Suppose that 

X ~ X o or X = Xa with f(X) = 1 . Then the sum S given by (10.3) 

is of the form 

S = -w 1 v - " ' "  - U0n+m-i 

Proof. By Theorem 9G, applied to F instead of F , and 
v q q 

b y  C o r o l l a r y  IOC, 

I un+m_i 
L (s, ) = 1 + cv,iU+ ... +e ,n+m_ 1 v 

= ( 1 - ~i U) ... (i - w v . u ) n+m-• ~ ' 

w i t h  
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c = S 
~,i 

On the other hand, it is clear that c 
M,I 

and the corollary follows. 

_ (Wl+ v 
. . . .  +Wn+m_ I) , 

COROLLARY IOE. (Davenport-Hasse Relation). Let X , ~ be 

a multiplicative and an additive character of F Recall that the 
-- q 

Gaussian sum G~,4) was ~ X(x)4(x) , over x E F Now put 
q 

x 

o (X,4) = ~ X (x)4v(x) . 
x6F 

q 

Then unless X = X o , 4 = 4o and ~ is even, 

-%~,4) = (-G~,4))~ 

See Davenport - Hasse (1935). 

Proof. Suppose X f X o �9 We have G~,~) = S and G ~,4) = S 

where S , S are given by (10.2), (10.3) with f(X) = g(X) = X . 

Thus n = m = 1 . By C o r o l l a r y  IOD, S = -w~ f o r  ~ = 1 , 2 ,  . . .  , 

whence S = -(-SI )~ The case when X = Xo follows from (3.1), (3.3). 
M 

w Proof of the Principal Theorems. 

(a) Theorems 2C, 2C' We deal with multiplicative character sums. 

So let X # Xo be a multiplicative character, and let 9 = 4o " Let 

f(X) be as in Theorem 2C and monic, and put g(X) = 0 , so that 

n = deg g = 0 . In this case 

(Ii.i) S = ~ X(f(x)) and S~ = ~ X (f(x)) . 

xEF xEF 
q q',) 
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In view of Corollary IOD , 

( 1 1 . 2 )  S = ---m - 
'# i " ' "  - U~ 

Now suppose that X is o f  exponent d where 

dlq- 1 . There are d characters X of exponent 

such character X , we may define the sums S = S 
X 

We then have for X ~ Xo , 

( Z l . 3 )  SXv = - r e X 1 -  ' ' "  - C ~  

d > 1 and 

d . For each 

and S = SX~ 

Taking the sum over X I Xo of exponent d , we obtain 

( n . 4 )  
m-i 

X d X o X ~ Xo i = l  
o f  e x p .  d o f  e x p .  d 

On the other hand, for X = Xo , (Ii.i) yields 

( 1 1 . 5 )  S = q 
Xo,O ~, 

LEMMA IIA. For given w 6 F , the number of Y E F with 

q q 

d 
y = w e q u a l s  

v~ 

x (w) = ~ x~ ( w ) )  . 
'9 '9 

X X 
o f  e x p .  d o f  e x p .  d 

Proof. We first note that the map w-~ ~(w) is a group homomorphism 

F -~ F For each z E F , the number of w E F with 
q q 

q q 

~ - l  
wl+q+ . . .  +q  (w) ~- ~ Z 



79 

is ~ l+q+ ...+ ~'q~-i = (q'-- - 1)/(q- i) = ' ' *" It* I /IF I~ ," hence the number 
q 

of these w is exactly this number, and our homomorphism is onto. 

.* d 
* )d is a map (F*))d -* (Fq) and The restriction of the map to (F ~ 
q q 

comparing eardinalities we see that it is onto again. 

According to Lemma 2A, the sum in Lemma IIA is d or 0 or i 

(F*) d ~) d or ~ (F , ~ 0 or = 0 . In respectively, if ~(w) E q 

the first case, by what we just said, w E (F*)d , and there are d 

q 

d ( -F* ) d elements y with y = w . In the second case, w ~ , i 0 
M 

q 

d 
and there are no solutions y with y = w . In the third case, 

w = 0 , and there is the single solution y = 0 �9 

d 
Y 

Writing N for the number of solutions x,y in F of 
qM 

= f(x) , we immediately obtain 

LEMMA lIB. 

M X of exp. d x ~ X of exp. d XM 

Now we know from Theorem 2A of Ch. I that if yd _ f(X) 

absolutely irreducible, then 

(11.6) N _ q~ << qV/2 

Combining this with (ii.4), (11.5) and Lemma lIB, we obtain 

m-1  
v ~/2 

~ ~176 << q 
X ~Xo i = l  

X o f  e x p .  d 

i s  

Lemma 6A y i e l d s  
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ql/2 
(ii .7) I mxil 

X , i under consideration. Thus from (11.2) or (ii.3), 

IS I ~ (m-l)q v/2 , and IS[ g (m-l)q I/2 

We assumed that f (X) was monic. But since X (af (x)) = X (a)X (f (x)) , 

our character sum estimate clearly holds in general. Therefore the 

proof of Theorem 2C is complete. Theorem 2C' can be deduced from 

Theorem 2C in the same way in which Theorem 2B' was deduced from 

Theorem 2B. 

We remark that Lemma llB, together with (ll.4), (i1.5), (i1.7) 

and the fact that there are d- 1 characters X % Xo of exponent 

d , gives 

IN - qV I g (d- I) (m- l)q v/2 , 

for all 

and 

IN-  q] ~ (d -  1) (m- 1) q l /2  

This improves upon Theorem 2A of Ch. I. 

(b) Theorem 2E. We next consider additive character sums. 

So let ~ i ~o be an additive character, and let X = X o Let 

g(X) be as in Theorem 2E, and put f(X) = i , so that in the notation 

of w i0~ m = deg f = 0 . In this case 

(ii.s) s =~ ~(g(x)) and By = ~ ~ (g(x)) 
xEF xEF 

q qV 

By Corollary IOD, 

S = -(~i ~) - "'" - ~n-i 
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There are q additive characters 4 

4 we may define S = ~ and for each 

. .-~ ( 1 1 . 9 )  S ) .  = - ~ 4  1 -. ,n-i 

of F For each such 
q 

~ 4o , we have 

T a k i n g  t h e  s u m  o v e r  c h a r a c t e r s  4 t 4 o  , w e  g e t  

n-1 

s 4 " : -  4 
4~o 4o i=i 

(ii.io) 

On the other hand, for 4 = 4o , (11.8) yields 

(ii. ii) s = q 

LEMMA IIC. For given w E F 

q 

z q - z = w equals 

, the number of z E F with 

q 

(il. i 2 )  4 (w) = ~ 4(Z (w)) �9 

Proof. We shall use Theorem IF of Ch~ I. 

on the one hand, we have q solutions 

o n  the other h a n d ,  our sum (11.12) is 

~(w) I 0 , then there is no z 6 F 

q 

(ii.12) is zer%by Theorem 1D again. 

I f  ~ ( w )  = 0 , t h e n  

z E F o f  z q -  z = w , a n d  

q 

q b y  T h e o r e m  1D.  I f  

w i t h  z q - z = w , a n d  t h e  s u m  

Writing N for the number of solutions 

z q - z = g ( x )  , w e  o b t a i n  

x,z in F of 

q 

LEMMA lID. 

N Z 4 s4" 

Now suppose we know somehow that (11.6) holds. 

as in (a), we may conclude that 

Then very m u c h  
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w e  have 

(ii.14) IN - q~l g (q- i) (n- l) q ~/2 , 

which is an improvement upon Theorem 9A of Ch. I. 

(c) Theorem 2G. Suppose f(X) , g(X) satisfy the hypotheses 

of Theorem 2G. Assume initially that f(X) is monic and that g(X) 

has constant term zero. For every multiplicative character X of 

exponent d and every additive character Q , we put 

sx~ ~ : ~ • ( f ( x ) ) ,  ( g ( x ) )  . 
x E F  

v 
q 

B y  C o r o l l a r y  l O D ,  

q l / 2  
( 1 1 . 1 3 )  ] ~ i l  K (4 J 4 o  ; i = 1 . . . . .  n - l )  , 

1/2 
a n d  h e n c e  t h a t  t SI ~ ( n -  1 ) q  

Now i f  c o n d i t i o n  ( i )  o f  T h e o r e m  2E h o l d s ,  t h e n  ( 1 1 . 6 )  i s  t r u e  b y  

T h e o r e m  9A o f  C h .  I .  Or  i f  ( i i ) ,  Z q - Z - g ( X )  i s  a b s o l u t e l y  

i r r e d u c i b l e ,  t h e n  ( 1 1 . 6 )  i s  t r u e  b y  T h e o r e m  1A o f  C h .  I I I .  

We a s s u m e d  t h a t  g ( X )  h a d  c o n s t a n t  t e r m  z e r o .  Now s i n c e  

( g ( x )  + a )  = ~ ( a ) ~ ( g ( x ) ) ,  i t  i s  c l e a r  t h a t  t h e  m o d u l u s  o f  t h e  c h a r a c t e r  

s u m  S d o e s  n o t  c h a n g e  i f  we r e p l a c e  g ( X )  b y  g ( X )  + a . On t h e  

o t h e r  h a n d ,  t h e  h y p o t h e s e s  o f  T h e o r e m  2 E  a r e  n o t  a f f e c t e d  b y  t h i s  c h a n g e .  

T h i s  i s  o b v i o u s  f o r  ( i ) .  As f o r  ( i i ) ,  w e  n o t e  t h a t  e v e r y  a i s  

o f  t h e  t y p e  a = b q - b f o r  s o m e  b E F , a n d  h e n c e  Z q - Z - g ( X )  - a 
q 

= (Z - b )  q - (Z - b )  - g ( X )  i s  a b s o l u t e l y  i r r e d u c i b l e  i f  a n d  o n l y  i f  

Z q - Z - g ( X )  i s .  T h u s  T h e o r e m  2E i s  c o m p l e t e l y  p r o v e d .  

We r e m a r k  t h a t  i n  v i e w  o f  ( 1 1 . 1 0 ) ,  ( 1 1 . 1 1 ) ,  ( 1 1 . 1 3 )  a n d  Lemma l i D ,  
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(~, i + v = - "'" +~X~ 
,m+n-i ) (X IXo of e x p .  d, ~ I X o )  

On the other hand, by (Ii.3), 

= = - % 1  + .-. +~'~ sx~ s• o~ x, m-l) (X i Xo) 

Also, by (Ii.9), 

S = S = -(~$i + . . .  +~0$,n_ I) (~ ~o) 

Finally, 

S = qM . 
Xo~oV 

is 

LEM~A lIE. For W I ,W 2 E Fq~ the number of y, z E F 
q 

d zq y = wl, - z = w 2 

~ X~(wl)tv(w2 ) 

of exp d 

Proof. Combine Lemmas IIA, IIC . 

with 

We obtain 

LEMMA llF. The number 

z q - z = g(x) is given by 

N of x,y,z in F with 
q 

yd = f (x) 

N 

X 
of exp d 
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Now s u p p o s e  we know f r o m  some  s o u r c e  t h a t  ( 1 1 . 6 )  h o l d s .  

ql/2 
(ii.16) lW~%il S for 

In view of (ii.15), 

1/2 Isl  ~ ( m + n - 1 ) q  

we obtain 

Then 

X o f  e x p .  d ,  (X,~)  ~ ( X o , ~ o ) .  a n d  

i = I, ... ,m+n-i . 

I S . I  ~ ( r e + n -  1 ) q  ~ / 2  a n d  

d 
Now under the conditions of Theorem 2G, the equations y = f(x) , 

z q - z = g(x) define an absolute curve. (See Example 3 in w of 

Ch. VI). So (11.6) holds by Theorem 7A of Ch. VI. 

Theorem 2G is proved, since the restrictions that f(X) be 

monic and g(X) be of constant term zero, can be easily removed. 

w Kloosterman Sums. 

It is easily seen that the sum (2.3) is -i if a ~ 0 , 

b = 0 , or if a = 0 , b ~ 0 ; hence we may suppose that ab ~ 0 �9 

LEMMA 12A. 

of F , i.e., 
q 

a non-square in 

d 4o and if 

L e t  q b e  odd and  l e t  X ( x )  b e  t h e  q u a d r a t i c  c h a r a c t e r  

X(x) = 1 or X(X) = -i if x J 0 is a square or 

F , respectively; and X(O) = 0 . Then if 
q 

ab  ~ 0 , 

(12. l) * ~ ( a x  + bx  - 1 )  = ~ ~ ( x ) X ( x  2 - 4ab)  . 

xEF xEF 
q q 

Proof. The sum on the left hand side is 

(12.2) ~ (y) z (y) 
yEF 

q 
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where Z(y) is the number of x E F with 
q 

-i 
this equation for x we obtain x = (2a) 

may or may not lie in F We obtain 
q 

-i 
y = a x  + b x  

( y +  ~ y  - 4 a b  ) 

Solving 

, which 

Z ( y )  = X ( y 2 -  4 a b )  + 1 : 

F o r  i f  y2 _ 4 a b  i 0 i s  a s q u a r e  ( o r  a n o n - s q u a r e ) ,  t h e n  

Z ( y )  = 2 ( o r  0 ) ;  a n d  i f  y2  _ 4 a b  = 0 , t h e n  Z ( y )  = 1 . T h u s  

(12.2) becomes 

~ ( Y ) X ( y 2 -  4 a b )  + ~ ~ ( y )  = ~ ~ ( x ) X ( x  2 - 4 a b )  . 

y y x 

T h e  p o l y n o m i a l s  2 _ (X 2 - 4 a b )  a n d  Z q - Z - X a r e  a b s o l u t e l y  

irreducible. Hence by Theorem 2G, the sum on the right hand side 

of (12.1) has modulus ~ (m + n - l)q I/2 = (2 + 1 - l)q I/2 = 2q I/2 

This completes the proof of Theorem 2H if q is odd, but it 

depends on Theorem 2G, which in turn depends on Ch. VI. But we needed 

<< qV/2 But in our case Ch. VI only to show (11.6), i.e., N - q 

the number N is the number of solutions x,y,z in F v of 

q 

2 2 z q  y = x - 4 a b  , - z = x . 

This number N is also the number of solutions y,z of 

2 2 
y = ( z  q - z )  4 a b  . 

2 2 
Since Y (Z q - Z) + 4ab is absolutely irreducible, the number 

N satisfies (11.6) by Theorem 2A of Ch. I. 
v 
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We now will sketch another proof of Theorem 2H, which works for q 

even as well. Let G again be the group of rational functions 

h,[(X)/h2(X) whose numerators and denominators are monic polynomials. Let 

be the subgroup of functions whose numerators and denominators have 

non-zero constant term. Given r(X) E G , put [r] = 1 if r(X) = 1 , and 

[r] = a(~l + ... +~u - ~i - 
1 1 1 1 

�9 . -~v ) + b( ~i + "'" + . . . .  ~u ~i " .... ~v ) 

if r(X) = (X + ~i ) ... (X + ~u (X + ~i )-I ..o (X + ~v )-I with 

~i ..... ~U ' ~i ..... ~v in F-- Then [r] E F and [rlr2] = q q 

[rl] + [r2] �9 

The function 

will be a character on G . Let 

of r (X) = h I (X)/h 2 (X) having 

hl(X) = xU+ alXU-i + ... +au_iX+a u , 

~(r) =,([r]) 

be the subset of consisting 

v-i 
h 2(X) = X v+blX + ... +b v 1 x +b 

- v 

with 

a b 
u-i = v-i 

a I = b I , a b 
u v 

For example, monomials X u lie in H , and so do polynomials 

of degree u > 2 of the type X u u-2 X 2 . It is 
_ + a2X + ... +au_ 2 +a u 

easily seen that H is a subgroup of G . As an analog of Lemma 9B, 

we now observe 



LEMMA 12B. 

Proof. If 
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~ ( r )  = i i f  r E H �9 

r 6 ~{ , then 

~i+ "''+~u - ~i- "''-~v = al - bl = 0 , 

a 

i 1 1 i u-i bv-i 

-- +'''+-- - ~-'''--- = a  b 
~i ~u 1 ~v u v 

= 0  , 

s o  that [ r ]  = 0 . 

The analog of Lemma 9D is 

LEMMA 12C. Suppose ~ > 0 . Then every coset of H in 

contains precisely q~ (q-l) polynomials of degree A + 3 . 

The proof of this is left as an exercise. Carrying out the 

obvious analog to the argument in w one sees that the 

~ - s  
L(s, ) is a polynomial in U = q of the type 

L-Function 

L ( s , U )  = 1 + ClU + c 2 u 2  = ( i  - mi U) (1 - ~2 U) 

with 

Cl  = x ~ F *  r  - 1 )  

q 

q l / 2  
Thus it suffices to show that l~il ~ (i = 1,2) . This is 

a c c o m p l i s h e d  by  s h o w i n g  t h a t  t h e  n u m b e r  N o f  s o l u t i o n s  x , z  i n  
M 

F of x / 0 , z q z ax + bx -I - = , satisfies ( 1 67.1_._.. Since 

q 

c l e a r l y  aX 2 - (zq  - Z ) X + h  i s  a b s o l u t e l y  i r r e d u c i b l e ,  t h i s  f o l l o w s  

from Theorem IA of Ch. III. 
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w Further Results. 

Let ~ = 4o be an additive character. Let g(X) be a polynomial 

of degree n with (n,q) = 1 and with constant term zero. We 

know from Theorem 9G that if X(r) = 9([r]) , where [r] is defined 

-S 
as in w , then with U = q , 

L(s,~) = 1 + ClU+ ... +Cn_l Un-I 

We now p r o v e  

T~OREM 13A. l en_ll  

Proof. We h a v e  

so that 

an_ I = 

(n- I)/2 
= q 

h monic 
deg h=n- 1 

ICn_112 = 

h I 

d e g  n-i 

~ ( h )  

~(hl/h 2) 
h 
2 

deg n- 1 

Now ~(k) depends only on the coset C 

H of G . Thus 

~13.1~ /Cn_ll 2 = Z y~c~z ~c~ 
C 

where the sum is over cosets C of H 

the number of pairs of monic polynomials 

with hl/h 2 6 C . 

o f  k m o d u l o  t h e  s u b g r o u p  

in G , and where Z(C) is 

h I , h 2 of degree n-1 
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We write r I ~ r 2 (mod ~ if rl/r 2 s H , i.e., if rl,r 2 lie 

in the same coset C �9 If we expand the rational functions as 

u u.-I u.-2 
i 1 l 

ri(X) = X + ailX + ai2X + ... (i = 1,2) 

then r I ~ r 2 (mod H) if and only if 

all = a21, ... ,aln = a2n 

Thus if C(Vl, Vn) consists of rational functions r(X) X u X u-I 
..., = + a I +.~ 

with a I = Vl, ... a = v then the sets C(Vl, ... ,Vn) are just 
' n n ' 

the cosets of H in G �9 

n-1 n-2 
Now hl/h 2 with h I = X + alX + ... +an_ 1 , h 2 = 

xn-i n-2 
+ blX + ... +bn_ 1 lies in C(Vl, ... ,Vn) precisely if 

( 1 3 . 2 )  

a 1 = b 1 + v 1 

a 2 = b 2 + b lV  1 + v 2 , 

an_ 1 = bn_ 1 + b n _ 2 V l +  . . .  +b lVn_ 2 + Vn_ 1 , 

0 = b n l V l  + . . .  +b lV n 1 + v 

Thus Z(C(Vl, ... ,Vn)) is simply the number of solutions in 

al, ... ,an_ 1 , bl, ... ,bn_ 1 in F of (13.2) . q 

LEMMA 13 B. 

I n - 2  
q ~if V l ,  . . .  ,Vn_ 1 a r e  n o t  O, . . .  ,0  

n - 1  
Z ( C ( V l ,  . . .  , V n ) ) =  q i f  v 1 . . . . .  Vn_ 1 = v = 0 

n 

0 i...f_f v 1 . . . . .  Vn_ 1 = 0 , v n # 0 . 
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in 

F 
q 

Proof. The number of solutions al, ... ,an_ 1 , b I, ... ,bn_ I 

Fq of (13.2) is just the number of solutions bl, ... ,bn_l in 

of the last equation (13.2). 

In view of (9.8), we have 

LEMMA 13C. X(C(0, ... ,0,v)) = ~((-l)n+in~V ) , where a is the 

leading coefficient of g(X) . 

The proof of Theorem 13A is now completed as follows. 

By (13.1), Lemmas 13B, 13C, and since X(C(0, ... ,0)) = 1 = ~(0) 

we obtain 

] en-i I 2 = ~ ... ~ I(C(v I, ... ,Vn))Z(C(v I .... ,Vn)) 

v I v n 

n-2 : q  Z . . . Z   I(C(Vl, "" ,vO) 
v I v n 

+ (qn-1 - qn-2) ~ ( C ( O , . . .  ,0 ) )  

_ qn-2 v~i0 ~(C(O, ... ,0,v)) 

Here the first summand is zero, since C(Vl, ... ,Vn) ranges through 

all the cosets of H in G . Combining the second and third 

summand, we obtain 

n - i  n-2 ~ - I  q q ~_~ -- * ( ( - 1 ) n + l n  ~ - V )  r.. ~/ 
v 

The proof of Theorem 13A is complete. Now we know that in 

L(s,X) = (i - Wl~ ... (i - ~n_l ~ , the absolute values l~jl K ql/2 

(j = i, ... ,n-l) But in view of Theorem 13A, we now have 
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l~jl = ql/2 (j = 1 .... ,n-l) . 

COROLIARY 13D. Let g(X) be of degree n with 

~ 4o be an additive character of F Then 
q 

let 

( n , q )  = 1 , a n d  

is of the form 

s, = ~ ~,~(g(x)) 
x E F  

%9 
q 

S = -to I- " " " -~n- 1 

where el' "'" '~n-i have (13.3). 

i 
In particular, neither the exponent ~ nor the constant factor 

n- 1 in Theorem 2E may he improved. In fact, by Lemma 6C, we have 

CORO~RY 13E. Let S be as above. There are infinitely many 

positive integers with 

I S%91 > (n- l)J/2 (i - 2~ -I/(n-l)) . 

1 
Similarly, neither the exponent ~ nor the factor (q-I)(n-i) 

in (11.14) may be improved. 

The arguments of this section may be carried over, with 

suitable changes, to multiplicative character sums and hybrid sums. 



III. Absolutely Irreducible Equations f(x,y) = 0 

References: Stepanov (1972b, 1974), Schmidt (1973). 

w Introduction. This chapter is devoted to a proof of 

THEOREM IA. Suppose f(X,Y) 6 Fq[X,Y] is absolutely 

irreducible and of total degree d > 0 Let N be the number 

of zeros of f in F 2 If q > 250d 5 , then 
-- q -- 

(i. 1) I N - ql < ~/~ d5/2 ql/2 

As is well known, this estimate follows from the Riemann 

Hypothesis for curves over finite fields, which was first proved 

by Well (1940, 19486). 

stronger estimate 

In fact, the Riemann Hypothesis gives the 

I N - ql =< (d - i) (d - 2)q I/2 + c(d) 

f o r  some constant c(d) Special cases of Theorem IA (but with 

~2d 5/2 replaced by some other constant depending on d) were 

proved by Stepanov by elementary methods; his most general result 

was in (1972b, 1974). Stepanov's method was extended by Schmidt 

(1973) to yield Theorem IA, and also by Bombieri (1973). 

In order to provide easy examples of absolutely irreducible 

polynomials f(X,Y) , we now state 

THE OREM 1 B. Let 

f(X,Y) = g0 Yd + gl(X)yd-l+...+gd (X) 
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where go is a non-zero constant, be a polynomial with coefficients 

in a field k Put 

1 
(f) = max T deg gi 

isi<d 

and suppose that ~(f) = m/d with (m,d) = 1 Then f(X,~ is 

irreducible, in fact absolutely irreducible. 

Remark. The polynomials considered by Stepanov(1972b, 1974) 

were all of the type of this theorem. 

To prove Theorem IB, we need 

( i  .2) 

t h e n  

LEMMA IC: If 

f ( X , Y )  = u (X,Y)  v (X,Y)  

( f )  = max{~ ( u ) , ~  ( v ) }  . 

Proof: S u p p o s e  a + b = d and 

u (X, Y) uoYa y a -  1 = + u 1 (X) 

v ( x , y )  = V o ~  + v i ( x ) ~  - i  

+ . . .  + u (x) 
a 

+ �9 �9 �9 + v b (X) 

Then 

g i ( X )  = ~ u j ( X )  v k (X) 

j+k=i 

(0 S i ~ d) 

S i n c e  e a c h  summand u j  (X) v k(X) h a s  d e g r e e  a t  m o s t  j~ (u) + k~ (v) <= 

( j  + k) max(4 ( u ) , ~  ( v ) )  = i m a x ( ~  ( u ) , ~  ( v ) )  , we h a v e  

_I deg gi(X) <- max {~ (u),4 (v) } (I-< i ~ d) 
i 
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w h e n c e  

(1.3) ~ (f) K max {4 (U),~ (v) } 

Now make the s u b s t i t u t i o n  y-~ Y~ , where 

(1.2) becomes 

goy, d y, (d-l) 
+ gl(X) + ..~ + gd(X) 

= ~ ( f )  o Then 

= (UoY~a + Ul (X  ) y~ ( a - l )  + . . . + u  ( X ) )  a 

%y*b y* (h-l) 
+ v I ( X )  + . . ~  + V b ( X ) )  

- h(X,Y) ~ ( x , Y )  , 

say~ 

we notice that the L~176 has degree ~d , while 

degu~X,Y) ~ ~a and degv(X,Y) ~ ~b 

t) 
Examining the total degrees of both sides of this equation , 

>= ~ a  + ~ b  = ~ d  . 

and degv(X,Y) = ~b 

s o  t h a t  t h e  R.HoSo h a s  d e g r e e  

d e g  u (X ,Y)  = ~a 

I t  f o l l o w s  t h a t  

deguj(X) < j'~ (i<= j<--a) 

whence 

Hence in fact 

and  d e g v k ( X  ) ~ k~ ( l < - k < : b )  , 

(U) K ~ and  ~ (v) K ~ . 

T h i s ,  i n  c o n j u n c t i o n  w i t h  ( 1 . 3 ) ,  p r o v e s  t h e  lemma.  

t) It clearly does not matter that our exponents and degrees are 

not necessarily integers. 
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Proof of Theorem lB. S u p p o s e  

f(x,Y) = u(x,Y) v(x,Y) 

is a proper factorization of f(X,Y) . Then 

degyU(X,Y) < d and degyV(X,Y) <d . 

We h a v e  

1 r 
( u )  = max .-- d e g u  (X) = w i t h  1 - < s < d  , 

1 < i g d e g y  u 

i w 
a n d  ~ (v )  = max  ~ d e g v j ( X )  = z '  w i t h  l ~ z < d  . 

1 < j ~ d e g y  v 

Hence ~ (f) ~ max {4 (u) , ~ (v) } , and the contradiction is obtained 

by applying Lemma IC, 

The remainder of this section will be used to obtain a very 

modest reduction of Theorem IA to a special case. 

S u p p o s e  f ( X , Y )  = g ( X , Y  p)  w h e r e ,  a s  u s u a l ,  q = p S i n c e  

y ~ yP  i s  a n  a u t o m o r p h i s m  o f  F , a s  ( x , y )  r a n g e s  o v e r  a l l  p a i r s  
q 

2 
in F , so does (x,y p) Therefore the number of zeros of g(X,Y) 

q 

is e q u a l  t o  t h e  n u m b e r  o f  z e r o s  o f  f ( X , ~ ,  a n d  we may r e p l a c e  f b y  

g . This process decreases the degree in Y of the polynomial under 

c o n s i d e r a t i o n .  A f t e r  a f i n i t e  n u m b e r  o f  s u c h  s t e p s ,  we  o b t a i n  a 

polynomial which is not a polynomial in YP , i.e. a polynomial 

w h i c h  i s  " s e p a r a b l e  i n  Y " .  

If 

__ x i yJ 
f (X, Y) ~ aij 

is separable in Y, then there is some coefficient 
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a . d 0 , w h e r e  P~ J 0  
i 0 3 0  

h ( X , Y )  : f ( X  + cY, Y) = wb a i j ( c ) X i  y~ o i  

T h e n  t h e  c o e f f i c i e n t s  a . . ( c )  a r e  p o l y n o m i a l s  i n  c o f  d e g r e e  a t  
13 

m o s t  d , w i t h  t h e  p r o p e r t i e s  t h a t  

( i )  t h e  p o l y n o m i a l  a i 0 J 0 ( C )  i s  n o t  i d e n t i c a l l y  z e r o ,  

( i i )  t h e  c o e f f i c i e n t  o f  yd i s  a o d ( c )  = f d ( c , 1 )  , 

where fd(X,Y) consists of the terms of f(X,Y) which are of total 

degree d . In particular, a0d(C ) is not identically zero. If 

q > 2d , (which is the case in Theorem 1A), we can choose c E F 
q 

so that 

a. (c) ~ 0 and 

~0J0 

Then in the polynomial h(X,~ , 

moreover, h is separable in Y . 

we achieve the following 

(c) ~0 
S0d 

d 
Y occurs with a non-zero coefficient; 

Dividing by an appropriate constant, 

Reduction: Without loss of generality, we may assume that 

f (X, Y) yd gl (X) yd-i = + + ... + gd(X), deggi(X) ~ i , 

and that f(X,~ is separable in Y o 
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w Independence results. 

We begin with a simple remark. Suppose f(X,Y) is a polynomial 

with coefficients in a field K and of degree d > 0 in Y . 

Suppose f(X~ is irreducible over K . Then if we regard f(X,~ 

as a polynomial in Y with coefficients in the field K(X), it is 

still irreducible t) . Hence if ~ satisfies f(X,~) = 0, then 

[K(X,~)  : K(X)] = d �9 

LEMMA 2A. Suppose f(X,Y) and g(Z,U) are polynomials with 

coefficients in a field K, both absolutely irreducible over 

Suppose f is of degree d > 0 in Y and g is of degree 

in U . Let ~ , U be quantities with 

K �9 

d' > 0 

f ( x , ~ )  = 0 ,  g ( z , a )  = 0 . 

( s o  t h a t  [ K ( X , ~ )  : K (X) ]  = d a n d  [ K ( Z , U )  : K ( Z ) ]  = d '  . )  T h e n  

[ K ( X , Z , ~ , ~ )  : K(X,Z) ]  = dd '  

Remark: The absolute irreducibility of f and g is essential. 

By way of  e x a m p l e ,  t a k e  K = Q and 

t ) F o r  s u p p o s e  t o  t h e  c o n t r a r y  t h a t  f (X,Y)  = g l ( X , Y ) g 2 ( X , Y ) ,  

where  t h e  g i  a r e  p o l y n o m i a l s  of  p o s i t i v e  d e g r e e  i n  Y w i t h  

c o e f f i c i e n t s  i n  K(X).  G i v e n  any p o l y n o m i a l  g(X,Y) i n  Y w i t h  
c o e f f i c i e n t s  i n  K(X),  we may u n i q u e l y  w r i t e  g(X,Y) = (u (X) / v  (X) ) ~ (X ,Y) ,  
where  u ( X ) ,  v(X) a r e  c o p r i m e  p o l y n o m i a l s  w i t h  l e a d i n g  c o e f f i c i e n t  1, 
and w h e r e  ~(X,Y) = c 0 ( X )  + C l ( X )  Y+ . . .  + c t ( X )  y t  w i t h  c o p r i m e  p o l y -  

n o m i a l s  c 0 ( X ) , . . . , c t ( X ) .  W r i t e  r ( g )  = u ( X ) / v ( X ) .  S i n c e  K[X] ha s  

u n i q u e  f a c t o r i z a t i o n ,  i t  c a n  be  shown t h a t  r ( g l g  2) = r ( g  1) r ( g  2) �9 

(This is similar to Gauss' Lemma.) Now if the polynomial f(X,Y) 
above is irreducible over K, we have r(f) =i, whence r(gl) r(g2)=i. 

Thus f(X,Y) =r(gl)r(g2)gl(X,Y)g2(X,Y) =gI(X,Y)g2(X,Y) with poly- 

nomials gl ' g2 ' contradicting the irreduciblity of f . 
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4 2 f(X,Y) = Y - 2X , 

g(Z,U) = U 4 - 2Z 2 

are as above, then we have the following diagram: 

r 

d e e 2 / /  ~ x ~ e g 2  

( x , z , ~ )  ~ (x,z,t~) 

deg 2 ~  ~ g  2 

Q (x, z ,Jff) 

I deg 2 
~(X,Z) 

[~(X,Z,~,U) : ~(X,Z)] = 8 ~ 16 . 

Proof of the lemma: 

(2.1) 

and 

(2.2) 

We need to show that 

[K(X,Z,~,U) : K(X,Z,~)] = d' 

[K(X,Z,~) : K(X,Z)] = d 

where gi(Z,~ 

degree less than 

To show (2.1) it will suffice to show that g(Z,U) 

irreducible over K(X,~) Otherwise, 

g(Z,U) = gl(Z,U) g2(Z,U) , 

(i = 1,2) has coefficients in K(X,~) 

d' in U. Write 

remains 

and is of 

gi(Z,U) = ~ CijkZJ~ 

j,k 

(i = 1,2) , 
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where 

(0) r(1) -1) d-1 
Cijk = rijk(X) + ijk .... 

( h ) . .  
w i t h  r a t i o n a l  f u n c t i o n s  r . . .  (X) . 

1JK 

P i c k  x e K s u c h  t h a t  t h e  d e n o m i n a t o r s  o f  t h e  r ( h ! ( x )  a r e  
1 j K  

n o n - z e r o  a n d  s u c h  t h a t  i f  

f(X,Y) = ao(X)yd + aI(X)Y d-I + ... + ad(X) , 

then a0(x) ~ 0 . Pick y E K such that f(x,y) = 0 . Then the 

pair (x,y) satisfies any equation over K which is satisfied by 

(x,~) *). P u t  

- ( 0 )  ( x )  r ( d - l )  ( x ) y  d - 1  
Cijk = rijk + "'" + ijk 

and 

gi(Z,U) = ~ CijkZJuk (i=1,2) 

j,k 

Then cij k E K and 

g(z,u) = ~l(Z,U)~2(z,u) 

contradicting the absolute irreducibility of g(Z,U) 

This completes the proof of (2.1). The proof of (2.2) is similar 

but simpler. 

LEMMA 2B: Suppose f(X,Y) E K[X,Y] is of degree d > 0 in 

Y, irreducible over K and separable in Y. Let f(X,~) = 0 and 

f(Z,~) = 0 . Then f is absolutely irreducible if and only if 

[ K ( X , Z , ~ , U )  : K ( X , Z ) ]  = d 2 �9 

t) For if ~(X,Y) is a polynomial with ~(X,~) =0, then ~(X,Y) 
is divisible by f(X,Y) . 
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Proof: The "only if" part follows from Lemma 2A. The "if" 

part will be given late~)in these lectures; we do not need it now. 

Let K be a field of characteristic p ; let q = pE If 

@ Xl y • f(X,Y) = ~ aij (aij E K) , 

i,j 

define 

i j  
i ) j  

S i n c e  t h e  m a p p i n g  x ~ x q i s  an  a u t o m o r p h i s m  o f  K , i t  f o l l o w s  

t h a t  i f  f i s  a b s o l u t e l y  i r r e d u c i b l e ,  t h e n  s o  i s  f [ q J  

COROLLARY 2C: S u p p o s e  f ( X , Y ) ,  f [ q ] ( x , Y )  a r e  a s  a b o v e .  

S u p p o s e  f i s  o f  d e g r e e  d > 0 i n  y . Le t  X , Z b e  v a r i a b l e s )  

and  l e t  ~ , ~  b e  s u c h  t h a t  

fCX,~)  = O, f[q](z,u) = 0 

Then 

[K(X,Z,.~,~) : K(X,Z)] = d 2 . 

LEMMA 2D: Let K be a field of characteristic p . Suppose 

f(X,Y) = yd + gl(X) yd-i + ... + gd(X) 

is a polynomial in K[X,Y], absolutely irreducible and with 

deggi(X) A i (i K i ~ d) 

Let f(X,~) = 0 If 

t~Ch. V, w 
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a ( X , Y , Z , W )  i 0 

( i )  d e g  X a ~ ( q / d )  - 

( i i )  d e g y a  ~ d - 1 , 

( i i i )  d e g  w a  ~ d - 1 , 

d 
J 

a ( X , ~ , x q , ~  q) ~ 0 

Before commencing with the proof, we give some heuristic argu- 

ments. Since f is irreducible, the elements 

~i (0 ~ i ~ d - l) 

are linearly independent over K(X) . On the other hand, since there 

d 2 are of them, the elements 

~i~qk (0 ~ i , k ~ d - I) 

are linearly dependent over K(X) . Hence the lemma is not trivial. 

However, the powers of X in a(X,Y,X~Y q) are restricted. We have 

only the powers 

X qj+v (0 ~ v ~ (q/d) - d ; j = 0,i,...) . 

d th So roughly only one of all possible exponents in X can occur. 

That is why the lemma has a chance of working. 

Proof of the lemma: The method is similar to that of Chapter 

I, w Put 
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d 

a ( X , Y , Z ; W I , . o . , W  d) = ~ a(X,Y,Z,W i )  
i = l  

This is a polynomial in d+3 variables, symmetric in Wl,...,W d . 

By Lemma 5A of Chapter I, 

a ( X , y , Z ; W l , . . . , W d )  = b ( X , Y , Z ; s  I ( w l , . . . , W  d ) , ~ 1 7 6  d ( W 1 , . . . , W d )  ) 

where Sl,.~ d are the elementary symmetric polynomials in 

Wl,...,W d �9 By the same lemma, the total degree of b(X,y,Z;Vl,..o,Vd) 

in VI,.~ d is at most d - 1 . 

Now since 

•d g l  ( x ) ~ d - 1  
= - . . . . .  gd (X) , 

we have for any positive integer t , 

~ d - l + t  ( t )  (x)~d- l~ + . .  + g_(t) ( 2 . 3 )  
= g l  d 

where it is easily verified by induction that 

(t) 
deggi (X) ~ (t - 1 + i) 

Since 

(X) , 

(i -< i ~ d) . 

d e g y b  ~ d ( d -  1) = ( d -  1) + ( d -  1) 2 , 

we a p p l y  ( 2 . 3 )  w i t h  t < ( d - 1 )  2 , t o  o b t a i n  

b ( X , ~ , Z  ; V 1 . . . . .  V d) = c ( X , ~ , Z  ; V I , . . . , V  d) 

w h e r e  d e g y C  ~ d - 1 .  F u r t h e r m o r e ,  
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d e g  x c  < d e g  X b  + ( ( d  - 1) 2 - 1 + d) 

= d e g  x b  + d ( d  - 1) 

d d e g  x a  + d ( d  - 1) 

< q - d 2 + d (d - 1) 

< q 

S u p p o s e ,  i n d i r e c t l y ,  t h a t  

a (X,~,xq,~ q) = 0 . 

~1 = ~ and  f ( X , Y )  = (Y - ~1)  (y  - ~2 ) . . .  

(X , ~ ,  X q q q ; ~ l , . . . , ~ d  ) = 0 ; 

and since 

whence 

we have 

Therefore 

(y - .~d ) �9 

S i ~ l , . . . , ~ d )  = g i ( X )  , (l~i~d) 

9 i 

, ~ - [ q ] ' x  q" b ( X ' ~ ' x q  " g q ] ( x q )  . . . .  ' ~ d  ~ ) )  = 0 

c ( X , ~ , x q  ; g ~ q ] ( x  q)  . . . .  , g ~ q ] ( x q ) )  = 0 

But  s i n c e  d e g y  c ~ d - 1 , and ~ i s  a l g e b r a i c  o f  d e g r e e  

m u s t  h a v e  t h e  f o l l o w i n g  i d e n t i t y  i n  two  v a r i a b l e s :  

c ( X , Y , X  q " g [ q ] ( x  q) , g ~ q ] ( x q ) )  0 

Then  

d p we 
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Now make the substitution X = X 1 + X 2 . Note that X q =X lq + X 2q 

that for some polynomial ~ , 

Since 

than 

, SO 

Since 

them by variables X,Y,Z, to obtain 

c ( X , Y , Z  ; g ~ q ] ( z ) , . . . , g ~ q ] ( z ) )  = 0 . 

S u b s t i t u t i n g  ~ f o r  Y ,  we o b t a i n  

( 2 . 4 )  b ( X , ~ , Z  ; g ~ q ] ( z )  . . . . .  g ~ q ] ( z ) )  = 0 . 

Now let ~l,...,~d be quantities with 

f [ q ] ( z , u )  = (U - U 1) . . .  (U - ~d ) , 

w h e n c e  

+ x> o 

d e g  x c  < q ,  t h e  f i r s t  s u m m a n d  h a s  a d e g r e e  s t r i c t l y  s m a l l e r  

q i n  X 2 , a n d  we o b t a i n  t h e  i d e n t i t y  

[q]cx~)) o e(x 1 +X2,Y,X ~ ; g q](x~) , .  "''gd 

q a r e  a l g e b r a i c a l l y  i n d e p e n d e n t ,  we m a y  r e p l a c e  X 1 + X 2 , Y , X  1 

s i(I/1 . . . . .  U d) = g ~ q ] ( z )  (i ~ i ~ d) . 

b ,  a n d  b y  ( 2 . 4 ) ,  By the construction of the polynomial 

~(x,~,z ;~i .... '~d ) = 0 . 

Hence for some i , 1 ~ i ~ d , the quantity ~ = ~i. satisfies 
1 

a ( x , ~ , z , a )  = o . 

But by Corollary 2C, and since f(X,~) = 0, f[q](z,~) = 0 , the d 2 

elements ~j ~k (0 ~ j, k g d - I) are linearly independent over 
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K(X,Z) . Therefore a(X,Y,Z,W) must be identically zero. 

a contradiction, and the lemma is established. 

w Derivatives. 

This is 

Let f(X,Y) be the polynomial of Theorem IA. It is of total 

degree d , and we may assume it to be separable in Y. Let 

fx(X,Y), fy(X,Y) denote partial derivatives with respect to 

X, Y, respectively. As before, let ~ satisfy f(X,~) = 0 . 

Let D be the operator of differentiation with respect to X 

in F (X) . Since ~ is separable over this field, 
q 

be extended to a derivation in F (X,~) . In fact, 
q 

fx(X,~) + fy(X,~)D~ = 0 , whence 

( 3 . 1 )  D ~  = - f x ( X ' ~ ) / f Y ( X ' ~ )  

D may uniquely 

D (f (X,~)) = 

then 

where 

LEMMA 3A:  S u p p o s e  0 < ~ ~ M . I f  a ( X , Y )  i s  a p o l y n o m i a l ,  

f 2 M .  x ~ .  f 2 M - 2 ~  (s  
( y ( , ' / 2 ) a ( X , ~ ) )  = y ( X , ~ ) a  

a ( s  (X ,Y)  i s  a p o l y n o m i a l  w i t h  

(~) 
d e g a  < d e g a  + ( 2 d  - 3 ) ~  . 

(x,~) , 

Proof: The proof is by induction on ~ . If ~ = 0 , there is 

nothing to prove. Suppose the lemma holds for ~ , 0 < ~ < M . 

Then 

~+I 2M 
D (fy (X,~)a(X,~)) =D(f~ M-2~ (X,~)a (~) (X,~)) 

= f2M-2~-I (X ~) 
(2M-2~) Y ,~!) (fyx(X,~) + fyy(X,~)D~)a (~) (X,~) 

+ f2M-2~y (X,~) ta X" (~) (X,O) + ay (~) (X,~)D~) 
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f2M-2  (Z+I )  
y (X , ~ )  ~(2M - 2s  fYX (X ,~ )  f y  (X ,~ )  - f y y  (X ,~)  f x  (X ,~)  ) a ~ (X ,~ )  

a ( 2 )  ( X , ~ ) f 2 ( X , ~ )  - a (~) ( X , ~ ) f x ( X , ~ ) f y ( X , ~ ) >  + X y 

= f2M-2 (~+1)  (X ,~)  a (~+1)  (X,~)  
y 

say. It is then clear that 

where 

(3 ~ 

S u p p o s e  

If 

where 

Then  

d e g a  (~+1)  < d e g a  (~) + (2d - 3)  ~ d e g a  + (2d - 3 ) ( ~  + 1) . 

LEMMA 3 B: Let 

f (X, Y) yd yd- 1 
= + g l  (X) + "~  + gd(X)  

deg gi(X) K i (I < i < d) 

f ( X , Y )  = (Y - ~1  ) (y  - ~2 ) . . .  (y  - ~d  ) 

a ( X , Y  1 . . . . .  Yd ) i s  a p o l y n o m i a l  s y m m e t r i c  i n  Y 1 , . . . , Y d  , t h e n  

a(X,~ 1 ..... ~d ) = b(X) , 

b(X) is a polynomial with 

degb < total deg a(X,Yl,...,yd ) 

Proof: Let 6 denote the total degree of a(X,Yl,...,yd) 

a(X,Yl,...,yd ) = 

6 

X V c v ( Y I ' ' ' ' '  Yd ) 

v = O  
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where Cv(Yl,...,yd) is a polynomial of degree ~ 5 - v , symmetric 

in Y1,.~ �9 By Lemma 5A, Chapter I, 

Cv(Yl,~ d) = hv(Sl(Yl,...,Yd),...,Sd(Y1,...,Yd)) �9 

i I i 2 i d 
Moreover, by the same lemma, any monomial s I s 2 ... s d occurring 

in hv(Sl,...,Sd) has i I + 2i 2 + ... + di d ~ 6 - v . Hence in 

C v ~ l , ' . . , ~ d  ) = h v ( g l ( X ) , . . . , g d ( X ) )  , 

i i i 
every summand gl I (X) g2 2 (X) ... gd d (X) has degree at most 

i I + 2i 2 + ... + di d ~ 5 - v 

v 
by (3.2). Therefore every summand X Cv(~l,...,~ d) of a(X,~ 1 ..... ~d ) 

is a polynomial of degree ~ v + 5 - v = 8 . 

w Construction of two algebraic functions. 

Let f(Y) a0 yd + al yd-I 
= + ... + a d = a0(Y - yl ) ... (Y- yd ) 

thus yl,...,y d are the roots of f(Y) The discriminant A of 

f is 

= -FF  Yi- 
l ~ i < j ~ d  

It is well known (and may be deduced from Lemma 5A of Chapter I), 

that ~ is a polynomial of degree 2d - 2 in the coefficients 

i 0 i I i d 
a0,...,a d . Moreover, every monomial a 0 a I ... a d occuring in 

this polynomial has 

(4.1) i I + 2 i 2 + ... + d i d = d(d - I) 



108 

Now let 

d 
f(X,Y) = Y 

d-i 
+ g l  (X) Y 

with 

(4.2) deg gi(X) ~ i 

Let A(X) be the discriminant of 

Clearly A(X) is a polynomial in 

+ " ' "  + g d ( X )  , 

(1  ~ i < d )  

f ( X , Y )  a s  a p o l y n o m i a l  i n  Y . 

X . M o r e o v e r ,  b y  ( 4 . 1 ) ,  ( 4 . 2 ) ,  

( 4 . 3 )  d e g A ( X )  <= d ( d  - 1) . 

In what follows, we shall assume that 

( 4 . 4 )  d ~ 2 . 

We may do so, since Theorem IA is trivial if d = 1 . 

Let ~ be the set of x E F with A(x) ~ 0 . 
q 

Then 

(4.5) q - d ( d  - 1) ~ I~I  ~ q . 

If x s ~, the polynomial f(x,Y) has d distinct roots 

yl,...,y d 6 ~- We are, of course interested in those y's 
q 

Let ~ (x) be the set of those y's which in fact lie in Fq i 

among yl,...,y d which lie in F Let ~2(x) consist of those 
q 

y's which are not in F Then for every x 6 ~ , 
q 

( x )  1 § (x> 1 -- d . 

D e f i n e  g o  (X) -- i a n d  

eI(X,Y,Y') = Y- y' , 

d 

e 2  (X,  Y, Y ' )  = 

j = l  

gd_ j (X )  ( y j - i  + y j - 2 y ,  + . . . .  + y , j - l )  
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Then 

If x E~ 

w h e n c e  

f ( X , Y )  - f ( X , Y ' )  = e l ( X , Y , Y ' ) e 2 ( X , Y , Y ' )  �9 

a n d  y E % 1 ( x )  U % 2 ( x )  , t h e n  

0 = f(x,y) = (f(x,y)) q = f(x,y q) , 

0 = f ( x , y )  - f ( x , y  q)  = (y - y q )  e 2 ( x , y , y q )  

I f  y E ~:1 (x)  , t h e n  y E F , s o  y - y q  = 0 ; a n d  b e c a u s e  y i s  
q 

a s i m p l e  r o o t  o f  f ( x , Y )  , e 2 ( x , y , y q )  f 0 . I f  y E ~ 2 ( x )  , t h e n  

y q  ~ y , h e n c e  e 2 ( x , y , y q )  = 0 . H e n c e  f o r  k = 1 o r  2 , ~ : k ( x )  

is the set of y with 

f(x,y) = 0 and with el(x,y,yq) = 0 . 

Notation: Set al = i, E 2 = d - I. Then ek has total degree 

~k (k  = 1 , 2 )  . 

LEt,~IA 4A: Suppose k = i or 2 . Let M be a positive 

integer with 

d i M ,  M >- d 2 , 2 ( d  - 1) (M + 8) 2 ~ q �9 

T h e n  t h e r e  e x i s t s  a p o l y n o m i a l  a ( X , Y )  s u c h  t h a t  

( i )  a (X , .~ )  i 0 , 

(ii) if a (~)  (X,Y) is defined as in Lemma 3A 9 then 

(s  
a ( x , y )  = 0 (0 ~ ~ < M) 

fo__r x E ~ and y E ~ k ( x )  , 

(iii) dega(X,Y) ~ (El/d) qM + q(d - 3/2) 
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Proof: The idea of the proof is similar to the ideas used to 

prove Lemmas 3B and 9C in Chapter I. We try 

K d-i 

a(X,Y) = ~ ~ bjk(X,Y)xqJyqk 

j =0 k=0 

j+kKK 

with 

where 

and 

d-i 
i. 

bjk (X, Y) = ~ aijk (X) Y 

i=O 

degaijk(X) < (q/d) - d i - j - k 

By Lemma 2D, if not all 

Since the derivatives of 

(s 
a ( X , Y )  = 

K = (~k/d)M + d - 2 . 

aijk(X ) are zero, then 

a ( x , ~ )  r o . 

X q a n d  ~ q  v a n i s h ,  i t  i s  c l e a r  t h a t  

K d-i 

b (~)  ~ jk (X'Y) XqJyqk ' 

j=O k=0 
j+k~-K 

where, by Lemma 3A, 

degb (Z) ~ deg + (2d - 3)~ % (q/d) - jk bjk d - j - k + ( 2 d  - 3)# ,  . 

We need to have the polynomial 

Case l: k = i. Here 

We want a (~) (x,y) = 0 for 0 ~ Z < M, x E ~ and y 6 ~k(x) . 

x,y s F , so x q yq = x and = y . 
q 
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c (s (x,v) = 

K d-i 

~ b (~) (x,Y)xJy k 
j k  

j =0 k = O  

j + k K K  

vanish for the pairs (x,y) under consideration. Notice that 

d e g c  (~') g ( q / d )  + ( 2 d  - 3)~, - 2 .  

So  

C a s e  2 :  k = 2 .  H e r e  x E F , f ( x , y )  = 0 a n d  e 2 ( x , y , y q )  = O. 
q 

x q = x a n d  

0 = e 2 ( x , y , y q )  = y q ( d - l )  + y q ( d - 2 ) y  + . . .  + y d - i  

d - 2 )  . . .  
+ g l ( X ) ( y q ( d - 2 )  + . . .  + Y + + g d _ i f x )  . 

Hence we may express yq(d-l) in terms of 

coefficients which are polynomials in x,y 

That is, we need that a certain polynomial 

(~) 
for (x,y,y q) , where c 

l)yq,...,yq(d-2), with 

of degree at most d-i. 

(~)  
c ( x , Y , Y )  v a n i s h e s  

( X , y , y  ~) i s  o f  d e g r e e  a t  m o s t  d - 2 

in yl and of total degree at most (q/d) + (2d - 3)~ - 2 in X,Y. ) 

In both cases, we need that a certain polynomial c(~)(X,Y,Y ~) 

vanishes at (x,y,yq), where 

degc (~) in X,Y together is g (q/d) + (2d- 3)~- 2 , 

degc (~) in Y' is ~ s - i . 

We know that for a pair (x,y) with f(x,y) = 0 , 

d y = -  g l ( x )  y d - I  - . . .  - g~tx~" " 

and for positive integers t , 
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(t) ( x )  d-l+t (t) (x)yd-i + ... + gd ' 
Y = gl 

where 

(See  ( 2 . 3 ) ) .  

( t )  ( x )  ~ t + i - 1 deg gi 

d d+l 
We may express y ,y ,... in terms of 

d-I 
l,y,...,y 

Condition (ii) of the lemma is certainly satisfied if 

is identically zero for 0 ~ ~ < M . 

d (j~) (X, Y, Y') 

The number of coefficients of d (Z) (X,Y,Y') is at most 

s + (2d - 3)4 - I) < s + (2d 2 - 3d)~k~ �9 

The number B of coefficients of all polynomials d (~) (X,Y,Y') , 

0 K ~ < M, satisfies 

B < ekqM + ~),�89 2 ( 2 d  2 - 3d) . 

T h e s e  c o e f f i c i e n t s  a r e  l i n e a r  c o m b i n a t i o n s  o f  t h e  c o e f f i c i e n t s  o f  

t h e  a i j k ( X )  We o b t a i n  a s y s t e m  o f  l i n e a r  h o m o g e n e o u s  e q u a t i o n s  

i n  t h e  a s  y e t  u n d e t e r m i n e d  c o e f f i c i e n t s  o f  t h e  p o l y n o m i a l s  a (X) . 
i j k  

The number  o f  c o e f f i c i e n t s  a v a i l a b l e  f o r  a "k i s  a t  l e a s t  
i J  

(q/d) - d - i - j - k >- (q/d) - d - 2(d-i) - j > (q/d) - 3d - j . 

Hence c (~) (x,y,y q) = 0 precisely if a certain polynomial 

d (~) (x,y,y q) = 0 , where 

degxd(~) ~ (q/d) + (2d - 3)~ - 2, 

degyd (~) ~ d - 1 , 

degy 'd(Z) ~ s 1 . 
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j , 0 ~ j ~ K - k, the number of available coefficients 

(q/d) (K- k+ 1)-3d(K+ l) -~(K-k) (K-k+l) =((q/d)-3d) (K+ l) -~(K-k) (K-k+l) - (q/d) k. 

Summing over k, 0 < k g d - l, the number of available coefficients 

is 

(q - 3d 2) (K + l) - �89 K2d - (q/d)�89 - i) 

Summing over i, 0 g i g d - l, we obtain the total number A of 

available coefficients. This number satisfies 

A > (q - 3d 2) (Kd + d) - �89 - l) - ~ ~d 2 

> (q - 3d 2) (s 2- d) ---~ qd(d- i) - �89 2 

> ~ k q M + q ( ~ d  2 - � 8 9  - �89 E ~ I -  6 e)Md 2 - 2  E) Md 2 , 

s i n c e  M ~= d 2 by  h y p o t h e s i s .  I n  o r d e r  t h a t  t h e  p o l y n o m i a l s  

d (~) (X,Y,Y ' )  v a n i s h ,  we h a v e  t o  s o l v e  a homogeneous  s y s t e m  of  B l i n e a r  

e q u a t i o n s  i n  A v a r i a b l e s .  In  o r d e r  t o  g e t  a n o n - z e r o  s o l u t i o n ,  i t  

is sufficient that B < A . We need that 

s 2 - 3d + E k) + 8 akMd2 < �89 qd(d - l) �9 

Since ek : 1 or d - i, this inequality certainly holds if 

�89 I(d - l)(2d 2 - 2d - i) + 8 Md 2(d - l) < �89 qd(d - i) 

Hence it holds if I(d - i) + 8 Md < -~ q . But this is true by 

(4.4) and by our hypothesis that 2 (d - I) (M + 8) 2 <- q.. 

Finally, 

dega(X,Y) ~ Kq + (q/d) 

= (~k/d)qM + q(d-2 + (l/d)) 

< (~k/d) qM+ q(d- (3/2)) 

This concludes the proof of Lemma 4A. 
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Remark: Set 

c (x ,  Y) = f 2 M ( x , y )  a (X, Y) 

T h e n  ( i )  c (X ,~ )  d 0 , 

(ii) if we take derivatives for 0 ~ ~ < M, then 

D s  = f 2 M - 2 s  (s  (X ,~ )  �9 
Y 

H e n c e  f o r  x E ~ , y E % x ( x )  , we h a v e  D ~ c ( x , y )  = 0 . 

(iii) degc K (ek/d) qM + q(d - (3/2)) + 2Md �9 

But if q > 250d 5 2d , t h e n  2 Md ~ 2 d ~  = ~ q < � 8 9  s o  t h a t  

4-4- 

d e g c  < ( e k / d )  qM + q ( d -  1) . 

5. Construction of two polynomials. 

LEMMA 5A: Suppose M satisfies the conditions of Lemma 4A. 

Let k = 1 or 2 be fixed. Then there exists a polynomial r(X) 10 

with 

( i )  D ~ r ( x )  = 0 f o r  x E ~ a n d  0 ~ ~ < M l ~ k ( x )  / 

(ii) degr(X) g ~)qM + qd(d- i) . 

Proof: We have constructed c(X,~)) 

where ~ denotes the norm from the field 

if f(X,Y) = (Y - ~i)(Y - ~2) ... (Y - ~d ) 

d 

r(X) = - - ~  c ( X , ~ j )  �9 

j = l  

i n  w  S e t  r ( X )  = ~ ( c  ( X , ~ ) )  , 

F (X,~)  t o  F (X) . So 
q q 

t h e n  
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Now 

, .r , )  u u 
(5 .1)  Ds = ~ Ul . . . .  Ud" (D lc(X,~l)) . . .  (D d e ( X , ~ d ) ) .  

Ul+ ... +u d =~ 

The R.H.S. of (5.1) is a symmetric polynomial in ~i,...,~ d ; 

hence, a polynomial in the elementary symmetric functions of 

91'''''~d : 

n r(X) = k(X,gl(X ),...,gd(X)) . 

So for x E F 
q 

D r ( x )  = k ( X , g l ( x ) , . . . , g d ( x ) )  . 

If x E ~ , f(x,Y) has d distinct roots yl,...,yd 6 F~q , and 

s i(Yl'''''Yd ) = gi(x) . Therefore 

u 

lu (o le(x,Yl)) ... (O dc(x,Yd)). (5.2) D~,r (x) = ~ ~: u 

Ul+ ... +Ud=~ l:'''Ud " 

[A sophisticated reader might say that (5.2) is obtained from (5.1) 

by the specialization X,~I,...,~ d -* x,Yl,.,~ d .] 

We have 

{Yl .... ,yd } = ~l(X) U ~2(x) 

Suppose, without loss of generality, that 

YI'''''Yt s ~(x) , 

so that t = l~k(x) l Each summand of the R.H.S. of (5.2) has 

u I + u 2 + ... + u t < s . 

Therefore for some integer s , 1 ~ s ~ t , 
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u < 
S ~ ~ 

< = M . 

By part (ii) of the remark at the end of w 

U 

Sc(x,y s) = 0 , D 

a n d  e a c h  s u m m a n d  o f  ( 5 . 2 )  h a s  a z e r o  f a c t o r .  T h e r e f o r e  f o r  e v e r y  

x6~, 

Now 

D~r (x) = 0 

r (x) = 

(0~g< M]Z (x) l) 

d 

7 c (x,~j) 
j=l 

is a polynomial in X,~l,...,~d , which is symmetric in ~i,...,~ d 

and is of total degree at most 

d((~k/d)qM + q(d - i)) = ~kqM + qd(d - i) 

Hence by Lemma 3B, 

degr(X) ~ ExqM + qd(d - i) 

The proof of Lemma 5A is complete. 

w Proof of the Main Theorem. 

For the moment, we consider only the case q = p . For then 

for every x 6 ~ , 

MI~ k(x) l ~- dM < q = p , 

and we need this in order to use Theorem IG of Chapter I and to 

conclude that the polynomials rk(X) constructed in Lemma 5A have 

zeros of the desired multiplicity. The general case will be treated 

in w 



1 1 7  

Set 

x E ~  

O b s e r v e  t h a t  b y  ( 4 . 5 ) ,  

(k = 1,2) . 

Also, 

Now N 1 is the number of zeros (x,y) 6 F 2 
q 

f(X,Y) In view of (4.3), we have 

and 

d e g  r k ( X )  q d ( d  - 1) 

N~ ~ M ~ ~k q + M 

with h (x)  ~ 0 o f  

N ~ N 1 + d(d-l)d < q + d(d-I)(q/M) + d 3 . 

N > N 1 > qd - d 3 - N 2 

qd - d 3 - (d- l) q - d(d- i) (q/M) 

= q - d(d- i) (q/M) - d 3 . 

Therefore 

(6.1) IN- q/ < d ( d -  1) (q/M) + d 3 

T h i s  i n e q u a l i t y  h o l d s  f o r  a l l  i n t e g e r s  M s a t i s f y i n g  t h e  c o n d i t i o n s  

o f  Lemma 4A. C h o o s e  M t o  b e  t h e  m u l t i p l e  o f  d w i t h  

1 t 
( q / 2 d )  ~ - 5d < M ~ ( q / 2 d )  2 - 4d . 

d(q - d(d - i)) ~ N 1 + N 2 = dl~ 1 ~ dq . 

C l e a r l y  t h e  n u m b e r  o f  z e r o s  o f  r k ( X )  , c o u n t e d  w i t h  m u l t i p l i c i t i e s ,  

c a n n o t  e x c e e d  i t s  d e g r e e ;  h e n c e  b y  Lemma 5A, and  by  Theo rem 1G o f  

C h a p t e r  I ,  

MNk g d e g r  k (X)  , 
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Then since d ~ 2 , 

! 
M ~ ( q / 2 d )  2 - 8 , 

or (M+ 8 )  2 ~ q / 2 d  , 

so certainly 

2 ( d -  1) (M+ 8 )  2 < q . 

Also, 

s i n c e  q > 250 d 5 . The a s s u m p t i o n  t h a t  q > 2 5 0 d  5 

t h a t  

5,~2-d 3 / 2  < 1 �9 
J .  q-g 3 

i 
By making the simple observation that if 0 < x < ~ , then 

1 3 
< 1 + x 

l-x ~ ' 

we o b t a i n  

q2 

a l s o  g u a r a n t e e s  

F i n a l l y  by  ( 6 . 1 ) ,  

x l(l 8~ ~d3/2) d 3 

l -ql + 4 + 

+ d 3 < ~ { - d 5 / 2 q  I / 2  _ ~ - d 3 / 2 q  I / 2  16d 4 + 

< ~2-  d 5 / 2 q l / 2  

But  t h i s  i s  t h e  a s s e r t i o n  o f  Theorem IA.  
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We still have the restriction that q = p . In the 

next sections we shall define hyperderivatives in function fields in 

order to remove this restriction. 

w Valuations. 

Let K be any field. As usual, K is the multiplicative 

group of K. 

Definition: A valuation is a mapping v from K o n t o  the ring 

~, of integers such that 

( i )  v ( a b )  = v ( a )  + v ( b )  , 

( i i )  v ( a  + b )  >- m i n { v ( a )  , v ( b ) )  , 

w i t h  t h e  a d d i t i o n a l  c o n v e n t i o n  t h a t  v ( 0 )  = + ~ . 

L e t  K 0 b e  t h e  s e t  o f  a 6 K w i t h  v ( a )  >_ 0 . I t  i s  e a s y  t o  

s e e  t h a t  K 0 i s  a s u b r i n g  o f  K ,  a n d  t h a t  t h e  u n i t s  o f  K 0 a r e  

p r e c i s e l y  t h e  e l e m e n t s  a E K 0 w i t h  v ( a )  = 0 . 

L e t  K 1 b e  t h e  s e t  o f  a ~  K w i t h  v ( a )  >_ 1 . I t  i s  c l e a r  t h a t  

K1 c % , a n d  t h a t  K 1 i s  c l o s e d  u n d e r  a d d i t i o n  a n d  s u b t r a c t i o n .  

I n  f a c t ,  K 1 i s  a n  i d e a l  i n  K0 , s i n c e  i f  a ~ KO , b 6 K 1 , t h e n  

v(ab) = v(a) + v(b) >~ 0 + i = 1 , 

so that ab E K 1 �9 Moreover, any proper ideal in K 0 must not con- 

tain a unit, so must not contain any element a with y(a) = 0 , 

hence must he contained in K 1 . That is, K 1 is a maximal ideal 

in K 0 ; in fact, K 1 is the unique maximal ideal in K 0 . We 

summarize in 
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LEMMA 7A: Let . . . .  v be a valuation of a field K . Let K 0 

be the set of a E K with v(a) m 0 , and K 1 the set of a E K 

with v(a) ~ 1 . Then K 0 is a subring of K, and K 1 is the 

unique maximal ideal in K 0 . Hence K0/K 1 is a field. 

Example: Let E = ~ , and p any prime. Any non-zero rational 

number can be written in the form (a/b)p ~ , p~ab , where v is 

unique. Put 

v ( ( a / b ) p ~ )  = ~ . 

T h e n  i t  i s  e a s y  t o  c h e c k  t h a t  v i s  a v a l u a t i o n .  Now QO i s  t h e  

r i n g  c o n s i s t i n g  o f  z e r o  a n d  o f  e l e m e n t s  ( a / b ) p  ~ w i t h  v ~ 0 , a n d  

Q1 i s  t h e  u n i q u e  m a x i m a l  i d e a l  i n  QO ' c o n s i s t i n g  o f  z e r o  a n d  o f  

e l e m e n t s  ( a / b ) p ~  w i t h  ~ ~ 1 . A c o m p l e t e  s e t  o f  r e p r e s e n t a t i v e s  

of r modulo Q1 is {0,1,2,..o,p-I) �9 For if (a/b) p ~ E Q0' 

pick the integer x in {0,1,...,p- l) with 

ap ~ bx (mod p) 

a ~ a p  - b x  
T h e n  ~ p - x = b E Q1 ' so that x lies in the same coset 

modulo Q1 as (a/b)p ~ . It follows that Q0/Q 1 is a field with 

p elements, whence 

~ 0 / @ 1  ~ F p  

LEMMA 7B: Suppose K is a field with a valuation v , and 

i s  a h o m o m o r p h i s m  f r o m  K 0 o n t o  a f i e l d  F w i t h  k e r n e l  K 1 L e t  

X be a variable. Then there exists an extension v ~ of v to 
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K(X) with v t (X) = 0 , and an extension %Or of %o where 

%O : (K(X) -~ F(X) , such that (X) = X , r is onto, and the 

kernel of %0' is (K(X))l " 

Proof: First define %0' on Ko[X ] by 

%Ol + . . .  = . . .  
( a  0 + alX + at xt) %o(a O) + %0(al)X + + %o(at)X t 

It is clear that %O~ is a homomorphism and that %0t extends 

Next, define v I on K[X] by 

t at Xt) v (a 0 + alX + ... + = min(v(a O),..~ 

Clearly, 

t t 
v ( f ( X )  + g ( X ) ) ~  m i n ( v ' ( f ( X ) ) , v  ( g ( X ) ) )  . 

We claim that 

( 7 . 1 )  v '  ( f ( X ) g ( X ) )  = v '  ( f ( X ) )  + v '  ( g ( X ) )  

T h e r e  e x i s t s  a n  e l e m e n t  p E K w i t h  v ( p )  = 1 , 

Put 

%O �9 

since v is onto. 

(x )  = p - V ' ( f )  f ( x )  

I 
- v  ( g )  

( x )  = p g ( x )  

T h e n  v t ( f )  = v ~ ( g )  = 0 , a n d  i t  s u f f i c e s  t o  s h o w  t h a t  

s i n c e  t h e n  

' = v' (fg) v' v' v ( f g )  v I ( f )  + v I ( g )  + = ( f )  + ( g )  

^^ 

v ~ (fg) = 0 , 

We may therefore assume without loss of generality that v' (f) = 

v l(g) = 0 . We wish to show v I (fg) = 0 . But since v I (f) = 0 , 

f(X) E Ko[X] , and similarly g(X) E Ko[X ] ; therefore f(X)g(X) E~[X], 
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v ~ (fg) >- 0 . Suppose we had v ' ( f g )  >~ i . 

~ W~ . ~p ( f )  ( g )  = ( f g )  = 0 

So  e i t h e r  ~p/ ( f )  = 0 o r  cp' (g )  = 0 , h e n c e  e i t h e r  

I 
v (g )  >- 1 ,  w h i c h  i s  a c o n t r a d i c t i o n .  T h e r e f o r e  v 

p r o o f  o f  ( 7 . 1 )  i s  c o m p l e t e .  

T h e n  f(X)g(X) E K I [ X  ] 

v ~ (f) >~ i or 

' (fg) = 0 �9 The 

Hence if in general v ~ is defined by 

, / f ( x )  ~ v '  v '  v ~ g-UffY/ = (f (x)) - (g (x)) , 

t h e n  v '  b e c o m e s  a v a l u a t i o n  o f  K(X) . 

To f u r t h e r  e x t e n d  ~ ,  n o t i c e  t h a t  e v e r y  e l e m e n t  o f  

i s  o f  t h e  f o r m  ( f  (X) / g  (X) ) , w h e r e  v t ( f )  2 0 a n d  

( I f  n e c e s s a r y ,  m u l t i p l y  b o t h  f a n d  g b y  a s u i t a b l e  p o w e r  o f  

p E K ,  w h e r e  v ( p )  = 1) . D e f i n e  W~ on  ( g ( X ) )  0 b y  

, / f ( x ) ~  = ~ ' ( f ( x ) )  

( K ( X ) )  0 

v '  (g )  = 0 . 

It is easy to check that ~' is a well-defined homomorphism from 

( K ( X ) ) 0  o n t o  

E x a m p l e  : 

w h e r e  3 ~  a b  , 

F(X) with kernel (K (X)) 
1 " 

Let K = Q . write every non-zero rational as 

and define 

, [ s x  + 6 \ =  fie E 
/xT +J x + l  

Then, for e x a m p l e ,  

v , / 5 X  + 6~ 

d = 
O -  0 = 0  , 

a 3"o 
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LEMMA 7C: Let v be a valuation of a field K . Let ~0 be 

a homomorphism of K 0 onto F, with kernel K 1 . Let ~ be 

algebraic over F. Then there exists an element ~ which is 

algebraic over K, such that ~ is separable over K if ~ is 

separable over F. There exists a valuation v ~; of K~) , with 

v;~ 5) = 0 , extending v ; and there is a homomorphism ~0 ~ of 

K~ onto F(~) extending ~ , such that the kernel of II is 

K~) 1 

K-- K(~) ~0 ~ KS) 0 ~" 
v 1 ~v" ~o 

Proof: Let f(X) be the irreducible defining polynomial of 

over F. We may choose f(X) to have ieading coefficient 1 . Let 

f(X) be a polynomial in K0[X ] with the same degree as f , leading 

coefficient 1 , and with ~0 t (f(X)) = f(X) , where t is the 

epimorphism constructed in Lemma 7B. 

We claim that f(X) is irreducible over K. Suppose , by way 

of contradiction, that f(X) = fl(X)f2(X) is a proper factorization. 

We may assume that v ~ (fl) -> 0 and v ~ (f2) >- 0 . (Otherwise, 

multiply by appropriate powers of an element p of K with v(p) = i.) 

Then fl' f2 E K0[X ] , and 

f = ~0 ~ (f) = ~ (fl)~01 (f2) = flf2 

provides a proper faetorization of f , which gives a contradiction. 

Pick a root, say ~ , of f(X) . It is clear that if ~ is 

separable over F, then ~ is separable over K o 
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Now d e f i n e  ~" on KO[~] by 

H o (a 0 + a l ~  + ooo + a t ~  t )  = (0(a O) + ~ ( a l ) ~  + o. + ~ ( a t ) ~  t 

~" is a homomorphism onto F[~] = F~) . Also define ~i on 

K~) b y  

^ 

v l/ (a  0 + a l ~  + .oo + a d _ l  ~ d - 1 )  = m i n { V ( a o ) , V ( a l ) , O . o , V ( a d _ l )  } , 

where 

d = degree of ~ over F = degree of ~ over K . 

It is easily verified that v is a valuation of K~) , extending 

v . The proof that for ~,~ E Kd) , 

# VII  V u V ( ~ p )  = (0 0 + ( p )  , 

goes as the proof of (7.1) in Lemma 7B. The rest of Lemma 7C now 

follows after noting that Kd) 0 = K0[~]_. @ 

Example: Let K = Q, and p a prime~ 

v p = ~ if p~ ab . 

We have seen that there is a homomorphism ~0 

We define as before, 

from ~0 onto Fp 

with kernel Q1 The field F where q = p , is of the type 
q 

F = F ~) , with ~ separable algebraic of degree ~ . Let 
q P 

be chosen as in the lemma and write N = Q~) Then there is a 

valuation v" of the field N = Q~) extending v . Also there 

is a homomorphism ~i from N O onto F with kernel N 1 
q 

vl Iv" 
~(J {==} = ~U {=} F ~ F 

P q 



125 

Remark. It is clear that N is a number field of degree 

Also, experts in algebraic number theory will say that p is 

"inertial" in N 

< . 

The assertions of the following exercises will not be needed 

in the sequel. 

Exercise 1. Show that every field of characteristic p ~ 0 

is the homomorphic image of an integral domain of characteristic 0. 

(For general fields, an appeal to Zorn's Lemma is necessary~ It is 

not necessary for fields which are finitely generated over Fp). 

Exercise 2. Let v be a valuation of a field K. Given a 

monic polynomial f(y) = yd + alYd-1 + ... + ad with coefficients 

in K , put ~ (f) = min (i/i)v(a.) . Show that for monic poly- 
1 

l~i~d 

nomials f , g, we have ~ (fg) = min~ (f) ,4 (g)) �9 Deduce that if 

deg f = d and ~ (f) = m/d with (m,d) = 1 , then f is irreducible. 

(If K = F(X) and if v (a (X) /b (X) ) = degb(X) - dega(X) , these 

results reduce to Theorem IB, Lemma IC. If K = ~ and if 

v((a/b)pM) = v , our irreducibility criterion yields Eisenstein's 
criterion.) 

w Hyperderivatives again. 

In w of Chapter I we defined hyperderivatives for polynomials. 

In the present section we shall more generally define hyperderivatives 

for algebraic functions. For another approach to hyperderivatives 

(Hasse derivatives) see Hasse (1936 a) , TeichmUller (1936). 

Let F be a finite field of characteristic p. We have a 
q 

valuation of ~ given by 

v pX) 

Associated with this valuation v of ~ is a homomorphism ~ from 

Q0 onto Fp with kernel @l " We can then by Lemma 7C find a field 

N ~ Q such that v can be extended to a valuation v' of N, and 

by Lemma 7B further extended to a valuation ~ of N(X). Moreover, 
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can be extended to a homomorphism ~' from N O onto F with 
q 

kernel N 1 , and q' can be extended to a homomorphism ~z from 

N(X)0 onto Fq(X) with kernel N(X)I . Suppose f(X,Y) s Fq[X,Y] 

is an irreducible polynomial which is separable in Y . Let ~ he 

an algebraic function with f(X,~) = 0 . Then there is by Lemma 7C 

an element ~ which is separable algebraic over N(X) , such that 

we may extend v # to a valuation v Hj of N(X,~) , and ~z to a 

homomorphism i~i from N(X ~)0 onto F (X,~) having kernel N(X,~) I. ' q 

QO ~ NO ~ (N(X))o = (N(X'~))O 

Fp~ F q ~  Fq(X) E Fq(X,~) 

Hereafter, v, v I, , are all denoted by v, and ~, ~ , , 

~ are all denoted by ~ . Elements in fields of characteristic 

zero will he written as ~, ~, a(X) , etc. 

Let D be the differentiation operztor on N(X). D may be 

extended to a derivation on N(X,~) , since the extension N(X,~) 

(~) 
over N(X) is separable. We introduce an operator E on 

N(X,~) by 

E ~ )  ~ )  = 1 D ~(~) �9 

One verifies immediately that 

(S.1) S(~)  (al  ~ "'" a t  ) = 

Ul+ ... +u t =~ 

(E (u t ) (Ul) (~ l ) )  . . .  (E (g t ) )  . 
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LEIVI]WJ~ 8A: For any ~ E N(X,~) , 

v ( E  (~) ~ ) )  ~ v ~ )  ( l  = 0 , 1 , 2 , . . . )  

P r o o f :  The  p r o o f  i s  b y  i n d u c t i o n  on  % . The  c a s e  % = 0 

t r i v i a l .  To go  f r o m  ~ - 1 t o  ~ , we c o n s i d e r  t h r e e  c a s e s .  

( i )  The  lemma i s  o b v i o u s  i f  ~ E N I x ]  . 

i s  

(ii) Suppose ~ t N(X) . 

}(X)  = g ( X ) ~  . By ( 8 . 1 ) ,  

( 8 . 2 )  E (~) ( f ( X ) )  = 

Let ~ = f ( X ) / g ( X ) ,  s o  t h a t  

j = 0  

(E (%-J)g(X))E(J)~ . 

S i n c e  f ( X ) , g ( X )  6 N[X] a n d  b y  i n d u c t i o n  on  % ,  t h e  l e f t  h a n d  s i d e  

o f  ( 8 . 2 )  and  e v e r y  summand  on  t h e  r i g h t  h a n d  S i d e  o f  ( 8 . 2 ) ,  e x c e p t  

possibly the summand  

+ V(~) Hence also 

v(E(~)~) ~ v~) . 

(iii) Any 

g ( X ) E ( ~ ) ~ ,  h a s  a v a l u a t i o n  => v ( f ( X ) )  = v ( g ( X ) )  

v ( g ( X ) E ( ~ ) ~ )  >- v ( g ( X ) )  + v ~ ) ,  w h i c h  y i e l d s  

E N(X,~)  may b e  w r i t t e n  a s  

^ ^ ^d-i 

= r 0 ( X )  + (X) + . . .  + r d _ l ( X )  ~ 

with r0(X),rl(X),...,~d_l(X ) E N(X) . Since 

v ~) = min{v(~0 (X)) ,...,v(rd_l (X)) } , 

it suffices to show that for 0 ~ i ~ d - l, 

(E(~) ^ (x)~i)) a v(ri(X)~i) = v(ri(X)) v (r i 

Applying (8.1) to the product r i(X)~ I = r i(X)~ ..~ ~ , 

clear that we need only show that 

it becomes 

v(E (~) (~)) -> 0 . 
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Let 

f(X,Y) = yd + g l (X)  yd-1  + . . .  + gd(X) 

Now ~ was constructed as the root of a polynomial 

where 

(8.3) 

(X, Y) yd yd- I 
= + gl(X) + "'" + gd(X) 

~0(i(X)) = gi(X) (i <-- i d) We have 

d 

o = ~ix,~)) ~ ~ ~d-~ (x)~  ' 
i = O  

and by  ( 8 . 1 ) ,  

E(~) ~ ^i = E~) ( % - i  ( x ) ~ )  (~d- i  (x)~) . . .  ~)) 

(u o) (u I) 

UO+ ... +u. =~ 
1 

(u i) ^ 

~ ( U o , . . . , u  i )  
Uo+ ... +ul =~ 

say. Collecting the terms where one of Ul,...,u i equals 

i}d_  i ( x ) ~ i - l E  (%) ~ )  + Z 
Uo+ ... +Ul =% 

Ul,U 2,...,ui<~ 

^ 

~(Uo,Ul,-..,u i) 

Hence by ( 8 . 3 ) ,  

o = E (~) ( ~ ) } y ( x , ~ )  + 
d 

~ ~(Uo . . . .  ,ui> 
i =0 Uo+ ... +U.l =~ 

Ul,-.o,Ui <% 

% , we o b t a i n  



129 

But by induction hypothesis, every summand, except possibly the 

first one, has a valuation => 0 . Hence also the first one has, i~e., 

v(E (~) ~ ) )  + V(~y(X,~)) >- 0 . 

Since f has coefficients in N O , 

V(~y(X,~)) ~ 0 . 

But ~p(}y(X,~)) = fy(X,~) ~ 0 , and hence 

( 8 . 4 )  

s i n c e  o t h e r w i s e  

= o , 

}y(X,~) E N(X,~)I(= kernel of ~0), a contradiction. 

It follows that 

v(E (~) @)) >- 0 , 

and the proof of the lemma is complete. 

We are going to define operators E (~) 

E F (X,~) Then there exist ~ E N(X,~) 0 U 
q 

Lemma 8A, 

on Fq (X,~)  S u p p o s e  

with ~0~) = ~ By 

v(E (~)  ~ ) )  ~ v ( a )  >- 0 , 

whence E(%)~) E N(X,~) 0 Define E (%) on F (X,~) 
. q 

E (%) (a)  = ~o (E (~)  ( ~ ) )  

by 

The new operators E (gj) are well-defined, because if ~ i  ) = ~0~ 2) =~ , 

then 1 2 ) = 0 , whence 

v(E(~)~l ) - E(~)~2 )) = v(E(~)~l - U2 )) ~ V~l- U2 ) -~ I , 

so that ~(E (%) ~i ) - E (%) ~2 )) = 0 , 
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whence 

%0(E (~) ~i)) = ~(E (~) ~2 )) 

An immediate consequence of our definition and the formula (8.1) 

for E (~) in N(X,~) is 

(u 1) (u t )  
( 8 . 5 )  E ( Z ) ( a  1 . . . a  t ) = ~ (E Ca l ) )  . . .  (E ( a t ) )  

u 1 + . . .  + u t = 

Remark: In the definition of the operators E (~) on 

we constructed the field N(X,~) , which is not uniquely determined 

by Fq(X,~) Conceivably, the operators 

this construction. In fact, the operators 

of the construction. 

A sketch of the proof is as follows. 

~ q ( X , ~ )  , 

E "~'( ~ c o u l d  d e p e n d  on 

(~) 
E a r e  i n d e p e n d e n t  

We proceed by induction on 

. In the step from ~ - 1 to ~ we consider three cases, which 

are analogous to those in the proof of Lemma 8A. 

(i) ~ E Fq[X] . In this case it is easily seen that our 

hyperderivatives coincide with those defined in w of Chapter I. 

Incidentally, we note for later that Theorem 6D of Chapter I is 

valid. 

(ii) a ~ F (X) . 
q 

analogy with (8.2), 

Say  ~ = f ( X ) / g ( X ) .  By ( 8 . 5 )  and i n  c o m p l e t e  

E (~) f(X) = 

j=O 

(E (Z-j) g (X))E (J)~ . 

Since f(X),g(X) E Fq[X] , and by induction on ~ , the left hand 

side and every summand on the right hand side, except possibly the 

summand g(X)E(Z)a , is independent of our construction. Hence also 

this summand, whence also E(~)a , is independent of our construction. 
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(iii) Lt E Fq(X,~) . The argument is analogous to that in 

part (iii) of Lemma 8A. 

LEMMA 8B: L e t  1i E F (X,~) . S u p p o s e  0 < /~ < p~ . Then 
q 

E (~) ~ P ~ )  = 0 . 

P r o o f :  P i c k  ~ E N(X,~)  0 w i t h  q ) ~ )  = ~ . Then 

~'. ~ -'i)' D 

We h a v e  

v 1 (1~ p~-  1D CI)) (.~- 1) (I~PD-1D ~) ) C(~ - i) : D(t-l) = v(E 

^p~-I ^ 
>- v ( ~  D ~ )  >- 0 . 

S i n c e  0 < ~ < p ~ , v ( ~ ) >  0 . T h e r e f o r e  v ( E ( ~ ) ~ P ~ )  > 0j  so  t h a t  

E (~) (L Lpp) = ~ ( E ( ~ ) ~  ~ )  = 0 . 

w Removal of the condition that q = p . 

We p r o v e  t h e  a n a l o g u e  t o  Lemma 3A: 

LEMMA 9A: Let f(X,Y) and ~ be given as usual. Let M 

be a positive integer and a(X,Y) a polynomial. Then for 0 K ~ ~ M, 

(9. i )  

where 

= f2M-2~  (X,9)  a (~) (X,9)  , E (~) ( f 2 M ( x , 9 )  a ( X , 9 ) )  y 

(~) 
(X,Y) i s  a p o l y n o m i a l  w i t h  

(~)  
d e g a  (X,Y) K d e g a ( X , y )  + ( 2 d -  3).6 . 
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Proof: Find a polynomial a(X,Y) in N0[X,Y ] , of the same 

degree as a(X,y) , with ~0(~(X,Y)) = a(X,Y) t). Lemma 3A did not 

depend on the ground field F If we apply this lemma to 
q 

D~(~2M(X,~)a(X,~)) and d iv ide  by ~ : ,  we obta in  

E (~) (?~M/x,g) a (x,~))  = ~2M- 2~ (x ~ ) a  (~) (x,~) 
Y ' 

(9.2) 

where 

dega(Z) (X,Y) <-deg~(X,Y) + (2d- 3)~ . 

We may suppose that a(~) (X,Y) 

because we may use the relation 

etc., as linear combinations of 

not increase the total degree of the polynomial. 

We have 

v(? M > o 

but V(fy(X,~)) = 0 by (8.4), whence v(~ (~) (X,~)) > 0 . Let 

^ (~) (X,~) b0(X) + bl(X)~ + ... + bd-l(X)~d-1 a = 

then by our definition of v on N(X,~) , 

v~i(X)) >_ 0 (0 ~ i g d - l) 

Thus ~ (~) (X,Y) lies in N0[X,Y]_. . We may therefore apply 

^ (~) 
a (X,Y) ; let 

a (~) 
(X,Y) = W(~(Z)(x,Y)) . 

Applying %0 to (9.2), we obtain (9.1). 

is of degree at most d- 1 in Y, 

f(X,~) = 0 to  express  ~d ~d+l . . . ,  

i,~,...,~ d-I This process does 

We wish to prove the analogue of Lemma 4A, where the higher 

derivatives D ~ are replaced by the operators E (~) We set 

t )  
Clearly 

an obvious way to 

may be extended not only to 

~o[X, Y] . 

to 

N0[X], but also in 



133 

and put 

But 

h (X, Y,Z,W) = 

K d-I 

~_] b jk(X,Y)  zJwk , 

j =0 k=0 

j ' + k ~ K  

a(X,Y) = h(X,Y,Xq,Y q) We are interested in 

f2M-2s "X ~" a (9') (X,~) (~) (f2M (X,~) ~ (X,~))) = Y t ,!~J~ 

K d-i 

a = 2 ?. o . (X,9)xqJ~ qk 
Jk 

j =0 k = O  

j + k ' : K =  

K this follows from (8.5) and the fact that if m < M % q = p , then 

by Lemma 8B, 

E (m) (X qj ) 0, E (m) qk = ~ ) =0 

The remainder of the proof is exactly the same as the proof of 

Lemma 4A. In this way we obtain an analogue to Lemma 4A. 

The rest of the proof of Theorem IA in the general case is 

carried out exactly as in the special case q = p . No further 

difficulties arise. But of course we have to use Theorem 6D of 

Chapter I instead of Theorem IG of Chapter I. 



IV. Equations in Many Variables 

References: Chevalley (1935), Warning (1935), Weil (1949), 

Borevich & Shafarevich (1966), Ax (1964), Joly (1973). 

w 1 . Theorems of Chevalley and Warning. 

We adopt the notation X= = (XI,X2,...,X n) for an n-tuple of 

v a r i a b l e s ,  a n d  x = ( X l , X 2 ,  . . . , X n )  f o r  a n  n - t u p l e  i n  F n o r  ~ n  = q q 

i.e. a point of F n or ~n 
q q 

LEMMA 1A: Suppose u is an integer with 0 ~ u < q- 1 Then 

X U = 0 

X E F  q 

Proof: If u = 0 , 

x 0 = ~ 1 = q " 1 = 0 �9 

X E F q  X E F q  

If 0 < u < q- 1 , let a be a generator of the cyclic group F 
q 

Since a has order q- 1 , it follows that a u ~ 1 . But as x runs 

through Fq , then so does ax , so that 

x u =  ~ ( a x )  u 

x EFq x EFq 

u ~ u a x 

x EFq  

The result follows immediately. 

LEMMA IB: Suppose f(X) = f(Xl,...,X n) is of total degree 

d < n(q- I) Then 

f(x) = 0 
n 

xE F = q 

Proof: By linearity, it is clear that we may restrict our attention 

u I X22 ... u to the case where f(X)= = X 1 Xnn Then 
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f(x) = 

= 

n(x ) u i 
�9 

�9 = i EFq 

But since u_ +u~ + ... +u = d < n(q- 1) 
I Z n 

nu. < d < n(q- i) , whence with u < q- i . 
3 3 

U 

~ xJ =0 , 
, 3 

x. EF 
3 q 

there is a u. with 
3 

By Lemma IA, 

and the desired conclusion follows. 

THEOREM iC: (Warning's Theorem). Let F 
q 

Let fl(X) ..... ft(X) be polynomials in Fq[X] 

dl,...,d t , respectively, and suppose that 

be of characteristic 

of total degrees 

P �9 

(i.i) d = d I + ... + d t < n . 

Then the number N of common zeros of fl,...,ft satisfies 

N - 0 (rood p) . 

Proof: Introduce the polynomial 

= ( 1 -  . . .  ( 1 -  . 

Then g has total degree d(q-l) < n(q-i) , so that by Lemma IB, 

n 
x EFq 

On the other hand, for any 

g ( x )  = o . 

n q-i 
=x 6 Fq , we have fl (~)- = 1 , unless 

fi(x) = 0 Hence g(x) = 0 , unless x is a common zero of fl ..... ft ' 

in which case g(x) = I . Therefore 

0 = ~ g(x) = N 
n 

x EFq 

It follows that N m 0 (mod p) . 
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Theorem IC was proved by Warning in (1935). The next theorem was 

conjectured by E. Artin in 1934, and was proved prior to Warning's 

Theorem. 

THEOREM ID: (Chevalley (1935)). Let f(X) be a form of degre 9 

n 
d < n . Then f has a non-trivial zero in F 

q 

n 
Proof: Since f has no constant term, 0 E F is a zero of f . 

q 

n 
If N is the number of zeros of f in F , then N ~ 1 . But since 

q 

d < n , Theorem IC says that p divides N , so that in fact N ~ p . 

Therefore the number of non-trivial zeros of f in F is 
q 

N- 1 > p- I ~ 1 . 

Remark: Theorems IC and ID are no longer true when d = n . For 

any positive integer n and any prime power q , let Wl,...,w n be a 

basis of F over F Let 
n q 

q 

n-i 
qj 

g(X)= = -]-!- (el Xl + "'" +~q3Xn n ) 

j=0 

Observe that g(X) is a polynomial in n variables of total degree n . 

By Theorem IE of Chapter I, the elements ~J (0 ~ j K n- i) are the 

conjugates of w. Since 
i 

Galois group of F over 
n 

q 

n 
if x = (Xl,...,x n) E Fq 

g(X) is evidently invariant under the 

Fq , it has coefficients in Fq Moreover, 

then g(x) is and  ~ = WIX 1 + oo. + WnX n , = 

n 
the norm 9~(~) of ~ . Hence if x E F and x ~ 0 , then ~ ~ 0 , 

q ~ 

whence 

g(~) = ~(WlX 1 + ... +~nXn ) = ~(~) ~ 0 . 

Therefore g(X) has only the trivial zero. So N = 1 and N ~ 0 (mod p) 
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THEOREM IE: (Warning's Second Theorem) (Warning (1935)). Under the 

hypothesis of Theorem IC, if N > 0 , then 

n-d 
N>q 

Given a subspace S of F n and an element t E Fn let q = q' 

W = S+t 

be the set of points s+t with s E S . Such a set W will be 

called a linear manifold. The subspace S (but not t ) is determined 

by W, and we may say that W is obtained from S by a translation. 

The dimension of W is by definition the dimension of S . Two linear 

manifolds of the same dimension are said to be parallel if they are 

obtained from the same subspace S . 

In what follows, V will be the set of 

fl(~) ..... ft(x) = 0 

n 

x E F with = q 

LEMMA IF: If W I and W 2 are two parallel linear manifolds, then 

IWl n V I ~ IW2 n V I (rood p) . 

Proof: Since the case where W I = W 2 is obvious, we may assume 

that W 1% W 2 . Moreover, after a linear change of coordinates, we 

may suppose that 

W I = {(x I .... ,Xn): 0 = x I = x 2 ..... Xn_d} 

a n d  

W 2 = {(Xl, .... Xn): i = x I , 0 = x 2 ..... Xn_d} . 

Now write 

r ( x )  = x q - l - 1  = "1"1- ( x - a )  , 

a E F  q 

and 
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g(X) = (-l)n-dr(x2) ... r(Xn_ d) ~ (X 1 

a ~ 0,i 

a 6 Fq 

-a) 

It may be seen that g(X) is a polynomial of total degree 
= 

with the property that 

I 
-i if ~ E W 1 , 

g(~) = 1 if _ ~ E W 2 , 

0 otherwise . 

Put 

q-i _ f~-l(x))g(X ) h(~) = (1- ~i (~)) ... (i = = 

h(X) is a polynomial in n variables of total degree 

(n- d)(q- i) - 1 + d(q- i) = n(q- i) - 1 < n(q- i) . 

Furthermore, 

f 
- 1  if __x E w I N V , 

h(x=) = 1 if =x E W 2 N V , 

0 otherwise . 

Hence 

n 
xEF z =  

But Lemma IB is applicable to h(X) , and yields 

IW1 N V I - IW2 n V I (mod p) 

(n- d)(q- i) - 1 , 

Proof of Theorem IE: There are two cases. 

Case i: There exists a linear manifold W 

that 

By Lemma IF, if W t 

to W, then 

of dimension 

IW N V l ~ 0 (mod p) 

is any linear manifold of dimension d 

d such 

parallel 
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(1.2) IW' N V I ~ 0 (rood p) . 

n-d 
There are exactly q parallel linear manifolds (including W itself), 

n 
and they form a partition of F Since by (1.2) each contains at 

q 

least one point of V, we have 

n-d 
N: Ivl q 

Case 2: For all linear manifolds W of dimension d , 

IW n V 1 =- 0 (mod p) . 

Since by hypothesi% V contains at least one point, there exists an 

integer m, 1 K m K d , with two properties: 

(i) For every linear manifold M of dimension m, 

IM (~ V I -: 0 (rood p )  . 

(ii) There is a linear manifold L of dimension m- 1 such that 

I L N V I ~ 0 (mod p) 

Fix one such linear manifold L . 

Given a set A and a subset B , write A ~ B for the complement 

of B in A . Consider the linear manifolds M of dimension m 

containing L ; of these there are exactly 

n-m+l 
q -i 

q-i 
n-m 

_ q + ... + q + l  . 

We h a v e  IM N VI -: 0 (mod p) b u t  I L N Vl ~ 0 (rood p) , whence  

I(M N L) • VI $ 0 (rood p) and 

I(M ~ L) N V I ~ 1 . 

But the sets M ~ L form a partition of F n ~ L ; thus 
q 

n-m n-d I ! 

N : Ivl >q + ..+q+l>q 
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THEOREM IG �9 (J. Ax (1964)) Make the same hypotheses as in 

Theorem 1C. Let b be an integer, b < n/d . Then 

N ~ 0 (mod qb) . 

This is a great improvement over Theorem IC. The proof of this 

theorem will not be included in these lectures �9 See Ax's original 

paper or Joly (1973), Chapter 7. 

w 

form 

Quadratic forms. 

Let K be a field whose characteristic is not 2. 

f over K is a polynomial over K of the type 

f(X)= = f ( X 1 , . . . , X n  ) = ~' a i k  XiXk ' 

1 g i,k % n 

A quadratic 

where aik = aki�9 The determinant of f , abbreviated det f , is 

the determinant of the (n • n)~matrix of coefficients of f: det f = 

det (aik). We say that f(~) is nondegenerate if det f ~ 0. 

Let M t denote the transpose of a matrix M. If we take 

a11 a12111 I111 �9 X 2 a21 t 
A = . , x = " , x__ = ( X l , X  2 . . . x  n) , 

\ anl . . . . . . . .  nn/ n 

then A = A t and f(X) = X t AX . 

Now l e t  f (_X) and g(X) be two q u a d r a t i c  forms over  K. We say 

that f(X) is equivalent to g(X) , written f(X) ~ g(X), if there 

is a non-singular matrix T such that g(X) = f(TX) . 
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It is clear that 

the matrix A , and if 

and 

'~" is an equivalence relation. If f has 

t 
g(~) = f(TX) , then g has the matrix T AT 

det g = det f . (det T) 2 

If f(X) ~ g(X) and f(X) is nondegenerate, then g(X) is also 

nondegenerate and det f/det g E (K*) 2 ; that is, det f/det g is 

a non-zero Square in K. 

Suppose a E K , a f 0 . We say that a quadratic form f(X) 
= 

...,x in K so that f(xl,...,x n) = a . represents a if there are Xl, n 

.. in K with We say f(X)= represents zero if there are Xl,. ,x n 

(Xl,...,x n) f (0,...,0), such that f(xl,...,x n) = 0 . Clearly, 

equivalent forms represent the same elements of K. 

LEMMA 2A: Suppose that a quadratic form f(X) represents a 

non-zero element a E K . Then for some quadratic form g in n- 1 variables, 

2 
f(X l,...,x n) ~ aX 1 + g(X 2,...,X n) 

Proof: Let A be the matrix of coefficients of f(X) By 
= 

t 
hypothesis, there exists an x E E n with f(x) = x Ax = a . 

Since x ~ 0 , it is clearly possible to select a non-singular matrix 

C = (x iln 1 Xl . . . .  . 

n C n 2  . . . .  n n !  

t t 
with entries in K. Now f(CX) = X C ACX , and it is easy to see 

t t 
that the entry in the upper left corner of C AC is x Ax = a . 
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Therefore for certain b2,.~176 n J 

2 
f ( X l , . . o , X  n)  ~ aX 1 + 2 b 2 X l X  2 + . . .  + 2 b n X i X  n + h ( X 2 , . . o , X  ) 

n 

a '~/ X 1+ (b2/a)X 2 + + (bn/a)Xn I] 2 . . . .  + g ( X  2 , - . . , x  n )  

After making the non-singular transformation X' = X 1 + (b2/a) X 2 + 

+ ( b n / a )  X , X 2 = X 2 , , X '  . . . . . . .  X , we  s e e  t h a t  
n n n 

2 
f ( X I , . . . , X  ) ~ aX + g ( X  2 . . . , X  ) . 

n 1 ' n 

2 
A q u a d r a t i c  f o r m  f(X)= i s  c a l l e d  d i a g o n a l  i f  f(X)= = a l X  1 + . . .  

2 a X 
n n 

LEMMA 2 B :  E v e r y  q u a d r a t i c  f o r m  i s  e q u i v a l e n t  t o  a d i a g o n a l  f o r m .  

Proof: The proof is by induction on n . If n = 1 , then 

2 
f(~) = allX 1 is always in diagonal form �9 Suppose the lemma holds 

for forms in n - 1 variables. Let f(~) = f(Xl,.~ be a 

form in n variables. The lemma is true if f(X) = 0 . Otherwise 

either some a.. ~ 0 , in which case f represents a ~ 0 . Or 
ii ii 

all a.. are zero, but some a . = a ~ 0 . Then f represents 
ii iJ ji 

2aij , since f(0,...,l,...,l,...,O) = 2a.. . Hence f represents 

some non-zero element a , and 

2 
f ~ aX 1 + g ( X 2 , . . . , X n  ) 

�9 X 2 by Lemma 2A . By induction, g ~ a2X ~ + .. + a , and 
nn 

2 2 2 
f ~ aX 1 + a 2 X  2 + . . .  + a X n n 
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LEMMA 2C: If a nondegenerate quadratic form represents zero, 

then it represents every element of the field K. 

Proof : Let f (X) 

which represents zero. 

be a nondegenerate quadratic form over K 

By using equivalence, we may suppose that 

f(X) is diagonal: 

f(X) = f(Xl,...,Xn) = alX2 + ... + a X2 
: n n 

Since f(X)= is nondegenerate, a I i 0 ,..., a n ~ 0 . Since f(X)= 

_ .o in K , represents zero, there exist n > 2 elements Xl, .,x n 

not all zero, with 

2 2 
f(x) = f(xl,...,Xn) = alx I +...+ a x = n n 

= 0  . 

Without loss of generality, we may assume x I ~ 0 . Put Yl = Xl(l + t) , 

Y2 = x2(l- t) ''''' Yn = Xn(l- t) , with t E K to be determined. 

Then 

2 
f(Yl'''''Yn ) = 2t(alx I - 

2 
a2x 2 -...- anX ) 

2 
= 4talx I 

* 2 
Now if a E K and if we set t = a/(4alx l) , we obtain f(yl,...,yn ) = a 

Thus f represents a . 

We now return to our general theme by focusing attention on 

quadratic forms over a finite field. Since it was necessary that we 

require char K ~ 2 in this section, we consider finite fields F 
q 

with q odd. Suppose d 6 F We introduce the notation: 
q 



144 

I 1 if d E (F~) 2 , 

- 1  if 1 ~ (F*) 2 . q 

Suppose fl(~) and f2(~) are equivalent nondegenerate quadratic 

forms over F with respective determinants d and d 2 Then 
q 1 

[qd__!l ) (~__22) That the (d) dl/d 2 E (Fq) 2: ,whence = . is, symbol is 

invariant under equivalence. 

LEMMA 2D: Let 

quadratic form over 

f(Xl, .... X n) , n ~ 3 , be a nondegenerate 

F , where q is odd. Then 
q 

f (Xl,..., Xn) ~ XlX 2 + h (X 3 ,..., Xn) . 

Proof: By Chevalley's Theorem (Theorem ID), f(X) has a non- = 

trivial zero in F ; i.e., f(X) represents zero. By Lemma 2C , 
q = 

2 
f(X)= represents 1 6 Fq By Lemma 2A , f(X)= ~ X 1 + g(X2,...,X n) 

2 
for some form g. Hence X 1 + g(X2,...,Xn) represents zero, so 

there exist E F not all zero, with Xl'''''Xn q ' 

2 
x.~ + g ( x  2 , . . . , x  n) = 0 . 

2 
I f  x I i 0 , t h e n  g r e p r e s e n t s  - x  I , h e n c e  g r e p r e s e n t s  - 1  . 

I f  x I = 0 , t h e n  g r e p r e s e n t s  z e r o ,  and t h e r e f o r e ,  by  Lemma 2C , 

g a g a i n  r e p r e s e n t s  - 1 .  By Lemma 2A , 

w h e n c e  

2 
g ( X 2 , . . . , X  n) ~ - X  2 + h ( X 3 , . . . , X  n) , 

2 2 
f ( X  1 , . . . , X  n) ~ X 1 - X 2 + h(X 3 , . . . , X  n) 

N XlX 2 + h(X 3 , . . . , X  n) 
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n 
Now let N n be the number of zeros in F of f(Xl,...,X n) 

q 

n-2 
and let Nn_ 2 be the number of zeros in Fq of h(X3,...,X n) . 

In order to find the relation between N n and Nn_ 2 , we observe 

that f(Xl'''''Xn ) and XIX 2 + h(X3,...,Xn) must have the same 

number of zeros, since they are equivalent. 

We first count solutions of 

x 1 ~  + h ( x 3 , . . . , x  ) = 0 
n 

with h(x3,...,Xn) = 0 , hence with XlX 2 = 0 . The number of 

is Nn_ 2 the number of possibilities possibilities for x3,...,x n 

for Xl,X 2 is 2q - 1 , so that altogether we obtain 

( 2 q -  l )  ~ n - 2  " 

We next count solutions with h(x3,...,x n) ~ 0. The number of 

n-2 
possibilities for x3,...,x n is q - Nn_ 2 , and for given x3,...x n , 

the number of possibilities for Xl,X 2 is q - 1 , so that we get 

( q -  1 ) ( q n - 2  - Nn-2 ) 

such solutions. Adding these two numbers, we obtain 

n-1 n - 2  
( 2 . 1 )  ~ = q - q + q ~ n - 2  " 

THEOREM 2E: L e t  f ( ~ )  = f ( X l , . . . , X  n) 

f o r m  o f  d e t e r m i n a n t  d 

be a nondegenerate quadratic 

zeros of f(X) in F is given by 
~_ ~ q 

o v e r  F , q o d d .  Then  t h e  number  N o f  
q , 
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( 2 . 2 )  I n-i /2d) 
q , if n is odd, 

N= 

q + (q- i) - -- , if n is even. 

2 
P r o o f :  S u p p o s e  n i s  o d d .  I f  n = 1 , f ( X )  = aX , a n d  

N : 1 .  I f  n ~= 3 , we  may  s u p p o s e  t h a t  f = XlX 2 + h ( X 3 , . . . , X  n)  

n - 3  
I f  t h e  t h e o r e m  h o l d s  f o r  n - 2 , t h e n  N n .  2 = q a n d  b y  ( 2 . 1 )  , 

n - 1  n - 2  
N = q - q + qNn_ 2 

n-i n-2 n-3 
=q - q + q.q 

n - 1  
= q 

Now suppose n is even. If n = 2 , f(Xl,X 2) is equivalent to 

a nondegenerate diagonal form 

2 2 2 2 
a l X  1 + a2X 2 = a l ( X  1 + ( a 2 / a l ) X  2)  , 

a n d  = q ~ I f  = - 1  , t h e n  = - 1  , w h e n c e  

(-. (a2/al))  = -1 . I f  ( X l , X 2 )  w e r e  a n o n - t r i v i a l  z e r o  o f  f ( X 1 , X 2 ) ,  
q / 

2 2 
t h e n  x I = - ( a 2 / a  l )  x 2 , w h i c h  i s  i m p o s s i b l e .  T h e r e f o r e  f ( X l , X  2)  

h a s  o n l y  t h e  t r i v i a l  z e r o ;  i . e .  N = 1 , w h i c h  a g r e e s  w i t h  ( 2 . 2 )  . 

I f  ~ " I - d l  = + 1 ,  t h e n  i n  a s i m i l a r  w a y  J ' / - ( a 2 / a l ) / =  + 1 ,  a n d  we s e e  
/ J q 

t h a t  x12 = _ ( a 2 / a l  ) x22 h a s  2 ( q -  1) n o n - t r i v i a l  s o l u t i o n s  ( X l , X  2 )  

Therefore N = 1 + 2(q - l) = 2q - 1 , again agreeing with (2.2) 

I f  n ~ 4 , we  may  s u p p o s e  t h a t  f = X lX  2 + h ( X 3 , . . . , X  n)  . 

O b s e r v e  t h a t  t h e  d e t e r m i n a n t  o f  h i s  m i n u s  t h a t  o f  f .  Now s u p p o s e  
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the theorem holds for n - 2 . Then 

n-i n - 2  
N n = q - q + qNn_ 2 

n -i n-2 n-3 
=q - q + q q 

n -  1 1) q ( n - 2 ) / 2  = q  + ( q -  

{ I) + ( q _  1 ) q ( n - 4 ) / 2  ( - 1 )  ( n - 2 ) / 2  ( - d )  

q 

w Elementary upper bounds. Projective zeros. 

LEMMA 3A: Let f(Xl,...,Xn) be a non-zero polynomial over 

of total degree d. Then the number N of zeros of f(XI,...,X n) 

n 
in F satisfies 
-- q 

n-i 
N% dq 

F 
q 

!~ f (x I ..... x n) 

zeros is at most 

is homogeneous, then the number of its non-trivial 

d(q n-1 - l) . 

Proof: If d = 0 , f is a non-zero constant and has no zeros. 

If d = 1 , then 

f(XI,...,X n) = alX 1 + o.. + anXn + c 9 

n-i 
and N = q If f is homogeneous of degree d = 1 , then c = 0 

n-i 
and the number of non-trivial zeros of f is q - 1 . If n = 1 , 

then clearly N ~ d . If n = 1 and f is homogeneous, then f 

can have no non-trivial zeros. 

We have shown that the lemma holds if d ~ 1 or if n = 1 . We 

proceed by "double induetlon . Suppose n > 1 , d > 1 , and the 

lemma is true for polynomials in at most n variables of degree less 
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than d , and the lemma is true for polynomials in less than n 

variables of degree at most d . We must prove the lemma for a 

polynomial f(XI,...,X n) in n variables of degree d . There are 

two cases. 

Case i: f(Xl,...,X n) is not divisible by X I - x for any 

x E F Then for any x 6 F , f(x,X2,...,Xn) is a non-zero 
q q 

polynomial of degree at most d in n - 1 variables. By the 

n-i 
inductive hypothesis the number of zeros (x 2 ...,x n) 6 F of , , q 

n-2 
f(x,X2,...,Xn) is at most dq But we have q 

x E F , so that N ~ qdq n-2 = dq n-I 
q 

By the same reasoning, the number of zeros of 

with xi~ 0 is at most 

homogeneous, then so is 

zeros of f(O,X2,...,X n) 

Therefore the total number of non-trivial zeros of 

choices for 

f (x,X 2, �9 �9 �9 ,X n) 

(q- l)dq n-2 If f(Xl,...,X n) is 

f(0,X2,. .,Xn) , and the number of non-trivial 

is at most d(q n-2 l) by induction. 

f(Xl, ...,Xn) is 

d(q - l) qn-2 + d(qn-2 - i) 

= d(qn-I _ i) 

Case 2: f(Xl,...,X n) is divisible by X I - x for some x 6 Fq 

Then f(X)= = (X I - x)g(X)= , where g is a non-zero polynomial in 

at most n variables of degree at most d - 1. We immediately see 

that 

n-l _ q n - 1  = d q n - 1  
N < q + (d I) 

I f  f i s  h o m o g e n e o u s ,  t h e n  n e c e s s a r i l y  x = 0 a n d  f(X)= -- Xlg(X)= �9 

The number of non-trivial zeros of f is 



149 

< (qn-i _ i) + (d- l)(qn-I _ 

= d(qn-I _ i) . 

l)  

R e m a r k :  I f  f ( ~ )  = (X 1 - C l ) ( X  1 - c 2 )  . . .  (X 1 - Cd) w h e r e  

C l , C 2 , . . . , c  d a r e  d i s t i n c t  e l e m e n t s  o f  F , t h e n  N = d q  n - 1 .  
q 

H o w e v e r ,  f o r  h o m o g e n e o u s  p o l y n o m i a l s ,  o u r  e s t i m a t e  i s  i n  g e n e r a l  n o t  

best possible 

K n , where K is a field, is called n-dimensional space over 

K , or more precisely, n-dimensional affine space over K. On the 

other hand, n-dimensional projective space over K by definition 

consists of non-zero (n + i) - tuples ~0,Xl,...,Xn) with components 

in K , and with proportional (n + I) - tuples considered equal. 

A point in projective space is called "finite" if it is represented 

by ~0,Xl,...,Xn) with x 0 ~ 0 . Every finite point of projective 

space may be uniquely represented by some (l,Yl,...,y n) Hence 

there is a 1-1 correspondence between finite points of projective 

space and points of affine space. Points of projective space 

represented by (0,xl,...,x n) are called "infinite points", or 

"points at infinity". 

Now suppose f(X) is a polynomial of degree d > 0 , say 
= 

i i i 
,. ~ . . XllX22 ... X n f(X) = f(X 1 ..,X ) = a n 

= n Ii,12,...,i n 
i I +...+ i n g d 

Associate with f (X) the form 

, i i i 

f (X0'Xl'''" Xn) = Z a X00XI I ... Xn n 
, il,i2,...,i n 

i 0+i I +...+in=d 
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We may say that the equation f(x) = 0 defines a "hypersurface in 

n-space". The zeros of f(X) are the "points" of this hypersurface. 

The equation f (Xo,Xl,...,Xn) = 0 defines a "hypersurface in 

n-dimensional projective space". In this case, we consider only non- 

t r i v i a l  z e r o s  ( x 0 , x l , - . . , x  n )  i ( 0 , 0 , . . . , 0 )  , a n d  t w o  z e r o s  a r e  

c o n s i d e r e d  i d e n t i c a l  i f  t h e i r  c o o r d i n a t e s  a r e  p r o p o r t i o n a l .  T h e s e  a r e  

called "points on the projective hypersurface", or 

Suppose (Xo,Xl,...,Xn) represents a zero of 

possibilities: 

(a) x / 0 . 
0 

an (n + i) - tuple 

we have f(yl,...,yn ) = 0 . Conversely, if 

o f  f , t h e n  ( 1 , Y l , . o . , y n )  i s  a z e r o  o f  f 

, ,  . . , t  
projective hypersurface are called flnlte . 

,1 . . 1, 

projectlve zeros . 

f . There are two 

The zero may then be represented uniquely by 

(l,Yl,...,yn) Since f (l,Yl,...,yn) = 0 , 

(yl,...,yn) is a zero 

These points of the 

There is thus a i-i 

correspondence between finite points on the projective hypersurface 

, 

f = 0 and points on the affine hypersurface f = 0 . 

( b )  x 0 = 0 . 

t h e  h y p e r s u r f a c e .  

These points are called "points at infinity" of 

2 2 
E x a m p l e :  L e t  f ( X l , X  2 )  = X 1 - X 2 - 1 . T h e  e q u a t i o n  f ( x l , x 2 )  = 0 

d e f i n e s  a h y p e r b o l a .  T h i s  h y p e r b o l a  h a s  t h e  t w o  a s y m p t o t e s  

* 2 2 2 
x 2 = x I and x 2 = -x I . In this example, f (X0,XI,X 2) = X 1 - X 2 - X 0 

* 

The points at infinity are the zeros of f with x 0 = 0 . There are, if 

char K ~ 2 , two points at infinity, represented by (0,i,i) and (0,i,-i) . 

They may be interpreted as "points infinitely far out on the two 

asymptotes". 

Whether or not there exist points at infinity may depend on the 

underlying field. 
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2 2 
Example: Let f(Xl,X 2) = X 1 + X 2 - i . The equation f(xl,x 2) = 0 

* 2 2 2 
defines a circle of radius 1 . Since here f (X0,X1,X 2) = X 1 + X 2 - X 0 , 

the points at infinity are those elements (0,Xl,X 2) satisfying 

2 2 
x I + x 2 = 0 . If the field under consideration is the field 

of reals, there is no point at infinity. If our field is the field 

C of complex numbers, there are two points at infinity represented 

by (O,l,i) and (O,l,-i) . 

LEMMA 3B: Let f(X) be a polynomial of degree d 

n 
in F Let N be the number of zeros of f in F 
-- q - -  __ q 

the number of projective zeros as defined above. Then 

with coefficients 

Let N be 

* n-2 n-3 
N ~ N < N + d(q + q + ... + q + I) . 

Proof: Since 

infinity, we have 

N is the sum of N and the number of points at 

N < N , and we simply have to estimate the number 

of points at infinity. The number of non-trivial zeros of 

* n-i 
f (0,X1,...,X n) is at most d(q - I) by Lemma 3A. But two such 

zeros are considered identical when they are proportional, so that 

the number of points at infinity is at most 

d(q n-I - l)/(q- I) = d(q n-2 n-3 
+ q + ... + q + l) . 

The lemma follows. 

E x e r c i s e .  Show t h a t  f ( X o , X l , . . . , X  n)_ 

if f is. 

is irreducible precisely 
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LEMMA 3C: Suppose n a 2 . Let uI(XI,...,X ) and 
n 

u 2 ( X 1 , . . . , X  n)  b e  p o l y n o m i a l s  o v e r  F o f  r e s p e c t i v e  t o t a l  
q 

degrees e I and e 2 , without common factor of positive degree. 

n 
Then the number of their common zeros in F is at most 

q 

qn-2 ele2min {el,e2} . 

Remark: The estimate of Lemma 3C is not best possible. 

Proof of Lemma 3C: Without loss of generality, suppose e 1% e 2 , 

so that e I = min ~el,e2} . If e I = 0 , then Ul, is constant. If 

Ul(X)= = c ~ 0 , there are no common zeros, and the lemma holds. If 

u I (X)= = 0 , then u 2 (X)= is a non-zero constant (otherwise u I (X)= 

and u 2(X)= would have a common factor), and again there are no 

common zeros. If e I = 1 , then u I(X)= is linear. After an 

appropriate linear transformation, we may suppose Ul(X)= = X 1 If 

x= = (Xl, .... x n) is a common zero; i.e., Ul(X)= = u2(x)= = 0 , then 

x I = 0 and u2(O,x2,...,x n) = 0 . But u2(O,X2,...,X n) I 0 , so 

n-2 
e2q that by Lemma 3A the number of common zeros is at most 

agreeing with the estimate of the lemms when e I = 1 . 

Now suppose e I ~ 2 . Every common zero of u I (~) and u 2 (X)= 

is a zero of Ul(X)= , so the number of common zeros is certainly 

n-i 
elq 

n - 2  
g q ele 2 min {el,e2} 

i f  q g e l e  2 . We may  t h e n  s u p p o s e  t h a t  q > e l e  2 ~ e I + e 2 . L e t  
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vj(Xl,...,X n) = uj(Xl,X 2 + c2XI,...,X n + CnX I) 

e 

= pj(c 2,.'',c n) xlj + .@. 

e 1 
We wish to choose c_,...,z Cn E F so that the coefficient of X I 

q 

e 
2 = is a in v I(X) and of X I in v 2 (X) are not zero. Now pj 

polynomial of degree at most e. , and is not identically zero . By 
3 

Lemma 3A, the total number of zeros of p_ in F n-I is at most 
J q 

n-2 
ejq Therefore the total number of zeros of both Pl and P2 

is 

qn-2 n-1 
(e I + e 2) < q 

n-1 
It is therefore possible to choose (c2,.o.,C) E F with 

n q 

Pl(C2,...,Cn) ~ 0 and P2(C2,-..,Cn) I 0 . Hence after a non- 

singular linear transformation, and after division by Pl(C2,...,Cn) 

and P2(C2,...,Cn) , respectively, we may assume without loss of 

generality that 

e I el-i 

Ul(~) = X I + X I gl(X2 .... ,X n) + ... + gel(X2,---,X n) , 

e e -1 
u 2(X)= = X12 + X12 h I(X 2 , o . . , X  n) + ~  + he2(X 2 , ~  n) �9 
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o f  u 1 (X) a n d  u 2 (X__) , 

( n - 1 ) - t u p l e s  ( x 2 ,  . . . ,Xn)  

a n d  f o r  s u c h  x 2 , . . . , x  n 

c l e a r l y  n o t  m o r e  t h a n  

o f  u I ( X )  a n d  u 2 ( X )  

Considering u I (X) and u 2 (X) as polynomials in X 1 , their 

resultant is a polynomial R(X2,...,Xn) It is not hard to see 

that the total degree of R is at most ele 2 But by the 

basic property of resultants, for any common zero (x 1,x 2,...,x n) 

R(x2, ...,Xn) = 0 The number of such 

n-2 
is at most ele2q by Lemma 3A, 

, the number of possibilities for x I is 

e I So the total number of common zeros 

is 

n-2 
& q ele2e I 

= qn-2ele2min{e I, e 2 } 

LEN~A 3D: Let Ul(~),...,ut(X) be polynomials in n variables 

over F , each of total degree at most e , and without common 
q 

factor. Then the number of their common zeros is at most 

n-2 3 
q e 

Proof. The proof is by induction on t The case t = 2 is 

t) 
Lemma 3C. Suppose t ~ 3 , and the lemma holds for t - 1 Let 

v(x) = g.c.d.(u l(x),...,ut_l(x)) , 

and d = deg v(X) Then 

T'We ~ are implicitly using the fact that polynomials in n variables 

over a field form a Unique Factorization Domain. 



155 

u. (X) = v(X) w (X) (i = 1,2, ...,t-l) 
i = = I = 

where degw i (X)= ~ e - d , and where Wl,...,wt_ I have no common 

factor. 

Any common zero of u I , u 2 ,...,u t is either a common zero 

of v and u t , or of Wl,...,wt_ 1 The number of common zeros 

of v and u t is at most d2eq n-2 by Lemma 3C, since g.e.d.(v,u t) = 1 

The number of common zeros of Wl,...,wt_ 1 is at most (e - d)3q n-2 

by the induction hypothesis. Therefore the total number of common zeros 

is at most 

d 2 n - 2  3 q n - 2  3 n - 2  
e q  + (e  - d )  =< e q 

Lemma 3C is not best possible. We can do better if there are 

only two variables: 

LEMMA 3E. Suppose uI(X,Y) and u2(X,Y) are polynomials 

with coefficients in a field K , and with no common factor of 

positive degree. Let e I be the total degree of Ul(X Y) , e 2 

the total degree of u2(X,Y) Then the number of common zeros of 

2 
u I and u 2 , i.e., (x,y) E K with Ul(X,y) = u2(x,y) = 0, is at 

most ele 2 

Proof: If u I , u 2 have no common factor in K , then they 

have no common factor in K . Therefore we may assume that IKI = 

Set 

v.(X,Y) = u.(X + cY, Y) (j = 1,2) , 
J J 
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e 

where c E K is to be determined. In v.(X,Y) , the term Y j has 
3 

a coefficient which is a non-zero polynomial pj (c) in c , with 

deg pj g ej Suppose (xl,Yl),..., (x ,y ) are distinct common 

zeros of Ul,U 2 Then (x I - cYl,Yl), ..., (x - cy ,y ) are 
M M M 

common zeros of Vl,V 2 Since K is infinite, we may choose 

c E K such that 

(i) if i ~ j , then x i - cy i f xj - cyj , 

(ii) Pl(C) ~ 0 and P2(C) ~ 0 

T h e n  v 1 a n d  v 2 h a v e  common z e r o s  ( z l , Y l ) , . . . , ( z  , y  ) , 

where z.3 = xj - cyj and where Zl, ...,z~ are distinct. After 

dividing by suitable constants (namely Pl(C) and P2(C)) , we 

may  s u p p o s e  t h a t  

e I el-i 
vI(X,Y) = Y + hI(X) Y +...+hel(X) , 

e e -i 
2 2 

v 2 ( X , Y )  = Y + k l ( X )  Y + - . . + k e 2 ( X )  

Let R(X) be the resultant of v I and v 2 when considered as 

polynomials in Y R(X) is a polynomial in X of degree at most 

ele 2 Since R(Zl) . . . . .  R(z ) = 0 , we obtain ~ ~ ele 2 
~) 

Remark: Our Lemma 3E is related to a special case of Bezout's 

Theorem. See Van der Waerden (1955), Ch. ii. 

LEMMA 3 F .  S u p p o s e  U l ( X , y ) , . . . , u t ( X , y  ) a r e  t ~ 2 p o l y n o m i a l s  

o v e r  a f i e l d  K w i t h o u t  a common  f a c t o r  o f  p o s i t i v e  d e g r e e .  S u p p o s e  

e a c h  p o l y n o m i a l  h a s  t o t a l  d e g r e e  a t  m o s t  e T h e n  t h e  n u m b e r  o f  
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2 
common zeros is at most e 

Proof. Exercise. 

w The average number of zeros of a polynomial. 

Let d be a positive integer. Let ~d be the set of all 

polynomials in n variables over F of total degree at most d . 
q 

Let ~d be the set of all n-tuples of non-negative integers 

, ' g d . It is easily seen that (il,i 2 ,.,i n) with i I + i 2 + ... + i n 

If f(X)= E ~d ' we may write 

i i i 
�9 . X I ...X n 

f(X) = ~j a ,.,i n i X22 n 
= �9 11,12,. 

(il' " " " 'in)E ~d 

lWd 1 
Therefore l~dl = q For any polynomial 

n 

denote the number of zeros of f(X) in F = q 

f(X)= E ~d ' l e t  N(f) 

THEOREM 4A : 

i N(f) = q 

l ad  t f End  
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Proof: 

fEQ d fEQ d xEF n 
= q 

f (x) = 0 

x E  F n 
= q 

n 
xEF 
= q 

n I%1 - 1 
= q q 

n-i 
= t~dl  . 

f E Q  d 

f(x) =0 

I%1 - l 
q 

THEOREM 4B: 

1 ~ (N(f) - qn-l)2 n-I n-2 
= q - q 

Proof: First, 

fE~ d fEO d 

x , y  

x y 

f(x) =0 f(y=) =0 

f 6~ d 

f(x) =f(y) =0 
_-- = 
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The conditions f(x) = f(y) = 0 are two linear equations for the 

coefficients of f . These two equations have rank 2 and hence 

t % / -  2 
have., q solutions if x r y , and they have rank 1 and 
l%l -1 = - 

q solutions if x = y . Hence 

~ ( f )  : ~ I~dl .  -~ + ~ I~d/ .  -1 

f E ~  d x/y X 

n ( q n  l) l~dl - 2  qn - 1  = q - q + I%1 

tndt (q2n-2 n - 2  q n - 1 )  . = - q + 

Using this formula and Theorem 4A , 

2 n - 2  ( N ( f ) - q o l ) 2  2 ( f )_   qn-1 1 

f E ~  d f E f ~  d f E ~  d f E ~  d 

= l~d l  ( q 2 n - 2  - q n - 2  + q n - 1 )  _ 2 q n - l / ~ Q d / q n - 1  

2 n - 2  
+ q I%1 

Indl (qn-1 n-2) = - q 

i s  

T h e o r e m  4B t e l l s  u s  t h a t  t h e  " a v e r a g e  v a l u e "  o f  ( N ( f )  - q n - 1 ) 2  

n - 1  n - 2  o ( q n - 1 )  
q - q = One m i g h t  e x p e c t  t h a t  i t  b e  o f t e n  
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the case that 

n-I N(f) - q = 0(q (n-l)/2) 

In fact, we have shown (Theorem IA, Chapter III) that when n = 2 

and f is absolutely irreducible, then 

N ( f )  - q = o ( q l / 2 )  

P. Deligne (to appear) proved that 

n-I (n-l) 
N(f) - q = 0 (q 2 

/_ 

if f is "non-slngular. In fact, Deligne proved more. He proved 

Well's (1949) famous conjecture on the zeta function of varieties. 

In the present lectures we shall not be able to prove Deligne's deep 

result. 

w Additive Equations: A Chebychev Argument. 

Consider a polynomial equation of the type 

d I d 2 d n 
(5.1) alx I + a2x 2 + ... + a x n n 

= 1 , 

where a E F and d. > 0 (i = 1,2, ...,n) 
i q i 

n 
THEOREM 5A. The number N of solutions of (5.1) in F 

-- q 

satisfies 

n - 1  ( n - 1 ) / 2 ( 1  - 1 ) - n / 2  
I N - q I -< dld2 "'" dnq q 

Remark: The error term here and in Theorem 5C below can be 

slightly improved by using exponential sums, as will be explained 

in  w 
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P r o o f  of  t h e  t heo rem:  By t h e  argument  used  i n  w , Chap t e r  I ,  

the number of solutions is not changed if we replace d by 
i 

d'. = g.c.d.(d.,q - i) for i = 1,2,...,n . We therefore assume, 
1 1 

without loss of generality, that dil ( q - i) for i = 1,2,...,n . 

Now consider the equation 

d d d 
(5.2) alXll 2 n 

+ a2x 2 + ... + a x = ao n n 

admitting, for the moment, any coefficients (ao,al,...,a n) 6 F n+l 
q 

Let N(aO,al,...,an) denote the number of solutions of (5.2) in 

n 
F Then, i n t e r c h a n g i n g  sums a g a i n ,  we have q 

N(a 0 . . . . .  a n ) =  ~ ~ 1 

�9 E F n+l (a ,. x s F n 
0 " ' a n )  q q ( a 0 ' ' ' ' ' a )  = n 

(5 .3)  s a t i s f y i n g  (5 .2)  

/ 

x6 F n 
= q 

n 2n q = q 

n-i 
Thus the mean value of N(ao,...,a n ) is q 

LEMMA 5B: 

qn -1 )2  ~ q 2 n - l ( q  1) d l d 2 . . . d  n ( N ( a 0 , . . . , a n )  - _ 
E F n+l 

( a 0 ' ' ' ' ' a n )  q 
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Proof: 

2 
N (a O , . . . , a  n ) 

( a 0 , . ~  n ) 6 F  n+l q 

( a 0 , . . . , a n )  E F  n + l  i h ( 5 . 2 )  w i t h  ( 5 . 4 )  
q = 

x,y ( a0 ,  . . .  , a n )  6 F n + l  
= = q 

w i t h  ( 5 . 2 )  and  ( 5 . 4 )  

where ( 5 . 4 )  is the equation 

d I d 2 d n 

(5.4) alY 1 + a2Y 2 + ... + anY n = a 0 

Now for fixed x 

(5.2) and (5.4) 

and fixed ~ , the system of the two equations 

is a system of two linear homogeneous equations in 

a0,al,...,an This system can have rank 1 or 2 . If the rank is 

n 
1 , the number of solutions in (a0,...,an) is q If the rank is 

n-i 
2 , the number of solutions is q Therefore 

2 n-i N (a 0 . . . .  , a n )  = ~ q + ~ (qn - q n - 1 )  . 

E F n+l 
. . .  x,y x,y 

(a 0 , , a n) q . . . .  
of rank 1 

If the matrix 

(5.5) dl d:l n 
x I �9 x n 

d I d n 

Yl """ Yn 

d d 
i i 

x i = Y~ has rank i , then (i = 1,2,...,n) Since for given x , 
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there are at most d. possibilities for y. , hence at most 
1 1 

d l . . . d  n p o s s i b i l i t i e s  f o r  ~ , t h e  number  of  p a i r s  x , y  s u c h  t h a t  

n 
(5.5) has rank i is at most q dld2"''dn Hence 

3n-i n _ n-l) 
N 2 ( a  0 . . . .  , a  n ) ~ q + q d l d  2 . . .  d (qn q 

( a o , . . . , a  n ) 6F n+l n 
q 

Using this estimate together with (5.3), we obtain 

( N ( a o , . . . ,  a ) _ qn-l)2 

(a 0 . a ) E F n+l n 
''" ' n q 

2n-2 
( ~ 2 ( a  o . . . . .  a n)  - q ) 

(a O , . . . , a  n ) EF n+l 
q 

3n-I 2n-I (q 3n-i 
q + q - l)dld 2...d n - q 

2n-l(q ... , 
= q - l)dld 2 d n 

thereby proving Lemma 5B. 

To conclude the proof of Theorem 5A , we consider the specific 

equation (5.1) where a I i 0 ,..., an J 0 , a 0 = i . Observe that 

if t,bl,b2,...,b n are non-zero elements of F , then 
q 

d d 

N(l,al,...,a n ) = N(t,albl I t,...,anbnn t) 

d 1 d 
The number of distinct (n + l)-tuples (t,b I t,...,bnn t) 

is 

(q- i) ~ . . . .  dld2 " ..dn , 

since d i I (q I) for 1 < i ~ -- ~ -- n . 



164 

Therefore in the sum of Lemma 5B , there are (q - l)n+i/(dld2...d n) 

summands which equal (N - qn-1)2 So certainly 

(q - I) n+l 

dld2...d n 

(N- qn-l)2 < q2n-i 
(q - i) dld2...dn , 

and Theorem 5A follows. 

THEOREM 5C: Let N be the number of solutions in F n of the 
q 

equation 

d d d 
1 2 n 

(5.6) alx I + a2x 2 + ... + anXn = 0 , 

where, as above, (a l,...,a n ) EF nq , a I i 0 , a 2 / 0 , ...,a n f 0 , 

and d > 0 (i = 1,2,...,n) . Let 5 = l.c.m. r [dl,d2,...,dn] �9 

Then 

(5.7) IN - qn-11 < n qn/2 1 - -(n-l)/2 

J8 

Proof: It is clear that N remains unchanged and that the 

right hand side of (5.7) cannot increase if we replace d. by 
l 

t d l , . .  d '  d! = (d., q- i) and 5 by q = l.c.m. [ ' ., n] . Hence we 
1 l 

~ n may assume without loss of generality that dil ( q- i) for 1 i ~ 

In the notation used in the proof of Theorem 5A, our 

N = N(O,al,...,a n) �9 It is clear that 

d d 

N(O,al,...,an) = N(O,albl I t,...,anbnn t) , 

if t,bl,...,b n are all non-zero. We need to count the number of 

t) The least common multiple. 



165 

d d 
b n t) distinct n-tuples ~i I t,..., n 

d I ,d 
�9 . n t') , then (b t', .,b n 

d 
1 

If (b I 

d 
b n 

t,..., n t) = 

d d 

tt/t = (bi/b;) i E(F~) i (i = 1,2,...,n) 

Hence t'/t E(F*) 6 , where 6 = l.c.m. 
q 

t , there are (q - 1)/6 possibilities for t' 

! 
given t,t , b i , there are d i 

So as (t,bl,o..,b n) ranges over 

n-tuples is 

possibilities 

[dl,...,dn] . For given 

in F ; and for 
q 

for b~ (i = 1,2,...,n) . 
i 

n-tuples is 

F X ~ • F 
q q 

, the number of equal 

((q - l)/6)dld2...d n Thus the number of distinct 

n+l 
(q- l) n 6 

((q- l)/6)dld2"''dn = (q-l) dld2 .... dn 

n-i 
and at least that many summands in Lemma 5B are equal to N - q 

We obtain 

(q- l) 
n 6 q n - l )  2 q 2 n - i  (q . .  

dld 2.~ (N - ~ - l) dld 2 .d n 
n 

and the theorem follows. 

Exercise. Suppose that some exponent d. in 
i 

n-1 
to all the others~ Then N = q 

( 5 . 6 )  is prime 
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w Additive Equations: Character Sums. 

As in Chapter II, we shall write k for multiplicative 

characters and ~ for additive characters of F 
q 

THEOREM 6A. Let f(XI,...,Xn) be a polynomial with coeffi- 

cients in F The number N of zeros of f with coefficients 
q 

in F is given by 

1 Z ,(f,xl, % ) ) ,  (6.1) N = ~ . . . . . . .  

x 1 E F x n E F q q 

where the sum is over additive characters @ of F 
-- q 

given by 

This is a l s o  

Z Z q 
aEF XlEF x q q 

~ (af(xl,...,x n)) , 
EF 

n q 

where 9 i 4o is a given additive character of F 
q 

Proof. The first equation is a consequence of Theorem ID of 

Chapter If. Now if ~ i 4o 

II, ms a runs through F 
q 

is fixed, then by Lemma 2D of Chapter 

(a) 
then ~ with 

(a) 
( x )  = ~ ( a x )  

runs through all the additive characters. Therefore (6.1) implies 

(6.2). 

THEOREM 6B. Let 

in F of 
q -- 

N be the number of zeros with components 

d d 
1 n 

(6.3) alx I + ... + a x = 0 
n n 
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Suppose a.1 ~ 0 --and di[ q - I (i = l,...,n) Then if 

is any additive character, 

~o 

n-i 
N=q Z + (1-1)q . . .  /~ ~l (a l )  . . .~n(an)G(Xl, ,  ) ' ' 'G(Xn'*)  

Xl%X o Xn%XO 

ofexpd I of expd n 

X I " "" X n = Xo 

Here the sum, as indicated, is over certain n-tuples of multiplica- 

t ive  characters ,  and G(X,~) denotes Gaussian sums. 

Proof. By (6.2) , 

d 1 
qN = ~ ~ - . .  ~ $ ( a a l x  1 + ... + aa 

aEF XlEF F q q XnE q 

n ( di) 

: ~ - ~  ~ * ( a a i x  i ) 
i=l x i E F aE Fq q 

= q + ~ - -~  $ ( a a i x i  ) 
a~0 i=l x i Fq 

By Lemma 3B of Chapter I I ,  we have 

d 
x n) 

n n 

3f 

d 

~ * ( a a i x ' i ) l  = ~ ~(aa iYi)  ~ Xi(Yi) 
xi Yi Xi of 

exp d 
i 

a ~ 0 , we may make the change of variables y. 
-i 

to obtain 

y i / ( a  a t ) 
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Xi of 

exp d. 
1 

Thus 

~ i ( a a i  ) ~ Xi(Yi)~ (Y i) = ~ Xi(a  ai)G(Xi,~ ) 
Yi Xi of 

exp d. 
I 

n q N -  q = 
�9 . .  ~ ~1(a1 ) . - .  J2n(a n) 

X I X n 

exp d I exp d n 

(a~O ~ l ( a ) " ' "  X n ( a ) ) G ( X I " I J )  "''G(Xn'*) 

Now if X1 ... Xn ~ Xo , then by Theorem ID of Chapter II, 

~ l ( ~ )  . . .  s : ~ ' i z  . . .  ~n(a)  : o 
aiO a 

But if X I "'" X n = Xo , then 

... l 

aI-O a~O 

Moreover, G(Xi, ~) = 0 if X i = Xo by (3.1) of Chapter II. We 

therefore may restrict ourselves to XI,.-.,X with X. i Xo 
n i 

(i = l,...,n) and with X 1 ..- X n = Xo " 

n q N -  q = ( q -  1) 
X 1 ~'/~ o 

�9 . .  ~ ~i (al) �9 �9 "~n (an) G(Xi,%) �9 �9 "G(~ ,~ ) 
Xnr o 

exp d exp d 
1 n 

.~ = X X 1 " X n o 

Theorem 6B follows. 

Let g be a fixed generator of the cyclic group F A 
q 
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character X i of exponent d.1 is of the form Xi(gt) = e(t ai /di) 

(t = 0,1,2, .. .) , where a i is an integer with 0 = < a.l < d.l. In fact, 

0 < a i < d. if % We have X1 Xn Xo l Xi Xo . . . .  precisely if 

(6.4) 
a I a n 

+ . . .  + - -  

d I d n 

is an integer. Thus if A(dl,...,dn) is the number of n-tuples 

of integers al,...,a n with 0 < a. < d. (i = i,... n) and with 
1 1 

(6.4) integral, then A(dl,...,dn) is also the number of summands 

in the sum of Theorem 6B. Since the Gaussian sums G~i,~) of 

Theorem 6B have absolute value ql/2 by Theorem 3A of Chapter II, 

we have 

THEOREM 6C. Make the same hypotheses as in Theorem 6B. Then 

I N - qn-i I ~ A(d I ..... d n) (i - 1)qn/2 

In particular, A(dl,...,d n) _~ (d I - i) ... (dn - I) , so that 

Theorem 6C is an improvement over Theorem 5C. Theorem 5A could 

be similarly improved. 

Write A (d) = A(d, ...,d) 
n 

~- n-~ 

LEMMA 6D. An(d) = ~ ((d- l) n-I - (-1) n-l) 

Proof. An(d) is the number of integers a I ... a with 
' ' n 

0 < a.1 < d (i = 1,...,n) and a I + ... + an -= 0 (modd) Thus 

Al(d) = 0 and A 2(d) = d - 1 , and the formula is correct for 

n = 1 or n = 2 For n >= 2 , an n-tuple al,...,a will be 
n 
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counted by A n precisely if 0 < a I < d,...,O < an_ 1 < d , 0 < a n < d 

and 

_an m Sl+...+an_l ~ 0 (modd) 

The number of possibilities for al,...,an_ 1 

so that 

The lemma now follows by induction on 

A n(d) = (d - 1) n-1 _ An-l(d) 

n 

is (d- i) n-l- 
An_ 1 (d) 

COROLLARY 6E. Suppose dlq - 1 and suppose al,...,a n are 

non-zero in F The number of N of solutions with components 
q 

in F of 
- -  q - -  

d d 
al~ 1 + ... + an~ n = 0 

satisfies 

I N - qn-i I -<_ ((d - l)/d) ((d - l) n-I - (-I) n-l) (i - q-l)qn/2 

Following Weil (1949) , we now study the dependence of the 

number of solutions on the field of coordinates. Again, let 

a be non-zero in F and let dil q - 1 (i = l,...,n) 
alp 

0 6 @  

' n q ' 

We write N for the number of solutions of (6.3) with coordinates 
M 

in F 
qM 

If X. is a character of F of exponent d , then 
i q i 

X i given by 

x~i~) = x i(~(x)) , 
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where ~ is the norm 

exponent d. Since 
1 

F ~ F , i s  a c h a r a c t e r  o f  F o f  
q~ q q~ 

! 

is onto Fq , it follows that X i ~ X~i 

if X i ~ X/ Therefore as X. 
l 1 

of F of exponent d. , then 
q l 

ters of F of exponent d 
qM 1 

character ~ in Theorem 6B by ~ with 

runs through all the characters 

X i runs through all the charac- 

Moreover, we may replace the 

( 9  = ~ C ~ )  , 

where ~ is the trace F ~ F In the formula of Theorem 6B, 
q 

q 

we have to replace q by q~ ' Xi (a')1 by X~ i- (a i) = (xi(ai))~ 

and G = G~i,,)_ by GM = G~Mi, ~_V) , which by the Davenport- 

Hasse Relation (Corollary 10E of Chapter II) has 

T h u s  

G = ( - G )  v 
,# 

N 
= ( q n -  1) 

+ ( - ' 1 ) n ( ~ - I  ) (1 - ~ )  Z . . . .  

q~ XI~( o 

( Xl(al)-..Xn(an)G0il,~)...G(Xn,~))~ 
X ~(o 

n 

exp d I exp d n 

XI--.X n = Xo 

Thus N is of the form 

( 6 . 5 )  N = w 1 + . + W~u ~ 
"" - ~l ..... ~v ' 

where Wl,...,~ u , ~l,...,~v are complex algebraic numbers, with 

a b s o l u t e  v a l u e s  
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c/2 
1 

(6 .6 )  l w i l  = q 
dj/2 

I~ l j l  = q 

where the c and d. are integers. 
i j 

Well (1949) made the famous conjecture that a formula like 

(6.5) with (6.6) is true in general for the number N of solutions 
n 

of f . 0 where f is a polynomial with in Fq~ (Xl, ..,x n) = , 

coefficients in F In fact, the conjecture said much more 
q 

than this. 

For curves, i.e. for n = 2 , the truth of this follows from 

the Riemann Hypothesis for curves, which had been proved by Well 

(1940, 1948o i It may be deduced from Theorem 1A of Chapter III 

and the theory of the Zeta Function of a curve (Artin(1924), F.K. 

Schmidt (1931). A very readable text is Deuring (1958)). For 

general n , the part (6.5) of the conjecture was first proved 

by Dwork (1960). The general conjecture was proved by Deligne 

( J~ 7~) +) 

+)But see the remark in the Preface. 
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d d 

w Equations fl(Y)Xll + ... + f (y)x n = 0 
n n 

THEOREM 7A. Let fl(Y),...,f n(~ be non-zero polynomials of 

d e g r e e  = < m o v e r  F . S u p p o s e  t h e y  a r e  c o p r i m e  i n  p a i r s .  F u r t h e r  
, . ,  q 

suppose that if al,...a are integers with 
n 

a I a n 
(7.1) 0 < a. < d. (j = l,...,n) and ~ii + "'" + ~-- integral 

J J n 

and if 5 = l.e.m. (dl,...,dn) , then the polynomial 

ald/d I and/d n 
(7.2) fl(y) ..~ f (y) 

n 

is not a 8 th power. Then the number N of solutions Xl,...,Xn,Y 

with components in F of the equation in the title satisfies 
q -- 

I N  - qn I <- cl(n,m,5)q (n+l)/2 

A special case is when the polynomials f are coprime and 
J 

= . = 2 For then there exist no if n is odd and d I 0. = d n 

integers al,...,a n with (7.1), and the hypothesis is satisfied. 

Another special case is when the f. are coprime and there is 
J d. 

an i in 1 ~ i ~ n such that f. (Y) - X i is absolutely 
l 

irreducible. For then the polynomials (7.2) are not 5 th powers: 

that 

t hat 

.o~ 

Ch. I, so that 

41 
is not a d '~ 

1 

To see this, it will suffice, because of the coprime condition, 

aiS/d i 
f. (Y) is not a 8 th power, which is the same as 
1 

a c 

f (y) i is not a d th power. Now if f. (Y) = c(Y - ~i ) 1 
i i i 

c 
s 

(Y - ffs ) , t h e n  (d.1 ' e l ' ' ' ' ' e  s )  = 1 b y  Lemma 2C o f  
a 

i 
(di,aic l,...,aic s) =< a i < d i , and indeed f.1 (Y) 

power. 
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Proof. We shall write g(q) = O(h(q)) 

Thus the assertion of the theorem is that 

if Ig(q) l ~ c(n,m,5) h(q) 

n N = q + O(q (n+l)/2) 

As before (see, e.g., w of C h .  II), we may reduce the proof 

to the case when djl q - 1 (j = l,...,n) 

Suppose Y E F has fl ~) = 0 Then f2 ~)'''fn ~) ~ 0 
q 

d 2 d 
The number of x 2,...,xn with f2~)x2 + "'" + fn~)Xnn = 0 is 

n-2 (n-l)/2) 
q + O(q by Theorem 5C or 6C. Since there are q possi- 

n-i (n+l)/2) solutions with bilities for x I , we obtain q + O(q 

this particular value of y The number N 1 of solutions of the 

equation of the title with 

( 7 . 3 )  f l ( y )  , . .  f n ( }  -) = 0 

is therefore 

N I = Zq n-I + O(q (n+l)/2) , 

where Z is the number of y in F with (7.3). 
q 

For given y with 

( 7 . 4 )  f l ( Y )  . . .  f n ( Y )  i 0 , 

the number of solutions of our equation in Xl,...,x n is given 

by Theorem 6B. Therefore the number N 2 of solutions of our 

equation with (7.4) is 

n-i 
N 2 = q (q - Z) + R 

where 
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IRL _-< 
XI# Xo 

exp d I 

Xnl Xo 
exp d 

n 

y with 

(7.4) 

X1 (fl (y)) "" "Xn(fn (y)) 
qn/2 

X I" " "X n = Xo 

s i n c e  i GOt i ,~ )  1 = ql/2 

Let X 

s o m e  a 3 J <dj 

the conditions (7.1) hold, and (7.2) is not a 

inner sum in our estimate of I RI is t) 
I I 

be a character of order 6 Then Xj 

in 0 < a (j = l,...,n) Since 

6 th 

al6/d I an6/dn) 
X(fl (y) ... fn~) 

Y 

and by Theorem 2Btof Ch. II, it is O(q I/2) Thus 

= X ajS/dj for 

XI-..X n = Xo , 

power. The 

R = o(q (n+l)/2) 

and 

THEOREM 7B. Let N be the number of solutions of 

(7 .5 )  
d I 

" )x dn-I fn(y) = 0 
fl (Y)Xl +'''+ fn-i (y n-i + 

-- "'''Xn- -- q -- n (dl' - in x I, l,y in F Put d = l.c.m .... ,d n 1 ) , and 

suppose that fl,...,fn satisfy the conditions of Theorem 7A. Then 

I N - qn-i I <= c 2(n,m,dn)q(n-l)/2 

t) The condition (7.4) in the sum is immaterial. 
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This generalizes a result of Perelmuter and Postnikov (1972). 

Proof. Let ~ be the number of solutions in ~l,.o~ of 

d d d 
+. ~ n-i fn~)~nn = 0 (7.6) fl ~)~i I ..+ fn_l ~) Xn_l + 

If Xl,...,Xn_l,y is a solution of (7.5), then for x / 0 , 

dn/d I dn/dn_ 1 
~i = XlX '''''~n-i = Xn-lX 'Xn = x,~ = y 

is a solution of (7.6) with ~ i 0 Every solution of (7.6) with 
n 

~ 0 is obtained in this way. The solutions of (7.6) with ~ = 0 
n n 

n-i O(q (n+l)/2 
number q + ) , as is seen as follows: 

If fl(y~ = 0 , then f2(y~ ... fn_l~) ~ 0 , and the number 

d d 

of 1 with f2( ' 2 fn n l �9 "" +'''+ - -i -- 0 is 

n-3 O(q (n-2)/2) 
q + by Theorem 5C or 6C. Thus the number of solutions 

of (7.6) with ~ = 0 with fl(~ (y~ = 0 is Zq n-2 n "'" fn-1 + o(qn/2) 

where Z is the number of ~ with fl(~)...fn_l(~) = 0 On the 

other hand, the number of solutions of (7.6) with ~ = 0 and 
n 

fl(y~ ... fn_l(~) ~ 0 is (q - Z)(qn-2 + O(q(n-l)/2)) , again by 

Theorem 5C or 6C. Together we get Zq n-2 + (q - Z)q n-2 + O(q (n+l)/2) = 

n-i q + O(q (n+l)/2) 

T h u s  

n-i (n+l)/2) 
N = (q - I)N + q + O(q 

n (n+l)/2) 
Now N = q + O(q by Theorem 7A, and therefore 

n- 1 (n+l)/2) 
(q - I) N = (q - l) q + O(q 



V. Absolutely Irreducible Equations f(x I ..... x n) = 0. 

References: Ostrowski (1919), Noether (1922), Lang & Well (1954), 

Nisnevich (1954). 

w Elimination theory. 

Our goal is to derive an estimate for the number of zeros of an 

absolutely irreducible polynomial in n variables. This will be 

achieved in w But in order to reach this goal we need 

'~ertini's Theorem", and for that in turn we need elimination theory. 

For more information on elimination theory see Van der Waerden (1955) , 

Chapter ll . Elimination theory is now considered old fashioned, 

since most of its applications can be derived in a more elegant way from 

algebraic geometry. On the other hand, in these lectures we do not presume 

any knowledge of algebraic geometry. Moreover, elimination theory is 

constructive and easily permits one to estimate the degrees and the 

size of the coefficients of the constructed polynomials. 

The reader will recall that given two polynomials over a field K , 

f(X) = Co Xa C l  x a - 1  + + o . .  + C a 

doXb dlXb-I d b g(X) = + + ... + , 

the resultant R = R(eo,Cl,..~ b) of 

is a certain polynomial in the coefficients of f and 

polynomial R vanishes precisely if either f and g 

root or if both leading coefficients are zero (c 0 

c ~ 0 and d yg 0 , then 
0 0 

= d O 

a b 

i=l j=l 

f (X) and g(X) 

g . The 

have a common 

= o) if 

where yl,...,y a and Zl,...,z b are the roots of f and of g ,respectively. 

R is homogeneous of degree h in Co, ...,c a , and homogeneous of 
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i I i JO d31 Jb 
iOc I ... c ado ... db degree a in do,...,d b , and each term e 0 a 1 

has 

(i I + 2i 2 + ... + aia ) + (Jl + 2J2 + "'" + bJb) = ab 

and 

Let 

* a a-1 a 
f (Xo,X I) = CoX 1 + ClXoX 1 + ... + CaX 0 

* d b b-i b 
g (Xo,X I) = oXl + dlXoX + ... + dbX 0 

be the two forms associated with f(X) and g(X) . We say that a 

pair (Xo,X l )  i s  a common z e r o  o f  f and g i f  (Xo,X l )  N ( 0 , 0 )  

and f (Xo,X l )  = g (Xo,X l )  = 0 , and i f  Xo,X 1 E  K . 

Claim: 

if R = 0 . 

f (Xo,X l) and g (Xo,X l) have a common zero if and only 

Proof: First suppose that f* and g have the common zero 

~Xo,X I) If x 0 ~ 0 then they have a common zero of the form (1,z) . 

Here z is a common root of f and g , and therefore R = 0 . If 

a b 
x 0 = 0 , then CoX 1 = 0 and doX 1 = 0 . Since x I cannot also be 

zero, it follows that c O = d O = 0 , and R = 0 @ 

Now suppose R = 0 . Either f and g have a common root z , 

in which case f and g have the common root (l,z) Or 

c O = d O = 0 , in which case (1,O) is a common root of f and g 

This verifies the claim. It follows that the vanishing of the resultant 

has a more elegant interpretation in terms of f and g than of 

f and g . 
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Let fl(X0,Xl,...,Xk) , ... , fr(X0,Xl,.o.,Xk) be forms with 

coefficients in a field K . A common zero of fl,...,fr is an 

(n + l)-tuple (x0,xl,-..,x k) I 0__ with components in K such that 

f (x) = 0 for i = 1,2,...,r . Suppose each of these forms is of 

degree d , and that for j = 1,2,...,r , 

(i.I) fJ (Xo' X1 . . . .  'Xk) ~ (j) i i i = a. . XoOX11 .Xkk 
i 0 ~ i . . . i  k "~  

i0+il+...+ik=d 

We extend the concept of a resultant of two polynomials to a resultant 

system for r forms in k + 1 variables by giving the following 

Definition: A resultant system for the forms (i.I) is a finite 

set of forms gl,...,g s in variables 

A(J! 
i011--.i k 

(i < j < r ; i 0 + i I + ... + i k = d) 

la j) ) = 0 for each i = l,...,s with the property that gil i0il...i k 

if and only if the forms fl,...,fr have a common zero. 

Example i: Take k = 1 and r = 2 . The resultant system for 

the forms fI(X0,XI) , f2(X0,Xl) consists of just one form (s = i) - 

the resultant of the two polynomials fl(l,Xl) and f2(l,Xl) 

E x a m p l e  2 :  T a k e  

fl(Xl,...,Xn) = allX I + ... + alnX n , 

fn(Xl ...,X n) = anl~+ ... + a X ' nn n ' 
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i.e. a set of n linear forms in n variables. Again there is a 

resultant system for these forms consisting of a single form g , 

namely the determinant 

g = 

All AI2 -.. Aln 

Anl An2 ..- Ann 

More generally, we can describe a resultant system for the forms 

fl(Xl,...,Xn) = a l l X l  + ... + a l n X  n 

f m ( X l , . . . , X n )  = a m l X l  + . . .  + a X m n  n 

If m < n , a resultant system for the forms fl,...,fm is the 

identically zero form, since fl,...,fm always have a common zero. 

If m ~ n , a resultant system is the set of all (n X n)- subdeterminants 

of the associated m • n matrix. 

THEOREM IA: Let fI(X0,XI,...,Xk) , ... , fr(X0,Xl,...,Xk) be 

forms of degree d as in (i.i) . There exists a resultant system 

gl,...,gs , where each gi is a form in the variables A (j) 
i o i l ' ' ' i  k 

Of degree 

2 k d 2 k - 1  

LEMMA 1B: L e t  ~ ( X l , . . . , X  m) b e  a f o r m  o f  d e g r e e  e , and  l e t  

h l ( Y l , . . . , Y ~ ) , . . . , h  m ( Y I , . . . , Y ~ )  b e  f o r m s  o f  d e g r e e  e ~ Then  t h e  

polynomial 
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g(Yl ..... Y~) = ~(hl(Yl .... 'Y~)'''''hm(YI'''''Y~) ) 

is a form of degree ee'. 

Proof: Obvious. 

We begin the 

Proof of Theorem IA: 

be given by (I.I) 

then (i.i) becomes 

Let the forms fl(Xo,...,Xk),...,fr(Xo,...,Xk) 

The proof is by induction on k . If k = 0 , 

(1.2) fj(X0) = a(J)xdd 0 ' 1 < j < r . 

Clearly the forms 

�9 (i) . (r)) . (j) 
gj(~d '''''Ad = ~d ' 

form a resultant system for (1.2) . Moreover, 

l~j&r, 

deg gj(Ad(l ),...,Ad. (r)) = 1 

for i ~ j < r , which agrees with Theorem iA �9 

Suppose that the theorem holds for forms in k variables 

X o , X I , . . . , X k _  1 . We i n t r o d u c e  n e w  v a r i a b l e s  U 1 , . . . , U  r , V 1 , . ~  r , 

and form two polynomials 

= Ulfl(Xo,...,X k) + ... + Urfr(Xo,..~ k) 7 

= VIfI(Xo,...,X k) + ... + Vrfr(Xo,...,X k) , 

where 

fj(Xo,...,X k) = ~ Aio (j)...ikXiO O...Xkki 
i o +  �9 . . + i k = d  
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If we view 

a resultant 

and g as polynomials in the variable X k , they have 

t)~ 
R = R(Xo,...,Xk_l,Ul,...,Ur,Vl,...,Vr,all A s) . 

If we write 

and 

= ~0 xd + "'" + ad 

=~o o x k  d + . . .  + g  d , 

t h e n  e a c h  a .  and  e a c h  
1 

linear in the variables 

In the resultant, a term 

~'I is a form of degree i in XO,...,Xk_ I , is 

UI,...,Ur,VI,...,Vr , and linear in the A s . 

-Jo -Jd ~ 
. . .  bd d ao " ' ' a d  ~ 0 - h a s  

�9 . = d 2 
Jl + 232 + "'" + dDd + ~I + 2~2 + "'~ + d~d 

The resultant is of degree d in ao,...,ad, and also of degree 

in bo' .... bd " Therefore 

(i) R iS a form of degree d 2 in XO,...,Xk_ 1 ; 

(ii) R is a form of degree 2d in the A ~ ; 

(iii) R is a form of degree 2d in UI,...,U , 
r 

VI,...,V r together . 

) 
Collecting terms involving like powers in the U s and V S , we 

may certainly write 

u I, �9 .. ,u r v I, �9 �9 ,v r 

; u I u v 

v r ( X O , . . . , X k _ l , A  s ) U  . . .  U r V I . . . V r  r 
Rul,''-,Ur,Vl,.--, i r 

t) That is, all variables A. 
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Abbreviating the above coefficients by RU, v , we observe that 

(i) Ru,v is a form of degree d 2 in X0,...,Xk_ 1 ; 

(ii) R is a form of degree 2d 
u~v 

J 
in the A s . 

LEMMA IC: Suppose the variables AS j) are replaced by 
lO,..-i k 

(J) in the field K . Then fl,...,fr have a coefficients aio...i k 

common zero if and only if all of the polynomials Ru,v(Xo,...,Xk_ l, 

have a common zero. 

a s )  

Proof: Suppose fl '''''fr have a common zero (Xo,Xl,...,x k) 

I f  ( X o , X l , . ~  1) ~ ( 0 , 0 , . . . , 0 )  a n d  t h e  v a l u e s  X o , X l , . . . , X k _  1 

a r e  s u b s t i t u t e d  i n  ~ a n d  g , t h e n  x k i s  a common  z e r o  o f  

a n d  g , w h e n c e  R = 0 . B u t  s i n c e  

U•I.. u v I v 
C r 0 = R = RU,v(X0, .,Xk_l,a V 1 ...V r , 

u v 

the polynomials Ru, v (X0,...,Xk_l,a's) must have (x0,...,Xk_ I) 

as a common zero. If, o n  the other hand, (Xo,...,Xk_ I) = (0,...,0) , 

then fl '''''fr have the common zero (0,...,0,i) . It follows that 

d 
the coefficient of X k is zero for each f , hence also for ~ and 

i 

. Again R = R(Xo,...,Xk_I,U's,V's,a's) = 0 , so all of the forms 

Ru, v (Xo,...,Xk_l,a ~ s) are identically zero, and therefore have a 

non-trivial common zero. 

Conversely, suppose that (Xo,Xl,...,Xk_ I) is a common zero of 
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the forms R (Xo, a s). In particular, ... u,v ~ Xo' 'Xk-I 

. Then 

R(Xo,Xl,..~ = 0 , 

so that either ao = b0 = 0 or ~ and g have a common zero 

If ~0 = b0 = 0 , then fl,o..,fr clearly have the common zero 

x 
k 

( 0 , 0 , . . . , 0 , 1 )  . I f  ~ a n d  g h a v e  t h e  c o m m o n  r o o t  x k , t h e n  x k 

a s  a r o o t  o f  ~ i s  a l g e b r a i c  o v e r  K ( U 1 , . ~  , a n d  a s  a r o o t  

o f  g i s  a l g e b r a i c  o v e r  K ( V I , o . . , V  ) I t  f o l l o w s  t h a t  x k i s  
r 

algebraic over K . But since 

lie in 

= U l f l ( X o , . o . , x k )  + . ~  + U r f r ( X o , . . . , x  k)  = 0 , 

and since each fj(Xo,...,Xk)EK , we conclude that 

s 1 7 6  k) = 0 (i g j ~ r) . 

We now return to the proof of Theorem IA . By the inductive 

hypothesis, there is a resultant system ~i,.~ s for the forms 

Ru,v(Xo,...,Xk_ I) , with 

d e g  g i  = 2 k - l ( d 2 ) 2 k - l - i  = 2 k - l d 2 k - 2  ( i  ~ i ~ s )  

J 

Each coefficient of R was a form of degree 2d in the A s . u__,v 

Let gl,...,g s be obtained from gl,...,g s by substituting for each 

J 
coefficient of R its expression in terms of the A s . By 

u,v 

Lemma IC , it is obvious that gl,...,gs 

fl '''''fr Finally, by Lemma IB , each 

form a resultant system for 

~i is a form in the A s 

o f  d e g r e e  
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2d  . 2 k - l d  2 k - 2  = 2kd  2 k - 1  

This concludes the proof of Theorem IA �9 We remark that the 

forms gl~...,g s have rational integer coefficients and are 

independent of the field K if char K = 0 . In a field of 

characteristic p , the coefficients of the forms gl,...,g s are 

replaced by the residue classes modulo p of the corresponding 

eoeffieienB in charaeteristic zero. 

If a is a polynomial with rational integer coefficients in any 

number of variables, we define llall as the sum of the absolute values 

of the coefficients. For 

E x a m p l e :  

T h e o r e m  t D: 

g l , . . . , g s  

I f  a ( X , Y )  = (X-Y) n , t h e n  llall = 2 n 

I n  a f i e l d  o f  c h a r a c t e r i s t i c  z e r o ,  t h e  f o r m s  

o f  T h e o r e m  1A h a v e  r a t i o n a l  i n t e g e r  c o e f f i c i e n t s  a n d  

satisfy 

IIgi[I ~ 2 2 4 k ' d 2 k  (1 ~ i ~ s )  

F o r  t h e  r e m a i n d e r  o f  t h i s  s e c t i o n ,  a l l  p o l y n o m i a l s  a r e  a s s u m e d  

t o  h a v e  r a t i o n a l  i n t e g e r  c o e f f i c i e n t s .  We f i r s t  p r o v e  a n  a n a l o g  t o  

Lemma 1B . 

LEMMA IE: Let g(XI,...,X ) be a polynomial of total degree 
m 

e . Let b l ( Y 1 , . . . , y t ) , . . . , b m ( Y 1 , . . . , y t )  b e  p o l y n o m i a l s  w i t h  

l ib . l l  K * (1 K i ~ m) T h e n  
1 

g(Yl ..... Yt ) = ~(bl(Yl''~ )'''''bm(Yl'''''Yt ) ) 
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has the property that 

l!glt 11 11 ,e  

Proof: For any  two polynomials a and 

variables, observe that 

llabll If all . l!hll 

b in a n y  number of 

For if a t , b' and (ab)' are obtained from a , b and ab , respectively, 

by replacing each coefficient by its absolute value, then 

llabll = II <ab) ' l l  ~ l l a 'b ' l l  = Ila"!l ]lb"ll = liall Ilbii 

i i 
1 m 

Now a typical term in the polynomial g is b I ...b m where 

so that 

il + i2 + "~ + im ~ e , 

i i 
I l b l l .  " .bmmil % e 

The lemma follows. 

In order to prove Theorem ID , we examine more closely the 

polynomials introduced in the proof of Theorem IA . 

LEMMA 1 F: 

I / R u , v ( X 0  . . . . .  X k _ I , A  s)f[ ~ (2d)  6dk  

t 

P r o o f :  We saw t h a t  R ( X o , . . . , X k _ I , U I , . . . , U r , V I , . . . , V r , A  s)  

had  t o t a l  d e g r e e  2d  i n  U 1 , . . . , U r , V l , . . . , V r  . T h e r e f o r e  i n  e a c h  

U U V V 
�9 �9 r 

monomial U11 ... Ur r V11 .V r , 
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~; 2 d  . U__ I + ...+ U + V 1 + ... + V r r 

Hence for any R which is not identically zero, at most 
u,v 

the numbers Ul'''''Ur'Vl'''''Vr can be non-zero. Let 

C = min {2d,r} . 

u =v = 0 if 
i i 

be obtained from 

2 d  o f  

Suppose, without loss of generality, that 

. ! 
i > c . Let R (X0,...,Xk_I,UI,...,U,VI,...,Vc,A s) 

R by omitting all terms where some U. or V. 
1 1 

with i > c occurs. Then 

s>ll 11 *tt �9 

R is clearly the resultant of the two polynomials 

f = UIfI(Xo,...,X k) + ... + %fc(Xo,-..,Xk) 

- *  X d - *  
= a o  k + " ' "  + a d  ' 

g = Vlfl(X0,...,X k) + ... + Vefc(X0,...,X k) 

- *  d - *  
= b 0 X k + . . .  + b d , 

when considered as polynomials in X k . If we write, for 

i i k 

fj(X 0 ..... X k) = ~ A (j)i0...ikX00...x k 

i0+. �9 .+ik=d 

the number of summands in f is not more than 
J 

number of summands in f or g is bounded by 

(d + i) k . 

(d + l) kc ~ 2d(d + l) k K (2d) k+l 

l ~ j ~ r ,  

S o  t h e  
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Therefore the number of summands in each a or b. is also 
i 1 

k+l -* -* 
bounded by (2d) But each coefficient in a i or b i is either 

0 or 1 , so that 

]]a.*tl K (2d) k + l  , t]b;ll ~ (2d) k + l  ( i  = 0 , . . . , d )  
1 

The resultant of f and g is of degree 2d in 

a0,...,ad,h0,...,b d . This resultant is a 

so the resultant r satisfies 11rli ~ (2d>' 

R = r(a0,...,a d , b0,...,bd) has 

(2d • 2d) - determinant, 

By Lemma IE , 

Hence 

I1R*tl-<: (2d): ((2d) k+l) 2d 

ll Ru, v <x , .  , A - s ) l /  ~ I1~*11 
0 " " 'Xk-i 

< (2d) 2d (2d) 2dk+2d 

= (2d) 2dk+4d  

6dk 
(2d) 

Proof of Theorem ID: We proceed by induction on k . If 

k = 0 , then llgil I = 1 and the theorem holds trivially. Suppose it has 

been established that for k-i one obtains the estimate 

2k-i 
224 ( k - l )  

Ilgill ~ % - 1  - Ck- l~d~  : d 

L e t  g l , . . . , g s  

l!~ill ~ %_1<d% 

a ~ o be a resultant system for the s By induction, 
u~v 

is of degree d 2 in XO, , since each Ru, v ...,Xk_ 1 
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On the other hand, gi is obtained from gi by substituting for the 

coefficients of each R their expressions in terms of the A s . 
U,V 

By applying Lemmas IE , IF and observing that gi has degree 

2 k - l ( d 2 )  2 k - l - 1  = 2 k - l d 2 k - 2  

we obtain 

But by the inductive hypothesis, 

24k-4 d 2k 
Ck_l(d 2) = 2 

Hence 

224k-4 llg II d2k 
i 

= 224k-4 d 2k 

. 22d . 6 k d .  2 k -1 .  d 2k-2 

6k2  k d 2k 
�9 2 

= 2 (24k-4 + 6k2k)d 2k 

24k d 2k 
< 2 
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w The absolute irreducibility of polynomials (I) 

Given a polynomial f(XI,...,X n) in n variables with 

coefficients in a field K , we wish to investigate the absolute 

irreducibility of f ; i.e., the irreducibility of f over K . 

Suppose f has total degree at most d > 0 and is given 

by 

(2. l) f(Xl'''''Xn) = ail...i X I... X n 
n 1 n 

il+...+i ~ d 
n 

THEOREM2A: (E. Noether (1922)) There exist forms gl,.~ 

in variables Ai 1...i (il + "'" + in ~ d) such that the above 
n 

p o l y n o m i a l  f ( X 1 , . . . , X  n) i s  r e d u c i b l e  o v e r  K o r  o f  d e g r e e  < d i f  

and only if 

g J { a i l ' ' ' i n  } = 0 (1 g j ~ s)  . 

I n d 1 + 
Moreover, if k = ~ I n , then 

( i )  d e g  g .  < k 2k ( i  < j < s)  
J 

These forms depend only on n and d , and are independent of the 

field K in the sense that if char K = 0 , they are fixed forms with 

rational integer coefficients; while if char K = p (f O) , they are 

obtained by reducing the integral coefficients modulo p In the 

case when char K = 0 , 

 ii) 11%11 4 / ( i  ~ j ~ s )  

Proof: We first dispose of the trivial cases. If d = 1 , the 
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forms may be taken to be just the variables correspondiug to the 

coefficients of f . If d ~2 and n = 1 , then f is always 

reducible over K , so we may take s = i and gl identically 

zero. We may therefore assume that both d ~ 2 and n ~ 2 , from 

which it follows that k ~ 2 . 

Observe that f is reducible or deg f < d if and only if 

f = gh with deg g < d , deg h < d . Now suppose f = gh where 

Jl J 
�9 . X ...X n 

g(Xl' "''Xn) = ~ bjl...3n 1 n 

Jl +'''+jn ~d- 1 

k I k 

h(Xl'~ ) = ~ Ck l...kn X1 ...Xnn 

kl+...+k n~d- 1 

Then the coefficients of f must have the form 

= Z Z b e k 
ail'''in ' Jl'''Jn kl" n 

Jl+kl=il Jn+kn=in 

t) 
for any il,...,i with i +...+i % 2d- 2 Let 

n 1 n 
g be fixed, not 

identically zero, and consider the system of linear equations 

= ~ ,.. ~ b ..j Ckl...k (il+...+in ~2d-2) 
(2.2) c . all ...i n Jl" n n 

Jl+kl=il Jn+kn=in 

in c and the elements c If g divides f , then 
kl..-k n 

has a solution with e = 1 , hence has a non-trivial solution. 

(2.2) 

Conversely, 

if (2.2) has a non-trivial solution, then if c = 0 , we would obtain 

the contradictory result that gh = 0 while both g ~ 0 mnd h ~ 0 �9 

So in fact c ~ 0 , and there is a solution of (2.2) with e = i , 

T) We set ail...i = 0 for i I + ... + i n > d . 
n 
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and hence g divides f. 

We have shown that g divides f if and only if (2.2) has a 

non-trivial solution in the variables c,{Ckl...k } . The number of 

n 
J i 

variables is k + i with k = In + d - i] . Therefore the condition 
n l 

that g divide f is that all the (k  + 1) X (k  + l )  d e t e r m i n a n t s ,  

say AI,...,A of the system of linear equations (2.2) vanish. 
r' 

But each A. is a form in the coefficients b. of degree k , 
z Jl...Jn 

and the number of these coefficients is also k . We know from 

elimination theory, specifically Theorem 1A , that there exist forms 

hl''''hs in the coefficients of AI,...,A r , such that the equations 

= = 0 have a non-trivial solution (in the b s) 
A 1 .... A r jl...jn 

if and only if h ..... h = 0 . Also by Theorem 1A , 
1 s 

2 k-I 2 k 
(2.3) deg h. = 2 k-I k -i ~ k (1 ~ i ~ s) . 

1 

If char K = 0 , it follows from Theorem ID that 

2 2 4 k - 4  2 k - 1  k 2 k  
. 4 )  I]h.l[  ~ k ~ 2 (1 ~ i ~ S) �9 

1 

Now let gi 

of the forms 

coefficients 

be obtained from h by substituting for the coefficients 
i 

AI,...,A r their expressions in terms of the original 

a 

i 1 �9 �9 .i n 
of f . Each such coefficient is linear in the 

a 

i .ooi 
1 n 

with norm a t  most k'. Combining (2.3) , (2.4) with Lemmas IB / 

rE , we obtain 

deg gi 
2 k 

< *c = d e g  h .  = k (1 - ~ i = < s )  
1 
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and 
2 k - l _ l  

llgilt ~ llhilt (k,./?-1 

k 2k  k 2 2 k - 1  k 2 k - l - 1  
2 2 

2 k 2 k - 1  
< 2k  2k  +k 

2 k 
2 k 2 k2k  

k 2k 
= 4 

COROLLARY 2B:  ( O s t r o w s k i  (191911 L e t  f ( X 1 , . . . , X  n) b e  a 

p o l y n o m i a l  o f  d e g r e e  d > 0 w i t h  r a t i o n a l  i n t e g r a l  c o e f f i c i e n t s .  

S u p p o s e  f i s  a b s o l u t e l y  i r r e d u c i b l e  ( i . e .  i r r e d u c i b l e  o v e r  ~ ) 

L e t  p b e  a p r i m e  w i t h  

p > (4Hfl!1 k2k , 

where k =(n + d - i) . Then the reduced polynomial modulo p is 
n 

a g a i n  o f  d e g r e e  d and  a b s o l u t e l y  i r r e d u c i b l e  ( i . e .  i r r e d u c i b l e  o v e r  Fp) �9 

Proof: Let f be given by ~.i) , where the coefficients 

{ail'''in } are now integers. Since f is of degree d and absolutely 

irreducible, in the notation of Theorem 2A , not all the numbers 

gi({ai l...in}) are zero. Let us say gl({a.ll...i n}) i 0 . We have 

the estimate 

2 k 2 k 

o < I gl({ail'"in}11 < 11glIJ.H~! k < (411fli1k 

2 k 

So i f  P > (4 l l f l l )  k , t h e n  t h e  n u m b e r  g l ( { a i l ' ' ' i n  }) is still non- zero 
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modulo p . It follows, again by Theorem 2A , that the reduced 

polynomial modulo p is of degree d and absolutely irreducible. 

COROLLARY 2C: Let f(X,Y) be a polynomial with rational integer 

coefficients which is absolutely irreducible. If N~) denotes the 

number of solutions of the congruence 

f(x,y) " 0 (mod p) , 

then for large primes p , 

N ~ )  = p + o ( p l / 2 )  

Proof: Combine Corollary 2B with Theorem IA of Chapter III. 

w The absolute irreducibility of polynomials (II) 

Let K and L be two fields with K ~ L �9 The algebraic 

closure of K in L , denoted by K ~ , is defined as the set of 

elements of L which are algebraic over K . Clearly K ~ is a field 

and K ~ K ~ ~ L . 

THEOREM3 A: Suppose f(Xl,...,Xm,~ is a polynomial with 

coefficients in a field K , irreducible over K , and of degree 

d > 0 in Y . Further suppose that f is not a polynomial in only 

X~,... X p YP ' m' i~f K has characteristic p ~ 0 . Let ~ be a 

quantity satisfying f(XI,...,X ,~) = 0 , and let L = K(XI,...,Xm,~). 
m 

Let K O be the algebraic closure of K in L . !hen [K~ K] is a 

divisor of d and K ~ is separable over K . Moreover~ the 

polyn~ial f(XI,...,X ,Y) is absolutely irreducible if and only if 
m 

o 
K =K. 
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Theorems of this type are well known to algebraic geometers. 

See, e.g., Zariski (1945) See also Corollary 6C in Ch. Vl. 

2 4 
E x a m p l e :  C o n s i d e r  t h e  p o l y n o m i a l  f ( X , Y )  = 2X - Y o v e r  t h e  

field K = ~ of rational numbers. Clearly f(X,Y) is irreducible 

over ~ . Choose ~ so that ~4 = 2X 2 and let L = ~(X,~) . If we 

put ~ = ~2/X , then 2 = 2 , so ~/2h o This means that Q is 

o 
not algebraically closed in L , or ~ ~ Q . By Theorem 3 A , f(X,Y) 

is not absolutely irreducible; in fact, we see directly that 

f ( x , , )  = x - x + 

is a factorization of f(X,Y) over Q(~2) 

Proof of Theorem3 A. We begin with the following remark: If K ~ 

is algebraic over K of degree d then KO(x ,...,X m) is algebraic 
' 1 

over K(XI,...,Xm) of degree d , and vice versa. If K ~ is separable 

(or inseparable) over K , then K~ ) is separable (or inseparable) 

over K(XI,...,X m) , and conversely. This follows from the argument 

used in Lemma 2A of Chapter IIl. 

Now observe that 

o 
( 3 . 1 )  K ( X 1 , . . . , X m )  c K ~  ) G K ( X 1 , . . . , X m ,  ~ )  = K ( X 1 , . . . , X m , ~ )  

Since K(XI,...,Xm, ~) is an extension of K(XI,...,X m) of degree d , 

it follows that [K~ ) : K(XI,...,Xm) ] divides d , whence 

[K~ K] divides d by the above remark. 

K ~ If f is absolutely irreducible, then f is irreducible over 

o 
Hence ~ is algebraic of degree d over K (XI,...,X m) ; that is , 

[K~ : K~ ..... X m)] = d 
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o 
From (3.1) it follows that K(XI,...,X m) = K (XI,..~ m) , so that 

o 
K = K 

For the remainder of the proof, we shall tacitly assume that 

char K = p ~ 0 . Actually the case when char K = O is simpler, and 

several steps may be omitted. 

Let fI(XI,...,Xm,Y) be an irreducible factor of f(XI,...,Xm,Y) 

over K such that 

( 3 . 2 )  fI(XI ..... Xm, ~) = 0 ~ 

We normalize fl by requiring that the leading coefficient (in some 

lexicographic ordering of the monomials) is 1 . Then every power of 

f also has this property. Let K be the field obtained from K 
1 1 

by adjoining the coefficients of f Let a be the smallest positive 
1 

a 
integer such that every coefficient of fl is separable over K . If 

b 
b is a positive integer such that f has coefficients which are 

1 

separable over K , then a~b ~ For if b = at + r with 0 ~ r < a 

r 
then fl has separable coefficients, and by the minimal choice of a , 

P has separable coefficients for some ~ , we have r = 0 . Now fl 

hence alp ~ , and a itself must be a power of p . We have 

s 
K c_ KI c KI , 

s 
where K 1 is the separable extension of K obtained from K by 

a 
adjoining the coefficients of fl " 

a s 
The polynomial g = fl has coefficients in K 1 and is irreducible 

s 
over K 1 , since its proper divisors (which would necessarily be 

powers of fl ) have coefficients which are not all separable over K , 
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a fa hence do not all lie in K~ Now g = fl divides , and since 

g is irreducible, g divides f . Write 6 = [K~ : K] and let 

(1) (2) (6) g (i) 
g , g ,...,g be the distinct conjugates of g . Each 

divides f , so the product 

(I) (2) g(5) I g g ~ f . 

But this product has coefficients which are separable over K , and 

which are invariant under conjugation. Hence this product has 

coefficients in K . Since f is irreducible over K , there exists 

a constant c E K such that 

(i) (2) (6) 
f =cg g ... g 

If a were a positive power of p , then g would be a polynomial in 

X~,...,X p YP hence each conjugate would be such a polynomial, and 
m' 

P X p yP therefore f would be a polynomial in XI''''' m' . But this is 

impossible by hypothesis. Hence a = 1 . It follows immediately that 

s 
K 1 = K 1 , whence that K 1 is a separable extension of K ~ 

o(I) _(5) has degree d in y , so each factor Now f = c I 1 ... i 1 

f(i) has degree d/6 in Y Hence by (3.2) , ~ has degree d/8 
1 

over KI(XI'''''Xm ) Since [KI:K ] = 6 , it follows that [KI(XI,...,Xm, 

9) : K(XI,-.-,X m) ] = d . Since K c K1 ' and since also [K(XI,... ,Xm, 9) : 

K(XI,...,X m) ] = d , we have 

K I(XI,...,Xm, 9) = K(XI,...,Xm, 9) = L . 

T h u s  K l i s  c o n t a i n e d  i n  L a n d  i s  a l g e b r a i c  o v e r  K , w h e n c e  

K l ~ K ~ 



198 

Now fl was irreducible over KI, Ln fact absolutely irreducible. 

By the part of the theorem already proved, (Kl)~ = K 1 . But (KI)~ = K ~ 

o o o 
so K 1 = K , and K is separable over K . Finally, if K = K , 

then K 1 = K and f is absolutely irreducible. This completes the 

proof. 

We are now able to finish the 

Proof of Lemma 2B of Chapter III: In the notation of that lemma I 

we need to show that if 

[ K ( X , Z , ~ , i I ) :  ( K ( X , Z )  ] = d 2 

then f(X,Y) is absolutely irreducible. Suppose 

absolutely irreducible. By Theorem 3A , K ~ I K . 

u > 1 and let [K(X,~): K~ = v , so that 

KO(x,z) ~ K~ c_ K~ = K(X,Z,~,1I) 

are of respective degrees u,v,v , so that 

[ K ( X , Z , O , I / ) :  K ( X , Z )  ] = u v  2 < (uv )  2 = d 2 , 

f(X,Y) is not 

Let [K O(x) : K(X) ] = 

uv d In the chain K(X,Z) c 

, the field extensions 

which completes the proof. 

In w of Chapter IV we introduced an equivalence relation for quad- 

ratic forms. We make a slight ad2ustment of that definition to define an 

equivalence for polynomials in n variables over a field K. We say that 

f(X) ~ g(X) if there is a non-singular (n X n) matrix T and a vector 

both having components in K , such that 

t , 

f(x) = g(TX + t) 
= = ___ 

This is clearly an equivalence relation. 
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LEMMA 3 B: Suppose f (X) ~ g(X) . If f is irreducible over K 

(or absolutely irreducible), then so is g . Moreover, the total 

degrees  of  f(X) and g(X) a re  equa l .  

Proof: Exercise. Notice that the first part of the lemma is 

a generalization of Lemma 2B of Chapter I . 

Let f(XI,...,X n) be a polynomial over K . For 1 ~ Z % n , 

we will write 

f ( X l ' ' "  " ~ Z  ' X~+I . . . . .  Xn) 

when the polynomial is to be interpreted as a polynomial in the 

variables X~+I,..~ n , with coefficients in the field E(XI,...,X ~) 

LEMMA 9C: If f(XI,...,X ) is irreducible (over K) , then 
n 

f(Xl,...~ , Xs 1 .... ,Xn) is irreducible (over K(XI,...,X~)) . 

Proof: This follows from the unique factorization in 

K[XI,...,X~] . The details are left as an exercise. 

We remark that if f(XI,...,X n) is absolutely irreducible 

(i.e. irreducible over K) , it does not follow that f(~l~..~ , 

absolutely irreducible (i.e. irreducible over K(XI,...,X~)). X~+I, �9 �9 �9 ,X~is 

In fact if ~ = n - 1 , the new polynomial is a polynomial in one 

variable, which cannot be absolutely irreducible unless its degree is 

one. As another example, the polynomial 

2 2 
f(XI,X2,X 3) = X 2 - XIX 3 

( • l  ,X S) has the factorization is absolutely irreducible, while f ,X 2 
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f (x ,x 2,x3  : % - x 3) % + x3 

o v e r  K(X 1)  . 

THEOREM SD: Suppose f(Xl,...,Xn) is a polynomial over an 

infinite field K . Suppose f is absolutely irreducible and of 

degree d ~ 0 . Let i ~ ~ g n - 2 . Then there is a polynomial 

g ~ f such that 

g(X l,...,xs , X~+l,...,X ) 
n 

is absolutely irreducible and of degree 

We shall need 

d (in X~+l,...,X ) . 
n 

LEMMA 3E: Let J ~ L he fields such that L is a finite 

separable algebraic extension of J . Then there are only finitely many 

fields J' with 

j_c g' c L . 

Proof: Let N be a finite separable algebraic normal extension of 

J with L ~ N . Let G be the Galois group of N over J , and let 

H be the Galois group of N over L . Then H ~ G . From Galois 

theory, we know that there is a one-one correspondence between fields 

J' with J ~ J' c L and groups H' with H c H'~ G . The number of 

such groups H' is finite, so the number of fields J' is finite. 

Remark: Separability is essential in Lemma ]E. For let F be an 

algebraically closed (hence infinite) field of characteristic p . Take 
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J = F(X,Y) c L = j ( x 1 / P , y  l / p )  

and if c E F , let 

J' = J ( (X + cy) l/P) 
C 

= j(X 1 /p  + c l / P y  l / p )  . 

Clearly j ~ j' c L , but for different choices of c E F we get 
c 

different fields J' , so that the collection of intermediate fields 
c 

is infinite. 

We begin the 

Proof of Theorem 3D: We shall tacitly assume that char K = p / 0 , 

the proof for the case char K = 0 being easier. First observe that 

P . X p f(XI,...,X n) is not a polynomial in XI,. ., n ' for if it were then 

pi pi 

f(Xl''"'Xn) = ~ a i l ' ' ' i n  X1 1 ~  Xn n 

1 1 , - . . , i  n 

x: n) 
ii...i. . Xn 

il'''" ' n n 

contradicting the assumption that f(XI,...,X ) 
n 

irreducible. We change notation and write 

is absolutely 

f = ~(x I .... ,x,Y) 

where m = n - 1 . After a linear transformation of variables 

J 

(X. = X. + c.Y ; i = 1,2,...,m) we may suppose that f is of degree 
1 1 1 

d in Y and separable in Y ~ Let ~ be a quantity satisfying 
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f ( x  I . . . .  , x  m , ~ )  = 0 , 

and l e t  L = K ( X 1 , . . . , X m , ! ~ )  Fo r  

C o n s t r u c t  t h e  f i e l d s  K(X ( c ) )  and 

a l g e b r a i c  c l o s u r e  o f  K(X~ c ) )  t h e  

LEMMA3 F: F o r  some e E K , 

K (XI ) = K (X . 

P r o o f :  For  e v e r y  e E K we have  

K(X 1 .... ,Xm) c ( K ( X : e ) ) ) o  (X 2 

c E K , p u t  

in L . 

,..-,Xm ) _c L . 

Note that L is a separable extension of K(XI,..~ 

By Lemma 3E , there are only finitely many subfields of 

K(XI,...,X m) Hence there exist two distinct elements 

such that 

or  

(c)  = X + cX 
X1 1 m 

, t h e  l a t t e r  b e i n g  

of degree d . 

L containing 

e,e' s K 

,...,X ) , 
m 

(c) 
and Z = X~ c t )  ( By T h e o r e m 3 A  , X = X 1 

But  s i n c e  X 2 , . . . , X m _  1 

i t  f o l l o w s  t h a t  

For brevity we shall write 

( X )  �9 
m 

( X m ) ( X 2 ' ' ' ' ' X m - 1 )  = l K ( x l C ' ) ) j o  [ r ~ (Xm) (X2 . . . .  'Xm-1) 

a r e  a l g e b r a i c a l l y  i n d e p e n d e n t  o v e r  K(X1,X m) 
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K(x~C)) ~ a finite separable extension of K(XI c)) ( , and hence is 

there exists an element ~ such that 

Similarly, there is a 8 with 

= K(Z = K ( Z ,  . 

L e t  ~ h a v e  t h e  d e f i n i n g  e q u a t i o n  h l ( X , ~ )  = 0 , w h e r e  h 1 i s  

i r r e d u c i b l e  o v e r  E ; l e t  8 h a v e  t h e  d e f i n i n g  e q u a t i o n  h 2 ( Z , 8 )  = 0 , 

w h e r e  h 2 i s  i r r e d u c i b l e  o v e r  K . Now b y  T h e o r e m  3 A  a n d  t h e  a b s o l u t e  

i r r e d u c i b i l i t y  o f  f , K = K ~ , s o  t h a t  K i s  a l g e b r a i c a l l y  c l o s e d  i n  

L . It follows that K is algebraically closed in K(X,~) and in 

K(Z,8) . Then by Theorem 3A again, h I and h 2 are absolutely 

irreducible. Hence if ~ is of degree d I over K(X) and if 

is of degree d 2 over K(Z) , then 

[ K ( X , Z , t , ~  : K ( X , Z )  ] = d l d  2 

b y  Lemma 2A o f  C h a p t e r  I I I .  B u t  we  h a v e  

so that 

m m ' 

K ( X , Z , ~ )  = K ( X , Z , ~  = K ( X , Z , ~ , 8 )  

These three fields are extension of K(X,Z) of respective degrees 

dl,d 2 and dld 2 , so that d I = d 2 = dld 2 , and therefore d I = d 2 = 1 . 

Hence K(X c o c o = K (X and K (X c c = K(X , which proves 

the lemma. 
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We now conclude the proof of Theorem 3D . We may write 

f(X I,...,XmY) = g(X~ c), X 2 ..... Xm,Y) 

where c E K is obtained from Lemma 3F and where 

g ( X , X 2 , . . . , X m , Y )  = f ( X  - C X m , X 2 , . . . , X m , Y )  �9 

Clearly 

g(Xl'~,X2,...,Xm,Y) 

K(X~ c)) ) because 

g ( X I ' X 2 ' ' ' ' ' X m '  u 

clearly equivalent to f and is of degree d in 

. ( c )  = X2  + CXm m u s t  now b e  r e p e a t e d  by  s e t t i n g  x 2 

t o  o b t a i n  t h e  r e s u l t .  Note  t h a t  i n  t h e  l a s t  s t e p  

h e n c e  t h a t  we c e r t a i n l y  do  n e e d  t h e  c o n d i t i o n  

g(XlC),x2,...,Xm,~)( = 0 and g is irreducible. But 

is absolutely irreducible (i.e., irreducible over 

(K(x~C)))~ = K(x~C)) . By a change of notation, 

is absolutely irreducible. This ne~ polynomial is 

Y . This process 

with c 6 K , etc., 

(c) X~ + cX m X~ = 

s <_- m - l= n - 2 . 

w 4. The absolute irreducibility of polynomials (IIl) . 

Let K be a field. We have denoted by K n the n-dimensional 

vector space over K consisting of n-tuples (Xl,...,x n) with 

components in K . Suppose M is an m-dimensional linear manifold 

in K , where 1 ~ m ~ n . Then M has a parameter representation 

=Y0 + ~1~i +'" § ~m~' 

n 
where Y=O ' ~I .... ' ~m ~ K , with ~l,...y=m linearly independent, 

and where UI,...,% are parameters. We write ~ = L(~). Suppose 

M has another parameter representation 
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Then U = TU'+ t , where T is a non-singular (m • m)-matrix over 

K and t E K n L' f(X I, .,X n) = , hence L(TU I= + t)= = (U I)= �9 If .. is a 

polynomial with coefficients in K and M is a linear manifold with 

parameter representation L(~ , put 

If L' is another parameter representation of M , then 

fL,(U')_ = f(L'(U'))= = f(L(TU'= + =t)) = fL(TU j= + t)= 

Hence the polynomial fL is determined by M up to equivalence in 

the sense of w . One can therefore speak of the "degree of f on 

M" and of the irreducibility or absolute irreducibility of f on M . 

LEMMA 4A: Suppose f(Xl,...,X n) has coefficients in an infinite 

field K , is of degree d > 0 and is absolutely irreducible. Let 

n ~ 3 and suppose that m is such that 2 K m < n . Then there exists 

a linear manifold M of dimension m such that f is of degree d 

and absolutely irreducible on M . 

Proof: We may replace f by an equivalent polynomial. 

therefore asstnne by Theorem 3D that 

f(Xl,..-,Xn_m,Xn_m+l,---,X n) 

We may 

is of degree d (in Xn_m+l,...,X n) and is absolutely irreducible. 

By Theorem 2A , for polynomials in m variables of degree at most 
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d , there is a system of forms gl,...,gs in the coefficients so 

that the polynomial is reducible or of degree < d precisely if 

gl = "'" = gs = 0 . In our case, the coefficients are polynomials in 

XI,...,Xn_ m , so that we may write 

gi = gi(Xl'''''Xn-m) (i g i < s) 

Since f(Xl,...,Xn_m,Xn_m+l,...,X n) is of degree d and is 

absolutely irreducible, we must have some gi(Xl,...,Xn_m) ~ 0 , 

say for simplicity gl(Xl,...,Xn_ m) ~ 0 . Since K is infinite there 

exist elements tl'''''tn-m E K such that gl(tl,...,tn_m ) ~ O. Then 

the polynomial 

f(tl,-'-,tn_m,Xn_m+l,-..,X n) 

in variables Xn_m+l,...,X n is of degree d and absolutely irreducible. 

This means simply that the polynomial f on the manifold M given 

by 

x 1 = tl,...,x = t n-m n-m 

is of degree d and absolutely irreducible, which proves the lemma. 

Let ~ be a linear manifold of dimension m ~ 2 with parameter 

representation 

(4.1) x__=L(_~)_ :~§ u ly__l § " § ~m~ 

The polynomial fL is absolutely irreducible and of degree d precisely 

if not all of certain froms gl,...,g s in the coefficients of fL 

vanish. We have gi = gi(y=o,...,ym )= , where gl(Y0,...,Ym). = = are 



polynomials in n(m + I) 

on which f is of degree 
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variables. Since there exists a manifold 

d and absolutely irreducible, not all 

t h e s e  polynomials gi(-~O'~l'''''~n ) are identically z e r o .  

L e t  F b e  a s u b f i e l d  o f  K . We s h a l l  s a y  t h a t  a l i n e a r  m a n i f o l d  

M i n  K n i s  g e n e r i c  i f  i t  h a : ) a  p a r a m e t e r  r e p r e s e n t a t i o n  ( 4 . 1 )  

w h e r e  t h e  n(m + 1) c o m p o n e n t s  o f  Y - - o ' ~ l ' ' ' ' ' ~ n  a r e  a l g e b r a i c a l l y  

i n d e p e n d e n t  o v e r  F . ( T h a t  i s ,  t h e y  s a t i s f y  no  n o n - t r i v i a l  p o l y n o m i a l  

e q u a t i o n  i n  n(m + 1) v a r i a b l e s  w i t h  c o e f f i c i e n t s  i n  F ) .  More 

p r e c i s e l y ,  one  s h o u l d  s a y  t h a t  M i s  g e n e r i c  o v e r  F . S u p p o s e  

f ( X 1 , . . . , X  n) h a s  c o e f f i c i e n t s  i n  F and i s  a b s o l u t e l y  i r r e d u c i b l e .  

Then  some g i  (-~0 . . . .  ' ~ n  ) d 0 , w h e n c e  g i  (Y--o . . . . .  ~n ) ~ 0 i f  t h e  

c o m p o n e n t s  o f  ~ O ' ~ l ' ' ' ' ' ~ n  a r e  a l g e b r a i c a l l y  i n d e p e n d e n t  o v e r  F . 

Thus  f i s  a b s o l u t e l y  i r r e d u c i b l e  on M . We t h u s  h a v e  

THEOREM 4B: Let f(~) E F[X]_ be absolutely irreducible and of 

degree d . Then on a generic linear manifold M of dimension m 

(2 ~ m & n) , the restriction of f is again absolutely irreducible 

and of degree d . 

This theorem, or rather a generalization of it, is sometimes 

called Bertini's Theorem. 

geometer Bertini (1892) 

It is connected with work of the Italian 

Example: Take n = 3 and m = 2 . The polynomial 

2 2 2 
f(Xl,X2,X 3) = X 1 + X 2 - X 3 - 1 

defines a hyperboloid of one shell in 3-space. The intersection of 
this hypersurface with a plane (a 2-dimensional linear manifold) can.) 
be an ellipse, a hyperbola, a parabola, or if the plane is tangent 

*) this includes the case when the plane is "tangent to a point at 
infinity". 

t) Note that the parameter representation is not unique. 
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to the surface, two lines. The restriction of f to a plane is 

reducible precisely if the intersection consists of two lines; that is, 

precisely if the plane is tangent to the surface. It can be shown 
that the tangent planes are the planes 

a l x  1 + a 2 x  2 + a 3 x  3 + a 0 = 0 

2 2 2 2 
w i t h  a 1 + a 2 - a 3 - a 0 = 0 . The  p l a n e s  w i t h  a 0 = 0 a r e  t a n g e n t  

t o  a n  i n f i n i t e  p o i n t  o f  t h e  h y p e r b o l o i d ,  a n d  t h e  i n t e r s e c t i o n  o f  t h e  
h y p e r b o l o i d  w i t h  s u c h  a p l a n e  c o n s i s t s  o f  two  p a r a l l e l  l i n e s  
( i . e . ,  two  l i n e s  w h i c h  i n t e r s e c t  a t  a n  i n f i n i t e  p o i n t ) .  The  o t h e r  
t a n g e n t  p l a n e s  h a v e  a n  i n t e r s e c t i o n  w i t h  t h e  h y p e r b o l o i d  w h i c h  c o n s i s t s  
o f  two  i n t e r s e c t i n g  l i n e s  ( i . e . ,  l i n e s  w h o s e  i n t e r s e c t i o n  i s  a f i n i t e  
point). 

THEOREM 4C: Let f(Xl,...,Xn) be a polynomial over F of 

degree d > 0 which is absolutely irreducible. Let n ~ 3 and let A 

be the number of 2-dimensional linear manifolds M (2). Let B denote 

the number of manifolds M (2) en which f is not of degree d or 

is not absolutely irreducible. Let ~ = 2 d k  2k w h e r e  k = ( d  +2 1 t 7  

T h e n  

Proof: 

B/A ~ ~ / q  . 

Every linear manifold M (2) has a parameter representation 

x__={o  + ~i{i +"2~ ' 

w h e r e  Y=O' Y l '  Y=2 E F n a n d  Y--1 a n d  Y--2 a r e  l i n e a r l y  i n d e p e n d e n t  q ~ 

If A t is the number of such parameter representations, then 

_ _ 1 3 n  A t = q n ( q n  1) (qn  q) >_ ~ q 

B u t  e a c h  l i n e a r  m a n i f o l d  M (2)  h a s  

2 _ - D = q (q2 1) (q2 q) 
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different parameter representations, whence 

(2) 
manifold M , 

A = A~/D �9 Now on a 

fL  (X) = f (Y0  + U1 Y=I + 5 Y--2 ) 

is a polynomial in UI,U 2 �9 By Theorem 2A , there are forms 

gl,.o.,gs in the coefficients of this polynomial such that 

gl .... gs = 0 is equivalent to the polynomial being of degree < d 

or irreducible. The degree of each gi was at most 

k 2k = ~t , 

(d + I) . (Note that f is a polynomial in say, where k = 2 L 

The coefficients of f(Yo + UI Yl + U2 Y=2 ) are polynomials in the 

coordinates of Y0' Y=l' Y=2 of degree at most d . Substituting these 

coefficients into gl,...,g s , we obtain polynomials hl,...hs in the 

coordinates of Y-~3' Y=l' Y--2 ' each of degree at most d~ ~ , and having 

the property that f(Y--o + U1 Yl + U2 Y2 ) is of degree < d or 

reducible if and only if hi(Y--0' ~i' Y=2 ) = 0 for i = 1,...,s . 

Since the restriction of f to a generic manifold M (2) is absolutely 

irreducible, some hi = hi (Y@' --YI' Y2 )' say hl, is not identically 

zero. By Lemma 3A of Chapter IV, the number of ~Y-0' _~l' Y-2 with 

h l%Z0 '  ~ l '  ~2  ) = 0 i s  a t  mos t  d ~ t q 3 n - 1  But s i n c e  e a c h  M (2) has  D 

r e p r e s e n t a t i o n s ,  

B g d k~ ~ q 3 n - 1 / D  . 

2 v a r i a b l e s ) .  

Hence 

B/A ~ d ~ t  q 3 n - i / A ~  g 2d k~t /q  = ~ / q  . 
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w 5. The number of zeros of absolutely irreducible polynomials in 

n variables. 

In this section we shall allow the symbols W(q,d) and x(d) 

to take on either one of the following interpretations: 

(i) ~(q,d) = ~f~ d 5/2 ql/2 x(d) = 250 d 5 

(ii) ~(q,d) = (d - I) (d 2)q I/2 
2 

- + d , X (d) = i . 

So if f(X,Y) is a polynomial with coefficients in F , absolutely 
q 

irreducible and of degree d > 0 , then 

(5.1) I N - ql < ~(q,d) 

whenever q > x(d) , where N is the number of zeros of f(X,Y) . 

With interpretation (i) , this statement has been proved as Theorem ]A 

of Chapter III. However the statement also holds under interpretation 

(li), as follows from the study of the zeta function of the curve f(x,y) 

(Well (1948~, Bombieri (1973)), and as may be known, to a more sophisticated 

reader. 

THEOREM 5A; Suppose f(X I ...,X n) is a polynomial over F ' q 

of total degree d > 0 and absolutely irreducible. Let N be the 

n 
number of zeros of f in F Then 

q 

(5.2) I N -  qn-11 < q n - 2 ( ~ ( q , d )  + 2d if2') , 

where ~ was defined in Theorem 4C. 

If interpretation (i) is used, we obtain 

I ~ _ q~-l] ~ qn-2 ~ d5/2 qi /2 + 2d 'ffJ') 
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If we use interpretation (ii) , then 

IN - q n - l ,  ~ q n - 2 < ( d _ l ) ( d - 2 ) q l / 2  + d 2 + 2d kg) 

n -  ( 3 / 2 )  n - 2  
(d - 1) (d - 2 ) q  + 3d  ~ q 

This theorem is due to Lang and Well (1954) , and also Nisnevich (1954) . 

However, no value of the constant 2d ~ was given . We now begin the 

let 

of 

Proof: For a 2-dimensional linear manifold 

N(M (2)) be the number of zeros of f on M (2) 

F n lies on exactly 
q 

(qn  _ 1 ) ( q n  q) 
E = 

(q2 _ 1 ) ( q 2  _ q) 

M (2) i n  F n , 
q 

E v e r y  p o i n t  

manifolds M (2) Thus 

(5.3) 
1 N = ~ ~ N(M (2) )  

M (2) 

O b s e r v e  t h a t  by  t h e  p r o p e r t y  o f  ~ ( q , d )  d i s c u s s e d  a b o v e  and  by  

Lemma 3A of Chapter IV, we have for q > M(d) , 

(5.4) I 
~(q,d) if f is absol, irred, on M (2), 

N(M ( 2 ) ) -  M (2) 1 ql < dq if f is not identically zero on 

2 M (2) q i f  f = 0 i d e n t i c a l l y  on 

LEMMA 5B: L e t  f ( X 1 , . . . , X  n) b e  a p o l y n o m i a l  o v e r  F , o f  d e g r e e  q 

d > 0 and  i r r e d u c i b l e .  S u p p o s e  f i s  n o t  e q u i v a l e n t  t o  a p o l y n o m i a l  

g ( X 1 , . . . , X n _ 2 )  , w h e r e  o n l y  n - 2 v a r i a b l e s  a p p e a r .  As i n  Theo rem 4C , 

let A be the number of 2_dimensiona! linear mapif01ds M (2) . Let C 



212 

be the number of manifolds M (2) where f is identically zero. Then 

3 2 
C/A ~ d / q  

Proof: Consider the planes M "2) ( parallel to the plane 

* n - 2  * 
x I = ... = Xn_ 2 = 0 ; these number A = q Let C be the number 

of those parallel planes on which f is identically zero. A typical 

plane of this type is 

(2) 
M : x I = c I ,..., Xn_ 2 = Cn_ 2 

The polynomial f can, of course, be written as 

f(XI,...,X n) = ~ Pij(Xl,... X ~)X i .X j 
,: ' n-z n-I n 

i ,  j 

(2) 
If f is identically zero on M , then 

P i j ( C l , . . . , C n _ 2 )  = 0 

for all i and j �9 If these polynomials p.. have a common factor 
ij 

g(X1,...,Xn_ 2) of positive degree, then g divides f and, since 

f is irreducible , f = cg . But by hypothesis f is not a polynomial 

in only n - 2 variables, hence the Pij have no proper common factor. 

By Lemma 3D of Chapter IV, the number of co,on zeros (el,...,en_2) 

of the polynomials Pij is at most d3q n-4 It follows that 

C ~ s d3q n-4 and 

* * d3/q2 c /A 

The s a m e  a r g u m e n t  h o l d s  f o r  p l a n e s  p a r a l l e l  t o  a n y  g i v e n  p l a n e ,  a n d  

t h e  r e s u l t  f o l l o w s .  

We now continue the 



213 

Proof of Theorem 5A: The proof is by induction on n. The case 

n = 1 is completely trivial, and the case n = 2 holds by what we 

said above. If f ~ g where g is a polynomial in n - 2 

2 N ~ then the number of zeros of f is q times the number 

n-2 
os g in F So by induction 

q 

IN '  _ qn-31 < q n - 4 ( w ( q , d )  + 2d ~ )  , 

variables, 

of zeros 

whence (5.2) , We may therefore suppose that f is not equivalent 

to a polynomial in n - 2 variables. Assume at first that q > x(d) 

From (5.3) and (5.4) we find that 

IN" - ~ ~ q] ~ ~ (~O(q,d) ~ 1 + dq 1 + q 1 
M (2) M (2) ) ) 

f no t  a b s o l ,  f =- 0 on M (2) 
i r r e d .  

In our established notation, it follows that 

IN - q ] ~ 7 (q,d)A + dqB + q2C 

= ( A / E ) ( ~ ( q , d ) +  d q ( B / A ) +  q2(C/A)) 

) ~ q W(q,d)  + d ~ + d 3 

2 
On the other hand if q < X (d) , then q < 2d ~ , whence 

' N -  qn - l t  < q n <  qn-2 ( ~ ( q , d ) +  2d ~ )  . 

COROLLARY 5C: Suppose  f ( X 1 , . . .  ,X n) i s  a p o l y n o m i a l  w i t h  

r a t i o n a l  i n t e g e r  c o e f f i c i e n t s  which  i s  of d e g r e e  d and a b s o l u t e l y  

i r r e d u c i b l e .  For  p r imes  p , l e t  N(p) be  t h e  number of  s o l u t i o n s  of  

t h e  c o n g r u e n c e  
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2B . 

a r e  
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f ( x l , . . . , x  n) -= 0 (rood p) . 

n - 1  r n -  ( 3 / 2 )  )~ 
N(p) = p + 0 I P 

P r o o f :  The p r o o f  i s  a c o m b i n a t i o n  o f  Theorem 5A and C o r o l l a r y  

The error terms of Theorem 5A in the two possible interpretations 

~/~  d 5 / 2 q n - ( 3 / 2 ) +  O ( q  n - 2 )  

and  

( ) ( 5 . 5 )  (d - 1 ) ( d  - 2 ) q  + O q n - 2  . 

I t  may b e  shown  ( W , i [  Qt~N~@)) t h a t  when n = 2 , t h e  

e x p o n e n t  ~ i n  t h e  e r r o r  t e r m  (d l )  (d - 2 ) q  2 
- + 0 ( 1 )  i s  b e s t  

p o s s i b l e .  A l s o  t h e  c o n s t a n t  (d - 1 ) ( d  - 2) i s  b e s t  p o s s i b l e .  

I f  g (X,Y)  i s  a p o l y n o m i a l  i n  2 v a r i a b l e s  w i t h  N p z e r o s  , t h e n  t h e  

p o l y n o m i a l  f ( X 1 , . . . , X n )  = g ( X l , X  2) i n  n v a r i a b l e s  h a s  N = N~q n - 2  

z e r o s .  Hence t h e  e x p o n e n t  n - ( 3 / 2 )  and  t h e  c o n s t a n t  (d - 1) (d - 2) 

i n  ( 5 . 5 )  a r e  b e s t  p o s s i b l e  f o r  e v e r y  n . 

On t h e  o t h e r  hand  t h e  c o n s t a n t  2d ~ i n  ( 5 . 2 )  i s  c e r t a i n l y  

t o o  l a r g e .  T h i s  i s  e s p e c i a l l y  b a d  i f  one  w a n t s  t o  e s t i m a t e  how l a r g e  q 

m u s t  b e  i n  o r d e r  t h a t  N > 0 .  W i t h  ( 5 . 2 )  one  n e e d s  t h a t  q i s  

c e r t a i n l y  l a r g e r  t h a n  2d ~ , h e n c e  t h a t  q i s  v e r y  l a r g e  a s  a f u n c t i o n  

of d . 
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Schmidt (1973) applied the method of Stepanov directly to 

equations in n variables and obtained 

n - 1  ( 3 / 2 )  6 
N > q - 3 d 3 q  n -  p r o v i d e d  q > c 0 n 3 d  

if (5.1) is used with w(q,d) given by (i), and 

n - 1  n - ( 3 / 2 )  _ 6 d 2 q n - 2  p r o v i d e d  N > q (d-l) (d-2)q 

q > c o (s n3d 5+~ 

if (5.1) is used with ~(q,d) given by (ii) 

Much more is true for "non-singular" hypersurfaces 

the deep work of Oeligne (I~73)%) 

by 

+)But see the remark in the Preface. 



VI. Rudiments of Algebraic Geometry. T.he Number of 

Points in Varieties over Finite Fields. 

G e n e r a l  R e f e r e n c e s :  A r t i n  ( 1 9 5 5 ) ,  Lang (1958) ,  S h a f a r e v i c h  (19~7~), 

Mumford ( ) 

w Varieties. 

THEOREM IA. Let k be a field. Let Xl,... X be variables. 
' n 

(i) In the ring k[Xl,X2,...,Xn] j every ideal has a finite basis. 

(ii) In this ring the ascending chain condition holds,i.e., if 

~I 1 c_ ~I 2 _c ... is an ascending sequence of ideals, then for some 

' ~m m+l 
m 

(iii) Every non-empty set of ideals in this ring which is partially 

ordered by set inclusion, has at least one maximal element. 

Statement (i) is the Hilbert Basis Theorem (Hilbert 1888). It is 

well known that the three conditions (i), (ii), (iii) for a ring R 

are equivalent. A ring satisfying these conditions is called Noetherian. 

A proof of this Theorem may be found in books on algebra, e.g. Van 

der Waerden (1955), Kap. 12 or Zariski-Samuel (1958), Ch. IV, and will 

not be given here. 

If k , K are fields such that k ~ K , the transcendence degree 

of K over k , written tr. deg. K/k , is the maximum number of elements 

in K which are algebraically independent over k . 

In what follows, k , ~ will be fields such that k ~ ~ , the 

tr. deg ~/k = ~ , and Q is algebraically closed. We call k the 

ground field, and ~ the universal domain. For example, we may take 
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k = Q ( t h e  r a t i o n a l s ) ,  Q = C ( t h e  c o m p l e x  n u m b e r s ) .  O r  k = F , t h e  
q 

f i n i t e  f i e l d  o f  a q e l e m e n t s ,  Q = F q ( X 1 , X 2 , . . . )  , i . e .  t h e  a l g e b r a i c  

c l o s u r e  o f  F ( X I , X 2 , . . . )  q 

C o n s i d e r  ~ n  , t h e  s p a c e  o f  n -  t u p l e s  o f  e l e m e n t s  i n  Q . S u p p o s e  

is an ideal in k[Xl,...,Xn] = k[X] . Let A~) be the set of 

x = (Xl,...,Xn) 6Qnhaving f(x) =0 for every f(X) 6 ~ . Every set 

A(~) so obtained is called an algebraic set. More precisely, it is a 

k- algebraic set. If we have such an ideal ~ , then by Theorem IA , 

there exists a basis of ~ consisting of a finite number of poly- 

n o m i a l s  s a y  f l ( X )  . . . , f  ( X ) .  T h e r e f o r e  A ( ~ )  c a n  a l s o  b e  c h a r a c t e r i z e d  
' ~ ' m 

as the set of x E ~n with fl(x) ..... f (x) = 0 . No~e that if 
= = m = 

C 
:Jl- ~2 ' then A~I) _D A~2) " 

E x a m p l e s :  ( 1 )  L e t  k = ~ , Q = C , n = 2 , a n d  ~ t h e  i d e a l  

2 2 
g e n e r a t e d  b y  f ( X 1 , X  2 )  = X 1 + X 2 - 1 . T h e n  A 6 )  i s  t h e  u n i t  c i r c l e .  

(2 )  A g a i n  l e t  k = @ , Q = C , n = 2 , a n d  t a k e  ~ t o  b e  t h e  

2 2 
i d e a l  g e n e r a t e d  b y  f ( X 1 , X  2 )  = X 1 - X 2 . T h e n  A ~ )  c o n s i s t s  o f  t h e  

t w o  i n t e r s e c t i n g  l i n e s  x 2 = x 1 , x 2 = - x 1 . 

THEOREM l B .  ( i )  T h e  e m p t y  s e t  r a n d  Q n  a r e  a l g e b r a i c  s e t s .  

(ii) A finite union of algebraic sets is an algebraic set. 

(iii) An intersection of an arbitrary number of algebraic sets is 

a n  a l g e b r a i c  s e t .  

P r o o f :  ( i )  I f  ~ = k [ X 1 , . . . , X n ]  , t h e n  A ( ~ ) =  r . I f  ~ = ( 0 ) ,  L @ ,  

t h e  p r i n c i p a l  i d e a l  g e n e r a t e d  b y  t h e  z e r o  p o l y n o m i a l ,  t h e n  A ( ~ )  = Q n  . 

(ii) It is sufficient to show that the union of two algebraic sets 

is again an algebraic set. Suppose A is the algebraic set given by 
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the equations fl(x=) ..... f~(x) = 0 , B is the algebraic set given 

by the equations gl(=X) . . . . .  gin(x) = 0 . Then A U B is the set 

of x E Qn with fi(x) g1(x) = fl(x=) g2(x) . . . . .  fs gin(x) = 0 . 

(iii) Let A , ~ E I , where I is any indexing set, be a 

collection of algebraic sets. Suppose that A = A(~) , where ~ 

is an ideal in k[X]. We claim that 

(i.i) 
cr E I (~ I 

where ~ ~- is the ideal consisting of sums fl(X) + ... + f~(X) ~5~ = __ 

with each fi(X) in ~(~ for some ~ E I . To prove (I.I) , suppose 

that x E ~ A(~ ). Then for each ~ E I , = x E A~) , whence 

f(x) = 0 if f E ~5~ ~- �9 Therefore f(x)= = 0 if f E ~ .~~ . Hence 

x E A( ~ ~I " Conversely, if =x E A( ~ ~) , then f(x=) = 0 if 

~ E I  o~EI 

~" then f(x) = 0 �9 Thus, f E , ~c~e' . So for any (Y E I , if f E ~5(~ , = 

x E A(~ ) for all ~ , or x ~ ~ A~) This proves (i.i) . It 

follows that NA G = nA~(~) is an algebraic set. 

In Qn we can now introduce a topology by defining the closed sets 

as the algebraic sets. This topology is called the Zariski Topology. 

As usual, the closure of a set M is the intersection of the closed 

sets containing M . It is the smallest closed set containing M and 

is denoted by M . 

Let M be a subset of Qn . We write ~(M) for the ideal of all 

p o l y n o m i a l s  f ( X )  w h i c h  v a n i s h  on  M, i . e . ,  a l l  p o l y n o m i a l s  f ( X )  
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s u c h  t h a t  f ( x )  = 0 f o r  e v e r y  x 6 M . 

t h e n  ~ ( M 1 )  _D_ q(M2 ) . 

THEOREM 1C.  M = A ~ ( M ) ) ,  

It is clear that if M 1 C ~ , 

Proof: Clearly A(~(M)) is a closed set containing M . Therefore 

it is sufficient to show that A(~(M)) is the smallest closed set 

containing M . Let T be a closed set containing M ; say T = A ~) . 

Since T 2 M , it follows that 8 G ~(T) ~ ~(M) , so that 

T = A(8) ~ A~(M)) 

Remark: If S is an algebraic set, then it follows from 

Theorem iC that S = A~(S)). 

If ~ is an ideal, define the radical of ~ , written ~ , to 

consist of all f(X) such that for some positive integer m , fm(x) 6 91 . 
= = 

The radical of ~ is again an ideal. For if f(X), g(X) 6 v~ , then 
= = 

there exist positive integer m,~ such that fm(x), g~(X) E ~ �9 Thus 

by the Binomial Theorem~ (f(~) ~ g(~))m+~ E ~ , so that f(~) ~ g(~) E ~ �9 

Also, for any h(X) in k[X] , (h(X) f(X)) m E ~ , so that h(X) f(X) E~ �9 

If ~ is a prime ideal, then ~ = ~ , since if f(X) ~ , 
= 

then fm(x) E D , which implieg that f(X) E ~ �9 
: = 

THEOREM 1D. L e t  ~ b e  a n  i d e a l  i n  k [ X ]  . T h e n  

Example: Let k = Q , ~ = C , n = 2 , and ~ the principal ideal 

generated by f(XI,X 2) = (X21 + X~ - l) 3 Then A~/) is the unit circle, 

l> T h u s  + a n d  ~ ( A O d ) )  = (X~ + X 2 . = 

Before proving Theorem ID we need two lemmas, 

n 

LZ~A 1E. Given a prime ideal ~ % k [ X ]  , there exists an x ~: with 
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P r o o f .  Form t h e  n a t u r a l  h o m o m o r p h i s m  f rom k [X]  t o  t h e  

q u o t i e n t  rL~ k [ X ] / ~ .  S i n c e  ~ ~ k = CO} , t h e  n a t u r a l  h o m o m o r p h i s m  

i s  a n  i s o m o r p h i s m  o n  k . T h u s  we  m a y  c o n s i d e r  k [ 5 ] / V  a s  a n  e x t e n s i o n  

o f  k , and t h e  n a t u r a l  h o m o m o r p h i s m  r e s t r i c t e d  t o  k b e c o m e s  t h e  

i d e n t i t y  map.  Thus  o u r  homomorph i sm i s  a k -  h o m o m o r p h i s m .  Le t  t h e  

image of X i be ~i(i =l,...,n). The natural homomorphism is then 

homomorphism from k[X1,...,.Xn] onto k[~l,...,~n] with kernel ~ . 

Since ~ was a prime ideal, k[~l,...,~n] is an integral domain. 

Try to replace ~i by x.1 E ~ . If, say, ~i,...,~ d are 

algebraically independent over k with ~d+l,...,~ n algebraically 

dependent on them, choose Xl,...,x d E ~ algebraically independent 

over k . Then k(~l,...,~d) is k-isomorphic to k(Xl,...,Xd) 

Also, ~d+l is algebraic over k(~l,...,~d) , and so satisfies a certain 

irreducible equation with coefficients in k(~l,...,~d). Choose Xd+ 1 

in ~ such that it satisfies the corresponding equation as ~d+l but 

with coefficients in k(Xl,...,Xd). Then k~l,...,~d+l ) is k-isomorphic 

to k(Xl,...,Xd+l). There is a k-isomorphism with ~i ~ xi (i = l,...,d+l) . 

Continuing in this manner, we can find Xl,...,x n E ~ such that 

k(~l,...,~ n) is k-isomorphic to k(Xl,...,Xn). There is an isomorphism 

with ~(~i ) = x i (i = l,...,n). 

Composing the natural homomorphism with the isomorphism ~ we 

obtain a homomorphism 

~: k [ X l , ~ . . , x  n]  ~ k [ ~  1 . . . . .  x n]  

with kernel ~ . Write ~ = (Xl,...,Xn) . 

Now ~(x) = ~ , for f(x)= 0 precisely if ~(f(X))= 0 , which 

is true if f(X) E ~ �9 

LEMMA IF. Let ~ be a non-empty subset of k[X] which is closed 

under multiplication and doesn't contain zero. Let ~ be an ideal 
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which is maximal with respect to the property that ~ ~ ~ = r Then 

is a prime ideal. 

P r o o f :  S u p p o s e  f (X) g(X) E ~. b u t  t h a t  f (X) and g(X) a r e  

n o t  i n  ~ . Le t  9..[ = ~ , f ( X ) )  "~, s o  t h a t  ~ p r o p e r l y  c o n t a i n s  ~ . 

S i n c e  ~) i s  m a x i m a l  w i t h  r e s p e c t  t o  t h e  p r o p e r t y  t h a t  ~ ~ ~ = r , 

i t  f o l l o w s  t h a t  ~ ~ ~ ;~ r . So t h e r e  e x i s t s  a c (X)  = p(X) + h(X) f ( X ) ,  

where c(X) E ~ , p(X) E ~) , h(X) E k[X]_ . Similarly, there exists a 

I p t  h t , p l  , h t _ . c (X) = (X) + (X) g(X) , w h e r e  c ' ( X )  E ~ (X) E ~) (x) E k [ X ]  

Then 

! h ! ~ c (X) c (X)  = ( p ' ( X )  + (X) g ( X ) )  (p(X) + h(X) f ( X ) )  6 ~ 

However, since ~ is closed under multiplication, 

contradicting the hypothesis that ~ N ~ = r 

! 
c (x) c(X=) E~: , 

Proof of Theorem ID: Suppose f E ~ , so that there exists a 

positive integer m with fm E ~ �9 Thus for every x E A~I) , 

fro(x) = 0 . Hence f(x) = 0 for every x E Ar . Therefore 

f(X) E ~(A(~I)) , and d ~ - ~  ~(A~!)) 

Suppose f ~ ~ �9 If ~ is the set of all positive integer 

powers of f , then ~ (~ ~ = r ; also ~ does not contain zero. Let 

t 
be an ideal containing ~ which is maximal with respect to the property 

that ~ n ~=~ �9 By Lemma 1F, ~ is a prime ideal. By Lemma 1E, there 

exists a point x E ~n such that ~ = ~(x) Since f r ~ , f(x) ~ 0 ~ 

Also, (~) = A(~(x)) = A(~) ~ A~) , so that x E A~) . It follows 

that f ~ $(A(gJ)) . Thus ~(A(~)) ~- ~ . 

r  
The e x i s t e n c e  o f  s u c h  an i d e a l  i s  g u a r a n t e e d  by Theorem IA.  
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Suppose S is an algebraic set. We call S reducible if 

S = S 1 U S 2 , where SI,S 2 are algebraic sets, and S ~ SI,S 2 �9 

Otherwise, we call S irreducible. 

Example: Let k = Q , K = C , n = 2 , and let ~ be the ideal 

generated in k[XI,X2] by the polynomial f(XI,X2) = X~ - X~ . Then 

2 2 2 
S = A~) is the set of all x 6 C such that x I - x 2 = 0 . If S 1 

2 
is the set of all ~ 6 C with x I + x 2 = 0 , and S 2 is the set of 

all ~ 6 C 2 with x I - x 2 = 0 , then S = S 1 U S 2 , and S 1 ~ S ~ S 2 . 

Hence S is reducible. 

THEOREM IG. Let S be a non-empty algebraic set. The following 

four conditions are equivalent: 

(i) S = (~), i.e. S is the closure of a single point x , 

(ii) S is irreducible, 

(iii) ~(S) is a prime ideal in k[X] , 
= 

(iv) S -- ACId), where ~ is a prime ideal in k[X] . 
= 

Proof: (i) ~ (ii), Suppose S = A [J B , where A and B are 

algebraic sets, and A % S ~ B . We have x 6 S = A U B . We may 

suppose that, say, x 6 A . Then S = (~) ~ ~ = A , whence S = A , 

which is a contradiction. 

(ii) = (iii). Suppose that ~(S) is not prime. Then we would 

have f(X) g(X) 6 ~(S) with neither f(X) nor g(X) in ~(S). Let 

~/ = ~(S),f(X)) (i.e. the ideal generated by ~(S) and f(X)). Let 

-- ~(S),g(X)).= Let A = Ar , B = A~). In view of S = A~(S)) 

and 9/ _D ~(S) , we have A ~ S . But A ~ S since f E ~(A) and 
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f ~ ~(S) . Thus A ~ S . Similarly, B ~ S . But we claim that 

S = A U B . Clearly A U B ~ S . On the other hand, if x E S , then 
= 

f(~) g(~) = 0 . Without loss of generality, let us assume that 

f(x) = 0 . Then x is a zero of every polynomial of ~ , s@ that 

x E A . Therefore S C A U B . Thus S = A U B with A I S # B 

This contradicts the irreducibility of S . 

( i i i )  = ( i v ) ,  S e t  ~ = ~ ( S )  . T h e n  S = A ( ~ ( S ) )  = A ( ~ ) .  

Then 

(iv) = (i). Choose ~ according to Lemma IE with ~(~) = ~ . 

S = A(~) = A(~(~)) = (~)= The proof of Theorem IG is complete. 

A set S satisfying any one of the four equivalent properties of 

Theorem IG is called a variety. (More precisely, it is a k-variety.) 

If V is a variety, x E V is called a generic point of V if V = (~). 

COROLLARY IH. There is a one to one correspondence between the 

collection of all k- varieties V in ~n and the collection of all 

prime ideals ~ ~ k[X] in k[X] , given by 

v ~  = 3 ( v )  an__Ad V ~  v =A@) 

Proof: 

Also, if 

B 
L e t  V b e  a v a r i e t y  i n  a n ,. t h e ,  V - ~  ~ ( V )  -~ A ( ~ ( V ) )  = V . 

is a prime ideal in k[X] , then ~ ~ A~) ~ ~(ACB)) =~ = ~ 

E x a m p l e s :  ( 1 )  L e t  S = ~]n . Now ~ ((~n) = ( 0 )  , a p r i m e  i d e a l .  

S u p p o s e  x= = ( X l , . . . , x  n )  i s  o f  t r a n s c e n d e n c e  d e g r e e  n , i . e .  t h e  n 
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c o o r d i n a t e s  a r e  a l g e b r a i c a l l y  i n d e p e n d e n t  o v e r  k . T h e n  ~ ( ~ )  = ( 0 )  , 

s o  (~)  = A ( ~ ( x ) )  = A ( ( 0 ) )  = ~ n  . S o  a n y  p o i n t  o f  ~ n  o f  t r a n s c e n d e n c e  

d e g r e e  n o v e r  k i s  a g e n e r i c  p o i n t  o f  ~ n  . 

( 2 )  L e t  k = ~ , ~ = C , n = 2 . L e t  ~ b e  t h e  p r i n c i p a l  i d e a l  

2 2 
g e n e r a t e d  b y  f ( X l , X  2 )  = X 1 + X 2 - 1 . ~ i s  a p r i m e  i d e a l  s i n c e  f 

i s  i r r e d u c i b l e .  T h u s  A ~ )  , i . e .  t h e  u n i t  c i r c l e ,  i s  a v a r i e t y .  C h o o s e  

x I E ~ and transcendental over Q . Pick x 2 E ~ with x~ = 1 - x~ 

Then the point ~ = (Xl,X 2) belongs to A(~) In fact, x= is a generic 

point of A~) : 

2 i) i.e. To see this, it will suffice to show that ~(~) = (X + X 2 - 

2 _ 1 If g(XI,X 2) E ~(x) the principal ideal generated by X~ + X 2 . = 

that is, if g(xl,x 2) = 0 , then g(Xl,X 2) is a multiple of X~ - 1 + x~ , 

2 2 
since x 2 is a root of X 2 - 1 + x I , which is irreducible over Q(Xl) . 

More precisely, 

gc~l,X 2) = (• - 1 + ~ )  h(Xl,X 2) , 

where h(XI,X 2) is a polynomial in X 2 and is rational in X 1 

x I was transcendental, we get 

Since 

g ( x l , x 2 ~  = r + • 2 - l~ hr  

I n  v i e w  o f  t h e  u n i q u e  f a c t o r i z a t i o n  i n  @ [ X 1 ]  , i t  f o l l o w s  t h a t  h ( X 1 , X  2 )  

i s  i n  f a c t  a p o l y n o m i a l  i n  X l , X  2 T h u s  ~(x__) = (X 2 + X~ - 1)  . 

( 3 )  L e t  k = Q , ~ = C , n = 2 . L e t  ~ b e  t h e  p r i n c i p a l  i d e a l  

2 
g e n e r a t e d  b y  f ( X l , X  2 )  = X 1 - X 2 . T h e n  A ( ~ )  i s  i r r e d u c i b l e  a n d  i s  

a p a r a b o l a .  C h o o s e  x I E ~ a n d  t r a n s c e n d e n t a l  o v e r  Q , a n d  p u t  

2 
x 2 = x 1 . T h e n  ~ = ( X l , X 2 )  l i e s  i n  A r  An  a r g u m e n t  s i m i l a r  t o  
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the one given in (2) shows that x is a generic point of Ar 

example, Lindemann's Theorem says that e is transeental over ~ , 

and therefore (e,e 2) is a generic point of A m) . 

(4) Let k = @ , ~ = C . Let ~ be the principal ideal 

= (X~ - X~) . Then as we have seen above, A~/) is reducible and 

is therefore not a variety. 

(5) Consider a linear manifold M d given by a parameter 

representation 

For 

x i = b i + ail t I + ... + aid t d ( 1  < < = i = n) . 

Here the b. and the a.. as given elements of k] with the (d • n) - 
i 13 

matrix (aij) of rank d . As tl,...,t d run through ~ , x__ = (Xl,...,Xn) 

d 
runs t h r o u g h  M I t  f o l l o w s  f r o m  l i n e a r  a l g e b r a  t h a t  M d i s  a n  

�9 y t  

algebraic set. (It is a "d-dimensional linear manlfold . See also 

w  a b o u t  t h e  n o t i o n  o f  d i m e n s i o n ) .  I n  f a c t  M d i s  a v a r i e t y :  

Choose ~l'''''~d algebraically independent over k . Put 

~i = bi + ail~l + "'" + aided (I g i g n) 

a n d  ~ = ( ~ l , ~ 2 , . . . , ~ n )  6 Q n  . Now ~= E M d , 

C o n v e r s e l y ,  i f  f ( ~ _ ) - 0  , t h e n  

s o  (~_) ~ M d . 

f(b I + allT I + . . .  + aldT d , 

b 2 + a 2 1 T  1 + . . ~  + a 2 d T d , . . . , b n  + a n l T  1 + . . .  + a n d T d  ) = 0 , 

w h e r e  T 1 , . . . , T  d a r e  v a r i a b l e s .  T h u s  i f  ~ E M d , t h e n  f(x)= = 0 . 

S o  e v e r y  x 6 M d l i e s  i n  A ( ~ ) )  = (~') . T h e r e f o r e  w e  h a v e  s h o w n  

t h a t  M d = (~)  , o r  t h a t  M d i s  a v a r i e t y .  
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(6 )  T a k e  k = ~ , ~ = C , n = 2 , a n d  ~ t h e  p r i n c i p a l  i d e a l  

g e n e r a t e d  b y  f ( X I , X  2)  = X~ - 2X~ . O v e r  k = @ , t h i s  p o l y n o m i a l  i s  

i r r e d u c i b l e .  T h u s  ~[ i s  a p r i m e  i d e a l ,  a n d  A ~ / )  i s  a v a r i e t y .  

However, if we take k ~ = ~Q/2) , then f(Xl,X 2) is no longer 

irreducible over k ~ , so that 91 is no longer a prime ideal in 

kl[Xi,X2] , and Ar is no longer a variety. 

This prompts the definition: A variety is called an absolute 

variety if it remains a variety over every algebraic extension of k . 

THEOREM iI. Every non-empty algebraic set is a finite union of 

varieties. 

Proof: We first show that every non-empty collection ~ of 

algebraic sets has a minimal element. For if we form all ideals ~(S) , 

where S E ~ , there is by Theorem IA a maximal element of this non- 

empty collection of ideals. Say ~(S O) is maximal. We claim that 

S O E ~ is minimal. For if S 1 ~ S O where S 1 E ~ , then ~(SI) ~ ~(S O) ; 

but since ~(S0) is maximal, ~(SI) = ~(S0) . Thus S 1 = A(~(SI)) 

= A(~(S o )) = S o 

Suppose that Theorem II is false. Let 

algebraic sets for which Theorem iI is false. 

element S O of ~ . If S O were a variety, 

true for S O . Hence S O is reducible. Let 

be the collection of 

There is a minimal 

then the theorem would be 

S O = A U B , where 

A,B are algebraic sets, with A % S O ~ B . Since S O is minimal and 

A ~ S O , B ~ S O , the theorem is true for A,B . Hence, we can write 

A = V 1U ... U V , and B = W 1U ... U WZ where V. (I < i ~ m) and 

W (I % j % ~) are varieties. Thus 
a 
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s 0 = A U B = v 1 U . . .  U v m U w 1 U  . . .  U w~ , 

contradicting o u r  hypothesis that S O 6 ~ . 

It is clear that there exists a representation of S as 

S = V 1 U ... U V t where V i ~ V. if i ~ j . 
J 

THEOREM 1 J .  L e t  S b e  a n o n - e m p t y  a l g e b r a i c  s e t .  

of S as 

S = V 1 U  ... U V t 

T h e  r e p r e s e n t a t i o n  

where Vl,...,V t are varieties with V. ~ V. if i ~ j is unique. 
1 3 -- ' 

Proof: Exercise. 

The V. in the unique representation of S given in Theorem IJ 
1 

a r e  c a l l e d  the components of S . 

Example: L e t  k = ~ , ~ = r , n = 2 , a n d  S = A ( ( X ~  - X ~ ) )  . 

Let V 1 = A((X 1 - X2)) and V 2 = A((X 1 + X2) ) ; then S = V 1U V 2 �9 

Here VI,V 2 are two intersecting lines. 

Finally we introduce the following terminology and notation. 

We s a y  { i s  a s p e c i a l i z a t i o n  o f  x = a n d  w r i t e  

x - ~ y _  , 

i f  y E (~)= . T h i s  h o l d s  p r e c i s e l y  if f (y )=  = 0 f o r  e v e r y  f(X)= E k[X_]_ 

w i t h  f ( x )  = 0 . I t  i s  i m m e d i a t e l y  s e e n  t h a t  ~ i s  t r a n s i t i v e ,  i . e .  

t h a t  

x ~ y a n d  y ~ z i m p l i e s  t h a t  x ~ z . 

I f  b o t h  x ~ y a n d  y ~ x , t h e n  w e  w r i t e  x ~ y . T h i s  i s  e q u i v a l e n t  
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with the equation (~) = (~) . 

E x a m p l e ;  L e t  x = ( e , e  2)  a n d  y = ( 1 , 1 )  . T h e n  x ~ y . F o r  

a s  we s a w  i n  e x a m p l e  (3 )  b e l o w  T h e o r e m  ] G  , t h e  p o i n t  x i s  a g e n e r i c  

2 
p o i n t  o f  t h e  p a r a b o l a  x 2 - x 1 = 0 , a n d  ~ l i e s  on  t h i s  p a r a b o l a .  

w Dimension. 

L e t  x ~ a n . T h e  t r a n s c e n d e n c e  d e g r e e  o f  x o v e r  k i s  t h e  

m a x i m u m  n u m b e r  o f  a l g e b r a i c a l l y  i n d e p e n d e n t  c o m p o n e n t s  o f  x o v e r  k . 

This clearly is equal to the transcendence degree of k(x) over k . 

We h a v e  

0 < tr. deg. x ~ n . 

THEOREM 2A .  S u p p o s e  x ~ ~ . T h e n  

( i )  t r .  d e g .  y g t r .  d e g .  x . 

( i i )  E q u a l i t y  h o l d  i n  ( i )  i f  a n d  o n l y  i f  ~ ~ . 

P r o o f :  ( i )  I n d u c t i o n  o n  n . I f  n = 1 , a n d  i f  t r a n s ,  d e g .  x = 1 , 

t h e n  t r .  d e g .  y ~ n = 1 = t r a n s ,  d e g  x ; i f  t r .  d e g .  x = 0 , t h e n  x 

i s  a l g e b r a i c  o v e r  k . I n  t h i s  c a s e ,  s i n c e  x ~ y , t h e  c o m p o n e n t s  os  

s a t i s f y  t h e  a l g e b r a i c  e q u a t i o n s  s a t i s f i e d  b y  t h e  c o m p o n e n t s  o f  ~ , avl~ 

t r .  d e g .  y = 0 . 

To s h o w  t h e  i n d u c t i o n  s t e p ,  l e t  d b e  t h e  t r a n s c e n d e n c e  d e g r e e  

o f  x . We m a y  a s s u m e  t h a t  d < n . We m a y  a l s o  a s s u m e  t h a t  t r .  d e g .  

~ d . W i t h o u t  l o s s  o f  g e n e r a l i t y ,  we a s s u m e  t h a t  y l , . . . , y  d a r e  

a l g e b r a i c a l l y  i n d e p e n d e n t  o v e r  k . S i n c e  ~ = ( X l , . . . , X n )  ~ ( y l , . . . , y n ) =  ~ ,  

i t  f o l l o w s  t h a t  ( X l , . . . , x  d )  ~ ( y l , . . . , y d )  . By i n d u c t i o n ,  a n d  s i n c e  
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d < n , the elements Xl,...,x d are also algebraically independent over 

k . Let d < i g n o Then x i is algebraically dependent on Xl,...,x d . 

So x. satisfies some non-trivial equation 
1 

a a-I 
x i ga(Xl,...,Xd) + x i ga_l(Xl,...,Xd) + ... + go(Xl,...,Xd) = 0 

Since x ~ y , it follows that 

a a-i 
Yi g a ( Y l ' ' ' ' ' Y d  ) + Yi g a ( Y l ' ' ' ' ' Y d  ) + " ' '  + g o ( Y l ' ' ' ' ' Y d  ) = 0 . 

Thus Yi is algebraically dependent on yl,...,yd . This is true for 

any i in d < i g n . So tr. deg. ~ g d . 

(it) If x~ y , then it follows from part (i) that tr. deg. 

x = t r .  d e g ~  y . 

Suppose x -~ y and tr. deg. x = tr. deg. y . Let the common 

transcendence degree be d . We may assume without loss of generality 

that the first d coordinates YI'''''Yd are algebraically independent 

over k . Then by part (i) and by (Xl,...,Xd)-~ (yl,...,yd) , also 

Xl,...~x d are algebraically independent over k . We have to show that 

y -~ x , i.e. that if f(y) = 0 for f E k[X]_ , then f(x)= = 0 . Put 

differently, we have to show that if f(x__) ~ 0 , then f(y) % 0 . So 

let f(x) ~ 0 . Then f(x) is a non-zero element of k(x) and 

i/f(x) E k(x) Now since Xd+l,...,x n are algebraic over k(Xl,...,Xd), 

it is well known that 

k ( x )  = k ( x  1 . . . .  ,Xd)  [ X d + l , . . .  , X n ]  , 

i.e. k(x) is obtained from k(Xl,...,x d) by forming the polynomial ring 

in Xd+l, ... ,x n . 
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Thus 

i/f (x) = v(x I ..... x n)/u(x I ..... Xd) , 

where v(X1,...,X n) and U(Xl,...,Xd) are polynomials. We have 

u(x I .... ,x d) = f(x) v(x) , 

which implies that 

u (Yl ..... Yd ) = f (y) v (y) 

in view of x = ~ y = . Now yl,...,y d are independent over k , whence 

u(Yl,...,y d) ~ 0 , whence f(~) ~ 0 . Our proof is complete. 

The dimension of a variety V is defined as the transcendence degree 

of any of its generic points. In view of Theorem 2A , there is no 

ambiguity. A variety of dimension 1 is called a curve, one of dimension 

n - 1 is called a hypersurface. 

Example: Let us consider again the example of the linear manifold 

d 
M We constructed a generic point ~l,...,~n ) with k~l,...,~d) 

= k(~l,...,~n) , where ~l,...,~ d were algebraically independent. Thus 

tr. deg. k(~l,...,~ n) = d . Hence in the sense of our definition, M d 

has dimension d . This agrees with the dimension d assigned to M d 

in linear algebra. 

THEOREM 2B. (i) 

tr. deg. x = dim V . 

(ii) If W c V 

W =V . 

Let V be a variety and let x E V with 

Then x is a generic point of V �9 

are two varieties, and if dim W = dim V , then 
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P r o o f :  ( i )  Le t  ~ be  a g e n e r i c  p o i n t  o f  V . Then  ~ ~ x = and 

tr. deg. ~ = tr. deg. y . By Theorem 2A , ~<-~ ~ , so that (~)= = (~)= = V . 

(ii) Let x be a generic point of W . Now x 6 V , and tr. deg. 

x = dim V , so that by part (i) , x is a generic point of V . Thus 

(~) = W = V .  

THEOREM 2C. (i) If f(X) E k[X_] is a non-constant irreducible 

polynomial, then the set of zeros of f(X) is a hypersurface; that is, 

a variety of dimension n - 1 . 

( i i )  I f  S i s  a h y p e r s u r f a c e ,  t h e n  ~ ( S )  i s  a p r i n c i p a l  i d e a l  

( f )  , g e n e r a t e d  by  some n o n - c o n s t a n t  i r r e d u c i b l e  p o l y n o m i a l  f ( X )  E k [ X ] .  

Proof: (i) The principal ideal (f) is a prime ideal in k[X] , so A((f)) 

is a variety. Without loss of generality, suppose X occurs in f(X) , 
n 

say f(X)_ = Xan ga(Xl'''''Xn-i ) + "'" +gO(Xl'''''Xn- I) . Choose x l,...,xn_ I E 

algebraically independent over k . Choose x E~ with f(xl,...,Xn) =0 . Then 
n 

= (Xl,...,x n) 6 A((f)) . Also, tr. deg. ~ = n - 1 . Thus dim A((f)) ~ n- I. 

On the other hand, dim A((f)) ~ n , by Theorem 2B and since A((f)) ~ ~n. 

Hence dim A((f)) = n - i . In other words, A((f)) is a hypersurface. 

(ii) If S is a hypersurface, then ,~(S) is a prime ideal. 

Let g(X) E ~(S) , g • 0 . Since ~(S) is prime, there exists some 

irreducible factor f of g such that f(X) E ~(S). So (f) c_ ~(S), 
= 

whence A((f)) o_ A(~(S)) = S . But dim A((f)) = n - 1 by part (i) , 

and dim S = n - 1 . Therefore by Theorem 2B , A(f) = S . Hence 

(S) = ~(A(f)) = r ~  = (f) , 

since (f) is prime. 
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2 
E x a m p l e s :  ( 1 )  L e t  k = Q , Q = C , n = 2 a n d  f ( X , Y )  = Y -  X 

Now f is irreducible. So by Theorem 2C , the set of zeros of f is 

a hypersurface of dimension 1 . Since n - 1 = 1 , it is also a curve. 

The point (e,e 2) has'transcendence degree 1 and lies on our curve. 

Hence we see again that it is a generic point of our curve. 

(2) Same as above, but with f(X,~ = X 2 2 + Y - 1 . Again the 

set of zeros of f (namely the unit circle) is a hypersurface and also 

a c u r v e .  

Let t be transcendental and consider the point 

2t t2-1 1 
= = , / 

X 
1 

Here t = , whence k(x) = k(t) , so that x has transcendence 
1 - x  2 = = 

d e g r e e  1 . S i n c e  x l i e s  o n  o u r  c u r v e ,  i t  f o l l o w s  t h a t  x i s  a 

g e n e r i c  p o i n t  o f  t h e  u n i t  c i r c l e .  I n  p a r t i c u l a r ,  

2e e2-1 I 

is a generic point of the unit circle. 

THEOREM 2D. Let n = 1 + t , let fI(X,YI) , 

f2(X,YI,Y2),...,ft(X,YI,Y2,...,Yt) be polynomials of the type 

fi(X,YI,...,Y i) = Y~ - gi(X,Yl,...,Yi) , 

where d.i > 0 and gi is of degree < di ---in Y.i --Let ~I'''''~ 

be algebraic functions with fl(X,~l) ..... ft(X,~l,...,~t) = 0 

and suppose that 
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[ k ( X , 9 1 , . . . , ~  t ) :  k ( X )  ] : d l d  2 . . .  d t 

T h e n  t h e  e q u a t i o n s  

fl = f2 = .... ft : 0 

define a curve; that is, a variety of dimension 1 . 

Examples: (I) Let k be a field whose characteristic does not 

e q u a l  2 o r  3 . T a k e  t = 2 , s o  t h a t  n = 3 . C o n s i d e r  

f l ( X , Y 1 )  = y2 + X 2 -  1 ,  f 2 ( X , Y 1 Y 2 )  = 2 + X2 _ 4 . T h e n  ~2  = 1 -  X 2 

2 2 A x2 A x Also a n d  ~ 2  = 4 - X , o r  ~1  - a n d  ~2 = 2 

(2.1) [k(XJ~ - x 2 , ~4 - x2): k(X)] = 4 .*) 

By Theorem 2D , the equations fl = f2 : 0 define a curve. This 

curve is the intersection of two circular cylinders with radii 1,2 , 

whose axes intersect at right angles. 

2 2 
(2) Same as above, but with f2(X,YI,Y2) = Y2 + X - 1 . 

case L.~[k(X,~I,~-): k(X)] = 2 . So Theorem 2D does not apply. 

In this 

In fact 

r 
The proof of (2.1) is as follows. Since the characteristic is not 

2 or 3 , the four polynomials 1 - X , 1 + X , 2 - X , 2 + X are 

distinct and are irreducible. Hence none of 1 - X 2 , 4 - X 2 and 

(i - X2)/(4 - X 2) iS a square in k(X) , and each of ~l - X 2 , 

~ 4  -------~X , J ( 1  - X 2 ) / ( 4  - X- -~)  i s  o f  d e g r e e  2 o v e r  k (X)  . I t  w i l l  
s u f f i c e  t o  s h o w  t h a t  ~ { k ( X ,  1 ~ / ~ -  X 2)  . S u p p o s e  t o  t h e  c o n t r a r y  
t h a t  

J4- f z : r(x) + s(x) #i - x 2 

with rational functions s(x) now square and observe that 

the factor in front of ~l - X 2- must be zero. Thus 2r(X) s(X) : 0 . 

If r(X) = 0 , then (I - X2)/(1 - X 4) would be a square in k(X) , 

which was ruled out. If s(X) : 0 , then 4 - X 2 would be a square, 

which was also ruled out. 
The situation is similar to the one in Corollary 5B of Chapter II, 

w and the exercise below it. 
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A((fl,f2 )) = V 1 [J V 2 , 

where V 1 = A((fI,Y I- Y2 )') , V 2 = A(fI,Y 1 + Y2 )) ' 

Thus we do not obtain a variety. This algebraic set is the intersection 

of two circular cylinders of radius i whose axes intersect at right 

angles. Both V 1 and V 2 are the intersection of a plane with a 

circular cylinder; they are ellipses. 

(3) Let k = F , the finite field of q elements. Take t = 2 
q 

d f(X) where dl(q-l) and f2(X, Y2) = n = 3 a n d  f l ( X ' Y 1  ) = Y1 - 

q - Y2 - g ( X )  S u p p o s e  f l , f 2  t o  b e  i r r e d u c i b l e .  T h e n  ~ 1 , ~ 2  Y2 

d q 
w i t h  ~1 = f ( X )  , ~2 - ~2 = g ( X )  h a v e  

[ k ( X , ~ l )  : k ( X ) ]  = d , [ k ( X , ~  2 )  : k ( X ) ]  = q 

S i n c e  ( d , q )  = 1 , we h a v e  [ k ( X , ~ l , ~ 2 )  : k ( X ) ]  = dq  T h u s  El = f2  = 0 

d e f i n e s  a c u r v e .  I n  t h e  s ame  way o n e  s e e s  t h a t  i f  f l , f 2  b o t h  a r e  

a b s o l u t e l y  i r r e d u c i b l e ,  t h e n  f l  = f2  = 0 i s  a n  a b s o l u t e  c u r v e ,  i . e . ,  

a c u r v e  w h i c h  i s  a n  a b s o l u t e  v a r i e t y .  

Proof of Theorem 2D: Pick ~ = (x,Yl,...,y t) E ~n , such that 

the mapping X ~ x , ~i ~ Yi (i K i < t) yields an isomorphism of 

k(X,~l,...,~t) to k(X,Yl,...,Y t) .o We claim that the set of zeros 

of fl = f1 . . . . .  ft = 0 is the variety (~__). It suffices to show 

that ~(~) = (fl ..... ft) ; for then (~_) = A(~(~)) = A((f l,...,ft )) 

Clearly, every f E (fl,...,ft) vanishes on ~ ~ so (fl,...,ft) ~ ~(~), 

Conversely, we are going to show that 

(2.2) if f(x) = 0 , then f E (fl' "'" 'ft ) 
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We'll show (2.2) by induction on s , for functions 

f = f(X,YI, ...,Ys ) where 0 = < s -<- t �9 If s = 0 , then f(x) = 0 ; 

but x is transcendental over k , so f(X) = 0 , whence f E (fl,...,ft). 

Next, we show that if (2.2) is true for s-1 , it is true for s . 

d 
s occurs, replace it by gs(X,Yl, .,Ys ) In f(X,YI,...,Y s) , if Ys "" 

Do this repeatedly, until you get a polynomial f(X,YI, ...,Ys ) of 

degree < d s in Ys We observe that f - ~ ~ (fs) , and that 

(x)= 0 . Suppose 

d -i 

(2.3) ~ = YsS hd -I(X'YI'''''Ys-I ) + "'" + h0(X'YI'''''Ys-I )" 
s 

Our hypothesis implies that [k(X,Yl,...,yt): k(x)] = dld 2 ... d t , 

a n d  we h a v e  

k(x) c k(X,Yl) c k(X,Yl,y~) ~ ... c_ k(X,Yl,...,yt) 

where for each i in i g i ~ t , the field k(X,Yl,...,y i) is an 

extension of degree <_ d.l over k(X,Yl,...,Yi_l) Hence it is 

actually an extension of degree d. In particular, 
1 

[k(X,Yl,...,ys): k(X,Yl,...,y s_l ) ] = ds Since ~(x)= = 0 , we see 

from (2.3) that each h.(x) = 0 . So by induction, each h. E (fl,...,ft), 
3 = 3 

hence also ~ s (fl,...,ft) , and f 6 (fl,...,ft) The proof of (2.2) 

and therefore the proof of the ~heorem is complete. 

w  R a t i o n a l  M a p s .  

A r a t i o n a l  f u n c t i o n  ~ on  i s  a n  e l e m e n t  o f  k ( X l , . . . , X  n)  , 

i . e .  o f  t h e  f o r m  r = a ( X 1 , . . . , X n ) / b ( x 1 , . . . , X n )  , w h e r e  a ( X 1 , . . . , X  n)  

b ( X 1 , . . . , X  n)  a r e  p o l y n o m i a l s  o v e r  k . We may a s s u m e  t h a t  a , b  h a v e  

n o  common f a c t o r .  
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We say a rational function ~ is defined (or regular) at a point 

E ~n if b(~) ~ 0 �9 If ~ is defined at ~ , put ~(~) = a(x)/b(~). 

The rational functions ~ which are defined at ~ E ~n form a 

ring consisting of all a(~)/b(~) with b(~) ~ 0 . This ring is denoted 

consist of all as ~ and is called the local ring of x . Let ~x 
X 

~ ~ with ~(x) = 0 . ( Thus ~x consists of all a(X)/b(X) with 

b(x)= ~ 0 , a(~) = 0 .) Then .5 x~ is an ideal in ~x 

LEMMA 3A. (i) If x -~ y , then ~ _c 
~ y X 

( i i )  I f  x ~ y , t h e n  D = D and  ~x  = ~Z 

Proof: Obvious. 

is a maximal ideal in D , hence G/~ THEOREM 3B. (i) ~x x x 

is a field (called the function field of x). 

(ii) G / ~ x  is k- isomorphic to k(~) 

P r o o f :  ( i )  L e t  ~ ~ ~ x  ' ~ ~ 3 x  " T h e n  %0 = a ( X ) / b ( x )  , w h e r e  

= = 1 
b ( x )  ~ 0 and  a ( x )  i 0 , and  t h e r e f o r e  -- = b ( X ) / a ( X )  l i e s  i n  ~) 

= = ( 0  = = X 
= 

T h u s  e v e r y  q0 E G w h i c h  d o e s  n o t  l i e  i n  ~x  i s  a u n i t .  I t  f o l l o w s  

that ~x is a maximal ideal. 

(ii) The map w: ~) -* k(x) given by 
X 

(a ( X ) / b  (X)) = a ( x ) / b  (x)  

h a s  i m a g e  k ( x )  a n d  k e r n e l  ~x  T h e r e f o r e  k(x=) --~ G / ~ x  . 

We now come to the definition of a rational function defined on 

a variety V . The simplest definition to try would be that a rational 
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function on V is the restriction to V of a rational function ~(X) 

O n on . However, we want this rational function to be defined for at 

least some point of V . Hence by Lemma 3A it must be defined for 

every generic point x of V , i.e. it must lie in ~) Moreover, 
X 

given two functions a(X)/b(X) and c(X)/d(X) in ~) we should regard 

them as equal functions on V if their restrictions to V are equal. 

Clearly this is true precisely if their difference lies in ~x 

Thus we come to define a rational function on V as an element 

of ~ x  ' where x= is a generic point. Clearly this is independent 

of the choice of the generic point. ~ = ~ (say) consists of 
x V 

a(~)/b(~) with b(X) ~ d(V) = ~(~) , and ~x = ~V (say) consists of 
= 

a(X)/b(X) with a(X) E ~(V) , b(X) ~ ~(V) We say a function 

r(X) E k(X)_ represents a rational function ~ of V if r(X)= E ~.. 
V 

and if r(X) lies in the class ~ of ~i/~,} 
~ u 

Example: Let n = 2 , k = ~ , ~ = r , and V the circle 

2 2 
x I + x 2 - I = 0 . Let ~ be the rational function represented by 

2 2 
X 1 / X  2 . T h e n  ~ i s  a l s o  r e p r e s e n t e d  b y  (X 1 + X 1 + X 2 - 1 ) / X  2 a n d  

2 2 
b y  X 1 / ( X  2 + X 1 + X 2 - 1) , f o r  e x a m p l e .  

The rational functions defined on V 

function field of V This field is denoted k(V) 

Theorem 3B, the function field is k-isomorphic to k(x) 

is any generic point of V 

V V 
Let 

4 i  . . . . .  ~n 

b y  t h e  p o l y n o m i a l s  

form a field, called the 

In view of 

where x 

be the elements of k(V) represented, respectively, 

X1,...,X n Then it is clear that 

v v) 
k(V) = k(~l ..... ~n 
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V V 
It is easily seen that a polynomial f(Xl,...,X n) has f(%l,...,gn ) 0 

if and only if f E ~(V) Hence if ~ = (Xl,...,x n) is a generic 

V 
point, then there is a k-isomorphism k(~) ~ k(V) with xi ~ ~i 

( i  = 1 , . ~  

Example: Let n = 2 , k = r , ~ = C , and V the circle 

2 2 
x I + x 2 - 1 = 0 . We have seen in previous examples that if ~ is 

trancendental over ~, then the point (21]~2+i) ,('~2- I)/~ 2 +I)) 

is a generic point for V . Clearly k(x) = k(~) ~ k(X) . Thus the 

function field of the circle is isomorphic to k(X) 

A curve is called rational if its function field is ~ k(X) . 

n n 
Thus the circle is a rational curve. It can be shown that x I + x 2 - 1 = 0 

is not a rational curve if n > 2 and is not divisible by the 

c h a r a c t e r i s t i c .  S e e  S h a f a r e v i c h  ( 1 9 6 9 ) ,  p .  8 . 

Let ~ be a rational function on a variety V = (x=) and let y be 

a point of V . We say that ~ is defined at y_ if there exists 

a r e p r e s e n t a t i v e  r ( X )  = a ( X ) / b ( x )  w i t h  b ( y )  t 0 . I f  t h i s  i s  t h e  

c a s e ,  s e t  

w ( ~ )  = a ( y ) / b ( y ) _  _ . 

We h a v e  t o  s h o w  t h a t  t h i s  i n d e p e n d e n t  o f  t h e  r e p r e s e n t a t i v e .  S u p p o s e  

t h a t  (0 i s  r e p r e s e n t e d  b y  b o t h  a (X__) / b  ( x )  a n d  b y  a (X) / 5  (X) = a n d  

t h a t  b ( y )  ~ 0 , S ( y )  ~ 0 . T h e  d i f f e r e n c e  ( a S -  ~ b ) / ( b S )  r e p r e s e n t s  

t h e  z e r o  r a t i o n a l  f u n c t i o n  o n  V . H e n c e  a(x__)S(x=) - a ( x ) b ( x )  = 0 , 

a n d  s i n c e  x -~ y , w e  h a v e  a ( y ) b ( y )  - ~ ( y ) b ( y )  = 0 . We c o n c l u d e  t h a t  

a(y)/b(y) = ~(y)/5(y) . 
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E x a m p l e s :  ( 1 )  L e t  n = 3 , k = Q , ~ = C , a n d  V t h e  s p h e r e  

2 2 2 
x 1 + x 2 + x 3 - 1 = 0 . L e t  e b e  t h e  r a t i o n a l  f u n c t i o n  r e p r e s e n t e d  

b y  1 = 1 / 1  . P u t  ~ = ( 1 , 0 9 0 ) .  Now ~ i s  d e f i n e d  a t  y a n d  

~ ( ~ ) =  1 . Now ~ i s  a l s o  r e p r e s e n t e d  b y  1 / ( X ~  + X~ + X ~ ) .  A g a i n  t h e  

d e n o m i n a t o r  d o e s  n o t  v a n i s h  a t  ~ . I f  we  u s e  t h i s  r e p r e s e n t a t i o n ,  w e  

a g a i n  f i n d ,  a s  e x p e c t e d ] t h a t  ~ ( y )  = 1 . F i n a l l y  ~ i s  a l s o  r e p r e s e n t e d  

2 2 2 
b y  (X 1 - X 1 - X 2 - X 3 ) / ( X  1 -  1) T h i s  r e p r e s e n t a t i v e  c a n n o t  b e  u s e d  

t o  c o m p u t e  ~ ( ~ ) ,  s i n c e  i t s  d e n o m i n a t o r  v a n i s h e s  a t  [ . 

( 2 )  L e t  n ,  k ,  ~ a n d  V b e  a s  a b o v e .  L e t  W b e  t h e  r a t i o n a l  

function represented by I/X 3 . This function ~ is certainly defined 

if ~ E V and Y3 ~ 0 . We ask if there is representative of 

which allows us to define ~(~) for some ~ with Y3 = 0 �9 Let 

a(~)'b(X) be a representative. Then 
= 

1 a (X)= b (X)= - X 3 a  (X)= 

X 3 b (X) - X3b(X__) 

2 2 
v a n i s h e s  o n  V . T h u s  b ( X )  - a(X_)_ X 3 E (X + X 2 + X 3 - i )  . S o  

2 2 2 
b(X) E (X3,X 1 + X 2 + X 3 - i) , and therefore b(y=) = 0 , if y= E V 

and Y3 = 0 . It follows that ~ is defined precisely for those 

points y on the sphere which are not on the circle Y3 = 0 , 

2 2 
Yl + Y2 - 1 = 0 . 

THEOREM 3C. Let ~ be a rational function on a variety V . 

The set of points y E V for which q) is not defined is a proper 
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algebraic subset of V . 

Proof: The set of points where ~ is not defined is 

S = V n ~ A ( ( b ( X ) )  
b (X) = 

where the intersection is taken over all b(X) which occur as a 

denominator of a representative of ~ . Since the intersection of an 

arbitrary number of algebraic sets is an algebraic set, S is an 

algebraic set. In addition, S is a proper subset of V , since a 

generic point of V is not in S . 

Let ~ be a rational function of a variety V , and let W be a 

subvariety of V . We say ~ is defined on W if ~ is defined at 

a generic point of W . 

A rational map ~ from a variety V to om is defined simply 

as an m- tuple of rational functions (~l,...,~m). We say ~ is 

defined at y ~ V , if each ~i(~ ) is defined at ~ �9 If this is the 

case, put ~([) = (~l(~),...,~n(~)). The set of points ~ E V for which 

is not defined is the union of the sets of points for which ~i is 

not defined (i = 1,...,m). In view of Theorem 3C , and since a finite 

u n i o n  o f  p r o p e r  a l g e b r a i c  s u b s e t s  o f  a v a r i e t y  i s  s t i l l  a p r o p e r  a l g e b r a i c  

subset, the points where ~ is not defined are a proper algebraic subset 

of V . 

The image of ~ is defined as the closure of the set of points 

~(y) , ~ E V A for which ~ is defined. 

THEOREM 3D. The image of ~ is a variety W . If x is a generic 

point of V , then ~0(x) is a generic point of W . 
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Proof: Let V = (~) �9 If x ~ Z and if ~([) is defined, we 
= = _ 

h a v e  t o  s h o w  t h a t  ~ ( x )  -)  ~_(y) L e t  ~_ = ( e l , . . . , ~ m )  , a n d  s u p p o s e  

that e i is represented by a i(x)/b i =  (X)= with b.1 (y)= / 0 . Let 

f(~(x)) = 0 and suppose that f(U) = f(UI,...,U m) is of degree d 
-- = * _-- i 

in U. Put 
l 

d d 
1 m 

g(Ul .... 'Urn ' VI'''''Vm) = Vl "'" Vm 

S i n c e  f ( a l ( x _ _ ) / b l ( X = ) , . . . , a m ( X = ) / b m ( X ) )  = 0 , i t  f o l l o w s  t h a t  

g(al(x),...,am(X),bl(X),...,bm(X))= = = = 0 . But x=-~ y= , so 

g ( a  l ( y _ _ ) , . . . , a  m ( y = ) , b  l ( y _ _ ) , . . . , b  r e ( y ) )  = 0 , a n d  

d d / a i (y-) am (y-) 
bl(Y)= 1 . . .  hm (y)~ m f [ ~  , ' ' ' , ~ ]  =0 . 

Since 

d d 

bl(Y__ ) 1 . . .  bna(y__ ) r~ 0 , it follows that 

a 1 (Y=) am (y) 
= f ] = o . 

So  e v e r y  p o l y n o m i a l  f v a n i s h i n g  o n  ~ ( x )  a l s o  v a n i s h e s  on  ~ ( y )  , 

a n d  ~p(x) ~ ~ ( y )  . 

2 2 1 
E x a m p l e :  L e t  V b e  t h e  s p h e r e  x 1 + x 2 + x 3 = 1 , a n d  l e t  

~_: V - ~  f~2 h a v e  a r e p r e s e n t a t i o n  a s  ~_ = ( ( X  + X 2 ) / X  3 , - 1 / X  ) . 

~= = ( ~ 1 , ~ 2 , ~ 3 )  b e  a g e n e r i c  p o i n t  o f  V �9 We h a v e  

~2 1 1 - I , -~ �9 

~(~-)= k ~2 ' ~3 

Let 
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Thus qo~)_ _ = ( ~ i , ~ 2 )  s a t i s f i e s  ~ i  + ~2 + i = 0 �9 S i n c e  ~ _ )  has  

transcendence degree i , it is in fact a generic point of the line 

z I + z 2 + i = 0 . Thus this line is the image of ~ . But not every 

point on this line is of the type 

and is ~ (-i,0) , then if we pick yl,Y2,y 3 in 

2 2 2 
Yl + Y2 + Y3 - 1 = 0 , we obtain ~(y) = (Zl,Z 2) 

is not of the type ~(y) For if Y3 ~ 0 , then 

if Y3 = 0 , then ~(y) is not defined. 

~(Z) . If (Zl,Z 2) is on the line 

with Ys = l/J  
But (Zl,Z 2) = (-i,0) 

~(Z) I (-i,0) , and 

THEOREM 3E. Let ~ be a rational map from V with image W . 

Let T be a proper algebraic subset of W . Then the set L ~ V 

consisting of points Z where either 

~(y) s T , is a proper algebraic subset of 

is not defined or where 

V . 

Proof: Suppose W and T lie in ~m . Suppose T is defined 

by equations gl(y) ..... gt(y) = 0 , where =y = (yl,...,ym) . 

Let gi(Yl '''''Y-)IIL have degree dij in Y. (i ~- i ~ t , 1 ~- j ~- m). 
3 

Put 

~ Y) 
hi(Yl "''Ym' Zl .... Zm) = Zdil Z im gi ..... 

' . . . . .  ZI' m 

Let 

r= .~ r_I~= (aI(X)/bI(X),...= = , am (X) /bm (X) = 

represent ~ and put 

r 

%=i" (X)= = b l ( X ) . . . b m ( X ) =  = h i ( a l ( X )  , =  . . . , a m ( X ) , b l ( X )  , =  = . . . ,b in(X))= (I - ~ i = < t) . 

Let L r consist of points y = of V with 

w r i 

s (Y)= . . . . .  ~ t  (y)= = o m 



243 

We claim that 

( 3 . 1 )  L = ~ L , 
r 

with the intersection taken over all representations r of ~ . In 

r 

fact if y ~ L for some r , then some Z-(y) • 0 , and hence 
__~ r = I = 

b l ( Y = m ) . . ,  bm(Y) r 0 a n d  g i ( a l ( Y ) / b l ( Y  = ) , . . . , a m ( y ) / b m ( y = ) )  t 0 . So 

~(y) is defined and gi(~(Y-)) ~ 0 , so that ~(y_) ~ W and y= ~ L . 

On the other hand if y ~ L , then ~(y) is defined, and for some 

representation r we have bl(Y__)-., bm(Y) I 0 . Moreover, ~(y_) ~ T , 
r 

whence some gi(~(y)) ~ 0 and ~=(y) ~ 0 . Thus y ~ L r and (3.1) 

is established. 

I n  v i e w  o f  ( 3 . 1 )  , L i s  a n  a l g e b r a i c  s u b s e t  o f  V . S i n c e  a 

generic point of V lies outside each L , the set L is a proper 
r 
= 

algebraic subset. 

Example. Let V -C ~3 be the sphere x2 + x22 + x2 - 1 = 0 and 

let W _c ~2 be the line z I + z 2 + 1 = 0 . We have seen above that 

2 2 _ I / X  2)  h a s  i m a g e  W �9 t h e  map  ~ r e p r e s e n t e d  by  ((X + X2) / X3  , 

L e t  T c W c o n s i s t  o f  t h e  s i n g l e  p o i n t  ( 0 , - 1 ) .  I t  i s  e a s i l y  s e e n  t h a t  

the set L of points 3, where ~(y) is not defined or where ~(Y_) E T 

consists of y__ E V with Y3(y2 _ l) = 0 . 
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4. Birational Maps. 

We define a rational map from a variety V to a variety W as a 

rational map ~ of V whose image is contained in W �9 We express 

this in symbols by ~: V ~ W . 

Let ~: V ~ W and ~: W ~ U be rational maps such that ~ is 

defined on the image of V under ~ . Thus if ~ is a generic point 

of V , then ~ is defined on ~(x) Suppose V c v Qw . _ , W ~  , 

U ~ u , and  s u p p o s e  ~ i s  r e p r e s e n t e d  by  

(4. i) (a I (X=)/b l (X=) , . . . ,a  w (X=)/b w (X=)) , 

and ~ is represented by 

(4.2) (c I (Y__)/d I (Y=),-..,c u (Y)/d u (Y_)) , 

where dl,...,d u are non-zero at ~(x) Let ~ be the rational 

map V ~ represented by 

(4.3) (cl(al(X=)/bl(X),...)/dl(al(X__)/bl(X__) .... )),...,Cu(...)/du(...)) . 

Since dl,...,d u are not zero at %0(x) , each of the u components 

and ~ ~ (x) is defined and equals ~ (qg(x)) in (4.3) lies in O x , _ _ 
= 

It is clear that ~_~_ is independent of the special representations 

(4.1) , (4.2) of ~ , ~ , respectively. We call ~_~ the composite 

of ~ and [0 �9 If v is a point of V such that (p is defined 

at v and ~ is defined at ~(v)~ then ~= is defined at v and 

t_ ~ (Z) = t (~ (v)) 

But ~(v) may be defined althongh perhaps either q(v) is not defined, 
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or <p(v) is defined and ~(%0(v)) is not defined. 

Examples. (i) Let V = ~i , W = ~2 U = V ~I Further let , = o 

~_: V -~ W be represented by (X 2,X) , and let ~: W -~ V be represented 
= 

by XI/X 2 �9 Then ~_ is the identity map on V . Thus ~=~ is 

defined on 0 and ~_~ (0)= 0 . However ~(0) = (0,0), and ~ is 

not defined at (0,0) 

(2) Let k = @ and ~ = C . Let V = ~i, W the unit circle 

2 2 Q 1  
x 1 + x 2 - 1 = 0 , a n d  U = V = F u r t h e r  l e t  ~_: V ~ W b e  

r e p r e s e n t e d  b y  ( 2 X / ( X  2 + l )  , (X 2 -  1 ) / ( X  2 + 1 ) )  , a n d  l e t  ~ :  W -~ V b e  

r e p r e s e n t e d  b y  X l / ( 1 - X  2 )  . T h e n  ~=~_ i s  t h e  i d e n t i t y  m a p  o n  V a n d  

~ is the identity map on W . In particular, ~ is defined at 

i and ~_~ (i) = i , but ~ is net defined at i . 

Exercise. Show that in Example (2) , ~ is defined for every 

point of V except for i , -i , and that ~ is defined for every 

point of W except for (0,i) Further show that every point of V 

with the exception of i,-i is of the type ~ (y) with ~ E W , and 

every point of W with the exception of (O,l) is of the type ~(x) 

with x E V . Hence if V t is obtained from V by deleting i, -i 
= 

and W s is obtained from W by deleting (0,i) , then ~ and 

provide a l-l correspondence between points of V ~ and of W t 

A rational map ~: V ~ W is called a bi-rational map (or a 

bi-rational correspondence) if there exists a rational map 4: W ~ V 

such that ~ is the identity on V and ~__~ is the identity on W . 

Two varieties are bi-rationally equivalent if there exists a bi-rational 

c o r r e s p o n d e n c e  b e t w e e n  t h e m .  We d e n o t e  t h i s  b y  V ~ W . T h i s  i s  a n  
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equivalence relation of varieties. (Note that this relation is defined 

in terms of the ground field k). 

THEOREM 4A. Let ~ be a hi-rational map from V to W with 

inverse ~ . Then there exist proper algebraic subsets L of V and 

M of W , such that on the set theoretic differences V~L and 

W--~M , the maps ~ and ~ are defined everywhere and are inverses of 

each other. 

Proof: Let S be the subset of V where ~ is not defined. 

Let T be the subset of W where ~ is not defined. Let L be the 

subset of V where either ~ is not defined or where ~(x) E T . 

Similarly, let M be the subset of W where either ~ is not defined 

o r  w h e r e  ~ (x )  E S . I n  v i e w  o f  T h e o r e m  3E , t h e  s e t s  L ,M a r e  p r o p e r  

algebraic subsets of V,W, respectively. Now ~ is defined on V~'L . 

Clearly, if ~ E V~L , then ~(x) ~ T . So ~(~(x)) is defined; but 

then ~(~(x)) = ~ . From this it follows that ~(x) E W~M , since 

~ S . So the restriction of ~ to V~L maps V~L into W--M . 

The restriction of ~ to W~M maps W--M into V~L . These maps 

are inverses of each other. 

THEOREM 4B. Let V and W be varieties. Then V ~ W if and 

only if their function fields are k- isomorphic. 

Proof: If ~ is a generic point of V and ~ is a generic 

point of W , then the function fields are isomorphic to k(x) and 

k(y) , respectively. So we need to show that V ~ W if and only if 

k(x) is isomorphic to k(y) 
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S u p p o s e  t h a t  V ~ W . L e t  ~ :  V ~ W a n d  ~ :  W ~ V b e  b i - r a t i o n a l  

m a p s ,  s u c h  t h a t  ~ a n d  ~ a r e  t h e  i d e n t i t y  m a p s  o n  W a n d  V , 

respectively. 

It is clear from Theorem 4A that the "image" of V under ~ is 

W . Thus if x is a generic point of V , then by Theorem 3D the 

point y = ~(x) is a generic point of W . We have y = ~0(x) and 

x = ~ (y_) , w h e n c e  k ( y )  _c k ( y )  a n d  k ( x )  _c k ( y )  , w h e n c e  k ( x )  = k ( y )  . 

Thus the function fields are certainly k-isomorphic. 

Conversely, let k(x__) be isomorphic to k(y), wherex= (x l...,xn),y== (yl,...~Vm) 

are generic points of V , W respectively. Let ~ be a k- isomorphism 

from k(x) to k(y) Let C~(x i) = x! (i = l,...,n) and put 

x = (Xl,...,x) Then k(x__') = k(y) and = is again a generic point 

of V Thus we may suppose that k(x) = k(y__) Suppose that 

and 
Yi = ri(x) (i = l,...,m) 

xj = sj(y__) (j = 1,...,n) 

... and ...,s n . Then for certain rational functions rl, ,r m Sl, 

~: V ~ W represented by (rl(~),...,rm(~)) and ~: W ~ V represented 

by (Sl(Y),...,Sn(~)) are rational maps which are inverses of each other. 

In w we defined a rational curve as one whose function field 

is isomorphic to k(X) . In view of Theorem 4B , we may also define 

a rational curve as a curve which is birationally equivalent to ~i . 

LEMMA 4C. The following two conditions on a field k are 

equivalent. 

(i). Either char k = 0 , or char k = p > 0 and for every 

there is a b E k with b p = a . 

a E k  
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(ii), Every algebraic extension of k is separable. 

Proof. We clearly may suppose that char k = p > 0 . 

(i) -~ (ii). A polynomial of k[X] of the type 

(4.4) a 0 + alXP + ... + at Xtp 

e q u a l s  ~ 0  + b lX + " ' "  + b t  x t )  p w h e r e  bP = a ( i  = O , . . . , t ) .  Thus 
1 1 

an  i r r e d u c i b l e  p o l y n o m i a l  o v e r  k i s  n o t  o f  t h e  t y p e  ( 4 . 4 ) ,  h e n c e  i s  

separable. 

(ii) ~ (i). Suppose then is an a E k not of the type a = b p 

with b E k . Then there is a b which is not in k but in an 

algebraic extension of k, with a = b p . Since p is a prime, it is 

easily seen that i = p is the smallest positive exponent with 

b i E k . The polynomial X p - a = (X - b) p has proper factors (X -b) i 

with 1 = < i = < p- 1 , but none of these factors lies in k[X] since 

b i ~ k . Thus X p - a is irreducible over k , and b is inseparable 

o v e r  k . 

A field with the properties of the lemma is called perfect. A 

Galois field is perfect. For if a lies in the finite field F with 
q 

a q (ap~-l) p 

q = p elements, then a = = 

THEOREM 4D. Suppose V is a variety defined over a perfect ground 

field k . Then V is birationally equivalent to a hypersurface. 

P r o o f .  S u p p o s e  dim V = d and ~ = ( X l , . . . , x  n) i s  a g e n e r i c  

point of V . Then n = d . In view of Theorem 4B it will suffice 

to show that there is a ~ = (yl,...,Yd+l) with 
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( 4 . 5 )  k ( x )  = k ( y )  . 

We shall show this by induction on n-d . If n-d = 0 , set 

Yl = Xl'''''Yd = Xd ' Yd+l = 0 . If n- d = 1 , set ~ = ~ . Suppose 

now that n- d > 1 and that our claim is true for smaller values of 

n- d . We may suppose without loss of generality that Xl,...,Xd+ 1 

have transcendence degree d over k . Then (Xl,...,Xd+l) is the 

generic point of a hypersurface in ~d+l . This hypersurface is defined 

by an equation f(zl,...,Zd+l) = 0 where f(Zl,...,Zd+l) is irreducible 

over k . Since k is perfect, it is clear that f is not a polynomial 

in Z~,...,Zd+ 1 p if char k = p > 0 . We may then suppose without loss 

of generality that f is not a polynomial in ZI' "'''Zd ' ZPd+I " Thus 

f is separable in the variable Zd+ 1 , and Xd+ 1 is separable algebraic 

over k(Xl,...,Xd) By the theorem of the primitive element (see 

Van der Waerden, w there is an x' with 

k(Xl,...,x d , Xd+ 1 , Xd+ 2) = k(Xl,...,Xd,Xl). 

Thus x I = (Xl,...,x d , x I , Xd+3,...,x n) has k(x s) = k(x) . By induction 

hypothesis there is a Y ~ ~d+l with k(x t) = k(y=), hence with (4.5). 
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5. Linear Disjointness of Fields 

LEMMA 5A: Suppose that ~ , K , L , k 

k-C K c- ~ , k _c L-C Q : 

are fields with 

The following two properties are equivalent: 

(i) If elements Xl,...,x of K are linearly independent 
m - -  

over k , then they are also linearly independent over L . 

(ii) If elements yl,...,y n of L are linearly independent 

over k , then they are also linearly independent over K . 

Proof: By symmetry it is sufficient to show that (i) implies 

(ii). Let yl,.~176 n of L be linearly independent over k . Let 

. of K be not all zero. We want to show that x I , -~ n 

( 5 .  l) xlY I + ... + XnY n r 0 . 

Let d be the maximum number of Xl,...,x n which are linearly inde- 

pendent over k . Without loss of generality, we may assume that 

Xl,...,x~ are linearly independent over k ~ Thus for d < i <__ n 

d 
we have x. = }' c. x. , where c E k . We obtain 

1 ~--J~- xJ  J i j  
j = l  

n 

X l Y l +  " ' "  + XnYn = ( y l  + i=d+12 Cil Yi) xl 
+ . ~ 1 7 6  

Yd + 

n 

2 
i=d+l 

Cid Yi) Xd 
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Here xl,oO.,X d E K are linearly independent over k , whence linearly 

independent over K ~ Their coefficients are not zero since yl,~ 

Yn are linearly independent over k ~ Thus (5.1) follows. 

We say that field extensions K , L of k are linearly disjoint 

over k , if properties (i) and (ii) hold. 

Examples: (i) Consider the fields 

r (x) 

/ \  
Q( ~,rg i / (x )  

Here Q(./2) and ~(X) are linearly disjoint over Q o For if 

(a + b ~/2 ) and c + d E ) are linearly independent over Q , then 

clearly they are linearly independent over Q(X) 

(ii) Let X,Y,Z,W he variables, and consider the fields 

r 
/ \ 

~(Z,W, XZ + YW) 

. 

In this case @(X,Y) and ~(Z,W,XZ + YW) are not linearly disjoint 

over C For Z,W,XZ + YW are linearly dependent over ~(X,Y) , 

but are linearly independent over 
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LEMMA 5B: Let us consider fields 

.q 
/ \ 

K L , 
\ k /  

where L is the quotient field of a ring R . For linear disjointness 

it is sufficient to show that if Zl''~176 E R are linearly independent 

over k , then they are also linearly independent over K . 

Proof: Let yl,.o.,Yn E L be linearly independent over k o 

We can find a z ~ 0 , z E R , such that zyl,.oo,Zy n E R o Now 

zyl,..o,Zy n are linearly independent over k, hence also linearly 

independent over K . Therefore yl,..o,Yn are linearly independent 

over K o 

LEMMA 5C: Suppose we have fields 

/\ 
K L , 

\ k / 

where K is algebraic over k . Let KL be the set of expressions 

Xl Yl + "'~ + Xn Yn with x.l E K , Yi E L for 1 g i g n t and with 

arbitrary. 

(i) The set KL is a field, it contains K and L , and is 

the smallest such field. 

(ii) Suppose that [K : k] is finite. Then [EL : L] 

[K : k] ~ with equality precisely if K ~ L are linearly 

disjoint over k ~ 
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(iii) Now suppose that K , L are linearly disjoint over k o 

Let ~ be a k-isomorphism from K to a field H containing 

k . Let ~ be a k-isomorphism from L to H ~ Then 

Xl Yl + "" ~ + Xn Yn -+ ~(xl) ~- (Yl) + "'' + ~(xn) B (Yn) 

is a well-defined map from KL to H . It is a k- 

isomorphism into H ~ 

Proof; Exercise. 

LEMMA 5D. Suppose we have a diagram of fields and subfields 

k K 

\/ 
k 

where k is perfect and k is the al~ebraic closure of k Then 

K , k are linearly disjoint over k if and only if k i_~s algebraically 

closed in K. 

Proof: If k is not algebraically closed in K , then there 

exists a proper algebraic extension k I of k with k I ~ K ; 

/ \ 
k K 

k 
i 1 
k 

It is now clear that k and K cannot be linearly disjoint over k 



254 

Conversely, suppose that k is algebraically closed in K It 

suffices to show that k 2 , K are linearly disjoint over k , where 

k 2 is any finite algebraic extension of k Since k is perfect, 

k 2 = k(x) , and we have the following diagram of fields: 

k 2 = k ( x )  

k 

If f(X) is the defining polynomial of x over k , then it 

remains irreducible over K, since every proper factor of f(X) has 

coefficients which are algebraic over k , with some coefficients not 

in k , and hence not in K 

So for the fields 

K ( x )  = K �9 k ( x )  

k ( x )  = k 2 

k 

we h a v e  [ K ' k ( x )  : K ]  = [ k ( x )  : k ]  ; h e n c e  k ( x ) , K  a r e  l i n e a r l y  

d i s j o i n t  o v e r  k b y  Lemma 5C~ 

6. Constant Field Extensions 

Consider fields k, K, ~, such that k C K ~ ~ , and ~ is 

algebraically closed and has infinite transcendence degree over K ~ 

T 
If x s Qn , then ~k(X)= is the ideal of all polynomials f(X)= s 

k[X] with f(x_) = 0 . We have seen in w that ~Jk ~ (x)= = ~, is a 

TGiven a subset Me_ ~n ~ M we write ~Sk( ) or ~K(M) for the set of 

polynomials f(X) in k[=X] or K[X], respectively, which vanish 
on M . 
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prime ideal in k[{] . Similarly, ~K({) = ~ is a prime ideal in 

K[~] . Let .~ K[~] be the ideal in K[~] generated by ~ ~ The 

[~] f i d e a l  ~K c o n s i s t s  o f  a l l  l i n e a r  c o m b i n a t i o n s  C l  f l  + " ' "  + am m 

w h e r e  c i e K , f i e  ~ ( i  = 1 . . . . .  ,m) . C l e a r l y  ~:K[~]  ~ ~ . D e n o t e  

t h e  c l o s u r e  o f  a p o i n t  x w i t h  r e s p e c t  t o  k , K by  ( ~ ) k  , (~)K , 

- - k  
r e s p e c t i v e l y .  We h a v e  (~) = A(~)  = A ( ~ K [ ~ ] )  ~ A(~)  = (~)K= ~ So 

(~) K c (~) k 

Example: Let k = ~ , K = Q(~ ) , ~ = C , and n = 2 . 

Consider the point (e~/~, e) = x . Then (~)k is the set of zeros 

of the polynomial X 2 - 2Y 2 But (~)K is the set of zeros of 

X -~/~ Y . 

THEOREM 6A. Let k ~ K ~ ~ be fields, where ~ is algebraically 

closed and has infinite transcendence degree over K Let x E ~n o 

~k(~) =~ , ~K(~) = ~ o Consider the following four properties: 

(i) The fields K , k(x) are linearly disjoint extensions of 

k , 

( i i )  ~ = ~ K [ x ] , =  

( i i i )  ( ~ ) k  (K)K , 

(iv) �9 = J ~ [ x ]  

The properties (i), (ii) are equivalent. Property (ii) 

implies property (iii), which in turn implies property (iv). 

Proof: To show that (i) implies (ii), let f(X) E "~ . Write 
n 

f(X)= = ~ a i fi(X)= , w h e r e  a.1 E K , fi(X)= E k[X]_ , and  ax,. . ~  n 
i = l  n 

a r e  l i n e a r l y  i n d e p e n d e n t  o v e r  k . Now f(x_) = 0 , s o  ~ a i r  i (_x_) = 0 . 
i = l  
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By the linear disjointness of K and k(x) , the a. 's are linearly 
= 1 

independent over k(x) o It follows that each f. (x) = 0 , and each 
= 1 -- 

fi(X) E o~ �9 Thus f(X) E ~ K[X] 

To show that (ii) implies (i), let Ul(X),..o,Us = be elements 

of k[X] , such that Ul(X),...,u~ (x) are linearly independent over 

k . By Lemma 5B, it will suffice to show that Ul(X),...,u~(x)= 

remain linearly independent over K . Suppose alUl(X) + o.. + 

as (x)= = 0 , with a.l E K o Let f (X): : alu I (X)= + . . ~ + a~u~ (X)= . 

Since f(x)= = 0 , the polynomial f(X)= lies in "% =~K[X] o We have 

a relation 

(6.1) _ f (x) alUl(X)_ + ..~ + a~u~(X)= = blfl(X)= + ~ + bm m = ' 

where b. E K , f. (X) E 
1 1 ---- 

(i = l,~ We may assume that 

fl'''''fm are linearly independent over k . We claim that 

Ul(X),...,u~(X)= = , fl(X),...,fm(X)= = are linearly independent over k . 

Suppose that 

(6.2) 
m 

~ ciu i(x)= + ~ d f (x) =0 
i=l j=l JJ= ' 

where c. , d E k . Substituting x for X , we obtain 
i 3 = = 

0 the u (x) are linearly independent over ciui (x) However, g 

i=l = i = 

k , so that Cl,...,c ~ are all zero. Thus (6.2) reduces to 

m 

d.f.(X) = 0 . But the f.(X) are linearly independent over k , 
j=l 3 3 = J = 

and hence d I = .... dm = 0 ~ We have established the linear 

independence of Ul(X),.~176 S (X), fl(X),.~ over k . These 

9 + m polynomials have coefficients in k and are linearly inde- 

pendent over k , and hence they are also linearly independent over 



257 

r 
K Hence in (6.1), all the coefficients are zero, and in particular 

a I = ... = a~ = 0 ~ 

We next want to show that (ii) implies (iii). Let y 6 (~)k= 

Then f(y) = 0 if f(X)_ E ~ . Since ~ = 4~k[X] ,_ we have g(y)= = 0 

f o r  e v e r y  g ( X )  E ~ . T h u s  y E A ( ~ )  = (~-__)K . H e n c e  (~)k= G (~)K= , 

a n d  s i n c e  t h e  r e v e r s e d  r e l a t i o n  i s  a l w a y s  t r u e ,  we o b t a i n  ( i i i ) ~  

Finally, we are going to show that (iii) implies (iv). Suppose 

f(X) E ~ Then f vanishes on (~)K (~)k , and f E ~K(=) 

= =J E[ I �9 so �9 0onversely, 

we h a v e  , ~ K [ ~ ]  ~ ~ , w h e n c e  J ~ K [ ~ ]  G J ~  = ~ . 

Example: We give an example where ~x) K = ~x) k = = , but ~ r q K [ ~ ]  

T h u s  ( i i i )  d o e s  n o t  i m p l y  ( i i ) .  L e t  k 0 b e  a f i e l d  o f  c h a r a c t e r i s t i c  

p , a n d  l e t  k = k 0 ( z )  , w h e r e  z i s  t r a n s c e n d e n t a l  o v e r  k 0 . P u t  

( t , t ~ )  , w h e r e  t i s  t r a n s c e n d e n t a l  o v e r  k ~ T h e n  .~  = ~ k ( ~  ) = 

P i s  a n  i r r e d u c i b l e  p o l y n o m i a l  o v e r  k (zX~ - X~) , since zX~ - X 2 

NOW t a k e  K = k ( P ~ )  T h e n  ~ = ~ E ( ~  ) = ( ~  X 1 - X2) , a n d  ~ t 

K [ ~ ]  We h a v e  ( ~ ) k  = A~zX~ - X ~  a n d  (~_)K = A @ ~  X 1 - X2~  . 

We observe that (~)k= = (~)K= , since if (u,v) E A~zX~ - X~)) , then 

z u  p - V p = ( ~ Z  U - V) p = 0 , SO t h a t  ( u , v )  E A ~ f ~  X 1 - X2~ . 

X = 

THEOREM --6B" Let k , K , x= , ~ , ~ be as in Theorem 6A. 

Suppose, moreover, that K is a separable algebraic extension of 

Then J~ K[~] = .~ K[~] . 

k . 

f 
Linearly independent vectors in a vector space k t over k remain 

linearly independent in the vector space K t , where K is an over- 
field of k . 
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P r o o f :  L e t  f E J ~  K--~= . T h e r e  i s  a f i e l d  K 0 w i t h  k ~ K 0 c K 

w h i c h  i s  f i n i t e l y  g e n e r a t e d  o v e r  k , s u c h  t h a t  f E K0[X ] and  
n 

f E J . 7  K0[X ] . L e t  f = ~ c i f i ,  w h e r e  f . (X) l  = E k[X]  , =  c i  e K 0 , a , ~  
i = l  

. are linearly independent over k . In fact, by allowing e I , .-,a n 

some fx to be zero, we may suppose that Cl,...,c n are a basis for 

K 0 over k , where n = [K 0 : k] o There are n distinct k- 

isomorphisms ~ of K 0 into Q ; write c ~ for the image of c 

under ~ We put 

n 

f~ (X)  = ~ e ~ f i ( X )  
i = l  

Here the (nXn)-determinant 

d(~) such that 
l 

ql is not zero, and hence there are c i 

f .  (X) = ~ ~cY)ocy. i (X) ( i  = 1 , . . , , n ) ,  

Now f o r  some m , E ~ K  0 , w h e n c e  (fcy)m E X] , w h e n c e  

( f ~ ) m ( x )  = 0 , and  t h e r e f o r e  f C ( x )  = 0 f o r  e a c h  c5 �9 Thus e a c h  

f ' l  (X)z z 0 , and  f i  E ~ �9 We h a v e  shown t h a t  f E ~ K 0 [ X  ] -C~K[X]= . 

I t  f o l l o w s  f r o m ~ h e o r e m s  6A, 6B, t h a t  t h e  f o u r  p r o p e r t i e s  l i s t e d  

in Theorem 6A are equivalent if K is a separable algebraic extension 

of k . Now if k is perfect, then every algebraic extension K of 

k is separable. Thus we obtain 

COROLLARY 6C. If k is perfect and if V is a variety over k 

w i t h  g e n e r i c  p o i n t  x , t h e n  V i s  an  a b s o l u t e  v a r i e t y  i f  and  o n l y  
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i f k (x) 

only if 

and k are linearly disjoint over k. 
*) 

k is algebraically closed in k(x) 

This is the case if and 

THEOREM 6D. Let k be a perfect ground field. 

(i) I f  f(X) E k[X] i s  n o t  c o n s t a n t  and  i s  a b s o l u t e l y  i r r e -  

ducible, then the set of zeros of f is an absolute 

hypersurface. 

(ii) I_~f S is an absolute hypersurface, then ~k(S) = (f):, 

where f is absolutely irreducible and nonconstant. 

Proof: (i) This follows directly from Theorem 2C, and the fact 

that f is absolutely irreducible. 

(ii) From Theorem 2C it follows that ~k (S) = (f)k' where f 

is nonconstant and irreducible over k . Let K be an algebraic 

extension of k . Then ~K(S) =~ =~K[~] = (f~K[X]= = (f) K Thus 
$ 

the principal ideal generated by f in K[~] is a prime ideal, 

f is irreducible over K . 

REMARKS (i). Let k be perfect and let V be a variety over k 

In Theorem 4D we constructed a hypersurface S which was biration- 

ally equivalent to V �9 In fact, the construction was such that 

k(x) = k(y) , where x , y were certain generic points of V , S , 

respectively. Now if V is an absolute variety, then k is algebraically 

t We write (f)k resp. (f)K for the principal ideal generated by 

i n  k [X]  and  i n  K[X_]_ 

* ) C o m p a r e  w i t h  T h e o r e m  3A o f  Ch.  V.  
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closed in k(~) = k(~) , and S is also an absolute variety. 

(2) Another approach to Corollary 6C is this: It may be shown 

directly that if two k-varieties are k-birationally equivalent, and 

if one is absolute, then so is the other. Thus the proof may be 

reduced to the case of a hypersurfaee. But this case is essentially 

Theorem 3A of Ch. V. 

7. Counting Points in Varieties Over Finite Fields 

The goal of this section is a proof of 

THEOREM 7Ao Let V be an absolute variety of dimension d 

defined over k = F Let N = N (V) be the number of points 
q M 

y = (yl,...,yn) --in V with each coordinate in Fq~ . 

vd (q~(d - I/2)) 
(7.1) % = q + 0 

Then as M ~ ~ 

The proof will depend on a result we derived in Chapter V. 

Namely, if f(XI,...,X n) E Fq[XI,o..,Xn] is nonconstant and absolutely 

irreducible and if N is the number of zeros of f in F , then 
q 

(?.2) IN- qn-i I ~ cqn - 3/2 , 

where c is a constant which depends on n and the total degree of 

f o For n = 2 , this result is Theorem iA of Chapter III, and for 

general n it is Theorem 5A of Chapter V. Only the case n = 2 is 

needed if V is a curve, 
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LEMMA 7B: Theorem 7A is true for hypersurfaces. 

Proof: Let S be an absolute hypersurface of dimension d . 

By Theorem 6D, S is given by f(x) = 0 , where f(X) is not con- 

stant and is absolutely irreducible. Thus by (7.2), 

IN - qd 1 = I N -  q n - l l  <- cq  n - ( 3 / 2 )  = cqd - 1 /2  

Now applying this result to Fq~ instead of Fq , we see that 

/~ - q 'd /  ~ eq  ~ ( d  - 1 / 2 )  

Theorem 7A for the general variety is done by induction on d . 

If d = 0 and V = (~) , then every z E F (x) is algebraic over 
---- q = 

F , and so satisfies an equation 1 . z - ~ ~ 1 = 0 where ~ E 
q q 

Thus z , 1 are linearly dependent over ~ Since F (x) and 
q q = q 

are linearly disjoint over F , it follows that z , 1 are linearly 
q 

dependent over F So z E F , and F (x) = F Thus x has 
q q q = q = 

coordinates in F , and V = (x) = x ~ It follows that N = 1 for 
q = = 

every ~ . 

In order to do the induction step from d - 1 to d , we shall 

need 

LEMMA 7C~ Suppose Theorem 7A is true for absolute varieties of 

dimension <d ~ Let W be a variety of dimension < d , not neces- 

sarily an absolute variety. Then as ~ ~ ~ , 

N (W)=0 (q ~(d-l)) 

Proof: It ~ clear that W is still an algebraic set over 

K = ~ , but not necessarily a K-variety. So W is a finite union 
q 

W = W 1 [I ... U W t , where the W. are K-varieties. Each W. is 
1 1 
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defined by finitely many equations. The coefficients of all these 

equations for WI,.o.,W t generate a finite extension Fq~ of Fq 

So each W.I is a Fq~-Variety and is as such an absolute variety, 

and d.l = dim W.I ~ d - 1 . Let N~ (W.)l be the number of points in 

W.l with coordinates in FqX~ �9 By our induction hypothesis, applied 

to Fq~ instead of F , we see that as the integer k tends to m , 
q 

we have 

N)~ (Wi) = qk~(di-i ) +0(qk~(di-3/2)) 

= O(qk~ (d-l)) 

Nk (W)= Okq k~(d-l)]/~ as I -~ ~ Given ~, pick an integer ~ Thus 

with (~ -i)~ < ~ ~ k~ . Then as ~ -* ~ , 

N (W)~ % (W)= O(q )~(d-l)) 

= 0(q~(d-l) + ~(d-l)) 

= O(q'~(d-l)) . 

The proof of Theorem 7A is now completed as follows. According 

to Theorem 4D, the variety V is birationally equivalent to a hyper- 

surface S , and this hypersurface is an absolute variety by the 

remark at the end of w By Theorem 4A, there exist proper algebraic 

subsets L ~ V , M ~ S , such that the birational correspondence 

r between V and S becomes a 1 - 1 correspondence between points 

of V ~ L and of S ~ M o Now ~ as well as its inverse is defined 
= 

over k = F , i.e. is defined in terms of rational functions with 
q 

coefficients in F Thus in this correspondence, points with 
q 

components in F correspond to points with components in F 
q q 
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More generally, points with components in F M correspond to points 
q 

with components in Hence Fq~ ~ 

(7.3) 1 < (v) - % (s) l < (L) § % 

However, L and M are composed of varieties of dimension < d . 

So by  Lemma 7C, N (L) + N (M) = O ( q  ~ ( d - 1 ) )  On t h e  o t h e r  h a n d ,  by  

~d (q~(d - I/2)) 
Lemma 7B~ Ny(S) = q + O These relations in conjunc- 

tion with (7.3) yield (7.1). 

REMARKS~ (i) Theorem 7A together with Theorem 2D shows that the 

t+l 
number N of solutions (x, YI''~ E Fq~ of certain systems of 

equations 

d I d 2 d t 
Yl = gl (x) ' Y2 = g2(x'Yl) ''~176 Yt = gt (x' YI''''' Yt ) 

q~/2 
satisfies N = q + O( ) as ~ -~ 

M 

for certain systems of equations 

In particular this holds 

d I d t 
Yl = gl(x)'''~ Yt = gt(x) 

But a better result for such systems was already derived in Theorem 5A 

of Chapter II. Under suitable conditions on gl(X),~ ) it was 

1 - q~l < cq ~/2 where c was a constant explicitly shown  t h a t  N = , 

d e t e r m i n e d  i n  t e r m s  o f  t and  t h e  ~ d e g r e e s  o f  t h e  p o l y n o m i a l s  

gl,~176 

(ii) More generally, if V is an absolute variety defined over 

F determined by equations fl(x) ..... f~(x) = 0 then our 
q ~ ~ 

Theorem 7A could be strengthened to 

I N  - q'0d / ~ cq  "~(d - 1 / 2 )  , 
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where c is a constant depending only on the number n of variables, 

on ~ , and on the total degrees of the polynomials fl,..o,ft o 

(iii) Corollary 2B of Chapter V can be generalized as follows. 

Suppose V is an absolute variety of dimension d over ~ defined 

by equations fl(x) ..... f~(x) = 0 , where fl(X),...,fs have 

rational integer coefficients. Let ~. (X) be obtained from f. (X) 
i -- 1 = 

by reduction modulo p and let V 
P 

F by fl(x) ..... (x) = 0 0 

absolute variety of dimension d 0 

and the degrees of the polynomials 

then the number N(p) 

be the algebraic set defined over 

Then if p > Po ' the set Vp is an 

Here Po depends only on n , 

fl,.o.,f~ o Hence if p > Po ' 

of solutions of the system of congruences 

fl (x) =- .o. =- f~(x) -= 0 (mod p) 

satisfies iN(p)_pdl <= cpd - 1 / 2  

(iv) The Well (1949) conjectures (see also Ch. IV, w imply 

much better estimates than Theorem 7A if V is a "non-singular" variety 

of dimension d > 1 These conjectures Were recently proved by 

Deligne 

+)But see the remark in the Preface. 
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