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Preface 

The International Statistics Workshop was held at the University of 
Canberra, Canberra, Australia on 4-5 April 2005. It was timed to fit in 
with the 55th Session of the International Statistical Institute (ISI) held in 
Sydney, Australia, from 5 to 12 April 2005. 

Attending were a number of international academics, academics from 
around Canberra (Australian National University (ANU), Australian De­
fense Force Academy (attached to University of New South Wales) (ADFA), 
Commonwealth Scientific and Industrial Research Organisation (CSIRO) 
and various Commonwealth Government Departments), academics from 
within the University of Canberra with research interests in the area, and 
members of the Mathematics and Statistics Discipline at the University of 
Canberra. 

It was a pleasure to welcome the many international and local speak­
ers, participants and friends to the workshop. Speakers addressed topics 
in probability and statistics, with applications, both specialised and gen­
eral. All contributions were strongly research and/or application oriented. 
The Workshop was arranged to include especially the areas of interest at 
the University of Canberra: applications in economic and financial areas, 
ecology and psychology, teaching and education, health and sports studies, 
and computer and IT-data mining, in addition to statistical theory and 
methodology. 

We wish to thank the many contributors, referees and participants, with­
out whose efforts the Workshop and these Proceedings would not have been 
possible. In particular, we would like to thank Joe Gani, Chris Heyde and 
George Styan for their thoughtful advice and assistance in the organisation 
of the workshop and in the editing process during the last two years. We 
also wish to thank Daryl Daley, Peter Hall, Mary Hewett, Ian Lisle, Mike 
Osborne and Alan Welsh for their support on various matters. Finally, we 
thank the staff members of the School of Information Sciences and En-
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gineering and of the University of Canberra more widely who have been 
involved in arranging and supporting the Workshop and Proceedings. 

Peter Brown, Shuangzhe Liu & Dharmendra Sharma 
Editors. 

Organising group: Shuangzhe Liu, Dharmendra Sharma and Peter Brown; 
Editorial group: Peter Brown, Shuangzhe Liu and Dharmendra Sharma; 
all at 
School of Information Sciences and Engineering, 
University of Canberra. 
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Estimating Internet Access for Welfare Recipients in Australia 

Anne Daly 

School of Business and Government, University of Canberra 
Canberra ACT 2601, Australia 

E-mail: anne.daly@canberra. edu. au 

Rachel Lloyd 

Centre for Labour Market Research and NATSEM, University of Canberra, 
Canberra ACT 2601, Australia 

E-mail: rachel.lloyd@canberra.edu.au 

The internet offers a quick and cheap method for government agencies to 
contact their clients. Many agencies are now exploring ways in which they 
can utilise new technologies to improve the efficiency of their communication 
with clients. Centrelink is currently responsible for the administration of the 
Australian welfare system and the agency is keen to know whether the use 
of the internet as a vehicle for transmitting information to clients would be 
a feasible option. This paper builds on earlier work by Lloyd and Bill (2004) 
based on data from the 2001 Census of Population. In this earlier study, the 
researchers estimated an equation for the determinants of internet usage for the 
Australian adult population. The Census does not identify welfare recipients. 
In this paper the earlier estimates are applied to data from the Household 
Expenditure Survey (HES) to provide estimates of the level of internet usage 
among those identified in the HES as welfare recipients. This involves using 
variables that are available on both data sets to estimate the probability of 
internet usage for welfare recipients. 

Keywords: welfare recipients; internet usage; Australia. 

1. Introduction 

Technological developments in computers and the internet have opened new 
opportunities for government in providing services to clients. Centrelink, as 
one of the largest Commonwealth agencies dealing directly with individual 
clients, has been keen to explore possibilities for maintaining and improving 
services while reducing costs. As the Commonwealth agency currently re­
sponsible for the payment of all pensions and benefits, for example the Old 
Age and Disability pensions, Parenting Payment Single and Partnered, and 

mailto:rachel.lloyd@canberra.edu.au
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Newstart Allowance, there is considerable scope to improve service delivery 
using new technologies. There has been a continuing concern that a digi­
tal divide should not develop in Australia on the basis of socio-economic 
characteristics, age and location of residence (see for example Lloyd and 
Hellwig 2000, Daly 2002), and a number of government programs have 
been designed to address this issue. 

However the question remains: do Centrelink clients have access to com­
puters and the internet? Would a reliance on communications using these 
methods disadvantage clients? Data to answer these questions directly are 
not available. The purpose of this study has therefore been to estimate the 
likely use of a home computer and of the internet for individuals identified 
in the 1998/99 Household Expenditure Survey (HES), conducted by the 
Australian Bureau of Statistics (ABS), as receiving a payment from the 
Commonwealth government. These are mainly pension and benefit recipi­
ents but Centrelink is also responsible for administering family payments 
that are available to a much wider group in the community. Estimates are 
made by applying the results of logistic regression equations from the 2001 
Census to data from the HES. The results reported here are of work-in-
progress. 

2. Results 

In 2001, for the first time, the Australian Census of Population and Housing, 
which is conducted every five years by the ABS, included questions on 
computer and internet use. People were asked whether they had used a 
home computer in the week prior to Census night and were also asked if 
they had accessed the internet at all during the week prior to Census night. 
Respondents were asked to indicate whether access to the internet had 
taken place at home, at work or elsewhere and were given the opportunity 
to indicate if it had been at a combination of these locations. None of these 
questions asked about intensity of use, so an individual who used a home 
computer once in the preceding week is counted in the same way as a person 
who had used it for long periods every day. 

Lloyd and Bill (2004) and Bill and Lloyd (2003) provide a detailed 
description of the Census results. They found that certain characteristics 
were associated with not having used a home computer or the internet in 
the week before the Census. Over two-thirds of those in each of the following 
categories reported that they had not used a home computer or accessed 
the internet: those who did not speak English well, did not currently go to 
school, attended school to year 8 or below, were aged over 65 years, had 
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family incomes $300-399/week, were Indigenous, were born in Southern or 
Eastern Europe, were not in the labour force or were occupied as labourers 
(Lloyd and Bill 2004). They used the data to formalise these relationships 
by estimating logistic regressions for home computer and internet usage. 

While the 2001 Census contained information on home computer and 
internet usage, it did not contain information on sources of income so it 
was not possible to investigate computer and internet usage for Centre-
link clients using the Census. The HES 1998/99 includes information on 
sources of income and therefore has been used as the data set for estimat­
ing computer and internet usage for Centrelink clients. Table 1 presents the 
independent variables used in the estimation of results that form the basis 
of this study. Tables 2 and 3 include the logistic regression results from Bill 
and Lloyd (2003) using Census data on variables that are common between 
the Census and the HES. The full equations reported in Lloyd and Bill 
(2004) also include variables for Indigenous status, speaking English not 
well or not at all and regions and remote location of residence. These vari­
ables were all significant in the full equation so there will be some omitted 
variable bias from the equations excluding them. However, these additional 
variables are not available in the HES. 

The first column of Tables 2 and 3 present the estimated coefficient from 
the logistic equations. Each of the coefficients is significant at the usual lev­
els as they were estimated using the full Census file. The second column 
reports the odds ratio relative to the base case. The base case is a mar­
ried man aged 25-44, with no post-secondary education but not currently 
studying, employed in an occupation other than trades or labouring, with 
a household income of $500-999/week, no dependent children and living in 
New South Wales. Bill and Lloyd estimate that the probability of such a 
person using a home computer was 43.8% and of using the internet was 
51.2%. The odds ratio shows the effect of a change in one variable on the 
base-case probability. For example, a male with a degree was over three 
times as likely to use a home computer and four times as likely to use the 
internet as the base-case male with no post-secondary education holding 
all the other base case characteristics constant. A married man living in 
a household with a weekly income above $1500 was 1.7 times as likely to 
have used a home computer and twice as likely to have used the internet 
as was an identical man in a household with a weekly income of between 
$500 and $999. 

The logistic regression results reported in Tables 2 and 3 below show the 
large effects of education and income on home omputer and internet usage. 
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Table 1. Explanatory variables used in regression model 

Explanatory variable Classes (Base Class*) 
Gender & marital status Male & not married 

Female & not married 
Male & married* 

Female & married 
Age 15-24 years 

25-44 years* 
45-64 years 

65+ years 
Educational qualifications & study status Bachelor degree or higher 

Advanced diploma, diploma or certificate 
No post school qualification* 

Still at school 
Other still studying 

Labour force status & occupation Employed as Tradesperson or Labourer 
Employed in other occupations* 

Unemployed 
Not in the labour force 

Household income Household income under $500 per week 
Household income $500-$999* 

Household income $1,000-81,499 
Household income $1,500 per week and over 

Dependents (in household) Dependents 
No dependents (& not applicable)* 

State New South Wales* 
Victoria 

Queensland 
South Australia 

Western Australia 
Tasmania 

Australian Capital Territory 
Northern Territory & other territories 

Source: Bill & Lloyd (2003) 

Table 4 presents some descriptive statistics from the HES for those receiving 
government payments and those who did not. The first column shows the 
proportion of those receiving payments who were in each category. The 
second column shows the proportion of those who did not receive payments 
in each category. The results show that payment recipients are more likely 
to be female, be aged 65+, have no post-secondary qualification and be 
outside the labour force. The regression results reported in Tables 2 and 3 
show that each of these characteristics is likely to be associated with lower 
probabilities of home computer and internet usage. 
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Table 2. Centrelink regression model for people using a home computer, 2001 

Intercept 
Male and not married 
Female and not married 
Male and married (base) 
Female and married 
15-24 years 
25-44 years (base) 
45-64 years 
65+years 
Degree level 
Diploma/certificate 
No post-school (base) 
Still at school 
Still studying other 
Employed as tradesperson or labourer 
Employed in other occupation (base) 
Unemployed 
Not in the labour force 
Household income under $500 per week 
$500-$999 (base) 
$1,000-81,499 
$1,500 or more 
Dependent children 
No dependent children (base) 
New South Wales (base) 
Victoria 
Queensland 
South Australia 
Western Australia 
Tasmania 
Australian Capital Territory 
NT and other territories 
Source: Bill and Lloyd (2003) 

Coefficient estimate 
-0.3407 
-0.2976 
-0.5828 

-0.2054 
0.1149 

-0.2627 
-1.1263 

1.1457 
0.5275 

1.9454 
1.7393 

-0.8739 

-0.3875 
-0.6549 
-0.2628 

0.2485 
0.5371 
0.4466 

0.0661 
0.1581 
0.0943 
0.1563 

-0.0536 
0.3517 

-0.3933 

Odds ratio 

0.743 
0.558 

1 
0.814 
1.122 

1 
0.769 
0.324 
3.145 
1.695 

1 
6.996 
5.693 
0.417 

1 
0.679 
0.519 
0.769 

1 
1.282 
1.711 
1.563 

1 
1 

1.068 
1.171 
1.099 
1.169 
0.948 
1.421 
0.675 

3. Concluding Remarks 

These results have been used to predict home computer and internet usage 
for the population aged 15+ in the HES. This population has been divided 
into those who received government payments and those who did not. The 
preliminary estimates show that the probability of those receiving govern­
ment payments making use of home computers and the internet was about 
half that for the non-recipients in the sample. Sensitivity and benchmarking 
analysis of these results is still to be completed. 

There are a number of outstanding issues arising from this project before 
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Table 3. Centrelink regression model for people using the Internet, 2001 

Parameter 
Constant 
Male and not married 
Female and not married 
Male and married (base) 
Female and married 
15—24 years 
25-44 years (base) 
45-64 years 
65+ years 
Degree or higher 
Diploma/certificate 
No post-school (base) 
Still at school 
Still studying other 
Employed as tradesperson or labourer 
Employed other occupation (base) 
Unemployed 
Not in labour force 
Household income under $500 per week 
$500-$999 (base) 
$1,000-$1,499 
$1,500 or more 
Dependent children 
No dependent children (base) 
New South Wales (base) 
Victoria 
Queensland 
South Australia 
Western Australia 
Tasmania 
Australian Capital Territory 
NT and other territories 
Source: Bill and Lloyd (2003) 

Coefficient estimate 
0.0462 
-0.212 
-0.398 

-0.454 
0.1071 

-0 .57 
-1.685 
1.4504 
0.5434 

1.9125 
1.8703 
-1 .35 

-0 .76 
-1.053 
-0.338 

0.3039 
0.7164 
0.0092 

0.0734 
0.1278 
0.0629 
0.1559 
0.0301 
0.5721 
-0.195 

Odds ratio 

0.809 
0.671 

1 
0.635 
1.113 

1 
0.565 
0.185 
4.265 
1.722 

1 
6.77 
6.49 

0.259 
1 

0.468 
0.349 
0.713 

1 
1.355 
2.047 
1.009 

1 
1 

1.076 
1.136 
1.065 
1.169 
1.031 
1.772 
0.823 

we can fully answer the question of whether the use of the internet as a 
vehicle to communicate with customers is a feasible option. Firstly, the 
geographical breakdown available in the HES is limited to identification 
of the State or Territory where the respondent lives. Evidence from the 
2001 Census shows that there is a consistent pattern of higher levels of 
home computer and internet use in the capital cities than in regional and 
rural areas. If the distribution of the population between the capital cities 
and outside those cities of those receiving income from the government 
is very different from that of the population as a whole, then the ability 
of these predictions to estimate access will be reduced. In addition, there 
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Table 4. Descriptive statistics for those receiving Government payments compared with 
those who did not; Australia, 1998/99 

Characteristic 

Male and not married 
Female and not married 
Male and married 
Female and married 
15-24 years 
25-44 years (base) 
45-64 years 
65+ years 
Degree level 
Diploma/certificate 
No post-school (base) 
Still at school 
Still studying other 
Employed as tradesperson or labourer 
Employed in other occupation (base) 
Unemployed 
Not in the labour force 
Household income < $500/week 
$500-$999/week (base) 
$1000-$1499/week 
$1500+/week 
Dependent children 
No dependent children (base) 
New South Wales 
Victoria 
Queensland 
South Australia 
Western Australia 
Tasmania 
ACT 
NT and other territories 

Recipient of 
Payment Proportion 

0.14 
0.26 
0.20 
0.40 
0.11 
0.35 
0.22 
0.32 
0.06 
0.26 
0.62 
0.02 
0.08 
0.05 
0.19 
0.09 
0.67 
0.52 
0.30 
0.13 
0.06 
0.43 
0.57 
0.33 
0.25 
0.20 
0.09 
0.09 
0.03 
0.01 
0.00 

Non-recipient of 
Payment Proportion 

0.22 
0.16 
0.63 
0.25 
0.22 
0.42 
0.32 
0.04 
0.18 
0.33 
0.40 
0.07 
0.12 
0.20 
0.63 
0.02 
0.15 
0.11 
0.30 
0.27 
0.32 
0.40 
0.60 
0.35 
0.25 
0.17 
0.07 
0.10 
0.02 
0.02 
0.01 

Source: HES Unit record file 

have also been some significant policy changes with respect to eligibility 
for government payments since 1998/99. These include welfare reforms and 
the introduction of a new tax system. The characteristics of those receiving 
Centrelink payments may have changed as a result of these policy changes. 
Finally, the 2001 Census is now almost four years old. A more recent ABS 
survey shows that 66 per cent of households (as distinct from persons as 
discussed above) in 2003 had access to a home computer compared with 58 
per cent in 2001 (ABS 2004). The percentage of households with internet 
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access had risen from 42 per cent in 2001 to 53 per cent in 2003. If Centrelink 

were to use estimates from the above analysis to estimate the computer 

and internet usage of individual clients, it would be important to adjust 

these estimates in the light of the rapid growth in use of these technologies 

among the Australian population. Finally it may be worthwhile developing 

the capacity to communicate with clients through the internet as a way of 

encouraging the development of computer and internet skills among this 

group. However, at this stage, our preliminary estimates suggest tha t it 

would be inappropriate to rely completely on this form of communication 

with Centrelink clients. 

R e f e r e n c e s 
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Two Classification Methods of Individuals for Educational Data 
and an Application 

Atsuhiro Hayashi 

Research Division, The National Center for University Entrance Examinations, 
Tokyo 153-8501, Japan 

E-mail: hayashi@rd.dnc.ac.jp 

Both methods, Rule Space Method (RSM) and Neural Network Model 
(NNM), are techniques of statistical pattern recognition and classification ap­
proaches developed from different fields — one is for behavioural sciences and 
the other is for neural sciences. 

RSM is developed in the domain of educational statistics. It starts from 
the use of an incidence matrix Q that characterises the underlying cognitive 
processes and knowledge (Attribute) involved in each Item. It is a grasping 
method for each examinee's mastered/non-mastered learning level (Knowledge 
State) from item response patterns. RSM uses multivariate decision theory to 
classify individuals, and NNM, considered as a nonlinear regression method, 
uses the middle layer of the network structure as classification results. We 
have found some similarities and differences between the results from the two 
approaches, and moreover both methods have characteristics supplemental to 
each other when applied to the practice. 

In this paper, we compare both approaches by focusing on the structures 
of NNM and on knowledge States in RSM. Finally, we show an application 
result of RSM for a reasoning test in Japan. 

Keywords: Rule Space Method; Neural Network Model; educational statistics; 
cognitive science. 

1. Introduction 

A Neural Network model was proposed for the purpose of modelling the 
information processing in a person's brain in the 1940s. Neurons (nerve 
cell elements) are considered as the minimum composition unit of cerebral 
functions that can entangle in a complicated and organic manner. The 
model shows that all the logical reasoning can be described in a finite size of 
the number of neurons and connections [2]. The model enables us to express 
acquisition of new knowledge from learned examples in the past; therefore 
it can be used to help to solve one of the weaknesses in constructing an 

mailto:hayashi@rd.dnc.ac.jp
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AI (Artificial Intelligence) system. It is known that expressing knowledge 
acquisition in an AI system is extremely difficult. 

On the other hand, the Rule Space Method (RSM) is a technique of clus­
tering examinees into one of the predetermined latent Knowledge States 
(KS) that are derived logically from an expert's hypotheses about how 
students learn. The method can be considered as a statistical testing tech­
nique of the expert's hypotheses. These hypotheses are expressed by an 
item-attribute matrix (incidence matrix) Q where attributes are represent­
ing underlying knowledge and cognitive processing skills required in ad­
dressing problems [1]. A Knowledge State consists of attributes of the type 
mastered/non-mastered, and a list of all the possible Knowledge States can 
be generated algorithmically by applying Boolean Algebra to the incidence 
matrix Q. This method is fairly new but has lately started getting some 
attention because it is possible to provide diagnostic scoring reports for a 
large-scale assessment [3]. We have found that there are similarities between 
the results from the two approaches, and moreover they have complemen­
tary characteristics when applied in practice. In this paper, we discuss the 
comparisons of both approaches by focusing on the structure of the Neural 
Network Model (NNM) and of Knowledge States in the RSM. We show an 
application result for a reasoning test. 

2. Rule Space Method 

RSM is a technique developed in the domain of educational statistics [6]. It 
starts from the use of an incidence matrix Q that characterises the underly­
ing cognitive processes and knowledge (Attribute) involved in each Item. It 
is a grasping method for each examinee's mastered/non-mastered learning 
level (Knowledge State, KS) from item response patterns. Up to now, the 
results of examinees' performances on a test are reported by total scores 
or scaled scores. However, if this technique is used in educational practices, 
it is possible to report which attributes each student mastered or did not 
master, in addition to his/her total scores. It is often true that several dif­
ferent Knowledge States may arise from the same total score. By reporting 
detailed information of his/her Knowledge State, learning can be facilitated 
more effectively than by just providing total scores. 

3. Feed-Forward Neural Network Model 

In spite of that the mathematical formulation of the Feed-Forward NNM 
is simple. Almost any nonlinear function can be approximated by selecting 
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different numbers of middle layers and connections between neurons. When 
we apply this technique to existing data obtained from learning processes, 
we can use this model to search for a strategy of any joint intensity between 
units. 

From a statistical point of view, NNM is a nonlinear regression model. 
In this paper Feed-Forward NNM is considered as a model-fitting procedure 
to estimate the optimum values of the parameters in the regression model 

[4]-
This procedure is called parameter estimation in statistics, but is called 

a learning algorithm in NNM. One of the learning algorithms commonly 
used is Back Propagation (BP), that is a method of learning by passing on 
errors to previous layers. BP is an adaptation of the steepest descent method 
to the NNM field. This method has a reducible faculty of convergence to 
the local minimum point. 

4. Science Reasoning Test 

The Science Reasoning Test (SR Test) is an entrance examination that 
measures the student's interpretation, analysis, evaluation, reasoning and 
problem-solving skills required in the natural sciences [5]. 

Since we got the ACT's (American College Testing, Inc.) cooperation, 
we used one open-form of their ACT Assessment tests for our experimenta­
tion. The test is based on units containing scientific information and a set 
of multiple choice questions about the scientific information. Calculators 
are not permitted to be used for the test. The scientific information for the 
test is provided in one of three types of formats. 

The first format, data representation, presents graphic and tabular ma­
terial similar to that found in science journals and texts. The questions 
associated with this format measure skills such as graph reading, inter­
pretation of scatter plots, and interpretation of information presented in 
tables. The second format, research summaries, provides students with de­
scriptions of one or more related experiments. The questions focus upon 
the design of experiments and interpretation of experimental results. The 
third format, conflicting viewpoints, presents students with expressions of 
several hypotheses or views that, being based on differing premises or on 
incomplete data, are inconsistent with one another. The questions focus 
upon the understanding, analysis and comparison of alternative viewpoints 
or hypotheses. 

The Science Reasoning Test questions require students to use scientific 
reasoning to answer the questions. The students are required to recognise 
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and understand the basic features of, and concepts related to, the provided 
information; to critically examine the relationships between the information 
provided and the conclusions drawn or hypotheses developed; and to gen­
eralise from given information to gain new information, draw conclusions, 
or make predictions. 

5. Numerical Examples 

We applied the RSM to data from fraction addition problems, and got a 
tree structure for the Knowledge State. We related RSM that derives the 
Knowledge State from an incidence matrix Q, to the Feed-Forward NNM. 
For that, we designed the network of a three-layer structure in which items 
were assigned to the input layer and Attributes to the output layer. The 
Knowledge States in the RSM were considered to correspond to the middle 
layers of NNM. We applied several numerical examples to both methods and 
found close similarities in their results, although they were not identical. 

Also we applied the RSM to data from Science Reasoning Test results of 
286 Japanese students. The number of attributes and items are 12 and 18, 
respectively. Figure 1 is the tree representation of the Knowledge States that 
shows the examinee's mastered/non-mastered learning level. In this figure, 
each circle is a Knowledge State, and the numbers in the circle are the IDs 
of non-mastered attributes. The number in parentheses is the number of 
examinees classified in this Knowledge State. We observe that the main 
solving attribute IDs are 6,8 and 9, and secondary attribute IDs are 2 and 

5. The total examinees classified in these Knowledge States is 225, which is 
about 80% of all. The main streams to reach the fully-mastered state are 
the three Knowledge States on the left-hand side in the third layer from 
the top. 

6. Discussion and Conclusions 

We investigated the relationship between the characteristics of the middle 
layer of NNM and the Knowledge States in the RSM, and discussed their 
similarities and usefulness for the weaknesses existing in the RSM. 

It is well known that the composition of an incidence matrix Q in the 
RSM is a very laborious task, and requires experts' intense cooperation. 
The experts identify attributes involved in each item and express them in 
an incidence matrix Q. Multiple solution strategies for each item need to be 
investigated. This is extremely hard work. If an examinee's mastering level 
(cluster) is known to some extent from past experiences, it is also possible to 
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2,5,6 
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Fig. 1. A tree representation of Knowledge States for the SR-Test data 
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construct a network in which these clusters are assigned to the output layer 

of NNM. The middle layer drawn from this model is expected to correspond 

to Attr ibutes. It may be possible to use this result for replacing the task 

analysis required in making an incidence matr ix Q in RSM. 

We plan to clarify the differences and similarities of the two models 

with numerical examples, and should get useful results by applying these 

methods to the SR-Test da ta and our real examination data. 
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The measurement of skill and skill change is important for much empirical 
research on labour markets, education and technological change. This paper 
presents a novel way of measuring skills and provides an example of its use in 
investigating the degree and nature of change in the Australian labour market 
over a period of rapid technological and structural change. 

Keywords: structural change; technological change; measurement; motor skills; 
interactive skills; cognitive skills; educational skills. 

1. Introduction 

The issue of measurement will confront any analysis of skills at an aggre­
gate level. Measures typically favoured by economists in studies of human 
capital rely on years or level of education as a measure of skill attainment. 
The obvious shortfalls are that these measures do not necessarily capture 
the actual skill requirements of jobs — the rapid growth in educational 
attainment may have as much to do with credentialism as with skill at­
tainment (Attewell 1990). An alternative favoured by sociologists focuses 
on the skill attributes required of jobs, as defined in the US Department 
of Labour's Dictionary of Occupational Titles (DOT). It provides a conve­
nient basis for the analysis of skills independent of productivity measures 
and knowledge of individuals or workplaces and so is used for the following 
analyses. A brief overview of how skill scores are assigned to an occupa­
tion or industry follows. The full details can be found in Kelly and Lewis 
(2003). New results generated using this method are presented to illustrate 
how skill changes can be decomposed into those due to technological and 
structural change as well as differences in the movement from full-time to 
part-time employment. 

mailto:ross.kelly@canberra.edu.au
mailto:phil.lewis@canberra.edu.au
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Mean skill scores (i.e. average skill per hour worked in the whole econ­
omy) for four skill dimensions for 1991, 1996 and 2001 were calculated. 
Census data for 1991, 1996 and 2001 were used to compile the skill indices 
for each of the skill dimensions being considered. Measures of skill were 
constructed using data and information from Australian occupational task 
descriptions contained in the Australian Standard Classification of Occu­
pations (ASCO), 2nd edition. These were then combined with occupation 
by industry employment matrices showing total hours worked for part-time 
and full-time workers and scales of skill complexity for four skill dimensions 
developed by the United States Department of Labor (USDOL). 

The Dictionary of Occupational Titles (DOT), 4th edition (1991), used 
in the US provides a schema for rating skills at the finest level of occupa­
tional detail, as shown in Table 1. In DOT jobs are classified as requiring 
workers to function to some degree in relation to data, people and things. 
The scale for each skill dimension shown in Table 1 is in descending order. 

Those tasks that involve more complex responsibility and judgment are 
assigned lower numbers for each category and the less complicated have 
higher numbers. For example, for the data skill dimension (see Table 1) 
'compiling' would be considered a more complex task than 'copying'. The 
same applies for the other dimensions. Each dimension is considered sepa­
rately. The scale relates to an ordering of the complexity of tasks normally 
undertaken in an occupation; it does not signal anything about the intensity 
of use of those skills. At an industry level, this is determined by the hours 
of employment, or utilisation, of the skills embodied in an occupation. The 
occupation, in turn, tells us something about the tasks undertaken and how 
they relate to the scale of complexity shown in Table 1. 

Table 1. Scale of complexity for skill categories. 

Data People Things 
0 Synthesising 0 Mentoring 0 Setting Up 
1 Coordinating 1 Negotiating 1 Precision Working 
2 Analysing 2 Instructing 2 Operating-Controlling 
3 Compiling 3 Supervising 3 Driving-Operating 
4 Computing 4 Diverting 4 Manipulating 
5 Copying 5 Persuading 5 Tending 
6 Comparing 6 Comparing 6 Feeding-Off bearing 

7 Serving 7 Handling 
8 Taking Instructions-Helping 

Source: USDOL (2000) 
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Four types of skill are analysed: motor skills, education, interactive skills 
and cognitive skills. The 'data' category in Table 1 provides a measure of 
cognitive skills, the 'people' category aligns with interactive skills and the 
'things' category provides a good indicator of motor skills. The education 
category used for this study comes from the education requirement listed 
for each occupation in the ASCO (2nd edition). The levels of education, 
based on the Australian Qualifications Framework (AQF), were grouped 
into six levels, with masters and doctoral degree the highest and AQF I & 
II the lowest, the measure being made complete by the addition of a 'no 
qualification required' level. AQF I & II are the most basic of qualifications 
requiring a narrow range of elementary competencies, such as demonstrat­
ing ". . . basic practical skills such as the use of relevant hand tools . . . " 
(AQF 2002). All other measures were inverted, that is, the least complex 
tasks were given the lowest score. The scale was converted to a common 
scale of 0 to 10. Finally, the scores were assigned to a given occupation 
for each skill dimension at the finest level of information on occupations, 
the ASCO (2nd edition) six-digit level. The most complex task undertaken 
in an occupation for each skill dimension, as identified from the ASCO, 
provided the basis for applying the scores. 

Thus, the hourly weighted mean skill score for a given dimension in 
industry k is as follows: 

Sk 

/ j Sm^kmn 
m,n 

mn 

with the mean skill for a given skill dimension for the economy defined as: 

D smOk mn 

6 " 0~T ' { ) 

where S is the mean skill score, Sk is the mean skill score across industry k, 
sm is the skill score of occupation m and is constant across time, Okmn is the 
number of hours worked in the appropriate triplet, and OT = ^Zkmn Okmn 
is the total hours worked across the economy. The subscripts k = ( 1 , . . . , q), 
m = ( 1 , . . . , r) and n = ( 1 , . . . , u) denote industry, occupation and part-
time or full-time employment status, respectively. 

Given that the skill score for a given skill dimension and occupation 
is held constant for each time period, it is changes to the occupational 
composition of employment that determines changes in the economy-wide 
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mean skill level. This can be represented as: 

A5=£^A(^f) (3) 
k,m,n 

with the subscripts as described above. 
From (2) it is apparent that changes in mean skills in the economy can 

arise from changes in the share of an occupation in an industry and changes 
in industry shares of total hours employed in the economy. 

To simplify exposition we denote the occupation-m share for industry 
k as: 

mn 

Hm = 7=T-^ (4) 

m,n 

and industry fc's share of total hours employed in the economy as: 

mn 
u m ' n / c \ 
hk = QT . (5) 

Thus, the change in mean skill for the economy as a whole for any skill 
dimension is: 

St - St-i = 2_jSm ((bkmhk)t - {bkmhk)t^i) • (6) 
k,m 

An exact decomposition is provided by: 

AS = ^2 smAbkmhk + ^2 Smhm^hk (7) 
fc,m k,m 

with change expressions identified by the delta symbol and the bar over 
expressions indicating the inter-temporal mean. 

The first term on the right of equation (7) provides the within-industry 
effect, the second expression the between-industry effect. Both of these are 
further decomposed to show the contribution of the part-time and full-time 
workforce to changes in mean skill. 

The way changing industry shares of total employment affect economy-
wide mean skill scores can be explained as follows. If an industry with a 
relatively high proportion of skilled workers increases its share of overall 
employment, then there will be an increase in the economy-wide average 
skill level. This is the inter-industry effect and can be split into the contribu­
tions from part-time and full-time employment by applying the respective 
weights for part and full-time hours employed. 



Measurement of Skill and Skill Change 21 

Intra-industry changes to occupation composition work the same way. 
When an occupation that is relatively highly skilled increases its share of 
employment within a given industry, that industry experiences an increase 
in its mean skill level. This can be further decomposed into the contributions 
from part-time and full-time employment. This enables an examination of 
whether the large shift towards part-time employment over the last decade 
has resulted in de-skilling. If the occupational composition of part-time 
employment is different from that of full-time employment, then a change 
in emphasis within an industry toward one or the other will influence the 
economy-wide mean skill score. The sum of such changes across the economy 
shows the within-industry effect on the change in the economy-wide average 
skill level. 

2. Results 

Table 2 shows the percentage change for each of these dimensions between 
1991 and 2001. The mean skill levels for full-time workers for interactive, 
cognitive and education skills increased by about 9.9, 9.2 and 6.4 per cent 
respectively between 1991 and 2001. Motor skills per hour employed for full-
time workers declined by 10.8 per cent. The decline in motor skills for part-
time workers was 8.1 per cent. Mean education skills for part-time workers 
also showed a small decline. This does not necessarily mean that the part-
time workforce became less educated over the period in question, but rather, 
that the educational level required (as represented by the hours employed) 
was less intensive. The increases for part-time workers in interactive and 
cognitive skills were quite modest. 

Table 2. Change in average skill levels, Australia, 1991-2001, 
percentage. 

All 
Part-time 
Pull-time 

motor 
-12 .4 

- 8 . 1 
-10 .8 

interactive 
6.9 
3.3 
9.9 

cognitive 
5.7 
1.7 
9.2 

education 
2.6 

- 0 . 8 
6.4 

Overall the increase in mean skills was highest for interactive and cog­
nitive skills and relatively modest for education skills (or educational at­
tainment). Motor skills dropped significantly. It is clear that the changes 
in total mean skills mask the differing outcomes between the part-time and 
full-time workforce. 



-0.317 
-0.192 
-0.003 
-0.160 

0.093 
-0.122 
-0.125 

0.098 
-0.223 

0.248 
0.148 
0.035 
0.170 
0.159 

-0.216 
0.101 
0.264 

-0.164 

0.162 
0.118 
0.025 
0.135 
0.124 

-0 .167 
0.045 
0.192 

-0 .147 

0.088 
0.058 
0.014 
0.105 
0.127 

-0 .187 
0.030 
0.208 

-0.178 
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Table 3. Decomposition of economy-wide change in average skill levels, Australia, 
1991-2001. 

1991—2001 motor interactive cognitive education 
total change 
total within industry 
p-t mean skill 
f-t mean skill 
p-t share of industry employment 
f-t share of industry employment 
total between industry 
industry share of total employment p-t 
industry share of total employment f-t 

It can be seen from Table 3 that motor skills declined substantially 
over the decade from 1991 to 2001. Interactive, cognitive and education 
skills increased, although the change for education was relatively small. 
The within-industry effect for all skill dimensions was dominant (see Table 

4). 
The data in Table 3 also decomposes the total skill change between 

1991 and 2001 into contributions from part-time and full-time workers. 
Prom Table 3 it can also be seen that the mean skill of both part-time 
and full-time employment within industries for the motor skill dimension 
decreased, although the part-time decrease was fairly minor. The net effect 
of the changing status of employment (i.e. the changing shares of hours 
worked by part-time and full-time workers) reinforced the decline in the 
mean skill of both the part-time and the full-time workforce. Thus the 
switch to part-time employment was de-skilling — the —0.122 in mean 
skills given up from the drop in full-time employment within industries was 
greater than the 0.093 contribution to skills from the increased use of the 
part-time workforce. 

Other skill dimensions showed increases in the mean skill level of both 
part-time and full-time employment. The common thread for all skill di­
mensions was that the contribution from the change in mean part-time skill 
levels was relatively small; the full-time workforce was the main contribu­
tor to mean skill levels. The status effect, the impact of changing part-time 
and full-time shares of employment within industries, pulled the skill level 
down. One way of viewing the changes taking place is that the growth in 
full-time work has been relatively skilled in nature, but less important in 
terms of its contribution to total employment. Growth in part-time em­
ployment has been substantial, but continues to be in occupations that are 
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relatively lower skilled than are occupations for full-time jobs. This has 
tended to moderate the overall increase in the non-manual skill dimensions 
between 1991 and 2001. In the case of motor skills it had a reinforcing 
effect. 

In all cases the within-industry effects were larger than the between-
industry effects. The within-industry effect is usually interpreted as result­
ing from technological change, changes in the capital intensity within an 
industry and changes in the relative price of labour skills (Pappas 1998). 
Disentangling capital intensity effects over time from technological change is 
not a straightforward matter, since much of the technological development 
we observe is embodied in new capital. 

The other effect on change in mean skill levels comes from the changing 
composition of industry shares of total employment in the economy. The 
between-industry effect captures the impact of changing product demands, 
trade and other structural change (Pappas 1998). Around 0.1 of the in­
crease in interactive skills was due to the between-industry effect, while for 
motor skills the effect was to reduce the mean skill level for the economy 
by 0.125, reinforcing the within-industry effect. Table 4 shows the relative 
contributions of within- and between-industry effects for each of the skill 
dimensions for the period 1991 to 2001. 

Table 4. Contribution to change, percentage. 

1991-2001 
Total within industry 
Total between industry 
Total 

motor 
60.6 
39.4 
100 

interactive 
59.5 
40.5 
100 

cognitive 
72.5 
27.5 
100 

education 
66.3 
33.7 
100 

In summary, the within-industry effects were the main contributor to 
change for all skill dimensions over the 1991-2001 period. These were, in 
relative terms, most pronounced for cognitive skills. The conclusion to draw 
from these results is that technological change has been the dominant in­
fluence. It has allowed for, or driven, a restructuring of occupations within 
industries. Although greater emphasis on part-time employment has been 
de-skilling (suggesting technology-skill substitution), this has been out­
weighed by the changing occupational contribution within full-time em­
ployment and, to a lesser extent, part-time employment (suggesting that 
technology exhibits skill complementarity). 

The full-time workforce (other than for motor skills) has become more 
skilled, but is numerically less important in production. The increased share 
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of part-time employment has not been as highly skilled as the full-time 
employment it displaced. The balance of the two effects has still seen in­
creases in mean industry skill levels for the economy for the non-manual 
skills, particularly for interactive skills. This is consistent with the nature 
of technological change that has taken place. This has been in the form of 
information systems and transactional processing technologies. It has been 
shown elsewhere (for example, Autor et al, 2000; Caroli 1999) that these 
enable better management technologies to be implemented, allowing tighter 
scheduling of labour, flatter management structures and smaller workforces 
for a given output. 

Changes in mean skills have also been decomposed for the relevant sub-
periods. Coinciding with the census periods for Australia, the decomposi­
tion is for 1996-2001 and 1991-1996. The weights applied are for the whole 
period, that is, 1991-2001. Only the change variables shown in equation (7) 
vary for the sub-periods. 

The data in Tables 5 and 6 are interpreted in the same way as be­
fore. Table 7 summarises these changes into the percentage contribution 
from each effect for each sub-period and skill respectively. It can be seen 
that the change that occurred between 1996 and 2001 was predominantly 
from within-industry changes in occupational composition. Although less 
pronounced, the opposite was the case for the period 1991 to 1996. 

Table 5. Decomposition of economy-wide change in mean skill levels, Australia, 
1996-2001. 

1996-2001 
total change 
total within industry 
mean skill for p-t 
mean skill for f-t 
p-t share of industry employment 
f-t share of industry employment 
total between industry 
industry share of total 
industry share of total 

employment p-t 
employment f-t 

motor 
-0.150 
-0.112 
-0.012 
-0.088 

0.042 
-0.055 
-0.037 

0.049 
-0.086 

interactive 
0.122 
0.110 
0.038 
0.093 
0.069 

-0.090 
0.012 
0.101 

-0.089 

cognitive 
0.094 
0.092 
0.030 
0.078 
0.054 

-0.071 
0.002 
0.076 

-0.073 

education 
0.043 
0.048 
0.023 
0.048 
0.059 

-0 .081 
-0.005 

0.083 
-0.087 

With the exception of cognitive skills the contributions to total change 
for each of the sub-periods was about the same. For cognitive skills 58 per 
cent of the change in mean skill levels occurred in the latter half of the 
decade. The individual effects are strikingly different for the sub-periods. 
The within-industry effects for the later period account for 74, 78 and 83 
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Table 6. Decomposition of economy-wide change in mean skill levels, Australia, 
1991-1996. 

1991-1996 
total change 
total within industry 
mean skill for p-t 
mean skill for f-t 
p-t share of industry employment 
f-t share of industry employment 
total between industry 
industry share of total employment p-t 
industry share of total employment f-t 

motor 
-0.167 
-0.080 

0.009 
-0.072 

0.050 
-0.066 
-0.088 

0.049 
-0.137 

interactive 
0.126 
0.038 

-0.003 
0.076 
0.090 

-0.125 
0.089 
0.163 

-0.075 

cognitive 
0.068 
0.026 

-0.005 
0.057 
0.070 

-0.096 
0.042 
0.116 

-0.074 

education 
0.044 
0.010 

-0.009 
0.057 
0.068 

-0.106 
0.034 
0.125 

-0.091 

Table 7. Contribution to mean skill change, Australia, 1991-2001, percent. 

motor 
interactive 
cognitive 
education 

total 
1991-1996 

53 
51 
42 
51 

change 
1996-2001 

47 
49 
58 
49 

total within industry 
1991-1996 

42 
26 
22 
17 

1996-2001 

58 
74 
78 
83 

total between 
1991-1996 

70 
88 
95 
116 

industry 
1996-2001 

30 
12 
5 

- 1 6 

per cent of the total within-industry effect for interactive, cognitive and 
education skill changes respectively that occurred between 1991 and 2001. 
Most of the occupational adjustment that has occurred has coincided with 
the rapid increase in Information and Communication Technology (ICT) 
capital expenditure observed from 1996-7 onwards and has been due to 
within-industry changes (ABS 2003). 

The between-industry changes that took place and the impact that these 
had on changes in mean skill levels are nearly entirely attributable to the 
post-recession period, 1991-1996. In total the effects played a much smaller 
part in the change observed over the decade. One possible explanation is 
that the effects of the recession were not evenly spread across industries, or 
that the normal pattern of recovery sees some industries grow more quickly 
than others. Thus, the changes in skills mix over the first part of the decade 
can be attributed largely to structural change as the economy became more 
open to the global economy. In the second half of the decade the changes 
can be largely attributed to technological change. 
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3. Conclusion 

Significant de-skilling of the part-time workforce occurred in the first half 
of the 1990s, although the effect of this on the overall skill level of the 
workforce was more than compensated for by the increasing skill level of the 
full-time workforce. Most of the impact on skill demand from the changing 
industry structure of the economy occurred prior to 1996, with the change 
after this time having very little impact. The latter half of the decade was 
characterised by the changing structure of occupations within industies. 
There was further intensification of higher skill occupations among the full-
time workforce, while the part-time workforce experienced only modest 
(positive) change to its mean skill level. These changes coincided with the 
rapid increase in ICT investment and, significantly, with the increasing 
share of ICT in the capital stock. 

The increasing importance of ICT in the capital stock is clearly having 
an impact on the type of skills demanded in the economy. This is most 
likely occurring due to direct demand for ICT-related skills and indirectly 
through the enabling characteristics of ICTs. Importantly, it is not only 
the increasing emphasis of computers in the workplace and industry, but 
the rapid increase in the uptake of software applications by industry. It 
appears that ICTs have allowed a substantial re-ordering of occupations 
within industries; that is, they are enabling a reorganisation of workplaces 
that places greater emphasis on skills, particularly interactive and cognitive 
skills. The extent to which these skills are able to be diffused through formal 
training and education needs to be explored. 

The implications for policy are clear — traditional 'blue-collar' skills will 
stagnate or continue to decline, and this will test the ability of the labour 
market to adjust and absorb the existing supply of these skills. The inabil­
ity of many individuals to adjust to the current and expected skill demands 
of industry will continue to see a large component of unemployment in 
Australia being structural in nature. When capital becomes technologically 
obsolete, the social consequences will be relatively benign. When the skills 
of workers become obsolete, the social consequences are much more seri­
ous, with unemployment, financial hardship and marginalisation the likely 
outcome. The vocational education and training (VET) sector should be 
taking a lead role on this issue, as equipping displaced workers with relevant 
skills will be critical to successful re-adjustment. 

In the longer term, the balance between the VET and university educa­
tion sectors in Australia may need revisiting. Within vocational education 
training the move away from traditional skilled manual trades and low skill 
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employment needs to be acknowledged and greater emphasis placed on skills 

to meet the needs of the service sector. The university sector will continue 

to be the primary source of skills as the knowledge intensity of production 

in the economy increases. 
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After some biographical remarks about Issai Schur (1875-1941), we note that 
he attended the Nicolai Gymnasium in Libau (Kurland) from 1888 to 1894 
and suggest that the adjectival noun Nicolai is used here in honour of Saint 
Nicholas of Bari, Bishop of Myra, who is widely associated with Christmas 
and after whom Santa Claus is named. We also comment on the fact that Issai 
Schur published under I. Schur and under J. Schur and propose an explanation 
for this. 

The term Schur complement was introduced in 1968 by Emilie Virginia 
Haynsworth (1916-1985) in view of a lemma (Hilfssatz) in the 1917 paper1 3 2 

by Issai Schur. We continue with some useful early results involving Schur 
complements by Alexander Craig Aitken (1895—1967), Tadeusz Banachiewicz 
(1882-1954) and William Jolly Duncan (1894-1960), along with some biograph­
ical remarks. The article ends with proofs of the Cauchy-Schwarz Inequality 
and the Frisch-Waugh-Lovell and Gaufi-Markov Theorems using Schur com­
plements. 

Keywords: Aitken block-diagonalisation formula; Banachiewicz inversion for­
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additivity formula; Haynsworth inertia-additivity formula; myrrh; Old Ceme­
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1. issai Schur (1875-1941) 

Joseph, Melnikov k Rentschler dedicate their 
recent book entitled Studies in Memory of 
Issai Schur84 to the "Memory of the Great 
Mathematician Issai Schur" and as Joseph & 
Melnikov84 point out, Issai Schur "is popularly 
known for his lemma on Group Representa­
tions* familiar to mathematicians, physicists 
and chemists alike. It is an essential compo­
nent of even the most elementary course on the 
subject. . . . Yet for all its celebrity it remains 
one of the most modest of Schur's achieve­
ments." Our interest in Issai Schur, however, 
was prompted by the linear-algebraic concept 
known as the Schur complement. 

In 1968 Emilie Virginia Haynsworth (1916-
1985) called the matrix 

H = S - R P _ 1 Q 

the Schur complement of the invertible matrix P in the block-partitioned 
matrix 

G - (P Q) 

\R sy 
in two papers72,73 published, respectively, in the Basel Mathematical Notes6 

and in Linear Algebra and its Applications. "Schur" in "Schur complement" 
was chosen by Haynsworth in view of a lemma (Hilfesatz) in the 1917 pa­
per132 by Issai Schur published in the Journal fur die reine mid ange-

aIn German: Darstellungstheorie, see, e.g., Refe. 18, 41, 98, 135, and 150. 
bThe Basel Mathematical Notes (BMN) reported research through the support and spon­
sorship of the U.S. Department of Army with the Institute of Mathematics, University of 
Basle (Universitat Basel), in Basel, Switzerland. (Basle is the English and an older name 
for Basel, or Bale in French.) Copies were distributed by the Clearinghouse for Federal 
Scientific & Technical Information, Springfield, Virginia, USA. The orily library which 
has copies of the BMN seems to be the Ziirich Zentralbibliothek (Zurich, Switzerland), 
where the serial title is catalogued with the spelling Basel and the holdings are BMN 1-
BMN 50 (1960-1977), apparently a complete set. The editor is given as A. M. Ostrowski 
and the publisher, the Mathematisches Institut der Universitat Basel. Issues numbered 
BMN 3, 4, 5, 18, 20, 21, and 22 have Basle Mathematical Notes on the cover page, all 
the others have Basel Mathematical Notes on the cover page. 

Fig. 1. Issai Schur c. 1917. 
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wandte Mathematik0 in which he showed that when P and R commute, 
then de tG = det(PS — RQ); here P need not be invertible. As Chandler 
& Magnus34 point out, "The coining of new technical terms is an absolute 
necessity for the evolution of mathematics." 

Issai Schur was born in Mogilev on the Dnieper, Russia, on 10 January 
1875,26'27 and died in Tel Aviv, Palestine, on his 66th birthday 10 January 
1941.26,27 In October 1894, Schur enrolled in the University of Berlin, study­
ing mathematics and physics; on 27 November 1901 he passed his doctoral 
examination summa cum laude with the thesis entitled "Uber eine Klasse 
von Matrizen, die sich einer gegebenen Matrix zuordnen lassen":131 his 
thesis adviser was Ferdinand Georg Frobenius (1849-1917). According to 
Vogt,162 in this thesis Schur used his first name "Issai" for the first time.d 

Feeling that he "had no chance whatsoever of sustaining himself as a 
mathematician in czarist Russia" 34 and since he now wrote and spoke Ger­
man so perfectly that one would guess that German was his native language, 
Schur stayed on in Germany. According to Ref. 134, he was Privatdozent 
at the University of Berlin from 1903 till 1913, and ausserordentlicher Pro­
fessor (associate professor) at the University of Bonn from 21 April 1913 
till 1 April 1916,146 as successor to Felix Hausdorff (1868-1942). In 1916 
Schur returned to Berlin where in 1919 he was appointed full professor; in 
1922 he was elected a member of the Prussian Academy of Sciences to fill 
the vacancy following the death of Frobenius in 1917. We believe that our 
portrait of Issai Schur in Figure 1 above was made at the Atelier6 Hanni 
Schwarz, N.W. Dorotheenstrafie 73 (in Berlin), c. 1917, the year in which 
Schur's seminal determinantal lemma was published. 

Schur lived in Berlin as a highly respected member of the academic 
community and was a quiet unassuming scholar who took no part in the 
fierce struggles that preceded the downfall of the Weimar Republic. "A 
leading mathematician and an outstanding and highly successful teacher, 
[Schur] occupied the very prestigious chair at the University of Berlin for 
16 years" ,34 Until 1933 Schur's algebraic school at the University of Berlin 
was, without any doubt, the single most coherent and influential group of 

c Also known as "Crelle's Journal" after August Leopold Crelle (1780-1855), who founded 
the Journal fur die reine und angewandte Mathematik in 1826 and edited it until his 
death in 1855; see Prei.61 

Apparently Issai Schur used the first name "Schaia" rather than "Issai" until his mid-
20s.162 

e The caption in the photograph in Figure 1 has "Atelieir", which we suppose should be 
"Atelier" (same spelling in German and in English), meaning "an artist's or designer's 
studio or workroom".103 



Issai Schur and Schur Complements 31 

mathematicians in Berlin and among the most important in all of Germany. 
With Schur as its charismatic leader, the school centred around his research 
on group representations, which was extended by his students in various 
directions (soluble groups, combinatorics, matrix theory).31 "Schur made 
fundamental contributions to algebra and group theory which, according to 
Hermann Weyl (1885-1955), were comparable in scope and depth to those 
of Emmy Amalie Noether (1882-1935)".U2 

When Schur's lectures were cancelled in 1933 there was an outcry among 
the students and professors for he was respected and very well liked.31 

Thanks to his colleague Erhard Schmidt (1876-1959), Schur was able to 
continue his lectures till the end of September 1935,112 Schur being the 
last Jewish professor to lose his job at the University of Berlin at that 
time.146 Schur's "lectures on number theory, algebra, group theory and the 
theory of invariants" attracted large audiences. On 10 January 1935 some of 
the senior postgraduates congratulated Schur in the lecture theatre on his 
sixtieth birthday. Replying in mathematical language, Schur said he "hoped 
that the good relationship between himself and his student audience would 
remain invariant under all the transformations to come".112 

Indeed Schur was a superb lecturer. His lectures were meticulously pre­
pared and were exceedingly popular. Walter Ledermann (b. 1911) remem­
bers attending Schur's algebra course which was held in a lecture theatre 
filled with about 400 students:93 "Sometimes, when I had to be content 
with a seat at the back of the lecture theatre, I used a pair of opera glasses 
to get a glimpse of the speaker." In 1938 Schur was pressed to resign from 
the Prussian Academy of Sciences and on 7 April 1938 he resigned "volun­
tarily" from the Commissions of the Academy. Half a year later, he had to 
resign from the Academy altogether.31 

The names of the 22 persons who completed their dissertations from 
1917 to 1936 under Schur, together with the date in which the Ph.D. degree 
was awarded and the dissertation title, are listed in the Issai Schur Gesam-
melte Abhandlungen-28 see also Refs. 31 and 84. One of these 22 persons 
was Alfred Theodor Brauer (1894-1985), who completed his Ph.D. disser­
tation under Schur on 19 December 1928 and who with Hans Rohrbach 
edited the Issai Schur Gesammelte Abhandlungen.28 Alfred Brauer was a 
faculty member in the Department of Mathematics at The University of 
North Carolina at Chapel Hill for 24 years and directed 21 Ph.D. disser­
tations/ including that of Emilie Haynsworth, who in 1968 introduced the 

The Mathematics Genealogy Project website38 indicates that Alfred Brauer has 20 
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term "Schur complement". 
A comment by Alfred Brauer,26'27 see also Ref. 31, sheds light on Schur's 

situation after he finally left Germany in 1939: "When Schur could not sleep 
at night, he read the Jahrbuch iiber die Fortschritte der Mathematik.^ When 
he came to Tel Aviv (then in the British Mandate of Palestine) and for 
financial reasons offered his library for sale to the Institute for Advanced 
Study in Princeton, he finally excluded the Jahrbuch in a telegram only 
weeks before his death." 

2. Nicolai Gymnasium, Libau (Kurland), 
and Riga Technical University at Liepaja (Latvia) 

Issai Schur was born on 10 January 1875, the son of Golde Schur (nee Lan­
dau) and the Kaufmann Moses Schur, according to Schur's Biographische 
Mitteilungen.13i Brauer26 identifies Moses Schur as a Grofikaufmann — in 
English: wholesale merchant.27 

Writing in German in his Biographische Mitteilungen,l3A Schur gives 
his place of birth as Mohilew am Dnjepr (Russland) — in English: Mogilev 
on the Dnieper, Russia. Founded in the 13th century, Mogilev changed 
hands frequently among Lithuania, Poland, Sweden and Russia, and was 
finally annexed to Russia in 1772 in the first partition of Poland.12 By the 
late 19th century, almost half of the population of Mogilev was Jewish.80 

About 200 km east of Minsk, Mogilev is in the eastern part of the country 
now known as Belarus (Belorussia, White Russia) and called Mahilyow in 
(transliterated) Belarusian.104 

From Brauer,26,27 see also Refs. 84, 109, and 146, we learn that in 1888 
when he was 13, Schaia Schur, as he was then known,162 went to live with his 
older sister and brother-in-law in Libau (Kurland), about 640 km northwest 
of Mogilev. Also founded in the 13th century, Libau (Liepaja in Latvian or 
Lettish) is on the Baltic coast of what is now Latvia11 in the region of 
Courland (Kurland in German, Kurzeme in Latvian), which from 1562 to 
1795 was a semi-independent duchy linked to Poland but with a prevailing 
German influence.21'145 Indeed the German way of life was dominant in 
Courland in 1888, with mostly German (rather than Yiddish) being the 

(rather than 21) students and 87 descendants and that Issai Schur has 25 (rather than 
22) students and 1209 descendants. 
SPublished from 1871 to 1944 and then merged into the Zentralblatt fiir Mathematik und 
ihre Grenzgebiete, now the Zentralblatt MATH website www.emis.de/ZMATH/ 
h The Baltic republic of Latvia lies between Estonia (on the north), Russia (on the east), 
Belarus (on the southeast) and Lithuania (on the south). 

http://www.emis.de/ZMATH/
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spoken language of the Jewish community until 1939.14 At that time there 
were many synagogues in Libau, the Great Synagogue in Babylonian style 
with three cupolas being a landmark.21 

According to his Biographische Mitteilungen,13i Schur attended the 
German-language "Nicolai Gymnasium in Libau (Kurland)", apparently 
from 1888 to 1894, and at graduation he received the highest mark on the 
final examination and a gold medal.84 '109 '134 '146 '162 ^ w a g j n t n e Q e r m a n _ 
language Nicolai Gymnasium in Libau that he became fluent in German 
(we believe that his first language was probably Yiddish). In Germany the 
Gymnasium is a "state-maintained secondary school that prepares pupils 
for higher academic education" .54 

We have found three postcards that depict the Nicolai Gymnasium in 
Libau in the early 20th century and have purchased two1 of these post­
cards from Bartko-Reher-GbR in Berlin in March 2005. The first of the two 
Bartko postcards, see Figure 2 below, has the heading "LIBAU — Nikolai-
Gymnasium" (the other two postcards use the spelling Nicolai rather than 
Nikolai) and was issued by the "Verlag Typ. Victoria, W. Sarchi, Libau" and 
sent through the German army postal service (Feldpost) in October 1916J 

by "Ldstr. Hugo Hofmann I Konig. I Bat. Landst. I.R. 19. [unidentified 
word] 6. Res. Div. im Osten" to "Herrn Paul Scholzel Bakerei [Backerei], 
Schonbach b/Sebnitz i. Sa."k 

The second Bartko postcard has the heading "Nicolai-Gymnasium Li­
bau" (and also in Russian) and was issued by A. Dunkert, Libau/Otto 
Henjes & Co., Hannover, but was never mailed. The Muser postcard, which 
has the heading "Gruss aus Libau: Nicolai Gymnasium" was mailed to St. 
Petersburg (apparently from Libau in December 1909, by "Union Postale 
Universelle Russie" with a Russian postage stamp). 

'The third postcard was available from Catherine Muser on the heimatsammluiig.de 
website on 14 February 2004 but seems not to be available on 24 January 2006. 
JWritten on 15 October 1916, and postmarked "18 October 1916: I. Bataillon Landsturm-
Inf-Rgt. Nr. 19" and "K.B. Feldpostexp. der 6. Res. Div." We believe that "Ldstr." is 
an abbreviation for "Landsturmer" or member of the veteran reserve (Landsturm) and 
that "I Konig. I Bat. Landst. I.R. 19" is an abbreviation for "I Konigliche I Batallion, 
Landsturm-Infanterie-Regiment Nr. 19". The unidentified word may be some word that 
qualifies the "Landsturm-Infanterie-Regiment Nr. 19". Moreover, "6. Res. Div. im Osten" 
is an abbreviation for "6. Reserve Division im Osten", with "im Osten" here apparently 
meaning in the German-occupied territory "in the east" (we suppose that the postcard 
was sent from Libau, which was then in German-occupied Courland). 
kSchonbach bei Sebnitz im Sachsen is in the part of Germany known as the Sachsische 
Schweiz (Saxon Switzerland) near Dresden and the border today with the Czech Republic 
(in 1916 the border with Austria-Hungary). 

http://heimatsammluiig.de


34 
S. P

untanen 
&

 G
. P

. H
. Styan 

3M
* 

ij 



Issai Schur and Schur Complements 35 

In May 2004 our friend Timo Makelainen (University of Helsinki) and 
his son Kari Tapio Makelainen visited Liepaja and found the building that 
used to house the Nicolai Gymnasium on (what is now called) Krisjanis 
Valdemars Street and that it now (see Figure 3 above) houses the Rigas 
Tehniska Universtate Liepajas Filiale (Riga Technical University, Liepaja 
branch). The fagade of this building is embellished with two memorial 
plaques, one of which, see our Figure 3 above, is in honour of Gabriel 
Narutowicz (1865-1922), who studied at the Nicolai Gymnasium in Libau 
from 1873 to 1883; Schur studied there from 1888 to 1894.1 

From the Wikipedia website163 we learn that Gabriel Narutowicz had 
been a professor at the Zurich Polytechnic from 1908 and had directed the 
construction of many hydroelectric plants in western Europe. After Poland 
regained independence in 1918, Narutowicz became involved in national 
politics and served as minister of public works, 1920-1921, and as minister 
of foreign affairs in 1922. On December 9, 1922, Narutowicz was elected by 
the Polish parliament as the first president of Poland. He was sworn in on 
December 11, 1922. 

Gabriel Narutowicz was a sympathiser (though not a member) of the 
"Liberation" peasant party, the more radical of the peasant parties, and 
so was considered a leftist. Since he was elected by left, center, peasant, 
and minorities deputies, the right, particularly the National Democrats, 
were strongly opposed to him. On December 16, 1922, five days after his 
inauguration, while attending the opening of an art exhibition at Warsaw's 
Zacheta Gallery, Gabriel Narutowicz was shot to death by a National Demo­
crat sympathiser, painter, art professor, and critic, Eligiusz Niewiadomski 
(1869-1923), for which he was sentenced to death and executed. So Poland 
lost not only its first President but also a passionate art professor who had 
strong political interests. 

Although Schur was an outstanding student excelling in mathematics, 
he pursued a much quieter career path than Narutowicz, but unlike Naru­
towicz, Schur apparently had no interest in politics. 

3. Nicolai Gymnasium, Libau (Kurland), 
and Saint Nicholas of Bari, Bishop of Myra 

We do not know why the adjectival noun Nicolai was used for the Nicolai 
Gymnasium in Libau but we do know that there are apparently more build­
ings dedicated to the Saint Nicholas who is also known as Saint Nicholas 

There is apparently no memorial plaque in this building for Issai Schur. 
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of Bari, Bishop™ of Myra, than to any other Nicholas. This Saint Nicholas 
is widely associated with Christmas and it is after him that Santa Claus 
is named; see, e.g., the detailed scholarly book entitled Saint Nicholas of 
Myra, Bari, and Manhattan: Biography of a Legend by Charles W. Jones.82 

"Holy St. Nicholas is also a favorite subject of iconography throughout art 
history";78 see, e.g., Figure 4. According to Fournier59 Saint Nicholas is 
regarded as the "special patron of children" and Jones82 says he is the "pa­
tron of all scholars". We suggest, therefore, that the adjectival noun Nicolai 
used for the Nicolai Gymnasium in Libau was done so in honour of Saint 
Nicholas of Bari, Bishop of Myra. 

Jones82 notes that "Professor [Karl] Meisen102 of Bonn mapped the 
public monuments dedicated to Saint Nicholas erected before the year 1500 
only in France, Germany, and the Low Countries. He tabulated 2,137 mon­
uments. Yet his list was notably incomplete. Professor [Heinrich] Borsting23 

immediately named 50 in the single diocese of Miinster, where Meisen listed 
but 9." Jones82 finds it "likely that all occurrences of the name Nicholas 
from the time of the Roman Emperor Justinian (527-565 AD) find an in­
spiration, direct or indirect, in Saint Nicholas." 

There is a Nikolaischule in Leipzig, Germany. In fact in July 1653 the 
mathematician and philosopher Gottfried Wilhelm von Leibniz (1646-1716) 
"entered the Nicolai School in Leipzig where he remained until Easter 
1661" ;6 see also Ref. 57.n According to Hocquel-Schneider77 the Alte Niko­
laischule Leipzig dates from 1395, with the initial record0 for a Privatschule 
under the name Schola Nicolaitana in 1490. The picture13 of the Nicolai 
School in Leipzig in 155377 shows the "Niclas Schule" adjacent to the 
"Kirche zu Sanct Niclas" (now known as the Nikolaikirche), which was 
founded in about 1165.°"71 It seems very clear, therefore, that the Nikolais­
chule in Leipzig is named77 after Saint Nicholas. 

The legend of Saint Nicholas has evolved from the Bishop Nicholas who 

m O r Archbishop; see, e.g., The Book of Saints.22 

n The article by Farebrother, Styan & Tee57 includes images of the 8 postage stamps 
issued in honour of Leibniz; see also Miller106 and Wilson.169 

°In German: Aktenkundliche Erwahnung. 
p "Kupferstich [copperplate engraving] von Christian Romsted, 1702." 
q The first church to ber named after Saint Nicholas seems to be the church built by 
Emperor Justinian in Constantinople (now Istanbul, Turkey) in the suburb of Blachernae 
(or Blaquernae), c. 430 A D . 5 1 ' 5 5 , 5 9 Jones82 observes that a Church of Saint Nicholas was 
built almost 300 years earlier than that in Leipzig, in 882 in Kiev (Kyi'v), Ukraine, and 
from the Lonely Planet Guide,1 6 8 we find that there is a "magnificent St. Nicholas' 
Russian Orthodox Cathedral (1900-1903)" in Libau, apparently located about 5 km 
north of the building which housed the Nicolai Gymnasium. 
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was born in Patara and became Bishop of Myra at the beginning of the 
4th century AD. Myra and Patara were then the main cities of the ancient 
district of Lycia in Asia Minor, now in southwestern Turkey/ 

The exact years of the birth and death of 
Bishop Nicholas of Myra are not known. For 
the year of his birth, e.g., the St. Nicholas 
Center website149 says "between 260 and 
280" while Nes108 gives "between 240 and 
245" and Wikipedia163 c. 270. For the year 
of his death, Cruz40 says "Traditions are 
unanimous . . . that St. Nicholas died in 342" 
but Nes108 says "probably in 326", while 
Wikipedia163 gives 343 and 345/352. Jones82 

says that according to The Golden Legend,65 

Bishop Nicholas died in 343 AD, but also 
mentions as possibilities 287, 312, 341, 342, 
345, 351 and says that "Reau's Iconogra-
phierM unhesitatingly says 342, but papal 
commissions of modern times have stated that no date is certain." 

Saint Nicholas is known as "Saint Nicholas of Bari", since "a shipload 
of Italian sailors rescued (or stole) the bones of St. Nicholas and took them 
to Bari, Italy, arriving on 9 May 1087" ;59 see also Cruz.40 A postage stamp 
commemorating this event was issued by Vatican City in 1987 (see Fig­
ure 5s), and a pilgrimage church was erected on the site in Bari and at this 
shrine in Bari, a sweet smell is often reported. 

This smell may be of myrrh:* "an aromatic, bitter-tasting gum resin ob­
tained principally from a small thorny tree, Commiphora myrrha (family 
Burseraceae) (or dindin tree).46'49,120 The Egyptians used myrrh in em-

Fig. 4. Handmade Byzantine 
icon of Saint Nicholas (from 
Crete). 

rThe small adjacent towns of Demre (or Dembre) and Kale on the Mediterranean coast 
of Turkey (about 50 km east of Ka§ and 150 km southwest of Antalya) now occupy the 
site of Myra, but "many Lycian rock tombs, some dating from the 4th century" remain; 
part of the ancient city of Patara, also located on the Turkish Mediterranean coast (but 
about 50 fan west of Ka§ and so about 100 km west of Myra), remains today with a 
splendid 20 km long beach and with the 2nd century theatre excellently preserved and 
partly buried in sand.1 1 

"For other postage stamps depicting Saint Nicholas, see KlimchaJk.89 '90 

'From Latin: myrrha, Middle English: myrre, Arabic: murr, meaning "bitter".1 0 3 Cruz4 0 

says that the smell comes from "The oil that exuded from the saint's bones . . . has 
been called unction, myrrh, medicinal liquor, balm, manna or .. . distilled bone oil . . . 
a combination of hydrogen and oxygen, and because of its extremely low content of 
bacteria the product was declared biologically pure." 
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balming, filling body cavities with powdered myrrh; and, along with frank­
incense and gold, it was a gift of the Magi to the infant Jesus".46 The name 
of the Lycian city Myra may be derived from myrrh.29 

We find it interesting that there was and 
possibly still is a Nicolai Gymnasium in nearby 
Reval, Russia (now Tallinn, Estonia,") with a 
library, in which in 1893 was found, according 
to Coomber,36'37 the only surviving copy of the 
1547 English translation of the seminal book172,v 

on accounting and bookkeeping. Moreover, from 
the Lonely Planet Guide ,168 we learn that there 
is also a St. Nicholas Church (Niguliste Kirik) 
in Tallinn, and that it was named after "St. 
Nicholas of Bari". 

In view of all this, we conclude that it is very 
probable that the adjectival noun Nicolai was 
used for the Nicolai Gymnasium in Libau in ho­
nour of Saint Nicholas of Bari, Bishop of Myra. 

- POSTE , _ 
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Fig. 5. Saint Nicholas of 
Bari: Vatican City 1987 
(Scott #803). 

4. Publ icat ions under 3. (Scfjur and 0>- ©cfjut 

Issai Schur published under "I. Schur" (3. 6cf)ut) and under "J. Schur" 
(3- Scf)ur). As is pointed out by Ledermann in his biographical article93 

on Schur, this has caused some confusion: "For example I have a scholarly 
work on analysis which lists amongst the authors cited both J. Schur and 
I. Schur, and an author on number theory attributes one of the key results 
to I. J. Schur." 

We have identified 81 publications by Issai Schur which were published 
before he died in 1941; several further publications by Schur were, however, 
published posthumously, including the book136 published in 1968. On the 
title page of (the original versions of) the articles 132 and 133, the author 
is given as "J. Schur"; indeed for all but one of the other 11 papers by Issai 

u The Baltic republic of Estonia lies between Latvia (to the south), Russia (to the east), 
and the Gulf of Finland (to the north). 
vApparently first written in Italian by Giovanni Paolo di Bianchi, this book was first 
translated into Flemish by the Antwerp merchant into French by his widow Anne Ympyn 
Christoffels (nee Swinters), and finally into English; see also Gordon,66 Kats ,8 5 and 
Yamey & Kojima.171 This English translation was removed from Reval in 1917 and 
"taken to Luckyanov" in Nijni Novgorod (about 400 km east of Moscow) and then to 
the Lenin Library in Moscow. It was later microfilmed and a copy deposited in the British 
Museum. 
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Schur that we found published in the Journal fur die reine und angewandte 
Mathematik the author is given as "J. Schur". Brauer27 observes that "In 
the first of these papers Schur's first name had been abbreviated wrongly 
and Schur considered it proper not to change this for the subsequent papers 
in the journal. But in fact he always attached great importance to being 
quoted as I. Schur. Nevertheless even today his first name is sometimes 
wrongly abbreviated." 

For the lecture notes135 published in Zurich in 1936, the author is given 
as J. Schur on the title pagew and so cited in the preface. For all other 
publications by Issai Schur that we have found, however, the author is 
given as "I. Schur", and posthumously as "Issai Schur"; moreover Schur 
edited the Mathematische Zeitschrift from 1917 to 1938 and he is listed 
there on the journal title pages as I. Schur. 

In the complete German Gothic alphabets 
from Bentz17 and Ahn's Second German Book 
by Peter Henn,76 we see, the "I" and "J" are 
very similar but not quite the same. In the 
Gothic Print Alphabet given in Ref. 153, the 
"I" and "J" are almost the same except that 
the vertical part of the "J" is slightly longer 
than that of the "I"; see Figure 6. 

The confusion here between "I" and "J" 
probably stems from there being two major 
styles of writing German: Fraktur script, also lg' 
known as black letter script or Gothic script, in use since the ninth century 
and prevailing until 1941,39 and Roman or Latin, which is common today.79 

According to Mashey,99 "it is a defect of most styles of German type that 
the same character J is used for the capitals I (i) and J (j)"; when followed 
by a vowel it is the consonant "J" and when followed by a consonant, it is 
"I", see also Refs. 17, 76, and 160. 

The way Schur wrote and signed his name, as in his Biographische Mit-
teilungen134 (see also Figure 1 above), his first name could easily be inter­
preted as "Jssai" rather than "Issai"; see also the signature at the bottom 
of the photograph in the Issai Schur Gesammelte Abhandlungen.28 

The official letter, reprinted in Soifer,146 dated 28 September 1935 and 
signed by Kunisch,92 relieving Issai Schur of his duties at the University of 
Berlin, is addressed to "Jssai Schur"; the second paragraph starts with "Jch 

See also Stammbach. 
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iibersende Jhnen . . . " which would now be written as "Ich iibersende Ihneii 
. . . " ; see also Ref. 84. Included in the article by Ledermann & Neumann94 

are copies of many documents associated with Issai Schur. These are pre­
sented there in chronological order, with a transcription first, followed by a 
translation. It is noted there94 that "Schur used Roman script" but "some­
times, particularly in typed official letters after 1933, initial letters I are 
rendered as J." 

Aviv 

Issai Schur died of a heart attack in Tel 
Aviv on Ms 66th birthday, 10 January 
1941,26 '27 and is buried in Tel Aviv in the 
Old Cemetery" on Trumpeldor Street,5' 
which was "reserved for the Founders' 
families and persons of special note". On 
Schur's tombstone in Tel Aviv, see Fig­
ure 7,z the lettering is entirely in He­
brew. The first two lines on the grave­
stone translate as "Issai88, Schur, Profes­
sor of Mathematics" and the third line as 
"Regina Schur". 

The dates at the bottom of the grave­
stone are the corresponding birth and 
death dates in the Hebrew calendar for 
Issai Schur (left-hand side): 4th of Sh'vat, 

T o r a,erial photographs of the cemetery taken in 1917 and 1997, see Ivedar. 
yTrampeldor Street in Tel Aviv is named after the soldier and early pioneer-settler 
Joseph Trumpeldor (1880-1920), who joined the Russian army in 1902 and served in the 
Russian—Japanese war, losing his left arm and being taken prisoner; he received a high 
Tsarist order of merit for his gallantry and zeal. In 1912 he settled in "Eretz Yisrael" 
but following the outbreak of the First World War and his refusal to take Ottoman 
citizenship, Trumpeldor was expelled from the country and joined the Allied war effort. 
He was a founder of the Zion Mule Corps in 1915. In 1918 he established He-Halutz, the 
pioneering youth organisation that prepared youngsters for settlement in Eretz Yisrael. 
Following his return to Eretz Yisrael and his involvement in the defense of Tel Hai (a 
settlement in the Galilee) against the Arabs, he was killed together with seven other 
defenders and it is claimed that as he lay on his death bed, one of his final utterances 
was, "Never mind, it is good to die for one's country". The town of Kiryat Shmona 
("City of Eight") is named after Trumpeldor and the seven others who died defending 
Tel Hai.1 6 3 

z and also Eefs. 31, 84, 88, and 107. 
a**The first name on the gravestone transliterates as "Yisha'yahu" or "Ishayahu". 

5. The Old Cemetery in Tel 

Fig. 7. The gravestone of Issai 
Schur and Regina Schur in The Old 
Cemetery, Tel Aviv, Israel, Decem­
ber 2003. 
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5635 [10 January 1875] and 12th of Tevet, 5701 [11 January 1941] and for 
Regina Schur (right-hand side): 8th of Sh'vat, 5641 [8 January 1881] and 
20th of Adar I, 5725 [22 February 1965]. The dates in the Gregorian cal­
endar appearing here in square brackets are computed using the Hebrew 
Date Converter website;123 see also Ref. 125. The Hebrew calendar starts 
at sunset (on the previous day) in the Gregorian calendar and so the 12th 
of Tevet, 5701, the day in the Hebrew calendar on which Issai Schur died 
started at sunset on 10 January 1941 (Schur's 66th birthday). 

Issai Schur was survived by his wife, medical doctor Regina (nee 
Frumkin), their son Georg (born 1907 and named after Frobenius), and 
daughter Hilde (born 1911, later Hilda Abelin-Schur), who in "A story 
about father"1 writes: 

One day when our family was having tea with some friends, [my 
father] was enthusiastically talking about his work. He said: "I feel 
like I am somehow moving through outer space. A particular idea 
leads me to a nearby star on which I decide to land. Upon my arrival 
I realize that somebody already lives there. Am I disappointed? 
Of course not. The inhabitant and I are cordially welcoming each 
other, and we are happy about our common discovery." This was 
typical of my father; he was never envious. 

6. The Schur Determinant Lemma: 1917, 
and Emilie Virginia Haynsworth (1916—1985) 

The adjectival noun "Schur" in "Schur complement" was chosenab by Emilie 
Haynsworth because of the following lemma (Hilfssatz), first published in 
the paper132 by Issai Schur in 1917. 

Lemma. Let P, Q, R and S denote four nxn matrices and suppose that 
P and R commute. Then the determinant det G of the 2n x 2n matrix 

G= : : a) 

is equal to the determinant of the matrix PS — RQ. 

This lemma, which we refer to as the Schur determinant lemma, appears 
in Ref. 132; see also Refs. 28, 63, and 117. In general when the submatrix P 

a b The Schur complement may just be a counterexample to Stigler's Law of Eponymy,152 

which "in its simplest form" states that "no scientific discovery is named after its original 
discoverer".152 
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is nonsingular, then the Schur complement of P in the partitioned matrix 
G in (1) is defined to beac 

G / P = S - R P ^ Q (2) 

and when the submatrix S is nonsingular, then the Schur complement of S 
in the partitioned matrix G is defined to be 

G/S = P - Q S - 1 R . (3) 

The Schur complement G / P = S — R P ~ Q is used in the proof of the 
Schur determinant lemma but the lemma holds even if the square matrix P 
is singular. Moreover, the Schur complements defined in (2) and (3) remain 
well defined even when none of the matrices Q, R and S are square (but 
they must be conformable so that G is well defined). 

Emilie Virginia Haynsworth3'1 was born 
on 1 June 1916 and died on 4 May 1985, both 
at home in Sumter, South Carolina. As ob­
served in the obituary article32 by Carlson, 
Maxkham & Uhlig, "In her family there have 
been Virginia Emilies or Emilie Virginias for 
over 200 years. From childhood on, Emi­
lie had a strong and independent mind, so 
that her intellectual pursuits soon gained her 
the respect and awe of all her relatives and 
friends". Throughout her life Emilie Hayns­
worth was eager to discuss any issue whatso­
ever. 

From Carlson, Markham & Uhlig,32 we 
quote Philip J. Davis (b. 1923): "She was a 
strong mixture of the traditional and the un­
conventional and for years I could not tell be­

forehand on what side of the line she would locate a given action". In The 
Education of a Mathematician,4'5 Davis observes that Emilie Haynsworth 

Fig. 8. Emilie Virginia 
Haynsworth c. 1968. 

a cWe may also write the Schur complements ( G / P ) and (G/S) with parentheses. For 
further remarks concerning the notation used for the Schur complement, see. Puntanen 
& Styan.11 ' ' 
8x1 Our portrait here of Emilie Haynsworth is reproduced, with permission, from the 
Auburn University website.10 See also Davis45 and Zhang.174 We conjecture that the 
photograph was taken c. 1968, the year in which the term Schur complement was intro­
duced by Haynsworth.72 ,73 
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"had a fine sense of mathematical elegance — a quality not easily defined. 
Her research can be found in a number of books on advanced matrix theory 
under the topic: 'Schur complement'. Emilie taught me many things about 
matrix theory." 

In 1952 Emilie Haynsworth received her Ph.D. degree in mathematics at 
The University of North Carolina at Chapel Hill with Alfred Brauer as her 
dissertation adviser. We recall that Issai Schur was Alfred Brauer's Ph.D. 
dissertation adviser and that the topic of Haynsworth's dissertation was 
determinantal bounds for diagonally dominant matrices. 

From 1960 until retirement in 1983, Emilie Haynsworth taught at 
Auburn University (Auburn, Alabama) "with a dedication which honors the 
teaching profession"32 and supervised 18 Ph.D. students.ae The mathemati­
cian Alexander Markowich Ostrowski (1893-1986), with whom Haynsworth 
co-authored the paper74 'af on the inertia formula for the apparently not-
then-yet-publicly-named Schur complement, wrote the following upon her 
death: "I lost a very good, life-long friend and mathematics [lost] an excel­
lent scientist. I remember how on many occasions I had to admire the way 
in which she found a formulation of absolute originality." 

7. Aitken Block-Diagonalisation Formulas: 1939, 
and Alexander Craig Aitken (1895-1967) 

The Schur complement is a very useful matrix function; see, e.g., Zhang.174 

In particular, we find the Aitken block-diagonalisation formulas to be par­
ticularly useful:2,117 

( l ° V P Q) (l "P"Q1 = (F ° ) (4) 
^-RP-1 1/ VR S / V° I J \ ° G / P / 

and 

The mathematician and statistician Alexander Craig Aitken (1895-
1967) was elected FRS, Fellow of the Royal Society, and from the Royal So­
ciety website127 we find his election citation for fellowship as follows: "Dis-

a e The Mathematics Genealogy Project website38 indicates that Emilie Haynsworth has 
17 (rather than 18) students and 19 descendants. 
afSee also Haynsworth & Ostrowski.78 
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tinguished for his researches in mathematics. Author of 43 papers, chiefly 
in algebra and statistics. In particular, Aitken discovered (a) a theory of 
duality which links determinantal theory with the combinatory partition-
theory and with group-character theory, (b) the transformation of the ra­
tional canonical form of any matrix into classical canonical form, (c) the 
concept of minimal vectors associated with a singular pencil of matrices, 
furnishing a method of great value, (d) a theorem of which most of the fun­
damental expansions of function theory and interpolation theory are special 
cases, and (e) a final solution, theoretical and practical, of the statistical 
problem of polynomial representations." 

There is much published biographical infor­
mation on Aitken.ag As Silverstone143 points 
out in his obituary on Aitken, "A brief bio­
graphical note must fail to do justice to one 
who has been described by an eminent mathe­
matician as the 'greatest algebraist since Cay-
ley' and by a prominent psychologist as being 
endowed with the ability to calculate mentally 
'with a skill which possibly, exceeds that of any 
person for whom precise authenticated records 
exist ' . . . . A man who never ceased to wonder at 
the beauty revealed by a mathematical discov­
ery, a man of great enthusiasm but with great 
humility, a humanist, a lover of nature, gener­
ous with the ideas he gave to his students and 

a constant source of inspiration to his fellow workers." 

Fig. 9. Alexander Craig 
Aitken.109 

8. The G u t t m a n Rank-Additivity Formula: 1946, 
and Louis G u t t m a n (1916—1987) 

Rom (4) and (5), we obtain immediately the Schur determinant formulas 

det G = det 
i JUL O 

: det P • det(G/P) = det(G/S) • det S, (6) 

from which we see at once that when P is nonsingular, then G is nonsingular 
if and only if G / P is nonsingular, and when S is nonsingular, then G is 

a*" Another portrait photograph of Aitken is in the biographical memoir by Whittaker & 
Bartlett167 and on The University of York website;95 see also Refs. 3, 4, 5, 56, 87, 109, 
144, and 170. 
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nonsingular if and only if G / S is nonsingular. The determinant formulas (6) 
hold only when G and P (and hence S) are square. But the Guttman rank-
additivity formula6®'117 holds even when none of the matrices in G are 
square: 

rankG = rank J I == rankP + rank(G/P) 
\ R S / 

= rank(G/S) + rankS, (7) 

which we believe was first established in 1946 by the social scientist and 
statistician Louis Guttman (1916-1987) in Ref. 69. 

Louis Guttmanah was born in Brooklyn, 
New York, on 10 February 1916 and obtained 
Ms B.A., M.A. and Ph.D. degrees from the Uni­
versity of Minnesota. In 1947 Guttman became 
the Founder and Scientific Director of The Is­
rael Institute of Applied Social Research in 
Jerusalem, one year before the establishment 
of the state of Israel. He died on 25 October 
1987 in Minneapolis. 

According to Katz,86 "The development of 
scaling theory by Guttman and the mathemat­
ical psychologist Clyde Coombs (1912-1988) is 
one of the 62 major advances in social science 
identified and analyzed in Science by Deutsch, 
Piatt & Senghaas.48" 

Guttman's research in statistics and matrix theory included factor 
analysis, inequalities for eigenvalues of matrices, the Ising model in. sta­
tistical mechanics, least-squares image analysis, and matrix factorisa­
tions. Guttman (1954) proposed an alternative approach to factor analysis 
for the analysis of correlation matrices with positive elements, introduc­
ing the simplex, circurnplex and radex models: see, e.g., Anderson8 and 
Browne.30 

Fig. 10. Louis Gut tman. 9 5 

a h Our biographical comments on Louis Guttman come from Shye142 in Leading Person­
alities in Statistical Sciences, and the obituaries by Katz8 6 and Styan.156 
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9. Banachiewicz Inversion Formulas: 1937, 
and Tadeusz Banachiewicz (1882—1954) 

When G and P are nonsingular, then inversion of the Aitken block-
diagonalisation formula (4) yields 

- l 
0' 

' p _ i + P - i Q ( G / p ) i R p - i - P - 1 Q ( G / P ) " 1 

- ( G / P ) " 1 R P - 1 (G/P)" 1 , 

(8) 

(9) 

(G/Pr^RP"1 -i) (10) 

and when G and S are nonsingular, then inversion of (5) yields 

\ R SJ y-S-i-R l) \ 0 S-1) \0 I ) 

_ ( (G /S )" 1 - ( G / S ) - 1 Q S " 1 N 

~ l - S " 1 R ( G / S ) - 1 S" 1 + S - 1 R ( G / S ) - 1 Q S - 1
y 

(11) 

(12) 

( G / S r ^ - I Q S ^ 1 ) . (13) 

The formulas (8)-(13) are known as the Banachiewicz inversion for­
mulas, see, e.g., Puntanen & Styan,117 and are due to the astronomer and 
mathematician Tadeusz Banachiewicz.11 See also the classic book by the 
three aeronautical engineers Robert Alexander Frazer (1891-1959), William 
Jolly Duncan (1894-1960) and Arthur Roderick Collar (1908-1986) entitled 
Elementary Matrices and Some Applications to Dynamics and Differential 
Equations,60 first published in 1938, just one year after Banachiewicz;11 

the appearance in Ref. 60 of the Banachiewicz inversion formula is almost 
surely its first appearance in a book. 

Tadeusz Banachiewicz was born on 13 February 1882 in Warsaw (then 
in Russian occupied Poland) and died on 17 November 1954 in Cracow 
(Krakow in Polish). According to Prominent Poles website,114 see also Za-
wada,173 "his parents, Artur Banachiewicz and Zofia Rzeszotarska, owned 
the Cychry estate near Warsaw. Banachiewicz published his first article 
in the Astronomische Nachrichten in 1903 as a student at Warsaw Univer­
sity." At that time he sent a telegram to the Central Astronomical Bureau in 
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Kilonia (now Kiel, Germany) stating that on 19 September 1903 the planet 
Jupiter would cover the changeable star catalogued as BD +6° 6191. 

After passing the habilitation exam in 1910, he obtained work in Kazan, 
Russia, conducting heliometrical studies of the moon. He was appointed 
professor of astronomy at the University in Dorpat, Russia (now Tartu, 
Estonia) in 1915. In 1919, after Poland regained her independence, Ba-
nachiewicz moved to Cracow, becoming a professor at the Jagiellonian Uni­
versity and the director of Cracow Observatory.105 He modified the method 
of determining parabolic orbits and published approximately 200 research 
papers. In 1925, he invented a theory of "Cracovians" (a special kind of ma­
trix algebra) which brought him international recognition. This theory was 
used to solve several astronomical, geodesic, mechanical and mathematical 
problems. 

A postage stamp in honor of Tadeusz 
Banachiewicz, featuring a portrait of him, 
see Figure 11, was issued by Poland on 25 
March 1983; a copy appears on the Im­
ages of Mathematicians on Postage Stamps 
website106 and in print in the biographi­
cal article by Grala, Markiewicz & Styan.67 

The booklet by Zawada173 contains a de­
tailed biography and many photographs of 
Tadeusz Banachiewicz. 

Tadeusz Banachiewicz was the recipi­
ent of Doctor Honoris Causa titles from 
the University of Warsaw, the University Fig. 11. Tadeusz Banachiewicz: 
of Poznah and the University of Sofia (Bui- Poland 1983 (Scott #2565). 
garia). He was also the founder of the jour­
nal Acta Astronomica. Moreover, Banachiewicz invented a chronocinemato-
graph, and one of the lunar craters is named after him. He was married to 
Laura (Larissa) Solohub, a Ukrainian painter and poet. 

10. The Duncan Inversion Formula: 1944, 
and William Jolly Duncan (1894-1960) 

If we equate the top-left hand corners of (12) and (9), we obtain the Duncan 
inversion formula; see, e.g., Puntanen & Styan:117 

( G / S ) " 1 = P " 1 + P " 1 Q ( G / P ) - 1 R P - 1 (14) 
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or explicitly 

(P - QS-1!*.)-1 = P " 1 + P - 1 Q ( S - R P " 1 Q ) - 1 R P - 1 , (15) 

which we believe was first established by Duncan in 1944.52 

The aeronautical engineer William Jolly Duncan (1894-1960) was 
elected FRS, Fellow of the Royal Society. From the Royal Society web­
site,127 we have the 1947 election citation for this fellowship*" as follows: 

"Distinguished for researches in aero-elasticity (flutter), elasticity of 
materials, and other problems of mathematical physics. With Dr. 
R. A. Frazer he laid the foundations of the new subject of the flutter 
of aeroplane wings, tail surfaces, or airscrew blades. He combines 
a high degree of mathematical ability with a thorough knowledge 
of engineering, and has been conspicuously successful in his appli­
cation of analysis to practical engineering problems. He has con­
tributed much to the subject of the stability of aircraft and is at 
present in charge of the flight research section of the Royal Aircraft 
Establishment." 

We may use the Duncan inversion formula (15) to obtain the inverse of 
the n x n matrix A for n > 2: 

A = 

fa b b ... b\ 
b a b ... 

^b b b . . . a J 

= (a - b)ln + bee' = (a - b)(ln + cee'), (16) 

where I n is the n x n identity matrix, e = ( 1 , 1 , . . . , 1)' and c = bj(a — b), 
with 6 7̂  0 and a — b ̂  0. 

When a = b, then A has rank equal to 1 and so is singular. When 
b — 0, then A = aln and A - 1 = ( l / a ) I n when a / 0 . When b ^ 0 and 
a — b ^ 0, then c = b/(a — b) is well defined and nonzero. When a — 1 and 
A is nonnegative definite, then A is called an intraclass correlation matrix 
or equicorrelation matrix. 

a lFor more biographical information on William Jolly Duncan and a portrait photograph 
see the memoir by Relf.126 Duncan's coauthors for the famous book,60 Robert Alexander 
Frazer and Arthur Roderick Collar, were also elected FRS; see the biographical memoirs, 
respectively by Pugsley115 and Bishop,20 which include portrait photographs. 
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We set 

and so 

P Q \ = In e 

,R SJ U' -7 

1 r71 _|_ 1 

G/S = I n + cee' and G / P = n = — 
c c 

and hence with a — b ^ 0 and a + 6(n — 1 ) ^ 0 , 

(In + cee ')"1 = I n 
en + 1 -ee 

((a - 6)In + tee') ' = [In- —-77 Tree ' ) , 
v ' a — b\ a + b(n - 1) / 

(a b b ••• b\ 

b a b • • • b 

\b b b ••• ai 

(a-b)(a + b(n- 1)) 

fa + b(n-2) -b -b • • 

-b a + b(n-2) -b •• 

(17) 

(18) 

(19) 

-b 

-b \ 

-b ••• a + b{n-2)J 

11. The Haynsworth Inertia Formula: 1968, 
and the Cauchy—Schwarz Inequality 

Now suppose that G is symmetric, and so R = Q' and the Schur comple­
ment G / P = S — Q ' P _ 1 Q . Then the Aitken diagonahsation formula (4) 
becomes 

I 0 \ [ P Q | / I - P - ^ 

-Q'P"1 IJ I Q ' S J U I , 
' P 0 ^ 

, 0 G / P , 

and so if P is positive definite (and hence also nonsingular) then 

G = ( P Q | > L 0 «• G / P = S - Q ' P - 1 Q > L 0 , 

VQ' s i " 7 

(20) 

(21) 



50 S. Puntanen & G. P. H. Styan 

where the Lowner partial ordering A >|_ B means A —B is nonnegative def­
inite (positive semi-definite, possibly singular). The result (21) also follows 
from the Haynsworth inertia additivity formula 

I n G = I n P + In(G/P) , (22) 

where the inertia (or inertia triple) of the symmetric matrix A is defined 
to be the ordered integer triple 

In A = {IT, v, 5}, 

with the nonnegative integers n = 7r(A), V = v(A) and S = (5(A) giv­
ing the numbers, respectively, of positive, negative and zero eigenvalues 
of A. The result (22) was proved in 1968, apparently for the first time, 
by Haynsworth.72'73 From (22), it follows at once that rank is additive on 
the Schur complement in a symmetric matrix. As Guttman showed, see (7) 
above, this rank additivity holds more generally: G need not even be square 
— we need only that P be square and nonsingular. 

We may use the Schur complement inequality (21) to prove the Cauchy-
Schwarz Inequality: 

a ' a b ' b > ( a ' b ) 2 , (23) 

where a and b are both k x 1 vectors. Equality holds in (23) if and only if 
a = / b for some scalar / . 

The Cauchy-Schwarz Inequality is also known as the Cauchy-
Bouniakowsky-Schwarz Inequality164 (or CBS-inequality129) and is named 
after [Baron] Augustin-Louis Cauchy (1789-1857), Viktor Yakovlevich 
Bouniakowsky [Buniakovski, Bunyakovsky] (1804-1899), and [Karl] Her­
mann Amandus Schwarz (1843-1921). See Cauchy,33 Bouniakowsky,25 and 
Schwarz,140 and the recent book by Steele.151 

Schreiber129 cites Schwarz,139 published originally in 1874,138 but we 
could not find the inequality there. The corresponding inequality for inte­
grals is often called the Schwarz Inequality; see Steele151 and the new book 
by Dragomir.50 For a postage stamp depicting Cauchy, see Wilson169 and 
Miller.106 

We prove a more general matrix version of the Cauchy-Schwarz Inequal­
ity. Let A be fc x TO and let B be k x n, and suppose that B has full column 
rank equal to n and so B 'B is positive definite. Then 

/ A ' A A ' B \ [A'\ ( \ 
G = = IA B ) >L 0 24 

VB'A B ' B / \ B ' / V l V ' 
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l'i„. iz . AM-guMin '.-oiM. Ci iuhj ( l ' t t ) , \iKtoi V<>"vn'K'\Kli Bon, , , i * . ;„, 
and Hermann Amandus Schwarz.109 

implies that the Schur complement 

G/(B 'B) = A'A - A 'B(B 'B)~ l B'A >L 0, (25) 

or equivalently 

A 'A >L A ' B t B ' B ^ B ' A , (28) 

and so when m = n = 1 and A = a and B = b then (23) follows at once. 
Equality holds in (26) if and only if rank(A B) = rank(B), which holds 

if and only if A = B F for some matrix F. When m = n = 1 then F becomes 
a scalar / , say. 

12. Gaufi-Markov & Frisch-Waugh-Lovel l Theorems 

We may use the Schur complement inequality (21) to prove the well-known 
Gaufi-Markov Theorem, (or Gauss-Markov Theorem), which is named after 
the two well-known mathematicians [Johann] Carl Priedrich Gaufi (1777-
1855) and Andrei Andreyevich Markov (1856-1922).aj 

Let A'y be a linear unbiased estimator of 7 in the general linear model 
with white noise: E(y) — X 7 and D(y) — <r2I; here E(-) denotes expectation 
and D(-) dispersion matrix. We assume that X has full column rank and so 
it follows that A 'X = I. Then the Gaufr-Markov Theorem states that the 
ordinary least-squares estimator (OLSE) 7 = ( X ' X ) ^ X ' y is the best linear 

aJFor 3 postage stamps depicting Gaufi, see Wilson169 and Miller.106 Odell110 states 
that the Gaufi-Markov Theorem was first proved by GauB in the first part of his Theoria 
Combinationis (1821) and that the name "Gauss-Markov Theorem" was first used in 
1938 by David & Neyman.42 

file:///iKtoi
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Fig. 13. Carl Friedrich Gaufl (left) and Andrei Andreyevich Markov.109 

unbiased estimator (BLUE) of 7 in that D(A'y) >L 0(7) , i.e., A 'A >± 
( X ' X r 1 with A 'X = I. We note that 

3 = (x')(A X)a L°' (27) 

and so the Schur complement A 'A —(X'X)^1 >L 0, or equivalently A 'A >L 
(X'X)" 1 . 

We may use the Banchiewicz inversion formula (10) to prove the Prisch-
Waugh-Lovell Theorem, which is named after the Nobel laureate Rag-
nar Prisch (1895-1973),ak the American agricultural economist Frederick 
Vail Waugh (1898-1974),al and the American economist Michael C. Lovell 
(b. 1930),am in view of results in Prisch & Waugh62 and Lovell;96 see, e.g., 
Davidson & MacKinnon,44 Fiebig, Kramer & Bartels,58 and Puntanen & 
Styan.118 

Let us consider the two linear models: 

and 

E(y) = X i 7 x + X 2 7 2 

E ( M i y ) = M1X272 > 

(28) 

(29) 

a k T h e Norwegian economist Ragnar Frisch (1895-1973) won the 1969 Bank of Sweden 
Prize in Economic Sciences in Memory of Alfred Nobel [Nobel Memorial Prize in Eco­
nomic Sciences] jointly with the Dutch economist Jan Tinbergen (1903-1994) "for having 
developed and applied dynamic models for the analysis of economic processes".1 S 8 , 1 6 3 

The year 1989 was the first year that this prize was awarded. 
a lPor an unsigned obituary of Frederick Vail Waugh (1898-1974) see Ref. 165. 
a m See also the home page: Lovell.9T 
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where the partitioned matrix (Xi X2) has full column rank and Mi = 
I — Xi(X'1X1)_ 1X'1 = I — Hi , where Hi is the hat matrix associated with 
Xi . Then the Frisch-Waugh-Lovell Theorem says that both (1) the OLS 
estimate 7 2 of 7 2 and (2) the residual vector r, say, in the two models (28) 
and (29) are numerically identical. 

For the model (29) it is easy to see that 

72
29) = ( X 2 M i X 2 ) - 1 X 2 M i y , (30) 

r<29) = M i y - M i X 2 ( X 2 M 1 X 2 ) - 1 X 2 M i y . (31) 

From the Banachiewicz inversion formula (10) we find that 

/x;x! x[x2Y
x
 = AxiXi)-1 o\ 

^X 2 Xi X ' 2 X 2 j V 0 0) 

+ A X i X 0 ~ 1 X i X A (X2MiX2)-1(X2X1(X'1Xi)-1,-l) 

and so 7 2 — 7 2 as given in (30). Moreover the residual vector 

r<28) = y - Xi7 i ( 2 8 ) " X 2 7 2
( 2 8 ) = y - Xi7 i ( 2 8 ) - X 2 7 2

( 2 9 ) 

= y - H i y + HiX 2 (X ' 2 M 1 X 2 ) - 1 X 2 M 1 y 

- X 2 ( X 2 M i X 2 ) - 1 X ' 2 M i y 

= M i y - MiX 2 (X ,
2 MiX 2 ) - 1 X' 2 Miy = r<29\ (32) 

as given in (31). For extensions of the Frisch-Waugh-Lovell Theorem, see 
Gross & Puntanen68 and Puntanen & Styan.118 

Acknowledgements 

This article is based on the invited talk "Issai Schur (1875-1941) and the 
early development of the Schur complement: photographs, documents and 
biographical remarks" presented at the International Statistics Workshop, 
School of Information Sciences and Engineering, University of Canberra 
(Canberra, Australia), 4 April 2005, and expands on our reports.119 '120 This 
article also builds on the chapters by Simo Puntanen & George P. H. Styan 
entitled "Historical introduction: Issai Schur and the early development 
of the Schur complement"117 and "Schur complements in statistics and 
probability"118 in the book The Schur Complement and Its Applications, 
edited by Fuzhen Zhang;174 see also Ouellette111 and Styan.155 



54 S. Puntanen & G. P. H. Styan 

The portrai t photograph of Issai Schur in Figure 1 appears in Refs. 63 

and 174 and t ha t of Gabriel Narutowicz in Figure 3 is in Wikipedia;163 the 

other three pictures in Figure 3 were taken by Kari Tapio Makelainen. The 

picture of the Schur gravestone in Figure 7 was taken by Geva Maimon 

Reid. The portrai t photograph of Emilie Virginia Haynsworth in Figure 8 

appears on the Auburn University website,10 and in Davis4 5 and Zhang.1 7 4 

The portrai t photographs of Alexander Craig Aitken in Figure 9, Augustin-

Louis Cauchy, Viktor Yakovlevich Bouniakowsky, and Hermann Amandus 

Schwarz in Figure 12, and Carl Friedrich Gaufi and Andrei Andreyevich 

Markov in Figure 13 are on the MacTutor website.1 0 9 The portrai t pho­

tograph of Louis Gu t tman in Figure 10 is on the Port ra i ts of Statisticians 

website.9 5 

We are particularly grateful to Google for leading us to many of the 

websites accessed for this article. Our thanks go also to Oskar Maria Bak-

salary, Bartko-Reher-GbR (Berlin), Na than Beit-Aharon, David R. Bell-

house, Adi Ben-Israel, Abraham Berman, Torsten Bernhardt , Nora Bohos-

sian, Eva Brune, Marco Carone, Ka Lok Chu, Richard William Farebrother, 

Daniel Hershkowitz, Roger A. Horn, Jarkko Isotalo, Jorg Kaufmann, Bernd 

Kirstein, Miriam C. Klein, Sabina Klein, Tonu Kollo, Shuangzhe Liu, 

Geva Maimon Reid, Kari Tapio Makelainen, Timo Makelainen, Augustyn 

Markiewicz, Ja rmo Niemela, Tina Reid, Michelle E. Ross, Vera Rosta, An-

nelise Schmidt, Klaus Schmidt, Hans Schneider, Evelyn Matheson Styan, 

Gerald E. Subak-Sharpe, Garry J. Tee, Gotz Trenkler, Frank Uhlig, Kimmo 

Vehkalahti, and Fuzhen Zhang for their help. This research was supported in 

par t by the Natural Sciences and Engineering Research Council of Canada. 

R e f e r e n c e s and Further R e a d i n g 

1. Abelin-Schur, Hilda. A story about my father. In Joseph, Melnikov & 
Rentschler.84 

2. Aitken, A. C. Determinants and Matrices. University Mathematical Texts, 
Oliver & Boyd, Edinburgh, 1939. (2nd-9th editions, 1942-1956; 9th edi­
tion, reset & reprinted, 1967. Reprint edition: Greenwood Press, Westport, 
Connecticut, 1983.) 

3. Aitken, A. C. The art of mental calculation: with demonstrations. Transac­
tions of the Society of Engineers, 44 (1954), 295-309. 

4. Alexander Craig Aitken: unsigned obituary. Proceedings of the Edinburgh 
Mathematical Society, Series 2, 16 (1968/1969), 151-176. 

5. Aitken, A. C. To Catch the Spirit: The Memoir of A. C. Aitken. With a 
biographical introduction by Peter C. Fenton. University of Otago Press, 
Dunedin, New Zealand, 1995. 

6. Aiton, E. J. Leibniz: A Biography. Adam Hilger, Bristol, 1985. 



Issai Schur and Schur Complements 55 

7. Albanese, Catherine L. Review of Jones. Winterthur Portfolio, 15, 75-78 
(1980). 

8. Anderson, T. W. Some stochastic process models for intelligence test scores. 
In Arrow, Karlin k, Suppes; reprinted in Ref. 157. 

9. Arrow, Kenneth J.; Karlin, Samuel; Suppes, Patrick, eds. Mathematical 
Methods in the Social Sciences, 1959: Proceedings of the First Stanford Sym­
posium. Stanford University Press, 1960. 

10. Auburn University, www.auburn.edu/~fitzpjd/ben/images/Emilie.gif 
website: Portrait photograph of Emilie Virginia Haynsworth. Department of 
Mathematics, Auburn University, Auburn, Alabama, accessed 28 December 
2003. (Portrait photograph is also in Davis and in Zhang. ) 

11. Banachiewicz, T. Zur Berechnung der Determinanten, wie auch der Inversen, 
und zur darauf basierten Aufiosung der Systeme lineare Gleichungen. Acta 
Astronomica, Serie C, 3 (1937), 41-67. 

12. Barnavi, Eli, ed. A Historical Atlas of the Jewish People, from the Time of 
the Patriarchs to the Present. First American edition (translated from the 
French: Juifs, une histoire universelle), Eli Barnavi, General editor; Miriam 
Eliav-Feldon, English edition editor. Alfred A. Knopf, New York, 1992. 

13. Beare, Arlene. A Guide to Jewish Genealogy in Latvia and Estonia. The 
Jewish Genealogical Society of Great Britain, London, 2001. 

14. Beare, Arlene, ed. www.jewishgen.org/Latvia/SIG_History_of_Latvia_ 
and_Courland.html website: History of Latvia and Courland, accessed 1 
March 2004. (This history is derived from a few sources including [13] but 
mainly edited from the presentation made by Ruvin Ferber at the 21st In­
ternational Conference of Jewish Genealogy held in London in July 2001.) 

15. Begehr, Heinrich G. W. Mathematik in Berlin: Geschichte und Dokumen-
tation, Erster Halbband, Zweiter Halbband. Berichte aus der Geschichtswis-
senschaft, Shaker Verlag, Aachen, 1998. 

16. Begehr, H. G. W.; Koch, H.; Kramer, J.; Schappacher, N.; Thiele, E.-J.; 
on behalf of the Berliner Mathematische Gesellschaft, eds. Mathematics in 
Berlin. Birkhauser Verlag, Berlin, 1998. 

17. Bentz, Edna M. / / / Can, You Can Decipher Germanic Records. Published 
by the author: Edna M. Bentz [San Diego, California], 1982. (Second print­
ing 1983.) 

18. Beyl, F. Rudolf; Tappe, Jiirgen. Group Extensions, Representations, and 
the Schur Multiplicator. Springer-Verlag, Berlin, 1982. 

19. Bierbaum, Max; Borsting, Heinrich. Liudger und sein Erbe: dem 70. Nach-
folger des heiligen Liudger, Clemens August Kardinal von Galen, Bischof 
von Miinster, zum Gedachtnis. Westfalia sacra 1, Regensberg, Munster, 
1948. 

20. Bishop. R. E. D. Arthur Roderick Collar: 22 February 1908-12 February 
1986. Biographical Memoirs of Fellows of the Royal Society, 33 (1987), 165-
185. 

21. Blaushild, Immanuel. Libau. In Snyder. 
22. The Book of Saints, A Dictionary of Servants of God Canonised by the 

Catholic Church: Extracted from the Roman & Other Martyrologies. Com-

http://www.auburn.edu/~fitzpjd/ben/images/Emilie.gif
http://www.jewishgen.org/Latvia/SIG_History_of_Latvia_


56 S. Puntanen & G. P. H. Styan 

piled by The Benedictine Monks of St. Augustine's Abbey, Ramsgate. A. & 
C. Black, Ltd., London, 1921. (7th edition, entirely revised and reset: The 
Book of Saints: A Comprehensive Biographical Dictionary edited by Dom 
Basil Watkins OSB, on behalf of the Benedictine monks of St. Augustine's 
Abbey, Ramsgate. Continuum International Publishing Group, New York.) 

23. Borsting, Heinrich. Liudger-trager des Nikolaikultes im Abendland. In Bier-
baum & Borsting. 

24. Borsting, Heinrich. Sankt Liudger: Gedenkschrift zum 1150. Todestage des 
Heiligen. Pfarramt St. Ludgerus, Essen-Werden, 1959. 

25. Bouniakowsky, V. Sur quelques inegalites concernant les integrales or-
dinaires et les integrales aux differences finies. Memoires de VAcademie 
Imperiale des Sciences de St.-Petersbourg, Septieme Serie, vol. 1, no. 9, 
pp. 1-18 (1859). 

26. Brauer, Alfred. Gedenkrede auf Issai Schur. In Brauer & Rohrbach. 
(Translated into English in Ledermann & Neumann. ) 

27. Brauer, Alfred. Memorial address on Issai Schur. In Ledermann & Neu­
mann. (English translation of Brauer. ) 

28. Brauer, Alfred; Rohrbach, Hans, eds. Issai Schur Gesammelte Abhandlun-
gen: Band I; Band II; Band III. Springer-Verlag, Berlin, 1973. 

29. Brosnahan, Tom. www.turkeytravelplanner.com/WhereToGo/med/demre/ 
website: Turkey Travel Planner, accessed 4 February 2006. 

30. Browne, Michael W. On the T. W. Anderson-Herman Rubin contribution to 
statistical inference in factor analysis and On T. W. Anderson's stochastic 
process models for Guttman's simplex, circumplex and radex. In Styan. 

31. Briining, Jochen; Ferus, Dirk; Siegmund-Schultze, Reinhard. Terror and Ex­
ile: Persecution and Expulsion of Mathematicians from Berlin between 1933 
and 1945. An Exhibition on the Occasion of the International Congress 
of Mathematicians, Technische Universitat Berlin, August 19 to 27, 1998, 
Deutsche Mathematiker-Vereinigung, Berlin, 1998. 

32. Carlson, David; Markham, Thomas L.; Uhlig, Frank. Emilie Haynsworth, 
1916-1985. Linear Algebra and its Applications, 75 (1986), 269-276. 

33. Cauchy, Augustin. Memoire sur les fonctions qui ne peuvent obtenir que 
deux valeurs egales et de signes contraires par suites des transpositions 
operees entre les variables qu'elles renferment. Journal de I'Ecole Polytech-
nique, Paris, vol. 10, cahier 17, pp. 29-112 (1812). (Reprinted in (Euvres 
Completes d'Augustin Cauchy, 2e serie, tome 1: Memoires extraits du Jour­
nal de I'Ecole Polytechnique, pp. 91-169, Gauthier-Villars, Paris, 1905.) 

34. Chandler, Bruce; Magnus, Wilhelm. The History of Combinatorial Group 
Theory: A Case Study in the History of Ideas. Studies in the History of 
Mathematics and Physical Sciences 9. Springer-Verlag, New York, 1982. 

35. Cioffari, Gerardo. Saint Nicholas: His Life, the Translation of his Relics and 
his Basilica in Bari, translated by Philip L. Barnes, Centro Studi Nicolaiani, 
Bari, Italy, 1994. 

36. Coomber, R. Robert. The English translation of Ympyn. Accounting Re­
search, 5 (1954), 363. (Reprinted in Solomons & Zeff. ) 

http://www.turkeytravelplanner.com/WhereToGo/med/demre/


Issai Schur and Schur Complements 57 

37. Coomber, R. R. The English translation of Ympyn Christoffels's Nouvelle 
Instruction of 1547. Accounting Research, 6 (1955), 281-284; reprinted in 
Solomons & Zeff.147 

38. Coonce, Harry, ed. www.genealogy.ams.org/html/search.phtml website: 
The Mathematics Genealogy Project. Department of Mathematics, North 
Dakota State University, Fargo, accessed: 24 January 2006. 

39. Council of Biology Editors Style Manual Committee. Scientific Style and 
Format: The CBE Manual for Authors, Editors, and Publishers, 6th edi­
tion. Cambridge University Press, 1994. (Original version: Style Manual for 
Biological Journals prepared by the Committee on Form and Style of the 
Conference of Biological Editors, American Institute of Biological Sciences, 
1960 (2nd edition: 1964); 3rd-5th editions: CBE Style Manual: A Guide for 
Authors, Editors, and Publishers in the Biological Sciences, 1972-1983.) 

40. Cruz, Joan Carroll. Relics. Our Sunday Visitor, Huntington, Indiana, 1984. 
41. Curtis, Charles W. Pioneers of Representation Theory: Frobenius, Burnside, 

Schur, and Brauer. History of Mathematics 15, American Mathematical 
Society & London Mathematical Society, 1999. 

42. David, F. N.; Neyman, J. Extension of the Markoff Theorem on least 
squares. Statistical Research Memoirs, 2 (1938), 105-116. 

43. Davidson, Russell; MacKinnon, James G. Estimation and Inference in 
Econometrics. Oxford University Press, New York, 1993. 

44. Davidson, Russell; MacKinnon, James G. Econometric Theory and Methods. 
Oxford University Press, New York, 2004. 

45. Davis, Philip J. The Education of a Mathematician. A. K. Peters, Natick, 
Massachusetts, 2000. 

46. Davis, Scott L. homepages.tscnet.com/omardl/m.htm website: Natural 
Magick Books, Silverdale, Washington, accessed 1 February 2006. 

47. Delehaye, Pere Hippolyte. Review of Meisen. Analecta Bollandiana, 50, 
176-181 (1932). 

48. Deutsch, Karl W.; Piatt, John; Senghaas, Dieter. Conditions favoring major 
advances in social science. Science, 171 (1971), 450-459. 

49. Dharmananda, Subhuti. Myrrh and frankincense, 8 pp. www.itmonline. 
org/arts /myrrh.htm website: Institute for Traditional Medicine, Portland, 
Oregon, accessed 3 February 2006. 

50. Dragomir, Sever Silvestru. Advances in Inequalities of the Schwarz, Griiss 
and Bessel Type in Inner Product Spaces. Nova Science Publishers, Haup-
pauge, New York, 2005. 

51. Du Cange, Sieur Charles Du Fresne. Constantinopolis Christians, lib. iv. c. 
6, n. 67. Codinus Orig. Conatan, p, 62. (Reference # 2 from [55].) 

52. Duncan, W. J. Some devices for the solution of large sets of simultaneous 
linear equations. (With an Appendix on the reciprocation of partitioned 
matrices.) The London, Edinburgh, and Dublin Philosophical Magazine and 
Journal of Science, Seventh Series, 35 (1944), 660-670. 

53. Emrich, Duncan. A certain Nicholas of Patara. American Heritage, 12 
(1960), 22-27. 

http://www.genealogy.ams.org/html/search.phtml
http://www.itmonline


58 S. Puntanen & G. P. H. Styan 

54. Encyclopedia Britannica www.search.eb.com/eb/article?eu=39437 web­
site: "Gymnasium" article accessed 29 December 2003. 

55. Eternal Word Television Network. www.ewtn.com/library/MARY/STNICH. 
htm website: St Nicholas, Confessor, Archbishop of Myra - A.D. 342, pro­
vided courtesy of Eternal Word Television Network, Irondale, Alabama, 
accessed 12 February 2006. 

56. Farebrother, Richard William. A. C. Aitken and the consolidation of matrix 
theory. Linear Algebra and its Applications, 264 (1997), 3-12. 

57. Farebrother, R. William; Styan, George P. H.; Tee, Garry J. Gottfried Wil-
helm von Leibniz: 1646-1716. Image: The Bulletin of the International Lin­
ear Algebra Society, no. 30 (2003), pp. 13-16. 

58. Fiebig, Denzil G.; Kramer, Walter; Bartels, Robert. The Frisch-Waugh the­
orem and generalized least squares. Econometric Reviews, 15 (1996), 431-
443. 

59. Fournier, Catherine. www.domestic-church.com/C0NTENT.DCC/19981101/ 
SAINTS/nicholas. htm website: Saint Nicholas, Bishop of Myra. Domestic 
Church Communications Ltd., accessed 19 January 2004. 

60. Frazer, Robert A.; Duncan, W. J.; Collar, A. R. Elementary Matrices and 
Some Applications to Dynamics and Differential Equations. Cambridge Uni­
versity Press, 1938. (Reprinted: 1947-1963. Reprint edition: AMS Press, 
New York, 1982.) 

61. Frei, Giinter. Zur Geschichte des Crelleschen Journals. Journal fiir die reine 
und angewandte Mathematik, 500 (1998), 1-4. 

62. Frisch, Ragnar; Waugh, Frederick V. Partial time regressions as compared 
with individual trends. Econometrica, 1 (1933), 387-401. 

63. Fritzsche, Bernd; Kirstein, Bernd, eds. Ausgewahlte Arbeiten zu den Ur-
spriingen der Schur-Analysis: Gewidmet dem grofien Mathematiker Issai 
Schur (1875-1941). Edited and with a foreword and afterword by Bernd 
Fritzsche and Bernd Kirstein; with contributions by G. Herglotz, I. Schur, G. 
Pick, R. Nevanlinna, H. Weyl, W. Ledermann k. W. K. Hayman. Teubner-
Archiv zur Mathematik 16, B. G. Teubner Verlagsgesellschaft, Stuttgart, 
1991. 

64. Gohberg, I., ed. /. Schur Methods in Operator Theory and Signal Process­
ing. Operator Theory: Advances and Applications OT18, Birkhauser Verlag, 
Basel, 1986. 

65. de Voraigne, Jacobus. The Golden Legend: Readings on the Saints, Volume 
I., translated by William Granger Ryan. Princeton University Press, 1993. 
(This translation by William Granger Ryan of Legenda aurea by Jacobus 
de Voragine (c. 1229-1298) is "based on the only modern Latin edition of 
the work, produced by Dr. Th. Graesse in 1845".) 

66. Gordon, Cosmo. The first English books on book-keeping. Accounting Re­
search, 5 (1954), 215-218. (Reprinted in Solomons & Zeff.147) 

67. Grala, Jolanta; Markiewicz, Augustyn; Styan, George P. H. Tadeusz Ba-
nachiewicz: 1882-1954. Image: The Bulletin of the International Linear Al­
gebra Society, no. 25 (2000), page 24. 

http://www.search.eb.com/eb/article?eu=39437
http://www.ewtn.com/library/MARY/STNICH
http://www.domestic-church.com/C0NTENT.DCC/19981101/


Issai Schur and Schur Complements 59 

68. Gross, Jiirgen; Puntanen, Simo. Extensions of the Frisch-Waugh-Lovell the­
orem. Discussiones Mathematicae: Probability and Statistics, 25 (2005), 39-
49. 

69. Guttman, Louis. Enlargement methods for computing the inverse matrix. 
The Annals of Mathematical Statistics, 17 (1946), 336-343. 

70. Harrison, R. Martin. Mountain and Plain: From the Lycian Coast to the 
Phrygian Plateau in the Late Roman and Early Byzantine Period, edited by 
Wendy Young. University of Michigan Press, Ann Arbor, 2001. (Posthumous 
work based on the author's notes which were sorted and edited by Wendy 
Young.) 

71. Haubold, Rev Dr. A. www.nikolaikirche-leipzig.de website: Nicolai-
kirche Leipzig: A Short Architectural History, accessed 19 January 2004. 

72. Haynsworth, E. V. On the Schur complement. Basel Mathematical Notes, 
BMN 20, 17 pp., June 1968. (Basle Mathematical Notes on cover page.) 

73. Haynsworth, E. V. Determination of the inertia of a partitioned Hermitian 
matrix. Linear Algebra and its Applications, 1 (1968), 73-81. 

74. Haynsworth, Emilie V.; Ostrowski, Alexander M. On the inertia of some 
classes of partitioned matrices. Basel Mathematical Notes, BMN 18, 25 pp., 
August 1967. (Basle Mathematical Notes on cover page. Same title as 
Haynsworth & Ostrowski. ) 

75. Haynsworth, Emilie V.; Ostrowski, Alexander M. On the inertia of some 
classes of partitioned matrices. Linear Algebra and its Applications, 1 
(1968), 299-316. (Same title as Haynsworth & Ostrowski.74) 

76. Henn, P. Ahn's Second German Book: Being The Second Division of Ahn's 
Rudiments of the German Language. Steiger's German Series, E. Steiger, 
New York, 1873. 

77. Hocquel-Schneider, Sabine. Alte Nikolaischule Leipzig. Kulturstiftung 
Leipzig, Edition Leipzig, 1994. 

78. InstaPLANET presents Saint Nicholas of Myra: The Man and the Russian 
ICON, www.instaplanet.com/icon.html website. Eisner SF. 

79. Intellectual Reserve, Inc. www.familysearch.org/eng/Search/RG/guide/ 
German_Gothic99-36316.ASP website: Handwriting Guide: German Gothic 
Resource Guide, Family History Library, Salt Lake City, accessed 28 De­
cember 2003. 

80. The Jewish Encyclopedia, www.jewishgen.org/belarus/je_mogilev.htm 
website: Mogilev from The Jewish Encyclopedia, Moghilef (Mohilev). Jew-
ishGen Belarus SIG, accessed 28 December 2003. 

81. Johnson, Norman Lloyd; Kotz, Samuel, eds. Leading Personalities in Sta­
tistical Sciences: From the Seventeenth Century to the Present. Wiley, New 
York, 1997. 

82. Jones, Charles W. Saint Nicholas of Myra, Bari, and Manhattan: Biography 
of a Legend. The University of Chicago Press, 1978. 

83. Joseph, Anthony; Melnikov, Anna. In memoriam: Issai Schur. In Joseph, 
Melnikov & Rentschler.84 

84. Joseph, Anthony; Melnikov, Anna; Rentschler, Rudolf, eds. Studies in Mem­
ory of Issai Schur. Papers from the Paris Midterm Workshop of the Euro-

http://www.nikolaikirche-leipzig.de
http://www.instaplanet.com/icon.html
http://www.familysearch.org/eng/Search/RG/guide/
http://www.jewishgen.org/belarus/je_mogilev.htm


60 S. Puntanen & G. P. H. Styan 

pean Community Training and Mobility of Researchers Network held in 
Chevaleret, Prance, May 21-25, 2000, and the Schur Memoriam Workshop 
held in Rehovot, Israel, December 27-31, 2000. Progress in Mathematics 
210, Birkhauser, Boston, 2003. 

85. Kats, P. The "Nouuelle Instruction" of Jehan Ympyn Christophle: I, II. The 
Accountant, vol. 77, no. 2750, pp. 261-269 & no. 2751, pp. 287-296, 1927. 

86. Katz, Elihu. Louis Guttman, 1916-1987. Public Opinion Quarterly, 52 
(1988), 240-242. 

87. Kavalieris, Laimonis; Lam, Fred C ; Roberts, Leigh A.; Shanks, John A., 
eds. Proceedings of the A. C. Aitken Centenary Conference (incorporating 
the 3rd Pacific Statistical Congress, the Annual Meeting of the New Zealand 
Statistical Association and the 1995 New Zealand Mathematics Colloquium, 
28 August - 1 September 1995). Otago Conference Series 5, University of 
Otago Press, Dunedin, New Zealand, 1996. 

88. Kedar, Benjamin Z. The Changing Land between the Jordan and the Sea: 
Aerial Photographs from 1917 to the Present. Yad Ben-Zvi Press, Jerusalem 
& MOD Publishing House, Tel Aviv, 1999. 

89. Klimchalk, Joan M. Santa Claus: A Living Legend, Stamp Exhibit win­
ning the NTSS-2005 Reserve Grand Award, as announced and illustrated 
in Topical Time, vol. 56, no. 5 (September-October 2005), pp. 21 & 25. 

90. Klimchalk, Joan M. www.hwcn.org/link/cpc/cpc_klimch.html website: 
"Who is Santa Claus?": article winning the 1998 Ken Mackenzie Writer's 
Award for the best article in Yule Log, 8 pp., on the Christmas Philatelic 
Club's Home Page, accessed 31 January 2006. 

91. Kotz, Samuel; Johnson, Norman L.; Read, Campbell B., eds. Encyclopedia of 
Statistical Sciences, Volume 3: Faa di Bruno's Formula-Hypothesis Testing. 
Wiley, New York, 1983. 

92. Kunisch. Letter relieving Issai Schur from his duties at the University of 
Berlin, 28 September 1935. (Reprinted in Soifer,146 courtesy of Dr. W. 
Schultze and the Archive of the Humboldt University of Berlin.) 

93. Ledermann, W. Issai Schur and his school in Berlin. Bulletin of the Lon­
don Mathematical Society, 15 (1983), 97-106. (Reprinted in Fritzsche & 
Kirstein.63) 

94. Ledermann, Walter; Neumann, Peter M. The life of Issai Schur through 
letters and other documents. In Joseph, Melnikov k. Rentschler. 

95. Lee, Peter M. www.york.ac.uk/depts/maths/histstat/people/welcome. 
htm website: Portraits of Statisticians. Department of Mathematics, The 
University of York, York, England, UK, accessed 11 January 2004. 

96. Lovell, Michael C. Seasonal adjustment of economic time series and multi­
ple regression analysis. Journal of the American Statistical Association, 58 
(1963), 993-1010. 

97. Lovell, Michael C. mlovell.web.wesleyan.edu/ website: Department of 
Economics, Wesleyan University, Middletown, Connecticut, accessed 25 Jan­
uary 2006. 

98. Martin, Stuart. Schur Algebras and Representation Theory. Cambridge Uni­
versity Press, 1993. 

http://www.hwcn.org/link/cpc/cpc_klimch.html
http://www.york.ac.uk/depts/maths/histstat/people/welcome
http://mlovell.web.wesleyan.edu/


Issai Schur and Schur Complements 61 

99. Mashey, Anne B. A Guide to Olde German Handwriting of the Mid-1800's, 
No. 2, Revised edition. Anne B. Mashey, Wexford, Pennsylvania, 1982. 
(Original version: 1979.) 

100. McCulloh, John M. Review of Jones.82 The American Historical Review, 
84, page 720 (1979). 

101. McLachlan, Gordon W. Germany: The Rough Guide, 4th edition. Rough 
Guides, London, 1998. (Original version: 1992.) 

102. Meisen, Karl. Nikolauskult und Nikolausbrauch im Abendlande: eine 
kultgeographisch-volkskundliche Untersuchung, Reprint edition. Quellen und 
Abhandlungen zur mittelrheinischen Kirchengeschichte 41: Forschungen zur 
Volkskunde Heft 9-12, Schwann, Dusseldorf, 1981. (An enlargement of 
the author's Habilitationsschrift, Universitat Bonn, 1928. Original version: 
1931.) 

103. Merriam-Webster's Collegiate Dictionary, 11th edition with CD-ROM and 
online subscription. Merriam-Webster, Springfield, Massachusetts, 2003. 

104. Merriam-Webster's Geographical Dictionary, 3rd edition. Merriam-Webster, 
Springfield, Massachusetts, 1997 & 2001. (Original version: Webster's New 
Geographical Dictionary, 1972 & 1984.) 

105. Mietelski, Jan. www.oa.uj .edu.pl /h is tory/his tory .html website: Two 
Hundred Years' History of the Cracow Astronomical Observatory, The Ob­
servatory in the years of T. Banachiewicz's management (1919-1954), ac­
cessed 11 January 2004. 

106. Miller, Jeff, jeff560. t r ipod.com/ website: Images of Mathematicians on 
Postage Stamps. Gulf High School, New Port Richey, Florida. 

107. Ne'eman, Yuval. Issai Schur died here: some background comments, in 
memoriam. In Joseph, Melnikov & Rentschler. 

108. Nes, Solrunn. The Mystical Language of Icons, 2nd edition. Eerdmans, 
Grand Rapids, Michigan, 2005. (First published 2004 by Eastern Christian 
Publications, Fairfax, Virginia.) 

109. O'Connor, J. J.; Robertson, E. F., eds. MacTutor [History of Math­
ematics Archive] website: www-history.mcs.st-andrews.ac.uk/Search/ 
h is torysearch .h tml School of Mathematics and Statistics, University of 
St Andrews, St Andrews, Scotland. 

110. Odell, Patrick L. Gauss-Markov theorem. In Kotz, Johnson & Read. 
111. Ouellette, Diane Valerie. Schur complements and statistics. Linear Algebra 

and its Applications, 36 (1981), 187-295. 
112. Pinl, Max; Furtmuller, Lux. Mathematicians under Hitler. In Weltsch. 
113. PlanetWare: Your Unlimited Guide to the World, www.planetware.com/ 

p ic ture /myra-ka le - t r -myra l .htm website: PlanetWare, Inc., accessed 31 
January 2006. 

114. Prominent Poles: A New Polish Online Biography Project. Tadeusz 
Banachiewicz, astronomer and mathematician, website, accessed 31 
January 2006: www.polishwashington.com/prominent-poles/tadeusz. 
banachiewicz.htm 

115. Pugsley, A. G. Robert Alexander Frazer: 1891-1959. Biographical Memoirs 
of Fellows of the Royal Society, 7 (1961), 75-84. 

http://www.oa.uj.edu.pl/history/history.html
http://jeff560.tripod.com/
http://www-history.mcs.st-andrews.ac.uk/Search/
http://www.planetware.com/
http://www.polishwashington.com/prominent-poles/tadeusz


62 S. Puntanen & G. P. H. Styan 

116. Pukkila, Tarmo; Puntanen, Simo, eds. Proceedings of the First International 
Tampere Seminar on Linear Statistical Models and their Applications: Uni­
versity of Tampere, Tampere, Finland, August 30th to September 2nd, 1983. 
Department of Mathematical Sciences/Statistics, University of Tampere, 
Tampere, Finland, 1985. 

117. Puntanen, Simo; Styan, George P. H. Historical introduction: Issai Schur and 
the early development of the Schur complement. Chapter 0 and Bibliography 
in Zhang.174 

118. Puntanen, Simo; Styan, George P. H. Schur complements in statistics and 
probability. Chapter 6 and Bibliography in Zhang.1 

119. Puntanen, Simo; Styan, George P. H. Some comments on Issai Schur (1875-
1941), the Nicolai Gymnasium in Libau (Kurland), and publications under 
and I. Schur and J. Schur. Report 2005-06, Department of Mathematics and 
Statistics, McGill University, Montreal, November 2005. 

120. Puntanen, Simo; Styan, George P. H. Some comments about Issai Schur 
(1875-1941) and the early history of Schur complements. Report 2006-02, 
Department of Mathematics and Statistics, McGill University, Montreal, 
February 2006. 

121. Puntanen, Simo; Styan, George P. H. A philatelic introduction to matrices 
and statistics. Invited article in preparation for presentation at the 15th 
International Workshop on Matrices and Statistics, Uppsala, Sweden, June 
2006. 

122. Puntanen, Simo; Styan, George P. H. Stochastic stamps: a philatelic intro­
duction to chance. Invited article in preparation for publication in Chance 
Magazine in celebration of its 20th birthday in 2007. 

123. Radwin, Michael J. www.hebcal.com/converter/ website: Hebrew Date 
Converter, accessed 28 September 2005. 

124. Reau, Louis. Iconographie de I'Art Chretien. Presses Universitaire de France, 
Paris, 1955-1959. 

125. Reingold, Edward M.; Dershowitz, Nachum. Calendrical Calculations: The 
Millennium Edition. Cambridge University Press, 2001. 

126. Relf, Ernest F. William Jolly Duncan: 1894-1960. Biographical Memoirs of 
Fellows of the Royal Society, 7 (1961), 37-51. 

127. The Royal Society. www.royalsoc.ac.uk/DServe/DServe.exe?dsqApp= 
Archive&dsqCmd=Index. t c l website: Library and Archive Catalogues. The 
Royal Society, London, accessed 25 January 2006. 

128. Schoeps, Julius H.; Grozinger, Karl E.; Mattenklott, Gert, eds. Menora: 
Jahrbuch fur deutsch-jiidische Geschichte 1999: im Auftrag des Moses 
Mendelssohn-Zentrums fur europaisch-jiidische Studien. Philo Verlagsge-
sellschaft mbH, Berlin & Bodenheim bei Mainz, 1999. 

129. Schreiber, Peter. The Cauchy-Bunyakovsky-Schwarz inequality. In 
Schreiber.130 

130. Schreiber, Peter, ed. Hermann Graflmann, Werk und Wirkung: Interna­
tionale Fachtagung anlafilich des 150. Jahrestages des ersten Erscheinens 
der "Linealen Ausdehnungslehre" (Lieschow/Riigen, 23.-28.5.1994), Ernst-
Moritz-Arndt-Universitat, Greifswald, 1995. [English translation of title: 

http://www.hebcal.com/converter/
http://www.royalsoc.ac.uk/DServe/DServe.exe?dsqApp=


Issai Schur and Schur Complements 63 

Hermann Grafimann, Work and Influence: Proceedings of the International 
Conference on the Occasion of the One Hundred and Fiftieth Anniversary of 
the First Publication of the "Lineale Ausdehnungslehre" (Lieschow/Riigen, 
23.-28.5.1994).] 

131. Schur, Issai. Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix 
zuordnen lassen. Doctoral dissertation, Universitat Berlin, 1901; reprinted 
in Brauer & Rohrbach. ) 

132. Schur, J. [Schur, Issai.] Uber Potenzreihen, die im Innern des Einheitskreises 
beschrankt sind [I]. Journal fiir die reine und angewandte Mathematik, 
147 (1917), 205-232; reprinted in Brauer & Rohrbach28 and in Fritsche 
& Kirstein.63 (Translated into English as Schur.137) 

133. Schur, J. [Schur, Issai.] Uber Potenzreihen, die im Innern des Einheitskreises 
beschrankt sind [II]. Journal fiir die reine und angewandte Mathematik, 
148, 122-145 (1918); reprinted in Brauer & Rohrbach28 and in Fritsche & 
Kirstein.63 (Translated into English as Schur.137) 

134. Schur, Issai. Biographischen Mitteilungen, welche die Kaiserliche 
Leopoldino-Carolina Deutsche Akademie der Naturforscher nach §7 der 
Statuten von ihren neueintretenden Mitgliedern zur Aufbewahrung im 
Archiv erbittet, 24 June 1919. (In German. English translation of title: Bio­
graphical communications, forming the application for membership in the 
Academia Leopoldino-Carolina Naturae Curiosorum = German Academy 
of Natural Scientists.) Reprinted in Fritzsche & Kirstein.63 

135. Schur, J. [Schur, Issai.] Die Algebraischen Grundlagen der Darstellungsthe-
orie der Gruppen. Vorlesungen iiber Darstellungstheorie, gehalten auf Ein-
ladung des Mathematischen Seminars der Eidg. Techn. Hochschule Zurich, 
bearbeitet und herausgegeben von Dr. E. Stiefel, Graph. Anstalt Gebr. Frey 
& Kratz, Zurich, 1936. (Mimeographed lecture notes from Schur's 1936 lec­
tures at the Eidgenossische Technische Hochschule (ETH) Zurich, edited 
and issued by E. Stiefel. See also Stammbach. ) 

136. Schur, Issai. Vorlesungen iiber Invariantentheorie. Bearbeitet und heraus­
gegeben von Helmut Grunsky. Die Grundlehren der mathematischen Wis-
senschaften in Einzeldarstellungen mit besonderer Beriicksichtigung der An-
wendungsgebiete 143. Springer-Verlag, Berlin, 1968. 

137. Schur, Issai. On power series which are bounded in the interior of the unit 
circle: I, II. In Gohberg.64 (English translation of Schur.132,133) 

138. Schwarz, H. A. Miscellen aus dem Gebiete der Minimalflachen. Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Zurich, 19 (1874), 243-
271. (Revised as Ref. 139.) 

139. Schwarz, H. A. Miscellen aus dem Gebiete der Minimalflachen. Journal fiir 
die reine und angewandte Mathematik, 80 (1875) 280-300. (Revised version 
of Ref. 138. Reprinted in Schwarz.141) 

140. Schwarz, H. A. Ueber ein die Flachen kleinsten Flacheninhalts betref-
fendes Problem der Variationsrechnung: Festschrift zum Jubelgeburtstage 
des Herrn Karl Weierstrass. Acta Societatis Scientiarum Fennicte (Helsinki) 
15:315-362 (1888). (See pp. 343-345. Preface dated 31 October 1885. 
Reprinted in Schwarz; see pp. 251-253.) 



64 S. Puntanen & G. P. H. Styan 

141. Schwarz, H. A. Gesammelte Mathematische Abhandlungen von H. A. 
Schwarz, Julius Springer, Berlin, 1890. (Available online at www.hti .umich. 
edu/u/umhistmath/ website: The University of Michigan Historical Mathe­
matics Collection, Ann Arbor.) 

142. Shye, Samuel. Louis Guttman. In Johnson & Kotz. 
143. Silverstone, H. Alexander Craig Aitken, M.A., D.Sc, Ll.D., F.R.S.E., F.R.S. 

(1895-1967). Journal of the Royal Statistical Society, Series A, 131 (1968), 
259-261. 

144. Smith, Steven Bradley. The Great Mental Calculators: The Psychology, 
Methods, and Lives of Calculating Prodigies, Past and Present. With a 
foreword by Wim Klein and an introduction by Hans Eberstark. Columbia 
University Press, New York, 1983. 

145. Snyder, Stephen, project coordinator, www.jewishgen.org/yizkor/libau/ 
l ibau.html website: A Town Named Libau (Liepaja, Latvia), JewishGen, 
accessed 27 December 2003. (Translation of the 36-page booklet: A Town 
Named Libau in English, German and Hebrew and additional material about 
Libau, Editor and Publisher of booklet unknown, believed to have been 
published in Israel, 1985. Translation of Booklet: Naomi Arond; additional 
material translated and donated by Harry Hurwitz.) 

146. Soifer, Alexander. Issai Schur: Ramsey theory before Ramsey. Geombina-
torics, 5 (1995), 6-23. 

147. Solomons, David; ZefT, Stephen A., eds. Accounting Research, 1948-1958: 
Volume 1, Selected Articles on Accounting History. Garland, New York. 
(Reprints of selected articles from Accounting Research, 1948-1958.) 

148. Soot-Ryen, Tron. 
www. nrk. no/underholdning/store_norske/4380950. html website: Ragnar 
Frisch (in Norwegian, NRK, Trondheim, accessed 4 February 2006. (Article 
includes a photograph of Ragnar Frisch: ©NTB arkiv/SCANPIX.) 

149. St. Nicholas Center Discovering the Truth about Santa Claus website: 
www.stnicholascenter.org/Brix?pageID=37 St. Nicholas Center, Holland, 
Michigan, accessed 29 January 2006. 

150. Stammbach, Urs. Die Ziircher Vorlesung von Issai Schur iiber Darstel-
lungstheorie. (With forewords by Walter Ledermann and Eduard Stiefel.) 
Schriftenreihe A: Wissenschaftsgeschichte 5, ETH-Bibliothek, Zurich, 2004. 
(See also Schur.135) 

151. Steele, J. Michael. The Cauchy-Schwarz Master Class: An Introduction to 
the Art of Mathematical Inequalities. Cambridge University Press, 2004. 

152. Stigler, Stephen M. Statistics on the Table: The History of Statistical Con­
cepts and Methods. Harvard University Press, 1999. 

153. Storrer, Norman J.; Jensen, Larry O. A Genealogical and Demographic 
Handbook of German Handwriting: 17th-19th Centuries, V.l: Births & Bap­
tisms. Norman J. Storrer, Pleasant Grove, Utah, 1977. 

154. Strzalkowski, Adam. Tadeusz Banachiewicz: Mistrz i Nauczyciel (in Polish), 
website: www.zwoje-scrolls.com/zwoje41/TB_01.jpg accessed 24 January 
2006. [English translation of title: Tadeusz Banachiewicz: Champion and 
Scientist] 

http://www.hti
http://www.jewishgen.org/yizkor/libau/
http://www.stnicholascenter.org/Brix?pageID=37
http://www.zwoje-scrolls.com/zwoje41/TB_01.jpg


Issai Schur and Schur Complements 65 

155. Styan, George P. H. Schur complements and linear statistical models. In 
Pukkila & Puntanen.116 

156. Styan, George P. H., ed. Louis Guttman: 1916-1987. The IMS Bulletin, 17, 
page 284 (1988). 

157. Styan, George P. H., ed. The Collected Papers of T. W. Anderson: Volume 
1, Volume 2. Wiley, New York, 1990. 

158. Tinbergen, J. Professor Ragnar Frisch. Journal of the Royal Statistical So­
ciety Series A, vol. 136 (1973), page 483. 

159. Tucker, Suzetta. h t tp : / /ww2.netni tco.net /users / legend01/myrrh.htm 
website: ChristStory Christmas Symbols: Myrrh (1999), ChristStory Chris­
tian Bestiary, accessed 4 February 2006. 

160. United States Government Printing Office Style Manual, Revised edition. 
United States Government Printing Office, Washington, D. C., 1959. (Orig­
inal version: 1894.) 

161. URANOS Group, www.uranos.eu.org/biogr/banache.html website: 
Tadeusz Banachiewicz (1882-1954), accessed 11 January 2004. 

162. Vogt, Annette. Issai Schur: als Wissenschaftler vertrieben. In Schoeps, 
Grozinger & Mattenklott.128 

163. Wales, Jimmy, founder. en.wikipedia.org/wiki/Main_Page website: 
Wikipedia: The Free Encyclopedia. Wikimedia Foundation, accessed 21 Au­
gust 2005. 

164. Watson, Geoffrey S.; Alpargu, Giilhan; Styan, George P. H. Some comments 
on six inequalities associated with the inefficiency of ordinary least squares 
with one regressor. Linear Algebra and its Applications, 264 (1997), 13-53. 

165. Frederick Vail Waugh (1898-1974): unsigned obituary. American Journal of 
Agricultural Economics, 56 (1974), 680-681. 

166. Weltsch, Robert, ed. Year Book XVIII. Publications of the Leo Baeck In­
stitute, Seeker & Warburg, London, 1973. 

167. Whittaker, J. M.; Bartlett, M. S. Alexander Craig Aitken: 1895-1967. Bio­
graphical Memoirs of Fellows of the Royal Society, 14 (1968), 1-14. 

168. Williams, Nicola; Herrmann, Debra; Kemp, Cathryn. Lonely Planet Guide; 
Estonia, Latvia & Lithuania, 3rd edition. Lonely Planet Publications, Mel­
bourne, 2003. (Original version by John Noble, Nicola Williams & Robin 
Gauldie: 1997; 2nd edition by Nicola Williams, Kate Galbraith & Steve 
Kokker, 2000.) 

169. Wilson, Robin J. Stamping Through Mathematics. Springer-Verlag, New 
York, 2001. 

170. Wimp, Jet. Reviews: To catch the spirit: the memoir of A. C. Aitken [Univ. 
Otago Press, Dunedin, 1995], Determinants and matrices [Oliver and Boyd, 
Edinburgh, 1939], The case against decimalisation [ibid., 1962], Gallipoli 
to the Somme: recollections of a New Zealand infantryman [Oxford Univ. 
Press, Oxford, 1963] by A. C. Aitken. The Mathematical Intelligencer, 20 
(1998), no. 2, 62-79. 

171. Yamey, Basil S.; Kojima, Osamu, eds. A Notable and Very Excellente 
Woorke by Jan Ympyn Christofjels. Daigakudo Books, Kyoto, 1975. 

http://ww2.netnitco.net/users/legend01/myrrh.htm
http://www.uranos.eu.org/biogr/banache.html
http://en.wikipedia.org/wiki/Main_Page


66 S. Puntanen & G. P. H. Styan 

172. Ympyn Christoffels, Jan. A Notable and Very Excellente Woorke: expressyng 
and declaryng the maner and forme how to kepe a boke of acco[m]ptes or 
reconynges ... translated with great diligence out of the Italian toung into 
Dutche, and out of Dutche into French, and now out of French (Nouuelle 
instruction, 1543) into Englishe. Goldsmiths'-Kress Library of Economic 
Literature 40.3, Microfilm reel, Research Publications, New Haven, Con­
necticut, 1974. (Original version published by Sir Richard Grafton, London, 
1547.) 

173. Zawada, Anna Karolina. Observo ergo sum: Tadeusz Banachiewicz 1882-
1954- Muzeum Uniwerstytetu Jagiellonskiego Collegium Maius, Karkow, 
2004. 

174. Zhang, Fuzhen, ed. The Schur Complement and Its Applications. Numerical 
Methods and Algorithms 4, Springer, New York, 2005. 



PART B 

Applicat ions of Statist ics 





69 

Estimating the Number of SARS Cases in Mainland China in 
2002-3 

Joe Gani 

CMA, Mathematical Sciences Institute, Australian National University, 
Canberra ACT 0200, Australia 

E-mail: gani@maths.anu.edu.au 

This note is concerned with estimating the number of SARS cases in the 
2002-3 epidemic in mainland China. Some recorded data from Hong Kong, and 
partial data from the mainland are used, while SARS incidence is modelled by 
a Beta function in order to derive likely outcomes. The conclusion is that there 
were many more cases of SARS in mainland China than were officially recorded. 
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In their paper on the SARS epidemic in Hong Kong, Riley et al. (2003) 
provided graphs of the daily and weekly incidence of infectives beween the 
end of February and April 2003. The daily incidence graph looked very 
much like a Beta function, and suggested that the partial data available 
from the Chinese mainland, discussed by Lai (2005), and displayed in his 
Figure 1 reproduced below, might also be fitted by a similar Beta function. 

While the SARS epidemic in mainland China lasted between the end of 
November 2002 and the end of May 2003 (say, 183 days from 30 November 
2002 to 31 May 2003), data on SARS incidence was recorded for only the 
41 days from 21 April to 31 May 2003, with a maximum incidence of 200 
on 28 April 2003. 

We first propose a Beta function with parameters p = 2, q = 3, for the 
partial 41-day data of the SARS epidemic in mainland China, this being the 
simplest function with the appropriate shape. We then extend our scope to 
the 183 days of the epidemic, and derive some tentative estimates of the 
total SARS cases during that period. Let T be the duration of the epidemic, 
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Fig. 1. Daily new SARS cases in mainland China from April 21 to June 3 2003. Repro­
duced from Figure 1 of Lai (2005). 

and let the incidence of SARS at time 0 < t < T be given by 

N(t) = K 
p - i 

T-i 9 - 1 

KtP-1{T-t)q-1 

'jpp+q-2 (1) 

where K is a constant to be estimated later. 

The time M at which the mode of N(t) is reached occurs when 

dN(t) K[{p - l)tP~2{T - t)"-1 -(q- l)tv-l{T - t)*-

dt J^p+q-2 

o, (2) 

so that the maximum incidence is at time 

M = 
( p - i ) r 

(p + « - 2 ) ' 
(3) 
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or T/3 when p = 2, q = 3. This maximum incidence is then given by 

KMP-^T-M)"-1 

N(M) = Jip+q-2 

K (T/3) (2T/3)2 

T 3 

4ftT 

"27"' 
(4) 

Now, for the 41-day data, the mode was 200, a value which is possibly 
applicable for the longer 183-day series, although the lower peak of 160 
reached on 8 May 2003 is perhaps more representative. If we adopt this as 
the value of N(M), then 

1 6 0 = ^ - , or K = 1080. 
27 

From this, we can approximate the total number of SARS cases during the 
41-day period as the integral 

M l -I /-41 

•dt 

K (412i2/2 - 82i3/3 + t4/4) 
413 

41 

= 3 690. (5) 

The observed number was 3669, a figure close to our approximation, which 
tends to support our empirical approach. 

Using similar methods over the total 183-day period of the epidemic, 
and now assuming 200 as the mode N(M), we have that 

2 0 0 = ^ - , or K = 1350. 
27 

Thus, the estimated total of expected SARS cases in the 183-day period 
would be 

/•183 i / a83 

J N{t)dt=m*J Kt(m-rfdt 

K (l832 i2 /2 - 366i3/3 + *4/4) 
1833 

183 

20 587.5 (6) 
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This is probably closer to the t rue number of SARS cases in mainland 

China in 2002-3 than the officially recorded figure of 3669. An alternative 

rough estimate may be derived as follows: the average number of daily 

recorded cases in the 41-day period was 3669 /41 = 89.49, so tha t if the 

same number of daily cases occurred over the 183-day epidemic, then the 

total number of cases would be 

89.49 x 183 = 16 376, 

a figure slightly lower than the estimated 20 588 above. 

W H O reported the total number of SARS cases worldwide as 8 098 

(WHO 2003), 3669 of them in mainland China and 4429 elsewhere. Even 

assuming the lower figure of 16 376 as an estimate of the total number of 

SARS cases in mainland China, we see tha t the worldwide total of cases 

was likely to be closer to 

4429 + 16 376 = 20 805. (7) 

It should be pointed out in all caution tha t these are speculative estimates 

rather than established facts; the only certain conclusion is tha t mainland 

China suffered a heavier SARS toll in 2002-3 than has been reported. 
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Prescribed burning is an important tool for managing landscapes for both 
ecological values and people and property protection. Although widely used, 
the long-term effectiveness of prescribed burning in meeting management ob­
jectives is often difficult to determine. Recent work is using a computer simula­
tion model, FIRESCAPE-SWTAS, to investigate the effectiveness of a range of 
prescribed burning treatments in reducing risks posed by unplanned fires using 
likelihood methods. Initial studies were conducted in the World Heritage Area 
in south-west Tasmania. This talk discusses the linking of ecological modelling 
and statistical methods in determining the effectiveness of a range of prescribed 
burning scenarios in meeting management objectives in this landscape, and the 
implications for future work. 

Keywords: simulation modelling; FIRESCAPE; unplanned fire; prescribed 
burning; likelihood methods. 

1. Introduction 

Fire, originating from both natural and anthropogenic sources, globally, is 
the principal natural disturbance event in terrestrial ecosystems (Gardner 
et al, 1999). Fossil and palynological evidence suggests the occurrence of 
fires in the Australian landscape as far back as the Devonian (350 Ma 
BP) (Martin, 1996), with anthropogenic fires contributing to the historical 
fire regime for at least the last thirty to forty thousand years (Gill, 1981; 
Kershaw, 1986; Bowman, 1998; Perry, 1998; McKenzie, 2002). 
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It is implicit that successful fire management of Australian landscapes 
requires an accurate understanding of the temporal and spatial compo­
nents of fire regimes in a range of ecosystems. Factors contributing to the 
nature of resultant fire regimes include ignition potentials, meteorological 
conditions, and the natural heterogeneity present in any landscape as a 
consequence of topography, the modern vegetation mosaic, and the histor­
ical fire regime (e.g. Rothermel, 1983; Pinol et al., 2005). Knowledge of 
the interplay of these factors assists in determining the potential incidences 
and areas burnt by unplanned fires at different locations in landscapes. 
Fire management objectives are usually directed at reducing the risk bush-
fires pose to identified values, including the protection of people, property, 
biodiversity and water and air quality. 

A prominent management option is to manipulate vegetation, and there­
fore fuel loads, through the implementation of an appropriate prescribed 
burning program (Gill and McCarthy, 1998; Pinol et al., 2005). Conse­
quently, in many landscapes prescribed burning is undertaken in the ex­
pectation that it is effective in reducing fuel loads and fuel connectivity, 
and therefore fire spread rates, intensities and resultant sizes. Reductions 
in spread rates and intensities, by definition, improve the facilitation of 
fire suppression efforts (Byram 1959; Gill et al, 1987; Gill and McCarthy, 
1998). While the logical basis of these premises is simple, they have rarely 
been validated with field and computer simulation data obtained over ade­
quate time periods, and encompassing natural variability in meteorological 
and environmental conditions (Fernandes and Botelho, 2003). 

The present study investigated the relationship between prescribed 
burning effort and the resultant unplanned fire sizes in south-west Tas­
mania, Australia. This study is part of a larger study investigating man­
agement options for reducing bushfire risk to a range of values, and in a 
diversity of Australian landscapes. South-west Tasmania consists of a World 
Heritage Area and Conservation Area, containing two large man-made 
hydro-electric scheme lakes (study area approximately 1.7 million hectares) 
(Fig. 1). With human occupation remaining low, both since European set­
tlement in the early 1800s (Marsden-Smedley, 1998) and by Aborigines dur­
ing the Holocene (Kiernan, 1983; Ryan, 1996), the wilderness and ecological 
values of this region remain high. This region is currently managed primar­
ily for its conservation and biodiversity values. In this landscape there are 
a diversity of vegetation communities, including highly flammable button-
grass moorland (Gymnoschoenus sphaerocephalus) communities (~ 23%), 
less fire-prone wet scrub and wet sclerophyll forests, in addition to remnant 
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patches of rainforest and alpine vegetation (Reid et al., 1999). 

Fig. 1. Location of the study area (box) and the World Heritage Area (black) in south­
west Tasmania, Australia. 

As there is limited fire history and vegetation data available for south­
west Tasmania, informed insights into the effects of long-term prescribed 
burning strategies is likely only through computer simulation modelling. 
FIRESCAPE-SWTAS (King, 2004), the computer simulation model used in 
this study, provides a method for predicting the long-terra effects of different 
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management treatments on the unplanned fire regime in the topographi­
cally complex landscape of south-west Tasmania. In this study, statistical 
analyses of both unplanned fire sizes and mean annual areas burnt result­
ing from different prescribed burning treatments were performed. Further, 
a statistical model was fitted for predicting the mean annual area burnt by 
unplanned fires under different prescribed burning treatments. 

2. Methods 

For this study the process-based computer simulation model designed for 
use in this region, FIRESCAPE-SWTAS (King, 2004), was used over a 
landscape including approximately 1.7 million pixels, each one hectare in 
size. This model incorporates a landscape fire regime simulator and a dy­
namic vegetation model. In this investigation one proposed and various 
hypothetical management options were explored to identify their impact 
on unplanned fire sizes and mean annual areas burnt by unplanned fires. 

In FIRESCAPE-SWTAS a stochastic weather generator based on the 
work of Richardson (1981) was used to simulate daily meteorological con­
ditions. Known monthly correlations of weather variables both within and 
between days were used in the development of this generator. In south-west 
Tasmania approximate mean winter and summer minimum and maximum 
temperatures are 3°C and 10°C, and 10°C and 20°C respectively. Precip­
itation exhibits a winter peak, a strong east-west gradient, and an annual 
average of between 1500 and 3000 mm. Wind is predominantly from the 
north-west, and of greater velocity in the warmer months. 

Fire behaviour algorithms in FIRESCAPE-SWTAS pertain to exist­
ing vegetation communities at each location (buttongrass moorlands -
Marsden-Smedley and Catchpole, 1995a, 1995b, 2001; Marsden-Smedley 
et al., 1999, 2001; heathlands - Catchpole et al, 1998; Marsden-Smedley, 
2002; forest - McArthur, 1967; Noble et al., 1980). Vegetation responses to 
particular fire regimes used in the model follow the concept of 'ecological 
drift' proposed by Jackson (1968). 

In south-west Tasmania, management burning is presently restricted to 
buttongrass moorland communities. To remain consistent with these prac­
tices, prescribed burning was simulated only in this vegetation community. 
During all simulations, fuel remaining after prescribed burns was deter­
mined based on meteorological conditions for the day, and therefore the 
expected fire behaviour during the prescribed burn. Consequently, fuel lev­
els were reduced following prescribed burning, but not totally eliminated. 
In this study a series of hypothetical prescribed burning treatments, and 
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one proposed treatment, were simulated. The proposed treatment was that 
outlined in the draft Tasmanian Wilderness World Heritage Area Tactical 
Management Plan 2004/05 (Tasmanian Parks and Wildlife Service, 2004). 
Prescribed burning treatment units in this management plan include ap­
proximately 22% of all the buttongrass moorland in the study area, with 
prescribed burns in these patches resulting in a mean inter-fire interval of 
7 years (range 5 - 1 5 years). 

For the hypothetical treatments, the landscape was divided into 89 large, 
approximately equal blocks. In different simulations various proportions of 
buttongrass moorland vegetation (0%, 2%, 5%, 10%, 20%, 33% and 50%) 
were burnt annually, with the assumption that all buttongrass in selected 
blocks was burnt. Two alternate spatial selection patterns (determinis­
tic and random blocks) were simulated. The deterministic pattern burned 
blocks in a defined sequence across the landscape, such that patches exhib­
ited a one year difference in their time since fire (Fig. 2). Consequently, in 
these simulations a consistent maximum inter-fire interval exists in all but­
tongrass moorland communities, with approximately equal proportions of 
buttongrass in each annual age class extending to this maximum age class. 
The alternate method for selecting prescribed burning blocks involved the 
random selection of a pre-defined proportion of blocks each year, again as­
suming all buttongrass was burnt in selected blocks (Fig. 2). Due to the 
random selection process, some blocks were burnt more frequently than oth­
ers, resulting in a diversity of inter-fire intervals in buttongrass moorland 
communities. 

Each simulated prescribed burning treatment was performed over 250 
years, and with twenty replicates. In all simulations, unplanned fires orig­
inating from lightning occurred at approximately their present frequency 
and distribution, as determined from historical fire records (King, 2004). 
Lightning fires were ignited in simulations on days with similar meteoro­
logical conditions as they occurred historically. Analyses excluded the first 
fifty years of simulated data, so that all outputs reflected the response to 
the simulated prescribed burning treatments. Initially log-likelihood meth­
ods were used to fit the log-Normal distribution to each replicate of the fire 
size distribution data, and a likelihood ratio test performed to determine 
that all replicates of the same simulated prescribed burning treatment came 
from the same distribution. Therefore data from replicates were pooled for 
comparisons of fire size distributions and mean annual areas burnt by un­
planned fires between simulated treatments. 

Cochran's tests were performed prior to analyses of variance to test 
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(a) (b) 

Fig. 2. Schematic diagram of (a) deterministic and (b) random selection strategies for 
simulations depicting hypothetical prescribed burning treatments. 

for heterogeneity of variances. Two-way analyses of variance tests were 
then used to test the effects of simulated treatments (annual prescribed 
burning levels and spatial pattern) on the mean annual area burnt by un­
planned fires. Multiple comparisons were then made between treatments 
using Tukey tests. Paired comparisons were made between the proposed 
treatment and all treatment levels using t-tests. 

3. Results 

3.1. Comparison of replicate simulations 

Initially comparisons were made between replicates of the same simu­
lated prescribed burning treatments to determine whether each set of fire 
size data came from the same distribution. For each treatment and strat­
egy combination, a likelihood ratio test showed the replicates came from 
the same log-Normal distribution, assuming a log-Normal distribution de­
scribed the data well. However the Kolmogorov-Smirnov goodness-of-fit 
test and probability plots showed the log-Normal distribution to be unsat­
isfactory for the data. Plots of the data revealed a very large number of 
one hectare fires in all data sets. As many of these fires occurred in condi­
tions estimated to be marginally suitable for ignition, and as assumptions 
were made during model construction as to the conditions for initial igni­
tion of fires, there is potential for significant inaccuracies in the number of 
one hectare fires in simulations. By marginally increasing the threshold of 
the data sets to a minimum of two hectares, these potentially unreliable 
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data points were removed. Hutchinson (1995) similarly truncated sets of 
rainfall data that contained significantly large numbers of very small and 
potentially inaccurate values that were shown to be distorting the final dis­
tributions. Fire size distributions for all replicates of each treatment were 
then shown to come from the same log-Normal distribution (Table 1) and 
goodness of fit tests now showed the truncated data to be well approxi­
mated by this log-Normal distribution. The parameter estimates for each 
data set are shown in Table 2. All subsequent analyses were performed on 
these truncated data sets. A log-logistic distribution was also fitted, and 
although acceptable, did not provide such a good description of the data. 

Table 1. P-values for the test that fire size data sets for replications of the same 
simulated prescribed burning treatment are from the same distribution. 

Determinis t ic 
R a n d o m 

Percentage of buttongrass treated annually 
0 

0.98 
0.98 

2 
0.72 
0.98 

5 
0.96 
0.89 

10 
0.30 
0.44 

20 
0.22 
0.22 

33 
0.29 
0.76 

50 
0.76 
0.74 

Proposed 
0.83 
0.83 

Table 2. Parameter estimates on fitting the 
Log-Normal distribution to pooled data. 

Percentage 
treated 

0% 
2% 
5% 

10% 
20% 
33% 
50% 

Proposed 

Determinis t ic 

M 
5.553 
5.319 
4.985 
4.498 
3.766 
3.309 
3.024 
5.330 

a 
2.491 
2.460 
2.348 
2.200 
1.897 
1.696 
1.637 
2.461 

R a n d o m 

P 
5.553 
5.362 
5.172 
4.725 
4.210 
3.825 
3.415 
5.330 

a 
2.491 
2.454 
2.426 
2.315 
2.185 
2.002 
1.904 
2.461 

3.2. Size distributions of unplanned fires 

As all replicates for each simulated prescribed burning treatment were 
shown to come from the same distribution (Table 1), data for each treat­
ment were pooled for comparisons of fire size distributions between simu­
lated treatments. Probability distributions of fire sizes (areas burnt) were 
compared between all simulated treatments, using logarithmic cumulative 
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frequency plots (Fig. 3). These illustrate the proportion of fires (ordinate) 
that are as large as or larger than a given area in hectares (abscissa). All 
fire size distributions in this study demonstrated a majority of small fires, 
with a small number of large fires contributing to most of the total area 
burnt. 

Likelihood ratio tests were performed to test for significant differences 
between fire size distributions for different levels of prescribed burning. 
Within each strategy, a significant difference was found between the fire size 
distributions for each consecutive level of hypothetical prescribed burning 
treatment (Table 3). This finding is supported by Fig. 4, which illustrates 
the parameter estimates with associated 95% confidence intervals against 
proportion of prescribed burning for each strategy. For both selection strate­
gies there is no overlap between the 95% confidence intervals for fi. However 
there is a slight overlap in the intervals for a at the lowest levels of burning. 

Table 3. Likelihood ratio statistic, D, and p-values for the likelihood 
ratio test from a chi-squared distribution on two degrees of freedom 
for comparisons between simulated prescribed burning treatments. 

D a t a 
Comparisons 
0% and 2% 
2% and 5% 
5% and 10% 
10% and 20% 
20% and 33% 
33% and 50% 
0% and Proposed 
2% and Proposed 
5% and Proposed 

Determinis t ic 
D 
60 

127.5 
274 
772 

345.5 
98 

46.2 
0.102 
133.5 

P 
P < 0.001 
P < 0.001 
P < 0.001 
P < 0.001 
P < 0.001 
P < 0.001 

P < 0.001 
P = 0.9504 
P < 0.001 

R a n d o m 
D 

35.6 
34.8 

208.6 
277 

201.4 
167 
46.2 
1.0 
25 

P 
P < 0.001 
P < 0.001 
P < 0.001 
P < 0.001 
P < 0.001 
P < 0.001 
P < 0.001 
P = 0.607 
P < 0.001 

The fire size distribution for the proposed treatment was compared to 
the results for the hypothetical data, and found not to be significantly 
different from the fire size distributions when 2% of buttongrass was burnt 
annually under either patch selection strategy. The proposed treatment was 
significantly different when compared to all other hypothetical treatments 
(Table 3). 

Additionally, comparisons were made between spatial strategies (de­
terministic and random) for identical levels of prescribed burning. These 
identified significant differences in the resultant fire size distributions of 
unplanned fires for the two spatial selection processes when the proportion 
of buttongrass burnt annually was equal to, or greater than, 5%, with larger 
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Fig. 3. The proportion of all unplanned fires as large as or larger than a given size 
for simulations with different buttongrass moorlands prescribed burn treatments, and 
blocks selected in either (a) a deterministic or (b) a random spatial strategy. 

fire sizes observed for the random selection strategy (Table 4). These results 
are also supported by Fig. 4 and the non-overlap of the parameter intervals 
after the 5% level. 

The ordered nature of the data, and the apparent inverse relationship 
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Fig. 4. Parameter estimates and associated 95% confidence intervals under both spatial 
strategies at each level of prescribed burning. 
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Table 4. Comparison of fire size distributions between patch 
selection strategies at each level of prescribed burning. 

Percentage treated 
2% 
5% 

10% 
20% 
33% 
50% 

D 
1.6 

44.2 
76.4 

381.8 
485.5 
270.6 

P 
0.45 

2.52E-10 
0 
0 
0 
0 

between the level of prescribed burning and the parameter estimates, sug­
gested an alternative approach. Instead of fitting separate distributions to 
the data at different levels of prescribed burning, a single log-Normal dis­
tribution was fitted to all data within each spatial selection strategy, with 
parameters dependent on the proportion of buttongrass annually prescribed 
burnt. The results from this model showed that the proportion of button-
grass prescribed burnt has a significant effect on the parameter estimates, 
with smaller parameter estimates occurring for higher levels of annual pre­
scribed burning (Table 5). 

Table 5. Parameter estimates on fitting the Log-Normal distribution with 
parameters dependent on x, the proportion of prescribed burning. 

a 

Determinis t ic 
exp(1.676 - 1.348s) 
exp(0.896 - 0.927x) 

R a n d o m 
exp(1.689 - 1.028a;) 
exp(0.907 - 0.569x) 

3.3. Mean annual areas burnt 

The mean annual area burnt by unplanned fires during simulations shows 
an approximate negative exponential distribution with respect to the pro­
portion of buttongrass moorlands included in annual prescribed burning 
(Fig. 4). This implies that for linear increases in prescribed burning treat­
ment there is a diminishing effect in reducing the mean annual area burnt 
by unplanned fires. This reflects the important contribution of the largest 
unplanned fires to the mean annual area burnt, and the observed decline 
in the size of the largest unplanned fires with increased prescribed burning 
treatment (Fig. 5). 

A Cochran's test indicated that heterogeneity of variances was not sig­
nificant following square root transformation of data for mean annual area 
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Fig. 5. Mean annual area burnt (ha) by unplanned fires for all simulated prescribe 
burning treatments (Deterministic — filled circles; Random — open circles; Proposed 
— squares). 

burnt (Cochran's = 0.133; Ccrit = 0.153). A two-way analysis of variance 
on these transformed data demonstrated that there was a significant inter­
action between effects of prescribed burning level and spatial strategy on 
mean annual area burnt (d.f. = 6; interaction F = 20.1; P < 0.01; levels 
F = 2283; P < 0.05). Multiple comparisons using Tukey tests demonstrated 
that means were significantly different between all treatment levels, with 
mean area burnt declining with increasing level of treatment. There was a 
significantly greater mean annual area burnt under a random, rather than 
deterministic, patch selection strategy for 5%, 10% and 20% treatment lev­
els. There was no significant effect of spatial strategy at the other levels 
of treatment. These observations are consistent with the earlier observa­
tion that there was a significant difference in fire size distributions between 
spatial selection strategies when at least 5% of buttongrass moorlands was 
treated annually (Table 3). 

T-tests between the proposed treatment and all hypothetical treatments 
identified non-significant differences in the mean annual area burnt only 
between the proposed and both 2% hypothetical treatments. This is in 
agreement with the results from Table 3 that indicate that the fire size 
distribution for the proposed treatment is not significantly different from 
that under either strategy at the 2% prescribed burning level. 
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4. Discussion 

In this study, increasing the prescribed burning treatment level resulted in 
reductions in both the unplanned fire sizes and the mean annual area burnt 
by unplanned fires. Statistical analyses demonstrated significant differences 
in the fire size distributions between all treatment levels, with significantly 
greater areas burnt by unplanned fires for the random, rather than de­
terministic, patch selection strategy, at treatment levels of 5% or greater. 
These observations are consistent with a suite of studies examined by Fer-
nandes and Botelho (2003) from North America, Europe and Australia, 
and a recent study by Pinol et al. (2005), all of which observed consistent 
declines in both fire sizes and mean annual areas burnt with increasing 
prescribed burning treatments. 

In our study there was an observed approximate negative exponential 
relationship between the level of prescribed burning and the mean annual 
area burnt by unplanned fires. This implies that for a linear increase in pre­
scribed burning effort, maximal reductions in the mean annual area burnt 
by unplanned fires occur when there is initially no, or minimal, initial pre­
scribed burning. The significance of spatial strategy was observed to be the 
greatest between 5% and 20% treatment levels, with enhanced reductions 
in the mean annual area burnt with deterministic patch selection. This 
relationship was confirmed by the trend in the parameters of the fitted 
distributions. 

Observed differences between the fire size distributions and mean an­
nual areas burnt between patch selection strategies could be attributed 
to the fuel arrays resulting from these two spatial strategies. Fires prop­
agate more readily where there is a continuous fuel bed with sufficient 
fuel loads. Random spatial strategies result in the potential for higher fuel 
loads to be maintained in areas not treated for extended periods, a fac­
tor conducive to the spread of large fires across the landscape. In con­
trast, deterministic spatial selection results in a maximum fuel age reflect­
ing the proportion of buttongrass annually treated (maximum fuel age = 
(proportion treated annually) - ). Therefore it is possible that there was a 
greater potential for larger fires under the random spatial selection strat­
egy, as some fires could propagate through areas not burnt for extended 
periods. 

Observing the distribution of fire sizes for each different treatment com­
bination provides more useful information than looking at the means and 
standard deviations alone. The truncated data were shown to be well mod­
elled by a log-Normal distribution, which is heavily skewed to the right. 
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This shape is further emphasised with the inclusion of the one hectare 

fires. Large, high intensity, unplanned fires are those t ha t pose the greatest 

threat to identified values in landscapes, as both they are responsible for 

the majority of the burnt area, and it is impossible to implement suppres­

sion efforts under the extreme fire weather conditions under which they 

occur. Consequently, management practices tha t reduce the incidence and 

size of the largest unplanned fires are those most effective in reducing the 

risk of the adverse effects from unplanned fires. The fitted distributions in 

this s tudy provide a method for determining the probability of observing 

these large fires in the landscape under different t rea tment scenarios. 

The design of the simulated proposed t reatment was based on current 

knowledge of fire behaviour, and the location of identified values. Pa tch 

sizes, shapes, locations, and burning frequencies were selected in the antici­

pat ion of meeting all identified management objectives. Our simulations in­

dicated tha t this t reatment had no enhanced impact on reducing unplanned 

fire sizes or mean annual areas burnt . However, investigations beyond this 

s tudy did indicate tha t this strategy had an enhanced effect in meeting 

other management objectives (King, pers. observ.). 

It is possible to adopt the methodology used in this s tudy to similar 

studies investigating alternate prescribed burning t rea tment options in a 

range of landscapes and ecosystems. Further studies can be performed to 

determine optimal patch locations, sizes, shapes and burning frequencies 

for meeting defined fire management objectives. Additionally investigations 

can be undertaken into the implications of climate and global change on 

management strategies. Principles at tained through statistical analyses of 

simulation work can be applied to designing, modifying and prioritising the 

burning of t reatment units. 

R e f e r e n c e s 

1. Bowman, D.M.J.S. (1998) Tansley Review No. 101. The impact of Aboriginal 
landscape burning on the Australian biota. New Phytologist. 140, 385-410. 

2. Byram, G.M. (1959) Combustion of forest fuels. In Forest Fire: control and 
use. (Ed K.P. Davis) pp 61-89. (McGraw-Hill: New York) 

3. Catchpole, W.R., Bradstock, R.A., Choate, J., Fogarty, L.G., Gellie, N., Mc­
Carthy, G.J., McCaw, W.L., Marsden-Smedley, J.B. and Pearce, G. (1998) 
Co-operative development of equations for heathland fire behaviour. In Pro­
ceedings of the 3rd International Conference of Forest Fire Research and 14th 
Conference of Fire and Forest Meteorology. (Ed D.X. Viegas) pp 631-645. 
(University of Coimbra: Portugal) 

4. Fernandes, P.M. and Botelho, H.S. (2003) A review of prescribed burning 



Determine the Effectiveness of Prescribed Burning 87 

effectiveness in fire hazard reduction. International Journal of Wildland Fire 
12, 117-128. 

5. Gardner, R.H., Romme, W.H. and Turner, M.G. (1999) Predicting forest 
fire effects at landscape scales. In Mlandenoff, D.J. and Baker, W.L. (eds) 
Spatial Modeling of Forest Landscape Change. Cambridge University Press, 
pp 186-209. 

6. Gill, A.M. (1981) Adaptive responses of Australian vascular plant species to 
fire. In Gill, A.M., Groves, R.H. and Noble, I.R. (eds) Fire and the Australian 
biota. Australian Academy of Science, Canberra, pp 243-272. 

7. Gill, A.M. and McCarthy, M.A. (1998) Intervals between prescribed fires in 
Australia: what intrinsic variations should apply? Biological Conservation 85, 
161-169. 

8. Gill, A.M., Christian, K.R., Moore, P.H.R., and Forrester, R.I. (1987) Bush-
fire incidence, fire hazard and fuel reduction burning. Australian Journal of 
Ecology 12 (3), 299-306. 

9. Hutchinson, M.F. (1995) Stochastic space-time weather models from ground-
based data. Agricultural and Forest Meteorology 73, 237-264. 

10. Jackson, W.D. (1968) Fire, air, water and earth — An elemental ecology of 
Tasmania. Proceedings of the Ecological Society of Australia 3, 9-16. 

11. Kershaw, A.P. (1986) The last two glacial/interglacial cycles from north­
eastern Australia: implications for climate change and Aboriginal burning. 
Nature. 322, 47-49. 

12. Kiernan, K.B. (1983) Relationship of cave fills to glaciation in the Nelson 
River Valley, central western Tasmania. Australian Geographer 15, 367-375. 

13. King, K.J. (2004) Simulating the effects of anthropogenic burning on patterns 
of biodiversity. PhD Thesis. Australian National University, Canberra. 

14. Marsden-Smedley, J.B. (1998) Changes in the south western Tasmanian fire 
regime since the early 1800s. Papers and Proceedings of the Royal Society of 
Tasmania 132, 15-29. 

15. Marsden-Smedley, J.B. (2002) Version 1 Scrub Fire Danger Rating: outline of 
a prediction system. (Unpublished data) Tasmanian Department of Primary 
Industries, Water and Environment. Hobart. 10 pp. 

16. Marsden-Smedley, J.B. and Catchpole, W.R. (1995a) Fire behaviour mod­
elling in Tasmanian buttongrass moorlands. I. Fuel characteristics. Interna­
tional Journal of Wildland Fire 5, 203-214. 

17. Marsden-Smedley, J.B. and Catchpole, W.R. (1995b) Fire behaviour mod­
elling in Tasmanian buttongrass moorlands. II. Fire behaviour. International 
Journal of Wildland Fire 5, 215-228. 

18. Marsden-Smedley, J.B. and Catchpole, W.R. (2001) Fire modelling in Tas­
manian buttongrass moorlands. Ill Dead fuel moisture. International Journal 
of Wildland Fire 10, 241-253. 

19. Marsden-Smedley, J.B., Catchpole, W.R. and Pyrke, A. (2001) Fire modelling 
in Tasmanian buttongrass moorlands. IV Sustaining versus non-sustaining 
fires. International Journal of Wildland Fire 10, 255-262. 

20. Marsden-Smedley, J.B., Rudman, T., Pyrke, A. and Catchpole, W.R. (1999) 
Buttongrass moorland fire-behaviour prediction and management. Tasforests 



88 K. J. King & J. Chapman 

11, 87-107. 
21. Martin, H.A. (1996) Wildfires in past ages. Proceedings of the Linnean Society 

of New South Wales. 116, 3-17. 
22. McArthur, A.G. (1967) Fire behaviour in eucalypt forests. Commonwealth 

of Australia Forest and Timber Bureau Leaflet No. 107. 
23. McKenzie, G.M. (2002) The late Quaternary vegetation history of the south-

central highlands of Victoria, Australia. II. Sites below 900m. Australian 
Ecology. 27, 32-54. 

24. Noble, I.R., Bary, G.A.V., and Gill, A.M. (1980) McArthur's fire-danger me­
ters expressed as equations. Australian Journal of Ecology 5, 201-203. 

25. Perry, G.L.W. (1998) Current approaches to modelling the spread of wildland 
fire: a review. Progress in Physical Geography. 22 (2), 222-245. 

26. Pinol, J., Beven, K. and Viegas, D.X. (2005) Modelling the effect of fire-
exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. 
Ecological Modelling 183. 397-409. 

27. Reid, J.B., Hill, R.S., Brown, M.J. and Hovenden, M.J. (1999) (Eds) Vege­
tation of Tasmania. Environment Australia, Hobart. 

28. Richardson, C.W. (1981) Stochastic simulation of daily precipitation, tem­
perature, and solar radiation. Water Resources Research 17(1), 182-190. 

29. Rothermel, R.C. (1983) How to predict the spread and intensity of forest and 
range fires. USDA Forest Service General Technical Report INT-143. Ogden, 
UT. 161 pp. 

30. Ryan, L. (1996) The Aboriginal Tasmanians. Allen and Unwin, Singapore. 
31. Tasmanian Parks and Wildlife Service, (2004 draft) Tasmanian Wilderness 

World Heritage Area Tactical Management Plan. Version 4- 2004/5. Fire 
Management Section. Parks and Wildlife Service, Department of Tourism, 
Parks, Heritage and The Arts, Hobart. 



89 

A Fair Tennis Scoring System for Doubles in the Presence of 
Sun and Wind Effects — An Application of Probability 

Graham Pollard 

School of Information Sciences and Engineering, University of Canberra, 
Canberra ACT 2601, Australia 

E-mail: graham@foulsham. com. au 

The present tennis scoring system is unfair in doubles for the case in which 
the two players in the team (or pair) are not equally effective on service. This 
unfairness can be resolved by making relatively small changes to the scoring 
system. It is even possible, by making additional changes, to produce a scoring 
system for doubles which is fair in the presence of wind and sun effects. 

Keywords: unfairness in tennis doubles; sun and wind effects in tennis. 

1. Introduction 

A fair scoring system for a set of tennis between two doubles pairs A and 
B has the characteristic that Prob(A wins the set) = Prob(5 wins the 
set) = 0.5 when the pairs are equal. The unfairness of the present tennis 
scoring system when used in doubles, for the case in which the two players 
in each doubles pairing are not equally effective on service, is demonstrated 
in Section 3. The methodology for converting the present scoring system 
into a fair one for doubles is also outlined in Section 3, and a solution to 
this unfairness in doubles is given in Section 4. This methodology outlined 
in Section 3 is then used to produce a doubles scoring system which is fair 
in the presence of sun and wind effects. 

2. Singles 

Two numerical examples are given in this section in order to give some 
insights that are useful for the remainder of the paper. 

Example 2.1. This example appears in the paper by Newton and Pollard 
[1]. It considers a set of singles between two players A and B. Player A has 
a constant probability PA = 0.7 of winning each of his service games, and 
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player B has a constant probability PB = 0.6 of winning each of his service 
games. Games are assumed to be statistically independent. 

(a) Using "conventional" serving sequence, ABABABABAB... 

P{A wins the set 6-0) = 0.021952 

P{A wins the set 6-1) == 0.0889056 

P(A wins the set 6-2) = 0.09567936 

P(A wins the set 6-3) = 0.187463808 

P(A wins the set 6-4) = 0.109593388 

SUM =0.503594156 

(b) Using the "extreme" serving sequence, AAAAABBBBB/AB... 

P(A wins the set 6-0) = 0.067228 

P{A wins the set 6-1) = 0.0979608 

P(A wins the set 6-2) = 0.11310768 

P(A wins the set 6-3) = 0.115704288 

P(A wins the set 6-4) = 0.109593388 

SUM =0.503594156 

Although the "extreme" sequence is of no practical relevance, it can be 
seen that the probability that player A wins the set with a score of 6-0, 
6-1, 6-2, 6-3 or 6-4 is the same for both serving sequences. It can be shown 
that, in general, the probability that player A wins the set is unaffected by 
using any service order whatsoever for the first 10 games, provided each 
player serves (or is planned to serve) 5 games each. 

Example 2.2. This example is an extension of Example 2.1 to the case in 
which PA is not constant. We assume PA has values 0.5, 0.55, 0.6, 0.65 and 
0.7 for Player A's service game 1 through to game 5 and that PA remains at 
0.7 for service games 6 onwards. This might represent a case in which player 
A takes some time to reach full effect on his service. We assume player B is 
an identical and equal player (i.e. PB = 0.5, 0.55, 0.6, 0.65, 0.7,...). It can 
be shown that for both the "conventional" and "extreme" sequences, we 
have P(A wins the set) = P(B wins the set) = 0.5. That is, the set scoring 
system is fair. Indeed, fairness is maintained under any arrangement of the 
five game probabilities (0.5, 0.55, 0.6, 0.65, 0.7) for either player. 
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3. The Present Doubles Scoring System 

The doubles pair or team A has two players Al and A2 and the pair or 
team B has two players Bl and B2. If we assume team A serves in the first 
game of the set, there are 4 service-game orders for the set: 

(a) A1,B1,A2,B2, . . . 
(b) A1,B2,A2,B1, ... 
(c) A2,B1,A1,B2, ... 
(d) A2,B2,A1,B1, ... 

Pollard [4] noted that the "games-structure" within the tiebreak set scoring 
system is "first to 6 games leading by at least 2 games; if 5 games each is 
reached, first to 7 games leading by 2 games; and if 6 games each is reached, 
play the tiebreak game", which he denoted by 

F(6,2); if 5-5, F(7,2); if 6-6, play TB. 

He also noted that this games-structure can be seen as "best of 10 games; 
if 5 games each is reached, best of 12 games; and if 6 games each is reached, 
play the tiebreak game", which he denoted by 

£(10); if 5-5, B(12); if 6-6, play TB. 

We now consider the "points-structure" within the tiebreak game. The 
order of the types of service points, by the rules of tennis, must be the 
same as the order of the types of service games. Thus, the tiebreak point-
order for order (a) above is 

Al, Bl, Bl, A2, A2, B2, B2, Al, Al, Bl, Bl, A2, A2, B2, B2, Al,.... 

Pollard [4] noted that the tiebreak stopping rule is "first to 7 points leading 
by at least 2 points; if 6 points each is reached first to 8 points leading by 2 
points; if 7 points each is reached, first to 9 points leading by 2 points;..." 
which he denoted by 

TB(J,2); if 6-6, TB(8,2); if 7-7, TB{9,2); .... 

He also noted that this tiebreak stopping rule can be seen as 

B(12); if 6-6, B(14); if 7-7, £(16); . . . . 

The following numerical example appears in the paper by Pollard and No­
ble [2]. Player Al is assumed to have a constant probability pal of winning 
a point on service whilst player A2 is assumed to have a constant proba­
bility pa2 of winning a point on service. It is not uncommon in practice, 
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particularly in mixed doubles, for one of these probabilities to be greater 
than the other. Player Al is assumed to be the more effective on service, 
with pal = 0.7 and pa2 = 0.5. The B pair is assumed to be identical (or 
equal) to the A pair. Thus pbl = 0.7 and pb2 = 0.5. It is clear that when we 
have two identical and equal teams we can assume without loss of generality 
that team A serves first, and hence only the 4 service-orders (a), (b), (c) 
and (d) above need to be considered. 

In Table 1 the unfairness of the "games-structure" within the tiebreak 
set scoring system can be seen for service orders (b) and (c). For order 
(b) the more effective team A player, Al, serves 3 service games within the 
£?(10)-games (sub-) structure whereas the more effective team B player, Bl, 
serves just 2 service games. Not surprisingly, for order (b), P(A wins the 
set) > P(B wins the set), demonstrating the unfairness of the B(10)-games 
(sub-) structure. Analogously, it can be seen that P(A wins the set) < P(B 
wins the set) for service order (c). It is noted that the games-structure for 
orders (a) and (d) is fair. 

Table 1. The probability team (Al, A2) wins the tiebreak set when 
pa l = pbl = 0.7 and pa2 — pb2 = 0.5, for the four orders of service (cor­
rect to 4 decimal places). 

Order 

P(A wins set before tiebreak) 
P(B wins set before tiebreak) 

P(Tiebreak is played) 
P(A wins if tiebreak is played) 

P(A wins in a tiebreak) 
P(A wins the set) 

(a) 
Al,Bl, 
A2,B2 
0.4209 
0.4209 
0.1582 
0.4618 
0.0731 
0.4940 

(b) 
A1,B2, 
A2,B1 
0.4858 
0.3712 
0.1430 
0.5287 
0.0756 
0.5614 

(c) 
A 2 , £ l , 
A1,B2 
0.3712 
0.4858 
0.1430 
0.4719 
0.0675 
0.4387 

(d) 
A2,B2, 
A1,B1 
0.3825 
0.3825 
0.2349 
0.5356 
0.1258 
0.5083 

The unfairness of the tiebreak points-structure within the tiebreak game 
stopping rule can be seen in Table 1 for all service point orders. In order 
(a) for example, player Bl serves on 4 occasions within the B(12)-points 
(sub-) structure, whereas player B2 serves on just 2 occasions, whilst players 
Al and A2 serve on 3 occasions each. Similarly, the £?(14)-points (sub-) 
structure within the tiebreak game stopping rule can be seen to be unfair, 
whilst the B(16)-points (sub-) structure is indeed fair as each player serves 
on 4 occasions each. Thus it can be seen that the tiebreak game is unfair 
for all orders of serving, and hence the tiebreak set itself must be unfair for 
all orders of serving. 
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The (longer) tiebreak game, "7\B(10,2); if 9-9, T 5 ( l l , 2 ) ; if 10-10, 
TJB(12, 2), . . . " , an optional scoring system within the rules of tennis and 
the one used for the third set in the Australian Open Mixed Doubles Cham­
pionship, is also unfair for similar reasons. 

4. Solution to the Unfairness of the Present Scoring 
System for Doubles 

Pollard [4] showed that the "games-structure" within the set could be made 
fair by using only B(n)-games (sub-) structures in which n is always a 
multiple of 4 (the number of players or servers). He also showed that the 
tiebreak game structure within the set could be made fair by using only 
£(n)-points (sub-) structures in which n is a multiple of 8 (4 players each 
serving 2 points at a time). Thus, he noted the following fair structures. 

Games Structure : 

B(8); if 4-4, B(12); if 6-6, £(16); . . . (advantage set) 

(i.e. F(5,2); if 4-4, F(7,2); if 6-6, F(9, 2); . . . (advantage set)) 

or 

B{8); if 4-4, play modified TB (tiebreak set) 

(i.e. F(5,2); if 4-4, play modified TB (tiebreak set)) 

Modified Tiebreak Game Structure : 

£(16); if 8-8, £(24); if 12-12, £(32); . . . 

(i.e. T£(9,2); if 8-8, T£(13,2); if 12-12, T£(17,2); . . .) 

5. A Fair Scoring System for a Set of Doubles in the 
Presence of Sun and Wind Effects 

The probability of winning a point can differ from one end of the court 
to another, for example in the presence of a wind effect. This is a playing-
from-a-particular-end effect, E. Also, the sun can affect serves from one end 
of the court. This is a sun or serving-from-a-particular-end effect, S. Fair 
stopping rules can be devised for the case in which these effects exist, and 
the following is an extension of earlier work by Pollard and Noble [3]. 

It is assumed that players A\ and S i ' s game-probabilities when serving 
from end 1 become PAl + El + 51 and PB\ + El + SI respectively, 
where El is the effect both players Al and Bl have from being at end 1 
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(whether serving or receiving) and SI is the effect both players Al and 
Bl have when serving (but not receiving) from end 1. Correspondingly 
it is assumed players A2 and J32's game-probabilities when serving from 
end 1 are PA2 + E2 + S2 and PB2 + E2 + 52. It is assumed that team 
A's probability of winning a game from end 1 is QB1 + E3 when Bl is 
serving from end 2, and QB2 + E4 when B2 is serving from end 2, where 
QB1 = 1-PBl and QB2 = 1-PB2. Also, team B's probability of winning 
a game from end 1 is assumed to be QA1 + E3 when A\ is serving from 
end 2, and QA2 + EA when A2 is serving from end 2. We assume the teams 
change ends after 2, 6, 10, . . . games are played. 

Assuming the service order is Al, Bl, A2, B2 with team A commencing 
service at end 1, team A's game-probabilities for games 1 through to 8 can 
be seen to be PA1 + El + 51 , QB1 + E3, PA2 - £4 , QB2 - E2 - 52, 
PA1 - E3, QB1 - E l - 51 , PA2 + E2 + S2 and QB2 + E4 respectively. 
Correspondingly, team B's game-probabilities for games 1 through to 8 
are QA1 - E l - 51, PB1 - E3, QA2 + E4, PB2 + E2 + 52, QA1 + E3, 
PB1 + E1 + 51 , QA2 -E2-S2 and PB2 - EA. It can be seen that when 
PA1 = PB1 and PA2 = PB2, the 8 probabilities for team A are equal 
to the 8 probabilities for team B although the orderings are different. It 
follows that stopping rules making use of 8 games at a time are fair. Thus, 
in the presence of wind and sun effects, and changing ends after 2, 6, 10, 
. . . games, the following stopping rules are fair. 

Games Structure: 

B(8); if 4-4, B(16); if 8-8, £(24); . . . (advantage set) 

(i.e. F(5,2); if 4-4, F(9,2); if 8-8, F(13,2); . . . (advantage set)) 

or 

B(8); if 4-4, play "extended" modified TB (tiebreak set) 

(i.e. F(5,2); if 4-4, play "extended" modified TB (tiebreak set)) 

where the "extended" modified TB game is described in the following para­
graph. 

We now design an "extended" modified TB game for the case in which 
there are end and sun effects. It is assumed players Al and S i ' s point-
probabilities when serving from end 1 are pal + el + si and pbl + el + si, 
whilst players A2 and £?2's point-probabilities when serving from end 1 are 
pa2+e2+s2 andp62+e2+s2 respectively. It is assumed team A's probability 
of winning a point when receiving from end 1 is qbl + e3 when B l is serving 
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from end 2, and qb2 + e4 when B2 is serving from end 2 (gal = 1 —pal,...). 
It is also assumed that team B's probability of winning a point from end 1 
is qal + e3 when Al is serving from end 2, and qa2 + e4 when A2 is serving 
from end 2. It is assumed that the teams change ends after 8, 24, 40, . . . 
points. 

Assuming the point service order is (just for a change!) Al, B2, A2, Bl 
with player Al starting service from end 1, it can be seen that team A's 
point-probabilities for points 1 through to 16 are pal + el + s i , qb2 + e4, 
qb2 + e4,pa2+e2 + s2,pa2 + e2 + s2,qbl + e3,qbl+e3,pal + el + sl,pal-e3, 
qb2 ~e2- s2, qb2 - e2 - s2, pa2 - e4, pa2 - e4, qbl -el- si, qbl - el - si 
and pal — e3. It can be seen that, when pal = pbl and pa2 = pb2, the above 
16 probabilities for team A are equal to the corresponding 16 probabilities 
for team B, although the orderings are different. It follows that stopping 
rules making use of 16 points at a time are fair. Thus, in the presence of 
the wind and sun effects, and changing ends after 8, 24, 40, . . . points, the 
following stopping rule is fair. 

"Extended" modified tiebreak structure: 

£(16); if 8-8, 5(32); if 16-16, J3(48); . . . 

or 

TB(9,2); if 8-8, TB(17,2); if 16-16, TB(25,2); ... 

It can be seen that there is a price paid for including wind and sun 
effects, in that there are now fewer "stopping situations". For example, 
within the games-structure for the advantage set, winning games' scores 
of 7-4 and 7-5 are no longer fair in the presence of end and sun effects. 
Correspondingly, within the "extended" modified tiebreak game, winning 
points' scores of 13-8, 13-9, 13-10 and 13-11 are also no longer fair. 

It can be shown that the "extended" fair set model presented in this sec­
tion remains fair in the presence of (serving to the) forehand- and backhand-
court effects. For example, pal becomes pal + fl when serving to the 
forehand-court and it becomes pal + bl when serving to the backhand-
court (fl + bl = 0). Correspondingly pa2 becomes pa2 + / 2 and pa2 + 62 
(/2 + b2 = 0), and we make associated changes to pbl and pb2. The reader 
is referred to Pollard and Noble [3] for an example using forehand-court 
and backhand-court effects. 

The methods in this paper can also be used to produce fair tiebreak 
scoring systems for the win by at least 4 (and win by at least 6,...) points 
structures within the tiebreak game. It can be seen that win by at least 3 
(and win by at least 5,...) points structures are unfair. 
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For finite irreducible discrete time Markov chains, whose transition prob­
abilities are subjected to a perturbation, the "mean first passage times" and 
the "mixing times" play an important role in determining, respectively, the 
relative and absolute differences between the stationary probabilities in the 
perturbed and unperturbed situations. Bounds for these differences are given 
and are illustrated by means of an example. 

Keywords: Markov chain; generalised inverse; stationary distribution; mean 
first passage time; mixing time; perturbation theory. 

1. Introduction 

Let P = \pij] be the transition matrix of a finite irreducible m-state 
Markov chain. Let P = [p^] = P + E be the transition matrix of the 
perturbed Markov chain where E = [etj] is the matrix of perturbations. 
We assume that the perturbed Markov chain is also irreducible with 
the same state space S = {1 ,2 , . . . ,m} . Let TZT = (TTI,TT2, • • •,7rm) and 
•ft = (ffi, 7T2, • • • j Ttm) be the stationary probability vectors for the Markov 
chains with transition matrices P and P, respectively. Let M = [m,ij] be 
the "mean first passage time" matrix and let N = [n^] = [(1 — 6ij)rriij7Cj] 
be the "matrix of mixing times" (Hunter [8]) of the Markov chain with 
transition matrix P. Let e T = ( 1 , 1 , . . . , 1). 

In Section 2 we develop a general relationship between 7rT and 7r in 
terms of generalised inverses (g-inverses) oi I — P. This leads to a series of 
special cases, some of which are new. Alternative relationships in terms of 
M and N are also derived. 

In Section 3 these structural results are used to derive absolute 
component-wise and relative error bounds between the stationary prob­
abilities of the two Markov chains. 

mailto:j.hunter@massey.ac.nz
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In Section 4 the special case involving perturbations in a single row are 
considered and some new interrelationships derived. 

In Section 5 an example illustrating these results is provided. 

2. Updating Stationary Probability Vectors Under General 
Perturbations 

We show that for any general perturbation E the difference 7rT — 7VT can 
always be expressed in the form 

TTT - 7rT = 7rTEff. (1) 

The most general expression for H can be given in terms of ^-inverses of 
I — P. We make use of the following relevant results that appear in Hunter 
[5], [6]. 

• A g-inverse A" of a matrix A has the property that AA~~ A = A. 
• For finite irreducible Markov chains, I — P + t u T is non-singular if and 

only if t and u are vectors such that 7TTt ^ 0 and uTe ^ 0. 
• Further, if 7rTt ^ 0 and uTe -̂  0, then [I — P + t u T ] _ 1 is a g-inverse 

oil-P. 
• All ^-inverses oi I — P are of the form [I — P + t u T ] _ 1 + efT + g7rT 

for arbitrary f and g. 

Theorem 2.1. If G is any g-inverse of I — P, then 

7rT - TTT = itTEG(I - n) (2) 

where n = e7rT
; so that in (1) H can be taken as G(I — n) . 

Proof. Since izT(I - P) = 0 T and *T{I - P) = TTT(I - P - E) = 0T , 

( * T - 7 T T ) ( / - P ) = 7TTE. (3) 

Thus post-multiplying (3) by G(I — n ) yields 

(TTT - 7rT)(7 - P)G[I - n) = ifTEG(7 - n) . (4) 

By taking G as the general form [I — P + t u T ] _ 1 + efT + g7r r and using 
the observations that II = e7rT, 7rTe = 1, Pe = e, and the results (see [5]) 
that 

[/_F + t u T r l t = _J_ ; (5) 

{ I - P ) [ I - P + tuT]-l=I_^_t ( 6 ) 
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it can be seen that, for any ^-inverse G of I — P, 

{i - P)G(I - n) = i - n. (7) 

Thus, from (4) and (7), 

(TTT - TTT)(7 - n ) = TTTEG(I - n ) . 

Further, 

( * T - 7TT)(7 - n ) = (7TT - TZT)(I - e7TT) = ( T T T - 7TT) 

and (2) follows. • 

Theorem 2.1 was first given by Hunter ([7]). All known published results 
for the difference iv — TTT can be obtained from this result. In particular 
we have the following special cases. 

Theorem 2.2. 

(i) If 7rTt 76 0 and u T e ^ 0, then 

*T-TTT = *TElI-P + tuT}-1(I-n). (8) 

(ii) If u T e 7̂  0, then 

f r T - 7 r T = 7 r T E [ / - P + e u T ] - 1 . (9) 

(Hi) IfG= [I— P+euT]~1+efT withuTe ^ 0 andfT an arbitrary vector, 
then 

TTT _ TTT = TZTEG. (10) 

(iv) If Z = [I — P + n ] _ 1 is Kemeny and Snell's fundamental matrix' 
([10]), then 

7TT - 7TT = 7 T T E Z . (11) 

ft;,) If A* = Z -U is the 'group inverse' ([12]) of I - P, then 

7ZT--KT=%TEA*. (12) 

Proof. 

(i) For (8), substitution of G into (2) leads to the ef term vanishing since 
Ee = 0. Similarly the g7rT term cancels since izT{I — e7rT) = 0 T . 
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(ii) Equation (9) follows from (8) upon substitution of t = e since, from 
(5), [I-P + e u 7 ] - ^ = e/ (uTe) and Ee = 0. 

(iii) Substitution of the form of G into (2) leads to the 7rTEGTI term van­
ishing since 
E G n = E ( [ / - P + e u T ] - 1 + e f T ) e 7 r T = Ee{(l /(uTe))+(fTe)}7rT = O, 
where O = [ 0 ] m x m . 

(iv) Equation (11) follows from (9) or (10) with u T = TYT . 
(v) Equation (12) follows from (10) with u T = 7rT and fT = TVT. • 

The general result (8) was first given by Hunter [7]. The other results, or 
special cases of them, appear in the literature but with ad hoc derivations. 
Results (9) and (10) appear in Seneta [16], while result (10) appears in 
Seneta [18]. Result (11) was initially given by Schweitzer [15]. Result (12) 
is due to Meyer [13]. 

Note that Z and A* are both g-inverses of I — P (see e.g. Hunter [5], 
[6]; Meyer [12]). 

If G is any g-inverse of I — P, then (Hunter [5], [6]) 

M = [GIL - E(Gn)d +1 - G + EGd]D, (13) 

where E = eeT = [ 1 ] m x m and D = Md = (Jld)-
1. 

Theorem 2.3. If M is the mean first passage time matrix of the finite 
irreducible Markov chain with transition matrix P, then for any general 
perturbation E of P, 

-S-T-7rT = - 7 r T E ( M - M d ) ( M d ) - 1 . (14) 

Proof. Let G be any ^-inverse of I - P and let H = G(I - II). From (13) 
observe that, 

(M - M d ) (M d )" 1 = GH - E(GIl)d -G + EGd = EHd - H. 

Thus 

H = EHd-(M-Md)(Md)-\ 

EG(I -U)=EH = EEHd - E(M - Md){Md)~
l = - E ( M - Md){Md)~\ 

and since Ee = 0 implies EEHd = EeeTHd = 0, (14) follows from (6). • 

Result (14) appears in Hunter [7]. It can be simplified, using the "mixing 
time matrix", N = [n^] (see also Hunter [8]). 
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Theorem 2.4. Let N = [riij] = [(l — 8ij)mij/mjj] = [(l — 5ij)m,ijiTj}. Then 
for any general perturbation E, 

nT - ixT = —KTF,N. (15) 

Proof. (15) follows directly from (14) since N = (M - Md)(Md)^1 . • 

Thus every expression for TVT - TVT (e.g. (8), (9), (10), (11), (12), (14) 
and (15)) is of the form given by (1) where H involves a ^-inverse, is a 
<j-inverse, or involves M or N. 

3. Bounds on Stationary Distributions Under General 

Perturbations 

We wish to explore absolute component-wise bounds of the form 

|7rJ--7fJ-|<fci||E||00 

and relative error bounds of the form 

71",' — TXi 

For a summary of previous key results see Cho and Meyer [1]. They sum­
marise and compare results due to Schweitzer [15], Meyer [13], Haviv and 
Van der Heyden [4], Kirkland et al. [11], Funderlic and Meyer [3], Meyer 
[14], Seneta [17], [18] and [19], Ipsen and Meyer [9], and Cho and Meyer [2]. 

Result (15) shows that elemental expressions for TTJ—TTJ can be expressed 
in terms of riij = rriij/mjj = mijWj (i ^ j) with rijj = 0. In particular for 
each j = 1, 2 , . . . ,m, 

m 

•Kj - irj = ^^ ainij where a; = ^ Trkeki- (16) 

Theorem 3 .1 . For a general perturbation E = [eij], for each fixed index j 

(1 < j < m), 

k i - ^ ^ ^ m a x ^ } , (17) 

m 
where H^H^ = max £ |eM | . 

l<k<m i=i 
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Proof. The proof is based upon the result (see [4]) that for any vectors c 
and d such that c T e = Y^=i c» = 0> then 

< ( f > | ) ^ ^ — ^ . (18) c T d y^^jdj 

From (16), for each j , since rijj = 0, ITJ — TTJ can be expressed as 

YAII ainij where 
m m m m m 

i=i i=i k=\ k=i i=i 

Applying (18) yields 
m , i IN 

|7Tj- — TTjl < ^ | C K l | ( '-^T2 M . (19) 
1=1 ^ ' 

Now 
m m m m m m ( m \ 

1=1 1=1 k=l k=l 1=1 fe=l I 1=1 ) 

= Plloo- S i n c e nn = °i 

max /i/"^ rtgj 
r.s 

max < max (|nrj — nsj | ) , max nSj 
\J^j,s^j Sytj 

Further, since nrj > 0 and min {nrj} = 0, for all r, s we have 

|n rj — rigjl < max{n r j} — min{nrj} = m&x{nrj} (20) 

leading to max r s \nrj — nsj\ = max^ j n^ . D 

The bounds (17) were also derived by Cho and Meyer [2]. Their differ­
ent proof uses the results of equation (12), the properties of A* and the 
inequality (18). 

The following corollary, giving bounds for relative differences, follows 
from (20) since, for i =£ j , nij = TTjrriij (see Cho and Meyer [2]). 

Corollary 3.1. For a general perturbation E = [eij], for each fixed index 
j (1 < j < m), 

^ B ^ m a x l m ^ } . (21) 

Note that the bound for absolute differences depends on the magni­
tudes of the riij whereas the bound for relative differences depends on the 
magnitudes of the m^. 

7T,' — 7T, 
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4. Stationary Distributions Under Row Perturbations 

We consider the effect of perturbations made in a single row of the tran­
sition matrix, say the r-th row. Let p^ — e^P denote the r-th row of the 
transition matrix P. Now let E = erej where ej = pj — pJT. The per­
turbation results from changing the r-th row of the transition matrix P to 
the r-th row of the transition matrix P. Suppose that e£ = (e1; e 2 , . . . , em) 
where eJTe = 0. Substitution in equation (15) yields 

so that in elemental form, for j = 1, 2 , . . . , m, 

TTj — TTj = TTr 2_, CiTlij = -KjTTr ^ ^ CilTlij. (22) 

Following the arguments used to develop Theorem 3.1 and Corollary 3.1 
we can find general bounds for TTJ — ffj as follows. 

Theorem 4.1. For a perturbation e;T = pj — pj = (ei, €2, ..., em) involv­
ing only the elements of the r-th row of the transition matrix, for each fixed 
index j (1 < j < m), 

IIEII HEll 
I TTj — TTj I < TTr TT9'rna'x-{nij} = T^j^r JT22- max{mjj } (23) 

2 i#j 2 i±j 

where llElloo = £ " l M ' 

The simplest perturbation arises by considering a single row, say the r-
th, by decreasing the (r, a)-th element of P by an amount e and increasing 
the (r, 6)-th element of P by the same amount to obtain the new transition 
matrix P. Thus pra = pra - e < Pra and prb = prb + e > prb (ea = - e , 
eb = e). We assume that the stochastic and irreducible nature of both P 
and P is preserved. This requires e < pra < 1, and 0 < prb < 1 — e. For this 
special case we obtain the following results. 

Theorem 4.2. / / the transition probability pra in an irreducible finite 
Markov chain is decreased by an amount e while prb is increased by an 
amount e, then, with the irreducibility preserved, 

ekrnba = e7TaTtrmba, j = a, 

-6TTrnab = -e-irbTTrmab, j = b, (24) 

eTTr(nbj - naj) = eirjiTr(mbj - maj), j ^ a, b. 
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We now make use of the following easily proved relationship between the 
mean first passage times rriij between states i and j in a finite irreducible 
Markov chain. For all i, j and k, 

mij < rriik +mkj. (25) 

A consequence of (25) is that maj < mab + m^j and that rribj < mba + 
maj, so that, for j ^ a, b, 

-mab < mbj - maj < rnba. 

This leads to the following corollary to Theorem 4.2. 

(26) 

Corollary 4.1. Under the conditions of Theorem 4-2, the maximum rel­
ative change between the stationary probabilities -KJ and TTJ is given by the 
following bound. For all j , 1 < j < m, 

< e-kr max{mab, mba} = max • 
TTa - 7 T a 

TTa 
> (27) 

Result (27) provides a new bound that cannot be improved, as it is 
achieved at one of the states j = a or b. This is a significant improvement 
over the bound given by (21) since ||E|| = 2e and thus the relative differences 
for the stationary probabilities for state j are bounded as 

ITj — 7T,-
< emax{mjj}, 

i+3 
(28) 

i.e. the bound on the relative changes in the stationary probabilities at any 
state j depends only on the mean first passage times mab and m,ba and not 
on the rriij for i ^ j . 

Noting that \ribj — naj\ = riba or nab according as j = a or b, respec­
tively, we deduce from (24) the following corollary: 

Corollary 4.2. Under the conditions of Theorem 4-2, the maximum abso­
lute change between the stationary probabilities TTJ and jtj is given by the 
following bound. For all j , 1 < j < m, 

7T, = £7I"r \nbj 
< e7rrmax{|nbs -nas\}, (29) 

i.e. the bound on the absolute changes in the stationary probabilities de­
pends on the maximum difference of mixing times from states a and b to 
any state and not the maximum over all the mixing times from a general 
state to any other state. In general, from (23), since rijj = 0, 

\KJ — fj\ < e-7rr max{riij} < cny max{nst}. (30) 

file:///ribj
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5. Example 

Funderlic and Meyer [3] provide an example involving the analysis of radio-
phosphorus kinetics in an aquarium system. This leads to a Markov chain 
with eight states and state 
matrix 

P = 

"0.740 0.110 
0 
0 
0 
0 
0 
0 

0.150 

0.689 
0 
0 
0 
0 
0 
0 

space S = {1, 2, 3, 4 

0 
0 
0 
0 
0 
0 
0 

0.047 

0 0 0 
0 0.011 0 

0.400 0 0 
0.669 0.011 0 

0 0.912 0 
0 0 0.740 
0 0 0 

5, 6 

0 
0 
0 
0 
0 
0 

, 7, 8}, transition 

0.150" 
0.300 
0.600 
0.320 
0.088 
0.260 

0.870 0.130 
0 0 0.055 0.270 0.478 

1 

M 

stationary probability vector 
TCT « (0.137,0.049,0.011,0.014,0.008,0.050,0.494,0.238), 
mean first passage time matrix 

' 7.29 39.99 92.50 225.69 1437.84 78.00 13.26 5.38 ' 
26.28 20.61 90.74 223.93 1406.17 76.24 11.50 3.62 
25.02 65.02 89.49 133.19 1437.27 74.98 10.24 2.36 
26.06 66.06 90.53 74.05 1409.09 76.02 11.28 3.40 
34.03 74.02 98,49 231.68 128.99 83.99 19.25 11.36 
26.51 66.50 90.97 224.16 1458.24 19.88 11.73 3.85 
30.35 70.35 94.82 228.01 1462.09 80.32 2.03 7.69 
22.66 62.66 87.13 220.32 1454.40 72.62 7.88 4.21 

and matrix of mixing times, 

0 1.940 1.034 3.048 11.147 3.923 6.549 1.278" 
3.605 0 1.014 3.024 10.902 3.835 5.680 0.860 
3.432 3.154 0 1.798 11.143 3.771 5.059 0.561 
3.575 3.205 1.012 0 10.924 3.824 5.572 0.808 
4.668 3.5911.1013.129 0 4.224 9.505 2.702 
3.636 3.227 1.017 3.027 11.305 0 5.793 0.914 
4.164 3.413 1.060 3.079 11.335 4.040 0 1.830 
3.109 3.040 0.974 2.975 11.276 3.653 3.894 0 

Let us suppose that we carry out a two-element perturbation in some row 
of P. Let the changes be made at positions (a, b) in the r-th row. 

Tables 1 and 2 look at the relevant bounds given by (27) and (29) for 
the maximum relative and absolute changes to the stationary probabili­

ty = 
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ties when changes are made at all possible sites (a,b). These results are 
compared with the universal bounds given by (28) and (30). 

Since the maximum value of m^- for i ^ j occurs at state j = 5 (viz. 
1462.09) we expect that the maximal relative change will occur at state 5. 
This is substantiated by observing that the first seven row entries in Table 
1, ranked according to the magnitude of the bound, all involve state 5. 

The maximal bound is achieved under a two-element perturbation in­
volving states 5 and 7. This is possible only by decreasing p25, P45 or p55 

and, respectively, increasing P27, P47 or psj when perturbing in rows 2, 4 or 
5 of the transition matrix. 

Note that the smallest relative changes to any stationary probabilities 
will take place under a two-element perturbation involving states 7 and 8 as 
indicated in the last row of Table 1. Note further that the overall changes 
here are much smaller than those predicted by any of the bounds for the 
relative changes at any state as given by (28). Note that typically one would 
increase pr-j and decrease pr&. This is possible only for r = 1, 2, 3, 4, 5 or 
6. 

The entries in Table 1 are partitioned into two regions to designate 
where the bounds based on (28) are an improvement for the bounds for 
particular relative differences involving state j . 

Using bounds for the absolute differences in the stationary probabilities 
based upon the group inverse, as in (12), Funderlic and Meyer comment 
that "7T3 and TTS must be very insensitive to perturbations while 7r5 may be 
slightly more sensitive." 

From the above table we note that for the first seven pairs, all involving 
making a perturbation to the transition probabilities involving a transition 
into state 5, we obtain the largest possible change to the stationary prob­
ability of being in state 5, which is much larger than the changes at any 
other state. 

The smallest possible changes overall typically arise when a change is 
made to the transition probabilities into states 3 and 8 (typically decreasing 
Pr8 and increasing pr3). 

Overall we see that the smallest changes to the stationary probabili­
ties occur at state 3 and the largest changes at state 5. Note however, by 
considering the (1,3) entries, if one makes a two-element perturbation to 
the transition probabilities into states 1 and 3 (which by considering the 
transition probabilities is possible only from states 1 or 8) we make only a 
minimal change to the stationary probability of being in state 5. 

Note that, even though the smallest relative changes to the stationary 
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probabilities occur in the two-element per turbat ion at the (7,8) case, this 

does not effect the smallest absolute change to the stat ionary probabilities. 

Similarly the converse deduction applies for the (3,8) case. Thus, there 

is no guarantee of reciprocity of minimal (or maximal) changes holding 

simultaneously for both the absolute and relative difference cases. 

The main results (Sections 1 to 4) of this paper appear in Hunter [7]. 

The example of Section 5 has been provided to give an appreciation of 

the difficulties involved in establishing universal results tha t predict how 

Markov chains behave under perturbations. 
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In teaching a course in linear statistical models to first year graduate stu­
dents or to final year undergraduate students, say, there is no way to proceed 
smoothly without matrices and related concepts of linear algebra; their use is 
really essential. Our experience is that making some particular matrix tricks 
familiar to students can increase their insight into linear statistical models 
(and also multivariate statistical analysis). In matrix algebra, there are handy, 
sometimes even very simple "tricks" to simplify and clarify the problem treat­
ment — both for the student and for the researcher. Of course, the concept of 
trick is not uniquely defined: by trick we simply mean here a central important 
handy result. In this paper we collect together our Top Fourteen favourite ma­
trix tricks for linear statistical models. We merely state our tricks with some 
references; a more comprehensive report including proofs, examples and full 
references is in progress [see Isotalo, Puntanen k, Styan (2005)]. 

Keywords: best linear unbiased estimation; column space; generalised inverse; 
linear model; linear regression; Lowner ordering; matrix inequalities; ordinary 
least squares; projector; Schur complement; singular value decomposition. 

AMS Classification: 15-01, 15-02, 15A09, 15A42, 15A99, 62H12, 62J05. 

Notation and linear algebraic preliminaries 

The symbols A', A " , A+, ^ ( A ) , ^(A)- 1 , ^V(A), and r(A) will stand for 
the transpose, a generalised inverse, the Moore-Penrose inverse, the column 
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space, the orthogonal complement of the column space, the null space, and 
the rank, respectively, of A. The set o f n x m matrices is denoted as R" x m . 
Occasionally we may denote Anxm indicating that A is an n x m matrix. 
We consider only matrices with real elements. 

We recall that matrix G is a generalised inverse of A if it satisfies the 
equation AGA = A; we denote A - = G. An equivalent characterisation 
is that G is a generalised inverse of A if (and only if) x = Gy is a solu­
tion of Ax = y for any y which makes the equation consistent (solvable). 
The matrix A + , the Moore-Penrose inverse of A, is defined as the unique 
solution to the four equations 

(mpl) AA+A = A, (mp2) A+AA+ = A+, 

(mp3) AA+ = (AA+)', (mp4) A+A = (A+A)'. 

The set of all generalised inverses of Anxm is denoted as 

{ A - } = { G m x n : A G A = A } . (2) 

The column space If (A) of an n x m matrix A is a subspace of R" 
spanned by the columns of A: 

# ( A ) = { y G R " : 3 x G l R m such that y = Ax }, (3) 

and, correspondingly, the null space is ^ ( A ) = {x 6 Mm : Ax = 0 } . 
Notation (A : B) stands for the partitioned matrix with A„XTO and B„Xp 
as submatrices. 

We may also recall that for any idempotent nxn matrix P the following 
direct sum decomposition holds: 

Kn = < i? (P)©tf ( I„ -P)=<i? (P)©. /K(P) . (4) 

Hence an idempotent matrix P is an oblique projector (or shortly projector) 
onto ^ ( P ) along ^ ( I n — P) . The column space ^ ( I ^ — P) , which (for 
any idempotent P) has the property ^(1™ — P) = ^Y(P), determines the 
direction in which the projection is done; if this direction is orthogonal with 
respect to a given inner product, then P is an orthogonal projector w.r.t. 
this inner product. 

Unless otherwise stated, we assume that the inner product between two 
vectors x, y G W1 is defined as x'ly = x'y. Then, the matrix P is an 
orthogonal projector with respect to the standard inner product (shortly 
w.r.t. I) if it is idempotent and symmetric, that is, 

P is orthogonal projector (w.r.t. I) •£=> P 2 = P and P ' = P . (5) 
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If an idempotent symmetric P has the property ^ ( P ) = ^ ( A ) , then P is 
the orthogonal projector onto ^ ( A ) , denoted as P A - Clearly we have 

P A = AA+ = A(A 'A) -A ' , (6) 

which is invariant for any choice of (A'A)~. 
By A1- we denote any matrix satisfying 

V(A±)=jr(A')=V{A)±; (7) 

this is the orthocomplement (w.r.t. I) of ^ ( A ) . 
If a symmetric matrix A is nonnegative definite, we denote A > 0, which 

means that there exists a matrix L such that A = LL'. Notation A > 0 
indicates that A is positive definite, i.e., A is a nonsingular nonnegative 
definite matrix. Similarly, notation A > B means that the difference A — B 
can be expressed as A — B = K K ' for some matrix K. We say that matrix 
B is below A with respect to the Lowner partial ordering. 

When the inner product is defined as x'Vy, where V is a positive def­
inite symmetric matrix, then the orthogonal projector is characterised as 
follows: 

P is orthogonal projector (w.r.t. V) «=> P 2 = P & (VP) ' = V P . (8) 

If, in addition, ^ ( P ) = ^ ( A ) , then P is the orthogonal projector onto 
'tf(A), denoted as P A ; V , and its explicit (unique) representation is 

P A ; v = A(A'VA)-A'V. (9) 

As regards the matrix factorisations needed, the most important in this 
paper is the eigenvalue decomposition (spectral decomposition): every sym­
metric n x n matrix A can be expressed as 

A = uru', (io) 
where U is orthogonal, T = diag(7i, . . . , 7n), and 71 > 72 > • • • > 7n are 
ordered eigenvalues of A. The columns of U are the orthonormal eigen­
vectors of A. In particular we will need the eigenvalue decomposition of a 
nonnegative definite n x n matrix V: 

V = TAT', A = diag(A1 , . . . ,An), T'T = I n . (11) 

Here Ai > A2 > • • • > A„ > 0, and tj (the i-th column of T) is the eigen­
vector corresponding to Aj. In particular, denoting T i = (ti : . . . : t„) and 
Ai = diag(Ai,. . . , A„), where v — r(V), we get the symmetric nonnegative 
definite square root of V: 

V 1 / 2 = T 1 A i / 2 T ' 1 . (12) 
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With the general linear statistical model (often called the Gauss-Markov 
model) we mean the equation 

y = X/3 + e, (13) 

or in other notation, 

M = {y, X/3, a2V}, (14) 

where 

E(y) = X/3, E(e) = 0, cov(y) = cov(£) = CT2V. (15) 

Vector y is an n x 1 observable random vector, e is an n x 1 random error 
vector, X is a known n x p model (design) matrix, (3 is a p x 1 vector 
of unknown parameters, V is a known n x n nonnegative definite matrix, 
and a2 is an unknown nonzero constant. By E(-) and cov(-) we denote 
expectation vector and covariance matrix of a random vector argument. 

1. Rank of the Product 

Theorem 1.1. The rank of a partitioned matrix (A : B) can be expressed 
(for any choice of generalised inverse A~) as 

r ( A : B ) = r(A) + r [ ( I - A A - ) B ] (16a) 

= r(A) + r [ ( I - A A + ) B ] (16b) 

= r ( A ) + r [ ( I - P A ) B ] , (16c) 

while the rank of the matrix product AB is 

r(AB) = r(A) - dimtf(A') D ^(B^) (17a) 

= r ( A ) - d i m ^ ( A ' ) n i y r ( B ' ) (17b) 

= r(A)-dim^(A')n^(I-PB). (17c) 

REFERENCES 

(16): Marsaglia & Styan (1974, Theorem 4); 

(17): Marsaglia & Styan (1974, Corollary 6.2), C. R. Rao (1973a, p. 28; First Edition 

1965, p. 27), A.R. Rao & Bhimasankaram (2000, Thm 3.5.11), C. R. Rao & M.B. Rao 

(1998, p. 426). 
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2. Rank Cancellation Rule 

Theorem 2 .1 . For any conformable matrices involved, 

LAY = MAY and r(AY) = r(A) = • LA = MA, (18) 

D A M = D A N and r(DA) = r(A) =*• A M = AN. (19) 

Furthermore, 

r(AY) = r(A) = > r(KAY) = r(KA) /or every possi&ie K. (20) 

REFERENCES 

Marsaglia & Styan (1974, Theorem 2), Rao & Bhimasankaram (2000, Theorem 3.5.7). 

3. Sum of Orthogonal Projectors 

Theorem 3.1. Let P A and P B be orthogonal projectors {with respect to 
the standard inner product) onto "^(A) and ^ ( B ) , respectively. Then 

P A + P B is orthogonal projector <*=> A'B = 0, (21) 

in which case 

P A + P B = P ( A : B ) . (22) 

4. Decomposition of Orthogonal Projector 

Theorem 4.1. The orthogonal projector (with respect to the standard in­
ner product) onto If (A : B) can be decomposed as 

P ( A : B ) = P A + P ( I - P A ) B - (23) 

REFERENCES to projectors 
Baksalary (1987), Ben-Israel & Greville (2003), Grofi & Trenkler (1998), Halmos 

(1951, Sections 26-29), Rao & Mitra (1971, Section 5.1), Rao & Yanai (1979), Seber 
(1980), Seber & Lee (2003, Appendix B), Takane & Yanai (1999), Trenkler (1994). 

5. OLSE vs BLUE 

We collect together some necessary and sufficient conditions for the equality 
between OLSE (ordinary least squares estimator) and BLUE (best linear 
unbiased estimator) of X/3 under a general linear model {y, X/3, <r2V}. 

Consider the eigenvalue decomposition of the covariance matrix V: 

V = TAT' , (24) 
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where A is an n x n diagonal matrix of the n eigenvalues Ai of V: Ai > A2 > 
• • • > An > 0. Matrix T is an n x n matrix comprising the corresponding 
orthonormal eigenvectors t i , t2 , • • •, t n . We also let A^j. > A{2} > • • • > 
A{t} > 0 denote the t distinct eigenvalues of V with multiplicities mi, 7712, 
. . . , mt, and let T ^ } , T{2}, • • •, ^{t} be matrices consisting of (sets of) 
corresponding orthonormal eigenvectors so that 

T = ( T { 1 } : T { 2 } : . . . : T { t } ) , T^T i = I m i , 1 = 1,2,...,*, (25) 

V = A{1}T{1}T'{1} + • • • + A{ t }T{ t }T'{ t } , mi + m2 + • • • + mt = n. 

(26) 

Theorem 5.1. Consider the general linear model {y, X/3, V} , where X 
and V need not be of full rank. Then 

(a) Gy = BLUE{X(3) «= • (b) G(X : VM) = (X : 0), (27) 

where M = I — H = I — P x - The corresponding condition for Ay to be the 

BLUE of an estimable parametric function K/3 is 

A(X : VM) = (K : 0). (28) 

Moreover, the following statements are equivalent: 

(i) H V = VH, 
(ii) H V = H V H , 

(hi) H V M = 0, 
(iv) X'VZ = 0, where tf{Z) = tf(M), 
(v) tf(VX) C ̂ ( X ) , 
(vi) f (vx)=^(X)n?(v) , 

(vii) HVH < V, i.e., V — HVH is nonnegative definite, 
(viii) r(V - HVH) = r(V) - r (HVH), 

(ix) "^(X) has a basis consisting of r eigenvectors ofV, where r = r(X), 
(x) r(T'r1|X)H |-r(T'r tiX) = r(X), where T ^ j is a matrix consisting of 

the orthogonal eigenvectors corresponding to the i-th largest eigenvalue 
^{i} ofV; A{i} > A{2} > • • • > A{t}, 

(xi) T'{ i }HT{ ! } = (T' { i }HT { l })2 for all t = 1,2,.. . , t, 
(xii) T ' { i } HT { j } = 0 for alii, j = 1,2,..., t, i ± j , 

(xiii) V can be expressed as V = oil + XAX' + ZBZ', where a € l , and A 
and B are symmetric, such that V is nonnegative definite, i.e., 

V e V i = { V > 0 : V = a I + XAX' + ZBZ', A = A', B = B ' }, 
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(xiv) V can be expressed as V = XCX' + ZDZ', where C and D are sym­
metric, such that V is nonnegative definite, i.e., 

V e V 2 = { V > 0 : V = XCX' + ZDZ', C = C , D = D ' }, 

(xv) V can be expressed as V = HEH + MFM, where E and F are sym­
metric nonnegative definite, i.e., 

V e V 3 = { V > 0 : V = H E H + M F M , E > 0, F > 0 }. 

REFERENCES 

Anderson (1948), Baksalary (2004), Bartmann & Bloomfield (1981), Bloomfield & 
Watson (1975), Grofi (2004), Puntanen & Styan (1989), Puntanen, Styan & Werner 
(2000), Rao (1967), Rao (1968), Rao (1971), Rao & Mitra (1971), Seshadri & Styan 
(1980), Watson (1955), Zyskind (1967), Zyskind (1969). 

6. General Solution to A X B = C 

Theorem 6.1. A necessary and sufficient condition for the equation 
AXB = C to have a solution (for X) is that 

AA C B B = C, (29) 

in which case the general solution is 

X = A C B + Z - A AZBB , (30) 

where Z is an arbitrary matrix, and A~ and B~ are fixed (but arbitrary) g-
inverses. In particular, the general solution to AX = C is [if A A ~ C = C, 
i.e., tf(C) C %?(A)] 

X = A - C + ( I - A - A ) Z . (31) 

Similarly, the general solution to XB = C is [if <£(C) C ^(B')] 

X = C B - + Z ( I - B B - ) . (32) 

REFERENCES 

Rao (1968), Rao (1971), Rao (1973a), Rao (1973b), Rao & Mitra (1971) . 

7. Invariance w.r . t . t he Choice of Generalised Inverse 

Theorem 7.1. Let A ^ O and C ^ O . Then the following two statements 
are equivalent: 

(a) AB~C is invariant with respect to the choice o /B~ , 
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(b) tf(C) C tf(B) and tf(A') C y ( B ' ) . 

in particular, B B ~ C is invariant with respect to the choice o / B ~ if and 
only ifc^{G) C ^ ( B ) ; in other words, 

B B C = C for all B~ <̂ => <*f(C) C <^(B). (33) 

REFERENCES 

Rao & Mitra (1971, Lemma 2.2.4, and the Complement 14, p. 43), Rao, Mitra & 
Bhimasankaram (1972). 

8. Block Diagonalisation and the Schur Complement 

Theorem 8.1. Let A be a symmetric nonnegative definite matrix parti­
tioned as 

where A n is a square matrix. Then the following decomposition holds: 

A = l I 0\ [An 0 \ (I A n A 1 2 

v A 2 i A n I / \ 0 A2 2 - A 2 iA 1 1 Ai 2 y V° J 

:= BCD, (35) 

where A u , Aj^, and A ^ are arbitrary generalised inverses of An, and 

A22.1 = ( A / A n ) = A 2 2 - A 2 i A f 1 A i 2 

= the Schur complement of An in A. (36) 

Moreover, 

I 0 \ / I - A r a A 1 2 \ = / A n 0 
- A 2 1 A n l) \0 I J \ 0 A2 2 - A 2 i A n A i 2 

= B ~ 1 A D 1 . (37) 

REFERENCES 

Carlson (1986), Cottle (1974), Henderson & Searle (1981), Ouellette (1981), Punta­
nen & Styan (2005a, 2005b), Styan (1985), Zhang (2005). 
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9. Nonnegative Definiteness of a Partitioned Matrix 

Theorem 9.1. Let A be a symmetric matrix partitioned as 

A=(££) (38) 

where A n is a square matrix. Then the following three statements are equiv­
alent: 

(a) A > 0, 
(b) A n > 0, <*?(A12) C tf(An) and A2 2 - A 2 i A n A i 2 > 0, 
(c) A2 2 > 0, "is?(A2i) C <«?(A22) and A n - A ^ A ^ A ^ > 0. 

REFERENCES 
Albert (1969), Dey, Hande & Tiku (1994). 

10. The Matrix M 

In this section we consider the properties of matrix 

M = M(MVM)"M. (39) 

We observe that M is unique if and only if <^(M) C ^ ( M V ) , which is 
further equivalent to 

Rn = %?(X : V). (40) 

Even though M is not necessarily unique, the matrix product 

P V M P V = P V M ( M V M ) - M P V := M (41) 

is, however, clearly invariant for any choice of (MVM)~, i.e., 

P V M P V = P v M ( M V M ) " M P v = P V M ( M V M ) + M P V . (42) 

The matrices M and M appear to be very handy in many considerations 
related to the linear model ^# = {y, X/3, er2V}. Therefore, we will state a 
theorem collecting together some of their properties. 

Theorem 10.1. Consider the linear model ^ = {y, X/3, <r2V}; where 
X and V may not have full column ranks. Let the matrices M and M be 
defined as 

M = M(MVM)"M, M = P V M P V . (43) 

Assume that the condition 

H P V M = 0 (44) 

holds. Then 
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(a) M = P V M ( M V M ) - M P V = V+ - V + X ( X ' V + X ) - X ' V + , 
(b) M = M V + M - M V + X ( X ' V + X ) - X ' V + M , 
(c) M = M M = M M = M M M , 
(d) P V M P V = P V ( M V M ) + P V , 
(e) M V M = M, i.e., V e {(M)"} , 
(f) r(M) = r(VM) = r(V) - d im^(X) n tf(V) = r(X : V) - r(X) 

= r [M(MVM)+M], 
(g) IfZ is a matrix with property ^ (Z) = 'if(M), then 

M = P V Z ( Z ' V Z ) - Z ' P V , V M V = VZ(Z 'VZ)"Z 'V. (45) 

(h) Let (X : Z) be orthogonal. Then always 

[(X : Z) 'V(X : Z)]+ = (X : Z) 'V+(X : Z). (46) 

7 / H P v M = 0 or equivalent^ f ( V H ) n ^ ( V M ) = {0}, then 

[(X : Z) 'V(X : Z)] + 

_ /[X'VX-X'VZ(Z'VZ)-Z'VX]+ • \ 
— V • [z 'vz-z 'vx(x 'vx)~x'vz]+y 

(i) / / V is positive definite, and Z as in (g) then 

M = M = M ( M V M ) " M = (MVM)+ 

= Z(Z'VZ)" 1Z' 

= V"1 - v-1x(x'v-1x)"x'v-1 

= V - 1 ( I - P X ; V - 1 ) , (48) 

X ( X ' V - 1 X ) " X ' = V - VZ(Z 'VZ)- 1 Z'V, (49) 

X ( X ' V - 1 X ) " X ' V - 1 = I - VZ(Z 'VZ)" 1 Z' 

= I - P ' z ; v , (50) 

(j) If V is positive definite, and the columns o /X and Z are orthonormal, 
then 

( X ' V ^ X ) " 1 = X 'VX - X 'VZ(Z 'VZ)- 1 Z'VX. (51) 

REFERENCES 

Bhimasankaxam & Saha Ray (1997), Bhimasankaxam & Sengupta (1996), Bhi-
masankaram, Shah & Saha Ray (1998), Chipman (1998), Giofi & Puntanen (2000), 
Nurhonen & Puntanen (1992), Puntanen (1996, 1997), Werner & Yapax (1995). 
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11. Disjointness of Column Spaces 

Theorem 11.1. For conformable matrices, the following statements are 
equivalent: 

(a) <*f(A)n<«f(B) = {0}, 

(b) fy (AA' + BB ' ) " (AA ' : BB') = (^ ° , ) , 

(c) A' (AA' + B B ' ) " A A ' = A', 
(d) A'(AA' + B B ' ) - B = 0, 
(e) (AA' + BB')~ is a generalised inverse of AA', 

(f) A /(AA' + BB / )~A = P A ' , 

«*(B-)C ¥ (B') ' 

(h) Y(A : B) = (0 : B) has a solution for Y. 

REFERENCES 

Magnus &; Neudecker (1999). 

12. Full Rank Decomposi t ion 

Theorem 12.1. Let A be an n x m matrix with rank r > 0. Then A can 
be written as a product 

A = U V , (52) 

where r (U„ x r ) = r ( V m x r ) = r, i.e., U and V have full column ranks. 

REFERENCES 

Marsaglia &: Styan (1972), Marsaglia & Styan (1974), Rao & Bhimasankaram (2000, 
p. 132). 

13. Singular Value Decomposi t ion 

Theorem 13.1. Let A be annxm (m < n) matrix with rank r > 0. Then 
A can be written as a product 

A = (Ul : U0) fn
Al(rXr) _ °rX{m-r) ) fXj) 

\"(f i—r)xr "(n—r)x(m—r)/ \ * 0 / 

= U A V = Ui A i V ; = U * A . V 

= <JlUlvi + • • • + 5rxirv'r = U ( A*(™x») \ v / > ( 5 3 ) 
\"(n—m)xmj 
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where 

Si = sgj(A) = y/chi(A'A) = i-th singular value of A, i = 1 , . . . , m, 

A 1 =diag(«i , . . . ,«J P ) , Si > •••>6r > 0, A e K n x m , 

A = (^o o ) = (^o*) G R"Xm' A l G RrXr' A* G RmXm' 

Sr+1 = Sr+2 = • • • = Sm = 0 , 

A* = diag(<5i,..., <5r, 5r+i, • • •, Sm) = the first m rows of A, 

Unxn = (Ui : Uo), U i e R " x r , U 'U = U U ' = I n , 

V m x m = (V! : V0) , V i e R m x r , V 'V = V V ' = I m , 

U* = (ui : . . . : u m ) = the first m columns o /U, U* € R" x m , 
2 

0 0 
V'A'AV = A ' A = Al = (AJ ? ] G TOmxm 

U'AA'U = A A ' = fA
0* ° 

Uj = i-th left singular vector of A = i-th eigenvector of AA', 

Vj = i-th right singular vector of A = i-th eigenvector of A'A. 

REFERENCES 

Golub & Van Loan (1996, Section 2.5.3) , Horn & Johnson (1991), Horn & Olkin 
(1996), Searle (1982, p. 316), Stewart (1993), Stewart (1998, p. 62). 

14. The Cauchy-Schwarz Inequali ty 

Theorem 14.1. Let x and y be n x 1 non-null real vectors. Then 

(x'y)2 < x 'x • y 'y, Vx,y (54) 

is the vector version of the Cauchy-Schwarz inequality. Equality holds in 
(54) if and only if x and y are linearly dependent, i.e., 

(x'y)2 = x ' x - y ' y ^ 3 A e R : x = Ay. (55) 

REFERENCES 
Baksalary & Puntanen (1991), Chipman (1964), Marcus & Mine (1992, p. 61), Wat­

son, Alpargu &: Styan (1997). 
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1. Introduction 

Elliptical distributions and regression models have been studied and ap­
plied for over three decades; see e.g. Fang and Zhang (1990) and Gupta 
and Varga (1993). In the meantime regression diagnostics and sensitivity 
analysis have also been studied and applied extensively; see e.g. Chatter-
jee and Hadi (1988) and Atkinson and Riani (2000). Recently the local 
influence (LI) method originated by Cook (1986, 1997) has been used in 
diagnostics for several regression models; a comparison of the LI method 
with the case deletion and influence function methods is made by Jung, Kim 
and Kim (1997). Univariate elliptical regression models have been studied 
by Galea, Paula and Bolfarine (1997) and by Liu (2000). Multivariate re­
gression models under normality have been studied by Kim (1995) and by 
Fung and Tang (1997), and elliptical regression models by Liu (2002) and 
by Daz, Galea and Leiva (2003). Cook's approach for LI is used in all these 
papers. 

In the present paper we study the multivariate elliptical regression models 

mailto:Shuangzhe.Liu@canberra.edu.au
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using Billor and Loynes' (1993) approach, an alternative to Cook's (1986) 
approach, for LI, and compare the results obtained in both approaches. In 
section 2 we briefly introduce elliptical regression models. In section 3 we 
give Cook's and Billor and Loynes' approaches for LI, and define the key 
matrices and then two measures, namely the slope and the normal curva­
ture, used in the two approaches to implement LI. In sections 4 through 6 
we study three perturbation schemes to find the key matrices for the two 
measures, by using the standard matrix differential techniques developed 
by Magnus and Neudecker (1999). In section 7 we discuss and comment on 
the assessment of LI. 

2. Elliptical Regression Models 

As in Liu (2002) let us consider 

<7 = ( u i , . . . , 0 ' ~ £ M n p ( 0 , E , I n ) , (1) 

£(vec U') = 0, var(vec U') = -2(f>(0)In <g> E, (2) 

W) = \n-n/2g{t*m-lU')), (3) 
where U is an n x p data matrix following an elliptical distribution, 
U' = (ui,...,un) is the transpose of U, the n vectors u\,...,un can be 
viewed as a sample from a p-dimensional elliptical population, E is a p x p 
positive definite scale matrix, /„ is an n x n identity matrix, vec indicates 
the vectorisation operator which transforms a matrix into a vector by stack­
ing the columns of the matrix one under the other, 4> is the derivative of the 
characteristic generator, ip(U) is the density based on U and g is its known 
generator. We study the following multivariate elliptical linear model 

Y = XB + U, (4) 

where Y is an n x p matrix of observations, X is an n x m model matrix, 
B is an m x p matrix of parameters, and U is an n x p matrix as denned 
in (l)-(3). 

Assuming T{Z) = znp/2g(z), z > 0, reaches maximum at z = zg > 0 (see 
Gupta and Varga, 1993, pp 285-286), we have the maximum likelihood 
estimators of B and E 

B = {X'X^X'Y, (5) 

t = —U'U, (6) 
z9 

U = {In - X(X'xyxX')Y. (7) 
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We define the following derivatives of g(z) with respect to z, which are used 
in sections 4 through 6 to follow: 

din g(z) g'{z) 
G = G(z) = 

F = F(z) 

dz g(z) 

dG(z) 

dz ' 
For g, G and F under the multivariate normal and t distributions, see e.g. 
Liu (2002). 

3. Local Influence 

3.1. Cook's approach 

Useful in sensitivity analysis, LI is introduced for assessing the influence 
of small perturbations in a general statistical model; see Cook (1986). Let 
w = (w\,..., wn)' be an n x 1 perturbation vector of observations, WQ be 
an n X 1 no-perturbation vector (with WQ = ( 0 , . . . , 0)', or WQ = ( 1 , . . . , 1)', 
or a third choice, depending on the context), 9 be an r x 1 vector of pa­
rameters of interest, L(9) be the log-likelihood of the postulated (i.e. un­
perturbed) model, and L(9\w) be the log-likelihood of the perturbed model 
with L(9) = L(9\wo). To implement the idea of LI is to investigate the ex­
tent to which the inference is affected by the corresponding perturbation. 
We briefly mention some key concepts and the method as follows. In Cook's 
approach the likelihood displacement (LD) is chosen to be 

LD{w) = 2[L0) - L(6W)], 

where 9 and 9W are the maximum likelihood estimates under the two models 
respectively. The influence graph is an (n + 1) x 1 vector defined as 

a(w) = {w', LD(w))'. 

The LI method is based on studying the local behaviour of a(w). Upon 
LD(w), the normal curvature in direction / is 

CL(9) = 2|/'A'i?-1AZ|, (8) 

where 

A = 
d2L(9\w) 

89dw' 
H 

d2L(9) 

8989' 

A and H are the two derivative matrices evaluated at 9 = 9 and w = WQ. 
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Ci (6) is the local influence of perturbing the postulated model on the esti­
mation of 6. Large values of Cj(#) indicate sensitivity to the induced per­
turbations in direction I. The maximum Cm a x of C\ and the corresponding 
direction vector Zmax are given by using the largest eigenvalue of A'H~1A 
and its associated eigenvector. Large values of those elements of Zmax indi­
cate the corresponding observations may be influential. 

Actually, for a scalar function Tw evaluated under the perturbed model for 
LI in general (see Cook, 1986), we have 

Cl {e) = (i+ffy/2ni+ff)i' (9) 

where / = dTw/dw\w=Wo, R = d2Tw/dwdw'\w=Wo. The maximum Cm a x of 
Ci and the corresponding direction vector Zmax are given by using the largest 
eigenvalue of (1 + f'f)-1/2{I + / / ' ) " 1 / 2 ^ ( / + / / ' ) " 1 / 2 and its associated 
eigenvector. 

3.2. Billor and Loynes' approach 

In this approach as advocated by Billor and Loynes (1993), we consider 

LD*(w) = -2[L(0)-L(9w\w)], 

a*{w) = (w',LD*(w))'. 

A measure for the assessment of local influence is the slope, in the direction 
of/, of a*(w): 

Si=l,f = l , 6 L ^ ) 

dw 
2l, dL(8\w) 

dw • ( 1 0 ) 

6=6,w=wo 

With the idea as used in Liu (2004) and in Zhang and King (2005) for 
their models, we consider in this paper Tw = LD*(w) under perturbation 
to study Si and C; for model (4). This is because we expect both / ^ 0 and 
F to provide useful information for this approach; note that / ^ 0 here is 
expected to be better than / = 0 in Cook's approach. 

For fw = LD*(w) we have (see e.g. Liu (2004) and Zhang and King (2005)): 

f = 2h, (11) 

R = 2{P-A'Q~1A), (12) 
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where 

P = 

Q = 

dL{6\w) 
dw 

d2L(9\w) 
9=8,W=WQ 

dwdw' 

d2L{6\w) 
t=U,W=Wo 

d6d6' 9=8,w=wo 

For model (4), A and H are given by Liu (2002). To obtain / and R, and 
then Si and Ci, we shall derive h, P and Q in sections 4 through 6. We 
do so by using the matrix differential techniques developed by Magnus and 
Neudecker (1999). 

4. Perturbation in Case-Weights 

Model (4) with (l)-(3) is our postulated model. We now consider model (4) 
with U ~ EMnp(0, S, W~l) to be a perturbed model in case-weights, where 
W is an n x n nonsingular diagonal matrix of perturbation. Let Wo = I be 
the matrix of no-perturbation such that L(8\Wo) = L{6). Let 9 = (b',s')' 
with b = vec B and s = vech E, where vec denotes the vectorisation operator 
which transforms a matrix into a vector by stacking the columns of the 
matrix one under the other, vech denotes the vectorisation operator which 
eliminates all supradiagonal elements of the matrix, b is an mp x 1 vector, 
s is a (p + l)p/2 x 1 vector and 9 is an r x 1 vector (r = mp + (p + l)p/2). 
The perturbed log-likelihood of model (4) is 

Lw = L(0\w) = | In \W\ - \ In |£ | + l n 5 ( ^ ) , 

where zw = ^(C/WC/E"1) and U = Y - XB. 

We now derive dwLw which is the differential of Lw with respect to W, and 
evaluate it at 9 = 9 and w — wo to get dwLw\e_§ w=w , to find h. We derive 
d^Lyj to find P. We derive d\Lw, d\sLw and d2

sLw to find Q. 

Taking the differential of Lw with respect to W, we obtain 

dwLw = ^ti(W-l(dW)) + G(dzw) 

= | t r (W - 1 (dW)) + Gtr{UY,-lU'){dW) 

= 1^-vec'{W-l)J{dW)+Gvec'{UTl-
lU')J{dw), 
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where J is the n2 x n selection matrix such that vec W — Jw and w is an 
n x 1 vector containing the diagonal elements of W. For J and its prop­
erties, including J'J = I and J'(M <g> N)J = (M © N), where <g> and 0 
denote Kronecker and Hadamard products respectively, see e.g. Liu (1995, 
section 3.1). 

Using W0 = I, £ given in (6) and U = {I - X{X'X)-lX')Y in (7) we get 

^ L J , ^ ^ = P- vec'(I)J(dw) + ^Gvec'iUiU'&r'U^Jidw), 
z p 

h = V- J 'vec(J) + ^ GJ'veciUiU'Uy'U'). 
2 p 

Further 

2 

2 
P 

yaw) J {w ~ 09 i 

+ F(dw) 'J ,vec(C/5]-1 t / ' )vec ' (f /S-1[ / ' )^(^) 

Then 

^ U * , „ = " f (du,)'J'(J® J)J(du;) 

4 ^ = -^tr(W-1(dW)W^1(dW)) + F ( ^ ) 

tr(W-1(dW r)iy-1(dW)) + Ftr[(rf^)t/S-1f/ /]tr[C7I]^1[7'(dW)] 

-(dio)' J'CV^"1 <g> W~l) J(dw) 

z2 

f F (diu)'J'vec{U{U'U)-lU') vec'(U{U'U)-lU')J(dw) 
p 

= - | (d«;)'/(d«;) 

2 2 

-r - § F (dm)''J'\ec{U{U'U)-lU')Yec'{U(U'U)-1U')J{d'u 

n Z2 

P = ~ 1+ ^FJ'vec(L>(L>'L>)-1C/')vec'(L>(L>,t/)-1L>,)J. 2 p^ 

To find Q, we first take the differentials of Lw with respect to B to obtain 

dbLw = -2Gtr[E-1 t / 'WX(d JB)], 

d̂ L™ = AFtr[{dB)'X'WUT,-1}tv[Y1-
lUlWX{dB)) 

+ 2Gtr[{dByX'WX(dB)T,-1}. 

As Wo = I, U = (I - X{X'X)-lX')Y and U'X = 0, we have 

d2
bLw\g=§tW=Wo = 2Gtr[ (d5) 'X 'X(d£)E- 1 ] 

= 2G(dvecB)'(£-1(g)X'X)(dvecB), (13) 
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where G = G(z) with z = zg, and E is the same as in (6). 

Taking the differential of dbLw with respect to E, we obtain 

d2
bsLw =2Fti[(dB)'X'WUT,-1} tT[T,-1U'WUT,-1{dE)} 

+ 2Gti[(dB)'X'WU^-l{dT,)^1}. 

As Wo = I, U = (I - X{X'X)-lX')Y and U'X = 0, we have 

d2
bsLw\e=lw=Wo=0. (14) 

Taking the differentials of Lw with respect to E, we get 

dsL = --tx\^1{dZ))+G(dzw) 

= - | t r [ E _ 1 ( d E ) ] -G t r [S _ 1 l / / Wi7E- 1 (dE) ] ) 

d2JL = | t r [ (dE)E- 1 (dE)E- 1 ] 

+ Ftr[(dE)E^1f7'W[/E-1] t r p r V W l / E - ^ d E ) ] 

+ 2Gtr [ (dE)E- 1 t / ' ^C/E- 1 (dE)E- 1 ] , 

so that 

= - ( d v e c h E j ' D ^ E - ^ E - ^ D ^ v e c h E ) 

+ F(dvechE)'D /
JDvech(E-1f7'(7E-1)vech /(E-1[7 /C>E-1)D'D(dvechE) 

+ 2G(dvechE)'D'(E-1 ® E - ^ ' t / E - ^ D ^ v e c h E ) 

= ( n ^ ^ j ^ ^ ^ j j y ^ / ^ - i 3 s - i )D(dvechE) 

z2.F 
+ ^r-(dvechE) /

JD
/Dvech(E-1)vech'(S-1)£»'i?(dvechE), (15) 

where G = G(i), F = F(z) and f7'[7 = zE/p with z = zg, and £> is the 
p2 x (p + l)p/2 duplication matrix such that vecE = £> vechE. For D and 
its properties, see Magnus and Neudecker (1999). 

Hence, it follows from (13), (14) and (15) that 

(2G{£-l®X'X) 0 
Q ~ \ 0 Qs 
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where 

Qa = {n2zsGD,t_1^t_l 

2 p 

z2F 
+ ArD'DvectiZ-^vech'iX-^D'D. 

pz 

For the normal distribution case, where G = — 5, F = 0 and zg = np, we 
obtain 

_ _ rs-1®x'x 0 
Qnox~ I 0 ^ ' ( i r 1 ® ! ; - 1 ) / ? 

We see that Qs and Qnor are the same as Hs and Hnoi in Liu (2002) respec­
tively. In the case when p = 1 (and therefore E and £) = 1 both become 
scalars), Q s and Qnor become the results corresponding to the ones given 
in Galea et al. (1997) and Cook (1986) respectively. 

We can now make local influence assessment by using A defined in (8) and 
/ and R in (11-12), as A is given in (31) in Liu (2002) and / and R are 
available with h, P and Q just established above. 

5. Perturbation in Explanatory Variables 

If the perturbation in explanatory variables is of interest, the perturbed log-
likelihood is constructed with X replaced by Xw = X + WS, where W = 
(wij) is an n x m matrix of perturbations, WQ = 0, S = diag(si , . . . ,sm) 
and Sj (j = 1 , . . . , m) is the scale factor. We use the relevant part of the 
perturbed log-likelihood 

77. 

"^ m l s l +ln0(z„,), 

where 6 = (b',s')', b = vecB, s = vechE, zw = tv{U'wUwYi x) and 
Uw = Y - (X + WS)B. 
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By taking the differentials of Lw with respect to W, B and/or E, we get 

dwLw = -2Gti[E-1Ui{dW)SB], 

d2
wLw = 4Ftr[B'S'(dWyUwX-1]tx[i;-1Ui(dW)SB} 

+ 2GtT[T,-1B,S'{dW)'{dW)SB}, 

dbLw = -2Gtr[f/;X t„(d JB)E-1], 

d\Lw = AFtrlZ-^dByX'MtilU^XUdB)^1} 

+ 2GtT[{dB)'X'wXw{dB)^-1), 

d\sLw = 2Ftr[X;C/^E-1(d JB)']trKC/wE-1(rfE)E-1] 

+ 2Gtr[(dJB)'X;C/,uE-1(dE)E-1], 

dsLw = - ^ t r p - ^ d E ) - G]tr[[/;C/„,E-1((iE)S-1], 

d2
sLw = | t r [ E - 1 ( d E ) E - 1 ( d E ) E - 1 ] 

+ F t r ^ C / ^ E - ^ d E j E - 1 ] t r l C / ^ E - ^ ^ E " 1 ] 

+ 2G[tr t / ; [ / u ,E- 1(dE)E- 1(dE)E- 1] . 

Hence 

dwLw\9=§w=wo = -2GveC'{UV-lB'S')Jdw, 

i2 T I -1W1JW\8=8,W=WQ d2
wLw\e=§w=w = iPidwYJ'veciUt^B'S^vec'iUt^B'S^Jdw 

+ 2G(dw)'(SB±-1B'S' 01)dw, 

d2
bLw\e=§w=wo = (dvecBy(2Gt-1^X'X)dvecB, 

dbs^w\e=§:W=Wo — 0, 

.z2 

d2
sLw\e=§w=w = (dvechE)'(- |FD'£)vechE-1vech'E-1

JD'£))(dvechE) 
>,w=w0 V T)2 

•n 27 
(dvechE) ' ( - + -9-G)D'$Tx ® E - ^ d v e c h E ) . 

2 p 

We then obtain 

/i = -2GJ 'vec(C/E- 1B'5 ' ) , 

P = 4FJ'vec(C/S-1
JB'5 ,)vec ,(i7E-1B'S")J 

+ 2 G ( 5 B E - 1 S ' 5 ' © 7 ) , 

/2G(ir1®.X' ' .X') 0 
^ " I 0 Qs 
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where 

z2 

Qs = -fF JD
/Dvech(E-1)vech'(E-1)D' JD 

+ (^ + ^G)D'(t-1^t-1)D, 
2 p 

zg is the same as in (6) and S is the same as defined above. 

We can now find / and R by using h, P and Q just established above and 
using A given in (62) in Liu (2002). 

6. Perturbation in Response Variables 

For the perturbation in response variables, the perturbed log-likelihood is 
constructed with Y replaced by Yw = Y + WS, where W = (w^) is an n xp 
matrix of perturbations, Wo = 0, S = d iag(s i , . . . , sp) and Sj (j = 1 , . . . ,p) 
is the scale factor. We have the relevant part of the perturbed log-likelihood 

71 

Lw = - - In |E| + \ng(zw), 

where 6 = (b',s')', b = vecB, s = vechE, zw = tr(£/^t/„,E_1) and 
Uw = Y + WS - XB. 

By taking the differentials of Lw with respect to W, B and/or E, we obtain 

dwLw = 2G ti[U'{dW)SY,~1}, 

d2
wLw = 4Fti[i;-lS{dWyU]tr[U'(dW)SY,-1} 

+ 2Gti[S(dW)'(dW)SY,-\ 

dbLw = -2Gtr[U'X{dB)Y,-\ 

d2
bLw = 4Ftr[(dB) 'X' t /E- 1] + 2Gti[{dB)''X'^X(dB)E"1], 

d2
bsLw = 2Ftr[Z-1(dB)'X'U}ti:[U'irZ~1(d?,)'£-1} 

+ 2Gtr[C/'X(dS)E"1(dE)E-1], 

dsLw = - ^ t r [ E _ 1 ( d E ) ] -Gtr[C/ 'C/E-1(dE)E-1] , 

^ L u ; = | t r [E- 1 ( ( iE)E- 1 (dE)] 

+ Ftv[U'UV-1(d£)'Z-1] tr[C/ ,t/E-1(dE)E-1] 

+ 2Gtr[C/'C/E-1(dE)E-1(dE)E-1]. 
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Using W0 = I,U=(I- XiX'X^X^Y and U'X = 0, we have 

dMe=§,w=W0 = 2Gvec'(C/E-1S)Jdw, 

d2
wLw\e=§w=wo = 4F(dw)'J'vec(U'Z-1S)vec'(UZ-1S)J(dw) 

+ 2G(diy)'(5E"15 © I)(dw), 

d2
bLw\g=§w=wo = 2G(dvecB)'(i:-1S®X'X)(dvecB), 

dbsLw\e=§tW=Wa
 = 0, 

d2T I -iJ,s±Jw\e=e,w=wa 

= F(dvechE)' JD'vec(E-1i7'l7E-1)vec'(E-1C/'^E-1) JD(dvechE) 

+ (TT + —^G)(rfvechE)'JD'(E-1 <g> E-1)D(dvechS). 
2 p 

Hence 

/i = 2GJ'vec(C/E-15), 

P = 4FJ' vec(t/E-1S') vec'(J7E_15) J + 2G(5E-1S' 0 I) , 

/ ^ ( E - ^ X ' X ) 0 
V 0 Qs 

where 

Qs = FD'vec(E-1C7'C/E-1)vec'(E-1C7'C7E-1)D 

+ (J + ^ G ) j D ' ( E - i ^ E - i ) i 9 . 
2 p 

We can now find / and R by using h, P and Q just established above and 
A given in (73) in Liu (2002). 

7. Concluding Remarks 

We have focussed on elliptical distributions with a finite variance. We have 
discussed Billor and Loynes' approach for LI to find and examine the slope 
Si and the normal curvature C; of the likelihood displacement LD*, for 
three perturbation schemes. Local influence assessment can then be made 
based on the largest slope 5 m a x and the largest normal curvature Cm a x and 
their corresponding directions lmax. The maximum likelihood estimates in­
volved can be obtained either in a closed form for some simple situations 
or more often via EM or other numerical algorithms with solutions (see 
e.g. Liu and Heyde (2003) for examples and discussions on the estimation 
problems). As seen the results obtained seem to be more informative than 
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those obtained using Cook's approach by Liu (2002). 

Regarding the three different per turbat ion schemes in Billor and Loynes' 

approach, slightly different indications on which observations are most in­

fluential are expected. This may well be similar to the case for Cook's 

approach; it is reflected by the results in e.g. Galea et al. (1997) and Liu 

(2000). 
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1. Introduction 

Consider the variance component model: 

Y = Xp + [7 l £ l + U2e2 + • • • + Ukek (1) 

where Y(n x 1) is a vector of observations, the design matrix X(n x p) 
and the matrices U\{n x p i ) , . . . , Uk(n x pk) are known. Suppose that e\ = 

mailto:luchy@shfc.edu.cn
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( e n , . . . ,£iP l) ' , ...,£k = (efei, • • • ,£fcPJ' are random vectors with E(eij) = 
0, E{e%) = al E(e%) = 0, E{e%) = 3(1 + j)af, for i = 1,2,... ,k and 
j = 1,2,... ,pi, a n d e n , . . . , £ i P l , . . • ,£fci,.. • ,£/cPfc are independent. Further 
/? e Rp and a1 = {a\, . . . , ^ ) g ( l = ( 0 , +oo) x (0, +oo) x • • • x (0, +oo) are 
unknown parameters. The parameter 7 is the so-called kurtosis parameter; 
its greatest lower bound is — 2/(n+2); see, for example, Bentler and Berkane 
(1986) and Srivastava and Chandra (1985). For the multivariate normal 
distributions, 7 is zero. Throughout this paper, we assume 7 is known. 

We are interested in estimation of the vector of the variance compo­
nents <72 = (af,... ,er|5) when k > 2 and when (3 is treated as a nuisance 
parameter. This problem has been intensively investigated. An excellent 
reference is a monograph by Rao and Kleffe (1988). We focus our atten­
tion on admissibility of quadratic estimators of variance components. Most 
relevant are the papers by Olsen, Seely and Birkes (1976) and by LaMotte 
(1982) in the case of estimators restricted to satisfying some additional 
conditions, such as invariance or equivalence or unbiasedness. Their works, 
which provided seminal results in the characterisation of admissible linear 
estimators in the general linear model and the admissibility of invariance 
quadratic estimators of variance components among the class of all invari­
ance quadratic estimators, which is equivalent to the admissibility of linear 
estimators in some linear model, is of great theoretical importance, but is 
too complicated to give an explicit characterisation of admissible estima­
tors of variance components. This problem is further developed in detail 
by, among others, Gnot and Kleffe (1983), Kleffe and Seifert (1986), and 
Klonecki and Zontek (1987, 1989, 1992). However, the invariance is not so 
relevant for the estimation procedures for variance components, that is, the 
invariant quadratic estimator is often not nonnegative. Verdooren (1988) 
pointed out that nonnegativity must be the first requirement for estimat­
ing variance components. Gnot, Kleffe and Zmyslony (1985) investigated 
the nonnegativity of admissible invariant quadratic estimators. Hartung 
(1981), Mathew and Sinha (1992) and Chaubey (1984, 1991) investigated 
nonnegative estimation improvement. 

Without the restriction to invariance, the admissibility of quadratic esti­
mators of variance components among the class of all nonnegative quadratic 
estimators is difficult, and admissible quadratic estimators have been char­
acterised only in special linear models. Wu, Cheng and Li (1981) charac­
terised admissible quadratic estimators in linear models while assuming a 
covariance matrix of the form a2I. Lu (1988) accomplished the same char­
acterisation for the covariance matrix of the form a2V; V may be singular. 
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For the variance components model (1), while the kurtosis parameter is 0, 
Lu (1991) gave a sufficient condition for admissibility and a relation be­
tween locally best estimators and admissible estimators. Ye (1988) and Lu 
(1996) gave some conditions for admissibility. In this paper, we discuss the 
admissibility of nonnegative quadratic estimators of variance components. 
In section 2, we give a necessary condition for admissibility of nonnegative 
quadratic estimators. 

For a matrix A, let A > 0, Amax(^4), tr(.A) and A+ denote that A is 
a nonnegative definite matrix, the largest eigenvalues of A when A > 0, 
the trace of A and the Moore-Penrose inverse, respectively. A > B means 
A — B > 0. Because of the nonnegativity of af, we consider the natural 
class of estimators as follows: 

V = {{Y'A{Y,..., Y'AkY) : Ax > 0 , . . . , Ak > 0}. 

We are concerned with scale quadratic loss function L(A\,..., Ak, cr2) 
associated with a vector estimator (Y'A\Y,..., Y'AkY) of a2: 

k 

L(A1,...,Ak,a
2) = ^2±(Y'AiY-a2)2. 

The risk function is 

R(AU ...,Ak,p,al...,<T2
k) = E(L(AU ..., Ak,a

2)). 

The estimator {Y'A{Y,..., Y'AkY) is said to be Inadmissible for a2 if there 
exists no estimator in V which is better than (Y'AiY,..., Y'AkY). 

2. A Necessary Condition For Admissibility 

Lemma 2.1. Let matrix A>0. Then A < (tr A)I. 

Lemma 2.2. Let matrix 

Then V22 - V21V+V12 > 0. 

Lemma 2.3. Let 

V\i be a real number and the order of V22 be n — 1. 
Then 

F = x2Vu tr(WV22) + 2x{V12W6)y + (6'W6)y2 > 0 (2) 
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and 

G = y2 tv{WV22) + 2(V12W6)y + {0'W6) > 0 (3) 

for allxGR,y€R, 6 £ W1'1 and W > 0. 

The first two Lemmas are well-known, and we prove the third lemma. 

Proof. Without loss of generality, we suppose Vn > 0 and tr(W^V22) > 0. 
F is a quadratic function of x for y, 9 and W given. By Lemmas (2.1) and 
(2.2), the discriminant 

A = y26'WV2iV12W6 - y2Vn tT(WV22){0'W6) 

< y2V116
,W(V2iVii1V12 - V22)W6 

< 0 , 

therefore (2) holds. The proof of (3) is similar. • 

Definition 2.1. The sequence of matrices {Bk}^^ is said to converge to 
a matrix B, written a s B = lim^+oo Bk, if 

bij= J i m b% 

for all i,j, where bij and 6̂ - denote the (i,j)-th elements of B and Bk, 
respectively. 

Lemma 2.4. Let the sequence of matrices {Bk}^^ satisfy 0 < B\. < A, 
Vfc > 1, and A > 0. Then there exists a nonnegative definite matrix B, 
satisfying 

B = lim Bkm 
m—>+oo 

for some subsequence, and 

0 < B < A. 

Proof. Since 0 < Bk < A, we have 

where att denotes the (t, t)-th element of A. 
Therefore, {6£,-}jL^, i,j = l , . . . , n , where n is the order of A, are 

bounded sequences of numbers and the length of the sequence is finite, 
so l im m ^ + 0 0 btp exists for all i,j, for some subsequence {km}^^1. Write 

bij = lim 6*7*. 
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Let B = (bij). Then B satisfies Lemma (2.4). • 

Theorem 2.1. Suppose r = (1+7) < (n + 4)/(n + 2), and the nonnegative 
estimator (Y'AiY,..., Y'AkY) is V-admissible for a2 under the model (1). 
Then 

2\max(AiVi) + tr(AiVi) < r-1, i=l,2,...,k, (4) 

where Vi = UiU[, i = 1,2,.. . , k. 

Proof. We need only to show (4) holds for i = 1 (and then the same will 
apply for i = 2, ...,n). Suppose 2Amax(AiVi) + tr(AiVi) > r - 1 . We will 
distinguish two cases: 

(a) Vi is positive definite and 
(b) Vi is nonnegative definite, 

to construct a estimator which is better than (Y'AiY,... ,Y'AkY), thus 
being led to a contradiction. 

Without loss of generality, assume r = 1 in the following. 

Case (a). |Vi| ̂  0 . Since V^,2AiV^2 > 0, we can write 

V1
l/2A1V1

1/2 = P' diag(A1 ; . . . , A„)P, 

where Ai > A2 > • • • > An; Aj, i = 1,2, . . . , n , are eigenvalues of .A1V1; 
Ai = Amax(^4iyi); V1 is positive definite such that V\ V\ = V\\ and 
P is an orthogonal matrix. 

n n 
Let 0 < r < Ai satisfy 3r + Yl Ai = max(l, ]T) Aj), and 

i=2 i=2 

Bi = V~1/2P' diag(r, A2, A 3 , . . . , \n)PV^12. 

In the following we prove that {Y'B{Y, Y'A2Y, ..., Y'AkY) is better 
than (Y'AiY, Y'A2Y, . . . , Y'AkY). 

Let W = -\ Yli=2 aiVi- By a direct calculation, we have 

R(AUA2, ...,Ak,(3,o-j,...,o-l)- R{BUA2,. • •, Ak, f3, a2,..., a\) 

= Fl{p,o2) + \F2((3,a2) + 2Fz, (5) 
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Fx{(3,a2) = 2tx{AlVl)
2 + [ t r (Ai^) - l ] 2 

+ 2a^2[(tr{A1V1) - \)$X'AxXp + 2(3'X'A1V1A1X/3} 

-2tr(BV1)
2-[tr{BV1)-l}

2 

- 2a\ [(tr(BVi) - l)f3'X'BX(3 + 2(3'X'BV1BX(3), 

F2{(3,a2) = a\ [2tr(AiW)2 + (tv^W))2] + 2a\tv(A1W)f3'X'A1X^ 

+ AtrlpX'AiWAiXP + {(3'X'AxXp)2 

- at [2tr(BW)2 + (tr(BW))2] - 2a2tr(BW)f3'X'BXp 

- Aalp'X'AxWBXfi - {(3'X'BX(3)2 

and 

F3 = [tr(A1W)][tr(A1y1) - 1] - [tr(BW)][tr(JBV1) - 1] 

+ 2tr(A1V1AiW) -2tv(BV1BW). 

Write 

e = {e1,0'2y = pvr1/2x0, 

where 6\ is a real number and 92 is an (n — 1) x 1 vector. Denote 

diag(A2, A 3 , . . . , An)=A, V-1/2WV~1/2 = (^ ^12 

where Vn is a nonnegative number. For any (/?, u ! ) e l " x 0 , we have 

F1(/3!a
2) = ( A 1 - r ) ( 3 A 1 + 3 r + 2 ^ A J - l j 

+ ^(X1-T) n3X1+3r + J2\i-l)e
2 + 9'2Ae2) 

> (Ai-r) J3A1+3r + 2 ^ A i - l j 

> min | A I (2AI + t r ^ ^ ) - 1), i (2Ai + t r ^ i V i ) - 1 ) 2 | 

> 0 (6) 



148 C.-Y. Lu, Y. Gao & B. Zhang 

and 

F2{(3, a2) = (Ax - T)CJ{ [(3Ai + r)V£ + 2Vu tr(Ay22) + 4V12Ay2i] 

+ (Ax - r)a\ [(6A1 + 6r)Vn + 2tr(A^22)] 0? 

+ (Ai - r)a2 [8(Vi2Ay2i)0i + 2Vll6'2K92} 

+ ( A 2 - T 2 ) ^ + 2 ( A 1 - T ) 0 2 ( 0 2 A 0 2 ) 

> 2(Ai - r) [CT^H tr(AV22) + 2a2(V12A92)e1 + {9'2A62)8
2] 

+ 2(Ai - T)CT2 [tr(AV22)6>2 + 2(V12A62)61 + Vu(9'2A92)] 

= 2(X1-T)g1(a
2
1,0) + 2(X1-T)a2

1g2(9) (7) 

where 

9l(aj,9) = <r?Fu tr(AV22) + 2a2(V12A62)61 + (9'2A92)9
2 

and 

52(A) = tr(AV22)0i + 2(V12A02)0i + Vn(02A02)-

By Lemma (2.3), gi(a2,9) > 0 and g2{6) > 0 for all a2 and all 0, and we 
also have 

F3 = (AiVn +tr(AV22)) (Aj + t r A - 1) 

- (rVii + tr(AV22)) (T + tr A - 1) + 2(A2 - r2)Vu 

= (Ai - r) [(3Ax + 3r + tr A - 1) Vn + tr(AV22)] 

> (Ai - r) Vn (3Ai + 3T + tr A - 1) 

> 0. (8) 

Hence, for any (/?, a2) G Rn x ft, 

iJ(Ai )A2 ) . . . , i4fe,/8 ) tr?, . . . ,^)- JR(Bi,A2 , . . . ,A f c ) J9,(7?, . . . )<Tg) 

> min JAi(2Ai + tr(4iVi) - 1), |(2Ai + tr(AiVi) - l ) 2 

> 0. (9) 

This means that (Y'BXY, Y'A2Y, ..., Y'AkY) is better than 
{Y'AiY, Y'A2Y, ..., Y'AkY), which contradicts that 
(Y'AiY, Y'A2Y, ..., Y'AkY) is Inadmissible for a\. 

Case (b). |Vi| = 0. Set V(k) = V\ + k~lI, where A; is a natural number. 
Then V(k) > Vi, and so 2X(A1V{k)) + tr(AiVfe) > 1. By the proof of case 
(a), there exists Bk such that 0 < Bk < A\, and 
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F(k) = 2tr [4i(V(k) + W)f + [tr (^i(F(fc) + W)) - l ] 2 

+ a^iP'X'AtXpf + ^2f3'X'A1(V(k) + W)A1Xp 

+ 2a^2 [tr (AiiVik) + W)) - 1] ffX'AxXp - 2tr [Sfc(V(Jfe) + W)]2 

- [tr (Bfc(V(/c) + W)) - l ] 2 - a^{p'X'BkXf3)2 

- 4<Ti2p'X'Bk(V(k) + W)BkX(3 

- 2CTf
2 [tr (Bk(V{k) + W)) - 1] (3'X'BkX(3 

> min {A(i4i V(fc)) [2A(4iV(Jfe)) + tr(AiV(fc)) - 1], 

| [2A(i4iV(fc)) + tr(A!V(fc)) - l ] 2 }. (10) 

Since 0 < B(k) < A\, by Lemma (2.4), J3fcm converges to a nonnegative 
definite matrix B and 0 < B < A for some subsequence {fcm}m^i- Let 
Bi = £?; then, from (10), in the limit, we have that, for any (/?, u2) GM"xfl, 

i?(i4i, A 2 , . . . , Ak, p, af,..., a2
k) - R{B1,A2,..., Ak, /3, a2,..., a\) 

= lim F(k) > min{Ai(2Ai + tr(AiVi) - 1), J(2Ai + t r (4i Vi) - l )2} > 0. 
771—S-CX) O 

Hence, {Y'B{Y, Y'A2Y, ..., Y'AkY) is better than 
(Y'AiY, Y'A2Y, ..., Y'AkY), which contradicts that 
{Y'AxY, Y'A2Y, ..., Y'AkY) is Inadmissible for a2. The proof is com­
pleted. • 

Theorem (2.1) is a general result, in which a necessary condition for 
admissibility of nonnegative quadratic estimators of variance components, 
when the moments are not necessarily as under normality, is established. 
For the important case that £j (i = 1,2,.. . , k) follow a multivariate normal 
distribution, when 7 is zero, by applying Theorem (2.1), we get 

Corollary 2.1. Suppose 7 = 0, and the nonnegative estimator 
(Y'AiY, . . . , Y'AkY) is T>-admissible for a2. Under model (1), we have 

2Amax(^V5) + tr(AiVi) < 1, i = 1,2,..., k 

where Vi = UiU[, i — 1, 2 , . . . , k. 

Acknowledgement 

The research of Lu is supported by National Natural Sciences Foundation 
of P. R. China #10471043. 



150 C.-Y. Lu, Y. Gao & B. Zhang 

References 

1. Bentler, P.M. and Berkane, M. (1986), Greatest lower bound to the elliptical 
theory kurtosis parameter. Biometrika 73(1), 240-241. 

2. Chaubey, Y.P. (1984), On the comparison of some nonnegative estimator of 
variance components for two models. Comm. Statist.-Simulation Comput. 
13(5), 619-633. 

3. Chaubey, Y.P. (1991), A note on nonnegative minimum bias MINQUE in 
variance components model. Statistics & Probability Letters 11 , 395-397. 

4. Gnot, S. and Kleffe, J. (1983), Quadratic estimates in mixed linear models 
with two variance components. J. Statist. Planning & Inference 8, 249-258. 

5. Gnot, S., Kleffe, J. and Zmyslony, R. (1985), Nonnegativity of admissible 
invariant quadratic estimates in mixed linear models with two variance com­
ponents. J. Statist. Planning & Inference 12, 249-258. 

6. Hartung, J. (1981), Nonnegative minimum bias invariant estimation in vari­
ance components models. Ann. Statist. 9, 278-292. 

7. Kleffe, J. and Seifert, B. (1986), Computation of variance components by the 
MINQUE method. J. Multivariate Anal. 18, 107-116. 

8. Klonecki, W. and Zontek, S. (1987), On admissible invariant estimators of 
variance components which dominate unbiased invariant estimators. Statis­
tics 18, 483-498. 

9. Klonecki, W. and Zontek, S. (1989), Variance components admissible esti­
mators from some unbalanced data: Formulae for the nested design. Probab. 
Math. Statist. 10, 313-331. 

10. Klonecki, W. and Zontek, S. (1992), Admissible estimators of variance com­
ponents obtained via submodel. Ann. Statist. 20(3), 1454-1467. 

11. LaMotte, L.R. (1982), Admissibility in linear estimation. Ann. Statist. 10, 
245-256. 

12. Lu, C.-Y. (1988), On the question of admissibility of quadratic estimators of 
error variance in a linear model (in Chinese). Acta. Sci. Natur. Univ. Jilin. 
3, 7-13 

13. Lu, C.-Y. (1991), Admissibility of nonnegative quadratic estimators for com­
bined variance components (in Chinese). Chinese Ann. Math., 12A, 699-
707. 

14. Lu, C.-Y. (1996), Admissibility of simultaneous estimators of variance com­
ponents (in Chinese). J. Systems Science and Mathematical Science. 16(4), 
361-366. 

15. Mathew, T. and Sinha, B.K. (1992), Nonnegative estimation of variance com­
ponents in unbalanced mixed models with two variance components. J. Mul­
tivariate Anal. 42, 77-101. 

16. Olsen, A., Seely, J. and Birkes, D. (1976), Invariance quadratic estimation 
for two variance components. Ann. Statist. 4, 878-890. 

17. Rao, C.R. and Kleffe, J. (1988), Estimation of Variance Components and 
Application. North-Holland, Amsterdam. 

18. Srivastava, V.K. and Chandra, R.(1985), Properties of the mixed regression 
estimator when disturbances are not necessarily normal. J. Statistical Plan­
ning and Inference 11, 15-21. 



Nonnegative Quadratic Estimators of Variance Components 151 

19. Verdooren, L.R. (1988), Least squares estimators and nonnegative estimators 
of variance components. Commun. Statist. 17A, 1027-1051. 

20. Wu, Q.-G., Cheng, P. and Li, G.-Y. (1981), Admissibility of quadratic form 
estimators of error variance in a linear model (in Chinese). Science in Sinica 
7, 815-825. 

21. Ye, C.-N. (1988), Admissibility of simultaneous estimators of two variance 
components (in Chinese). J. Chinese App. Prob. Statist. 4, 35-43. 



152 

Small-Sample Performance of Robust Methods in Logistic 
Regression 

Suraiya Nargis 

Population Health Unit, Australian Institute of Health and Welfare, 
Canberra ACT 2601, Australia 

E-mail: suraiya.nargis@aihw.gov.au 

Alice Richardson 

School of Information Sciences and Engineering, University of Canberra, 
Canberra ACT 2601, Australia 

E-mail: alice.richardson@canberra.edu.au 

In this paper we aim to deepen our understanding of the behaviour of 
robust methods in logistic regression. Firstly we describe a number of ap­
proaches to robust estimation in logistic regression. Next we test aspects of 
their behaviour through a small simulation study of binary data only. Finally, 
opportunities for further research are presented. 

Keywords: generalised linear model; simulation study. 

1. Introduction 

Linear models have a long history and they provide a rich class of methods 
for describing the relationship between a dependent variable and one or 
more explanatory variables. Nelder and Wedderburn (1972) extended the 
class to include discrete response variables and called their new models Gen­
eralised Linear Models (GLMs). McCullagh and Nelder (1989) noted that 
GLMs are a powerful and popular technique for modelling a large variety 
of data. In particular GLMs allow researchers to model the relationship be­
tween predictors and a response variable which follows a distribution from 
the exponential family. 

Logistic regression is a special case of a GLM. Logistic regression relates 
a binary response variable to covariates. The possible outcome of a binary 
response variable might be classified as success or failure and can be repre­
sented by 1 and 0. The Bernoulli distribution for binary random variables 

mailto:suraiya.nargis@aihw.gov.au
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specifies probabilities P(y = 1) = 7r and P(y = 0) = 1 — 7r for the two 
outcomes. The probability mass function for a general Bernoulli random 
variable is as follows: 

f(vi;*i) = *V(i-*i)1-yi- (i) 

The natural parameter log(7r/(l — 7r)), the log odds of response 1, is called 
the logit of 7r. 

When linear regression is used for binary data, three problems may 
arise. First, the variance of the error term is not constant; second, the error 
term is not normally distributed; third, there is no restriction requiring the 
predicted values to fall between 0 and 1. 

Thus normal distributions for the ordinary least-squares estimators do 
not apply to binary data and the logistic regression model produces a more 
fruitful estimator. The logistic regression model is 

exp(a + /?z) 
[ ) l + exp(a + /3z)' W 

This model relates /ij = Wi, the mean of t/j, to a linear model via 

9(Vi) = SK) = x[P = rn 

where g is the function g(n) = log(7r/(l — n)). 
During the past decades researchers have become increasingly aware 

that some of the most common statistical procedures are excessively sensi­
tive to seemingly minor deviations from the assumptions. 

Robust procedures have been proposed as an alternative. The methods 
used in this paper will be those inspired by the infinitesimal approach of 
Huber (1981) and Hampel et al. (1986). This approach studies the effect 
of tiny changes in the data on parameter estimates. For example, consider 
the multiple linear regression model 

y = XT{3 + e 

where y is an n x 1 vector of observations; X is an n x p design matrix 
for the fixed effects; /3 is a p x 1 vector of fixed effect parameters; and e 
is an n x 1 vector of random errors with e ~ N(0,a2). This model has 
log-likelihood 

my) = -^2^)-\±{yi^)\ (3) 
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So calculating the MLE of (3 involves differentiating (3) and solving 

te)(^)=o- <«> 
Huber's M-estimation, described in Huber (1981), replaces the linear 

term in (4) with a function that downweights the effects of large y on the 
estimating equation. Huber's choice of function for this was 

csgn(z) , \z\ < c, , . 

|*| > c l 5 j 

To achieve a reasonable degree of robustness without compromising effi­
ciency, a typical value of c is 1.345 for the estimation of location parame­
ters. 

In Section 2 of this paper we review robust logistic regression. In Section 
3.1 we carry out a simulation study on simple logistic regression for both 
classical and robust cases with no outliers. In Section 3.2 we study the effect 
of an increase in the proportion of misclassified points in the data set and 
in Section 3.3 we study the effect of one misclassified point at a time. In 
Section 4 we conclude with suggestions for further research. 

2. Algorithms for Robust Logistic Regression 

The term outlier refers to an observation which appears to be inconsistent 
with the rest of the data, relative to an assumed model. Outliers can occur 
for a variety of reasons including data entry errors, scoring errors, error in 
the measurement recording or sample data that are genuinely atypical. 

It is not clear how this definition could be extended to binary data 
because y takes values 0 or 1, neither of which can be considered inconsistent 
with the other. This makes outliers in logistic regression harder to define 
and identify than outliers in linear regression. Ruckstuhl and Welsh (2001) 
consider a contamination model for outliers in binomial data as follows: 

f(y) = (1 - e) ( ™ ) 7r"(l - *)m-y + eg(y) 

where g is an arbitrary probability function on {0 , . . . , m} and 0 < e < 1. 
They note that no contamination is possible with binary data, because in 
that case g must be a binary distribution so the linear combination of the 
two is also binary. Thus the maximum likelihood estimator of 7r will be 
robust for binary data, but better estimators exist for binomial data. 

We will therefore pursue misclassification rather than contamination 
in order to define outliers in binary data. This consideration identifies an 

il>{z) 
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outlier in binary data as an isolated success/failure that is surrounded by 
many failures/successes. 

In the next three subsections we consider three approaches to robust lo­
gistic regression: by Pregibon (1982), by Richardson (1999), and by Cantoni 
and Ronchetti (2001). 

2.1. Pregibon 

Pregibon (1982) considers a binary outcome y with probability function as 
shown in (1). The log likelihood is then 

^2{yilogm + (1 - j / i ) log(l -7r»)} 

and maximising this is the same as minimising the deviance 

D = - 2 ^2 {Vi l og TTi + (1 - 2/i) log(l - 71-j)} 

n 

~ Yl ^ l 0 g Ki + ^-Vi) log(l - TTi)} 
1 = 1 

E{ y aog | + (i-^)iog^|;} 

Pregibon's suggestion is to replace the deviance with a function A of it that 
curtails large contributions, namely 

n / 1 _ . 

V A (j/i log ^ + (1 - y{) log - — ^ 
~[ \ ^i 1 - 7Tj 

The function A grows more slowly than a straight line; e.g. 

_ f d , d < H, 
{ ' \ 2{dH)1'2 - H , otherwise. 

2.2. Richardson 

Richardson (1995) derived robust estimating equations for the parameters 
of a mixed linear model as follows. Consider the mixed linear model 

y = X(3 + Zb + e (6) 

where y is an n x 1 vector of observations; X is an n x p design matrix 
for the fixed effects; /? is a p x 1 vector of fixed effect parameters; Z is an 
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n x q design matrix for the random effects; b is a q x 1 vector of random 
effects with b ~ N(0,a%); and e is an n x 1 vector of random errors with 
e ~ JV(0, of) independent of b. Thus var(y) = a2ZZT + of 7 = V. 

Richardson (1995) showed that maximum likelihood estimating equa­
tions for the variance parameters of this model are 

~2 of fa - XP)TV-lZZTV-\y - Xp) 
tv[V-lZZT] 

T2/„, _ v m T T / - l l / - l | ,2 ^(y-x^v-^-Hy-^) 

and that given of and of, the maximum likelihood estimate of p is 

$ = (XTV-1X)-1XTV-1y. 

Estimating equations to produce robust M-estimates of Type II of the vari­
ance parameters are 

,2 <72
bip(v-1/2{y - xpyTy-wzzTy-Wipiv-Wiy - xp)) 

Uh ~ ktr[V-lZZT] 

. 2 _ (r2Mv~1/2(v - xp))Tv-li2v-1/2jj{v-l/2{y - xp)) 
Gt ~ ktrlV-1} 

and that given of and a2, the Type II M-estimate of p is J3 = 

p + {xTv-^2^'{v-l'2{y - x/3))t>-1/2x)-1xTy-1/V(vr"1/2(y - xp)). 

Here ip(z) is Huber's function in (5), applied elementwise to the vector 
V1^2(y — XP) and used to create the diagonal entries of ip'(V~1^2(y — 
XP)); and k is an appropriate consistency correction. Richardson (1999) 
used the same estimating equation approach to derive estimators for the 
generalised linear mixed model. These can be seen as extensions of the 
estimating equations used in classical maximum likelihood estimation of 
logistic regression parameters, namely p = {XTWX)~lXTWz where W — 
diag(/ij(l — /it)) a n <i z — Vi + (Ui~Mif1- This suggests that an appropriate 
robust estimating equation for the logistic regression model is 0 = 

{xTw-1'2i,'{w-li2{z - xp^w-^x^xTw-1'2^-1'2^ - xp)). 
(7) 

Splus code for implementing this method is given in the Appendix. 
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2.3. Cantoni and Ronchetti 

Cantoni and Ronchetti (2001) suggested Huber quasi-likelihood estimation 
as a robust alternative to maximum likelihood estimation. They also began 
with estimating equations 

(i>(v1/2(y - M ) W * ) v - 1 / 2 ^ ) -k = o (8) 

where fi and r/ are parts of the logistic regression model as in (2); ip(z) is 
Huber's function as in (5); W is a function designed to reduce the influence 
of large X; and fc is a consistency correction. 

Very few statistical computing packages have implemented such meth­
ods. Cantoni and Ronchetti (2001) wrote Splus functions to implement their 
quasi-likelihood approach. Richardson (1999) also had Splus functions to 
implement her estimating equation approach. The method will be denoted 
RII and will be used later in this paper. 

Splus has a robust option within the GLM function, but some functions 
within Splus give much more direct access to the code than is possible 
with glm(). For example, the varcomp command has an option method = 
winsor which calls the Splus function varcomp. f i t .winsor. This function 
implements the method of Burns (1994) as follows. Initial values of the 
parameters are found and used to apply Huber ip functions to the data. 
A classical fitting method is then used to update the parameter estimates. 
The algorithm is iterated to convergence. It seems likely that a similar algo­
rithm is used within glm(). In fact, Bondell (2005) claims that Splus imple­
ments the conditionally unbiased bounded influence estimator of Kiinsch et 
al. (1989) and the Mallows-type estimator of Carroll and Pederson (1993) 
with weights defined by a robust Mahalanobis distance. There is also an 
option to specify that the scale parameter is fixed at 1, i.e. using 
glm(y ~ x, family = robust (binomial, sca le = 1)) instead of 
glm(y ~ x, family = robust (binomial)) which estimates the scale pa­
rameter as well. 

3. Simulation Study: Rationale 

The infinitesimal approach to robustness is based on the following concepts 
of Huber (1981): firstly, qualitative robustness, meaning that a small per­
turbation should have small effects; secondly, influence functions, which are 
a measure of the effects of infinitesimal perturbation; thirdly, breakdown 
point, which is a measure of how big the perturbation can be before the 
method under consideration breaks down. 
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Hampel (1985) used the above concepts and linked them to the stabil­
ity of an estimator. According to Hampel, the most important robustness 
requirements (besides qualitative robustness) are a high breakdown point 
and low gross-error sensitivity. A sensitivity analysis quantifies how changes 
in the values of the data alter the values of the parameter estimates. 

We will follow the approach of Nargis (2005) and study the sensitivity 
of methods (robust and non-robust) by increasing the outlying-ness of a 
single point in the data set and studying changes in the resulting parameter 
estimates. Breakdown is a measure of the instability of an estimator to 
multiple outliers in the data. Roughly it gives the smallest fraction of data 
contamination needed to cause an arbitrarily large change in the estimate. 

We will study the breakdown of methods (both robust and non-robust) 
by increasing the proportion of outliers in a data set and then studying 
changes in the parameter estimates similarly. 

3.1. Simple logistic regression, classical and robust: no 
outliers 

The algorithm for this part of the simulation study is as follows. 

(1) Set up X as 50 values from N(0,1). 
(2) Calculate xbeta = 1 + X. 
(3) Calculate prob = exp(xbeta)/(1 + exp(xbeta)). 
(4) Simulate Y = Bernoulli(prob). 
(5) Estimate parameters by classical (Splus and RII) and robust logistic 

regression (Splus with fixed scale parameter, Splus with free scale pa­
rameter, and RII). 

(6) Repeat Steps 1 to 5 50 times to produce 50 sets of parameter estimates. 

Thus the model is 

^ x p ( l + X ) 
V ' l + e x p ( l + X) ^ ; 

The simulation was done using Splus. Table 1 gives the mean and standard 
deviation (s.d.) for the 50 sets of estimates of the parameters. 

We use Q-Q plots in Figure 1 to study the overall shape of the distri­
bution of the estimates. 

The classical method produces estimates that are closest to the true 
values and show the smallest amount of variation. This is because the data 
contained no outliers to begin with. For the remaining robust methods, 
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Table 1. Mean and s.d. for 50 sets of estimated logistic regression coefficients. 

True value = 1 in each case. 
classical Splus fixed Splus free RII c = 100 RII c = 1.345 

00 01 00 01 00 01 0Q 01 A) Pi 
mean 1.02 1.12 1.08 1.19 1.27 1.40 1.02 1.12 1.17 1.30 
s.d. 0.37 0.42 0.42 0.48 0.48 0.54 0.38 0.42 0.46 0.53 

the means of (3Q and (3\ are all close to the true value of 1 in each case. 
This shows that the robust methods still work well, even when there are no 
outliers in the data. The shape of the Q-Q plots shows that the estimates 
are approximately normally distributed with a slight positive skew. 

3.2. Breakdown analysis: increasing proportion of 
misclassified points 

The idea of changing a proportion of the responses from 0 to 1 and vice 
versa has also been employed by Mills et al. (2002). The algorithm for this 
part of the simulation study is as follows. 

(1) Set i = 1 and set up X as 50 values of N(0,1). 
(2) Calculate xbeta = 1 + X. 
(3) Calculate prob = exp(a;6eta)/(l + exp(xbeta)). 
(4) Simulate Y = Bernoulli(prob). 
(5) Estimate the parameters by classical and robust logistic regression, as 

before. 
(6) Change ith value of y from 0 to 1 or from 1 to 0. 
(7) Let i = i + 1 and repeat from Step 5 until i = 50. 

When we change one value we keep the previously changed values as they 
are. The proportion of misclassified observations will increase gradually and 
we can study the effect of the change on the parameter estimates. 

The simulation was done using Splus. After obtaining the outputs of the 
simulation with an increasing proportion of outliers, we have plotted the 
parameter estimates as a function of the proportion of misclassified points. 

The values of both intercept and slope estimates gradually decrease 
as the proportion of outliers increases, until the estimates have essentially 
turned round, from around 1.0 to around —1.0. The robust parameter es­
timates are actually slightly more extreme than the non-robust estimates, 
particularly in the regions where there are either very few or very many 
misclassified observations. 
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Therefore both the methods have managed the increasing proportion of 
outliers in a similar way. There does not seem to be any strong indication 
of a breakdown point, i.e. a point beyond which the non-robust estimates 
become infinite or otherwise useless but the robust ones continue to provide 
useful results. 

3.3. Sensitivity analysis: one mis classified point at a time 

The aim of this part of the simulation study is to investigate the variability 
in parameter estimates when the proportion of misclassified observations 
is held constant. The algorithm for this part of the simulation study is as 
follows. 

(1) Set i = 1 and set up X as 50 values of N(0,1). 
(2) Calculate xbeta = 1 + X. 
(3) Calculate prob = exp(xbeta)/(1 + exp(x6eia)). 
(4) Simulate V = Bernoulli(prob). 
(5) Change ith value of y from 0 to 1 or from 1 to 0 (i.e. misclassify it). 
(6) Estimate the parameters by classical and robust logistic regression, as 

before. 
(7) Return ith value of y to its original value. 
(8) Let i = i + 1 and repeat from Step 5 until i = 50. 

When we change one value we change the previous one back to its original 
value. The changes will happen one at a time, to see the effect of the 
change of one value on the parameter estimates. This is akin to considering 
the points on Figure 2 relating to number of misclassified observations = 
1, and changing the observation number which is misclassified. These small 
numbers of misclassified points were the ones which showed the greatest 
difference between non-robust and robust fits in Figure 2. 

The simulation was done using Splus. After obtaining the outputs of 
the simulation with an increasing proportion of outliers, we have plotted 
the parameter estimates as a function of the misclassified point number. 

Once again the robust parameter estimates are slightly more extreme 
than the non-robust ones, but the differences are not large. Hence in Figure 
3 we see the gap between the lines for the robust and non-robust fit, match­
ing the gap between the parameter estimates in the extremes of Figure 2. 
The parameter estimates in Figure 3 vary around the true values of 1.0, 
suggesting that either method provides a reasonable parameter estimate in 
this situation. 
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4. Conclusion 

In this paper we have investigated some aspects of the behaviour of a range 
of methods for robust logistic regression, through the use of a small simu­
lation with binary data. The hypothetical data of Hosmer and Lemeshow 
(2000) offer another approach to simulation in binary data. They construct 
a single continuous covariate and seven different sets of twenty binary re­
sponses that fit a logistic regression model more or less well. Their example 
could be extended by adding extra covariates or increasing the sample size. 

A simulation study involving binomial data rather than binary data 
would also be useful as it would overcome the problem of defining contami­
nated data highlighted by Ruckstuhl and Welsh (2001). An expanded simu­
lation study could also include the Splus routines of Cantoni and Ronchetti 
(2001), and restricted maximum likelihood methods that match Richardson 
(1999). It would also be interesting to study the effect of perturbations in 
the values of X instead of, or as well as, perturbations in y as shown in 
section 3.2. 

Appendix 

The Splus code used to implement Richardson's method is given below. 
PSI <- funct ion(vec, tune = 100) { 
out <- vec to r ( l eng th = length(vec)) 
f o r d in l : l eng th (vec ) ) 
ou t [ i ] = max(-tune, min(tune, v e c [ i ] ) 
out 

} 

PSIDASH <- function(vec, tune = 100) { 

out <- matrix(0, ncol = length(vec), nrow=length(vec)) 

for(i in 1:length(vec)) 

o u t [ i , i ] = i f e l s e ( a b s ( v e c [ i ] ) < tune , 1, 0) 
out 

} 

R2 <- function(y, ssize, x, inita, tunea = 100) { 

# enter y as a vector, x as matrix 

# ML only 

# initialise parameter estimates 

# let alpha = q by 1 matrix 
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alpha <- matrix(inita) 

# begin loop to update estimates of everything 

iter <- 0 

repeat { 

iter <- iter + 1 

# transform y 

eta <- as.vector(x '/„*% alpha) 

mu <- (ssize * exp(eta))/(exp(eta) + 1) 

gdashmu <- ssize/((mu +0.1) * (ssize - mu + 0.1)) 

r <- eta + (y - mu) * gdashmu 

newr <- r 

# get jinv 

u <- diag(gdashmu) 

jinv <- solve(u) 

sva <- svd(jinv) 

jhalfinv <- sva$u %*'/. diag(sqrt(sva$d)) %*% t(sva$v) 

jhalfresid <- jhalfinv '/<,*'/, (newr - x '/,*'/, alpha) 

# update estimates of alpha ROBUSTLY 

psia <- PSI(jhalfresid, tunea) 

psidash <- PSIDASH(jhalfresid, tunea) 

h <- solve(t(x) ft*0/, jhalfinv '/.*'/. psidash •/,*"/. jhalfinv •/.*'/. x) 

newalpha <- alpha + h */.*•/, t(x) '/,*'/, jhalfinv •/.*"/. 

as.matrix(psia) 

# check whether parameter estimates are different from last 

# time 

diff <- c(abs(newalpha - alpha)) 

alpha <- newalpha 

etahat <- as.vector(x %*% alpha) 

muhat <- (ssize * exp(etahat))/(exp(etahat) + 1) 

print(c(iter, as.vector(alpha))) 

if(iter > 99) 

break 

if(max(diff) < 0.0001) 

break 

} 
# output 

list(iter = iter, alpha = as.vector(alpha)) 

} 
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Following van Zyl, Neudecker and Nel (2000) we consider asymptotic prop­
erties of the 'natural ' estimator of Cronbach's alpha when the variates are 
standardised. This means that the population correlation matrix P is the pop­
ulation variance matrix £ , because now all diagonal elements of E are equal to 
unity. The 'natural ' estimator 6ts = (p — l ) _ 1 p [ l — p ( l ' i Z l ) - 1 ] , where R is the 
sample correlation matrix and p is the number of items (responses). We find 
the asymptotic distribution of as under nonnormality, ellipticity and normality. 
Use is made of a (0,1) 'duplication' matrix D. This enables us to switch easily 
between vecA and w(A), where A is a symmetric zero-axial matrix (A^ = 0) 
and w(A) contains the 'free' elements of A. 

Keywords: responses; maximum-likelihood estimator; nonnormality. 

1. Introduction 

Some time ago van Zyl, Neudecker and Nel (2000) considered the estimation 
of Cronbach's a = (p— l) _ 1p[l — ( l ' E l ) - 1 t rE], where E is the population 
variance of a random vector x (of p responses) and 1 is a column p-vector 
of ones. Further Ex = 0. As usual E is the expectation operator. 

The 'natural' estimator a = (p—l)~1p[l — (l'Sl)~~1 tr S] was used, where 
S = (n—l)~1X'(I — n~1ll')X is the usual unbiased estimator of S. Further 
n~l{n — 1)5 is the maximum-likelihood estimator under normality and n 
is the sample size. The three authors gave the asymptotic distribution of a 
under nonnormality. See their result (21). 

In this paper we shall consider the estimation of a when the variates are 
standardised. This means that Ed = i", where (.)<j denotes the diagonal of 
the matrix (.). Using the notation as we have as = (p— l)_1p[l— p ( l ' P l ) - 1 ] , 
where P denotes the population correlation matrix. 

mailto:neudecker@uva.nl
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Clearly in the standardised case P = E because E^ = J. As estimator 
we shall adopt as = (p — l) _ 1p[l — p( l 'Pd) - 1 ] , where R is the sample 
correlation matrix. 

2. The Asymptotic Distribution of d s Under Nonnormality 

We shall employ the Delta method; see e.g. van Zyl et al. (2000). If 6 is any 
estimator of the parameter vector 6 such that 

n1/2(§-0)l>N(0,$), a s n ^ o o (1) 

and if F is a scalar-valued function of a vector variable z with first-order 
partial derivatives continuous at z = 6, then 

n1'2 (F{§) - Fi6)) A N(0, h'Qh), as n -» oo (2) 

where h = Jf' \z-$ and N(fi, $) denotes the normal distribution with 
mean fj, and variance <E>. 

It is well-known, see e.g. Magnus (1988) and Neudecker and Wesselman 
(1990), that 

n 1 / 2 vec(P - P) 4 iV(0, * ) , as n -> oo (3) 

where 

* = [I - L(I ® F ) ^ ] ( E " 1 / 2 ® E ; 1 / 2 ) y ( E " 1 / 2 ® E; 1 / 2 ) [7 - tfd(J ® P)L], 

V = E[(x - fi)(x - fi)' <g) (a; - /x)(z - n)' - (vecE)(vecE)'], 

K is the commutation matrix: KvecX = vecX' and Kd is its diagonal. 
From this follows easily for w(P — P) , the vector of 'free' elements of R — P: 

n 1 / 2 w ( P - P ) - i N(0,D'VD), (4) 

where w(A) = \b'vecA and vecA = Dw(A), for A such that Ad = 0 and 
A' = A (In fact £>' eliminates the diagonal and supradiagonal elements of 
A). 

Further 

D'^D = 73 ' [ / - ( /®P) / i ' d ] (E ; 1 / 2 ®E- 1 / 2 )y (E ; 1 / 2 ®E; 1 / 2 ) [ / - ^ d ( J®P) ] J D, 
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because LD = D. See for D and its properties, Neudecker and Satorra 
(1996). The term involving vecS vanishes, because 

D'[I - {I ® F) i f d ] (E- 1 / 2 ® S ; 1 / 2 ) vecE 

= £ ' [ / - ( / ® P) j r d ]vecP 

= £>' vec P-D'(I®P) vec Pd 

= £>' vec P -D\I®P) vec i" 

= D'vecP-D'vecP 

= 0. (5) 

It follows that 

D'^D = D'[I - (I ® P)lfd]E[(EJ1 /2(a; - /*)(* - M ) ' ^ 1 / 2 ) ® 

(E ; 1 / 2 (x - Mx - /i) 'E;1 / 2)][7 - Kd(I ® P ) ] £ (6) 

which is slightly simpler than the corresponding expression in Magnus' 
equation (10.23). 

Prom the asymptotic result for w(P) we get 

nl^{as -as)^N (o, 4p4(p - l ) - 2 ( l ' P l ) - 4 l ' . D ' * D u ) , (7) 

where 1* has p* = |p(p — 1) unit elements. 

The asymptotic result for as given above is actually based on the 
derivative of (p — l ) _ 1 p[ l — p ( l ' Z l ) - 1 ] with respect to w(Z). Mind that 
the 'free' elements are the p* infradiagonal elements of Z. The operator 
D' eliminates the unit diagonal elements of Z and the zero diagonal ele­
ments of the differential dZ. For matrix differential calculus, see Magnus 
and Neudecker (1999). Clearly this p*-vector lists the p* 'free' elements of 
Z:Zd = I,Z' = Z. We have 

d(i'zi)-1 = -{i'z\)-2i\dZ)i 

= -{l'Zl)-2(l®l)'dvecZ 

= -{l'Zl)-2{\®l)'bdw(Z). (8) 

Hence the derivative of (p — l ) _ 1p[l — p(YZl)"1} is 

(p - l ) - y ( l ' Z l ) - 2 D ( l ® 1) = 2(p - I ) " V ( l ' Z l ) - 2 w(l l ' ) 

= 2 ( p - l ) - V ( l ' Z l ) - 2 l . . (9) 

From this result we shall derive the asymptotic distribution of as in the 
case of ellipticity. 
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3. The Asymptotic Distribution of &s Under Ellipticity 

In the elliptic case V = 2(1 + K)7, (E <g> E) + K(vecE)(vec E)', where K is the 
common kurtosis parameter. Hence 

( E - ^ E - 1 / 2 ) ^ - 1 7 2 ^ " 1 7 2 ) 

= 2(1 + « ) (E ; 1 / 2 ® E" 1 / 2 )L (EE- 1 / 2 ® EE" 1 / 2 ) 

+ K ( E ; 1 / 2 ® E - 1 / 2 ) ( v e c E ) ( v e c E ) ' ( E ; 1 / 2 ® E - 1 / 2 ) 

= 2(1 + K)L(P <g> P) + K(vecF)(vecP)'. (10) 

Further 

* = 2(1 + K)[I - L(1® P)Kd}L(P ® P)[7 - Kd(I ® P)L] 

+ K[I - L(I ® P)7£Td](vec P)(vecP)'[7 - 7Q(7 ® P)L] 

= 2(1 + K)[I - 7,(7 ® P)Kd}L(P ® P)[7 - Kd(I ® P)L] 

+ K[vec P -L(I® P) vec 7] [vec P - L(I ® P) vec 7]' 

= 2(1 + K ) L [ / - (7 ® P)tfd](P ® P) [ / - # d ( / ® P)]L, (11) 

because L(I ® P) vec 7 = 7, vec P = vec P . Hence under ellipticity, 
J ) ' * / ) = 2(1 + K)D'[I - (7 ® P)7Q](P O P)[7 - 7Q(7 (8) P)7J>, because 
7,7) = 7). 

Finally 

n ^ d a - a a J - i j V C O . W e ) , (12) 

where We = 
%{l + K){P-l)-2p\VPl)-AV,b'{I-{I®P)Kd){P®P)[I-Kd{I®P)]bu. 
The result for normality follows from K = 0; see Section 4. 

4. The Asymptotic Distribution of as Under Normality 

From the preceding section we get under normality 

n1'2{a3-a3)±N{0,Wn), (13) 

where 
Wn=8(p-l)-2p4(l'Pl)-4i:b'[I-(I®P)Kd](P®P)iI-Kd(I®P)}DU. 
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In this paper we consider the problem of approximating the variance of a 
nonlinear function of random variables on the basis of a second degree Taylor 
series expansion. In contrast to the result achieved by Tiwari and Elston (1999), 
our approach in addition uses the covariances between the random variables 
to obtain a better approximation. 

Keywords: nonlinear function; second degree approximation of variance; het­
erozygosity. 

1. Introduction 

In their paper, Tiwari and Elston (1999) investigated the problem of ap­
proximating the variance of a nonlinear function of random variables on the 
basis of the first three terms of a Taylor series expansion. Unfortunately, 
when calculating the variance of the second degree Taylor expansion, the 
authors did not take into account the possible correlation between the vari­
ables, which, as their examples show, is indispensable. Subsequently, we 
resume their analysis and obtain some alternative expressions. 

2. Variance of the Second Degree Taylor Series 
Approximation 

As in Tiwari and Elston (1999), we consider a scalar function / of the ran­
dom vector y, where y = (yi, y2, • • •, ym)'. Let E(y) = \i = (m,..., / i m ) ' 

mailto:h.neudecker@uva.nl
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and S = D(y) = E[(y — ix)(y — fi)'] denote the expectation vector and the 
dispersion matrix, respectively, of y. Our problem is to find the expectation 
of a scalar function / (y ) , where we assume that the first and second partial 
derivatives of / with respect to each yt (i = 1 , . . . ,m) exist in an open 
neighbourhood containing /j,. 

Let y = n + Ay and / (y) — /(/x) + A/(y) . Using Taylor's formula we 
get the following approximation: 

f(y)~f(»)+
df{y) 

dy' «y + i ( * ) 'a 2 / W 

y=M 2 W / dydy' 
dy 

y=M 

= /(/x) + a ' d y + i ( d y ) ' A d y , 

where a = ^ P | y = M , A = ^W] | y = M and dy = Ay = y - /x. 
For the expectation of / (y ) we get 

£[/(y)] * /(/*) + *'E{dy) + \ t r (AS) , 

since E[{dy){dy)'\ = D(y) = E. 
As E(dy) = 0, this reduces to E[f(y)] « / ( / i ) + § t r (AS) . 
Note that Tiwari and Elston (1999) gave the following approximation 

E{f(y)]Kf(vL) + ±l'AdVdl, 

where generally X^ is the diagonal matrix featuring the diagonal of a square 
matrix X. 

It is easy to see that l /A^E^l = t r (AS) iff A = A^ or S = S^. 
The authors' approximation of E[f(y)] differs from ours. They obviously 

neglected the correlation between the y .̂ 
When / (y ) ss f(/j,)+a'dy (first degree Taylor expansion), we then have 

E[f(y)] ~ fin)- Further, D[f(y)] « a 'Sa , because 
D(a'dy) = a'[D(dy)]a = a'[£>(y - /x)]a = a'[D(y)]a. 

Tiwari and Elston (1999) gave as variance a 'E^la . Because this is a 
column vector, it cannot be the variance. Let us return to the second degree 
approximation 

f(y)*m + a'dy+hdy)'Ady. 

Its variance is 

D[f(y)]^D[a'dy+hdyyAdy} 
2 

D(a'dy) + ^D[{dy)'Ady] + cov[a'dy, (dy)'Ady], 
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where the last term denotes the covariance between a'dy and (dy)'Ady. 
Evaluating the three terms we get 

(i) D(a'dy) = a ' S a 

D[(dy)'Ady] = E[(dy)'Ady}2 - [E(dy)'Ady}2 

= E[(dy®dy)'(A® A)(dy®dy)} - [tr AE{dy)(dy)f 

= tr{(A ® A)E[(dy)(dy)' ® (dy)(dy)']} - [tr(AS)2] 

= t r [ ( A ® A ) * ] - [ t r ( A S ) ] 2 , 

where \& = E[(dy)(dy)' ® (dy)(dy)'] and <8> denotes Kronecker pro­
duct. 

(iii) 

cov[a'dy, (dy)'Ady] = a'£[(dy)(dy)'Ady] 

= a'Evec[(dy)(dy)'Ady] 

= a 'E[dy®(dy)(dy) '] 'vecA 

= a'3>' vec A 

= (vecA)'$a, 

where <I> = E[dy ® (dy)(dy)'} and 'vec' denotes the vectorisation operator 
which transforms a matrix into a vector by stacking the columns of the 
matrix one under the other. 

Collecting terms we arrive at the result: 

D[f(y)} ss a ' S a + J tr[(A ® A)*] - - [tr(AE)]2 + (vec A) '#a . 

With the notations introduced above we get 

Theorem 2.1 . 

(i) B„[/(y)] = /(/*) + | t r (AS) 
(ii) Da[f(y)\ = a ' £ a + ±tr[(A® A)*] - ±[tr(A£)]2 + (vecA)'$a, 

where Ea[f(y)] and £>a[/(y)] are the approximate expectation and vari­
ance, respectively, of / (y ) = /(/*) + a'dy + ^(dy)'Ady. When the higher 
derivatives are zero, both formulae are exact. 
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3. Application to Genetics 

As in Tiwari and Elston (1999) we consider a panmitic population in Hardy-
Weinberg equilibrium. Suppose that there are m dominant alleles segregat­
ing at a locus. Let pi be the frequency of the «-th allele in the population for 
i— 1 , . . . , m. Assume a sample consists of n alleles chosen at random from 
the population. The random variables Xi denote the number of i-th alleles 
in the sample. Then the set X\,..., Xm has a joint multinomial distribution 
given by 

n! 
r[X\, . . . , Xm) = j j"Pi • • • Vm i 

m m 
where each Xi may take on the values 0 , . . . , n, ^2 X{ = n and J2 Pi — 1-

Let p = (p i , . . . ,pm)' be the random vector of sample allele frequen­
cies, where pi = Xi/n. Then E(pi) = pi, so that E(p) = p, where 
p = (pi,- •• ,Pm)' is the unknown vector of allele frequencies. It follows 
that 

S = D(p) = i ( P - p p ' ) , 
n 

where P = diag(p^) is the m x m diagonal matrix having the pi as its 
diagonal elements; see Tiwari and Elston (1999) or Bickel and Doksum 
(2001, A13). 

Tiwari and Elston (1999) investigated the problem of estimating het­
erozygosity, which is defined as the probability that a randomly chosen 
individual from the population is heterozygous at a locus. Heterozygosity 
is defined as 

m 

Het = l - ^ p 2 = 1 _ p / p _ 

»=i 

Then a reasonable estimator for the parameter function Het should be 
m 

Hl= HeT = l - p ' p = l - ^ p 2 
j = i 

The statistic H\ is not unbiased, since by our Theorem in the setup of 
Section 2 we have / (y) = 1 — y 'y = /(/x) + a'dy + ^(dy)'Ady with y = p, 
/n = p = E(p), A = —21 and a = —2p. Hence / (y) coincides with its 
second degree Taylor expansion, and consequently the approximations of 
our Theorem are exact. This implies 

E{HX) = Het - Het/n = —— Het . 
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This identity may also be shown directly. Since 

£ (p 'p ) = t r £ ( p p ' ) 

= tr[D(p) + (Ep)(Ep)'} 

= tr - ( P - p p ' ) + Pp' 
n 

= - t r P - - p ' p + p'p 
n n 
1 n - 1 , 

= - + PP. 
n n 

it follows that E(l - p 'p) = (n - l ) / n Het. 
Observe that Tiwari and Elston (1999) gave an incorrect expression for 

E{Hi). An unbiased estimator for Het is 
#2 = - ^ - r ( l - p p ) . 

n — 1 

Furthermore, our Theorem yields 
Da{Hx) = JD(Hi) = 4p 'Sp + t r * - ( t r S ) 2 + 4(vecl) '*p, 

where 

* = E [ ( p - p ) ® ( p - p ) ( p - p ) ' ] 

and 

* = E[(p - p)(p - p) ' ® (p - p)(p - p)']. 

The variance approximation given in Tiwari and Elston (1999, formula 12) 
is 

v a r ^ ) = -£>?-(P 'P) 2 ] , 
2 = 1 

which can be written as 

varD(ff1) = - [ l , P 3 l - ( p ' p ) ^ r i ' T i 3 - , / „ ' „ \ 2 i 

= l[p'Pp-(p'p)2] 

= 4p 'Sp . 

Hence we obtain 

£>a(#i) - v a r D ( # i ) = t r * - ( t r S ) 2 +4 (vec l ) ' *p . 
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We note in passing tha t our Theorem is applicable also to the estimation 

of the so-called polymorphism information content measure (PIC) , denned 

as 
m 

pic=i-j>?-5>?# 

However, we shall not pursue this possibility any further. 
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Projection matrices with real elements play an important role in statistics, 
for instance the distribution of quadratic forms. In recent years the scope of 
interest has extended to a more general point of view, namely projectors with 
possibly complex entries. Basing on a powerful representation of matrices re­
lated to singular value decomposition, new results concerning Moore-Penrose 
inverse, group inverse, and algebraic transformations of projectors are pre­
sented. 
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1. Introduction 

In Trenkler (1994), several characterisations of oblique and orthogonal pro­
jection matrices with real entries were given. In the following we extend 
these investigations to the complex case by using an approach by Hartwig 
and Spindelbock (1984). 

We start from a singular value decomposition (SVD) which exists for 
every complex matrix. For our purpose it suffices to consider a square matrix 
A from C „ x n . Then A can be written in the form 

where U and V are unitary matrices, and 

S = diag(criI r i , . . . ,CT tI rJ 

is the diagonal matrix of singular values of A, <j\ > 02 > • • • > at > 0 and 
T\ + r2 + • • • + rt = r = rank(A) (see Zhang, 1999, p.66). 
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Using this decomposition, Hartwig and Spindelbock (1984, Corollary 6) 
derived the following result. Let A £ C n x n ; then 

*-» (7 E o>. 
where U is unitary; KK* + LL* = J r ; S = diag(<7i J n , . . . , crt J r t ) ; 
T\ + r2 -\ h rt = r = rank(A); and o\ > <r2 > • • • > at > 0. 

Basing on this representation of any square matrix with complex entries 
we may state: 

( Y)K S i \ 
(i) A = U I I U* is an oblique projector if and only if T,K = Ir. 

Hence any oblique projector can always be written as 

* = " & " ) " ' • 

(ii) A = U I _ _ I U* is an orthogonal projector (i.e. idempotent 

and hermitian) if and only if T,K = Ir and L = 0. Thus an orthogonal 
projector can always be written as 

In the following we consider oblique and orthogonal projectors in the repre­
sentations from above, where without loss of generality we assume U = In. 

2. Characterisation of oblique projectors 

Consider the oblique projector 

IrH 
0 0 

Due to its simple form, we easily obtain its Moore-Penrose inverse and 
related transforms. 

Theorem 2.1. Let us be given the oblique projector 

p=(lrH^ 
\ 0 0 

with rank(P) = r. Then 

(i) P+ = ( ^ E °Q ) , where E = (Ir + HH*"1 



180 G. Trenkler 

(il) PP+ = ( £ °0^=P(P + P*- In)-!P* 

, . „ + „ ( E EH \ 

W P={H*EH*EH) 

M(P-r)+= {£+-* 
(vi) P(P - P*)+P* = 0 

(Vii) (P + P* -In)'' = PP+ -{In-P
+P) = ( ^ H*EHH_jn J) 

(viii) All generalised inverses of P are given by P 
Y Z)' 

where X, Y and Z are arbitrary conformable matrices. 

Proof. Conditions (i) - (vii) are straightforward. For condition (vii) note 
that PP+ is the orthogonal projector on the column space of P, whereas 
In—P+P is the orthogonal projector on the null space of P. Representation 
(viii) follows from Theorem 9.2 in Harville (1997). Although Harville's book 
deals with real matrices only, the result we need also holds in the complex 
case. • 

From Theorem 2.1 it is obvious that for an oblique projector P the con­
jugate transpose and the Moore-Penrose inverse commute, since P*P+ = 
P+ = P+P*. Thus any oblique projector is star-dagger; see Hartwig and 
Spindelbock (1984). 

Interestingly, as we shall see in the following theorem, each of the con­
ditions A* A+ = A+ and A+A* = A+ is necessary and sufficient for A to 
be an oblique projector. 

Furthermore, rank(P) = rank(P ), showing that an oblique projector 
has a group inverse. 

Recall that the group inverse A * of a square matrix A, if it exists, is 
uniquely defined by the conditions 

(i) AA*A = A 
(ii) A* A A* = A* 

(hi) A*A = AA* 

(see Campbell and Meyer, 1979, p.124). We call a square matrix A GP if 
A has a group inverse. This happens if and only if rank(A) = rank(A2). 
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Basing on the representation 

discussed in the introduction, we may state the following characterisations 
of an oblique projector. 

Theorem 2.2. Assume that the group inverse A* of A exists. Then the 
following conditions are equivalent: 

(i) A is an oblique projector 
(ii) A = AA* 

(Hi) A* is an oblique projector 
(iv) A+ = A*A+ 

(v) A+ = A+A* 
(vi) A* is an oblique projector 

(vii) A* = AA* 
(viii) Y>K = Ir. 

Proof. We show only (viii) -*=> (iv) and (viii) •<=> (vii). The other equiva­
lences are proved similarly. 
(viii) •& (iv): It is readily established that 

+ _(K*'£-1 0 

-A A — | , -*„ .,,-*,-,_i 

and 

K*T,K*T,-1 0 
i ' S i f E - 1 0 

Hence A+ = A*A+ is equivalent to K* = K*Y,K* and L* = L*T,K*. 
Multiplication with K and L, respectively, from the left gives KK* = 
KK*T,K* and LL* = LVY.K*. Using KK*+LL* = Ir yields UK* = 
Ir. Since S is a real diagonal matrix, we get K* = S~ = K. It follows 
that UK = Ir is necessary and sufficient for A+ = A* A+. 
(viii) •& (vii): From the representation (2.1) we obtain 

A ={ o o 
where we use Corollary 6 in Hartwig and Spindelbock (1984), saying that 
A is GP if and only if K~l exists. It follows that 

AA*=(^ K~y 
0 0 
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Hence A* — AA* if and only \iK 1 S x = Ir, or equivalently S K = Ir. 
D 

According to Marathe (1956), a matrix B is called quasi-idempotent if 
B(I — B)k = 0 for some positive integer k. Of course, if k = 1, the no­
tions idempotency (i.e. being an oblique projector) and quasi-idempotency 
coincide. Are there other conditions for this? 

Theorem 2.3. For B G C n x n the following statements are equivalent: 

(i) B is an oblique projector 
(ii) B is quasi-idempotent and In — B is GP. 

Proof. We show the nontrivial direction (ii) => (i). 
Put A = I — B and write 

A={ 0 0 

Then 

k_ / ( S K ) f e (2K)k-lVL 
A ~ \ 0 0 

By Hartwig and Spindelbock (1984, Corollary 6), A is GP if and only if 
K~ exists. Since B is quasi-idempotent, we have B(In — B)k = 0 so that 
(/„ - A)Ak = 0. Hence (Ir - T,K){'EK)k = 0, which implies Y.K = Ir. 
Consequently 

Ir E L 
0 0 

is an oblique projector. • 

From the representation I *" I it is clear that for any oblique projec­

tor A we have tr(A) = rank(A), where tr(-) denotes the trace of a matrix. 

We now state a related result characterising an oblique projector by rank 

and trace. 

Theorem 2.4. Let A G C n x n with rank(A) = r. Then the following state­
ments are equivalent: 

(i) A is an oblique projector 
(ii) rank(Jn — A) = n — rank(A) 
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(Hi) rank(A) = tr(A) and rank(Jn — A) = tr(Jra — A) 
(iv) rank(A) < tr(A) and rank(J„ — A) < t r(J„ — A). 

Proof. Write 

A~{o o) 
to obtain 

_ fIr-HK - S L \ 
n \ o /„_J-

(i) =$• (ii): If A is an oblique projector, then SJ f = Ir, and thus (ii) is 
satisfied. 

(ii) =4> (hi): Prom (ii) we get Ir — YiK = 0, and (hi) is valid. 
(hi) => (iv): This implication is trivial. 
(iv) => (i): The inequality rank(A) < tr(A) yields rank(Ir — UK) +n — r < 

n-ti{T,K), so that rank(i" r-£i i : ) < r - t r ( S K ) < 0. Hence S i f = Ir 

and A is an oblique projector. • 

We note that the equivalence (i) <=> (ii) is well-known in the literature 
(see Sibuya, 1970). 

Theorem 2.5. Let A be a square matrix with complex elements. Then A 
is an oblique projector if and only if A is similar to AA+, the orthogonal 
projector on the column space of A. 

Proof. Let A ~ (n, n) be an oblique projector in the form 

Consider the matrix 

V 0 In-rJ 
Then R is nonsingular, 

- C D 
and RAR = AR. Then P = AR = AA+ is the orthogonal projector on 
the column space of A satisfying RP = AR. Hence A = RPR~X, and A 
is similar to P. The other direction is trivial. • 
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Consider now the identity A = A + 1 for some integer k. It is easy to 
verify that in this case Ak is an oblique projector. A more interesting result 
is given subsequently. 

Theorem 2.6. The following two statements are equivalent: 

(i) P is an oblique projector 
(ii) P has a group inverse and P = P + for some integer k 

Proof. We prove the nontrivial direction (ii) =>• (i). Let 

p • o o 

Since P has a group inverse, by Corollary 6 in Hartwig and Spindelbock 
(1984), K is nonsingular. Consequently, since S is nonsingular, ( S K ) " 1 

exists. From Pk = Pk+l we obtain {Y,K)k = (llK)k+l which implies 
UK = Ir. Hence 

Ir E L 
0 0 

is an oblique projector. D 

3. Characterisation of orthogonal projectors 

Recall that an orthogonal projector P can be written in the form 

Ir 0S 

p = o o 

where r = rank(P). Thus, if A £ C„Xn is given in the representation 

A is an orthogonal projector if and only if 

T.K = Ir and L = 0. (3) 

Using this fact and representation (2) we obtain the following theorem. 

Theorem 3.1. The following statements are necessary and sufficient for 
A to be an orthogonal projector: 
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(i) 
(H) 
(Hi) 
(iv) 
(v) 
(vi) 
(vii) 
(viii) 
(ix) 
(x) 
(xi) 
(xii) 
(xiii) 

A = 
A = 
A = 
A = 
A* 
A* 
A* 
A* 
A* 
A* 
A* 
A* 
A+ 

--AA* 
--AA+ 
-- A* A 
--A+A 
= AA* 
= AA+ 

= AA* 
= A*A 
= A*A# 
= A+A 
= A#A 
= A*A* 
= AA+ 

(xiv) 
(xv) 
(xvi) 
(xvii) 
(xviii) 
(xix) 
(xx) 
(xxi) 
(xxii) 
(xxiii) 
(xxiv) 
(xxv) 

A+--
A+~-
A+--
A+--
A+--
A*--
A*--
A*-
A*--
A*--
A*--
A*-

= AA* 
= A+A 
= A*A* 
= A#A+ 

= A*A* 
= AA+ 

= A*A+ 
= A+A 
= A+A* 
= A+A+ 
= A+A# 
= A*A+ 

Proof. We prove only the equivalence (xxii) <=> (3); the others follow by a 
similar reasoning. Recall from Section 2 that for given 

0 0 

we have 

and 

irs-1 o 
L * S _ 1 0 

0 0 
A* = 

\ U 0 J 
| 2 \ the latter identity being valid only if rank(A) = rank(A ). Then 

'K*Y,-lK*T, 0N 

4 + 4 _ , 
' L * ^ - 1 ^ * ^ 0 

Consequently, A* = A+A* is equivalent to L = 0 and K~lT,~l = 

K*Yl-^K*Yl. Note that if L = 0, we have K1 = K*. The former condi­
tions are equivalent to L = 0 and K*T, = Ir, that is, L = 0 and Y1K = Ir. 

• 

In many cases, idempotency of a matrix is a strong feature of charac­
terising an orthogonal projector, and only some additional conditions are 
needed to guarantee this property. Typical examples are provided by the 
next result. 
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Theorem 3.2. The matrix A is an orthogonal projector if and only if one 
of the following conditions is satisfied: 

(i) A and AA* are oblique projectors 
(ii) A and (A + A*)/2 are oblique projectors 

(Hi) A is an oblique projector and A A* + A* A = A + A* 
(iv) A is an oblique projector and A = A+ 

(v) A is an oblique projector and AA*. = AA+ 

(vi) A = A+ and A2 = A* 
(vii) A = A+ and A2 = A+ 

(viii) A and A+ are oblique projectors 
(ix) A is an oblique projector and AA* is a generalised inverse of A 
(x) A is an oblique projector and (A + A*)/2 = {AA*)1/2 

(xi) A is an oblique projector and (A + A+)/2 = AA+ 

(xii) A and A + A* — AA* are oblique projectors 
(xiii) A and A + A+ — AA+ are oblique projectors. 

Proof. We show only nontrivial implications. Recall that for an oblique 
projector A we have 

A-

and 

A+ = 

IrH 
0 0 

E 0 
H*E 0 

where E = (Ir + HH*)-1. It is clear that the conditions (i) - (xiii) are 
necessary. Hence we only show sufficiency. 

Condition (i): If A and AA* are oblique projectors, then 

-•=(TSMTo)^ 
such that Ir + HH* = Ir, which implies H = 0. Hence A = I r 1 is 

an orthogonal projector. 
Condition (iv): When A is an oblique projector and A = A+, we get 

H*E = 0 and thus H = 0. 
Condition (vi): From Theorem 2.2, we know that for a matrix 

M E L 
0 0 
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we have 

+ _ / J C * E - 1 0 

Hence A = A+ means L = 0, K* = K~x and therefore ( S K ) 2 = J. On 
the other hand, A2 = A* implies ( S K ) 2 = K*T, so that E X = J, and A 
is an orthogonal projector. 

Condition (x): When A is an oblique projector, it follows that 

and 

The equality of the preceding matrices yields H = 0 and E~ ' = I. Thus 
A is an orthogonal projector. 

Condition (xii): Since A is an oblique projector, we easily get 

'2Ir-E~l Hs 

A + A*-AA<-t H . Q 

Idempotency of this matrix then implies H = 0, and hence A is an orthog­
onal projector. Since the other parts of the proof are similar we can omit 
them. • 

Let us now assume that P = I r I is a given oblique projector. 

Then the following result is important, insofar as it provides weaker condi­
tions than P being hermitian, to identify P nevertheless as an orthogonal 
projector. 

Theorem 3.3. Let P be an oblique projector. Then the following state­
ments are equivalent: 

(i) P is an orthogonal projector 
(ii) P is hermitian (i.e. P = P*) 

(Hi) P is normal (i.e. PP* = P*P) 
(iv) P is EP (i.e. TZ(P) = 1Z(P*), where TZ(-) denotes the column space 

of a matrix) 
(v) P is a partial isometry (i.e. P* = P ) 

(vi) P is bi-normal (i.e. PP*P*P = P*PPP*) 
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(vii) P is bi-EP (i.e. PP+P+P = P+PPP+) 
(viii) P is bi-dagger (i.e. (P ) 2 = (P2)+). 

Proof. We show only (i) «=>• (vii) and (i) <̂> (viii). 
(i) <£> (vii): Necessity is trivial. Since P+PPP+ = P+PP+ = P + , we 
have to prove that PP+P+P = P+ implies P 2 = P . Prom Theorem 2.1 
we conclude 

'E EH 

and 

pp+p+p 
0 0 

E 0 
H*E 0 

so that PP+P+P = P+ entails H = 0. 
(i) O (viii): Necessity is obvious. Let P+P+ = P+. Then E~2 = E'1 

which implies H = 0. • 

Theorem 3.4. Let P be an oblique projector. Then the following state­
ments are equivalent: 

(i) P is an orthogonal projector 
(ii) PP* - P*P = P-P* 

(Hi) PP* +P*P = P + P* 
(iv) PP+ - P+P = P-P+ 

(v) PP+ + P+P = P + P+ 

(vi) P + P* is nonnegative definite 
(vii) P — P* is an oblique projector 

(viii) P — P + is an oblique projector 
(ix) \{P + P*) is an oblique projector 
(x) | ( P + P + ) is an oblique projector. 

Proof. We show only (i) <̂> (iv) and (i) O (vi). 
(i) <£=> (iv): Necessity is obvious. Assume now PP+ — P+P = P — P + . 
From Theorem 2.1 we get 

pp+ _ p + p : 

and 

P-P+ 

Ir-E 
-H*E 

Ir-E 
-H*E 

-EH 
-H*EH 

H \ 
oj-
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Hence PP+ - P+P = P - P+ entails H = 0, and thus P is orthogonal. 
(i) & (vi): We have 

According to Theorem 6.13 in Zhang (1999), P + P* is nonnegative definite 
if and only if —H*H is nonnegative definite. This is equivalent to H = 0. 

• 

There is also a trace characterisation of orthogonal projectors. 

Theorem 3.5. Let P be an oblique projector. Then the following state­
ments are equivalent: 

(i) P is an orthogonal projector 
(ii) t r (PP*) = t r (P) 

(Hi) t r ( P + ) = rank(P). 

Proof. We show (ii) => (i) and (iii) => (i). The other implications are 
trivial. 
(ii) =4> (i): Let 

* - ( ' ; " ) • 

Then t r (PP*) = t r ( / r + HH*) = r + ti{HH*), and t r ( P P ' ) = t r (P) 
requires H = 0. 

r 
(iii) => (i): t r ( P + ) = tr(.E) = £) (1/(1 + A.,)), where Xj are the eigenval-

3 = 1 

ues of HH*. The condition t r ( P + ) = rank(P) = r then implies Â  = 0 for 
all j , so that HH* = 0 and finally H = 0. • 

4. Parallel Sum 

According to Rao and Mitra (1971, Sec. 10.1.6), for a pair of matrices A 
and B of the same order, the parallel sum of A and B, denoted by the 
symbol A : B, is defined by 

A:B = A(A + B)B, 

where (A + B)~ is any g-inverse of A + B. 
A pair of matrices A and B is said to be parallel summable if A : B 

is invariant under the choices of (A + B)~. This is the case if and only if 
K(A) c U{A + B) and TZ(A*) C Tl(A* + B*). 
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Subsequently we consider the pair A = P and B = P*, where P is an 
oblique projector. 

Theorem 4.1. Let P = I I be an oblique projector. Then the follow­

ing results hold: 

\{Ir-HH+) H+* 

H+ -2(H*H)+ 
(ii) 1Z(P) C TZ(P + P*) and K{P*) C TZ(P + P*) 

(Hi) TZ{P + P*) = K(P) + K(P*) and M(P + P*) = Af(P) n M(P*) 
(iv) P{P + P*)~P* is invariant under the choice of (P + P*)~ 
(v) 2(P : P*) is the orthogonal projector on 1Z(P) H 1Z(P*). 

Proof. 

'2Ir H 

(i){P + P*)+-l w + 

(i) P + P* is readily seen to be P + P* - , 
0 

Using Theorem 3.5.2 from Campbell and Meyer (1979), we obtain the 
MP-inverse of P + P* as in statement (i). 

(ii) From (i) we get 

(P + P*)+(P + P*) = (P + P*)(P + PT=(K
IQ H + H 

_. flr 0 \ (lrH\ (IrH 

flr 0 \ f Ir 0\ _ f Ir 0 
a n d \ o H+H) \ H * O ) - \ H * O 

we arrive at K(P) C K(P + P ) and Tl{P*) C TZ(P + P*). 
(iii) From (ii) we get K(P) + Tl(P*) C K{P + P*). The other inclusion 

1Z(P + P*) C H(P) + TZ(P*) is trivial. Furthermore, we have, since 
P+P* ishermitian,A/'(P+P*) = [^(P+P*)]- 1 = [Tl(P)+n(P*)}± = 

n(P)1- n niP*)1- = Af(P*) n M{P). 
(iv) This statement follows from (ii). 
(v) Some straightforward calculations show that 

2P{P + P*)+P*=(Ir~^H+ °Q 

is an orthogonal projector. Consulting Theorem 10.1.8 in Rao and Mitra 
(1971), we conclude that its range is K{P) n K(P*). D 

Note that for complex numbers we have r : s — (rs)/(r + s), provided 
r + s ^ 0, and for r 7̂  0, r : r = r/2. For a complex matrix A consider its 
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spectral norm | |A| | , defined by the square root of the maximal eigenvalue 

of AA*. Observe tha t for oblique projectors P we get | | P | | > 1. 

T h e o r e m 4 .2 . Let P be an oblique projector. Then the following hold: 

(i) \\P : P*\\ < \\P\\ : | | P * | | with equality if and only if P is an orthogonal 

projector 

(ii) t r ( P : P * ) < t r ( P ) : t r ( P * ) with equality if and only if P is an ortho­

gonal projector. 

P r o o f . If P = 0, nothing has to be proved. Let now P ^ 0. 

(i) Trivially, | | P | | : | | P * | | = | | | P | | and P : P * = \ (*r ~ f H + ° ) so 

t ha t | | P : P * | | = | < i | | P | | = | | P | | : | | P * | | . If | | P | | = 2 | | P : P * | | , 

then 1 = A m a x ( / r + HH*) which entails H = 0. 

(ii) Obviously, t r ( P ) : t r ( P * ) = \r, where r = r a n k ( P ) and t r ( P : P * ) = 

\{r — r ank ( i J ) ) < | . Equality happens if and only if r a n k i ? = 0, i.e. 

H = 0. U 
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1. Introduction 

Since the first paper on discussion of fiducial distribution was published by 
Fisher (1930a), a considerable amount of work has been done, especially on 
how to derive a fiducial distribution of a parameter. For some of the contri­
butions in this area, one may refer to Fisher (1930a, 1930b, 1950, 1973) and 
Fraser (1961a, 1961b, 1968); one may also refer to Pederson (1978), Zabell 
(1992) and Barnard (1995) for detailed discussion of results on fiducial ar­
gument. Dawid and Stone (1982) introduced the general concept of function 
models, that is, expressing a sufficient statistic T(X) where X takes values 
in a sample space X as a function of an unknown parameter 0 and an error 
variable E with a known distribution. They found the fiducial distribution 
of a parameter G by giving the solution to the function models, but the 
range for which the fiducial distribution can be obtained is limited since 
the solution to the function models sometimes does not exist. Following 
Dawid and Stone (1982), Xu and Li (2003) first gave a new definition of 
the fiducial model by using a pivotal family of a distribution, which made 
larger the scope for which the fiducial distribution can be found. To be 
specific, let T(X) denote a sufficient statistic whose distribution depends 
on parameters; i.e. suppose T(X) ~ Pg, ^Gf i , where £1 is non-degenerate. 
{P0 : 9 G 0} is a pivotal family of distribution on T(-). T(X) = h{6,E) 
is a pivotal model in which the pivotal random element E is distributed 
as a known distribution Q. Define a distance d(-,-) on T(-), given x, the 
observation of X, and let #T(x)(e) denote the unique minimum point of 
d(T(x),h(8,e)) (usually take the Euclidean distance) on Q; that is, 

0T(*)(e) = argmind(T(x),/i(0,e))- (1-1) 

Then 0 = 0T(X){E) is called a fiducial model, and the distribution of 
6T(X)(E) under Q is called a fiducial distribution. Obviously, if a mini­
mum point of d(T(x), h(9, e)) does not exist, then the fiducial model does 
not exist, either. The fiducial cumulative distribution function (FCDF) is 
denoted by HT(X)(8) • 

Problems concerning estimation and testing hypotheses of parameters 
of distribution, when it is known a priori which are subject to order re­
strictions, are of considerable interest and are investigated in the literature. 
Most of the work on order restricted inference was reviewed by Barlow et 
al. (1972) and later by Robertson et al. (1988); in particular, the maximum 
likelihood estimators (MLEs) of parameters which satisfy certain order re­
strictions for normal distribution with order means and common variance 
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are discussed by Robertson et al. (1988). Furthermore, Shi (1994, 1998) 
has studied some properties of the MLEs of unknown means and unknown 
variances under certain order restrictions, and proposed an algorithm to 
obtain the MLEs of unknown means and unknown variances under cer­
tain order restrictions. Shi, Gao and Zhang (2001) and Zhang, Gao and 
Shi (2003) gave an algorithm which extended the well-known pool adjacent 
violators algorithm (PAVA) for finding the maximum points of the objec­
tive concave function under certain order restrictions, which is applied to 
a numerical example from grouped samples. However, the isotonic maxi­
mum likelihood estimates are usually not strictly increasing. For example, 
suppose #i < 02 < 03 are the means of three normal distributions with 
common variances and suppose x\ = 30, X2 = 20, and S3 = 50. If the three 
sample sizes are equal, then the isotonic maximum likelihood estimates are 
QVMLE = 25> QUALE = 25 a n d QLMLE = 5 0 W r i g h t (1 9 7 8) p r 0 p 0 sed a 

weighted average of the isotonic estimators to break these ties. Further­
more, it is well known that finding interval estimation of parameters is 
quite difficult for finite samples under order restrictions, but it may be easy 
by using fiducial methods. The isotonic fiducial estimators will automat­
ically be strictly monotone. Throughout this paper, N{0,a2) denotes the 
normal distribution with mean 0 and variance er2; the normal distribution 
with 9 = 0 and a2 = 1 is known as the standard normal distribution, whose 
density function and distribution function will be denoted by cp(x) and <&(x) 
respectively. 

In this paper, we mainly consider the fiducial estimations of isotonic 
normal means and variances by the above fiducial model. In detail, let Xij, 
i — l,...,k, j = l,...,rii, be observations from the i-th normal pop­
ulation with unknown mean 0i and variance of, i = l,...,k. Assume 
0 = (# i , . . . 0k) and a = ( 0 1 , . . . ,0fc) are restricted by some partial or-
derings; for instance, the simple order 

0i<02<---<0k (1.2) 

and 

ox > a2 > • • • > crk > 0. (1.3) 

The general pivotal models are given by 

Xi = 0i + -^LEi (1.4) 

Si = (J j F j (1.5) 
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where Xi denotes sample mean from the i-th normal population, 
ni _ 

Sf = ^2 (Xij — Xi)2, Ei and F{ are mutually independent, the distributions 

of Ei are standard normal, and the distributions of Fi are X{m-\) with 
freedom n» — 1, i = 1 , . . . , fc respectively. 

In Section 3.1, we present the analytic expressions for the fiducial distri­
bution of 9i for k = 2 when variances are known. In section 3.2, an algorithm 
to obtain samples of the fiducial distribution of 0 and £ is proposed. In 
section 4, a numerical example is given. Proofs are given in the Appendix. 

2. Existence of the Fiducial Model 

For our problems, (1.1) becomes 

k 

1 i=\ v " i 

We will show that d in (2.1) is a strictly convex function. It suffices to check 
that the Hessian matrix of d(-, •) is positive definite (see Stoer and Witzgall 
(1970, Chap. 4); and Horot, Pardalos and Thoai (1995, Chap. 1)). Let the 
matrix be denoted by H. It can be shown that 

H 
H2i H22 

where Hu, H12, H21, and H22 are diagonal matrices, respectively, 

i f 12 = if21 = d i a g { ^ ^ , . . . , —=-} , 

Jf22 = d i a g { / 1
2 + ^ , . . . , / f e

2 + ^ - } . 
ni nk 

It is clear that Hu and if22 are positive definite matrices. Denote the 
determinant of the (k + i)-order principal minor matrix of if by Hk+i for 
i— 1 , . . . , k. We need only to prove that Hk+i > 0. It is easily verified that 

Hk+i = fifi • • • ff > 0 

and hence (2.1) is a strictly convex function. If we let gi{9) —6% — Qi-\ and 
liia) = Oi-\ — <Ji, then the solution to problem (2.1) exists and is unique 
under restrictions (1.2) and (1.3), which also implies the existence of the 
fiducial model. 
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3. The Fiducial Distribution of 0 and £ 

3.1. The fiducial distribution of 0 when fc = 2 

It is known that if variances are given, the restriction (1.3) of variance 
and the pivotal (1.5) are vacuous. At first, we develop the explicit form 
of the fiducial distribution of 0 for k = 2 when variances are known. For 
simplicity, we assume that the pivotal model (1.4) is as follows: 

X = 0l + -^=El (3.1.1) 

mm [(x -0!- ^ e i ) 2 + {y - 02 - ^ e 2 ) 2 ] (3.1.3) 

Y = 02 + -^=E2 (3.1.2) 

where X and Y denote sample means from populations N(0\,1) and 
N(02,1), respectively. E\ and E2 are independent, identically distributed 
as N(0,1). 

To find the fiducial distribution of 0 under order restrictions, we need 
only to find the minimum points of Ux — 0\ T=ei)2 + (V ~ 02 7=e2)2] 

jy Tit 'w tV 

overn = {(0i,02) -01 <^2>, i.e. 

which leads to the following Theorem: 

Theorem 3.1. The fiducial models of Qi and 02 are 

(y--^E2, x - -4=*Ei < y - -$=E2 , 

From Theorem 3.1, we have the following Corollary: 

Corollary 3.1. The fiducial joint distribution o / ( 0 i , 0 2 ) is 

Hx,y{01,02) 

(1 - $ ( V ^ ( x - 0i)))($(>Mj/ " Ox)) - *(Vn(j/ - «2))) 
+(1 - *(Vn(y - fli)) 
-I^{y-e1)^(V^^ + y-^1-^e1))(p(e1)de1, 02>0,, 

l - * ( V ^ ( y - ( 9 2 ) ) 
" -C^s-ftO *(>M(* + y - 2^2 - ^ e i ) ) 0 ( e i ) dei, 02 < 0i-
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Furthermore, the marginal fiducial distributions of 9 ; ; i = 1,2, are as fol­
lows, respectively: 

Fei{Oi) =1 - # ( v ^ ( S - 6i)Myfc(V ~ 0i)) 

f+°° _ 1 
- / $(v

/m(a: + y-20 1 - - 7=ei))</>(ei )dei » 

FQ2(62) =1 - * (v^ (y - 02)) 

- / $(v /m(x + y - 2 0 2 - - p e i ) ) < ^ ( e 1 ) d e i . 
JV^y-02) v n 

In general, we use the expectation of Q, as the fiducial estimations 
denoted by #,. By using expressions (3.1.4) and (3.1.5), we get the following 
Corollary: 

Corollary 3.2. 
(a) 

1 
~ i \ 

2\ 

/ I 1 
/ - + -/ m n /_L _l_ 1 / 2 V m n I /_L • i 

fc = jBea = £±w + (£z*)* - p l = + V - + 1 - ' s "^ 
/TTI 2\m n \ 11_ , l 

m n , 

(6) £?6i < — ^ < £ 0 2 

(c) £ 6 i < x, £ 0 2 > y 

3.2. T/ie proposed algorithm 

For A; > 2, it is difficult to obtain the analytic expressions for the fiducial 
distributions of 0 and E; however, the fiducial (or pivotal) model plays 
an important role in finding the fiducial distribution. In this section, an 
algorithm to simulate the fiducial distribution is proposed based on the the 
fiducial (or pivotal) model. The following Theorems 3.2 and 3.3 are the 
basis of the algorithm given in this section. 

Theorem 3.2. Consider the problem 

k 

i—1 
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where 0 = {(#1 , . . . , Ok) : #1 < • • • < Ok} is a convex set in Mfe, fi(6i) is any 
convex function having the second partial derivative defined on 0 , , which 
is a nonempty convex set in R1, i = 1 , . . . , k. For given 1 < s < t < X, let 
0Stt denote the solution of the following equation: 

f dW) o, *-" d-d 
l=S 

and let §i be the global minimum point of the optimisation problem (3.2.1). 
Then 

0i = minmax6?Sit = maxmin(9Sit. (3.2.2) 

Remark 3.1. Let fi{0i) = (xi - 6i)2Wi. 

Then #, = minj>j maxs<j I ^ WiXi J ^ u>i I is called the isotonic regres-
\i=s I i=s / 

sion (Robertson et al., 1988, P2<0-

Theorem 3.3. Consider the problem 

where D = {0=(01,...,0k):01 <---<0k}, G = {a = {au ... ,<rk) : ax > 
• • • > CTfc > 0}, and D <g> G are convex sets in Rk, Rk, and Rk <g> Rk respec­
tively. fi{0i,o-i) is any convex function having the second partial derivative 
defined on D, which is a nonempty convex set in Rk when <Tj is fixed; sim­
ilarly, fi(0i,cri) is any convex function having the second partial derivative 
defined on G, which is a nonempty convex set in Rk when 0i is fixed. Then 
the local minimum point of the optimisation problem (3.2.3) is given by the 
following iterative algorithm based on Theorem 3.2: 

step 0: Let 0 = 6K°) and a = a^ 
step n: (1) Find 0\n' = mint>j maxs<j 9^1 

where 0^' is the solution of the following equation: 

i=s 

(2) Find <7>n) = mint>i max8<j a^{ 
where <7Sjt is the solution of the following equation: 

f—' ov 
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Furthermore, if f(9,a) is a convex function defined on D ® G, then the 
sequence {9\n , a\n } converges to the global minimum point (9, a). 

Remark 3.2. For our problem, we have 

z2\Xi 77E~ e«) 
*,t ~ T—— > (3-2-4) 

fl(n) _ i=s_ 

t , . t 

t-S + 1 

cr *(»> _ 
«.* t t 

Etf + E 
(3.2.5) 

The fiducial interval estimates, and the fiducial estimates of 9i, Oi can 
be computed using the following algorithm. 

ALGORITHM 
For a given data set Xij, i = 1 , . . . , k, j = 1 , . . . , rii, 

compute Xi = ^~ Yl xij a n d sl = 12 (xij ~ s«)2-

For j = 1 to TO, 

generate £ ^ ' ~ ' JV(0,1) and Fy *'~ ' X(m-i), 

set {%,0-ij-} = {9if,&if} which is given by step n (1) and (2), (3.2.4) 
and (3.2.5). 

(end j loop) 
m m 

^ 53 #,j and ^ ^ <Tjj are Monte Carlo estimates of 9i and er̂ . 
m i = i j = i 

The 100(f) centile and 100(1 - f ) centile of 9a,...,9im and 
o-ji,...,<Tim, denoted by 0j(§), 0j(l - f ) , <7i(§), Oi(l - f ) , are Monte 
Carlo estimates of the 100(f)% and the 100(1 - §)% fiducial lower limit 
and upper limit for #, and Oi. Moreover, [0j(§), #i(l — §)] and [<7i(§), 
Oi(\ — f)] are fiducial level 100(1 — a)% fiducial interval estimation for 9i 
and <7j, respectively. 

4. A Numerical Example 

For illustration, the proposed algorithm is used to treat the data in Ta­
ble 1 taken from Shi (1994). There are five districts in Jilin Province of 
China: Liaoyuan, Qianfu, Changchun, Tonghua, and Jilin. Group 1, Group 
2, Group 3, Group 4 and Group 5 represent the scores of 100 students 
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Table 1. The Examination Scores of 500 Students. 

Group 1 Group 2 Group 3 Group 4 Group 5 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
X 

cr2 

405 
444 
326 
306 
387 
365 
351 
429 
345 
345 
471 
354 
166 
438 
379 
435 
428 
328 
377 
380 
414 
412 
350 
528 
305 
420 
413 
450 
442 
448 
418 
380 
391 
402 
381 
429 
323 
393 
470 
404 
444 
238 
406 
392 
269 
431 
363 
416 
250 
362 

400 
435 
354 
348 
314 
242 
486 
261 
376 
503 
424 
370 
399 
310 
413 
387 
242 
312 
384 
430 
437 
463 
414 
380 
434 
419 
278 
469 
447 
443 
433 
305 
427 
347 
395 
406 
307 
377 
488 
417 
436 
397 
448 
433 
336 
417 
388 
437 
399 
457 

388.270 
4013.917 

434 
476 
498 
246 
456 
397 
462 
266 
389 
488 
277 
479 
288 
453 
329 
479 
384 
299 
415 
368 
297 
315 
241 
407 
344 
389 
374 
358 
424 
208 
363 
393 
369 
431 
275 
414 
267 
231 
423 
314 
433 
438 
379 
457 
455 
424 
503 
467 
362 
302 

325 
459 
420 
450 
382 
364 
391 
388 
433 
448 
346 
501 
494 
336 
423 
402 
486 
436 
473 
458 
391 
356 
414 
448 
461 
321 
353 
248 
437 
385 
302 
378 
467 
286 
359 
313 
425 
271 
280 
407 
515 
381 
234 
439 
413 
276 
405 
416 
370 
225 

384.610 
5354.438 

388 
336 
459 
369 
424 
405 
448 
432 
472 
400 
312 
375 
373 
446 
238 
434 
372 
409 
416 
400 
345 
287 
500 
348 
322 
418 
417 
413 
405 
298 
487 
471 
543 
488 
490 
451 
413 
445 
301 
397 
362 
470 
419 
307 
240 
483 
420 
331 
470 
404 

358 
358 
366 
418 
352 
419 
434 
217 
334 
397 
347 
461 
396 
473 
305 
406 
323 
429 
398 
420 
412 
341 
383 
443 
434 
425 
428 
387 
372 
440 
414 
202 
408 
472 
496 
372 
452 
462 
432 
546 
380 
320 
533 
417 
464 
378 
375 
355 
338 
327 

398.000 
4269.380 

403 
422 
386 
422 
342 
373 
332 
377 
508 
421 
520 
306 
497 
489 
493 
408 
357 
534 
469 
397 
444 
492 
351 
355 
429 
434 
420 
397 
323 
509 
447 
419 
386 
338 
422 
464 
454 
325 
433 
333 
428 
434 
306 
336 
350 
329 
304 
374 
331 
322 

332 
438 
460 
368 
370 
347 
397 
473 
348 
379 
415 
364 
364 
363 
358 
240 
407 
383 
416 
446 
448 
460 
483 
404 
390 
486 
398 
460 
409 
441 
377 
369 
433 
346 
406 
397 
349 
478 
493 
342 
274 
324 
362 
355 
397 
384 
299 
490 
273 
335 

395.170 
3582.821 

440 
421 
386 
451 
493 
448 
378 
493 
391 
400 
369 
396 
396 
519 
462 
478 
458 
435 
298 
468 
438 
478 
413 
383 
454 
484 
442 
384 
354 
419 
446 
507 
444 
233 
445 
427 
468 
341 
532 
219 
383 
402 
462 
535 
436 
521 
478 
359 
393 
496 

449 
442 
294 
517 
436 
388 
457 
401 
409 
411 
336 
368 
368 
348 
432 
405 
465 
442 
259 
300 
424 
426 
462 
327 
408 
388 
414 
458 
419 
466 
394 
342 
269 
515 
351 
405 
300 
469 
215 
508 
271 
544 
396 
465 
419 
437 
430 
390 
527 
456 

418.010 
4928.749 
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in each district obtained in the National Matriculation Examination held 
in 1992, respectively. It is verified that the examination scores follow nor­
mal distributions using MATLAB. Let Xt denote the examination score of 
Group i; then Xi ~ N(0i, of) for i = 1 , . . . , 5. 

Prior information tells us 

0i < 0 2 < • • • < 05 a n d a i > 0-2 > • • • > £T5 > 0 

A computer program for the proposed algorithm is written using S-plus. 
The computed results are given in Table 2. The iteration is terminated when 
the conditions 

max \9^l) - 0<n) | < 10"5 and max \a^-l) - of} | < 1CT5 

i i 

are satisfied. The fiducial interval estimates obtained are based on the al­
gorithm with 100,000 runs. 

Table 2. The estimates of 9 and cr 

0 
MLE 

FE 
FIE 

<T 

MLE 
FE 

FIE 

0\ 01 03 04 05 
386.440 386.440 396.583 396.583 418.010 
385.149 387.323 395.650 397.898 418.010 

[374.17, 394.75] [377.43, 396.93] [386.31, 405.08] [388.75, 408.12] [405.43, 430.67] 
0~\ (72 CT3 CT4 0~5 

68.466 68.466 65.356 65.244 65.244 
69.398 69.198 66.442 64.639 64.554 

[63.87, 76.43] [63.77, 75.92] [61.12, 72.26] [59.35, 69.86] [59.24, 69.78] 
MLE and FE denote maximum likelihood estimate and Fiducial estimate. 
FIE denotes Fiducial interval estimate with the Fiducial level 95%. 

From the numerical results in Table 2, it is clear that we can not only 
get the fiducial estimates of 0j and <7j, but also obtain the fiducial interval 
estimates for 0, and cr̂ . Furthermore, it seems to be more reasonable than 
MLEs of 0j and a, given in Shi (1994), since they increase successively. 
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Append ix 

The proof of Corollary 3.1: It can be seen from (3.1.4): 

flx,g(01,02)=-P(ei< 01,02 < 02) 

= Q(x--^=E1<01,y--7=E2<O2,x--=E1 <y-^E2) 

+ Q ( o (* + 1/ - - 7 = ^ 1 - ^ ^ 2 ) < min(0i , 0 2 ) ,x - - = £ ? ! > y - ~FE2) 
2 VT O v n v m v n 

= Q(£i > V^(x - 0i), £2 > V™(£ - 02), - 7 = £ i - ~^E2 >x-y) 

+ Q{-—E1 + -j=,E2 > x + y - 2mm(0ue2), —=E2 - -^Ei > y - x). 
\Jm y/n sjn y/m 

(1) 

For 0i < 02, the first term on the right-hand side of (1) equals 

/ / 4>(ei)(t>(e2) de1de2 

Jy/n{y-9i) J\Zm(x-y-6i + ^e2) 

+ / cj>(ei)(f>(e2) de1de2 

f+°° 1 
= / (1 - $(y/m(x - y + -re2)))4>{e2) de2 

JV^(y-0i) vn 

+ (l - $ ( v m ( i - 0i)))(*(V^(y - 0i)) - H^M(y - 02))) 
/ ,+°° 1 

= 1 - $(Vn(y - 0i)) - / $(v
/m(a; - y + ^=e2))^>(e2) de2 

JV^(y-6i) vn 

+ (1 - $ ( v ^ ( x - 0i)))(*(V^(y - 0i)) - $(V^(V ~ 02))) (2) 
and the second term on the right-hand side of (1) equals 

(.+00 r\Zrn(x-y+^e2) 
I / </>(ei)0(e2)deide2 

JVn(y-8i) JyM(x+y-2e1-^e2) 

f+°° 1 
= / [$ (Vm(x - y + - ^ e 2 ) ) 

- <&{y/m{x + y - 20i 7=e2))] </>(e2) de2 

f+°° 1 
/ [<f>(y/m(x -y+ —=ex 

JV^{y-6i) vn 

)) 

• $ ( v m ( z + y - 20i - - p e i ) ) ] 0(ei) dei . (3) 
Vn 
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Substituting (2) and (3) for (1), we have 

fl*,s(0i, 02) = (i - $ ( v M * - 0i)))(*(V^(i7 - 0i)) - HMv - 02))) 

+ (1 - <$>{V^{y - Ox))) - / $(yM(x + y-20!- - p e i ) ) ^ ) dex. 

Similarly, for 0i > 02, we have 

Hs,e(0i,fl2) = l - * ( > M ( y - 0 2 ) ) 

- / $(Vm(a; + y - 262 j=ei))(j){ei) dex. 
JV^(y-e2) Vn 

Furthermore, when 82 —> +00, we obtain the marginal fiducial distribution 
ofGi: 

F 0 1 (0X) = 1 - $ ( v ^ ( x - 0i))*(v/^(y - 0i)) 

/ • + 0 0 _ 1 

/ $ ( ^ ( 2 ; + y - 20i y=ei))<j)(ei) dei. 
'v^(s-ei) 

Similarly, when 0i —> +00, we also get the marginal fiducial distribution of 
02 : 

r+°° 1 

FeM = l - $ (v^ (y -0 2 ) ) - / $(V^(5+y-20 2 -^=ei))^( e i ) dei. 

Thus, we complete the proof of Corollary 3.1 

The proof of Corollary 3.2 is based on the following two Lemmas: 

Lemma A. l : Suppose that X ~ N(0,1); then 
a (a) E$(a + bX) = $ 

0) E(j)(a + bX) 

VT+¥ 

1 

Proof: Since 

$(a + bx)<f>(x)dx = / <f>(x)(f>(y) dy dx 
-OO • /—OO J—OO 

P(Y <a + bX) 

i.i.d. 
where X, y ~ jv(0,1), and Z = y - bX - a ~ iV(-a, 1 + b2), we have 

E$(a + bX) = P{Z < 0) = P( f + " < Q ) = $ 
VTT62 - yTTP VVTT&2" 
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which implies (a) holds. 
Noting that 

x2 + (a + bxf = (b2 + 1) (x + y ^ j + £ T ^ 

we have 

E<j>(a + bX) 

-l=e-x2/2^=e-^+b^l2dx 
-oo v27T V27T 
+ OO -1 

J_ e-[x2 + (a+bx)2]/2dx 

- 0 0 2 7 r 

f + °° 1 (* + ab/(b2 + l))2 2 / , 0 / , 2 _ L l U 

= / _ e 2/(b2 + 1 ) e - a / (2(6 + 1 ) ) ^ 
J - 0 0 27T 

1 / 1 a*/(2(k2 + l)) f+°° 1 -<*+°"/<f+1»2 „ 
. e - a / (2(b +1) ) / . p 2/(&

2 + i ) d x 
«/ — ( v^v&2 + i ./_«, y^y^: 

1 ' l
 e - a 2 / ( 2 ( 6 2 + l ) ) 

^ V &2 + 1 
1 , / a 

Vb^Tl KVb^TlJ ' 
which leads to (b). 

Lemma A.2: For all I G M 1 , the following inequality holds: 

4>(x) + x$(x) > 0 

Proof: Let L(x) = <j>{x) + x$(x): then L'(x) = $(x), L"(x) = 4>{x) > 0, 
which asserts that L(x) is a convex function. It attains global minimum at 
x = —00, so we have L(x) > L{—00) = 0. This completes the proof. 

The proof of Corollary 3.2: From (3.1.4), we have 

ESi = / / (x y=ei)4>(ei)4>(e2) deide2 

+ / / ^(X + V = e i —e2)4>(ei)4>(e2)deide2.-. 
J J 2 VT O V n 
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X 

*~2 

+ 
1 

/ / 4>(ei)<t>{e2) de1de2 

-y-7Zei 

/ / e1(p{ei)4>{e2) deide2 

e^y-^ke2 

/ / <j>(e1)<j>(e2) deide2 

s--feei>S--fee2 

2 

l 

2 ^ 
/ / e2(p(ei)(f>(e2) dexde2. (4) 

x ±=ei>y 7=e2 

» - - ^ e i > i / - ^ e 2 

From Lemma A.l (a), we have 

/ / <p{ei)(j)(e2) detde2 

fei>y-^e2 

/

+oo / • v / m ( 2 - y + - J = e 2 ) 

I (p(ei)4>(e2) deide2 

-oo J — oo 
/ • + 0 0 1 

= / $ ( v / m ( a : - y + -=e2))<j>(e2) de2 

i-oo Vn 

= $ fV™(*-yA = $ f * -y 
\ y m n , 

and from Lemma A.l (b), we have 

/ / ei<j){ei)(j){e2) deide2 

s-^ke^y-^kei 
hoo p^/m(x—y+^e2) 

/

-t-oo r\/m\x-y-i--j^e2) 

/ e1<p(ei)<j)(e2) deide2 

-oo J —oo 

- / <fi(Vm(x - y +—=e2))(p(e2) de2 
7-oo V™ 

m(x — y) \ / / , m V " j , I x ~ 2/ 

x y \ y m n , 

since / " ^ ei0(ei) ofei = - / " ^ # ( e i ) = -</>(»• 
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Similarly, we have 

e20(ei)</>(e2) de1de2 II 
x ±=ei>y i=e2 

y/m + n 
x-y 

. y m n t 

Hence, 

^ ^ x ^ I x — y 
EBi=x- - $ ' y 

2 
^ y m n , 

x — y \ 1 y/m 

2y/m yjm + n \ ^ / T ~ T / 2 v
/ n y/m + n 

m n J 
2 

and similarly 

{x + y) _ (y-x) $ f y-x \ 1 / 1 , 1 
fT~T J 2 V TO n \ j \_ , \_ 

EQ = (x + y) + (y~x)$ I y~x i , 1 . / 1 , 1 ^ / x~y 

y m ' n / \ y m ' n , 

Moreover, by Lemma A.2, we have EQi < (x + y)/2 < E@2-

The proofs of Theorem 3.2 and Theorem 3.3 are similar to the proofs of 

Theorem 3.1 in Shi, Gao and Zhang (2001) and Theorem 3.1 in Shi (1998). 
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When Large Claims are Extremes 
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Clayton VIC 3800, Australia 

E-mail: roger.gay@BusEco.monash.edu.au 

New results for tail-ratios of distributions are derived and applied in an 
insurance context. They are used to demonstrate independence of consecutive 
ratios of the largest Pareto claims, and that the minimum-variance unbiased 
maximum likelihood estimator (MVUMLE) for the Pareto tail-index is equiv­
alent to Hill's estimator. For sufficiently large Pareto claims, the scale factor 
can be ignored in tail-index estimation. An analogue of this idea is available 
for all distributions with a regularly varying tail, when the pool of claims is 
sufficiently large; in this case too, Hill's estimator is pivotal, i.e. is MVUMLE. 
By graphically comparing Hill's estimator in the Pareto case with Hill's esti­
mator for a distribution with regularly varying tail, it is possible for any given 
distribution function to determine when claims are large enough to be classi­
fied as 'extremes'. Ratios of such extremes form the efficient set for tail-index 
estimation. Simulation and actual examples are provided. 

Keywords: regularly varying tails; tail-index estimation; ratios of extremes; 
Hill estimator. 

1. Introduction and motivation 

In The economics of liability losses — insuring a moving target, Enz and 
Holzheu (2004), economists with the world's largest reinsurer, Swiss Re, 
expressed concern about the rate of growth of insured losses in commercial 
liability insurance in the 10 largest Western economies where rate of claims 
growth is increasing at 1.5 to 2 times as fast as GDP. In 2002 claims to­
talled about 84 billion USD of which 67 billion USD (0.64% of US GDP) 
arose in the US. The authors were particularly critical of inefficiencies in 
the US Tort system (under which less than 50% of claims awarded found 
its way back to the insured). With apparent increase in severity of large 
commercial liability claims, insurers were urged to monitor their premium 
determination processes, to ensure that these systems remain in place and 
affordable. For these classes of insurance involving heavy-tailed claims with 

mailto:roger.gay@BusEco.monash.edu.au
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infinite variance (see for instance Mikosch, 1997, for justification), a ma­
jor part of an insurer's total claims cost is likely to arise from a few large 
claims. It makes sense to focus attention on these sets of largest claims. 

In this paper a general theorem about the tail ratios of absolutely con­
tinuous distribution functions is established. It is applied to heavy-tailed 
distributions within the domain of attraction of the Frechet distribution 
(i.e. distributions with a regularly varying tail). For these distributions, the 
largest observations from large samples can be assumed to have Pareto or 
Frechet marginal distributions for values k up to some maximum which 
can be determined approximately using a version of a Hill's plot. Ratios of 
consecutive extremes from this qualifying set have distributions like pow­
ers of beta random variables. The maximum likelihood estimator of the 
tail-index based on this set is minimum variance unbiased and achieves the 
Cramer-Rao minimum variance bound. 

2. Heavy-Tailed Distributions and General Insurance 
Claims 

A classic insurance model (see for instance Bowers et al. (1986)) describes 
annual aggregate claims SN which comprise non-negative claims Xi as­
sumed independently identically distributed, and independent of N, the 
number of claims, i.e. 

SN = X\ + X.2 + • • • + XN . 

To model large claims the Xi are supposed to arise from a distribution with 
a regularly varying tail, now explicitly defined. 

2.1. Distributions with regularly varying tail of exponent 8 

Definition 2.1. The class F consists of distribution functions F(.) for 
which 

1 - F{x) = L(x)x~s = L(x)x-1/p, {x > 0,5 > 0) 

where L(x) is slowly varying; i.e. (L(ax)/L(x)) —> 1 as x —» oo, for all 
a > 0; see for instance, Feller (1971, p.278). The parameter S is the tail-
index, while p = j is the extreme value index. 

For the sort of large claims realised in commercial liability insurance, 
commonly assumed is that E[X] exists, but not .E[X2]. This means that 
1 > P > \ is the special interest class, and that SN is not governed by con­
ventional central limit theorems; see e.g. Mikosch (1997). For p increasingly 
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closer to 1, the major expected cost of annual aggregate claims is at­
tributable to a smaller proportion of the largest of them. The actuarial 
rule of thumb — the "20-80" rule; 20% of claims account for 80% of claims 
cost (e.g. Embrechts et al. (1997, Chapter 8)) — implies that p is about 
0.86 for claims arising from Pareto distributions . 

Theoretical support for the empirical rule is available from the following: 

For F{.) G F and large x, PT[SN > x] cs Pr[maxXi > x] 

« E[N}L(x)x-6; 

see Feller (1971, p.279 and p.288, Exercise 31). 
Standard methods of estimation of tail-index p (e.g. Smith (1987), Em­

brechts et al. (1997, Chapter 6)) assume that the total number of claims n 
is large, as is k, with n —> oo, k —> oo but - —• 0. However, the relation 
between the two sequences needed for convergence in law of tail-index es­
timators may be quite prescriptive (e.g. Drees et al. 2004). In this paper 
k may be quite small, 'qualifying' values of k being determined by results 
of Theorem 3.1. The Hill (1975) estimator based on these k values is the 
pivotal quantity for tail-index estimation. 

2.2. Two distributions important for heavy-tailed claims 

Two distribution families especially relevant for large claims modelling are: 
Pareto, with distribution function 

l-F(x) = (l + j)-K (x>0,p>0,\>0), (1) 

and 
Frechet, with density 

-1 -{k/p)-\ -x-1'" 

Mx) = - rYM ' ( * > 0 , p > 0 , f c > l ) . (2) 

Both distributions are themselves inclusive of broader classes of families 
under different (but heuristically similar) statistical conditions. 

Pareto is relevant because of the peaks-over-thresholds methodology 
initiated by Balkema and De Haan (1974), Pickands (1975), Smith (1987) 
and Leadbetter (1991). Most relevant (for p > 0) is the following: 

For sufficiently large t the conditional distribution 

F(t + x)- F(t) 
Ft(x)=Pv{X <t + x \X>t} = 

l-F(t) 
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where 1 — F(t) > 0, t < x* = sup(a; : F(x) < 1) < oo, is well-approximated 
by Pareto (1) for suitably chosen A = X(t). More precisely, the approxima­
tion arises from convergence to the generalised Pareto distribution (GPD) 
shown by Gnedenko (1943) who proved the existence of normalising a(t) 
such that 

lim Ft{xa{t)) -> H„{x) 
t—tx* 

where 1 - Hp(x) = (1 + px)xlp if and only if F(.) is in class F. Methods of 
estimating t and a(t) (equivalently t and X(t)) are discussed in Embrechts 
et al. (1997, Chapter 6). 

The Frechet distribution is more directly inclusive of a broader class of 
distributions, because the normalised order statistic Xn-k+i/vn from any 
F(.) in F converges weakly to the fc-th extreme Xfa with density fk{x). The 
normalising constants vn derive from the tail-quantile function satisfying for 
large n the equation n[l — F(vn)] = 1; class F is the maximum domain of 
attraction of the Frechet distribution (see Embrechts et al. (1997, p.131), 
Teugels and Vanroelen (2004)). 

2.3. Implications for large claims of membership ofF: the 
k~p law 

Membership of class F means that the largest claims arising from any of its 
distributions can roughly speaking be equivalently described by the Pareto 
distribution (because for exceedances over a sufficiently high threshold t, 
the conditional distributions Ft(x) are approximately Pareto for any F(.) in 
F), or by the Frechet distribution (because for sufficiently large n, suitably 
normalised order statistics from any distribution F(.) in F converge weakly 
to Frechet extremes). 

For both distributions, expected relative claim size is governed by a k~p 

law: 

ElX(i+k)} 
E 

Y"* 
A ( i+fc) 

x*i) 

r(i + P)(fc + i) 

This result is established in the sequel. It is for this reason that precise 
determination of tail-index p is of critical concern to insurers. 

2.4. Extension of GPD 

Bierlant, Joossens and Segers (2004) proposed an extension of the GPD 
devised to approximate the conditional distribution of X — t given X > t 
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for much lower thresholds t than the GPD is capable of. Proof of their result 
involves a refinement of Pickands' original (1975) workings. The new model 
is: 

1 - Ft(x : S, A, 7 ) = ( l + ^ + v (l - {xt~l + l ) ) 1 * 7 ) " * (3) 

where v = Xt — 1 of which Pareto (1) is a special case when 7 = — 1. 
The extended model has the capacity to fit a much larger proportion 

of claims in large data sets. For the Society of Actuaries, Large Claims 
Database, the authors report good fits for 75,789 claims above $25,000 
compared with generalised Pareto which provided a good fit only for 7,860 
claims above $100,000. The principal deficiency of the new 3-parameter 
distribution is its inability to handle the very largest claims. 

Such claims are precisely the focus of this paper (for which the GPD can 
be assumed to provide an adequate model, as does the Frechet distribution, 
with restrictions presently to be examined). 

3. Main Results 

The following result holds generally for any absolutely continuous distribu­
tion function F(.). Denote by b(u : j , k), the beta density 

b{u:j,k)=B-1{j,k)uj-1{l-u)k-\ u e [ 0 , l ] , (j > 1, fc > 1) 

where B(j, k) = r(j)T(k)/T(j + k) and where F(.) denotes the gamma 
function. 

In the context of Theorem 3.1 below, the density 
b{u m '. 77X, 1) — Tn{urn)

rn *; urn G [0,1] is a special case, with distribution 
function B(um : m, 1) = (um)m, um € [0,1]. 

Theorem 3.1 . Denote by -X'(i), -^(2)1 • • • j-^(n) the ascending order statis­
tics from any absolutely continuous distribution function F(.). Then 'tail-
ratios' (the random variables {Um},m = 1,2, ...,k) have the following 
properties: 
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(i) 

uk 

Uk-t 

1 - F(X(ra_fc+i)) 

l-F(X(n.k)) 

n~k+2)) 

1 - F(X(n_ f c+i)) 

C/i 

are independently distributed beta random variables, with respective 
densities 

b(uk : k, 1), fo(ufe_i : k - 1,1), . . . , 6(ui : 1,1) 

aH ftemg independent of X^n_k^ (and in particular of 1 — F(X(„_/-)), 
which has density b(u : k + l , n — fc); c./. Renyi (1953); Kendall and 
Stuart (1969, Exercise 14-17)). 

(ii) The ratio 

Vk = 
l - f ( * ( n ) ) 

1 - F(X(n_ fc)) 

has a beta distribution with density b(vk : l,fc) which is independent of 
X 

(Hi) 
(n-k)-

E 
1 - F(X(„_m + i ) ) 

1 - F(X(ra_m)) 

E [1 - F(X(n_m+1))] 
E [1 - F(X{n_m))] 
m 

m+l' 
m = 1, 2 , . . . ,n — 1. 

Proof. 
The proof of Theorem 3.1(i) is quite long and is relegated to the Appendix. 
Theorem 3.1(H) follows from Theorem 3.1(i) and Kendall and Stuart (1969, 
Exercise 11.8), because 

Vk = Ukx Uk-i x • • • x Ui 

is the product of independent beta variates. It is independent of X(n_k) 
because by Theorem 3.1(i), all its component factors are. 
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Theorem 3.1 (iii): Since the tail ratio Um has density b(um : m, 1) = mum , ,m — l 

um G [0,1], m = 1, 2 , . . . , n — 1, it follows that 

1 - -Fpf(n-TO+l)) 
E E[Un 

l-F(X{n_m)) J L mi m+1 " 
Since the density of F(X( n _ m + 1 ) ) is b(u : n — m + 1, m) it follows that 

E[l - F(X{n„m+i))} = ml[n + 1), E{1 - F{X{n_m))\ = (m+ l ) / (n + 1) so 
that we also have 

E[l - F{X{n_m+l))\ _ m m _ l 2 n + 1 

E[l-F(X(n_m))] -m+1' m-l,2,...,n+l. Q 

4. Application of Main Results to Pareto Claims 

Consider the largest (fc + 1) claims X(n_f.), -X"(n-fc+i)i • • • i -^(n) from Pareto 
distribution (1), and the corresponding standardised claims by Z(m) = 1 + 
X(n_m + i ) /A, m = 1, 2 , . . . , (k+1), where A is an unknown scale parameter. 
From Theorem 3.1 (i) the ratios 

Um=(^^-) , m=l,2,...,k 

are independently distributed and have densities b(um : m, 1) = m{um)m~1. 
Their distribution functions (d.f.) are B{um : m, 1) = (um)m, 0 < um < 1, 
m = 1,2,... ,k. 

5. Estimation of the Tail-Index p = 1/8 in the Pareto Case 

(Optimality of the Hill estimator for Pareto claims) 

• Maximum likelihood estimation of the tail-index p 

Um = (Z{m)/Z{m+i))~S where Um has d.f. B(um : m, 1) = (u m ) m , m = 
1,2,. ..,k. 
Ym = Z(m)/Z{m+l) has density f(ym) = m5(ym)-mS^1, (ym > 1), m = 
1,2,. ..,k. 

Since the {ym} are independently distributed, the likelihood L based 
on k consecutive ratios of the largest Pareto claims is 

fc 
L = JT m5(ym)~ -m5—l muyyiii) 

m=l 

and the log likelihood £ is given by 
k k 

t = const. + klogS - 6 x 2 J TOlogym - 2 J logy, 
m+1 m = l 
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The derivative of £ with respect to 5 is zero when 

1 _ k 

P= 7 = fc_1 5 Z m l o g y m 

k 

= fc-1£mlog{-^U 

which is the Hill estimator based on k consecutive ratios of the largest 
claims (hereafter denoted by pk)-

Noting that: 

(i) 

E mlog 
l^(m+l) J. 

= E[-pmlog(U„ 

where Um is distributed with beta density b(um : m, 1) = m(um)m 1, 
and that for integer j 

(ii) 

E ~(-pm\og(Um)j)} = r ( j + l )P , j = 0 ,1 ,2 , . . . , 

it follows that 

(a) -E[/Sfc] = p (i.e. pk is unbiased for p), 

(b) Var[/5fc] = p2/fc. It is easy to check that the variance p2/k represents 
the Cramer-Rao minimum variance bound for p, and we now do so. 
Differentiating £ twice and taking expectations gives 

E 
d52 62 " 

The Cramer-Rao bound for any function g(S) of 5 is 

9\5?/E 

(see for instance, Rao (1973, p.324)). 

dd2 

Here g(5) = 1/5, and the bound is S~4 x 52/k = p2/k 
Thus in the case of Pareto claims, Hill's estimator is the minimum 
variance unbiased maximum likelihood estimator. 

(c) Furthermore f>k has moments of all orders and moment generating 
function 

Mp(0) = (1 p^-k , n _ pe 
k ' ( 0 < f c < 1 } 
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so that small sample distribution of pk is gamma with density 

/p(x,fc) = e x p ( — V - 1 ( - ) /T(k), x>0,k>l,p>0. 

Proof. Recalling the independence of the ratios {Z(m)/Z(TO+i)}, 
m = l ,2, . . . , fc , the moment generating function of pk is 

E[exp(0Pk)) = E £{&}" 
10/fc' 

i _ Pi" ~" 
k 

This follows since E[{Z(m)/Z(m+1)}
m6lk} = E[{U(m, 1 )} -^«A] 

where [/(TO, 1) has density £?(M : TO, 1) = mwm _ 1 , (0 < u < 1), and 
its expectation is (1 — pO/k)"1. The moment generating function is 
recognisable as that of the gamma distribution with density 

/ p ^ f c H e x p ^ ^ p ) ^ - 1 ^ /T(k), x>0,k>l,p>0.D 

6. The Pareto Scale Parameter A 

For estimation of the tail-index, is knowledge of the scale parameter A 
necessary? 

Heuristically, the ratio of large standardised Pareto claims 

(l + X 
(n—m+1) /A) Z(m+\) (1 +X(„_m) /A) 

^ -^(a-m+l)/A 

X(n-m)/^ 
V"* 

_ X(m) 

^(m+l ) 

The diagram below (Figure 1) shows the progress of Hill's estimator 
for a pool of 2000 Pareto claims (generated with A = 1500, p = 0.75) 
when up to 200 ratios are used (fc = 200). For the lower plot the value of 
the scale parameter is assumed known and used in calculation of the Hill 
estimator ; in the upper plot its value is ignored. Hill plots for the two series 
progressively diverge as further ratios are added to the estimator. 
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Hill's plot for p: information in the scale parameter 

Scale parameter used 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121127 133 139 145 151157 163 169 175 181187 193 199 

Number of ratios in estimator 

Fig. 1. Hill's plot showing progress of the estimator over 200 Pareto ratios with and 
without knowledge of A. Pool is 2000 claims. 

Hill's plot for p: information in the scale parameter 

0 0.5 -I 

1 0.4 

{„, 
0.2 

0.1 

Scale parameter omitted 

Scale parameter used 

1 19 37 55 73 91 109 127 145 163 181199 217 235 253 271289 307 325 343 361379 397 415 433451469 487 

Number of ratios 

Fig. 2. Hill's plot for 500 ratios from a pool of 100,000 claims. The penalty for ignoring 
the scale factor is negligible for quite large k. 

However, not surprisingly in view of the foregoing discussion, as the 
sample size is increased, the size of the largest claims increases in proba-
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bility, and the difference between the plots can be ignored for quite large k 
values. In Figure 2 the pool of claims is 100,000. 

7. Application of Main Results to Claims from 
Distributions with a Regularly Varying Tail 

To what extent can this reasoning be applied to a general distribution with 
a regularly varying tail where 1 — F(x) — L(x)x~s(x > 0, S > 0) and where 
L(x) is slowly varying? 

Consider the ratios 

n l~F(X(n_k+1)) l~F(vnX*) L(vnX*(k)(X*)-s) 
Uk — ~ — 

Uk-i = 

1 - F(X{n_k)) 1 - F(vnX*{k+1)) L K X ( V i ) ( * ( V i ) ) " ' 5 ) 

l~F{X(n_k+2)) J - f M ( ' M ) = HvnX^iX^)-*) 

I - F(X{n_k+1)) ~ l-F(vnX(k)) L(vnX*{k)(X*{k))S) 

= l-F(X{n)) 1-%^)) = HvnXfajXfa)-*) 
1 l - F ( I ( n _ , ) ) ~ 1 - F(«„X(*2)) L(vnX*2)(X{2))-') 

If the pool of claims generating the order statistics X^n_k-j, X(n_/c+i), 
. . . , -X"(n) (appropriately normalised) is sufficiently large to justify the as­
sumption of their joint weak convergence to Frechet marginal distributions, 
then the variables Uk, Uk-\, ..., U\ provide the distributions of ratios of 
extremes 

I A W I I A(fc-1) I I A( l ) I 

l (fc+l) J l C=) J l (2) J 

respective/?/. 
This means that the ratios of the slowly varying functions 

L(VnX*{m)) 

L{vnX*m+1)) 

can be assumed to be 1 in each of the expressions for {Um}, m = 1, 2 , . . . , fc, 
above. 

7.1. Discussion: Heuristics 

The key question to be answered is the following: 
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On the basis of observed claims values, for what values of m (if any) 
can the ratio 

L(vnX*m+1)) 

be taken as 1? And if it is true for some values, what is the largest value k 
which the data supports? 

Heuristically for low values of m (involving the largest extremes) the 
ratio is based on claims realisations well out in the tail of the distribution. 
As m increases, the ratio involves extremes which are retreating back into 
the body of the distribution. Based on observed values, just how far can 
one retreat without compromising optimal estimation properties? 

7.2. Deciding on largest k 
(how many large claims are 'extremes'?) 

Example 7.1. Figure 3 shows the Hill's plot for 100,000 claims and the 
corresponding k = 1000 ratios generated from the distribution function 

1~F(x) = x2H^2bxh> ( 2 / l = | p = 0 . 7 5 ) , x > a ^ 6 + ( 6 2 + A)i. 

The plot classically exemplifies the dilemma faced by insurers and statisti­
cians attempting to estimate the tail-index of distributions with a regularly 
varying tail. 

• If a small number of the largest claims is used (e.g. about 30), the plot 
exhibits high volatility. 

• If a large number is used (more than 100), there is material bias. 

The only practical way round the dilemma (since the functional form of 
F(x) is an imponderable) is to increase sample size, i.e. the pool of claims. 
For achievement of this end it behoves insurers to: 

(1) pool experience across national boundaries, 
(2) aggregate year-on-year claims in current dollar terms. 

Increasing in total the total pool of claims reduces the bias to manage­
able proportions (Figure 4). Roughly speaking, this means that a test of 
hypothesis along the lines that the ratio of slowly varying functions involv­
ing any of these 500 order statistics is unity would be accepted. Moreover, 
with a large pool of claims, initial volatility of the series is reduced; a rela­
tively small number of ratios may lead to a reasonable tail-index estimate 
(e.g. Figure 5). 
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Hill's plot for 1-F(x) = L(x)x*(-S) 
(100,000 claims) 

r 
1-F(x) = L(x)x«H 

1 39 77 115 153 191 229 267 305 343 381 419 457 495 533 571 609 647 685 723 761 799 837 875 913 951 989 

Number of ratios 

Fig. 3. Hill's plot for distribution above: A = 1 500, b = 100 showing divergence from 
Pareto as number of ratios used increases. 

Hill's plot for 1-F(x) = L(x)xA(-8) 
(1,000,000 claims) 

Two central series: upper is Pareto p = 0.75 
Lower is 1-F(x) = L(x)x"(-0.75) 

16 31 46 61 76 91 106121136 151166 181196 211226 241256 271286 301316 331346 361376 391406 421436 451466 481496 

Number of ratios 

Fig. 4. Hill's plot for increased pool claim size, showing approximate 2er confidence 
bands. The bias, while material, is nowhere near significant. 

Example 7.2. (Largest man-made disasters) 
In this example, the size n of the total pool of claims, while unknown, 
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Hill's plot for 1-F(x) = L(x)xA(-8) 
(1,000,000 claims) 

1.2 • 

0 V—, 

1 0.8 \ ^ _ ^ ~ ^ /"——-»«5»^<< 

P 0.6 V ~~ *" 

if 
0.4-

0.2-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Number of ratios 

Fig. 5. Hill's plot for the 35 largest claims; the two series are indistinguishable, and 
volatility is low. 

can be assumed to be very large, large enough to justify the assumption 
that the claims in Table 1 are 'extremes'. 

Table 1. Large claims data: Insured losses, (1999) Man-made disasters. 

Place 

US, Dearborn, MI 
US, Gramercy, LA 
US, Richmond CA 
US, Kansas City 
UK, Edinburgh 
Germany, Wuppertal-Eberfield 
Germany, Gendorf 
Germany, Vahdorf 
Germany, Darmstadt-Arheilgen 
US, Martinez, CA 

Event 

Explosion &; fire at power station 
Explosion, Aluminium plant 
Oil refinery explosion 
Power plant explosion 
Explosion at transformer factory 
Chemicals plant explosion 
Polymer plant explosion 
Turkey slaughter-house fire 
Fire liquid crystal plant 
Oil refinery explosion 

Inm$koss 

650 
275 
247 
196 
137 

102.5 
92.2 
82 

71.7 
71 

Source: Swiss Re , S igma N o . 2 (2000) 

The relative size of claims is shown in Figure 6 below. 
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Largest claims (man-made disasters) 2000 

700 n 

5 6 
Rank of claim 

Pig. 6. Ten largest man-made disaster insurance claims of 1999. 

7.3. Estimates of p from the empirical structure function 

The pattern of the largest claims is very suggestive. We use it to provide 
another estimator of the tail-index to compare with the Hill estimator. 
Estimates of the tail-index p can be 'backed out' of the expected structure 
of the extremes, by equating the expected structure with observed structure 
for the large claims of Table 1. 

Assuming weak convergence of the largest claims to Frechet extremes, 
and since Vm has density b(vm : l ,m) from Theorem 3.1(h): 

E 
"V* 
^ ( m + l ) 

V"* 
A ( l ) 

E[V^ 

That the expected value of the ratio of the weak limits is the same as the 
expected value of that limit follows from Chung (1974, Exercise 8, p.100 
and Theorem 4.5.4 p.97). Thus 

E 
X, (m+l) 

X, (1) 

mB(l + p,m) 

a + , » - ( i + fr 
•T{l + p)(m + l)-p 

• • ( i + - r 
\ mJ 
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using Feller (1968, exercise 12.24), the approximation being excellent for m 
greater than 5, and p G [0.5,1] with exact equality at p = 1. 

This is the power law of expected relative claim size for distributions 
with a regularly varying tail of index S. 

Furthermore, since E[X*{1) / X*{m+1)] = JB[X(*1)]/E[A'(*m+1)] is implied by 
Theorem 3.1(i) and Theorem 3.1(ii), the ratio X^/X?^ is a consistent 
as well as an unbiased estimator of mB(l — p, m) for all m = 1,2,.. . , k (it 
is easy to check that 

E 
r V * i 

A(i) 
X*(m+1) 

E 

E 

'*(!)] 
V* 
^•(m+l) 

by direct computation from Frechet density (2)). 

Thus estimates of p can be derived by equating the estimating functions 

\ Gm(p, X(i)/X(m+i)) \ ,m = 1,2,... ,k to empirical structure functions 

A ( l ) 
X* 

X, 
(1) x, (1) 

XI 

Here k 

L(2) ^ ( 3 ) 

9 and the estimating equations are: 

X (i+fc) 

Gilp, 

Go 

X, 
( i ) 

V"* 

A ( l ) 

( ! - / » ) • 

650 
275 

X, 
(3 ) , 

( ! - , ) - ( . - | ) 
650 
247 

et c, and the quasi-likelihood estimation theory of Heyde (1997) is invoked. 
In this context the methodology is akin to the L-moment estimations pro­
cedure of Pandey et al. (2001). The full set of estimates deriving from the 
9 observed ratios is provided in Table 2. 

Table 2. Estimates of the tail-index deriving from the empirical structure 
function. (The largest insured losses of 1999; man-made disaster) 

p 
3 = 1 
0.5769 

2 
0.495 

3 
0.5115 

4 
0.5735 

5 
0.6144 

6 
0.6139 

7 
0.6195 

8 
0.6306 

9 
0.6178 

Plots of these quasi-likelihood estimates are compared with the corre­
sponding Hill estimates in Figure 7. 

Are estimates derived from the empirical structure function likely to 
unlock the true value of pi 
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Hill's estimator and estimator from expected structure 

•5 

I-
Expected structure 

Number of extremes 

Fig. 7. Comparison of Hill's estimator and tail-index estimates deriving from expected 
structure of extremes (the latter likely to underestimate p). 

Given that for F g F , Theorem 3.1(h) asserts that the distribution of 

< XTJXT^ > for a sufficiently large pool is that of (Vm)~p where Vm has 

density b(vm\ 1, m) for each m = 1, 2 , . . . , 9, it is possible to examine the 

probability that this ratio exceeds its expected value. 
Thus 

Pr 
XT 

( i ) 
"V* 

L^(m+1) 
> {mB(l - p,m)} 

= Pr xxi-„-(i-r-(>-£) 
(m+l) 

= 1 - {l - {7715(1 - p, m)} _ 1 / p } m 

- 1 

for m = 1,2,... ,9. 
For instance: 

(i) if p = 0.5, E[XyXT2)] = (1 - 0.5)-1 = 2, but Pv[E[XyXT2)] > 2} is 
only 0.25; 

(ii) if p = 0.9, ElXfa/Xfa] = ( 1 -0 .9 ) " 1 = 10, but Pr[E[XTx)/X*(2)] > 10] 
is only 0.0774. 
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Table 3 shows some values of these probabilities for p = 0.5, 0.6, 0.7, 
0.8 and 0.9, and m = 1,2,..., 9. 

Table 3. The probability that the observed value of Jf,* ,/X,*j , , exceeds its 

expected value {mB(l — p, m)} , m = 1, 2 , . . . , 9. 

m-values 

1 
2 
3 
4 
5 
6 
7 
8 
9 

p-values 
0.5 

0.2500 
0.2615 

0.2653 
0.2672 

0.2683 

0.2690 
0.2695 
0.2699 
0.2702 

0.6 
0.2172 

0.2253 
0.2279 
0.2292 

0.2300 

0.2305 
0.2308 
0.2311 
0.2313 

0.7 
0.1791 
0.1842 

0.1858 

0.1865 
0.1870 
0.1872 
0.1874 
0.1876 

0.1877 

0.8 
0.1337 
0.1363 

0.1370 
0.1374 

0.1375 

0.1377 
0.1378 
0.1378 

0.1379 

0.9 
0.0774 
0.0781 

0.0783 
0.0784 

0.0784 
0.0784 

0.0785 
0.0785 
0.0785 

These low probabilities stem in part from the fact that if p is anywhere 
near 1,X^ is a rare event, unlikely to exceed its expected value T(l — p). 
However they also imply that estimates of p backed out from the empirical 
structure function are likely to underestimate its true value. Prom an in­
surer's perspective the news is not good: 'the big claims are still out there'. 

8. Summary and Conclusions 

New results for tail-ratios of distributions are applied to the Pareto dis­
tribution and other distributions within the domain of attraction of the 
Frechet (extreme value) distribution. 

For Pareto claims, the maximum likelihood estimator is equivalent to 
Hill's estimator, is minimum variance achieving the Cramer-Rao minimum 
variance bound and has a gamma distribution. 

For claims from distributions with regularly varying tails, the same re­
sults hold true if the sample sizes available are large enough. 

Distributional results for ratios of jointly distributed extremes show that 
the empirical structure of claims is likely to lead to underestimation of the 
tail-index. 

For sufficiently large pools of claims it is possible to monitor the tail-
index using inference based on a relatively small number of the largest 
claims. 

To avail themselves of the methodology insurers require access to large 
pools of heavy-tailed claims, probably necessitating aggregation over time 
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and across national boundaries. By this route, adherence to the exhortations 
of Enz and Holzheu (2004) as described in the introduction, would seem to 
be within reach of general insurers. 

Appendix 

Proof of Theorem 3.1 (i) 

Theorem 3.1. (Transformation of the k largest order statistics to in­
dependently distributed random variables) 

The joint distribution of the k largest order statistics X^n^k+i), 
X(„_fc+2), . . . , -X'(n-i), -^(n) from an absolutely continuous distribution F(.) 
factorises into the product of k independent random variables under the fol­
lowing transformations. 

^_ l~F(x(n)) 
ul\x(n~k+l)iX(n-k+2), • • • > # ( n - l ) > x(n)) — , _ rp, 7 

1 r {X(n—ij) 

1 - F(x(n-r)) 
U2\X(n-k+l),X(n_k+2), • • • ,2(71-1), Z(n) ; — " =r; T 

i — r [X(n_2)i 

1 - F(x(n-j+1)) 
Uj(X(n-k+l),X(„-k+2),- • • , ^ ( n - l ) , a ; ( n ) j 

l - F ( X ( „ _ j ) ) 

1 ~ F(x(n-k+2)) 
Uk-i(x(n-k+i),x(n-k+2), • • • ,X(n-i)>x(n)) = -. Fv \ 

1 — t (X(„_fc + i ) j 

Ufc(X(„_ f c + 1 ) ,X(„_ f c + 2 ) , • • • , X ( n _ i ) , X ( „ ) ) = X ( n _ f c + i ) . 

The transformations 
l - F ( x ( n _ j + i ) ) 

Wj(X(„_fc + l ) ,£ ( n _fc + 2 ) , . . • ,X(n-\)ix(n)) 
1 - F ( x ( n _ i ) ) 

imply transformations to mutually independent random variables {Uj} hav­
ing beta densities 

B(Uj : j , 1) = B-\j, l)u]-\ j = 1, 2 , . . . , k - 1, 

all being independent of X(n_fc+1). 
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Here B(a,b) = T(a)T(b)/T(a + b) (a>0,b> 0), where T(.) denotes the 
gamma function. 

Proof. The joint density of the k largest order statistics (denoted by / # ( . ) ) 

/ {X(n-k+l),x(n-k+2), • • • , # ( n - l ) , x(n)) 

r(n+l) („, Nin-fc 
{F(x{n_k+1))} f(x(n-k+l)) 

T(n-k + l)T{k) 

X f{x(n-k+2)) X / ( x ( n _ f c + 3 ) ) X • • • X / ( x ( n ) ) 

It can be re-written as: 

f*(X(n-k+l) ,S (n - J t+2) , • • • £ ( n - l ) , £ ( 7 l ) ) 

T(n + 1) 
{^(^(n-Zc+l))}7 

r(n - fc + i)r(fc) 
{l-F(x{n_k+1))} f(x{n_k+1)) 

fc-1 

x (fc-1) x 

x (fc-2) x 

1 -.F(x(n_ fc+2)) 

1 - F(x{n_k+1)) 

1 - F(x{n_k+3)) 
_ l - F ( X ( n _ f e + 2 ) ) . 

fc-2 

fc-3 

/ ( ^ ( n - f c + 2 ) ) 

{1 - F(x{n_k+1))} 

/ (Z(n- fc+3) ) 

{1-F( (ra-fc+2) )} 

x 2 x 

x 1 x 

1 - F ( x ( n _ i ) ) 

1-F(rr ( r l_2)) 

1--F(g(n)) 
1 - F ( x ( „ _ i ) ) 

/ ( Z ( n - l ) ) 

{l-F(x(n_2))} 

/ ( Z ( n ) ) 

The result of Theorem 1 follows by observing that the form of the density 
of the k largest order statistics can also be written as: 

/ (x(n-k+l),X(n-k+2), • • -x(n-l),X(n)) 

r(n+l) r *.n-k 
{F(x ( n _ f c + 1 ) ) | T(n - k + l)r(jfc) 

x {1 -F(x ( r l _ f c + i ) )} /(x ( n_ f c + i)) 

ci i \ c \fc-2 / W n - f c + 2 ) ) X {k - 1) X (Ufc_i X j - - i i—-Y 
{ 1 - F ( x ( „ _ f c + 1 ) ) } 

file:///fc-2
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x (fc - 2) x (u f c - 2 r~ d x fix (n-k+3)) 

{ l - F ( x ( „ _ f c + 2 ) ) } 

and then as 

x 2 x (u2) x 

x 1 x ( M I ) 1 - 1 x 

2-1 „ f(X(n-l)) 

{1 - F(x(n_2))} 

f(x(n)) 
{ l - F ( x ( n _ D ) } 

/ {X(n-k+l),X(n-k+2), • • • , Z(n-l), x(n)) 

r(n+l) r . ,n-fc 

f^fcTTifOk)1 (a;("-fc+1))| 

x {1 - F(x{n_k+1))} ~ /(x(Tl__fe+i)) 

x ( f c - l ) x ( u f c _ i ) f e - 2 

x (fc-2) x K_2) fc"3 

x 2 x (us)2-1 

x 1 x ( M I ) 1 - 1 x 

where the Jacobian 

d{u1,u2,...,uk) 
9(a;(ri_fc+i),X(Tj_fc+2),... ,X(n)) 

has the value 

0(U1,U2, ...,Ufc) 

^(^(n-fc+l) > Z(n-fc+2), • • • , X(n)) 

dui 

^ ( n - j + l ) 
M = 1,2, ...,fc 

9UJ 

C^(n—j (+1) 

f(X(„)) 

{I-F^-D)} 
/(Z(n-l)) 

{ 1 - F ( a : ( n _ 2 ) ) } 

/(^(n-fc+2)) 

{l--F(z(n-fc+l))} 

Notice that the determinant dx 
dui 

("-3 + 1) 
(i, j = 1, 2 , . . . , fc) has zero entries 

in all positions in the first fc — 1 rows except for: 
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(i) Kj = i, in which case 

duj _ - / ( x ( n _ i + i ) ) _ 

dx{n_l+l) {l - F(x(n_ i})} ' 

(ii) j = i + 1, in which case 

9x ( n _i ) * {1 - F ( x „ _ , ) } ' 

In the fc-th row all entries are zero except tha t ~ Uk— = 1. 

Thus the transformations 

l - F ( a r ( n _ j + i ) ) 
^ ' ^ ( n - f c + l ) : ^(n-fc+2)) • • • i x(n-l), x(n)l — i _ p / „ \ 

imply transformations to mutually independent random variables {Uj} hav­

ing beta densities 

B(UJ : j , 1) = B~\j, l)u)-\ j = 1, 2 , . . . , k - 1, 

all being independent of X(n_k+iy, see, for instance, Kendall and Stuart 

(1969, pp. 23-24). 

This completes the proof. • 
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The Gini index is an indicator of the degree of income inequality in a 
society. In recent decades, the Gini index has become a popular means of de­
scribing the inequality measure. In this article, we propose shrinkage estimation 
strategies for estimating the Gini indices for multiple populations. The clas­
sical estimator is investigated as a competitor of the proposed estimators. In 
light of a quadratic loss function, the asymptotic risks of the estimators are 
derived. A central theme of this paper is that the shrinkage method provides a 
powerful extension of its classical counterpart for the estimation of Gini indices 
in a multi-population situation. 

Keywords: Gini index; shrinkage estimation; L-moments; L-statistics; asymp­
totic risk analysis; retrospective sampling. 

1. Introduction 

There are several ways to express the degree of income inequality in a soci­
ety. The Gini index is perhaps one of the most used indicators of economic 
and social condition. The Gini coefficient is a measure of inequality devel­
oped by the Italian scientist Corrado Gini and published in his 1912 paper 
"variabilita e mutabilita". Algebraically, it is defined as "expected value of 
the ratio of the difference of two arbitrary specimens to the mean value of 
all specimens". However, it is understood generally by the geometric defi­
nition "area enclosed by the Lorenz curve and the diagonal", which has a 
meaning equal to the algebraic definition. A Lorenz curve plots the cumu­
lative percentages of total income received against the cumulative number 
of recipients, starting with the poorest individual or household. The gap 
between the actual lines and the mythical line is a function of the degree 
of inequality. The Gini index measures the area between the Lorenz curve 

mailto:rghori@uwindsor.ca
mailto:seahmed@uwindsor.ca
mailto:ahussein@uwindsor.ca


Shrinkage Estimation of Gini Index 235 

and a mythical or hypothetical line of absolute equality, expressed as a 
percentage of the maximum area under the line. In the egalitarian society, 
the Gini index would be 0, since the Lorenz curve would match the 45° 
line perfectly; the higher the Gini index, then the greater the distance and 
the more unequal the distribution of income. In practice, the Gini index 
usually falls between 0.20 and 0.45. It is an interesting fact that while the 
most developed European nations tend to have values between 0.24 and 
0.36, the United States has been above 0.4 for several decades. This in­
dex can be viewed as an approach to quantify the perceived differences 
in welfare and compensation policies and philosophies. Income or resource 
distribution could be found to have direct impact on the poverty rate of a 
country or region. 

The Gini index is usually used to measure income inequality, but can 
be used to measure any form of uneven distribution. For example, it can 
also be used to measure wealth inequality. This use requires that no one 
has a negative net wealth. The Gini index has been used to study sev­
eral aspects of health inequities. As in the often cited studies of income 
distributions, comparisons can be made between countries. For example, 
the Pan American Health Organization (www. paho. org) published a short 
survey applying the Gini index to infant mortality rates across a group of 
South American countries ([10] and [7]). Ref. [15] evaluated the predictive 
power of different branch prediction features using the metric Gini index, 
which is used as a featured selection measure in the construction of de­
cision trees. That study showed that the Gini index is a good metric for 
comparing branch prediction features. The Gini index has also been used 
to study spatial patterns of care and health care access in Canada [9], with 
the goal of understanding the relationship between competitive conditions 
and practitioner location. The researches on the Gini index have been de­
veloped remarkably and extended into various directions as evidenced by 
the bibliographies of [27], [28] and [16]. Further, a substantial literature has 
been devoted to the construction of indices of economic inequality that are 
consistent with axiomatic systems of fairness. We refer to [3], [11], [22], [12], 
[23] and [4] for comprehensive surveys on measures of inequality including 
the Gini index. 

In summary, the Gini index of income or resource inequality is a mea­
sure of the degree to which a population shares that resource unequally. 
It is based on the statistical notion known in literature as the "mean dif­
ference" of a population. The index is scaled to vary from a minimum of 
zero to a maximum of one, zero representing no inequality and one rep-
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resenting the maximum possible degree of inequality. A major statistical 
limitation of the Gini index is the absence and the intractability of an 
appropriate sampling distribution ([18], [21]). In this article, we give the 
large sampling distribution of the Gini index when m independent retro­
spective samples of different sizes are available. Thus, this paper generalises 
the classical one-sample set-up into a multi-sample situation and develops 
inference techniques for the indices. Further, the shrinkage estimation of 
the Gini index is proposed and its statistical properties investigated. The 
requirements of a large sample size may not be stringent. There are many 
situations where taking a large sample is more economical than taking fre­
quent samples. The overall cost of sampling may be reduced by judiciously 
collecting a relatively large amount of inexpensive data to increase the ac­
curacy of the estimator. Thus, the goal of finding large sample methods for 
such problems seems well worth achieving. 

2. Preliminaries and Statement of the Problem 

In order to define Gini's mean difference, suppose that X\,..., Xn are inde­
pendent and identically distributed (i.i.d.) random variables with nonzero 
mean and cumulative distribution function (c.d.f.) F. We shall assume that 
F, instead of being restricted to a parametric family, is completely un­
known, subject only to some very general conditions such as continuity and 
existence of second moment. The "parameter" 6 = 0(F) to be estimated is 
a real valued function defined over this nonparametric class T. The classical 
Gini index is defined as 

7=^l*i-* l = £, 
where JQ and Xj are independent copies of the random variable X with 
c.d.f. F and E(X) = /j,. The quantity A = E\Xj — Xi\ is known as the Gini 
mean difference. The classical Gini index estimator is defined (see [13], [14] 
and references therein) by, 

.. n n 

Suppose that there are m independent retrospective samples of size 
n-i, ri2, • • -, nm acquired from k = 1,2, . . . , m populations, respectively. 
Denote the observed data by Xki, i = 1,2,... ,rifc. In this article, we are 
interested in estimating the m-dimensional parameter vector of Gini indices 

(1) 
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7 = (7i)72j • • • ,7m) based on the random samples of size n\, n2, • • •, nmi 

respectively. The classical Gini index of each component is 

lk = 7~ = - L - ^ ^ , (3) 
Zflk ^Hk 

and its classical Gini index estimator (CGI) is 

A(k = 2TkW) ^^ | X f c i " X f c t | ' (4) 

where X^ = — X^=i Xki- One of the main objectives of this paper is to 
provide estimators when it is suspected that 7 = 7° may hold, where 
7° = (7ii72> • • • ,7m)'- The 7 0 is a prior guessed vector of Gini indices 
obtained by previous census or recent enumeration. 

2.1. Asymptotic normality of Gini index 

Lemma 2.1: Assume as above that for each k = 1,2, . . . , m , Xki, i = 
1.2, ...,71/c are independent and identically distributed random variables 
with CDF Fk(.). If the Xki have nonzero mean and finite second moments, 
then for each k = 1,2,.. . , m and for rife —> 00, 

% / 2 { 7 f c - 7 f c } ^ A / - { 0 , r f c
2 } , 

where % are the classical Gini index estimators, defined above, and 

rfc = TT (aifcTfc " 2alklk + <?ik) . (5) 
Mfc 

a?fc = JJ2Fk(x)[l - Fk{y)} dxdy, 
x<y 

JJ{(2Fk(x) - 1) + (2Ffc(y) - l)]Ffc(a;)[l - Ffc(j/)] dxdy, 
x<y 

o\k = jJ2(2Fk(x) - l)(2Ffc(y) - l)Ffc(x)[l - Fk(y)} dxdy. (6) 

Proof. As in [19], we note that •jk is just the ratio of two L-statistics or two 
sample L-moments, namely the first two sample L-moments, l2k/hk with 
lik = Xk and l2k = 2̂ 2 YH=\ Z ) " = I \xi ~ xi\- A s s u c n ' a n d following the 
method of [19], it easy to see that under the assumptions of the Lemma, 

,1/2 (hk - A*fe \ J>, 

\hk - Afc/2 

'2fc — 
x<y 

» r u " : , , - ^ M 
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where 

with entries denned in (6) and 0 = (0,0) . The result now follows by simple 
application of the multivariate delta method. D 

3. The Proposed Improved Estimation Strategy 

We now turn to the main objective of this investigation, the parameter vec­
tor 7 = (71,72, • • -,7m)' which is estimated by 7 = (71,72, • • -,7m)'- We 
are primarily interested in the estimation of 7 when it is plausible that 7 is 
"close" to some specified 7 0 . As one basis for identifying model-estimator 
uncertainty, ref. [24] demonstrated the inadmissibility of the maximum like­
lihood estimator (MLE) when estimating the m-variate normal mean vector 
0 under quadratic loss. Following this result, refs. [20], [25] and [6] com­
bined the m-variate MLE 6 and m-dimensional fixed null vector, under the 
normality assumption, as 

eS = ( l - c A / | | 0 - O | | 2 ) ( 0 - O ) , when 0 < A < 2 ( m - 2 ) , 

and demonstrated that for m > 2 this estimator dominates the MLE. 
We therefore propose Stein-type methodology for the vector 7. In this 

case, the construction of an estimator rests on the choice of a special value 
7 0 of 7, called the pivot, whose plausibility plays a basic role in the moti­
vation. It should be noted however that the Stein-type estimator is primar­
ily used for location parameter, and in this paper, we have extended this 
method for the estimation of Gini index parameters for arbitrary popula­
tions. 

Define 7° = v ^ ( 7 - 7 ° ) with n = J2T=i nk a n d T — (7n)'^n7n> where 

Cln = diag ( -^=r, • 
V Ti 

with Uitn — —. The Stein-type shrinkage estimator (SE) is then defined by 

7 S = 7 ° + [ 1 - A T " 1 ] ( 7 - 7 ° ) , rn>3, 

where A is the shrinkage constant such that 0 < A < 2(TO — 2). The choice 
A = TO — 2 which minimises the risk will be used throughout this paper. 
We will demonstrate that the proposed Stein-type estimator provides uni-
form improvement over 7. The estimator 7 is generally called a shrinkage 
estimator since it shrinks the classical estimator towards the 7 0 . For some 
insights into shrinkage estimation, we refer to [8] and [26], among others. 
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In cases where the estimated parameter is positive, shrinking the classi­
cal estimator towards the specified vector 7 0 may result in an over-shrinkage 
and as a consequence, the proposed estimator may become negative. To 
avoid this nuisance, we truncate 7 to obtain a convex combination of 7 
and 7 0 which is called the positive-rule shrinkage estimator (PSE). The 
PSE may be defined as follows: 

7
S + = Y + [l _ ( m _ 2 ) T " 1 ] + (7 - 7°), 

where z+ = max(0, z). The positive-part estimator is particularly impor-
tant to control the over-shrinking inherent in 7 . 

Clearly, in practice, parameter spaces are always restricted. Although 
restrictions may be difficult to specify, the gain in performance that may 
be realised from incorporating the restrictions can be tremendous, as this 
paper will demonstrate. Reductions in risk (under quadratic loss function) 
of 50% are attainable over the restricted parameter space if the restrictions 
are judiciously exploited. 

An unusual and novel feature of this paper is that we do not assume the 
shape of the income/wealth populations. More importantly, we consider the 
asymptotic shrinkage estimation of Gini index parameters in a retrospective 
sampling. Based on the review literature, this kind of study is not available 
for practitioners. 

In passing we remark that the application of shrinkage estimators is 
subject to the condition that m > 3. Therefore, we recommend the use 
of pretest estimators when such a constraint holds. The pretest estimators 
(PTE) are widely used by researchers, notably in economic research. For 
details on the subject, we refer to the extensive bibliographies of [5] and 
[17]. 

In the present investigation, emphasis is on a situation where all sample 
sizes are large while the parameter vector is believed to be close to 7 0 . In this 
context, the notion of asymptotic distributional quadratic risk will enable 
us to study the large sample properties of the proposed estimators. To study 
the statistical properties of the estimators, we introduce a quadratic loss 
function: 

L(7*) = n ( 7 * - 7 ) ' A ( 7 * - 7 ) , 

where 7* is any estimator of 7, and A is a nonnegative definite (n.n.d.) 
weighting matrix. Then, the quadratic risk for 7* is given by 

_ R ( 7 * ) = n £ { ( 7 * - 7 ) ' A ( 7 * - 7 ) } -
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We plan to investigate the risk performance of the proposed estimators 
in the entire parameter space induced by the information that 7 is close 
to 7 0 . In the case 7 = 7° the asymptotic risk can be calculated without 
technical difficulty; however, when 7 ^ 7 0 , then 7 , 7 and 7 will be risk 
equivalent. To avoid this technical problem, we define a sequence which may 
be specified as 7(„) = 7 0 + £/n1 /2 , where £ is a vector of fixed real numbers. 
Evidently, 7 ^ approaches 7 0 at a rate proportional to n - 1 / 2 . Now, we can 
compute the asymptotic distributional quadratic risk (ADQR). To do so, 
let the asymptotic distribution function of {y/n('y* — 7)} be given by 

Further, let 

G(z) = lim Pr{Vn(7* - 7) < z}. 
n—*oo 

Q = f f... f zz'dG(z). 

Finally, the ADQR is defined by R(~f*) = tr(AQ). The asymptotic risk 
under the local alternatives is defined as R(f*) = limn^oo Rn(~f*), where 
Rn(f*) = nE{(-y* — 7 ^ ) ^ ( 7 * — 7(n))}. Assuming that the limit exists, 
one may need extra regularity conditions to evaluate this risk function. This 
point has been explained in detail in various other contexts, by a host of 
researchers. In obtaining our result for the shrinkage estimators, we use the 
technique that was developed by [2] and [1]. 

First, we give expressions for the asymptotic distributional biases (ADB) 
of the estimators as follows: 

ADB{^S) = - ( m - 2)££(X-2
+ 2(A)), A = ^ ' f r 1 * , 

ADB{is+) 

= - £ h W 2 ( m - 2; A) + (m - 2)E{X^2
+2(A)I(X

2
m+2(A) > (m - 2))}], 

where ft = limn-^oo J7„; tpm(x ; A) means the noncentral chi-squared cumu­
lative distribution function with noncentrality parameter A and m degrees 
of freedom; 

/•OO 

£ ( X - 2 f c ( A ) ) = / x - 2 f c d<M*;A) , 
Jo 

and 

1 if 4̂. is true, 
I (A) 

{_ 0 otherwise, 
where A is any expression or condition. 
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Further, define 

B(7*) = [ADBi-r*)}'^'1 [ADB{-y*)] 

as the quadratic bias of an estimator 7* of parameter vector 7. Then, 

B ( 7
S ) = (m-2) 2A[£;(X - 2

+ 2 (A))] 2 , 

B ( 7
S + ) 

= A [ipm+2(m - 2; A) + (m - 2)£{x-2
+ 2(A)J(X

2„+ 2(A) > (m - 2))}f . 

Note that, since E{xm
2 (A)) is a decreasing log-convex function of A, the 

quadratic bias of 7 starts from 0 at A = 0, increases to a maximum, and 
then decreases towards 0. The behaviour of 7

5 + i s similar to 7 s ; however, 
the quadratic bias curve of 7 remains below the curve of 7 for all values 
of A. 

The ADQR functions of the estimators are given in the following theo­
rem. 

Theorem 3.1 

R(js+) = R(js) - R(j) 

x E[{1 - (m - 2)X-2
+ 2(A)}2/(X

2
r t + 2(A) < (m - 2))] 

+ £'A£[£[2{1 - (m - 2)x-2
+ 2(A)}/(X

2
n + 2(A) < (m - 2))] 

- E{{1 - (m - 2 ) x - 2
+ 4 (A)} 2 / ( ;d + 4 (A) < (m - 2))]], 

where 

i?(7S) = Rtf) + £ ' A £ ( T O - 2)(m + 2)£(X-4
+ 4(A)) 

- (m - 2) t r(AO-1){2£(X-2
+ 2(A)) - (m - 2)£(X-4

+ 2(A))}, 

andJR(7) = tr(Afi-1) . 

Proof. This theorem can be proved using arguments similar to those in 
[2]. D 

Using the results of the above theorem, we investigate the comparative 
statistical properties of the proposed estimators. First, note that for £ = 0, 

Rtf) - R(jS) = M A n ^ X m - 2)£{2X"2
+ 2 - (m - 2)x"4

+ 2} > 0. 

Therefore, 7 is a superior alternative to the classical estimator of Gini 
indices vector. For the general case, that is £ 7̂  0, consider the class of 
n.n.d. matrices, 

A° = JAnnd: ^An~\ > ^ | , 
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where Xmax(A) means the largest eigenvalue of A. Moreover, assume that 

Amin(Afi-1) < 1 £ | < A ^ A f T 1 ) , for £ ^ 0 and A G A D . 

Then, under the class of matrices defined above, we have established 
that i?(-y ) < R(j) for all £, with strict inequality holding for some £. 
It follows that 7 is asymptotically inferior to 7 in the entire parameter 
space. The risk of 7 begins with an initial value less than the risk of 7 and 
then increases monotonically towards tr(ASl~ ). Therefore, the risk of 7 
is uniformly smaller than that of 7, and the upper limit is attained when 
IKII-oo. 

Finally, we investigate the relative risk performance of 7 + to 7 and 
7, respectively. Using the simple fact that each indicator function in the 
risk expression of 7 has a value of 1 if Xm+;(A) — ( m ~~ 3) a n <i a value of 
0 otherwise, it follows that 1 - (m - 2)/(x^+ ; (A)) < 0, for 1 = 2,4. Hence 
i?(7 + ) — i?(-y ) < 0 for all £, where strict inequality holds for some £. 
In other words, 7 + asymptotically dominates 7 under local alternatives 
and therefore 7 is also superior to 7. 

It is noted that the asymptotic risks of the proposed estimators depend 
on the matrices A and Cl~ and may not be useful for numerical work. 
However, the numerical computation of the risk functions can be simplified 
by considering the particular choice A = fl~ ; then tr(A$~2~ ) = m, and 
£'A£ = A. The numerical values of the risk functions were obtained by 
writing a computer program in Fortran, and using subroutines from the 
IMSL library. The percentage of improvement in risk is calculated by using 
the formula 

_ 100{fl(7) - R(Y)} 

Table 1 provides the percentage improvements in risk of 7 + and 7 over 

7-

Table 1. Percentage risk improvement of PSE and SE over UE for m = 8 

II A 
II PSE 

II SE 

1 ° 
1 71 
1 63 1 

1.0 

| 60 

| 52 

| 2.0 

1 51 
| 45 

1 3-° 
I 44 

1 40 

| 4.0 

| 39 

| 35 

| 5.0 

| 35 

| 32 

| 6.0 

1 31 
| 29 

| 7.0 

| 28 

I 27 

| 9.0 

| 26 

| 25 

1 10 
| 24 

| 23 

1 n 1 
1 21 1 
1 20 | 

Table 1 reveals that both proposed shrinkage estimators have maximum 
risk gain over 7 at A = 0, and the value of the improvement is a decreasing 
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function of A. As an example, the improvement of 7 over 7 at A = 0 
is 71%, which is an unprecedented improvement. The risk performance of 
7 + is superior to both 7 and 7 in the entire parameter space. For large 
values of A both 7 and 7 behave equally. Hence, the numerical findings 
support the analytical results. 

Similarly, Table 2 provides the percentage of risk improvement of 7 + 

over 7 for various choices of m with A = 0, 0.5, 1.0, 1.5 and 3.0. 

Table 2. Percentage Risk Improvement of PSE over SE. 

m 

4 
5 
10 
15 
20 
25 
30 

A = 0 

13 
18 
24 
26 
27 
28 
29 

A = 0.5 

11 
14 
20 
21 
22 
23 
23 

A = 1.0 

9 
12 
16 
18 
19 
19 
19 

A = 1.5 

7 
10 
14 
15 
16 
16 
17 

A = 3.0 

4 
6 
9 
10 
11 
11 
12 

Again, we notice the supremacy of 7 + over 7 . At m = 4, the im­
provement at A = 0 is 13% and this increases as the value of m increases. 
Moreover, the improvement decreases with an increase in A. However, the 
important issue here is not the improvement in the sense of lowering the 
risk by using the positive part of the 7 . The focal point in this estimation 
strategy is to preserve the sign of 7. By considering only the positive part 
of 7 the resulting estimator 7 + removes the absurd behaviour of 7 and 
does not change the sign of the estimators. Thus, components of 7 + will 
have the same sign as that of components of 7. For this pragmatic reason, 
we strongly recommend that the usual shrinkage estimator should be used 
as a tool for developing the positive part shrinkage estimator. 

4. Final Comments 

In this paper, asymptotic statistical estimation procedures are established 
for the Gini index parameters for nonnormal distributions, a commonly used 
income index. We proposed shrinkage and positive part shrinkage estimator 
when the true Gini indices are suspected to be close to a guessed value. We 
illustrated how the classical large sample theory for the usual estimators can 
be extended to the shrinkage estimators for the index parameters. We pro­
vided the risk analysis of the estimators both theoretically and numerically. 
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Perhaps, the most important message in this paper is tha t very large gains 

in precision may be achieved by judiciously exploiting the guessed values of 

the parameters which in practice will be available in any realistic problem. 

Our numerical findings indicate tha t a reduction of 50% or more in the risk 

seems quite realistic depending on the values of A and TO, standardised dis­

tance between the t rue and the guessed values and number of populations 

in consideration. Thus, it seems inconceivable tha t so little at tention has 

been paid to these situations in the development of statistical theory. Like 

the statistical models underlying the statistical inferences to be made, the 

guessed values will be susceptible to uncertainty and practitioners may be 

reluctant to impose the additional information regarding parameters in the 

estimation process. More importantly, the estimation strategy combining 

the sample and parameter information is superior to a strategy based on 

sample information only. Research on statistical implications of these and 

other estimators for a range of statistical models is ongoing. 
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In areas such as financial and insurance risk and communication network 
design the heaviness of the tail of the underlying distribution is crucial for 
the calculations. However, although it seems straightforward theoretically to 
distinguish between (say) exponential tails and power tails, this requires unex­
pectedly large samples in practice. Here we will use quantiles to compare the 
tails of distributions which are standardised to unit interquartile range to allow 
for possible infinite variance. We present some chi-squared tests of goodness-
of-fit focussed on the tails. We also provide methods of quick comparison of 
distributions using counts over high thresholds and using extreme values. 

Keywords: tailweight discrimination; quantiles; goodness-of-fit tests; counts 
over thresholds; extreme values. 

1. Introduction 

The behaviour of probabilistic models in many areas, and particularly in 
financial and insurance risk and communication network design, is criti­
cally influenced by the tails of the underlying distribution(s) which drive 
the models. The literature, however, reveals considerable uncertainty about 
the choice of tailweight in the model. This is despite the fact that it seems 

mailto:chris@maths.anu.edu.au
mailto:l.au@ms.unimelb.edu.au
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straightforward theoretically to distinguish between the main classes of tail-
weights, such as exponential or power tails, using simple methods such 
as Q-Q plots. Indeed, a whole collection of widely applied methods of 
discrimination are available and described in books such as Embrechts, 
Kliippelberg and Mikosch (1997), Reiss and Thomas (2001) and Rolski, 
Schmidli, Schmidt and Teugels (1999). 

In this paper we will discuss why the distinctions are impossible to 
make without particularly large samples, at least in the tens of thousands. 
The paper is a sequel to Heyde and Kou (2004) in which the fundamental 
shortcomings in the standard methods of discrimination were emphasised. 
Here we will broaden the comparisons to include distributions with infinite 
variance, for which we use quantiles and unit interquartile range to stan­
dardise the distributions for comparison instead of the usual unit standard 
deviation. This is necessary for dealing with risks of rare events, such as 
for property insurance claims, where even the mean may not be finite, and 
also allowing for the school of thought that favours risky asset returns dis­
tributions with infinite variance (e.g. Rachev and Mittnik (2000)). We will 
first use quantiles to compare the tails of distributions, and to assess the 
precision of comparisons on real data. Then we shall present chi-squared 
tests of goodness-of-fit which focus on the tails. The paper concludes with 
a discussion of quick comparison of distribution methods using counts over 
high thresholds and using extreme values. 

Suppose random variable X, with zero mean, has distribution function 
Fx(x). Define the p-th quantile £p by Fx(£p) = p, where 0 < p < 1. Then 
the random variable 

Y = X(£0.75 " &.25)-1 

has distribution function given by Hy(y) = -Fx"((£o.75 — £0.25)2/) and unit 
interquartile range, and direct comparison between finite and infinite vari­
ance distributions is possible. 

We shall address the question of how large a sample is needed to distin­
guish between the tails of particular target distributions at a fixed quantile 
p. Specifically, we focus on the normal and Laplace distributions as exem­
plars of light and exponential tailed distributions, and the t distribution 
with low degrees of freedom and the stable distribution with index a < 2 
as exemplars of heavy power tailed distributions, the last having infinite 
variance. 
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2. Quantile Comparisons 

The class of distributions that will be looked at closely is the Student £„, 
Laplace lp and symmetric-stable sa distributions with the Gaussian ga dis­
tribution being a benchmark for comparison. The densities for the normal, 
Laplace and tv are, respectively, 

9<r(x) = / ^ - e x P -7T^2 ' CT > 0, X G ( - 0 0 , 0 0 ) , 
/^ra "V 2aV 

1 / Ixl 
lp{x) = — exp —— 1 , /? > 0, x e (-00,00), 2/3 "V /3 

1 r ( i i ±i ) U(x) = —= 2 , o o . i e (-00,00). 
^ r ( | ) ( i + ^ ) ( " + 1 ) / 2 

The density for the symmetric-stable sa with tail-index a (0 < a < 2) 
when a 7̂  1 is given in Nolan (1997, Theorem 1) as 

_ l / ( a - l ) 

sa(x) 

where 

a x 1 ' ' " - 1 ) Z"5 / " \ 
—; — / va(e)expl-x<x-iVa(6)) d6, x > 0, 
7 r | a - 1\ J0 V / 

i r ( i + i ) , x = o, 

, . , , cos(0) \a/{a'1] cos((a-l)9) 
«(#) 

vsin(a0)/ cos(#) 

and when x < 0, sQ(x) = sQ(—x). On the other hand, for a = 1, 

Sl(x) = Sl(-x) = ti(x) = ^ l + x2) • 

No analytical expression for the stable densities is available in general, but 
there are useful power series representations (e.g. Feller (1971, Lemma 1, 
p. 583)). 

The computer programs STABLE written by J. P. Nolan for computing 
the stable density, distribution function and quantile are available for free 
from 
h t t p : / /academic2. american. e d u / / ~ jpnolan/stable/stable . html. 
This product is also commercially available in an SPLUS version from 
http://www.robustanalysis.com. 
Table 1 gives various (absolute) quantile values r]p of the (interquartile 

http://www.robustanalysis.com
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range) standardised Gaussian, Laplace, t and stable distributions for some 
p values. It should be noted that the quantile value i~iP is independent of 
the parameters a and j3 in the Gaussian and Laplace cases, respectively. 

It is immediately evident from Table 1 that little discrimination between 
distributions is available at the p = 0.01 level and that for useful discrim­
ination sample sizes need to be at least sufficient to use p = 0.001. Note 
that even at the p = 0.001 level it is not possible to distinguish between 
the £3 and si.s distributions. 

Table 1. Quantile value r\p (absolute) of the (interquartile range) standardised 
distribution for different p values. 

p 
0.01 
0.001 
0.0001 
0.00001 

9<y 
1.72 
2.29 
2.76 
3.16 

h 
2.82 
4.48 
6.14 
7.80 

t3 

2.97 
6.68 

14.51 
31.33 

U 
2.53 
4.84 
8.80 

15.75 

t5 

2.32 
4.05 
6.66 

10.70 

*6 
2.19 
3.63 
5.59 
8.38 

Si.5 
3.99 

17.71 
81.81 

379.56 

SI.6 
3.25 

12.80 
53.57 

225.74 

Si.7 
2.68 
9.27 

35.51 
137.42 

Si.8 
2.23 
6.56 

23.09 
82.79 

Distinguishing between quantiles in practice depends on the precision 
with which the quantiles can be estimated. This is elucidated by a result of 
Walker (1968) which gives that, if Y has a density hy(y), which is contin­
uous and positive at y = r\p, then fjp = V([np]) (the [np] order statistic of a 
sample of size n from the distribution of Y) is approximately normal with 
mean r}p and variance p(l — p)/nhY(T]p), i.e. 

% = y a n » . ] ) ~ ^ ( * . ^ ) (°<*<D. (D 

provided that n is sufficiently large. It is interesting to note from this result 
that the [np] order statistics asymptotically have a finite variance, even in 
the case when Y has a stable distribution which has infinite variance. 

To compute the standard deviation of fjp, the density hy{y) is required. 
Explicit formulae for hy (y) in the case of the (interquartile range standard­
ised) Gaussian and Laplace distributions are: 

Gaussian 
, . . 1.349 _ i i Q4Q2„2 

hY(y) = —=e 2 1 - 3 4 9 " , ye (-00,00), 

Laplace 

M y ) = Y ^ l n 4 , y€ (-00, 00). 
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The corresponding densities hyiy) for tv and sa are dt.iqr and 
dstable.iqr, respectively*. 

Tables 2, 3 and 4 use (1) and the densities given above to provide var­
ious standard deviation values of r)p when n = 5 000, 10 000 and 15 000 
respectively and for different values of p. 

Table 2. Standard deviation of f\v for n = 5 000. 

V 
0.01 
0.001 

9a 
0.04 
0.10 

h 
0.10 
0.32 

*3 

0.16 
1.02 

U 
0.11 
0.57 

*5 

0.09 
0.40 

te 
0.08 
0.32 

si.5 
0.35 
5.24 

Sl.6 
0.25 
3.53 

Si.7 
0.18 
2.38 

Sl.8 
0.11 
1.56 

Table 3. Standard deviation of r)p for n = 10 000. 

p 
0.01 
0.001 
0.0001 

9a 
0.03 
0.07 
0.19 

b 
0.07 
0.23 
0.72 

*3 

0.11 
0.72 
4.86 

*4 

0.08 
0.41 
2.24 

*5 

0.06 
0.29 
1.39 

te 
0.05 
0.23 
1.01 

Sl.5 
0.25 
3.70 

54.50 

Sl.6 
0.18 
2.50 

33.44 

Sl.7 
0.13 
1.69 

20.84 

Sl.8 
0.08 
1.10 

12.77 

Table 4. Standard deviation of fjp for n = 15 000. 

p 
0.01 
0.001 
0.0001 

9a 
0.02 
0.06 
0.16 

h 
0.06 
0.19 
0.59 

*3 

0.09 
0.59 
3.96 

U 
0.06 
0.33 
1.83 

ts 
0.05 
0.23 
1.14 

*6 

0.04 
0.19 
0.82 

Sl.5 
0.20 
3.02 

44.50 

Sl.6 
0.15 
2.04 

27.30 

Sl.7 
0.10 
1.38 

17.02 

Sl.8 
0.07 
0.90 

10.43 

Although our focus is on comparing tailweights it is worth pointing out 
that the density at the origin for the distribution of Y in the Laplace case is 
much higher than for all the other distributions. Details are given in Table 
5. Note that the results for the t distribution are very similar to those for 
the stable distribution. 

aThese are functions written in SPLUS codes which are available from the authors. 
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9cr 

0.538 

Table 5. The density at zero for the distribution of Y. 

lp *3 *4 *S <6 Si.5 Si.6 Si.7 

0.693 0.562 0.556 0.552 0.549 0.557 0.551 0.547 
Sl.8 
0.543 

3. Required Sample Size 

In equation (1), the variance of r)p is a function of rjp and this can be replaced 
by f/p, as fjp is a consistent estimator. So, the length of an approximate 
100(1 — ((>)% confidence interval for r)p is 

^ A w (0<*<l) 

where z^/2 is such that P(Z > z^/2) = f • Hence, the required sample size 
n to ensure that rjp is estimated with precision e is given by 

n>~7wd-- (2) 

From this result we can see how large a sample size n is needed; for 
example, to distinguish the t distribution from stable. 

To illustrate we use data that consist of the S&P 500 index for the 
period July 1962 to December 2004b (returns standardised to have unit 
interquartile range) which has an estimated value of 770.01 of 2.58. Assume 
Y = t\ is the true distribution for the data. Then the required sample size 
n at the 95% confidence interval (i.e. <j> = 0.05) for 770.01 to be estimated 
with precision e is given by 

268.47 
n > 5—. 

To distinguish £4 from the stable distribution with tail index a = 1.7, 
say, the value for e should be the difference between 770.01 = 2.58 and the 
value of 770.01 = 2.68 under the stable distribution with a = 1.7 obtained 
in Table 1. This requires that the the sample size n should be greater than 
26 847. This corresponds to having 100 years of daily data! Sample sizes 
clearly need to be at least sufficient to use p = 0.001. 

data from http: //finance.yahoo. com. 
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4. Chi-squared Tests 

The limitations in distinguishing between distributions on the basis of their 
tail behaviour is clear from Sections 2 and 3, but it is useful to make quan­
titative comparisons of goodness-of-fit in the tails. This can be done using 
chi-squared tests. 

We must begin by deciding on a percentage p % of the tail of the distri­
bution to use. The choice of p may be motivated by the application, such 
as 1% for a value-at-risk calculation. Then consider partitioning the tail 
into m bins, where the probability for a value in bin i, pi, is such that 
YllLiPi = p/100. Also, the expected number in bin i, Ei = npi, n being 
the size of the sample, is chosen to be larger than 5 for each i. Then, the 
chi-squared test statistic is given by 

T = V {0i ~ Ei)2 ~ y2 i 
-*• / j -p A m — 1 ' 

i= l l 

where Oi represents the observed number in the i-th bin. 
We shall illustrate with two applications, one involving foreign exchange 

rates in Section 4.1, and the other the S & P 500 index in Section 4.2. We 
begin with m = 8 bins, Pi = 0.00125 and p=\. 

4.1. Foreign exchange rates 

The data consist of foreign exchange rates involving the Australian dollar 
against the currencies of Australia's major trading partners (i.e. United 
States (USD), Japan (JPY), United Kingdom (GBP) and New Zealand 
(NZD))C. There are 5055 daily returns each of the countries for the period 
12th December 1983 to 5th December 2003, and the data are standardised 
to have unit interquartile range. 

Table 6. Chi-squared test statistics for foreign exchange rate returns at the 1% tail. 

USD 
JPY 
GBP 
NZD 

9a 
1623.18 
1343.57 
643.33 
1380.61 

h 
6.83* 
4.39* 
17.28 

11.95* 

*3 

9.86* 
14.11 
23.53 
10.17* 

*4 

10.31* 
16.99 

12.53* 
16.01 

t5 

46.56 
31.83 
13.85* 
58.07 

*6 

91.94 
68.26 
21.56 
124.08 

Sl.5 

28.62 
36.25 
44.13 
28.42 

Sl.6 
20.25 
24.65 
31.15 
20.27 

Sl.7 
18.37 
25.62 
21.17 
25.30 

Sl.8 
76.40 
86.33 
33.36 
68.26 

Table 6 gives value from a chi-squared goodness-of-flt test with results 

cdata from http: //www. rba. gov. au/statistics/historical/index.html. 
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which are acceptable at the 5% significance level indicated by an asterisk. 
They suggest the Laplace or t distribution as a suitable model for the 
foreign exchange rate returns in the 1% tail. 

Based on the results of Table 6, the Laplace distribution may seem to 
be a more suitable general purpose model than the t distribution for the 1% 
tail. It should be noted, however, in case it is relevant, that the empirical 
densities at zero are much better fitted by i-distributions. 

Although the above chi-squared goodness-of-fit test rejects the stable 
distribution, it is interesting to note that going further out into the tail, 
to p = 0.5, and performing another chi-squared goodness-of-fit test (with 
m = 4 and pi = 0.00125 and at the 5% significance level) shows a reasonable 
fit for the stable distribution with a = 1.7 in the case of USD and NZD. 
The results are presented in Table 7. 

Table 7. Chi-squared test statistics for foreign exchange rate returns at the 0.5% tail. 

USD 
JPY 
GBP 
NZD 

9cr 
1608.38 
1272.79 
639.16 
1356.70 

h 
3.72* 
2.63* 
8.04 
7.86 

*3 

5.56* 
9.82 
18.86 
3.83* 

U 
4.44* 
4.47* 
7.52* 
9.67 

*5 

30.47 
21.32 
5.04* 
54.76 

*6 

73.73 
49.06 
20.58 
117.74 

si.5 
21.91 
25.28 
25.28 
18.22 

Si.6 
14.66 
21.59 
23.43 
14.86 

Si.7 
7.14* 
12.09 
18.86 
7.75* 

SI.8 
23.25 
42.71 
8.75 
24.89 

4.2. Standard & Poors 500 index 

In this example, we look at a much larger data set than that of Section 
4.1. The data set is of the S & P 500 index for the period July 1962 to 
December 2004. This provides n = 10 691, enough to distinguish the tail of 
the distribution. 

Table 8 gives values from a chi-squared goodness-of-fit test and clearly 
indicates t\ as a suitable model for the 1% tail distribution (where, as above, 
an acceptable result at the 5% significance level is indicated by an asterisk). 

Table 8. Chi-squared test statistics of S &P 500 index returns at the 1% tail. 

9a_ lj) ^3 tj *5 *6 Sl,5 SI.6 Si.7 Si,8 
S&P 500 2235.69 15.95 27.02 11.76* 36 79 74.52 48.20 37.93 115.37 

Examining the chi-squared goodness-of-fit test (now with m = 4 and 
Pi = 0.00125) further out in the tail at p — 0.5 leads to the same result. 
This is presented in Table 9. 



254 C. C. Heyde & K. Au 

Table 9. Chi-squared test statistics of S&P 500 index returns at the 0.5% tail. 

£CT lj3 *3 *4 t$ te Sl.5 Si.6 Si.7 Si.8 
SfcP 500 2201.11 11.50 17.58 7.67* 21.07 59.98 42.80 37.48 19.37 30.20 

5. Counts over Threshold Indicators 

If we go further into the tails of the distribution than the 1% or 0.5% level 
discussed in Section 4, then relative frequencies are low but counts over 
threshold indicators can still yield quite useful results. We shall illustrate 
with an assessment of the returns for the Dow Jones 30 Industrials for 
the period January 2, 1991 to January 2, 2001d. The returns have been 
standardised to variance one since infinite variance models do not fit at all 
well. 

Table 11 gives the sample maxima and minima and the counts over 5 
and 6 standard deviations for the absolute values of the returns for the 
10 years of data. Table 10 gives the expected number of exceedances of 
the 5 and 6 standard deviation thresholds for the absolute values of the 
variance-standardised Laplace, £5,(4 and £3 distributions. 

Table 11 supplies a rating for each stock of *,** or -. One (two) star(s) 
suggest (strongly suggest) the use of the ^-distribution with 3 or 4 degrees of 
freedom to model the tails while - suggests the use of, say, a ^-distribution 
or a Laplace distribution. 

Table 10. Expected exceedances for 2500 observations with 
variance-standardised distributions 

distribution 
\L\ 
1*5 I 
1*41 
M 

> 5 
2.12 
2.25 
5.25 
8.00 

> 6 
0.53 
0.75 
2.75 
4.75 

6. Extreme Value Indicators 

It may be tempting to use extreme values alone to suggest appropriate 
distributions to use, but, as we shall see, this gives much weaker information 
than that supplied by counts over threshold methods. 

data from ht tp : / / f inance .yahoo.com. 

http://finance.yahoo.com
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Table 11. Dow Jones 30 Industrials variance-standardised returns: 
Jan. 2, 1991 to Jan. 2, 2001. 

Lookup 
AA 
AXP 
ATT 
BA 
CAT 
C 
KO 
DD 
EK 
XOM 
GE 
GM 
HWP 
HD 
HON 
INTC 
IBM 
IP 
JMP 
JNJ 
MCD 
MRK 
MSFT 
MMM 
MO 
PG 
SBC 
UTX 
WMT 
DIS 

max 
6.46 
5.68 
6.16 
5.71 
4.97 
7.5 
5.54 
4.58 
6.03 
6.59 
4.90 
3.69 
5.84 
4.11 
12.4 
4.68 
5.87 
5.77 
5.77 
4.58 
6.03 
5.13 
7.67 
6.91 
7.25 
5.03 
6.11 
4.80 
4.25 
7.41 

min 
-5.24 
-5.52 
-14.70 
-9.45 
-6.33 
-5.23 
-6.55 
-6.04 
-15.2 
-5.54 
-5.97 
-5.46 
-7.54 
-15.6 
-9.10 
-9.21 
-8.07 
-5.70 
-4.93 
-6.26 
-6.37 
-5.36 
-7.38 
-6.71 
-12.8 
-20.1 
-7.84 
-4.67 
-5.08 
-8.90 

Z(\obs\>5) 
5 
2 
10 
5 
2 
3 
4 
3 
8 
2 
1 
1 
7 
1 
6 
2 
8 
2 
3 
1 
4 
4 
5 
4 
10 
6 
5 
0 
1 
6 

E(I°M>6) 
1 
0 
4 
3 
2 
1 
1 
1 
5 
1 
0 
0 
2 
1 
3 
1 
2 
0 
0 
0 
3 
0 
3 
3 
5 
1 
2 
0 
0 
3 

rating 
* 
-
** 
** 
* 
* 
* 
* 
** 
* 
-
-
** 
** 
** 
** 
** 
-
-
-
** 
* 
** 
** 
** 
** 
** 
-
-
** 

The qualitatively different asymptotic behaviour engendered by differ­
ent tailweights certainly suggests the use of sample extremes as a useful 
indicator. To see this we first examine the record behaviour of a sample 
\X\ |, \X21, • . . , \Xn\ of i.i.d. random variables with distribution function F. 
Clearly, Pr( max \Xk\ > x) = 1 - Fn(x). 

l<k<n 
If 

1 - F(x) ~ cx~a (3) 

as x —• oo for some a > 0, it is easily checked that 

Pr( max \Xk\ > n^ay) -» 1 - e-c/v". 
l<k<n 
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Thus, for a power tail, n~° maxi<fc<„ \Xk\ converges in distribution and 
the records increase at a power rate. 

If, on the other hand, the tail is exponential, 

1 - F(x) ~ ce~x/3 (4) 

as x —* oo for some /3 > 0, it is easily checked that 

P r ( m a x | X f c | > ^ ) ) - . l - e - ^ , 
l<k<n p 

that is, /3(lnn)_1 maxi<fc<n \Xk\ converges in probability to 1; the records 
increase at a logarithmic rate. 

In the case of (3) we have a random limit and it is useful to note that, 
after an easy calculation, 

M m a x | X f c | ) » c 1 / Q r ( l - - ) n 1 / a ) 

l<fc<n a 
while for (4) the corresponding result is 

E{ max \Xk\) « /TMnn. 
l<fc<n 

Despite the evident differences in growth rates, these two results give 
quite similar values in many cases of practical interest. For example, a 20-
year sample of daily returns (n = 5 000) involves comparison of ln(5 000) = 
8.51 with (5 000)1/4 = 8.41, a = A being a favoured model parameter (see 
e.g. Heyde and Liu (2001)). The constants of proportionality also make 
comparisons difficult. 

If we have finite variance and we standardise the variables to have unit 
standard deviation, we find for the tv distribution, v > 2, that the constant 
c in (3) is given by 

_ 2{y-2Y'2Y{^) 

and a = v. Thus, in particular, for u = 3 we have 

and for v = 4, 

E( max \Xk\) « 1.468n1/3 (5) 
l<k<n 

E{ max \Xk\) w 1.918n1/4. (6) 
Kk<n 

For the standardised Laplace distribution the corresponding result is 

E( max \Xk\) « 0.7071nn. (7) 
Kk<n 
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The result for the Laplace distribution, which of course has a pure expo­

nential form, is an accurate reflection of what can be expected from simula­

tions, but this is not the case with the results for the i-distributions, where 

(5) and (6) give substantially larger results for n around 5 000 than are ob­

served from simulations. For example, 50 sets of 5 000 simulated variance-

standardised £4 variables gave a 95% confidence interval of 10.81 ± 0.84 

for the mean maximum (and a range of 6.95 to 19.71) compared with a 

value of 16.13 for the approximation (5) in this case. On the other hand, 50 

sets of 5 000 simulated variance-standardised Laplace variables gave a 95% 

confidence interval of 6.53 ± 0.25 for the mean maximum (and a range of 

5.38 to 8.22) compared with a value of 6.02 for the approximation (7). 

The poor comparisons for the t-distribution are the reflection of the 

intrinsic differences, for moderate tail values, between the t and Pareto dis­

tributions. There is slow convergence of the distribution of the normalised 

maximum to the corresponding extreme value distribution. 

One must conclude tha t extreme value comparisons, if made, require 

very careful interpretation. 

7. C o n c l u s i o n s 

(1) Distinguishing between exponentially tailed and power tailed distribu­

tions, or within the family of power tailed distributions, requires large 

samples, perhaps 50 000 observations. 

(2) Chi-squared tests of goodness-of-fit in the tails are useful but are sen­

sitive to the par t of the tails tha t is chosen. 

(3) Counts over high thresholds provide useful quick general indications of 

tail behaviour. 

(4) Extreme values are rather too heavily dependent on the exact form of 

the parent distribution to be of much help in discriminating between 

tail behaviours unless sample sizes are very large. 
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The maximum a posteriori method is generalised for infinite dimensional 
problems and it is shown that in this case the problem can be reduced to a 
nonlinear variational problem. This is not a trivial generalisation as the prob­
ability density used for the finite dimensional case does not exist. It is shown 
how the logarithmic gradient can be used to characterise stationary points for 
the Gaussian process prior case. A nonconforming finite element method is 
suggested using sparse grids to solve the resulting variational problem. 

Keywords: maximum a posteriori method; machine learning. 

1. Introduction 

Computational learning theory deals with the problem of constructing com­
putational systems which "learn" their behaviour from examples. A partic­
ular learning problem aims to find a function / : X —> Y from a given 
sequence of training or data points 

V= {(x1,yi),...,(xn,yn)}. 

A slightly more general problem considered here assumes that these points 
are drawn from a probability distribution with density p(x, y) and the aim 
is to reconstruct the conditional distribution p(y\x) = p(x, y)j JY p(x, y) dy 
from the data V. An important branch of computational learning theory 
considers the problem of how well f(x) or p(y\x) can be recovered from V 
with increasing data sizes n. This discussion is based on a rich mathematical 
framework and draws insights from several branches of mathematics and 
statistics [1-9]. 
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For (small) finite sets X and Y one may estimate p(y\x) by counting the 
occurrence of each combination of values (x, y) in V. When either one or 
both of the sets X and Y are infinite, the learning problem as stated above 
is ill-posed and requires further information about p(y\x) for the solution. If 
Y is finite, the learning problem is referred to as the classification problem; 
the case Y = K is the regression problem; and if X contains only one 
element, one gets a density estimation problem. 

In the case where p is everywhere nonzero one can introduce a function 
u(x, y) such that 

p{y\x) = exp(u(x, y) - g(u, x)). 

For example, if p(y\x) is a member of the exponential family it will have 
this form. The introduction of the log partition function g(u,x), which at 
first sight appears to be redundant, allows the specification of additional 
information about the shape of p(y\x) independent of the normalisation 
Jp(y\x) dy = 1 (which is taken care of by g(u,x)) and it follows that 

g(u,x) = log eyip(u(x,y))dy. 
JY 

The required additional information often relates to the fact that u(x, y) 
is chosen from a given function class. This includes the normal distribution 
where u{x, y) is a second order polynomial and other members of the ex­
ponential family. Alternatively, u may satisfy smoothness conditions in the 
form of bounds on the derivatives or a Sobolev norm. Here, this prior infor­
mation is given in the form of a prior probability distribution for u over a 
function space. If this function space is finite-dimensional, one can then use 
the maximum a posteriori method to get an estimate for u and thus p. This 
method estimates u by the maxima of the a posteriori density of the u. In 
the following a method is proposed which generalises this maximum a pos­
teriori method to the case of infinite dimensional function spaces. Note that 
one cannot in general assume the existence of a density for the posterior 
probability. This is because the density is the Radon-Nikodym derivative 
of the probability distribution with respect to the Lebesgue measure which 
does not exist for general function spaces as there are no translationally 
invariant measures in this case [10] (This fact is well known to theoreti­
cal physicists and has to be dealt with in the definition of Feynman path 
integrals.). 

If u is a function u : X x Y —* R then it is an element of the locally convex 
space R")('xy. The particular prior considered here is a Gaussian measure 
on M.XxY, or, equivalently, a Gaussian stochastic process or random field 
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with index set 1 x 7 . While the prior or posterior probability distributions 
cannot be characterised by a probability density, the likelihood function is 
a density relating to the probability distribution of the data V given the 
function u and is defined as L(u, V) = p(V\u) and one gets 

n 

L(u,T>) = Y[exp(u(xi,yi) -g(u,Xi)). 
i = i 

In section 2 the maximum a posteriori method will be generalised for 
u G M X x y and the maximum a posteriori method will be reduced to the 
variational problem of minimising the functional 

J(u) = \\u\\2
H{l)+l(u), 

where || • \\H is the Cameron-Martin or reproducing kernel Hilbert space 
norm and where l(u) = — logL(u,T>), i.e., 

n 
l(u) = - ^2(u(xi,yi) - g(u, Xi)). 

i = l 

In section 3 the numerical solution of this problem is discussed. In particu­
lar, a nonconforming Galerkin method using sparse grids is suggested and 
some preliminary approximation results derived. A more thorough discus­
sion including numerical examples will be given in a follow-up paper. 

This discussion is an alternative to the common approach found in the 
literature which is based on finite dimensional distributions of the form 
p(u(xi,yi),... ,u(xn,yn)) [11-13]. The characterisation by a variational 
problem used here opens the path to the application of standard techniques 
used for the solution of nonlinear partial differential equations. 

2. Gaussian Priors and the Maximum a Posteriori Method 

2.1. Gaussian Priors 

In contrast to the finite dimensional Gaussian probability measure 
7 on M X x Y does not have a density in general. However, as in the finite 
dimensional case it is still characterised by the mean and a covariance op­
erator. 

The domain of the probability measure is the locally convex space 
l X x r . The topology of this space relates to the pointwise continuity of 
the functions and is the product topology with respect to the index set 
X x Y. With respect to this topology the point evaluation functionals 
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6(x<y) : u —> u(x,y) are continuous. In fact, the (topological) dual of R X x y 

is the set of all functionals of the form 
n ft 

4>W) = ^2cju(xj,yj), 
„• 1 

for some Xj € X, yj G Y and Cj G R. An in-depth treatment of locally 
convex spaces can be found in [14]. 

The continuous linear functionals are used to establish the sigma-algebra 
£(B.XxY) for the probability measure. This sigma algebra is generated by 
sets of the form {u G M.XxY | 4>{u) < c} where the <p are continuous 
functionals on Rx x Y. The prior is then a probability measure 7 on 'Rx x Y 

with respect to this sigma algebra. Here it is assumed that the measure is 
a Radon Gaussian measure so the measurable sets can be approximated 
by compact sets and the values of any linear functionals <f>(u) are normally 
distributed random variables. An excellent discussion of Gaussian measures 
can be found in [15]. 

If u is distributed according to this Gaussian measure 7, the values 
u(x, y) are a family of normally distributed random variables and so u 
is a Gaussian random field. The values of a continuous functional </) = 
S r = i ci^(xi,yi) a r e then normally distributed with expectation 

/ y Ciu(xi,yi)j(du) = y du(xi, j/j) 

and variance 

« n 

/ y CiCj(u(xi, j/i) - u(xi, yi)){u(xj,yj) - u(xj,yj))j(du) 

n 

— / j CiCji\\Xi,yiiXj,yj) 

where u[x,y) is the mean value of the random field and K(x,y,x',y') the 
kernel or covariance matrix. These two functions, which correspond to lin­
ear and bilinear operators on R X x Y respectively, uniquely determine the 
Gaussian measure 7. These two functions define the prior and encode the 
"most likely function" u when no data is available and the covariance be­
tween the function values of u at different locations (x, y). In this way one 
can introduce areas with high correlation between the function values so 
that the function values are very similar in these areas. 
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The prior 7 defines a norm 

\\u\\H{l) = sup{cf>(u) I R(4>,4>) < 1} 

where the supremum is taken over all continuous linear functionals <fi with 

n 

^u) = ̂ ciu{xuyi), u€RXxY, 
i=l 

and 
n 

#(<M) = X ! CiCjKixi^yi^j^j). 

The domain of this seminorm is the Cameron-Martin space 

H{l) = {u I \\u\\H{l) < oo}, 

which is a reproducing kernel Hilbert space (RKHS). It can be seen that 
this space consists of all u 6 MXx Y which can be represented by (pointwise) 
limits of sequences u\,U2, • • • where 

n 

l^nK^i Vj = / J C-i,n&- \%i,ni 2/i,ni %•» y) 

i=l 

and the sequences c^n, Xi,„ and y,in are such that the corresponding func­
tionals 4>n with 

n 

(PnyV1) — y JC-i,n\U>\£i,niyi,n) ^\^i,n: Vi,n)) 

i=\ 

converge in £2(7)- Note that in general the limit (j) of the (f>n is not a 
continuous linear functional o n l x F but it can be viewed as a continuous 
linear functional on the Hilbert space # ( 7 ) and one has 

<j>{u) = \\u\\2
H(l). 

The set of 4> denned in this way contains all the continuous linear functionals 
(j)onRXxY. 

2.2. Logarithmic derivatives and stationary points 

For the following, consider (nonlinear) functionals of the form 

i)(u) :=6(4>1(u),...,(f>m(u)) 
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where 6 € C£°(Km) and (pi £ X*. These are the smooth cylindrical Junc­
tionals and they have Frechet derivatives of the form 

m 88 

One now says that a Radon measure /z on Rx is differentiable along 
v € MX (in the sense of Fomin) if there exists a functional /?£ € L1^) such 
that, for all smooth cylindrical functions tp, one has 

/ dvxP(u)n(du) = - f ^ (u) /TO/ i (du) . 

The functional @£ is called the logarithmic derivative of fi along v. One can 
now further show that, for a Radon Gaussian measure 7 with expectation 
zero, one has 

P2(u) = ~(v,u)Hh) 

and 7 is differentiable for all u € # (7 ) along 1; £ H(j). 
For any L £ i'1(7) let /i = L • 7 be a measure such that L = dfi/dj 

is the Radon-Nikodym derivative. It can now be seen that if L £ L1^) is 
differentiable, then /i = L • 7 is differentiable and the logarithmic derivative 
along v is in this case 

0£(u) = -(v,u)H{-y)+dvL(u)/L(u). 

For the following discussion, only measures of the form fi = L • 7 will be 
considered. 

The logarithmic derivative provides the means to define stationary 
points of probability distributions which generalise the concept of stationary 
points of the probability density functions. Note first that regular variable 
transformations, while leading to transformed densities, do preserve the 
stationary points. The notion of a stationary point turns out not to depend 
on the existence of a density at all and one has: 

Definition 2.1. A point 
u € M.XXY i g 

called a stationary point for the 
measure ji if the logarithmic derivative 

ft(u) = 0 
for all v for which fi is differentiable along v. 

One can see that this characterises the stationary points of the density 
for the finite dimensional case. Furthermore, a Gaussian measure has only 
one stationary point which coincides with the mean of the distribution. In 
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the case of the measure // = L • 7 one obtains the following variational 
characterisation of stationary points u: 

~(v, U)HM + dvL{u)/L(u) = 0 

for v G # (7 ) . A particular class of stationary points consists of the modes of 
the distribution and thus these equations lead to a (partial) characterisation 
of the modes. Distinguishing modes from other stationary points, however, 
does require additional conditions which will be discussed elsewhere. 

2.3. Maximum a posteriori method with exponential 
families 

In order to apply the concepts of the previous sections to the maximum a 
posteriori method one requires sufficient regularity of the likelihood func­
tion. This mainly translates into conditions for the log partition function 
g(u, x) and the prior. First it will be assumed that the prior is centred, i.e., 
that the mean is zero. A major ingredient of the log partition function is 
the integral operator 

M € f f n / u(x,y)dy. 

Denote by ( R X x r ) 7 the closure of the dual of RXxY with respect to L2(-y). 
The main condition suggested here is that the integral operator is well 
defined and an element of (M.XxY)* It follows that the operator is a con­
tinuous linear functional on H(-y) [15]. In the following, let kXtV denote the 
reproducing kernel of H(j) which is defined by 

{kx,v,u)H{l) =u(x,y). 

Using the Riesz representation theorem in # (7 ) , there also is a kx G # ( 7 ) 
such that 

/ u{x,y)dy = (kx,u)H{l). 
JY 

Formally, we will write 

i^x ~ I r£x,yQ>y-
JY 

We will assume that for every u G .ff (7) one has exp(u) G H(j) and so the 
log partition function is 

g(u,x) = log((/cx,exp(u))H(7)), 

where (•, •)fl'(7) is the scalar product associated with || • | |H( 7 ) . 
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By theorem 2.10.9 and lemma 2.4.1 in [15] the linear functional u —> 
fyu(x,y)dy is measurable and it follows that g{-,x) is measurable as it is 
a composition of measurable functionals. Furthermore, g(u, •) is defined for 
any u € R X x y 7-almost-everywhere. 

For the following it will also be assumed that H{^) is continuously 
embedded in C(X x Y). For a / iG H(j) one now has 

dg(u + th, x) 
dt 

JY exp(u(x, y) + th(x, y))h{x, y) dy 
JYeMu(x,y)+th(x,y))dy

 S W - ^ W ^ 

where C is the embedding constant of the reproducing kernel Hilbert space 
# (7 ) . Consequently, g{u + th, x) is an absolutely continuous function of t. 
Consider now the likelihood function L defined by 

n 

L(u, T>) = J\ exp(u(xj, yi) - g{u, Xi)) 

where the data n-tuple is T> = {(2:1,2/1), • • •, (xn,yn)}- From the definition 
and the properties of g it follows that L is measurable with respect to the 
product measure ,y(du) x dy\ x • • • x dyn and 

/ L(u,V)dyx • • • dyn = 1. 

By Tonelli's theorem, L(-,V) is in Ll{-)) for almost every T> and one has 

/ / L(u,V)^{du) dyi • • • dyn = / / L(u, V) dyi • • • dyn^(du) = 1 
JY JWLXXY JRXXY JY 
A direct application of corollary 5.1.10 in [15] provides: 

Proposition 2.1. Let-y be a Radon Gaussian measure on l$&XxY such that 
# ( 7 ) C C(X x y ) is continuously embedded and h € H(-j). Furthermore, 
let the functional u —> Jyu(x,y)dy be in 1*2(7) for a^ x £ X. Then the 
logarithmic derivative (defined in Section 2.2) of the measure fi = L(-, T>) -7 
satisfies 

(% = (% + dhL(.,V)/L{;V). 

The a posteriori measure is the conditional measure defined by 

H(A\V)= f L{u,V)i{dv) / f L(u,V)~f{du) 

for any measurable A C M X x y . This is just a scaled version of the measure 
\x from the previous proposition. It follows that the two distributions share 
their extremal and stationary points. Now set 

l(u) = - logL(u,T>) 
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and one has for the exponential family case 

n 

l(u) = -Y^(U(Xi^yi)-9{u,Xi)). (1) 
i=l 

A consequence of the proposition is that any stationary point must satisfy 

(h,u)H + dhl(u) = 0 

for all h € H(j) as /3^(u) = — (h,u)u. Furthermore, it will be shown in an 
upcoming paper that a maximal point of fi(A\T>) minimises 

J(u) = \\u\\2
H + l(u). 

In summary, the maximum a posteriori method is well defined for the infi­
nite dimensional case as well and leads to a variational problem in a Hilbert 
space. The next section covers the numerical solution of this problem using 
a nonconforming Galerkin approach. 

3. Numerical Solution 

The maximum a posteriori method was reduced to the problem of finding 
a minimum of the functional 

J(u) = \\u\\2
H{y)+l(u) 

where ||u||#(7) is the Cameron-Martin or RKHS norm denned by the prior 
and where 

n 

l(u) = -^2(u(xi>Vi) - g(u,xi))-

It has been assumed that the prior is such that H(-y) C C(X x Y) (the set 
of continuous functions on X x Y) and that fydy = 1. By the mean value 
theorem for every Xi there is an rji £ Y such that 

g{u,xt) = log / exp(u(xi,y))dy = logexp(u(xi,rn)) = u(xi,rn). 
JY 

It follows then that l(u) = — Y^i=\iu{xi^yi) ~ u{£,iirli)) or> with the Riesz 
representation theorem: 

n 

l(u) = — 2_^ {kxi,Vi ~ %i,J?i'U).ff(7) • 
»=1 

With w = -Er=i(fc*i,</« - %,^>)A one gets J{u) = \\u\\2
H{l) + 

2(w,u)jnri) = \\u + Hlj/Cy) ~ IIHIm-v)- While w depends on u, the prior 
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probability distribution has been chosen such that ||fcx,y||ij(T) < C (where 
C is the embedding constant introduced previously), and, by the triangle 
inequality, one then gets 

\\wfHh)<4n2C2. 

Thus J(u) > —An2C2 and it follows that J{u) is a proper functional, i.e., 
bounded from below and not identically oo. One also gets that J is coercive 
in the sense that, if for some set S C if (7) one has supM e S ||u||#(7) = 00, 
then one also has sup u e S J(u) = 00. It follows from the differentiability of 
I that J is weakly lower semicontinuous, i.e., that every weakly converging 
sequence vn —*• v satisfies 

J(v) < liminf J(vn). 
n—>oo 

One then has 

Proposition 3.1. LetJ(u) = ||u||#(7)+l(u) where | | - | |H(7) *S the Cameron-
Martin norm for a Gaussian measure 7 and I is the negative log like­
lihood from equation (1). If 7 is centred with uniformly bounded kernel 
\\kx,y\\H(-y) < C, then J has at least one (global) minimum u* £ H(-y). 

Proof. Consider a minimising sequence un such that J{un) —> 
infuejj(7) J(u). One can choose a subsequence which is bounded as J{u) 
is proper. Thus there is a weakly converging subsequence uni; let the limit 
be u*. As J is weakly semicontinuous one has 

J{u*) < liminf J(uni) = inf J(u) 

and so u* is a minimum of J. n 

While in general J can have many minima, J(w) is strictly convex in 
some important cases. This includes the case of regression where p(y\x) are 
all normal and where u(x,y) is a quadratic function of y. 

For regression and classification the representer theorem leads to an 
explicit representation for u of the form 

n 

U = ^ C j f c ( - , X j ) 

1 = 1 

for the minimiser. However, the determination of u using this approach 
requires computing the coefficients Cj which leads to the (repeated) solution 
of large dense linear systems which makes this approach very expensive for 
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large data sets. A feasible, more generally applicable alternative is based 
on approximations of u and shall be further developed in the following. 

Consider first conforming methods where one has a family of finite di­
mensional subspaces Va c -#(7) which approximate elements of H(-f) in 
the || • I |oo norm such that 

inf | | u - v||oo < ea\\u\\Hil), for « € ^ ( 7 ) . 
v€Va 

One can now get a bound on how close the global minimum of J(u) in # ( 7 ) 
is to the minimum in Va: 

Proposition 3.2. IfVa C H(-y) is such that distoo(u, Va) < eQ||u||ff(7) for 
all u G H(j) and if J is Lipschitz continuous with Lipschitz constant Lj 
with respect to \\ • ||oo, then 

J(u*) < J « ) < J(u*) + Ljea\\u*\\H{l). 

Proof. As J(u*a) < J(Pau*) one has 

J(K) < J(u*) + \J(Pau*) - J(u*)\ < J(u*)+Ljea\\u*\\H{l). 

The lower bound follows from the definition of u*. • 

Consequently, for small eQ the functional is "close to minimised" and, 
if the optimisation problem is locally well posed, the set of u*a has limit 
points at the minima of J. 

In most of the practical choices of H{^) the conforming approach is not 
feasible. For a nonconforming method one can first derive a generalisation 
of the representer theorem. For this one needs the Frechet derivative of J{u) 
which shall be denoted by VJ . By definition, V J £ H{l)* where H(7)* is 
the dual of the Hilbert space # (7 ) . Furthermore, let K* : H(-y)* —> H(j) 
be the bijection given by the Riesz representation theorem such that 

4>{v) = {K*<j>, v)Hh), for 0 e H{n)* and v e H{>y). 

The operator K* is essentially the reproducing kernel of the Hilbert 
space; more specifically, one has 

v(x, y) = 5XtV(v) = (K*5x,y, v)Hiri), (x, y) G X x Y 

and K* will be called the reproducing kernel operator. From the stationarity 
of the functional one gets the following variational characterisation: 
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Proposition 3.3. Let u be a minimiser of the nonlinear functional 

J=W-\\2Hh)+l- Then 

u+^K*Vl(u) = 0 

where K denotes the reproducing kernel operator of H(-j). 

Proof. The minimum is a stationary point and so the values of the linear 
functional VJ(«) are 

(VJ{u),v) = 0 

for all v G Hi^y). Inserting the derivative of ||w||m7) and the definition of 
K* one gets 

( V J W , o ) = 2(u,w)H(7) + {K*Vl(u),v)H(l) 

and the equations follow as this is zero for all v G H[pf). • 

Note that this characterises any stationary point including local minima, 
maxima and saddle points. 

The approximation proceeds by first selecting a collection of approxi­
mating spaces Va C C(X x Y) and a projection operator Pa : C(X x 7 ) - » 
Va such that, for any u G H(-f), one has 

\\u- PaUWoo < ea\\u\\H^y 

Particular examples depend on the type of problem solved. For the clas­
sification problem where X = [0, l]d and Y = {0 , . . . ,m — 1} one may 
choose Va = Ua <8> KY where Ua is a space of piecewise multilinear func­
tions on [0, l]d and a is an index describing the particular space chosen, 
e.g., the grid size or level. For the regression problem and X = [0, l ] d l and 
Y = [0, l]d2 one may choose for Va a space of piecewise multilinear func­
tions on [0, l]d l+d 2 . For the density estimation problem where X = [0, l]d 

and Y = {0} one may choose Va to be a space of piecewise multilinear 
functions on [0, l]d. In all these cases the operator Pa is chosen to be the 
interpolation on the grid points so that for all grid points (xi,yj) one has 

{Pau)(xi,yj) = u{xi,yj). 

The Galerkin approximation ua G Va is defined as the solution of the 
equations 

ua + ^PaK*Vl(ua) = 0. 
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Error bounds for ua will be discussed elsewhere. In many practical cases 
it turns out that one gets ||u — uQ||oo < C(u)ea for some constant C > 0 
depending on the solution u. The nonlinear equations for ua are solved 
using a Newton method combined with a conjugate gradient based solver 
for the linear system. The details of the solver and its performance will be 
discussed elsewhere. 

For large d in the previous examples the spaces of multilinear functions 
suffer under the curse of dimensionality as the number of grid points (and 
thus the dimension of the space) grows exponentially with the dimension. 
In practice, only up to around d = 5 is computationally feasible. For higher 
dimensions one considers sparse grid approximations [16]. Sparse grid spaces 
are function spaces defined as sums of the ordinary piecewise multilinear 
function spaces Va: 

where / is the set of grids considered. If the set of spaces Va is complete 
under intersections the interpolation onto the sparse grid space satisfies 

The Galerkin approximation requires the solution of 

uf+^PaK*Vl{u?) = 0 
ael 

in a sparse grid space. The terms PaK*Vl(uf) lead to large dense linear 
systems in the approximation. An alternative is the application of combi­
nation technique approximations [17] which take the form 

Uj = y j caua, 

where the combination coefficients ca are chosen as above and where the ua 

are the solutions of the variational problem in the (smaller) partial spaces. 
It has been seen that these combination approximations can be slightly 
improved by adapting the coefficients ca to the data as well; see [18,19]. A 
comprehensive discussion of the specific numerical scheme is the subject of 
current work and will be published in due course. 

4. Conclusion 

The maximum a posteriori method, while very popular in finite dimen­
sional settings, suffers under the nonexistence of a prior probability density 
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in the infinite dimensional case. It is shown here tha t the Cameron-Martin 

theory provides a framework for these cases. Generalisations of the repre-

senter theorem have been derived for this case and some initial discussion 

of the variational problems carried out. The current results suggest tha t 

computat ional learning problems can be efficiently solved using numerical 

techniques like the finite element method and sparse grid approximations. 

Current research is underways investigating particular implementations and 

application examples. 
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1. Introduction 

It has been shown that clinical databases that contain considerable noise 
often significantly deteriorate the generalisation ability of ordinary predic­
tion models. In recent years there has been a rapid growth in the successful 
use of Artificial Intelligent (AI) systems with high power of generalisation 
ability in many diverse areas such as science, medicine and commerce. AI-
based techniques such as Artificial Neural Networks (ANN) and Decision 
Trees (DT) can be applied in healthcare environments where an automated 
process must adapt to changing conditions. These techniques have provided 
great opportunities for researchers to enhance the information processing 
and retrieval capabilities of current knowledge-based systems. 

The inspiration for Artificial Neural Networks (ANNs) came from the 
desire to simulate features of biological neural networks and learning sys­
tems which show high power in pattern recognition tasks and adaptability. 
Neural network models are examples of sub-symbolic methods. Unlike sym­
bolic methods (such as Decision Trees), the sub-symbolic methods do not 
usually have the ability to induce symbolic representation from data and 
generate a set of rules that can be understood by humans. However, on 
the positive side, they are known to provide very good solutions to many 
difficult medical problems (Baxt, 1991; Ashutosh, Lee and Mohan, 1992; 
Tu and Guerriere, 1993; Baxt, 1995; Mobley, Leasure and Davidson, 1995; 
Ortiz, Ghefter and Silva, 1995; Itchhaporia, Snow and Almassy, 1996; La-
Puerta, L'ltalien and Paul, 1998; Pantazopoulos et al., 1998; Dayhoff and 
DeLeo, 2001). Neural networks have the ability to provide good solutions 
in situations where a large number of variables contribute to an outcome 
but their individual influence is not well understood. Clinical data gathered 
from patients who underwent graft transplant surgery have this character­
istic and are known to be complex (Doyle et al., 1994; Liberati and Setti, 
1994; Matis et al., 1995; Sheppard et al, 1999). 

Over time, a wide variety of hybrid intelligent methods have been pro­
posed to generate rules or extract knowledge from sub-symbolic and com­
plex classifiers such as ANNs using concepts drawn from fuzzy logic (Ma-
suoka et al., 1990; Mitra, 1994; Castro, Mantas and Benitez, 2003) and from 
rule-based methods (Fu, 1991; Thrun et al, 1991; Craven and Shavlik, 1996; 
Krishnan, 1997; Setiono, 1997; Zhou, Chen and Chen, 2000). This paper 
provides a brief overview of the variety of hybrid intelligent techniques 
that might be utilised for extracting rules from ANNs in clinical knowl­
edge discovery and the decision making process. The study also describes a 
novel neural networks ensemble technology, known as RDC-ANNE (Rules 
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Driven by Consistency in Artificial Neural Networks Ensemble) for extract­
ing rules from ANNs. This technique is applied and tested for predicting 
medical outcomes, using a trial data set from a kidney transplant database 
as a prototypical medical application. 

2. Previous Work 

2.1. Extracting rules from neural networks 

Over time, neural networks have proven to be very powerful tools at hand 
for pattern recognition and classification tasks. The power of Artificial Neu­
ral Networks in comparison to other symbolic machine learning techniques 
such as decision trees has been well documented by numerous researchers 
(Shavlik, Mooney and Towell, 1991; Thrun et al, 1991; Diederich, Hild 
and Bakiri, 1995). Their study revealed that for most problem domains 
Artificial Neural Networks are considered to be a very good choice. Artifi­
cial Neural Networks models are able to accept numerous input variables 
and adapt their criteria to better match the data they analyse. Also, given 
enough training time, appropriate numbers of hidden units and layers, ANN 
models are able to produce a high level of predictive accuracy, solve diffi­
cult problems and learn interesting linear or nonlinear relationships. These 
interesting features of ANN models provide a powerful and compact knowl­
edge representation tool at hand with an efficient storage and individual 
patterns recall system. The learned patterns and relationships are stored 
as a set of values across all weights and thresholds. These values are mean­
ingless and incomprehensible for human users. 

Coupling Artificial Neural Networks and rule extraction algorithms can 
significantly enhance the overall utility of ANNs. Hybrid rule extraction-
ANN algorithms can be grouped into four categories, namely the decom-
positional, pedagogical, eclectic and compositional algorithms (Andrews, 
Diederich and Tickle, 1995; Tickle et al., 1998). These classification schemes 
are mainly based on the approach used to study and analyse the underly­
ing ANN architecture or/and the classification given by the network for the 
processed input vectors. 

The decompositional (also known as local) methods usually start by 
extracting rules from each unit (hidden and output) in a trained neural 
network. The rules extracted at the individual unit level are then combined 
to form a global relationship and the final rule base for the ANN archi­
tecture as a whole. Some examples of this style of algorithm are KT (Fu, 
1994), Subset (Towell and Shavlik, 1993), COMBO (Krishnan, 1997), RX 
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(Setiono, 1997) and RULEX (Andrews and Geva, 1994; Andrews and Geva, 
1995). 

The second category of rule extraction algorithms is "pedagogical". The 
core idea in the pedagogical (also known as global) approach is to treat the 
trained neural network as a black box. It aims to extract rules that map 
inputs directly into outputs (Tickle et al, 1998). The pedagogical algo­
rithm uses the trained neural network only to generate test data for the 
rule generation algorithm. In this strategy the target concept is computed 
by the network and the input vectors are the actual network's input vec­
tors (Craven and Shavlik, 1994). VIA (Thrun, 1994), TREPAN (Craven, 
1996; Craven and Shavlik, 1996) and STARE (Zhou et al, 2000) are other 
examples of this style of algorithm. 

The third rule extraction category is eclectic algorithms. The methods 
from this category, like those in the decompositional category, carefully ex­
amine the ANNs at the level of individual units; they also extract rules 
at the global relationship level within trained neural networks. DEDEC 
(Tickle, Orlowski and Diederich, 1996) is an example of this style of algo­
rithm. 

The final category is compositional algorithms. The compositional algo­
rithms neither focus on local models that mirror the behaviour of individual 
units, nor treat the network as a "black box", like pedagogical approaches. 
Representatives of this category include algorithms proposed by Giles et 
al, 1992; Omlin, Giles and Miller, 1992; and Giles and Omlin, 1993. 

2.2. Extracting rules from a neural network ensemble 

Neural network ensembles are known to be good predictive models. How­
ever, a neural network ensemble is composed of several independently 
trained neural network models; therefore, naturally its comprehensibility 
is considerably more difficult than are those of its component classifiers. 

Over the years, many authors have tackled the problem of rule extrac­
tion from individual networks; however, much less work has been done 
in the explanation of combined neural networks (Wall and Cunningham, 
2000). This is of significance for acceptance of this technique in medicine. 

One example of research on improving comprehensibility of artificial 
neural networks ensembles can be found in recent work by Craven (1996). 
This work uses the TREPAN algorithm (Craven, 1996; Craven and Shavlik, 
1996) and the Addemup algorithm (Opitz and Shavlik, 1996) for generating 
rules from the ensembles in a telephone domain. TREPAN seems a good 
choice for this task because it does not try to translate all the individual 
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units (hidden and output) of networks into rules and also more importantly 
it can be applied to a wide class of networks (also see Figure 1). 

Rule set that 
describe the 

ensemble 
directly 

Fig. 1. A black box (global) explanation approach. 

Recently, Wall et al. (2003) proposed a local explanation strategy as 
an alternative to black-box or global approaches such as TREPAN. In this 
study they tried to explain the ensemble on a case-by-case basis (see Figure 
2). This strategy has been pursued successfully by other researchers such as 
Sima, 1995 and Das et al, 1998. Local explanation strategy can be used to 
identify the ensemble members that are relevant in explaining the prediction 
associated with a particular case. In this strategy, once the ensembles of rule 
sets have been produced, a rule selection strategy (mainly based on majority 
voting) is applied and a number of coverage statistics is calculated in order 
to study the fitness of rules to any unseen example and provide a case-by-
case explanation. It should be noted that this approach tries to discover 
how the elements of the ensemble contributed to the prediction. This is 
done by first extracting sets of rules from each of the member networks 
in the ensemble and producing ensembles of rule sets. The authors tested 
this strategy on relatively small ensembles of networks. Although there is 
no reason to believe that this approach will not perform well on larger 
ensembles, its suitability and computation time complexity remain to be 
verified. 

More recently, a series of a black box approaches, namely REFNE (Rule 
Extraction from Neural Network Ensemble) , C4.5 Rule-PANE (C4.5 Rule 
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Rule set for 
Network-1 

Rule set for 
Network-2 

Rule set for 
Network-3 

Apply a rule 
selection and/or 

integration 
technique 

Rule set that 
describe the 
behavior of 
component 
networks 

Fig. 2. A component-based (local) explanation approach. 

Proceeded by Artificial Neural Ensemble), and NeC4.5 (Neural ensemble 
based on C4.5) have been suggested by Zhou and Jiang, 2003, Zhou, Jiang 
and Chen, 2003 and Zhou and Jiang, 2004 for extracting meaningful knowl­
edge from neural network ensembles. Basically, these approaches utilise the 
trained neural network classifiers to generate instances and then extract 
rules from them. Their results revealed that, given enough training data, 
the C4.5 Rule-PANE approach can indeed provide comprehensible solutions 
with strong generalisation ability that are significantly more accurate than 
the standard decision trees. 

3. The Proposed Method 

The RDC-ANNE method is motivated by the Rule Extraction approach of 
Zhou and Jiang, 2003, Zhou and Jiang, 2004 and Wall et al, 2003. In this 
approach first we identified the patterns that were consistently used across 
the classifier series with positive impacts (higher predictive sources). Then 
for the rule extraction stage we incorporated elements of both the local and 
global explanation strategies. 

Like other black box or global rule extraction approaches (Zhou and 
Jiang, 2003; Zhou and Jiang, 2004), in this strategy the target concept is 
computed by the ensemble of networks and the input vectors are the actual 
network's input vectors. It also tries to consider the diversity and exper­
tise of the component networks in the rule generation process. However 
the RDC-ANNE method is not purely a local strategy (Wall et al, 2003) 
because it does not focus on identifying the ensemble members that are 
relevant in explaining the prediction (output) associated with a particu­
lar case. Instead it tries to explain the output of the ensemble based on a 
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cluster of cases that consistently generate agreement across the classifiers 
with similar expertise. This form of regularisation could offer a significant 
improvement in prediction accuracy and comprehensibility (for a detailed 
discussion and description, see Quinlan, 1996; Shadabi et al, 2004; Shadabi 
et al., 2005). 

4. A Case Study 

For the purpose of this study a series (n = 500) of Multilayer Perceptron 
(MLP) networks were trained independently, to differentiate between suc­
cessful and unsuccessful transplants. The data used in the project was ob­
tained from a kidney transplant and dialysis database (ANZDATA, 2000). 
Some variables were removed because they were actually an indication of 
the outcome of the transplant. The variables that were retained are AGE 
(Recipient age at transplant), MIS A (Number of mismatches A), MISB 
(Number of mismatches B), MISDR (Number of mismatches DR), MISDQ 
(Number of mismatches DQ), REFHOSP (Referring hospital), REFSTAT 
(Referring state), DONHOSP (Donor hospital), DONSTAT(Donor state), 
TRANHOS (Transplant hospital), TRANSTA (Transplant state), DON-
SOUR (Donor source), DONAGE (Donor age), DONSEX (Donor sex), IS­
CHEMIA (Total ischemia to nearest hour) and KIDPRESI (Initial kidney 
preservation). For ANN training, we divided the data set into three equal 
sized sets, the training set, the overtraining prevention (tuning) set and 
the test set. We also pre-processed the data further by performing normal­
isation. It should be noted that for classification using PART decision list 
in the data mining tool WEKA (Witten and Frank, 2000), the data was 
converted to ARFF format. 

In this study, rather than reporting predictive accuracy alone to show 
best model choice, we modified the program in order to show the input 
patterns (examples) that were included across the ANN series in the final 
results. Patterns that consistently were in agreement across the classifiers 
can be considered as examples with positive impacts or higher predictive 
sources. 

4.1. Methodology 

For the purpose of this study, the following methodology was employed: 

(1) Pre-process the data set. This includes: extracting the data from dif­
ferent tables, cleaning the data, transforming the nominal attributes 
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into numeric attributes, and choosing the appropriate parameters to 
be included in the dataset with the help of a domain expert. 

(2) Split the dataset for training and testing (with balanced distribution 
of success and failure cases). 

(3) Perform classification using the ANN ensemble approach. 
(4) Generate new training sets by extracting the patterns (examples) that 

were consistently causing agreement across the ANN classifiers, in the 
testing phase. 

(5) From the new training sets generated in step 4, choose a reasonably 
big training set that has provided both a good level of accuracy (based 
on its corresponding classification table) and a reasonable amount of 
model agreement. 

(6) Extract rules from the patterns in the chosen training set, using the 
WEKA PART decision list. 

(7) Analyse the results. 

It should be noted that prior domain knowledge can also be applied to 
choose the significant rules that could be useful for predicting the outcomes 
of a medical event (e.g. failure or success of graft transplants) or to form 
new concepts. 

4.2. Results 

In this experiment, the balanced test set reached 70% accuracy rate with 
87% agreement among the networks (435 of 500 networks), based on 19% of 
data points (i.e. 84 cases). The results indicate that the model was able to 
classify about 87% of successful transplants and 54% of unsuccessful cases. 

For rule generation using the PART decision list, at first, we applied a 
more conventional strategy and generated a new training data set by feeding 
the entire examples in the test set to a trained ensemble and replacing the 
true class labels of the original test instances with the class labels assigned 
to them by the ensemble. The rule set generated by PART decision list 
produced 26 rules. 

The rule set can be made substantially easier to understand by enforcing 
the model to consider mainly the examples whose class labels consistently 
caused agreement across the ANN classifiers. In effect, this strategy tries 
to safely remove the branches of rules that were generated by the presence 
of noise in the data set. The following rule set was produced by applying 
RDC-ANNE approach based on the 84 examples whose class labels (outputs 
from the ensemble) were in agreement across 87% of classifiers: 
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(1) donstate < 4 AND donage < 43: Success (38 cases) 

(2) donhosp < 109 AND misa < 1 AND refstate > 3 AND misb > 0 AND 

refhosp > 94: Failure (11 cases) 

(3) misa < 1 AND misb < 1: Success (16 cases / l false positive) 

(4) donsex > 0 (i.e. Female): Failure (9 cases) 

(5) misa > 1: Failure (5 cases) 

(6) age > 27: Success (3 cases / l false positive) 

(7) Else: Failure (2 cases). 

As it can be seen, in this experiment, the rule set produced fewer rules 

(only 7 rules). These rules were valid for 98% of cases (i.e. 82 cases) in the 

da ta set. 

5. Con c lu s ion s 

This s tudy has made a short review of the different ANN rule extraction 

techniques. Of these techniques some, notably "hybrid neural networks", 

in which the goal is to extract useful explanations from individual neural 

networks, have been actively developed. As yet, little evidence exists about 

research and development in the explanation of several combined neural 

networks. 

This s tudy also has described a novel approach, namely "RDC-ANNE" 

tha t is designed to extract useful explanations from several combined neural 

network classifiers. The primary experimental results revealed tha t this 

approach can be used to identify the regions in the da ta space tha t have 

positive impact on the system performance, extract useful explanations 

from several combined neural networks and enhance the overall utility of 

current neural network models. 

In summary, there are still many challenges to be overcome. Each tech­

nique has its own advantages and disadvantages under different circum­

stances. It is clear, though, tha t integrating hybrid AI modules into com­

puterised patient records and complex clinical da ta can provide a great 

chance for improving quality of care. 
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Data mining is much more than simply building statistical models from 
large collections of data. In particular, this paper records a core task of mining 
as exploring through the space of models that are built in a data mining project. 
The idea was first introduced through the concept of multiple inductive learning 
(MIL) (Williams, 1988, 1991) and further developed in practice as mining the 
data mine (Williams and Huang, 1997). Many data mining advances that have 
since emerged have further developed the idea: multiple modelling, ensemble 
learning, bagging and boosting all help the data miner explore different ideas 
and look for different insights in modelling. In this paper we review these ideas 
and a number of data mining projects that highlight the significant role played 
by mining the data mine. 

Keywords: data mining; ensembles; hot spots; multiple models; health. 

1. Introduction 

A data miner is engaged in the activity of aggregating very large collections 
of data to explore for new insights and understandings that will provide im­
provements for some process of interest. Application areas include customer 
relationship management, fraud prevention and control, and risk rating, to 
list but a few. Data mining is commonly defined as the non-trivial extraction 
of novel, implicit, and actionable knowledge from large databases (Fayyad 
et al., 1996). 

The tools deployed by a data miner include common statistical mod­
elling approaches as well as modelling approaches developed from research 
into machine learning and artificial intelligence. Traditionally, this means 
building decision trees or logistic regression models or neural networks. 

Data underlies data mining and comes in many shapes and sizes. For 
data mining, the data is generally characterised by its sheer size. Its size is 
one of the key differentiators from traditional research in machine learning 
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and statistics. Each entity (which may also be referred to as a record in data 
base terminology, or a training instance in machine learning terminology, or 
a sample in statistical terminology) might be described by anywhere from 
10 to 20,000, or more, features, and we may have from 20 to 200 million, or 
more, entities. Generally, small sets of entities arise in situations where we 
have very many features describing such entities, as is typical in genomics 
research, image data, and text mining. Datasets with fewer features but 
many more entities are typical in industry and government describing clients 
or customers. Thus the data is often of at least megabytes in size, usually 
in the gigabytes, and less frequently, in the terabytes. 

Traditional approaches to modelling and data mining tend to deal with 
flat data in the form of a single row of data representing a single entity, with 
no relational data explicitly allowed. That is, links between entities must 
be captured in some other way, and repeated data needs to be aggregated 
in some way so that all entities have the same signature (the same number 
of features describing each entity). 

Complex relationships, then, are generally not mined in data mining. 
In the administrative medical domain, for example, the entities that exist 
include patients and doctors, but also receptionists, pathologists, special­
ists, insurance claims officers, et c. Complex relationships exist among all 
these entities but generally remain too complex to be handled by today's 
data mining technology. Instead, the complex relationships need to be re-
represented in a simpler, flatter form. 

Whilst statistics provides many of the traditional tools deployed for 
modelling in data mining, the data miner spends much more time through 
other phases of a data mining project, which includes business understand­
ing, data understanding, data preparation and cleaning, modelling, evalu­
ation, and deployment (Fayyad et al., 1996). Common wisdom, indeed, is 
that modelling is just a small portion of the overall task (often less than 
10% of the overall effort in any data mining project). 

More broadly, data mining is about deploying multiple technologies to 
enable data exploration, data analysis, and data visualisation of very large 
databases at a high level of abstraction, generally without a well defined, 
specific hypothesis in mind, to extract knowledge from the data in any, and 
in many, ways. 

The technology deployed in data mining comes from a diverse arena of 
research disciplines, beginning with databases, quickly drawing in machine 
learning and statistics, and encompassing high performance computing, 
computational mathematics, intelligent systems, visualisation, and web ser-
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vices. Together, these technologies deliver a rich, if sometime diverse, tool­
box that a data miner deploys to deliver knowledge from data by analysing 
relationships in information. 

In this paper we explore what might happen after we have built a model. 
Indeed, we review the idea of building multiple models and then exploring 
these models for the insights we need to deliver from data mining. Projects 
deploying such an approach are briefly described. 

2. Mining Models 

Making the simple observation that, in building decision tree models, for 
example, choices between different splits sometimes only marginally differ­
entiate variables, Williams (1988) introduced the idea of building multiple 
decision trees and combining them into a single model. This began the 
data mining approach of exploring through a much richer space of models 
to identify and extract more information than otherwise would have been. 
It also later eventuated, from theoretical studies by many others, that en­
semble learning was a good approach to model building and data mining 
(Hastie et al, 2001). 

The original work of Williams (1991) used the Australian Resources In­
formation System (ARIS) database (Walker et al, 1985). This consisted 
of some 11,000 entities, each recording extensive geographical information 
about a 700 square kilometre region of Australia. In particular, the range-
land regions of Australia were used in the study (8,000 entities). For each 
region 40 features were selected describing dominant soil type, vegetation, 
moisture indicators, and distance to nearest seaport. 

The output variable for the study was a measure of the viability of the 
pastoral use of the land (for sheep and cattle grazing). Some 106 entities 
had been manually assessed by pastoral experts as to their viability, and 
this small dataset (although, at the time, regarded as reasonably sized) was 
used for model building. A version of the ID3 algorithm for decision tree 
induction (Quinlan, 1986), using the information-theoretic cost function, 
was used. 

In building models in this domain, the decision tree algorithm only 
marginally chose one variable over another, to result in sometimes quite dif­
ferent looking trees. This fact was taken advantage of, rather than thought 
of as a problem, so as to produce multiple models, each giving different, 
but useful, insights into the domain. The final model developed for this do­
main consisted of multiple decision trees, with conflicts between the models 
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being resolved logically. The system was called MIL for Multiple Inductive 
Learning. 

The key outcome of this research was the idea of building multiple 
models and combining them. Follow-on research took this idea further in 
the context of data mining with the realisation that model building was 
really the starting point to achieving the goals of data mining. Williams 
and Huang (1997) introduced the concept of mining the knowledge mine, 
and hot spots data mining. 

The basic idea is that of building models that can be decomposed into 
smaller units that effectively describe different regions of a dataset (or pop­
ulation). Converting decision trees to rule sets is common practice, start­
ing with the C4.5 tool (Quinlan, 1993). Rules, generally in the form of a 
conjunction of conditions, can then be used to symbolically describe these 
different regions of a dataset. Indeed, we can think of each set of conditions, 
each rule, as a nugget! A nugget captures some collection of entities, and our 
task in data mining is to determine which nuggets are the most interesting. 
The generation of the nuggets can be left to a variety of approaches, but 
a common one we introduced is to combine clustering with tree building 
where the cluster identifier becomes the target variable in the tree building. 
We call this hot spots data mining. 

YrClaim < $15,000 ClmType < 6 

Prior in C2 Gender = h 
[mental.diabetes] 

Cost = $95,000 

Cost = $158,000 

Fig. 1. The Hot Spots data mining process. 

We can picture the hot spots data mining process as in Figure 1. Work­
ing from left to right, we start with a dataset (a 2-dimensional dataset in 
this case) that has no specific target variables. Thus we have an unsuper­
vised learning problem. By clustering the data in some way, for example 
using traditional fc-means, we can end up with a collection of clusters. For 
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a very large dataset (e.g., millions of entities) we may indeed end up with 
quite a number of clusters (upwards of 100 or even 1000). 

Each cluster can then be considered as a class, and entities will then 
belong to one class or another. This class can then be used as a target 
variable for a supervised learning problem. Using a decision tree builder we 
produce a set of rules (from a single decision tree each rule corresponds to 
a single path from the root node to a leaf node — providing a conjunction 
of conditions). 

Each of these rules (or paths, or perhaps we can call them "nuggets") 
can then be considered independent of any other nuggets. The concept is 
to then explore through this space of nuggets searching for any that are 
interesting by some measure. 

The nuggets might be as simple as the following: 

Nugget 1 Age is between 28 and 35 and Weeks > 10 
Nugget 2 Weeks < 10 and Benefits > $350 

We note again that they are simple conjunctions of conditions. 
For each nugget we collect together summary data about those entities 

that make up the subset of the dataset described by the nugget. This might 
include things like the size of the nugget and average values of various 
features over those entities in the nugget, or measures of how far the nugget 
average is from the population average, and so on. 

A simple example might be the following table where perhaps we have 
a total of just 280 nuggets and we might collect various summary items as 
in: 

Nugget 

1 
2 
3 
4 
5 
6 

280 

All 

Size 

9000 
150 

1200 
80 
90 

800 

30 

40,000 

Age 

30 
30 
65 
45 
10 
55 

25 

45 

Gender 

F 
F 

M 
F 

M 
M 

F 

Services 

10 
24 

7 
30 
12 

8 

15 

8 

Benefits 

30 
841 
220 
750 

1125 
550 

450 

30 

Weeks 

2 
4 

20 
10 
10 

7 

15 

3 

Hoard 

1 
2 
1 
1 
5 
1 

2 

1 

Regular 

1 
4 
1 
1 
2 
9 

6 

1 

Specific nuggets are then scored as to their interestingness based on a 
number of measures. For example, the bold entries in the table indicate 
values that are found to be more than two standard deviations from the 
population values. Thus we add scores to these nuggets. By this we produce 
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a ranking of nuggets which can then be explored by domain experts in order, 
looking for new insights. 

Over many different data mining projects, these ideas have repeatedly 
shown themselves to provide more insights into the relationships between 
entities and features, with respect to some target variable. In the following 
section we briefly review a number of these projects. 

3. Applications in Health 

Australia has a universal health care system that has been providing pri­
mary medical care to patients since 1975. For administrative purposes (i.e., 
to make payments to the doctors) data is collected for each transaction 
performed. Since the introduction of Medicare in 1975, over a terabyte of 
data has been collected, and mostly never analysed. 

This tremendous resource, that can tell quite a story about the changing 
health of Australians, started being used with data mining in the early 
1990s. Over the years it has been used for identifying inappropriate provider 
practices, and for identifying public fraud committed against Medicare. 

The mining of the knowledge mine approach was successfully deployed 
to identify a particular type of fraud being committed by a group of pa­
tients against Medicare. The particular group ranked highly on a number 
of disjoint features, and in combination this led the domain experts to fol­
low up on their insurance claims, and eventually determine that they were 
fraudulent. 

Another major piece of health data mining was made possible with 
the creation of the Queensland Linked Dataset (Williams et al., 2002b). 
This was the culmination of a project between CSIRO Data Mining, the 
Commonwealth Department of Health and Ageing and the Queensland De­
partment of Health, bringing together a large collection of health care data 
for the purpose of data mining. 

The Medicare program (MBS), as mentioned above, together with the 
Pharmaceutical Benefits Scheme (PBS), provide universal health care in­
surance for Australians. These schemes cost several tens of billions of dollars 
each year and data relating to virtually every non-hospital medical activ­
ity in Australia since 1975 is recorded. But a significant gap in this data 
was information relating to hospitalisations of patients, which was a State 
rather than a Commonwealth responsibility. This project brought together 
these datasets for the first time in Australia. 

The resulting dataset consisted of 5 years of MBS and PBS transac­
tions and 4 years of Queensland hospital admissions data for all patients in 
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Queensland. The da t a was carefully de-identified so as to preserve patient 

privacy and confidentiality. The dataset consisted of records for 1.1 million 

individuals who were hospitalised in Queensland between 1995 and 1999, 

and there were 3 million hospital records in the data . For these patients 

there are 100 million MBS transactions and 60 million PBS transactions. 

For hospital records there are nearly 60 variables recorded, nearly 20 for 

MBS and 15 for PBS. Overall these da ta account for 500MB, 8GB, and 

4GB respectively. 

We have deployed this dataset in a number of da ta mining tasks, but 

the early work explored building multiple models and from these models 

exploring for significant, if rare, relationships between interactions with the 

medical system, and, for example, episodes in hospital. Indeed, this early 

work led to initial discoveries in the dataset of relationships between multi­

ple drug prescriptions and hospitalisation for specific conditions (Williams 

et al., 2002a). 

4 . S u m m a r y 

In this paper we review the idea of modelling as one step along the pa th 

to da ta mining, where the aim is to gain insights into the world we are 

modelling, and with these insights, to take action to improve our business 

processes or our understanding of how things work. In particular, we have 

presented the genesis of the idea of building multiple models and illustrated 

applications where this has demonstrated useful outcomes. 
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Ranked Set Sampling: A Simple Idea of Great Use 

Zehua Chen 

Department of Statistics and Applied Probability, National University of Singapore, 
Singapore 117543 

E-mail: stachenz@nus. edu. sg 

Ranked set sampling s a simple idea of great use. It was proposed half a 
century ago. The last fifteen years or so have witnessed considerable develop­
ment in the research and applications of ranked set sampling. In this talk, we 
give an overview on ranked set sampling and discuss its essence. We present 
some novel applications of ranked set sampling in areas of clinical trials, genetic 
quantitative trait loci mappings and others. By doing so, we wish to provide 
the audience with a philosophical view on ranked set sampling and shed some 
light on a broader range of its applications. 
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Properties of Nearest-neighbour Classifiers 

Peter Hall 
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The fc-th nearest neighbour rule is arguably the simplest and most intu­
itively appealing nonparametric classification procedure. However, relatively 
little is known about the manner in which this method is influenced by the 
value of k, or about properties of empirical selectors for k. We shall discuss 
these and related issues. 
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Large Covariance Matrices: Estimation and Inference in High 
Dimensions 

Iain M. Johnstone 

CMA, Mathematical Sciences Institute, Australian National University, 
Canberra ACT 0200, Australia 

and 
Department of Statistics, Stanford University, 

Stanford CA 94305, USA 
E-mail: imj@stanford.edu 

Principal components analysis (PCA) and canonical correlation analysis 
(CCA) are among the workhorses of applied multivariate data analysis. Mod­
ern data sets are apt to have a large number of variables, and so a mode of 
approximation in which the number of variables is comparable to the number of 
observations is sometimes relevant. The talk will survey several topics relating 
to PCA and CCA where this type of approximation has led to new results. 
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Bootstrapping in Clustered Populations 

Alan H. Welsh 
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We consider the problem of making analytic inferences about the parame­
ters of a simple super-population model which generates clustered populations. 
We suppose that we have a finite population generated by this model in which 
we know the cluster structure in the sense that we know to which cluster every 
unit in the population belongs. From this finite population, we suppose that we 
select a sample through a simple, noninformative two-stage sampling scheme 
in which (i) we select a sample of clusters and then (ii) within each selected 
cluster, we select a sample of units. We assume that the sampling at both 
stages is ignorable given knowledge of the cluster structure. We discuss esti­
mating the parameters of the model and then explore the use of the bootstrap 
for estimating the variances of estimators of the super-population parameters. 
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On the Linear Aggregation Problem in the General 
Gauss-Markov Model 

Hans Joachim Werner 
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D-53113 Bonn, Germany 

E-mail: hjw.de@uni-bonn.de 

We consider the linear aggregation problem in the general, possibly sin­
gular, Gauss-Markov model. For the true underlying micro-relations, which 
explain the micro-behaviour of the individuals, no restrictive rank conditions 
are assumed. We introduce several estimators for certain linear transformations 
of the systematic part of the corresponding macro-relations and discuss their 
properties. [This research includes some joint work with Fikri Akdeniz (Adana, 
Turkey).] 
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